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Preface

The European Conference on Numerical Mathematics and Advanced Applications
(ENUMATH) is an important conference series in Numerical Mathematics that is
held every two years in a different European country. The series provides a platform
for discussions about the latest insights in Numerical Analysis and its applications.
This conference series is an important get-together event of computational scientists
throughout Europe and the rest of the globe. Previous ENUMATH conferences were
held in Paris (1995), Heidelberg (1997), Jyväskylä (1999), Ischia Porto (2001),
Prague (2003), Santiago del Compostela (2005), Graz (2007), Uppsala (2009),
Leicester (2011), Lausanne (2013), Ankara (2015) and Bergen (2017). We are proud
to say that the reputation of the ENUMATH conferences is rated among the best in
Numerical Mathematics and Scientific Computing worldwide. The publication of
high standard conference proceedings has contributed largely to its reputation.

The current volume contains 120 proceedings papers from the event ENUMATH
2019 in Egmond aan Zee, in The Netherlands. The contributions are based on
talks in minisymposia, contributed sessions and keynote talks. The level of the
talks was excellent in general, and the atmosphere was very good and constructive.
The number of delegates was 457, and the conference was characterised by
its enormous diversity in topics within the science of Numerical Mathematics
and Scientific Computing. This can also be seen by this booklet. Topics were
within computational fluid dynamics, mathematical biology, quantum computing,
traditional finite element analysis, isogeometric analysis, model order reduction,
numerical linear algebra, optimisation, to mention some of them.

Scientific Computing is growing rapidly within the mathematical and computer-
related disciplines. It has become a mature branch of science of its own, and it
is engaged with the development of computational techniques that are needed to
understand and to predict very diverse phenomena in Science, Finance, Medicine
and Technology. The discipline focuses on the development of mathematical for-
malisms, as well as the development of efficient and robust algorithms. Next to these
aforementioned aspects, Scientific Computing entails the analysis of convergence,
efficiency, well-posedness and stability of the developed models and computational
schemes. The numerical analytic aspects of the developed models and schemes are
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vi Preface

of utmost importance, and therefore we are happy to see numerous contributions
that have been devoted to analytic aspects of Scientific Computing in this booklet.

The current ENUMATH conference organised in The Netherlands may be called
a success. This success has been made possible by many people. In the first place,
we thank the delegates for coming to the conference! You made this fantastic
event possible with your presence, discussions, presentations and submission of
papers! Thank you! Further, we thank the Enumath Programme Board, consisting
of Barbara Wohlmuth, Franco Brezzi, Roland Glowinski, Gunilla Kreiss, Miloslav
Feistauer, Yuri Kuznetsov, Pekka Neittäänmäki, Jacques Periaux, Alfio Quateroni,
Rolf Rannacher and Endre Süli for giving us the opportunity to organise this
event. We also thank the Scientific Committee and minisymposia organisers for
reviewing the abstracts and conference papers. Furthermore, we thank the keynote
speakers who all gave excellent presentations, where we personally thank Michele
Benzi, Koen Bertels, Eduard Feireisl, Gitta Kutyniok, Maxim Olshanskii, Francesca
Rapetti, Thomas Richter, Tuomo Rossi, Mishra Siddhartha, Stefan Vanderwalle and
Karen Willcox.

The organisers are also thankful for the financial support from the sponsors: The
Dutch Burns Foundation, NDNS+, 4TU.AMI, DCSE and the Delft University of
Technology. Without their financial support, this conference would not have been
possible. Last but not least, the administrational work was done by Marion van
den Boer-Roggen (SciConf Scientific Conference Organisers, Eindhoven). You have
helped us tremendously with all the paperwork and with very many of the emails
that were sent to us. Thank you so much! Without you, the organisation and hence
the conference could never have been this successful!

We conclude with thanking all the delegates again for their interesting contribu-
tions and we thank all the people who have been involved with reviewing abstracts
and papers that made the excellent scientific level of this booklet and the conference
possible.

Delft, The Netherlands Fred J. Vermolen
Delft, The Netherlands Kees Vuik
Delft, The Netherlands Matthias Möller
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High Order Whitney Forms on Simplices
and the Question of Potentials

Francesca Rapetti and Ana Alonso Rodríguez

Abstract In the frame of high order finite element approximations of PDEs, we are
interested in an explicit and efficient way for constructing finite element functions
with assigned gradient, curl or divergence in domains with general topology. Three
ingredients, that bear the name of their scientific fathers, are involved: the de Rham’s
diagram and theorem, Hodge’s decomposition for vectors, Whitney’s differential
forms. Some key images are presented in order to illustrate the mathematical
concepts.

1 Introduction

The situation where a field is expressed with a differential operator d, such as grad,
curl or div, applied to another field arises frequently in physics. In electromagnetic
modeling, for example, it can be evocated by the physical model itself, as curl H =
J in the Ampère’s theorem relating the magnetic field H to the conducting current
density J, or artificially to simplify the problem solution, as E = −gradV where
E is a conservative electric (vector) field and V is the associated electric (scalar)
potential. In both cases, the differentiated field, here H, V, is called a potential, of
J, E, respectively. The generalized Stokes’ theorem

∫
M

dw = ∫
∂M

w establishes a
duality between the functional differential operator d and the geometrical boundary
operator ∂ . It implies that potentials can exist only for fields w such that dw = 0
(the closed forms in exterior calculus language). However, not all closed forms
have potentials and this complication is correlated with the topological features
of the domain. Due to the duality arising in Stokes’ theorem, what matters is to
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2 F. Rapetti and A. A. Rodríguez

understand whether or not a part of the domain is the boundary of another part of
the domain, and this is a homological question. Closed k-forms with no potential
constitute the kth de Rham cohomology group Hk , which is by de Rham’s theorem
[19], isomorphic with the kth homology group Hk of the domain. The uniqueness
question of potentials in a topologically simple unbounded domain Ω ⊂ R

3

was first settled by Helmholtz [11] about the decomposition of vector fields in
fluid dynamics. One century later, Hodge [13] introduces, in the formalism of
exterior calculus, a decomposition that generalizes the one proposed by Helmholtz
to any space dimension n and to domain of general topology (in the literature, this
decomposition is sometimes attributed to Ladyzhenskaya who refers to it as Weil’s
decomposition in [14]). The theory developed by Hodge to study algebraic geometry
is built on the work of de Rham, on the de Rham cohomology.

When we pass to the discrete finite element setting, all these homological and
cohomological concepts are not impacted by the discretization process (apart from
perhaps the harmonic one). They have equivalents that neither depend on the size
h > 0 of the mesh elements (simplices here), nor on the polynomial degree q ≥ 1
of the basis functions adopted to reconstruct the fields. This is largely due to having
adopted the correct formalism, the one of differential forms, and to the geometrical
nature of Weil-Whitney forms [8, 16, 20, 21], that reconstruct fields. Graph theory
and linear algebra are then sufficient to construct effective algorithms to complete
the computational side. Stating the necessary and sufficient conditions for assuring
that a function defined in a bounded set Ω ⊂ R

3 is the gradient of a scalar potential,
the curl of a vector potential or the divergence of a vector field is one of the most
classical problems of vector analysis (see for example [5]). In these pages we answer
to the question of describing potentials in terms of finite element bases of high
polynomial order in domain of general topology. The answer shows an interesting
interplay of differential calculus and topology that is the goal of the present work.

2 The Continuous Side of the de Rham’s Diagram

We introduce the minimal notation to present the question of potentials in terms of
differential forms, referring to [6, 8] for more details.

Let us consider the n-dimensional Euclidean space R
n, with n ∈ N, and let

Ω ⊂ R
n be a (sufficiently) smooth n-manifold. We denote by Λk(Ω) the space of

smooth differential k-forms on Ω . Scalar potentials, field intensities, flux densities,
or densities are the so-called proxy fields of the corresponding differential k-forms.
Among the linear operators acting on these forms, some are metric dependent others
not. Differential forms can be integrated and differentiated on Ω , without involving
any additional metric structure. If S is an oriented, piecewise smooth k-dimensional
submanifold of Ω , and w is a piecewisely continuous k-form, then

∫
S w is well-

defined. The notation
∫
S w is compact, in the sense that it stands for evaluating w

at the point S if k = 0, or computing the line integral of w along S if k = 1, or
estimating the surface integral of w over S if k = 2 and computing the volume
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integral of w over S when k = 3. In exterior calculus, we have particular operators
acting on forms, three of them matter here. These are the exterior or wedge product
∧, the Hodge’s operator �, and the exterior derivative d.

The operator ∧ : Λk(Ω)× Λ�(Ω) → Λk+�(Ω) is a natural multiplicative map
among forms such that w∧ z = (−1)k�z∧w, for all w ∈ Λk(Ω) and z ∈ Λ�(Ω). It
just generalizes to forms the dot and cross products among vectors. As an example,
f 0 ∧ u = fu, u1 ∧ v1 = u× v, u1 ∧ v2 = u2 ∧ v1 = u · v. Note that we define the
integral on Ω (only) of a differential n-form u(x) = f (x)dx1 ∧ . . .∧ dxn such that

∫

Ω

u =
∫

Ω

f (x) dx1 ∧ . . . ∧ dxn

where the integral on the right is the standard integral on real functions f and
dx1∧ . . .∧ dxn plays the role of infinitesimal (oriented) volume det(dx1, . . . , dxn).
Recall that the metric defines an inner product for vectors. This notion also extends
to forms: given a metric, one can define the product of two k-forms in Λk(Ω)

which will measure, in a way, the projection of one onto the other, see [1] for
a formal definition. Given this inner product denoted 〈., .〉, the Hodge’s operator
� : Λk(Ω)→ Λn−k(Ω) is such that we may define

∫

Ω

w ∧ z =
∫

Ω

�w z vol = 〈�w, z〉 vol, ∀w ∈ Λk, z ∈ Λn−k(Ω).

Let d : Λk(Ω) → Λk+1(Ω) denote the exterior derivative (where the term
“exterior” is to indicate that d increases the degree of the form). It is linear and
satisfies the two key properties d ◦ d = 0 and the Leibniz’s rule

dk+�(w ∧ z) = dk(w) ∧ z+ (−1)kw ∧ d�z, w ∈ Λk(Ω), z ∈ Λ�(Ω) .

The index k in dk(w) does not indicate a derivative of order k on w, but an exterior
derivative on the k-form w (in the following, we just write dw). For k = 0, we have
dw =∑n

i=1
∂f
∂xi

dxi .
By (cochain) complex (A•, f•) we mean a sequence of algebraic objects with

Abelian structure (e.g., vector spaces) A−1, A0, A1, A2, . . . , connected by homo-
morphisms fk : Ak → Ak+1 such that, for each k, it holds fkfk−1 = 0. In the
Euclidean space, differential forms on Ω constitute the complex

0
i−→ Λ0(Ω)

d0−→ Λ1(Ω)
d1−→ Λ2(Ω)

d2−→ Λ3(Ω)
0−→ 0

known as de Rham complex and denoted by (Λ•(Ω), d•). In terms of proxies
defined on Ω , the L2 de Rham complex reads

0
i−→ H1 grad−→ H( curl)

curl−→ H(div)
div−→ L2 0−→ 0.
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A differential form w ∈ Λk(Ω) is said to be closed if dw = 0, and exact if
there exists a (k − 1)-form z such that w = dz. These concepts arise in physics.
For example given a vector field f representing a force, one would like, if the
force is conservative, to find a function p called the potential energy, such that
f = gradp. With differential forms, to say that f is conservative is equivalent to
say that the corresponding differential form f is exact. Since d ◦ d = 0, we have
Im dk ⊂ Ker dk+1, that is every exact form is closed. So, if f is conservative, the
corresponding form f is also closed. It is natural to ask when a closed form is exact.
The answer depends on the topology of the manifold Ω (see more details in [9], for
example). In the de Rham complex, the Poincaré lemma addresses this question to
a large extent.

The idea behind de Rham cohomology is to define equivalence classes of closed
forms on a manifold. Let us denote by Zk(Ω) the set Ker dk of closed k-forms and
by Bk(Ω) the set Im dk−1 of exact k-forms. We have in general that Bk(Ω) ⊂
Zk(Ω). The quotient

Hk = Zk(Ω)/Bk(Ω) = Ker dk/Im dk−1

is the k-th cohomology group of Ω and we can write Zk(Ω) = Bk(Ω)⊕Hk. Indeed,
one classifies two closed forms u, v ∈ Λk(Ω) as cohomologous if they differ by an
exact form, that is, if u − v is exact. This classification induces an equivalence
relation on the space of closed forms in Λk(Ω) and Hk is the set of equivalent
classes, namely the set of closed forms modulo the exact ones. The previous notions
can be summarized in the diagram of Fig. 1, where the portion of de Rham complex
between k- and (k + 1)-forms is visualized. A complete de Rham diagram in three
dimensions is given in Fig. 2. Horizontal lines show the Hodge’s decomposition of
Λk(Ω), that is Λk(Ω) = Bk ⊕ Hk ⊕ Y k where Y k is generally characterized as
Y k = δkΛk+1(Ω) with the introduction of the coderivative operator δk : Λk(Ω)→
Λk−1(Ω) that for a smooth domain is defined as �δkw = (−1)kd � w for all w ∈
Λk(Ω), in order to have 〈dα, β〉 = 〈α, δβ〉, for all α ∈ Λk−1(Ω) and β ∈ Λk(Ω)

vanishing near the boundary.

Theorem 1 (Hodge Decomposition for Forms) Given a compact oriented Rie-
mann manifold Ω , any k-form w on Ω uniquely splits into the sum of three terms,
w1, w2, w3, where w1 is exact, w2 is co-exact and w3 is harmonic.

Fig. 1 The de Rham
complex between Λk(Ω) and
Λk+1(Ω). On the horizontal
lines, the Hodge’s
decomposition of Λ•(Ω).
Oblique lines mimic the
action of the d operator:
d (Zk) = {0} and
d(Y k) = Bk+1
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Fig. 2 The de Rham complex for n = 3, in the exterior calculus formalism (left) and in the vector
formalism (right). The set H 1 (resp. H 2) on the left corresponds with the space H 1 = {u ∈
L2(Ω)3, curl u = 0, div u = 0, u · n∂Ω = 0} (resp. H 2 = {u ∈ L2(Ω)3, curl u = 0, div u =
0, u× n∂Ω = 0}) on the right

So, w1 exact (resp. w2 co-exact) means that there exists a (k − 1)-form α (resp.
a (k + 1)-form β) such that w1 = dα (resp. w2 = δβ). And, w3 is harmonic if
Δw3 = 0 with Δ = dδ + δd. This follows by noting that exact and co-exact forms
are orthogonal; the orthogonal complement consists in forms that are both closed
and co-closed, thus harmonic. Orthogonality is defined with respect to the inner
product 〈., .〉 on Λk(Ω) (see, e.g., [6, 9]).

There exists a relation (of duality) between the exterior derivative d and the
boundary operator ∂ , stated by the Stokes’s theorem

∫

S

dw =
∫

∂S

w, ∀S ⊂ Ω, dim S = k, ∀w ∈ Λk(Ω).

k-forms are dual of k-manifolds S, and d is the adjoint of the boundary operator
∂ . We have a (chain) complex denoted by (C•, ∂•) where Ck if the set of chains of
k-manifolds on Ω and ∂k : Ck → Ck−1, for k ≥ 1. A k-cycle is a k-chain γ such
that ∂kγ = 0, thus, by definition, any k-chain that belongs to Ker ∂k . A k-chain
γ is a k-boundary if there exists a (k + 1)-chain σ such that ∂k+1σ = γ . The set
of k-boundaries coincides with Im ∂k+1. Due to the property ∂k∂k+1 = 0, we have
Im ∂k+1 ⊂ Ker ∂k . Two k-chains α, β are homologous if they differ for a boundary,
that is, if α−β is a k-cycle. The set of equivalent classes in Ck is the k-th homology
group Hk defined by

Hk = Ker ∂k/Im ∂k+1.
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Theorem 2 (de Rham, See e.g. [10]) For any value of the integer k, the k-th
homology Hk is isomorphic to the k-th cohomology group Hk .

The dimension of Hk is finite and defines the Betti’s number bk . In three dimensions,
b0 = dimH0 = m is the number of connected components of Ω . Indeed, any
function on Ω with zero derivative everywhere is separately constant on each of the
connected components of Ω . In the following, we suppose Ω connected, thus m =
1. The first and second Betti’s numbers, b1 = dimH1 = g and b2 = dimH2 = p,
correspond, resp., to the number of loops and cavities in Ω . Finally, b3 = 0. These
numbers are invariants, quantities that cannot change by continuous deformation
and that characterize the topological space Ω . In other words, if Ω is a sphere S,
it will never be possible to deformate it continuously into a torus T since b1(S) �=
b1(T ). The Euler’s characteristic number χ(Ω) = b0 − b1 + b2 − b3 is also an
invariant of Ω . For topologically trivial domains, we have Hk = {0}, for all 0 <

k < n (this result is known as Poincaré’s lemma).

3 The Discrete Side of the de Rham’s Diagram

The key point in the de Rham’s theorem is that the equivalence classes of Hk

can be defined starting from those of Hk, therefore it expresses basic topological
information about smooth manifolds in a form particularly adapted to computation.
Indeed, thanks to the following result [17], we can rely on simplicial homology.

Lemma 1 Let τh = (V ,E, F, T ) be a simplicial triangulation over Ω and Ωh =
∪t∈T t . The k-th homology groups Hk(Ω) and Hk(Ωh) are isomorphic.

Even if τh is a simplicial triangulation of Ω , the topological properties computed on
Ωh are the same as those of Ω . For Ω connected, e.g., it holds

(χ(Ω) =) 1− g + p = nV − nE + nF − nT (= χ(Ωh))

where nV , nE ,nF , nT are, respectively, the cardinalities of the sets of vertices V ,
edges E, faces F and tetrahedra T of the mesh τh. Given a simplicial mesh τh over
Ω̄ , we denote by Wk

r+1 = P−
r+1Λ

k(τh) the set of Whitney differential k-forms of
polynomial degree r + 1, where k ∈ {0, 1, 2, 3} is the order of the form (see [6] for
more details on the properties of these spaces). It is a compact notation to indicate
space of polynomial functions which are well-known in finite elements. Indeed, for
k = 0, we have W 0

r+1 = Lr+1, the space of continuous, piecewise polynomials
of degree r + 1; for k = 1, we obtain W 1

r+1 = Nr+1 the first family of Nédélec
edge element functions of degree r + 1; for k = 2, we get W 2

r+1 = RTr+1 the
space of Raviart-Thomas functions of degree r + 1; for k = 3, we find W 3

r+1 = Pr

discontinuous piecewise polynomials of degree r . The spaces Wk
r+1 are connected in

a complex by the linear operator dk which can be represented by suitable matrices,
namely G (k = 0), R (k = 1), D (k = 2) resp., with entries 0,±1, once a set of
unisolvent dofs and consequently a basis in each space Wk

r+1 have been fixed.
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For r = 0, the dimension of the space Wk
1 coincide with the number of k-

simplices in the mesh, indeed dimL1 = nV , dimN1 = nE , dimRT1 = nF
and dimP0 = nT . Moreover, the matrices G, R, D are, resp., the edge-to-node,
face-to-edge and tetrahedron-to-face connectivity matrices taking also into account
respective orientations.

For r > 0, as explained in [16], by connecting the nodes of the principal lattice
of degree r + 1 in a n-simplex t ∈ T , we obtain a number of small n-simplices that
are 1/(r + 1)-homothetic to t . The small k-simplices, 0 ≤ k < n, are all the k-
simplices that compose the boundary of the small n-simplices. Any small k-simplex
is denoted by a couple {α, s}, with s a k-simplex of τh and α is a multi-integer
(α0, . . . , αn) with

∑n
i=0 αi = r , αi ∈ Z and αi ≥ 0. The term active is to indicate

all couples {α, s} such that the function λαws belongs to a basis of Wk
r+1, where

λα = λ
α0
0 λ

α1
1 · · ·λαn

n and ws ∈ Wk
1 . Indeed, by considering all possible multi-indices

α in the couples {α, s}, one generates more functions λαws than necessary. The
dimension of the space Wk

r+1 coincide with the number of active small k-simplices
in the mesh, and the meaning of the matrices G, R, D is the same as for the case r =
0, provided that we work with the active small k-simplices instead of the k-simplices
of the mesh τh. The small k-simplices were born to define a set of unisolvent dofs,
the weights

∫
{α,s} u, for functions u ∈ Wk

r+1(t) when r > 0, that, differently from
the classical moments, maintain a physical interpretation.

The cardinality of the set of weights on active small k-simplices coincides with
dimWk

r+1 that is given below for q = r + 1 ≥ 1 (the terms that are multiplied by
dimP�(.) with � < 0 have to be neglected)

dL := dimW 0
q = nV +nE dimPq−2(e) +nF dimPq−3(f ) +nT dimPq−4(t)

dN := dimW 1
q = +nE dimPq−1(e) +nF dimPq−2(f )2 +nT dimPq−3(t)

3

dRT := dimW 2
q = +nF dimPq−1(f ) +nT dimPq−2(t)

3

dP := dimW 3
q = +nT dimPq−1(t).

Proposition 1 The identity χ(Ω) = dL − dN + dRT − dP holds for all r ≥ 0.

Proof By a simple computation with factorials, for q = r + 1, it holds:

dL − dN + dRT − dP

= nV + nE(dimPr−1(e) − dimPr (e))

+nF (dimPr−2(f )− 2 dimPr−1(f )+ dimPr (f ))

+nT (dimPr−3(t)− 3 dimPr−2(t)+ 3 dimPr−1(t)− dimPr (t))

= nV + nE

[(
r

1

)

−
(
r + 1

1

)]

+nF

[(
r

2

)

− 2

(
r + 1

2

)

+
(
r + 2

2

)]

+nT

[(
r

3

)

− 3

(
r + 1

3

)

+ 3

(
r + 2

3

)

−
(
r + 3

3

)]

= nV − nE + nF − nT = χ(Ω).

��
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From now on, dL (resp. dN , dRT , dP ) denotes the cardinality of the set of nodes or
small nodes (resp. edges or active small edges, faces or active small faces, tetrahedra
or small tetrahedra) whatever r ≥ 0 is, and the terms active and small for k-
simplices are taken for granted.

4 Notions from Graph Theory

Before continuing, we need a drop of graph theory (see, e.g., [18] for details).

Definition 1 The all-nodes incidence matrix Me ∈ Z
n×m of a directed graph M =

(N ,A), with n nodes N = {ni}ni=0, m arcs A = {aj }mj=1, and with no self-loop is
the matrix with entries

(M)ei,j =
⎧
⎨

⎩

1 if aj is incident on ni and oriented toward it,
−1 if aj is incident on ni and oriented away from it,

0 if aj is not incident on ni .

Each column (arc) has exactly two entries (extreme nodes) different from zero: 1
and −1. The rows are not linearly independent because their sum is the zero vector.
An incidence matrix of M is any submatrix of Me with n− 1 rows and m columns.

Definition 2 A tree of a graph M = (N ,A) is a connected acyclic subgraph of
M. A spanning tree S is a tree of M containing all its nodes (an example in Fig. 3).

Theorem 3 Let M = (N ,A) be a connected directed graph with no self-loop and
M ∈ Z

(n−1)×m an incidence matrix of M. Let S = (N ,B) be a spanning tree
of M and Mst the submatrix of order n − 1 of M given by the columns of M that
correspond to the arcs in S. Then Mst is invertible and the nonzero elements in each
row of M−1

st are either all 1 or all −1.

Graph’s theory matters in this context because D is an incidence matrix of the
dual graph, with nodes that are the tetrahedra plus one additional node to represent
the exterior of Ω , and arcs that are the faces of the mesh. Any interior face connects
two tetrahedra and an face on the boundary connects a tetrahedron with the node
representing the exterior of the domain. The node that corresponds to the exterior
is the reference node of D. On the other hand, G� is the all-node incidence matrix
of the primal graph with nodes at the mesh nodes and arcs that are the edges of
the mesh. For a multi-connected domain Ω , the associated graph has a connected
component (thus a spanning tree) for each connected component of the domain. We
refer to [3] for more details on the construction of these two graphs when r > 0,
here we rather detail their use to solve the problem of potentials.

In Fig. 4, each horizontal line at level k collects all functions of Wk
r+1 built on

the λαws (resp. all chains in Ck built on active small k-simplices {α, s}) on the left
(resp. right) diagram. For k = 0, the end path nodes are all the nodes in the mesh,
due to the arbitrarity of the considered path, apart from the m roots (one node for
each connected component of Ω). Here we suppose m = 1 for simplicity, but for
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Fig. 3 (Left) the graph, (right) a spanning tree (resp. the co-tree) in solid line (resp. dashed line)
with top node as root and bottom nodes as leaves, namely those nodes that have only one edge of
the tree incident to them

Fig. 4 Discrete cochain (left) and chain (right) de Rham complexes in three dimensions. Belts
(resp. doors) are edges (resp. faces) lying on the loops (resp. cavities) which generate H1 (resp. H2),
one for each class of equivalence. Note that on the discrete cochain side, H 1

h = {zh ∈ W 1
r+1, zh ∈

Ker R, zh /∈ Im G} and H 2
h = {uh ∈ W 2

r+1, uh ∈ Ker D, uh /∈ ImR}

m > 1 it is sufficient to repeat the construction for each component of Ω . For k = 1,
the tree edges are all the edges in a spanning tree, the set of belts collects one edge
on each loop generatingH1 and the 1-boundaries are the remaining edges, neither in
the tree nor among the belts, but which are necessary to describe 1-chains bounding
surfaces. For k = 2, the tree faces are all the faces in a spanning (dual) tree, the
set of doors collects one face on each cavity generating H2 and the 2-boundaries
are the remaining faces, neither in the tree nor among the doors, but necessary to
describe 2-chains bounding volumes.
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5 From Fields to Potentials

We wish to give an algorithm to construct finite element (scalar or vector) functions
with assigned gradient, curl or divergence. We assume to know a basis {σj }j=1,g of
H1(Ω̄) and a basis {θ�}�=1,p of H2(Ω̄). A suitable and easy way for constructing
σj and θ� is presented in [12, 15]. Moreover, we suppose to have a spanning
tree Sh of the graph MG = (NG,AG) with NG described by the small nodes
and the arcs AG by the active small edges, as explained in [3], where spanning
means that Sh visits all nodes and tree stands to indicate that the arcs in Sh cannot
connect in a loop. In addition to Sh, we need a spanning tree S∗h of the graph
MD = (ND,AD) with the nodes ND given by the small tetrahedra barycenters
and the arcs AD by the active small faces shared by neighbouring elements, as
explained in [3]. Again, it is spanning, so it visits all small tetrahedra and it does not
contain active small faces that can close chambers. The determination of a spanning
tree is a standard procedure in graph theory [10]. With these tools, we can construct
potentials whatever the approximation degree r > 0 is, generalizing the procedure
detailed in [4] for r = 0.

Constructing a Function with Assigned Gradient The problem of finding a
scalar function ψh ∈ W 0

r+1 such that gradψh = fh with fh ∈ W 1
r+1 known, has not

a unique solution: indeed, ψ̃h = ψh+c, c ∈ R, verifies grad ψ̃h = fh too. However,
it is enough to fix the value of ψh at one of the vertices, say n1, to ensure uniqueness.
With conditions on fh stated in [7] and recalled in Fig. 2 (left), we consider the grad
problem:

Given fh ∈ W 1
r+1 s.t. curl fh = 0,

∮

σi

fh · ds = 0, σi ∈ H1(Ω), i = 1, . . . , g,

findψh ∈ W 0
r+1 s.t. gradψh = fh inΩ and ψh(n∗) = 0. (1)

The fundamental theorem of calculus says that

ψh(nb)− ψh(na) =
∫

e

gradψh · te =
∫

e

fh · te (2)

for an edge e = [na, nb] ∈ E. Equation (2) contains two unknowns, namely ψh(na),
ψh(nb). Starting from the equation with na = n∗, the root of the spanning tree Sh,
where we have set ψh(n∗) = 0, we can compute the remaining value, say ψh(nb), as
ψh(nb) = ψh(n∗)+

∫
e

fh · te for e = [n∗, nb] ∈ Sh. At this point, nb becomes root:
the value of ψh(nb) is known and it can be used to compute the values of ψh at the
remaining nodes in a neighborhood of nb. Since Sh is a spanning tree, proceeding
in this way (see the root-to-leaves algorithm in Fig. 5) we can visit all the nodes of
τh. The spanning tree Sh is a tool for selecting the rows of the system equivalent to
gradψh = fh for which, using ψh(n∗) = 0, one can eliminate the unknowns one

after the other. We have thus found a nodal function ψh such that its gradient has line



High Order Whitney Forms on Simplices and the Question of Potentials 11

(1) (2) (3) (4)

Fig. 5 Example of a 4-step root-to-leaves algorithm (4) → (1), where • are known values and
◦ unknown ones, that is used to solve the gradient problem. Example of a 4-step leaves-to-root
algorithm (1) → (4), where arcs connecting a ◦ to a • denote unknown values and ◦ known ones,
that is exploited to solve the divergence problem

integral on all the (small) edges e ∈ Sh equal to the line integral on e of fh. Let us
consider the edges e /∈ Sh (one of the 1-boundaries in Fig. 4). For each node n̄ �= n∗,
let Cn̄ be the set of edges in Sh joining n∗ to n̄: then

∫
Cn̄

gradψh · ds = ψh(n̄) −
ψh(n∗). Given an edge e = [na, nb] /∈ Sh, we define the cycle σe = Cna + e−Cnb .
Since fh is a gradient (it is curl-free and its line integral on all the loops σj ∈ H1(Ω)

vanishes), its line integral on σe vanishes too. Indeed, σe is either homotopic to 0 or
is in H1(Ω). Therefore,

0 =
∮

σe

fh · ds = ψh(na)+
∫

e

fh · te − ψh(nb) =
∫

e

fh · te −
∫

e

gradψh · te.

This yields gradψh = fh also on e /∈ Sh.

Constructing a Vector with Assigned Curl With conditions on uh stated in [7]
and recalled in Fig. 2 (left), we consider the curl problem:

Given uh ∈ W 2
r s.t. div uh = 0 and

∫

(∂Ω)j

uh · n = 0, ∀ j = 1, . . . , p,

find zh ∈ W 1
r s.t. curl zh = uh inΩ , (3)

∫

e

zh · te = 0, ∀ e ∈ Sh, and
∮

σi

zh · ti = 0, σi ∈ H1(Ω), i = 1, . . . , g.

Concerning the conditions in the last line of (3), noting that the number of small
edges e ∈ Sh is dL − 1, the first part on Sh can be seen as a filter for gradients.
On the other hand, homology and cohomology are in duality, hence the last part on
H1(Ω) can be seen as a filter for cohomology (harmonic) fields. In matrix form,
the curl problem reads RZ = U, with suitable conditions on U. Indeed, if DU �= 0
the problem has no solution. If ∂Ω is connected the problem has a solution if and
only if DU = 0. If ∂Ω is not connected the problem has a solution if and only if
DU = 0 and MU = 0 where the matrix M ∈ R

p×dRT , with entries M�j equal to
1 or 0 depending if the face fj is on (∂Ω)� or not. Let us set D̃ = [

D

M

]

. We have
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that D̃ = D for p = 0. We recall that G ∈ R
dN×dL and that dim KerG = 1 if Ω is

connected otherwise dim KerG = m, where m = dimH0 (the number of connected
components of Ω). Here we assume m = 1.

The solution of RZ = U is not unique. Indeed, if Ω is simply connected then
KerR = ImG therefore RGϕ = 0 for all ϕ ∈ R

dL . When Ω is not simply
connected, Rρh = 0 for all ρh ∈ H 1

h where H 1
h = {ρh ∈ W 1

r+1 : ρh ∈
kerR, ρh /∈ ImG} �= ∅. Let Gr be a submatrix of G belonging to R

dN×(dL−1)

such that ImG = ImGr and the columns of Gr are a basis of ImGr . Passing from
G to Gr is equivalent to fix a small node as root for the tree Sh.

We suppose to know a basis {ρh,i}i=1,...g of H 1
h , whose weights on the edges are

collected in the columns of a matrix N ∈ R
nE×g . To have uniqueness of the solution

of R Z = U we have to find Z both in (ImGr)
⊥ (so, G�

r Z = 0) and in (H 1
h )
⊥ (so,

N�Z = 0). We thus introduce the notation G̃r = [Gr,N], knowing that G̃r = Gr

when Ω is simply connected. Note that G̃r has maximal rank dL − 1 + g (≤ dN).
The matrix

[
R D̃�
G̃�

r 0

]

has dRT + dL − 1 + g rows and dN + dP + p columns. It is thus square since
dL − dN + dRT − dP = 1− g + p for Proposition 1.

Proposition 2 The linear system

[
R D̃T

G̃T
r 0

] [
Z
Λ

]

=
[
U
0

]

has a unique solution and, if D̃U = 0 then RZ = U.

Proof Matrix D̃ has maximal rank, so KerD̃T = (Im D̃)⊥ = {0} and

[
R D̃T

G̃T
r 0

] [
Z
Λ

]

=
[

0
0

]

⇒ RZ = −D̃T Λ and G̃T
r Z = 0

RZ = −D̃T Λ⇒ ZT RT RZ = − ZT RT D̃T Λ = 0 ⇒ RZ = 0 ,

because RT D̃T = (D̃ R)T and D̃R = 0 since DR = 0 (if p > 0, also MR = 0).
This yields

RZ = 0 ⇒ D̃T Λ = 0 ⇒ Λ = 0.
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Then

G̃T
r Z = 0 ⇒ Z ∈ Ker G̃T

r = (Im G̃r )
⊥ .

RZ = 0 and Z ∈ (Im G̃r )
⊥ ⇒ Z = 0 .

If D̃U = 0 then D̃(RZ+ D̃T Λ) = D̃U = 0 so D̃D̃T Λ = 0 thus D̃T Λ = 0 hence
RZ = U . This ends the proof. ��

A spanning tree S of the graph GGT has dL − 1 arcs that correspond to dL − 1
columns of GT

r . We thus write GT
r = [GT

t ,GT
c ] with GT

t invertible. A belted tree
Sbt of the graph GGT has dL − 1 + g arcs that correspond to dL − 1 + g columns
of G̃T

r . We thus write G̃T
r = [G̃T

bt , G̃
T
cbt ] with G̃T

bt invertible. A spanning tree S ′
of the graph GDe has dP arcs that correspond to dP columns of D, namely dP rows
of DT . We thus set D̃ = [D̃t ′ , D̃c′ ] with D̃t ′ invertible. The curl problem in matrix
form reads: given Ut ′ , Uc′ , find Zt , Zc and Λ such that

⎡

⎣
Rt ′ bt Rt ′ cbt D̃T

t ′
Rc′ bt Rc′ cbt D̃T

c′
G̃T

bt G̃T
cbt 0

⎤

⎦

⎡

⎣
Zt

Zc

Λ

⎤

⎦ =
⎡

⎣
Ut ′
Uc′
0

⎤

⎦ .

Since the belted tree can be constructed starting from the edges lying on the loops
generating H1, we can consider a system as the one in Prop. 3, with the last block of
lines replaced by the identity and zeros, as here below.

Proposition 3 The linear system

⎡

⎣
Rt ′ bt Rt ′ cbt D̃T

t ′
Rc′ bt Rc′ cbt D̃T

c′
I 0 0

⎤

⎦

⎡

⎣
Ẑbt

Ẑcbt

Λ̂

⎤

⎦ =
⎡

⎣
Ut ′
Uc′
0

⎤

⎦ (4)

has a unique solution. If D̃U = 0 then Λ̂ = 0 and RẐ = U. In particular, if D̃U = 0
then Ẑcbt = R−1

c′ cbtUc′ .

Proof If we set

⎡

⎣
Rt ′ bt Rt ′ cbt D̃T

t ′
Rc′ bt Rc′ cbt D̃T

c′
I 0 0

⎤

⎦

⎡

⎣
Ẑbt

Ẑcbt

Λ̂

⎤

⎦ =
⎡

⎣
0
0
0

⎤

⎦

then

RẐ = −D̃T Λ̂⇒ 0 = D̃RẐ = −D̃D̃T Λ̂⇒ D̃T Λ̂ = 0.
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Since D̃ is full rank, it follows that Λ̂ = 0 and RẐ = 0. So, Ẑ = Grϕr + ρ with
ρ ∈ H 1

h . The last condition on zh listed in the last line of (3), yields ρ = 0 and thus
Ẑ = Grϕr . In particular 0 = Ẑt = Gtϕr , hence ϕr = 0 because Gt is invertible.
So we have Ẑ = Grϕr = 0. Hence the matrix in the linear system (4) is not singular
and the linear system has a unique solution.
If D̃U = 0 then RẐ+ D̃T Λ̂ = U ⇒ D̃D̃T Λ̂ = 0 ⇒ Λ̂ = 0 ⇒ RẐ = U .

