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Preface

The European Conference on Numerical Mathematics and Advanced Applications
(ENUMATH) is an important conference series in Numerical Mathematics that is
held every two years in a different European country. The series provides a platform
for discussions about the latest insights in Numerical Analysis and its applications.
This conference series is an important get-together event of computational scientists
throughout Europe and the rest of the globe. Previous ENUMATH conferences were
held in Paris (1995), Heidelberg (1997), Jyviskyla (1999), Ischia Porto (2001),
Prague (2003), Santiago del Compostela (2005), Graz (2007), Uppsala (2009),
Leicester (2011), Lausanne (2013), Ankara (2015) and Bergen (2017). We are proud
to say that the reputation of the ENUMATH conferences is rated among the best in
Numerical Mathematics and Scientific Computing worldwide. The publication of
high standard conference proceedings has contributed largely to its reputation.

The current volume contains 120 proceedings papers from the event ENUMATH
2019 in Egmond aan Zee, in The Netherlands. The contributions are based on
talks in minisymposia, contributed sessions and keynote talks. The level of the
talks was excellent in general, and the atmosphere was very good and constructive.
The number of delegates was 457, and the conference was characterised by
its enormous diversity in topics within the science of Numerical Mathematics
and Scientific Computing. This can also be seen by this booklet. Topics were
within computational fluid dynamics, mathematical biology, quantum computing,
traditional finite element analysis, isogeometric analysis, model order reduction,
numerical linear algebra, optimisation, to mention some of them.

Scientific Computing is growing rapidly within the mathematical and computer-
related disciplines. It has become a mature branch of science of its own, and it
is engaged with the development of computational techniques that are needed to
understand and to predict very diverse phenomena in Science, Finance, Medicine
and Technology. The discipline focuses on the development of mathematical for-
malisms, as well as the development of efficient and robust algorithms. Next to these
aforementioned aspects, Scientific Computing entails the analysis of convergence,
efficiency, well-posedness and stability of the developed models and computational
schemes. The numerical analytic aspects of the developed models and schemes are

v



vi Preface

of utmost importance, and therefore we are happy to see numerous contributions
that have been devoted to analytic aspects of Scientific Computing in this booklet.

The current ENUMATH conference organised in The Netherlands may be called
a success. This success has been made possible by many people. In the first place,
we thank the delegates for coming to the conference! You made this fantastic
event possible with your presence, discussions, presentations and submission of
papers! Thank you! Further, we thank the Enumath Programme Board, consisting
of Barbara Wohlmuth, Franco Brezzi, Roland Glowinski, Gunilla Kreiss, Miloslav
Feistauer, Yuri Kuznetsov, Pekka Neittadanmaiki, Jacques Periaux, Alfio Quateroni,
Rolf Rannacher and Endre Siili for giving us the opportunity to organise this
event. We also thank the Scientific Committee and minisymposia organisers for
reviewing the abstracts and conference papers. Furthermore, we thank the keynote
speakers who all gave excellent presentations, where we personally thank Michele
Benzi, Koen Bertels, Eduard Feireisl, Gitta Kutyniok, Maxim Olshanskii, Francesca
Rapetti, Thomas Richter, Tuomo Rossi, Mishra Siddhartha, Stefan Vanderwalle and
Karen Willcox.

The organisers are also thankful for the financial support from the sponsors: The
Dutch Burns Foundation, NDNS+-, 4TU.AMI, DCSE and the Delft University of
Technology. Without their financial support, this conference would not have been
possible. Last but not least, the administrational work was done by Marion van
den Boer-Roggen (SciConf Scientific Conference Organisers, Eindhoven). You have
helped us tremendously with all the paperwork and with very many of the emails
that were sent to us. Thank you so much! Without you, the organisation and hence
the conference could never have been this successful!

We conclude with thanking all the delegates again for their interesting contribu-
tions and we thank all the people who have been involved with reviewing abstracts
and papers that made the excellent scientific level of this booklet and the conference
possible.

Delft, The Netherlands Fred J. Vermolen
Delft, The Netherlands Kees Vuik
Delft, The Netherlands Matthias Moller
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High Order Whitney Forms on Simplices )
and the Question of Potentials Gt

Francesca Rapetti and Ana Alonso Rodriguez

Abstract In the frame of high order finite element approximations of PDEs, we are
interested in an explicit and efficient way for constructing finite element functions
with assigned gradient, curl or divergence in domains with general topology. Three
ingredients, that bear the name of their scientific fathers, are involved: the de Rham’s
diagram and theorem, Hodge’s decomposition for vectors, Whitney’s differential
forms. Some key images are presented in order to illustrate the mathematical
concepts.

1 Introduction

The situation where a field is expressed with a differential operator d, such as grad,
curl or div, applied to another field arises frequently in physics. In electromagnetic
modeling, for example, it can be evocated by the physical model itself, as curl H =
J in the Ampere’s theorem relating the magnetic field H to the conducting current
density J, or artificially to simplify the problem solution, as E = —grad V where
E is a conservative electric (vector) field and V is the associated electric (scalar)
potential. In both cases, the differentiated field, here H, V, is called a potential, of
J, E, respectively. The generalized Stokes’ theorem f ydw = f 9y W establishes a
duality between the functional differential operator d and the geometrical boundary
operator 9. It implies that potentials can exist only for fields w such that dw = 0
(the closed forms in exterior calculus language). However, not all closed forms
have potentials and this complication is correlated with the topological features
of the domain. Due to the duality arising in Stokes’ theorem, what matters is to
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2 F. Rapetti and A. A. Rodriguez

understand whether or not a part of the domain is the boundary of another part of
the domain, and this is a homological question. Closed k-forms with no potential
constitute the kth de Rham cohomology group H*, which is by de Rham’s theorem
[19], isomorphic with the kth homology group Hj of the domain. The uniqueness
question of potentials in a topologically simple unbounded domain £2 C R3
was first settled by Helmholtz [11] about the decomposition of vector fields in
fluid dynamics. One century later, Hodge [13] introduces, in the formalism of
exterior calculus, a decomposition that generalizes the one proposed by Helmholtz
to any space dimension n and to domain of general topology (in the literature, this
decomposition is sometimes attributed to Ladyzhenskaya who refers to it as Weil’s
decomposition in [14]). The theory developed by Hodge to study algebraic geometry
is built on the work of de Rham, on the de Rham cohomology.

When we pass to the discrete finite element setting, all these homological and
cohomological concepts are not impacted by the discretization process (apart from
perhaps the harmonic one). They have equivalents that neither depend on the size
h > 0 of the mesh elements (simplices here), nor on the polynomial degree g > 1
of the basis functions adopted to reconstruct the fields. This is largely due to having
adopted the correct formalism, the one of differential forms, and to the geometrical
nature of Weil-Whitney forms [8, 16, 20, 21], that reconstruct fields. Graph theory
and linear algebra are then sufficient to construct effective algorithms to complete
the computational side. Stating the necessary and sufficient conditions for assuring
that a function defined in a bounded set £2 C R? is the gradient of a scalar potential,
the curl of a vector potential or the divergence of a vector field is one of the most
classical problems of vector analysis (see for example [5]). In these pages we answer
to the question of describing potentials in terms of finite element bases of high
polynomial order in domain of general topology. The answer shows an interesting
interplay of differential calculus and topology that is the goal of the present work.

2 The Continuous Side of the de Rham’s Diagram

We introduce the minimal notation to present the question of potentials in terms of
differential forms, referring to [6, 8] for more details.

Let us consider the n-dimensional Euclidean space R”, with n € N, and let
£2 C R” be a (sufficiently) smooth n-manifold. We denote by Ak (£2) the space of
smooth differential k-forms on §2. Scalar potentials, field intensities, flux densities,
or densities are the so-called proxy fields of the corresponding differential k-forms.
Among the linear operators acting on these forms, some are metric dependent others
not. Differential forms can be integrated and differentiated on §2, without involving
any additional metric structure. If S is an oriented, piecewise smooth k-dimensional
submanifold of £2, and w is a piecewisely continuous k-form, then f g w is well-
defined. The notation f ¢ W is compact, in the sense that it stands for evaluating w
at the point S if k = 0, or computing the line integral of w along S if k = 1, or
estimating the surface integral of w over S if k = 2 and computing the volume
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integral of w over S when k = 3. In exterior calculus, we have particular operators
acting on forms, three of them matter here. These are the exterior or wedge product
A, the Hodge’s operator %, and the exterior derivative d.

The operator A : AR(2) x AL(R2) - AFE(2) is a natural multiplicative map
among forms such that w Az = (—=1)*z Aw, forall w € AF(2)and z € AY(2). It
just generalizes to forms the dot and cross products among vectors. As an example,
fOAu = fu,ul Avl =u x v, u! Av? =u? Av! = u - v. Note that we define the
integral on §2 (only) of a differential n-form u(x) = f(x)dx; A ... A dx, such that

/u:/ fx)ydxin...ANdxy
2 2

where the integral on the right is the standard integral on real functions f and
dxi A ...Adxp plays the role of infinitesimal (oriented) volume det(dxy, ..., dx,).
Recall that the metric defines an inner product for vectors. This notion also extends
to forms: given a metric, one can define the product of two k-forms in AX(£2)
which will measure, in a way, the projection of one onto the other, see [1] for
a formal definition. Given this inner product denoted (., .), the Hodge’s operator
*: AK(2) = A" %(£2) is such that we may define

/ WAZ =/ *wzvol = (xw, z) vol, Vw € A¥, z € A" F ().
9 9

Let d : AK(2) — AFT1(2) denote the exterior derivative (where the term
“exterior” is to indicate that d increases the degree of the form). It is linear and
satisfies the two key properties d o d = 0 and the Leibniz’s rule

dHwaz) =d*w) Az+ (=Dfwadlz, we AKR), 7€ ALR).

The index k in d¥(w) does not indicate a derivative of order k on w, but an exterior
derivative on the k-form w (in the following, we just write d w). For k = 0, we have
dw= Z?:l 3){’ dx;.

By (cochain) complex (A®, f*) we mean a sequence of algebraic objects with
Abelian structure (e.g., vector spaces) A—L A0 Al A% ... connected by homo-
morphisms . Ak > AKH guch that, for each k, it holds fft*=1 = 0. In the
Euclidean space, differential forms on 2 constitute the complex

. 0 1 2
0-5 2%2) -5 Al@) S A22) -5 a32) S o

known as de Rham complex and denoted by (A®(£2),d®). In terms of proxies
defined on £2, the L2 de Rham complex reads

. . .
0 -5 H' 2% H( curl) &% Hdiv) 2% 12 % 0.
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A differential form w € AK(£2) is said to be closed if dw = 0, and exact if
there exists a (k — 1)-form z such that w = dz. These concepts arise in physics.
For example given a vector field f representing a force, one would like, if the
force is conservative, to find a function p called the potential energy, such that
f = grad p. With differential forms, to say that f is conservative is equivalent to
say that the corresponding differential form f is exact. Since d o d = 0, we have
Imd* c Kerd*t!, that is every exact form is closed. So, if f is conservative, the
corresponding form f is also closed. It is natural to ask when a closed form is exact.
The answer depends on the topology of the manifold §2 (see more details in [9], for
example). In the de Rham complex, the Poincaré lemma addresses this question to
a large extent.

The idea behind de Rham cohomology is to define equivalence classes of closed
forms on a manifold. Let us denote by ZK(£2) the set Ker d¥ of closed k-forms and
by B¥(£2) the set Imd*~! of exact k-forms. We have in general that BXK(2) C
ZK(£2). The quotient

H* = ZK(2)/B¥(£2) = Kerd* /Im d*~!

is the k-th cohomology group of §2 and we can write Z¥(£2) = B*(2)®H*. Indeed,
one classifies two closed forms u, v € A¥(£2) as cohomologous if they differ by an
exact form, that is, if © — v is exact. This classification induces an equivalence
relation on the space of closed forms in AX(£2) and H* is the set of equivalent
classes, namely the set of closed forms modulo the exact ones. The previous notions
can be summarized in the diagram of Fig. 1, where the portion of de Rham complex
between k- and (k 4 1)-forms is visualized. A complete de Rham diagram in three
dimensions is given in Fig. 2. Horizontal lines show the Hodge’s decomposition of
AX(£2), that is A¥(£2) = B* ® H* @ Y* where Y* is generally characterized as
Yk = §k AKT1(£2) with the introduction of the coderivative operator sk AR (2) —>
A*¥=1(£2) that for a smooth domain is defined as *8¥w = (—1)*d » w for all w €
A¥(£2), in order to have (da, B) = (a, 88), forall @ € AK~1(2) and B € A¥(£2)
vanishing near the boundary.

Theorem 1 (Hodge Decomposition for Forms) Given a compact oriented Rie-
mann manifold §2, any k-form w on S2 uniquely splits into the sum of three terms,
wi, wa, w3, where wy is exact, wy is co-exact and w3 is harmonic.

Fig. 1 The de Rham B
complex between A (£2) and A (Q)
AF1(£2). On the horizontal

lines, the Hodge’s l

decomposition of A®(£2). d
Oblique lines mimic the

action of the d operator:

d(Z%) = {0} and

d(yk) = B! AHQ)
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scalar

0 0 .
AYQ H | Y HY O constants | _potentials
(Q) = 70 A (@) | ker(grad) A" cod(grad)
d l grad
vector
A (Q) H(curl,Q) gradients H' | potentials |
ker(curl) ! cod(cur)
d l curl
sinks or
. Is sources
A (Q H(div,Q) S -
@) Ker(div) cod(av)
dl div l
AZ ( Q) 2 (Q ) divergences
Fig. 2 The de Rham complex for n = 3, in the exterior calculus formalism (left) and in the vector

formalism (right). The set H' (resp. H?) on the left corresponds with the space H' = {u €
L2(£2)3, curlu = 0, divua = 0, u-nyp = 0} (resp. H2 = {u € L2(£2)3, curlu = 0, divu =
0, u x nyg; = 0}) on the right

So, wy exact (resp. wy co-exact) means that there exists a (k — 1)-form « (resp.
a (k + 1)-form B) such that w; = do (resp. wy = 68). And, w3 is harmonic if
Awsz = 0 with A = d§ 4 8d. This follows by noting that exact and co-exact forms
are orthogonal; the orthogonal complement consists in forms that are both closed
and co-closed, thus harmonic. Orthogonality is defined with respect to the inner
product (., .) on AR (£2) (see, e.g., [6, 9]).

There exists a relation (of duality) between the exterior derivative d and the
boundary operator 9, stated by the Stokes’s theorem

/dw:/ w, VS C 2, dimS =k, VYwe AKQ).
S as

k-forms are dual of k-manifolds S, and d is the adjoint of the boundary operator
d. We have a (chain) complex denoted by (C,, ds) Where Cy if the set of chains of
k-manifolds on §2 and 9 : Cx — Ci—1, for k > 1. A k-cycle is a k-chain y such
that dxy = 0, thus, by definition, any k-chain that belongs to Ker 9%, A k-chain
y is a k-boundary if there exists a (k 4+ 1)-chain o such that dy+10 = y. The set
of k-boundaries coincides with Im 0x1. Due to the property dxdx+1 = 0, we have
Imdr41 C Ker dx. Two k-chains «, § are homologous if they differ for a boundary,
that is, if « — B is a k-cycle. The set of equivalent classes in Cy is the k-th homology
group Hj defined by

Hy = Ker 8K /Im o**1.
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Theorem 2 (de Rham, See e.g. [10]) For any value of the integer k, the k-th
homology Hy, is isomorphic to the k-th cohomology group H.

The dimension of H is finite and defines the Betti’s number by. In three dimensions,
by = dim Hy = m is the number of connected components of £2. Indeed, any
function on £2 with zero derivative everywhere is separately constant on each of the
connected components of £2. In the following, we suppose §2 connected, thus m =
1. The first and second Betti’s numbers, b1 = dim H| = g and b, = dim H, = p,
correspond, resp., to the number of loops and cavities in £2. Finally, b3 = 0. These
numbers are invariants, quantities that cannot change by continuous deformation
and that characterize the topological space £2. In other words, if §2 is a sphere S,
it will never be possible to deformate it continuously into a torus 7 since b1 (S) #
b1(T). The Euler’s characteristic number x (£2) = bg — b1 + bp — b3 is also an
invariant of £2. For topologically trivial domains, we have Hy = {0}, for all 0 <
k < n (this result is known as Poincaré’s lemma).

3 The Discrete Side of the de Rham’s Diagram

The key point in the de Rham’s theorem is that the equivalence classes of H¥
can be defined starting from those of Hy, therefore it expresses basic topological
information about smooth manifolds in a form particularly adapted to computation.
Indeed, thanks to the following result [17], we can rely on simplicial homology.

Lemmal Lett, = (V, E, F, T) be a simplicial triangulation over §2 and 2, =
Urert. The k-th homology groups Hy(§2) and Hy(§2y) are isomorphic.

Even if 1 is a simplicial triangulation of £2, the topological properties computed on
£2y, are the same as those of £2. For £2 connected, e.g., it holds

x(2)=) l—g+p=ny—ng+nr—nr (= x(8p)

where ny, ng,np, ny are, respectively, the cardinalities of the sets of vertices V,
edges E, faces F and tetrahedra T of the mesh 7. Given a simplicial mesh 1, over
2, we denote by er =P lAk (t5,) the set of Whitney differential k-forms of
polynomial degree r + 1, where k € {0, 1, 2, 3} is the order of the form (see [6] for
more details on the properties of these spaces). It is a compact notation to indicate
space of polynomial functions which are well-known in finite elements. Indeed, for
k = 0, we have Wro t1 = Lr41, the space of continuous, piecewise polynomials
of degree r + 1; for k = 1, we obtain er 1= N, 41 the first family of Nédélec
edge element functions of degree r 4 1; for k = 2, we get Wr2+l = RT,4 the
space of Raviart-Thomas functions of degree r + 1; for k = 3, we find Wr3 = P,
discontinuous piecewise polynomials of degree r. The spaces er 1 are connected in
a complex by the linear operator d* which can be represented by suitable matrices,
namely G (k = 0), R (k = 1), D (k = 2) resp., with entries 0, £1, once a set of

unisolvent dofs and consequently a basis in each space er 1 have been fixed.



High Order Whitney Forms on Simplices and the Question of Potentials 7

For r = 0, the dimension of the space W{‘ coincide with the number of k-
simplices in the mesh, indeed dimL; = ny, dimN; = ng, dimRT; = nf
and dim Py = n7. Moreover, the matrices G, R, D are, resp., the edge-to-node,
face-to-edge and tetrahedron-to-face connectivity matrices taking also into account
respective orientations.

For r > 0, as explained in [16], by connecting the nodes of the principal lattice
of degree r + 1 in a n-simplex ¢ € T, we obtain a number of small n-simplices that
are 1/(r 4+ 1)-homothetic to ¢. The small k-simplices, 0 < k < n, are all the k-
simplices that compose the boundary of the small n-simplices. Any small k-simplex
is denoted by a couple {a, s}, with s a k-simplex of 7;, and & is a multi-integer

(a0, ... 0n) With )7 gy = r, o € Z and o; > 0. The term active is to indicate
all couples {a, s} such that the function A*w*® belongs to a basis of er 1 where

A% = 2°Af" - Ay and w* € W Indeed, by considering all possible multi-indices
a in the couples {«, s}, one generates more functions A*w*® than necessary. The
dimension of the space er 1 coincide with the number of active small k-simplices
in the mesh, and the meaning of the matrices G, R, D is the same as for the case r =
0, provided that we work with the active small k-simplices instead of the k-simplices
of the mesh t;,. The small k-simplices were born to define a set of unisolvent dofs,
the weights f{‘”} u, for functions u € er 11 (t) when r > 0, that, differently from

the classical moments, maintain a physical interpretation.
The cardinality of the set of weights on active small k-simplices coincides with

dim er 1 that is given below for g = r + 1 > 1 (the terms that are multiplied by
dim P, (.) with £ < 0 have to be neglected)

d; = dim W(? =ny +ngdimPy_3(e) +npdimP,_3(f) +nrdimP,_4(t)

dy :=dmW, = 4ngdimPy_i(e) +np dimPy 5(f)* +n7 dimP, _3(1)°
dgr = dim W} = +npdimP,_1(f) +nrdimP,_o(t)3
dp :=dimW; = +ny dimPy_ (7).

Proposition 1 The identity x (£2) = dp — dy + drr — dp holds for all r > 0.

Proof By a simple computation with factorials, for ¢ = r + 1, it holds:

dp —dy +dgr — dp
=ny +ng(dimP,_;(e) — dimP, (e))
+np(dimPr_(f) — 2 dim P, (f) + dim P, (1))
+nr(dimP,_3(t) —3 dimP,_»(t) + 3dimP,_ () — dim P, (¢))

RO
({52
()3 (3)-(7)]

=ny —ng +np —nr = x(£2).
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From now on, dr. (resp. dy, drT, dp) denotes the cardinality of the set of nodes or
small nodes (resp. edges or active small edges, faces or active small faces, tetrahedra
or small tetrahedra) whatever » > 0 is, and the terms active and small for k-
simplices are taken for granted.

4 Notions from Graph Theory

Before continuing, we need a drop of graph theory (see, e.g., [18] for details).

Definition 1 The all-nodes incidence matrix M¢ € Z"*™ of a directed graph M =
(N, A), with n nodes N = {n;}!_, m arcs A = {a; };’;1, and with no self-loop is
the matrix with entries

1 if a; is incident on n; and oriented toward it,
M )ﬁ = —1 if a; is incident on n; and oriented away from it,
0 if a; is not incident on n; .

Each column (arc) has exactly two entries (extreme nodes) different from zero: 1
and —1. The rows are not linearly independent because their sum is the zero vector.
An incidence matrix of M is any submatrix of M¢ with n — 1 rows and m columns.

Definition 2 A tree of a graph M = (N, A) is a connected acyclic subgraph of
M. A spanning tree S is a tree of M containing all its nodes (an example in Fig. 3).

Theorem 3 Let M = (N, A) be a connected directed graph with no self-loop and
M e ZU=DXm an incidence matrix of M. Let S = (N, B) be a spanning tree
of M and My; the submatrix of order n — 1 of M given by the columns of M that
correspond to the arcs in S. Then My, is invertible and the nonzero elements in each
row ofMg1 are either all 1 or all —1.

Graph'’s theory matters in this context because D is an incidence matrix of the
dual graph, with nodes that are the tetrahedra plus one additional node to represent
the exterior of £2, and arcs that are the faces of the mesh. Any interior face connects
two tetrahedra and an face on the boundary connects a tetrahedron with the node
representing the exterior of the domain. The node that corresponds to the exterior
is the reference node of D. On the other hand, G is the all-node incidence matrix
of the primal graph with nodes at the mesh nodes and arcs that are the edges of
the mesh. For a multi-connected domain 2, the associated graph has a connected
component (thus a spanning tree) for each connected component of the domain. We
refer to [3] for more details on the construction of these two graphs when r > 0,
here we rather detail their use to solve the problem of potentials.

In Fig. 4, each horizontal line at level k collects all functions of er 4 built on
the A*w* (resp. all chains in Cy built on active small k-simplices {e, s}) on the left
(resp. right) diagram. For k = 0, the end path nodes are all the nodes in the mesh,
due to the arbitrarity of the considered path, apart from the m roots (one node for
each connected component of £2). Here we suppose m = 1 for simplicity, but for
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Ayt

Fig. 3 (Left) the graph, (right) a spanning tree (resp. the co-tree) in solid line (resp. dashed line)
with top node as root and bottom nodes as leaves, namely those nodes that have only one edge of
the tree incident to them

H, 0
0 h | Yr+1 | C root nodes | end path nodes,
Wr+] n | 0
gradient-free,
fields
G G"
il 1 1
wt B, Hy | Y, C, tree edges belts | 1-boundarie

r+l

R T
R
2
2 B C tree faces | “doors | 2-boundaries
Wi divergence-free 2 ‘
fields
D D’
3
Wr+] C3

Fig. 4 Discrete cochain (left) and chain (right) de Rham complexes in three dimensions. Belts
(resp. doors) are edges (resp. faces) lying on the loops (resp. cavities) which generate Hj (resp. H»),
one for each class of equivalence. Note that on the discrete cochain side, H, V =z, e Wl | 2z, €

r+1°
Ker R, z;, ¢ Im G} and H? = {u, € WrZH, u; € Ker D, uj; ¢ Im R}

m > 1 itis sufficient to repeat the construction for each component of £2. Fork = 1,
the tree edges are all the edges in a spanning tree, the set of belts collects one edge
on each loop generating Hy and the /-boundaries are the remaining edges, neither in
the tree nor among the belts, but which are necessary to describe 1-chains bounding
surfaces. For k = 2, the tree faces are all the faces in a spanning (dual) tree, the
set of doors collects one face on each cavity generating H, and the 2-boundaries
are the remaining faces, neither in the tree nor among the doors, but necessary to
describe 2-chains bounding volumes.
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5 From Fields to Potentials

We wish to give an algorithm to construct finite element (scalar or vector) functions
with assigned gradient, curl or divergence. We assume to know a basis {0} =1,¢ Of
H;(£2) and a basis {O¢}e=1,p of H>(£2). A suitable and easy way for constructing
o; and 0y is presented in [12, 15]. Moreover, we suppose to have a spanning
tree Sj, of the graph MY = (WY, A%) with N'C described by the small nodes
and the arcs A by the active small edges, as explained in [3], where spanning
means that Sj, visits all nodes and tree stands to indicate that the arcs in S;, cannot
connect in a loop. In addition to S;, we need a spanning tree S; of the graph
MP = (NP, AP) with the nodes NP given by the small tetrahedra barycenters
and the arcs AP by the active small faces shared by neighbouring elements, as
explained in [3]. Again, it is spanning, so it visits all small tetrahedra and it does not
contain active small faces that can close chambers. The determination of a spanning
tree is a standard procedure in graph theory [10]. With these tools, we can construct
potentials whatever the approximation degree r > 0 is, generalizing the procedure
detailed in [4] for r = 0.

Constructing a Function with Assigned Gradient The problem of finding a
scalar function v, € Wro 1 such that grad v, = f;, with f;, € er 11 known, has not
a unique solution: indeed, &h = Y +c, c € R, verifies grad &h = f}, too. However,
itis enough to fix the value of 1, at one of the vertices, say n1, to ensure uniqueness.
With conditions on f}, stated in [7] and recalled in Fig. 2 (left), we consider the grad
problem:

Given f, € W', s.t. curlf, = 0, f f,-ds=0, 0, e H(2),i=1,...,g,

Oj

find Yy, € W2, s.t. grady, = ), in 2 and ¥ (n) = 0. (1)

The fundamental theorem of calculus says that

Yn(np) — Yn(ng) = /grad Yp - te = /fh “te (2)

for an edge e = [n,4, np] € E. Equation (2) contains two unknowns, namely ¥, (n,),
Y (np). Starting from the equation with n, = n,, the root of the spanning tree Sy,
where we have set 1y, (n4) = 0, we can compute the remaining value, say ¥y, (1), as
Yn(np) = vn(ny) + fe f - t, for e = [ny, np] € Sp,. At this point, n;, becomes root:
the value of ¥, (np) is known and it can be used to compute the values of i, at the
remaining nodes in a neighborhood of 7n;. Since ), is a spanning tree, proceeding
in this way (see the root-to-leaves algorithm in Fig. 5) we can visit all the nodes of
7, The spanning tree Sy, is a tool for selecting the rows of the system equivalent to
grad ¢, = fj, for which, using vy, (n,) = 0, one can eliminate the unknowns one
after the other. We have thus found a nodal function v, such that its gradient has line
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(1) @) 3 ()

Fig. 5 Example of a 4-step root-to-leaves algorithm (4) — (1), where e are known values and
o unknown ones, that is used to solve the gradient problem. Example of a 4-step leaves-to-root
algorithm (1) — (4), where arcs connecting a o to a e denote unknown values and o known ones,
that is exploited to solve the divergence problem

integral on all the (small) edges e € S, equal to the line integral on e of f;,. Let us
consider the edges e ¢ S, (one of the 1-boundaries in Fig. 4). For each node n # n,
let C;; be the set of edges in S;, joining n, to n: then fc,q grad vy, - ds = Y, (n) —
Yy (ny). Given an edge e = [ng, np] ¢ Sp, we define the cycle o, = Cyy, + e — Cy,.
Since £}, is a gradient (it is curl-free and its line integral on all the loops o; € H1(£2)
vanishes), its line integral on o, vanishes too. Indeed, o, is either homotopic to 0 or
is in H(£2). Therefore,

0=7§ fh-ds=1/fh(na)+/fh-te—w(nh)=/fh~te—fgradwh-te.
o e e e

This yields grad ¢, = f, alsoon e ¢ Sj,.

Constructing a Vector with Assigned Curl With conditions on wy, stated in [7]
and recalled in Fig. 2 (left), we consider the curl problem:

GivenuheWr2 S.t. divuh=0and/ u, n=0,vVj=1,...,p,
(082)

findzy, € er s.t. curlz, = uy in 2 3)

/Zh-teZO,VEESh, and % z, - t; =0, 0, € Hi(£2),i=1,...,g.
e o;

i

Concerning the conditions in the last line of (3), noting that the number of small
edges e € Sy is di, — 1, the first part on S;, can be seen as a filter for gradients.
On the other hand, homology and cohomology are in duality, hence the last part on
H1(£2) can be seen as a filter for cohomology (harmonic) fields. In matrix form,
the curl problem reads RZ = U, with suitable conditions on U. Indeed, if DU # 0
the problem has no solution. If 92 is connected the problem has a solution if and
only if DU = 0. If 952 is not connected the problem has a solution if and only if
DU = 0 and MU = 0 where the matrix M € RP*4RT | with entries M, j equal to

1 or O depending if the face f; is on (3£2)¢ or not. Let us set D= [A’;] We have
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that D = D for p = 0. We recall that G € R 9L and that dim Ker G = 1 if £ is
connected otherwise dim Ker G = m, where m = dim Hj (the number of connected
components of £2). Here we assume m = 1.

The solution of RZ = U is not unique. Indeed, if §2 is simply connected then
KerR = ImG therefore R Gp = 0 for all ¢ € RY. When £ is not simply
connected, Rp;,, = 0 for all p, € th where th = {p, € Wr1+l P, €
kerR, p, ¢ ImG} # 0. Let G, be a submatrix of G belonging to RN x(dL=1)
such that Im G = Im G, and the columns of G, are a basis of Im G,. Passing from
G to G, is equivalent to fix a small node as root for the tree S.

We suppose to know a basis {p), ; }i=1,...g of th, whose weights on the edges are
collected in the columns of a matrix N € R"£*&. To have uniqueness of the solution
of RZ = U we have to find Z both in (Im G,)* (so, GIZ = 0) and in (th)L (so,
NTZ = 0). We thus introduce the notation G, = [G,, N], knowing that G, =G,
when 2 is simply connected. Note that G, has maximal rank d;, — 1 + g (< dn).

The matrix
R DT
G! 0

has dprr + dr — 1 + g rows and dy + dp + p columns. It is thus square since
d; —dy +drr —dp =1 — g + p for Proposition 1.

Proposition 2 The linear system

EXHEl

has a unique solution and, if DU = 0 then RZ = U.
Proof Matrix D has maximal rank, so KerD” = (Im D)t = {0} and

R DT[Z 0 o <7
[G,T OMA} M and Gr2=0

RZ=-D"A=272Z"RTRZ=—-7Z"R"TD"A=0=RZ=0,

because R’ DT = (D R)T and DR = 0since DR = 0 (if p > 0, also MR = 0).
This yields

RZ=0=D"A=0= A=0.
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Then
GI'Z=0=7ZcKerGI =(mG,)*
RZ=0andZ e ImG,)t = Z =0.

If DU = 0 then D(RZ + DT A) = DU =0so DD” A = 0 thus DT A = 0 hence
RZ = U. This ends the proof. O

A spanning tree S of the graph G;r has d;, — 1 arcs that correspond to dy, — 1
columns of GI'. We thus write GI = [GT , GI'] with GT invertible. A belted tree
Spr of the graph Ggr has df, — 1 4 g arcs that correspond to dy, — 1 4 g columns
of GT We thus write (~7T = [th , G(Tb[] with th invertible. A spanning tree S’
of the graph Gp, has dp arcs that correspond to dp columns of D, namely dp rows
of DT. We thus set D = [Dt/ , D /] with D,/ invertible. The curl problem in matrix
form reads: given Uy, U, find Z;, Z. and A such that

Ry pe Ry et @17; Z, Uy
Rf’ bt Rf’ cht Dz: Zc = Uc/
Gl{t Gth 0 A 0

Since the belted tree can be constructed starting from the edges lying on the loops
generating Hj, we can consider a system as the one in Prop. 3, with the last block of
lines replaced by the identity and zeros, as here below.

Proposition 3 The linear system

Ry pt Ry e D,T/ zbt Uy

Repy Rocpy DT | | Zew | = | Uw )
' bt ¢ ebt E\hl c
1 0 0 A 0

has a unique solunon IfDU Othen A =0and RZ = U. In particular, lfDU 0
then Zcb, =R;! U..

¢’ cbt
Proof If we set

Rype Ry cir @,T/ th 0
Repe R DY | | Zebe | = | 0
I 0 o A 0

then
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Since D is full rank, it follows that A = 0and RZ = 0. So, 7= G,9, + p with
pEH hl The last condition on zj, listed in the last line of (3), yields p = 0 and thus
7= G,@,. In particular 0 = Z = G;9,, hence ¢, = 0 because G; is invertible.
SowehaveZ = G +@, = 0. Hence the matrix in the linear system (4) is not singular
and the linear system has a unique solution.

If DU=0then RZ+D"A=U= DDTA=0=>A=0= RZ=U.

To conclude the proof note that R, ., is square since dpr —dp — p = dy —
(d, — 1) — g where the second part of the identity is the number of the edges out
of the belted tree (block cbt). To prove that R/ .; is invertible we will see that for
each Uy € RIrT=dP=P the linear system R Cbticb, = U has a solution. In fact,

let us set Uy = —Dt_,lDC/ U, . Then the linear system
Ry bt Ry cir DZ; th Uy
Repy Recoe DY | | Zewn | = | Ug
1 0 0 A 0

has a unique solution and Z,, = 0. Since, by construction, DU =0then A = 0,
hence R cpsZLcpr = Uy |

Constructing a Vector with Assigned Divergence The problem of finding a
vector function v, € W,2 such that divv, = wj, with wy, € Wr3 known, has not
a unique solution: indeed, v, = v, 4+ curlz, z € er, verifies div v, = wy, too. It is
however enough to fix the value f (Vhomy = 0 at all the active small faces f ¢ Sy
and f(ag)j vy - Ny = 0 on each connected component (0§2); of 082, j = 1, p,
in order to set a filter for the cohomological (harmonic) fields. We thus have the
following divergence problem:

Given wy, € Wr3, find v, € Wr2+1 s.t. divvy, = wy in £2,

with/vh~nf=0, vVfé¢s, and/ v omyo =0,Vj. (5
f (082

It is known that dim Im curl = dy — dim Ker curl therefore dimImcurl = dy —
(dr, — 1 + g) and for Prop. 1 we have dimImcurl = drr — dp — p. The system
associated with (5) is square, in dgr unknowns and equations. Indeed, div v, = wy,
counts dp equations (one for each tetrahedron) and the conditions, in the last line
of (5), are, respectively, drr — dp — p, as many the arcs in the dual co-tree (since
the arcs in S;; are dp + p) and p, as many as the number of (92);. We use the
leaves-to-root algorithm presented in Fig.5 (see [2] for a similar algorithm when
using moments as degrees of freedom). Indeed, given X a small tetrahedron or a
connected component of 382, we denote by F(X) = {f € F, f € 0X}, the set of
active small faces in F that are on the boundary of X' (arcs in the dual graph that
connect to the point X'). The leaves of the dual tree are tetrahedra that have only
one face in S;'l‘. If X is a leave of S;: and f(X), with external unit normal n, is the
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unique dual arc (face) in S incident to X', we can compute the dof on f(X). In
fact,

fazvh-nzfzwh, ifXeT
/ vin=1{ g, vi-n=0. itT = (092),
1) Jogu Ve M= fqwn,  if X =(02).

by relying on the divergence theorem in the first and last identities. It is clear that if
v, € Wr2+1 issuch thatdivv, =0,c; =0forall j =1,..., pand ff vp-nyp =0,
forall f ¢ S, then ff(Z) vp -ny = 0, for all f(X) that are leaves of Sy. We can
iterate as in the leaves-to-root algorithm: from (1) to (2) in Fig. 5, we remove from
Sf; the leaves X and the incident arcs f(X') that we have used in (1), the remaining
graph in (2) is still a tree. The arcs of this new tree are the faces where dofs are still
unknown. We can thus repeat the previous procedure. After a finite number of steps,
the tree reduces to one node (root), and we have obtained f V- Mp = 0, for all
f € F. Since the problem yields a square system, this proves that the solution is
unique.

Acknowledgement This work was partially supported by PRIN’s project NA-FROM-PDEs
201752HKHS.
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The Candy Wrapper Problem: A )
Temporal Multiscale Approach for e
PDE/PDE Systems

Thomas Richter and Jeremi Mizerski

Abstract We discuss the application of a multiscale scheme to a medical flow
problem, the so called Candy Wrapper problem. This problem describes the re-
stenosis of a stented blood vessel, which will take several months but which is
governed by the rapidly oscillating dynamics of the blood flow. A long term
simulation of this three dimensional free-boundary flow problem resolving the
fast dynamics is not feasible. Our multiscale approach which has been recently
published is based on capturing the fast dynamics by locally isolated periodic-in-
time problems which have to be approximated once in each macro step of the long
term process. Numerical results show the accuracy and efficiency of this multiscale
approach.

1 Introduction: The Candy Wrapper Problem

The idea of opening or dilating occluded or narrowed coronary artery originates
in the works of Andreas Gruentzig. First human application of percutaneous
transluminal coronary angioplasty (PTCA) had been performed on September 16th
1977 at University Hospital in Zurich. The method was basically just putting the
balloon catheter through narrowing and inflating it [24]. The immediate results
were good, only about 1% of the patients suffered from immediate vessel closure
and myocardial infarct. Later after the interventions 30% of the stenosis recurred
accompanied by the symptoms of angina of the intensity close to those from
before the intervention. That happened usually from 30 days to 6 months form the
intervention [9]. At that time the cardiologists were convinced that only about 10%
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of all the patients will be suitable for the method and the rest of coronary artery
disease cases had to be referred to cardiac surgery for by-pass grafting. The remedy
for the situation was to place stents intended as an internal scaffold for the artery to
maintain it’s patency. The method was introduced in 1986 with some success [15].
Soon after that a new set of complications came into the attention. The early and
late onset of thrombosis started to haunt the patients undergoing procedures of
bare metal stent (BMS) implantation. The BMS coped also with the problem of
intimal hypertrophy which resulted in in-stent stenosis. From that moment on the
era of drug eluting stents (DES) begins. Throughout the 90s different companies
try different chemical compounds. The first successful application was reported
by Serruys in 1998 [14]. That however did not solve the problem entirely and
resulted in even more complex set of complications [1, 34]. The platelet dependent
thrombosis resulted in explosion of anti-platelet drug development in following
years. The problem defined as a “restenosis of treatment margins” or “candy
wrapper”’ phenomenon was described by radiologists trying to apply the oncological
brachytherapy principles to the neointimal overgrowth inside BMS [12]. Soon after
that the molecular bases of the process started to be extensively studied [8]. The
issue of stent edge stenosis had not been resolved by introduction of new materials
and coatings [10, 11]. The biological effects of flow properties have been studied
extensively since the introduction of extracorporeal circulatory system in early 50s.
The body of evidence built on that experience showed large interdependencies
between the local flow properties and the tissue response. The research areas
branched towards optimization of stent struts geometry [31] and usage of different
cytostatic drugs as a stent coating material [23]. The key elements of the milieu
created by stents are usually considered separately. Some computational models
allow to recreate and integrate more elements into the system [30, 41]. By means of
computer simulations the researchers were able to simulate not only fluid dynamics
around the stented area but also the effects of drug diffusion into the arterial
walls [3, 44]. The edge restenosis phenomenon however did not find its’ conclusive
description. To fully understand that complex phenomenon we need to take the
arterial wall mechanics and fluid-structure interactions into consideration. The
specific challenge that is tackled in this work is the temporal multiscale character
of this problem: While restenosis occurs after months, the driving mechanical
forces come from the pulsating blood flow that requires a resolution in the order
of centiseconds. Direct simulations of this long-term process are not feasible and
we present temporal multiscale methods aiming efficient predictions.

2 Model Configuration

In this section we will briefly describe the mathematical model used to describe
the stenosis growth effects. Medical, biological and chemical processes are strongly
simplified. They do however still contain the specific couplings and scales that are
characteristic for the underlying problem. We choose problem parameters as close
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to the medical configuration as possible and as known, which is an issue since good
data is difficult to measure and only sparsely available.

The most important simplification in our present computational model is the
assumption of a rigid vessel wall. Although deformations by dynamical fluid-
structure interactions are small it is well known that the effects of elasticity should be
taken into effect for an appropriate depiction of wall stresses, which are an essential
ingredient in triggering stenosis growth. However, we give an outlook on techniques
that are suitable to substantially increase the efficiency in medical fluid-structure
interaction simulation that suffer from special instabilities by the added-mass effect
due to similar masses of fluid and solid [7].

2.1 Governing Equations

We consider a system of partial differential equations that is inspired by Yang et
al. [42, 43], where a model describing the interaction of mechanical fluid-structure
interactions with bio/chemical reactions and active growth and material deformation
is introduced. The mechanical system is described by a nonlinear fluid-structure
interaction model, where the blood is modeled as incompressible Newtonian fluid,
which is an adequate choice for the vessel sizes under consideration

pr(0v+ (v-V)V) —divo(v,p) =0, divv=0inFQ), (1)

where F(¢) is the (moving) fluid domain, the lumen, py ~ 1.06 gcm’3 the density
of bloodand o (v, p) = prvs(Vv+ VvT) — pI the Cauchy stress tensor, depending
on velocity v and pressure p, with the kinematic viscosity vy ~ 0.03 cm?s~!. The
vessel walls are governed by an elastic material

T 53V — div (Fz) —0, v=2auins, )

where p; is the fluid’s density (in current configuration), v the velocity, u the
deformation, F := I + Vu the deformation gradient with determinant J := det F.
By S we denote the Lagrangian reference configuration. By ¥ we denote the Piola
Kirchhoff stresses. The proper modeling of the stresses within vessel walls is under
active research [27]. In particular there is still little knowledge on the degree of
complexity that is required for accurately predicting the behavior of the coupled
system. To incorporate growth of the stenosis in the context of fluid-structure
interactions, the technique of a multiplicative decomposition of the deformation
gradient

F
F=FF,(). F=FF()"'. V-5V, 5V
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into active deformation F,(c) and elastic response F, can be applied, see [20, 40].
The idea is to introduce an intermediate configuration that includes the growth §—
S'g and that is mediated by F(c) depending directly on the exterior growth trigger
c but that is not physical, i.e. it is stress free but not necessarily free of strain. The
stresses then depend on the elastic part only, to be precise on F, = F(¢) “1(I+Vu).
Such models are successfully used in describing the formation of plaques [42, 43].

In this work we considerably simplify the model by neglecting all elastic effects.
The Navier-Stokes equations are solved in the domain ¥ that directly depends on a
growth variable ¢ by prescribing normal growth

AF(c() = {x — c(x. 1) -mz(x) : x € 3F},

where Fis the non-grown fluid domain in reference state and n;- the outward facing
unit normal vector. The description of the coupled problem we will be based on
an ALE formulation, where all quantities are given on the undeformed reference
domain 7 see [36, Chapter 5]. This reference domain is a straight pipe of length
7 cm and diameter 0.2 cm. A typical curvature, irregularities, the effect of the stent
and in particular of the stenosis will be augmented by the ALE deformation 7'(¢) :
F— F1). R

The growth variable ¢ will live on the surface 9. The evolution of ¢ is governed
by a simple surface diffusion equation

dic — »eArc = R(c,d) on dF, ¢(0) =0 (3)

with the Laplace Beltrami operator Ar and a small diffusion constant A, &~ 5 -
10~7m?/s. In a detailed model, this simple reaction diffusion equation is replaced
by a cascade of chemical reaction systems that trigger growth, see [42]. Due to
the very slow evolution of the plaque, the motion of the evolving surface can be
neglected in the temporal derivative. There is no experimental data on the role
of diffusion and the size of A.. We will hence consider A, as a procedure for
stabilization and choose is small enough to cancel any effects on the macroscopic
evolution of the growth. In lack of relevant parameters equation (3) can be
considered to be dimensionless. By R(c, o) we denote the coupling term triggering
growth of the stenosis

R(c,0;%) = y (owss(o(X); X)). 4)

o
14+ Bc(x)

The parameter o controls the rate of the stenosis growth and it can be considered
as the scale parameter separating the fast scale of the fluid problem from the slow
scale of the growth, by 8 we control some saturation of the growth. By owgs we
denote the wall shear stress that is acting close to the tips of the stent at sp and 51 (in
direction of the main flow direction x;, where injuring of the vessel wall will trigger
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stenosis growth

owss(@: %) = 0N - 0G| (© (503 x1) + Os1: %)),

with

Os; x) = (1 +exp (2(s9 — 1 — x)))_l(l +exp (20x — 5o — 1)))_1.

Only wall shear stresses in a certain range above and below activation limits are
responsible for plaque growth, hence we introduce the scaling function y (-) as

v(S) = (1 +exp (3(Omin — S)))il (1 +exp (35 - G’"“)))il

2.2 Parameters

All computations are carried out on the reference domain, a vessel of diameter
0.2cm and length 7cm. Deformations, imposed by the stent Ty, the general
curvature of the configuration Tgeomerry and the stenosis Tyrenosis are realized by
mappings

T = Tgeometry o Tstenosis © Tstent-

All units are given in cm, g, S.
Ts:enr models the impact of the stent, a slight extension of the vessel at the tips s;
and s,

X1 0
Tstent(x) = (o) + (1 + psteme_ystent(xl—so)z + e_Vstent(Xl_sl)z) <x2> (5)
0 X3

with pszenr = 0.1 and yszenr = 50. Growth of the stenosis is assumed to be in normal
direction only. We prescribe Ty;en0sis by the simple relation

X1 0
Tstenosis(c; x) = <0> + (1 — C(X)) (xz).
0 X3
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The overall vessel geometry is curved in the x /y plane for x; < s, = 3.5 cm which
is the left half of the vessel and in the x /z plane for x| > s,

v — a1+ 12
1
Tgea(x)‘x1 = )+ (1 +101)?) 2

<Sm

X3

x1— (14 t()?) " 2a

X1>Sm !
)+ (1+7(x)?) 2x3

Tgeo (x)

where t(x1) describes the center-line of the deformed vessel, given by 7(x1) =
4 . 1073(x; — sm)*. The mapping is chosen to give a curvature that is realistic
in coronary arteries with a straight middle-section describing the stented area. As
further parameters we consider the fluid density pr = 1.06 g - cm ™3, the viscosity
v = 0.03cm? - s~L. The stent starts at so = 2 cm, extends over 3cm to s; = 5 cm.
The geometric parameters for the impact of the stent, see 5, are Ygsenr = 50 and
finally, the reaction term uses the limits oy,;, = 5 and oy4x = 8.

The flow problem is driven by enforcing a periodic relative pressure profile
(inflow to outflow) condition that is inspired from the usual pressure drops in stented
coronary arteries suffering from a stenosis. On the inflow boundary I';, we prescribe
the time-periodic average pressure

10 + 25¢ 0<t<04s
Piy(t) = 1140/3 —200t/3 0.4s <t <0.7s, periodically extended over [0, 1]
100¢/3 —70/3 07s<t<1s

2.3 ALE Formulation and Discretization

Based on the mapping T (x) = Tgeomerry(x) © Tsrenosis(x) © Tyrent (x) the Navier-
Stokes equations and the surface growth equation are transformed to ALE coordi-
nate, e.g. by introducing reference values v(x, ) = v(x,t), p(x,t) = p(x,t) and
¢(x,1) = c(x, t). The resulting set of equations is given on the reference domain F
and in variational formulation it takes the form

-1

(pr(a,e + Y 09), ¢)%+ (J&F’T, %) )

(JF—l . %, g)%z 0, (c’, w)é;r (Acvrc, vmu)‘ — RE.6).
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Several simplifications in comparison to an exact ALE formulation have been
applied: due to the very slow evolution of the surface we neglect inertia terms by
its motion. Further, since surface diffusion will only serve as numerical stabilization
we refrain from an exact transformation of the surface Laplace.

The discretization of system (6) is by standard techniques. In time, we use the
0-time stepping method

w'=ft,u) —  uy—up—1 = AOf (tn, un) + At (1 = 0) f(tn-1, un-1),

with constant step sizes A and the choice 8 = é + O(k) to achieve second
order accuracy with good stability properties, see [32, 38]. Spatial discretization
is by means of stabilized equal order tri-quadratic finite elements on a hexahedral
mesh. For stabilization of the inf-sup condition and of convective regimes the local
projection stabilization is used [4, 5]. The surface PDE is continued into the fluid
domain and can be considered as a weakly imposed boundary condition. We refer
to [36] for details on the discretization and implementation in Gascoigne 3D [6].

3 Temporal Multiscales

The big challenge of the candy wrapper problem is in the range of temporal
scales that must be bridged. While the flow problem is driven by a periodic flow
pattern with period 1 s the growth of the stenosis takes months. The growth model
comprises the parameter «, see (4) that indicates exactly this scale separation, since
|R(c,0)| = O(x). In [19] we have recently introduced and analysed a temporal
multiscale scheme for exactly such long-scale/short-scale problems governed by a
PDE/ODE system and driven by a periodic-in-time micro process. Here we extend
this technique for handling 3d PDE/PDE couplings.

We briefly sketch the layout of the multiscale approximation. To begin with, we
identify the growth parameter c(x, ) as the main variable of interest. Furthermore,
as we are interested in the long term behavior of the growth only, we introduce the
(locally) averaged growth variable

t+1s
E(x, 1) = / c(x, 5) ds, (7
t

where the averaging extends over one period only.
Next, to decouple slow and fast scales we make the essential assumption that the
flow problem on a fixed domain F(c ), where ¢y := ¢(ty) for one point in time ¢¢
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admits a periodic in time solution

(7 @por (ovr + B @~V -VVT).9)
i (J(Ef)GEfF(Ef)fT, V¢)¢+ (J(Ef)F(Ef)71 S VT, §>¢: 0
VeI (-, 0) = v/ (-, 1) (8)

Only very few theoretical results exist on periodic solutions to the Navier-Stokes
equations, see [21]. They only hold in the case of small data which is not given in
the typical candy wrapper configurations with Reynolds numbers going up to about
Re = 1000. Computational experiments however do suggest the existence of stable
limit cycles in the regime of interest.

Multiscale Algorithm Given such periodic solutions, the computational multi-
scale method is based on a subdivision of I = [0, T] (where T & months is large)

into macro time-steps t, forn = 0,..., N with #p = 0 and Ty = T and the step
size K = t, — t,—1. The small interval of periodicity Ip = [0, 1] is partitioned
into micro time-steps t, forn = 0, ..., M with tp = 0, t)y = 1 and the step size

k =ty — tu—1 < K. A simple explicit/implicit multiscale iteration is then as
follows:

Algorithm 1 (First order explicit/implicit multiscale iteration) Ler co be the
initial value for the slow component. Forn = 1,2, ... iterate

1. Solve the periodic flow problem (ven-1, pE") on the domain ¥(cp—1)
2. Compute the average of the reaction term

1
R(Cy—1) :=/ R(Cp—1, 01 (s); x) ds
0

1
’ Ellf .
- 14 BCp_1(x) /0 V(Gwss(o (x, s),x)) ds

3. Make an semi-explicit step of the stenosis growth problem
k! (571 — Cn—1, w)d?'dl_ ()\CVFEna VFKZ/)a% = (R(én—l)a l/f)dﬁ—

The discretization of the growth problem in Step 3. can easily be replaced by
a second order explicit scheme like the Adams-Bashforth formula, see [19]. A
fully implicit time-integration can be realized by adding a sub-iteration for steps
2-4. However, since the diffusion parameter is very small, explicit schemes are
appropriate in this setting.

Within every step of the iteration it is necessary to solve the periodic-in-time flow
problem (even multiple solutions are required in a fully implicit setting). This is the
main effort of the resulting scheme, since the sub interval [0, 1] must be integrated
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several times to obtain a suitable periodic solution. In principle it is possible to just
compute several cycles of the periodic problem until the periodicity error

IV (T + 18) = v (T)|| < ep

falls below a given threshold ep > 0. Usually however this error is decreasing
with an exponential rate only that depends on parameters like the viscosity and the
domain size. For acceleration several methods are discussed in literature, based on
optimization problem [39], on the idea of the shooting method [28], on Newton [25]
or on space time techniques [33]. Here we quickly present a very efficient novel
scheme that converges with a fixed rate that does not depend on any further
parameters. We note however that although the computational efficiency is striking,
the theoretical validation extends to the linear Stokes equation only, see [37].

Solution of the Periodic Flow Problem The idea of the averaging scheme for the
rapid identification of periodic flow problems is to split the periodic solution into
average and oscillation, see also [37]

1
VI@t) =V + V7 (1), /v”(s)dszo.
0

In a nonlinear problem like the Navier-Stokes equations it is not possible to separate
the average from the oscillations. But, by averaging the Navier-Stokes equation, we
derive

1
—div 6%+ (7 -V)V = —/ {(v” (s) - V)V* 4 (7 - V)" (s)]ds, div ¥ = 0.
0

=NGF",¥)

If we average a solution (v(¢), p(¢)) to the Navier-Stokes problem for arbitrary
initial v¢ (that does not yield the periodic solution) we get

—dive s+ (v-V)v=v(0) —v() + N(v,v), divv=0.

The difference w := v* — v, ¢ := p™ — p between dynamic solution and periodic
solution satisfies the averaged equation

—div & f(W, ) + (W- V)W (W- V)V + (V- V)w
= v(1) — v(0) + N3, %) — NG, %), divw=0.

We assume that we start with a good guess v that is already close to the periodic
solution v”, i.e. ||w|| is small. If no initial approximation is available, e.g. in the
very first step of the multiscale scheme, we still can perform a couple for forward
simulations. Given that ||w|| is small, we will neglect both the nonlinearity (w- V)w
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and all fluctuation terms N(-, -) involving the oscillatory parts. We approximate
the difference between average of the dynamic solution and average of the desired
periodic solution by the linear equation

W-V)V+ (V- V)w—div e r(w,g) =v(1) — v(0) C))

The averaging scheme for finding the periodic solution is then given by the
following iteration.

Algorithm 2 (Averaging scheme for periodic-in-time problems) Let v8 be a
guess for the initial value. If no approximation is available, v8 can be obtained
by computing several cycles of the dynamic flow problem. Forl = 1,2, . .. iterate

1. Based on the initial v (0) = vé_l solve once cycle of the dynamic flow problem
onlIp =[0,1].

2. Solve the averaging equation for w' and §', Eq. (9)

3. Update the initial value by correcting the average

vé = () +w.

The analysis of this averaging scheme is open for the Navier-Stokes equations but
simple for linear problems with symmetric positive definite operator like the Stokes
equations. Here the convergence estimate

l -1
Vo = Vo Il < pave - Vg — g I

holds, with p,yg < 0.3 in the continuous and p,yg < 0.42 in the discrete setting, for
further results we refer to [37].