To conclude the proof note that Rc′ cbt is square since dRT − dP − p = dN −
(dL − 1) − g where the second part of the identity is the number of the edges out
of the belted tree (block cbt). To prove that Rc′ cbt is invertible we will see that for
each Uc′ ∈ R

dRT−dP−p the linear system Rc′ cbt Ẑcbt = Uc′ has a solution. In fact,
let us set Ut ′ = −D−1

t ′ Dc′Uc′ . Then the linear system

⎡

⎣
Rt ′ bt Rt ′ cbt DT

t ′
Rc′ bt Rc′ cbt DT

c′
I 0 0

⎤

⎦

⎡

⎣
Ẑbt

Ẑcbt

Λ̂

⎤

⎦ =
⎡

⎣
Ut ′
Uc′
0

⎤

⎦

has a unique solution and Ẑbt = 0. Since, by construction, D̃ U = 0 then Λ̂ = 0,
hence Rc′ cbt Ẑcbt = Uc′ . ��
Constructing a Vector with Assigned Divergence The problem of finding a
vector function vh ∈ W 2

r such that div vh = wh with wh ∈ W 3
r known, has not

a unique solution: indeed, ṽh = vh + curl z, z ∈ W 1
r , verifies div ṽh = wh too. It is

however enough to fix the value
∫
f vh · nf = 0 at all the active small faces f /∈ S∗h

and
∫
(∂Ω)j

vh · n∂Ω = 0 on each connected component (∂Ω)i of ∂Ω , j = 1, p,
in order to set a filter for the cohomological (harmonic) fields. We thus have the
following divergence problem:

Given wh ∈ W 3
r , find vh ∈ W 2

r+1 s.t. div vh = wh inΩ,

with
∫

f

vh · nf = 0, ∀ f /∈ S∗h, and
∫

(∂Ω)j

vh · n∂Ω = 0, ∀ j. (5)

It is known that dim Im curl = dN − dim Ker curl therefore dim Im curl = dN −
(dL − 1 + g) and for Prop. 1 we have dim Im curl = dRT − dP − p. The system
associated with (5) is square, in dRT unknowns and equations. Indeed, div vh = wh

counts dP equations (one for each tetrahedron) and the conditions, in the last line
of (5), are, respectively, dRT − dP − p, as many the arcs in the dual co-tree (since
the arcs in S∗h are dP + p) and p, as many as the number of (∂Ω)j . We use the
leaves-to-root algorithm presented in Fig. 5 (see [2] for a similar algorithm when
using moments as degrees of freedom). Indeed, given Σ a small tetrahedron or a
connected component of ∂Ω , we denote by F(Σ) = {f ∈ F, f ∈ ∂Σ}, the set of
active small faces in F that are on the boundary of Σ (arcs in the dual graph that
connect to the point Σ). The leaves of the dual tree are tetrahedra that have only
one face in S∗h . If Σ is a leave of S∗h and f (Σ), with external unit normal n, is the
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unique dual arc (face) in S∗h incident to Σ , we can compute the dof on f (Σ). In
fact,

∫

f (Σ)

vh · n =

⎧
⎪⎨

⎪⎩

∫
∂Σ

vh · n = ∫
Σ
wh, ifΣ ∈ T∫

(∂Ω)j
vh · n = 0, ifΣ = (∂Ω)j

∫
(∂Ω)0

vh · n = ∫
Ω
wh, ifΣ = (∂Ω)0.

by relying on the divergence theorem in the first and last identities. It is clear that if
vh ∈ W 2

r+1 is such that div vh = 0, cj = 0 for all j = 1, . . . , p and
∫
f vh · nf = 0,

for all f /∈ S∗h , then
∫
f (Σ)

vh · nf = 0, for all f (Σ) that are leaves of S∗h . We can
iterate as in the leaves-to-root algorithm: from (1) to (2) in Fig. 5, we remove from
S∗h the leaves Σ and the incident arcs f (Σ) that we have used in (1), the remaining
graph in (2) is still a tree. The arcs of this new tree are the faces where dofs are still
unknown. We can thus repeat the previous procedure. After a finite number of steps,
the tree reduces to one node (root), and we have obtained

∫
f

vh · nf = 0, for all
f ∈ F . Since the problem yields a square system, this proves that the solution is
unique.
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The Candy Wrapper Problem: A
Temporal Multiscale Approach for
PDE/PDE Systems

Thomas Richter and Jeremi Mizerski

Abstract We discuss the application of a multiscale scheme to a medical flow
problem, the so called Candy Wrapper problem. This problem describes the re-
stenosis of a stented blood vessel, which will take several months but which is
governed by the rapidly oscillating dynamics of the blood flow. A long term
simulation of this three dimensional free-boundary flow problem resolving the
fast dynamics is not feasible. Our multiscale approach which has been recently
published is based on capturing the fast dynamics by locally isolated periodic-in-
time problems which have to be approximated once in each macro step of the long
term process. Numerical results show the accuracy and efficiency of this multiscale
approach.

1 Introduction: The Candy Wrapper Problem

The idea of opening or dilating occluded or narrowed coronary artery originates
in the works of Andreas Gruentzig. First human application of percutaneous
transluminal coronary angioplasty (PTCA) had been performed on September 16th
1977 at University Hospital in Zurich. The method was basically just putting the
balloon catheter through narrowing and inflating it [24]. The immediate results
were good, only about 1% of the patients suffered from immediate vessel closure
and myocardial infarct. Later after the interventions 30% of the stenosis recurred
accompanied by the symptoms of angina of the intensity close to those from
before the intervention. That happened usually from 30 days to 6 months form the
intervention [9]. At that time the cardiologists were convinced that only about 10%
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of all the patients will be suitable for the method and the rest of coronary artery
disease cases had to be referred to cardiac surgery for by-pass grafting. The remedy
for the situation was to place stents intended as an internal scaffold for the artery to
maintain it’s patency. The method was introduced in 1986 with some success [15].
Soon after that a new set of complications came into the attention. The early and
late onset of thrombosis started to haunt the patients undergoing procedures of
bare metal stent (BMS) implantation. The BMS coped also with the problem of
intimal hypertrophy which resulted in in-stent stenosis. From that moment on the
era of drug eluting stents (DES) begins. Throughout the 90s different companies
try different chemical compounds. The first successful application was reported
by Serruys in 1998 [14]. That however did not solve the problem entirely and
resulted in even more complex set of complications [1, 34]. The platelet dependent
thrombosis resulted in explosion of anti-platelet drug development in following
years. The problem defined as a “restenosis of treatment margins” or “candy
wrapper” phenomenon was described by radiologists trying to apply the oncological
brachytherapy principles to the neointimal overgrowth inside BMS [12]. Soon after
that the molecular bases of the process started to be extensively studied [8]. The
issue of stent edge stenosis had not been resolved by introduction of new materials
and coatings [10, 11]. The biological effects of flow properties have been studied
extensively since the introduction of extracorporeal circulatory system in early 50s.
The body of evidence built on that experience showed large interdependencies
between the local flow properties and the tissue response. The research areas
branched towards optimization of stent struts geometry [31] and usage of different
cytostatic drugs as a stent coating material [23]. The key elements of the milieu
created by stents are usually considered separately. Some computational models
allow to recreate and integrate more elements into the system [30, 41]. By means of
computer simulations the researchers were able to simulate not only fluid dynamics
around the stented area but also the effects of drug diffusion into the arterial
walls [3, 44]. The edge restenosis phenomenon however did not find its’ conclusive
description. To fully understand that complex phenomenon we need to take the
arterial wall mechanics and fluid-structure interactions into consideration. The
specific challenge that is tackled in this work is the temporal multiscale character
of this problem: While restenosis occurs after months, the driving mechanical
forces come from the pulsating blood flow that requires a resolution in the order
of centiseconds. Direct simulations of this long-term process are not feasible and
we present temporal multiscale methods aiming efficient predictions.

2 Model Configuration

In this section we will briefly describe the mathematical model used to describe
the stenosis growth effects. Medical, biological and chemical processes are strongly
simplified. They do however still contain the specific couplings and scales that are
characteristic for the underlying problem. We choose problem parameters as close
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to the medical configuration as possible and as known, which is an issue since good
data is difficult to measure and only sparsely available.

The most important simplification in our present computational model is the
assumption of a rigid vessel wall. Although deformations by dynamical fluid-
structure interactions are small it is well known that the effects of elasticity should be
taken into effect for an appropriate depiction of wall stresses, which are an essential
ingredient in triggering stenosis growth. However, we give an outlook on techniques
that are suitable to substantially increase the efficiency in medical fluid-structure
interaction simulation that suffer from special instabilities by the added-mass effect
due to similar masses of fluid and solid [7].

2.1 Governing Equations

We consider a system of partial differential equations that is inspired by Yang et
al. [42, 43], where a model describing the interaction of mechanical fluid-structure
interactions with bio/chemical reactions and active growth and material deformation
is introduced. The mechanical system is described by a nonlinear fluid-structure
interaction model, where the blood is modeled as incompressible Newtonian fluid,
which is an adequate choice for the vessel sizes under consideration

ρf
(
∂tv+ (v · ∇)v

)− div σ (v, p) = 0, div v = 0 in F(t), (1)

where F(t) is the (moving) fluid domain, the lumen, ρf ≈ 1.06 gcm−3 the density
of blood and σ (v, p) = ρf νf (∇v+∇vT )−pI the Cauchy stress tensor, depending
on velocity v and pressure p, with the kinematic viscosity νf ≈ 0.03 cm2s−1. The
vessel walls are governed by an elastic material

Jρs∂tv− div
(

F�
)
= 0, v = ∂tu in S, (2)

where ρs is the fluid’s density (in current configuration), v the velocity, u the
deformation, F := I + ∇u the deformation gradient with determinant J := det F.
By S we denote the Lagrangian reference configuration. By � we denote the Piola
Kirchhoff stresses. The proper modeling of the stresses within vessel walls is under
active research [27]. In particular there is still little knowledge on the degree of
complexity that is required for accurately predicting the behavior of the coupled
system. To incorporate growth of the stenosis in the context of fluid-structure
interactions, the technique of a multiplicative decomposition of the deformation
gradient

F = FeFg(c), Fe = FFg(c)
−1, V0

Fg−→ Vg
Fe−→ V
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into active deformation Fg(c) and elastic response Fe can be applied, see [20, 40].
The idea is to introduce an intermediate configuration that includes the growth Ŝ →
Ŝg and that is mediated by Fg(c) depending directly on the exterior growth trigger
c but that is not physical, i.e. it is stress free but not necessarily free of strain. The
stresses then depend on the elastic part only, to be precise on Fe = Fg(c)

−1(I+∇u).
Such models are successfully used in describing the formation of plaques [42, 43].

In this work we considerably simplify the model by neglecting all elastic effects.
The Navier-Stokes equations are solved in the domain F that directly depends on a
growth variable c by prescribing normal growth

∂F
(
c(t)

) = {x− c(x, t) · nF̂(x) : x ∈ ∂F̂},

where F̂ is the non-grown fluid domain in reference state and nF̂ the outward facing
unit normal vector. The description of the coupled problem we will be based on
an ALE formulation, where all quantities are given on the undeformed reference
domain F̂, see [36, Chapter 5]. This reference domain is a straight pipe of length
7 cm and diameter 0.2 cm. A typical curvature, irregularities, the effect of the stent
and in particular of the stenosis will be augmented by the ALE deformation T (t) :
F̂→ F(t).

The growth variable c will live on the surface ∂F̂. The evolution of c is governed
by a simple surface diffusion equation

dtc − λc��c = R(c, σ ) on ∂F̂, c(0) = 0 (3)

with the Laplace Beltrami operator �� and a small diffusion constant λc ≈ 5 ·
10−7 m2/s. In a detailed model, this simple reaction diffusion equation is replaced
by a cascade of chemical reaction systems that trigger growth, see [42]. Due to
the very slow evolution of the plaque, the motion of the evolving surface can be
neglected in the temporal derivative. There is no experimental data on the role
of diffusion and the size of λc. We will hence consider λc as a procedure for
stabilization and choose is small enough to cancel any effects on the macroscopic
evolution of the growth. In lack of relevant parameters equation (3) can be
considered to be dimensionless. By R(c, σ ) we denote the coupling term triggering
growth of the stenosis

R(c, σ ; x) = α

1+ βc(x)
γ (σWSS

(
σ (x); x)

)
. (4)

The parameter α controls the rate of the stenosis growth and it can be considered
as the scale parameter separating the fast scale of the fluid problem from the slow
scale of the growth, by β we control some saturation of the growth. By σWSS we
denote the wall shear stress that is acting close to the tips of the stent at s0 and s1 (in
direction of the main flow direction x1, where injuring of the vessel wall will trigger
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stenosis growth

σWSS(σ ; x) = |σ (x)n(x) · n(x)|
(
�(s0; x1)+�(s1; x2)

)
,

with

�(s; x) =
(

1+ exp
(
2(s0 − 1− x)

))−1(
1+ exp

(
2(x − s0 − 1)

))−1
.

Only wall shear stresses in a certain range above and below activation limits are
responsible for plaque growth, hence we introduce the scaling function γ (·) as

γ
(
S
) =

(
1+ exp

(
3(σmin − S)

))−1(
1+ exp

(
3(S − σmax)

))−1
.

2.2 Parameters

All computations are carried out on the reference domain, a vessel of diameter
0.2cm and length 7cm. Deformations, imposed by the stent Tstent , the general
curvature of the configuration Tgeometry and the stenosis Tstenosis are realized by
mappings

T = Tgeometry ◦ Tstenosis ◦ Tstent .

All units are given in cm, g, s.
Tstent models the impact of the stent, a slight extension of the vessel at the tips sl

and sr

Tstent (x) =
(
x1

0
0

)

+
(

1+ ρstente
−γstent (x1−s0)

2 + e−γstent (x1−s1)
2
)
(

0
x2

x3

)

(5)

with ρstent = 0.1 and γstent = 50. Growth of the stenosis is assumed to be in normal
direction only. We prescribe Tstenosis by the simple relation

Tstenosis(c; x) =
(
x1

0
0

)

+ (
1− c(x)

)
(

0
x2

x3

)

.
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The overall vessel geometry is curved in the x/y plane for x1 < sm = 3.5 cm which
is the left half of the vessel and in the x/z plane for x1 > sm

Tgeo(x)

∣
∣
∣
x1<sm

=
⎛

⎜
⎝
x1 − τ (x1)

(
1+ τ (x1)

2
)− 1

2 x2

τ ′(x1)+
(
1+ τ (x1)

2
)− 1

2 x2

x3

⎞

⎟
⎠,

Tgeo(x)

∣
∣
∣
x1>sm
=
⎛

⎜
⎝
x1 − τ (x1)

(
1+ τ (x1)

2
)− 1

2 x3

x2

τ ′(x1)+
(
1+ τ (x1)

2
)− 1

2 x3

⎞

⎟
⎠

where τ (x1) describes the center-line of the deformed vessel, given by τ (x1) =
4 · 10−3(x1 − sm)

4. The mapping is chosen to give a curvature that is realistic
in coronary arteries with a straight middle-section describing the stented area. As
further parameters we consider the fluid density ρf = 1.06 g · cm−3, the viscosity
ν = 0.03 cm2 · s−1. The stent starts at s0 = 2 cm, extends over 3 cm to s1 = 5 cm.
The geometric parameters for the impact of the stent, see 5, are γstent = 50 and
finally, the reaction term uses the limits σmin = 5 and σmax = 8.

The flow problem is driven by enforcing a periodic relative pressure profile
(inflow to outflow) condition that is inspired from the usual pressure drops in stented
coronary arteries suffering from a stenosis. On the inflow boundary�in we prescribe
the time-periodic average pressure

Pin(t) =

⎧
⎪⎪⎨

⎪⎪⎩

10+ 25t 0 ≤ t < 0.4 s

140/3 − 200t/3 0.4 s ≤ t < 0.7 s

100t/3 − 70/3 0.7 s ≤ t < 1 s

, periodically extended over [0, 1]

2.3 ALE Formulation and Discretization

Based on the mapping T (x) = Tgeometry(x) ◦ Tstenosis(x) ◦ Tstent (x) the Navier-
Stokes equations and the surface growth equation are transformed to ALE coordi-
nate, e.g. by introducing reference values v̂(x̂, t) = v(x, t), p̂(x̂, t) = p(x, t) and
ĉ(x̂, t) = c(x, t). The resulting set of equations is given on the reference domain F̂
and in variational formulation it takes the form

(
Jρf

(
∂t v̂+ (F̂

−1
v̂ · ∇̂)v̂

)
, φ

)

F̂
+
(
J σ̂F−T , ∇̂φ̂

)

F̂
= 0

(
JF−1 : ∇̂v̂, ξ

)

F̂
= 0,

(
c′, ψ

)

∂̂F
+
(
λc∇�c,∇�ψ

)

∂̂F
= R(ĉ, σ̂ ).

(6)
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Several simplifications in comparison to an exact ALE formulation have been
applied: due to the very slow evolution of the surface we neglect inertia terms by
its motion. Further, since surface diffusion will only serve as numerical stabilization
we refrain from an exact transformation of the surface Laplace.

The discretization of system (6) is by standard techniques. In time, we use the
θ -time stepping method

u′ = f (t, u) → un − un−1 = �tθf (tn, un)+�t(1− θ)f (tn−1, un−1),

with constant step sizes � and the choice θ = 1
2 + O(k) to achieve second

order accuracy with good stability properties, see [32, 38]. Spatial discretization
is by means of stabilized equal order tri-quadratic finite elements on a hexahedral
mesh. For stabilization of the inf-sup condition and of convective regimes the local
projection stabilization is used [4, 5]. The surface PDE is continued into the fluid
domain and can be considered as a weakly imposed boundary condition. We refer
to [36] for details on the discretization and implementation in Gascoigne 3D [6].

3 Temporal Multiscales

The big challenge of the candy wrapper problem is in the range of temporal
scales that must be bridged. While the flow problem is driven by a periodic flow
pattern with period 1 s the growth of the stenosis takes months. The growth model
comprises the parameter α, see (4) that indicates exactly this scale separation, since
|R(c, σ )| = O(α). In [19] we have recently introduced and analysed a temporal
multiscale scheme for exactly such long-scale/short-scale problems governed by a
PDE/ODE system and driven by a periodic-in-time micro process. Here we extend
this technique for handling 3d PDE/PDE couplings.

We briefly sketch the layout of the multiscale approximation. To begin with, we
identify the growth parameter c(x, t) as the main variable of interest. Furthermore,
as we are interested in the long term behavior of the growth only, we introduce the
(locally) averaged growth variable

c̄(x, t) =
∫ t+1 s

t

c(x, s) ds, (7)

where the averaging extends over one period only.
Next, to decouple slow and fast scales we make the essential assumption that the

flow problem on a fixed domain F(c̄f ), where c̄f := c̄(tf ) for one point in time tf
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admits a periodic in time solution

(
J (c̄f )ρf

(
∂
c̄f
t vc̄f + (F(c̄f )−1vc̄f · ∇)vc̄f

)
, φ

)

F

+
(
J (c̄f )σ

c̄f F(c̄f )−T ,∇φ
)

F
+
(
J (c̄f )F(c̄f )−1 : ∇vc̄f , ξ

)

F
= 0

vc̄f (·, 0) = vc̄f (·, 1) (8)

Only very few theoretical results exist on periodic solutions to the Navier-Stokes
equations, see [21]. They only hold in the case of small data which is not given in
the typical candy wrapper configurations with Reynolds numbers going up to about
Re = 1000. Computational experiments however do suggest the existence of stable
limit cycles in the regime of interest.

Multiscale Algorithm Given such periodic solutions, the computational multi-
scale method is based on a subdivision of I = [0, T ] (where T ≈ months is large)
into macro time-steps tn for n = 0, . . . , N with t0 = 0 and TN = T and the step
size K = tn − tn−1. The small interval of periodicity IP = [0, 1] is partitioned
into micro time-steps τn for n = 0, . . . ,M with τ0 = 0, τM = 1 and the step size
k = τm − τm−1 � K . A simple explicit/implicit multiscale iteration is then as
follows:

Algorithm 1 (First order explicit/implicit multiscale iteration) Let c̄0 be the
initial value for the slow component. For n = 1, 2, . . . iterate

1. Solve the periodic flow problem (vc̄n−1, pc̄n ) on the domain F(c̄n−1)

2. Compute the average of the reaction term

R̄(c̄n−1) :=
∫ 1

0
R(c̄n−1, σ

c̄n−1(s); x) ds

= α

1+ βc̄n−1(x)

∫ 1

0
γ
(
σWSS

(
σ c̄n−1(x, s); x)

)
ds

3. Make an semi-explicit step of the stenosis growth problem

K−1(c̄n − cn−1, ψ
)
∂F̂ +

(
λc∇�c̄n,∇�ψ

)
∂F̂ =

(
R̄(c̄n−1), ψ

)
∂F̂

The discretization of the growth problem in Step 3. can easily be replaced by
a second order explicit scheme like the Adams-Bashforth formula, see [19]. A
fully implicit time-integration can be realized by adding a sub-iteration for steps
2–4. However, since the diffusion parameter is very small, explicit schemes are
appropriate in this setting.

Within every step of the iteration it is necessary to solve the periodic-in-time flow
problem (even multiple solutions are required in a fully implicit setting). This is the
main effort of the resulting scheme, since the sub interval [0, 1] must be integrated
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several times to obtain a suitable periodic solution. In principle it is possible to just
compute several cycles of the periodic problem until the periodicity error

‖vc̄n (T + 1 s)− vc̄n (T )‖ < εP

falls below a given threshold εP > 0. Usually however this error is decreasing
with an exponential rate only that depends on parameters like the viscosity and the
domain size. For acceleration several methods are discussed in literature, based on
optimization problem [39], on the idea of the shooting method [28], on Newton [25]
or on space time techniques [33]. Here we quickly present a very efficient novel
scheme that converges with a fixed rate that does not depend on any further
parameters. We note however that although the computational efficiency is striking,
the theoretical validation extends to the linear Stokes equation only, see [37].

Solution of the Periodic Flow Problem The idea of the averaging scheme for the
rapid identification of periodic flow problems is to split the periodic solution into
average and oscillation, see also [37]

vπ (t) = v̄π + ṽπ(t),

∫ 1

0
ṽπ(s) ds = 0.

In a nonlinear problem like the Navier-Stokes equations it is not possible to separate
the average from the oscillations. But, by averaging the Navier-Stokes equation, we
derive

− div σ̄π
f+(v̄π ·∇)v̄π = −

∫ 1

0

{
(ṽπ(s) · ∇)v̄π + (v̄π · ∇)ṽπ(s)

}
ds

︸ ︷︷ ︸
=:N(v̄π ,ṽπ )

, div v̄π = 0.

If we average a solution (v(t), p(t)) to the Navier-Stokes problem for arbitrary
initial v0 (that does not yield the periodic solution) we get

− div σ̄ f + (v̄ · ∇)v̄ = v(0)− v(1)+N(v̄, ṽ), div v̄ = 0.

The difference w := vπ − v, q := pπ − p between dynamic solution and periodic
solution satisfies the averaged equation

− div σ̄ f (w̄, q̄)+ (w̄ · ∇)w̄+ (w · ∇)v̄+ (v̄ · ∇)w

= v(1)− v(0)+ N(v̄π , ṽπ)−N(v̄π , ṽπ), div w̄ = 0.

We assume that we start with a good guess v that is already close to the periodic
solution vπ , i.e. ‖w‖ is small. If no initial approximation is available, e.g. in the
very first step of the multiscale scheme, we still can perform a couple for forward
simulations. Given that ‖w‖ is small, we will neglect both the nonlinearity (w̄ ·∇)w̄
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and all fluctuation terms N(·, ·) involving the oscillatory parts. We approximate
the difference between average of the dynamic solution and average of the desired
periodic solution by the linear equation

(w · ∇)v̄+ (v̄ · ∇)w− div σ̄ f (w̄, q̄) = v(1)− v(0) (9)

The averaging scheme for finding the periodic solution is then given by the
following iteration.

Algorithm 2 (Averaging scheme for periodic-in-time problems) Let v0
0 be a

guess for the initial value. If no approximation is available, v0
0 can be obtained

by computing several cycles of the dynamic flow problem. For l = 1, 2, . . . iterate

1. Based on the initial vl (0) = vl−1
0 solve once cycle of the dynamic flow problem

on IP = [0, 1].
2. Solve the averaging equation for w̄l and q̄ l , Eq. (9)
3. Update the initial value by correcting the average

vl0 := vl (1)+ w̄l .

The analysis of this averaging scheme is open for the Navier-Stokes equations but
simple for linear problems with symmetric positive definite operator like the Stokes
equations. Here the convergence estimate

‖vl
0 − vπ

0 ‖ ≤ ρavg · ‖vl−1
0 − vπ

0 ‖

holds, with ρavg < 0.3 in the continuous and ρavg < 0.42 in the discrete setting, for
further results we refer to [37].

4 Numerical Results

We present a numerical study on the multiscale scheme and give a first discussion
on its accuracy and efficiency. In [19] simple two-dimensional problems have been
studied that also allow for resolved simulations such that a direct comparison of
computational times for forward simulations and multiscale simulations can be
performed. These demonstrated speedups reaching from 1 : 200 to 1 : 10,000.
Here it was shown that the multiscale scheme benefits from larger scale separation.
To be precise: to reach the same relative accuracy in a multiscale computation as
compared to a direct forward computation, the speedup behaves like 1 : α−1.

Before presenting results for the multiscale method we briefly discuss the
averaging scheme for finding periodic solutions
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Table 1 Number of cycles required to reduce the periodicity error to ‖v(t + 1 s)− v(t)‖ < 10−8

for the direct forward simulation and the averaging scheme. Variation in the viscosity ν

ν Forward Averaging

0.1 0.05 0.025 0.1 0.05 0.025

Cycles 40 74 140 15 15 18

4.1 Convergence of the Averaging Scheme for Periodic Flow
Problems

We consider a 3d problem that is inspired by the driven cavity problem. On the cube
� = (−2, 2)3 we drive the Navier-Stokes equation by a 1-periodic forcing

f(x, t) = sin
(
2πt

)

6

⎛

⎝
3 tanh(x2)

2 tanh(x3)

tanh(x1)

⎞

⎠

Since the data is periodic in time we can expect to obtain a time-periodic solution
(if the Reynolds number is sufficiently small). In Table 1 we show the performance
of the averaging scheme in comparison to a simple forward iteration. We give the
number of cycles required to reach the periodicity error ‖v(Tn + 1 s) − v(Tn)‖ <

10−8. The results show a strong superiority of the averaging scheme, both in terms of
robustness (with respect to ν) and in terms of the overall computational complexity.
For the forward iteration, the number of cycles approximately doubles with each
reduction of ν. The performance of the averaging scheme slightly deteriorates for
ν = 0.025 due to the higher Reynolds number regime. For ν = 0.01 we cannot
identify a stable periodic solution. The computational overhead of the averaging
scheme is very low, one additional stationary problem must be solved in each cycle.
A detailed study of the averaging scheme with an analysis of the sensitivity to
various further parameters is given in [37].

4.2 Simulation of the Candy Wrapper Problem

Figure 1 shows the evolution of the stenosis at three different points in time. In
addition we show the outflow rate as function over time (one period). Several effects
known from the medical practice can be identified: The growth of the stenosis is
non-symmetric and mostly centered on the inflow-tip of the stent. This shows the
necessity of considering full three dimensional models. Further, the simulations
show an extension and growth of the stenosis to both sides which is also typical.
Since the flow is pressure driven, the outflow rate decreases with the development
of the stent.



28 T. Richter and J. Mizerski

Fig. 1 Development of the stenosis at initial time, at T = 33 days and T = 67 days. The average
and the oscillation of the flow rate get smaller while the stenosis develops

Table 2 Outflow Jout at time T ≈ 18 days and extrapolation including numerical convergence
order for K → 0 (k fixed) and k → 0 (K fixed). 55 years (∗) computational time result from a
projection of the computational time for a resolved simulation without the multiscale scheme

K k Jout Time K k Jout Time

144,000 0.02 0.9359 9 min 72,000 0.04 0.9132 15 min

72,000 0.02 0.9138 18 min 72,000 0.02 0.9138 18 min

36,000 0.02 0.9043 40 min 72,000 0.01 0.9140 41 min

Extra K → 0 0.8971 (1.22) 55 years(∗) Extra k → 0 0.9131 (1.58)

In Table 2 we compare the results of the multiscale scheme for different values
of k and K . We observe convergence in both parameters. Numerical extrapolation
yields O(k1.58 + K1.22), slightly off the expected rates O(k2 + K). We also
indicate the computational times required for running the multiscale scheme till
T ≈ 18 days. A corresponding resolved simulation would require about 55 years
computational time. This value is predicted based on the average time for com-
puting a complete cycle of the periodic problem and based on an average three
iterations required for approximating the periodic flow problem. Assuming that the
extrapolated value for K → 0 is accurate, the simulation based on K ≈ 36 000 s
carries a multiscale error of about 1%. This approximation is achieved in 40 min
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instead of 55 years. The results in Table 2 indicate that it is worthwhile to consider
a second order time stepping scheme for the plaque growth problem, since the error
in K dominates. We refer to [19] for a realization in the context of a PDE/ODE
long-scale/short scale problem.

5 Outlook and Discussion

We have demonstrated a numerical framework for simulating complex multiphysic-
s/multiscale problems in hemodynamics. For the first time we could demonstrate an
efficient numerical scheme for a long-scale/short-scale problem coupling different
partial differential equations. We are able to include both temporal and spatial effects
in bio-medical growth applications. The combination of a temporal multiscale
method with fast solvers and efficient discretizations for the (periodic) micro
problems gives substantial speedups such that three dimensional problems can be
treated. Two main challenges remain for future work:

Fluid-Structure Interactions The main challenge in including elastic vessel walls
lies in the increased complexity of the resulting system due to nonlinearities coming
from the domain motion and the coupling to the hyperbolic solid equation that, by
introducing the deformation as additional variable, blows up the problem size. In
hemodynamical applications the coupling is governed by the added mass instability
that usually calls for strongly coupled solution approaches, see [7, 26]. Although
some progress has been made in recent years [2, 18, 29, 35], the design of efficient
solvers for the resulting algebraic problems is still not satisfactory.

Considering monolithic solution approaches in combination with Newton-
Krylov solvers make the use of large time steps possible. In all of the just mentioned
approaches for designing linear solvers it has shown to be essential to partition the
linear system when it actually comes to inversion of matrices, either within a
preconditioner or within a multigrid smoother. This is mainly due to the very large
condition numbers of the coupled system matrix that by far exceeds those of the
subproblems, see [2, 35].

A second difficulty coming with fluid-structure interactions lies in the derivation
of the effective growth equation described in Sect. 3. If elastic fluid-structure
interactions are taken into account, the domain undergoes oscillations in the scale
of the fast problem, i.e. during each pulsation of the blood flow. However, we can
nevertheless introduce the averaged growth variable c̄(x, t) as in (7) and simply
average the growth equation (the third equation of Eq. (6)) as this is stated on the
fixed reference domain. We note however that we have chosen a very simple growth
model given as surface equation. Considering the detailed system introduced in [42],
growth takes place within the solid, which is a three dimensional domain S(t) ⊂ R3

undergoing deformation from the coupled fsi problem. A corresponding equation
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mapped to the fixed reference domain Ŝ (taken from [42]) reads

( ∂

∂t
(J ĉ), ψ

)

Ŝ
+
(
λcJF−1F−T∇ ĉ,∇ψ

)

Ŝ
= R(ĉ, σ̂ ).

Since J and F oscillate with the frequency of the fast scale problem, derivation of
an effective equation is still subject to future work.

Patient Specific Simulation The second open problem is to incorporate patient
specific data into the simulations for generating specific predictions. Flow and
geometry data can easily be measured during the stenting process. This process
however is strongly invasive and causes subsequent adaptions of the vessel and the
surrounding tissue interacting with the stent. Further data on the resulting configu-
rations are not easily available without additional interventions. With a diameter of
only a few millimeters, coronary arteries are small, such that measurements at good
accuracy cannot be obtained.

Medical Application The edge stenosis accompanying the implementation of DES
(Drug Eluting Stents) is great starting point for development of the further numer-
ical experiments in the field of the plaque formation and biochemical processes
ongoing in the vessel walls exposed to other types of interventions. Explosive
growth of the intravascular interventions in recent decade is, inevitably, going to
demand more advanced studies on the nature of vascular wall response to the
implantable devices [13]. Novel numerical methods may also shade new light on
well-established surgical procedures and augment the awareness of the potential
benefits or hazards that are not yet fully understood or identified [16]. On the other
hand the population of the patients is changing dramatically and that process is soon
to accelerate. According to the recent report published by European Commission,
diseases of the circulatory system are the most common cause of death in elderly
population aged over 75 years [17]. In addition to that gruesome information the
ageing of the European population in the years to come is growing concern of
the governments. Poland belongs to the group of the countries that may become
affected by the population ageing the most [22]. Due to that we face the necessity of
development the most efficient treatment strategies for the elderly population. One
of those treatment procedures is TAVR (Transcatheter Aortic Valve Replacement).
The procedure addresses aortic valve stenosis that is quite often ailment in the
aforementioned group of patients. By application of the fluid structure interaction
methods it might be possible to tailor the design of the medical devices to the stiffer
tissues usually present in the elderly patients in the way that may augment long time
outcome of the procedure. Just such a small improvement may diminish the risk of
repeated procedures undertaken in frail patients.

The methodology presented in our work should also find it’s application in
optimization of the classic surgery for the coronary artery disease. The position
of the vascular anastomosis in relation to the existing vascular wall lesions may find
new rationale when understood through the knowledge of the mechanotransduction
phenomena. Also the strategic planning of the target vessels and “landing sites”
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for the aorto-coronary by-pass grafts may find its’ new understanding. Those
perspective studies could be undertaken only by the means of model based planning.
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of Germany (project number 05M16NMA).
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Systematisation of Systems Solving
Physics Boundary Value Problems

Tuomo Rossi, Jukka Räbinä, Sanna Mönkölä, Sampsa Kiiskinen, Jonni Lohi,
and Lauri Kettunen

Abstract A general conservation law that defines a class of physical field theories
is constructed. First, the notion of a general field is introduced as a formal
sum of differential forms on a Minkowski manifold. By the action principle the
conservation law is defined for such a general field. By construction, particular
field notions of physics, e.g., magnetic flux, electric field strength, stress, strain
etc. become instances of the general field. Hence, the differential equations that
constitute physical field theories become also instances of the general conservation
law. The general field and the general conservation law together correspond to a
large class of relativistic hyperbolic physical field models. The parabolic and elliptic
models can thereafter be derived by adding constraints. The approach creates solid
foundations for developing software systems for scientific computing; the unifying
structure shared by the class of field models makes it possible to implement software
systems which are not restricted to certain predefined problems. The versatility of
the proposed approach is demonstrated by numerical experiments with moving and
deforming domains.

1 Introduction

In this paper we focus on second-order boundary value problems (BVP’s) related to
physical field theories. BVP’s and their numerical solution methods is an extensively
studied field of science. Still, many practical challenges remain, e.g.: (1) One may
have a problem to which there is no software system available. (2) The software
systems are laborious if not hard to extend beyond their original purpose and such
extensions increase the complexity of the system. (3) In case of incorrect results,
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it is tedious to distinguish between simple user errors and errors in reasoning. (4)
Users often have to learn many software specific details.

While practical challenges will always remain, the aforementioned issues reflect
the traditional architectural view on mathematical software from the fifties and
sixties. Nowadays there exists more powerful mathematical and programming
language-theoretic knowledge that can be exploited in developing systems for
boundary value problems. Thus, there is a call for a systematic mathematical
analysis to combine the knowledge in BVP’s and modern programming and
computing. The software systems can be established more systematically on the
mathematical structures on which BVP’s are built.

We aim to present a class of BVP’s that covers classical physics, such as
Maxwell’s equations, Schrödinger equation etc. The specialized models are
obtained by adding constraints (e.g., omitting terms, linking terms together etc.)
to the general model. This resembles object-oriented style in programming; a
generic class is instantiated and made more concrete by adding constraints. The
finite-dimensional models can all be constructed with the so-called discrete exterior
calculus (DEC) from the models expressed with differential forms. The approach
is not limited to ordinary differential forms. Vector valued (E-valued) and matrix
valued (End(E)-valued) differential forms can also be utilised making it possible to
conveniently construct, for example, the equations of elasticity or the Yang–Mills
equations with the same approach.

This research is, therefore, directly linked to several fields: partial differential
equations, differential geometry, manifolds and cell complexes, algebraic topology
(homology and cohomology theories, fiber spaces and bundles), global analysis of
manifolds, numerical analysis, and computer science.

The state-of-the-art in field theories is gauge theory [3, 4, 23]. It is about classical
and quantum fields whose configurations are cocycles in differential cohomology.
We focus on ordinary gauge theories whose field configurations are vector bundles
with connection. Their main principles [3]—Lagrangians, actions, the action princi-
ple [4, 11] manifolds, vector bundles, sections of bundles, connections, etc.—form
a cornerstone of the work.

Our general presentation of various field-theoretic space-time models provides
us with significant advantages. In classical physics and in engineering different
fields use different concepts, notation and terminology. This results in scattered
knowledge, in waste of resources, and in redundancy in software. Classical and
quantum field theories appear quite distinct. In classical theories the effect of
the fundamental forces is averaged into the mesoscopic constitutive laws. The
corresponding material laws can be embedded into the Hodge operator [5, 6, 17, 18],
and thus they describe the metric properties of spatial space. For this reason, the
metric structure is essential in classical theories.

Powerful commercial and academic software for classical multi-physics exist,
such as COMSOL Multiphysics [9] or GetDP [10], but there is no encompassing
mathematical theory available to guide the software development. Our aim is to
employ the presented approach as the guiding theory in systemizing development
of software in scientific computing.
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2 Differential Geometric Models

In the late 1990’s and early 2000’s, Bossavit et al. developed and introduced the so
called “geometric approach” into electromagnetism [7]. In addition, in 1997 the idea
of a “discrete Hodge operator” [36] was introduced to reveal the key mathematical
structures behind finite difference and finite element kind of methods [8]. At the time
the finite difference method [34] was commonly explained in a rather elementary
manner in Cartesian coordinate systems following K. Yee’s original paper [39]
from 1966. Bit later the scientific community in elasticity picked the idea and the
geometric approach became known also as “discrete exterior calculus” (DEC) after
Hirani [16].

We have further developed the geometric approach and created a generic software
system based on it. The system can be employed to solve hyperbolic application
problems from classical and quantum physics [22, 26, 28], such as electromagnetic,
elastic, and acoustic wave problems, the Schrödinger equation [11], or Gross–
Pitaevskii equations [27], and so on. We explain the mathematical foundations of
the software system in [20]. The implementation of the simulation software and the
various mesh structures which we have employed are described in detail in [26].

To explain the methodology, we will first outline a theory of ordinary gauge
theories on form bundles. Thereafter we will briefly discuss the extension to Clifford
and tensor algebra. Exterior (or Grassmann) algebra [12, 21] is the Clifford algebra
[15], where the quadratic form is identically zero, and Clifford algebra itself is a
quotient algebra of tensor algebra [24]. We assume a Minkowski manifold [3, 13],
and describe the proposed methodology in steps from the foundations.

2.1 Formal Sums of Field Configurations

The field-notion in physics involves an idea of assigning numbers to geometrical
objects of space-time, such as to points, (virtually) small segments of oriented lines,
etc. These numbers represent observations made by measurements, and they can be
interpreted as the values differential forms yield on p-vectors [5].

Let us start from ordinary differential forms, which come with a degree from
zero to the dimension n of the manifold. Since we are not after any particular
field configuration, forms of a particular degree are not in our interest. We hide
the information of the degree by introducing a formal sum of differential forms of
all degrees:

F = α0f
0 + α1f

1 + . . .+ αnf
n ∈

n⊕

p=0

∧p
T ∗�,
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where αp ∈ {0, 1} and T ∗� is the dual space of the tangent space. Note that with
ordinary differential forms and in the n-dimensional case the number of p-forms is(
n
p

)
and the formal sum has the total of 2n degrees of freedom.

By operating with F the emphasis is shifted from particular degrees to the
property that all forms map some p-vector, 0 ≤ p ≤ n, to scalars.

2.2 Differentiation and the Action Principle

Next, we need to introduce differentiation for F . This is straightforward as
smooth p-forms are differentiated with the exterior derivative d, and so is also F .
Ordinary gauge theories are characterized by pairs of differential equations, such
as electromagnetic theory [33] is described by Maxwell’s equations. The gauge-
theoretic view is that differential equations follow from the action principle [3]. An
action is the integral of a Lagrangian L over a manifold, and differential equations
correspond to the critical points of the action.

A large class of models in ordinary gauge theories have to do with the
conservation of some quadratic notion. We equip the Minkowski manifold with a
metric tensor providing us also with a Hodge operator �. Then, we assume F is an
exact field, F = dH where H = h0 + . . . + hn is a potential. In addition, for the
source terms we introduce another formal sum G = g0 + . . .+ gn. Now, an action
of the desired type can be given by

A =
n⊕

p=0

(1

2

∫

�

f p ∧ �f p +
∫

�

hp−1 ∧ �gp+1
)
.

The differential equations are then obtained as follows. The variation of action
A is

δA = d

dα
A(Hα)

∣
∣
∣
α=0

,

where Hα = H + αδH and by insisting on the variation δA to vanish for all δH
yields the critical points of A and the corresponding differential equations. Hence,
the action principle implies that at all (ordinary) points on the Minkowski manifold
the following differential equations dF = 0 and � d � F = � �G should hold. These
equations can be expressed as the diagram in Fig. 1.

Fig. 1 Diagram of
differential equations
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Let us also express the action principle as a diagram. For brevity, to introduce
such a diagram we assume G to vanish. Then, the Lagrangian of the action becomes
L = ⊕n

p=0
1
2f

p∧�f p, and the definition of the Hodge operator implies, that each
component Lp satisfies

Lp = 1

2
f p ∧ �f p = 1

2
〈f p, f p〉ω0 = qp(f

p) ω0,

where ω0 is the unit n-volume of Minkowski space and qp is the quadratic
refinement of the Minkowski bilinear form 〈·, ·〉. The Lp’s form a product space
L = Df × D∗

f equipped with projections πf ∈ L → Df and π∗f ∈ L → D∗
f

satisfying the following universal property: For every action A and Lagrangian L
there is a unique map a ∈ A→ L and l ∈ L→ L such that the diagram of Fig. 2
is commutative.

The combination of the two diagrams of Figs. 1 and 2 results in a diagram
presenting how the action with the Lagrangian defines differential equations for
a pair of fields, which are in a Hodge relation to each other. We call this diagram by
the name DGOrd (designating that it involves ordinary differential forms), simplify
it a bit –object L is left out– and draw it in Fig. 3. Ordinary gauge theories include
also other type of differential forms than ordinary ones, which are also essential

Fig. 2 Diagram of the action principle

Fig. 3 Diagram DGOrd involves ordinary differential forms and is commutative. Its vertices are
unique and they exist for all objects
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in mathematical physics. For instance, in elasticity [1] E-valued forms, vector and
covector-valued forms [3, 14, 21] are needed [19, 29–32].

Let us next extend the idea of formal sums of differential forms to E-valued
forms. By construction, such formal sums of E-valued forms can be differentiated
with the exterior covariant derivative d∇ , where ∇ is the connection. To introduce
the Lagrangian as a quadratic refinement of the Minkowski metric, the Hodge
operator should be extended to E-valued forms such that L = ⊕n

p=0
1
2f

p ∧ �f p

becomes a formal sum of scalars. We denote such a Hodge operator by �E . In the
same manner as in the case of ordinary forms, in case E-valued forms the action
principle yields differential equations d∇F = 0, �E d∇ �E F = �E �E G.

End(E)-valued [3] (i.e., matrix valued) forms are needed for example in Yang–
Mills theory [2, 35, 37, 38]. The Hodge operator �End is now extended to End(E)-
valued forms so that the Lagrangian becomes a formal sum of scalars.

Formally, there exists an abstract diagram DGA shown in Fig. 4, and mappings
M0 ∈ DGA → DGOrd, ME ∈ DGA → DGE and MEnd ∈ DGA → DGEnd.
They map the abstract diagram DGA to more concrete diagrams DGOrd of ordinary
forms, DGE of vector valued forms and DGEnd of matrix valued forms. They also
map the hodge duality to operators �, �E , and �End , respectively. MO maps the
differentiation to exterior derivative d. ME and MEnd map it to d∇ .

This construction suggests that mappings MO , ME and MEnd represent various
models of the “theory of differential geometric models” represented by DGA. This
is a step towards a category-theoretic representation of physical field theories.

Remark Hyperbolic wave problems in physics are particular examples of our
models. DGA can also be concretized to elliptic and parabolic models. Later, as
an example, we show how to concretize the Schrödinger equation from the general
setting. As we use differential geometric formalism, the canonical way to discretize
all the considered models is to use DEC.

Fig. 4 Diagram DGA
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3 Concretization of Particular Models

Next, to verify the usefulness of the theory and its models in scientific computing,
let us exemplify how particular models are concretized from the theory. This also
highlights the pragmatic significance of a proper mathematical theory; resources
become more efficiently exploited, if software systems are designed to realize
theories instead of particular models.

Let us start by concretizing DGOrd to four dimensional differentiable manifold
� with Minkowski metric, signature (−,+,+,+), and a decomposition of space-
time into space and time-like components; � = �t ×�s . Symbols F and G denote
formal sums of p-forms, F = f 0+. . .+f 4 and G = g0+. . .+g4 and consequently,
differential equations dF = 0 and �d�f = � � G can be written as:

⎡

⎢
⎢
⎢
⎢
⎢
⎣

· −�d� · · ·
d · �d� · ·
· d · −�d� ·
· · d · �d�
· · · d ·

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎣

f 0

f 1

f 2

f 3

f 4

⎤

⎥
⎥
⎥
⎥
⎥
⎦
=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

g0

g1

g2

g3

g4

⎤

⎥
⎥
⎥
⎥
⎥
⎦
.

By (i) decomposing p-forms into time-like components and only space-like com-
ponents, (ii) and exterior derivative to space and time-like components, and (iii)
applying the Leibniz rule, we obtain an equivalent system of Eq. (1) [20].

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂t · · · · �d� · ·
· ∂t · · −d · �d� ·
· · ∂t · · −d · �d�
· · · ∂t · · −d ·
· �d� · · − � ∂t� · · ·
d · �d� · · �∂t � · ·
· d · �d� · · − � ∂t� ·
· · d · · · · �∂t �

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

f 0

f 1

f 2

f 3

f 0
s

f 1
s

f 2
s

f 3
s

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

g0
s

g1
s

g2
s

g3
s

g0

g1

g2

g3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (1)

Here d and � are now the exterior derivative and the Hodge operator, respectively,
in the space-like component �s of manifold �. Subscript s in the f p and gp’s
denotes the space-like component f

p
s of (p + 1)-form ftdt ∧ f

p
s . This system

of equations and its natural transformations cover a wide class of physical field
theories. By construction, all the models covered by the theory are relativistic. Each
particular model corresponds to a choice of F and G as demonstrated next with
some examples.

For Maxwell’s equations [33] in space and time, F is chosen to be the Faraday
field and G the source charges q and currents j [3]: F = b+ e∧dt = b+dt∧ (−e)

and G = �j − dt ∧ �q. This corresponds to setting f 1
s = −e, f 2 = b, g1 = �j ,
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and g0
s = −�q, and by substituting these to the system of Eq. (1), we obtain

d b = 0 , 8th row, de + ∂tb = 0, 3rd row,

−�∂t�ε e + �d�μ b = �j, 6th row, −�d�ε e = −�q, 1st row.

We have considered permittivity ε and permeability μ as properties of �s . Thus,
they are embedded into the Hodge operators �ε and �μ [6].

The non-relativistic Schrödinger equation [11] can also be concretized from
DGOrd by imposing some simplifying constraints on the general model. For this,
we choose

f 0 = � ϕR, f 0
s = � ϕI , f 1 = �

2m
qR, f 1

s =
�

2m
qI ,

g0 = V ϕR, g0
s = V ϕI , g1 = qR, g1

s = −qI ,

where � is the reduced Planck constant and m is particle’s mass. By substitution to
the general system one obtains:

∂t� ϕR + �d �
�

2m
qI = V ϕI , 1st row, ∂t

�

2m
qR − d� ϕI = −qI ,2nd row,

�d �
�

2m
qR − �∂t � � ϕI = V ϕR, 5th row, d� ϕR + �∂t �

�

2m
qI = qR, 6th row,

−d
�

2m
qI = 0, 3rd row, d

�

2m
qR = 0, 7th row.

The relativistic property is next lost by a modelling decision. Terms ∂t qR and
∂tqI are assumed to vanish. Now the bottom equations become tautologies and the
system is reduced to the pair

∂t� ϕR + �
2

2m
� d � d ϕI = VϕI , �∂t � � ϕI − �

2

2m
� d � d ϕR = −VϕR.

By mapping differential forms to vector fields and mapping the exterior derivative
to the corresponding differential operators of vector analysis, the textbook version

� ∂tϕ − i �
2

2m div gradϕ = −iV ϕ results. It is defined using complex arithmetic
which restricts it to flat Minkowski manifold only. The relativistic intermediate stage
obtained from the general model can also be implemented on curved space-time.
This is an interesting topic to be numerically tested.

Small-strain elasticity is naturally modelled using E-valued forms. Recall that in
this case the differential equations on the manifold �t ×�s take the form d∇F = 0
and �E d∇ �E F = �E �E G. Analogously to previous, Leibniz rule and the space-
time split of forms and exterior covariant derivative d∇ results in structurally similar
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general system as in the case of ordinary forms. The exterior derivative d is simply
replaced by d∇ and � is replaced by �E .

The model of elasticity now arises by the choice f 0
s = u, f 1 = ε, g0 = − � fv ,

where the vector-valued 0-form u is the time-derivative of displacement ν, u =
∂tν, the vector-valued 1-form ε is linearized strain, and g0 is the source force term.
Substituting this choice back to the system of equations yields

∂tε− d∇u = 0 2nd row, d∇ε = 0 7th row, �d∇�Cε− �∂t�
ρu = −�fv 5th row.

The Hodge operator �C contains the parameters of the stress-strain relation, and
density ρ is embedded to �ρ . Since u = ∂tν, the first equation states that ε = d∇ν
and the second equation is automatically satisfied. As a result, we get the elasticity
equations which are, for convenience, written out also in Euclidian space and using
vector analysis notation:

−∂tε + d∇u = 0 , σ = �Cε , −∂t ε + gradu = 0 , σ = Cε ,

�ρ∂tu − d∇σ = fv , u = ∂t ν , ρ∂tu − div σ = f v , u = ∂tν .

The final example is Yang–Mills equations [38] where the field configurations
are End(E)-valued forms. As Yang and Mills developed their theory as an extension
to Maxwell’s theory, Yang–Mills equations are concretized from the system of
differential equations for End(E)-valued forms in the same manner as Maxwell’s
equations are concretized from the system for ordinary forms. Such a process results
in

d∇ b = 0, d∇e + ∇t b = 0,

−�End∇t �End e + �End d∇ �End b = �Endj, �End d∇ �End e = �Endρ .

Clifford and Tensor Algebra The “theory of differential geometric models”
presented is not complete for the needs of software design. First, tensor algebra is
the most general algebra for vector spaces over scalars, and all field configurations
share the structure of a vector space. Second, a Clifford algebra is unital associative
algebra generated by a vector space equipped with a quadratic form [15]. Third,
exterior algebra is the Clifford algebra when the quadratic form is zero. Clifford
algebra seems to provide us with a better starting point as certain Clifford algebras,
such as Pauli or Dirac algebra [13], are very important in mathematical physics.

We construct the universal Clifford algebra as a subalgebra of the algebra of
linear transformations [15]. Let F be a scalar field and denote !0(V ) = F, !1(V ) =
V and !p(V ) contains the sums of products v1 ∧ · · · ∧ vp . The Grassmann algebra
over vector space V is then !(V ) = ⊕n

p=0!
p(V ). In the algebra L(!(V )) of linear

transformations of !(V ) map Mv is defined as the linear extension of Mv(1) = v,
and Mv(v1 ∧ · · ·∧ vp) = v∧ v1∧ · · · ∧ vp. Another map, δv , is defined as the linear
extension of δv(1) = v, and δv(v1∧· · ·∧vp) =∑p

k=1(−1)k−1B(v, vk ) v1∧· · ·∧v′k∧
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· · ·∧vp, where v′k denotes the term to be omitted from the product, and where B(·, ·)
is the Minkowski bilinear form. Thus, Mv is exterior multiplication by v and δv is
interior multiplication with respect to the inner product induced on V ×V by B(·, ·).
Define η ∈ V → L(!(V )), v �→ Mv + δv . The subalgebra of L(!(V )) defined by
{η(v) | v ∈ V } and {λ1 | λ ∈ F} is a universal Clifford algebra for (V ,Q)where the
quadratic form Q is subject to the condition η(v)2 = (Mv + δv)

2 = Q(v)I .
Let the (metric compatible) covariant derivative be mapped by functor C from

the tensor bundle to the Clifford bundle. The image of the covariant derivative in the
Clifford bundle is denoted by ∇. The codomain of map ∇ ∈ L(!(V ))→ L(!(V ))

can be decomposed into components corresponding to the exterior and interior
multiplication, and consequently we may write cod(∇) = cod(∇e) ⊕ cod(∇i ). If
the covariant derivative is mapped to the exterior bundle with functor D, then the
image of the covariant derivative is d± �d�, where the sign depends on grade p and
dimension n.

Tensor bundles and tensor algebra provide us with a starting point general enough
for the theory needed in software design for ordinary gauge theories. The theory
should not, however, be tied to the category of sets. We seek a category that just
condenses the essentials of differentiation, of the metric properties of space-time,
and of the action principle. This approach resembles reverse mathematics in the
sense that we are looking for a minimal set of assumptions needed to define the
theory. Software based on such assumptions should not be bound to any specific
algebra. This enables end-users to employ algebras that fit their needs the best.

4 Some Numerical Experiments with Space-Time Models

In our earlier papers, we have demonstrated the proposed approach with sev-
eral numerical experiments. Such experiments include simulations with acoustic,
elastodymanic, electromagnetic and quantum mechanic waves [25–28]. For the
extended accuracy, the mesh structures play an essential role [26]. The numerical
scheme can also be optimized by locally adaptive time-stepping and by tuning
the discrete Hodge operator, e.g., for time-harmonic waves. In certain cases such
optimizations can improve the efficiency of the simulation even by orders of
magnitude as reported in [25].

The formulation of the general model in Minkowski space provides additional
benefits. It is namely possible to simulate the wave propagation in moving (and
even deforming) spatial domains. In the papers [25–27] and [28], the spatial mesh
generation together with the associated spatial finite difference approximation and
time-stepping were considered as separate entities, without emphasizing the fact
that the usual leap-frog time integration scheme for first order systems could also be
derived from geometrical principles analogous to the spatial mesh generation which
is based on the Delaunay–Voronoi duality.
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4.1 Transforming Cavity

This chapter contains numerical experiments that demonstrate how the general
model of the Minkowski space can be discretized. The construction of the space-
time model begins by creating a mesh that fills the entire space-time domain. When
generating a mesh, one should ensure that a valid dual mesh is available. The dual
mesh is made up of cells each having an orthogonal counterpart in the (primal)
mesh. Orthogonality is defined such that the Minkowskian bilinear form between
any vector from a primal cell and any vector from the corresponding dual cell equals
to zero.

Figure 5 illustrates the solution of the one-dimensional time-dependent wave
problem in a moving cavity. We build a simplicial mesh in space-time in dimension
two. Then we attach a floating point number to each primal 1-cell (edge) to construct
a discrete version of F including only 1-form term. The initial values are set at time
t = 0 (at the bottom of the figure) to trigger a wave pulse. Elsewhere, the values
of F are explicitly solved by following the equation dF = 0. Since the dual mesh
and the discrete Hodge operators are constructed using Minkowskian metric, the
solution is a traveling wave with a propagation speed of 1 in both directions (see the
right-hand-side of the Fig. 5).

Figure 6 shows a numerical experiment where the same approach has been
applied to solve a two-dimensional time-dependent wave problem in a rotating
cavity. In this case, the mesh is three-dimensional and the shape of the two-

mesh result

x

t

Fig. 5 A space-time approach to solve of a time-dependent wave problem in a moving cavity:
The mesh with simplicial cells (purple edges) and corresponding Minkowski dual mesh (blue
edges) are illustrated on the left. The solution of a wave problem is shown on the right. The color
components red and green correspond to dx and dt components of the resulting 1-form. The colors
are normalized such that grey indicates the zero field



46 T. Rossi et al.

Fig. 6 Simulation of wave propagation in rotating two-dimensional cavity: The (2 + 1)-
dimensional space-time mesh is illustrated on the left. The red color (dark) at the bottom indicates
the past time and the cross section of the mesh at the current time is shown on the right. The color
components red, green, and blue represent the components dx ∧ dy, dx ∧ dt , and dy ∧ dt of the
resulting 2-form, respectively. The figure is normalized such that the grey color indicates the zero
field

Fig. 7 Wave propagation in a shrinking three-dimensional cavity: Cross-section of the space-time
mesh and dt-component of the resulting field are presented at five instances of time

dimensional base mesh (spatial cross-section of the space-time mesh) resembles a
boomerang. The space-time mesh is twisted around the time axis, causing the cross-
section to rotate as time progresses. The field F to be solved is a 2-form which is
discretized by attaching one floating-point number to each 2-cell (face) of the mesh.
By initializing F as an impulse at the initial time and solving dF = 0 inside the
computational domain, we detect a wavefront propagating at speed 1 and reflecting
from the moving walls. A video of this numerical experiment can be found at the
following url: https://urly.fi/1oxH.

To prove the generalizability of the method, we present yet another experiment
where we solve a three-dimensional acoustic-like wave problem in a shrinking
computational domain. We create a (3 + 1)-dimensional simplicial mesh that, at
time t = 0, fills a three-dimensional spatial volume as illustrated on the left of
Fig. 7. The element lengths of the mesh are proportional to the term 1 − 0.3t . This

https://urly.fi/1oxH
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means that the element sizes decrease exponentially in terms of the number of time
steps. The point (0, 0, 0, 1

3 )
T of convergence is never reached in the simulation.

In order to reduce the amount of memory required, the mesh duration over time is
chosen as short as possible. We integrate 1-form F over mesh by explicitly solving
dF = 0. When integration over mesh is completed, the last calculated terms are
copied as the initial values of the next iteration and the integration is repeated. In this
way, the task can be integrated as long as desired, without having to store the entire
mesh in memory. The resulting field of time-integration is illustrated in Fig. 7. A
video of this numerical experiment can be found online at url: https://urly.fi/1oWx,
and the source codes of simulations of Figs. 6 and 7 can be found at url: https://
github.com/juolrabi/gfd.

4.2 Local Time-Stepping and Stability

Traditionally, the Courant–Friedrichs–Lewy (CFL) condition sets an upper limit for
the length of maximal time step. The smaller the spatial element size is, the shorter
the time step must be in order to achieve numerical stability. When the spatial
element length is not constant, local time-stepping can speed up the integration
of time-dependent wave problems. This section shows how to create local time-
stepping methods using the space-time integration.

Let’s start with a (1 + 1)-dimensional example and consider a one-dimensional
spatial mesh consisting of unevenly distributed nodes and line-segments (edges)
between them. Nodes of the spatial mesh are copied at regular intervals in the time
direction using individual step sizes �t for the nodes. The length of the time step
is set to the maximum length that obeys the inequality �t < c�x, where �x is the
length of the shortest neighboring edge and c is a constant. The space-time structure
is completed as the Delaunay mesh. The mesh is 2 units wide in spatial direction and
1 unit high in time-direction. The mesh and its dual mesh are illustrated in Fig. 8.

Fig. 8 A (1 + 1)-dimensional mesh with variable spatial edge lengths �x. The condition for
time step size is �t < 1.0�x. Primal and dual edges are illustrated with purple and blue colors,
respectively

https://urly.fi/1oWx
https://github.com/juolrabi/gfd
https://github.com/juolrabi/gfd
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The field under consideration is a 1-form and it is formatted and integrated
in the same way as in the previous section. When the integration over the mesh
is completed, the last calculated terms are copied as the initial values and the
integration is repeated. In this way, we are able to reuse the mesh again and integrate
over time as long as necessary.

We consider stability of the time-integration in long term simulations with two
different constants c = 1.0 and c = 0.9. The results are illustrated in Fig. 9. The
conclusion is that the time integration is not stable with the constant of c = 1.0. The
noise in the resulting field is visible already after 50 iterations. However, with the
constant of c = 0.9, the system is stable because no dispersion is detectable even
after 200 iterations. The condition used for the time step length seems to be a good
first guess to replace the CFL condition in the asynchronous space-time integration.

We also investigate local time-stepping in a (2+ 1)-dimensional wave problem.
The mesh is constructed by creating a two-dimensional circular base mesh with
varying element sizes. We limit the individual time step �t of each node by the
relation �t < c�x, where �x is length of the shortest spatial edge next to the
node. The structure of the space-time mesh is determined as a Delaunay mesh and
a truncated mesh is visualized in Fig. 10.

Fig. 9 The resulting fields during the various stages of integration. The color components red and
green correspond to dx and dt components of the field and grey color indicates the zero field
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0.5

t

r=1.0

Fig. 10 A (2 + 1)-dimensional mesh with variable spatial edge lengths �x and with condition
�t < 0.6�x for the time step size

We integrate 1-form over time and consider the numerical stability of long-term
simulations. From Fig. 11, we find that by limiting the time step length with the
constant of c = 0.7, numerical stability is not achieved. We observe noise in the
resulting field already after 5 units of time. Instead, using the constant c = 0.6, we
keep the integration stable and do not observe any dispersion in the resulting field
even after 100 units of time.

5 Conclusions

In this paper we have considered the common structure of boundary value problems.
The structure is based on ordinary gauge theories on form bundles. We have
presented models from classical and modern physics as particular examples of
the system. The finite-dimensional models are constructed with generalized finite-
difference, that is, discrete exterior calculus (DEC) type of approach. The pair of
cell complexes is based on Delaunay–Voronoi duality with Minkowskian metric.
A consistent construction of the discrete Hodge operator enables also moving
deformable domains. Adaptive time stepping can also be implemented by utilizing
the geometry of space-time mesh. Numerical results show that the software system
based on the systematic structure is applicable in boundary value problems in one,
two, and three spatial dimensions.
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Fig. 11 Cross-sections of fields at different time instances and under different conditions for a time
step length. The color components red, green, and blue correspond to dx, dy, and dt components
of the resulting field, respectively. The grey color indicates the zero field
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On the Convergence of Flow
and Mechanics Iterative Coupling
Schemes in Fractured Heterogeneous
Poro-Elastic Media

Tameem Almani, Kundan Kumar, and Abdulrahman Manea

Abstract In this work we establish the convergence of an adaptation of the fixed-
stress split coupling scheme in fractured heterogeneous poro-elastic media. Here,
fractures are modeled as possibly non-planar interfaces, and the flow in the fracture
is described by a lubrication type system. The flow in the reservoir matrix and in the
fracture are coupled to the geomechanics model through a fixed-stress split iteration,
in which mass balance equations (for both flow in the matrix and in the fracture)
are augmented with fixed-stress split regularization terms. The convergence proof
determines the appropriate localized values of these regularization terms.

1 Introduction

The coupling of flow and mechanics is required to simulate different natural
and induced physical phenomena including reservoir deformation, pore collapse,
wellbore stability, fault activation, and hydraulic fracturing [2]. Fractures have
significant effects on reservoir flow profiles. Moreover, the fractures are also
the vulnerable regions for mechanical integrity of the system. Therefore, it is
important to study the coupled flow and mechanics in a fractured heterogeneous
(flow parameters are given functions of spatial variables) media. In this work, we
extend the previous results for iterative coupling approaches in fractured medium
to fractured—heterogeneous porous matrix system. In particular, we establish the
convergence of an adaptation of the fixed-stress split scheme in heterogeneous poro-
elastic media. The convergence of different iterative coupling schemes, including
the fixed-stress, fixed-strain, drained, and undraind split schemes, was established in
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the work of [3, 7–9]. Interpreting the fixed-stress split scheme as a preconditioner for
the simultaneously coupled system was presented in the work of [10, 11]. Multirate
extensions of the fixed-stress and undrained split iterative schemes were established
in the work of [12]. Moreover, multiscale and nonlinear extensions of the fixed-
stress split scheme were formulated and analyzed in the work of [13] and [15]. A
parallel in time extension of the scheme was established in the work of [16]. The
convergence in heterogeneous media was established in [4, 14] for the fixed-stress
split scheme, and in [5]. Here, Banach fixed-point contraction results will be derived
for this flow-mechanics coupled system by studying the equations satisfied by the
difference of iterates. Geometric convergence to the unique solution of the system
follows immediately as the sequence of iterates represents a convergent Cauchy
sequence.

2 Model

We assume a linear, elastic, and isotropic fractured porous medium � ⊂ R
3,

saturated with a slightly compressible single phase fluid. Following the lubrication
fracture model, as described in [2], fractures are treated as non-planar interfaces
denoted by C as shown in Fig. 1. As shown in Fig. 1, we introduce an auxiliary
partition of � into two non-overlapping subdomains �+ and �−. The interface
between the two subdomains is assumed to be Lipschitz and denoted by �. The
fracture C is contained within �: C ⊂ �. We will distinguish the two sides (or faces)
of the fracture, C, by the superscripts + and −, and we will use the superscript � to
denote either+ or−. Let �� denote the part of � adjacent to C� and let n� denote the
unit normal vector to C exterior to ��, � = +,−. The fracture is represented by two
coincident sides/surfaces, so we have n− = −n+. Moreover, we let �� = ∂��\�.
For any function g defined in � \ C with a trace, let g� denote the trace of g on C�,
� = +,−. The jump of g on C in the direction of n+ is defined by [g]C = g+−g−.

Fig. 1 Reservoir and fracture
domains (image courtesy
of [2])
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We also assume a quasi-static Biot model for coupling flow with mechanics,
ignoring the second order time derivative for the displacement. Our coupled model is
as follows: Find u, pr , and pf satisfying the equations below for all time t ∈]0, T [:

Balance of Linear Momentum: − div σ por(u, pr) = f in� \ C
Cauchy Stress Tensor: σ por(u, pr ) = σ (u)− α pr I

Effective Linear Elastic Stress Tensor: σ (u) = λ(∇ · u)I + 2Gε(u)

Reservoir Flow Model:
∂

∂t

(( 1

M
+ crϕ0

)
pr +α∇ · u

)
+∇ ·Qr = q̃ in � \ C,

Qr = − 1

μ
K
(∇ pr − ρg∇ η

)
in � \ C.

Fracture Flow Model: cf
∂pf

∂t
+ ∂

∂t
w +∇ ·Qf = q̃W + [Qr ]C · n+ inC,

Qf = − KC

12μ
(∇ pf − ρg∇ η) inC.

In the above, pr and Qr represent the pressure and flux unknowns in the reservoir
matrix, pf and Qf represent the pressure and flux unknowns in the fracture (pf

is the trace of pr on the fracture surface), and u is the the solid’s displacement. In
addition, I is the identity tensor, α > 0 is the Biot coefficient, λ > 0 and G > 0
are the Lamé constants, f is a body force (in our case, the gravity loading term),
μ > 0 is the constant fluid viscosity, ρ > 0 is a constant reference density (relative
to the reference pressure p0), η is the distance in the vertical direction (pointing
downwards), ϕ0 is the initial porosity, M is the Biot constant, q̃ = q

ρ
where q is

a mass source or sink term, K and KC are the permeability tensors in the matrix
and fracture respectively, cr and cf are the fluid compressibilities in the matrix
and the fracture respectively, ∇ is the tangential derivative along the fracture, w =
−[u]C · n+ represents the width of the fracture, q̃W = qW/ρ is the injection term
for flow in the fracture, and [Qr ]C · n+ is the leakage term which connects the flow
in matrix to the flow in the fracture.

Notation In what follows, we will adopt the following notation: n denotes the
flow/mechanics iterative coupling iteration index, k denotes the time step index.
�t = tk − tk−1 stands for the time step size, where tk = k�t , 0 � k � N , and N is
the total number of time steps, T = N�t .

3 Fixed Stress Split in Fractured Poro-Elastic Media

Following the formulation of the fixed stress split scheme in fractured media as
given in [1], we first solve the flow problem in the reservoir and the fracture in a
monolithic manner (Step (a)), then we solve the mechanics problem (Step (b)), and
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we iterate:

Step (a) [Flow] Given un, we solve for pn+1
r ,Qr

n+1, pn+1
f ,Qf

n+1

( 1
M
+ crϕ0 + α2

λ

)
∂
∂t
pn+1
r −∇ ·Qr

n+1 = α2

λ
∂
∂t
pn
r − α∇ · ∂

∂t
un + q̃,

Qr
n+1 = 1

μ
K
(∇ pn+1

r − ρg∇ η
)
in � \ C,

(
γc + cf

)
∂
∂t

pn+1
f + ∂

∂t
wn − ∇ ·Qf

n+1 = γc
∂
∂t
pn
f + q̃W + [Qr ]n+1

C · n+,
Qf

n+1 = KC
μ

(∇ pn+1
f − ρg∇ η) in C,

Step (b) [Mechanics] Given pn+1
r ,Qr

n+1, pn+1
f ,Qf

n+1, we solve for un+1

satisfying

− div σ por(un+1, pn+1
r ) = f in � \ C

σ por(un+1, pn+1
r ) = σ (un+1)− α pn+1

r I in � \ C
(σ por(un+1, pn+1

r ))�n� = −pn+1
f |Cn� , � = +,− on C

We note here that the mass conservation equations for the flow in the matrix and

in the fracture are augmented with the fixed-stress split regularization terms (α
2

λ
for the matrix, and γc for the fracture) which will vanish upon the convergence
of the iteration for every time step, recovering the consistency of the scheme.

4 Convergence in Heterogeneous Media

4.1 Assumptions

In our analysis, we assume homogeneous elastic parameters (G,λ), and heteroge-
neous flow parameters. The spatial domain of the reservoir matrix will be denoted
by � ⊂ R

d , d = 1, 2, or 3, and the spatial domain of the fracture will be
denoted by C ⊂ R

d−1. Furthermore, The matrix is discretized into N� conforming

grid elements Ei(�) such that: � =
N�⋃

i=1
Ei(�). Similarly, The d − 1 fracture is

discretized into NC conforming grid elements Ei(C) such that: C =
NC⋃

i=1
Ei(C).

By heterogeneous flow parameters, we mean that each matrix grid element Ei(�)

has its own, independent, set of flow parameters: K i ,Mi, cr and ϕ0i . In a similar
manner, each fracture grid element Ei(C) has its own, independent, set of flow
parameters: KCi

, cfi , and μ. Here we denote, K i = K i/μ, KCi
= KCi

/μ.
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Furthermore, the outward normal vector for each grid element Ei will be denoted
by ni and for every two adjacent grid elements Ei & Ei−1, ni = −ni−1 across the
common boundary (for both matrix and the fracture).

4.2 Discretization

For spatial discretization, we assume a mixed finite element discretization for the
flow in the reservoir matrix and the fracture, and a Conformal Galerkin method
for mechanics. For temporal discretization, we assume a simple Backward-Euler
scheme. Let Th denote a regular family of conforming triangular elements of the
domain of interest, �. Using the lowest order RT (Raviart and Thomas, 1977)
spaces, we have the discrete spaces [2]:

uh ∈ V h = {vh ∈ H 1(�+ ∪�−)d ; ∀T ∈ Th, vh|T ∈ P1
d, [vh]�\C = 0,

vh
�|�� = 0, � = +,−}

prh ∈ Qh = {prh ∈ L2(�) ; ∀T ∈ Th, pr h|T ∈ P0}
pfh ∈ Qch = {pfh ∈ H 1/2(Ch) ; ∀T ∈ Th, pch |T ∈ P1}

Qr h ∈ Zh = {qh ∈ H(div;�+ ∪�−)d ; ∀T ∈ Th, qh|T ∈ P1
d ,

[qh] · n+ = 0 on � \ C qh · n = 0 on ∂�}
Qf h

∈ ZCh = {μf h
∈ ZC ; ∀T ∈ Th,μf h|T ∈ P1

d}

whereP0, and P1 are the spaces of polynomials of degrees zero and one respectively,
and P1

d is the space of polynomials of degree one in R
d . In the above,ZC represents

the space of continuous velocities in the fracture: ZC = {μf ∈ L2(C)d−1 ; ∇ ·
μf ∈ H−1/2(C)}. It is normed by: ‖qf ‖ZC

= (‖qf ‖2
L2(C)

+ ‖∇ · qf ‖2
H−1/2(C)

)1/2.

In addition, the space Qch is equipped with the norm: ‖v‖H 1/2(C) =
(‖v‖2

L2(C)
+

|v|2
H 1/2(C)

)1/2, where |v|H 1/2(C) =
( ∫

C

∫
C
|v(x)−v(y)|2
|x−y|d dx dy

)1/2. Other spaces use

the usual corresponding norms. We also note that the discrete leakage term q̃L is
in the same space as the discrete fracture flux space ( 1

μ
[Qr h]C · n+ = −q̃L on C).

We also assume that the solution at time tk−1 to be known (the values of uk−1,
pr

k−1, pf
k−1, Qr

k−1, and Qf
k−1 are computed from last time step) with given

corresponding initial values for the first time step. Furthermore, if the domain of
integration is not indicated, it is understood to be over �+ ∪�−.
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Now, we list the Banach contraction result for the fixed stress split scheme
described in Sect. 3 in heterogeneous poroelastic media.

5 Banach Contraction Result

Theorem 1 (Localized Contraction Estimate for Fractured Heterogeneous

Media) For γci = 2cfi
(λ−2) and χi =

(
γci
λ

)1/2
for each Ei ∈ C, and if the conditions

(6), (7), and (8) are satisfied, and for homogeneous elastic parameters G and λ,
and heterogenous (localized) flow parameters, the localized iterative scheme is a
contraction given by

N�∑

i=1

∥
∥δσn+1,k

v

∥
∥2
Ei (�)

+
NC∑

i=1

∥
∥δσn+1,k

f

∥
∥2
Ei (C)

+
N�∑

i=1

λ2
∥
∥∇ · δun+1,k

h

∥
∥2
Ei (�)

+
N�∑

i=1

2�t
∥
∥K−1/2

i δQr
n+1,k
h

∥
∥2
Ei (�)

+
NC∑

i=1

�t

6

∥
∥K−1/2

Ci
δQf

n+1,k
h

∥
∥2
Ei (C)

+
NC∑

i=1

(
4GλC∗ − λ(λ− 2)

2cfi

)∥
∥δwn+1,k

h

∥
∥2
Ei (C)

+
N�∑

i=1

α2
i (βi − 1)

∥
∥δσn+1,k

v

∥
∥2
Ei (�)

· · ·

≤ max

{

max
1≤i≤N�

( 1

βiλ2

)
, max

1≤i≤NC

( χ2
i

βci

)
}⎛

⎝
N�∑

i=1

∥
∥
∥δσn,k

v

∥
∥
∥

2

Ei(�)
+

NC∑

i=1

∥
∥δσn,k

f

∥
∥2
Ei (C)

⎞

⎠.

The contraction coefficient can be shown to be <1.

5.1 Proof

We will follow the same steps as outlined in the work of [4, 5], and as outlined
below:

• Step (1): Write the continuous-in-space weak formulation locally for each grid
element.

• Step (2): Sum up these local weak formulations to get a global weak formulation.
All inner boundary terms will get cancelled.

• Step (3): Write a corresponding discrete-in-space global weak formulation by
mimicking the continuous-in-space global weak formulation.

• Step (4): Match coefficients as in the homogeneous case to ensure contraction.

We proceed directly to the third step as the first two steps are identical to the ones
employed in [4, 5].
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Step (3): Fully Discrete Weak Form
Now, we mimic the continuous-in-space global weak formulation to reach to the
fully discrete weak form as follows:

Flow Solve Find u
n+1,k
h ∈ V h, pn+1,k

rh ∈ Qh, pn+1,k
fh

∈ Qch , Qr
n+1,k
h ∈ Zh, and

Qf
n+1,k
h ∈ ZCh such that:

∀θh ∈ Qh ,

N�∑

i=1

(( 1

M
+ cri ϕ0i +

α2
i

λ

)(p
n+1,k
rh

− pk−1
rh

�t

)
, θh

)

Ei (�)
+

N�∑

i=1

(∇ · Qr
n+1,k
h

, θh
)
Ei (�) =

N�∑

i=1

(α2
i

λ

(p
n+1,k
rh

− pk−1
rh

�t

) − αi∇ ·
( un+1,k

h
− uk−1

h

�t

)
, θh

)

Ei (�)
+

N�∑

i=1

(
q̃h, θh

)
Ei (�) (1)

∀θch ∈ Qch
,

NC∑

i=1

((
cfi

+ γci
)p

n+1,k
fh

− pk−1
fh

�t
, θch

)

Ei (C)
+

NC∑

i=1

1

12

(∇ · (Qf
n+1,k
h

), θch

)
Ei (C)

−
NC∑

i=1

([Qr
n+1,k
h

]C · n+, θch

)
Ei (C) =

NC∑

i=1

(
γci

p
n,k
fh

− pk−1
fh

�t
, θch

)

Ei (C)

+
( [un,k

h
]C · n+ − [uk−1

h
]C · n+

�t
, θch

)

Ei (C)
+ ( ˜qW h, θch

)
Ei (C) (2)

∀qh ∈ Zh ,

N�∑

i=1

(
K−1

i
Qr

n+1,k
h

, qh
)
Ei (�) =

N�∑

i=1

(p
n+1,k
rh

,∇ · qh)Ei (�) −
NC∑

i=1

(
p
n+1,k
fh

, [qh]C · n+
)
Ei (C)

+
N�∑

i=1

(∇(ρgη), qh)Ei (�) (3)

∀μf h
∈ ZCh ,

NC∑

i=1

(
K−1
Ci

Qf
n+1,k
h

,μf h

)
Ei (C) =

NC∑

i=1

(
p
n+1,k
fh

,∇ · (μf h
)
)
Ei (C) +

NC∑

i=1

(∇(ρgη),μf h

)
Ei (C).

(4)

The mechanics equations are standard and left for brevity. The system is compli-
mented by the initial condition.