4 Numerical Results

We present a numerical study on the multiscale scheme and give a first discussion
on its accuracy and efficiency. In [19] simple two-dimensional problems have been
studied that also allow for resolved simulations such that a direct comparison of
computational times for forward simulations and multiscale simulations can be
performed. These demonstrated speedups reaching from 1 : 200 to 1 : 10,000.
Here it was shown that the multiscale scheme benefits from larger scale separation.
To be precise: to reach the same relative accuracy in a multiscale computation as
compared to a direct forward computation, the speedup behaves like 1 : o~
Before presenting results for the multiscale method we briefly discuss the

averaging scheme for finding periodic solutions
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Table 1 Number of cycles required to reduce the periodicity error to ||[v(f + 1) — v(1)| < 10-8
for the direct forward simulation and the averaging scheme. Variation in the viscosity v

v Forward Averaging
0.1 0.05 0.025 0.1 0.05 0.025
Cycles 40 74 140 15 15 18

4.1 Convergence of the Averaging Scheme for Periodic Flow
Problems

We consider a 3d problem that is inspired by the driven cavity problem. On the cube
Q = (=2, 2)? we drive the Navier-Stokes equation by a 1-periodic forcing

sin (271) 3 tanh(xy)
f(x,1) = 6 2 tanh(x3)
tanh(x1)

Since the data is periodic in time we can expect to obtain a time-periodic solution
(if the Reynolds number is sufficiently small). In Table 1 we show the performance
of the averaging scheme in comparison to a simple forward iteration. We give the
number of cycles required to reach the periodicity error ||v(T, + 1s) — v(T,,)| <
1078, The results show a strong superiority of the averaging scheme, both in terms of
robustness (with respect to v) and in terms of the overall computational complexity.
For the forward iteration, the number of cycles approximately doubles with each
reduction of v. The performance of the averaging scheme slightly deteriorates for
v = 0.025 due to the higher Reynolds number regime. For v = 0.01 we cannot
identify a stable periodic solution. The computational overhead of the averaging
scheme is very low, one additional stationary problem must be solved in each cycle.
A detailed study of the averaging scheme with an analysis of the sensitivity to
various further parameters is given in [37].

4.2 Simulation of the Candy Wrapper Problem

Figure 1 shows the evolution of the stenosis at three different points in time. In
addition we show the outflow rate as function over time (one period). Several effects
known from the medical practice can be identified: The growth of the stenosis is
non-symmetric and mostly centered on the inflow-tip of the stent. This shows the
necessity of considering full three dimensional models. Further, the simulations
show an extension and growth of the stenosis to both sides which is also typical.
Since the flow is pressure driven, the outflow rate decreases with the development
of the stent.
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Fig. 1 Development of the stenosis at initial time, at 7 = 33 days and T = 67 days. The average
and the oscillation of the flow rate get smaller while the stenosis develops

Table 2 Outflow J,,; at time T ~ 18 days and extrapolation including numerical convergence
order for K — 0 (k fixed) and k — 0 (K fixed). 55 years (%) computational time result from a
projection of the computational time for a resolved simulation without the multiscale scheme

K k Jout Time K k Jout Time
144,000 |0.02 |0.9359 9 min 72,000 |0.04 [0.9132 15 min
72,000 0.02 [0.9138 18 min 72,000 |0.02 [0.9138 18 min
36,000 0.02 | 0.9043 40 min 72,000 |0.01 [0.9140 41 min
Extra K — 0 0.8971 (1.22) |55years®™ |Extrak — 0 0.9131 (1.58)

In Table 2 we compare the results of the multiscale scheme for different values
of k and K. We observe convergence in both parameters. Numerical extrapolation
yields O(k'% + K122), slightly off the expected rates O(k*> + K). We also
indicate the computational times required for running the multiscale scheme till
T =~ 18days. A corresponding resolved simulation would require about 55 years
computational time. This value is predicted based on the average time for com-
puting a complete cycle of the periodic problem and based on an average three
iterations required for approximating the periodic flow problem. Assuming that the
extrapolated value for K — 0 is accurate, the simulation based on K ~ 36000 s
carries a multiscale error of about 1%. This approximation is achieved in 40 min
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instead of 55 years. The results in Table 2 indicate that it is worthwhile to consider
a second order time stepping scheme for the plaque growth problem, since the error
in K dominates. We refer to [19] for a realization in the context of a PDE/ODE
long-scale/short scale problem.

5 Outlook and Discussion

We have demonstrated a numerical framework for simulating complex multiphysic-
s/multiscale problems in hemodynamics. For the first time we could demonstrate an
efficient numerical scheme for a long-scale/short-scale problem coupling different
partial differential equations. We are able to include both temporal and spatial effects
in bio-medical growth applications. The combination of a temporal multiscale
method with fast solvers and efficient discretizations for the (periodic) micro
problems gives substantial speedups such that three dimensional problems can be
treated. Two main challenges remain for future work:

Fluid-Structure Interactions The main challenge in including elastic vessel walls
lies in the increased complexity of the resulting system due to nonlinearities coming
from the domain motion and the coupling to the hyperbolic solid equation that, by
introducing the deformation as additional variable, blows up the problem size. In
hemodynamical applications the coupling is governed by the added mass instability
that usually calls for strongly coupled solution approaches, see [7, 26]. Although
some progress has been made in recent years [2, 18, 29, 35], the design of efficient
solvers for the resulting algebraic problems is still not satisfactory.

Considering monolithic solution approaches in combination with Newton-
Krylov solvers make the use of large time steps possible. In all of the just mentioned
approaches for designing linear solvers it has shown to be essential to partition the
linear system when it actually comes to inversion of matrices, either within a
preconditioner or within a multigrid smoother. This is mainly due to the very large
condition numbers of the coupled system matrix that by far exceeds those of the
subproblems, see [2, 35].

A second difficulty coming with fluid-structure interactions lies in the derivation
of the effective growth equation described in Sect.3. If elastic fluid-structure
interactions are taken into account, the domain undergoes oscillations in the scale
of the fast problem, i.e. during each pulsation of the blood flow. However, we can
nevertheless introduce the averaged growth variable c(x, #) as in (7) and simply
average the growth equation (the third equation of Eq. (6)) as this is stated on the
fixed reference domain. We note however that we have chosen a very simple growth
model given as surface equation. Considering the detailed system introduced in [42],
growth takes place within the solid, which is a three dimensional domain S(r) ¢ R3
undergoing deformation from the coupled fsi problem. A corresponding equation
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mapped to the fixed reference domain S (taken from [42]) reads

(;I(Ja), w)g 4 ()»CJF’lF’TV& Vlﬁ)g — R, 6).

Since J and F oscillate with the frequency of the fast scale problem, derivation of
an effective equation is still subject to future work.

Patient Specific Simulation The second open problem is to incorporate patient
specific data into the simulations for generating specific predictions. Flow and
geometry data can easily be measured during the stenting process. This process
however is strongly invasive and causes subsequent adaptions of the vessel and the
surrounding tissue interacting with the stent. Further data on the resulting configu-
rations are not easily available without additional interventions. With a diameter of
only a few millimeters, coronary arteries are small, such that measurements at good
accuracy cannot be obtained.

Medical Application The edge stenosis accompanying the implementation of DES
(Drug Eluting Stents) is great starting point for development of the further numer-
ical experiments in the field of the plaque formation and biochemical processes
ongoing in the vessel walls exposed to other types of interventions. Explosive
growth of the intravascular interventions in recent decade is, inevitably, going to
demand more advanced studies on the nature of vascular wall response to the
implantable devices [13]. Novel numerical methods may also shade new light on
well-established surgical procedures and augment the awareness of the potential
benefits or hazards that are not yet fully understood or identified [16]. On the other
hand the population of the patients is changing dramatically and that process is soon
to accelerate. According to the recent report published by European Commission,
diseases of the circulatory system are the most common cause of death in elderly
population aged over 75 years [17]. In addition to that gruesome information the
ageing of the European population in the years to come is growing concern of
the governments. Poland belongs to the group of the countries that may become
affected by the population ageing the most [22]. Due to that we face the necessity of
development the most efficient treatment strategies for the elderly population. One
of those treatment procedures is TAVR (Transcatheter Aortic Valve Replacement).
The procedure addresses aortic valve stenosis that is quite often ailment in the
aforementioned group of patients. By application of the fluid structure interaction
methods it might be possible to tailor the design of the medical devices to the stiffer
tissues usually present in the elderly patients in the way that may augment long time
outcome of the procedure. Just such a small improvement may diminish the risk of
repeated procedures undertaken in frail patients.

The methodology presented in our work should also find it’s application in
optimization of the classic surgery for the coronary artery disease. The position
of the vascular anastomosis in relation to the existing vascular wall lesions may find
new rationale when understood through the knowledge of the mechanotransduction
phenomena. Also the strategic planning of the target vessels and “landing sites”
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for the aorto-coronary by-pass grafts may find its’ new understanding. Those
perspective studies could be undertaken only by the means of model based planning.
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and Lauri Kettunen

Abstract A general conservation law that defines a class of physical field theories
is constructed. First, the notion of a general field is introduced as a formal
sum of differential forms on a Minkowski manifold. By the action principle the
conservation law is defined for such a general field. By construction, particular
field notions of physics, e.g., magnetic flux, electric field strength, stress, strain
etc. become instances of the general field. Hence, the differential equations that
constitute physical field theories become also instances of the general conservation
law. The general field and the general conservation law together correspond to a
large class of relativistic hyperbolic physical field models. The parabolic and elliptic
models can thereafter be derived by adding constraints. The approach creates solid
foundations for developing software systems for scientific computing; the unifying
structure shared by the class of field models makes it possible to implement software
systems which are not restricted to certain predefined problems. The versatility of
the proposed approach is demonstrated by numerical experiments with moving and
deforming domains.

1 Introduction

In this paper we focus on second-order boundary value problems (BVP’s) related to
physical field theories. BVP’s and their numerical solution methods is an extensively
studied field of science. Still, many practical challenges remain, e.g.: (1) One may
have a problem to which there is no software system available. (2) The software
systems are laborious if not hard to extend beyond their original purpose and such
extensions increase the complexity of the system. (3) In case of incorrect results,
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it is tedious to distinguish between simple user errors and errors in reasoning. (4)
Users often have to learn many software specific details.

While practical challenges will always remain, the aforementioned issues reflect
the traditional architectural view on mathematical software from the fifties and
sixties. Nowadays there exists more powerful mathematical and programming
language-theoretic knowledge that can be exploited in developing systems for
boundary value problems. Thus, there is a call for a systematic mathematical
analysis to combine the knowledge in BVP’s and modern programming and
computing. The software systems can be established more systematically on the
mathematical structures on which BVP’s are built.

We aim to present a class of BVP’s that covers classical physics, such as
Maxwell’s equations, Schrodinger equation etc. The specialized models are
obtained by adding constraints (e.g., omitting terms, linking terms together etc.)
to the general model. This resembles object-oriented style in programming; a
generic class is instantiated and made more concrete by adding constraints. The
finite-dimensional models can all be constructed with the so-called discrete exterior
calculus (DEC) from the models expressed with differential forms. The approach
is not limited to ordinary differential forms. Vector valued (E-valued) and matrix
valued (End( E)-valued) differential forms can also be utilised making it possible to
conveniently construct, for example, the equations of elasticity or the Yang—Mills
equations with the same approach.

This research is, therefore, directly linked to several fields: partial differential
equations, differential geometry, manifolds and cell complexes, algebraic topology
(homology and cohomology theories, fiber spaces and bundles), global analysis of
manifolds, numerical analysis, and computer science.

The state-of-the-art in field theories is gauge theory [3, 4, 23]. It is about classical
and quantum fields whose configurations are cocycles in differential cohomology.
We focus on ordinary gauge theories whose field configurations are vector bundles
with connection. Their main principles [3]—Lagrangians, actions, the action princi-
ple [4, 11] manifolds, vector bundles, sections of bundles, connections, etc.—form
a cornerstone of the work.

Our general presentation of various field-theoretic space-time models provides
us with significant advantages. In classical physics and in engineering different
fields use different concepts, notation and terminology. This results in scattered
knowledge, in waste of resources, and in redundancy in software. Classical and
quantum field theories appear quite distinct. In classical theories the effect of
the fundamental forces is averaged into the mesoscopic constitutive laws. The
corresponding material laws can be embedded into the Hodge operator [5, 6, 17, 18],
and thus they describe the metric properties of spatial space. For this reason, the
metric structure is essential in classical theories.

Powerful commercial and academic software for classical multi-physics exist,
such as COMSOL Multiphysics [9] or GetDP [10], but there is no encompassing
mathematical theory available to guide the software development. Our aim is to
employ the presented approach as the guiding theory in systemizing development
of software in scientific computing.
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2 Differential Geometric Models

In the late 1990’s and early 2000’s, Bossavit et al. developed and introduced the so
called “geometric approach” into electromagnetism [7]. In addition, in 1997 the idea
of a “discrete Hodge operator” [36] was introduced to reveal the key mathematical
structures behind finite difference and finite element kind of methods [8]. At the time
the finite difference method [34] was commonly explained in a rather elementary
manner in Cartesian coordinate systems following K. Yee’s original paper [39]
from 1966. Bit later the scientific community in elasticity picked the idea and the
geometric approach became known also as “discrete exterior calculus” (DEC) after
Hirani [16].

We have further developed the geometric approach and created a generic software
system based on it. The system can be employed to solve hyperbolic application
problems from classical and quantum physics [22, 26, 28], such as electromagnetic,
elastic, and acoustic wave problems, the Schrodinger equation [11], or Gross—
Pitaevskii equations [27], and so on. We explain the mathematical foundations of
the software system in [20]. The implementation of the simulation software and the
various mesh structures which we have employed are described in detail in [26].

To explain the methodology, we will first outline a theory of ordinary gauge
theories on form bundles. Thereafter we will briefly discuss the extension to Clifford
and tensor algebra. Exterior (or Grassmann) algebra [12, 21] is the Clifford algebra
[15], where the quadratic form is identically zero, and Clifford algebra itself is a
quotient algebra of tensor algebra [24]. We assume a Minkowski manifold [3, 13],
and describe the proposed methodology in steps from the foundations.

2.1 Formal Sums of Field Configurations

The field-notion in physics involves an idea of assigning numbers to geometrical
objects of space-time, such as to points, (virtually) small segments of oriented lines,
etc. These numbers represent observations made by measurements, and they can be
interpreted as the values differential forms yield on p-vectors [5].

Let us start from ordinary differential forms, which come with a degree from
zero to the dimension n of the manifold. Since we are not after any particular
field configuration, forms of a particular degree are not in our interest. We hide
the information of the degree by introducing a formal sum of differential forms of
all degrees:

n
F = a0f°+a1f1+...+cx,,f"e@/\pT*Q,
p=0
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where o, € {0, 1} and T*Q is the dual space of the tangent space. Note that with
ordinary differential forms and in the n-dimensional case the number of p-forms is
(Z) and the formal sum has the total of 2" degrees of freedom.

By operating with F the emphasis is shifted from particular degrees to the
property that all forms map some p-vector, 0 < p < n, to scalars.

2.2 Differentiation and the Action Principle

Next, we need to introduce differentiation for F. This is straightforward as
smooth p-forms are differentiated with the exterior derivative d, and so is also F.
Ordinary gauge theories are characterized by pairs of differential equations, such
as electromagnetic theory [33] is described by Maxwell’s equations. The gauge-
theoretic view is that differential equations follow from the action principle [3]. An
action is the integral of a Lagrangian £ over a manifold, and differential equations
correspond to the critical points of the action.

A large class of models in ordinary gauge theories have to do with the
conservation of some quadratic notion. We equip the Minkowski manifold with a
metric tensor providing us also with a Hodge operator x. Then, we assume F' is an
exact field, F = dH where H = h° + ... + h" is a potential. In addition, for the
source terms we introduce another formal sum G = g° + ... + g”. Now, an action
of the desired type can be given by

_ ! -1 +1Y)
A p@)(z/ﬂ/\*fhr/hl’ /\*gp>

Q Q

The differential equations are then obtained as follows. The variation of action
Ais
d

SA = A(Hy)
da

o=
where H, = H + o§H and by insisting on the variation § A to vanish for all 6 H
yields the critical points of A and the corresponding differential equations. Hence,
the action principle implies that at all (ordinary) points on the Minkowski manifold
the following differential equations dF = 0 and xd x F' = * x G should hold. These
equations can be expressed as the diagram in Fig. 1.

Fig. 1 Diagram of 0 F *x F *xG
differential equations d * *
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Let us also express the action principle as a diagram. For brevity, to introduce
such a diagram we assume G to vanish. Then, the Lagrangian of the action becomes
L= @ZZO ; fP AxfP, and the definition of the Hodge operator implies, that each
component L, satisfies

= P AR = U T = gy e,
where @ is the unit n-volume of Minkowski space and ¢ p is the quadratic
refinement of the Minkowski bilinear form (-, -). The .£,’s form a product space
L = Dy x D? equipped with projections 7y € L — Dy and 71}5 € L — D;
satisfying the following universal property: For every action ‘A and Lagrangian £
there is a unique mapa € A — Land! € £ — L such that the diagram of Fig.2
is commutative.

The combination of the two diagrams of Figs.1 and 2 results in a diagram
presenting how the action with the Lagrangian defines differential equations for
a pair of fields, which are in a Hodge relation to each other. We call this diagram by
the name DGOrd (designating that it involves ordinary differential forms), simplify
it a bit —object L is left out— and draw it in Fig. 3. Ordinary gauge theories include
also other type of differential forms than ordinary ones, which are also essential

Fig. 2 Diagram of the action principle

L.

o(—o/\)o—)o’6 > o
* 1 *1

Fig. 3 Diagram DGOrd involves ordinary differential forms and is commutative. Its vertices are
unique and they exist for all objects
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in mathematical physics. For instance, in elasticity [1] E-valued forms, vector and
covector-valued forms [3, 14, 21] are needed [19, 29-32].

Let us next extend the idea of formal sums of differential forms to E-valued
forms. By construction, such formal sums of E-valued forms can be differentiated
with the exterior covariant derivative dy, where V is the connection. To introduce
the Lagrangian as a quadratic refinement of the Minkowski metric, the Hodge
operator should be extended to E-valued forms such that £ = @ZZO ; fP AxfP
becomes a formal sum of scalars. We denote such a Hodge operator by xg. In the
same manner as in the case of ordinary forms, in case E-valued forms the action
principle yields differential equations dy F = 0, xg dv xg F = xg x5 G.

End(E)-valued [3] (i.e., matrix valued) forms are needed for example in Yang—
Mills theory [2, 35, 37, 38]. The Hodge operator g,y is now extended to End(E)-
valued forms so that the Lagrangian becomes a formal sum of scalars.

Formally, there exists an abstract diagram DGA shown in Fig. 4, and mappings
My € DGA — DGOrd, Mg € DGA — DGE and Mgy € DGA — DGEnd.
They map the abstract diagram DGA to more concrete diagrams DGOrd of ordinary
forms, DGE of vector valued forms and DGEnd of matrix valued forms. They also
map the hodge duality to operators x, g, and *g,4, respectively. Mo maps the
differentiation to exterior derivative d. Mg and MEgpq map it to dy.

This construction suggests that mappings Mo, Mg and Mg,y represent various
models of the “theory of differential geometric models” represented by DGA. This
is a step towards a category-theoretic representation of physical field theories.

Remark Hyperbolic wave problems in physics are particular examples of our
models. DGA can also be concretized to elliptic and parabolic models. Later, as
an example, we show how to concretize the Schrodinger equation from the general
setting. As we use differential geometric formalism, the canonical way to discretize
all the considered models is to use DEC.

action principle PY action principle>k

l I*
Hodge duality Hodge duality
differentiation
o —-—

° O ° differentiation «c— o

Hodge duality_1 Hodge duality_l

Fig. 4 Diagram DGA
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3 Concretization of Particular Models

Next, to verify the usefulness of the theory and its models in scientific computing,
let us exemplify how particular models are concretized from the theory. This also
highlights the pragmatic significance of a proper mathematical theory; resources
become more efficiently exploited, if software systems are designed to realize
theories instead of particular models.

Let us start by concretizing DGOrd to four dimensional differentiable manifold
2 with Minkowski metric, signature (—, +, +, +), and a decomposition of space-
time into space and time-like components; Q2 = ©; x ;. Symbols F and G denote
formal sums of p-forms, F = f04-.. .4+ f*and G = g*+...+g¢* and consequently,
differential equations dF = 0 and xdx f = * x G can be written as:

- —xdx - fo go
d *dx - f! g!
d —xdx - 2| = |g?

d *dx || f3 g

d 1 g*

By (i) decomposing p-forms into time-like components and only space-like com-
ponents, (ii) and exterior derivative to space and time-like components, and (iii)
applying the Leibniz rule, we obtain an equivalent system of Eq. (1) [20].

EEE . *dx 1707 _g?_
o - - —d . *dx . f1 g}
B . —d . *dx 12 gf
- xdx — % Ok AR
d - xdx *0p* Sl g!
d - xdx — % Op* Sz g’

B d *0r* | | 83_ | &3 |

Here d and  are now the exterior derivative and the Hodge operator, respectively,
in the space-like component 25 of manifold 2. Subscript s in the f? and g”’s
denotes the space-like component f” of (p + 1)-form f;dt A fF. This system
of equations and its natural transformations cover a wide class of physical field
theories. By construction, all the models covered by the theory are relativistic. Each
particular model corresponds to a choice of F and G as demonstrated next with
some examples.

For Maxwell’s equations [33] in space and time, F is chosen to be the Faraday
field and G the source charges ¢ and currents j [3]: F = b+eAdt =b+dt A(—e)
and G = xj — dr A xq. This corresponds to setting fs1 = —e, f2=b,g' =j,
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and g? = —xq, and by substituting these to the system of Eq. (1), we obtain

db =0, 8throw, de + 9;b = 0, 3rd row,

—*x0pxe e + xdx, b = xj, 6throw, —xdx. e = —xq, lstrow.

We have considered permittivity € and permeability u as properties of 25. Thus,
they are embedded into the Hodge operators . and x,, [6].

The non-relativistic Schrodinger equation [11] can also be concretized from
DGOrd by imposing some simplifying constraints on the general model. For this,
we choose

K K
0 0 1 1
= h ) o = h N = ) o = N
S ®R fs @r f om IR 1 om !
¢" = Vg, g =V, g' = qr, g =—ai,

where £ is the reduced Planck constant and m is particle’s mass. By substitution to
the general system one obtains:

h h
orhop + xd x qr = Vi, lstrow, 0r . qr —dhe; = —q,2nd row,
2m 2m

h h
*d * gRr — *0; x ho; = Vg, Sthrow, dhor + %0; % q1 = qRr, 6throw,
2m 2m

h h
—d_ gqr =0, 3rd row, d. gr=0, T7throw.
2m 2m
The relativistic property is next lost by a modelling decision. Terms 9d;,qg and
d;q are assumed to vanish. Now the bottom equations become tautologies and the
system is reduced to the pair

n? n?
othop + *dxde; = Voy, *0; x hoy — *dxdpr = —Vor.
2m 2m

By mapping differential forms to vector fields and mapping the exterior derivative
to the corresponding differential operators of vector analysis, the textbook version
hop — 1;;21 divgradgp = —iV results. It is defined using complex arithmetic
which restricts it to flat Minkowski manifold only. The relativistic intermediate stage
obtained from the general model can also be implemented on curved space-time.
This is an interesting topic to be numerically tested.

Small-strain elasticity is naturally modelled using E-valued forms. Recall that in
this case the differential equations on the manifold €2; x € take the form dvF = 0
and xg dv xg F = xg xg G. Analogously to previous, Leibniz rule and the space-
time split of forms and exterior covariant derivative dy results in structurally similar
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general system as in the case of ordinary forms. The exterior derivative d is simply
replaced by dy and * is replaced by *g.

The model of elasticity now arises by the choice fso =u, f L— ¢, go = — % fy,
where the vector-valued O-form u is the time-derivative of displacement v, u =
0;v, the vector-valued 1-form € is linearized strain, and go is the source force term.
Substituting this choice back to the system of equations yields

0:& —dyu =0 2ndrow, dye =0 7th row, *dv*Cs — %%’ u = —x f, 5throw.

The Hodge operator *C contains the parameters of the stress-strain relation, and
density p is embedded to *”. Since u = 9,v, the first equation states that ¢ = dyv
and the second equation is automatically satisfied. As a result, we get the elasticity
equations which are, for convenience, written out also in Euclidian space and using
vector analysis notation:

—0re +dyu =0, o:*cs, —die + gradu = 0, o = Ce,

*ou — dyo = f,, u = v, poru — dive = f,, u = ov.

The final example is Yang—Mills equations [38] where the field configurations
are End(E)-valued forms. As Yang and Mills developed their theory as an extension
to Maxwell’s theory, Yang—Mills equations are concretized from the system of
differential equations for End(E)-valued forms in the same manner as Maxwell’s
equations are concretized from the system for ordinary forms. Such a process results
in

dyb =0, dve + Vb = 0,

—*End Vi*End € + *End Av *Ena b = *End J, *End AV *End € = *End P -

Clifford and Tensor Algebra The “theory of differential geometric models”
presented is not complete for the needs of software design. First, tensor algebra is
the most general algebra for vector spaces over scalars, and all field configurations
share the structure of a vector space. Second, a Clifford algebra is unital associative
algebra generated by a vector space equipped with a quadratic form [15]. Third,
exterior algebra is the Clifford algebra when the quadratic form is zero. Clifford
algebra seems to provide us with a better starting point as certain Clifford algebras,
such as Pauli or Dirac algebra [13], are very important in mathematical physics.
We construct the universal Clifford algebra as a subalgebra of the algebra of
linear transformations [15]. Let IF be a scalar field and denote A°(V) = F, AL (V) =
V and A? (V) contains the sums of products v; A - - - A v,. The Grassmann algebra
over vector space V is then A(V) = EB';,zOAP (V). In the algebra L(A(V)) of linear
transformations of A(V) map M, is defined as the linear extension of M, (1) = v,
and My(vi A---AVp) = VAUV A--- AVp. Another map, §,, is defined as the linear
extension of 8, (1) = v, and 8, (Vi A - -Avp) = D0 (=D¥ 1B, vp) viA- - -AvpA
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-+ =Avp, Where v,’C denotes the term to be omitted from the product, and where B(-, -)
is the Minkowski bilinear form. Thus, M, is exterior multiplication by v and §, is
interior multiplication with respect to the inner productinduced on V x V by B(-, -).
Definen € V.~ L(A(V)), v+ M, + §,. The subalgebra of L(A(V)) defined by
{n(v) | ve V}and {11 | A € F}is a universal Clifford algebra for (V, Q)where the
quadratic form Q is subject to the condition n()? = (M, +8,)°> = Q(v)I.

Let the (metric compatible) covariant derivative be mapped by functor C from
the tensor bundle to the Clifford bundle. The image of the covariant derivative in the
Clifford bundle is denoted by V. The codomain of map V € L(A(V)) — L(A(V))
can be decomposed into components corresponding to the exterior and interior
multiplication, and consequently we may write cod(V) = cod(V,) @ cod(V;). If
the covariant derivative is mapped to the exterior bundle with functor D, then the
image of the covariant derivative is d & xd*, where the sign depends on grade p and
dimension n.

Tensor bundles and tensor algebra provide us with a starting point general enough
for the theory needed in software design for ordinary gauge theories. The theory
should not, however, be tied to the category of sets. We seek a category that just
condenses the essentials of differentiation, of the metric properties of space-time,
and of the action principle. This approach resembles reverse mathematics in the
sense that we are looking for a minimal set of assumptions needed to define the
theory. Software based on such assumptions should not be bound to any specific
algebra. This enables end-users to employ algebras that fit their needs the best.

4 Some Numerical Experiments with Space-Time Models

In our earlier papers, we have demonstrated the proposed approach with sev-
eral numerical experiments. Such experiments include simulations with acoustic,
elastodymanic, electromagnetic and quantum mechanic waves [25-28]. For the
extended accuracy, the mesh structures play an essential role [26]. The numerical
scheme can also be optimized by locally adaptive time-stepping and by tuning
the discrete Hodge operator, e.g., for time-harmonic waves. In certain cases such
optimizations can improve the efficiency of the simulation even by orders of
magnitude as reported in [25].

The formulation of the general model in Minkowski space provides additional
benefits. It is namely possible to simulate the wave propagation in moving (and
even deforming) spatial domains. In the papers [25-27] and [28], the spatial mesh
generation together with the associated spatial finite difference approximation and
time-stepping were considered as separate entities, without emphasizing the fact
that the usual leap-frog time integration scheme for first order systems could also be
derived from geometrical principles analogous to the spatial mesh generation which
is based on the Delaunay—Voronoi duality.
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4.1 Transforming Cavity

This chapter contains numerical experiments that demonstrate how the general
model of the Minkowski space can be discretized. The construction of the space-
time model begins by creating a mesh that fills the entire space-time domain. When
generating a mesh, one should ensure that a valid dual mesh is available. The dual
mesh is made up of cells each having an orthogonal counterpart in the (primal)
mesh. Orthogonality is defined such that the Minkowskian bilinear form between
any vector from a primal cell and any vector from the corresponding dual cell equals
to zero.

Figure 5 illustrates the solution of the one-dimensional time-dependent wave
problem in a moving cavity. We build a simplicial mesh in space-time in dimension
two. Then we attach a floating point number to each primal 1-cell (edge) to construct
a discrete version of F including only 1-form term. The initial values are set at time
t = 0 (at the bottom of the figure) to trigger a wave pulse. Elsewhere, the values
of F are explicitly solved by following the equation d F' = 0. Since the dual mesh
and the discrete Hodge operators are constructed using Minkowskian metric, the
solution is a traveling wave with a propagation speed of 1 in both directions (see the
right-hand-side of the Fig. 5).

Figure 6 shows a numerical experiment where the same approach has been
applied to solve a two-dimensional time-dependent wave problem in a rotating
cavity. In this case, the mesh is three-dimensional and the shape of the two-

result

Fig. 5 A space-time approach to solve of a time-dependent wave problem in a moving cavity:
The mesh with simplicial cells (purple edges) and corresponding Minkowski dual mesh (blue
edges) are illustrated on the left. The solution of a wave problem is shown on the right. The color
components red and green correspond to dx and dt components of the resulting 1-form. The colors
are normalized such that grey indicates the zero field
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Fig. 6 Simulation of wave propagation in rotating two-dimensional cavity: The (2 + 1)-
dimensional space-time mesh is illustrated on the left. The red color (dark) at the bottom indicates
the past time and the cross section of the mesh at the current time is shown on the right. The color
components red, green, and blue represent the components dx A dy, dx A dt, and dy A dt of the
resulting 2-form, respectively. The figure is normalized such that the grey color indicates the zero
field

field component dt 1

Fig. 7 Wave propagation in a shrinking three-dimensional cavity: Cross-section of the space-time
mesh and dt-component of the resulting field are presented at five instances of time

dimensional base mesh (spatial cross-section of the space-time mesh) resembles a
boomerang. The space-time mesh is twisted around the time axis, causing the cross-
section to rotate as time progresses. The field F to be solved is a 2-form which is
discretized by attaching one floating-point number to each 2-cell (face) of the mesh.
By initializing F as an impulse at the initial time and solving d F = 0 inside the
computational domain, we detect a wavefront propagating at speed 1 and reflecting
from the moving walls. A video of this numerical experiment can be found at the
following url: https://urly.fi/l1oxH.

To prove the generalizability of the method, we present yet another experiment
where we solve a three-dimensional acoustic-like wave problem in a shrinking
computational domain. We create a (3 + 1)-dimensional simplicial mesh that, at
time ¢+ = 0, fills a three-dimensional spatial volume as illustrated on the left of
Fig.7. The element lengths of the mesh are proportional to the term 1 — 0.3¢. This
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means that the element sizes decrease exponentially in terms of the number of time
steps. The point (0, 0, 0, é)T of convergence is never reached in the simulation.

In order to reduce the amount of memory required, the mesh duration over time is
chosen as short as possible. We integrate 1-form F over mesh by explicitly solving
dF = 0. When integration over mesh is completed, the last calculated terms are
copied as the initial values of the next iteration and the integration is repeated. In this
way, the task can be integrated as long as desired, without having to store the entire
mesh in memory. The resulting field of time-integration is illustrated in Fig.7. A
video of this numerical experiment can be found online at url: https://urly.fi/1oWx,
and the source codes of simulations of Figs.6 and 7 can be found at url: https:/
github.com/juolrabi/gfd.

4.2 Local Time-Stepping and Stability

Traditionally, the Courant—Friedrichs—Lewy (CFL) condition sets an upper limit for
the length of maximal time step. The smaller the spatial element size is, the shorter
the time step must be in order to achieve numerical stability. When the spatial
element length is not constant, local time-stepping can speed up the integration
of time-dependent wave problems. This section shows how to create local time-
stepping methods using the space-time integration.

Let’s start with a (1 4+ 1)-dimensional example and consider a one-dimensional
spatial mesh consisting of unevenly distributed nodes and line-segments (edges)
between them. Nodes of the spatial mesh are copied at regular intervals in the time
direction using individual step sizes At for the nodes. The length of the time step
is set to the maximum length that obeys the inequality At < cAx, where Ax is the
length of the shortest neighboring edge and c is a constant. The space-time structure
is completed as the Delaunay mesh. The mesh is 2 units wide in spatial direction and
1 unit high in time-direction. The mesh and its dual mesh are illustrated in Fig. 8.

Fig. 8 A (1 + 1)-dimensional mesh with variable spatial edge lengths Ax. The condition for
time step size is At < 1.0Ax. Primal and dual edges are illustrated with purple and blue colors,
respectively
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The field under consideration is a 1-form and it is formatted and integrated
in the same way as in the previous section. When the integration over the mesh
is completed, the last calculated terms are copied as the initial values and the
integration is repeated. In this way, we are able to reuse the mesh again and integrate
over time as long as necessary.

We consider stability of the time-integration in long term simulations with two
different constants ¢ = 1.0 and ¢ = 0.9. The results are illustrated in Fig.9. The
conclusion is that the time integration is not stable with the constant of ¢ = 1.0. The
noise in the resulting field is visible already after 50 iterations. However, with the
constant of ¢ = 0.9, the system is stable because no dispersion is detectable even
after 200 iterations. The condition used for the time step length seems to be a good
first guess to replace the CFL condition in the asynchronous space-time integration.

We also investigate local time-stepping in a (2 4 1)-dimensional wave problem.
The mesh is constructed by creating a two-dimensional circular base mesh with
varying element sizes. We limit the individual time step At of each node by the
relation At < cAx, where Ax is length of the shortest spatial edge next to the
node. The structure of the space-time mesh is determined as a Delaunay mesh and
a truncated mesh is visualized in Fig. 10.

At<1.0Ax At<0.9Ax

t=10...11 t=50..51 t=200...201

wil

t=0.

Fig. 9 The resulting fields during the various stages of integration. The color components red and
green correspond to dx and dt components of the field and grey color indicates the zero field
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Fig. 10 A (2 4 1)-dimensional mesh with variable spatial edge lengths Ax and with condition
At < 0.6Ax for the time step size

We integrate 1-form over time and consider the numerical stability of long-term
simulations. From Fig. 11, we find that by limiting the time step length with the
constant of ¢ = 0.7, numerical stability is not achieved. We observe noise in the
resulting field already after 5 units of time. Instead, using the constant ¢ = 0.6, we
keep the integration stable and do not observe any dispersion in the resulting field
even after 100 units of time.

5 Conclusions

In this paper we have considered the common structure of boundary value problems.
The structure is based on ordinary gauge theories on form bundles. We have
presented models from classical and modern physics as particular examples of
the system. The finite-dimensional models are constructed with generalized finite-
difference, that is, discrete exterior calculus (DEC) type of approach. The pair of
cell complexes is based on Delaunay—Voronoi duality with Minkowskian metric.
A consistent construction of the discrete Hodge operator enables also moving
deformable domains. Adaptive time stepping can also be implemented by utilizing
the geometry of space-time mesh. Numerical results show that the software system
based on the systematic structure is applicable in boundary value problems in one,
two, and three spatial dimensions.
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At<0.7Ax At<0.6Ax

t=100.5

" " e
L %o .
- ‘ -
=
w
o
LY

t=5.5

23

1
o y
Il
-+
X

Fig. 11 Cross-sections of fields at different time instances and under different conditions for a time
step length. The color components red, green, and blue correspond to dx, dy, and dt components
of the resulting field, respectively. The grey color indicates the zero field
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On the Convergence of Flow )
and Mechanics Iterative Coupling e
Schemes in Fractured Heterogeneous
Poro-Elastic Media

Tameem Almani, Kundan Kumar, and Abdulrahman Manea

Abstract In this work we establish the convergence of an adaptation of the fixed-
stress split coupling scheme in fractured heterogeneous poro-elastic media. Here,
fractures are modeled as possibly non-planar interfaces, and the flow in the fracture
is described by a lubrication type system. The flow in the reservoir matrix and in the
fracture are coupled to the geomechanics model through a fixed-stress split iteration,
in which mass balance equations (for both flow in the matrix and in the fracture)
are augmented with fixed-stress split regularization terms. The convergence proof
determines the appropriate localized values of these regularization terms.

1 Introduction

The coupling of flow and mechanics is required to simulate different natural
and induced physical phenomena including reservoir deformation, pore collapse,
wellbore stability, fault activation, and hydraulic fracturing [2]. Fractures have
significant effects on reservoir flow profiles. Moreover, the fractures are also
the vulnerable regions for mechanical integrity of the system. Therefore, it is
important to study the coupled flow and mechanics in a fractured heterogeneous
(flow parameters are given functions of spatial variables) media. In this work, we
extend the previous results for iterative coupling approaches in fractured medium
to fractured—heterogeneous porous matrix system. In particular, we establish the
convergence of an adaptation of the fixed-stress split scheme in heterogeneous poro-
elastic media. The convergence of different iterative coupling schemes, including
the fixed-stress, fixed-strain, drained, and undraind split schemes, was established in
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the work of [3, 7-9]. Interpreting the fixed-stress split scheme as a preconditioner for
the simultaneously coupled system was presented in the work of [10, 11]. Multirate
extensions of the fixed-stress and undrained split iterative schemes were established
in the work of [12]. Moreover, multiscale and nonlinear extensions of the fixed-
stress split scheme were formulated and analyzed in the work of [13] and [15]. A
parallel in time extension of the scheme was established in the work of [16]. The
convergence in heterogeneous media was established in [4, 14] for the fixed-stress
split scheme, and in [5]. Here, Banach fixed-point contraction results will be derived
for this flow-mechanics coupled system by studying the equations satisfied by the
difference of iterates. Geometric convergence to the unique solution of the system
follows immediately as the sequence of iterates represents a convergent Cauchy
sequence.

2 Model

We assume a linear, elastic, and isotropic fractured porous medium Q2 C R3,
saturated with a slightly compressible single phase fluid. Following the lubrication
fracture model, as described in [2], fractures are treated as non-planar interfaces
denoted by C as shown in Fig. 1. As shown in Fig. 1, we introduce an auxiliary
partition of € into two non-overlapping subdomains Q* and Q™. The interface
between the two subdomains is assumed to be Lipschitz and denoted by I'. The
fracture € is contained within I': € C I". We will distinguish the two sides (or faces)
of the fracture, C, by the superscripts 4+ and —, and we will use the superscript * to
denote either 4 or —. Let 2* denote the part of 2 adjacent to C* and let n* denote the
unit normal vector to € exterior to Q2*, x = +, —. The fracture is represented by two
coincident sides/surfaces, so we have n~ = —n™. Moreover, we let ['* = aQ*\T.
For any function g defined in 2 \ € with a trace, let g* denote the trace of g on C*,
* = +, —. The jump of g on C in the direction of n* is defined by [gle = g™ — g~

Fig. 1 Reservoir and fracture r
domains (image courtesy
of [2]) O
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We also assume a quasi-static Biot model for coupling flow with mechanics,
ignoring the second order time derivative for the displacement. Our coupled model is
as follows: Find u, p,, and p s satisfying the equations below for all time ¢ €]0, T'[:

Balance of Linear Momentum: — dive? (u, p,) = f inQ\ €
Cauchy Stress Tensor: e (u, p;) =) —a p, I

Effective Linear Elastic Stress Tensor: o (u) = A(V -u)I +2 Ge(u)

/1 .
Reservoir Flow Model: o ((M + cr(po)pr +aV - u) +V-.Q,=¢ inQ\C,

1 .
Qrz—MK(Vpr—ngn) inQ\C.

opr

B .
Fracture Flow Model: c s o + tw +V-Qr =gw +[Q,le- nt in@,

d

Ke .
r = — v — v mce.
Q; 12M( pr—pgvn)

In the above, p, and Q, represent the pressure and flux unknowns in the reservoir
matrix, py and Qy represent the pressure and flux unknowns in the fracture (p s
is the trace of p, on the fracture surface), and u is the the solid’s displacement. In
addition, I is the identity tensor, « > 0 is the Biot coefficient, A > O and G > 0
are the Lamé constants, f is a body force (in our case, the gravity loading term),
@ > 0 1is the constant fluid viscosity, p > 0 is a constant reference density (relative
to the reference pressure pg), n is the distance in the vertical direction (pointing
downwards), ¢¢ is the initial porosity, M is the Biot constant, g = Z where ¢ is
a mass source or sink term, K and K e are the permeability tensors in the matrix
and fracture respectively, ¢, and cy are the fluid compressibilities in the matrix
and the fracture respectively, V is the tangential derivative along the fracture, w =
—[ule - n" represents the width of the fracture, gw = qw/p is the injection term
for flow in the fracture, and [Q,]e - n is the leakage term which connects the flow
in matrix to the flow in the fracture.

Notation In what follows, we will adopt the following notation: n denotes the
flow/mechanics iterative coupling iteration index, k denotes the time step index.
At =ty — ty—1 stands for the time step size, where ty = kA?, 0 < k < N, and N is
the total number of time steps, T = N At.

3 Fixed Stress Split in Fractured Poro-Elastic Media

Following the formulation of the fixed stress split scheme in fractured media as
given in [1], we first solve the flow problem in the reservoir and the fracture in a
monolithic manner (Step (a)), then we solve the mechanics problem (Step (b)), and
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we iterate:

Step (a) [Flow] Given u", we solve for p"*1, Q,"*!, p "H ,Qr it

2 . ; »
(h+eeot+)optt —v.Q = D pn v Dun 4 g,
Q" = | K(Vpt —pgVn)inQ\ e,

()/C + Cf) ar p'}"_l + f;t -V an+1 =VYe ?)tpf + ‘IW + [(2r]n+1 +a

Q" = (v it — pgVm) in€,

Step (b) [Mechanics] Given p'*!, Q" !, P'}H, Qf"“, we solve for u"t!
satisfying

—divePr @™, pith = finQ\C
o-Por(unJrl’ p;’.l+1) — a(un+1) apr+1 I ln Q \ e

@™ @™, prthy 't = —pitlien*, x=+,— one@

We note here that the mass conservation equations for the flow in the matrix and
in the fracture are augmented with the fixed-stress split regularization terms (";\2
for the matrix, and y, for the fracture) which will vanish upon the convergence
of the iteration for every time step, recovering the consistency of the scheme.

4 Convergence in Heterogeneous Media

4.1 Assumptions

In our analysis, we assume homogeneous elastic parameters (G, A), and heteroge-
neous flow parameters. The spatial domain of the reservoir matrix will be denoted
by @ C R4, d =1, 2, or 3, and the spatial domain of the fracture will be
denoted by @ ¢ R?~!. Furthermore, The matrix is discretized into N conforming

Ng
grid elements E;(2) such that: @ = | J E;(2). Similarly, The d — 1 fracture is
i=1

discretized into Ne conforming grid elements E;(C) such that: € = U E; (C).
By heterogeneous flow parameters, we mean that each matrix grid element Ei ()
has its own, independent, set of flow parameters: K;, M;, ¢, and ¢p;. In a similar

manner, each fracture grid element E;(C) has its own, independent, set of flow
parameters: Ke,,cr,, and u. Here we denote, K; = K;/u, Ke, = Ke, /1.
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Furthermore, the outward normal vector for each grid element E; will be denoted
by n; and for every two adjacent grid elements E; & E;_1, n; = —n;_1 across the
common boundary (for both matrix and the fracture).

4.2 Discretization

For spatial discretization, we assume a mixed finite element discretization for the
flow in the reservoir matrix and the fracture, and a Conformal Galerkin method
for mechanics. For temporal discretization, we assume a simple Backward-Euler
scheme. Let T, denote a regular family of conforming triangular elements of the
domain of interest, 2. Using the lowest order RT (Raviart and Thomas, 1977)
spaces, we have the discrete spaces [2]:

up € Vi = vy € HAQTUQ): VT € Ty, vpyr € P19, [oplre = 0,
Ve = 0,4 = +, —)
Pry € Qi = {pr, € L*(); VT € Tn, prjr € Po)

P € Qo, = 1{ps, € H'*(€h); VT € Ty, pey 7 € P1)

Q. € Zy =g, € Hdiv; QT UQ)" VT € Ty g7 € P1Y,
[gq,]-nT=00onT\C g, -n=0 ondQ}

Qs € Zey=ny, € Zes VT € Ty pyy € P1Y)

where Py, and IP; are the spaces of polynomials of degrees zero and one respectively,
and P ¢ is the space of polynomials of degree one in R?. In the above, Z ¢ represents
the space of continuous velocities in the fracture: Ze¢ = {uy € L>2@* 1, v.

— . 1/2
wy € H12(©). Itis normed by: llg ;llze = (14 11226, + IV - 412,120

In addition, the space Q, is equipped with the norm: [|v||g1/2(e) = (Ilvlliz(e) +

1/2 —u(y)? 1/2
|U|§11/2(e)) . where [v] 12, = ([e fe |”("2_;‘(§)| dx dy)'". Other spaces use
the usual corresponding norms. We also note that the discrete leakage term g is

in the same space as the discrete fracture flux space ( :L [Q,,le -nT = —gL onC).

We also assume that the solution at time #;_1 to be known (the values of uk_l,
p L pfk_l, Qrkfl, and kafl are computed from last time step) with given
corresponding initial values for the first time step. Furthermore, if the domain of
integration is not indicated, it is understood to be over QT U Q.
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Now, we list the Banach contraction result for the fixed stress split scheme
described in Sect. 3 in heterogeneous poroelastic media.

5 Banach Contraction Result

Theorem 1 (Localized Contraction Estimate for Fractured Heterogeneous

1/2
Media) Fory;, = ()L ’2) and x; = (VC ) for each E; € C, and if the conditions
(6), (7), and (8) are satisfied, and for homogeneous elastic parameters G and A,

and heterogenous (localized) flow parameters, the localized iterative scheme is a
contraction given by

No 5 Ne 5 No 5

Jk Jk
260y ¥ @y + Do 1805 g ey + D22V - 8
i=1 i=1 i=1

_ At _
+ ZZNH Y2505 o+ Z Ik, 507 ey
i=1

Ne AL —2)
+3(aGrcr 2y, )3 +Z“2(5l SRl PSS
i=1 Ji i=1
1 n,k
<max{l<ni13§9 (ﬁikz) 1<n:l<N@ (ﬂc,)} H HE(Q)—'—ZHSU HE(@)
1=

The contraction coefficient can be shown to be <1.

5.1 Proof

We will follow the same steps as outlined in the work of [4, 5], and as outlined
below:

» Step (1): Write the continuous-in-space weak formulation locally for each grid
element.

* Step (2): Sum up these local weak formulations to get a global weak formulation.
All inner boundary terms will get cancelled.

* Step (3): Write a corresponding discrete-in-space global weak formulation by
mimicking the continuous-in-space global weak formulation.

¢ Step (4): Match coefficients as in the homogeneous case to ensure contraction.

We proceed directly to the third step as the first two steps are identical to the ones
employed in [4, 5].
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Step (3): Fully Discrete Weak Form

Now, we mimic the continuous-in-space global weak formulation to reach to the
fully discrete weak form as follows:

Flow Solve Find qu’k e Vy, pf;rl’k € Oy, p'}:l’k € Q¢ Q,ZH’]‘ € Zy, and
QfZH’k € Z ey, such that:

e 1 o? P;l;rl'k - l’r]flfl e +1.k
n 5
V9h€Qh,Z((M +erpoi+ ) At )*9h)E_(Q)+Z(V'th 0n) gy ) =
i=1 ! i=1
Ng 2 ontlk_ k-l ntlk k-l Ng
o Pry — Pry uy, —u, -
X}( 3 Ar )iV At )’9”)5,-<Q)+Z;(Qh’9")5i(9> S
1= =
Ne Lk kel Ne
I P 1 +1k
Ve, € Qcy, » Z((“fi +7ei) Ar ﬁvh)Ei(@) +2 12 (V@00 gy )
i=1 i=l1
s O

-3 (Q 4 e nt, Oen) ;) = > (7’” At ’96")5,-(@

i=1 i=l

k k—1 +
[, 1l -nT —[u; " lg-n B
+ ( At ’ ”h)E,-(e> * @wnfen) ;) @

N

Ng Ng e
—1 +1,k _ +1,k +1,k +
Vay € Zy, Y (K7'Qqp -lIh)Ei(sz)—E OV A @) — Y (p}h Aanle m ") g, e
i=1 i=1 i=1

Ng

+ ) (Ve awE @) ©)
i=1

Ne Ne Ne
“1gy Lk Lk
Vi € Zen Z(Kei Qi ) gy ey = 2 PV g ) ey + D (Vg ) g ey

i=1 i=1 i=1
“)

The mechanics equations are standard and left for brevity. The system is compli-
mented by the initial condition.

Step (4): Proceed as in The Homogeneous Case

Now, we proceed as in the homogeneous coefficients case. Let §; = ( M~1o¢2 +

2’5 wo; + i)’ for each reservoir grid element E;(2), and B, = ¢y, + y,; for each
fracture grid element E;(C). In what follows, we will take the difference between
iterative coupling iterations for Egs. (1)—(4), and mechanics discrete equation, and
denote the corresponding differences in the unknowns as 8" 1K where §&"+1*F =
gntlk _ gnk in which & may stand for any unknown variable we are solving for.
Now, following the same approach as outlined in [1, 6], for the flow part, we test
(1), (2). (3). and (4) with 8p},""*, 8Q, "%, 8p’T¥, and 8Q ! respectively,
and combine the results. For the mechanics part, we test mechanics equation with
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v, = SuZH’k, and multiply the whole equation by 2 (recall that G and A

are homogeneous throughout the whole domain). Further we use the following
estimate [1],

CHlwnlfa ey = Clllunle -1 1720y < le@n) 72 g e < le@n)lfa g
where C* = (2C2(max(Tp+,?pf)2 + 1)C,%)’1, and C, Pr, and C, denote
respectively the constants of the trace, Poincaré, and Korn inequality in Q*, x =
+, =t llulglizey = Clullpgiqy > lullz@y < Prelulgiqqy, and llulgigy <

Celle@)llL2(qr- Now, we put together all the steps above, together with an
application of Young’s inequality. This gives

Na
3 {"a,&pr“ ""E @ = (el K Vst o)+ (m}
i=1

1.k —1/2 Lk At —1/2 1.k
+32]v - sup ||Q+2Arzuz< 2o M g+ ZHK 250 T e
i=1

&4
1,k2 1,k)2 1.k 1.k
+ 3 {28 |ow % ) +AGRCT [aup TG ) - 2i(eny T s o)
i=1

(O]

*Zﬁ)@H

|E (Q)Jr; Be;

Ye; OP'F, k
<i fh E;(©)

Let 86 | Ej (@) = Cf 8 p'};lk — 8wﬁ for a free parameter x; as determined below for
each grld element in the fracture E;(C). Recall that 865’*"|Ei(9) = AV (SuZ’k —
oziSpf,;k for each grid element E;(€2) in the reservoir matrix. By matching the

coefficients of the expanded squares of [§o;" and |80 with the

k
FI .
corresponding coefficients on the left hand side of (5), and for y,, =

ok HE o)
()\,2) y Xi =

2
Yei , we can show that the scheme contracts on H(Sa and H(Sa ’

k k
2 ) ”E Q) ; ” Ei(©)
locally for each reservoir and fracture grid elements E;(2) and E;(C) respectively
provided

1
Bi > max (1, )\2), forall E; € 2 (Condition on Reservoir Flow). (6)
. A—=2 o
8GC* > forall E; € € (Condition on Fracture Flow) @)

cf

250, (Condition on Mechanics) 8)
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With the above choices of y,; and x;, the localized fixed stress regularization terms

2
for the flow in the matrix and fracture are given by oiz , and

2c i

=) respectively, the

contraction result above is established.
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Finite Difference Solutions of 2D m)
Magnetohydrodynamic Channel Flow St
in a Rectangular Duct

Sinem Arslan and Miinevver Tezer-Sezgin

Abstract The magnetohydrodynamic (MHD) flow of an electrically conducting
fluid is considered in a long channel of rectangular cross-section along with the
z-axis. The fluid is driven by a pressure gradient along the z-axis. The flow is
steady, laminar, fully-developed and is influenced by an external magnetic field
applied perpendicular to the channel axis. So, the velocity field V = (0,0, V)
and the magnetic field B = (0, By, B) have only channel-axis components V and
B depending only on the plane coordinates x and y on the cross-section of the
channel which is a rectangular duct. The finite difference method (FDM) is devised
to solve the problem tackling mixed type of boundary conditions such as no-slip and
insulated walls and both slipping and variably conducting walls. Thus, the numerical
results show the effects of the Hartmann number Ha, the conductivity parameter ¢
and the slipping length « on both of the velocity and the induced magnetic field,
especially near the walls. It is observed that the well-known characteristics of the
MHD flow are also caught.

1 Introduction

Magnetohydrodynamics is arisen from the main results of fluid mechanics and
electrodynamics. It considers the flow of an electrically conducting fluid exposed
to an external magnetic field and/or an electric current [6]. Thus, it investigates
the influence of these external effects on the behavior of the flow of electrically
conducting fluids. The study of magnetohydrodynamics is introduced by Hartmann
[5] who studied the MHD flow between parallel planes and thanks to his results,
there is an insight for understanding the working principles of MHD flow. MHD
has applications in almost every area of our daily life and in engineering such
as magnetic cooling systems, magnetic refrigerators, water treatment devices.
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Basically, there are several devices whose working principles are based on MHD
effects such as MHD pumps, generators, brakes, flow meters and blood flow
measurement. Analytical solutions for MHD duct flow are available only for a
simple geometry of the duct and simple wall conditions as insulated and no-slip
velocity [4]. The main numerical studies of MHD flow problem come into play
with the use of some methods such as FDM [2, 7], FEM [8, 11], and BEM [3, 10]
again for no-slip and partly conducting partly insulated walls. FDM solution for the
general mixed boundary conditions has been given in [1].

In this paper, the MHD flow of an electrically conducting fluid which is viscous
and incompressible is considered in a long channel of rectangular cross-section
(duct) and the flow is laminar, steady, and fully-developed in the channel-axis
direction. Fluid starts to move with a pressure gradient in the z-direction. The
interaction between the electrically conducting fluid and vertically applied external
magnetic field induces also a magnetic field inside the fluid. Thus, the total magnetic
and velocity fields become B = (0, By, B) and V = (0, 0, V) varying in the duct
only, thatis V = V(x,y) and B = B(x, y) since the flow is fully-developed.
The governing equations of MHD duct flow are solved using FDM with the most
general type of boundary conditions corresponding to slipping velocity and variably
conducting walls. The influences of the slipping and the conductivity changes on
the velocity and the induced magnetic field are illustrated with equivelocity and
the current lines for increasing values of Hartmann number, slip length, and the
conductivity parameter.

2 Mathematical Formulation

The governing MHD duct flow equations result from the combination of Navier-
Stokes equations of hydrodynamics and Maxwell’s equations of electromagnetism
through Ohm’s law. The pipe-axis components of the momentum and the magnetic
induction equations give

oH
uVAV tpeHo =G (D)

y

Vv
V2H + o . Ho =0. )

dy
Dimensionless variables are introduced as V/ = YV, B = B o x =7
Uo Uiter/o Lo

2

and y = Lyo, where Uy = _ko ‘?I; is the characteristic velocity and L is

the characteristic length and H = (0, Hy, H), P, o, (., i are magnetic field,
pressure, electrical conductivity, magnetic permeability, and the viscosity of the
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fluid, respectively. The coupled MHD equations governing the 2D channel flow in
dimensionless form become

5 9B

V2V + Ha =-1 (3)
dy
v

V2B + Ha =0, 4)
dy

where Ha = ByLo+/o/u is the Hartmann number and the domain 2 = {—1 <
x < 1,—1 < y < 1} is the dimensionless cross-section of the duct and By is the
intensity of the external magnetic field. The problem is considered with the most
general form of wall conditions such as slipping velocity and variably conducting
walls.

v A
V:I:oea =0, Bicgfzo when y =41, (5)
y
v dB
Vida, =0, Bhcjl=0 when x=d+I (6)
X

Here, the constants @ and ¢ denote the slipping length of the velocity and the
conductivity parameter, respectively. Thus, ¢ — 0 corresponds to electrically
insulating walls and ¢ — oo to electrically perfectly conducting walls. Also, o« = 0
indicates that we have no-slip velocity at the duct walls.