Step (4): Proceed as in The Homogeneous Case
Now, we proceed as in the homogeneous coefficients case. Let βi = ( 1

Miα
2
i

+
cri
α2
i

ϕ0i + 1
λ
), for each reservoir grid element Ei(�), and βci = cfi + γci for each

fracture grid element Ei(C). In what follows, we will take the difference between
iterative coupling iterations for Eqs. (1)–(4), and mechanics discrete equation, and
denote the corresponding differences in the unknowns as δξn+1,k , where δξn+1,k =
ξn+1,k − ξn,k , in which ξ may stand for any unknown variable we are solving for.
Now, following the same approach as outlined in [1, 6], for the flow part, we test

(1), (2), (3), and (4) with δp
n+1,k
rh , δQr

n+1,k
h , δpn+1,k

fh
, and δQf

n+1,k
h respectively,

and combine the results. For the mechanics part, we test mechanics equation with
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vh = δu
n+1,k
h , and multiply the whole equation by 2λ (recall that G and λ

are homogeneous throughout the whole domain). Further we use the following
estimate [1],

C�‖wh‖2
L2(C)

= C�‖[uh]C · n+‖2
L2(C)

≤ ‖ε(uh)‖2
L2(�\C)

≤ ‖ε(uh)‖2
L2(�)

where C� = (2C2
(
max(P�+,P�−)

2 + 1
)
C2
κ )
−1, and C, P� , and Cκ denote

respectively the constants of the trace, Poincaré, and Korn inequality in ��, � =
+,−: ‖u|��‖L2(C) ≤ C‖u‖H 1(��) , ‖u‖L2(��) ≤ P�� |u|H 1(��), and ‖u|H 1(��) ≤
Cκ‖ε(u)‖L2(��). Now, we put together all the steps above, together with an
application of Young’s inequality. This gives

N�∑

i=1

{∥
∥
∥αi δp

n+1,k
rh

∥
∥
∥

2

Ei (�)
− 2λ

(
αi δp

n+1,k
rh

,∇ · δun+1,k
h

)
Ei (�) + λ2∥∥∇ · δun+1,k

h

∥
∥2
Ei (�)

}

+λ2∥∥∇ · δun+1,k
h

∥
∥2
� + 2�t

N�∑

i=1

∥
∥K−1/2

i
δQr

n+1,k
h

∥
∥2
Ei (�) +

�t

6

NC∑

i=1

∥
∥K−1/2

Ci
δQf

n+1,k
h

∥
∥2
Ei (C)

+
NC∑

i=1

{
2βci

∥
∥δpn+1,k

fh

∥
∥2
Ei (C) + 4GλC∗

∥
∥δwn+1,k

h

∥
∥2
Ei (C) − 2λ

(
δp

n+1,k
fh

, δw
n+1,k
h

)
Ei (�)

}

≤
N�∑

i=1

1

βiλ
2

∥
∥
∥δσn,k

v

∥
∥
∥

2

Ei (�)
+

NC∑

i=1

1

βci

∥
∥
∥γci δp

n,k
fh

− δw
n,k
h

∥
∥
∥

2

Ei (C)
(5)

Let δσn,k
f |Ei(C) = γci

χi
δp

n,k
fh

− δwk
n for a free parameter χi as determined below for

each grid element in the fracture Ei(C). Recall that δσn,k
v |Ei(�) = λ∇ · δun,k

h −
αiδp

n,k
rh for each grid element Ei(�) in the reservoir matrix. By matching the

coefficients of the expanded squares of
∥
∥δσn,k

v

∥
∥2
Ei(�)

and
∥
∥δσn,k

f

∥
∥2
Ei(C)

with the

corresponding coefficients on the left hand side of (5), and for γci = 2cfi
(λ−2) , χi =

(
γci
λ

)1/2
, we can show that the scheme contracts on

∥
∥δσn,k

v

∥
∥2
Ei(�)

and
∥
∥δσn,k

f

∥
∥2
Ei(C)

locally for each reservoir and fracture grid elements Ei(�) and Ei(C) respectively
provided

βi > max (1,
1

λ2 ), for all Ei ∈ � (Condition on Reservoir Flow). (6)

8GC∗ >
λ− 2

cfi
for all Ei ∈ C (Condition on Fracture Flow) (7)

λ2 > 2. (Condition on Mechanics) (8)
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With the above choices of γci and χi , the localized fixed stress regularization terms

for the flow in the matrix and fracture are given by
α2
i

λ
, and

2cfi
(λ−2) respectively, the

contraction result above is established.
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Finite Difference Solutions of 2D
Magnetohydrodynamic Channel Flow
in a Rectangular Duct

Sinem Arslan and Münevver Tezer-Sezgin

Abstract The magnetohydrodynamic (MHD) flow of an electrically conducting
fluid is considered in a long channel of rectangular cross-section along with the
z-axis. The fluid is driven by a pressure gradient along the z-axis. The flow is
steady, laminar, fully-developed and is influenced by an external magnetic field
applied perpendicular to the channel axis. So, the velocity field V = (0, 0, V )

and the magnetic field B = (0, B0, B) have only channel-axis components V and
B depending only on the plane coordinates x and y on the cross-section of the
channel which is a rectangular duct. The finite difference method (FDM) is devised
to solve the problem tackling mixed type of boundary conditions such as no-slip and
insulated walls and both slipping and variably conducting walls. Thus, the numerical
results show the effects of the Hartmann number Ha, the conductivity parameter c
and the slipping length α on both of the velocity and the induced magnetic field,
especially near the walls. It is observed that the well-known characteristics of the
MHD flow are also caught.

1 Introduction

Magnetohydrodynamics is arisen from the main results of fluid mechanics and
electrodynamics. It considers the flow of an electrically conducting fluid exposed
to an external magnetic field and/or an electric current [6]. Thus, it investigates
the influence of these external effects on the behavior of the flow of electrically
conducting fluids. The study of magnetohydrodynamics is introduced by Hartmann
[5] who studied the MHD flow between parallel planes and thanks to his results,
there is an insight for understanding the working principles of MHD flow. MHD
has applications in almost every area of our daily life and in engineering such
as magnetic cooling systems, magnetic refrigerators, water treatment devices.
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Basically, there are several devices whose working principles are based on MHD
effects such as MHD pumps, generators, brakes, flow meters and blood flow
measurement. Analytical solutions for MHD duct flow are available only for a
simple geometry of the duct and simple wall conditions as insulated and no-slip
velocity [4]. The main numerical studies of MHD flow problem come into play
with the use of some methods such as FDM [2, 7], FEM [8, 11], and BEM [3, 10]
again for no-slip and partly conducting partly insulated walls. FDM solution for the
general mixed boundary conditions has been given in [1].

In this paper, the MHD flow of an electrically conducting fluid which is viscous
and incompressible is considered in a long channel of rectangular cross-section
(duct) and the flow is laminar, steady, and fully-developed in the channel-axis
direction. Fluid starts to move with a pressure gradient in the z-direction. The
interaction between the electrically conducting fluid and vertically applied external
magnetic field induces also a magnetic field inside the fluid. Thus, the total magnetic
and velocity fields become B = (0, B0, B) and V = (0, 0, V ) varying in the duct
only, that is V = V (x, y) and B = B(x, y) since the flow is fully-developed.
The governing equations of MHD duct flow are solved using FDM with the most
general type of boundary conditions corresponding to slipping velocity and variably
conducting walls. The influences of the slipping and the conductivity changes on
the velocity and the induced magnetic field are illustrated with equivelocity and
the current lines for increasing values of Hartmann number, slip length, and the
conductivity parameter.

2 Mathematical Formulation

The governing MHD duct flow equations result from the combination of Navier-
Stokes equations of hydrodynamics and Maxwell’s equations of electromagnetism
through Ohm’s law. The pipe-axis components of the momentum and the magnetic
induction equations give

μ∇2V + μeH0
∂H

∂y
= ∂P

∂z
, (1)

∇2H + σμeH0
∂V

∂y
= 0. (2)

Dimensionless variables are introduced as V ′ = V
U0

, B ′ = B
U0μe

√
σμ

, x ′ = x
L0

and y ′ = y
L0

, where U0 = −L2
0

μ
∂P
∂z

is the characteristic velocity and L0 is
the characteristic length and H = (0,H0,H), P , σ , μe, μ are magnetic field,
pressure, electrical conductivity, magnetic permeability, and the viscosity of the
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fluid, respectively. The coupled MHD equations governing the 2D channel flow in
dimensionless form become

∇2V +Ha
∂B

∂y
= −1 (3)

∇2B +Ha
∂V

∂y
= 0, (4)

where Ha = B0L0
√
σ/μ is the Hartmann number and the domain Ω = {−1 ≤

x ≤ 1,−1 ≤ y ≤ 1} is the dimensionless cross-section of the duct and B0 is the
intensity of the external magnetic field. The problem is considered with the most
general form of wall conditions such as slipping velocity and variably conducting
walls.

V ± α
∂V

∂y
= 0, B ± c ∂B

∂y
= 0 when y = ±1, (5)

V ± α
∂V

∂x
= 0, B ± c ∂B

∂x
= 0 when x = ±1. (6)

Here, the constants α and c denote the slipping length of the velocity and the
conductivity parameter, respectively. Thus, c → 0 corresponds to electrically
insulating walls and c →∞ to electrically perfectly conducting walls. Also, α = 0
indicates that we have no-slip velocity at the duct walls.

3 Implementation of FDM and Boundary Conditions

The MHD flow equations (3)–(4) are coupled in V and B and should be solved
together in Ω . Firstly, discretizing the MHD equations as a whole by central finite
differences for both the Laplace operator ∇2 and the convection operator ∂/∂y we
obtain the following discretized equations

Vi+1,j − 4Vi,j + Vi−1,j + Vi,j+1 + Vi,j−1 + hHa
2

(
Bi,j+1 − Bi,j−1

) = −h2

(7)

Bi+1,j − 4Bi,j + Bi−1,j + Bi,j+1 + Bi,j−1 + hHa
2

(
Vi,j+1 − Vi,j−1

) = 0

for i, j = 2, . . . , N . Here, N is the number of subintervals taken on each side and
h = 2/N is the step size. The approximation of mixed type boundary conditions (5–
6) is carried in such a way that we use forward difference on the walls x = y = −1
and use backward difference on the walls x = y = 1 in order to define the boundary
values in terms of inner mesh point values. Then, inserting the boundary conditions
into the discretized equations (7), we obtain M unknowns in M equations where
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M = 2(N − 1)2 for a general N . These equations are written in a matrix-vector
system with the coefficient matrix Q of size M ×M . Thus, we have

Qx = w (8)

where the unknown vector x of size M × 1 is ordered as

x = [
V2,2 B2,2 · · ·V2,N B2,N · · · VN,2 BN,2 · · ·VN,N BN,N

]T
.

The right hand-side vector w of size M × 1 is

w = [−h2 0 −h2 0 · · · −h2 0
]T

.

The coefficient matrix Q of size M ×M is a block diagonal matrix which includes
two different block matrices Q1 and Q2 of sizes 2(N − 1) × 2(N − 1) on the
main diagonal. Also, the block matrices Q1 and Q2 are the matrices including the
Hartmann numberHa, step-size h, slipping length α and the conductivity parameter
c in their entries. Finally, the unknown vector x at the discretized points from the
solution of the system (8) is obtained giving V (x, y) and B(x, y) at the mesh points.

4 Numerical Results and Discussion

The velocity and the induced magnetic field are simulated for increasing values
of Ha, α and c. It is observed that we need to increase the number of nodes
N with an increasing Ha since it causes convection dominance in the MHD
equations. So, we use N = 30, 40, 60, 80, 100 with the corresponding values of
Ha = 5, 10, 30, 50, 100. As Ha increases, boundary layers of O(1/Ha) and of
O(1/

√
Ha) are developed near the Hartmann (perpendicular) and side (parallel)

walls for both V and B as the well-known behavior of MHD duct flow [4]. The
slipping fluid is also observed on the duct walls. However, the slip diminishes with
a further increase in Ha because of the formation of these boundary layers.

The graphs of Fig. 1 show that, the velocity magnitudes increase when α rises.
This is a theoretically known behavior [9]. As the slipping parameter α increases,
the slip on the walls increases and we see much more slip on the Hartmann walls
than on the side walls. The increase in the slipping parameter α has not much effect
on the profile of the induced magnetic field when the walls are insulated but it only
causes a decrease in the induced magnetic field magnitude.

It is observed from the graphs of the Fig. 2 that as the conductivity parameter c
increases, the velocity magnitudes decrease for no-slip velocity (α = 0) whereas
the induced magnetic field magnitudes increase. But, the increase in the induced
magnetic field magnitude becomes weak when c increases further. The profiles of
the induced magnetic field reveal that it tries to become perpendicular to the side
walls as c increases but this orthogonality behavior is weakened for small values of
c. That is, for c ≈ 10 the side walls become almost electrically perfectly conducting.
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Fig. 1 Velocity and current lines for Ha = 10 and c = 0. Top α = 0, middle α = 0.1, and bottom
α = 0.2
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Fig. 2 Velocity and current lines for Ha = 10 and α = 0. Top c = 1, middle c = 5, and bottom
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Fig. 3 Velocity and current lines for α = 0.1 and c = 2. Top Ha = 10, middle Ha = 50, and
bottom Ha = 100

Lastly, considering the effects of both α and c with Ha increase in Fig. 3,
we see that for a small value of Hartmann number (Ha = 10), the slip is seen
on the Hartmann walls but it disappears for large values of Hartmann number
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(Ha = 50, 100) for variably conducting wall case. It is observed from the velocity
profiles that as Ha increases, the Hartmann layers become very thin obeying the
order 1/Ha, the core region increases, and the fluid flows near the side walls. Also,
the induced magnetic field becomes perpendicular to the side walls with an increase
in both wall conductivity c and Ha.

5 Conclusion

In this study, the 2D MHD flow in a rectangular duct is investigated. Mixed type
boundary conditions are considered for both the velocity and the induced magnetic
field which contain no-slip to slipping velocity and insulated to perfectly conducting
induced current wall conditions. The effects of the Hartmann number, slip length
and boundary conductivity on the flow and induced current are shown in terms of
equivelocity and equal induced magnetic field lines. An increase in Ha causes to
flatten the flow and the induced current. As Ha increases, one needs to make the
mesh finer due to the convection dominance of the MHD equations.

It has been also shown that as Ha increases boundary layers are formed near the
Hartmann walls and the side walls. The increase in the slip length causes an increase
in the velocity magnitude, which is weakened for large values of Hartmann number,
that is, the slip of the velocity on the walls tends to diminish when Ha rises. When
the slipping length is kept fixed, the induced magnetic field magnitude increases
with an increase in the conductivity parameter whereas the velocity magnitude
drops. Consequently, we see that the well-known characteristics of the MHD flow
are caught and the effects of slip and varying conductivity on the walls are very well
depicted with the numerical results obtained using the FDM arranged especially
to handle mixed boundary conditions. The FDM is easy to implement and gives
accurate results at a cheap expense.
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Applications of the PRESB
Preconditioning Method for OPT-PDE
Problems

Owe Axelsson

Abstract Optimal control problems constrained by partial differential equations
arise in a multitude of important applications. They lead mostly to the solution of
very large scale algebraic systems to be solved, which must be done by iterative
methods. The problems should then be formulated so that they can be solved fast
and robust, which requires the construction of an efficient preconditioner. After
reduction of a variable, a two-by-two block matrix system with square blocks arises
for which such a preconditioner, PRESB is presented, involving the solution of
two algebraic systems which are a linear combination of the matrix blocks. These
systems can be solved by inner iterations, involving some available classical solvers
to some relative, not very demanding tolerance.

1 Introduction

As is widely accepted, analyses and solutions of partial differential equations are
mostly merely just part of a general solution process that includes some kind of
optimization and sensitivity analyses where the PDE equation acts as a constraint.
For example, one may want to control an equipment to have a desired behaviour
as close as possible to some target function. In other applications one must identify
some coefficient, see i.e. [10], such as describing the unknown material properties
or boundary values at an inaccessible part of the boundary of the domain, which is
important to enable to control that various safety requirements are satisfied, see e.g.
[12].

The control and observation domains can be identical, possibly equal to the
whole domain of definition or can be separate subdomains.

After a presentation of the basic properties of the PRESB, i.e. preconditioned
square block matrix and its application for the common subdomain case, a boundary
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optimal control problem is presented which leads to separate subdomains and for
which the standard PRESB method must be modified. Theoretical backgrounds are
included in the paper. For numerical results, see [3].

2 The PRESB Preconditioning Method

For basic optimal control problems one can use a very efficient preconditioner,
named preconditioned square block (PRESB) method, which arose as a simple
method to avoid complex arithmetics when solving symmetric complex valued
systems. Consider, see e.g. [7],

(A+ iB)(x + iy) = f + ig,

where A, B etc. are real valued and we assume that A+ B is nonsingular. It can be
rewritten in real valued form

A
[
x

y

]

:=
[
A −B

B A

] [
x

y

]

=
[
f

g

]

,

which as has been shown in [7] and elsewhere, can be solved easily and efficiently
by the use of a PRESB preconditioned iteration method.

Consider a more general problem, such as arises in Maxwell’s equation for eddy
current electromagnetic problems, (see e.g. [6])

A
[
x

y

]

=
[
A −B∗
B A

] [
x

y

]

=
[
f

g

]

(1)

where B∗ denotes the complex conjugate of B. We assume that A is symmetric and
positive semi-definite, that B+B∗ is positive semi-definite and that N(A)∩N(B+
B∗) = {0}.
Proposition 1 Under the above conditions, A is nonsingular.

Proof For a singular equation (1) it holds Ax = B∗y and Bx + Ay = 0. Hence
x∗Ax + y∗Ay = 0, that is, x, y belongs to N(A), because A is semidefinite. This
implies that B∗y = 0, Bx = 0 that is, x, y belongs also to N(B), therefore, x =
y = 0. ��

As preconditioner to A we take the PRESB matrix

B =
[
A −B∗
B A+ B + B∗

]

.
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As is readily seen, B can be factorized as

[
I −I

0 I

] [
A+ B 0

B A+ B∗
] [

I I

0 I

]

, (2)

which shows that, besides a matrix vector multiplication with B and some vector
additions, an action of B−1 involves just solving a linear system with matrix A+B∗
and one with A+ B.

In many problems there exist efficient solution methods for such systems, such
as based on algebraic multigrid, modified incomplete factorization, or for very large
problems, use of a domain decomposition method, see e.g. [13, 15] for efficient
implementations of AGMG methods.

Let A† denote a generalized inverse of A.

Proposition 2 Under the stated conditions, the eigenvalues λ of B−1A are con-
tained in the interval 1

2 ≤ 1− $(D0) ≤ λ ≤ 1, where

D0 = ((A+ B)A†(A+ B∗))−1(B + B∗).

If B∗ = B and B is spsd, then

1

2
≤ λ(B−1A) ≤ 1

2

(

1+ max
μ((A+B)−1B)

(1− 2μ)2
)

≤ 1 ,

where μ( ) denotes eigenvalues.

Proof For a proof, see [8]. For a proof of the eigenvalue interval [ 1
2 , 1], see the

Remark 1 in Sect. 4. ��
Corollary 1 Let A be spd, A + B nonsingular and assume that Re(μ) ≥ 0 where
μAx = Bx, ‖x‖ �= 0. Then the eigenvalues of B−1A satisfy 1 ≥ λ ≥ 1

1+α
, where

α = max
μ

2 Re(μ)

1+|μ|2 .

Proof It follows 1 − λ = 2Re(μ)

1+|μ|2+2Re(μ)
. Hence λ = 1+|μ|2

1+|μ|2+2Re(μ)
≥ 1

1+α
. Note

that α ≤ 1. ��
It follows that the preconditioned iteration method converges fast and, since

the eigenvalue bounds are known, it can even be efficient to apply the Chebyshev

iteration method. The rate of convergence factor is then bounded above by
√

2−1√
2+1

=
1

3+2
√

2
≈ 1

6 .
As has been shown in [6], see also [5, 11], for time-harmonic eddy-current

problems, the ratio 2Re(μ)/(1 + |μ|2) becomes very small for large values of the
frequency ω, i.e. where |μ| is large, which implies that the eigenvalues cluster at
unity, and implies a superlinear rate of convergence.
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Since we solve inner systems by iteration to some flexible accuracy, it can be
efficient to use a variable preconditioned Krylov subspace method, see [9, 14]. As
has been shown in [1, 2, 6, 8] when the eigenvalue bounds are known one can also
use a Chebyshev acceleration method.

3 A Basic Optimal Control Problem

We consider first a constrained optimal control PDE problem with identical
observation and control subdomains �0 ⊂ �, where � is the whole domain of
definition for the given partial differential equations, see e.g. [4]. Hence we want to
compute

inf
u,v

J (u, v), J (u, v) = 1

2
‖u− u0‖2

�0
+ 1

2
β‖v‖2

�0
s.t. Lu = f + v.

Here u is the state solution defined in �, v is the control defined in �0, ud is the
target solution, f is a given source function, L is a 2’nd order coercive elliptic
operator, i.e. spd and β > 0 is a regularization parameter. We assume that proper
boundary conditions hold.

The corresponding Lagrange functional with multiplier w, that is the adjoint
variable to u, takes the form:
Seek the infu,v / supw, i.e. the saddle point solution of

J (u, v)+
∫

�

w(Lu− f − v).

Note that the control acts to modify the source function f . Discretizing the
problem in a finite element subspace and applying the first order necessary
optimality conditions, lead to the coupled algebraic system,

⎡

⎣
M̃0 0 KT

0 βM0 −NT

K −N 0

⎤

⎦

⎡

⎣
u

v

w

⎤

⎦ =
⎡

⎣
M̃0ud

0
f

⎤

⎦ ,

where M0 is the mass matrix corresponding to the discrete subdomain �0 and

M̃0 =
[
M0 0
0 0

]

is the matrix extended to �, N =
[
M0

0

]

, K is the finite element

discretization of L and the vectors correspond to the discrete versions of the
corresponding continuous functions.

After elimination of the control vector v we get

[
M̃0 KT

K −β−1M̃0

] [
u

w

]

=
[
M̃0ud

f

]

,
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which we scale and reorder,

Ã

[
w̃

u

]

:=
[

K̃ M̃0

−M̃0 K̃

] [
w̃

u

]

=
[

f̃

M̃ud

]

,

where K̃ = √
βK , w̃ = 1√

β
w and f̃ = √

βf . For this square block matrix we can
apply the PRESB preconditioner,

B̃ =
[

K̃ M̃0

−M̃0 K̃ + 2M̃0

]

,

which can be factorized as in (2).

Proposition 3 The eigenvalues of B̃−1Ã are contained in the interval [ 1
2 , 1].

Proof Let λ be an eigenvalue, then

(1− λ)B̃
[
ξ

η

]

= (B̃− Ã)

[
ξ

η

]

=
[

0
2M̃0η

]

,

so λ = 1 if and only if η ∈ N(M̃0), any ξ . (Note the large dimension of the unit
eigenvalue!) For λ �= 1 it follows that K̃ξ + M̃0η = 0 and

(1− λ)(M̃0K̃
−1M̃0 + K̃)η = λ2M̃0η.

Hence λ < 1 and

(1− λ)̃ηT (M̂2
0 + I )̂η = 2λη̂ T M̂0η̂,

where M̂0 = K̃−1/2M̃0K̃
−1/2, η̂ = K̃1/2η.

It follows that 1− λ ≤ λ, that is, λ ≥ 1
2 . ��

Previously, for a fully distributed control function v in �, the following PDE
problems have been analysed and illustrated numerically:

(i) convection diffusion: Ku = −�u+ c · ∇u = f, where ∇ · c ≤ 0, see [4].
(ii) time-harmonic problems,

∂u

∂t
−�u+σu = f, 0 < t < T, where f = f0e

iωt , ω = k
2π

T
, k = 1, 2, · · ·

which leads to Ku = −�u+ σu+ iωu = f0 + v, see [5, 11].
Here one can solve for each frequency ω in parallel.

(iii) The similar, Maxwell’s eddy current electromagnetic equation, see [6].
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4 An Inverse Identification Problem for a Non-selfadjoint
Problem

4.1 Problem Formulation

There exist several types of inverse problems in the form of identification problems,
such as identification of a material coefficient in a PDE problem or identification
of some inaccessible boundary part of the unknown solution. Here we consider
identification of part of the boundary conditions, namely at a for measurement
inaccessible part of a physical boundary, such as hidden by other structures, for
practical examples, see e.g. [12].

Let � be a given domain where the boundary part ∂�1 is assumed to be
inaccessible and let ∂�2 be the other part, ∂�2 = ∂�/∂�1, of the boundary, see
Fig. 1 for an illustration.

In order to find the missing boundary condition we overimpose, that is, we
assume that both the Dirichlet values ud and the Neuman conditions ∂u

∂n
are given,

e.g. have been measured on ∂�2. Let the differential operator problem be

Ku = −�u+ c∇u+ σu = f, σ − 1

2
∇ · c > 0, with g = ∂u

∂n
given on ∂�2.

To find an approximation of v = ∂u
∂n

on ∂�1 we imbed the problem in an optimal
control framework, that is, the aim is to solve

min
u,v

J (u, v), J (u, v) = 1

2
‖u− ud‖2

∂�2
+ 1

2
β‖v‖2

∂�1
,

which is subject to Ku = f in �, ∂u
∂n
= g on ∂�2.

Here the Dirichlet values ud on ∂�2 are used as target solution, v acts as a control
function and β > 0 is a standard regularization parameter.

Letting w be the Lagrange multiplier to impose the differential equation con-
straint, the variational formulation becomes:
Find

inf
u,v

sup
w

{

J (u, v) +
∫

�

(∇u · ∇w + c · ∇uw + σuw − fw)−
∮

∂�1

vw −
∮

∂�2

gw

}

Fig. 1 A domain � with an
inaccessible part ∂�1 of its
boundary, with overimposed
boundary conditions on
∂�2 = ∂�/∂�1. The aim is
to find v = ∂u

∂n
on ∂�1

Ω2

Ω1Ω

Ω2

Ω2
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After discretization, the Karush–Kuhn–Tucker first order optimality conditions (for
notational simplicity we keep the notation K , etc for the discrete operator and
vectors) give,

⎡

⎣
M̃2 0 KT

0 βM̃1 −NT

K −N 0

⎤

⎦

⎡

⎣
u

v

w

⎤

⎦ =
⎡

⎣
M̃2ud

0
f̂

⎤

⎦ (3)

where M̃1 =
⎡

⎣
0 0 0
0 M1 0
0 0 0

⎤

⎦, M̃2 =
⎡

⎣
0 0 0
0 0 0
0 0 M2

⎤

⎦, N =
⎡

⎣
0
M1

0

⎤

⎦ and Mi are the mass

matrices for ∂�i , i = 1, 2 and f̂ = f + [∮
∂�2

gϕi], where {ϕi} are the set of basis
functions on ∂�2.

Note that all vectors have the same dimension. Here we have used the ordering,
interior nodepoints followed by nodepoints on ∂�i , i = 1, 2.

There are two major issues associated with the solution of optimal control
problems:

(i) Construction of an efficient iterative solution method to solve (3), that is, in
particular the construction of a preconditioner.

(ii) The estimate of errors in the solution and control function, which depends on
both the discrete mesh parameter h and the parameter β.

Due to limited space of this paper we shall consider only topic (i). For a more
complete presentation, see [3].

4.2 The Reduced Matrix System and Its Nonsingularity

After elimination of the control variable v = 1
β
w, we get the reduced system,

[
M̃2 KT

K − 1
β
M̃1

][
u

w

]

=
[
M̃2ud

f̃

]

which we reorder and scale to obtain

A
[
u

w̃

]

:=
[
M̃2 −K̃T

K̃ M̃1

] [
u

w̃

]

=
[
M̃2ud

f̃

]

(4)
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where K̃ = √
βK , f̃ = √

βf̂ and w̃ = − 1√
β
w, which is the equation to be solved.

Guided by the PRESB method in Sect. 2, (4) will be solved by iteration with the
preconditioner,

B =
[
M̃2 −K̃T

K̃ M̃1 + K̃ + K̃T

]

.

Systems with this matrix can be solved by inner iterations using the PRESB
preconditioner, i.e. where M̃1 above has been replaced with M̃2, which will converge
rapidly.

The eigenvalues of B−1A satisfy

(1−λ)B
[
ξ

η

]

= (B−A)

[
ξ

η

]

=
[

0
(K̃ + K̃T )η

]

, where ‖ξ‖+‖η‖ �= 0. (5)

Proposition 4 The eigenvalues of B−1A are located in the interval (0, 1]. In
particular, A is nonsingular.

Proof Since by assumption made, K̃ + K̃T is nonsingular, it follows that λ = 1 if
and only if η = 0, arbitrary ξ . For λ �= 1, (5) shows that

{
M̃2ξ = K̃T η

(1− λ)(K̃ξ + M̃1η) = λ(K̃ + K̃T )η.

If M̃2ξ = 0, then η = 0, i.e. K̃ξ = 0 so also ξ = 0. Hence ξ ∈ N(M̃2)
⊥. Let M̃†

2

be a generalized inverse of M̃2. Then ξ = M̃
†
2 K̃

T η and

(K̃M̃
†
2 K̃

T + M̃1)η = μ(K̃ + K̃T )η, (6)

where μ = λ/(1 − λ). It follows that μ is positive so 0 < λ ≤ 1 and A is
nonsingular. ��

In order to find how the eigenvalues depend on β as β → 0, we rewrite (6) as,

2μη̂ = (M̂
†
2 + M̂1)̂η,

where M̂
†
2 = S−1/2K̃M̃

†
2 K̃

T S−1/2, M̂1 = S−1/2M̃1S
−1/2 and S = 1

2 (K̃ + K̃T ).

We note that η̂ T M̂
†
2 η̂/η̂

T η̂ is contained in the interval
(|O(β1/2)|,O(1)

)
and

η̂ T M̂1η̂/η̂
T η̂ in [0,O(β−1/2)]. It follows that μ is contained in the interval

(|O(β1/2)|, |O(β−1/2)|).
From the lower bound values it is seen that the corresponding eigenvalues λ =

|O(
√
β)| and for the upper bound values that λ = 1/(1+|O(

√
β)|) = 1−|O(

√
β)|.

Hence the eigenvalues cluster at unity for eigenvectors η̂ ∈ N(M̂1)
⊥, which

subspace has a large dimension. The small eigenvalues are taken for η ∈ N(M̂1).
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Numerical tests in [3] show that the iteration method converges rapidly. The
approximation errors decrease as O(β) when β → 0 and as O(h2) as the mesh
parameter h → 0.

Remark 1 If the control and observation subdomains are identical, then it follows
readily from (6) that the eigenvalues λ are located in the interval [ 1

2 , 1], which gives
a proof of the related Proposition in Sect. 2.
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Model Order Reduction Framework for
Problems with Moving Discontinuities

H. Bansal, S. Rave, L. Iapichino, W. Schilders, and N. van de Wouw

Abstract We propose a new model order reduction (MOR) approach to obtain
effective reduction for transport-dominated problems or hyperbolic partial differ-
ential equations. The main ingredient is a novel decomposition of the solution
into a function that tracks the evolving discontinuity and a residual part that
is devoid of shock features. This decomposition ansatz is then combined with
Proper Orthogonal Decomposition applied to the residual part only to develop an
efficient reduced-order model representation for problems with multiple moving and
possibly merging discontinuous features. Numerical case-studies show the potential
of the approach in terms of computational accuracy compared with standard MOR
techniques.

1 Introduction

Hyperbolic partial differential equations (PDEs) are ubiquitous in science and
engineering. Applications encompassing the fields of chemical industry, nuclear
industry, drilling industry, etc., fall within this class. Model Order Reduction of
systems of non-linear hyperbolic PDEs is a challenging research topic and is an
active area of research in the scientific community. Moving discontinuities (such
as shock-fronts) are representative features of this class of models and pose a
major hindrance to obtain effective reduced-order model representations [1]. As
a result, standard MOR techniques [2] do not fit the requirements for real-time
estimation and control or multi-query simulations of such problems. This motivates
us to investigate and propose efficient, advanced and automated approaches to
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obtain reduced models, while still guaranteeing the accurate approximation of wave
propagation phenomena.

A lot of research is in progress to improve the state of the art of MOR for
transport-dominated problems: (i) (data-based and model-based) time and space-
dependent coordinate transformation/symmetry reduction framework [3–8], (ii)
optimal transport [9–11], (iii) interpolation/dictionary/tracking framework [12–14],
(iv) adaptive and stabilization strategies [15, 16], and, (v) deep learning/neural
network concepts [17, 18]. These works have mainly focused on resolving transport
along a single direction [3] and multiple directions [4] for linear and non-linear
classes of (parameterized) problems.

Effective reduction of non-linear transport-dominated problems in the context
of multiple moving (and merging) discontinuous features is still challenging. Few
notable works that aim at mitigating this problem are [4, 12, 13]. The works
[12, 13] are based on the concept of (low and high resolution) transformed snapshot
interpolation. Such an approach has been particularly tested in the regions near
(and at) the singularity, induced upon merging of the wavefronts. Another work
in this direction is the concept of freezing multiple frames [19]. However, their
performance, demonstrated for parabolic problems, does not carry over to less
regular hyperbolic problems and suffers from additional travelling structures or
numerical instabilities in the decomposed components. Moreover, the existing
methods [4, 19] lack the (online-efficient) automated identification of switching
point from multiple wavefront setting to single wavefront setting upon merging of
wavefronts.

We propose an approach that is a stepping stone towards resolving the aforemen-
tioned issues. The main contribution of the work is to propose a new decomposition
ansatz that decomposes the solution into a basis function that tracks the evolving
discontinuity and a residual part that is expected to be devoid of shock features.
This decomposition renders the residual part to be amenable for reduced-order
approximation. We, then, use these generated bases to apply Proper Orthogonal
Decomposition (POD) on the residual part and later reconstruct the solution by
lifting it to the high-dimensional problem space. We finally assess the combined
performance of decomposition, reduction and reconstruction approach (as opposed
to conventional reduction and reconstruction approach) in the scope of transport-
dominated problems with moving and interacting discontinuities.

2 Mathematical Formulation

We consider a scalar 1D conservation equation of the form:

∂tu(x, t)+ ∂xf (u(x, t)) = 0, u(x, 0) = u0(x). (1)

We assume that u(x, 0) = u0(x) already has S number of discontinuities at
locations x1(0), . . . , xS(0) with values u−(xs(0), 0), s = 1, . . . , S from the left
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and values u+(xs(0), 0), s = 1, . . . , S from the right. We associate a single basis
function σs(x − xs(t)) to each discontinuity at their respective locations. This basis
function has a jump of height 1, i.e., σ+s (0) − σ−s (0) = 1, at the location of the
discontinuity and can have any (preferably continuous and smooth) shape away from
the discontinuity.

We now decompose the solution of (1) in the following way:

u(x, t) =
S∑

s=1

js(t)σs(x − xs(t))+ ur(x, t),

js(t) = u−(xs(t), t) − u+(xs(t), t). (2)

If xs(t) exactly matches the shock locations and (2) is exactly fulfilled, then ur(x, t)

does not contain any discontinuities and is amenable to a low-rank approximation.
The time-stepping scheme is defined in the following way. In each time step,

we:

• Compute updated shock locations xs(t
n+1) using the Rankine Hugoniot condi-

tion.
• Compute u±(xs(tn+1), tn+1) in a neighborhood of xs(t

n+1) and define jumps,
js(t

n+1), via (2).
• Compute the residual part ur(x, t

n+1) from

ur(x, t
n+1)− ur(x, t

n) =
S∑

s=1

js(t
n)σs(x − xs(t

n))−�t∂xf (u(x, tn))−
S∑

s=1

js(t
n+1)σs(x − xs(t

n+1)).

(3)

The standard way to construct a reduced-order model (ROM) is to reduce
(1) by applying Galerkin projection on u. Instead, we reduce (3) via Galerkin
projection onto VN ⊆ Vh, where VN is a N-dimensional reduced space spanned
by the functions obtained from a truncated singular value decomposition of the ur

snapshot matrix, and Vh is a h-dimensional high-fidelity space. Upon considering
the projection operator PN : Vh → VN , the reduced scheme takes the following
form:

uk+1
r,N = uk

r,N + PN

( S∑

s=1

js,N(tk)σs(x − xs,N(tk))−�t∂xf (P
′
Nuk

N)−

S∑

s=1

js,N(tk+1)σs(x − xs,N(tk+1))
)
, (4)
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where uk
r,N ∈ VN and u0

r,N = PN(u0
r ) with uk

N defined in the following form:

P
′
Nuk

N =
S∑

s=1

js,N(tk)σs(x − xs,N(tk))+ P ′
Nuk

r,N, (5)

and, js,N and xs,N are, respectively, the jumps and shock locations computed during
the ROM time-stepping. js,N and xs,N can be obtained in a manner similar to the
steps carried out during the full-order model (FOM) time-stepping.

It is well known that projection alone is not sufficient to reduce the costs of
computing the solution of a reduced-order model if the Finite Volume operators
are non-linear in nature. Empirical Operator Interpolation [20] can be used here
as a recipe for hyper-reduction. We do not delve into the full and efficient offline
and online decomposition as its discussion is not within the scope of this work.
However, we mention that we need to know js,N(tk) and ur,N(xs,N(tk), tk) for
computing xs,N(tk+1). In a reduced scheme this means that we need to keep the
entire reduced basis in memory. However, the basis vectors are only evaluated at the
shock locations at each time step. The same consideration holds for the computation
of the js,N(tk+1).

3 Numerical Experiments

We numerically test the new approach and show its potential as a reduced-order
modelling technique. We reduce Burgers equation, which is given by:

∂tu+ ∂x(
u2

2
) = 0, x ∈ [0, L]. (6)

The case studies consider that the shock is already present in the initial data,
which for single and multiple wavefront scenarios, is respectively given by:

u(x, 0) = u0(x) =
⎧
⎨

⎩

x, 0 ≤ x ≤ 1,

0, otherwise
and u(x, 0) = u0(x) =

⎧
⎪⎪⎨

⎪⎪⎩

x − 2, 2 ≤ x ≤ 4,
(x−5)

2 , 5 ≤ x ≤ 7,

0, otherwise.

We consider only periodic boundary conditions. Furthermore, we consider the
spatial domain to be L = 10 and use an upwind finite volume (FV) scheme for
the spatial discretization and first-order Forward Euler for the time-stepping. We
take 8000 steps in time for the scenarios under consideration i.e., t ∈ [0, 4] with
a timestep of 0.0005. We consider three different spatial mesh resolutions (spatial
step size of 0.005, 0.002 and 0.001) to assess the performance of the standard (POD
without decomposition) and the proposed approach.
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We quantify the performance of the standard and the proposed approach by
computing the reduced-order modeling (ROM) error. We consider L2 in space and
L2 in time (absolute) error and define it in the following manner (for a basis-size
N):

erom =
√√
√
√�t

NT+1∑

k=1

�x

Nx∑

i=1

| ui,k − (P
′
Nuk

N)i,k |2. (7)

where �t is the time-step, �x is the spatial step, NT is the number of time-steps
and Nx is number of Finite Volume elements. ui,k means u at x = xi and t = tk

(similarly for (P
′
Nuk

N)i,k). Herewith, (7) expresses the error between the full-order
model (Finite Volume solution) governed by (1) and the reconstruction given by
(5)).

3.1 Single Wavefront Scenario

We first consider the scenario where only a single discontinuous front evolves across
the spatial domain. Here, we use the following shape function for σs(x − xs):

σs(x − xs) =
{

1+ x − xs, xs − 1 ≤ x ≤ xs,

0, otherwise.
, s = 1, .., S, (8)

with S = 1, xs(t = 0) = 1.

3.2 Multiple Wavefront Scenario

Here, we consider the setting where multiple (discontinuous) wavefronts evolve
across the spatial domain and also interact non-linearly with each other. We study
the scenario where two wavefronts are present in the spatial domain and the left
front propagates faster than the right one. We, however, restrict the study to only
assess the performance of the proposed approach in dealing with the interaction of
the head of one wavefront with the tail of the other one. We postpone the discussion
of automatically dealing with the merging of wavefronts for future work. We use the
following shape function for σs(x − xs) to study this scenario.

σs(x − xs) =
{

1+ 1
2 (x − xs), xs − 2 ≤ x ≤ xs,

0, otherwise
, s = 1, .., S, (9)

with S = 2, xs=1(t = 0) = 4 and xs=2(t = 0) = 7.
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3.3 Discussion

Interpolation of σs(x− xs(t)) onto the FV mesh results in numerical approximation
error. As a result, we observe residual jumps in the residual part, ur , during FOM
simulation. The aim is to build a reduced space by applying POD on the residual
part. One option could be to build the bases (or reduced space) from the computed
residual part (with residual jumps). An other alternative could be to post-process the
residual part (computed during FOM) in order to get rid of the residual jumps. This
post-processed residual part, which is even more low-rank approximable than the
residual part with residual jumps, can be then used to build the (effective) reduced
space. We invoke one of these ways to generate the bases and build a ROM.

We, first, consider the setting where the shock locations and jumps computed
during FOM simulation are used during the ROM time-stepping i.e., we assume
that js,N = js and xs,N = xs . We, further, use the computed residual part (with
residual jumps) to generate the bases. We can clearly see the benefits of the proposed
approach in Fig. 1, which shows the behavior of the ROM error for increasing basis
sizes N across different mesh resolutions. Firstly, the initial error incurred via the
proposed approach is clearly lower than that of the standard approach. This is
attributed to the fact that our decomposition approach associates a basis function
corresponding to the travelling discontinuity. Secondly, the rate of decay of the
error is better for the proposed approach compared to the standard approach. We
also see that the ROM error for the standard approach is larger for finer mesh-
sizes. This occurs as the effect of the shock becomes more pronounced for finer
meshes. Also, the finer mesh implies less numerical viscosity. We also observe that
the ROM errors could even increase with an increment in the basis size. It can
be argued that this could occur as a result of insufficiently many basis functions.
However, the ROM error for the proposed approach decreases with an increment in
basis size. Moreover, the ROM error is lower (and stagnates later) for finer mesh-
sizes. This can be argued from the fact that the proposed approach is able to resolve

Fig. 1 ROM error upon using shock locations and jumps computed during FOM simulation: (left)
single wavefront scenario and (right) multiple wavefront scenario



Model Order Reduction Framework for Problems with Moving Discontinuities 89

Fig. 2 ROM error under fully ROM computations for the single wavefront scenario

the shock more accurately at finer meshes. This error behavior is clearly in contrast
to that of the standard approach which fails to efficiently capture the shock. As a
result, the difference between the ROM error (at a certain number of basis function)
computed via standard and proposed approach becomes even more pronounced for
finer meshes.

Figure 2 demonstrates the performance for fully ROM computations, i.e., shocks
locations, xs,N and jumps, js,N are computed during ROM time-stepping. We
perform post-processing on the residual part computed during FOM. ur is post-
processed by linear interpolation between the locations x+s , x−s where the local
minimum u+ and maximum u− in a neighborhood of xs is attained. We, then,
generate the bases from this post-processed residual part. The post-processing was
not needed in an earlier setting (discussed in the paragraph above) as accurate shock
locations and jumps from the FOM simulation were used. However, it becomes
essential here in order to approximate xs,N and js,N within the ROM time-stepping
with good accuracy. We observe that the proposed approach still performs better
than the standard approach. However, the proposed approach seems to incur larger
ROM error for larger POD mode numbers. Similar issues (not included in this
paper) are observed for the multiple wavefront scenario. Such issues did not exist
when we used the shock locations and jumps from FOM during the ROM time-
stepping. Hence, the issues could be caused from a poor approximation of the
shock. A possible explanation could be that we have more oscillations (around
the shock position in the residual part) as the number of POD modes increases.
The oscillations, which appear due to the reduced regularity of the residual part,
lead to wrong computation of xs,N and js,N . It is clear that xs,N (and js,N ) need
to be approximated with good accuracy. The error in xs,N , which would increase
over time, should be in the order of the discretization error to achieve an overall
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ROM error in the order of the discretization error. A mitigating measure could be
to improve shock approximation similar to [14]. The high-frequency modes could
also be a source of the problem. The potential solution could be to filter out the
high-frequency modes when advancing the shock.

4 Conclusions

We have proposed a decomposition ansatz and used it in conjunction with POD.
We have show-cased the performance of the proposed approach on the Burgers
equation. The proposed approach is able to resolve the discontinuities and also
offers reduction in ROM error. Future work will deal with resolving issues that exist
in the proposed approach for larger POD mode numbers. Moreover, we will adapt
the discussed formulation for system of conservation laws. We will also assess the
performance of the method for parametrized scalar and system of conservation laws.
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Numerical Simulation of a Phase-Field
Model for Reactive Transport in Porous
Media

Manuela Bastidas, Carina Bringedal, and Iuliu Sorin Pop

Abstract We consider a Darcy-scale model for mineral precipitation and dissolu-
tion in a porous medium. This model is obtained by homogenization techniques
starting at the scale of pores. The model is based on a phase-field approach
to account for the evolution of the pore geometry and the outcome is a multi-
scale strongly coupled non-linear system of equations. In this work we discuss a
robust numerical scheme dealing with the scale separation in the model as well
as the non-linear character of the equations. We combine mesh refinement with
stable linearization techniques to illustrate the behaviour of the multi-scale iterative
scheme.

1 Introduction

Soil salinization and harvesting of geothermal energy are examples from real life
in which the pore-scale geometry can be affected by mineral precipitation and
dissolution. While these processes are active at the pore scale (micro scale) and
affect the pore-scale structures, their effects are reflected in the Darcy-scale (macro-
scale) parameters such as the porosity and permeability.

Several approaches are available to account for the evolution of the micro-
scale geometry. To locate the micro-scale interfaces a layer thickness function is
proposed in [8, 15], whereas a level set approach is considered in [2, 13, 14]. In
both approaches, upscaled models can be derived by solving micro-scale problems
involving moving interfaces. This makes the development of numerical schemes a
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challenging task as it requires a very fine mesh reproducing the micro-scale details
such as tracking the movement of the interfaces.

Here we model the evolution of the micro-scale boundary through a phase-field
equation. Then, moving interfaces are approximated by a thin diffuse interface layer
described by a phase-field variable φ. This variable is an approximation of the
characteristic function and approaches 1 in the fluid phase and 0 in the mineral.
Using the phase-field approach we avoid the difficulties related to discontinuities in
the domain. Building on the idea of minimizing the free energy developed in [5], a
phase-field model for dissolution and precipitation processes is developed in [16].
In [12] this is extended to two fluid phases and the mineral phase. We consider the
phase-field model proposed in [3] which considers one fluid phase and the mineral
phase, but includes fluid flow. This model is hence defined over the entire domain
where the evolution of the phase field accounts the moving fluid-mineral interface.

Since the main interest is the behaviour of the system at the macro scale,
homogenization techniques are employed to derive upscaled models. The outcome
is a coupled and non-linear system of equations addressing flow, chemistry and the
phase-field evolution. Focusing on the two-scale model in [3], the main goal of this
paper is to develop a robust numerical scheme accounting for both scale separation
and the non-linearities in the model. This multi-scale iterative scheme borrows ideas
from [4], where a stabilized iterative coupling scheme is introduced for a phase-field
approach for fracture propagation.

This paper is organized as follows. In Sect. 2 the two-scale model is presented
briefly, where the governing equations in two different scales are displayed and the
strong coupling between the scales is discussed. In Sect. 3 we introduce the multi-
scale iterative scheme in order to solve the upscaled model. There we give some
details about handling the non-linearities and the convergence of the multi-scale
iterative scheme. Finally, Sect. 4 provides a numerical example and the discussion
of the results.

2 The Two-Scale Phase-Field Model

We consider the two-scale phase-field model formulation of single-phase fully
saturated flow with constant density and viscosity introduced in [3]. There, the
details about the formal homogenization procedure can be found. Here we restrict
to presenting the upscaled model only.

We consider a periodic porous medium � ⊆ R
2. At each x ∈ � we identify

the variations at the micro-scale defining a fast variable. In other words, for each
macro-scale point x ∈ � we use one micro-scale cell Y := [0, 1]2 to capture the
fast changes encountered locally.
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The unknowns q(x, t), p(x, t) denote the macro-scale velocity and pressure in
the fluid and u(x, t) is the upscaled solute concentration. The macro-scale flow and
solute transport problems are

(PM
1 )

{

(PM
2 )

{

∇ · q = 0, in �T := �× (0,T],
q = −K∇p, in �T,

∂t (φ(u− u�))+∇ · (qu) = D∇ · (A∇u), in �T,

(1)

completed by initial and boundary conditions. Here D is the solute diffusivity and
u� > u is the constant concentration of the species as part of the immobile mineral
phase. Moreover, the variable φ defines the porosity and it is nothing but the average
of the phase field φ over the micro-scale Y . The matrices A and K are the effective
diffusion and permeability, respectively.

For all x ∈ � the phase field φ(x, y, t) is updated by solving the following micro-
scale problem

(Pμ
φ)

{
λ2∂tφ + γP ′(φ) = γ λ2∇2φ − 4λφ(1− φ)

1

u�
f (u), for y ∈ Y, t > 0,

φ is Y -periodic.
(2)

This problem is defined for y ∈ Y , while x enters as a parameter. Therefore, the
spatial derivatives should be understood w.r.t. y. The phase field φ has a smooth
transition layer of width λ > 0 separating the phases. This equation is coupled with

the macro scale through the reaction rate, which is chosen as f (u) := u2

u2
eq
− 1 with

ueq being a given equilibrium concentration. The term P(φ) = 8φ2(1 − φ)2 is the
double-well potential, which ensures that the phase field approaches 0 and 1. The
parameter γ is the diffusivity of the interface that separates the fluid and the mineral.

The macro-scale porosity in (1) is defined by the phase field φ(x, t) :=∫
Y
φ(x, y, t)dy. The elements of the effective matricesA(x, t) and K(x, t) are given

by

Ars(·, t) =
∫

Y

φδ

(
δrs + ∂rω

s) dy and Krs(·, t) =
∫

Y

φδ ws
rdy (3)



96 M. Bastidas et al.

for r,s = 1, . . . ,d. The functions ωs and ws = [ws
1 , . . . ,ws

d]t solve the following
cell problems, defined for each x ∈ � and t > 0

(Pμ
A)

⎧
⎪⎨

⎪⎩

(Pμ
K)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∇ · (φδ(∇ωs + es)) = 0, in Y,

ωs is Y -periodic and
∫

Y

ωsdy = 0,

(∇%s + es)+ μf∇2(φδws) = g(φ, λ)

φδ

ws, in Y,

∇ · (φδws) = 0, in Y,

%s is Y -periodic and
∫

Y

%sdy = 0.

(4)

As before, in (4) the derivatives are w.r.t the y variable. The function g(φ, λ) in (4)
ensures that the flow in the mineral phase becomes zero. This function is such that
g(1, λ) = 0 and g(0, λ) > 0 (see [6]). Also observe the presence of a regularized
phase-field φδ := φ+δ where δ > 0 is a regularization parameter which is included
to avoid singularities in (4).

3 The Multi-Scale Iterative Scheme

We propose an iteratively coupled scheme to simulate the multi-scale behaviour of
the phase-field model presented in Sect. 2. In [4, 10] similar approaches can be found
but we remark that in the present case the coupling of different scales is encountered.

We let N ∈ N be the number of time steps and �t = T/N be the time step
size. For n ∈ 1, . . . , N define tn = n�t and denote the time discrete solutions by
νn := ν(·, tn) for ν ∈ {φ,A,K, p,q, u}.

Applying the Euler implicit discretization, at each time step a fully coupled non-
linear system of equations has to be solved. For each n > 0, the iterative algorithm

defines a multi-scale sequence
{
φn
j ,A

n
j ,K

n
j , p

n
j ,qn

j , u
n
j

}
with j ≥ 0 being the

iteration index. Naturally, the initial guess for φn
0 and un

0 are φn−1 and un−1.
The iterative scheme follows the idea in [4]. We let Lφ > 0 be a stabilization

parameter and for j > 0 with given un
j−1 and φn

j−1, one performs the following
steps:

Step 1. For each x ∈ �, find φn
j such that

φn
j +�tγ∇ · φn

j −
�t

λ2 F(φn
j , u

n
j−1)+ Lφ

(
φn
j − φn

j−1

)
= φn−1, inY

φn
j is Y − periodic.

(5)

where F(φn
j , u

n
j−1) := −γP ′(φn

j )− 4λφn
j (1− φn

j )
1
u�
f (un

j−1).
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Fig. 1 Sketch of the iterative scheme

Step 2. Given φn
j find the effective matrices An

j and Kn
j in (3) by solving the cell

problems (4).
Step 3. Given Kn

j and An
j find pn

j , qn
j and un

j by solving the system (1).

In Fig. 1 we sketch the multi-scale iterative scheme. Here it is important to remark
that the behaviour of an efficient and robust non-linear solver for (5) affects directly
the convergence of the complete multi-scale iterative scheme. To deal with the non-
linearities we use a fixed-point iteration scheme, called L-scheme (see [9, 11]).
The convergence of the iterative scheme in Steps 1–3 is a non-trivial task as it
involves multiple scales and couples non-linear and possible degenerate systems of
equations. Preliminary results are obtained in a simplified setting. Specifically, we
assume that the pore space is never clogged and that the mineral never disappears
completely. In other words, there exists two constants φm, φM ∈ (0, 1) such that
0 < φm ≤ φ(x) ≤ φM < 1 for a.e x ∈ �. Moreover, the flow component
is disregarded and the diffusion tensor is assumed not depending on the phase
field. With M1 = max

φ∈[0,1]
u>0

{|∂1F(φ, u)|}, M2 = max
φ∈[0,1]
u>0

{|∂2F(φ, u)|} and ū =

max
x∈�
n∈N

{|u� − un(x)|} one can prove the following.
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Proposition 1 Let M1, M2, ū and φm be as above. If the time step is small enough,
namely

�t ≤ 2λ2 min

{
1

M1 +M2 + 0.5ū
,
φ

2
m

M2

}

the scheme in Steps 1–3 is convergent.

The proof uses contraction arguments, we omit the details here.

4 A Numerical Example

We consider a simplified 2D situation where the processes are expected to be
uniform in the vertical direction. The macro-scale domain is � = [0, 1]2,
where a dissolution process is triggered by imposing a Dirichlet condition for the
concentration on the right boundary of �. This configuration is displayed in Fig. 2,
while Table 1 shows the parameters used for the simulation. In the following, all the
solutions are computed using the lowest order Raviart–Thomas elements.

Figure 3 shows the evolution of the phase field corresponding to the macro scale
location (0.5, 0.5). At the micro scale we use a mesh refinement strategy to capture
the movement of the phase-field transition zone.

At each time step we construct a micro-scale mesh with 800 elements. This mesh
is refined in the first iteration of the scheme by following a prediction-correction
strategy. We refer to [1, 7] for more details about handling similar meshes.

As mentioned before, we use an L-scheme dealing with the non-linearities at the
micro scale. The non-linear term F(φ, u) needs to be split in a convex and concave
part. Only the concave part is treated implicitly and the linearization parameter

Fig. 2 The configuration of
the macro-scale problem
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Table 1 The parameters Solute diff. D = 1

Mineral concent. u� = 1

Equilibrium ueq = 0.5

Diffusivity γ = 0.01

Transition zone λ = 0.08

Initial porosity φ0 = 0.5

Max. porosity φM = 0.87

Initial condition u0 = 0.5

Stabilization Lφ = 1E−4

Fig. 3 The phase-field evolution at the macro-scale location (0.5, 0.5). From left to right, the
phase field at t = 0.2, 0.25 and 0.5

Fig. 4 The 1D projection of the concentration and the porosity at different times

corresponds to the Lipschitz constant of F with respect to φ (which depends on
the concentration u) at every multi-scale iteration.

The Darcy-scale solute concentration is displayed in Fig. 4. Due to the chosen
boundary and initial conditions, this solution does not depend on the vertical
component and therefore the 1D projection in the horizontal direction is sufficient.
The results for the porosity and the effective parameters are shown in Figs. 4 and 5.

We highlight that even if we are not computing the flow in this case, the effective
permeability can still be calculated. Where the concentration decreases, it induces a
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Fig. 5 The 1D projection of the effective parameters at different times

Fig. 6 The convergence of the multi-scale iterative scheme

dissolution of the mineral, which then increases the diffusivity and the permeability
until the system reaches the maximum porosity φM .

Finally, in Fig. 6 we show the convergence of the norm of δn,j = ‖φn

j−φ
n

j−1‖�+
‖un

j − un
j−1‖� at different time steps. The non-linear solver at each micro-scale

domain Y is stopped once the convergence criterion is below 1E−10.
In this numerical example the averaged number of degrees of freedom is

7,623,300 per time step. At the macro scale we have 512 elements and for each
element the porosity and the effective parameters must be updated at each iteration.
Due to the local mesh refinement the micro-scale degrees of freedom vary between
1200 and 1400. However, the micro-scale problems are solved in parallel and this
can be improved by employing an adaptive strategy at the macro scale (see [12]).

We conclude that the multi-scale iterative scheme presented here is a valid
approach to solve the two-scale phase-field model of precipitation and dissolution
processes. This scheme can easily be parallelized and the resulting simulations show
the influence of the micro-scale structural changes on the macro-scale parameters.
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The next research steps are in the direction of proving the convergence of the
full numerical scheme, including the error analysis of the micro-cell problems.
Moreover, the study of the optimal choice of the stabilization parameter Lφ and
the macro-scale adaptivity are important to enhance the efficiency of the scheme.
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A Structure-Preserving Approximation
of the Discrete Split Rotating Shallow
Water Equations

Werner Bauer, Jörn Behrens, and Colin J. Cotter

Abstract We introduce an efficient split finite element (FE) discretization of a y-
independent (slice) model of the rotating shallow water equations. The study of this
slice model provides insight towards developing schemes for the full 2D case. Using
the split Hamiltonian FE framework (Bauer et al., A structure-preserving split finite
element discretization of the rotating shallow water equations in split Hamiltonian
form (2019). https://hal.inria.fr/hal-02020379), we result in structure-preserving
discretizations that are split into topological prognostic and metric-dependent
closure equations. This splitting also accounts for the schemes’ properties: the
Poisson bracket is responsible for conserving energy (Hamiltonian) as well as mass,
potential vorticity and enstrophy (Casimirs), independently from the realizations
of the metric closure equations. The latter, in turn, determine accuracy, stability,
convergence and discrete dispersion properties. We exploit this splitting to introduce
structure-preserving approximations of the mass matrices in the metric equations
avoiding to solve linear systems. We obtain a fully structure-preserving scheme
with increased efficiency by a factor of two.
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1 Introduction

The notion of structure-preserving schemes describes discretizations that preserve
important structures of the corresponding continuous equations: e.g. (i) the con-
servation of invariants such as energy, mass, vorticity and enstrophy in the case
of the rotating shallow water (RSW) equations, (ii) the preservation of geometric
structures such as div curl = curl grad = 0 or the Helmholtz decomposition of
vector fields, and (iii) the conservation of large scale structures such as geostrophic
or hydrostatic balances [15]. Their conservation is important to avoid, for instance,
biases in the statistical behavior of numerical solutions [10] or to get models that
correctly transfer energy and enstrophy between scales [12].

The construction of such schemes is an active area of research and various
approaches to develop structure-preserving discretizations exist: e.g. variational
discretizations [5, 6, 14] or compatible FE methods [9, 11]. In particular FE methods
are a very general, widely applicable approach allowing for flexible use of meshes
and higher order approximations. When combined with Hamiltonian formulations,
they allow for stable discretizations of the RSW equations that conserve energy and
enstrophy [2, 11]. However, they usually apply integration by parts to address the
regularity properties of the FE spaces in use, which introduces additional errors and
non-local differential operators. Moreover, FE discretizations usually involve mass
matrices which are expensive to solve, while approximations of the mass matrices
have to be designed carefully in order to preserve structure.

To address these disadvantages, we introduced in [3, 4] the split Hamiltonian
FE method based on the split equations of Geophysical Fluid Dynamics [1], in
which pairs of FE spaces are used such that integration by parts is avoided, and we
derived structure-preserving discretizations of a y-independent RSW slice-model
that preserve both the Hamiltonian and the split structures. Our method shares some
basic ideas with mimetic discretizations (e.g. [7–9, 13]) in which PDEs are written
in differential forms, but stresses a distinction between topological and metric parts
and the use of a proper FE space for each variable.

Here, we address the disadvantage of FE methods arising from mass matrices.
In the framework of split FEM [3, 4], we introduce approximations of the mass
matrices in the metric equations resulting in a structure-preserving discretization of
the split RSW slice-model that is more efficient than the original schemes introduced
in [4]. To this end, we recall in Sect. 2 the split Hamiltonian framework and the split
RSW slice-model, and we introduce the approximation of the metric equations. In
Sect. 3, we present numerical results and in Sect. 4 we draw conclusions.

2 Split Hamiltonian FE Discretization of the RSW
Slice-Model

On the example of a y-independent slice model of the RSW equations, we recall the
split Hamiltonian FE method of [4]. For pairs of height fields (straight 0-form h(0)

and twisted 1-form h̃(1)), of velocity fields in x-direction (twisted 0-form ũ(0) and
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Fig. 1 Relation between
operators and spaces

straight 1-form u(1)), and of velocity fields in outer slice direction (straight 0-form
v(0) and twisted 1-form ṽ(1)), this RSW slice-model reads [4]

∂u(1)

∂t
− q(1)F (0)

v + dB(0) = 0,
∂ṽ(1)

∂t
+ q(1)F̃ (0)

u = 0,
∂h̃(1)

∂t
+ dF̃ (0)

u = 0,

ũ(0) = �̃u(1), v(0) = �̃̃v(1), h̃(1) = �̃h(0),

(1)

in which F̃
(0)
u := h(0)ũ(0) and F

(0)
v := h(0)v(0) are mass fluxes, B(0) := gh(0) +

1
2 (̃u

(0))2 + 1
2 (v

(0))2 is the Bernoulli function with gravitational constant g. q(1) =
�̃q̃(0) = q̃(0)d̃x is the potential vorticity (PV) defined implicitly via q̃(0)h̃(1) =
dv(0) + f dx with Coriolis parameter f . All variables are functions of x and t: for
instance, u(1)(x, t) is the coefficient function of the 1-form u(1) = u(1)(x, t)dx.

The pairs of variables are connected via the twisted Hodge-star operator �̃ :
!k → !̃(1−k) (see definition in [1]) that maps from straight k-forms to twisted
(1 − k)-forms (or vice versa) with k = 0, 1 in one dimension (1D). The index (k)

denotes the degree, and !k, !̃k the space of all k-forms. Note that straight forms do
not change their signs when the orientation of the manifold changes in contrast
to twisted forms. The exterior derivative d is a mapping d : !k → !k+1 (or
d : !̃k → !̃k+1). Here in 1D, it is simply the total derivative of a smooth function
g(0) ∈ !0, d g(0) = ∂xg(x)dx ∈ !1 (see [1] for full details). Figure 1 illustrates the
relations between the operators and spaces.

Galerkin Discretization To substitute FE for continuous spaces, we consider
!0

h, !̃
0
h = CGp and !1

h, !̃
1
h = DGp−1 with polynomial order p. We allow the

discrete Hodge star operators �̃0
h : !̃1

h → !0
h and �̃1

h : !1
h → !̃0

h to be non-

invertible. The split FE discretization of Eqs. (1) seeks solutions u
(1)
h , ṽ

(1)
h , h̃

(1)
h ∈

(!1
h(L), !̃1

h(L), !̃1
h(L)) of the topological equations (as trivial projections)

〈χ(1)
h ,

∂

∂t
u
(1)
h 〉 − 〈χ(1)

h , q
(1)
h F (0)

vh
〉 + 〈χ(1)

h , dB
(0)
h 〉 = 0, ∀χ(1)

h ∈ !1
h, (2)

〈χ̃ (1)
h ,

∂ṽ
(1)
h

∂t
〉 + 〈χ̃ (1)

h , q
(1)
h F̃ (0)

uh
〉 = 0, ∀χ̃ (1)

h ∈ !̃1
h, (3)

〈χ̃ (1)
h ,

∂h̃
(1)
h

∂t
〉 + 〈χ̃ (1)

h , d F̃ (0)
uh
〉 = 0, ∀χ̃ (1)

h ∈ !̃1
h, (4)
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subject to the metric closure equations (as non-trivial Galerkin projections (GP))

GP(1-i)u :
∫

L

τ (i) ∧
{
�̃(�̃1

hu
(1)
h )

�̃1
hu

(1)
h

=
∫

L

τ (i) ∧
{
�̃ũ

(0)
h if i = 0

ũ
(0)
h if i = 1

∀τ (i) ∈ !i
h

(5)

as realizations of �̃1
h : !1

h → !̃0
h and, similarly defined, GP(1-i)v and

GP(1-j )h, j = 0, 1, as realizations of �̃0
h : !̃1

h → !0
h. q

(1)
h := �̃q̃

(0)
h

is a discrete 1-form with coefficient function q̃
(0)
h (x) ∈ !̃0

h determined by

〈�̃φ̃(0)
h , q̃

(0)
h h̃

(1)
h 〉 + 〈d φ̃

(0)
h , ṽ

(1)
h 〉 − 〈�̃φ̃(0)

h , f dx〉 = 0,∀φ̃(0)
h ∈ !̃0

h. B(0)
h , F̃

(0)
uh , F

(0)
vh

follow from the definitions above. 〈·, ·〉 := ∫
L · ∧ �̃· is the L2 inner product on the

domain L. We distinguish between continuous and discrete Hodge star operators
�̃ and �̃h, respectively. �̃ is used in 〈, 〉 such that k-forms of the same degree are
multiplied, while �̃h is realized as in Eqs. (5) via non-trivial GP between 0- and
1-forms, cf. [3]. As the prognostic equations (2)–(4) hold, as those in (1), pointwise
and consist of forms, we denote them as topological.

2.1 Continuous and Discrete Split Hamiltonian RSW
Slice-Model

Both the continuous split RSW slice-model of Eqs. (1) and the corresponding weak
(discrete) form of (2)–(5) can equivalently be written in Hamiltonian form, as shown
in [4]. Considering the discrete version, the Hamiltonian with metric equations reads

H[u(1)
h , ṽ

(1)
h , h̃

(1)
h ] = 1

2
〈u(1)

h , �̃h
(0)
h ũ

(0)
h 〉 + 1

2
〈̃v(1)h , �̃h

(0)
h v

(0)
h 〉 + 〈̃h(1)

h , �̃gh
(0)
h 〉

ũ
(0)
h = �̃1

hu
(1)
h , v

(0)
h = �̃0

hṽ
(1)
h , h

(0)
h = �̃0

hh̃
(1)
h (metric eqns.)

(6)

while the almost Poisson bracket {, } is defined as

{F,G} := −〈 δF
δh̃

(1)
h

, d �̃
δG
δu

(1)
h

〉 − 〈 δF
δu

(1)
h

, d �̃
δG
δh̃

(1)
h

〉 + 〈 δF
δu

(1)
h

, q
(1)
h �̃

δG
δṽ

(1)
h

〉 − 〈 δF
δṽ

(1)
h

, q
(1)
h �̃

δG
δu

(1)
h

〉

(7)

with q
(1)
h defined as above. Then, the dynamics for any functional F[u(1)

h , ṽ
(1)
h , h̃

(1)
h ]

is given by d
dt
F = {F,H}.

Splitting of Schemes Properties The split Hamiltonian FE method results in a
family of schemes in which the schemes’ properties split into topological and metric
dependent ones, cf. [4].
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The topological properties hold for all double FE pairs that fulfill the double
complex structure of diagram (1) (shown in [4]). In particular,

• the total energy is conserved, because d
dt
H = {H,H} = 0 which follows from

the antisymmetry of (7);
• the Casimirs C = M,PV,PE are conserved as d

dt
C = {C,H} = 0 for

{C,G} = 0∀G with C = 〈̃h(1)
h , �̃F (̃q

(0)
h )〉 for F = 1(M), F = q̃

(0)
h 1̃(PV ),

F = (̃q
(0)
h )2(PE);

• {, } is independent of �̃h, hence H,C are conserved for any metric equation.

The metric properties are associated to a certain choice of FE spaces. In
particular, this choice determines

• the dispersion relation which usually depends on �x between degrees of freedom
(DoFs),

• the stability, because the inf-sup condition depends on the norm, and
• convergence and accuracy, which both are measured with respect to norms.

2.2 Family of Structure-Preserving Split RSW Schemes

Besides the splitting into topological and metric properties, another remarkable
feature of the split FE framework is that one choice of compatible FE pairs leads
to a family of split schemes, cf. [3, 4]. In the following, we consider for p = 1
the piecewise linear space !0

h, !̃
0
h = CGp = P1 with basis {φl(x)}Nl=1 and

the piecewise constant space !1
h, !̃

1
h = DGp−1 = P0 with basis {χm(x)}Nm=1.

Being in a 1D domain with periodic boundary, both have N independent DoFs. We
approximate 0-forms in P0 and 1-forms in P1, e.g. u(1)

h (x, t) =∑N
m=1 um(t)χm(x).

The split framework [4] leads to one set of discrete topological equations for
Eqs. (2)–(4), and four combinations of discrete metric equations for (5) (using the
Hadamard product ◦):

topological momentum eqns. : ∂

∂t
u1
e − q1

e ◦ F0
vn + DenB0

n = 0,
∂

∂t
ṽ1
e + q1

e ◦ F̃u
0
n = 0,

topological continuity eqns. : ∂

∂t
h̃

1
e + DenF̃u

0
n = 0,

(8)



108 W. Bauer et al.

We used the following (N ×N) matrices with index n for nodes and e for elements:
(i) mass matrices Mnn, Mee, Men, with metric-dependent coefficients (Mnn)ll′ =∫
L
φl(x)φl′(x)dx, (Mee)mm′ = ∫

L
χm(x)χm′(x)dx, (Men)lm′ = ∫

L
φl(x)χm′(x)dx

(with M̃en = {Menin Or,−Menin -Or} for orientation Or of L and Men = (Mne)T

with T for the transposed matrix); and (ii) the stiffness matrix Den with metric-
independent coefficient (Den)lm′ = ∫

L
dφl(x)
dx

χm′(x)dx (with Den = (Dne)T ). We
separate Mne = Pne (	xe)

T into a metric-dependent 	xe and a metric-free part
Pne, the latter is an averaging operator from e to n values (similarly for Men and
Pen).

Moreover, u1
e = Meeue is a discrete 1-form associated to the vector array ue =

{um(t)|m = 1, . . . N} while h̃
1
e = Meeh̃e (or ṽ1

e) is a discrete 1-form with h̃e =
{̃hm(t)|m = 1, . . . N}. The PV 1-form reads q1

e = M̃enq̃0
n = P̃enq̃0

n (	xe)
T in

agreement with the definition in (1). Discrete 0-forms read, e.g. h0
n = {hl(t)|l =

1, . . . N}. The discrete mass fluxes are F̃u
0
n = h0

n ◦ ũ0
n and F0

vn = h0
n ◦ v0

n and

the discrete Bernoulli function reads B0
n = 1

2 ũ0
n ◦ ũ0

n + 1
2 v0

n ◦ v0
n + gh0

n. Finally,
GP1u,GP0u,GP1h,GP0h are the nonlinear GPs of (5) for P1 and P0 test functions.

2.3 A Structure-Preserving Approximation of Split RSW
Schemes

Here we introduce a new, computationally more efficient split RSW scheme com-
pared to those of [4]. We exploit the splitting of the topological and metric properties
within the split FE framework to introduce structure-preserving approximations of
the mass matrices used in the metric equations. Instead of using the full nontrivial
Galerkin projections GP1h,GP0h for height or GP1u,GP0u for velocity u, v, we
use the averaged versions:

AVGh : h0
n = Pneh̃

1
e , AVGu : ũ0

n = Pneu1
e ,

and denote the resulting scheme with AVGu– AVGh. Rather then solving linear
systems in (8), we obtain values for h0

n, ũ0
n, v0

n simply by averaging. This is
computationally more efficient. In fact, already for this 1D problem we achieve a
speedup by a factor of 2 (wall clock time) compared to the full GPs.

As stated in Sect. 2.1, such modification does not impact on the structure-
preserving properties but will change the metric-dependent ones instead. Before
we confirm this in Sect. 3 numerically, we first determine analytically the discrete
dispersion relation related to this approximation. A similar calculation as done in
[3] leads to the following discrete dispersion relation:

cd = ωaa

k
= ±√gH

1

k�x
sin(k�x)
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Fig. 2 Dispersion relations:
analytic (black) for
c = √

gH = 1, ω11 for
GP1u–GP1h, ω10 for
GP1u–GP0h and
GP0u–GP1h, ω00 for
GP0u–GP0h (cf. [4]), and
ωaa for AVGu–AVGh

with angular frequency ωaa = ωaa(k) and discrete wave speed cd → c = √
gH

(with mean height H ) in case k → 0 and with a spurious mode (second zero root)
at shortest wave length k = π

�x
. As shown in Fig. 2 (with results relative to the

nondimensional wave speed c = √
gH = 1), this is similar to the dispersion relation

of the GP1u–GP1h scheme in the sense that both have a spurious mode at k = π
�x

,
cf. [3]. For completeness, we added the dispersion relations for the other possible
realizations of the metric equations (8) as introduced in [3, 4].

3 Numerical Results

We study the structure-preserving properties, as well as convergence, stability and
dispersion relation for the averaged split scheme AVGu– AVGh and compare it with
the split schemes of [4]. We use test cases (TC) in the quasi-geostrophic regime such
that effects of both gravity waves and compressibility are important.

The study of structure preservation (topological properties) will be performed
with a flow in geostrophic balance in which the terms are linearly balanced
while nonlinear effects are comparably small (Fig. 3). To illustrate the long term
behaviour, we run the simulation in this TC 1 for about 10 cycles (meaning that the
(analytical) wave solutions have traveled 10 times over the entire domain). To test
convergence and stability (i.e. metric-dependent properties), we use in TC 2 a steady
state solutions of Eqs. (1). To illustrate the metric dependency of the dispersion
relations, we use in TC 3 an initial height distribution (as in Fig. 3, left) that is
only partly in linear geostrophic balance such that shock waves with small scale
oscillations develop that depend on the dispersion relation. More details on the TC
can be found in [4].
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Fig. 4 Relative error values in dependence of N of AVGu– AVGh compared to GP1u– GP0h [4].
Left: errors for E and PE for TC 1. Right: errors for the steady state solution of TC 2 after 1 cycle

Topological Properties Figure 3 (right) shows for TC 1 the relative errors of the
averaged split scheme for energy E, mass Me or Mn, potential vorticity PV and
enstrophy PE (see definitions in [4]). In all cases studied, these quantities exhibit
no long term trend while Me,Mn and PV are preserved at machine precision. The
lower accuracy in E and PE result from using a Crank Nicolson time scheme. With
increased resolution these errors decrease with third order rate (Fig. 4, left), cf. [4].

When compared to the split schemes of [4], these error values are very close to
the results presented therein, underpinning the fact that modifications in the metric
equations do not affect the quality of structure preservation of the schemes.

Metric-Dependent Properties Consider next the convergence behaviour of the
averaged split scheme AVGu– AVGh shown in Fig. 4 (right) for TC 2. To ease
comparison, we include L2 error values of the split scheme GP1u– GP0h of [4]
noting that the other split schemes presented therein share more or less the same
error values for the corresponding fields. In all cases, the error values decrease as
expected: all P1 fields show second order, all P0 fields first order convergences rates.

While the errors of the P0 fields of AVGu– AVGh is close to the corresponding
values of the split schemes of [4], the P1 fields of AVGu– AVGh have error
values that are about one order of magnitude large than the corresponding fields
of e.g. GP1u– GP0h. This agrees well with the fact that we do not solve the full
linear system in the metric equations to recover the P1 fields but use instead
approximations, which slightly increases the P1 error values of AVGu– AVGh.

With TC 3 we illustrate numerically how the choice of metric equations deter-
mines the discrete dispersion relations. As derived in Sect. 3, the discrete dispersion
relation of AVGu– AVGh equals a sine wave, hence all waves of frequency k have
wave speeds equal or slower than c (black curve in Fig. 2). In particular for wave
numbers larger then π

2�x
, waves start to slow down until there is a standing wave

at k = π
�x

. This is a similar behavior to the GP1u– GP1h scheme of [4], but for
AVGu– AVGh this effect is stronger given the generally slower wave propagation.
This behaviour is clearly visible in Fig. 5 where we observe in both fields lower
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Fig. 5 Fields with oscillations at the wave fronts in dependency of the wave dispersion relations
of Fig. 2 on a mesh with Ne = 512 elements and after a simulation time of 0.225 cycles

frequency oscillation behind the front when compared to GP1u– GP1h (see inlet).
This result agrees well with the discrete dispersion relations shown in Fig. 2.

4 Conclusions

We introduced a y-independent RSW slice-model in split Hamiltonian form and
derived a family of lowest-order (P0–P1) structure-preserving split schemes. The
splitting of the equations into topological and metric parts transfers also to schemes’
properties. The framework allows for different realizations of metric equations
which all preserve the Hamiltonian and the Casimirs of the Poisson bracket. This
allowed us to introduce an approximation of the metric equations which is structure-
preserving, achieving a speedup of a factor of 2 because no linear systems had to be
solved.
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Iterative Coupling for Fully Dynamic
Poroelasticity

Markus Bause, Jakub W. Both, and Florin A. Radu

Abstract We present an iterative coupling scheme for the numerical approximation
of the mixed hyperbolic-parabolic system of fully dynamic poroelasticity. We prove
its convergence in the Banach space setting for an abstract semi-discretization in
time that allows the application of the family of diagonally implicit Runge–Kutta
methods. Recasting the semi-discrete solution as the minimizer of a properly defined
energy functional, the proof of convergence uses its alternating minimization. The
scheme is closely related to the undrained split for the quasi-static Biot system.