3 Implementation of FDM and Boundary Conditions

The MHD flow equations (3)—(4) are coupled in V and B and should be solved
together in £2. Firstly, discretizing the MHD equations as a whole by central finite
differences for both the Laplace operator V2 and the convection operator 8/dy we
obtain the following discretized equations

Vigrj —4Vij+ Vicrj+ Vijr + Vi1 + "5 (Bijr1 — Bij1) = —h?
7
Bit1,; —4Bij+ Bi_1,j+ Bijy1 + Bij_1 + ’”;’” (Vij41 — Vij—1) =0

fori, j =2,..., N.Here, N is the number of subintervals taken on each side and
h =2/ N is the step size. The approximation of mixed type boundary conditions (5—
6) is carried in such a way that we use forward difference on the walls x =y = —1
and use backward difference on the walls x = y = 1 in order to define the boundary
values in terms of inner mesh point values. Then, inserting the boundary conditions
into the discretized equations (7), we obtain M unknowns in M equations where
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M = 2(N — 1)? for a general N. These equations are written in a matrix-vector
system with the coefficient matrix Q of size M x M. Thus, we have

Ox = w (8)

where the unknown vector x of size M x 1 is ordered as

x=[Vap Boa---Von Bon - VN2 Bno-- VN Byn]

The right hand-side vector w of size M x 1 is
w=[-h20—-h>0...—h20] .

The coefficient matrix Q of size M x M is a block diagonal matrix which includes
two different block matrices Q1 and Q» of sizes 2(N — 1) x 2(N — 1) on the
main diagonal. Also, the block matrices Q1 and Q; are the matrices including the
Hartmann number H a, step-size h, slipping length o and the conductivity parameter
¢ in their entries. Finally, the unknown vector x at the discretized points from the
solution of the system (8) is obtained giving V (x, y) and B(x, y) at the mesh points.

4 Numerical Results and Discussion

The velocity and the induced magnetic field are simulated for increasing values
of Ha, a and c. It is observed that we need to increase the number of nodes
N with an increasing Ha since it causes convection dominance in the MHD
equations. So, we use N = 30, 40, 60, 80, 100 with the corresponding values of
Ha = 5,10,30, 50, 100. As Ha increases, boundary layers of O(1/Ha) and of
O(1/~/Ha) are developed near the Hartmann (perpendicular) and side (parallel)
walls for both V and B as the well-known behavior of MHD duct flow [4]. The
slipping fluid is also observed on the duct walls. However, the slip diminishes with
a further increase in Ha because of the formation of these boundary layers.

The graphs of Fig. 1 show that, the velocity magnitudes increase when « rises.
This is a theoretically known behavior [9]. As the slipping parameter « increases,
the slip on the walls increases and we see much more slip on the Hartmann walls
than on the side walls. The increase in the slipping parameter o has not much effect
on the profile of the induced magnetic field when the walls are insulated but it only
causes a decrease in the induced magnetic field magnitude.

It is observed from the graphs of the Fig. 2 that as the conductivity parameter ¢
increases, the velocity magnitudes decrease for no-slip velocity (@« = 0) whereas
the induced magnetic field magnitudes increase. But, the increase in the induced
magnetic field magnitude becomes weak when c increases further. The profiles of
the induced magnetic field reveal that it tries to become perpendicular to the side
walls as ¢ increases but this orthogonality behavior is weakened for small values of
c. Thatis, for ¢ ~ 10 the side walls become almost electrically perfectly conducting.
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-0.5

Fig. 1 Velocity and current lines for Ha = 10 and ¢ = 0. Top « = 0, middle @ = 0.1, and bottom
a=02



68 S. Arslan and M. Tezer-Sezgin

05r 008

0.00752

m 0f -0.00752 1

e
-0.037

0.00787
@ 0f :0.00787
L |
:0.0394
A
057 1

-0.070

-1 -0.5 0 0.5 1

1
0.0713

-_—

05¢ 0.0396 E

i —
_—
0.00792

@ of -0.00792

-0.0396

-0.071

L T

-1 -0.5 0 0.5 1
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Fig. 3 Velocity and current lines for « = 0.1 and ¢ = 2. Top Ha = 10, middle Ha = 50, and

bottom Ha = 100

Lastly, considering the effects of both o and ¢ with Ha increase in Fig. 3,
we see that for a small value of Hartmann number (Ha = 10), the slip is seen
on the Hartmann walls but it disappears for large values of Hartmann number
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(Ha = 50, 100) for variably conducting wall case. It is observed from the velocity
profiles that as Ha increases, the Hartmann layers become very thin obeying the
order 1/ Ha, the core region increases, and the fluid flows near the side walls. Also,
the induced magnetic field becomes perpendicular to the side walls with an increase
in both wall conductivity ¢ and Ha.

5 Conclusion

In this study, the 2D MHD flow in a rectangular duct is investigated. Mixed type
boundary conditions are considered for both the velocity and the induced magnetic
field which contain no-slip to slipping velocity and insulated to perfectly conducting
induced current wall conditions. The effects of the Hartmann number, slip length
and boundary conductivity on the flow and induced current are shown in terms of
equivelocity and equal induced magnetic field lines. An increase in Ha causes to
flatten the flow and the induced current. As Ha increases, one needs to make the
mesh finer due to the convection dominance of the MHD equations.

It has been also shown that as Ha increases boundary layers are formed near the
Hartmann walls and the side walls. The increase in the slip length causes an increase
in the velocity magnitude, which is weakened for large values of Hartmann number,
that is, the slip of the velocity on the walls tends to diminish when Ha rises. When
the slipping length is kept fixed, the induced magnetic field magnitude increases
with an increase in the conductivity parameter whereas the velocity magnitude
drops. Consequently, we see that the well-known characteristics of the MHD flow
are caught and the effects of slip and varying conductivity on the walls are very well
depicted with the numerical results obtained using the FDM arranged especially
to handle mixed boundary conditions. The FDM is easy to implement and gives
accurate results at a cheap expense.
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Applications of the PRESB )
Preconditioning Method for OPT-PDE e
Problems

Owe Axelsson

Abstract Optimal control problems constrained by partial differential equations
arise in a multitude of important applications. They lead mostly to the solution of
very large scale algebraic systems to be solved, which must be done by iterative
methods. The problems should then be formulated so that they can be solved fast
and robust, which requires the construction of an efficient preconditioner. After
reduction of a variable, a two-by-two block matrix system with square blocks arises
for which such a preconditioner, PRESB is presented, involving the solution of
two algebraic systems which are a linear combination of the matrix blocks. These
systems can be solved by inner iterations, involving some available classical solvers
to some relative, not very demanding tolerance.

1 Introduction

As is widely accepted, analyses and solutions of partial differential equations are
mostly merely just part of a general solution process that includes some kind of
optimization and sensitivity analyses where the PDE equation acts as a constraint.
For example, one may want to control an equipment to have a desired behaviour
as close as possible to some target function. In other applications one must identify
some coefficient, see i.e. [10], such as describing the unknown material properties
or boundary values at an inaccessible part of the boundary of the domain, which is
important to enable to control that various safety requirements are satisfied, see e.g.
[12].

The control and observation domains can be identical, possibly equal to the
whole domain of definition or can be separate subdomains.

After a presentation of the basic properties of the PRESB, i.e. preconditioned
square block matrix and its application for the common subdomain case, a boundary
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optimal control problem is presented which leads to separate subdomains and for
which the standard PRESB method must be modified. Theoretical backgrounds are
included in the paper. For numerical results, see [3].

2 The PRESB Preconditioning Method

For basic optimal control problems one can use a very efficient preconditioner,
named preconditioned square block (PRESB) method, which arose as a simple
method to avoid complex arithmetics when solving symmetric complex valued
systems. Consider, see e.g. [7],

(A+iB)(x+iy)=f+ig,

where A, B etc. are real valued and we assume that A + B is nonsingular. It can be
rewritten in real valued form

AL)= IR
y B A lly 8
which as has been shown in [7] and elsewhere, can be solved easily and efficiently
by the use of a PRESB preconditioned iteration method.

Consider a more general problem, such as arises in Maxwell’s equation for eddy
current electromagnetic problems, (see e.g. [6])

_R*
)= IE-L g
y B A ]ly 8
where B* denotes the complex conjugate of B. We assume that A is symmetric and

positive semi-definite, that B + B* is positive semi-definite and that N(A) "N N(B +
B*) = {0}.

Proposition 1 Under the above conditions, A is nonsingular.

Proof For a singular equation (1) it holds Ax = B*y and Bx + Ay = 0. Hence
x*Ax + y*Ay = 0, that is, x, y belongs to N(A), because A is semidefinite. This
implies that B*y = 0, Bx = 0 that is, x, y belongs also to N(B), therefore, x =
y=0. O

As preconditioner to A we take the PRESB matrix

A —B*
B= :
[BA+B+B4
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As is readily seen, 8 can be factorized as

I-I|{|A+B O 11

o /1157 4l e o) g

which shows that, besides a matrix vector multiplication with B and some vector

additions, an action of 8~! involves just solving a linear system with matrix A + B*
and one with A + B.

In many problems there exist efficient solution methods for such systems, such

as based on algebraic multigrid, modified incomplete factorization, or for very large

problems, use of a domain decomposition method, see e.g. [13, 15] for efficient

implementations of AGMG methods.
Let AT denote a generalized inverse of A.

Proposition 2 Under the stated conditions, the eigenvalues A of B~ A are con-
tained in the interval é <1—0(Dg) <A <1, where

Do = ((A+ B)AT(A+ B*))"'(B + BY).

If B* = B and B is spsd, then

1 1
<MB'A) < (1 +  max (1 —2u)2> <1,
2 2 w((A+B)~1B)

where () denotes eigenvalues.

Proof For a proof, see [8]. For a proof of the eigenvalue interval [é, 1], see the
Remark 1 in Sect. 4. O

Corollary 1 Let A be spd, A + B nonsingular and assume that Re(u) > 0 where
WAx = Bx, ||x|| # 0. Then the eigenvalues ofolﬂ satisfy 1 > A > ' Where

2 Re(i) 1+’
— e(u
= max .
o=
oy 2Re(j) _ 1+|pf? S 1
Proof 1t follows 1 — A = L 2Re() Hence A = P 2Re) S ta Note
thato < 1. m|

It follows that the preconditioned iteration method converges fast and, since
the eigenvalue bounds are known, it can even be efficient to apply the Chebyshev

V2—-1 _

iteration method. The rate of convergence factor is then bounded above by vl =

IO |
34242 6°
As has been shown in [6], see also [5, 11], for time-harmonic eddy-current

problems, the ratio 2Re(u)/(1 4 |i|?) becomes very small for large values of the
frequency w, i.e. where |u| is large, which implies that the eigenvalues cluster at
unity, and implies a superlinear rate of convergence.
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Since we solve inner systems by iteration to some flexible accuracy, it can be
efficient to use a variable preconditioned Krylov subspace method, see [9, 14]. As
has been shown in [1, 2, 6, 8] when the eigenvalue bounds are known one can also
use a Chebyshev acceleration method.

3 A Basic Optimal Control Problem

We consider first a constrained optimal control PDE problem with identical
observation and control subdomains Q¢ C €2, where Q is the whole domain of
definition for the given partial differential equations, see e.g. [4]. Hence we want to
compute

}}:lfj(uav)v J(M,U)Z 2||u_u0||90+2:3||v”90 s.t. LM=f+U.

Here u is the state solution defined in €2, v is the control defined in ¢, u4 is the
target solution, f is a given source function, £ is a 2’nd order coercive elliptic
operator, i.e. spd and 8 > 0 is a regularization parameter. We assume that proper
boundary conditions hold.

The corresponding Lagrange functional with multiplier w, that is the adjoint
variable to u, takes the form:
Seek the inf, , / sup,,, i.e. the saddle point solution of

J(u,v)+/ w(Lu — f —v).
Q

Note that the control acts to modify the source function f. Discretizing the
problem in a finite element subspace and applying the first order necessary
optimality conditions, lead to the coupled algebraic system,

My 0 KT u Moug
0 BMo—NT | |v|=]| 0 |,
K —N 0 w f

where My is the mass matrix corresponding to the discrete subdomain ¢ and
MO _ [Mo 0
00
discretization of £ and the vectors correspond to the discrete versions of the
corresponding continuous functions.
After elimination of the control vector v we get

& alla]- ]
K —,3_1]\7() w| f

} is the matrix extended to Q, N = [I\go} K is the finite element
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which we scale and reorder,

o) (5 -]

where K = /8K, & = jﬁ
apply the PRESB preconditioner,

w and f = /B f. For this square block matrix we can
| K _M_ |
—My K +2My
which can be factorized as in (2).
Proposition 3 The eigenvalues of %71?( are contained in the interval [é, 1].

Proof Let X be an eigenvalue, then

YY1 5 D -k
a A)B[n}_(g e [n} [ZMon]

so A = 1 if and only if n € NI (Mo), any . (Note the large dimension of the unit
eigenvalue!) For A # 1 it follows that K& + Mon = 0 and

(1= M)(MoK ™" Mo + K)n = 22Mon.
Hence A < 1 and
(1 = 07" (Mg + D = 22377 Mo,
where Mo = K~'2MoK 12,5 = K'/29.
It follows that 1 — A < A, thatis, A > ; m]

Previously, for a fully distributed control function v in €2, the following PDE
problems have been analysed and illustrated numerically:

(i) convection diffusion: Ku = —Au + ¢- Vu = f, where V - ¢ < 0, see [4].
(ii)  time-harmonic problems,

d . 2
aL;—Au—i—au:f,O<t<T, where f = foe'”, w =k ;,k:l,Z,-n

which leads to Ku = —Au + ou +iwu = fo + v, see [5, 11].
Here one can solve for each frequency w in parallel.
(iii))  The similar, Maxwell’s eddy current electromagnetic equation, see [6].
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4 An Inverse Identification Problem for a Non-selfadjoint
Problem

4.1 Problem Formulation

There exist several types of inverse problems in the form of identification problems,
such as identification of a material coefficient in a PDE problem or identification
of some inaccessible boundary part of the unknown solution. Here we consider
identification of part of the boundary conditions, namely at a for measurement
inaccessible part of a physical boundary, such as hidden by other structures, for
practical examples, see e.g. [12].

Let 2 be a given domain where the boundary part 9€2; is assumed to be
inaccessible and let 9€2; be the other part, 32, = 9€2/3€21, of the boundary, see
Fig. 1 for an illustration.

In order to find the missing boundary condition we overimpose, that is, we
assume that both the Dirichlet values u; and the Neuman conditions 3Z are given,
e.g. have been measured on 9€2;. Let the differential operator problem be

1 d
Ku=—-Au+cVu+tou=f, o-— 2V-c>0, with g = au given on 9€2;.
n

To find an approximation of v = gz on 0€2; we imbed the problem in an optimal

control framework, that is, the aim is to solve
inJ(u,v), J( )_1|| - ||2 1,3|| ||2
min J (u, v), u,v) = |lu—uqllso, + |50,
w,v 2 d 197 2 092

which is subject to Ku = f in Q, gz = g on 0.

Here the Dirichlet values u; on 92, are used as target solution, v acts as a control
function and B > 0 is a standard regularization parameter.

Letting w be the Lagrange multiplier to impose the differential equation con-
straint, the variational formulation becomes:
Find

u,v g

inf su {J(u,v)—}—/(Vu-Vw—i—c-Vuw—i—ouw—fw)—% vw—% gw}
Q Q) I

Fig. 1 A domain 2 with an o
inaccessible part 0€2; of its
boundary, with overimposed
boundary conditions on

02 = 92/9L2;. The aim is

tofind v = gz on 982
0

5195 Q 09
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After discretization, the Karush—Kuhn—Tucker first order optimality conditions (for
notational simplicity we keep the notation K, etc for the discrete operator and
vectors) give,

1\72 0 KT u Mzud_
0 My —NT | |v]|=] 0 (3)
K —-N 0 w f |
000 000 0]
where A~41 = |10M; 0 ,1\712 =100 0 |, N = | M; | and M; are the mass
000 00 M, 0 |

matrices for 92;,i = 1,2 and fz [+ [9%92 gvi], where {¢;} are the set of basis
functions on 0€2,.

Note that all vectors have the same dimension. Here we have used the ordering,
interior nodepoints followed by nodepoints on 9€2;,i = 1, 2.

There are two major issues associated with the solution of optimal control
problems:

(i)  Construction of an efficient iterative solution method to solve (3), that is, in
particular the construction of a preconditioner.

(ii)) The estimate of errors in the solution and control function, which depends on
both the discrete mesh parameter / and the parameter .

Due to limited space of this paper we shall consider only topic (i). For a more
complete presentation, see [3].

4.2 The Reduced Matrix System and Its Nonsingularity

After elimination of the control variable v = éw, we get the reduced system,

]\~42 KT~ |:u:|_|:1\7[2udi|
K—/;Ml w| |

which we reorder and scale to obtain

A= -] @
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where K = /BK, f = /Bf and 0 = — \/1/3 w, which is the equation to be solved.

Guided by the PRESB method in Sect.2, (4) will be solved by iteration with the
preconditioner,

B [1\72 —KT }
T LK Mi+K+KT]
Systems with this matrix can be solved by inner iterations using the PRESB
preconditioner, i.e. where M above has been replaced with M>, which will converge
rapidly.

The eigenvalues of 8~ A satisfy

“—“B[i]=@—f‘>[ﬂ=[<f fkﬁ)n] where [|£]|1+]lnll £0.  (5)

Proposition 4 The eigenvalues of 8~ A are located in the interval (0,1]. In
particular, A is nonsingular.

Proof Since by assumption made, K+ KT is nonsingular, it follows that A = 1 if
and only if n = 0, arbitrary &. For A # 1, (5§) shows that

{ My =Ky

(1= 2)(K&+ Min) = 1K + KT)n.

If 1\7125 =0, then n = 0, i.e. I?é =0soalso & = 0. Hence & € N(MQ)J_. Let 1\712T
be a generalized inverse of 1\712. Then & = A}; K Ty and

(KMJK" + My = u(K + K", (6)

where © = A/(1 — X). It follows that p is positive so 0 < A < 1 and A is
nonsingular. O

In order to find how the eigenvalues depend on 8 as B — 0, we rewrite (6) as,
2uf = (MJ + M),

where M} = STV2KMIKTS™'%, My = S7'2M; S~/ and § = (K + K7).
We note that 77 M, 7/7 77 is contained in the interval (]O(8'/?)], O(1)) and
FTM5/57% in [0, 0(B~V/?)]. It follows that u is contained in the interval
(0B 10D,

From the lower bound values it is seen that the corresponding eigenvalues A =
| O (+/B)| and for the upper bound values that A = 1/(1+]|0(W/B)|) = 1—|0(/B).

Hence the eigenvalues cluster at unity for eigenvectors 77 € N (1\71 )+, which
subspace has a large dimension. The small eigenvalues are taken for n € N(M 1)
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Numerical tests in [3] show that the iteration method converges rapidly. The
approximation errors decrease as O(8) when 8 — 0 and as O (h?) as the mesh
parameter 1 — 0.

Remark 1 If the control and observation subdomains are identical, then it follows
readily from (6) that the eigenvalues A are located in the interval [%, 1], which gives
a proof of the related Proposition in Sect. 2.
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Model Order Reduction Framework for )
Problems with Moving Discontinuities e

H. Bansal, S. Rave, L. Iapichino, W. Schilders, and N. van de Wouw

Abstract We propose a new model order reduction (MOR) approach to obtain
effective reduction for transport-dominated problems or hyperbolic partial differ-
ential equations. The main ingredient is a novel decomposition of the solution
into a function that tracks the evolving discontinuity and a residual part that
is devoid of shock features. This decomposition ansatz is then combined with
Proper Orthogonal Decomposition applied to the residual part only to develop an
efficient reduced-order model representation for problems with multiple moving and
possibly merging discontinuous features. Numerical case-studies show the potential
of the approach in terms of computational accuracy compared with standard MOR
techniques.

1 Introduction

Hyperbolic partial differential equations (PDEs) are ubiquitous in science and
engineering. Applications encompassing the fields of chemical industry, nuclear
industry, drilling industry, etc., fall within this class. Model Order Reduction of
systems of non-linear hyperbolic PDEs is a challenging research topic and is an
active area of research in the scientific community. Moving discontinuities (such
as shock-fronts) are representative features of this class of models and pose a
major hindrance to obtain effective reduced-order model representations [1]. As
a result, standard MOR techniques [2] do not fit the requirements for real-time
estimation and control or multi-query simulations of such problems. This motivates
us to investigate and propose efficient, advanced and automated approaches to
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obtain reduced models, while still guaranteeing the accurate approximation of wave
propagation phenomena.

A lot of research is in progress to improve the state of the art of MOR for
transport-dominated problems: (i) (data-based and model-based) time and space-
dependent coordinate transformation/symmetry reduction framework [3-8], (ii)
optimal transport [9—11], (iii) interpolation/dictionary/tracking framework [12—14],
(iv) adaptive and stabilization strategies [15, 16], and, (v) deep learning/neural
network concepts [17, 18]. These works have mainly focused on resolving transport
along a single direction [3] and multiple directions [4] for linear and non-linear
classes of (parameterized) problems.

Effective reduction of non-linear transport-dominated problems in the context
of multiple moving (and merging) discontinuous features is still challenging. Few
notable works that aim at mitigating this problem are [4, 12, 13]. The works
[12, 13] are based on the concept of (low and high resolution) transformed snapshot
interpolation. Such an approach has been particularly tested in the regions near
(and at) the singularity, induced upon merging of the wavefronts. Another work
in this direction is the concept of freezing multiple frames [19]. However, their
performance, demonstrated for parabolic problems, does not carry over to less
regular hyperbolic problems and suffers from additional travelling structures or
numerical instabilities in the decomposed components. Moreover, the existing
methods [4, 19] lack the (online-efficient) automated identification of switching
point from multiple wavefront setting to single wavefront setting upon merging of
wavefronts.

We propose an approach that is a stepping stone towards resolving the aforemen-
tioned issues. The main contribution of the work is to propose a new decomposition
ansatz that decomposes the solution into a basis function that tracks the evolving
discontinuity and a residual part that is expected to be devoid of shock features.
This decomposition renders the residual part to be amenable for reduced-order
approximation. We, then, use these generated bases to apply Proper Orthogonal
Decomposition (POD) on the residual part and later reconstruct the solution by
lifting it to the high-dimensional problem space. We finally assess the combined
performance of decomposition, reduction and reconstruction approach (as opposed
to conventional reduction and reconstruction approach) in the scope of transport-
dominated problems with moving and interacting discontinuities.

2 Mathematical Formulation

We consider a scalar 1D conservation equation of the form:
dru(x, 1) + 0y f(u(x, 1) =0, u(x,0) =uo(x). ey

We assume that u(x,0) = wuop(x) already has S number of discontinuities at
locations x(0), ..., xg(0) with values u~ (x;(0),0), s =1,...,S from the left
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and values u ™ (x5(0),0), s =1,..., S from the right. We associate a single basis
function o (x — x5(¢)) to each discontinuity at their respective locations. This basis
function has a jump of height 1, i.e., as"r (0) — o, (0) = 1, at the location of the
discontinuity and can have any (preferably continuous and smooth) shape away from
the discontinuity.

We now decompose the solution of (1) in the following way:

S
(e, 1) =Y s (o5 (x — x5(0)) +ur(x, 1),

s=1

Js() = u” (s (0), 1) — u™ (xs(1), 1), @

If x(¢) exactly matches the shock locations and (2) is exactly fulfilled, then u, (x, )
does not contain any discontinuities and is amenable to a low-rank approximation.

The time-stepping scheme is defined in the following way. In each time step,
we:

+ Compute updated shock locations x; (") using the Rankine Hugoniot condi-
tion.

+ Compute u*(x;(z"*1), #"*1) in a neighborhood of x,(¢"*1) and define jumps,
Js @), via (2).

 Compute the residual part u, (x, #+1) from

u}’(-xv thrl) - ur(xs tn) =

S S
D s (o5 (x = x5 (1) = Atde f (ulx, 1) = D js (" oy (x — x, ("),
s=1 s=1

3)

The standard way to construct a reduced-order model (ROM) is to reduce
(1) by applying Galerkin projection on u. Instead, we reduce (3) via Galerkin
projection onto Vy C Vj,, where Vy is a N-dimensional reduced space spanned
by the functions obtained from a truncated singular value decomposition of the u,
snapshot matrix, and V}, is a h-dimensional high-fidelity space. Upon considering
the projection operator Py : V), — Vy, the reduced scheme takes the following
form:

N
) =k P (D0 v )0y (6 = w0 (5)) = Ard f (P~

s=1

N
>N ey = x N (). @)

s=1
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where ”I; ~ € Vv and u(r)’ N =Pn (u(,)) with ul]‘v defined in the following form:

S
Pyuly = jon(t)os (x = x v (1)) + PRy . (5)

s=1

and, j; v and x; y are, respectively, the jumps and shock locations computed during
the ROM time-stepping. js; xy and x; y can be obtained in a manner similar to the
steps carried out during the full-order model (FOM) time-stepping.

It is well known that projection alone is not sufficient to reduce the costs of
computing the solution of a reduced-order model if the Finite Volume operators
are non-linear in nature. Empirical Operator Interpolation [20] can be used here
as a recipe for hyper-reduction. We do not delve into the full and efficient offline
and online decomposition as its discussion is not within the scope of this work.
However, we mention that we need to know jg, N(tk) and u, y(x;, N(tk), tk) for
computing xs y (t**1). In a reduced scheme this means that we need to keep the
entire reduced basis in memory. However, the basis vectors are only evaluated at the
shock locations at each time step. The same consideration holds for the computation
of the jy n(tFt1).

3 Numerical Experiments

We numerically test the new approach and show its potential as a reduced-order
modelling technique. We reduce Burgers equation, which is given by:

u2
8,u+8x(2)=0,xe[O,L]. 6)

The case studies consider that the shock is already present in the initial data,
which for single and multiple wavefront scenarios, is respectively given by:

x—2, 2<xc<4,
x, 0<x<l1,
u(x, 0) = ug(x) = and u(x,0) =up(x) =1 “,Y, 5<x<7,
0, otherwise
0, otherwise.

We consider only periodic boundary conditions. Furthermore, we consider the
spatial domain to be L = 10 and use an upwind finite volume (FV) scheme for
the spatial discretization and first-order Forward Euler for the time-stepping. We
take 8000 steps in time for the scenarios under consideration i.e., t € [0, 4] with
a timestep of 0.0005. We consider three different spatial mesh resolutions (spatial
step size of 0.005, 0.002 and 0.001) to assess the performance of the standard (POD
without decomposition) and the proposed approach.
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We quantify the performance of the standard and the proposed approach by
computing the reduced-order modeling (ROM) error. We consider L? in space and
L? in time (absolute) error and define it in the following manner (for a basis-size
N):

Nr+1 Ny

’ 2
erom= | AL Y Ax Y Juix — (Pyuk)ix ™. (7)

k=1 i=1

where At is the time-step, Ax is the spatial step, N7 is the number of time-steps
and N, is number of Finite Volume elements. u; x means u at x = x; and t = #
(similarly for (Pz/v”lzcv)i, x). Herewith, (7) expresses the error between the full-order
model (Finite Volume solution) governed by (1) and the reconstruction given by

().

3.1 Single Wavefront Scenario

We first consider the scenario where only a single discontinuous front evolves across
the spatial domain. Here, we use the following shape function for o (x — x5):

14x— Cl<x<
o r —xg) = TE T WTESYSS s, (8)
0, otherwise.

with S =1, x,t =0) = 1.

3.2  Multiple Wavefront Scenario

Here, we consider the setting where multiple (discontinuous) wavefronts evolve
across the spatial domain and also interact non-linearly with each other. We study
the scenario where two wavefronts are present in the spatial domain and the left
front propagates faster than the right one. We, however, restrict the study to only
assess the performance of the proposed approach in dealing with the interaction of
the head of one wavefront with the tail of the other one. We postpone the discussion
of automatically dealing with the merging of wavefronts for future work. We use the
following shape function for o5 (x — xy) to study this scenario.

1+ = 0), s — 2 <x < Xy,
T B i L T S !
0, otherwise

with S = 2, x;_1(t = 0) = 4 and x;_»(t = 0) = 7.
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3.3 Discussion

Interpolation of oy (x — x4 (¢)) onto the FV mesh results in numerical approximation
error. As a result, we observe residual jumps in the residual part, u,, during FOM
simulation. The aim is to build a reduced space by applying POD on the residual
part. One option could be to build the bases (or reduced space) from the computed
residual part (with residual jumps). An other alternative could be to post-process the
residual part (computed during FOM) in order to get rid of the residual jumps. This
post-processed residual part, which is even more low-rank approximable than the
residual part with residual jumps, can be then used to build the (effective) reduced
space. We invoke one of these ways to generate the bases and build a ROM.

We, first, consider the setting where the shock locations and jumps computed
during FOM simulation are used during the ROM time-stepping i.e., we assume
that js, v = Jjs and x5 v = x;. We, further, use the computed residual part (with
residual jumps) to generate the bases. We can clearly see the benefits of the proposed
approach in Fig. 1, which shows the behavior of the ROM error for increasing basis
sizes N across different mesh resolutions. Firstly, the initial error incurred via the
proposed approach is clearly lower than that of the standard approach. This is
attributed to the fact that our decomposition approach associates a basis function
corresponding to the travelling discontinuity. Secondly, the rate of decay of the
error is better for the proposed approach compared to the standard approach. We
also see that the ROM error for the standard approach is larger for finer mesh-
sizes. This occurs as the effect of the shock becomes more pronounced for finer
meshes. Also, the finer mesh implies less numerical viscosity. We also observe that
the ROM errors could even increase with an increment in the basis size. It can
be argued that this could occur as a result of insufficiently many basis functions.
However, the ROM error for the proposed approach decreases with an increment in
basis size. Moreover, the ROM error is lower (and stagnates later) for finer mesh-
sizes. This can be argued from the fact that the proposed approach is able to resolve

——ROM error (standard) on dx = 0.005
——ROM error (modified) on dx = 0.005
ROM error (standard) on dx = 0.002
—ROM error (modified) on dx = 0.002
——ROM error (standard) on dx = 0.001
ROM error (modified) on dx = 0.001

0 10 20 30 40 0 10 20 30 40
M (Mumber of Modes) M (Number of Modes)

Fig. 1 ROM error upon using shock locations and jumps computed during FOM simulation: (left)
single wavefront scenario and (right) multiple wavefront scenario
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|=——ROM error (standard) at dx = 0.002
100 I—F{OM error (modified, post-processed, fully ROM computations) at dx = 0.002

! ROM error (standard) at dx = 0.001
!_—F{OM error (modified, post-processed, fully ROM computations) at dx = 0.001)
107
=
<
(V]
1072
1 0-3 1 L | 1 | |
0 5 10 15 20 25 30 35 40

M (Number of Modes)

Fig. 2 ROM error under fully ROM computations for the single wavefront scenario

the shock more accurately at finer meshes. This error behavior is clearly in contrast
to that of the standard approach which fails to efficiently capture the shock. As a
result, the difference between the ROM error (at a certain number of basis function)
computed via standard and proposed approach becomes even more pronounced for
finer meshes.

Figure 2 demonstrates the performance for fully ROM computations, i.e., shocks
locations, x; y and jumps, js y are computed during ROM time-stepping. We
perform post-processing on the residual part computed during FOM. u, is post-
processed by linear interpolation between the locations x;', x;~ where the local
minimum #+ and maximum u~ in a neighborhood of x; is attained. We, then,
generate the bases from this post-processed residual part. The post-processing was
not needed in an earlier setting (discussed in the paragraph above) as accurate shock
locations and jumps from the FOM simulation were used. However, it becomes
essential here in order to approximate x, y and j; y within the ROM time-stepping
with good accuracy. We observe that the proposed approach still performs better
than the standard approach. However, the proposed approach seems to incur larger
ROM error for larger POD mode numbers. Similar issues (not included in this
paper) are observed for the multiple wavefront scenario. Such issues did not exist
when we used the shock locations and jumps from FOM during the ROM time-
stepping. Hence, the issues could be caused from a poor approximation of the
shock. A possible explanation could be that we have more oscillations (around
the shock position in the residual part) as the number of POD modes increases.
The oscillations, which appear due to the reduced regularity of the residual part,
lead to wrong computation of x; y and js y. It is clear that x; y (and j; y) need
to be approximated with good accuracy. The error in x; y, which would increase
over time, should be in the order of the discretization error to achieve an overall
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ROM error in the order of the discretization error. A mitigating measure could be
to improve shock approximation similar to [14]. The high-frequency modes could
also be a source of the problem. The potential solution could be to filter out the
high-frequency modes when advancing the shock.

4 Conclusions

We have proposed a decomposition ansatz and used it in conjunction with POD.
We have show-cased the performance of the proposed approach on the Burgers
equation. The proposed approach is able to resolve the discontinuities and also
offers reduction in ROM error. Future work will deal with resolving issues that exist
in the proposed approach for larger POD mode numbers. Moreover, we will adapt
the discussed formulation for system of conservation laws. We will also assess the
performance of the method for parametrized scalar and system of conservation laws.
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Numerical Simulation of a Phase-Field )
Model for Reactive Transport in Porous e
Media

Manuela Bastidas, Carina Bringedal, and Iuliu Sorin Pop

Abstract We consider a Darcy-scale model for mineral precipitation and dissolu-
tion in a porous medium. This model is obtained by homogenization techniques
starting at the scale of pores. The model is based on a phase-field approach
to account for the evolution of the pore geometry and the outcome is a multi-
scale strongly coupled non-linear system of equations. In this work we discuss a
robust numerical scheme dealing with the scale separation in the model as well
as the non-linear character of the equations. We combine mesh refinement with
stable linearization techniques to illustrate the behaviour of the multi-scale iterative
scheme.

1 Introduction

Soil salinization and harvesting of geothermal energy are examples from real life
in which the pore-scale geometry can be affected by mineral precipitation and
dissolution. While these processes are active at the pore scale (micro scale) and
affect the pore-scale structures, their effects are reflected in the Darcy-scale (macro-
scale) parameters such as the porosity and permeability.

Several approaches are available to account for the evolution of the micro-
scale geometry. To locate the micro-scale interfaces a layer thickness function is
proposed in [8, 15], whereas a level set approach is considered in [2, 13, 14]. In
both approaches, upscaled models can be derived by solving micro-scale problems
involving moving interfaces. This makes the development of numerical schemes a
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challenging task as it requires a very fine mesh reproducing the micro-scale details
such as tracking the movement of the interfaces.

Here we model the evolution of the micro-scale boundary through a phase-field
equation. Then, moving interfaces are approximated by a thin diffuse interface layer
described by a phase-field variable ¢. This variable is an approximation of the
characteristic function and approaches 1 in the fluid phase and O in the mineral.
Using the phase-field approach we avoid the difficulties related to discontinuities in
the domain. Building on the idea of minimizing the free energy developed in [5], a
phase-field model for dissolution and precipitation processes is developed in [16].
In [12] this is extended to two fluid phases and the mineral phase. We consider the
phase-field model proposed in [3] which considers one fluid phase and the mineral
phase, but includes fluid flow. This model is hence defined over the entire domain
where the evolution of the phase field accounts the moving fluid-mineral interface.

Since the main interest is the behaviour of the system at the macro scale,
homogenization techniques are employed to derive upscaled models. The outcome
is a coupled and non-linear system of equations addressing flow, chemistry and the
phase-field evolution. Focusing on the two-scale model in [3], the main goal of this
paper is to develop a robust numerical scheme accounting for both scale separation
and the non-linearities in the model. This multi-scale iterative scheme borrows ideas
from [4], where a stabilized iterative coupling scheme is introduced for a phase-field
approach for fracture propagation.

This paper is organized as follows. In Sect. 2 the two-scale model is presented
briefly, where the governing equations in two different scales are displayed and the
strong coupling between the scales is discussed. In Sect. 3 we introduce the multi-
scale iterative scheme in order to solve the upscaled model. There we give some
details about handling the non-linearities and the convergence of the multi-scale
iterative scheme. Finally, Sect. 4 provides a numerical example and the discussion
of the results.

2 The Two-Scale Phase-Field Model

We consider the two-scale phase-field model formulation of single-phase fully
saturated flow with constant density and viscosity introduced in [3]. There, the
details about the formal homogenization procedure can be found. Here we restrict
to presenting the upscaled model only.

We consider a periodic porous medium € C R?. At each x € Q we identify
the variations at the micro-scale defining a fast variable. In other words, for each
macro-scale point X € Q we use one micro-scale cell ¥ := [0, 1] to capture the
fast changes encountered locally.
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The unknowns q(x, t), p(x, t) denote the macro-scale velocity and pressure in
the fluid and u (X, t) is the upscaled solute concentration. The macro-scale flow and
solute transport problems are

@M ! V.q=0, in Qr == Q x (0, T],
q= _Wp’ in QTa
@y { ¥ (p(u —u*)) +V - (qu) = DV - (AVu), inQr,
(1)

completed by initial and boundary conditions. Here D is the solute diffusivity and
u* > u is the constant concentration of the species as part of the immobile mineral
phase. Moreover, the variable ¢ defines the porosity and it is nothing but the average
of the phase field ¢ over the micro-scale Y. The matrices A and K are the effective
diffusion and permeability, respectively.

For all x € Q2 the phase field ¢ (X, y, ) is updated by solving the following micro-
scale problem

2dp+yP(¢) = yra*Vip — 4rp(l — ¢) ! f@), forye¥, t >0,
5 { u*
¢ is Y -periodic.
)

This problem is defined for y € Y, while x enters as a parameter. Therefore, the
spatial derivatives should be understood w.r.t. y. The phase field ¢ has a smooth
transition layer of width A > 0 separating the phases. This equation is coupled with

. S 2 .
the macro scale through the reaction rate, which is chosen as f(u) := :2 — 1 with
eq

Ueq being a given equilibrium concentration. The term P(¢) = 8¢2(1 — ¢)2 is the
double-well potential, which ensures that the phase field approaches 0 and 1. The
parameter y is the diffusivity of the interface that separates the fluid and the mineral.

The macro-scale porosity in (1) is defined by the phase field ¢(x,1) :=
f y (%, y, 1)dy. The elements of the effective matrices A(x, ¢) and K(x, t) are given
by

Aro(1) = f $s (5rs + 0:0°) dy and Kes(-1) = / gswidy ()
Y Y
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forr,s =1, ..., d. The functions ®® and w® = [wf, R wfi]’ solve the following
cell problems, defined foreachx € Q and¢ > 0

V- (¢s(Vw® +eg)) =0, inY,
(PIX) ® is Y-periodic and / w®dy = 0,
Y
s A .
(VITE + e0) + 1y V2(gsw®) = g(‘; ‘we, v, )
5
(P) V- (¢sw®) =0, inY,
I1° is Y-periodic and / M°dy = 0.
Y

As before, in (4) the derivatives are w.r.t the y variable. The function g(¢, A) in (4)
ensures that the flow in the mineral phase becomes zero. This function is such that
g(1,A) = 0and g(0, 1) > O (see [6]). Also observe the presence of a regularized
phase-field ¢s := ¢ + 6 where § > 0 is a regularization parameter which is included
to avoid singularities in (4).

3 The Multi-Scale Iterative Scheme

We propose an iteratively coupled scheme to simulate the multi-scale behaviour of
the phase-field model presented in Sect. 2. In [4, 10] similar approaches can be found
but we remark that in the present case the coupling of different scales is encountered.

We let N € N be the number of time steps and At = T/N be the time step
size. Forn € 1,..., N define t* = nAt and denote the time discrete solutions by
vii=v(, t") forv e {¢p, A, K, p,q, u}.

Applying the Euler implicit discretization, at each time step a fully coupled non-
linear system of equations has to be solved. For each n > 0, the iterative algorithm

defines a multi-scale sequence !qﬁ}l, ﬂ’}, 7(;4, p;?, q;'., u;'} with j > 0 being the

iteration index. Naturally, the initial guess for ¢} and u( are ¢" ' andu

The iterative scheme follows the idea in [4]. We let Ly > 0O be a stabilization
parameter and for j > 0 with given u;ffl and cj);.‘fl, one performs the following
steps:

Step 1. Foreachx € Q, find qﬁ;l such that

n—1

At — .
O]+ AtyV @) — S F@)ul )+ Lo (8] =9 ) = 9", inY s

qS;.l isY — periodic.

where F (@, 10} ,) := —y P'(@}) — 43} (1 = ¢7) . f ().
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Initial conditions
u® and ¢° for each Y
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|
!
!
|
!
!
|
!
!
1
|
!
!
|
!
!
|

!
!

1

|

!

!

|

!

Non-linear solver iterations

Porosity ﬁ

[Solve D1(fusw1ty] [ Solve Permeability J

,,,,,,,, ,[ Solve Pg for each Y J

for each Y for each Y

Solve 7’1M
Flow

No Stopping criterium Yes
,,,,,, . —n —n s S
6" = 1] =@ illa + llult —ult o < €?

Fig. 1 Sketch of the iterative scheme

- ---------Nexttimestep - ----

- - - - - - - - Next iteration -

Step 2.  Given ¢;’ find the effective matrices ﬂ’} and ‘Ky in (3) by solving the cell

problems (4).
Step 3. Given 7(7 and ﬂ;'. find p;?, q’} and u;' by solving the system (1).

In Fig. 1 we sketch the multi-scale iterative scheme. Here it is important to remark
that the behaviour of an efficient and robust non-linear solver for (5) affects directly
the convergence of the complete multi-scale iterative scheme. To deal with the non-
linearities we use a fixed-point iteration scheme, called L-scheme (see [9, 11]).

The convergence of the iterative scheme in Steps 1-3 is a non-trivial task as it
involves multiple scales and couples non-linear and possible degenerate systems of
equations. Preliminary results are obtained in a simplified setting. Specifically, we
assume that the pore space is never clogged and that the mineral never disappears
completely. In other words, there exists two constants ¢,,, ¢, € (0, 1) such that
0 < ¢, < o(x) < ¢y < 1foraex € Q. Moreover, the flow component
is disregarded and the diffusion tensor is assumed not depending on the phase
field. With M1 = max {|01F(¢,u)|}, Mo = max {|02F(¢,u)|} and u =

$<l0,1] $€l0,1]
u>0 u>0
gleaé {lu* — u”(x)|} one can prove the following.

neN
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Proposition 1 Let M1, M», u and ¢,, be as above. If the time step is small enough,
namely

2

At < 232 min ! _, P
- M+ My +0.5u M

the scheme in Steps 1-3 is convergent.

The proof uses contraction arguments, we omit the details here.

4 A Numerical Example

We consider a simplified 2D situation where the processes are expected to be
uniform in the vertical direction. The macro-scale domain is & = [0, 1]2,
where a dissolution process is triggered by imposing a Dirichlet condition for the
concentration on the right boundary of €2. This configuration is displayed in Fig. 2,
while Table 1 shows the parameters used for the simulation. In the following, all the
solutions are computed using the lowest order Raviart-Thomas elements.

Figure 3 shows the evolution of the phase field corresponding to the macro scale
location (0.5, 0.5). At the micro scale we use a mesh refinement strategy to capture
the movement of the phase-field transition zone.

At each time step we construct a micro-scale mesh with 800 elements. This mesh
is refined in the first iteration of the scheme by following a prediction-correction
strategy. We refer to [1, 7] for more details about handling similar meshes.

As mentioned before, we use an L-scheme dealing with the non-linearities at the
micro scale. The non-linear term F (¢, u) needs to be split in a convex and concave
part. Only the concave part is treated implicitly and the linearization parameter

Fig. 2 The configuration of Vu-n=0
the macro-scale problem

H

|

0

- Vu-n=0
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Table 1 The parameters Solute diff. D=1
Mineral concent. | u* =1
Equilibrium Ueqg = 0.5
Diffusivity y =0.01

Transition zone A =0.08

Initial porosity ¢o=0.5

Max. porosity ¢y =0.87

Initial condition | ug = 0.5

Stabilization Ly = 1E—4
Phase field (0.50,0.50) Phase field (0.50,0.50) Phase field (0.50,0.50)
Time [] 10 Time 0.25 . Time 0.50
1.0 0.5 L0 0.5 L0
0.8 0.8 0.8
0.6 0.6 0.6
0 0

0.4 04 04
0.2 0.2 0.2
—{] 5 0.0-0.5 0.0-0.5 0.0

-0.5 0 0.5 -0.5 0 0.5

Fig. 3 The phase-field evolution at the macro-scale location (0.5, 0.5). From left to right, the
phase field at r = 0.2, 0.25 and 0.5

0.5 el PPN

——t=0.05 ——1t=0.05
o —o—t=0.10 08 —o—t=0.10
L 04 e t=0.15 : e t=0.15
S s t=0.20 | 5 t=0.20

=03 — 2 —
s —-t=0.25 =, —o—t=0.25
El —o-t=0.30| & —o—t=0.30
g 02 ——t=035| S ——t=0.35
8 ——1t=0.40 0.6 |, ——1t=0.40
01 e t=0.45 e t=0.45
—et=0.50 —et=0.50

0 05
02 04 06 08 02 04 06 08
T x1

Fig. 4 The 1D projection of the concentration and the porosity at different times

corresponds to the Lipschitz constant of F with respect to ¢ (which depends on
the concentration u) at every multi-scale iteration.

The Darcy-scale solute concentration is displayed in Fig.4. Due to the chosen
boundary and initial conditions, this solution does not depend on the vertical
component and therefore the 1D projection in the horizontal direction is sufficient.
The results for the porosity and the effective parameters are shown in Figs. 4 and 5.

We highlight that even if we are not computing the flow in this case, the effective
permeability can still be calculated. Where the concentration decreases, it induces a
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»15 +t:005 +t:005
5 —o—t=0.10 o7 —o—t=0.10
o0 ——1t=0.15 ——1t=0.15
S —e-t=0200 —5—£=0.20
g ——t=0.25| E 0.6} ——t=0.25
= 2 —o—1t=0.30 g —o—t=0.30
2 ——t=0.35| &5 ——t=0.35
g lo—t=0.40 A | ——t=0.40
Z ——t=0.45 o4 | ——t=0.45
~ —5-t=0.50 : —5-t=0.50

2.5

02 04 06 08 02 04 06 08
xy &1

——1t=0.05
——1t=0.10
——1t=0.15
—e—1t=0.20
——1t=0.25
——1t=0.30
——t=0.35
——1t=0.40

t=0.45

t=0.50

Number of iterations

Fig. 6 The convergence of the multi-scale iterative scheme

dissolution of the mineral, which then increases the diffusivity and the permeability
until the system reaches the maximum porosity ¢ ;.

Finally, in Fig. 6 we show the convergence of the norm of 8"/ = ||¢;'~ — ¢;f_1|| o+
||u;'. — u;'.71||g at different time steps. The non-linear solver at each micro-scale
domain Y is stopped once the convergence criterion is below 1E—10.

In this numerical example the averaged number of degrees of freedom is
7,623,300 per time step. At the macro scale we have 512 elements and for each
element the porosity and the effective parameters must be updated at each iteration.
Due to the local mesh refinement the micro-scale degrees of freedom vary between
1200 and 1400. However, the micro-scale problems are solved in parallel and this
can be improved by employing an adaptive strategy at the macro scale (see [12]).

We conclude that the multi-scale iterative scheme presented here is a valid
approach to solve the two-scale phase-field model of precipitation and dissolution
processes. This scheme can easily be parallelized and the resulting simulations show
the influence of the micro-scale structural changes on the macro-scale parameters.
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The next research steps are in the direction of proving the convergence of the

full numerical scheme, including the error analysis of the micro-cell problems.
Moreover, the study of the optimal choice of the stabilization parameter Ly and
the macro-scale adaptivity are important to enhance the efficiency of the scheme.
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A Structure-Preserving Approximation )
of the Discrete Split Rotating Shallow e
Water Equations

Werner Bauer, Jorn Behrens, and Colin J. Cotter

Abstract We introduce an efficient split finite element (FE) discretization of a y-
independent (slice) model of the rotating shallow water equations. The study of this
slice model provides insight towards developing schemes for the full 2D case. Using
the split Hamiltonian FE framework (Bauer et al., A structure-preserving split finite
element discretization of the rotating shallow water equations in split Hamiltonian
form (2019). https://hal.inria.fr/hal-02020379), we result in structure-preserving
discretizations that are split into topological prognostic and metric-dependent
closure equations. This splitting also accounts for the schemes’ properties: the
Poisson bracket is responsible for conserving energy (Hamiltonian) as well as mass,
potential vorticity and enstrophy (Casimirs), independently from the realizations
of the metric closure equations. The latter, in turn, determine accuracy, stability,
convergence and discrete dispersion properties. We exploit this splitting to introduce
structure-preserving approximations of the mass matrices in the metric equations
avoiding to solve linear systems. We obtain a fully structure-preserving scheme
with increased efficiency by a factor of two.
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1 Introduction

The notion of structure-preserving schemes describes discretizations that preserve
important structures of the corresponding continuous equations: e.g. (i) the con-
servation of invariants such as energy, mass, vorticity and enstrophy in the case
of the rotating shallow water (RSW) equations, (ii) the preservation of geometric
structures such as div curl = curl grad = 0 or the Helmholtz decomposition of
vector fields, and (iii) the conservation of large scale structures such as geostrophic
or hydrostatic balances [15]. Their conservation is important to avoid, for instance,
biases in the statistical behavior of numerical solutions [10] or to get models that
correctly transfer energy and enstrophy between scales [12].

The construction of such schemes is an active area of research and various
approaches to develop structure-preserving discretizations exist: e.g. variational
discretizations [5, 6, 14] or compatible FE methods [9, 11]. In particular FE methods
are a very general, widely applicable approach allowing for flexible use of meshes
and higher order approximations. When combined with Hamiltonian formulations,
they allow for stable discretizations of the RSW equations that conserve energy and
enstrophy [2, 11]. However, they usually apply integration by parts to address the
regularity properties of the FE spaces in use, which introduces additional errors and
non-local differential operators. Moreover, FE discretizations usually involve mass
matrices which are expensive to solve, while approximations of the mass matrices
have to be designed carefully in order to preserve structure.

To address these disadvantages, we introduced in [3, 4] the split Hamiltonian
FE method based on the split equations of Geophysical Fluid Dynamics [1], in
which pairs of FE spaces are used such that integration by parts is avoided, and we
derived structure-preserving discretizations of a y-independent RSW slice-model
that preserve both the Hamiltonian and the split structures. Our method shares some
basic ideas with mimetic discretizations (e.g. [7-9, 13]) in which PDEs are written
in differential forms, but stresses a distinction between topological and metric parts
and the use of a proper FE space for each variable.

Here, we address the disadvantage of FE methods arising from mass matrices.
In the framework of split FEM [3, 4], we introduce approximations of the mass
matrices in the metric equations resulting in a structure-preserving discretization of
the split RSW slice-model that is more efficient than the original schemes introduced
in [4]. To this end, we recall in Sect. 2 the split Hamiltonian framework and the split
RSW slice-model, and we introduce the approximation of the metric equations. In
Sect. 3, we present numerical results and in Sect. 4 we draw conclusions.

2 Split Hamiltonian FE Discretization of the RSW
Slice-Model

On the example of a y-independent slice model of the RSW equations, we recall the
split Hamiltonian FE method of [4]. For pairs of height fields (straight 0-form h®
and twisted 1-form A(D), of velocity fields in x-direction (twisted 0-form 7 © and
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Fig. 1 Relation between h(()) V(O) c AO d \ Al 5 I/l(l)
b

operators and spaces

A7 e Al L A0 5 7O

straight 1-form u("), and of velocity fields in outer slice direction (straight O-form
v® and twisted 1-form '17(1)), this RSW slice-model reads [4]

du® 3 ~ an»
—_odWFO L 4O _q WFO _
ot T Tt T ’ ot

O —3M O 30 {0 30,

+dFO o,

ey

in which F\” := hO7© and F® := h©y© are mass fluxes, BO := gh® +
1 @2 + 1 ()2 is the Bernoulli function with gravitational constant g. ¢! =
+3© = FO4dx is the potential vorticity (PV) defined implicitly via §@r(1) =
dv® + fdx with Coriolis parameter f. All variables are functions of x and #: for
instance, ‘" (x, 1) is the coefficient function of the 1-form u’ = uV (x, r)dx.

The pairs of variables are connected via the twisted Hodge-star operator x :
Ak — AU-D (see definition in [1]) that maps from straight k-forms to twisted
(1 — k)-forms (or vice versa) with k = 0, 1 in one dimension (1D). The index *)
denotes the degree, and A, AX the space of all k-forms. Note that straight forms do
not change their signs when the orientation of the manifold changes in contrast
to twisted forms. The exterior derivative d is a mapping d : AF — A**! (or
d: A > 7\"‘“). Here in 1D, it is simply the total derivative of a smooth function
2@ e A dg©® = d,g(x)dx € A! (see [1] for full details). Figure 1 illustrates the
relations between the operators and spaces.

Galerkin Discretization To substitute FE for continuous spaces, we consider
Ag, Ag = CGp and Allw A}l = DG 1 with polynomial order p. We allow the
discrete Hodge star operators %) : A} — A% and %, : A} — AY to be non-

invertible. The spht FE discretization of Egs. (1) seeks solutions u(l) (1), E}ll) €

(A n(L), Al (L), Al (L)) of the topological equations (as trivial pI'O_]eCthHS)

d
1 1 1 1 F“ 1 0 1 A 2
(Xh( )1 u(l )> <X}E )1 qh( ) ( )> ( ( )1 ch( )> - 01 VX( ) € hls ( )

T ov;"
Tt

~(1)
~(1) 9y,

)+ @ a Ey =0, vV ek, 3

~(1 ~ ~(1
J+ @ dEDy =0, viVeRl @
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subject to the metric closure equations (as non-trivial Galerkin projections (GP))

~.~1 (1) ~~(0) o
. : *(pu; ) ; *U ifi=0 i ;
GP(1-), : /Lr(') A :~1 ’1(1)'1 =/Lr(’> A :~((§1) v e Al

xp iy u;, ifi =1
)
as realizations of i,ll : A}l — K% and, similarly defined, GP(1-i), and
GP(1-j),,j = 0,1, as realizations of ig : K}, — Ag. q,(ll) = 121'}(10)

is a discrete 1-form with coefficient function Z]}(’O) x) € 1~\2 determined by
630 FORD) + 4. 50) - G0, fdx) = 0,95 € K. 8O, FO, £V
follow from the definitions above. (-, -) := f - A % is the Ly inner product on the
domain L. We distinguish between continuous and discrete Hodge star operators
* and %, respectively. % is used in (, ) such that k-forms of the same degree are
multiplied, while *;, is realized as in Egs. (5) via non-trivial GP between 0- and
1-forms, cf. [3]. As the prognostic equations (2)—(4) hold, as those in (1), pointwise
and consist of forms, we denote them as topological.

2.1 Continuous and Discrete Split Hamiltonian RSW
Slice-Model

Both the continuous split RSW slice-model of Egs. (1) and the corresponding weak
(discrete) form of (2)—(5) can equivalently be written in Hamiltonian form, as shown
in [4]. Considering the discrete version, the Hamiltonian with metric equations reads

) ~1) (1 I 1y ~, 0~0 I 1) -, @ © ~1) ~ (0
Hiu 5 10 =t hPE) @ wh o) + D wehi?)

'ii;lo) = i,llugll), v}(lo) = ig'z}fll), h;lo) = ~2E§ll) (metric eqns.)
(6)
while the almost Poisson bracket {, } is defined as
SF .6 8SF .6 8F .0 8F .0
(F.6) = g Gy T gz %G (T 0z %

~(1) 1h 1
3vy, duy,

(N

* — *
(1) (1) 1’ =) @1 7h ~(1)
5/’lh (Suh 5uh (Shh 5uh (Svh

with q,(ll) defined as above. Then, the dynamics for any functional ﬂuﬁll), '17,(11), Eg)]

is given by jﬂ:z {F, Hj}.

Splitting of Schemes Properties The split Hamiltonian FE method results in a
family of schemes in which the schemes’ properties split into topological and metric
dependent ones, cf. [4].
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The topological properties hold for all double FE pairs that fulfill the double
complex structure of diagram (1) (shown in [4]). In particular,

* the total energy is conserved, because jﬂ{ = {H, H} = 0 which follows from
the antisymmetry of (7);

¢ the Casimirs C = M, PV, PE are conserved as th = {C,H} = 0 for
{C,G) = O¥G with ¢ = (", %F @) for F = 1(M), F = §.V1(PV),
F = @)X (PE);

* {, } is independent of %;, hence H, C are conserved for any metric equation.

The metric properties are associated to a certain choice of FE spaces. In
particular, this choice determines

* the dispersion relation which usually depends on Ax between degrees of freedom
(DoFs),

* the stability, because the inf-sup condition depends on the norm, and

» convergence and accuracy, which both are measured with respect to norms.

2.2 Family of Structure-Preserving Split RSW Schemes

Besides the splitting into topological and metric properties, another remarkable
feature of the split FE framework is that one choice of compatible FE pairs leads
to a family of split schemes, cf. [3, 4]. In the following, we consider for p = 1
the piecewise linear space AY, Kg = CG, = PI with basis {q&l(x)};\/:1 and
the piecewise constant space A}l, K}l = DGp,-1 = PO with basis {Xm(x)}zzy
Being in a 1D domain with periodic boundary, both have N independent DoFs. We
approximate O-forms in PO and 1-forms in P1, e.g. uﬁll)(x, t) = ZZ:I Upy (1) Yom (X).
The split framework [4] leads to one set of discrete topological equations for
Egs. (2)-(4), and four combinations of discrete metric equations for (5) (using the
Hadamard product o):

a d . ~
topological momentum eqns. : 81“2 —qloF) +D"B) =0, o 7' 4 qloFyn =0,

0

B+ D Fy =0,

topological continuity eqns. :

0 0 b 1 1ol 2 X1
h, € A,CPl —— A CPO > u,(V,€A7))
GPlh: Mrznhg)’:Pnel"l(llT lGPlu: Mnnﬁgzpwu([‘ & M”"V%ZPM{’},
metric closure eqns. :

GPO,: M h0=h! T lGPO,,:M"”ﬁB:u; & M V0=v!

9 b~ )
h, € AlcPo ——AlcPl 3 @) eAd.

(4

®)
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We used the following (N x N) matrices with index n for nodes and e for elements:
(i) mass matrices M™", M®, M®", with metric-dependent coefficients (M"");y =
fL ¢l()f_)\?l’(x)dx, (Mee)mm’ = fL Kom (X) Xom' (X)dx, (Men)lm’ = fL &1 (x) X (x)dx
(with M®" = {M"in Or, —M*"in -Or} for orientation Or of L and M** = (M"¢)T
with T for the transposed matrix); and (ii) the stiffness matrix D" with metric-
independent coefficient (D");,, = fL d(bz(x) s (¥)dx (with D" = (D")T). We
separate M"¢ = P" (Ax,)” into a metrlc dependent Ax, and a metric-free part
P"*¢, the latter is an averaging operator from e to n values (similarly for M and
Pen)

Moreover, u = M%u, is a dlscrete 1-form associated to the vector array u, =
{um@)im = 1,...N} while he = M“h, (or ¥ ) is a di discrete 1-form with h, =
{ﬁm(z‘)lm = 1,...N}. The PV 1-form reads qL Me"qn = i’\e/"(];) (Ax.)T in
agreement with the definition in (1). Discrete O0-forms read, e.g. hg = {hi(O)|l

. ~0 .
1,...N}. The discrete mass fluxes are Fy, = h0 o uO and an = hg o vY and

the discrete Bernoulli function reads BY = éuo o u + o v% + gh¥. Finally,

GP1,, GPO,, GP1;,, GPO;, are the nonlinear GPs of (5) for Pl and PO test functions.

2.3 A Structure-Preserving Approximation of Split RSW
Schemes

Here we introduce a new, computationally more efficient split RSW scheme com-
pared to those of [4]. We exploit the splitting of the topological and metric properties
within the split FE framework to introduce structure-preserving approximations of
the mass matrices used in the metric equations. Instead of using the full nontrivial
Galerkin projections GP1;, GP0y, for height or GP1,,, GP0,, for velocity u, v, we
use the averaged versions:

AVG, :h0 =P h,. AVG, : i = P"u]

and denote the resulting scheme with AVG,—AVGy,. Rather then solving linear
systems in (8), we obtain values for h0 ﬁg,vn simply by averaging. This is
computationally more efficient. In fact, already for this 1D problem we achieve a
speedup by a factor of 2 (wall clock time) compared to the full GPs.

As stated in Sect.2.1, such modification does not impact on the structure-
preserving properties but will change the metric-dependent ones instead. Before
we confirm this in Sect. 3 numerically, we first determine analytically the discrete
dispersion relation related to this approximation. A similar calculation as done in

[3] leads to the following discrete dispersion relation:

, |
cq = I:“ = j:\/ngAx sin(kAx)
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Fig. 2 Dispersion relations: A <00
analytic (black) for :
c=4+/gH =1, wy for ‘W10
GP1,-GP1y,, wg for .
GP1,-GP0j, and 3

GP0,-GP1y,, wg for
GP0,-GP0j, (cf. [4]), and
©aq for AVG,~AVG, kw 2 1

with angular frequency wg, = wqq (k) and discrete wave speed ¢y — ¢ = /gH
(with mean height H) in case k — 0 and with a spurious mode (second zero root)
at shortest wave length k = [ . As shown in Fig.2 (with results relative to the
nondimensional wave speed ¢ = /g H = 1), this is similar to the dispersion relation
of the GP1,—GP1; scheme in the sense that both have a spurious mode at k = A”x s
cf. [3]. For completeness, we added the dispersion relations for the other possible

realizations of the metric equations (8) as introduced in [3, 4].

3 Numerical Results

We study the structure-preserving properties, as well as convergence, stability and
dispersion relation for the averaged split scheme AVG,— AVGy, and compare it with
the split schemes of [4]. We use test cases (TC) in the quasi-geostrophic regime such
that effects of both gravity waves and compressibility are important.

The study of structure preservation (topological properties) will be performed
with a flow in geostrophic balance in which the terms are linearly balanced
while nonlinear effects are comparably small (Fig.3). To illustrate the long term
behaviour, we run the simulation in this TC 1 for about 10 cycles (meaning that the
(analytical) wave solutions have traveled 10 times over the entire domain). To test
convergence and stability (i.e. metric-dependent properties), we use in TC 2 a steady
state solutions of Egs. (1). To illustrate the metric dependency of the dispersion
relations, we use in TC 3 an initial height distribution (as in Fig.3, left) that is
only partly in linear geostrophic balance such that shock waves with small scale
oscillations develop that depend on the dispersion relation. More details on the TC
can be found in [4].
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Fig. 4 Relative error values in dependence of N of AVG,—AVGy, compared to GP1,— GPO, [4].
Left: errors for E and P E for TC 1. Right: errors for the steady state solution of TC 2 after 1 cycle

Topological Properties Figure 3 (right) shows for TC 1 the relative errors of the
averaged split scheme for energy E, mass M, or M,, potential vorticity PV and
enstrophy P E (see definitions in [4]). In all cases studied, these quantities exhibit
no long term trend while M., M,, and PV are preserved at machine precision. The
lower accuracy in E and P E result from using a Crank Nicolson time scheme. With
increased resolution these errors decrease with third order rate (Fig. 4, left), cf. [4].

When compared to the split schemes of [4], these error values are very close to
the results presented therein, underpinning the fact that modifications in the metric
equations do not affect the quality of structure preservation of the schemes.

Metric-Dependent Properties Consider next the convergence behaviour of the
averaged split scheme AVG,— AVGy; shown in Fig.4 (right) for TC 2. To ease
comparison, we include L, error values of the split scheme GP1,—GPO;, of [4]
noting that the other split schemes presented therein share more or less the same
error values for the corresponding fields. In all cases, the error values decrease as
expected: all P1 fields show second order, all PO fields first order convergences rates.
While the errors of the PO fields of AVG,— AVG;, is close to the corresponding
values of the split schemes of [4], the Pl fields of AVG,—AVG;, have error
values that are about one order of magnitude large than the corresponding fields
of e.g. GP1,—GPO,,. This agrees well with the fact that we do not solve the full
linear system in the metric equations to recover the P1 fields but use instead
approximations, which slightly increases the P1 error values of AVG,,— AVGy,.

With TC 3 we illustrate numerically how the choice of metric equations deter-
mines the discrete dispersion relations. As derived in Sect. 3, the discrete dispersion
relation of AVG,— AVGy, equals a sine wave, hence all waves of frequency k have
wave speeds equal or slower than ¢ (black curve in Fig.2). In particular for wave
numbers larger then ,% , waves start to slow down until there is a standing wave
at k = A”x. This is a similar behavior to the GP1,,— GP1; scheme of [4], but for
AVG,— AVGy, this effect is stronger given the generally slower wave propagation.
This behaviour is clearly visible in Fig.5 where we observe in both fields lower
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Fig. 5 Fields with oscillations at the wave fronts in dependency of the wave dispersion relations
of Fig. 2 on a mesh with N, = 512 elements and after a simulation time of 0.225 cycles

frequency oscillation behind the front when compared to GP1,— GP1,, (see inlet).
This result agrees well with the discrete dispersion relations shown in Fig. 2.

4 Conclusions

We introduced a y-independent RSW slice-model in split Hamiltonian form and
derived a family of lowest-order (PO-P1) structure-preserving split schemes. The
splitting of the equations into topological and metric parts transfers also to schemes’
properties. The framework allows for different realizations of metric equations
which all preserve the Hamiltonian and the Casimirs of the Poisson bracket. This
allowed us to introduce an approximation of the metric equations which is structure-
preserving, achieving a speedup of a factor of 2 because no linear systems had to be
solved.

References

—

. Bauer, W. [2016], A new hierarchically-structured n-dimensional covariant form of rotating
equations of geophysical fluid dynamics, GEM - Intern. J. Geomathematics, 7(1), 31-101.

2. Bauer, W., Cotter, C. J. [2018], Energy-enstrophy conserving compatible finite element
schemes for the shallow water equations on rotating domains with boundaries, J. Comput.
Physics, 373, 171-187.

3. Bauer, W., Behrens, J. [2018], A structure-preserving split finite element discretization of the
split wave equations, Appl. Math. Comput., 325, 375-400.

4. Bauer, W., Behrens, J., Cotter, C.J. [2019], A structure-preserving split finite element dis-
cretization of the rotating shallow water equations in split Hamiltonian form, preprint: https://
hal.inria.fr/hal-02020379

5. Bauer, W., Gay-Balmaz, F. [2019]: Towards a variational discretization of compressible fluids:

the rotating shallow water equations, J. Comput. Dyn., 6(1), 1-37.


https://hal.inria.fr/hal-02020379
https://hal.inria.fr/hal-02020379

A Structure-Preserving Approximation of the Discrete Split RSW Equations 113

6.

7

8.

9.

10.

11.

12.

13.

14.

15.

Bauer, W., Gay-Balmaz, F. [2019], Variational integrators for anelastic and pseudo-
incompressible flows, J. Geom. Mech., 11(4), 511-537.

. Beirdo Da Veiga, L., Lopez, L., Vacca, G. [2017], Mimetic finite difference methods for

Hamiltonian wave equations in 2D, Comput. Math. Appl., 74(5), 1123-1141.

Bocheyv, P., Hyman, J. [2006], Principles of mimetic discretizations of differential operators,
Compatible Spatial Discretizations, IMA Volumes in Math. and its Applications, 142, 89-119.
Cotter, C.J., Thuburn, J. [2012], A finite element exterior calculus framework for the rotating
shallow-water equations, J. Comput. Phys., 257, 1506-1526.

Dubinkina, S., Frank, J. [2007], Statistical mechanics of Arakawa’s discretizations, J. Comput.
Phys., 227, 1286-1305.

McRae, A. T., Cotter, C.J. [2014], Energy- and enstrophy-conserving schemes for the shallow-
water equations, based on mimetic finite elements, Q. J. R. Meteorol. Soc., 140, 2223-2234.
Natale, A, Cotter, C.J. [2017], Scale-selective dissipation in energy-conserving FE schemes
for two-dimensional turbulence, Q. J. R. Meteorol. Soc., 143, 1734-1745.

Palha, A., Rebelo, P. P, Hiemstra, R., Kreeft, J. and Gerritsma, M. [2014], Physics-compatible
discretization techniques on single and dual grids, with application to the Poisson equation of
volume forms, J. Comput. Phys., 257, 1394-1422.

Pavlov, D., Mullen, P., Tong, Y., Kanso, E., Marsden, J.E., Desbrun, M. [2010] Structure-
preserving discretization of incompressible fluids, Physica D, 240, 443-458.

Staniforth, A., Thuburn, J. [2012], Horizontal grids for global weather and climate prediction
models: A review, Q. J. R. Meteorol. Soc., 138, 1-26.



Iterative Coupling for Fully Dynamic )
Poroelasticity e

Markus Bause, Jakub W. Both, and Florin A. Radu

Abstract We present an iterative coupling scheme for the numerical approximation
of the mixed hyperbolic-parabolic system of fully dynamic poroelasticity. We prove
its convergence in the Banach space setting for an abstract semi-discretization in
time that allows the application of the family of diagonally implicit Runge—Kutta
methods. Recasting the semi-discrete solution as the minimizer of a properly defined
energy functional, the proof of convergence uses its alternating minimization. The
scheme is closely related to the undrained split for the quasi-static Biot system.

1 Introduction

Information on flow in deformable porous media has become of increasing impor-
tance in various fields of natural sciences and technology. It offers an abundance of
technical, geophysical, environmental and biomedical applications including mod-
ern material science polymers and metal foams, gaining significance particularly
in lightweight design and aircraft industry, design of batteries or hydrogen fuel
cells for green technologies, geothermal energy exploration or reservoir engineering
as well as mechanism in the human body and food technology. Consequently,
quantitative methods, based on numerical simulations, are desirable in analyzing
experimental data and designing theories based on mathematical concepts. Recently,
the quasi-static Biot system (cf., e.g., [12, 14]) has attracted researchers’ interest
and has been studied as a proper model for the numerical simulation of flow in
deformable porous media. The design, analysis and optimization of approximation
techniques that are based on an iterative coupling of the subproblems of fluid
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flow and mechanical deformation were focused strongly. Iterative coupling offers
the appreciable advantage over the fully coupled method that existing and highly
developed discretizations and algebraic solver technologies can be reused. For the
quasi-static Biot system, pioneering work is done in [10, 12]. Further research is
presented in, e.g., [2, 4, 7-9, 13].

In the case of larger contrast coefficients that stand for the ratio between the
intrinsical characteristic time and the characteristic domain time scale, the fully
dynamic hyperbolic-parabolic system of poroelasticity has to be considered. In [11],
this system (referred to as the Biot—Allard equations) is derived by asymptotic
homogenization in the space and time variables. Here, to fix our ideas and carve
out the key technique of proof, a simplified form of the system proposed in [11]
is studied. However, its mixed hyperbolic-parabolic structure is preserved. Our
modification of the fully dynamic poroelasticity model in [11] comes through a
simplication of the solution’s convolution with the dynamic permeability that is
defined as the spatial average of pore system Stokes solutions on the unit cell (the
periodic representative volume element of the porous medium). The fully dynamic
system of poroelasticity to be analyzed here is given by (cf. also [14, p. 313])

pd*u—V - (Cem)—ap)=f, (1a)
O (copta:ew)+V-q=h, (1b)
lc_lq~|—Vp=g. (Ic)

System (1) is equipped with appropriate initial and boundary conditions. In (1), the
variable u is the unkown effective solid phase displacement and p is the unkown
effective pressure. The quantity e(u) = (Vu + (Vu) ") /2 denotes the symmetrized
gradient or strain tensor. Further, p is the effective mass density, C is Gassmann’s
fourth order effective elasticity tensor, & is Biot’s pressure-storage coupling tensor
and ¢ is the specific storage coefficient. In the three field formulation (1), the vector
field g is Darcy’s velocity and k is the permeability tensor. All tensors are assumed
to be symmetric, bounded and uniformly positive definite, the constants p and cp
are positive. By A : B we denote the Frobenius inner product of A and B. The
functions on the right-hand side of (1) are supposed to be elements in dual spaces
and, therefore, can include body forces and surface data (boundary conditions).

So far, the numerical simulation of the system (1) has been studied rarely in
the literature despite its numerous applications in practice. This might be due to
the mixed hyberbolic-parabolic character of the system and severe complexities
involved in the construction of monolithic solver or iterative coupling schemes
with guaranteed stability properties. Space-time finite element approximations of
hyperbolic and parabolic problems and the quasi-static Biot system were recently
proposed, analyzed and investigated numerically by the authors in [1-3]. Here, we
propose an iterative coupling scheme for the system (1) and prove its convergence.
This is done in Banach spaces for the semi-discretization in time of (1). An abstract
setting is used for the time discretization such that the family of diagonally implicit
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Runge—Kutta methods becomes applicable. The key ingredient of our proof of
convergence is the observation that we can recast the semi-discrete approximation of
(1) as the minimizer of an energy functional in the displacement and Darcy velocity
fields. To solve the minimization problem, the general and abstract framework of
alternating minimization (cf. [5, 6]) is applied. The resulting subproblems of this
minimization are then reformulated as our final iterative coupling scheme. Thereby,
the proof of convergence of the iterative scheme is traced back to the convergence
of the alternating minimization approach. This shows that the latter provides an
abstract and powerful tool of optimization for the design of iterative coupling
schemes.

We use standard notation. In particular, we denote by (-, -) the standard inner
product of L?(2) and by || - || the norm of L3().

2 Variational Formulation of a Semi-Discrete Approximation
of the System of Dynamic Poroelasticity

Firstly, we discretize the continuous system of dynamic poroelasticity (1) in time
by using arbitrary (diagonally implicit) Runge—Kutta methods and formulate the
semi-discrete approximation as solution to a minimization problem, following the
approach in [5]. For this, we consider an equidistant partition0 =) < #; < ... <
tny = T of the time interval of interest [0, 7] with time step size At. In the sequel, we
use the following function spaces for displacement, pressure, and flux, respectively,

V= {v € HI(Q)d | satisfies prescribed BC at time t,,} ,

Q' =L*Q),
W" = {w € H(div; Q) | w satisfies prescribed BC at time 7,,} .
Further, let Vo, Qp, and ‘W) denote the corresponding natural test spaces, and V7,
@5, and ‘W, their dual spaces.

Applying any diagonally implicit Runge—Kutta method for the temporal dis-
cretization of (1), eventually involves solving systems of the following structure.

Problem 1 In the n-th time step, find the displacement u” € V", pressure p" € Q",
and flux ¢ € W", satisfying for all (v, g, w) € Vo x Qp x W) the equations

0

A2 (", v)+ 61 (Ce@"), e(w)) — 01 {ap”. e(0)) = (f§ a0 V) - (2a)

co(p".q)+ (e :e@), q)+ At (V -q", q) = (M} o, q) . (2b)

(qun, w> — (" V- w) = (gh A ) . (20)
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In (2), the quantities 61, 8, € (0, 1] are discretization parameters, and the right-
hand side functions f », € VG, hy A, € Q. &5 A, € W} include information on
external volume and surface terms, as well as previous time steps depending on the
choice of the implicit Runge—Kutta discretization.

Assuming positive compressibility, i.e., co > O for the specific storage coef-
ficient, the semi-discrete approximation satisfies equivalently the following varia-
tional problem; cf. [5] for the derivation of a similar equivalence in the framework
of the quasi-static Biot system.

Problem 2 Find (u", ¢") € V" x ‘W", satisfying

@",q")= argmin &E(u,q), 3)
(u,q)eV" xW"

where the energy & : V" x W" — R at time t, is defined by ((u, g) € V" x W")

010,Ar | 4
0.0

%
Ew.q) =, ¢ o lul?+ ) (Ce.e@) +

%
+ 220 ”hg,At —o:e(u) — AV 'qHz _< Z,At’ u) - (gZ,Ap‘H-
“4)

The semi-discrete pressure p” may then be recovered by the post-processing step

pl=cy (W p — ") — A1V -q"). (5)

3 Iterative Coupling for the System of Dynamic
Poroelasticity

Following the philosophy of [5], we propose an iterative coupling of the semi-
discrete equations (2) of dynamic poroelasticity by firstly applying the fundamental
alternating minimization to the variational formulation (3); cf. Algorithm 1.

Algorithm 1: Single iteration of the alternating minimization

1 Input: (@™%=, g% 1) € V" x W"

2 Determine u™* := argmin, qn &E(u, q

n,k—l)

3 Determine ¢"* := arg ming cqyn Ew™*, q)

Secondly, the resulting scheme is equivalently reformated in terms of a stabilized
splitting scheme applied to the three-field formulation (2). For this, a pressure iterate

prk = c(;l (hg Ap T e ) — AtV -q™*) € @', k > 0, is introduced,
consistent with (5), and the optimality conditions corresponding to the two steps of
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Algorithm 1 are reformulated. The calculations are skipped here. We immediately
present the resulting scheme, which in the end is closely related to the undrained
split for the quasi-static Biot system [10].

Problem 3 Let (u™?, p%) € V" x Q" be givenand k > 1.
1. Step (Update of mechanical deformation): For given (k=1 prk=ly e qm
@', find u™* € V" satisfying for all v € V),
0 Qo

AL <u"’k, v> + 61 <(Ce(u"’k) +

e —u"khy, e<v>> (©6)
o

-6 (ozp"’kil, €(v)> = (a0 0),

where @ : R4%d x Réxd _ Rdxdxdxd epotes the standard tensor product.
2. Step (Update of Darcy velocity and pressure): For given (u™*, p™ 1) ¢
V" x Q" find (p™*, g™*) € Q" x W" satisfying for all (¢, w) € Qy x W,

ot a) o ew).a)+0200(V - a" ) = (1 ) "

(e~'q" w) = (p",V - w) = (g a0 w) (7b)

We note that the splitting scheme defined by (6) and (7) utilizes the identical
stabilization as the undrained split for the quasi-static Biot equations [10].

4 Convergence of the Iterative Coupling Scheme

The identification of the undrained split approach (6) and (7) as the application of the
alternating minimization, cf. Algorithm 1, to the variational problem (3) yields the
basis for a simple convergence analysis. For this, we utilize the following abstract
convergence result, that is rewritten here in terms of the specific formulation of
Algorithm 1.

Theorem 1 (Convergence of the Alternating Minimization [6]) Let |-|, | |m, and
| - |f denote semi-norms on Vo x Wo, Vo, and W, respectively. Let B, Br > 0
satisfy the inequalities

(v, w)[* > Bmlvlz,  and  |(v, w)]* > Brlw]?

Sforall (v, w) € Vo x Wy. Furthermore, assume that the energy functional & of (4)
satisfies the following conditions:

» The energy & is Frechét differentiable with DE denoting its derivative.
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e The energy & is strongly convex wrt. | - | with modulus o > 0, i.e., forallu,u €
V*'and q,q € W" it holds that

Eu,q) = &Eu,q)+ (DEw, q), (w —u,q —q) + ;I(ﬁ —u, g -,

* The partial functional derivatives D,& and D4& are uniformly Lipschitz contin-
uous wrt. | -|\m and | - |¢ with Lipschitz constants Ly, > 0 and Lt > 0, respectively,
i.e., forall (u,q) € V' x W" and (v, w) € Vo x Wy it holds that

L
Ew+v,q) <&, q) + (DuEu,q),v) + 2‘“ Ivll2,

L¢

2
wl|f .
2|| II§

E(u,q +w) <Eu, q) + (DgEu, q), w) +

Let (u", q") € V" x ‘W" denote the solution to (3), and let (u™*, g"*) denote the
corresponding approximation defined by Algorithm 1. Then, for all k > 1 it follows
that

Ew™*, g"*) —sw", q") (8)

S (1 _ ﬂiﬂj) (1 _ ﬂz‘:) (8(un,k—l’qn,k—l) _ a(un,qn)) .

A simple application of Theorem 1 now yields the main result of the work,
namely the global linear convergence of the undrained split (6), (7).

Corollary 1 (Linear Convergence of the Undrained Split) Let | - | be defined by
@wiPi= I + 61 (Cev). e(®) + 010241 (1™ w, w)
o1 . 2
+ . llee : €(v) + 62AtV - w]|
0

forall (v, w) € VoxWy. Furthermore, let (u", q") € V" xW" denote the solution
to (3), and let ™k, q™*) € V" x W" denote the corresponding approximation
defined by Algorithm 1. Then, for all k > 1 it holds that

2<< e : C7": etfloo )
“Neo+la:C! i afloo

. ‘(un,kfl —u" qn,kfl _ qn) 2

2

(un,k _ un’ qn,k _ qn)

Proof We first examine convexity and smoothness properties of & defined in (4) by
analyzing the second functional derivative of &. For this, let (u,q) € V" x W"
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and (v, w) € Vo x Wy be arbitrary. Then, for the second functional derivative
D?E(u, q) : (Vi x Wg)? — R of & it holds that

(P&, ). w). @.w) = 10w ©)

Next, we define a norm | - |, on V¢ by considering the partial second functional
derivative of & with respect to the displacement field,

P 61
(Dig.pv.0) = O 101 401 (Co), e@) + ' lle: e@)IF = ol
Similarly, we define a norm | - |f on ‘W by means of
2 -1 1 2 2
(an(u, w, w> — 0160 At (IC w, w> + 108V - w]? = wlf.
0

It directly follows that & is strongly convex wrt. | - | with modulus o = 1, and the
partial functional derivatives D, & and D, & are uniformly Lipschitz continuous wrt.
| - |m and | - |f with Lipschitz constants L, = 1 and L = 1, respectively.

By the Holder inequality we deduce that

It :e(v)||2=/9|0t:e(v)|2 dx 5/9‘01:@*1 :a‘ le(w):C:e()|dx  (10)

< Hoc .c aHoo (Ce(v), e(v)).

Hence, it follows that

!
W, < (1+ o “”°°) v, w)P2.

€0

On the other hand, applying the triangle inequality and Young’s inequality, and
balancing the arising constants properly yields that

—-1.

0 0 o o
oAy w)? <! (1 + ” H"O) 1M1V - w + a : e(v)]>
co co

&]

0 o . 2
+ o (1 + Jo:C! :a”w> llee : e(@)||”.
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Together with (10), we also conclude that

- CL:
wl? < 1yl S A
€0

Thereby, the assumptions of Theorem 1 are fulfilled and (8) is ensured with

-1
Hoz:(C’l:oc ”oo

constants 0 = Ly = Lf = 1 and By = Br = (1 + " . Finally,

the assertion follows directly, since & is quadratic and (©", ¢") is a local minimum
of & and | - | relates to the second functional derivative of & via (9). Therefore, we

have that E@"*, ¢"F) —E@", ¢") = 2 |w™* —u", g™k — q")|2 forallk > 0. O

Remark 1 (Convergence of p™*) The convergence of the sequence of pressures
{p"*}x follows now immediately by a standard inf-sup argument.

Remark 2 (Comparison with Quasi-Static Case) The final convergence rate in
Corollary 1 coincides with the one for the undrained split applied to the quasi-static
Biot equations for a homogeneous and isotropic bulk; cf. [12]. In that case, the Biot

tensor & reduces to ol for some constant ¢ € (0, 1], and C is defined by the Lamé

2 . .
parameters, such that e : Clia= I%a , where Kg; is the drained bulk modulus.
T
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A Time-Dependent Parametrized )
Background Data-Weak Approach e

Amina Benaceur

Abstract This paper addresses model reduction with data assimilation by elabo-
rating on the Parametrized Background Data-Weak (PBDW) approach (Maday et
al. Internat J Numer Methods Engrg 102(5):933-965, 2015) recently introduced to
combine numerical models with experimental measurements. This approach is here
extended to a time-dependent framework by means of a POD-greedy reduced
basis construction.

1 Introduction

The Parameterized-Background Data-Weak (PBDW) formulation for variational
data assimilation is a data-driven reduced order modeling approach that was initially
devised in [6] so as to merge prediction by model with prediction by data. The
PBDW approach has been developed in order to estimate the true state u'™"® of
a physical system for several configurations. Supposing that the true state u™°
depends on some unknown parameter @ in an unknown parameter set ® that
represents the unanticipated uncertainty, the goal is to account for the dependency
of the true state u"™°(w) on uncertain parameters by means of the sole knowledge
of data. In this paper, whenever the context is unambiguous, the parameter w is
dropped.

The formulation combines a so-called ‘best-knowledge’ (bk) model represented
by a parametrized partial differential equation (PDE) and experimentally observable
measurements. The use of data in the PBDW approach is fundamental not only to
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reconstruct the quantities of interest, but also to correct the possible bias in the
mathematical bk model.

The PBDW approach was devised in [6] for steady problems. It has been subject
to active research in recent years and it has been used for several applications.
Among others, we mention [2, 3, 5, 7, 8], and [9]. To the author’s knowledge, the
related research in the literature remains in the steady framework. In this paper, we
propose, as initiated in [1], an extension of the PBDW approach to time-dependent
state estimation. We build appropriate background spaces for the time-dependent
setting using the POD-greedy algorithm [4].

This paper is organized as follows. Section 2 introduces the notation. Section 3
extends the PBDW approach to the time-dependent framework and discusses the
offline stage. Section 4 assesses the method via numerical experiments.

2 Basic Notation and Best-Knowledge (bk) Models

We consider a spatial domain (open, bounded, connected subset) 2 C R? ,d > 1,
with a Lipschitz boundary. We introduce a Hilbert space U composed of functions
defined over Q2. The space U is endowed with an inner product (-, -) and we denote
by || - || the induced norm; U consists of functions {w : @ — R | |w|| < oo}. To
fix the ideas, we assume that HO1 Q) cCcUC H' (£2), and we denote the dual space
of U by U'. The Riesz operator Ry; : U — U satisfies, for each £ € U’, and for
all v € U, the equality (Rg(£), v) = £(v). Finally, we introduce a parameter set
P C RP, p > 1, whose elements are generically denoted by i € P, and a discrete
training subset P C P.

The first source of information we shall afford ourselves in the PBDW approach
is a so-called ‘best-knowledge’ (bk) mathematical model in the form of a parame-
terized PDE posed over the domain 2. Given a parameter value p in the parameter
set P, we denote the solution to the bk parameterized PDE as ubk (n) € U. Then,
the manifold associated with the solutions of the bk model is M := (% (w) | 1 e
P} C U. In ideal situations, the true solution u'™® is well approximated by the bk

manifold, i.e., the model error egll;d (") = eif\l,fbk lu'™® — z|| is very small.
Z
We introduce nested background subspaces Z1 C ... C Zny C ... C U that

are generated to approximate the bk manifold M 1o a certain accuracy. These
subspaces can be built using various model-order reduction techniques, for instance,
the Reduced Basis (RB) method. The indices of the subspaces conventionally
indicate their dimensions. To measure how well the true solution is approximated by
the background space Zy, we define the quantity e]bi,k(u‘rue) == infoez, [u™ —z]|.
Although N is large enough, e}{/k(u"“e) does not tend to zero since u™"° rarely lies
in M® in realistic engineering study cases.
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3 Time-Dependent PBDW

Consider a finite time interval / = [0, T'], with T > 0. To discretize in time, we
consider an integer K > 1, we define 0 = O <...<tK=Tas (K + 1) distinct
time nodes over I/, and we set K¥ = {1, ..., K}, K" = {0JUKY and I" = {tk}kerr.
We aim at deriving a state estimate for a time-dependent solution in the framework
illustrated in Fig. 1.

3.1 Limited-Observations Statement

Assuming that "™ ¢ Ll(I ; U), we introduce the time-integration intervals J k —

[tk — 8tk ik 4 (St"], for all k € K", where /¥ > 0is a parameter related to the
precision of the sensor (ideally, 8tk < min(/Ft! — K, ¢k — k=1) with obvious
adaptation if k=K). Then, for any function v € LI(I ; U), we define the time-
averaged snapshots

1
KF(x) = . / v(t,x)dt e U, VkeK" (1)
|Z*| Jr*

We consider observation functionals that render the behavior of given sensors. These
functionals act on time-averaged snapshots of the true solution, i.e., we consider

k,ob . pobs .k,
05008 (') = OSSNy v e (1, ..., M}, Vk € K", )
We then introduce the time-independent observable space Uy = Span{qi, ..., qum}

C U. The observation functionals in U’ are then defined as
0% @™ = @ g), Yme(l,... M}, VkeK". 3)

For fixed sensor locations, the computational effort to compute the Riesz representa-
tions of the observation functionals is time-independent and is incurred only once, so

Ltrue
] i
T T”f\.tuu
|
|

/ ”ﬁ'.ll'm- /

“E_\-{“}‘."III“I)

Fig. 1 Characterization of the bk model in a time-dependent context
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that the experimental observations satisfy £%°° (') = | Ilkl S st (e, ),

forallm e {1,..., M} and k € K",
We are now ready to write the limited-observations PBDW statement: for each
k € K, find (uly),. 2y M) € U x Zi x U such that

Wy 2o M) = arginf vl @)
quME(L{
N MELN
nN.mMEeU
subject to
(un,m,v) = n,m,v) + @n M, V), Yv e U, (52)
N, @) = @™, ¢), V$ € Uy (5b)

The limited-observations saddle-point problem associated with (4) reads: for each
k € K", find (2. ny'y) € Zn x Up such that

(I @) + @y @) = @™ ), Vg e Uy, (6a)

k,
(1§ P) =0, Vp e Zn, (6b)
and the limited-observations state estimate is

ko k. k,* tr
Uny =2n.y TN e Vk € K". @)

We use the following terminology. The PBDW statement (4) and (5) estimates the
true state u¥" Thus, the solution ”];v*M is called the ‘state estimate’. The first

contribution zl]‘v’*M in (7) lies in the background space Z . Hence, z],‘\}*M is called the

‘deduced background estimate’. The second contribution nf\;fM in (7) is brought
by the inclusion of the observations in the PBDW statement. The observations
supplement the bk model. Thus, nlfv’* is called the ‘update estimate’. We highlight
that the saddle-point problem (6) is well posed if and only if the stability constant
Bn.m satisfies

Bn.m = inf sup (w, v) € (0, 1] (8)
weZy vetty W V]l

The deduced background estimate zll{v’* can only represent anticipated uncertainty.
Since the bk model is often deficient, one cannot realistically assume that the
state estimate ull‘v* of u®™¢ lies completely in the bk manifold. Therefore, the

update estimate nlfv’* is meant to cure the deficiency of the bk model by capturing
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unanticipated uncertainty. The key idea of the PBDW statement (4) and (5) is to
search for the smallest correction to the bk manifold.

The saddle-point problem (6) is purely geometric and does not include any
explicit reference to the bk model since the unique link to the bk model is
through the background space Zy. This non-intrusiveness of (6) simplifies its
implementation and makes the PBDW approach applicable to a wide class of
engineering problems.

Remark 1 (Pointwise Measurements) For simplicity of implementation, assuming
that u'™¢ ¢ CO(I ; U), one may consider pointwise measurements in time, i.e.,
(ke g,) = P5@™e(k, ), for all m € {I,...,M} and k € K. This
assumption is typically reasonable for a sensor of small precision 87X

In algebraic form, the limited-observations PBDW statement reads: for each k €
K", find (zF*, g©*) € RN x RM such that

A B k,* ek,obs
W)~

with the matrices A = ((¢u'> gm)m.m' € RM*M and B = ((Zn, gm))m.n € RM*N,
and the vector of observations £5°P% = (E?nbs(uk*““e))m e RM. We solve (9)
through an offline/online decomposed computational procedure whenever several
realizations u""(w) of the true state are to be considered.

Remark 2 (PBDW Matrices) Notice that the PBDW matrices A and B are time-
independent; only the right-hand side in (9) depends on k.

3.2 Offline Stage

The main goal is to address the construction of the background space Zx. Suppose
that we have computed a set of High Fidelity (HF) trajectories S = (Sk)rerr =
(W (1)) s epr) g eger Where uk () := u(u)(i*, ), for all k € K. If we were to
consider the PBDW statement (4) and (5) for each k¥ € K" as an independent
steady PBDW statement, we would be using the time-dependent background spaces
lecvk = POD(Sk, €pop), for all k& € K, where the procedure POD refers to
the Proper Orthogonal Decomposition of the set Sy with a truncation threshold
€pop- Yet, this strategy is not convenient since the sizes N of the background
spaces le‘vk would depend on k. Since the observable space Uy is fixed, the same
non-homogeneity between time nodes would also arise in the stability constant
Bnk p- Thus, we propose to apply a POD-greedy algorithm [4] to build a
time-independent background space Zy that will be used for all k € K". The
advantage is that the PBDW matrices A and B and the stability constant Sy
remain unchanged regardless of the discrete time node. The offline stage using the
POD-greedy algorithm is summarized in Algorithm 1.
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Algorithm 1 Offline stage via POD-greedy

INPUT : S and €pop.
@Q™": a set of Riesz representations for the observations.

1: Compute Zy := POD-greedy (S, €pop).

2: Set Uy = span{Q™").
3: Compute the matrices A and B using Zx and Uyy.

OuUTPUT : Zy, Uy, A and B.

4 Numerical Results

In this section, we illustrate the above developments on a test case related to the
heat equation. We consider a two-dimensional setting based on the plate illustrated
in the left panel of Fig.2 with Q = (—2,2)> c R2 We use a finite element
subspace UN cU=H'(Q) consisting of continuous, piecewise affine functions
in order to generate HF trajectories. The FEM subspace UV is based on a mesh that
contains N = 6561 nodes. The experimental data is generated synthetically and the
observation subsets {R;, }1<n<m are uniformly selected over the plate as illustrated
in the right panel of Fig. 2. Regarding implementation, the HF computations use the
software FreeFem++, whereas the reduced-order modeling and the PBDW-related
algorithms have been developed in Python. We address the following parabolic

Fig. 2 Computational domain and mesh with N = 6561. The little black squares are observation
subsets {72,,,}}321 . Left: Mono-material plate corresponding to the mathematical model. Right: Bi-
material plate corresponding to the physical reality
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PDE with nonlinear Stefan—Boltzmann boundary conditions: For many values of
the parameter 1 € P, find u(p) : I x Q — R such that

du ()

o~V (DGOVu(u) =0, inl x Q,

u(p)(t =0,-) =ugp, in 2, (10)

D™ = et —ut), onlx 9,
on

where ug = 293.15K (20°C). The Stefan—Boltzmann boundary condition on 92
is defined using an enclosure temperature #, = 303.15K (30°C), the Stefan—
Boltzmann constant o = 5.67 x 1078 W.m—2.K—*, and an emissivity ¢ = 3.1073,
Regarding time discretization, we consider the time interval I = [0, 10]s, the set
of discrete times nodes K = {1,...,200}, and a constant time step stk = 0.1s
for all k € K". We also define the parameter interval £ = [0.1, 2] and the set
P =1{0.1i,1 <i < 20}.

The background spaces Z y will be generated by solving the nonlinear PDE (10)
with a uniform diffusivity function D(u) such that for all x € Q, D(u)(x) =
Dyni(p) (x) := plq(x). The HF bk solution and the true solution are respectively
displayed in the left and right panels of Fig. 3. The temperature profile for the true
solution over the bi-material plate at the end of the simulation, i.e., at X = 10s,
clearly shows a different behavior at the boundaries of the inner material.

Fig. 3 Left: HF solution for the bk model, i.e © = 1 (values from 17.80 to 18.25°C). Right:
Synthetic true solution using a bi-material plate with © = 2 (values from 17.90 to 18.23 °C)
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Fig. 4 Relative H'-error ¢ (1) for some time nodes k € K" and M = 121. Left: €pop = 1072
(N = 3). Middle: epop, = 107* (N = 7). Right: €pop = 1070 (N = 11)
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Fig. 5 Relative H'-error X (1) for some time nodes k € K" and M = 676. Left: epop = 1072
(N = 3). Middle: epop, = 1074 (N = 7). Right: epop = 5.107¢ (N = 11)

Using the weighted H'-norm, we define the state estimation relative H'-error
k
e"(n) as

k,
”uk,true('u) _ uNjkM ()|l g ()

. Vuef. (11)
ke ) || 1 (@)

() =

Figure 4 shows the relative H Lerror ef(u) defined in (11) using M = 121
observations to build the observable space Uy, . For €pop = 1074, Zyis spanned by
N = 7 vectors. Notice that the error vanishes for . = 0.25 since this configuration
is equivalent to a perfect bk model, meaning that the mathematical model coincides
with the physical reality. We notice that the relative H !-error e¥(11) increases on the
right panel of Fig. 4 because the stability constant decreases. Figure 5 visualizes the
relative H !-error e (u) for a higher number of observations M = 676. We observe
that augmenting the dimension of the observable space U cures the stability issue.
Also, the errors are lower owing to the higher number of observations. Finally,
Fig. 6 shows the stability constant Sy s as a function of the number of observations
M. The nonlinear character of the problem does not influence the overall features
of the PBDW statement since previous linear tests in the literature have shown
a similar behavior. This observation corroborates the independence of the saddle-
point problem (6) with regard to the bk model.
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Fig. 6 Stability constant Sy . On the right panel, the values of N are respectively 2, 3, 5, 7, 11
for the values of epgp in decreasing order
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Comparison of the Influence )
of Coniferous and Deciduous Trees e
on Dust Concentration Emitted from
Low-Lying Highway by CFD

Ludék Benes

Abstract Different types of vegetation barriers are frequently used for reduction of
dust and noise levels. The effectivity of the measures depending on the type of used
vegetation (decideous, coniferous) is studied in this article. The mathematical model
is based on Reynolds—averaged Navier—Stokes (RANS) equations for turbulent
fluid flow in Boussinesq approximation completed by the standard k-e model.
Pollutants, considered as passive scalar, were modelled by additional transport
equation. An advanced vegetation model was used. The numerical method is
based on finite volume formulation. Two fractions of pollutants, PM10 and PM75,
emitted from a four—lane highway were numerically simulated. Forty-nine cases of
coniferous and deciduous-type forest differing in density, width and height were
studied. The main processes that play a role in modelled cases are described. The
differences between the effects of coniferous and deciduous trees on pollutants
deposition were studied.

1 Introduction

Increasing level of dustiness and noise pollution causes significant health problems
in the populated areas. The inhabitants are negatively influenced by the increasing
level of air pollution caused by the local heating, vehicular transport and industry.
Vegetation plays an important role in the minimizing of these problems. Trees and
forests can block or deflect the wind, improve thermal comfort and act as an filter
for particulate matter. Deciduous and coniferous trees have different characteristics
and affect the flow and sedimentation of particles in various ways. In nature, it
is difficult to find the deciduous and coniferous forest of the same size under the
same geometrical and meteorological conditions in order to compare their influence
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precisely. The differences between both types of forests are studied and quantified
in this contribution on a simple but important case of the road notch.

The widespread model for description of the Atmospheric Boundary Layer
(ABL) flows are the RANS equations [1—4] but also LES simulations are used [5].

The effect of the vegetation on the pollutant dispersion and its filtration properties
has been investigated in many studies. An overview regarding the aforementioned
topics can be found in the reviews [6] and [7] on the vegetation in urban area, or a
modeling study [8].

The model presented here is based on the work in [9], where the influence of the
atmospheric conditions on the barrier efficiency was investigated.

The main aim of the article is to compare efficiency of the coniferous and
deciduous vegetation for reduction of dustiness. Two fractions of pollutants, PM10
and PM75, emitted from a four—lane highway were numerically simulated. Forty-
nine cases of conifer and deciduous-type forest differing in density, width and height
were studied. The differences between the effects of coniferous and deciduous trees
on pollutants deposition were studied.

2 Physical and Mathematical Model

2.1 Fluid Flow

The flow in ABL is described by the Reynolds-averaged Navier—Stokes (RANS)
equations for viscous, incompressible, turbulent and stratified flow. This set of
equations is simplified by the Boussinesq hypothesis.

V-u=0, (D

%l; + @ - Vyu+V(p/p) = vEViu+ g + Su, )
00 _vr

gy TV 0w = o (V- (V0)). 3)

Here vector u represents velocity, p, 6 are fluctuations of pressure and potential tem-
perature, p, stands for the reference air density (usually near-ground concentration),
ve = v 4 vr is the effective kinematic viscosity which is composed of the laminar
(molecular) and turbulent kinematic viscosity. The gravitational term is expressed
by g = (0,0, gg) ) where g is the gravitational constant. Term S, represents the
momentum sink due to vegetation and Pr = 0.75 is the turbulent Prandtl number.
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2.2 Turbulence

The turbulence model is based on standard k — € model modified by terms
representing production and sink of the turbulence due to the vegetation.

dpk
apt +V-(pku)=V-((/L—FZT)Vk)—i-Pk—pe—i-pSk, )
k
ape Ur € €2
+V-(pew =V (4" ) Ve) 4 €SP = Cop® 405 5
ot o k k

The production of turbulent kinetic energy caused by main stream interactions is
denoted as P and p stands for the laminar (molecular) dynamic viscosity. The
model is completed with a constitutional relation for turbulent dynamic viscosity

ur =Cy ,ok:. Source terms S; and S of k and € respectively consist of two parts
Sk = S; + S} resp. S = S, + S¢ : a part expressing road traffic influence and a part
expressing vegetation influence.

The terms S}, S; modelling the road traffic sources are adopted from [11]. The
sinks and sources due to vegetation influence will be described later.

Standard setting of the k — € model with following constants was used: o; = 1.0,
oe = 1.167, C¢y = 1.44, Ce, = 1.92 and C;, = 0.09. Wall functions from [16] are
used.

2.3 Particles Transport

The dust in the air is assumed to be a passive scalar and its behaviour is modelled
using the transport equation. The equation for each non dimensional mass fraction
c is as follows:

dpc + V- (pcu) — 9(peus) =V. (UT V,oc) + pF. + S.. (6)
at ay Sc

Here u; is the settling velocity, F,. denotes the pollutant source term and S. is
the vegetation deposition term, Sc = 0.72. The settling velocity us of a spherical
particle with the diameter d and density p, is given by the Stokes’ equation see [12]
with correction factor Ce:

A
us = (d?ppgCe)/(181), Ce=1+ 234+ 1.05 exp(=0.39d /1)) .



138 L. Benes
2.4 Vegetation Model

Vegetation deforms the flow field, increases the level of turbulence and plays a
significant role in the deposition processes. Therefore, an appropriate model is
crucially important. The model from [13] for coniferous trees and from [14] for
broadleaf trees are adopted in this work. Both models were used and validated in
our previous studies [9, 10].

The vegetation barrier is modelled as a porous block described by a so called
Leaf Area Density (LAD) profile which represents foliated surface area per unit
volume. In our computation a horizontally homogeneous forest is assumed. The
original LAD is multiplied by a coefficient representing the vegetation density. In
our computations, the model of pine trees adopted from [15] and deciduous trees
presented in [10] was used.

Three effects of vegetation are considered: the first one is the drag induced by
the vegetation. It is modelled as momentum sink inside the vegetation in Eq. (2):

S, = —C4LAD|u|u,

where Cy = 0.3 is the drag coefficient [1].
The second effect is the influence on the turbulent quantities. Following [1] the
source terms in Egs. (4) and (5) are written

€
Sy = CdLAD(,Bp|u|3 — Balulk), S¢ = Ce3kS,?.

The constants are g, = 1.0 m~', Bs = 5.1 m~! and dimensionless Ce, =0.9.

The particle deposition in the vegetation is the third process. According to [13], this
effect is given by the term S, = —LADu,pc in Eq. (6). The term is proportional to
the deposition velocity uy which reflects four main processes by which particles
depose on the leaves (needles): Brownian diffusion, interception, impaction and
gravitational settling. Its value generally depends on wind speed, particle size and
vegetation properties.

2.5 Numerical Method

A finite volume method based on artificial compressibility method and AUSM™up
scheme with linear reconstruction is used. To prevent spurious oscilations the
Venkatakrishnan limiter is utilized. The viscous terms are solved on a dual (diamond
type) mesh. This discretization results in a set of ordinary differential equations (in
time) solved using implicit BDF2 method.
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Fig. 1 Sketch of the domain (not to scale). Highway notch with dust sources and forest block on
the plateau

Each of these nonlinear systems is solved by the JFNK method. Inner linear
systems are solved using matrix-free GMRES solver. The linear systems are pre-
conditioned by the ILU(3) preconditioner. Necessary evaluations of the Jacobians
are done via finite differences.

3 The Numerical Experiment Setting

Figure 1 shows a sketch of a computational domain. Assuming the wind direction
perpendicular to the highway notch, a simplified 2D case is solved. The domain
dimensions are 350 x 150 m, the slopes of the notch are 4 m high. Four sources of
pollutant are placed in the middle of each lane at height 0.8 m. Each source of the
pollutant has the intensity 1 pg/s. A vegetation block is placed downstream from
the road above the notch and starts at x = 55 m. Particles with diameter 10 um and
75 wm and density 1000 kg/m? are modelled.

The ABL is considered as a weakly stable stratified layer (07 /0y = 0) K/m.
Background temperature is set to 7o = 20°C and the density is py, = 1.2kg/m>.
The logarithmic wind profile is prescribed with uef = 5 m/s at height yrer = 10 m on
the inlet.

All combinations of the following vegetative block geometrical parameters were
tested: density (D): 0.25, 0.5, 1.0, 1.5, width (W): 50, 80, 110, and 140 m, height
(H):3,7,and 11 m.

4 Results: Efficiency of the Barriers

Differences in responses of deciduous and coniferous vegetation can be studied from
different angles. The flow structure inside and outside the forest changes depending
on the different crown shapes, different distribution and properties of leaves and
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needles. A thorough description of these differences is beyond the scope of this
article. We will focus on the efficiency of the barrier as one chosen aspect.

The basic question is what do we mean by efficiency. We investigate this question
from two different points of view in this work. The first monitored parameter is the
concentration in the given point x = 250 and 3 m above ground. The second one
is the filtering capacity of the forest (total amount of the particles trapped in the
forest).

The concentration of PM10 particles is shown in Fig. 2. The dependency on the
conifer forest width is significant for lower vegetation (3, 7 m), the concentration
monotonically decreases. Reduction of the concentration is up to 40% (compared
to the value without vegetation). For high forest, the dependency on forest width
is insignificant, the reduction is close to the 50%. Further enlarging the width of
the forest gives no significant impact if the width exceeds 40 m. The situation
for deciduous vegetation is only slightly different, the dependency on forest width
is significant only for lower vegetation 3m height and reduction of concentration
is close to the 30%. The dependency on the forest density is higher for conifer
vegetation.

Similar behaviour can be observed in PM75 case see Fig. 3, only the dependency
on the forest density is stronger.

An interesting question is how many particles will be captured on the needles,
leaves, branches and twigs. These values are summarized in Figs.4 and 5. For the
lighter particles, the efficiency is significantly higher for the conifer trees compared
to the deciduous ones. Leaves are surrounded by liquid, so the effective cross—
section is relatively small. The situation in the case of PM75 particles is completely
different. The effectiveness in particle filtering is similar both for conifer and
deciduous trees, because the larger particles are not so affected by the flow. The
main principle for the PM75 particles is gravitational settling which is not included
in these graphs. In both cases we can see that longer forests have no significant
effect.

5 Conclusions

The deciduous and pine type vegetations under the same geometrical and atmo-
spheric conditions were numericaly modelled and studied. The effects of height,
width and density of vegetation were examined for both types of vegetation.

The height of vegetation is the most important parameter of the forest, the density
and width play minor roles. Extension of the forest has minimal effect on its filtering
capacity. For the heavier particles, where the effect of the gravitational settling plays
the dominant role, both conifer and deciduous vegetation are very efficient and
comparable. In the case of lighter particles, the main effect is spreading of particles
caused by the deflection of the flow and increasing of the turbulence. For this type
of particles, the conifers may be more than three times as effective as deciduous
vegetation.
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A Linear Domain Decomposition Method = @)
for Non-equilibrium Two-Phase e
Flow Models

Stephan Benjamin Lunowa (), Iuliu Sorin Pop, and Barry Koren

Abstract We consider a model for two-phase flow in a porous medium posed in a
domain consisting of two adjacent regions. The model includes dynamic capillarity
and hysteresis. At the interface between adjacent subdomains, the continuity of the
normal fluxes and pressures is assumed. For finding the semi-discrete solutions
after temporal discretization by the 8-scheme, we proposed an iterative scheme.
It combines a (fixed-point) linearization scheme and a non-overlapping domain
decomposition method. This article describes the scheme, its convergence and a
numerical study confirming this result. The convergence of the iteration towards
the solution of the semi-discrete equations is proved independently of the initial
guesses and of the spatial discretization, and under some mild constraints on the
time step. Hence, this scheme is robust and can be easily implemented for realistic
applications.

1 Introduction

Flow in porous media has become a significant field of research, as prominent
applications such as COy storage and enhanced oil recovery vitally depend on the
understanding of the underlying phenomena. Since measurements below surface are
costly, if feasible at all, mathematical modeling and simulation are crucial to predict
such processes. These models usually consist of coupled nonlinear differential equa-
tions, which may degenerate and change type. Besides the increasing complexity of
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the models incorporating dynamic capillarity and hysteresis, another difficulty is
caused by the largely varying or even discontinuous physical properties.

To solve the coupled nonlinear equations, discretization and linearization
schemes are necessary. Since Newton based solvers suffer from severe constraints
on the time step sizes to ensure convergence [19], a simple fixed point iteration, the
L-type linearization, has been proposed. Its high robustness comes at the price of a
slower, linear convergence. Additionally, this approach is typically independent of
the spatial discretization, and has thus been combined e.g. with (M)FEM [13, 18]
or a discontinuous Galerkin method [10].

In the situation of block-heterogeneous soils, the application of a domain
decomposition method seems natural to decouple the different homogeneous blocks
and speed up the convergence. This approach is used and optimized for a wide range
of applications [4, 7-9]. In [15], a non-overlapping Schwarz waveform-relaxation
was analyzed for nonlinear convection-diffusion equations in a time-continuous
setting. Such methods can also be used after temporal discretization for porous
media equations [1, 5]. In [21, 22], the domain decomposition was integrated in
the linearization process for the Richards equation respectively two-phase flow.

Here, we propose such a linearization and domain decomposition scheme
for two-phase flow in porous media, including dynamic and hysteretic effects
in the capillary pressure. These methods are independent of the chosen spatial
discretization and avoid the use of derivatives as in Newton based iterations.

2 Mathematical Model and Temporal Discretization

Below, T > 0 is a fixed, final time and @ c RY (d € N) a Lipschitz domain. It
is partitioned into two Lipschitz subdomains €21 and €2, separated by a (d — 1)-
dimensional manifold I". The outer normal vectors at €2; for ! € {1, 2} are denoted
by v;. In each subdomain €2;, the flow of two immiscible, incompressible phases « €
{n, w} through a rigid porous medium is governed by the mass balance equations,
the extended Darcy law and an extended, play-type capillary pressure model [2],

—¢ois1 +Vou, =0, @105 +V-ouy; =0 in Q; x (0, 7), (1)
Uy, = _Aa,l(sl)Klvpa,l in €; x (0, T), (2)
D — Pw, = De,i(81) — s 1(9rs)) — 0, Ty (s;) in 2y x (0, 7). 3)

At T, the coupling conditions are the continuity of the normal fluxes and pressures

Uy |- V] = —Uy)2 V2, DPa,1 = Pa,2 onI" x (0,T). 4

Here, s; denotes the saturation of the wetting phase, u,,; the specific discharge of
the a-phase and pg; its pressure. The parameters are the porosity ¢; € (0, 1),
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the intrinsic permeability K; € RY*?, which is symmetric, positive definite and
bounded, the relative mobility Ay ; and the capillary pressure p., while 7; and
®;; model the dynamic respectively hysteretic effects. In contrast to equilibrium
models, in which 7} = ®;; = 0, this model can reproduce experimental results
such as fingering and saturation overshoots [17, 20]. Typically, (3) is a multi-valued
relation p,; — pw.i € pei(s)) — yisign(dss;) — 9;T;(s;) involving a parameter
yi > 0 and the sign graph. Here, we use a regularization ®s; of sign; namely
D5 1(§) := max{—1, min{§~'&, 1}} with§ > 0 being a regularization parameter.

For simplicity, we only consider homogeneous Dirichlet boundary conditions for
the pressures, i.€. py,; = pn; = 0on (32; NIR) x (0, T'). Together with an initial
datum s;(0, ) = slo € L*°(2), (1)—(4) form an initial-boundary-value problem in s,
Pn and py,.

Remark 1 For the existence of unique weak solutions to (1)—(3), we refer to [6, 11].
In particular, we mention [6] for the H6lder continuity of the pressure gradients
Vpu, Vpw.

Notation 1 We denote by L*(X), H'(X) and H¥(X) the standard Hilbert spaces
over X € {Q, Q1, Q). HY2(') contains the traces u|r on T of functions u €
HY(Q). For the two subdomains ; with | € {1, 2}, the following spaces will be
used

Wi={we HY(2) : wlygnie = 0},
W= L2(Q) x [W1 x Wal>,  V:=L*Q) x [H} ()]

For any function f € L*(Q), we denote by fi := flq, the restriction to Q; for
I € {1,2). Vice versa, we identify a pair of functions (f1, f>) € L>(R1) x L*(22)
with f and consider f as the natural L*-extension on the whole domain Q. The L?
inner product on Q1 or 23 is denoted by (-, -), whileon T it is (-, -)p.