1 Introduction

Information on flow in deformable porous media has become of increasing impor-
tance in various fields of natural sciences and technology. It offers an abundance of
technical, geophysical, environmental and biomedical applications including mod-
ern material science polymers and metal foams, gaining significance particularly
in lightweight design and aircraft industry, design of batteries or hydrogen fuel
cells for green technologies, geothermal energy exploration or reservoir engineering
as well as mechanism in the human body and food technology. Consequently,
quantitative methods, based on numerical simulations, are desirable in analyzing
experimental data and designing theories based on mathematical concepts. Recently,
the quasi-static Biot system (cf., e.g., [12, 14]) has attracted researchers’ interest
and has been studied as a proper model for the numerical simulation of flow in
deformable porous media. The design, analysis and optimization of approximation
techniques that are based on an iterative coupling of the subproblems of fluid
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flow and mechanical deformation were focused strongly. Iterative coupling offers
the appreciable advantage over the fully coupled method that existing and highly
developed discretizations and algebraic solver technologies can be reused. For the
quasi-static Biot system, pioneering work is done in [10, 12]. Further research is
presented in, e.g., [2, 4, 7–9, 13].

In the case of larger contrast coefficients that stand for the ratio between the
intrinsical characteristic time and the characteristic domain time scale, the fully
dynamic hyperbolic-parabolic system of poroelasticity has to be considered. In [11],
this system (referred to as the Biot–Allard equations) is derived by asymptotic
homogenization in the space and time variables. Here, to fix our ideas and carve
out the key technique of proof, a simplified form of the system proposed in [11]
is studied. However, its mixed hyperbolic-parabolic structure is preserved. Our
modification of the fully dynamic poroelasticity model in [11] comes through a
simplication of the solution’s convolution with the dynamic permeability that is
defined as the spatial average of pore system Stokes solutions on the unit cell (the
periodic representative volume element of the porous medium). The fully dynamic
system of poroelasticity to be analyzed here is given by (cf. also [14, p. 313])

ρ ∂2
t u−∇ · (Cε(u)− αp) = f , (1a)

∂t (c0p + α : ε(u))+∇ · q = h , (1b)

κ−1q +∇p = g . (1c)

System (1) is equipped with appropriate initial and boundary conditions. In (1), the
variable u is the unkown effective solid phase displacement and p is the unkown
effective pressure. The quantity ε(u) = (∇u+ (∇u)�)/2 denotes the symmetrized
gradient or strain tensor. Further, ρ is the effective mass density, C is Gassmann’s
fourth order effective elasticity tensor, α is Biot’s pressure-storage coupling tensor
and c0 is the specific storage coefficient. In the three field formulation (1), the vector
field q is Darcy’s velocity and κ is the permeability tensor. All tensors are assumed
to be symmetric, bounded and uniformly positive definite, the constants ρ and c0
are positive. By A : B we denote the Frobenius inner product of A and B. The
functions on the right-hand side of (1) are supposed to be elements in dual spaces
and, therefore, can include body forces and surface data (boundary conditions).

So far, the numerical simulation of the system (1) has been studied rarely in
the literature despite its numerous applications in practice. This might be due to
the mixed hyberbolic-parabolic character of the system and severe complexities
involved in the construction of monolithic solver or iterative coupling schemes
with guaranteed stability properties. Space-time finite element approximations of
hyperbolic and parabolic problems and the quasi-static Biot system were recently
proposed, analyzed and investigated numerically by the authors in [1–3]. Here, we
propose an iterative coupling scheme for the system (1) and prove its convergence.
This is done in Banach spaces for the semi-discretization in time of (1). An abstract
setting is used for the time discretization such that the family of diagonally implicit
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Runge–Kutta methods becomes applicable. The key ingredient of our proof of
convergence is the observation that we can recast the semi-discrete approximation of
(1) as the minimizer of an energy functional in the displacement and Darcy velocity
fields. To solve the minimization problem, the general and abstract framework of
alternating minimization (cf. [5, 6]) is applied. The resulting subproblems of this
minimization are then reformulated as our final iterative coupling scheme. Thereby,
the proof of convergence of the iterative scheme is traced back to the convergence
of the alternating minimization approach. This shows that the latter provides an
abstract and powerful tool of optimization for the design of iterative coupling
schemes.

We use standard notation. In particular, we denote by 〈·, ·〉 the standard inner
product of L2(�) and by ‖ · ‖ the norm of L2(�).

2 Variational Formulation of a Semi-Discrete Approximation
of the System of Dynamic Poroelasticity

Firstly, we discretize the continuous system of dynamic poroelasticity (1) in time
by using arbitrary (diagonally implicit) Runge–Kutta methods and formulate the
semi-discrete approximation as solution to a minimization problem, following the
approach in [5]. For this, we consider an equidistant partition 0 = t0 < t1 < . . . <

tN = T of the time interval of interest [0, T ]with time step size �t . In the sequel, we
use the following function spaces for displacement, pressure, and flux, respectively,

Vn :=
{
v ∈ H 1(�)d

∣
∣ satisfies prescribed BC at time tn

}
,

Qn := L2(�) ,

Wn := {
w ∈ H(div;�)

∣
∣w satisfies prescribed BC at time tn

}
.

Further, let V0, Q0, and W0 denote the corresponding natural test spaces, and V�
0,

Q�
0, and W�

0 their dual spaces.
Applying any diagonally implicit Runge–Kutta method for the temporal dis-

cretization of (1), eventually involves solving systems of the following structure.

Problem 1 In the n-th time step, find the displacementun ∈ Vn, pressure pn ∈ Qn,
and flux qn ∈Wn, satisfying for all (v, q,w) ∈ V0 × Q0 ×W0 the equations

ρ

�t2

〈
un, v

〉+ θ1
〈
Cε(un), ε(v)

〉− θ1
〈
αpn, ε(v)

〉 = 〈
f n

θ,�t , v
〉
, (2a)

c0
〈
pn, q

〉+ 〈
α : ε(un), q

〉+ θ2�t
〈∇ · qn, q

〉 = 〈
hn
θ,�t , q

〉
, (2b)

〈
κ−1qn,w

〉
− 〈

pn,∇ · w〉 = 〈
gn
θ,�t ,w

〉
. (2c)
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In (2), the quantities θ1, θ2 ∈ (0, 1] are discretization parameters, and the right-
hand side functions f n

θ,�t ∈ V�
0, hn

θ,�t ∈ Q�
0, gn

θ,�t ∈ W�
0 include information on

external volume and surface terms, as well as previous time steps depending on the
choice of the implicit Runge–Kutta discretization.

Assuming positive compressibility, i.e., c0 > 0 for the specific storage coef-
ficient, the semi-discrete approximation satisfies equivalently the following varia-
tional problem; cf. [5] for the derivation of a similar equivalence in the framework
of the quasi-static Biot system.

Problem 2 Find (un, qn) ∈ Vn ×Wn, satisfying

(un, qn) = arg min
(u,q)∈Vn×Wn

E(u, q) , (3)

where the energy E : Vn ×Wn → R at time tn is defined by ((u, q) ∈ Vn ×Wn)

E(u, q) := ρ

2�t2 ‖u‖2 + θ1

2
〈Cε(u), ε(u)〉 + θ1θ2�t

2

〈
κ−1q, q

〉

+ θ1

2c0

∥
∥hn

θ,�t − α : ε(u)− θ2�t∇ · q∥∥2 − 〈
f n

θ,�t ,u
〉− 〈

gn
θ,�t , q

〉
.

(4)

The semi-discrete pressure pn may then be recovered by the post-processing step

pn = c−1
0

(
hn
θ,�t − α : ε(un)− θ2�t ∇ · qn

)
. (5)

3 Iterative Coupling for the System of Dynamic
Poroelasticity

Following the philosophy of [5], we propose an iterative coupling of the semi-
discrete equations (2) of dynamic poroelasticity by firstly applying the fundamental
alternating minimization to the variational formulation (3); cf. Algorithm 1.

Algorithm 1: Single iteration of the alternating minimization

1 Input: (un,k−1, qn,k−1) ∈ Vn ×Wn

2 Determine un,k := arg minu∈Vn E(u, qn,k−1)

3 Determine qn,k := arg minq∈Wn E(un,k, q)

Secondly, the resulting scheme is equivalently reformated in terms of a stabilized
splitting scheme applied to the three-field formulation (2). For this, a pressure iterate

pn,k = c−1
0

(
hn
θ,�t − α : ε(un,k)− θ2�t ∇ · qn,k

)
∈ Qn, k ≥ 0, is introduced,

consistent with (5), and the optimality conditions corresponding to the two steps of
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Algorithm 1 are reformulated. The calculations are skipped here. We immediately
present the resulting scheme, which in the end is closely related to the undrained
split for the quasi-static Biot system [10].

Problem 3 Let (un,0, pn,0) ∈ Vn × Qn be given and k ≥ 1.
1. Step (Update of mechanical deformation): For given (un,k−1, pn,k−1) ∈ Vn×

Qn, find un,k ∈ Vn satisfying for all v ∈ V0,

ρ

�t2

〈
un,k, v

〉
+ θ1

〈

Cε(un,k)+ α ⊗ α

c0
ε(un,k − un,k−1), ε(v)

〉

(6)

− θ1

〈
αpn,k−1, ε(v)

〉
= 〈

f n
θ,�t , v

〉
,

where ⊗ : Rd×d × R
d×d → R

d×d×d×d denotes the standard tensor product.
2. Step (Update of Darcy velocity and pressure): For given (un,k, pn,k−1) ∈

Vn × Qn find (pn,k, qn,k) ∈ Qn ×Wn satisfying for all (q,w) ∈ Q0 ×W0,

c0

〈
pn,k, q

〉
+
〈
α : ε(un,k), q

〉
+ θ2�t

〈
∇ · qn,k, q

〉
= 〈

hn
θ,�t , q

〉
, (7a)

〈
κ−1qn,k,w

〉
−
〈
pn,k,∇ ·w

〉
= 〈

gn
θ,�t ,w

〉
. (7b)

We note that the splitting scheme defined by (6) and (7) utilizes the identical
stabilization as the undrained split for the quasi-static Biot equations [10].

4 Convergence of the Iterative Coupling Scheme

The identification of the undrained split approach (6) and (7) as the application of the
alternating minimization, cf. Algorithm 1, to the variational problem (3) yields the
basis for a simple convergence analysis. For this, we utilize the following abstract
convergence result, that is rewritten here in terms of the specific formulation of
Algorithm 1.

Theorem 1 (Convergence of the Alternating Minimization [6]) Let |·|, |·|m, and
| · |f denote semi-norms on V0 ×W0, V0, and W0, respectively. Let βm, βf > 0
satisfy the inequalities

|(v,w)|2 ≥ βm|v|2m and |(v,w)|2 ≥ βf|w|2f
for all (v,w) ∈ V0×W0. Furthermore, assume that the energy functional E of (4)
satisfies the following conditions:

• The energy E is Frechét differentiable with DE denoting its derivative.
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• The energy E is strongly convex wrt. | · | with modulus σ > 0, i.e., for all u, ū ∈
Vn and q, q̄ ∈Wn it holds that

E(ū, q̄) ≥ E(u, q)+ 〈DE(u, q), (ū − u, q̄ − q)〉 + σ

2
|(ū− u, q̄ − q)|2 .

• The partial functional derivatives DuE and DqE are uniformly Lipschitz contin-
uous wrt. | · |m and | · |f with Lipschitz constants Lm > 0 and Lf > 0, respectively,
i.e., for all (u, q) ∈ Vn ×Wn and (v,w) ∈ V0 ×W0 it holds that

E(u+ v, q) ≤ E(u, q)+ 〈DuE(u, q), v〉 + Lm

2
‖v‖2

m ,

E(u, q + w) ≤ E(u, q)+ 〈
DqE(u, q),w

〉+ Lf

2
‖w‖2

f .

Let (un, qn) ∈ Vn ×Wn denote the solution to (3), and let (un,k, qn,k) denote the
corresponding approximation defined by Algorithm 1. Then, for all k ≥ 1 it follows
that

E(un,k, qn,k)− E(un, qn) (8)

≤
(

1− βmσ

Lm

)(

1− βfσ

Lf

) (
E(un,k−1, qn,k−1)− E(un, qn)

)
.

A simple application of Theorem 1 now yields the main result of the work,
namely the global linear convergence of the undrained split (6), (7).

Corollary 1 (Linear Convergence of the Undrained Split) Let | · | be defined by

|(v,w)|2 := ρ

�t2
‖v‖2 + θ1 〈Cε(v), ε(v)〉 + θ1θ2�t

〈
κ−1w,w

〉

+ θ1

c0
‖α : ε(v)+ θ2�t∇ ·w‖2

for all (v,w) ∈ V0×W0. Furthermore, let (un, qn) ∈ Vn×Wn denote the solution
to (3), and let (un,k, qn,k) ∈ Vn ×Wn denote the corresponding approximation
defined by Algorithm 1. Then, for all k ≥ 1 it holds that

∣
∣
∣(un,k − un, qn,k − qn)

∣
∣
∣
2 ≤

( ‖α : C−1 : α‖∞
c0 + ‖α : C−1 : α‖∞

)2

·
∣
∣
∣(un,k−1 − un, qn,k−1 − qn)

∣
∣
∣
2
.

Proof We first examine convexity and smoothness properties of E defined in (4) by
analyzing the second functional derivative of E. For this, let (u, q) ∈ Vn ×Wn
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and (v,w) ∈ V0 × W0 be arbitrary. Then, for the second functional derivative
D2E(u, q) : (V�

0 ×W�
0)

2 → R of E it holds that

〈
D2E(u, q)(v,w), (v,w)

〉
= |(v,w)|2 . (9)

Next, we define a norm | · |m on V0 by considering the partial second functional
derivative of E with respect to the displacement field,

〈
D2
uE(u, q)v, v

〉
= ρ

�t2
‖v‖2 + θ1 〈Cε(v), ε(v)〉 + θ1

c0
‖α : ε(v)‖2 =: |v|2m .

Similarly, we define a norm | · |f on W0 by means of

〈
D2
qE(u, q)w,w

〉
= θ1θ2�t

〈
κ−1w,w

〉
+ θ1

c0
‖θ2�t∇ ·w‖2 =: |w|2f .

It directly follows that E is strongly convex wrt. | · | with modulus σ = 1, and the
partial functional derivatives DuE and DqE are uniformly Lipschitz continuous wrt.
| · |m and | · |f with Lipschitz constants Lm = 1 and Lf = 1, respectively.

By the Hölder inequality we deduce that

‖α : ε(v)‖2 =
∫

�

|α : ε(v)|2 dx ≤
∫

�

∣
∣
∣α : C−1 : α

∣
∣
∣ |ε(v) : C : ε(v)| dx (10)

≤
∥
∥
∥α : C−1 : α

∥
∥
∥∞ 〈Cε(v), ε(v)〉 .

Hence, it follows that

|v|2m ≤
(

1+
∥
∥α : C−1 : α∥∥∞

c0

)

|(v,w)|2 .

On the other hand, applying the triangle inequality and Young’s inequality, and
balancing the arising constants properly yields that

θ1

c0
‖θ2�t∇ ·w‖2 ≤ θ1

c0

(

1+
∥
∥α : C−1 : α∥∥∞

c0

)

‖θ2�t∇ · w + α : ε(v)‖2

+ θ1

c0

(

1+ c0∥
∥α : C−1 : α∥∥∞

)

‖α : ε(v)‖2 .
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Together with (10), we also conclude that

|w|2f ≤
(

1+
∥
∥α : C−1 : α∥∥∞

c0

)

|(v,w)|2 .

Thereby, the assumptions of Theorem 1 are fulfilled and (8) is ensured with

constants σ = Lm = Lf = 1 and βm = βf =
(

1+
∥
∥α:C−1:α∥∥∞

c0

)−1

. Finally,

the assertion follows directly, since E is quadratic and (un, qn) is a local minimum
of E and | · | relates to the second functional derivative of E via (9). Therefore, we
have that E(un,k, qn,k)−E(un, qn) = 2

∣
∣(un,k − un, qn,k − qn)

∣
∣2 for all k ≥ 0. ��

Remark 1 (Convergence of pn,k) The convergence of the sequence of pressures
{pn,k}k follows now immediately by a standard inf-sup argument.

Remark 2 (Comparison with Quasi-Static Case) The final convergence rate in
Corollary 1 coincides with the one for the undrained split applied to the quasi-static
Biot equations for a homogeneous and isotropic bulk; cf. [12]. In that case, the Biot
tensor α reduces to αI for some constant α ∈ (0, 1], and C is defined by the Lamé

parameters, such that α : C−1 : α = α2

Kdr
, where Kdr is the drained bulk modulus.
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A Time-Dependent Parametrized
Background Data-Weak Approach

Amina Benaceur

Abstract This paper addresses model reduction with data assimilation by elabo-
rating on the Parametrized Background Data-Weak (PBDW) approach (Maday et
al. Internat J Numer Methods Engrg 102(5):933–965, 2015) recently introduced to
combine numerical models with experimental measurements. This approach is here
extended to a time-dependent framework by means of a POD-greedy reduced
basis construction.

1 Introduction

The Parameterized-Background Data-Weak (PBDW) formulation for variational
data assimilation is a data-driven reduced order modeling approach that was initially
devised in [6] so as to merge prediction by model with prediction by data. The
PBDW approach has been developed in order to estimate the true state utrue of
a physical system for several configurations. Supposing that the true state utrue

depends on some unknown parameter ω in an unknown parameter set � that
represents the unanticipated uncertainty, the goal is to account for the dependency
of the true state utrue(ω) on uncertain parameters by means of the sole knowledge
of data. In this paper, whenever the context is unambiguous, the parameter ω is
dropped.

The formulation combines a so-called ‘best-knowledge’ (bk) model represented
by a parametrized partial differential equation (PDE) and experimentally observable
measurements. The use of data in the PBDW approach is fundamental not only to
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reconstruct the quantities of interest, but also to correct the possible bias in the
mathematical bk model.

The PBDW approach was devised in [6] for steady problems. It has been subject
to active research in recent years and it has been used for several applications.
Among others, we mention [2, 3, 5, 7, 8], and [9]. To the author’s knowledge, the
related research in the literature remains in the steady framework. In this paper, we
propose, as initiated in [1], an extension of the PBDW approach to time-dependent
state estimation. We build appropriate background spaces for the time-dependent
setting using the POD-greedy algorithm [4].

This paper is organized as follows. Section 2 introduces the notation. Section 3
extends the PBDW approach to the time-dependent framework and discusses the
offline stage. Section 4 assesses the method via numerical experiments.

2 Basic Notation and Best-Knowledge (bk) Models

We consider a spatial domain (open, bounded, connected subset) � ⊂ R
d , d ≥ 1,

with a Lipschitz boundary. We introduce a Hilbert space U composed of functions
defined over �. The space U is endowed with an inner product (·, ·) and we denote
by ‖ · ‖ the induced norm; U consists of functions {w : � → R | ‖w‖ < ∞}. To
fix the ideas, we assume that H 1

0 (�) ⊂ U ⊂ H 1(�), and we denote the dual space
of U by U′. The Riesz operator RU : U′ → U satisfies, for each � ∈ U′, and for
all v ∈ U, the equality (RU(�), v) = �(v). Finally, we introduce a parameter set
P ⊂ R

p, p ≥ 1, whose elements are generically denoted by μ ∈ P, and a discrete
training subset Ptr ⊂ P.

The first source of information we shall afford ourselves in the PBDW approach
is a so-called ‘best-knowledge’ (bk) mathematical model in the form of a parame-
terized PDE posed over the domain �. Given a parameter value μ in the parameter
set P, we denote the solution to the bk parameterized PDE as ubk(μ) ∈ U. Then,
the manifold associated with the solutions of the bk model is Mbk := {ubk(μ) | μ ∈
P} ⊂ U. In ideal situations, the true solution utrue is well approximated by the bk
manifold, i.e., the model error εbk

mod(u
true) := inf

z∈Mbk
‖utrue − z‖ is very small.

We introduce nested background subspaces Z1 ⊂ . . . ⊂ ZN ⊂ . . . ⊂ U that
are generated to approximate the bk manifold Mbk to a certain accuracy. These
subspaces can be built using various model-order reduction techniques, for instance,
the Reduced Basis (RB) method. The indices of the subspaces conventionally
indicate their dimensions. To measure how well the true solution is approximated by
the background space ZN , we define the quantity εbk

N (utrue) := infz∈ZN
‖utrue− z‖.

Although N is large enough, εbk
N (utrue) does not tend to zero since utrue rarely lies

in Mbk in realistic engineering study cases.
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3 Time-Dependent PBDW

Consider a finite time interval I = [0, T ], with T > 0. To discretize in time, we
consider an integer K ≥ 1, we define 0 = t0 < · · · < tK = T as (K + 1) distinct
time nodes over I , and we set Ktr = {1, . . . ,K}, Ktr = {0}∪Ktr and I tr = {tk}

k∈Ktr .
We aim at deriving a state estimate for a time-dependent solution in the framework
illustrated in Fig. 1.

3.1 Limited-Observations Statement

Assuming that utrue ∈ L1(I ;U), we introduce the time-integration intervals Ik =
[tk − δtk, tk + δtk], for all k ∈ K

tr, where δtk > 0 is a parameter related to the
precision of the sensor (ideally, δtk < min(tk+1 − tk, tk − tk−1) with obvious
adaptation if k=K). Then, for any function v ∈ L1(I ;U), we define the time-
averaged snapshots

vk(x) := 1

|Ik|
∫

Ik
v(t, x) dt ∈ U, ∀k ∈ K

tr. (1)

We consider observation functionals that render the behavior of given sensors. These
functionals act on time-averaged snapshots of the true solution, i.e., we consider

�k,obs
m (utrue) := �obs

m (uk,true), ∀m ∈ {1, . . . ,M}, ∀k ∈ K
tr. (2)

We then introduce the time-independent observable space UM = Span{q1, . . . , qM}
⊂ U. The observation functionals in U′ are then defined as

�k,obs
m (utrue) = (uk,true, qm), ∀m ∈ {1, . . . ,M}, ∀k ∈ K

tr. (3)

For fixed sensor locations, the computational effort to compute the Riesz representa-
tions of the observation functionals is time-independent and is incurred only once, so

Fig. 1 Characterization of the bk model in a time-dependent context
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that the experimental observations satisfy �
k,obs
m (utrue) = 1

|Ik |
∫
Ik �obs

m (utrue(t, ·))dt ,
for all m ∈ {1, . . . ,M} and k ∈ K

tr.
We are now ready to write the limited-observations PBDW statement: for each

k ∈ K
tr, find (u

k,∗
N,M, z

k,∗
N,M, η

k,∗
N,M) ∈ U×ZN ×U such that

(u
k,∗
N,M, z

k,∗
N,M, η

k,∗
N,M) = arginf

uN,M∈U
zN,M∈ZN

ηN,M∈U

‖ηN,M‖, (4)

subject to

(uN,M, v) = (ηN,M, v) + (zN,M, v), ∀v ∈ U, (5a)

(uN,M, φ) = (uk,true, φ), ∀φ ∈ UM. (5b)

The limited-observations saddle-point problem associated with (4) reads: for each
k ∈ K

tr, find (z
k,∗
N,M, η

k,∗
N,M) ∈ ZN ×UM such that

(η
k,∗
N,M, q)+ (z

k,∗
N,M, q) = (uk,true, q), ∀q ∈ UM, (6a)

(η
k,∗
N,M, p) = 0, ∀p ∈ ZN, (6b)

and the limited-observations state estimate is

u
k,∗
N,M = z

k,∗
N,M + η

k,∗
N,M, ∀k ∈ K

tr. (7)

We use the following terminology. The PBDW statement (4) and (5) estimates the
true state uk,true. Thus, the solution u

k,∗
N,M is called the ‘state estimate’. The first

contribution z
k,∗
N,M in (7) lies in the background space ZN . Hence, zk,∗N,M is called the

‘deduced background estimate’. The second contribution η
k,∗
N,M in (7) is brought

by the inclusion of the observations in the PBDW statement. The observations
supplement the bk model. Thus, ηk,∗N is called the ‘update estimate’. We highlight
that the saddle-point problem (6) is well posed if and only if the stability constant
βN,M satisfies

βN,M := inf
w∈ZN

sup
v∈UM

(w, v)

‖w‖ ‖v‖ ∈ (0, 1]. (8)

The deduced background estimate z
k,∗
N can only represent anticipated uncertainty.

Since the bk model is often deficient, one cannot realistically assume that the
state estimate u

k,∗
N of uk,true lies completely in the bk manifold. Therefore, the

update estimate η
k,∗
N is meant to cure the deficiency of the bk model by capturing
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unanticipated uncertainty. The key idea of the PBDW statement (4) and (5) is to
search for the smallest correction to the bk manifold.

The saddle-point problem (6) is purely geometric and does not include any
explicit reference to the bk model since the unique link to the bk model is
through the background space ZN . This non-intrusiveness of (6) simplifies its
implementation and makes the PBDW approach applicable to a wide class of
engineering problems.

Remark 1 (Pointwise Measurements) For simplicity of implementation, assuming
that utrue ∈ C0(I ;U), one may consider pointwise measurements in time, i.e.,(
uk,true, qm

) = �obs
m (utrue(tk, ·)), for all m ∈ {1, . . . ,M} and k ∈ K

tr. This
assumption is typically reasonable for a sensor of small precision δtk .

In algebraic form, the limited-observations PBDW statement reads: for each k ∈
K

tr, find (zk,∗, ηk,∗) ∈ R
N ×R

M such that

(
A B

BT 0

)(
ηk,∗
zk,∗

)

=
(
�k,obs

0

)

, (9)

with the matrices A = ((qm′, qm))m,m′ ∈ R
M×M and B = ((ζn, qm))m,n ∈ R

M×N ,
and the vector of observations �k,obs = (

�obs
m (uk,true)

)
m
∈ R

M . We solve (9)
through an offline/online decomposed computational procedure whenever several
realizations utrue(ω) of the true state are to be considered.

Remark 2 (PBDW Matrices) Notice that the PBDW matrices A and B are time-
independent; only the right-hand side in (9) depends on k.

3.2 Offline Stage

The main goal is to address the construction of the background space ZN . Suppose
that we have computed a set of High Fidelity (HF) trajectories S = (Sk)k∈Ktr =(
(uk(μ))μ∈Ptr

)
k∈Ktr , where uk(μ) := u(μ)(tk, ·), for all k ∈ K

tr. If we were to
consider the PBDW statement (4) and (5) for each k ∈ K

tr as an independent
steady PBDW statement, we would be using the time-dependent background spaces
Zk

Nk = POD(Sk, εPOD), for all k ∈ K
tr, where the procedure POD refers to

the Proper Orthogonal Decomposition of the set Sk with a truncation threshold
εPOD. Yet, this strategy is not convenient since the sizes Nk of the background
spaces Zk

Nk would depend on k. Since the observable space UM is fixed, the same
non-homogeneity between time nodes would also arise in the stability constant
βNk,M . Thus, we propose to apply a POD-greedy algorithm [4] to build a
time-independent background space ZN that will be used for all k ∈ K

tr. The
advantage is that the PBDW matrices A and B and the stability constant βN,M

remain unchanged regardless of the discrete time node. The offline stage using the
POD-greedy algorithm is summarized in Algorithm 1.
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Algorithm 1 Offline stage via POD-greedy

INPUT : S and εPOD.
Qinit: a set of Riesz representations for the observations.

1: Compute ZN := POD-greedy(S, εPOD).
2: Set UM := span{Qinit}.
3: Compute the matrices A and B using ZN and UM .

OUTPUT : ZN , UM , A and B.

4 Numerical Results

In this section, we illustrate the above developments on a test case related to the
heat equation. We consider a two-dimensional setting based on the plate illustrated
in the left panel of Fig. 2 with � = (−2, 2)2 ⊂ R

2. We use a finite element
subspace UN ⊂ U = H 1(�) consisting of continuous, piecewise affine functions
in order to generate HF trajectories. The FEM subspace UN is based on a mesh that
contains N = 6561 nodes. The experimental data is generated synthetically and the
observation subsets {Rm}1≤m≤M are uniformly selected over the plate as illustrated
in the right panel of Fig. 2. Regarding implementation, the HF computations use the
software FreeFem++, whereas the reduced-order modeling and the PBDW-related
algorithms have been developed in Python. We address the following parabolic

Fig. 2 Computational domain and mesh with N = 6561. The little black squares are observation
subsets {Rm}121

m=1. Left: Mono-material plate corresponding to the mathematical model. Right: Bi-
material plate corresponding to the physical reality
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PDE with nonlinear Stefan–Boltzmann boundary conditions: For many values of
the parameter μ ∈ P, find u(μ) : I ×� → R such that

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂u(μ)

∂t
−∇ · (D(μ)∇u(μ)) = 0, in I ×�,

u(μ)(t = 0, ·) = u0, in �,

−D(μ)
∂u

∂n
= σε(u4 − u4

r ), on I × ∂�,

(10)

where u0 = 293.15 K (20 ◦C). The Stefan–Boltzmann boundary condition on ∂�

is defined using an enclosure temperature ur = 303.15 K (30 ◦C), the Stefan–
Boltzmann constant σ = 5.67× 10−8 W.m−2.K−4, and an emissivity ε = 3.10−3.
Regarding time discretization, we consider the time interval I = [0, 10]s, the set
of discrete times nodes K

tr = {1, . . . , 200}, and a constant time step δtk = 0.1s
for all k ∈ K

tr. We also define the parameter interval P = [0.1, 2] and the set
Ptr = {0.1i, 1 ≤ i ≤ 20}.

The background spaces ZN will be generated by solving the nonlinear PDE (10)
with a uniform diffusivity function D(μ) such that for all x ∈ �, D(μ)(x) =
Duni(μ)(x) := μ1�(x). The HF bk solution and the true solution are respectively
displayed in the left and right panels of Fig. 3. The temperature profile for the true
solution over the bi-material plate at the end of the simulation, i.e., at tK = 10s,
clearly shows a different behavior at the boundaries of the inner material.

Fig. 3 Left: HF solution for the bk model, i.e μ = 1 (values from 17.80 to 18.25 ◦C). Right:
Synthetic true solution using a bi-material plate with μ = 2 (values from 17.90 to 18.23 ◦C)
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Fig. 4 Relative H 1-error ek(μ) for some time nodes k ∈ K
tr and M = 121. Left: εPOD = 10−2

(N = 3). Middle: εPOD = 10−4 (N = 7). Right: εPOD = 10−6 (N = 11)

Fig. 5 Relative H 1-error ek(μ) for some time nodes k ∈ K
tr and M = 676. Left: εPOD = 10−2

(N = 3). Middle: εPOD = 10−4 (N = 7). Right: εPOD = 5.10−6 (N = 11)

Using the weighted H 1-norm, we define the state estimation relative H 1-error
ek(μ) as

ek(μ) := ‖uk,true(μ)− u
k,∗
N,M(μ)‖H 1(�)

‖uk,true(μ)‖H 1(�)

, ∀μ ∈ P. (11)

Figure 4 shows the relative H 1-error ek(μ) defined in (11) using M = 121
observations to build the observable space UM . For εPOD = 10−4, ZN is spanned by
N = 7 vectors. Notice that the error vanishes for μ = 0.25 since this configuration
is equivalent to a perfect bk model, meaning that the mathematical model coincides
with the physical reality. We notice that the relative H 1-error ek(μ) increases on the
right panel of Fig. 4 because the stability constant decreases. Figure 5 visualizes the
relative H 1-error ek(μ) for a higher number of observations M = 676. We observe
that augmenting the dimension of the observable space UM cures the stability issue.
Also, the errors are lower owing to the higher number of observations. Finally,
Fig. 6 shows the stability constant βN,M as a function of the number of observations
M . The nonlinear character of the problem does not influence the overall features
of the PBDW statement since previous linear tests in the literature have shown
a similar behavior. This observation corroborates the independence of the saddle-
point problem (6) with regard to the bk model.
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Fig. 6 Stability constant βN,M . On the right panel, the values of N are respectively 2, 3, 5, 7, 11
for the values of εPOD in decreasing order
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Comparison of the Influence
of Coniferous and Deciduous Trees
on Dust Concentration Emitted from
Low-Lying Highway by CFD

Luděk Beneš

Abstract Different types of vegetation barriers are frequently used for reduction of
dust and noise levels. The effectivity of the measures depending on the type of used
vegetation (decideous, coniferous) is studied in this article. The mathematical model
is based on Reynolds—averaged Navier–Stokes (RANS) equations for turbulent
fluid flow in Boussinesq approximation completed by the standard k-ε model.
Pollutants, considered as passive scalar, were modelled by additional transport
equation. An advanced vegetation model was used. The numerical method is
based on finite volume formulation. Two fractions of pollutants, PM10 and PM75,
emitted from a four–lane highway were numerically simulated. Forty-nine cases of
coniferous and deciduous-type forest differing in density, width and height were
studied. The main processes that play a role in modelled cases are described. The
differences between the effects of coniferous and deciduous trees on pollutants
deposition were studied.

1 Introduction

Increasing level of dustiness and noise pollution causes significant health problems
in the populated areas. The inhabitants are negatively influenced by the increasing
level of air pollution caused by the local heating, vehicular transport and industry.
Vegetation plays an important role in the minimizing of these problems. Trees and
forests can block or deflect the wind, improve thermal comfort and act as an filter
for particulate matter. Deciduous and coniferous trees have different characteristics
and affect the flow and sedimentation of particles in various ways. In nature, it
is difficult to find the deciduous and coniferous forest of the same size under the
same geometrical and meteorological conditions in order to compare their influence
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precisely. The differences between both types of forests are studied and quantified
in this contribution on a simple but important case of the road notch.

The widespread model for description of the Atmospheric Boundary Layer
(ABL) flows are the RANS equations [1–4] but also LES simulations are used [5].

The effect of the vegetation on the pollutant dispersion and its filtration properties
has been investigated in many studies. An overview regarding the aforementioned
topics can be found in the reviews [6] and [7] on the vegetation in urban area, or a
modeling study [8].

The model presented here is based on the work in [9], where the influence of the
atmospheric conditions on the barrier efficiency was investigated.

The main aim of the article is to compare efficiency of the coniferous and
deciduous vegetation for reduction of dustiness. Two fractions of pollutants, PM10
and PM75, emitted from a four–lane highway were numerically simulated. Forty-
nine cases of conifer and deciduous-type forest differing in density, width and height
were studied. The differences between the effects of coniferous and deciduous trees
on pollutants deposition were studied.

2 Physical and Mathematical Model

2.1 Fluid Flow

The flow in ABL is described by the Reynolds-averaged Navier–Stokes (RANS)
equations for viscous, incompressible, turbulent and stratified flow. This set of
equations is simplified by the Boussinesq hypothesis.

∇ · u = 0, (1)

∂u

∂t
+ (u · ∇)u+∇(p/ρ∗) = νE∇2u+ g + Su, (2)

∂θ

∂t
+∇ · (θu) = νT

Pr
(∇ · (∇θ)) . (3)

Here vector u represents velocity,p, θ are fluctuations of pressure and potential tem-
perature, ρ∗ stands for the reference air density (usually near-ground concentration),
νE = ν + νT is the effective kinematic viscosity which is composed of the laminar
(molecular) and turbulent kinematic viscosity. The gravitational term is expressed
by g = (0, 0, g θ

θ0
) where g is the gravitational constant. Term Su represents the

momentum sink due to vegetation and Pr = 0.75 is the turbulent Prandtl number.
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2.2 Turbulence

The turbulence model is based on standard k − ε model modified by terms
representing production and sink of the turbulence due to the vegetation.

∂ρk

∂t
+∇ · (ρku) = ∇ ·

((

μ+ μT

σk

)

∇k

)

+ Pk − ρε + ρSk, (4)

∂ρε

∂t
+∇ · (ρεu) = ∇ ·

((

μ+ μT

σε

)

∇ε

)

+ Cε1

ε

k
Pk − Cε2ρ

ε2

k
+ ρSε. (5)

The production of turbulent kinetic energy caused by main stream interactions is
denoted as Pk and μ stands for the laminar (molecular) dynamic viscosity. The
model is completed with a constitutional relation for turbulent dynamic viscosity

μT = Cμρ
k2

ε
. Source terms Sk and Sε of k and ε respectively consist of two parts

Sk = Sr
k +Sv

k resp. Sk = Sr
ε +Sv

ε : a part expressing road traffic influence and a part
expressing vegetation influence.

The terms Sr
k , S

r
ε modelling the road traffic sources are adopted from [11]. The

sinks and sources due to vegetation influence will be described later.
Standard setting of the k−ε model with following constants was used: σk = 1.0,

σε = 1.167, Cε1 = 1.44, Cε2 = 1.92 and Cμ = 0.09. Wall functions from [16] are
used.

2.3 Particles Transport

The dust in the air is assumed to be a passive scalar and its behaviour is modelled
using the transport equation. The equation for each non dimensional mass fraction
c is as follows:

∂ρc

∂t
+∇ · (ρcu)− ∂(ρcus)

∂y
= ∇ ·

(νT
Sc
∇ρc

)
+ ρFc + Sc. (6)

Here us is the settling velocity, Fc denotes the pollutant source term and Sc is
the vegetation deposition term, Sc = 0.72. The settling velocity us of a spherical
particle with the diameter d and density ρp is given by the Stokes’ equation see [12]
with correction factor Cc:

us = (d2ρpgCc)/(18μ), Cc = 1+ λ

d
(2.34+ 1.05 exp(−0.39d/λ)) .
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2.4 Vegetation Model

Vegetation deforms the flow field, increases the level of turbulence and plays a
significant role in the deposition processes. Therefore, an appropriate model is
crucially important. The model from [13] for coniferous trees and from [14] for
broadleaf trees are adopted in this work. Both models were used and validated in
our previous studies [9, 10].

The vegetation barrier is modelled as a porous block described by a so called
Leaf Area Density (LAD) profile which represents foliated surface area per unit
volume. In our computation a horizontally homogeneous forest is assumed. The
original LAD is multiplied by a coefficient representing the vegetation density. In
our computations, the model of pine trees adopted from [15] and deciduous trees
presented in [10] was used.

Three effects of vegetation are considered: the first one is the drag induced by
the vegetation. It is modelled as momentum sink inside the vegetation in Eq. (2):

Su = −CdLAD|u|u,

where Cd = 0.3 is the drag coefficient [1].
The second effect is the influence on the turbulent quantities. Following [1] the
source terms in Eqs. (4) and (5) are written

Sv
k = CdLAD(βp|u|3 − βd |u|k), Sv

ε = Cε3

ε

k
Sv
k .