Next, we summarize all assumptions on the coefficient functions, which are
mostly also found in realistic physical systems. Note that the degeneration of the
equations is excluded by requiring positive A, and Lipschitz continuous p.. This
can be enforced, if necessary, by a regularization like in [6, 16].

Assumption 1 For!/ € {1, 2} and ¢ € {n, w} we assume that

* Aot R — R is Lipschitz continuous with Lipschitz constant L 1q,1 and there
exist my, 1, Ms,.1 € R such that 0 < Myl < Aqi(s) < M, foralls € R;

* pei i R — Ris strictly monotonically decreasing and there exist m, ;, L. €
R* such thatmp_; [r —s| < |pei(r) — pei(s)| < Lp.ilr —s| forallr, s € R;

* T; : R — Ris strictly monotonically increasing with Lipschitz constant Lt ;.

Remark 2 The extension of A/, pc.; and T; to any values s € R can be constructed
naturally. This is necessary since the solutions to the non-degenerated model need
not to satisfy a maximum principle [16].
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Furthermore, ®s5; : R — R is monotonically increasing and Lipschitz continuous
with Lipschitz constant Lo, ; = /9.

We discretize the equations in time by the implicit #-scheme. Given N € N,
let At = ]{, and 6 € (0, 1]. The superscript (-)* denotes the approximations of
the quantities at time * = kAt, in particular we have ug’l = —)»a,l(slk)KZVpg’l
and P](f,l = pc,l(slk). Time averaged quantities are given by Ok =)k + (1 —
0)(-)*~1. After testing, partial integration and summation over / = 1, 2 using the
continuity of the normal flux across I', we obtain the time-discrete counterparts of

(D)—(4).

Problem 1 (Semi-Discrete Weak Formulation) Given (sk_l, pn , pw hy e,
find (s¥, pX, pk) € V such that for all (¥, ¥, Y¥y) € V there holds

2

2

—Zcm ( o m) > (uht Vo). 5)
=1

2

Zcm ( N ww,,>
2 —

Z( [ =50 W, ,) Z(pcl d>5l<qk_c,k 1) B T,(sf)—AJZ(s,k b wp,z>-

=1 =1
)

> (whhs V). ©)

2
=1

~

~

Remark 3 (Well-Definedness) If (s, p,’j , pkw) € “V is a solution to Problem 1, we

have py,1lr = pa.2lr by the definition of V. Since slk, lk I e L2(Ql), testing

(5) and (6) with arbitrary ¥, ; € C3°(€2;) implies u];:? e HY(Q)). Therefore, the

normal trace lemma [3, Lemma III.1.1] yields uk’?-vl € H1/2(8§21)’ and integration
by parts in (5) and (6) implies u];”e1 Sy = —ub g vy in H, l/Z(F)/

Proving the existence of solutions to this problem lies out of the scope of this
paper, but may be done analogously to the time-continuous case mentioned in
Remark 1. By this, the time-discrete pressure gradients should be bounded.

3 Linearization and Domain Decomposition

To account for the possible discontinuities at the interface I', we decouple the
problems in the subdomains. Following [12], we combine the interface conditions

k.6 k.6 k k i
u, | -vi=-—u/,-vaand p, | = p, , by a parameter Lr € (0, 00) to obtain

k . k.0 k
8a3—1 = —2Lrpy; — 8ut, Where goy:=u,;-vi—Lrp,; onl.
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This Robin-type formulation is equivalent to the original conditions for any
Lr # 0, cf. [22, Remark 1 & 2]. In the next step, we introduce a linearized,
iterative scheme, where i € N is the iteration index. Given the previous solution
(ski=1, phi=1 pki=1yand (gi=1, gi=1), we define the linearized fluxes and inter-
face conditions as

ul;’l = —Qka,l(sf’“l)KZVpi’j + (1 =)kt 8o = —2£rp§:’37_% - g;l}l_l.

a,l

In this way, (5) and (6) become linear and decouple into
sl skt (v ki, i g
—¢ ar o Y ) =(wl V¥ ) = (Lrepy + 8nys ¥ni . (®)

ki _ k-1 i i /
o (15 ) = (o Vo) — (Lol g ) ©)

j k,i—1 j— .
gy = —2Lrpys  — &y inLD). (10)

Finally, we also linearize (7) by adding stabilization terms, which vanish
in the limit if the iteration converges. For the latter, we use the parameters
Lpi, Loy, L1 > 0 to account for the nonlinearity of the functions pc;, ®; 5
and 7;. They must satisfy some mild constraints to ensure the convergence of the
scheme, as shown below. With this, the linearized and stabilized counterpart of (7)
reads

ki—1 k—1
KO kO, ki—1 _ sy
(pn,z'l — P’ WP»’) - <0pc”(sl T+ - Q)P];,ll — Da <VI At ) ’ 1'//p’l>

TGt~ H=Tisf ) Lri+L ki _ ki-1
—( T <£p,1 + T q’") (sl" -5 ) Yo,
(In

k,0,i
a,l

where p = Qp:fl; +(1-06) pf;ll. The iteration reduces to solving

Problem 2 (Weak Formulation of the LDD-Scheme) Given (s¥~!, pﬁ’l, p"w’l)
e V., MLyt phiTh e W oand (gl gl ) e (LAY find
(sH1, phi pEhy e W and (g, gl) € [LAM)]* such that (8)—(11) hold for
I €{1,2)and all (Y, Yn, Yu) € W.

3.1 Existence of Solutions and Convergence

Here, we summarize the theoretical results for the LDD iteration. This comprises
the existence of unique solutions to Problem 2, and the convergence of the iterative
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sequence. The proofs are generalizations of the ones given in [14] and use ideas
from [10, 12, 21, 22]. We omit the details here.

Lemma 1 (Existence) Problem 2 has a unique solution.

Theorem 1 (Convergence) Assume that a solution (s*, p’,j, pﬁj) € V of Problem 1
exists and satisfies ||K11/2Vp§ o) < Mp,.1 as well as u(’;l -v; € L2(I). Let
Assumption 1 be fulfilled. If the stabilization parameters and time step fulfill for
lef{l,2}

¢lmpr,l
2 2
Z eL)»a.lMpa.l
Myg .l

ae{n,w}

L Lo
Ly1>0Lp 0, Lrg>="7. Les> " and At <

3

the sequence of solutions of Problem 2 converges towards (s*, pﬁ , pﬁ]) for any
initial guess (s*°, pﬁ’o, p{j;o) e W and (gg, g(u)]) e [L>(D)]4 ie. forl € {1,2}
anda € {n, w}

Pt sfoin L2Sw). pli— pEy in Wi gl = gea in L*(T)  asi— oo.

Remark 4 We have Lg;; = /6, such that Lo; > y;/(25), while the other

parameters and the time step are independent of the regularization.

4 Numerical Experiment

For the validation of the theoretical results, we present a numerical study in a
rectangular domain 2 = (—1, 1) x (0, 1) split into subdomains at the interface
I' = {0} x (0, 1). We use a standard finite element method (Q>) with a uniform
mesh with mesh size Ax matching at the interface I'. We choose the final time
T =1 and the Crank-Nicolson method (¢ = 1/2) in time, so that we expect errors
of the order O(At? 4+ Ax?). Furthermore, we take the same linearization parameters
on both subdomains, i.e. Ly := L1 = Lyofor f € {p, T, ®}.

We consider an analytically solvable example with isotropic and constant
absolute permeability K1 = K = I, and constant porosity ¢;1 = ¢ = 1
to explicitly compute the experimental order of convergence (EOC). We choose
linear coefficient functions, but no hysteresis, i.e. A,(s) = 1 — 5, Ap(s) = s,
pe(s) = 0.2 -5, T(s) = s, and y = 0. The boundary conditions and right-hand
side are selected such that the solution is

_ (I=xp(+4xp)? _ (I=xp(+xp)? _ (I=xp(+4xp)?
Pale ) = D000 s pele ) = TR s =t 402
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Table 1 The LDD-scheme with the parameters £, = 0.5, L7 = 1 and Lr = 0.375 (Lo = 0)
achieves experimentally second order convergence (EOC) in pressure (p) and saturation (s). The
average number of iterations per time step stays almost constant

At = Ax llepll 2 EOC, llesll 7251 EOC; Avg. # iter.
0.2 5.352.1073 5.824.1073 13
0.1 1.394-1073 1.94 1.463-1073 1.993 12.3
0.05 3.564 - 1074 1.968 3.670 - 1074 1.995 12
0.025 9.013- 107 1.983 9.192.107° 1.997 11.5
0.0125 2.273.107° 1.987 2.312-107° 1.991 15.5

(] .

z 102 K | %

g —— (!

[} o

=N I W N | T CRO0.214

o) 1076 - |

]

2=

E 10

[5) — - .

g 10 | |

0 5 10

Iteration i

Fig. 1 Error reduction within the last time step of the LDD-scheme for Az = 0.05 and Ax =
0.05. The relative L2-differences d}, and dy in pressure and saturation decrease fast, and the fitted
convergence rate (CR) is low

First, we study the behavior of the method with respect to the time step and mesh
size. The results in Table 1 clearly confirm the second order convergence in At
and Ax and indicate that the LDD-iteration is discretization independent, since the
average number of iterations per time step stays almost constant.

Next, we study the convergence properties of the method within one time step.
For fixed discretization, we study the error reduction and convergence rate in the
last time step. The results in Fig. | indicate a fast, linear convergence. Moreover, a
proper choice of the LDD parameters is crucial for the fast convergence, which can
be seen in Fig.2. Finding the optimum is an open problem, but the lower bounds
from our analysis (£, > 1/2 and L7 > 1/2) are reasonable indicators.
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Fig. 2 Parameter 0.65
dependence of the average 2
number of iterations per time
step for fixed
At = Ax = 0.05 (For 0.45
simplicity £, = 0).
Deviations from the optimal
parameter set drastically 0.25
increase the convergence rate

5 Conclusion

We proposed an iterative LDD-scheme for finding the semi-discrete solutions
of a non-equilibrium two-phase model in a block-heterogeneous domain. We
summarized the existence and convergence of the solutions of this LDD-scheme,
which holds under a mild restriction for the time step, independently of the initial
guesses or of the used spatial discretization. Therefore, the scheme is robust and can
be easily adapted for realistic applications.

We will provide a detailed analysis and further numerical studies in a follow-
up article. Further investigation is necessary to generalize the method for the
degenerated cases. Moreover, an a-posteriori error analysis might lead to estimates
for efficient and adaptive stopping criteria.
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An Adaptive Penalty Method )
for Inequality Constrained Minimization @
Problems

W. M. Boon ) and J. M. Nordbotten

Abstract The primal-dual active set method is observed to be the limit of a
sequence of penalty formulations. Using this perspective, we propose a penalty
method that adaptively becomes the active set method as the residual of the
iterate decreases. The adaptive penalty method (APM) therewith combines the main
advantages of both methods, namely the ease of implementation of penalty methods
and the exact imposition of inequality constraints inherent to the active set method.
The scheme can be considered a quasi-Newton method in which the Jacobian is
approximated using a penalty parameter. This spatially varying parameter is chosen
at each iteration by solving an auxiliary problem.

1 Introduction

Inequality constrained minimization problems arise in a variety of applications,
most prominently in contact problems in mechanics. To solve these problems,
written as variational inequalities, a vast number of numerical methods exist and
we refer the reader to [7-10], and references therein, for thorough expositions of
such methods. This work concerns two seemingly unrelated families of numerical
schemes, namely penalty methods (see e.g. [1, 4]) and the primal-dual active set
method (see e.g. [5, 6]).

One of the main advantages of penalty methods is the ease of implementation.
The penalty term can generally be incorporated as an addition to the original
minimization problem in existing numerical software. Strictly speaking, however,
the penalty term slightly alters the problem and the obtained solution may not
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satisfy the original constraints exactly. The active set method therefore forms an
attractive alternative, as it does explicitly ensure that the solution complies to these
constraints. Its disadvantage, however, is that the method typically requires an
intrusive implementation in existing software and is prone to slow convergence.

This work forms a link between these two families by proposing a penalty
method that adaptively evolves to the primal-dual active set method. Depending
on its interpretation, the scheme therefore belongs to both families. In particular, the
scheme can be implemented as a penalty method and converges to the same solution
as the active set method.

Our starting point is the observation from [5], in which the primal-dual active set
method is identified as a semi-smooth Newton method. We expand on this result by
considering a regularization of the minimization problem to which the conventional
Newton method can be applied. Instead of iterating until convergence, we introduce
an adaptive removal of the regularization based on the residual in each iterative step.
Thus, as the residual becomes smaller, the regularization decreases and the method
is expected to convergence to the solution of the original problem.

The article proceeds as follows. Section 2 introduces the family of constrained
minimization problems of interest, the notational conventions, and a concise intro-
duction to the primal-dual active set method and a specific class of penalty methods.
The main contribution of this work is presented in Sect.3, namely an iterative
scheme that adaptively combines the advantages of penalty and active set methods.
Finally, Sect.4 presents the numerical performance of the proposed scheme for a
synthetic test case corresponding to a one-dimensional obstacle problem.

2 Problem Formulation and Solution Methods

On a given, open domain 2 C R", we consider the function space V. We assume V
is a reflexive Banach space with norm || - || and let V* denote its dual. Let f € V*
be a bounded linear functional and A : V — V* a continuous, V-elliptic operator,
ie.

(o) Sl (Aw,v) Sllulllvll, (Av,v) 2 Hvl? Va,ve V.

Here, (-, -) denotes the V* x V duality pairing and the notation a < b implies that a
constant C > 0 exists such thata < Cb. For given g € V, we consider the following
constrained minimization problem:

min J(v) = min ! (Av, v) — (f, v) (1a)
veV 2

veV

subjecttov < g (1b)
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Finding the minimizer u € V of problem (1) is equivalent to solving either of the
following two problems:
Primal formulation:
Find 4 € V such that

Au— f =0, (2a)
u—g=0, (2b)
(Au— f,u—g)=0. 20)
Dual formulation:
Find (u, ) € V x V* such that
Au— f+r=0, (3a)
A >0, (3b)
u—g=0, (3¢)

For both formulations, we can simplify the inequalities as well as the final
equation into a single equation. For that purpose, we introduce the function M :
V* x V — V* given by

M, ) :=¢ — [ +cols, “

with [ ]+ = max{0, ¥} in the appropriate sense of elements of V*. Moreover,
¢ : V. — V*is the inverse Riesz map and we allow c to include a scaling with a
positive distribution. Clearly, we have

M(¢p,p) =0 < $=0,9=0, (p,9) =0. )
Thus, we can equivalently describe the primal formulation (2) by
M(f —Au,u—g) =0, (6)
and the dual formulation (3) by

Au+Xr=f, (7a)
M, u—g)=0. (7b)

To solve such problems numerically, we consider two families of iterative
schemes, namely the active set method and penalty methods. We continue with
a concise expsoition of these methods, presented in the following subsections,
respectively.
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2.1 Primal-Dual Active Set Method

The primal-dual active set method uses the dual formulation (7) and iteratively
updates the set on which the constraint u = g is imposed. For the general problem
(1), we define this active set at iterate k as

A= {x € @ AF @) + cwF(x) — g(x)) > 0}. (8a)

In the case that V is a piecewise linear finite element space defined by nodal
evaluations at coordinates x;, the active set AX is defined by

A= {i k) + cwF () — g(y)) > 0. (8b)

Its complement on €2 is referred to as the inactive set, denoted by I k. For brevity of
notation, we introduce the indicator function 11{;‘ which is identity in A* and zero

otherwise. The indicator function ]l§ is defined analogously. For a given active set
A, the primal-dual active set method then solves the following system of equations

A T quz f
—11];16 ]l"l‘_ pan —lll;Icg

We simplify this system by substituting A**! = £ — Au**! from the first row into
the second, giving us Algorithm 1.

Algorithm 1 Active set method
(i) Setk = 0 and initialize u®.
(i) Compute Ak using (8).

(iii) Solve for ukt!:

@A+ 15 0uf T =18 F 4 15cs. ©

(iv) Stop if converged, else increment k and return to (ii).

2.2 Penalty Method

The defining attribute of penalty methods is the modification of the formulation by
introducing a term which penalizes the solution u if it is outside the admissible
set [3]. To be precise, we introduce a penalty parameter p > 0 and an operator
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I, : V. — V* to modify the primal formulation (2) to:
Find u € V such that

Au— f+Tl,u=0. (10)

We use the convention that a smaller value of p corresponds to a stricter
penalization.

It is advantageous to choose the penalty operator IT,, sufficiently smooth in order
to apply the Newton method. We consider a particular choice of I1,, obtained from
a regularization of the problem (6). For that purpose we use [2] and let [-], be the
smooth approximation of [-]4+ given by

[¢], := ¢ + plog(l +exp(—=¢/p)),  [p], = (1 +exp(—¢/p)) "

It is important to note that this function and its derivative have the following
properties for all ¢ € V*:

d

dd) [¢]p = ]1¢>0- (1D

Lii%W]p = [¢]+. Lii%[aﬁ]; = lpl?(l)
Using this operator, we define the regularization of M as
My (P, 9) :=¢ — [P +colp.
In turn, a regularization of the primal formulation (6) arises:
—My(f—Au,u—g)=Au—f+[f—Au+cu—g)I1,=0 12)

Note that this corresponds to setting I[Tyu := [ f — Au + c(u — g)], in Eq. (10)
and we conclude that the regularized formulation (12) has the structure of a penalty
method.

Applying this regularization to the dual formulation (7), we similarly obtain

Au+r=f, (13a)
M,(h,u—g) =0. (13b)

Due to the smoothness of M, the Newton method becomes an attractive solution
strategy and we therefore apply this method to the regularized primal problem (12).
This leads us to the penalty method presented as Algorithm 2 below. We remark that
aﬁ is interpreted as a diagonal operator here.

We make two observations concerning Algorithm 2, presented as two lemmas.
First, we show an equivalent derivation using the dual formulation (13) and
secondly, we note the behavior of the scheme as the penalty parameter tends to

Z€10.



160 W. M. Boon and J. M. Nordbotten

Algorithm 2 Penalty method

(i) Set k = 0 and initialize u°.

(i) Compute ok = [f — Au* + c(uk — )]},
(iii) Solve for éu:

(I —af)A+abo)du = M, (f — Au* u —g). (14)

and set u¥t! = uk + su.
(iv) Stop if converged, else increment k and return to (ii).

Lemma 1 Applying the Newton method to the regularized dual formulation (13)
equivalently leads to Algorithm 2.

Proof Let us linearize the dual formulation (13) around the previous iterate
(u*, A%). Applying the Newton method leads to

[ A 1 }[SM}__[AukjL)\k—f}
D MpOKF uk —g) B M, (0K uk —g)] |82 M, (0K uk — g)

By introducing oef) = MK + c(u* — g)1,, we specify the derivatives and rewrite:

A sul _ [ Aub 42k (15)
—oczcl—(xf, Sh| Mp()\k,uk—g) '

Next, we note that AK = f — Au* for k > 0, giving us §A = —Adu from the first
row. Substituting this into the second row gives us

(—ahe — (I —af)A)su = =M, (f — Au*, u* — g).

Negation of this equation gives us (14), thereby concluding the proof. O
Lemma 2 Algorithm 2 is equivalent to Algorithm 1 in the limit p |, 0.

Proof By (11), the limit p | O gives us af, — 1% i.e. the indicator function of A*.

Moreover, the operator M, (-, -) on the right-hand side becomes M (-, -). Equation
(14) then becomes

(IEA +150)08u = M(f — Au*, ub — g) = 15(f — Aub) — 1 @® — ¢)
(16)

Addition of (]l?A + ]l’;lc)uk to both sides of the equation gives us (9). |
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3 The Adaptive Penalty Method

In the previous section, we have made two observations. First, introducing a penalty
parameter p leads to a regularized problem on which the Newton method can
be applied. This method is known to be converge (locally) to the solution of the
regularized problem. Secondly, as p tends to zero, the penalty method becomes
equivalent to the active set method, which respects the inequality constraint of (1)
exactly. The next step is to combine these two advantages into a single iterative
method.

With this goal in mind, we modify the penalty method by letting p be a spatially
varying function on 2. This allows us to adaptively remove the penalization in
regions where the solution is sufficiently accurate. We achieve this by constructing
the penalty function p as a regularization of the residual. Let us therefore introduce
the following differential equation for p:

p—ehp=yIM(f — Au,u—g)| in Q, (17a)
n-Vp=0 on 0L2. (17b)
Here, | - | denotes the absolute value, n is the outward unit normal vector on 92

and €, y are chosen, nonnegative constant parameters. For simplicity, we limit our
exposition to these two tuning parameters.

By elliptic regularity of (17), the penalization p will tend to zero as the residual
becomes smaller. We exploit this property and propose Algorithm 3, which we refer
to as the Adaptive Penalty Method (APM).

Algorithm 3 Adaptive penalty method

(i) Set k = 0 and initialize u°.

(ii) Solve (17) for the regularization parameter p with data u = u*.
(iii) Compute o = [f — Au + c(u¥ — 9)]),.
(iv) Solve for du:

(I —ap)A+aho)du = M(f — Au*, ub —g). (18)

and set u¥t! = uk + su.
(v) Stop if converged, else increment k and return to (ii).

It is important to note that the exact solution to the auxiliary problem (17) is
not our main priority. Thus, in order to reduce computational cost, it will suffice to
use an approximate solution in step (ii) with the use of a coarse solve or multi-grid
cycle.

Algorithm 3 can be interpreted in a variety of ways. First, the scheme is a quasi-
Newton method on (6) in which the Jacobian gets approximated more accurately
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as the solution converges. The accuracy of the Jacobian adaptively depends on the
residual, hence the chosen name.

Alternatively, the algorithm can be considered a warm-start that gradually
behaves like the active set method in convergence. The advantage in this context
is that no invasive implementations are necessary to switch from the warm-start to
the active set method.

Thirdly, the choice of y = 0 results in p = 0 in all iterations and the scheme
is effectively reduced to Algorithm 1. In that sense, this construction serves as a
generalization of primal-dual active set method. This is an advantage in case optimal
parameter values are difficult to find, since the scheme can easily be reduced to the
active set method without requiring additional, numerical implementation.

Other extreme choices of the parameters lead to different behaviors of the
proposed scheme. A large value of y, for example, results in a slower decrease of
the regularization parameter and therewith, a slower convergence to the solution. On
the other hand, setting € = 0 removes the diffusion in (17) which typically results
in sporadic behavior of the scheme and possibly, loss of convergence. However,
choosing a too large value for € makes the diffusion term dominate which results
in a spatially uniform penalty parameter. This is disadvantageous since it leads to
unnecessarily poor approximations of the Jacobian in regions where the solution is
close to exact.

4 Numerical Results

In this section, we test the numerical performance of the adaptive penalty method
using a synthetic test case. Let us consider an obstacle problem on 2 = (0, 1). We
aimto find u € HO1 (€2) that weakly satisfies

—Au<f, f(x) :=10, (192)

u<g, g :=0201+1y5025+Lis05+1Ly075), (19b)

(Au+ fu—g)=0, in 2, (19¢)
u=020, on 9L2. (19d)

We set the scaling in the Riesz operator ¢ to unity and iterate until the
Euclidean norm of the residual is below a tolerance level of le-10. In the numerical
experiments, we have not observed significant sensitivities of the scheme with
respect to € and therefore limit this exposition to € = 1.

As remarked in the previous section, an interesting variant of the method arises
if the penalty parameter is approximated, instead of solving (17) exactly. To explore
this variant, we perform a solve on a coarse mesh of 16 elements and interpolate
back to the original mesh. We compare three methods, namely the primal-dual active
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Table 1 Number of iterations necessary to obtain the desired accuracy for the active set method
(ASM), the adaptive penalty method with the penalization p solved exactly (APM), and on a coarse
mesh (C-APM). The proposed schemes obtain the same solution as the active set method in fewer
iterations

ASM | APM C-APM
1/h |y=0]y=01|y=1|y=10|y=100 |y =0.1 |y =1 |y=10 |y =100
256 52 18 9 13 29 18 9 13 31
512 103 33 10 12 33 32 10 13 32
1024 | 206 69 33 16 45 68 32 14 47
2048 | 411 |162 52 18 50 160 50 18 50
4096 | 820 |382 73 22 53 378 69 26 56
8192 | 1639 |876 107 31 48 864 99 36 54

set method (Algorithm 1), the adaptive penalty method (Algorithm 3) introduced in
Sect. 3, and its variant with a coarse solve. The results are shown in Table 1.

From the numerical experiment, we observe that the Adaptive Penalty Method
requires significantly fewer iterations than the primal-dual active set method for this
problem. As discussed, small values of y cause the scheme to behave like the active
set method and this can be observed in the iteration numbers. Moreover, the number
of iterations appear robust with respect to the grid size for the largest choices of y.

The results from C-APM indicate that the exact evaluation of p can be avoided,
in practice. This makes the scheme attractive for larger linear systems in terms of
computational cost, since there is no need to solve an additional linear system during
each iteration.

To conclude, the proposed Adaptive Penalty Method rapidly converges to the
same solution as the primal-dual active set method, which satisfies the constraints
of the original problem exactly. The scheme is easily implementable as a penalty
method or as a quasi-Newton scheme in existing software. To reduce computational
cost, the penalty parameter can be approximated using a coarse solve, without
significantly affecting the convergence of the method.

Acknowledgments This work was partially supported by Norwegian Research Council grant
233736.
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Multipreconditioning with Application to )
Two-Phase Incompressible Navier—Stokes S
Flow

Niall Bootland and Andrew Wathen

Abstract We consider the use of multipreconditioning to solve linear systems when
more than one preconditioner is available but the optimal choice is not known. In
particular, we consider a selective multipreconditioned GMRES algorithm where
we incorporate a weighting that allows us to prefer one preconditioner over another.
Our target application lies in the simulation of incompressible two-phase flow. Since
it is not always known if a preconditioner will perform well within all regimes found
in a simulation, we also consider robustness of the multipreconditioning to a poorly
performing preconditioner. Overall, we obtain promising results with the approach.

1 Introduction

In challenging fluid flow simulations used to model hydraulic processes it is often
not clear what the best choice of preconditioner might be for solving a given linear
system Ax = b. Further, disparate flow regimes can be encountered in a simulation
and the optimal preconditioner may change throughout. One can imagine trying
to adaptively change the preconditioner based on tracking the current flow regime.
However, this requires knowing a priori which preconditioner is likely best in any
given regime as well as a suitable evaluation of the current flow, which may well
vary within the domain. The required sophistication and good prior knowledge of
the preconditioners’ performance makes such an adaptive approach less appealing.
Instead we consider using multiple preconditioners simultaneously, aiming to get
the best of each. If we can combine the preconditioners then we would like to know
whether we can achieve performance similar to the (unknown) best preconditioner
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and, further, if together they provide an improvement over any individual approach.
Another key question to ask would be that of robustness: whether inclusion of a
poorly performing preconditioner significantly affects the overall performance.

These ideas are encompassed within multipreconditioning strategies, where
either the iterative method or preconditioning incorporates more than one precon-
ditioner. There are several ways in which multipreconditioning can be employed
but it is salient to consider the computational cost incurred weighed against the
performance improvements that might be gained. Note, however, that such a strategy
might not simply be aiming to give the optimal performance for solving a given
system but to provide an overall robustness during a simulation spanning differing
regimes.

A simple way to incorporate multiple preconditioners into an iterative method is
to change the preconditioner at each iteration, in which case a flexible solver such as
FGMRES [9] is required. This is exemplified in cycling, where the preconditioner
choice changes in a prescribed cyclic order [8]. However, results show convergence
never better than the best choice of preconditioner on its own; though such a choice
is unknown in advance. While only observed empirically, it stands to reason that
this is unlikely to provide improvement over the best preconditioner for any given
linear system, though it may help provide robustness over a sequence of problems.

Another strategy is to form a single preconditioner from the options available.
This is employed in combination preconditioning, in which the action of the inverse
of the preconditioner is a linear combination of other preconditioner inverses. The
term was introduced in [10] and pursued further in [7], however, their main focus
is on maintaining symmetry or positive definiteness (in some nonstandard inner
product) so more efficient iterative methods can be used. Nonetheless, combination
preconditioning could equally be applied to nonsymmetric cases with less restriction
on requiring certain parameter choices or need for a nonstandard inner product.

A similar idea, using linear combinations of preconditioned operators, is found in
the earlier multi-splitting method [6]. The idea is to utilise multiple different splitting
methods to solve the linear system. The approach can be thought of as a stationary
iteration with each splitting providing a preconditioner. Yet, as with combination
preconditioning, fixed weights for the contributions must be chosen in advance.

Except for cycling, these approaches allow for parallelism in the application
of multiple preconditioners. However, the performance of the underlying iterative
method will depend on the overall effectiveness of the preconditioners and how
they are combined. Instead, we consider a multipreconditioned GMRES method [5]
that retains the parallelisable application of preconditioners but computes weights
as part of the algorithm which are, in some sense, optimal. It considers not just one
new search direction at each iteration but several, given by each preconditioner. We
note that the idea was first applied to the conjugate gradient method for symmetric
positive definite systems in [3]. However, with multiple preconditioners the search
space grows exponentially fast as we continue to iterate. Thus, a selective variant of
the algorithm which restricts this growth to be linear is typically necessary.
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2 Multipreconditioned GMRES (MPGMRES)

In the standard preconditioned GMRES (or FGMRES) method, at each iteration a
new search direction, based on the preconditioned operator, is added to the search
space and then a least-squares problem is solved to find a solution with minimum
residual norm. The key idea behind multipreconditioned GMRES (MPGMRES) [5]
is to add multiple new search directions at each iteration coming from the different
preconditioners available. In fact, the method adds all new search directions from
combinations of the preconditioned operators applied to vectors in the current search
space, making the search space very rich. An Arnoldi-type block procedure is then
used to obtain an orthonormal basis of the search space. MPGMRES then computes
the optimal new iterate from this space in the minimum residual least-squares sense.
Hence, note that the weights defining the contributions from each preconditioned
operator are computed as part of the procedure, unlike in other approaches.

To understand how this complete MPGMRES algorithm works, suppose we have
£ > 2 preconditioners P;, i = 1, ..., £. We start with an initial residual vector r©®,
which we normalise to give the first basis vector v = =10 with g = |r @,
and collect together the preconditioned (normalised) residuals

7z = g1 [Pflr(o), g -’Pe_lr(o)] c R"™¥E. (1)

Using an Arnoldi-type block procedure we orthogonalise columns of W = AZ D
with respect to our current basis V! and amongst themselves by using a reduced
QR factorisation. Normalising then provides new basis vectors V) e R"*¢,

At each iteration, k, we increase the MPGMRES search space by applying each
of the preconditioners to our newest basis vectors V ), computing

z0 =[prlv®, et ] e ret, @)

The Arnoldi-type block procedure is then used to orthogonalise W = AZ ®) with
respect to the current basis Vi, = [V(l) ... V(k)] and within itself. This yields new

. k . . .
basis vectors V&+1 e R"*¢" and, by storing the coefficients from the Arnoldi-type
step in an upper Hessenberg matrix Hy, we obtain an Arnoldi-type decomposition

AZy = Viy1 Hy, 3)

where Zy = [Z() ... Z®]. Note that any linear dependency in columns of Zy, due
to redundancy in the user-provided preconditioners, can be avoided using deflation;
see [, §3]. Now that we have a search space then, similarly to FGMRES, we solve
a linear least-squares problem for the minimum residual solution to

min b~ x|, = min |[r|2e1 — iy, | . )
xex©-range(Zy) y 2
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where x = x© 4+ zky. Note that there is a natural generalisation of the standard
GMRES polynomial minimisation property, as detailed in [5].

While the search space for complete MPGMRES is very rich, we note that it
grows exponentially at each iteration, and thus becomes prohibitive in practice. As
such, a variant which selects only some of the potential search directions, ideally
ensuring only linear growth, is natural to consider as a more practical alternative.

3 Selective MPGMRES (sMPGMRES)

To balance the benefits gained by adding multiple search directions with the storage
and compute costs, we might wish to fix the number of preconditioner applications
and matrix—vector products independent of the iteration, allowing for parallelisation
of these operations via use of a fixed number of processors. To do so, we consider
limiting the growth of the search space to be linear with respect to the iteration
number k by using a selective MPGMRES (sMPGMRES) algorithm outlined in [5].

The search directions in MPGMRES are given by a collection of column vectors
Z. To limit the growth of the search space we limit the size of Z, in particular to be
proportional to the number of preconditioners, independent of k. To do this we select
only certain search directions from the span of the columns of Z, giving a selective
MPGMRES algorithm. There are many strategies to choose these directions, for
instance, instead of applying the preconditioners to all columns of V®, as in (2), we
might apply them to just a single vector from V ®)| selecting this vector differently
for each preconditioner. This selection choice need not be the same at each iteration
and could incorporate randomness if desired. The corresponding Z® is then

z0 =[Prvi.. L ertv. )

5817

where V.%) is the s;th column of V®) and s; might change with k.

An alternative to applying each preconditioner to just one vector from V® is to
apply them all to a linear combination of these vectors, namely to V®a® for some
vector a¥) of appropriate size detailing the contribution from each column of V',
The corresponding Z® is then

z0 =[Prlv®0a®, . Pt Ba®] e rrxt, ©6)

Note that a natural choice for «® is the vector 1, of all ones. All of these selection
methods result in choosing a lower dimensional subspace of the full space and then
minimising over this subspace. With these selection strategies, where we limit Z®)
to £ new directions each iteration, Vk+1 has k¢ + 1 basis vectors while the number
of columns of Zk is k€. Hence, the storage is proportional to k, as in FGMRES, as
opposed to exponential in k, like complete MPGMRES.
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Now suppose we have reason to favour one preconditioner over another and, for
simplicity, that there are just two candidate preconditioners £; and P>. We would
like our selective approach to incorporate knowledge of which preconditioner to
favour. As such, we might choose an a® = & to weight more the contributions
coming from one of the preconditioners. Consider the initial steps in sSMPGMRES:
we start with new search directions Z!) and orthogonalise them to be V(?

hog.
7z = g1 [pflrw), p;lr(o):l omhog @), %)
then add search directions Z® which are orthogonalised to be V
hog.
2@ =[PV @a, P vPa] TE VO, ®)

Soa = (a1, cxz)T weighs the contributions from each of the two preconditioners as
V@a = o V:(%) +or V:(%) and the two columns of V@ come from the two different

preconditioned residuals. If we let « = (o, 1 — o)T, for some o € (0, 1), then the
parameter « states how much we favour the first preconditioner, with o = é giving
equal weighting and being equivalent to using the vectors of all ones (¢ = 1), as
suggested above. Similar strategies could be used to weight contributions from more
than two preconditioners.

In this weighted version of SMPGMRES the ordering of the preconditioners
P1, ..., Pe is important as we weight them differently. However, even with equal
weighting (that is, « = 1) ordering is important. This more nuanced asymmetry
within sSMPGMRES is an aspect not mentioned in [5]. The asymmetry comes about
from the need to orthogonalise the new search directions in Z*) within themselves.
The contribution from the first preconditioner is allowed to be in any new direction
but this direction is taken out of the contribution from subsequent preconditioners,
and so on as we orthogonalise in order the contributions from all preconditioners.
This means that if the direction from the last preconditioner is mostly within the
span of the preceding directions it may well contribute very little of value, despite
coming from a good preconditioner when applied by itself. As a general rule then,
we might value less these final search directions as the useful components may have
already been taken out. This suggests taking a weighting o which decreases in the
components, instead of being equal, might be preferred. Nonetheless, in practice
with a small number of good preconditioners, « = 1 might suffice to be as good.
We will see that when we favour a preconditioner the ordering will matter, even if
we are weighting the preconditioners in the same way. Further, ordering can still
have a significant impact even when just two preconditioners are used and they are
weighted equally, especially when one of the preconditioners is poorer.
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4 Numerical Results for sSMPGMRES

Here we apply SMPGMRES within a two-phase incompressible Navier—Stokes flow
problem. That is, to solve linear systems associated with discretisation of

,02?+pu-Vu—V-(M(Vu—l—(Vu)T))wLVp:pf, (92)

V.u=0, (9b)

for velocity u and pressure p where density p and dynamic viscosity p are piecewise
constant, representing the two phases. An important dimensionless quantity that
appears is the dominating Reynolds number Re over the two phases, a parameter
which quantifies the ratio of inertial to viscous forces within a fluid. Our results will
also exhibit how performance depends on Re. An auxiliary equation to describe
how p and p vary in time with the flow is required, such as a level set equation;
for the full model see [2]. We consider seeking the Q,— O finite element solution
using Newton iteration to treat the nonlinearity. We utilise block preconditioners,
in particular those introduced in [2]. These are two-phase versions of the pressure
convection—diffusion (PCD) and least-squares commutator (LSC) approaches [4].
To answer questions of robustness we further use a SIMPLE-type preconditioner,
also discussed in [2]. We restrict our results to focus on the two preconditioner
case (¢ = 2) using (6) with ® = (o, 1 — a)T for some o € (0, 1). We follow
exactly the simplified problem of a lid-driven cavity used in [2] along with the
same implementations, as such we omit the details for brevity. The only difference
is we now use SMPGMRES to solve the Newton systems via the MATLAB
implementation' which accompanies [5].

We focus on iteration counts, as opposed to timings, since our implementation
runs in serial and so does not take advantage of the inherent parallelism. Note that,
when we tabulate our results using SMPGMRES, the iteration counts given in bold
emphasise the best choice of weighting parameter « which provides the minimum
number of iterations for a given pair of preconditioners. The preconditioner given
on the left of a set of results is used as the first preconditioner in SMPGMRES.

Table 1 displays results for combining two-phase PCD and LSC. We see that the
best iteration counts are seen towards the centre of the table, that is with a weighting
parameter « closer to ; , though we see some bias towards larger « for both orderings
as the asymmetry of ordering might suggest. In this example most choices of « will
provide some improvement over either of PCD or LSC individually while the best
choice can allow convergence using up to 32% fewer iterations. Note that the choice
o = é typically gives iterations counts close to optimum. Given that it is not clear
that we necessarily should do any better than the best preconditioner by itself, these
results are quite promising and show that sMPGMRES can improve performance

www.mathworks.com/matlabcentral/fileexchange/34562-multi- preconditioned- gmres.
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Table 1 Average preconditioned sMPGMRES iterations upon Newton linearisation using
weighted combinations of PCD and LSC with density ratio 1.2 x 1073, viscosity ratio 1.8 x 1072
(values for air-water flow), 1 = 1/64, and varying Reynolds number Re and time-step At
o in PCD-LSC o in LSC-PCD
At |Re |PCD|09 07 05|03 01 |LSC|09|07]/05)03]0.1|PCD
10-1 |10 16 |14 |14 (14 |16 |18 |18 |15 |14 |15 |15 |21 |16
1015 |16 14 |13 |13 |14 |16 |17 |14 |13 |14 |15 |18 |16
100 |15 14 (13 |14 |16 |17 |26 |15 |14 |13 |14 |16 |15
10516 |14 |12 |12 |12 |14 |14 |12 (11 |12 |14 |24 |16
1000 | 19 15 |13 |14 |15 |15 |19 |13 |13 |13 |32 |38 |19
1 10 19 18 (17 |18 |21 |23 |24 |19 |18 |18 |18 |21 |19
1015 |21 19 |18 |18 |20 |22 |23 (19 |18 |18 |19 |22 |21
100 |25 |21 |18 |20 |21 |23 |32 |21 |19 |18 |21 |26 |25
102 |27 |24 |19 |18 |18 |20 |22 |18 |17 |19 |25 |37 |27
1000 |31 27 |24 |24 |24 |26 (34 (25 |23 |26 |37 |63 |31
10 10 20 19 (18 |19 |22 |23 |25 |20 |19 |19 |19 |22 |20
1015124 |21 |20 (21 |23 |25 |26 |22 (20 |21 |22 |27 |24
100 |30 |26 (23 |26 |27 |28 |42 |27 |25 |23 |26 |30 |30
103135 |31 |29 |27 |30 (35 |38 (32 |29 |28 |32 |41 |35
1000 (44 |47 |40 (44 |41 |49 |58 |43 |38 |39 (46 |85 |44

in terms of the number of iterations required. Furthermore, we see in this case that
the performance is not particularly sensitive to «. To examine robustness, we now
include the SIMPLE-type preconditioner, a method which performs poorly here.
Table 2 combines the LSC and SIMPLE-type preconditioners. We see that, when
LSC is used as the first preconditioner, primarily there is relatively little gained from
including the SIMPLE-type approach with the best choice either being to simply use
LSC or else a large o favouring LSC, though the best reduction in iteration counts
does reach to 15%. However, if we change the ordering to have the SIMPLE-type
approach first, the picture looks slightly different. While the best iteration counts are
very similar, this time any o < é gives results comparable to LSC. This suggests
that, while we do not gain much in the way of improved performance, the algorithm
is still fairly robust to varying « so long as we do not favour the poorly performing
preconditioner too strongly. This example also provides a case where, with equal
weighting (o = é), the ordering of the preconditioners can substantially matter,
with one choice giving iteration counts that are similar or better than LSC and the
other giving results that are somewhat worse than LSC. Furthermore, it is by putting
the worst preconditioner first (which by the asymmetry is subtly favoured) that we
obtain the better results. While at first this may sound counter-intuitive, we can
make sense of this observation by considering what the selection in sSMPGMRES is
doing. If the good preconditioner is used first then we take this contribution away
from that of the second preconditioner, likely making it even worse, then by equally
weighting these we are allowing a large component of this much worse contribution
to prevail. On the other hand, if the worse preconditioner is first, we remove this
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Table 2 Average preconditioned sMPGMRES iterations upon Newton linearisation using
weighted combinations of LSC and SIMPLE with density ratio 1.2 x 1073, viscosity ratio
1.8 x 10~2 (values for air-water flow), h = 1/64, and varying Reynolds number Re and time-step
At

o in LSC-SIMPLE « in SIMPLE-LSC

At |Re |LSC |09 |07 |05 /03 0.1 |SIMPLE |09 0.7 |05 0.3 |0.1 |LSC
1071 |10 |18 |18 |19 [24 |48 | 97 |164 48 |24 |19 |18 |19 |18
105 (17 116 |17 |21 |32 | 85 |154 41 |21 |17 |16 |18 |17

100 |26 |23 |22 |27 |35 | 51 |131 38 |26 (23 |22 |24 |26
102> |14 14 |15 |18 |27 | 35 |116 33 119 [15 |15 |15 |14

1000 |19 |19 |20 (22 [24 | 39 |109 31 (25 |21 |21 |21 |19

1 10 |24 122 |24 (32 |60 | 93 |177 40 |27 |23 |22 |24 |24
1015 123 |21 |24 (31 |60 | 95 [185 40 |27 |23 |22 |25 |23

100 |32 130 |31 [40 [70 |103 |188 60 [36 |31 (30 |31 |32
102> (22 120 |21 (26 (50 [109 |190 46 |25 |21 |20 |22 |22

1000 |34 |31 |33 |43 |51 | 78 |190 62 [38 |35 (32 |32 |34

10 |10 |25 |22 |25 |33 |60 | 96 |179 40 |28 |23 |23 |24 |25
101> 126 124 |26 (34 |62 | 98 |192 41 |29 |24 |25 |27 |26

100 |42 38 |39 [47 [69 |104 |207 64 (42 |37 (36 |39 |42
1025 |38 |33 |35 |42 [82 |125 [233 54 |38 |33 |34 |37 |38

1000 |58 |49 |51 |64 |96 [150 |294 85 [57 |51 |49 |52 |58

component from the contribution of the better preconditioner, which is unlikely to
make this contribution worse and may possibly make it even better. Thus we see this
latter combination is more favourable than the former, though we may not expect
it to provide significantly better results than the best preconditioner by itself. We
note that, in results not shown, a somewhat similar scenario occurs when combining
PCD and the SIMPLE-type approach; see also [1] for further numerical results.
Our study show promise that sSMPGMRES can combine multiple preconditioners
to reduce overall iteration counts and, additionally, provide robustness in situations
when one preconditioner is performing poorly. Further, weights can be incorporated
to favour preconditioners and results are not particularly sensitive to any sensible
choice of weights, though ordering can be important. It remains to confirm how
much speed-up can be gained from SMPGMRES but initial results in [5] are positive.
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On the Dirichlet-to-Neumann Coarse m)
Space for Solving the Helmholtz Problem <
Using Domain Decomposition

Niall Bootland and Victorita Dolean

Abstract We examine the use of the Dirichlet-to-Neumann coarse space within an
additive Schwarz method to solve the Helmholtz equation in 2D. In particular, we
focus on the selection of how many eigenfunctions should go into the coarse space.
We find that wave number independent convergence of a preconditioned iterative
method can be achieved in certain special cases with an appropriate and novel choice
of threshold in the selection criteria. However, this property is lost in a more general
setting, including the heterogeneous problem. Nonetheless, the approach converges
in a small number of iterations for the homogeneous problem even for relatively
large wave numbers and is robust to the number of subdomains used.

1 Introduction

Within domain decomposition methods, the use of a coarse space as a second level
is typically required to provide scalability with respect to the number of subdomains
used [4]. More recently, coarse spaces have also been designed to provide robustness
to model parameters, especially for large contrasts in heterogeneous problems. For
example, the GenEO coarse space has been successfully employed for the robust
solution of highly heterogeneous elliptic problems [8]. One way in which a coarse
space can be derived is via solving local eigenvalue problems on subdomains, as is
the case for the GenEO method. An earlier approach, having many similarities, is
the Dirichlet-to-Neumann (DtN) coarse space [6]. We focus on this method which
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solves eigenvalue problems on the boundary of subdomains related to a Dirichlet-
to-Neumann map.

We are interested in using domain decomposition methodology to solve wave
propagation problems. In particular, we consider the Helmholtz problem'

—Au—kKu=f in Q, (1a)
u=20 on[p, (1b)
u .
+iku =0 on I'g, (Ic)
an

with wave number k > 0, where 02 = I'p UT'g and I'p N 'r = @. Such problems
arise in many wave propagation and scattering problems in science and engineering,
for instance, acoustic and seismic imaging problems. Furthermore, we also consider
the heterogeneous problem, in which case k(x) varies in the domain €2. We suppose
the variation in k stems from the wave speed c(x) depending on the heterogeneous
media, with the wave number being given by k = w/c for angular frequency w.

The wave number k is the key parameter within the Helmholtz equation and
as k increases the problem becomes more challenging. We are interested in the case
when k becomes large and so solutions are highly oscillatory. The numerical method
employed needs to be able to capture this behaviour, often through an increasing
number of grid points, such as a fixed number of points per wavelength. However,
typically the number of grid points needs to grow faster than linearly in & if accuracy
is to be maintained due to the pollution effect [1]. For instance, when using P1
finite elements for the numerical solution of (1), the mesh spacing 4 should decrease
proportional to k—3/2. This means very large linear systems must be solved when k is
large and, since these systems are sparse, iterative methods are most often employed
for their solution. However, efficiently solving large discrete Helmholtz systems is
challenging since classical iterative methods fail to be effective [5]. As such, we
require a more robust iterative solver. Here we consider a restricted additive Schwarz
(RAS) method with a Dirichlet-to-Neumann coarse space [3] and will be interested
in the performance of this solver methodology as k increases. We now review the
underlying numerical methods we use.

2 Discretisation and Solver Methodology

To discretise we use finite element methodology, in particular using piecewise linear
(P1) finite elements on simplicial meshes. Given a simplicial mesh 7" on a bounded
polygonal domain 2, let V" ¢ {H "@:u=00nT D} be the space of piecewise

'Note that if [z = @ then the problem will be ill-posed for certain choices of k corresponding to
Dirichlet eigenvalues of the corresponding Laplace problem.
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linear functions on 7. The P1 finite element solution u, € V" satisfies the weak
formulation a(up, vy) = F(vs) Vv, € VI, where

a(u,v):/ (Vu-Vf)—kzuﬁ) dx—i—/
Q r

ikuvds, and F(v):/fﬁdx.
Q
(2

R

Using the standard nodal basis for V" we can represent the solution u;, through
its basis coefficients u and reduce the problem to solving the complex symmetric
linear system Au = f where A comes from the bilinear form a(-, -) and f the linear
functional F(-); see, for example, [3].

To solve the discrete Helmholtz system Au = f we utilise a two-level domain
decomposition preconditioner within an iterative Krylov method. Since A is only
complex symmetric rather than Hermitian, we use GMRES as the iterative Krylov
method [7]. For the domain decomposition, given an overlapping partition {Q i };V:l
of €, let R; represent the matrix form of the restriction onto subdomain £2;.
Then the restncted additive Schwarz (RAS) domain decomposition preconditioner
is given by

N
— T —1
Mgiq = Z RID;A7'R;, (3)
j=1

where A; = R jARjT is the local Dirichlet matrix on £2; and the diagonal matrices
D are a discrete representation of a partition of unity (see [4]); this removes “double
counting” in regions of overlap. Note that each subdomain contribution from the
sum in (3) can be computed locally in parallel. Using the one-level preconditioner
(3) is not sufficient to provide robustness with respect to the number of subdomains
N used and also becomes much worse when k increases. To this end we incorporate
a coarse space as a second level within the method.

A coarse space provides a more efficient way to transfer information globally
between subdomains, rather than relying solely on local solutions, as in (3). The
coarse space constitutes a collection of column vectors Z, having full column rank.
We then utilise the coarse correction operator Q = ZE~'ZT where E = ZTAZ is
the coarse space operator, which provides a coarse solution in the space spanned by
the columns of Z. To incorporate the coarse correction we use an adapted deflation
(AD) approach given by the two-level preconditioner

M), = Mpas(I — AQ) + Q. )

To complete the specification, we must choose which vectors go into the coarse
space matrix Z.
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3 The Dirichlet-to-Neumann Coarse Space

We now introduce the Dirichlet-to-Neumann coarse space. The construction is based
on solving local eigenvalue problems on subdomain boundaries related to the DtN
map. To define this map we first require the Helmholtz extension operator from the
boundary of a subdomain €2;.

Let I'; = 92; \ 952 and suppose we have Dirichlet data vr; on I';, then the
Helmholtz extension v in £2; is defined as the solution of

—Av—k*v=0 in Q;, (52)
v =ur onTl', (5b)
Cv)=0 on 9 N I, (5¢)

where C(v) = 0 represents the original problem boundary conditions (1b) and (1c¢).
The DtN map takes Dirichlet data vr; on I'; to the corresponding Neumann data,
that is

ov
DNg, () = " (©6)
L

where v is the Helmholtz extension defined by (5).
We now seek eigenfunctions of the DIN map locally on each subdomain €},
given by solving

DtNg; (ur;) = Aur, @)

for eigenfunctions ur; and eigenvalues A € C. To provide functions to go into the
coarse space, we take the Helmholtz extension of ur; in €2; and then extend by
zero into the whole domain €2 using the partition of unity. For further details and
motivation, as well as the discrete formulation of the eigenproblems, see [3].

It remains to determine which eigenfunctions of (7) should be included in the
coarse space. Several selection criteria were investigated in [3] and it was clear that
the best choice was to select eigenvectors corresponding to eigenvalues with the
smallest real part. That is, we use a threshold on the abscissa n = Re()1) given by

n<7n; (8)

where ﬁj depends on k; = maxxeq i k(x). In particular, [3] advocates the choice
7j = kj. Clearly, the larger 7; is taken, the more eigenfunctions we include in the
coarse space, increasing its size and the associated computational cost. However, it
is not clear that 77; = k; is necessarily the best choice. We investigate the utility of
choosing 7); larger than k; and will see that, in some cases, taking a slightly larger
coarse space can give improved behaviour of the iteration counts as k increases.
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4 Numerical Results

To investigate the dependence on 77; we use a 2D wave guide problem on the unit
square Q = (0, 1)% as a model test problem. The Dirichlet condition (1b) is imposed
on the left and right boundaries I'p = {0, 1} x [0, 1] while the Sommerfeld radiation
condition (1c) is prescribed for the top and bottom boundaries I'r = [0, 1] x {0, 1}.
The right-hand side f models a point source at the centre (;, ;). The wave number
k is either constant throughout 2 for the homogeneous problem or else k = w/c
where o is constant and c(x) is piecewise constant as illustrated in Fig. 1 for a
contrast parameter p > 1. These heterogeneous problems model layered media.

To discretise we use a uniform square grid with ngop points in each direction
and triangulate with alternating diagonals to form the P1 elements. As we increase
k we choose ngjop k3/2 in order to ameliorate the pollution effect. To begin with,
we use a uniform decomposition into N square subdomains and throughout use
minimal overlap (non-overlapping subdomains are extended by having adjoining
elements added). All computations are performed using FreeFem (http://freefem.
org/), in particular using the ££ddm framework. When solving the linear systems
we use preconditioned GMRES with the two-level preconditioner (4) incorporating
the DIN coarse space with threshold 77 to reach a relative residual tolerance of 107°.

In Table 1 we vary the threshold 77; = 7 as powers of k for the homogeneous
problem using a fixed 5 x 5 square decomposition. The best choice advocated in
[3], namely 77 = k, succeeds in requiring relatively low iteration counts in order to
reach convergence with a modest size of coarse space. However, we observe that
as the wave number k increases the number of iterations required also increases,
suggesting the approach will begin to struggle if £ becomes too large. We see from
other choices of 7 that taking a larger coarse space reduces the iteration counts. For
instance, with the largest wave number tested when 77 = k12 the size of the coarse
space doubles while the iteration count it cut almost by a factor of three compared
to 77 = k. In fact, there is a qualitative change in behaviour with respect to the wave
number k, namely independence of the iteration counts to k, once 7 becomes large
enough, this point being approximately given by 7 = k*3. We note that the size
of the coarse space is approximately proportional to 77 in the results of Table 1 (see

Fig. 1 Different layered

configurations for the 1 p
heterogeneous wave speed

c(x) within the wave guide p pl2
problem, where p > lisa

contrast parameter. (a) 1 pl4
Alternating layers. (b)

Diagonal layers p 1

(a) (b)
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Table 1 Preconditioned GMRES iteration counts using the two-level method while varying the
threshold parameter 7) for the DtN coarse space. The size of the coarse space is given in brackets.
A uniform decomposition into 5 x 5 square subdomains is used

Mglob k ;]\:k ;]\:kl.l ;]\:kl.Z ;]\:kl.S ;]\:kl.ét ;]\:kl.S
100 18.5 |12 (144) |9 (160) 8 (200) 7 (240) 6 (320) 5 (400)

200 29.3 |16 (215) |11 (240) 9 (320) 7 (434) 6 (560) 5 (760)

400 46.5 | 18(299) |13(393) 10 (545) 7 (784) 6 (1074) 4 (1480)
800 73.8 |27(499) |18(674) 10 (960) 8 (1376) 6 (2025) 4 (2928)

104 104
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Fig. 2 The size of the DtN coarse space as a function of the number of subdomains N (left) and
wave number k (right) for the homogeneous problem with threshold 7 = k*/3

also Fig.2). As such, we see that the coarse space should grow faster than linearly
in k in order to achieve wave number independent iteration counts for this problem.

We now verify that the DtN coarse space provides an approach which is scalable
with respect to the number of subdomains N. Table 2 details results for a varying
number of square subdomains when using a threshold 7 = k*3. As well as
seeing the iteration counts staying predominantly constant as we increase k, they
do also as we increase the number of subdomains N (aside from a small number
of slightly larger outliers). Note that, while the size of the coarse space increases
as we increase N, approximately at a rate proportional to N2/3 as shown in Fig. 2
(in fact, independent of our choice of 7)), the number of eigenfunctions required per
subdomain decreases with N. This means the solution of each eigenproblem is much
cheaper for large N as they are of smaller size and we require fewer eigenfunctions.
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Table 2 Preconditioned GMRES iteration counts when using the two-level method with threshold
parameter 7j = k*/3 for the DtN coarse space and varying the number of subdomains N. A uniform
decomposition into /N x +/N square subdomains is used

N
nglob | k 4 |9 16 |25 |36 |49 |64 |81 |100 |121 |[144 |169 |196
100 185 |6 6 |8 6 6 6 |6 6 6 6 6 7 7
200 293 |6 |13 |8 6 6 17 |7 7 7 7 7 7 7
400 46.5 |7 |11 |7 7 7 7 |7 7 10 20 7 7 7
800 73.8 |7 9 |9 7 7 7|7 7 7 7 8 7 7

We now turn our attention to the heterogeneous case. Table 3 (left) gives results
for the alternating layers wave guide problem (see Fig. la) for varying angular
frequency w, contrast in wave speed p, and number of subdomains N when using
7; = k;*3 in subdomain ;. The picture painted is now rather different from the
homogeneous case. While for some choices of N iteration counts remain robust to
wave number, in general they degrade as w increases. The best results are for N = 4,
16, and 64 (powers of 2) while the poorest are with large N. More generally, if the
subdomains are close to being aligned with the jumps in k we obtain better results,
otherwise robustness is lost. We note, however, that iteration counts are robust to
large contrasts p. We confirm that the disparate trends observed for the alternating
layers problem are due to the geometrical aspects of the problem by considering
instead the diagonal layers problem (see Fig. 1b). Results for the diagonal layers
problem are given in Table 3 (right) and now show that any robustness to the wave
number is, in general, lost for the heterogeneous problem. We note that increasing
the threshold to 77; = k;3/? does not improve this assessment. Nonetheless, the DIN
approach remains robust to increasing the number of subdomains N.

We now show that the sensitivity of the DtN approach is not solely due to the
heterogeneity of the media by reconsidering the homogeneous problem but using
non-uniform subdomains, which we compute using METIS. Results for this case
are given in Table 4 where we see a slow but definite increase in iteration counts as k
increases. Again, we see robustness to the number of subdomains but lose robustness
to the wave number. Note that this persists even for 7 = k3/2. Nonetheless, in our
DtN approach we still have rather few GMRES iterations required to compute the
solution when £ is relatively large (in this case up to k = 117.2).
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5 Conclusions

In this work we have investigated a two-level domain decomposition approach to
solving the heterogeneous Helmholtz equation. Our focus has been on the Dirichlet-
to-Neumann coarse space and how the approach depends on the threshold to select
which eigenfunctions go into the coarse space. We have seen that the threshold in
[3] can be improved in order to give wave number independent convergence with
only moderate added cost due to the larger coarse space. However, this is only true
for the homogeneous problem with sufficiently uniform subdomains. In particular,
convergence depends on the wave number for a general heterogeneous problem.

In order to obtain fully wave number independent convergence for Helmholtz
problems, a stronger coarse space is needed. A recent approach that achieves this,
based on a related GenEO-type method, can be found in [2].
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A Comparison of Boundary Element )
and Spectral Collocation Approaches e
to the Thermally Coupled MHD Problem

Canan Bozkaya and Onder Tiirk

Abstract The thermally coupled full magnetohydrodynamic (MHD) flow is numer-
ically investigated in a square cavity subject to an externally applied uniform
magnetic field. The governing equations given in terms of stream function, vorticity,
temperature, magnetic stream function, and current density, are discretized spatially
using both the dual reciprocity boundary element method (DRBEM) and the
Chebyshev spectral collocation method (CSCM) while an unconditionally stable
backward difference scheme is employed for the time integration. Apart from the
novelty of the methodology that allows the use of two different methods, the work
aims to accommodate various characteristics related to the application of approaches
differ in nature and origin. The qualitative and quantitative comparison of the
methods are conducted in several test cases. The numerical simulations indicate
that the effect of the physical controlling parameters of the MHD problem on the
flow and heat transfer can be monitored equally well by both proposed schemes.

1 Introduction

Magnetohydrodynamics investigates the dynamics of electrically conducting fluids
under the effect of magnetic fields. The MHD flow and heat transfer studies have
attracted many researchers due to their wide range of engineering applications
such as cooling systems, crystal growth, MHD generators, nuclear reactors, and
electromagnetic pumps. The incompressible full MHD and energy equations involve
the coupling of the Navier-Stokes equations of fluid dynamics with Maxwell’s
equations of electromagnetism through Ohm’s law while the thermal coupling is
performed by Boussinesq approximation. The resulting governing equations are
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highly nonlinear due to the additional terms with the existence of Lorentz force,
which allows the availability of analytical solutions only in some restricted cir-
cumstances. Hence, an extensive research is ongoing in establishing and developing
effective numerical techniques which are applicable to the full MHD flow and heat
transfer models. In many studies available in the literature, the magnetic Reynolds
number is assumed to be so small that the induced magnetic field is neglected, [1-3].
However, it is well known that the magnetic induction should be taken into account
in the mathematical model especially for large values of Hartmann number, [4].
There are several studies investigating the full MHD model in which the existence
of external and internal magnetic fields is taken into account, [5—8]. On the other
hand, one of the main difficulty in solving the full MHD flow numerically at the
discrete level is to satisfy the divergence-free constraints for both the velocity and
magnetic fields as well as the existence of pressure terms in the equations. Thus,
various numerical models for the full MHD flow have been developed (see, e.g., [9]
and the references therein).

The aim of this work is to present a comparative numerical analysis for the
solution of thermally coupled full MHD flow in a square cavity by the use of
two widely used methods, namely DRBEM and CSCM. An iterative approach
that accommodates both techniques to discretize the full MHD flow given in
a special mathematical model has been proposed. The governing equations are
considered in the form of stream function-vorticity-magnetic induction-current
density-temperature, so that the pressure gradient can be eliminated, and the
divergence-free conditions for the velocity and the magnetic field are automatically
satisfied through the application of the numerical methods. The qualitative and
quantitative comparisons of the results obtained by DRBEM and the ones by CSCM
(which are given in [8]) are conducted for several cases to investigate the effects of
the problem physical parameters on the flow field and the temperature distribution.

2 Physical Problem and Mathematical Formulation

The unsteady, two-dimensional full MHD flow and heat transfer in a square cavity
of width ¢ filled with an electrically conducting fluid is considered. A transverse
uniform magnetic field of intensity By in the positive y-direction is externally
applied. The vertical walls of the cavity are assumed to be adiabatic while the
horizontal upper and bottom walls are maintained at constant hot (7},) and cold (7;)
temperatures, respectively. The flow generated inside the cavity obeys Boussinesq
approximation, and the induced magnetic field is taken into account while the
effects of Joule heating, viscous dissipation, displacement and convection currents
are neglected. Thus, the unsteady non-dimensional governing equations of the
full MHD flow in stream function ¥, magnetic induction A, current density j,
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temperature 7 and vorticity w are given as [8, 9]

AY = —w,

AA = —j,

Ai— R aj Rey A( 0A 4 aA)

= e —_ e, u v 5
S Rem g T e A Ty

aT aT oT

AT = PrRe + PrRe(u +v_ ),
at ax dy

Aw:Re|: +u

ow ow n ow Ra 0T Ha’> 03A3j 0dA Bj)
v - - - 9
at ox ay PrRe*> 3x  ReRe, 03y dx  0x 0y

ey
by introducing the stream function and vorticity with u = dy/dy, v = —0y/dx
and w = dv/dx — Ju/dy, (u,v) being the velocity field, and the magnetic
stream function and the current density with By = 0A/dy, By = —0J0A/ox,
and j = 0dBy/dx — 0By/dy, (Byx, By) being the magnetic field. The dimen-
sionless parameters are the Reynolds number (Re = {fup/v), Prandtl number

(Pr = v/a), magnetic Reynolds number (Re,, = wnofup), Rayleigh number
(Ra = g,BE?’(Th — T.)/av), and Hartmann number (Ha = Bol./o/1). Here,
o, v, (L, Um, B, 0,uo, and g are the fluid thermal diffusivity, kinematic viscosity,
dynamic viscosity, magnetic permeability, volume expansion coefficient, electrical
conductivity, characteristic velocity, and the gravitational acceleration, respectively.
Homogeneous initial conditions are imposed for all the unknowns at + = 0. The
velocity at the upper wall is given by (&, 0) for a prescribed & while the other
walls have zero velocity conditions. The temperature of the top and bottom walls are

taken as 7 = 0.5 and T = —0.5, respectively, and on vertical walls the condition
0T /dn = 0 is imposed. Since B, = 0 and By = 1, the magnetic stream function is
taken as A = —x on all walls. On the other hand, the unknown boundary conditions

of the vorticity and current density are calculated numerically with the use of the
stream function and magnetic stream function equations, respectively, through the
application of the numerical methods.

3 Numerical Methods

As already mentioned, the thermally coupled full MHD flow equations are dis-
cretized spatially by using two methods, namely the Chebyshev spectral collocation
and dual reciprocity boundary element methods, both combined with an uncondi-
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tionally stable backward difference scheme given by

8S|n+l B Sn+1 N

) 2
ot ot @

for the time integration, where n and §¢ are the time level and time step, respectively.

3.1 Application of CSCM

The CSCM discretization of the equations in (1) is based on requiring the numerical
approximation of each unknown to be exactly satisfied on the abscissae of the
extreme points of the Chebyshev polynomials defined as x; = cos(iw/N),i =
0, 1,..., N. The method is of global nature; each function spans the whole domain
under consideration and thus, the derivatives of the function depend on the entire
discretization. The interpolating polynomials are differentiated analytically by
means of the so-called Chebyshev spectral differentiation matrices. Utilization of
these matrices in combination with the time integration scheme (2) results in the
following CSCM and time discretized form of (1):

Iewn+1 = —w",
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In these equations, the (N + 1)? x (N + 1)? matrix K is given as K = D@ +
E® where D® and E® are the Chebysheyv differentiation matrices in x— and y—
directions, respectively, and are defined with the use of the Kronecker product as
DO =T ® DO and EO = gD ® I,i = 1,2, being the order. [ is the identity
matrix of order (N + 1)2, and ¢ is the vector of order (N + 1)? whose all entries
are 1. 9((13, @) denotes the vector formed by multiplication of the approximations
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to the first partial derivatives of its argument vectors, and is defined as
26.9) = 2EVHDVg - 2DVHED).

.@(cf)) denotes the diagonal matrix with the entries of a vector 43 on its diagonal.
The resulting fully coupled nonlinear system of equations is solved iteratively
incorporating the unknown boundary conditions of the vorticity and current density
by means of the velocity and magnetic field components, respectively. The iterative
steps are repeated until preassigned convergence criteria are met for a given
tolerance for all the unknowns on the whole problem domain. For further details
regarding the method and calculations, we refer to [8].

3.2 Application of DRBEM

The DRBEM aims to transform the governing equations (1) into boundary integral
equations by using the fundamental solution of the Laplace equation, u* =
1/2m In(1/r), and treating the terms on the right hand sides (rhs) of these equations
as the non-homogeneity. Thus, Egs. (1) are weighted by u™ and the application of
Green’s second identity results in, [10],

0S5
¢ S; —i—/(q*S —u* )dl = —/ bsu*dS2, 4)
r on Q

where S is used for each unknown v, A, j, T, w. Here, ¢g* = 0u™/dn, " is the
boundary of the domain €2, and the constant ¢; = ¢; /27 with the internal angle
¢; at the source point i. All the terms on the rhs of Egs. (1) denoted by bg, are
approximated by a set of radial basis functions fj(= 1 + r;) linked with the
particular solutions it ; of Ait; = f;, [10]. That is, these approximations are given
by bg ~ ZN +L as; fj = Zy:f as; Ailj where ag; are undetermined coefficients,
N and L are the number of boundary and interior nodes, respectively. When Green’s
identity is applied to the rhs as well, and the boundary is discretized with constant
elements, the matrix-vector form of Eq. (4) can be expressed as

N . .
HS—Ga = (HU — GQ)F 'bs, (5)
n

where the components of matrices H and G are calculated by integrating g *and u*
respecnvely, over each boundary element. The matrices U, Q and F take the Vectors
ij,qjand f; of sizes (N + L) as their columns, respectively. When the backward
finite difference given in Eq. (2) is applied to approximate the time derivatives in
Eq. (5), the DRBEM system of algebraic equations takes the form

Hwn+1 _ G¢;+1 = _Cu" , (6)
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HAn+1 _ GAZ+1 — _CJn , (7)
PrR 1
(H—"""%C— PrReCK)T"' — GT"' = — ' PrReCT" (8)
5t g 5t
Rem . i1 1 1 -n n+1
(H =" 0" = Gjg ™! = = RenCj" — RenCAK A 9)
R R R
(H—"6C—ReCKYW™ —Guw'*' =—"Ccuw'— ¢ cp, 7!
5t 4 5t PrRe
(10)
Haz n+1 .n+1 n+1 .n+1
— o C(DyA™ D" = DA™ D, Y,
m

where C = (HU — GQ)F~!, K = u"*'D, + v"*'D,, D, = 9F/3xF~! and
Dy = 0F/dyF ~! The resulting system of coupled equations is solved iteratively
with the initial estimates of w, j, T. In each time level, the required space derivatives
of S, the boundary conditions of the vorticity and current density are obtained by
using F as

BN BN 2F  9%F 2F  8%F
=D,S, =D,S, w=— Fly, j=— F7lA.
dx 7 dy v W (8x2 + 8y2) v (8x2 + 8y2)

4 Results and Discussions

The thermally coupled full MHD flow in a square cavity is investigated under the
effect of a vertically applied uniform magnetic field. The numerical simulations
with the CSCM and DRBEM are carried out to investigate the effect of various
combinations of problem parameters Re, Ha and Re,, at a moderate Ra = 10* and
Pr = 0.1. The boundaries of the cavity with side length ¢ = 1 are discretized by
using N = 50 nodes and constant boundary elements along one side of the cavity,
respectively, in CSCM and DRBEM, while a constant time step 6 = 0.25 is used in
both methods. The stopping criteria of the iterative schemes is set to be 107> for all
the unknowns, and the solutions in regard to this criteria are referred as the steady-
state solutions. We specifically consider the regularized lid-driven cavity flow with
a moving upper wall whose velocity is given as i = 4x2(1 — x2).

First, the validation of the present methods is performed by solving the full MHD
flow in a regularized lid-driven cavity subject to a transverse magnetic field in the
absence of heat sources. Table 1 shows that the results obtained by DRBEM and
CSCM are quantitatively in good agreement with the ones given in [5, 9] in terms of
the values of 1y, location of primary vortex, and extrema of magnetic field intensity.
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Table 1 Characteristics of the primary vortex and the magnetic field: Re = Re,, = 100, Ha =
10

Primary vortex Magpnetic field intensity

W X y min(B,) |max(By) |min(By) |max(By)
Bozkaya [5] | —0.07346 |0.6719 |0.7656 | —0.9067 | 1.8729 —0.1130 |2.0792
Yu [9] —0.07354 |0.6641 |0.7656 | —0.9092 | 1.8989 —0.1093 |2.0789
CSCM [8] —0.07324 |0.6545 |0.7679 | —0.8988 | 1.9093 —0.1120 |2.0751
DRBEM —0.07197 |0.6643 |0.7643 | —0.9094 | 1.9190 —0.1292 | 2.0817

o CSCM oo DRBEM
5 500
% 20 40 60 s o 20 40 60 80
N N

Fig. 1 Condition number in 2-norm versus the number of nodes N in CSCM and DRBEM along
one side of the cavity

Figure 1 displays the variation of the condition number of the resulting CSCM
and DRBEM coefficient matrices for the discretized system of stream function
equation with respect to the number of nodes N when Ha = 50, Re = 400 and
Re,;, = 100. Although the matrices are dense in both methods, the condition number
is very large giving ill-conditioned matrices in spectral method when compared to
the one in DRBEM for large values of N, which is a well-known characteristics
of collocation methods. Moreover, for larger N, the condition number in CSCM
increases faster than it does in DRBEM. However, in this problem we obtain systems
of sizes that remain in solvable ranges which can be handled by both CSCM and
DRBEM.

The effects of Re on the flow, vorticity and temperature distribution are visual-
ized in Fig.2 when Ha = 25 and Re,, = 1. It is well-observed that the results of
CSCM and DRBEM are quite compatible. A circular vortex formed at the upper
right corner of the cavity due to the motion of upper lid, moves towards the center
of cavity with an increasing magnitude as Re increases from 100 to 1000. Vorticity
contours are concentrated mainly close to the upper and right walls, and form a
boundary layer at Re = 1000. As Re increases, the isotherms change their profiles
due the strong temperature gradients indicating that the heat transfer is dominated
by convection.
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Fig. 2 Effect of Re(= 100, 1000) on ¥, w and T: Ra = 104, Ha = 25, Re,, =1

Finally, the magnetic streamlines and the contours of current density obtained by
CSCM and DRBEM are drawn in Fig. 3 to analyze the effect of magnetic Reynolds
number Re,, (= 1, 100) when Ra = 104, Ha = 25, Re = 100. Both methods give
similar results in each case. The magnetic streamlines extended vertically in the
same direction of the applied magnetic field at low Re,,, are distorted by forming a
prominent circulation in the region close to the upper right corner at Re;,, = 100. On
the other hand, an increase in Re,, results in a rise in the magnitude of the current
density although they have similar profiles for each Re,,.

5 Conclusion

A numerical model which is divergence-free of magnetic field is proposed for
solving thermally coupled unsteady incompressible full MHD equations. Two
different techniques, namely, CSCM and DRBEM, coupled with a backward
difference time integration, have been shown to accurately represent the solution
of the physical model. The numerical simulations have demonstrated that both of
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Fig. 3 Effect of Re,, (= 1,100) on A and j: Ra = 10*, Ha = 25, Re = 100
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the present approaches are accurate and reliable, and have the ability to solve the
full MHD problems in a reasonably wide range of the problem parameters.
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Minimal Sets of Unisolvent Weights for m)
High Order Whitney Forms on Simplices @&

Ana Alonso Rodriguez, Ludovico Bruni Bruno, and Francesca Rapetti

Abstract Whitney forms—degree one trimmed polynomials—are a crucial tool for
finite element analysis of electromagnetic problem. They not only induce several
finite element methods, but they also bear interesting geometrical features. If, on
the one hand, features of degree one elements are well understood, when it comes
to higher degree elements one is forced to choose between an analytical approach
and a geometric one, that is, the duality that holds for the lower degree gets lost.
Using tools of finite element exterior calculus, we show a correspondence between
the usual basis of a high order Whitney forms space and a subset of the weights, that
is, degrees of freedom obtained by integration over subsimplices of the mesh.

1 High Order Whitney Forms

In what follows T = [x, ..., X,] denotes a non degenerate oriented n-simplex.
Its (oriented) k-subsimplices are in a bijective correspondence with the subsets of
k + 1 elements so they are ("+1). Any ordered listing of k + 1 vertices of T yields

k+1
a bijective map o — f; = [X5(0),.-.,Xok)].- We denote by Ag(T) the set of
(oriented) k-subsimplices of T.
With each point P € T we may associate a (n + 1)-uple (Ao, A1, ..., Ay) such

that P = )" _ A;x;, with the constraints ) ;_,A; = 1 and A; > 0. We call such
functions barycentric coordinates for P. Similarly (see [3]) we may associate with
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each subsimplex its Whitney form

k
wf, = Z(_l)l)\-o‘(i)d)\-o‘(o) Ao ANdhgiy N AN dAg k),
i=0

where we take o as an increasing permutation. Consequently, we have a map

fo‘ [ a)fa,

which is known as the Whitney map (see [8]), and provides a relationship between
the simplicial homology of a simplicial complex and the de Rham cohomology of
that complex. Observe that if f;, f,» € Ax(T) and o # o’ then

o, =0, (1)

since if i € {0, ..., k} is such that X, ;) &€ f5, both A5 (;) and dA ;) vanish on f-.
Moreover it is known (see [7]) that such forms are closed when restricted to the
subsimplex they are generated by, that is, dwy, | 5= 0.

Whitney forms of order k form a vector space, which may be characterized
in terms of the Koszul differential (see [1]), which acts as the contraction of a
differential form w € A¥ (R™) with the identity vector field X, that is

KoV, ..., Vg—1) = o(X, VI, ..., k1),

and which is assumed to map smooth functions to 0.

Forr > Oandk € {0, ..., n} let us denote by P, A¥(R") the space of polynomial
differential k-forms of degree r. For k > 0 the spaces of trimmed polynomial
differential k-forms of degree r are defined

P-AKR") = {0 € P AYRY) | kw € P AFTRY), 2)

while P, AOR") = P, AO(R"). Their elements are the so called Whitney forms of
higher degree. One has (see [1]) dim P A¥(R") = (’”,j‘ NE.
For r > 0 the following decomposition holds (see [2]):

P;ANRY) =P AFRY) @ kH, 1 AFRY), 3)

being H,_1 A¥(R") the space of homogeneous polynomial differential k-forms of
degree r — 1. Spaces P, AX(T) are then defined by pulling back with respect to the
inclusion map 7 < R”", and from now on we will consider just such spaces.

It is easy to check that (3) implies the following result.

Lemmal [fw € SDr_Ak(T) is a closed form, then w € Pr_1 AF(T).
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A crucial aspect of Whitney forms is that they provide a basis for the case r = 1
of the above spaces (see [1]).

Theorem 1 Whitney forms associated with the k-subsimplices of T are a basis for
P AKT).

Property (1) suggests as degrees of freedom for Whitney forms the weights

Wf, > ; @ fo - “4)

Concerning high order Whitney forms, in [4] it has been proved that for r > 0

P ANT) = P(T) - PTANT). (5)
Denote by Z(n + 1, r) the collection of multi-indices ¢ = («p, . . ., o)’ of weight
r,and by A* = H?:())\?i- In view of (5), the set {A®*wys, : @« € T(n+1,r) and f, €
Ay (T)} provides a system of generators for SD;_HAk (T) but not a basis. A wise
way to get rid of redundant objects consists in considering, for each fo € Ax(T), a
subset of multi-indices Io,(n + 1,r) ={e e T(n+1,r) : A; =0Vi <o(0)}. A
mnemonic rule to visualize this is the following: if f;; is the subsimplex associated
with the permutation o, then we have to discard all the possible « that have a non-
zero entry in a position smaller than o (0). For instance, if f, = [1, 2], then the
multi-indices a whose first entry is not empty are to be discarded, as the associated
A%wy, turn out to be linearly dependent from other elements of the basis. We have
in fact the following (see [1]):

Theorem 2 The set {\*wy, : fo € A(T)anda € 70 (n + 1,r)} is a basis for
P AT

A dual question is to investigate how degrees of freedom change for high order
Whitney forms. If on the one hand moments, in the classical sense of [6], have been
proved to be unisolvent (see [5]), on the other they lack of geometrical meaning.
Thus, we aim to adapt the definition of weights, which for obvious dimensional
reasons does not follow from the case of » = 1. The solution proposed in [7] and [4]
consists in introducing of a subdivision of T into small simplices, which basically
provide a particular subtriangulation of the simplex 7" one deals with.

2 Small Simplices

The construction of the small simplices needs some auxiliary results.

Definition 1 (Principal Lattice X, (7)) Let T € R” be a simplex and r € N. Let
{A;} be the set of barycentric coordinates for 7. We define the principal lattice of
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order r as the set of points

. 1 r
%(T) = {x eT|)(Xx) e {0,
’

~|—1"”’r+1’1} foreachie{O,...,n}}.

(6)

For each r, X, (T) consists of ("Jr;H) points, where n is the dimension of the
simplex T. Thus, an enumeration of those points yields a bijective association with
a basis of P,41(T') and it is a well known matter of linear algebra to conclude that
a polynomial p(x) of degree r 4 1 that vanishes for each x € %,(T) for some
n-simplex T is identically zero.

Small simplices may be characterized in terms of their principal lattice (see [7]).

Definition 2 (Small Simplices Ef(T)) Let T € R" be a simplex and %,(T) be its
principal lattice. We define the set of small simplices of order n and degree r as the
collection of all the n-simplices that are r}r | ~homothetic to 7" and whose vertices
belong to X,(T). We denote such a set by X/ (T). Formally, X/(T) = {S@,7) :
o€ I(n+1,r)}, being

1

r+1x~|—[x0,...,xn]a : XET}.

S(@,T) = {

Fork € {0, 1, ..., n — 1} the set of small simplices Ef(T) of order k and degree
r is the collection of all the k-subsimplices of all the elements of X (T').

From the perspective of degrees of freedom the unisolvence of the set Ef (T) for
P AX(T) has been proved for each k = 0, 1, ..., n. We have in fact the following.

Proposition 1 Let w € P, AX(T). If |

= . k
Sfo) w =0 foreach s, 1,y € X:(T), then

w=0.

For a complete proof, which is a bit technical, we address the interested reader
to [4]. We here recall just the main ingredients.

Observe that every w € P, A"(T) is closed, hence by Lemma 1 it in fact
belongs to P A" (T).

Let 7z denote the translation by the vector §: (tzu)(x) = u(x— §). Since the map
E— [ 7 Tgw is a polynomial of degree r which is zero at the points of the principal
lattice ¥,—1(T’) of the n-simplex T’ in Fig. 1, it is zero everywhere. By Lemma
3.12of [4] w = 0.

We also remark that for k = 0 equality can be restored by avoiding double
counting of points. In this case integrals assume the meaning of evaluations and
we thus fall into the preceding case.

Intermediate cases are trickier, as the closedness of @ is not a priori granted.
However, one may work inductively in a descending way. For k = n — 1, it follows
from Stokes’ Theorem that [, = [¢dw and hence, being able to write the
boundary of each S € Ef(T), one gets that dw € P, AK(T) is in fact closed and it
is now possible to reproduce more or less the same proof as before. Then one works

r+l1
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by induction. This makes clear that one is not able to leave Stokes’ Theorem and
some hypotheses on the boundaries of the subtriangulation out of consideration.

3 A Minimal Set of Unisolvent Weights

As one may readily check, the set Ef(T) bears some redundancy, since
#3k(T) = dimP; AK(T), (7

where equality holds just when k = n. It is natural to investigate whether it is
possible to extract a unisolvent subfamily of Zf (T) or to build a new one which is
minimal in the sense that (7) becomes an equality for each k. The answer to both
questions is yes: in the following we prove the second fact and show how the first
can be deduced.

We build a new family of “subsimplices” of T (in the sense that such subsim-
plices are topologically contained in 7)) as follows. For each @ € 7(n + 1,7) we
define the n-simplex

S@.T) = ! [ 1R (a) €

s X+ [x1,...,x,]R(@) : xeTy.
(w) r 1 1 n

with R(e) = (aq, ..., )T,

They are homothetic to 7' (with different ratios, from ril to 1) and their vertices
belong to X, (T). Moreover they have n vertices on the principal lattice of Fp, the
face opposite to the vertex xg (see Fig. 1).

We denote

SUT) = (S@r) @€ I(n+1,r)).

Fork € {0, 1,. o n} the set if(T) is the collection of all the k-subsimplices of
all the elements of X' (T'), namely, if f, € Ax(T) and

14+ ag

ol X+ [x1,...,X;]R(e) : xefg},

S, fr) = {

then SX(T) = (5a.z,) : fo € Ax(T) and e € T(n +1,7)}.
Remark 1 1If fo C Fothen (S, r,) : @ € I(n+1,r)} C Fo.

Observe that since « ranges over J(n + 1,r) we have not removed any
redundancy. Therefore, it is just a matter of adapting Proposition 1 to see that also
the following result holds true.
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Proposition 2 Let o € P, A¥(T) be such that fi(af o = 0 for each 3, f,) €
SK(T). Then o = 0.

It is worth noting that Lemma 3.12 of [4] can be generalized to a mapping pg
which is not just a translation but also contains a scaling:

14+&

(pgu)(x) =”<r+1

x+(0,§1,...,$n)T).

Since the map & — f 7 pgw is a polynomial of degree r which is zero at the points
of the principal lattice ¥, _1(T") of the n-simplex T” in Fig. 1, it is zero everywhere
and then by the extension of Lemma 3.12 of [4] w = 0.
The rest of the proof can be carried out similarly to that of Proposition 1.

In order to restore the cardinality equality (7), for 0 < k < n we define
Tk (T) ¢ f]f(T) in the following way:

r,min
S fy) € Zf pin(T) ¢ o; = Oforall i suchthat 1 <i <o(0).
A dimension count shows that

#3:k

r,min

(T) = dim P, AK(T).

Roughly speaking, f)f min (T) coincides with if(T) and contains the collection
of n-simplices that are . 4{1 homothetic to T (for j = 1,...,r + 1) that have n
vertices belonging to Fp, the face opposite to the vertex Xo. On the other hand,
consider the face e; C Fp which is opposite to X;. One may think of EZ:”}n(T), as
the set that contains two kind of elements (see Fig. 2):
« f € 3d¥M(T) such that int(f) N int(Fy) = &;

I

* (n — 1)-simplices in Fp that have n — 1 vertices on %,(e;) and that are -

homothetic to Fp forsome !/ =1, ...,r + 1.

Fig. 1 On the left the elements of E%(T) and the vertices of the principal lattice of 7’. On the
right the elements of i%(T) and the vertices of the principal lattice of 7”. In this example n = 2



Minimal Sets of Unisolvent Weights for High Order Whitney Forms on Simplices 201

Fig. 2 On the left the elements of 231 (T), on the right the elements of iSI,min (T). In this example
n=2

Note that f]f_l (T) also contains two kinds of elements: f € Bif(T) such that
int( f) Nint(Fp) = @, and (n — 1)-simplices in Fp with vertices on %, (Fp) and that

are r_lH-homothetic to Fy for some ! = 1,...,r + 1. Hence they differ on those
(n — 1)-simplices in Fy that have not n — 1 vertices on X, (e1).
The generalization to each k = n — 2, ..., 1 follows by recursion, whereas for

k = 0 one just takes the remaining 0-simplices.
We need two auxiliary results: for any fy € Ax(T) and 8 € I(k + 1,r) we put

1+ Bo

ol X+ [Xo1), .- Xo®)]JR(B) 1 X € fa}-

56,8, f0) = {

Let us also define f)f(fg) = {Se,8,5,) : B € I(k+1,r)}. The following result is
a corollary of Proposition 2.

Lemma2 Let o € P, AX(f,) be such that Segism @ = 0 for each 5¢,8, 1,y €
S5 (fo). Then o = 0.

It is then easy to prove the following.
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LemmaS Let » € P;ANT) be such that |

S @ = 0 for each S@,1,) €
(T). Then w|f =0forall f, € A(T).

rmm

Proof 1t is enough to prove that Ek(fg) C Efmm(T) for all f € Ayx(T). In fact,

given f, € Ay(T) and B € I (k + 1, r), we consider the followinga € 7(r + 1, n)

Boif j=0
aj=1pifj=0()1<i<k
0 otherwise.

Then 5¢,8,7,) = S@,f,) € Er min(T) because o; = 0 forall i suchthat 1 <i <
a (0). |

We are now in a position to prove that the set of weights on the elements of

Efmm (T) is a minimal set of unisolvent degrees of freedom for Pr_+1 Ak(T).

Theorem3 If o € P, AX(T) is such that L( @ = 0 for each 5.1,y €
" mm(T) then v = 0.
Proof We will prove that if fi‘(a,f = 0 for each 54, 7,) € Er min (1), then

L(af o= 0 for each §(q, 1,) € f)k(T).
First we notice that S (T) \ zfmm(r) C {fy € A(T) : o(0) > 0}. In fact,
S.f) € ENT)\ zfmm(r) if and only if there exists i such that 1 < i < o (0)

and o; # 0. If 0(0) = O such an i does not exist. Hence f, C Fj and by Remark 1
E(a,fg) C Fop.

From Proposition 3, a)| = 0 for all f € Ax(T) hence in particulara)|§( =0
forall 5a,7,) € ZN(T)\Ef,.,(T) and [, @ =0foreachiw,z,) € ZX(T). O

S fo)

This minimal set of unisolvent weights allows to show that also the weights on
the natural subset of small simplices

S pin(T) = {Saa.fy) € SX(T) © fo € A(T) and @ € T (n + 1, 7)),

that are clearly in a one to one correspondence with the elements of the basis of

P, + 1Ak(T) introduced in Theorem 2, are a minimal set of unisolvent degrees of

freedom. We have in fact the following.

Theorem4 If o € P, AK(T) is such that f

saf @ = 0 for each s@,f,) €
(T), then w = 0.

rmm
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Experimental Comparison of Symplectic )
and Non-symplectic Model Order s
Reduction on an Uncertainty

Quantification Problem

Patrick Buchfink and Bernard Haasdonk

Abstract Uncertainty Quantification (UQ) is an important field to quantify the
propagation of uncertainties, analyze sensitivities or realize statistical inversion of
a mathematical model. Sampling-based estimation techniques evaluate the model
for many different parameter samples. For computationally intensive models, this
might require long runtimes or even be infeasible. This so-called multi-query
problem can be speeded up or even be enabled with surrogate models from model
order reduction (MOR) techniques. For accurate and physically consistent MOR,
structure-preserving reduction is essential.

We investigate numerically how so-called symplectic model reduction techniques
can improve the UQ results for Hamiltonian systems compared to conventional
(non-symplectic) approaches. We conclude that the symplectic methods give better
results and more robustness with respect to the size of the reduced model.

1 Introduction

Sampling-based Uncertainty Quantification (UQ) is known to benefit from surrogate
modelling which includes model order reduction (MOR) methods [1, 4]. The
problem with conventional MOR techniques is that the reduced model might lose
the original system structure and might thus produce unphysical results. A solution
are structure-preserving MOR techniques [2, 6, 9, 10].

A popular example for structured, mathematical models are Hamiltonian sys-
tems. These are known for the characteristic property to preserve the Hamiltonian
function which can in many contexts be interpreted as the energy of the system.

As structure-preserving reduction technique for parametric Hamiltonian systems,
we consider symplectic MOR with the Proper Symplectic Decomposition (PSD)
basis generation technique [2, 9, 10].
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Table 1 MOR techniques used in the experiments. Classified by orthogonality and symplecticity

MOR technique Abbreviation Ortho. Sympl. Ref.
POD of complete state POD complete v X [1]
Block structure preserving POD, POD separate v X [14]
i.e. V= blkdiag(V;, V)

PSD complex SVD PSD cSVD v v [10]
PSD SVD-like decomposition PSD SVD-like X v 2]

Based on a two-dimensional, linear elasticity problem, we compare two symplec-
tic and two non-symplectic MOR techniques (see Table 1) numerically on an UQ
experiment. We observe a significantly higher stability and more accuracy for the
symplectic techniques in comparison to the established, non-symplectic methods.

2 Symplectic Model Order Reduction for Parametrized
Hamiltonian Systems

Symplectic model order reduction (MOR) is a structure-preserving MOR technique
for parametrized, finite-dimensional, canonical, autonomous Hamiltonian systems.
These systems are formulated in terms of an even-dimensional state x (¢, u) € R2"
as

d 0, 1
x(t, w) = J2u Ve Hx (1, 1), ), Jow= 7 "), x (10, ) = xo()
dr -1, 0,
(D
where (xo, fp) € R?" x R is the initial condition, t € I := [tg, 00) is the time,

€ P C RP is the parameter vector from a parameter space P, Jy, is the so-
called canonical Poisson matrix, Vy(-) is the gradient, H : R?" x P — R is the
Hamiltonian (function). For a detailed introduction to Hamiltonian systems, we refer
e.g. to [8].

The underlying geometry of a Hamiltonian system is the symplectic geometry.
In the following, we give a concise presentation of symplectic geometry in finite
dimensional vector spaces as a background for the motivation of symplectic MOR.
For more details, we refer e.g. to [3].

The symplectic geometry over finite dimensional vector spaces is based on
symplectic forms wy, : R?* x R¥ — R which are special (skew symmetric and
non-degenerate) bilinear maps. The canonical form is defined by

w2 (v, W) = v Jow, v, w e R,
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A linear map A : R* — R?", x > Ax with the coefficient matrix A € R>"*%
with k < n is called symplectic if it preserves the symplectic structure in the sense
that it holds for all v, w € R%*

w2 (A, v) Aw = v (AT ]2, A)w = 0" Jpw = oy (v, W)

which is equivalent to ATJ5,A = Jor. We call a matrix A symplectic (with respect
to wyy, and wyy) if it fulfills this condition.

Most common MOR methods are projection-based techniques [1] which proceed
in two steps: firstly, the original state is approximated in a k-dimensional linear
subspace with a reduced-order basis (ROB) by

x(t, ) =~ Vixi(t, p), ROB: V;, € RZ"Xk, reduced state: xx (¢, i) € R*,
2

As a second step, the residual of this approximation is projected in a k-dimensional
space with a projection matrix W, € R?"*¥ in order to get a well-posed problem.

The symplectic MOR follows this standard procedure with the requirements that
(i) Vor € R¥"*% js a symplectic matrix with (necessarily even) reduced order 2k
and (ii) the projection matrix is chosen to be the so-called symplectic inverse V2+k,
ie.

() VaduVa=Ju and (i) Wy = Vyt = I V3 Do

This choice ensures that the reduced system is a 2k-dimensional Hamiltonian system

d
dtka(t’ 1) = Jo Ve, Hor (21 (t, ), ), FHoi (X2, i) := H(Vorxop, i),

xaox(to, ) = Wyxo().

For further details on symplectic MOR, we refer to [2, 9, 10].

The projection-based MOR (2) leaves a high flexibility in the choice of a ROB. To
this end, basis generation techniques are required. One common class are snapshot-
based methods [11]. In [10], this idea is adapted to generate a symplectic ROB via an
optimization problem which is labelled Proper Symplectic Decomposition (PSD). A
general solution procedure for the PSD is yet unknown since it is highly non-convex.
If in addition, it is assumed that the ROB has orthonormal columns, it is shown in [2]
that a solution can be computed with the Complex Singular Value Decomposition
(complex SVD) [10]. Up to our knowledge, the only basis generation technique that
generates a non-orthogonal ROB is introduced in [2] which is based on a SVD-like
decomposition (see [13]). We will compare both of these methods together with two
non-symplectic MOR techniques in the numerical experiments and investigate the
acceleration of an UQ experiment.
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3 Model Order Reduction and Uncertainty Quantification

The connection of MOR and UQ is based on the following principle: We call the
repetitive evaluation of a mathematical model a so-called multi-query scenario. For
sampling-based UQ methods like the Monte Carlo method [12], this setting applies
since the model is evaluated for multiple samples u; € P to estimate the statistics
of a quantity of interest. If a reduced model of reduced order 2k <« 2n is trained,
the approximation (2) is used afterwards for the evaluations instead of the original
full-order model with x(r, ) € R*". The crucial point then is that the computation
of the state xo;(f, ;) € R?* (and the approximation Voxx(-)) is much faster than
the original model since the state dimension typically directly correlates with the
runtime of the simulation.

4 Numerical Experiment

To compare our approach with conventional MOR techniques in an UQ experiment,
we consider an oversimplified muscle model as a linear elastic problem with a
two-dimensional fusiform geometry (see Fig. 1). The specimen is loaded in axial
direction with a force homogeneously distributed on the right boundary of the
domain and an amplitude F () = Fpaxo (t — 0.1) where Fipax > 0 is a parameter
and o (-) is the step function. The parameter vector [LT = [AL, uL, Fiax] € P :=
R2>0 x [0.39, 4.71] of the system consists of the Lamé constants Ar,, 1, > 0 and
the maximal amplitude 0.49 < Fhax < 5.89 of the force F(¢). The simulation time
ist € I :=1[0,0.5].

We derive a semi-discretized system with the Finite Element Method with
piecewise linear Lagrangian ansatz functions on a triangular mesh with 910 nodes
resulting in 2n = 3640 degrees of freedom. This comparably small example
is already sufficient to display the advantages of our method. The Hamiltonian
function of the underlying system for the state x = [gq, p1" with displacement
q € R" and linear momentum p € R" is

1
H(x,t, p) = 5 (pTMp + qTK(;L)q> —q"f(t,p), M €R"™" :mass matrix,

K e R™™" : stiffness matrix,

f eR": force vector

our spatial domain Q C R?

Fig. 1 The discretization of 0.5 T .1072
simulating a fusiform muscle
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Table 2 Model parameters and respective probability distributions. The mean values A, up, of
the Lamé constants Ay, ur, are obtained from [7]

Model parameter Distribution
Lamé constant Ay Log-normal, log(Ar) ~ N(log(Ar), 02),
AL = 80,069, o2 =0.01
Lamé constant puy. Log-normal, log(ur) ~ N(log(ur), o),
uL = 8966, o2 = 0.01
Maximal force Fiax Uniformly distributed on the interval [0.39,4.71] N

The time is discretized with the implicit midpoint rule [5] with n, = 1501
equidistant time steps. This choice ensures that, in our example, the Hamiltonian
is conserved since (1) this integrator conserves quadratic invariants and (2) the
Hamiltonian is quadratic. The use of a symplectic integrator like the implicit
midpoint method is essential for structure-preserving MOR.

We consider two time-dependent quantities of interest (Qols): this includes the
displacement 51 (-) of one of the nodes on the right boundary and the potential part of
the Hamiltonian s> (x, ¢, o) = éqTK(;L)q — qTf(t, ). As point evaluation, s1(-)
is a linear and local functional. In contrast to that, so(-) is a global and quadratic
functional. We may suppress the explicit dependence of s on ¢ and p in the
following.

As estimator for the distribution of the Qols, we use the classical Monte Carlo
algorithm [12] with 1000 sample parameter vectors which follow the probability
distributions listed in Table 2. Let v denote the associated probability measure.

The simulations are conducted in RBmatlab! which is an MATLAB®-based
open-source library that implements multiple state-of-the-art MOR techniques. The
versions used in the experiments are RBmatlab 1.16.09 and MATLAB® 2019b.

As described in Sect. 3, MOR techniques can be used in the multi-query context
posed by the UQ problem. Thus, we approximate s; (x (¢, n)) ~ s; (Vorxoxr(t, 1))
with a ROB of logarithmically spaced ROB size 2k € {2/ | 2 < i < 10} to
investigate the reduced model for nine different sizes. The four MOR techniques
we compare are based on the Proper Orthogonal Decomposition (POD) and the
Proper Symplectic Decomposition (PSD). We either compute the ROB with a POD
of the complete state (POD complete) or separately for the displacement ¢ and linear
momentum p (POD separate). The PSD methods are based on the complex SVD
(PSD ¢SVD) and the SVD-like decomposition (PSD SVD-like). The techniques
are summarized in Table 1 classified by orthogonality and symplecticity of the
associated ROB.

The training was performed on a regular 3 x 3 x 3 grid in the parameter space
resulting in 33 = 27 sample parameter vectors. For each parameter vector, a full
dynamic simulation was calculated and every ninth time step was included in the
snapshot set which gives in total ng = 4509 snapshots. To analyze the performance

Uhttps://www.morepas.org/software/rbmatlab/, last accessed: 30. Oct. 2019.
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Fig. 2 The evolution of the mean value (bold line) and the standard deviation (shade) of the two
Qols s; (Varxox(t, -)) displayed for all times ¢ € I. The different colors visualize the full-order
model (FOM) solution (black) or reduced solutions with different ROB sizes 2k € {4, 16, 64}

in the prediction phase for the Qols, we depicted in Fig. 2 the estimated mean value
and the standard deviation for times ¢ € I approximated by the different MOR
techniques for selected basis sizes 2k € {4, 16, 64}. The estimation with the full-
order model (FOM) is plotted in black as reference. For 2k = 64 and ¢ > 0.15, the
mean value of the POD methods shows heavy oscillations which are not present in
the FOM and thus are an unphysical artefact of the reduction. The best solutions for
the POD methods are obtained for a small time horizon t < 0.15 or a medium basis
size 2k = 16. In contrast, the PSD methods show very robust results considering
the ROB size 2k. Comparing the two PSD methods, we see that the PSD c¢SVD
struggles with small basis sizes 2k = 4 whereas PSD SVD-like, visually, yields
very accurate solutions for any basis size—even 2k = 4. This shows that the
additional requirement for the ROB to be orthonormal in PSD ¢SVD requires more
basis vectors to yield as accurate results as the PSD SVD-like method.

In order to quantify the error of the reduction more precisely, we plot the relative
Ly (P x I) error er, [si] of the i-th Qol s;(-) for different ROB sizes 2k in
Fig.3. We again clearly see that a practical application of the POD methods is
not possible in our example since a relative error less than 60% is not obtained.
The robustness of the two PSD methods with respect to the ROB size is expressed
by the monotonic and actually exponential decrease for increasing ROB sizes. The
figure quantifies the supremacy of PSD SVD-like in comparison to PSD cSVD
between 2-30% improvement in the relative error for a fixed basis size 2k. This
superiority can especially be observed for small and medium ROB sizes 2k < 10?
which supports the conjecture that the additional requirement of orthogonality in
PSD cSVD hampers the approximation for such ROB sizes.

The ultimate goal is to reduce the runtime of the multi-query setting posed by
the UQ problem with model reduction without introducing a too big error. To this
end, we inspect in Table 3 the runtime of 1000 model evaluations relative to the
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Fig. 3 The relative Ly, (P x I) reduction error ey, [s;] of the two Qols s;(-) depicted for the
ROB size 2k. For |||z, ,x 1), the integral over I is approximated with the trapezoidal rule and
the integral over # with measure v with Monte Carlo. Errors bigger than 100% are excluded

Table 3 The relative runtime for the offline part, 1000 online simulations (2k = 16) and in total

FOM POD compl. |PODsep. |PSDcSVD |PSD SVD-like
Offline - 2.7% 2.5% 2.5% 17.8%
1000-online | — 8.9% 8.7% 8.6% 8.6%
Total 25 min. = 100% | 11.6% 11.2% 11.1% 26.4%

FOM. As typically done for MOR, we split the runtime in the offline and the online
part. The offline part consists mainly of computing the ROB. In the online part, we
evaluate the reduced model for the 1000 different parameter vectors. We see that
all investigated methods require a similar amount of runtime in the offline phase
except for the PSD SVD-like. The reason is that the PSD SVD-like method is
implemented in native MATLAB® whereas the other methods use internal functions
which run in Fortran. In terms of complexity orders, the computation of the SVD-
like decomposition should be comparable to the computation of the underlying
matrix decompositions of the other methods. The runtime for the online part is
displayed for 2k = 16. Since all methods are projection-based MOR techniques,
the computational cost in the online part is equal which is expressed by near equal
runtimes of roughly 8.7%.

The user can trade accuracy for runtime by adjusting the basis size 2k. We
visualize this trade-off in Fig.4 with the reduction error (from Fig. 3) in relation
to the relative runtime (from Table 3). Due to the instability of the POD methods
in our example, only the PSD methods are interesting for this purpose. Both PSD
methods are able to speed up the simulation by a factor between 2.2 and 11.6 while
introducing a relative reduction error between 1.3 and 68.5% for both Qols s;(-).
Considering only the slightly better PSD SVD-like, the error improves to numbers
between 0.9 and 59.3%. There is a plateau in the trade-off curve at a runtime of
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Fig. 4 The relative runtime for 1000 online simulations illustrated in relation to the relative
Ly (P x I) reduction error ey, , [s;] of the two Qols s; (-). Errors bigger than 100% are excluded

8.5%. The reason is that a major part of the runtime is spent in iterations over the
time steps n; and the samples ng which cannot be further reduced with (2).

5 Summary and Outlook

We presented a framework to conduct Uncertainty Quantification (UQ) experi-
ments in combination with structure-preserving model order reduction (MOR) for
Hamiltonian systems. The numerical experiments showed that the preservation of
the symplectic structure improves the stability and the accuracy of the reduction
with MOR and thus, also of the accelerated UQ framework. This enabled us to
provide a broad spectrum of reduced models ranging from a speed up of factor
2.2 up to 11.6 while introducing an error between 0.9 and 59.3%. The best results
are achieved with the symplectic, non-orthogonal basis generation technique PSD
SVD-like decomposition.

In future work, a more realistic muscle model should be considered since the
assumption of small strains is too restricting for muscle models. Furthermore,
mathematical stability analysis for non-orthogonal but symplectic bases is required.
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3D-2D Stokes-Darcy Coupling for the )
Modelling of Seepage with an Application %
to Fluid-Structure Interaction

with Contact

Erik Burman, Miguel A. Fernandez, Stefan Frei, and Fannie M. Gerosa

Abstract In this note we introduce a mixed dimensional Stokes-Darcy coupling
where a d dimensional Stokes’ flow is coupled to a Darcy model on the d —
1 dimensional boundary of the domain. The porous layer introduces tangential
creeping flow along the boundary and allows for the modelling of boundary flow due
to surface roughness. This leads to a new model of flow in fracture networks with
reservoirs in an impenetrable bulk matrix. Exploiting this modelling capability, we
then formulate a fluid-structure interaction method with contact, where the porous
layer allows for mechanically consistent contact and release. Physical seepage in the
contact zone due to rough surfaces is modelled by the porous layer. Some numerical
examples are reported, both on the Stokes’-Darcy coupling alone and on the fluid-
structure interaction with contact in the porous boundary layer.

1 Introduction

In numerous environmental or biomedical applications there is a need to model the
coupling between a flow in a reservoir and flow in a surrounding porous medium.
This is particularly challenging if the porous medium is fractured and the bulk
matrix has very low permeability. Typically the fractures are modelled as d — 1
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dimensional manifolds, embedded in a d dimensional porous bulk matrix. For the
modelling of the fractured porous medium we refer to [3]. Observe however that if
the bulk permeability is negligible the fluid in the reservoir cannot penetrate into the
fractures since the d — 1 dimensional manifolds have an intersection of the reservoir
boundary of d — 1 measure zero. This means that such a model cannot be used for
the fluid flow between two reservoirs connected by a fracture in an impenetrable
medium. Here we propose to introduce a Darcy equation for the tangential flow on
the boundary of the reservoir. Since this equation is set on a d — 1 dimensional
manifold it can provide an interface allowing for flow from the reservoir to the
cracks. The flow on the boundary communicates with the flow in the cracks through
continuity of pressure and conservation expressed by Kirchhoff’s law. This gives a
cheap and flexible model for flow in reservoirs connected by fractures.

Our original motivation for this model is the particular case of fluid structure
interaction with contact where the situation described above occurs when two
boundaries enter in contact provoking a change of topology of the fluid domain.
It has recently been observed by several authors [1, 4] that the consistent modelling
of fluid-structure interaction with contact requires a fluid model, in particular a
pressure, also in the contact zone. Indeed, some seepage is expected to occur due
to permeability of the contacting bodies or their surface roughness. Otherwise there
is no continuous mechanism for the release of contact and non-physical voids can
occur. For instance, it was argued in [1] that a consistent modelling of FSI with
contact requires a complete modelling of the FSI-poroelastic coupling. Similar ideas
were introduced in [4], but for computational reasons. Indeed, in the latter reference
an elastic body immersed in a fluid enters in contact with a rigid wall and to allow
for a consistent numerical modelling the permeability of the wall is relaxed. This
motivates the introduction of an artificial porous medium whose permeability goes
to zero with the mesh-size. Both approaches allow for the seepage that appears to be
necessary for physical contact and release. However, in case the contacting solids
are (modelled as) impenetrable, this seepage must be due to porous media flow in a
thin layer in the contact zone due to surface roughness. The complete modelling of
the poroelastic interaction of [1] or the bulk porous medium flow of [4] then appears
artificial and unnecessarily expensive. For such situations the mixed dimensional
modelling suggested above can offer an attractive compromise between model detail
and computational cost.

In this note, we will focus exclusively on the modelling aspect. The coupled
Stokes-Darcy model is introduced in Sect. 2. Then, in Sect. 3, we show how the ideas
of [4] can be used to model FSI with contact together with the mixed-dimensional
fluid system. Finally, we illustrate the two model situations numerically in Sect. 4.
First, the Stokes’-Darcy reservoir coupling (Sect. 4.1) and then the full FSI with
contact (Sect. 4.2). In the latter case, we also give comparisons with the results from
[4]. The numerical analysis of the resulting methods will be the subject of future
work.
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2 The Coupled Stokes-Darcy System

We consider the coupling of a Darcy system in a thin-walled domain ; = %; x
(5.5 € R? for d = 2,3 with a Stokes equation in the bulk domain €2 . The
Darcy problem on €2; writes
ur+ KVp =0
V-u=0

in €, ey

where u; denotes the Darcy velocity, p; the Darcy pressure and K is a d x d matrix
that allows for the decomposition

KVp =K Vep + Knanpl-

We denote the upper boundary of €2; which couples to Q¢ by ys and the outer
boundary by y,. The normal vector n of the middle surface ¥; of €2; is chosen in
such a way that it points towards y,,.

By averaging across the thickness €, Martin, Jaffré and Roberts derived in [3] an
effective equation for the averaged pressure across the thickness

1 [2

P = / pi-
€ _€
2

Under the modelling assumption that the average pressure is equal to the mean of
the pressures on the upper and lower boundary

1 .
P = ) (Pllyf + pily,) in X, )
the authors derived the system

—Vi - (K V. P) = ul,n'yf - ul,n'y,,
K1 in  Xj. 3)
pily, =P+ 4" (ur,nly, + ul,nlyf)

Here, u; , = u;-n denotes the normal component of the velocity and 7 is a tangential
vector of %;. We will couple (3) to Stokes flow in Q2 ¢

!,Ofatuf—v-af(uf,pf)zo o @
f7

V-uf=0
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where u ¢ denotes the fluid velocity, p ; the pressure, pr the fluid density,

ofug, ps)i=pu(Vus+Vul) = prl,

the fluid Cauchy stress tensor and p the dynamic viscosity. We assume that the
coupling to the Darcy system (1) on y takes place via the interface conditions

Ofnn = —PI
tTafn =0 on yy, )]
Ufn = Ul n
where 0y = Vuy — prl and ofpy = nTofn. In the lower porous wall y, we

assume for simplicity that u; , = 0. Then, the relations (3) can be written as

—V: - (€K V. P) = Ufn

erl in 21.

n
Ufn

Gf,nn:_Pl_ 4

Note that the only remaining porous medium variable is the averaged pressure P;.
In the limit of permeability K,, — 0, the system converges to a pure Stokes system
with slip conditions on yy with an extension of the fluid forces into the porous
medium pressure P;.

We have the following coupled variational problem for (s, pr, Pr):

pr@ug,ve)a, +(ofus, pr), Ve, +(qr, V-us)a,

GKJI (6)
+(Pls Uf,n)zl + 4 (l/lf’n, va")):] = 0’

(€K Ve P, Veas, — (upn, q1)y, =0,

forall vy, gf, qi, where n = n is the outer normal of the fluid domain Q.

3 The Fluid-Structure-Poroelastic-Contact Interaction
System

Now, we consider a fluid-structure-contact interaction system with a thin porous
layer on the part of the exterior boundary, where contact might take place. The
moving boundary of the solid is denoted by X (¢) and the porous layer by X;. In
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absence of contact, we have the following system of equations

prouy —V-opus, pr)=0

in Qr(),
V~uf=O
psdid —V -05(d) =0 in Q),
ufzd, ogn =0rn in  X(1),
—V: - (eK:V: P) = ul,nlyf
_.p ek ! |
T =727 g Ml gy, @)
op
rTofn=O

where, in addition to the quantities introduced above, p; denotes the solid density,
d stands for the solid displacement and o, denotes the tensor of linear elasticity

As ‘
o =" (va+va")+ “; r (Vd +vdT).
In addition, we impose that the solid €2 cannot penetrate into the porous medium
by

Here, g denotes the gap function to ¥; and A is a Lagrange multiplier for the no-
penetration condition defined by

A = Os,nn — O fnn on X(1)\ Xy,

A= Os.un — Op on X(t) N Xy.
The “switch” on the right-hand side occurs, as the solid on one side of ¥ (#) couples

either to the fluid Q¢ or the porous medium X; on the other side of X(¢). The
conditions (8) can equivalently be written as

A:—yc[d,,—g—ygl)\h on X(t)
—_—
PV

for arbitrary yc > 0. Using this notation, we can characterise the zone of “active”
contact as follows

() ={x e Z@®)| P, > 0}.
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To summarise, we have the following interface conditions:

¢ Contact condition on X (7):
dy —g<0, A<0, Ad,—g =0 on X(1).
* Kinematic coupling on X ¢, (t) = X(H)\ X
ufp= d on 2 psi(0).
* Dynamic coupling on X(¢):

osh = —An +opn = —yc[Pylyn +opn  on X(r) N Xy,
osh =—An+osn=—yc[P,lyn+orn onX@)\ %;.

We have the following Nitsche-based variational formulation: Find uy € Vs, py €
Ly, d € Vg, P € Vysuch that

g, v)o, + Bd, wia, + 0y, pr), Vup)e, + (05(d), Vw)g,
— (o, v—wsmns — W —d, or @, —q) s\ + y:i p—d,v—wsens
— (0p, v-Wxp\z0) — (O, w-Mznze) + (Ve[ Pylisw -n) g,
+ (€K Ve P, Vegn)s, — (ttfn, qz)zl\zm — (du, ql)zlmz(t) =0
YveVr,qge Ly, weVq €V,

where V¢, L, Vg and V; are suitable finite element spaces. The porous stress o
is given by

_ K1
o) = —P+ €K, 1”1 = —P+ € 4’l,luf’" on X; \ (1) ©)
4 —P+ % d, onmnz).