The constants are βp = 1.0m−1, βd = 5.1m−1 and dimensionless Cε3 = 0.9.
The particle deposition in the vegetation is the third process. According to [13], this
effect is given by the term Sc = −LADudρc in Eq. (6). The term is proportional to
the deposition velocity ud which reflects four main processes by which particles
depose on the leaves (needles): Brownian diffusion, interception, impaction and
gravitational settling. Its value generally depends on wind speed, particle size and
vegetation properties.

2.5 Numerical Method

A finite volume method based on artificial compressibility method and AUSM+up
scheme with linear reconstruction is used. To prevent spurious oscilations the
Venkatakrishnan limiter is utilized. The viscous terms are solved on a dual (diamond
type) mesh. This discretization results in a set of ordinary differential equations (in
time) solved using implicit BDF2 method.
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Fig. 1 Sketch of the domain (not to scale). Highway notch with dust sources and forest block on
the plateau

Each of these nonlinear systems is solved by the JFNK method. Inner linear
systems are solved using matrix-free GMRES solver. The linear systems are pre-
conditioned by the ILU(3) preconditioner. Necessary evaluations of the Jacobians
are done via finite differences.

3 The Numerical Experiment Setting

Figure 1 shows a sketch of a computational domain. Assuming the wind direction
perpendicular to the highway notch, a simplified 2D case is solved. The domain
dimensions are 350 × 150 m, the slopes of the notch are 4 m high. Four sources of
pollutant are placed in the middle of each lane at height 0.8 m. Each source of the
pollutant has the intensity 1 µg/s. A vegetation block is placed downstream from
the road above the notch and starts at x = 55 m. Particles with diameter 10 µm and
75 µm and density 1000 kg/m3 are modelled.

The ABL is considered as a weakly stable stratified layer (∂T /∂y = 0) K/m.
Background temperature is set to T0 = 20 ◦C and the density is ρ∗ = 1.2 kg/m3.
The logarithmic wind profile is prescribed with uref = 5 m/s at height yref = 10 m on
the inlet.

All combinations of the following vegetative block geometrical parameters were
tested: density (D): 0.25, 0.5, 1.0, 1.5, width (W): 50, 80, 110, and 140 m, height
(H): 3, 7, and 11 m.

4 Results: Efficiency of the Barriers

Differences in responses of deciduous and coniferous vegetation can be studied from
different angles. The flow structure inside and outside the forest changes depending
on the different crown shapes, different distribution and properties of leaves and
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needles. A thorough description of these differences is beyond the scope of this
article. We will focus on the efficiency of the barrier as one chosen aspect.

The basic question is what do we mean by efficiency. We investigate this question
from two different points of view in this work. The first monitored parameter is the
concentration in the given point x = 250 and 3 m above ground. The second one
is the filtering capacity of the forest (total amount of the particles trapped in the
forest).

The concentration of PM10 particles is shown in Fig. 2. The dependency on the
conifer forest width is significant for lower vegetation (3, 7 m), the concentration
monotonically decreases. Reduction of the concentration is up to 40% (compared
to the value without vegetation). For high forest, the dependency on forest width
is insignificant, the reduction is close to the 50%. Further enlarging the width of
the forest gives no significant impact if the width exceeds 40 m. The situation
for deciduous vegetation is only slightly different, the dependency on forest width
is significant only for lower vegetation 3m height and reduction of concentration
is close to the 30%. The dependency on the forest density is higher for conifer
vegetation.

Similar behaviour can be observed in PM75 case see Fig. 3, only the dependency
on the forest density is stronger.

An interesting question is how many particles will be captured on the needles,
leaves, branches and twigs. These values are summarized in Figs. 4 and 5. For the
lighter particles, the efficiency is significantly higher for the conifer trees compared
to the deciduous ones. Leaves are surrounded by liquid, so the effective cross–
section is relatively small. The situation in the case of PM75 particles is completely
different. The effectiveness in particle filtering is similar both for conifer and
deciduous trees, because the larger particles are not so affected by the flow. The
main principle for the PM75 particles is gravitational settling which is not included
in these graphs. In both cases we can see that longer forests have no significant
effect.

5 Conclusions

The deciduous and pine type vegetations under the same geometrical and atmo-
spheric conditions were numericaly modelled and studied. The effects of height,
width and density of vegetation were examined for both types of vegetation.

The height of vegetation is the most important parameter of the forest, the density
and width play minor roles. Extension of the forest has minimal effect on its filtering
capacity. For the heavier particles, where the effect of the gravitational settling plays
the dominant role, both conifer and deciduous vegetation are very efficient and
comparable. In the case of lighter particles, the main effect is spreading of particles
caused by the deflection of the flow and increasing of the turbulence. For this type
of particles, the conifers may be more than three times as effective as deciduous
vegetation.
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Fig. 3 Concentration of PM75 at x = 250, 3 m above the ground for conifer forest with different
width and density

Fig. 4 Deposition of PM10 particles within barrier (D = 1.0) as % of the source. Dashes line for
conifer

Fig. 5 Deposition of PM75 particles within barrier (D = 1.0) as % of the source. Dashes line for
conifer
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A Linear Domain Decomposition Method
for Non-equilibrium Two-Phase
Flow Models

Stephan Benjamin Lunowa , Iuliu Sorin Pop, and Barry Koren

Abstract We consider a model for two-phase flow in a porous medium posed in a
domain consisting of two adjacent regions. The model includes dynamic capillarity
and hysteresis. At the interface between adjacent subdomains, the continuity of the
normal fluxes and pressures is assumed. For finding the semi-discrete solutions
after temporal discretization by the θ -scheme, we proposed an iterative scheme.
It combines a (fixed-point) linearization scheme and a non-overlapping domain
decomposition method. This article describes the scheme, its convergence and a
numerical study confirming this result. The convergence of the iteration towards
the solution of the semi-discrete equations is proved independently of the initial
guesses and of the spatial discretization, and under some mild constraints on the
time step. Hence, this scheme is robust and can be easily implemented for realistic
applications.

1 Introduction

Flow in porous media has become a significant field of research, as prominent
applications such as CO2 storage and enhanced oil recovery vitally depend on the
understanding of the underlying phenomena. Since measurements below surface are
costly, if feasible at all, mathematical modeling and simulation are crucial to predict
such processes. These models usually consist of coupled nonlinear differential equa-
tions, which may degenerate and change type. Besides the increasing complexity of
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the models incorporating dynamic capillarity and hysteresis, another difficulty is
caused by the largely varying or even discontinuous physical properties.

To solve the coupled nonlinear equations, discretization and linearization
schemes are necessary. Since Newton based solvers suffer from severe constraints
on the time step sizes to ensure convergence [19], a simple fixed point iteration, the
L-type linearization, has been proposed. Its high robustness comes at the price of a
slower, linear convergence. Additionally, this approach is typically independent of
the spatial discretization, and has thus been combined e.g. with (M)FEM [13, 18]
or a discontinuous Galerkin method [10].

In the situation of block-heterogeneous soils, the application of a domain
decomposition method seems natural to decouple the different homogeneous blocks
and speed up the convergence. This approach is used and optimized for a wide range
of applications [4, 7–9]. In [15], a non-overlapping Schwarz waveform-relaxation
was analyzed for nonlinear convection-diffusion equations in a time-continuous
setting. Such methods can also be used after temporal discretization for porous
media equations [1, 5]. In [21, 22], the domain decomposition was integrated in
the linearization process for the Richards equation respectively two-phase flow.

Here, we propose such a linearization and domain decomposition scheme
for two-phase flow in porous media, including dynamic and hysteretic effects
in the capillary pressure. These methods are independent of the chosen spatial
discretization and avoid the use of derivatives as in Newton based iterations.

2 Mathematical Model and Temporal Discretization

Below, T > 0 is a fixed, final time and � ⊂ R
d (d ∈ N) a Lipschitz domain. It

is partitioned into two Lipschitz subdomains �1 and �2 separated by a (d − 1)-
dimensional manifold �. The outer normal vectors at ∂�l for l ∈ {1, 2} are denoted
by ν l . In each subdomain �l , the flow of two immiscible, incompressible phases α ∈
{n,w} through a rigid porous medium is governed by the mass balance equations,
the extended Darcy law and an extended, play-type capillary pressure model [2],

−φl∂t sl +∇· un,l = 0, φl∂t sl +∇· uw,l = 0 in �l × (0, T ), (1)

uα,l = −λα,l(sl)Kl∇pα,l in �l × (0, T ), (2)

pn,l − pw,l = pc,l(sl)−'δ,l(∂t sl)− ∂tTl(sl) in �l × (0, T ). (3)

At �, the coupling conditions are the continuity of the normal fluxes and pressures

uα,1 · ν1 = −uα,2 · ν2, pα,1 = pα,2 on � × (0, T ). (4)

Here, sl denotes the saturation of the wetting phase, uα,l the specific discharge of
the α-phase and pα,l its pressure. The parameters are the porosity φl ∈ (0, 1),



LDD for Non-equilibrium Two-Phase Flow 147

the intrinsic permeability Kl ∈ R
d×d , which is symmetric, positive definite and

bounded, the relative mobility λα,l and the capillary pressure pc, while Tl and
'δ,l model the dynamic respectively hysteretic effects. In contrast to equilibrium
models, in which Tl = 'δ,l = 0, this model can reproduce experimental results
such as fingering and saturation overshoots [17, 20]. Typically, (3) is a multi-valued
relation pn,l − pw,l ∈ pc,l (sl) − γl sign(∂t sl) − ∂tTl(sl) involving a parameter
γl ≥ 0 and the sign graph. Here, we use a regularization 'δ,l of sign; namely
'δ,l(ξ) := max{−1,min{δ−1ξ, 1}} with δ > 0 being a regularization parameter.

For simplicity, we only consider homogeneous Dirichlet boundary conditions for
the pressures, i.e. pw,l ≡ pn,l ≡ 0 on (∂�l ∩ ∂�)× (0, T ). Together with an initial
datum sl(0, ·) = s0

l ∈ L∞(�), (1)–(4) form an initial-boundary-value problem in s,
pn and pw.

Remark 1 For the existence of unique weak solutions to (1)–(3), we refer to [6, 11].
In particular, we mention [6] for the Hölder continuity of the pressure gradients
∇pn,∇pw.

Notation 1 We denote by L2(X), H 1(X) and H div(X) the standard Hilbert spaces
over X ∈ {�,�1,�2}. H 1/2(�) contains the traces u|� on � of functions u ∈
H 1(�). For the two subdomains �l with l ∈ {1, 2}, the following spaces will be
used

Wl :=
{
w ∈ H 1(�l) : w|∂�l∩∂� ≡ 0

}
,

W := L2(�)× [W1 ×W2]2, V := L2(�)× [H 1
0 (�)]2.

For any function f ∈ L2(�), we denote by fl := f |�l the restriction to �l for
l ∈ {1, 2}. Vice versa, we identify a pair of functions (f1, f2) ∈ L2(�1) × L2(�2)

with f and consider f as the natural L2-extension on the whole domain �. The L2

inner product on �1 or �2 is denoted by (·, ·), while on � it is (·, ·)� .

Next, we summarize all assumptions on the coefficient functions, which are
mostly also found in realistic physical systems. Note that the degeneration of the
equations is excluded by requiring positive λα and Lipschitz continuous pc. This
can be enforced, if necessary, by a regularization like in [6, 16].

Assumption 1 For l ∈ {1, 2} and α ∈ {n,w} we assume that

• λα,l : R → R
+ is Lipschitz continuous with Lipschitz constant Lλα,l and there

exist mλα,l,Mλα,l ∈ R
+ such that 0 < mλα,l ≤ λα,l(s) < Mλα,l for all s ∈ R;

• pc,l : R → R is strictly monotonically decreasing and there exist mpc,l, Lpc,l ∈
R
+ such that mpc,l |r − s| ≤ ∣

∣pc,l(r)− pc,l(s)
∣
∣ ≤ Lpc,l |r − s| for all r, s ∈ R;

• Tl : R→ R is strictly monotonically increasing with Lipschitz constant LT,l .

Remark 2 The extension of λα,l , pc,l and Tl to any values s ∈ R can be constructed
naturally. This is necessary since the solutions to the non-degenerated model need
not to satisfy a maximum principle [16].
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Furthermore, 'δ,l : R → R is monotonically increasing and Lipschitz continuous
with Lipschitz constant L'δ,l = γl/δ.

We discretize the equations in time by the implicit θ -scheme. Given N ∈ N,
let �t := T

N
and θ ∈ (0, 1]. The superscript (·)k denotes the approximations of

the quantities at time tk = k�t , in particular we have uk
α,l := −λα,l(s

k
l )Kl∇pk

α,l

and pk
c,l := pc,l(s

k
l ). Time averaged quantities are given by (·)k,θ := θ(·)k + (1 −

θ)(·)k−1. After testing, partial integration and summation over l = 1, 2 using the
continuity of the normal flux across �, we obtain the time-discrete counterparts of
(1)–(4).

Problem 1 (Semi-Discrete Weak Formulation) Given (sk−1, pk−1
n , pk−1

w ) ∈ V,
find (sk, pk

n, p
k
w) ∈ V such that for all (ψp,ψn,ψw) ∈ V there holds

−
2∑

l=1

φl

(
skl −sk−1

l

�t
, ψn,l

)

=
2∑

l=1

(
uk,θ
n,l , ∇ψn,l

)
, (5)

2∑

l=1

φl

(
skl −sk−1

l

�t
, ψw,l

)

=
2∑

l=1

(
uk,θ
w,l, ∇ψw,l

)
, (6)

2∑

l=1

(
p
k,θ
n,l − p

k,θ
w,l, ψp,l

)
=

2∑

l=1

(

p
k,θ
c,l −'δ,l

(
skl −sk−1

l

�t

)
− Tl(s

k
l )−Tl (s

k−1
l )

�t
, ψp,l

)

.

(7)

Remark 3 (Well-Definedness) If (sk, pk
n, p

k
w) ∈ V is a solution to Problem 1, we

have pα,1|� = pα,2|� by the definition of V. Since skl , s
k−1
l ∈ L2(�l), testing

(5) and (6) with arbitrary ψα,l ∈ C∞0 (�l) implies uk,θ
α,l ∈ H div(�l). Therefore, the

normal trace lemma [3, Lemma III.1.1] yields uk,θ
α,l ·ν l ∈ H 1/2(∂�l)

′ and integration

by parts in (5) and (6) implies uk,θ
α,1 · ν1 = −uk,θ

α,2 · ν2 in H
1/2
00 (�)′.

Proving the existence of solutions to this problem lies out of the scope of this
paper, but may be done analogously to the time-continuous case mentioned in
Remark 1. By this, the time-discrete pressure gradients should be bounded.

3 Linearization and Domain Decomposition

To account for the possible discontinuities at the interface �, we decouple the
problems in the subdomains. Following [12], we combine the interface conditions
uk,θ
α,1 · ν1 = −uk,θ

α,2 · ν2 and pk
α,1 = pk

α,2 by a parameter L� ∈ (0,∞) to obtain

gα,3−l = −2L�p
k
α,l − gα,l, where gα,l := uk,θ

α,l · νl −L�p
k
α,l on �.
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This Robin-type formulation is equivalent to the original conditions for any
L� �= 0, cf. [22, Remark 1 & 2]. In the next step, we introduce a linearized,
iterative scheme, where i ∈ N is the iteration index. Given the previous solution
(sk.i−1, p

k,i−1
n , pk,i−1

w ) and (gi−1
n , gi−1

w ), we define the linearized fluxes and inter-
face conditions as

uk,i
α,l := −θλα,l(s

k,i−1
l )Kl∇p

k,i
α,l + (1− θ)uk−1

α,l , gi
α,l := −2L�p

k,i−1
α,3−l − gi−1

α,3−l .

In this way, (5) and (6) become linear and decouple into

−φl

(
s
k,i
l −sk−1

l

�t
, ψn,l

)

=
(

uk,i
n,l , ∇ψn,l

)
−
(
L�p

k,i
n,l + gi

n,l , ψn,l

)

�
, (8)

φl

(
s
k,i
l −sk−1

l

�t
, ψw,l

)

=
(

uk,i
w,l, ∇ψw,l

)
−
(
L�p

k,i
w,l + gi

w,l, ψw,l

)

�
, (9)

gi
α,l = −2L�p

k,i−1
α,3−l − gi−1

α,3−l in L2(�). (10)

Finally, we also linearize (7) by adding stabilization terms, which vanish
in the limit if the iteration converges. For the latter, we use the parameters
Lp,l,L',l,LT ,l > 0 to account for the nonlinearity of the functions pc,l , 'l,δ

and Tl . They must satisfy some mild constraints to ensure the convergence of the
scheme, as shown below. With this, the linearized and stabilized counterpart of (7)
reads

(
p
k,θ,i
n,l − p

k,θ,i
w,l , ψp,l

)
=
(

θpc,l(s
k,i−1
l )+ (1− θ)pk−1

c,l −'δ,l

(
s
k,i−1
l −sk−1

l

�t

)

, ψp,l

)

−
(

Tl (s
k,i−1
l )−Tl (s

k−1
l )

�t
+
(
Lp,l + LT ,l+L',l

�t

) (
s
k,i
l − s

k,i−1
l

)
, ψp,l

)

,

(11)

where p
k,θ,i
α,l := θp

k,i
α,l + (1− θ)pk−1

α,l . The iteration reduces to solving

Problem 2 (Weak Formulation of the LDD-Scheme) Given (sk−1, pk−1
n , pk−1

w )

∈ V, (sk,i−1, p
k,i−1
n , pk,i−1

w ) ∈ W and (gi−1
n , gi−1

w ) ∈ [L2(�)]4, find
(sk,i , p

k,i
n , pk,i

w ) ∈ W and (gi
n, g

i
w) ∈ [L2(�)]4 such that (8)–(11) hold for

l ∈ {1, 2} and all (ψp,ψn,ψw) ∈W.

3.1 Existence of Solutions and Convergence

Here, we summarize the theoretical results for the LDD iteration. This comprises
the existence of unique solutions to Problem 2, and the convergence of the iterative
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sequence. The proofs are generalizations of the ones given in [14] and use ideas
from [10, 12, 21, 22]. We omit the details here.

Lemma 1 (Existence) Problem 2 has a unique solution.

Theorem 1 (Convergence) Assume that a solution (sk, pk
n, p

k
w) ∈ V of Problem 1

exists and satisfies ‖K1/2
l ∇pk

α,l‖L∞(�l) ≤ Mpα,l as well as ukα,l · ν l ∈ L2(�). Let
Assumption 1 be fulfilled. If the stabilization parameters and time step fulfill for
l ∈ {1, 2}

Lp,l ≥ θLpc,l , LT ,l ≥ LT,l

2 , L',l ≥ L'δ,l

2 and �t <
φlmpc,l

∑

α∈{n,w}
θL2

λα,lM
2
pα,l

mλα,l

,

the sequence of solutions of Problem 2 converges towards (sk, pk
n, p

k
w) for any

initial guess (sk,0, p
k,0
n , pk,0

w ) ∈ W and (g0
n, g

0
w) ∈ [L2(�)]4, i.e. for l ∈ {1, 2}

and α ∈ {n,w}

s
k,i
l → skl in L2(�l), p

k,i
α,l → pk

α,l in Wl , gi
α,l ⇀ gα,l in L2(�) as i →∞.

Remark 4 We have L'δ,l = γl/δ, such that L',l ≥ γl/(2δ), while the other
parameters and the time step are independent of the regularization.

4 Numerical Experiment

For the validation of the theoretical results, we present a numerical study in a
rectangular domain � = (−1, 1) × (0, 1) split into subdomains at the interface
� = { 0 } × (0, 1). We use a standard finite element method (Q2) with a uniform
mesh with mesh size �x matching at the interface �. We choose the final time
T = 1 and the Crank-Nicolson method (θ = 1/2) in time, so that we expect errors
of the order O(�t2+�x2). Furthermore, we take the same linearization parameters
on both subdomains, i.e. Lf := Lf,1 = Lf,2 for f ∈ {p, T ,'}.

We consider an analytically solvable example with isotropic and constant
absolute permeability K1 = K2 = I , and constant porosity φ1 = φ2 = 1
to explicitly compute the experimental order of convergence (EOC). We choose
linear coefficient functions, but no hysteresis, i.e. λn(s) = 1 − s, λw(s) = s,
pc(s) = 0.2 − s, T (s) = s, and γ ≡ 0. The boundary conditions and right-hand
side are selected such that the solution is

pn(x, t) = (1−x1)(1+x1)
2

2(1+t)2 , pw(x, t) = (1−x1)(1+x1)
2

2(1+t)
, s(x, t) = (1−x1)(1+x1)

2

2(1+t)
+ 0.2.
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Table 1 The LDD-scheme with the parameters Lp = 0.5, LT = 1 and L� = 0.375 (L' = 0)
achieves experimentally second order convergence (EOC) in pressure (p) and saturation (s). The
average number of iterations per time step stays almost constant

�t = �x ‖ep‖L2H 1 EOCp ‖es‖L2H 1 EOCs Avg. # iter.

0.2 5.352 · 10−3 5.824 · 10−3 13

0.1 1.394 · 10−3 1.94 1.463 · 10−3 1.993 12.3

0.05 3.564 · 10−4 1.968 3.670 · 10−4 1.995 12

0.025 9.013 · 10−5 1.983 9.192 · 10−5 1.997 11.5

0.0125 2.273 · 10−5 1.987 2.312 · 10−5 1.991 15.5
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Fig. 1 Error reduction within the last time step of the LDD-scheme for �t = 0.05 and �x =
0.05. The relative L2-differences di

p and di
s in pressure and saturation decrease fast, and the fitted

convergence rate (CR) is low

First, we study the behavior of the method with respect to the time step and mesh
size. The results in Table 1 clearly confirm the second order convergence in �t

and �x and indicate that the LDD-iteration is discretization independent, since the
average number of iterations per time step stays almost constant.

Next, we study the convergence properties of the method within one time step.
For fixed discretization, we study the error reduction and convergence rate in the
last time step. The results in Fig. 1 indicate a fast, linear convergence. Moreover, a
proper choice of the LDD parameters is crucial for the fast convergence, which can
be seen in Fig. 2. Finding the optimum is an open problem, but the lower bounds
from our analysis (Lp ≥ 1/2 and LT ≥ 1/2) are reasonable indicators.
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Fig. 2 Parameter
dependence of the average
number of iterations per time
step for fixed
�t = �x = 0.05 (For
simplicity Lp = 0).
Deviations from the optimal
parameter set drastically
increase the convergence rate

13

17

17 17

21

21

21
21

25
29

33

0.8 1 1.2

0.25

0.45

0.65

L

L Γ

T

5 Conclusion

We proposed an iterative LDD-scheme for finding the semi-discrete solutions
of a non-equilibrium two-phase model in a block-heterogeneous domain. We
summarized the existence and convergence of the solutions of this LDD-scheme,
which holds under a mild restriction for the time step, independently of the initial
guesses or of the used spatial discretization. Therefore, the scheme is robust and can
be easily adapted for realistic applications.

We will provide a detailed analysis and further numerical studies in a follow-
up article. Further investigation is necessary to generalize the method for the
degenerated cases. Moreover, an a-posteriori error analysis might lead to estimates
for efficient and adaptive stopping criteria.
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An Adaptive Penalty Method
for Inequality Constrained Minimization
Problems

W. M. Boon and J. M. Nordbotten

Abstract The primal-dual active set method is observed to be the limit of a
sequence of penalty formulations. Using this perspective, we propose a penalty
method that adaptively becomes the active set method as the residual of the
iterate decreases. The adaptive penalty method (APM) therewith combines the main
advantages of both methods, namely the ease of implementation of penalty methods
and the exact imposition of inequality constraints inherent to the active set method.
The scheme can be considered a quasi-Newton method in which the Jacobian is
approximated using a penalty parameter. This spatially varying parameter is chosen
at each iteration by solving an auxiliary problem.

1 Introduction

Inequality constrained minimization problems arise in a variety of applications,
most prominently in contact problems in mechanics. To solve these problems,
written as variational inequalities, a vast number of numerical methods exist and
we refer the reader to [7–10], and references therein, for thorough expositions of
such methods. This work concerns two seemingly unrelated families of numerical
schemes, namely penalty methods (see e.g. [1, 4]) and the primal-dual active set
method (see e.g. [5, 6]).

One of the main advantages of penalty methods is the ease of implementation.
The penalty term can generally be incorporated as an addition to the original
minimization problem in existing numerical software. Strictly speaking, however,
the penalty term slightly alters the problem and the obtained solution may not
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satisfy the original constraints exactly. The active set method therefore forms an
attractive alternative, as it does explicitly ensure that the solution complies to these
constraints. Its disadvantage, however, is that the method typically requires an
intrusive implementation in existing software and is prone to slow convergence.

This work forms a link between these two families by proposing a penalty
method that adaptively evolves to the primal-dual active set method. Depending
on its interpretation, the scheme therefore belongs to both families. In particular, the
scheme can be implemented as a penalty method and converges to the same solution
as the active set method.

Our starting point is the observation from [5], in which the primal-dual active set
method is identified as a semi-smooth Newton method. We expand on this result by
considering a regularization of the minimization problem to which the conventional
Newton method can be applied. Instead of iterating until convergence, we introduce
an adaptive removal of the regularization based on the residual in each iterative step.
Thus, as the residual becomes smaller, the regularization decreases and the method
is expected to convergence to the solution of the original problem.

The article proceeds as follows. Section 2 introduces the family of constrained
minimization problems of interest, the notational conventions, and a concise intro-
duction to the primal-dual active set method and a specific class of penalty methods.
The main contribution of this work is presented in Sect. 3, namely an iterative
scheme that adaptively combines the advantages of penalty and active set methods.
Finally, Sect. 4 presents the numerical performance of the proposed scheme for a
synthetic test case corresponding to a one-dimensional obstacle problem.

2 Problem Formulation and Solution Methods

On a given, open domain � ⊂ R
n, we consider the function space V . We assume V

is a reflexive Banach space with norm ‖ · ‖ and let V ∗ denote its dual. Let f ∈ V ∗
be a bounded linear functional and A : V → V ∗ a continuous, V -elliptic operator,
i.e.

〈f, v〉 � ‖v‖, 〈Au, v〉 � ‖u‖‖v‖, 〈Av, v〉 � ‖v‖2, ∀u, v ∈ V.

Here, 〈·, ·〉 denotes the V ∗ ×V duality pairing and the notation a � b implies that a
constant C > 0 exists such that a ≤ Cb. For given g ∈ V , we consider the following
constrained minimization problem:

min
v∈V J (v) = min

v∈V
1

2
〈Av, v〉 − 〈f, v〉 (1a)

subject to v ≤ g (1b)



An Adaptive Penalty Method for Inequality Constrained Minimization Problems 157

Finding the minimizer u ∈ V of problem (1) is equivalent to solving either of the
following two problems:
Primal formulation:
Find u ∈ V such that

Au− f ≤ 0, (2a)

u− g ≤ 0, (2b)

〈Au− f, u− g〉 = 0. (2c)

Dual formulation:
Find (u, λ) ∈ V × V ∗ such that

Au− f + λ = 0, (3a)

λ ≥ 0, (3b)

u− g ≤ 0, (3c)

〈λ, u − g〉 = 0. (3d)

For both formulations, we can simplify the inequalities as well as the final
equation into a single equation. For that purpose, we introduce the function M :
V ∗ × V → V ∗ given by

M(φ, ϕ) := φ − [φ + cϕ]+, (4)

with [ψ]+ = max{0, ψ} in the appropriate sense of elements of V ∗. Moreover,
c : V → V ∗ is the inverse Riesz map and we allow c to include a scaling with a
positive distribution. Clearly, we have

M(φ, ϕ) = 0 ⇔ φ ≥ 0, ϕ ≤ 0, 〈φ, ϕ〉 = 0. (5)

Thus, we can equivalently describe the primal formulation (2) by

M(f − Au, u− g) = 0, (6)

and the dual formulation (3) by

Au+ λ = f, (7a)

M(λ, u− g) = 0. (7b)

To solve such problems numerically, we consider two families of iterative
schemes, namely the active set method and penalty methods. We continue with
a concise expsoition of these methods, presented in the following subsections,
respectively.
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2.1 Primal-Dual Active Set Method

The primal-dual active set method uses the dual formulation (7) and iteratively
updates the set on which the constraint u = g is imposed. For the general problem
(1), we define this active set at iterate k as

Ak := {x ∈ � : λk(x)+ c(uk(x)− g(x)) > 0}. (8a)

In the case that V is a piecewise linear finite element space defined by nodal
evaluations at coordinates xi , the active set Ak is defined by

Ak := {i : λk(xi)+ c(uk(xi)− g(xi)) > 0}. (8b)

Its complement on � is referred to as the inactive set, denoted by Ik . For brevity of
notation, we introduce the indicator function 1k

A which is identity in Ak and zero
otherwise. The indicator function 1k

I is defined analogously. For a given active set
Ak , the primal-dual active set method then solves the following system of equations

[
A I

−1k
Ac 1k

I

] [
uk+1

λk+1

]

=
[

f

−1k
Acg

]

We simplify this system by substituting λk+1 = f − Auk+1 from the first row into
the second, giving us Algorithm 1.

Algorithm 1 Active set method
(i) Set k = 0 and initialize u0.

(ii) Compute Ak using (8).
(iii) Solve for uk+1:

(1k
IA+ 1k

Ac)uk+1 = 1k
If + 1k

Acg. (9)

(iv) Stop if converged, else increment k and return to (ii).

2.2 Penalty Method

The defining attribute of penalty methods is the modification of the formulation by
introducing a term which penalizes the solution u if it is outside the admissible
set [3]. To be precise, we introduce a penalty parameter ρ ≥ 0 and an operator
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%ρ : V → V ∗ to modify the primal formulation (2) to:
Find u ∈ V such that

Au− f +%ρu = 0. (10)

We use the convention that a smaller value of ρ corresponds to a stricter
penalization.

It is advantageous to choose the penalty operator %ρ sufficiently smooth in order
to apply the Newton method. We consider a particular choice of %ρ obtained from
a regularization of the problem (6). For that purpose we use [2] and let [·]ρ be the
smooth approximation of [·]+ given by

[φ]ρ := φ + ρ log(1+ exp(−φ/ρ)), [φ]′ρ = (1+ exp(−φ/ρ))−1.

It is important to note that this function and its derivative have the following
properties for all φ ∈ V ∗:

lim
ρ↓0
[φ]ρ = [φ]+, lim

ρ↓0
[φ]′ρ = lim

ρ↓0

d

dφ
[φ]ρ = 1φ>0. (11)

Using this operator, we define the regularization of M as

Mρ(φ, ϕ) := φ − [φ + cϕ]ρ.

In turn, a regularization of the primal formulation (6) arises:

−Mρ(f − Au, u− g) = Au− f + [f − Au+ c(u− g)]ρ = 0 (12)

Note that this corresponds to setting %ρu := [f − Au+ c(u− g)]ρ in Eq. (10)
and we conclude that the regularized formulation (12) has the structure of a penalty
method.

Applying this regularization to the dual formulation (7), we similarly obtain

Au+ λ = f, (13a)

Mρ(λ, u− g) = 0. (13b)

Due to the smoothness of Mρ , the Newton method becomes an attractive solution
strategy and we therefore apply this method to the regularized primal problem (12).
This leads us to the penalty method presented as Algorithm 2 below. We remark that
αk
ρ is interpreted as a diagonal operator here.

We make two observations concerning Algorithm 2, presented as two lemmas.
First, we show an equivalent derivation using the dual formulation (13) and
secondly, we note the behavior of the scheme as the penalty parameter tends to
zero.
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Algorithm 2 Penalty method

(i) Set k = 0 and initialize u0.
(ii) Compute αk

ρ = [f − Auk + c(uk − g)]′ρ .
(iii) Solve for δu:

((I − αk
ρ)A+ αk

ρc)δu = Mρ(f − Auk, uk − g). (14)

and set uk+1 = uk + δu.
(iv) Stop if converged, else increment k and return to (ii).

Lemma 1 Applying the Newton method to the regularized dual formulation (13)
equivalently leads to Algorithm 2.

Proof Let us linearize the dual formulation (13) around the previous iterate
(uk, λk). Applying the Newton method leads to

[
A I

∂
∂u

Mρ(λ
k, uk − g) ∂

∂λ
Mρ(λ

k, uk − g)

] [
δu

δλ

]

= −
[
Auk + λk − f

Mρ(λ
k, uk − g)

]

By introducing αk
ρ = [λk + c(uk − g)]′ρ , we specify the derivatives and rewrite:

[
A I

−αk
ρc I − αk

ρ

] [
δu

δλ

]

= −
[
Auk + λk − f

Mρ(λ
k, uk − g)

]

. (15)

Next, we note that λk = f −Auk for k > 0, giving us δλ = −Aδu from the first
row. Substituting this into the second row gives us

(−αk
ρc − (I − αk

ρ)A)δu = −Mρ(f − Auk, uk − g).

Negation of this equation gives us (14), thereby concluding the proof. ��
Lemma 2 Algorithm 2 is equivalent to Algorithm 1 in the limit ρ ↓ 0.

Proof By (11), the limit ρ ↓ 0 gives us αk
ρ → 1k

A, i.e. the indicator function of Ak .
Moreover, the operator Mρ(·, ·) on the right-hand side becomes M(·, ·). Equation
(14) then becomes

(1k
IA+ 1k

Ac)δu = M(f − Auk, uk − g) = 1k
I(f − Auk)− 1k

Ac(uk − g)

(16)

Addition of (1k
IA+ 1k

Ac)uk to both sides of the equation gives us (9). ��
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3 The Adaptive Penalty Method

In the previous section, we have made two observations. First, introducing a penalty
parameter ρ leads to a regularized problem on which the Newton method can
be applied. This method is known to be converge (locally) to the solution of the
regularized problem. Secondly, as ρ tends to zero, the penalty method becomes
equivalent to the active set method, which respects the inequality constraint of (1)
exactly. The next step is to combine these two advantages into a single iterative
method.

With this goal in mind, we modify the penalty method by letting ρ be a spatially
varying function on �. This allows us to adaptively remove the penalization in
regions where the solution is sufficiently accurate. We achieve this by constructing
the penalty function ρ as a regularization of the residual. Let us therefore introduce
the following differential equation for ρ:

ρ − ε�ρ = γ |M(f − Au, u− g)| in �, (17a)

n · ∇ρ = 0 on ∂�. (17b)

Here, | · | denotes the absolute value, n is the outward unit normal vector on ∂�

and ε, γ are chosen, nonnegative constant parameters. For simplicity, we limit our
exposition to these two tuning parameters.

By elliptic regularity of (17), the penalization ρ will tend to zero as the residual
becomes smaller. We exploit this property and propose Algorithm 3, which we refer
to as the Adaptive Penalty Method (APM).

Algorithm 3 Adaptive penalty method

(i) Set k = 0 and initialize u0.
(ii) Solve (17) for the regularization parameter ρ with data u = uk .

(iii) Compute αk
ρ = [f − Auk + c(uk − g)]′ρ .

(iv) Solve for δu:

((I − αk
ρ)A+ αk

ρc)δu = M(f − Auk, uk − g). (18)

and set uk+1 = uk + δu.
(v) Stop if converged, else increment k and return to (ii).

It is important to note that the exact solution to the auxiliary problem (17) is
not our main priority. Thus, in order to reduce computational cost, it will suffice to
use an approximate solution in step (ii) with the use of a coarse solve or multi-grid
cycle.

Algorithm 3 can be interpreted in a variety of ways. First, the scheme is a quasi-
Newton method on (6) in which the Jacobian gets approximated more accurately
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as the solution converges. The accuracy of the Jacobian adaptively depends on the
residual, hence the chosen name.

Alternatively, the algorithm can be considered a warm-start that gradually
behaves like the active set method in convergence. The advantage in this context
is that no invasive implementations are necessary to switch from the warm-start to
the active set method.

Thirdly, the choice of γ = 0 results in ρ = 0 in all iterations and the scheme
is effectively reduced to Algorithm 1. In that sense, this construction serves as a
generalization of primal-dual active set method. This is an advantage in case optimal
parameter values are difficult to find, since the scheme can easily be reduced to the
active set method without requiring additional, numerical implementation.

Other extreme choices of the parameters lead to different behaviors of the
proposed scheme. A large value of γ , for example, results in a slower decrease of
the regularization parameter and therewith, a slower convergence to the solution. On
the other hand, setting ε = 0 removes the diffusion in (17) which typically results
in sporadic behavior of the scheme and possibly, loss of convergence. However,
choosing a too large value for ε makes the diffusion term dominate which results
in a spatially uniform penalty parameter. This is disadvantageous since it leads to
unnecessarily poor approximations of the Jacobian in regions where the solution is
close to exact.

4 Numerical Results

In this section, we test the numerical performance of the adaptive penalty method
using a synthetic test case. Let us consider an obstacle problem on � = (0, 1). We
aim to find u ∈ H 1

0 (�) that weakly satisfies

−�u ≤ f, f (x) := 10, (19a)

u ≤ g, g(x) := 0.2(1+ 1x>0.25 + 1x>0.5 + 1x>0.75), (19b)

〈�u+ f, u− g〉 = 0, in �, (19c)

u = 0, on ∂�. (19d)

We set the scaling in the Riesz operator c to unity and iterate until the
Euclidean norm of the residual is below a tolerance level of 1e-10. In the numerical
experiments, we have not observed significant sensitivities of the scheme with
respect to ε and therefore limit this exposition to ε = 1.

As remarked in the previous section, an interesting variant of the method arises
if the penalty parameter is approximated, instead of solving (17) exactly. To explore
this variant, we perform a solve on a coarse mesh of 16 elements and interpolate
back to the original mesh. We compare three methods, namely the primal-dual active
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Table 1 Number of iterations necessary to obtain the desired accuracy for the active set method
(ASM), the adaptive penalty method with the penalization ρ solved exactly (APM), and on a coarse
mesh (C-APM). The proposed schemes obtain the same solution as the active set method in fewer
iterations

ASM APM C-APM

1/h γ = 0 γ = 0.1 γ = 1 γ = 10 γ = 100 γ = 0.1 γ = 1 γ = 10 γ = 100

256 52 18 9 13 29 18 9 13 31

512 103 33 10 12 33 32 10 13 32

1024 206 69 33 16 45 68 32 14 47

2048 411 162 52 18 50 160 50 18 50

4096 820 382 73 22 53 378 69 26 56

8192 1639 876 107 31 48 864 99 36 54

set method (Algorithm 1), the adaptive penalty method (Algorithm 3) introduced in
Sect. 3, and its variant with a coarse solve. The results are shown in Table 1.

From the numerical experiment, we observe that the Adaptive Penalty Method
requires significantly fewer iterations than the primal-dual active set method for this
problem. As discussed, small values of γ cause the scheme to behave like the active
set method and this can be observed in the iteration numbers. Moreover, the number
of iterations appear robust with respect to the grid size for the largest choices of γ .