4 Numerical Experiments

Here we will report on some numerical experiments using the above models.
First we consider the mixed dimensional Stokes’-Darcy system and then the fluid-
structure interaction system with contact and porous layer in the contact zone.
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4.1 Stokes-Darcy Example

In this example, we consider two disconnected fluid reservoirs, the domain 2,
connected through a thin-walled porous media located on the bottom wall ¥, as
shown in Fig. 1. The physical parameters are © = 0.03, py = 1, € = 0.01 and
K. = K, = 1. We impose a pressure drop across the two parts of the boundary I'Y .
The purpose of this example is to illustrate how the porous model is able to connect
the fluid flow between the two containers. This can be clearly inferred from the
results reported in Fig. 2, which respectively show a snapshot of the fluid velocity,
the elevation of the fluid pressure and the associated porous pressure.

4.2 Fluid-Structure Interaction with Contact

To test the FSI-contact model, we consider flow in a two-dimensional pipe, where
the upper wall is elastic, see Fig. 3. Due to the application of a large pressure P on
the left and right boundary, the upper wall is deflected downwards until it reaches the
bottom. Note that when contact occurs, the configuration is topologically equivalent
to the situation in Sect. 4.1. Shortly before the time of impact we set P to zero,
such that contact is released again after a certain time. This model problem is taken

(0,1) Iy (0,08) ry
AW e
Qy Qy
(0,0) (0,0.9) % (2,0)

Fig. 1 Geometrical configuration for the Stokes model with a thin-walled porous medium on the
bottom wall

nnnnnnnnnnn

Fig. 2 Left: Snapshot of the fluid velocity. Middle: Elevation of the fluid pressure. Right: Porous
pressure
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ry
r ?.1'1 Qs (0) rD
-— F(O) —_—
P Qf (0) p
N N
' % 'y

Fig. 3 Geometrical configuration for the FSI-contact model. We apply a porous medium model
on the (rigid) lower wall, where contact might take place

dmin dmin

0.25 ; : 0.03 ; .
K=10"%e=10"2 : s - e=10"2 H i
‘\\ K =10"%e=10"" H 4 0.025 (i ( =107%,¢ =102 i 1
02F N K=103c=10"% v § 8,e=10"3 i
‘g}aﬁ dlfffi\lg:} "_ 0.02 :1rtfiﬂui§11 1
0.15 | S \ relaxed --
AN 0.015 | 14 p
0.1 0.01 | J
0.005 ]
0.05 -
0t ]
Ot w S— ‘ 0,005 L ‘ ‘ ‘
0 0.001 0.002 0.003 0.0012 0.0016 0.002 0.0024

Fig. 4 Minimal distance of ; to the lower wall X, over time. Right: zoom-in around the contact
interval. We compare the new approach presented in Sect. 3 for different parameters with the
artificial fluid and the relaxed contact approach studied in [4]

from [4], where further details on the configuration and the discretisation can be
found. To deal with the topology change in the fluid domain at the impact, we apply
a Fully Eulerian approach for the FSI problem [2]. In order to obtain a continuous
and physically relevant transition from FSI to solid-solid contact, we use the FSI-
contact model derived in Sect. 3 and place a thin porous domain ¥; on the lower
boundary.

In Fig. 4 we compare this model for different parameters K = K; = K, and
€ with the approaches for FSI-contact problems introduced in [4] in terms of the
minimal distance of the solid to X, over time. In [4] two approaches were presented
in order to extend the fluid stresses to the contact region during solid-solid contact,
namely a so-called relaxed and an artificial fluid approach. It was observed that for
the artificial fluid approach contact happens earlier, as penetration of the fluid flow
into the artificial region is prevented only asymptotically, i.e. u s, — 0 (h — 0) on
Xp, in contrast to u r,, = O for the relaxed approach. In the model presented here,
we have similarly from (7) and u; ,, = u s, on X,

Ufp=—Ve (€K:9:P) — 0 (eK; — 0).
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For this reason we observe in Fig. 4 that the impact happens earlier for a larger value
of € K. The time of the release seems to depend also on € K, !, which appears in the
definition of o, (9). A detailed investigation of this dependence and the investigation
of stability and convergence of the numerical method are subject to future work.
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A Second Order Time Integration )
Method for the Approximation of a e
Parabolic 2D Monge-Ampere Equation

Alexandre Caboussat and Dimitrios Gourzoulidis

Abstract Parabolic fully nonlinear equations may be found in various applications,
for instance in optimal portfolio management strategy. A numerical method for the
approximation of a canonical parabolic Monge-Ampere equation is investigated in
this work. A second order semi-implicit time-stepping method is presented, coupled
to safeguarded Newton iterations A low order finite element method is used for
space discretization. Numerical experiments exhibit appropriate convergence orders
and a robust behavior.

1 Introduction

Fully nonlinear equations, and among them the elliptic Monge-Ampere equation,
have raised a lot of interest from the theoretical and numerical communities [1, 7, 9,
10], and also from the authors [4, 6]. We focus here on a time-evolutive, parabolic,
Monge-Ampere equation that has raised much less attention from a computational
perspective. Some known applications of interest arise, e.g., in finance [12], or in
mesh adaptation techniques [2, 3]. Numerical results for parabolic fully nonlinear
equations, including the equation that we study here, are given, e.g., in [8].

The purpose of this work is to introduce a second-order semi-implicit numerical
scheme for the approximation of the time-evolutive Monge-Ampere equation. It
extends the Newton-based approaches in [1, 10] to the non-stationary case by means
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of a midpoint time-stepping algorithm. Continuous, low order, finite elements are
used for the space discretization. Numerical validation is achieved with simple
examples, and appropriate convergence results are obtained from a computational
perspective.

2 Model Problem

Let 2 be a smooth bounded convex domain of Rz, and T > 0 a fixed time
horizon. We consider a time evolutive two-dimensional Monge-Ampere equation,
with Dirichlet boundary conditions, which reads as follows: findu : Q x (0,T) —
R satisfying

9
aL; —detD?u=f inQx(0,7),

u=g in Q2 x (0, T), (1
u(0) = ug in .

Here f = f(x,1), g = g(X, t) and up = uo(x) are given functions with the required

regularity, and D%u(:= D,z(u) is the Hessian of the unknown function u (with respect
8%u

3)6,' 0x j ’

We assume in the sequel that u( is convex, in order to favor the regularity of a
smooth transient. A constraint on the time step may have to be enforced to make
sure that the numerical solution remains convex at all times. Numerical results
will show that the right-hand side f may change sign, as long as the numerical
solution remains convex and the operator in the parabolic Monge-Ampere equation
remains coercive. Following [9], the Monge- Ampere operator can be rewritten under
a divergence form, namely

to the space variable x), defined by D’u = (Dizju)lg,-,jgz, and Dizju =

1
detD?u = V- (cof(Dzu)Vu).
The differential operator of (1) can thus be written as

ou

g, (cof(Dzu)Vu> =f inQx(0,7) 2)
a2 T

meaning that (1) can be interpreted as a, strongly nonlinear, parabolic equation
reminiscent of a nonlinear heat equation. When looking for a convex solution, if
the nonlinearity cof(D?u) remains positive definite, then the operator is well-posed.
The challenge becomes thus to capture convex solutions, and to derive numerical
methods that take into account accurately the strongly nonlinear diffusion and
guarantee the coercivity of the diffusion operator at all times.
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Remark 1 In [9], an alternative formulation is considered, which consists in
augmenting the differential equation into a differential system. This approach has
proved to be very efficient in capturing a stationary solution. However, numerical
experiments have shown that it is not efficient to approximate the whole transient
trajectory of the evolutive problem.

In the sequel, we thus propose a second-order numerical method for the numerical
approximation of the solution of (1), which relies on an implicit time-stepping
scheme and a Newton’s method.

3 Numerical Algorithm

Let At > 0 be a constant given time step, " = nAt,n = 1,2, ..., to define the
approximations u”" ~ u(t"). The numerical algorithm proposed hereafter relies on
a discretization of the formulation (1). In order to handle the stiff behavior of the
Monge-Ampere equation, a semi-implicit time discretization of (1) is considered. In
this case, we advocate a midpoint rule and, u" being known, we look for the next

time step approximation 1" *! satisfying
unJrl —ut
N et (D2u"+1/2) — 2 o1, 3)

n+1 n thrl I
where u"+1/2 .= " 2+u and "% = f( 2+ ) Then (3) can be

written as
'tz - ;AtdetDzu"H/z =u" + ;Atf"“/z, )
and
B R S VR (5)

Let us define b" := u" + ;At fm+1/2_ Relationship (4) is rewritten at each time step
as

Fu /2y = nt1/2 Azt det(D2" 112y — pn = 0.

This nonlinear problem is solved with a safeguarded Newton method at each time
step. For the ease of notation, we denote u”+!/2 by v. Starting from the initial guess

v0 = u”, the increments §v¥ of the Newton method are obtained by solving

DFWMsvf = —Fb), k=0,1,2,..., (6)

then, the next iterate is given by v¥*! = v 4+ §v¥, until some stopping criterion
is satisfied at step M, and set u”" /> := v™_ At the end of the Newton loop, the
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approximation of the solution at the next time step is given by (5). In order to write
the variational formulation corresponding to (6) we use the following identity which
holds for 2 x 2 symmetric matrices (see, e.g., [1]):

detD?(a + b) = det(D%a) + det(D?b) + tr(A*D?b), @)
where A* = cof(D?a) = det(D?a)(D?a)~". This yields
tr(A*D?b) = cof(D?a):D*b = V - (cof(D*a)Vb),

where A : B := tr(ATB) is the Frobenius inner product for A, B € R>*2,
Equation (7) becomes,

detD?(a + b) = det(D?a) + V - (cof(D>a)Vb) + det(Db). (8)

We thus have, for s € R,
At
F(*+58v) = vF +58v— 5 (det(D%k) + V- (cof(D*vF)sVsv) + 52 det(Dz(Sv)) —b".

We thus compute DF (v%) as follows:

FQ* +s8v) — F0b)

DF(W")sv = lim
s—0 S

At
-V (cof(D%k)vav) )
In order to incorporate (9) in the variational formulation corresponding to (6), let
us define V, = {w e H(Q): Wl = g}, and Vy = HOI(Q). Using (9), the
variational formulation corresponding to the Newton system (6) can be explicited
into : find $vF € Vp, fork =0, 1, 2, .. ., such that

At
/avkwdx+ fcof(D%k)V(av")-dex:
Q 2 Ja

At
- / (vk -, det(D*v*) — b") wdx, (10)
Q

for all w € Vj. This Newton’s variational problem is coupled with a safeguarding
strategy (Armijo’s rule) when needed. In addition, the method guarantees that
the matrix cof(D*v¥) remains positive definite. This procedure is achieved by
computing the SVD of this matrix, and truncating its negative eigenvalues to zero.

4 Finite Element Discretization

In order to avoid the construction of finite element sub-spaces of H 2(Q) and to
handle arbitrary shaped domains, we consider a mixed low order finite element
method for the approximation of (10) see, e.g., [4, 6]. Let us thus denote by
T a regular finite element discretization of @ C R? in triangles. From 77,
we approximate the spaces L2(Q), HY(Q) and H%(Q), respectively HOI(Q) and
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H 2(Q) N HO1 (€2), by the finite dimensional space V},, respectively Vy;,, defined by:
Vi={vec (@), vk ePi VK eTi), Vou=VinH}@, (D)

with Py the space of the two-variables polynomials of degree one. Moreover, let
us define Vg, = {v € C°(Q) , vl € P1, YK € Th, vlyg = g}. Asin [6], for a
function ¢ being given in H' (), we approximate the differential operators Dl.zj by

Dy, for 1 <, j <2, defined by Dy, (¢) € Voi and

1 dp dv dp v
D2, (¢p)vdx = — dx, Yv € Vy. 12
/Q hij ()vdX 2/Q[ax,-ax,-+ax,ax,} X, Yo eV (12)

As emphasized in [11], the a priori estimates for the error on the second derivatives
of the solution ¢ are, in general, O(1) in the L?-norm when using piecewise
linear mixed finite elements. Therefore the convergence properties of the solution
method depend strongly on the type of triangulations one employs. To cure the non-
convergence properties associated with the approximations of Dii ; (¢), we use a

regularization procedure as in [6], and we replace (12) by: find Diij () € Von,
1 <1, j <2, such that

/Di,-,-(fﬂ)vderC Z IKI/ V D}, (¢) - Vvdx =
@ KeTy K

1 dp 0 dp 0
_ / g dv  d¢ dv
2 Jo L 0x; 0x;  0xj 0x;
where C > O and |K| = meas(K). Set ug be an approximation of u¥in Vg.n- Ateach

time step, the numerical approximation of (10) is computed as follows: let vg = uj
at each time iteration; then, fork = 0, 1, 2, . . ., we search for 8v,’§ € Vo, such that:

k At 2.k k
o Svywpdx + ) cof(D“v,)V(vy) - Vwpdx =
h

Qp
At
- / <v,’; — 7 det(D?v¥) —bZ) whdx, (13)
Q 2
for all w, € Vp ;. Then we set vlg“ = v,’i + (sz ; when some stopping criterion
+1/2

is satisfied at step M, we set uZ = v;l"[ . To progress to the next time step, we

+1 _ 5, n+1/2 n
_2”h —uj.

compute u),

S Numerical Experiments

Numerical results are presented to validate the method for convex solutions. In
the following examples, @ = (0,1)?> and T = 1. Both a triangular structured
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asymmetric mesh and an unstructured isotropic mesh are used. The mesh size &
and the time step At vary together. The stopping criterion for the Newton method is
||v£+1 — v’g L, < 10~!'2, with a maximal number of 200 Newton iterations. The
Newton method typically needs 9—12 iterations to converge, depending on the mesh
size and the time step. The parameter C is set to 1 (unless specified otherwise). The

convergence of the error e = u — uy, is quantified by the following quantities

T T
||e||L2(L2) :=/ lw — upll;2dt, ||e||L2(H1) :=/ IVu — Vuyll;2 dt,
0 0

In the tables below, those norms are approximated using the trapezoidal rule in time,
and quadrature formulas in space (see [5]).

5.1 A Polynomial Example

Let us consider 7 = 1, and the exact solution:
u(x, y, 1) =0.50.5+1) (x> + 5y?), (x,y)eQ, 1€(0,T). (14)

This function is the solution of (1) with the data f(x, y,t) := 0.5 (x2 + 5y2) —
50.541)% gx, v, 1) :==0.5(0.5+1) (x2+5y?), and ug(x, y) := 0.25(x>+5y?).
The solution (14) is convex for all + € (0, T). Note that the eigenvalues of the
Hessian D%y are A; = 0.5+ t)2 and Ay = 5(0.5+ t)2, and are both positive for
all + € (0, T). Figure 1 illustrates ug ,(x, y) (left) and u,(x, y, T) (right), while
Table 1 shows that the solution method exhibits appropriate convergence orders (for
the discrete version of the norms ||u — unll;2¢, 7. g1 () and [lu —unllz20,7.22(2)))-

|-
O —=NNW® A
o 0 0 On

o

b_1|

Fig. 1 A polynomial example corresponding to the exact solution (14). Numerical approximation
of the solution for & = 1/80 and Az = 0.25 - 1073, Left: initial condition at time = 0. Right:
final solution at time t = 1
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5.2 An Exponential Example

Let us consider 7 = 1, and the exact solution
ot ) (x24+y?)
u(x,y,t)y =e 'e2 s (x,y) e, te(0,T). (15)

This function is the solution of (1) with the data
fx,y, 1) = —e 2 (M) (1 +e! (x2 +y7 4 1) e%(x2+y2)) ,

together with g(x, y, 1) := e"eé(xzﬂz), and ug(x, y) := ¢2( %) The solution

(15) is convex for all time ¢ € (0, T), since the eigenvalues of D?u are A, =
e"eé("zﬂz), and Ay = e~te2 (¥ Hy7) (x? + y? + 1), which are both positive for all
times ¢ € (0, T'). Figure 2 illustrates ug »(x, y) (left) and u; (x, y, T) (right), while
Table 2 shows that the solution method exhibits nearly optimal convergence orders
(for structured and unstructured mesh we have O(h) and O(h!-) for the discrete
version of the norm |[le[[;2y1) and O(h'3) and O(h?) for ||e| |12(12) respectively).

(—

bl ot v i
o how Nbh N

b,—r..

ik 0 -~

Fig. 2 Exponential example corresponding to the exact solution (15). Numerical approximation
of the solution for 4 = 1/80 and Az = 0.25 - 1073, Left: initial condition at time 7 = 0. Right: the
final solution at time r = 1
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Local Flux Reconstruction for a )
Frictionless Unilateral Contact Problem ik

Daniela Capatina and Robert Luce

Abstract We are interested in the a posteriori error analysis based on locally
reconstructed fluxes for the 2D Signorini problem. We start from a P'-conforming
approximation where the contact condition is treated by means of a Nitsche method.
We propose an extension of a general approach previously developed for the Laplace
operator, allowing to obtain H (div)-conforming conservative fluxes by a local
post-process. The reconstructed flux yields an a posteriori error indicator, which
is completed by two additional terms taking into account the non-linear contact
condition. We then prove the reliability of the indicator, without any additional
assumption.

1 Introduction

We are interested in the numerical approximation of the 2D frictionless unilateral
contact problem, modelled by Signorini’s equations. Different formulations exist
in the literature (mixed/hybrid, stabilized, penalty methods etc.), most of them
treating the contact condition by means of a variational inequality. In general, they
are suboptimal or need additional assumptions to reach optimality. In this paper,
we consider the Nitsche-type formulation introduced in [2] and its P'-continuous
finite element approximation, for which the authors proved an optimal a priori error
estimate.

As regards the a posteriori analysis, residual-based error estimators for the
previous Nitsche formulation were proposed in [3]. However, the error analysis is
carried out under a saturation assumption. Our goal is twofold: on the one hand,
reconstruct locally a conservative flux and on the other hand, define a reliable a
posteriori error estimator based on this flux. This kind of approach is widely studied
in the literature, see [1] and references therein for the Laplace problem. It has
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also been applied to the contact problem, see for instance [4, 5] where a mixed
formulation with variational inequality is considered; however, the error estimator
contains a higher order term depending on the unknown solution.

Here, we first extend the framework proposed in [1] to the non-linear Signorini
problem, by treating the contact boundary as a Neumann one. The flux computation
is achieved by local post-processing of the finite element solution, without solving
any mixed problem. Then we use the reconstructed flux to define a standard a
posteriori indicator, to which we add two more terms on the contact boundary. This
allows us to establish the reliability of the error indicator without any saturation
assumption.

2 Model Problem and Discrete Formulation

We consider here the scalar Signorini problem in a polygonal bounded domain 2 C
R? of boundary Q2 = I'® U TN U I'C, with I'®, I'N and the contact boundary I'C
disjoint, and with [['P| > 0, |['®| > 0. The boundary value problem is given by:

—Au=f inQQ, u =uP onFD, ot = g on N
u<0, 8u<0, udu=0 onlC (1)

where (1) are the frictionless unilateral contact conditions. We take f € L3(Q),
g € L*>(I'N) and we assume that the Dirichlet data uP is continuous, piecewise
linear on I'P and vanishes at I'® N I'C (if non-empty).

It is important to note that conditions (1) are equivalent to (¢ — ad,u)_ = u or
to (u — adyu), = —ad,u fora givena > 0, where a and a_ stand for the positive
and the negative part of a € R, respectively. This remark is used in the derivation of
the Nitsche’s formulation introduced in [2] and considered here.

For the discretization, we use a regular family of triangular meshes. We denote by
K, the set of cells and by S}lm, SD, ShN and Sg the interior, Dirichlet, Neumann and
contact sides, respectively. We put S;, = SithSD, 82 = ShNUS% and we use similar
notation for the nodes: N, = N}f‘ U Ng and NZ (for the nodes lying on I'N U I"C).
We denote by 7/, the L?(w) orthogonal projection on P!(w). For § = dK" N K,
ng is a fixed, arbitrary unit normal vector, oriented from K in towards K X For a
discontinuous function v, we define its jump and meanon S € S;™ by [v] = it —
and {v} = ; (vi“ + ve"); on a boundary side, we set [u] = {u} = u‘;
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The approximation of the contact problem is achieved by means of continuous,
piecewise linear finite elements. In order to focus on the contact condition, the
Dirichlet one is treated strongly. Let

vy ={vh e C%Q) : wnlx € P (K) YK € K, v =uDonFD},

S
Ap(up, vp) =/ Vuy - Vuyy —/ |
K S¢

S
'anuhanvh+/ 5T b unys P,
i Y 14
Lh(vh)=/ fvh+/ gun,
Q N

Si
where y > 0 is a stabilisation parameter independent of the mesh size & and where

14

P(v) = |S|v

— v, VSeSE. 2)

The discrete problem introduced in [2] reads: Find u, € V;D such that
An(un. vi) = Ly(vp),  Vop € V). 3)

The authors proved the consistency and well-posedness of (3) for y sufficiently

large, as well as an optimal O(h%”) error estimate, for u € H 2+ () with 0 <

1
V=,

3 Definition of Locally Reconstructed Flux

We are interested in defining a discrete conservative flux o, € H(div, 2) for
problem (3), which can be computed patch-wise. For this purpose, we first write
an equivalent mixed formulation and then we construct o}, by using the Lagrange
multiplier.

3.1 Equivalent Mixed Formulation

The general idea is inspired by the hybridisation of classical finite element methods.
We dualize the continuity of u; across the sides of S; by means of Lagrange
multipliers, and we thus obtain a mixed formulation where the primal unknown
belongs to a completely discontinuous finite element space. Let

D), = {vh € L2(Q); vylg € P! VK € 7(;,}, M, = {vh € LX(S)): vls € P VS € S;,]
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and the mixed problem: Find U, € Dy, and 6, € X, C M}, such that

an(Up, vp) + bp(On, vi) = lp(vpn), Y, € Dy @
bu(wn, Up) = jn(iun), Yun € X,

where aj,(un, va) = Anun, vn) — [g, {nun}lvnl — [g, [unl{dnvn} and Ip(vy) =
Ly(vp) — fShD uPd,vy,. The forms by(-,-) and jj,(-) approximate fSh wnlvn] and

fFD uPpy by means of the trapeze integration formula, which allow to locally
compute 6. Thus, we define

S| . S| o .
ba(n, vn) = Y '2' Y aloaD(ND,  jnu) = ) '2' > P ()

ses, © =1 sesP T i=l

with (Né)lfisQ the vertices of a side S € Sy,. The simplest choice X;, = M}, does
not ensure uniqueness of the multiplier 6. Guided by a node-wise identity satisfied
by the jump of a function of D, we are led to introduce

X = {uh €My: ) ansISlun(N) =0 VNeNh}, 5)
SESN

where Sy is the set of sides containing N and ay_s is equal to 1 if ng is oriented
clock-wise around N, and to —1 otherwise.

It is important to note that Ker by, coincides with the P! conforming space V2,
which implies that Uj, satisfies the weak formulation (3), and hence U, = uy,. The
key-point for the stability of the mixed formulation is the uniform inf-sup condition;
its proof closely follows the one of [1] for the Laplace problem. It allows to obtain

. . . 1 .
existence and uniqueness of 6, as well as an optimal O(h2"") error estimate
for 0),.

3.2 Local Computation of the Multiplier

The main interest of the mixed formulation (4) is that 6, can be computed locally,
as the sum of local contributions 6 for N € N},. Each 6y is defined on the support
wy of the P! shape function ¢y associated to the node N, vanishes on dwy, lives
on the sides S € Sy and belongs to P(S). Let the residual and local bilinear form

2
S
() = () — an(up. ), bs(9,<p>='2' > (oINS, VS €S

i=1
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As in [1], we impose that Oy satisfies the following system, for any K C wy, S €
SNZ

Z bs(On, [en]) = rn(enxK)- bs(ON, om) = psra(Pmxgin), (6)
SCoK

where M denotes the other vertex of S and where pg is a coefficient equal to 0, é
or 1 which takes into account the overlapping of the patches wy, see [1] for more
details. The linear system (6) is compatible thanks to the following relation:

m(pn) = Y rmlpnxk) =0, YN € Nj"UNj,

KCowy

which holds true because uj, is solution to (3). However, (6) has a one-dimensional
kernel K. In order to obtain a unique solution 6y, we impose in addition that
Y se Sy N,sISION(N) = 0, which characterizes the orthogonal of Ky and which
ensures that ) NeN;, 6N belongs to X . It was shown in [1] that it also satisfies the
first equation of (4), so by uniqueness of its solution we get that 6, = > . N, ON-

3.3 Conservative Locally Reconstructed Flux

We now use 6), to define a local flux o € H(div, 2). We employ the Raviart-
Thomas space RT}' with m = 1 or m = 0. We impose the degrees of freedom of oy,
on the edges as below. On the Neumann and contact boundaries, we set respectively

on-ng=mnyyg VSeS), o -ng = —me (P(un)+) vseSS, (D

whereas on the interior or the Dirichlet sides we impose:
/O'h Tnsg = /{3nuh}<p —bs(On, ), Yo € P"(S), VSeSh ®)
s s

Note that for m = 0, (8) is simply equivalent to oy, - ns = {9,up} — ngeh.
The normal trace oy, - ng is thus well-defined in P (S). In order to define oy, in
RT}’, we also prescribe interior degrees of freedom when m = 1 as follows:

S
fah.rzf V”h"’_/ | l(anuh+P(uh)+)r~ns, vr e PO(K)%.
K K IKNSS VY
)
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By taking now in (4) the test-function vxx with v € P™(K) and by integrating
by parts, we immediately obtain the conservation property of the flux:

divoy|x = —ng f, VK € K. (10)

4 A Posteriori Error Analysis

In [3], the authors studied residual a posteriori error estimators for (3). In addition
to the Laplace operator, they consider the term |S|'/2|8,u, + P(up)y llo,s on
each contact side. However, the error analysis is carried out under a saturation
assumption.

We propose an error estimator based on the correction of the flux 7, = o), — Vuy,
leading to the local/global indicators ng = ||tx|lo,x and no = ||txllo.q-

In the sequel, we focus on the additional terms (with respect to the Laplace
problem) in the error estimator, which are related to the contact condition. We will
establish the reliability of the estimator without any saturation assumption.

4.1 A Posteriori Error Estimator

We define the following local error estimators on a contact side S € Sg:

1S
m.s = ISV 18,un + Pun)+llos,  ms =187 ) P(un)— — Lnunllo.s-
(11)

Here above, £j,uy, is P'-continuous on Fc,deﬁnedbthuh(N) = ; {IS|Pun)-}y

at any node N € I'C. The notation {-} y stands for the mean along I'* if N is interior
to I'C;if N € TCN TP then we set {A}y = 0andif N € TC NN then {A}y = A.

Remark 1 Recall that u = ‘5‘ P(u)_ on I'C. Since uy, is globally continuous, the

estimator 72, s measures the lack of continuity of |§| P(up)— along the side S.

Furthermore, we consider the global error indicators:

2 2 2 2 2 2 2 2
nm = Z M,s» M= Z Ms: M =1 +ny+n3,
SeS¢ SeS¢
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as well as the usual higher-order term &44¢, related to the data approximation, sﬁata ~

Skew, hillf — 7R fI3 « + Ysesy ISIllg — 7§ gll§ s- In the next subsection we
prove:

Theorem 1 One has:

lu —upli,Q < ¢ () + &data) -

4.2 Upper Error Bound

As usually in a posteriori error analysis with reconstructed fluxes, we evaluate |u —
uh|% o by means of an integration by parts, with Vu = o and Vu;, = oj — 7. By
using the properties (7), (10) of o5, € H (div, 2) and the Dirichlet condition, we get:

2 2 2 172
u—unll g = (i +eha)  —wnlia+ [ (@ —on)nw—wpds. (12)
r
Next, we focus on the integral of (12), which we decompose as 77 + 72 + 73, with
T1= /C(o —on) - n(Lpup —up), T2 = /C(G =0y n = Pup)+)w — Lypup),
r r

T3 = /1"C Pup)4+ @ — Lyup) = Z 73

5es¢
In order to bound 77, we introduce a lifting Rpu, € V,;‘D of Lyuy, defined by:
Ruun(N) = Lpup(N) if N € TC, and Ryup(N) = u,(N) at the other vertices.

Thus, Ryup —uy, € Vh0 and its (weighted) discrete H I_norm can be bounded by that
of Lyup — up on I'C, which yields:

|7'1|=‘/QV(u—uh>-V<Rhuh—uh>—erh-V(Rhuh—uh)

—/ (f =g /) Rpup —up) — /N(g — g’ 8) Ruup — up)
Kn S,

1/2
1/2
2 2 2 -1 2
=c (W —upliq+mny+ Sdam> X ( Z [SI7 1 Lhun — Hh”o,s) .
SES,(f
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By using the definition of P(uj) and the relation a = a4 + a—_, we can write that:
S| S|
1 Lnun —unllo,s < y 0nten, + P(up)+llo,s + |l y P(up)— — Lpupllo,s

so for y > 1 we obtain |S|’1/2||£huh —upllo.s < n1,s + n2.s and hence,
1711 < ¢ (lu —unli,@ + 1 + €data) 0- (13)

As regards 72, we use (0 -n)u = 0,0 -n <0, Lyup < 0and (7) to get:
TH < —/Fc(oh “n+ PQup))(u — Lyup)

= SC(Uh “n+ Pup) )@ —up — g (w—up)) + (o -n+ Pup)y) up — Lyup).
h

The Cauchy-Schwarz inequality together with a standard scaling argument gives
IS1'"2lon - 1+ Pun)+llo,s < m.s + IS llw - nllo,s < ms + enx.
Thanks to the discrete trace inequality on S € S¢, we next get that

T2 = en(lu — upli.o +n). (14)

Finally, we consider 73. We only have to bound 7 ‘39 on the contact sides S where
P(up) is non-negative. By using that # < 0 and P(u;)+ > 0, we first have that
‘T§ < - fS P(up)+Lyuy. Thanks to the property ayra_ = 0, we further get:

73 S/(anuh+P(uh)+)(|S|P(uh)—Lhuh>—/ 3nuh<|S|P(uh)—£huh)-
S 4 S 14

The first integral is bounded by n; sn2 s. For the second one, the linear function
P(uy) either changes its sign in a point M € S or is strictly positive.

In the first case, by means of the exact Simpson formula on the segment (of length
d) where P(up,) > 0 we obtain that:

d S
fs nan P ) = e+ P )M+ (1]~ ) ) = | 6' Ot

SO |S|1/2||8nuh||o,5 < cny,s with ¢ independent of d. Thus, ‘7'*39 < cni,sn2.s-
In the second case, P(up)— = 0 so we have to bound |fS OpupLpup|. We
evaluate it by the exact trapeze formula and we bound it thanks to the triangular
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inequality by

2 2
S S
'2' D 1@t + Pun)1) (No) Luun (N)| + '2' D 1P )+ (ND) Lu (N

i=1 i=1

The first sum is clearly bounded by cn1 sn2,s. Concerning the second sum, let us
first note that only the interior nodes of I'* contribute to it. We then use the definition
of Lyuy, the fact that (P (u)-)|s(N;) = 0, the relation ara_ = 0 and we obtain:

ISIP ur)+ (ND) Laun(ND| = |USIP @n)+1n; | X [Loun(N)| < ¢ [[ISIP ur)+1n; | m2,s-

For the jump term, we need to consider the adjacent contact side S containing N;.
If P(up)5(Ni) = 0, then [|S|P(up)+1n; = [SIP(up)ly; = —[IS|8unln;. By
combining an estimate established in [5] with the fact that o, € H(div, 2), and
hence [0,uy] = —[t4 - n] on any interior side, we next obtain that

[S18uunlyy < ¢ D 1S 1IBuunlls,s, < ¢ ) m- (15)

int
Sj ES’AV; Kcon

If P(u h)l (Ni) < 0, then we write by means of the triangular inequality that:

\USIP@n)+1n; | < [UISICP@n)+ + daun)ln; | + |[[1S185unln, | -

The second right-hand side term is bounded in (15); the first one is bounded by
[1S1CP en) + Butan)is(ND| + [ 181 @) 5N
used on S the estimate for Ol previouslyﬂestablished in the case where P (uy)

changes its sign (otherwise, P(u;)+ = 0 on S so the estimate is obvious).
So finally, 73 < cnz; together with (13) and (14), it ends the proof of Theorem 1.

< c(n1.s + 1y 3), where we have
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Study on an Adaptive Finite Element )
Solver for the Cahn-Hilliard Equation ik

G. Fabian Castelli and Willy Dorfler

Abstract In this work we present an adaptive matrix-free finite element solver
for the Cahn—Hilliard equation modelling phase separation in electrode particles
of lithium ion batteries during lithium insertion. We employ an error controlled
variable-step, variable-order time integrator and a regularity estimator for the
adaptive mesh refinement. In particular, we propose a matrix-free applicable
preconditioner. Numerical experiments demonstrate the importance of adaptive
methods and show for our preconditioner practically no dependence of the number
of GMRES iterations on the mesh size, even for locally refined meshes.

1 Phase Separation in Electrode Particles

Lithium ion batteries have become a promising energy storage technology for
mobile power devices. For the better understanding of the cyclability and the loss
of capacity we want to investigate the degradation behaviour of single electrode
particles. For example in electrode materials like lithium manganese oxide (LMO)
or lithium iron phosphate (LFP) the occurrence of a phase transition between lithium
poor and lithium rich phases can lead to high stresses [6, 11-13], which in the end
can also cause particle fracture.

However, simulating such a complex multi-physical problem is a very challeng-
ing task. So neglecting the mechanics for the moment we focus in this work on
the efficient numerical simulation of phase separation in electrode particles during
lithium insertion. Main challenges of this problem like the almost sharp moving
phase transition as well as the varying time scales over several orders of magnitude
give rise to use adaptive methods in space and time. In particular, to be able to
use the high performance parallel matrix-free framework within the open-source
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finite element library deal.Il [2, 7] in future an appropriate preconditioner is needed.
Whereas preconditioning the Cahn—Hilliard equation is already a research topic
itself, see for example [3, 4].

In the rest of this section we review the model equations for phase separation in
electrode particles. Following in Sect. 2 we explain our numerical solution algorithm
and propose our matrix-free applicable preconditioner. Numerical results will be
discussed in Sect. 3 and a conclusion is given in Sect. 4.

Model Equations In contrast to the sharp interface model we previously used in
[5], we follow the phase field modelling in [6] and consider the resulting dimension-
less mixed formulation of the Cahn—Hilliard equation from a mathematical point
of view: Let T > 0 and Q C R? (d = 1,2,3) be a bounded domain. Find the
normalised lithium concentration c: [0, T] x 2 — [0, 1] and the chemical potential
w: [0, T] x Q — R satisfying the initial boundary value problem:

oic = V~(m(c)V,u) in (0,T) x 2,
n=0¥(c,Vec) = V-9,¥(c, Vc) on (0, T) x €,
Ve-n=0 on (0,T) x 022, €))]
m)Vu - n = —Jext on (0, T) x 022,
c(0, -)=co in .

The nonlinear mobility is given by m(c) = Dc(1 — ¢) with the diffusion coefficient
D > 0. The system’s free energy density ¥ (z, p) = Vawp(2) + Ygd(p) is
decomposed into the homogeneous chemical free energy density ¥awp: [0, 1] — R,

1
@z + zlog(z) + (1 — z) log(1 — 2),

1»”dvvp(Z) =a1z+ )

for which the two material parameters o1, a2 € R control the shape of this function,
and the gradient energy density Ygq : R? — R,

1 2
Yed(p) = 2Klpl )

with the parameter ¥ > 0 controlling the width of the phase transition. Note, that
phase separation can only occur if o1 and a2 are chosen, such that ¥4y, has a double
well shape.

To model the lithium insertion we use an inhomogeneous boundary condition of
Neumann-type for u, corresponding to a given particle surface flux Jex;: [0, 7] %
02 — R, while a homogeneous Neumann-type boundary condition for ¢ ensures
that the phase transition stays always orthogonal to the particle surface.

As initial condition for the simulation of lithium insertion we assume an
approximately zero given initial distribution of concentration cp: 2 — (0, 1)
consistent with the boundary conditions.

Parameters to specify the electrode material will be given in Sect. 3.
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2 The Numerical Method

Semi-discretisation in Space We start with the weak formulation of the sys-
tem (1): Find ¢: [0,T] — {H'(Q) : ¢ € [0,1]} and p: [0, T] — H'(Q)
satisfying the weak form that we get by multiplication with test functions v,
w e V = H'(Q). We assume V;, C V to be a finite dimensional space with
basis {¢; : i = 1,..., N}. Now we seek ¢;: [0,T] — {Vh :¢cp €10, 1]} and
wn: [0, T] — Vj to be solutions of the discrete system

((pia atch)Q = _(V(piﬂ m(Ch)VMh)Q - ((pia JCXt)(’)Qa
0= —(¢i, ) g + (91, Wiwp(en)) g + k(Vei, Ven) g

fori = 1,..., N. In this set of equations we insert the basis representation for the
discrete functions ¢, (¢, x) = Z;v:l cj(t)pj(x) and up(t, x) = Z;v:l wit)e;(x).
Now we identify the spatially discrete function cj(#, -) with the vector-valued
function ¢(t) = [cj(H)]; € [0, 11V and pu(z, -) with p(t) = [pu;(0)]; € RV,
Gathering the solution variables for the concentration and the chemical potential in
a vector-valued solution variable y: [0, T] — R?N, ¢ > y(t) = [e(@), p()]T,
we arrive at the nonlinear differential algebraic equation (DAE) for the spatially
discretised system: Find y: [0, T] — R?" satisfying:

(1‘04 8) y=ft.y) fort>0,  y0) =y’ @

The system mass matrix on the left hand side of the DAE is singular and its entry
M = [((p,-, 7 j)Q],- j denotes the mass matrix of our finite element space. The right
hand side function is defined according to the weak formulation: If y is related to
cn, iy as described, we have f: [0, T] x R2N 5 RZV with

—(Vei, \Y% — (01, Jext).
(t,y) > f(t,y) = ( (Vi m(cn)Vin)g = (915 Jext) 5, ) |
i=1,...N

—(@i ) + (9i- Wéwp(ch))g +1(Vei. Ven)g

,,,,,

Defining the matrices K1 = [(V(pi, V(pj)Q]ij, K,(y)) = [(V(p,-, m(ch)Vgoj)Q]ij
and the vectors W (y) = [((p,-, Iﬁéwp(Ch))Q]i, J = [((/’i, Jext)‘m]i we can rewrite f
as

f1,y1, y2>> _ (—Km<y1>y2 -J )

f(t,y)=<
S2, 31, ¥2) My, +¥(y;) +kKi1y;

Note, that an explicit dependence of f on ¢ will only occur via Jex;.

The Time Integration Method As a robust solver for the arising DAE we use the
family of NDF multistep methods in a variable-step, variable-order algorithm, in
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Matlab known as odel5s [8-10]. This incorporates an error controlled adaptive
time step size and adapted orders. We implemented this as a C++ code with the
functionalities of the deal.Il library.

In summary, the resulting fully discrete problem for the approximate solution
y"Jrl to the solution y(#,41) of (2) at the time step #,4+1 = f, + 1, involves a
nonlinear algebraic set of equations to solve. According to the k-th order NDF time
integrator these nonlinear equations have the form [8, Sect. 2.3]:

&ty "M@+ ¥ — filtern, YL ¥5TH =0,

— Foltasr, YT, 2t =0,

with some constant & > 0 for the chosen order k and the fixed term ®; depending
on the solution at some previous time steps y’f, y'ffl, .

Solving the System of Equations Our approach follows the work [4]: We intro-
duce the scaling (for ¢) y’l”rl = rl/4z’f+1, &, = ¢'/*®; and (for p) ng =
=1 4z§+1 and multiply the first equation with 73/4 and the second equation with
/4 to get:

SkM(EH T Z?H) i tl/sz(rl/4z’f+1)z§+1 +3 o,

Mz;ﬂ B T1/4\I,(T1/4z;11+1) _ 1_1/2KK11;11+1 —0

To solve this problem for z”*!, Newton’s method is applied and the essential work
is to solve the linearised problem. This is done by a GMRES method with a right
preconditioner. As in [4] we compute the Jacobian and swapping columns yields
a generalisation of the preconditioner obtained in [4] depending on the Newton
step z®:

) = (Tl/sz(Tlmz?)) M 0 ) .
0 V2K + M
The advantage of the proposed preconditioner is that it respects the nonlinear
mobility and is applicable for matrix-free computations [7]. In particular, as in [4],
for the efficient application of the preconditioner, the action of the inverse blocks
can be computed by a CG method with a suitable preconditioner. Furthermore, we
benefit from the implementation of the matrix-free framework in deal.ll, since we
are able to parallelise the code directly with MPI for future simulations.

The Space-Time Adaptive Algorithm We will first present the algorithm and will
then explain some details.

1. Given ¢”* and u" (and previous ones), t,,, 75, order k for time stepping.
2. Solve for y"*! (defining ¢"*! and u"*1).
3. Estimate time error err; and compute spatial regularity estimates est.
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4. (b) If err; > RelTol,: Decrease time step size and/or reduce order.
(b) If est, > RelTol,: Mark elements and refine mesh.
5. If both err; and est, were OK, accept y"Jrl as solution at time #,41.
Else go to Step 2.
6. If a sufficient number of time steps were accepted with the same time step size

(b) Adapt time step size and order according to error estimate ert;.
(b) Mark all cells with n% < 10719 but Apax = 27> and coarsen mesh.

7. Advance time step.

The method to obtain y"*! in Step 2 has been explained before. For Step 3 the
estimation of the time error is part of the NDF method [8—10]. For the spatial error
we use a method to judge the regularity of a finite element approximation u, (here
cp or up), see [1, Chap. 4]. For uj, € V;, we compute a recovered gradient G, (uy) €
(Vi)?, here via an approximated L>-projection, and define for each cell T of our
spatial partition

nk(up) = f |G (up) — Vup)? dx
T

and est, := (ZTGT" 17%)1/2 with n% = n%(ch) + n% (up). For the adaptive change
of the time step size and the order in Steps 4a and 6a, compare [8—10] and the
references cited therein. Step 4b is done with fixed energy marking up to a minimal
mesh width Ay = 2729 and an absolute tolerance n% > AbsTol,.

3 Numerical Experiments

For the numerical experiments we consider the model equations from Sect. 1 for
a spherical shaped electrode particle of LFP. The parameters, taken from [13], are
o) = 45,00 = =9, k = 3.91 x 107* for the free energy density and D =
1.6 x 103 for the diffusion coefficient. Assuming a radial symmetric solution we can
reduce the computational domain to the one-dimensional unit interval 2 = (0, 1)
representing the radial line from the particle centre at I'g = {0} to the particle surface
at lexe = {1}. As boundary condition we apply a constant insertion rate Jex; =
—1/3 at the particle surface such that the particle would get fully charged within
1h T = 1. To preserve the symmetry we impose homogeneous boundary conditions
of Neumann-type at the artificial boundary in the particle centre

Ve-n=m()Vu-n=0 on(0,T) x I'g.
At initial time ¢t = 0 we assume a constant concentration of ¢y = 0.01.

First we solved the model equations numerically with linear finite elements and
the variable-step, variable-order time integrator, as explained in Sect. 2. We used a
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uniform mesh with mesh width 7 = 2719, according to the rule of thumb that the
phase transition should be resolved with at least ten cells or unknowns. As the width
of the phase transition behaves like /k it is related to the uniform mesh width & =
27" by 27" < /k/10 & n > log (/k/10)/log(2), with n the number of uniform
refinements. For the time integration the relative tolerance was set to RelTol, =
10~*. In Fig. 1 we see snapshots of the numerical solution for the concentration
and the chemical potential at three characteristic time steps: (1) Initiation of phase
separation, (2) Migration of the phase transition through the particle, (3) Vanishing
of the phase transition.

The importance of adaptive methods for this problem becomes immediately clear
when we look into Fig.2. At the times when the phase separation is initiated and
when the phase transition vanishes, the time step size jumps over several orders

1 1
t=0.117 t = 0.500 rt=0.975

L 08 0.8 0.8
g

E 0.6 0.6 0.6
=

§ 0.4 0.4 0.4
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Fig. 1 Temporal evolution of the concentration (top) and the chemical potential (bottom)
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Fig. 2 Concentration at initiation of phase separation (left) and used time step size over time with
markers for used order (right)
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Fig. 3 Maximum number of GMRES steps per time step for different uniform refinements (left)
and for different polynomial degrees with approximately equal number of DoFs (right)
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Fig. 4 Maximum number of GMRES steps per time step for different polynomial degrees with
adaptive mesh refinement (left) and number of DoFs (right)

of magnitude. In contrast, during the migration of the phase transition a large time
step size can be used. Furthermore, a full resolution of the whole spatial domain,
respecting the width of the phase transition, is obviously not necessary, since the
solution is approximately constant in regions away from the phase transition.

To show the performance of our proposed preconditioner we plotted the max-
imum number of GMRES steps needed to solve a time step in Fig.3. For this
we solved the model equation (1) for a series of successively uniform refined
meshes, (2) for finite element methods with increasing polynomial degree holding
the number of unknowns approximately constant. Once the phase transition is fully
resolved, the number of GMRES steps is practically independent of further mesh
refinement. The variation of the polynomial degree of the finite element method
also has no significant influence on the number of iteration steps.

Allowing adaptive mesh refinement as described in the adaptive algorithm in
Sect.2, we see in Fig.4 that the preconditioner shows the same performance as
in the uniform refined case. In particular, compared to the uniformly refined case,
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the savings in degrees of freedom are enormous, especially for higher order finite
element methods. As marking parameter we used 6 = 0.2 and for all polynomial
degrees we used the tolerances RelTol, = 1072, AbsTol, = 10719, except in the
case p = 1, where we used RelTol, = 5 x 1072 instead.

4 Conclusion

Summing up, we introduced the model equations for phase separation in electrode
particles of lithium ion batteries during lithium insertion. For this initial boundary
value problem we presented a space-time adaptive algorithm for a finite element
solver. In particular, we developed an easy to implement and matrix-free applicable
preconditioner, which respects the nonlinear character of the PDEs. Numerical
experiments showed the high demand for adaptive methods as an indispensable tool
for the fast and accurate solution of this complex application problem. Furthermore
with the proposed matrix-free preconditioner the number of GMRES steps showed
practically no dependence on the spatial resolution even for locally refined meshes.

The presented results in one space dimension give rise to exploit the capabilities
of the developed adaptive matrix-free finite element solver for future simulations of
more realistic cases, such as phase separation in arbitrary shaped electrode particles
including also a thermodynamically consistent mechanics theory.

The proof of a theoretical result for the proposed matrix-free preconditioner will
also be part of a future work.
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coefficient for a reduced model of passive transport in fractured porous media.

MSC (2010) 65NO08, 65N12, 65N30

1 Introduction

In this paper, we focus on the reduced model introduced in [1, 3] describing the
Passive Transport of a solute in a Fractured Porous Media, which will be now
referred to as (PTFPM). By reduced model, we assume that the fracture is treated
as a surface of codimension one. The reduced model (PTFPM) consists of two
advection—diffusion-reaction equations, one in the porous media and one in the
fracture, with advective velocity fields taken as the solution of a decoupled problem,
and where the coupling is done by subtle transmission conditions describing the
exchanges between the different regions. A notable feature of the reduced model
(PTFPM) is that the transmission conditions between the porous media and the
fracture mimic at the discrete level the property that the advection terms do
not contribute to the energy balance of the system, allowing us to handle both
conducting and blocking fractures by letting the concentration of the solute jumps
across the fracture; see also [4] in the context of advection of a passive scalar
in a fractured porous media. However, the description of the fracture diffusion-
dispersion in both the normal and tangential directions considered in the reduced
model (PTFPM) is meaningless from the physical viewpoint. Indeed, in (PTFPM)
those coefficients are assumed to be independent from the surrounding unknowns:
this is irrelevant since they play an important role in the description of (1) the
exchanges between the porous media and the fracture, and (2) the behavior of the
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solute at the neighborhood of the fracture. The aim of this paper is to propose
a more physical definition of the fracture diffusion-dispersion coefficient, and to
present some test cases based on the previous works [2, 3]. The rest of this paper
is organized as follows: in Sect. 2 we present the main equations and in Sect. 3 we
perform numerical experiments.

2 The Differential Model

In this section, we present the reduced model for the passive transport in a fractured
porous media. We first introduce notation, then define the velocity fields and
diffusion-dispersion tensors, and finally introduce the main equations.

2.1 Notation

We consider a porous medium saturated by an incompressible fluid that occupies
a space region £2 C R? traversed by a fracture . We assume that £2 is an open,
bounded, connected, polygonal set with Lipschitz boundary 02, and denote by ny;
the unit normal vector on 952 pointing out of §2. The fracture I" is represented by
an open line segment of nonzero length which cuts §2 into two disjoint connected
polygonal subdomains §2g,1 and £2g > with Lipschitz boundary. The sets 2 =
2\TI' =821 U2p2and 982 := UI.ZH(BQBJ \ I") correspond to the bulk region
and the external boundary of the bulk region, respectively. The boundary of the
fracture I" is denoted by 91", and the corresponding outward unit tangential vector
is Tyr. Finally, n denotes the unit normal vector to I" pointing out of £2g ; This
notation is illustrated in Fig. 1.

For any scalar- or vector-valued function ¢ sufficiently regular to admit a
(possibly two-valued) trace on I, we define the jump and average operators such
that

1
lellr == (92p, — 281> lolr = 2(</)\:2B,1 + Q25

Fig. 1 Illustration of the
notation introduced in

nr
Sect. 2.1 —
® JI
Qp Q) [] Qp:=05,1UQ5,

# oo
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2.2 Adbvective Velocity Fields

We assume that the advective Darcy velocities follow from the decoupled reduced
model [5], which describes the flow in a fractured porous medium. This model reads
as follows: Find the bulk Darcy velocity u : £2g — R?, the bulk pressure p : 2 —
R and the fracture pressure pr : I' — R such that

u+KvVp=0 in £2g, (la)
Veu=f in £2g, (1b)
u-nyo =0 on 052g, (1c)
Ve - (=KrVepr)=Lrfr+Mulr-np  inl, (1d)
—KrVepr-tor =0 ondrl, (le)
/ pr =0, (1)

r

where f € L?(2p) and fr € L*(I") verify Jag [+ [ trfr = 0 and denote
source or sink terms, K : 25 — R?*2 is the bulk permeability tensor, and we have
set Kp = «fLp, with k. : I' — R denoting the tangential permeability inside
the fracture and £ : I — R the fracture thickness. In (1d) and (le), V; and V,-
denote the tangential gradient and divergence operators along I", respectively. The
following transmission conditions across the fracture close the problem:

n

{uhr np = ZF [plronl,  [ulr-nr= ZFS_l({{P}}F—PF) onl, (2
r r

where & € (O, é] is a user-dependent model parameter and 7. : I" — R represents

the normal permeability inside the fracture. From now, we refer to the advective
velocity fields as the bulk Darcy velocity u and the tangential fracture Darcy velocity
ur =—KrV;pr.

2.3 Diffusion-Dispersion Tensors

Following [6], we assume that the bulk diffusion-dispersion tensor D : 2 — R?*?
and the fracture diffusion-dispersion coefficient Dy : I' — R are such that

D = ¢ (dnh + [u/(dE) + di (I — E(w)))), (3a)
Dr = ¢r (¢rdl +urldl), (3b)
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where u and uy are defined in Sect. 2.2, | - | is the euclidian norm, and the scalar
functions ¢, dn, d;,d; : 2 — R and ¢, dr{; , le : I' — R are, respectively,
the bulk porosity, molecular diffusion, longitudinal and transverse dispersion coef-
ficients, and the fracture porosity, molecular diffusion and longitudinal dispersion
coefficients. In (3a), I, € R2*2 is the identity matrix and E(u) := lu|2(u®u) €
R?*2 denotes the orthogonal projection matrix in the direction of u. In the reduced
model (PTFPM), the fracture diffusion-dispersion coefficient D depends on a
fracture transverse dispersion coefficient. Here, the fracture transverse dispersion
coefficient is rather integrated into the transmission conditions; see Remark 1.

2.4 The Reduced Model

For a fixed T > 0, we denote by .Qg = (0,T) x Qg and I'T := (0, T) x I the
temporal-spatial domains of interest, and by 8!2];( = (0,T) x 32g and 31T :=
(0, T') x I' their respective boundaries. The reduced model for the passive transport
of a solute in a fractured porous medium hinges into seeking the concentration of
the solute in the bulk ¢ : 27 — R and in the fracture ¢y : I'T — R such that

¢ c+V-(uc—DVe)+ fe=fT¢ in 25,
(4a)
—DVe -mye =0 on d24,
(4b)

Crérdier + V- (aper — Dr¥eer) + U frer = e fier in 7,
(4¢)

+ [[llC — DVC]][“ ‘nr

—DrNeer -tyr =0 on BFT,
(4d)

where u and uy are defined in Sect. 2.2, D and D are defined in Sect. 2.3, the terms
f* =1(f| £ f) and flﬂf = 1/2(| fr| & fr) denote the positive or negative part
of f and f, respectively, and the scalar functions ¢ : .Qg —Rander: I'T > R
stand for the concentration of solute as it is injected in the bulk and in the fracture,
respectively. The following transmission conditions, along with initial conditions
c(t=0)=copin2gand cr(t =0) = cr,0in I', close the problem:

9N 1
fluc = DVelr-np = zf lelr + fehrituhr nr + lelrlulr nron I,

7 1
[uc —DVelr -nr = E;s*%{{c}}r —er)+ , @ehr +enlulr nron T,
(5)
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where £ is the user-dependent model parameter introduced in Sect. 2.2. The term
27 : I' — Rrepresents the normal diffusion-dispersion coefficient of the fracture.
In the reduced model (PTFPM), 2% does not depend on the surrounding unknowns.
For a more accurate description of the exchange between the bulk and the fracture,
we propose the following definition:

= gr(dh +dl 1w - nr), ©)

that depends on (1) the porosity of the fracture ¢, (2) the fracture molecular
diffusion coefficient dé: , and (3) on the fracture transverse dispersion dtr :I' >R
weighted by the normal component of the average of the bulk Darcy velocity u.
From now, we refer to the reduced model (4)-(6) as (PTFPMx).

Remark 1 The fracture transverse dispersion dtr describes the property of the solute
to diffuse in the orthogonal directions of the fracture advective velocity field ur. In
the framework of reduced models, it is assumed that the normal component of the
fracture Darcy velocity is a linear combination of the normal component of the
surrounding bulk Darcy velocity; see [5]. Therefore, it seems natural to integrate the
fracture transverse dispersion coefficient into the transmission conditions (5).

3 Numerical Experiments

In this section we numerically compare the two reduced models (PTFPM) and
(PTFPMx). For the sake of brevity, we refer to the previous works [2, 3] for the
space discretization aspects and to [3, Section 5] for an in-depth description of the
test case configurations considered in this section. To discretize in time, we use
a backward Euler scheme and consider a uniform partition ("*)p<,<n of the time
interval (0, T) with /° =0, /N = T and " — "' = Arforall ] <n < N.

3.1 Injection and Production Wells

In petroleum engineering, the source terms f and fr are used to model injection
and production wells in the bulk and in the fracture, respectively; see [7]. Through
this section, the injection well sits in x; € §2g, the production one in x, € £2g, and
both are modeled by the source term f defined such that

f(x) = ; (tanh (200 (0.025 — |x — x;|)) — tanh (200 (0.025 — |x — X)) .

For a fixed Tinj > 0, the concentration of solute as it is injected is defined as
c(t,x) = 1if t < Ty and ¢(r,x) = O otherwise. In the fracture, we set
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fr = ¢cr(t,x) = 0. We assume that the initial concentration of solute is zero in
2 and I'.

3.2 Impermeable Fractures

We first consider a test case modelling the passive displacement of a solute in a
fractured porous medium where fractures act as barriers. The domain configuration
and user parameters are detailed in Fig. 2a. With this configuration the solute is
expected to go from the injection well toward the production well by avoiding the
fractures; see [3, Section 5.2]. In Fig. 2b and ¢, we display the bulk concentrations of
both reduced models (PTFPM) and (PTFPMx) obtained at different time ¢. In both
cases, the solute follows the corridors designed by the fractures acting as barriers
and goes from the injection to the production well for the two configurations.

~ Q=(0,1)2, & =0.125x = (1/2,0), x, = (1/2,1)
oor I = (0,3/4) x {1/3,3/4} U (1/4,1) x {1/2}
—¢ o lr=10"2,K=10"L, kf = 1073, k1 = 10~°
4 o0 dp=d- =105, dy=d" =1,d, =dl =102
. ¢ =¢r =101, T =10°, Ty = 30, At = 1
(@)

(b) ()

Fig. 2 Domain configuration (left) and parameters (right) (top, a), and snapshots of the bulk
concentrations ¢ (bottom) for the test case of Sect. 3.2 (impermeable fractures). Displayed times
(from left to right, top to bottom): t = 5, 20, 40, 60, 80, 100. (b) Reduced models (PTFPM), (c)
Reduced models (PTFPMx)
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However, discontinuities of the bulk concentration ¢ across the fractures are more
pronounced in the reduced model (PTFPMx). This arises from the fact that the
fracture transverse coefficient d/” depends on the surrounding bulk Darcy velocity,
which, in this case, avoids fractures.

3.3 Permeable Fractures

We now consider fractures acting as conduits. Both the domain configuration and
user parameters are displayed in Fig. 3a. With this choice, it is expected that the
solute is attracted by the fractures; see [3, Section 5.3]. In Fig. 3b and ¢, we display
bulk concentrations ¢ of both reduced models (PTFPM) and (PTFPMx), at different
time ¢. In both cases, we can distinctly see that the solute channeled by the fractures
flows towards the production well faster than the solute in the surrounding bulk

~ Q=(0,1)2&=0.125x = (1/2,0), x, = (1/2,1)
eor I' = {2/32,8/32,13/32,19/32,24/32,30/32} x (1/4,3/4)
[ 2 r=10"2,K=10" L, kf =10"!, k. = 1073
# o0 dn=db =105, dy=d" =1,d; = dl =102
PN ¢=¢r=10"1, T =10% T =30, At = 1

(a)

(b)

Fig. 3 Domain configuration (left) and parameters (right) (top, a), and snapshots of the bulk
concentrations ¢ (bottom) for the test of Sect. 3.3 (permeable fractures). Displayed times (from
left to right, top to bottom): + = 5, 15, 30, 50, 80, 100. (b) Reduced models (PTFPM), (c)
Reduced models (PTFPMx)

(©)
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medium. We remark that the discontinuities of the concentration ¢ are also in this
case more pronounced at the neighbourhood of the fracture tips located near the
injection well for the reduced model (PTFPMx).

In practice, the molecular diffusion coefficients are set to zero. This delicate case
is prone to instabilities since the diffusion-dispersion tensors can be degenerate in
some parts of the domain where the Darcy velocities vanish. Moreover, the fracture
normal diffusion-dispersion coefficient depends, in this case, only on the Darcy
velocity u. In Fig. 4, we display the concentrations obtained by the two reduced
models (PTFPM) and (PTFPMx) at different time ¢ upon setting d, = dfr: = 0.
Clearly, one can see instabilities at the neighborhood of the fractures for the reduced
model (PTFPM); see Fig. 4a. On the other hand, the reduced model (PTFPMx)
seems to handle without difficulty this particular case; see Fig. 4b. We also note
that the discontinuities are more pronounced in the reduced model (PTFPMx), and
that the concentrations of the two reduced models (PTFPM) and (PTFPMx) behave
differently at the vicinity of the fractures.

ad e B
O =S

Fig. 4 Snapshots of the bulk concentration ¢ and zoom on the vicinity of the fracture for the
test case of Sect. 3.3 (permeable fracture, vanishing molecular diffusion). Displayed times: t =
15, 20, 30. (a) Reduced models (PTFPM), (b) Reduced models (PTFPMx)
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Several Agent-Based and Cellular m)
Automata Mathematical Frameworks e
for Modeling Pancreatic Cancer

Jiao Chen and Fred J. Vermolen

Abstract Mathematical modeling sheds light on cancer research. In addition to
reducing animal-based experiments, mathematical modeling is able to provide
predictions and prevalidate hypotheses quantitatively. In this work, two different
agent-based frameworks regarding cancer modeling are summarised. In contrast,
cell-based models focus on the behavior of every single cell and presents the
interaction of cells on a small scale, whereas, cellular automata models are used
to simulate the interaction of cells with their microenvironment on a large tissue
scale.

1 Introduction

In agent-based modeling, a collection of autonomous decision-making entities
(called agents) is utilized to model a system. Based on a set of rules, each agent
makes the decision individually and executes various behaviors for the whole system
[8]. Therefore, agent-based modeling represents a dynamic and interactive system,
which has been applied in various fields like biomedical research [5], chemistry
[10], market analysis [1], etc.
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Agent-based modeling is capable of simulating a broad spectrum of length-
scales, which has been classified by Van Liedekerke et al. [11] into the following
three types:

» Lattice-based model, where the model is developed based on regular lattice sites
in a spatial computational domain. In biomedical modeling, cell bioprocesses are
represented by transitions of each lattice state such that the model shows the
evolution of a system by a discrete time-stepping mechanism or a continuous-
time framework [9]. According to [11], the lattice-based model can be further
classified into cellular automata models, lattice gas cellular and cellular potts
models.

e Off-lattice model, which means the model is lattice-free and each agent is
allowed to move in any direction rather than restricting agents to lattice sites.
Some examples are center-based models, deformable cell models, and vertex
model, etc. [11].

e Hybrid discrete-continnum model. To solve large multicellular systems, dis-
crete agent-based models need large computational time since individual cells
are concerned. The continuum model is able to solve PDEs for tissue dynamics
or other complicated issues. Therefore, a hybrid discrete-continuum model is
proposed to simulate multiscale models [11].

2 Agent-Based Models

Agent-based (or cell-based) models deal with biological cells as discrete entities in
a computational domain. One of the advantages is the straightforward integration
of cell-level processes like cell proliferation, cell death, cell mutation, etc. and the
intracellular interactions. We develop a cell-based model with an application to
pancreatic cancer therapy at early stages [5]. In this work, we consider three cell
phenotypes, i.e. epithelial cells, cancer cells, T-lymphocytes, which are visualized
as blue, red and green colored circles in Fig. 1, respectively. Figure 1 shows
consecutive snapshots of the migration of T-lymphocytes in pancreatic cancer at an
early stage. Since pancreatic cancer cells accumulate in rounded (three dimensional)
clusters, we model the computational domain as a circular structure [5]. To visualize
cell mutation, epithelial cells change color from blue to filled red. Moreover, other
cell bioprocesses such as cell division and cell death are incorporated. Typically, in
a competitive environment, cancer cells have a growth and proliferation (division)
advantage over other healthy cells, therefore, the number of cancer cells in Fig. |
accounts for the majority at time = 150 h.

In this model, the migration of epithelial and cancer cells is mechanotaxis
updated by

1

v =" At M () + nAW (), 1)
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Time =20 h Time =150 h

(b) ()

Fig. 1 Consecutive snapshots of cancer progression and T-lymphocytes migration when time =
2 h (a), time = 20 h (b) and time = 150 h (c), respectively. The blue, red and green color denote
epithelial cells, cancer cells and T-lymphocytes

where r; and o; represents the position of cell i and its velocity parameter. The
M; (r) is the total mechanical signal comprising of traction force caused by strain
energy density and a repulsive force. In addition, n denotes a constant and AW(¢)
takes care of random walk (diffusion), which is a Wiener process. In contrast, the
locomotion of T-lymphocytes is chemo-mechanotaxis, where T-lymphocytes are
attracted by a type of chemokine secreted by cancer cells. The displacement of T-
lymphocytes is described as

v = r’/'._l + BVelt, r’;—l)m + AW — MmC(r'J%—l)z'}—lAt. )
Here c(z, r;'._l) denotes the concentration of chemokine secreted by cancer cells at
time step n — 1 and B is a constant. Whenever any two cells contact with each other,
the repulsive force M™°(r ;) repels two cells with direction z;.

Next we consider a deformable cell model. The deformable cell model simulates
the evolution of cell shape during the interaction with the microenvironment, see an
example in [3]. In Fig. 2, some snapshots at consecutive times are plotted to show
the deformation of a migrating cell and its nucleus denoted in red and green color,
respectively. Furthermore, circles in grey color are regarded as two stiff obstacles
and the cell penetrates the cavity by the attraction of two source points (blue
asterisk). The migration of the cell and its nucleus is determined by chemotaxis,
which can be expressed as

X (1P = x; (tP) + Ar- (BV e (1P +a(x (17) +% —x: (1P ) +nAW,  (3)
and

X! (P = X! (1P) 4 At (—a (X () 4% =% (1P D) Fa (X (1P) 4K — xP (P H1)) 4 AW,
4
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Fig. 2 Consecutive snapshots of the deformation of one migrating cell and its nucleus when time
= 0h, time = 0.0799 h, time = 0.1349 h and time = 0.1709 h, in red and green color, respectively.
Two stiff obstacles are visualized in grey circles and source points are denoted by blue asterisks

Note that x; and xf denote the location of a node i on the cell membrane and nucleus
surface, respectively. The second term in Egs. (3) and (4) represents the interaction
between the nucleus surface and cell membrane. Analogously, we model random
walk by using a Wiener process AW, where 7 is a constant.

Cells are subject to large deformation during migration to adapt to the environ-
ment. This cell-based model can be applied to the deformation of an immune cell
with the attraction of a pathogen source. In addition, it also can be used to describe
the deformation of a cancer cell during the migration to the oxygen source as part
of the metastasis process.

3 The Cellular Automata Model

The cellular automata model is a lattice-based method, which has been used in
various fields. Specifically, a computational domain is divided into lattice sites,
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where each lattice site can be occupied by one cell or multiple cells. Each lattice
site can be in a discrete state and is able to ‘jump’ from one state into another
state. Moreover, one single cell is able to share a few lattice sites in some cases. We
develop a three-dimensional model to simulate the cancer progression and recession
under virotherapy [2], in which one lattice point is occupied by multiple cells.
As a result, Fig. 3 shows cancer progression at early stages in a 15x15x15 mm?3
domain. To mimic cell mutation, epithelial cells (in blue color) are allowed to turn
into cancer cells (in red color). As mentioned earlier, cancer cells have more growth
and division rates than normal cells in a competitive environment with limited space
and nutrition. The number of cancer cells increases significantly and thereby cancer
progresses to a large volumetric fraction in the simulations.

In the model, any lattice site has three discrete states, i.e. unoccupied (or dead
cell) state, epithelial cell state, cancer cell state. Under certain conditions, a lattice

Cancer progression Cancer progression

Time = 0.0d Time =4.0d

Z-axis (mm)
Z-axis {mm)

4

6
3 8 J
X-axis rmmlo :t 2 4

Cancer progression

Time = 40.0d

Z-axis (mm)

(c)

Fig. 3 Consecutive snapshots of cancer progression when time = 0 days, time = 4 days and time
= 40 days, respectively, in cellular automata model. The blue and red color represent epithelial
cells and cancer cells. The computational domain is 15x 15x 15 mm?
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point, i, can change state and the transition probability P within a time interval (,
to + At) is defined as

to+At
P = / S, )dt ~ 1 — exp(—A; At). (&)
to

where f(X;,t) is an exponential distribution and A; denotes the probability rate
at grid node i per unit of time of state transition. Note that the probability rate
for the change of state depends on the two states between which the grid node
undergoes the change. Regarding our model, one of the merits is the flexibility
of the input parameters. With proper input variables, our numerical results can
reproduce experimental results very well, see Fig. 4 [2], where curves show cancer
growth during 50 days. Taking the animal-based experimental results from [6],
cancer grows under gemcitabine intervention compared with a control experiment
showing in the blue line and black line in Fig.4. In comparison, modeled results
indicated by the red lines are able to predict the cancer progression well according
to experimental curves.

Subsequently, this cellular automata model is extended to oncolytic virotherapy
in pancreatic cancer at early stages [2]. We assume that a three-dimensional domain
is fully colonized by cancer cells and at a certain time a dose of viruses is given
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Fig. 4 Cancer growth with the respect of time in days [2]. The red curves show the numerical
results from the cellular automata model, whereas the black and blue lines represent the cancer
growth without gemcitabine and with gemcitabine, respectively. The experimental results are taken
from the work [6]
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Fig. 5 Consecutive snapshots of cancer recession when time = 25 h, time = 50 h and time =
75 h, respectively, in cellular automata model with an application to virotherapy in pancreatic
cancer. In the computational domain 15x15x15 mm3, the epithelial cells, cancer cells, infected
cells are denoted in blue, red and black color, respectively. In addition, the lattice sites in white
color represent the dead cells or unoccupied states

intratumorally by injection (see Fig.5). Figure 5 shows cancer recession under
virotherapy, where cancer cells, epithelial cells, infected cells are visualized in red,
blue and black color, respectively. Once cancer cells die due to viral replication,
the lattice points will transform from the cancer state to the unoccupied state,
which is indicated in white color. Since the viruses are injected in the center of
the domain, viruses diffuse and infect cancer cells from the central lattice points
with the evolution of time (see Fig. 5b). The model of viral diffusion is defined as

z;ca(tr) = DAc(r) + y(1)§(x — xp) + Be(r)(1 — c]flru)) ©
D*"™ + Te() =0, ondl ’
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where c(r) is the viral concentration at any lattice point and D denotes the viral
diffusivity. The Dirac delta function § (x) mimics the viral source with a time-related
secretion rate y (¢) at position X,. Note that Bc(r)(1 — le,?) is a reaction term to
simulate the viral replication, which only takes place in the grid nodes that are in
the cancer state. Here 8 denotes the proliferation rate of virus and N, represents a
burst size of viruses. On the boundary I', viruses are able to disperse to the neighbor
tissue or organs with a mass transfer rate coefficient T. As more and more cancer
cells are eliminated by viruses, there is a ‘wound’ region, characterized by cells in
the ‘unoccupied state’ appearing in the tissue as a result. However, healthy cells
migrate to this wound from neighbor tissue or organs and hence fill in this gap by
proliferation. In other words, this model could also be used for simulating wound
healing.

4 Uncertainty Quantification

Using the cell deformation model, see Eqs. (3)-(4) and Fig.2, we quantify the
influence of uncertainty in the input data on the time of metastasis, which is modeled
by the time at which a cancer cell exists a blood vessel. In the modeling set-up,
cancer cells transmigrate through the walls of a blood vessel and subsequently they
are transported by the bloodstream to enter at a different part of the body where they
can colonize by forming new tumors. The set-up deviates from Fig. 2, more details
can be found in [4]. The uncertainty quantification is performed by Monte Carlo
simulations, see [7], in which the input parameters, here the cell size and the size of
the aperture of the blood vessel are sampled from statistical distributions. The results
indicate a significant positive correlation (sample correlation coefficient r = 0.79)
between the metastasis time and the cell size. Hence the larger the cancer cell, the
more time it takes to metastasize since transmigration through a blood vessel is more
difficult for larger cells. Furthermore, the Monte Carlo simulations hint at a weaker
negative correlation (r = —0.17) between the metastasis time and the size of the
aperture of the vessel. This confirms the intuition that a permeable vessel facilitates
the transmigration of the cell, and hence enhances metastasis (Fig. 6).

Moreover, the Monte Carlo method is further used to predict the likelihood of
successful cancer treatment in our other works [2, 5]. The corresponding results are
hopeful to aid experiment design and prevalidation before clinical trials.
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Fig. 6 Scatter plots of Monte Carlo simulations [4]. (a) Correlation between cell size and cell
metastatic time with coefficient r = 0.78592; (b) correlation between vessel size and cell metastatic
time with coefficient r = —0.16567

5 Discussion and Conclusions

Regarding cancer modeling, we develop different agent-based frameworks, namely
the cell-based model and cellular automata model, which are compared in this paper.
The cell-based model, where each individual cell is considered, is beneficial for
modeling at small scales. The morphology of the cells can be fixed as in the model
applied in pancreatic cancer at early stages [5]. Furthermore, one can zoom into the
process of cell migration where one models morphological changes of each cell,
such as in the simulation framework with an application to cancer metastasis [3].
Furthermore, the intercellular biomechanics and interactions between cells and their
microenvironment are incorporated. However, with an increase in the number of
cells, the cell-based model will be time-consuming, and therefore cellular automata
model could be a computationally ‘cheap’ alternative. Besides the cellular automata
model, a continuum model for the viral spread is taken into account by using
the reaction-diffusion equation [2]. As we expected, the numerical results show
consistency with the results from the experiments in the literature.

Computational modeling has played and will continue to play a pivotal role in
cancer research and treatment. The computational framework will possess aspects
from both complicated physics-based approaches as well as from ‘simple’ tractable
phenomenological modeling approaches.
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Error Bounds for Some Approximate )
Posterior Measures in Bayesian Inference %

Han Cheng Lie, T. J. Sullivan, and Aretha Teckentrup

Abstract In certain applications involving the solution of a Bayesian inverse
problem, it may not be possible or desirable to evaluate the full posterior, e.g.
due to the high computational cost of doing so. This problem motivates the use
of approximate posteriors that arise from approximating the data misfit or forward
model. We review some error bounds for random and deterministic approximate
posteriors that arise when the approximate data misfits and approximate forward
models are random.

1 Introduction

An inverse problem consists of recovering an unknown parameter u that belongs to
a possibly infinite-dimensional space U from noisy data y of the form

y=Gu)+ned, (h

where Y is the ‘data space’, G : U — Y is a known ‘forward operator’, and 7 is a
random variable. In many problems of interest, the parameter space U is a subset of
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an infinite-dimensional Banach space, the data space Y is often taken to be R? for
some possibly large d € N, and n is assumed to be Gaussian.

One of the main difficulties with inverse problems is that they often do not satisfy
Hadamard’s definition of well-posedness. To circumvent this difficulty, one may use
the Bayesian approach, in which one incorporates information about the unknown
u from existing data and from new data in the ‘prior’ probability measure po on U
and in the ‘data misfit’ ® : Y x U — R respectively. If n € R? in (1) is distributed
according to the normal distribution N (0, I') with positive definite I" € R9%d then

1
O, u) =, IT=12 (y — G)) I 2)

By Bayes’ formula, the posterior ;" is a probability measure on U that is absolutely
continuous with respect to the prior 1o, and has Radon—Nikodym derivative

du? —d(y, , ,
Wy = PO gy / exp(—®(y. uNdpo). ()
duo Z(y) u

The posterior p” describes the distribution of the unknown u, conditioned upon
the data y. By imposing conditions jointly upon & and g, one can show that the
Bayesian solution u” to the inverse problem depends continuously on the data, and
one can prove the well-posedness of the Bayesian inverse problem; see [1].

For simplicity, we shall assume that the data y is given and fixed, and omit the
dependence of the posterior, data misfit, and normalisation constant Z on y.

One challenge with solving Bayesian inverse problems in practice is that it is
often not possible or desirable to evaluate the data misfit ®(u) exactly. It then
becomes necessary to find approximations @y of the true data misfit  that can
be computed more efficiently, such that for sufficiently large values of N, inference
using the approximate misfit &y effectively approximates inference using the true
misfit ®. Thus, one needs to identify conditions on ® such that two criteria are
fulfilled: first, an approximate posterior measure uy defined by

dun o exp(—=@y(u))
(u) == ,
duo Zy

Zy = f exp(— @y (') dpuo () @)
u

exists and is well-defined; and second, the approximate posterior uy provides

an increasingly good approximation of the true posterior x as the approximation

parameter N increases. In this paper, we review results from [2] that guarantee well-

definedness of wy and establish error bounds for wy in terms of error bounds for

Dy.

In recent years, randomised numerical methods have been developed in order to
overcome limitations of their deterministic counterparts. The field of probabilistic
numerical methods [3] injects randomness into existing deterministic solvers for
differential equations in order to model the uncertainty due to unresolved subgrid-
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scale dynamics. Random approximations of the forward model have been applied
for forward uncertainty propagation in a range of applications; see e.g. [4, 5].

Randomisation has been shown to yield gains in computational efficiency.
Results from [6, Section 5.7] showed a reduction by a factor of almost 25 in
the CPU time needed for generating an independent sample with the Metropolis-
Hastings algorithm, while in [7], a multilevel Markov Chain Monte Carlo method
uses randomisation in the form of control variates for variance reduction. Stochastic
programming ideas were used for more efficient posterior sampling in [8]. The
results we describe provide theoretical support for the use of randomisation in
Bayesian inference, and extend the pioneering results from [9], which concerned
Gaussian process approximations of data misfits and forward models.

To motivate the use of random approximate misfits, consider the following
example: Let X be any R4-valued random variable such that E[X] = 0 and E[X X "]
is the d x d identity matrix, and let {X;};cn be i.i.d. copies of X. Given (2),

®(u) :i (F_l/z(y - G(u)) E [XXT] (F_l/z(y - G(u))

=3[ (-]~ T (0 -0w)| = onw

In [10], the misfit ®y above was used to obtain computational cost savings when
solving inverse problems associated to PDE boundary value problems. The results
we present below can be specialised to the case of X with bounded support [2,
Proposition 4.1]. For example, we can use the £-sparse distribution for some 0 <
¢ < 1; for £ = 0, this is the Rademacher distribution. Similar ideas have been
applied for full waveform inversion in seismic tomography [11], for example.

2 Error Bounds for Approximate Posteriors

In what follows, we shall assume that the parameter space U admits a Borel o-
algebra, and we shall denote by M (U) the set of Borel probability measures on U.
Recall that the Hellinger metric dyg : M (U) x Mi(U) — [0, 1] is defined by

2__1/ \/du,_\/dv ,
du(p, v) =, w‘ dn(u) dn(u)

where m € M (U) is any measure such that u and v are both absolutely continuous
with respect to . It is known that dy does not depend on the choice of 7.

2
dr (u),
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2.1 Error Bounds for Random Approximate Posteriors

We first present error bounds on random approximate posteriors py associated to
random misfits @, where N € N. That is, given a probability space (L2, F, P),
we shall view a random misfit as a measurable function ®y : Q@ x U — R.
Furthermore, we shall assume that the randomness associated to the approximate
misfit @ is independent of the randomness associated to the unknown parameter
u. In what follows, vy denotes a probability measure on 2 with the property that
the distribution of the random function @y is given by vy ® wo.

Given (3) and (4), a natural question is to establish an appropriate bound on the
Hellinger distance between the true posterior ; and the approximate posterior uy
in terms of some norm of the error between the true misfit ® and the approximate
misfit ®. We emphasise that the approximate posterior py in (4) is random in
the sense that it depends on w, since the approximate misfit &y depends on w.
Therefore, the Hellinger distance dy (i, ;) will depend on w as well. To describe
such a bound, we shall take the expectation of the Hellinger distance with respect to
vy, and let

q 1/q
dMo(M))

for any Borel-measurable function f : R — R and ¢ € [1, 0c0). We define the
quantity [|E,, [ f (P )]l L3 (U) analogously. With these preparations, we present the
following theorem, which was given in [2, Theorem 3.2].

[Evy [f (@3] HLZO('LO = ([uvgf(dm(w, u)) dvy (o)

Theorem 1 (Error Bound for Random Approximate Posterior) Lef (g1, qi) and
(92, q3) be pairs of Holder conjugate exponents, and let Dy, Dy be positive scalars
that depend only on q1 and q>. Suppose the following conditions hold:

o [(exp (~10) +ox0 (L))"

1/
Eyy [(ZN max{Z >, Z;]?’} (exp (—P) + exp (_@N))z)fh] q

1/q1
< Dy(5)

L

< Dy(6)
L

Then

]1/261{

2 172 2q!
E,, [dH (. 14w ] < (D) + Dy) |Ey, [|<I>— Dy |4

Zq/ :
Lyd (U

Theorem 1 provides a bound on the mean square Hellinger distance between the true
posterior 1 and the random approximate posterior iy, in terms of an appropriate
norm of the error & — ® . The bound (5) implies that the negative tails of both
® and ¢y must decay exponentially quickly with respect to the vy ® po-measure,
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and is satisfied, for example, when both ® and @y are bounded from below. Since
Zy max{Z 3, Z;,3} = max{ZyZ73, Z;,2}, it follows that the constraint imposed
on the misfit ® by (6) is that exp(—®y) should be neither too concentrated nor
too broad. Together, conditions (5) and (6) ensure that the random approximate
posterior puy exists, is well-defined, and satisfies the desired bound on the mean
square Hellinger distance with respect to the true posterior ji.

An alternative way to generate an approximate posterior measure given a random
approximate misfit is to compute a marginal approximate posterior ,ulj\v’l, defined by

iy o Bow [exp (o @)]

7
duo Evy [Zn] 2

Note that, since we have taken expectations with respect to vy, the marginal
approximate posterior does not depend on w, and is in this sense deterministic. The
following theorem was given in [2, Theorem 3.1].

Theorem 2 (Error Bound for Marginal Approximate Posterior) Let (p1, p}),
(p2. p5), and (p3, p3) be Holder conjugate exponent pairs, and suppose there exist
finite, positive scalars C1, Ca, and C3 that depend only on p1, p2, and p3, such that
the following conditions hold:

. -1
min { oy [exp (—om)] ™| i IIeXp@)Ing;)(w} <q ®)
1

By [exp(=®) +exp(=on)™] | by <02 @)

L " ()
Cy' <Euy [Zy] < C3. (10)

Then there exists C > 0 that does not depend on N such that
71/ P
dia(uu. ) < € HE [lo -y
LMOI 3(.11)

The bounds in (10) ensure that the denominator in (7) is strictly positive and
finite. Thus, these bounds play a fundamental role in ensuring that the marginal
approximate posterior exists and is well-defined. The bound in (9) reiterates the
bound (5), modulo the é factor, and thus serves a similar purpose as (5). The bound
in (8) serves a similar purpose as (6). However, the minimum operator implies that
it is not necessary for both @ and @y to be well-behaved.

The following result is a corollary of Theorems 1, 2, and [2, Lemma 3.5]. The
main idea is to specify sufficient conditions for the hypotheses of both Theorem 1
and Theorem 2 to hold.
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Corollary 1 (Joint Conditions for Error Bounds on Both Approximate Posteri-
ors) Suppose the following conditions are satisfied:

(i) There exists Cy € R that does not depend on N such that ® > —Cy on U
and, forall N € N, vy (dy > —Cp) = 1,

(ii) For any 0 < C3 < 00 such that C;l < Z < (3, there exists N*(C3) € N
such that N > N* implies

1 . _
|Evy[1® — ®N|]||L11L0((m =, exp(—Cp) min !Z —cyl - Z} ,

and
(iii) there exists some 2 < p* < 400 such that |E,, [exp(p*@N)]HLL @ i
0

finite.

Then for each N > N*(C3),
dy (M, /L%) <C HEVN [P — CDNHHL,ZL%*/("L])(W) Y

and

172 o w7 (0F=2)/(20%)
Eyy I:dH(/L, /LN)z:I <D HE”N [|q> — @y 2)]

Ll (10
(12)

where C, D > 0 depend on |E,, [exp(p*CDN)]Hi/lp*((u). If in addition to conditions
Ko
(i)—(iii) it holds that

ES
N;Vu*IECs) ||EVN [eXP(P qDN)]”Llle((u) =

then the constants C and D in (11) and (12) do not depend on N.

Condition (i) amounts to a common uniform lower bound on all the misfits, both
the true misfit and the collection of random approximate misfits, and thus plays
a role in ensuring that (5) and (9) are satisfied. Condition (ii) makes precise the
assumption that ® 5 approximates @ in the Lll) v&uo topology, which is a necessary
condition for ensuring that the right-hand sides of the conclusions of Theorems 1
and 2 are finite. Condition (ii7) describes an exponential integrability condition on
the random approximate misfits and ensures that (6) and (8) are satisfied. Thus the
additional condition amounts to a uniform exponential integrability condition over
all sufficiently large values of N.

Remark 1 Neither Theorem 1 nor Theorem 2 require boundedness from below
of either @ or the ®y. However, the negative tails of both ® and &y must
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decay exponentially quickly at a sufficiently high rate, as specified by (9) and (5)
respectively.

2.2 Error Bounds for Random Forward Models

Next, we consider approximate posterior measures that arise as a result of approxi-
mating the forward model G in (1). For simplicity, we shall consider only the case
when the data misfit ® and forward model G are related via the quadratic potential
(2). In particular, this means that if Gy : Y — VY is an approximation of the true
forward model G, then the resulting approximate data misfit is given by

1
®Noo:=2ur*ay—GNw»n?

The following theorem is a nonasymptotic reformulation of [2, Theorem 3.9 (b)].

Theorem 3 (Error Bounds for Approximate Posteriors) Suppose there exists
2 < p* < oo such that supy E,, [exp(p*Py)] € L}LO (U) is finite. If there exists an
N* € N such that, for all N > N*,

<1,

*_2) ] (p*=2)/(2p*)
Li%*/(p*fl)(w

‘FWUG—GMMWP

then
i (1, 1) = C |Buy [I1Gy - GI?] i;;f/w*w(w
and
Evy [dH(M, /uv))z]l/2 <D H]EVN [||GN - G||4P*/(p*72)](P*fz)/(zp*) 1/22
L, (T

for C, D > 0 that do not depend on N.

The theorem can be rewritten so that, instead of imposing a uniform exponential
integrability condition on the approximate quadratic potentials ®, one instead
imposes an exponential integrability condition on the true data misfit ®; see [2,
Theorem 3.9 (a)]. An additional hypothesis in this case is that the expectations of
the approximate data misfit functions are vy-almost surely bounded, in the sense
that vy (P | Eyy[Pn] < C4) = 1 for some Cy4 € R that does not depend on N.
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3 Conclusions and Directions for Future Work

This paper has reviewed the main error bounds of [2] concerning deterministic and
random approximate posteriors that arise when performing Bayesian inference with
random approximate data misfits or random forward models. The error bounds on
the approximate posterior measures are given with respect to the Hellinger metric
on the space of Borel probability measures M (Uf). Given a fixed prior measure (o,
these error bounds describe—with specific exponents of integrability and problem-
dependent constants—the local or global Lipschitz continuity of the map that takes
a data misfit as input and produces the corresponding posterior measure as output.
Aside from the regularity assumptions made on the random approximations, the
error bounds shown above make no structural assumptions on the approximations
used. For example, we do not assume that the random approximations involve
Gaussian random variables, or random variables with bounded support.

Recent work has highlighted the importance of considering other metrics on
Mi(U), and also of proving well-posedness of the solution of a Bayesian inverse
problem by establishing continuous (instead of Lipschitz continuous) dependence
on either the data, prior, or data misfit. The well-posedness of Bayesian inverse
problems in the sense of continuous dependence with respect to the data of the
posterior for given prior and data misfit was established in [12]. Local Lipschitz
continuity with respect to deterministic perturbations in the prior or data misfit was
shown in [13]. In both [12, 13], continuity is with respect to the topologies induced
by the total variation metric, by Wasserstein p-metrics, or by the Kullback-Leibler
divergence.

A key assumption made in [13] when establishing local Lipschitz continuity for a
fixed prior p1o with respect to perturbations in the data misfit is that the deterministic
perturbed data misfit is pp-almost surely bounded from below. As highlighted in
Remark 1, the analysis of [2] does not require that either the true data misfit or the
random approximate log-likelihood are p-almost surely bounded from below. For
future work, we aim to establish similar continuity results with respect to different
metrics, as demonstrated in [12, 13], but at the same level of generality of [2].
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High-Order Two and Three Level )
Schemes for Solving Fractional Powers of | @i
Elliptic Operators

Raimondas Ciegis and Petr Vabishchevich

Abstract In this paper we develop and investigate numerical algorithms for solving
the fractional powers of discrete elliptic operators AU = F,0 < a < 1, for
F € V, with V}, a finite element or finite difference approximation space. Our
goal is to construct efficient time stepping schemes for the implementation of the
method based on the solution of a pseudo-parabolic problem. The second and fourth
order approximations are constructed by using two- and three-level schemes. In
order to increase the accuracy of approximations the geometric graded time grid is
constructed which compensates the singular behavior of the solution for ¢ close to
0. This apriori adaptive grid is compared with aposteriori adaptive grids. Results of
numerical experiments are presented, they agree well with the theoretical results.

1 Introduction

There are different definitions of fractional power of elliptic operators [1]. We
consider the definition based on the spectral decomposition of an elliptic operator.
Let us define H = HOI(Q), where @ c R?. On H x H we consider the weak
formulation of the elliptic problem: find u € H such that

Au, v) :=/Q(k(x)w-w+q(x)uv)dx=/Qf(x)v(x)dx, vve H. (1)

We define the elliptic operator A, where A is an isomorphism H(} () - HH(Q)
givenby u — a(u, ).
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Operator A is symmetric and positive definite on L?(£2). Let us denote the eigen-
pairs of this operator ¥, A ;. Due to the properties of operator A its eigenvectors
¥ provide an orthonormal basis for L2(Q).

Then for functions u € L2(Q) such that Zj‘;l A?“l(u, 1/fj)|2 < oo the spectral
fractional powers A* for 0 < o < 1 are defined by eigenvector expansions:

Au = 28w, Y)Y, 2

j=1

where (u, v) denotes the standard scalar product (u, v) = fQ u(x)v(x)dx.
The Dirichlet problem for the fractional elliptic operator is defined as follows:
given a function f and o € (0, 1), we seek u € HOl such that

Ay = . 3)

For functions f such that 2702 1 A;zal( L j)|2 < 00 negative fractional powers
A for 0 < o < 1 can be defined by eigenvector expansions:

AL =Y W)Y )

j=1

For such problems the state of the art numerical methods are based on the
following quite general approach. The given non-local differential problem is
transformed to some local differential problem of elliptic or parabolic type, but this
new problem is formulated in the extended d + 1 dimension space R?*!. There are
a few interesting implementations of this general idea, see [1, 4, 6-8].

Our main goal is to construct and study numerical algorithms for the transfor-
mation of the non-local problem (2) to a pseudo-parabolic problem [5, 9]. The
unique solution u = A~ f of the fractional power problem can be represented
as a mapping

v(t) = (87 +18) * £, 5)
where B = A — §7. Then u = v(1).
The next step is to find a nonstationary PDE for which v(#) is the exact solution.

This approach can lead to different PDEs, one such equation was proposed in the
original paper [9]. It is shown that v(¢) satisfies the pseudo-parabolic problem

9
(8]~|—tB)al;~|—an=0, 0<r<l, ©6)

v(0) =87 f.



High-Order Numerical Schemes for Fractional Powers of Elliptic Operators 287

Then different time stepping approximations can be used to solve the obtained
nonstationary PDE problem (6).

The rest of this paper is organized as follows. In Sect. 2, the symmetrical Euler
method is applied to solve the obtained pseudo-parabolic problem. It is shown that
this difference scheme is unconditionally stable. It is interesting to note that this
scheme is equivalent to the time-stepping algorithm based on the first order diagonal
Padé approximation for function (1 + x)™* (see [2, 5]). Results of numerical
experiments are provided to show that for nonregular solutions and uniform time
grids the symmetrical Euler scheme regains the second order convergence rate only
for sufficiently small time step sizes when the high modes are resolved correctly.

In order to increase the accuracy of approximations the geometric graded time
grid is constructed in Sect. 3. It compensates the singular behavior of the solution
for ¢ close to 0. This apriori adaptive grid is compared with the aposteriori adaptive
grid, which is constructed by using the Runge rule. In Sect. 4 a family of three-
level finite difference schemes is constructed to solve the given pseudo-parabolic
problem. A general nonuniform time mesh is used and the stability of the discrete
problem is proved. It is noted that for a uniform time mesh a special value of the
weight parameter exists which leads to the fourth order scheme. In Sect. 5 a high-
order two-level finite difference scheme is developed and investigated. It is based on
the method of modified equations. Results of numerical experiments are presented.
Some final conclusions and remarks are done in Sect. 6.

2 Symmetrical Euler Method

We approximate the solution u of (2) by using the finite element approximation
U on V), C V, where h is the discretization parameter. Then we get the discrete
operators Ay, By, = Ap — 8Ly > 0. Let V' € V}, be the approximation of v(t,)
on V. The pseudo-parabolic problem (6) is approximated by the symmetrical Euler
method

n _ yn—1

(OZn+1, 1) +aB V"2 =0, n=1,...,N, (]

Tn

VO =§7%F,,

where, 1 = 0.5(t, + ;1) and VAT = 0.5V 4 Vi),

The stability of this scheme is investigated in [2]. It is proved that (7) is
unconditionally stable.

For smooth solutions this scheme approximates the differential problem with the
second order. Still, it is well-known that the solution u = A~ f of problem (2)
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Table 1 The error Ey of the discrete solution (7) and the experimental convergence order Oy for
varying o = 0.1, 0.5. The uniform space grid is used with J = 100

N =10 N =120 N =40 N =80
a=0.1,Eyx 0.11041 0.0818953 0.0577244 0.0380742
On 0.431 0.505 0.600
a=05,Ey 0.025209 0.0154431 0.00905345 0.0050120
On 0.707 0.770 0.853

N = 5000 N = 10000 N = 20000 N = 40000
a=0.1,Eyx 2.2866e—04 6.0332e—05 1.5332e—05 3.8499e—06
On 1.922 1.976 1.994
a=05,Ey 1.6317e—05 4.2534e—06 1.0769e—06 2.70125e—07
On 1.940 1.982 1.995

exhibit less regularity. It is proved in [5] that the error of the discrete solution due to
time stepping algorithm (7) can be estimated as

1A, F = VN < Cry ™\ AY FIl, a4y <2, ®)

The given estimate is valid uniformly for a broad set of time step sizes Ty . Still, the
asymptotic convergence order should be obtained for time step sizes resolving the
high modes of the solution, i.e. when tyApey < C =~ 1

In order to illustrate these estimates we present results of numerical experiments
for the one dimensional problem 2 = (0, 1):

Uip1 —2U;+Uj_

AU == T ==L Uy=Us =0 )
with the function f = 1, x € Q (the case (d) in [5]). We report the error in the
maximum norm Ey = || A, ~“F — V|« and the experimental convergence order
going from N = m to N = 2m grid points Oz, = log(E;,/E2p)/log(2).

Table 1 gives results for J = 100 and varying o = 0.1, 0.5.

3 Non-uniform and Adaptive Time Meshes

The error of the symmetrical Euler scheme (7) depends on the accuracy with which
we approximate the transfer operator of the scheme, i.e. on the smallness of the
factor T, Amax/ (8 + ty— 1Amax) where A ; are eigenvalues of Bh We will construct a
non-uniform mesh by using the regularlzatlon property of fu—1A. Then the step sizes
of the refined time mesh are defined from the equation

Tnﬁ)\\lmax/((S + tnflxmax) =g =<1 (10)
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Table 2 The error Ey of the discrete solution (7) and the experimental convergence order Oy for
varying o = 0.1, 0.5. The graded geometric time mesh and uniform space grid with J = 100 are
used

N =20 N =40 N =80 N =160
a=0.1, Eyn 4.5694e—03 1.1159e—-03 2.9076e—04 7.2757¢—05
On 2.033 1.940 1.999
a =05, Eyn 8.9964e¢—04 2.2572e—04 5.6479¢—05 1.4123e—05
Oy 1.995 1.999 1.9997
Simple computations show that 7, = 71(1 + q)"’l,n > 2, i.e. we construct

a geometric graded mesh [2]. The number of discrete points is defined by N =
log(Amax)/log(1 4+ ¢) + 1.

Next we give an alternative possibility to introduce a geometric graded mesh.
The uniform time mesh for s, = nt, n =0, ..., N is mapped to the non-uniform
mesh for #, by using a nonlinear function 7, = x (s,), where

eVs —1
x(s) = , 0=<s=<1 (11)
eV —1

with some parameter y > 0. It follows from (11) that sizes of adjacent time steps
for 7, and t,,— satisfy the relation

X (sn) — X (Sn—1) _ yE
=e’ .
X (sn—1) — X (Sn—2)

By taking y = log(Amax) We again get the geometric graded mesh.

The results of computational experiments are presented in Table 2: one dimen-
sional test problem (9) is solved by using the symmetrical Euler scheme (7) for
J = 100 and varying « = 0.1, 0.5. The second order convergence rate is clearly
seen from experiments.

3.1 Adaptive Mesh

In this paragraph we apply a simple time step-size control method. For a given
approximation V! at 1,_; we apply the symmetrical Euler scheme (7) and
compute the discrete solution Vrat t, = th—1+1,. Then we repeat the process with
two times smaller step-size %‘L’n, apply the scheme (7) twice and compute one more
approximation V. If the estimate Il yn_yn || < tol is valid, where rol denotes the
required tolerance for the local error, then the current computational step is accepted
V" = V", Additionally we check if || V" — V| < tol/2.5, then the step-size of
the next step is increased 1,41 = 1.257,, otherwise 1,41 = 1,. If the local error
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Table 3 The error Ey of the discrete solution (7) for adaptive grids and « = 0.1. The uniform
space grid is used with J = 100

N=35(126) |[N=57(189) |N=70(235) |N=113(360) |N =139 441)
Ey |2.579e—04 9.507—-05 6.127—05 2.366—05 1.536—-05

is larger than tol, then computations from mesh point #,_1 are repeated with the
smaller time step-size t, = ét,,.

Some results of computational experiments for « = 0.1 are presented in Table 3.
The number of successful full time steps is denoted by N. We also present the total
number of time steps, required to solve the given problem (approx. three times larger
than N). The structure of the adaptive mesh is very similar to a piecewise constant
geometric graded mesh proposed in [5]. It follows from the presented results that
geometric graded mesh is a simple but very efficient tool to increase the accuracy of
time integration algorithms.

4 Three Level Scheme

In order to resolve the singularity of the solution we use the same mapping (11) as

in previous section ¢ = x (s). Then instead of solving the Cauchy problem for the

pseudo-parabolic equation (6) we get the Cauchy problem

d d
v—i—a XBhUZO, 0<s <1, (12)

ds s

(8Ih + x()Bn) J

v(0) = §%p.

For solving problem (12) we use the symmetrical three level finite difference scheme
(t=1/N):

— Wy,

dx -1 Wn
(CFen) 61+ xens) ™

x(owy41 + A —20)wy, +owy—1) =0, n=12,...,N—1,

1t as, (13)

wo =38 %, w;=w.

We note that the initial condition w; should be computed by applying some two level
numerical algorithm and the accuracy of this approximation should be the same as
of the main scheme (13).

For sufficiently smooth solutions of (12), the scheme (13) approximates the
differential problem with the second order. It is interesting to note, that for a uniform
time mesh, when x(s) = s and taking op = (2+ «)/(6c) we get the discrete
scheme of the fourth approximation order with respect to time ¢. By using the energy
method and applying the analysis presented in [3] the following theorem is proved.
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Table 4 The error Ey of the discrete solution (13) and the experimental convergence order Oy
for varying o = 0.1, 0.5

N =20 N =40 N =80 N =160
a=0.1,Eyx 9.2238e—04 2.2887e—04 5.7105e—05 1.4269e—05
On 2.011 2.003 2.001
a=05,Eyx 2.2578e—03 5.5786e—04 1.3904e—04 3.4733e—05
On 2.016 2.004 2.001

Theorem 1 Foro > 0.25 the three-level scheme (13) is unconditionally stable with
respect to the initial data.

The results of computational experiments are presented in Table 4. The second
initial condition is computed applying the spectral method. The second order
convergence rate is clearly seen from experiments.

5 High-Order Schemes

In this section, starting from the symmetrical Euler scheme (7) we construct a high-
order scheme. By using the Taylor expansion of the scheme residual with respect
totr,_ ! and applying the modified equations technique we construct a high-order

two-level finite difference scheme

‘1,'2 ) | n_ .n—1
— n — -
(@h(t,,_;) 12(1 a”)Bp Dy (t,,_%)Bh) . (14)
n n—1
+aB," +2v —0, n=1,...,N, "=8",

where Dy, (t) = 61,418y, This scheme approximates the differential equation with
the fourth order.

Theorem 2 The high-order finite difference scheme (14) is unconditionally stable
with respect to the initial data.

The proof of this theorem follows from the spectral analysis of the self-adjoint
transfer operator (for full details, see [2]). The results of computational experiments
are presented in Table 5. The fourth order convergence rate is clearly seen from
experiments.



292 R. Ciegis and P. Vabishchevich

Table 5 The error Ey of the discrete solution (13) and the experimental convergence order Oy
for varying o = 0.1, 0.5

N =10 N =20 N =40 N =80
a=0.1,Eyx 1.0811e—03 7.4307e—05 4.7576e—06 2.9916e—07
On 3.863 3.965 3.991
a=05,Eyx 1.7533e—04 1.1891e—05 7.5907e—07 4.7696e—08
On 3.882 3.969 3.992

6 Conclusions

Two main directions are identified to construct efficient and high order discrete
algorithms for solving the pseudo-parabolic version of the fractional power elliptic
problems. The first one is based on the special geometric graded meshes. For
three-level discrete scheme such a non-uniform mesh is introduced by using
a special mapping of time coordinate. In the second approach the method of
modified equations used to construct high-order finite difference scheme. Results of
computational experiments have shown that a combination of high-order two level
scheme with geometric graded mesh is the most efficient algorithm for solving the
given pseudo-parabolic problem.
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Numerical Investigation of the )
Boussinesq Equations Through a Subgrid <
Artificial Viscosity Method

Medine Demir and Songiil Kaya

Abstract This study presents a subgrid artificial viscosity method for approxi-
mating solutions to the Boussinesq equations. The stability is obtained by adding
a term via an artificial viscosity and then removing it only on the coarse mesh
scale. The method includes both vorticity in the viscous term and a grad-div
stabilization. We analyze the method from both analytical and computational point
of view and show that it is unconditionally stable and optimally convergent. Several
numerical experiments are provided that support the derived theoretical results and
demonstrate the efficiency and accuracy of the method.

1 Introduction

Natural convection is induced by the buoyancy force arising from the density
differences due to temperature gradients along with the gravitational impacts.
Because of the density differences, a full analysis of such flow problems becomes
quite complex. Therefore, fluid flow and heat transfer are generally governed by the
partial differential equation system of mass, momentum and energy conservation
along with Boussinesq approximation which states that the density differences can
be neglected, except in the buoyancy term, [1]. The governing equations for natural
convection under Boussinesq approximation can be written as

U+ w-Vyu —vAu+Vp =Ri{0,T) + f in 2,

V-u=0 in €2,

Ti+ - V)T —xkAT =y in 2, (1)
u(0,x) =upgand T(0,x) = Ty in 2,
u=0andT =0 on 02
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where u is the velocity, T is the temperature, v = O(Re™!) is the kinematic
viscosity, k. = 1/Pr Re is the thermal diffusitivity parameter, Pr = v/x is Prandtl
number and Ri = PrRaRe? is Richardson number.

Since Galerkin finite element discretization of Boussinesq system is itself unsta-
ble in the case of high Reynolds number, introducing a turbulence model becomes
necessary. In this study, we propose, analyze and test an accurate regularization
of subgrid artificial viscosity method for the Boussinesq system. We consider
the extension of an earlier study of [2] for the Navier-Stokes equation based on
the pioneering work of [3]. The underlying idea of this method is based on the
variational multiscale method of [3] and stabilization via an artificial viscosity.
In this method, the stability is achieved by adding an artificial viscosity and then
removing it only on the coarse mesh scale. The stability process is applied to the
viscous term by using the vector identity Au = —V x (V x u) + V(V - u) and thus
results in a two level method including both vorticity in the viscous term and grad-
div stabilization. One can find many studies using similar methods to the discussed
method [4]. However, our method is more efficient for some reasons. Using a
mixed method for both velocity and vorticity significantly reduces extra storage
in 3d compared to velocity and its gradient. Furthermore, the method improves
the conditioning of the system, that is, instead of the full velocity gradient with
nine variables it leads to coarse grid storage of vorticity with just three variables.
Moreover, one can obtain more accurate numerical solutions in the presence of high
Reynolds number without choosing a computationally inefficient time-step. Hence,
it is important to extend this methodology to flows governed by the Boussinesq
system. We aimed to obtain a much better quality solution with less computational
effort.

2 Subgrid Artificial Viscosity Scheme

In this section, we present a fully discrete numerical algorithm of the proposed
method. For this purpose, we choose the natural function spaces X := HO1 (Q)4,
W = HO1 (2) and Q = L(%(Q) for the continuous velocity, temperature and
pressure spaces, respectively. Let X, C X, W, C W, O, C Q be conforming
finite element spaces where the velocity, temperature and pressure spaces fulfill the
discrete inf-sup condition. We use the usual L?(£2) norm and the inner product
denoted by || - || and (., -), respectively. Define the skew-symmetric forms of the
convective terms by

b*(u,v,w) = _(u-Vo,w) — _(u-Vw,v), (2)

T, x)= W -VT,x)— -V xT), 3)

N = N =
N = N =
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We also define Ly C L?(2)? to be a large scale space defined on a regular coarse
mesh 77 which is a conforming triangulation of 2. For the numerical analysis, we
need to define the L? projection Pr,, : (Lz(Q))dXd —> Ly by

(PLy¢—¢,lg) =0 Vig € Ly. 4)

We divide the time interval [0, 7] into N equal sub-interval with the time-step
At = T/N and t,4+1 = (n + 1)Ar withn = 0,1,2,...., N. Then, the subgrid
artificial viscosity method based on backward Euler time stepping scheme reads as
follows.

Algorithm Let Dy be the new coarse mesh variable and the initial conditions

u®, T9, the forcing function f and the heat source y be given. Define ug

and T,? as the nodal interpolants of u® and 79, respectively. Then, given uj,
T, pp, find @t TP pitYy € (Xu, Wi, Qi) satistying Y(vn, Sh, qn. ln) €
(Xns Why Qny Lu)

Mn+1— n
(" N o) vVl Vo) b5 @l ut T v — (pp L V- ug)

a1 (V x uf ™V x vp) —ai (D V x vg) +aa (V- ul TV - )
= Ri({0, "), vp) + (" wn), (5
V-upt g =0, (6
(D =V xul, gy =0, (7
(T S0 + . (VI VS + i, T S = ("L S, (8)
where oy = «aj(x,h) is a known, positive, bounded function and constant

elementwise and o is called the grad-div stabilization parameter. In our analysis,
we propose a1 and o as O (h?) and O(1) constants, respectively.

3 Numerical Analysis

In this section, we present the numerical analysis of the Boussinesq equations based
on the finite element formulation (5)—(8). We first prove the stability of the method
by using standard energy arguments.
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Lemma 1 The solution of (5)—(8) is unconditionally stable in the following sense:
forany At > 0

N-—1 n—1
TP+ e Ar Y T IVTIP < TR0 + Arc™ " 12,
n=0 n=0
N-—1
|1+ Ar Y (v||wz“||2 + V- uz“||2) o ALV x up |
n=0
N-—1
<y > + o ALV x up >+ 207 A Y 2
n=0
n—1
+CT(||T£||2 +Aa Yy ||y”“||2_1)
n=0

where C = Cv~!Ri?.
Proof Choosing S, = Th’”rl in(8)and v, = uZH in (5), using the triangle, Cauchy-
Schwarz and Young’s inequalities gives the stated result. O

We now give the error analysis of the method. We assume that the exact solution
satisfies the following regularity assumptions for the optimal asymptotic error
estimation:

u, T € L0, T; H\() n H (0, T; H**1 (@) n H3(0, T; L?(Q)) N H>(0, T; H' ()
p € LXO, T; H*P (@) N H(0, T; L* () ©)

fry € L2, T; L* ()

Theorem 1 Let (u, p, T) be the solution of the Boussinesq system. In addition to

the regularity assumptions (9), let (Xp, Wi, Qn) = (P2, P2, P1) be the Taylor-

Hood finite element spaces satisfying theoretical approximation estimations. Then,

the following asymptotic error estimation is satisfied for the errors e}, = u" — uj,
andef, =T" —Tj':

N-1 N-1
e 12+ el 12 + Ar Y (vIVel 12 + | Vel %) +anar 3 1V x et
n=0 =0
N—-1
+arar ) IV - P < CAn? +h* + e + e 1P).
n=0

where C is a generic constant.
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Proof The process of this proof is similar to the proof of [2]. One can adapt it to the
proof of the error estimate of [5]. O

Remark 1 In order to obtain optimal order of accuracy, the initial approximations
of u2 and T,? need to be suitably interpolated in X in such a way that ||e3|| and
lleY.|| are optimal, that is led]| < Ch?|lull> and |le}|| < Ch?|T 2. We consider
ug =1, (uo) and Tf? = IT(TO) for some interpolations I, in X;, and I in Wy,
respectively. Existence of such operators can be found in [12]. Thus, Theorem 1
implies that, the error in velocity is O (h?) and the error in temperature is O (At),
which are optimal convergence rates for the scheme.

4 Numerical Experiments

In this section, we provide three numerical experiments to test the theoretical
findings and to show the efficiency of the proposed method. Firstly, we verify the
order of numerical convergence rates which are predicted in Theorem 1. Secondly,
we provide the so-called Marsigli’s flow example to prove that the method captures
correct flow patterns by using a coarse mesh discretization. Lastly, we present the
well-known Buoyancy driven cavity example and compare the Nusselt numbers
obtained by the proposed method to previously obtained ones in literature. All
computations are carried out with the finite element software package FreeFem++
[6]. In all simulations, we use (P>, P», P1) Taylor-Hood finite spaces for velocity,
temperature and pressure on uniform triangular grids and P; for the large scale space
Ly.

4.1 Numerical Convergence Study

In this subsection, we test the optimal convergence rates of the scheme (5)—(8) with
a known analytic solution

_ <(1 +O.1t)c0s(7‘rx))
“\ (A +0.10sin(Ty) )’

T = sin(x)yexp(t)

on the unit square domain  := [0, 1]%. We take the parameters Re = Ri = k = 1,
stabilization parameters oy = h?, oy = 0.01 and coarse mesh size H = Vh. The
right hand side functions f, y are determined by the given true solution.

To test the spatial errors, we fix the time-step At = T/8 with end time 7 = 10~*
and calculate the errors in L?(0, T'; Hol) for varying h. To see the temporal errors,
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Table 1 Spatial errors and 3 lu—wiloy [Rate [T — Tolas |Rate
rates of convergence for SAV
method 1/4 | 7.128e—4 5.045e—4

1/8 | 1.771e—4 2.00 |1.256e—4 2.00

1/16 | 4.353e—5 2.024 |3.069e—5 2.033
1/32 | 1.119e-5 1.959 | 7.458e—6 2.040
1/64 | 3.002e—6 1.898 | 1.844e—6 2.146

Table 2 Temporal errors and At
rates of convergence for SAV
method

lu—wpll2,; |Rate | [T —Tpll2,1 |Rate
1 1.096e—2 - 1.302e—1 -

172 1.373e—2 0.513 | 6.005e—2 1.121
1/4 | 9.542e—-3 0.525 |2.843e—2 1.078
1/8 6.542e—3 0.547 | 1.380e—2 1.042
1/16 | 4.348e—3 0.573 | 6.802e—3 1.021
1/32 | 2.786e—3 0.839 |3.376e—3 1.010
1/64 | 1.702e—3 0.918 | 1.682¢e—3 1.004

we fix the mesh size h = 1/128 with an end time # = 1 and calculate the errors in
L*(0, T; H(}) for varying At. Errors and rates are presented in Tables 1 and 2. As
expected, we observe first order convergence in time and second order convergence
in space which are optimal rate of convergence for velocity and temperature for the
Taylor-Hood finite element spaces.

4.2 Marsigli’s Flow Experiment

In this subsection, we test Marsigli’s flow. In 1679, Marsigli figured out that the
reason of ocean currents is due to the density differences. He observed that the fluid
of lower density moves on the top of the fluid with higher density. In this experiment,
we simulate this physical situation on a much coarser mesh than is needed by
a direct numerical simulation which is known to fail even for finer meshes, see
[7]. The aim is to capture correct flow patterns with less computational effort. The
problem domain is a rectangular box 2 := (0, 1) x (0, 8). No slip velocity boundary
conditions are applied and the temperature gradients are taken to be zero at all
boundaries. The initial temperature is given precisely as

1.5 x <4.0
To =
{ 1.0 x > 4.05

and the initial velocity is zero. The flow parameters are taken as Pr = 1, Re =
1000, Ri = 4. We choose a large time-step size At = 0.02 and plot the temperature
contours and velocity streamlines at ¢t = 2,4, 6, 8.
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Fig. 1 Temperature contours and velocity streamlines at r = 2, 4, 6, 8

The resultin