The results from C-APM indicate that the exact evaluation of ρ can be avoided,
in practice. This makes the scheme attractive for larger linear systems in terms of
computational cost, since there is no need to solve an additional linear system during
each iteration.

To conclude, the proposed Adaptive Penalty Method rapidly converges to the
same solution as the primal-dual active set method, which satisfies the constraints
of the original problem exactly. The scheme is easily implementable as a penalty
method or as a quasi-Newton scheme in existing software. To reduce computational
cost, the penalty parameter can be approximated using a coarse solve, without
significantly affecting the convergence of the method.
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Multipreconditioning with Application to
Two-Phase Incompressible Navier–Stokes
Flow

Niall Bootland and Andrew Wathen

Abstract We consider the use of multipreconditioning to solve linear systems when
more than one preconditioner is available but the optimal choice is not known. In
particular, we consider a selective multipreconditioned GMRES algorithm where
we incorporate a weighting that allows us to prefer one preconditioner over another.
Our target application lies in the simulation of incompressible two-phase flow. Since
it is not always known if a preconditioner will perform well within all regimes found
in a simulation, we also consider robustness of the multipreconditioning to a poorly
performing preconditioner. Overall, we obtain promising results with the approach.

1 Introduction

In challenging fluid flow simulations used to model hydraulic processes it is often
not clear what the best choice of preconditioner might be for solving a given linear
system Ax = b. Further, disparate flow regimes can be encountered in a simulation
and the optimal preconditioner may change throughout. One can imagine trying
to adaptively change the preconditioner based on tracking the current flow regime.
However, this requires knowing a priori which preconditioner is likely best in any
given regime as well as a suitable evaluation of the current flow, which may well
vary within the domain. The required sophistication and good prior knowledge of
the preconditioners’ performance makes such an adaptive approach less appealing.

Instead we consider using multiple preconditioners simultaneously, aiming to get
the best of each. If we can combine the preconditioners then we would like to know
whether we can achieve performance similar to the (unknown) best preconditioner
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and, further, if together they provide an improvement over any individual approach.
Another key question to ask would be that of robustness: whether inclusion of a
poorly performing preconditioner significantly affects the overall performance.

These ideas are encompassed within multipreconditioning strategies, where
either the iterative method or preconditioning incorporates more than one precon-
ditioner. There are several ways in which multipreconditioning can be employed
but it is salient to consider the computational cost incurred weighed against the
performance improvements that might be gained. Note, however, that such a strategy
might not simply be aiming to give the optimal performance for solving a given
system but to provide an overall robustness during a simulation spanning differing
regimes.

A simple way to incorporate multiple preconditioners into an iterative method is
to change the preconditioner at each iteration, in which case a flexible solver such as
FGMRES [9] is required. This is exemplified in cycling, where the preconditioner
choice changes in a prescribed cyclic order [8]. However, results show convergence
never better than the best choice of preconditioner on its own; though such a choice
is unknown in advance. While only observed empirically, it stands to reason that
this is unlikely to provide improvement over the best preconditioner for any given
linear system, though it may help provide robustness over a sequence of problems.

Another strategy is to form a single preconditioner from the options available.
This is employed in combination preconditioning, in which the action of the inverse
of the preconditioner is a linear combination of other preconditioner inverses. The
term was introduced in [10] and pursued further in [7], however, their main focus
is on maintaining symmetry or positive definiteness (in some nonstandard inner
product) so more efficient iterative methods can be used. Nonetheless, combination
preconditioning could equally be applied to nonsymmetric cases with less restriction
on requiring certain parameter choices or need for a nonstandard inner product.

A similar idea, using linear combinations of preconditioned operators, is found in
the earlier multi-splitting method [6]. The idea is to utilise multiple different splitting
methods to solve the linear system. The approach can be thought of as a stationary
iteration with each splitting providing a preconditioner. Yet, as with combination
preconditioning, fixed weights for the contributions must be chosen in advance.

Except for cycling, these approaches allow for parallelism in the application
of multiple preconditioners. However, the performance of the underlying iterative
method will depend on the overall effectiveness of the preconditioners and how
they are combined. Instead, we consider a multipreconditioned GMRES method [5]
that retains the parallelisable application of preconditioners but computes weights
as part of the algorithm which are, in some sense, optimal. It considers not just one
new search direction at each iteration but several, given by each preconditioner. We
note that the idea was first applied to the conjugate gradient method for symmetric
positive definite systems in [3]. However, with multiple preconditioners the search
space grows exponentially fast as we continue to iterate. Thus, a selective variant of
the algorithm which restricts this growth to be linear is typically necessary.
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2 Multipreconditioned GMRES (MPGMRES)

In the standard preconditioned GMRES (or FGMRES) method, at each iteration a
new search direction, based on the preconditioned operator, is added to the search
space and then a least-squares problem is solved to find a solution with minimum
residual norm. The key idea behind multipreconditioned GMRES (MPGMRES) [5]
is to add multiple new search directions at each iteration coming from the different
preconditioners available. In fact, the method adds all new search directions from
combinations of the preconditioned operators applied to vectors in the current search
space, making the search space very rich. An Arnoldi-type block procedure is then
used to obtain an orthonormal basis of the search space. MPGMRES then computes
the optimal new iterate from this space in the minimum residual least-squares sense.
Hence, note that the weights defining the contributions from each preconditioned
operator are computed as part of the procedure, unlike in other approaches.

To understand how this complete MPGMRES algorithm works, suppose we have
� ≥ 2 preconditioners Pi , i = 1, . . . , �. We start with an initial residual vector r(0),
which we normalise to give the first basis vector V (1) = β−1r(0), with β = ‖r(0)‖2,
and collect together the preconditioned (normalised) residuals

Z(1) = β−1
[
P−1

1 r(0), . . . ,P−1
� r(0)

]
∈ R

n×�. (1)

Using an Arnoldi-type block procedure we orthogonalise columns of W = AZ(1)

with respect to our current basis V (1) and amongst themselves by using a reduced
QR factorisation. Normalising then provides new basis vectors V (2) ∈ R

n×�.
At each iteration, k, we increase the MPGMRES search space by applying each

of the preconditioners to our newest basis vectors V (k), computing

Z(k) =
[
P−1

1 V (k), . . . ,P−1
� V (k)

]
∈ R

n×�k . (2)

The Arnoldi-type block procedure is then used to orthogonalise W = AZ(k) with
respect to the current basis Ṽk =

[
V (1) . . . V (k)

]
and within itself. This yields new

basis vectors V (k+1) ∈ R
n×�k and, by storing the coefficients from the Arnoldi-type

step in an upper Hessenberg matrix H̃k, we obtain an Arnoldi-type decomposition

AZ̃k = Ṽk+1H̃k, (3)

where Z̃k =
[
Z(1) . . . Z(k)

]
. Note that any linear dependency in columns of Z̃k , due

to redundancy in the user-provided preconditioners, can be avoided using deflation;
see [5, §3]. Now that we have a search space then, similarly to FGMRES, we solve
a linear least-squares problem for the minimum residual solution to

min
x∈x(0)+range(Z̃k)

‖b−Ax‖2 = min
y

∥
∥
∥‖r(0)‖2 e1 − H̃ky,

∥
∥
∥

2
, (4)
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where x = x(0) + Z̃ky. Note that there is a natural generalisation of the standard
GMRES polynomial minimisation property, as detailed in [5].

While the search space for complete MPGMRES is very rich, we note that it
grows exponentially at each iteration, and thus becomes prohibitive in practice. As
such, a variant which selects only some of the potential search directions, ideally
ensuring only linear growth, is natural to consider as a more practical alternative.

3 Selective MPGMRES (sMPGMRES)

To balance the benefits gained by adding multiple search directions with the storage
and compute costs, we might wish to fix the number of preconditioner applications
and matrix–vector products independent of the iteration, allowing for parallelisation
of these operations via use of a fixed number of processors. To do so, we consider
limiting the growth of the search space to be linear with respect to the iteration
number k by using a selective MPGMRES (sMPGMRES) algorithm outlined in [5].

The search directions in MPGMRES are given by a collection of column vectors
Z. To limit the growth of the search space we limit the size of Z, in particular to be
proportional to the number of preconditioners, independent of k. To do this we select
only certain search directions from the span of the columns of Z, giving a selective
MPGMRES algorithm. There are many strategies to choose these directions, for
instance, instead of applying the preconditioners to all columns of V (k), as in (2), we
might apply them to just a single vector from V (k), selecting this vector differently
for each preconditioner. This selection choice need not be the same at each iteration
and could incorporate randomness if desired. The corresponding Z(k) is then

Z(k) =
[
P−1

1 V (k):,s1
, . . . ,P−1

� V (k):,s�
]
, (5)

where V
(k):,si is the si th column of V (k) and si might change with k.

An alternative to applying each preconditioner to just one vector from V (k) is to
apply them all to a linear combination of these vectors, namely to V (k)α(k) for some
vector α(k) of appropriate size detailing the contribution from each column of V (k).
The corresponding Z(k) is then

Z(k) =
[
P−1

1 V (k)α(k), . . . ,P−1
� V (k)α(k)

]
∈ R

n×�. (6)

Note that a natural choice for α(k) is the vector 1, of all ones. All of these selection
methods result in choosing a lower dimensional subspace of the full space and then
minimising over this subspace. With these selection strategies, where we limit Z(k)

to � new directions each iteration, Ṽk+1 has k� + 1 basis vectors while the number
of columns of Z̃k is k�. Hence, the storage is proportional to k, as in FGMRES, as
opposed to exponential in k, like complete MPGMRES.
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Now suppose we have reason to favour one preconditioner over another and, for
simplicity, that there are just two candidate preconditioners P1 and P2. We would
like our selective approach to incorporate knowledge of which preconditioner to
favour. As such, we might choose an α(k) = α to weight more the contributions
coming from one of the preconditioners. Consider the initial steps in sMPGMRES:
we start with new search directions Z(1) and orthogonalise them to be V (2)

Z(1) = β−1
[
P−1

1 r(0),P−1
2 r(0)

] orthog.−→ V (2), (7)

then add search directions Z(2) which are orthogonalised to be V (3)

Z(2) =
[
P−1

1 V (2)α,P−1
2 V (2)α

] orthog.−→ V (3). (8)

So α = (α1, α2)
T weighs the contributions from each of the two preconditioners as

V (2)α = α1V
(2)
:,1 +α2V

(2)
:,2 and the two columns of V (2) come from the two different

preconditioned residuals. If we let α = (α, 1 − α)T , for some α ∈ (0, 1), then the
parameter α states how much we favour the first preconditioner, with α = 1

2 giving
equal weighting and being equivalent to using the vectors of all ones (α = 1), as
suggested above. Similar strategies could be used to weight contributions from more
than two preconditioners.

In this weighted version of sMPGMRES the ordering of the preconditioners
P1, . . . ,P� is important as we weight them differently. However, even with equal
weighting (that is, α = 1) ordering is important. This more nuanced asymmetry
within sMPGMRES is an aspect not mentioned in [5]. The asymmetry comes about
from the need to orthogonalise the new search directions in Z(k) within themselves.
The contribution from the first preconditioner is allowed to be in any new direction
but this direction is taken out of the contribution from subsequent preconditioners,
and so on as we orthogonalise in order the contributions from all preconditioners.
This means that if the direction from the last preconditioner is mostly within the
span of the preceding directions it may well contribute very little of value, despite
coming from a good preconditioner when applied by itself. As a general rule then,
we might value less these final search directions as the useful components may have
already been taken out. This suggests taking a weighting α which decreases in the
components, instead of being equal, might be preferred. Nonetheless, in practice
with a small number of good preconditioners, α = 1 might suffice to be as good.
We will see that when we favour a preconditioner the ordering will matter, even if
we are weighting the preconditioners in the same way. Further, ordering can still
have a significant impact even when just two preconditioners are used and they are
weighted equally, especially when one of the preconditioners is poorer.
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4 Numerical Results for sMPGMRES

Here we apply sMPGMRES within a two-phase incompressible Navier–Stokes flow
problem. That is, to solve linear systems associated with discretisation of

ρ
∂u
∂t

+ ρ u · ∇ u−∇ ·
(
μ
(
∇ u+ (∇ u)T

))
+∇ p = ρ f, (9a)

∇ · u = 0, (9b)

for velocity u and pressure p where density ρ and dynamic viscosity μ are piecewise
constant, representing the two phases. An important dimensionless quantity that
appears is the dominating Reynolds number Re over the two phases, a parameter
which quantifies the ratio of inertial to viscous forces within a fluid. Our results will
also exhibit how performance depends on Re. An auxiliary equation to describe
how ρ and μ vary in time with the flow is required, such as a level set equation;
for the full model see [2]. We consider seeking the Q2–Q1 finite element solution
using Newton iteration to treat the nonlinearity. We utilise block preconditioners,
in particular those introduced in [2]. These are two-phase versions of the pressure
convection–diffusion (PCD) and least-squares commutator (LSC) approaches [4].
To answer questions of robustness we further use a SIMPLE-type preconditioner,
also discussed in [2]. We restrict our results to focus on the two preconditioner
case (� = 2) using (6) with α(k) = (α, 1 − α)T for some α ∈ (0, 1). We follow
exactly the simplified problem of a lid-driven cavity used in [2] along with the
same implementations, as such we omit the details for brevity. The only difference
is we now use sMPGMRES to solve the Newton systems via the MATLAB
implementation1 which accompanies [5].

We focus on iteration counts, as opposed to timings, since our implementation
runs in serial and so does not take advantage of the inherent parallelism. Note that,
when we tabulate our results using sMPGMRES, the iteration counts given in bold
emphasise the best choice of weighting parameter α which provides the minimum
number of iterations for a given pair of preconditioners. The preconditioner given
on the left of a set of results is used as the first preconditioner in sMPGMRES.

Table 1 displays results for combining two-phase PCD and LSC. We see that the
best iteration counts are seen towards the centre of the table, that is with a weighting
parameter α closer to 1

2 , though we see some bias towards larger α for both orderings
as the asymmetry of ordering might suggest. In this example most choices of α will
provide some improvement over either of PCD or LSC individually while the best
choice can allow convergence using up to 32% fewer iterations. Note that the choice
α = 1

2 typically gives iterations counts close to optimum. Given that it is not clear
that we necessarily should do any better than the best preconditioner by itself, these
results are quite promising and show that sMPGMRES can improve performance

1www.mathworks.com/matlabcentral/fileexchange/34562-multi-preconditioned-gmres.

www.mathworks.com/matlabcentral/fileexchange/34562-multi-preconditioned-gmres
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Table 1 Average preconditioned sMPGMRES iterations upon Newton linearisation using
weighted combinations of PCD and LSC with density ratio 1.2× 10−3, viscosity ratio 1.8× 10−2

(values for air-water flow), h = 1/64, and varying Reynolds number Re and time-step �t

α in PCD–LSC α in LSC–PCD

�t Re PCD 0.9 0.7 0.5 0.3 0.1 LSC 0.9 0.7 0.5 0.3 0.1 PCD

10−1 10 16 14 14 14 16 18 18 15 14 15 15 21 16

101.5 16 14 13 13 14 16 17 14 13 14 15 18 16

100 15 14 13 14 16 17 26 15 14 13 14 16 15

102.5 16 14 12 12 12 14 14 12 11 12 14 24 16

1000 19 15 13 14 15 15 19 13 13 13 32 38 19

1 10 19 18 17 18 21 23 24 19 18 18 18 21 19

101.5 21 19 18 18 20 22 23 19 18 18 19 22 21

100 25 21 18 20 21 23 32 21 19 18 21 26 25

102.5 27 24 19 18 18 20 22 18 17 19 25 37 27

1000 31 27 24 24 24 26 34 25 23 26 37 63 31

10 10 20 19 18 19 22 23 25 20 19 19 19 22 20

101.5 24 21 20 21 23 25 26 22 20 21 22 27 24

100 30 26 23 26 27 28 42 27 25 23 26 30 30

102.5 35 31 29 27 30 35 38 32 29 28 32 41 35

1000 44 47 40 44 41 49 58 43 38 39 46 85 44

in terms of the number of iterations required. Furthermore, we see in this case that
the performance is not particularly sensitive to α. To examine robustness, we now
include the SIMPLE-type preconditioner, a method which performs poorly here.

Table 2 combines the LSC and SIMPLE-type preconditioners. We see that, when
LSC is used as the first preconditioner, primarily there is relatively little gained from
including the SIMPLE-type approach with the best choice either being to simply use
LSC or else a large α favouring LSC, though the best reduction in iteration counts
does reach to 15%. However, if we change the ordering to have the SIMPLE-type
approach first, the picture looks slightly different. While the best iteration counts are
very similar, this time any α ≤ 1

2 gives results comparable to LSC. This suggests
that, while we do not gain much in the way of improved performance, the algorithm
is still fairly robust to varying α so long as we do not favour the poorly performing
preconditioner too strongly. This example also provides a case where, with equal
weighting (α = 1

2 ), the ordering of the preconditioners can substantially matter,
with one choice giving iteration counts that are similar or better than LSC and the
other giving results that are somewhat worse than LSC. Furthermore, it is by putting
the worst preconditioner first (which by the asymmetry is subtly favoured) that we
obtain the better results. While at first this may sound counter-intuitive, we can
make sense of this observation by considering what the selection in sMPGMRES is
doing. If the good preconditioner is used first then we take this contribution away
from that of the second preconditioner, likely making it even worse, then by equally
weighting these we are allowing a large component of this much worse contribution
to prevail. On the other hand, if the worse preconditioner is first, we remove this
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Table 2 Average preconditioned sMPGMRES iterations upon Newton linearisation using
weighted combinations of LSC and SIMPLE with density ratio 1.2 × 10−3, viscosity ratio
1.8×10−2 (values for air-water flow), h = 1/64, and varying Reynolds number Re and time-step
�t

α in LSC–SIMPLE α in SIMPLE–LSC

�t Re LSC 0.9 0.7 0.5 0.3 0.1 SIMPLE 0.9 0.7 0.5 0.3 0.1 LSC

10−1 10 18 18 19 24 48 97 164 48 24 19 18 19 18
101.5 17 16 17 21 32 85 154 41 21 17 16 18 17

100 26 23 22 27 35 51 131 38 26 23 22 24 26

102.5 14 14 15 18 27 35 116 33 19 15 15 15 14
1000 19 19 20 22 24 39 109 31 25 21 21 21 19

1 10 24 22 24 32 60 93 177 40 27 23 22 24 24

101.5 23 21 24 31 60 95 185 40 27 23 22 25 23

100 32 30 31 40 70 103 188 60 36 31 30 31 32

102.5 22 20 21 26 50 109 190 46 25 21 20 22 22

1000 34 31 33 43 51 78 190 62 38 35 32 32 34

10 10 25 22 25 33 60 96 179 40 28 23 23 24 25

101.5 26 24 26 34 62 98 192 41 29 24 25 27 26

100 42 38 39 47 69 104 207 64 42 37 36 39 42

102.5 38 33 35 42 82 125 233 54 38 33 34 37 38

1000 58 49 51 64 96 150 294 85 57 51 49 52 58

component from the contribution of the better preconditioner, which is unlikely to
make this contribution worse and may possibly make it even better. Thus we see this
latter combination is more favourable than the former, though we may not expect
it to provide significantly better results than the best preconditioner by itself. We
note that, in results not shown, a somewhat similar scenario occurs when combining
PCD and the SIMPLE-type approach; see also [1] for further numerical results.

Our study show promise that sMPGMRES can combine multiple preconditioners
to reduce overall iteration counts and, additionally, provide robustness in situations
when one preconditioner is performing poorly. Further, weights can be incorporated
to favour preconditioners and results are not particularly sensitive to any sensible
choice of weights, though ordering can be important. It remains to confirm how
much speed-up can be gained from sMPGMRES but initial results in [5] are positive.
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On the Dirichlet-to-Neumann Coarse
Space for Solving the Helmholtz Problem
Using Domain Decomposition

Niall Bootland and Victorita Dolean

Abstract We examine the use of the Dirichlet-to-Neumann coarse space within an
additive Schwarz method to solve the Helmholtz equation in 2D. In particular, we
focus on the selection of how many eigenfunctions should go into the coarse space.
We find that wave number independent convergence of a preconditioned iterative
method can be achieved in certain special cases with an appropriate and novel choice
of threshold in the selection criteria. However, this property is lost in a more general
setting, including the heterogeneous problem. Nonetheless, the approach converges
in a small number of iterations for the homogeneous problem even for relatively
large wave numbers and is robust to the number of subdomains used.

1 Introduction

Within domain decomposition methods, the use of a coarse space as a second level
is typically required to provide scalability with respect to the number of subdomains
used [4]. More recently, coarse spaces have also been designed to provide robustness
to model parameters, especially for large contrasts in heterogeneous problems. For
example, the GenEO coarse space has been successfully employed for the robust
solution of highly heterogeneous elliptic problems [8]. One way in which a coarse
space can be derived is via solving local eigenvalue problems on subdomains, as is
the case for the GenEO method. An earlier approach, having many similarities, is
the Dirichlet-to-Neumann (DtN) coarse space [6]. We focus on this method which
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solves eigenvalue problems on the boundary of subdomains related to a Dirichlet-
to-Neumann map.

We are interested in using domain decomposition methodology to solve wave
propagation problems. In particular, we consider the Helmholtz problem1

−�u− k2u = f in �, (1a)

u = 0 on �D, (1b)

∂u

∂n
+ iku = 0 on �R, (1c)

with wave number k > 0, where ∂� = �D ∪�R and �D ∩�R = ∅. Such problems
arise in many wave propagation and scattering problems in science and engineering,
for instance, acoustic and seismic imaging problems. Furthermore, we also consider
the heterogeneous problem, in which case k(x) varies in the domain �. We suppose
the variation in k stems from the wave speed c(x) depending on the heterogeneous
media, with the wave number being given by k = ω/c for angular frequency ω.

The wave number k is the key parameter within the Helmholtz equation and
as k increases the problem becomes more challenging. We are interested in the case
when k becomes large and so solutions are highly oscillatory. The numerical method
employed needs to be able to capture this behaviour, often through an increasing
number of grid points, such as a fixed number of points per wavelength. However,
typically the number of grid points needs to grow faster than linearly in k if accuracy
is to be maintained due to the pollution effect [1]. For instance, when using P1
finite elements for the numerical solution of (1), the mesh spacing h should decrease
proportional to k−3/2. This means very large linear systems must be solved when k is
large and, since these systems are sparse, iterative methods are most often employed
for their solution. However, efficiently solving large discrete Helmholtz systems is
challenging since classical iterative methods fail to be effective [5]. As such, we
require a more robust iterative solver. Here we consider a restricted additive Schwarz
(RAS) method with a Dirichlet-to-Neumann coarse space [3] and will be interested
in the performance of this solver methodology as k increases. We now review the
underlying numerical methods we use.

2 Discretisation and Solver Methodology

To discretise we use finite element methodology, in particular using piecewise linear
(P1) finite elements on simplicial meshes. Given a simplicial mesh T h on a bounded
polygonal domain �, let V h ⊂ {

H 1(�) : u = 0 on �D

}
be the space of piecewise

1Note that if �R = ∅ then the problem will be ill-posed for certain choices of k corresponding to
Dirichlet eigenvalues of the corresponding Laplace problem.
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linear functions on T h. The P1 finite element solution uh ∈ V h satisfies the weak
formulation a(uh, vh) = F(vh) ∀vh ∈ V h, where

a(u, v) =
∫

�

(
∇u · ∇v̄ − k2uv̄

)
dx+

∫

�R

ikuv̄ ds, and F(v) =
∫

�

f v̄ dx.

(2)

Using the standard nodal basis for V h we can represent the solution uh through
its basis coefficients u and reduce the problem to solving the complex symmetric
linear system Au = f where A comes from the bilinear form a(·, ·) and f the linear
functional F(·); see, for example, [3].

To solve the discrete Helmholtz system Au = f we utilise a two-level domain
decomposition preconditioner within an iterative Krylov method. Since A is only
complex symmetric rather than Hermitian, we use GMRES as the iterative Krylov
method [7]. For the domain decomposition, given an overlapping partition

{
�j

}N
j=1

of �, let Rj represent the matrix form of the restriction onto subdomain �j .
Then the restricted additive Schwarz (RAS) domain decomposition preconditioner
is given by

M−1
RAS =

N∑

j=1

RT
j DjA

−1
j Rj , (3)

where Aj = RjART
j is the local Dirichlet matrix on �j and the diagonal matrices

Dj are a discrete representation of a partition of unity (see [4]); this removes “double
counting” in regions of overlap. Note that each subdomain contribution from the
sum in (3) can be computed locally in parallel. Using the one-level preconditioner
(3) is not sufficient to provide robustness with respect to the number of subdomains
N used and also becomes much worse when k increases. To this end we incorporate
a coarse space as a second level within the method.

A coarse space provides a more efficient way to transfer information globally
between subdomains, rather than relying solely on local solutions, as in (3). The
coarse space constitutes a collection of column vectors Z, having full column rank.
We then utilise the coarse correction operator Q = ZE−1Z†, where E = Z†AZ is
the coarse space operator, which provides a coarse solution in the space spanned by
the columns of Z. To incorporate the coarse correction we use an adapted deflation
(AD) approach given by the two-level preconditioner

M−1
AD =M−1

RAS(I − AQ)+Q. (4)

To complete the specification, we must choose which vectors go into the coarse
space matrix Z.
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3 The Dirichlet-to-Neumann Coarse Space

We now introduce the Dirichlet-to-Neumann coarse space. The construction is based
on solving local eigenvalue problems on subdomain boundaries related to the DtN
map. To define this map we first require the Helmholtz extension operator from the
boundary of a subdomain �j .

Let �j = ∂�j \ ∂� and suppose we have Dirichlet data v�j on �j , then the
Helmholtz extension v in �j is defined as the solution of

−�v − k2v = 0 in �j, (5a)

v = v�j on �j , (5b)

C(v) = 0 on ∂�j ∩ ∂�, (5c)

where C(v) = 0 represents the original problem boundary conditions (1b) and (1c).
The DtN map takes Dirichlet data v�j on �j to the corresponding Neumann data,
that is

DtN�j (v�j ) =
∂v

∂n

∣
∣
∣
∣
�j

(6)

where v is the Helmholtz extension defined by (5).
We now seek eigenfunctions of the DtN map locally on each subdomain �j ,

given by solving

DtN�j (u�j ) = λu�j (7)

for eigenfunctions u�j and eigenvalues λ ∈ C. To provide functions to go into the
coarse space, we take the Helmholtz extension of u�j in �j and then extend by
zero into the whole domain � using the partition of unity. For further details and
motivation, as well as the discrete formulation of the eigenproblems, see [3].

It remains to determine which eigenfunctions of (7) should be included in the
coarse space. Several selection criteria were investigated in [3] and it was clear that
the best choice was to select eigenvectors corresponding to eigenvalues with the
smallest real part. That is, we use a threshold on the abscissa η = Re(λ) given by

η < η̂j (8)

where η̂j depends on kj = maxx∈�j k(x). In particular, [3] advocates the choice
η̂j = kj . Clearly, the larger η̂j is taken, the more eigenfunctions we include in the
coarse space, increasing its size and the associated computational cost. However, it
is not clear that η̂j = kj is necessarily the best choice. We investigate the utility of
choosing η̂j larger than kj and will see that, in some cases, taking a slightly larger
coarse space can give improved behaviour of the iteration counts as k increases.
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4 Numerical Results

To investigate the dependence on η̂j we use a 2D wave guide problem on the unit
square � = (0, 1)2 as a model test problem. The Dirichlet condition (1b) is imposed
on the left and right boundaries �D = {0, 1}×[0, 1]while the Sommerfeld radiation
condition (1c) is prescribed for the top and bottom boundaries �R = [0, 1]× {0, 1}.
The right-hand side f models a point source at the centre ( 1

2 ,
1
2 ). The wave number

k is either constant throughout � for the homogeneous problem or else k = ω/c

where ω is constant and c(x) is piecewise constant as illustrated in Fig. 1 for a
contrast parameter ρ > 1. These heterogeneous problems model layered media.

To discretise we use a uniform square grid with nglob points in each direction
and triangulate with alternating diagonals to form the P1 elements. As we increase
k we choose nglob ∝ k3/2 in order to ameliorate the pollution effect. To begin with,
we use a uniform decomposition into N square subdomains and throughout use
minimal overlap (non-overlapping subdomains are extended by having adjoining
elements added). All computations are performed using FreeFem (http://freefem.
org/), in particular using the ffddm framework. When solving the linear systems
we use preconditioned GMRES with the two-level preconditioner (4) incorporating
the DtN coarse space with threshold η̂j to reach a relative residual tolerance of 10−6.

In Table 1 we vary the threshold η̂j = η̂ as powers of k for the homogeneous
problem using a fixed 5 × 5 square decomposition. The best choice advocated in
[3], namely η̂ = k, succeeds in requiring relatively low iteration counts in order to
reach convergence with a modest size of coarse space. However, we observe that
as the wave number k increases the number of iterations required also increases,
suggesting the approach will begin to struggle if k becomes too large. We see from
other choices of η̂ that taking a larger coarse space reduces the iteration counts. For
instance, with the largest wave number tested when η̂ = k1.2 the size of the coarse
space doubles while the iteration count it cut almost by a factor of three compared
to η̂ = k. In fact, there is a qualitative change in behaviour with respect to the wave
number k, namely independence of the iteration counts to k, once η̂ becomes large
enough, this point being approximately given by η̂ = k4/3. We note that the size
of the coarse space is approximately proportional to η̂ in the results of Table 1 (see

Fig. 1 Different layered
configurations for the
heterogeneous wave speed
c(x) within the wave guide
problem, where ρ > 1 is a
contrast parameter. (a)
Alternating layers. (b)
Diagonal layers

1

1

(a)

1

/ 4

/ 2

(b)

r

r

r

r

r

http://freefem.org/
http://freefem.org/
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Table 1 Preconditioned GMRES iteration counts using the two-level method while varying the
threshold parameter η̂ for the DtN coarse space. The size of the coarse space is given in brackets.
A uniform decomposition into 5× 5 square subdomains is used

nglob k η̂ = k η̂ = k1.1 η̂ = k1.2 η̂ = k1.3 η̂ = k1.4 η̂ = k1.5

100 18.5 12 (144) 9 (160) 8 (200) 7 (240) 6 (320) 5 (400)

200 29.3 16 (215) 11 (240) 9 (320) 7 (434) 6 (560) 5 (760)

400 46.5 18 (299) 13 (393) 10 (545) 7 (784) 6 (1074) 4 (1480)

800 73.8 27 (499) 18 (674) 10 (960) 8 (1376) 6 (2025) 4 (2928)

N
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N = 25
N = 100
N = 196

k4/3

Fig. 2 The size of the DtN coarse space as a function of the number of subdomains N (left) and
wave number k (right) for the homogeneous problem with threshold η̂ = k4/3

also Fig. 2). As such, we see that the coarse space should grow faster than linearly
in k in order to achieve wave number independent iteration counts for this problem.

We now verify that the DtN coarse space provides an approach which is scalable
with respect to the number of subdomains N . Table 2 details results for a varying
number of square subdomains when using a threshold η̂ = k4/3. As well as
seeing the iteration counts staying predominantly constant as we increase k, they
do also as we increase the number of subdomains N (aside from a small number
of slightly larger outliers). Note that, while the size of the coarse space increases
as we increase N , approximately at a rate proportional to N2/3 as shown in Fig. 2
(in fact, independent of our choice of η̂), the number of eigenfunctions required per
subdomain decreases with N . This means the solution of each eigenproblem is much
cheaper for large N as they are of smaller size and we require fewer eigenfunctions.
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Table 2 Preconditioned GMRES iteration counts when using the two-level method with threshold
parameter η̂ = k4/3 for the DtN coarse space and varying the number of subdomains N . A uniform
decomposition into

√
N ×√

N square subdomains is used

N

nglob k 4 9 16 25 36 49 64 81 100 121 144 169 196

100 18.5 6 6 8 6 6 6 6 6 6 6 6 7 7

200 29.3 6 13 8 6 6 17 7 7 7 7 7 7 7

400 46.5 7 11 7 7 7 7 7 7 10 20 7 7 7

800 73.8 7 9 9 7 7 7 7 7 7 7 8 7 7

We now turn our attention to the heterogeneous case. Table 3 (left) gives results
for the alternating layers wave guide problem (see Fig. 1a) for varying angular
frequency ω, contrast in wave speed ρ, and number of subdomains N when using
η̂j = kj

4/3 in subdomain �j . The picture painted is now rather different from the
homogeneous case. While for some choices of N iteration counts remain robust to
wave number, in general they degrade as ω increases. The best results are for N = 4,
16, and 64 (powers of 2) while the poorest are with large N . More generally, if the
subdomains are close to being aligned with the jumps in k we obtain better results,
otherwise robustness is lost. We note, however, that iteration counts are robust to
large contrasts ρ. We confirm that the disparate trends observed for the alternating
layers problem are due to the geometrical aspects of the problem by considering
instead the diagonal layers problem (see Fig. 1b). Results for the diagonal layers
problem are given in Table 3 (right) and now show that any robustness to the wave
number is, in general, lost for the heterogeneous problem. We note that increasing
the threshold to η̂j = kj

3/2 does not improve this assessment. Nonetheless, the DtN
approach remains robust to increasing the number of subdomains N .

We now show that the sensitivity of the DtN approach is not solely due to the
heterogeneity of the media by reconsidering the homogeneous problem but using
non-uniform subdomains, which we compute using METIS. Results for this case
are given in Table 4 where we see a slow but definite increase in iteration counts as k
increases. Again, we see robustness to the number of subdomains but lose robustness
to the wave number. Note that this persists even for η̂ = k3/2. Nonetheless, in our
DtN approach we still have rather few GMRES iterations required to compute the
solution when k is relatively large (in this case up to k = 117.2).
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5 Conclusions

In this work we have investigated a two-level domain decomposition approach to
solving the heterogeneous Helmholtz equation. Our focus has been on the Dirichlet-
to-Neumann coarse space and how the approach depends on the threshold to select
which eigenfunctions go into the coarse space. We have seen that the threshold in
[3] can be improved in order to give wave number independent convergence with
only moderate added cost due to the larger coarse space. However, this is only true
for the homogeneous problem with sufficiently uniform subdomains. In particular,
convergence depends on the wave number for a general heterogeneous problem.

In order to obtain fully wave number independent convergence for Helmholtz
problems, a stronger coarse space is needed. A recent approach that achieves this,
based on a related GenEO-type method, can be found in [2].
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A Comparison of Boundary Element
and Spectral Collocation Approaches
to the Thermally Coupled MHD Problem

Canan Bozkaya and Önder Türk

Abstract The thermally coupled full magnetohydrodynamic (MHD) flow is numer-
ically investigated in a square cavity subject to an externally applied uniform
magnetic field. The governing equations given in terms of stream function, vorticity,
temperature, magnetic stream function, and current density, are discretized spatially
using both the dual reciprocity boundary element method (DRBEM) and the
Chebyshev spectral collocation method (CSCM) while an unconditionally stable
backward difference scheme is employed for the time integration. Apart from the
novelty of the methodology that allows the use of two different methods, the work
aims to accommodate various characteristics related to the application of approaches
differ in nature and origin. The qualitative and quantitative comparison of the
methods are conducted in several test cases. The numerical simulations indicate
that the effect of the physical controlling parameters of the MHD problem on the
flow and heat transfer can be monitored equally well by both proposed schemes.

1 Introduction

Magnetohydrodynamics investigates the dynamics of electrically conducting fluids
under the effect of magnetic fields. The MHD flow and heat transfer studies have
attracted many researchers due to their wide range of engineering applications
such as cooling systems, crystal growth, MHD generators, nuclear reactors, and
electromagnetic pumps. The incompressible full MHD and energy equations involve
the coupling of the Navier-Stokes equations of fluid dynamics with Maxwell’s
equations of electromagnetism through Ohm’s law while the thermal coupling is
performed by Boussinesq approximation. The resulting governing equations are
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highly nonlinear due to the additional terms with the existence of Lorentz force,
which allows the availability of analytical solutions only in some restricted cir-
cumstances. Hence, an extensive research is ongoing in establishing and developing
effective numerical techniques which are applicable to the full MHD flow and heat
transfer models. In many studies available in the literature, the magnetic Reynolds
number is assumed to be so small that the induced magnetic field is neglected, [1–3].
However, it is well known that the magnetic induction should be taken into account
in the mathematical model especially for large values of Hartmann number, [4].
There are several studies investigating the full MHD model in which the existence
of external and internal magnetic fields is taken into account, [5–8]. On the other
hand, one of the main difficulty in solving the full MHD flow numerically at the
discrete level is to satisfy the divergence-free constraints for both the velocity and
magnetic fields as well as the existence of pressure terms in the equations. Thus,
various numerical models for the full MHD flow have been developed (see, e.g., [9]
and the references therein).

The aim of this work is to present a comparative numerical analysis for the
solution of thermally coupled full MHD flow in a square cavity by the use of
two widely used methods, namely DRBEM and CSCM. An iterative approach
that accommodates both techniques to discretize the full MHD flow given in
a special mathematical model has been proposed. The governing equations are
considered in the form of stream function-vorticity-magnetic induction-current
density-temperature, so that the pressure gradient can be eliminated, and the
divergence-free conditions for the velocity and the magnetic field are automatically
satisfied through the application of the numerical methods. The qualitative and
quantitative comparisons of the results obtained by DRBEM and the ones by CSCM
(which are given in [8]) are conducted for several cases to investigate the effects of
the problem physical parameters on the flow field and the temperature distribution.

2 Physical Problem and Mathematical Formulation

The unsteady, two-dimensional full MHD flow and heat transfer in a square cavity
of width � filled with an electrically conducting fluid is considered. A transverse
uniform magnetic field of intensity B0 in the positive y-direction is externally
applied. The vertical walls of the cavity are assumed to be adiabatic while the
horizontal upper and bottom walls are maintained at constant hot (Th) and cold (Tc)
temperatures, respectively. The flow generated inside the cavity obeys Boussinesq
approximation, and the induced magnetic field is taken into account while the
effects of Joule heating, viscous dissipation, displacement and convection currents
are neglected. Thus, the unsteady non-dimensional governing equations of the
full MHD flow in stream function ψ , magnetic induction A, current density j ,
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temperature T and vorticity w are given as [8, 9]

�ψ = −w,

�A = −j,

�j = Rem
∂j

∂t
− Rem�(u

∂A

∂x
+ v

∂A

∂y
),

�T = PrRe
∂T

∂t
+ PrRe(u

∂T

∂x
+ v

∂T

∂y
),

�w = Re

[
∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
− Ra

PrRe2

∂T

∂x
− Ha2

ReRem
(
∂A

∂y

∂j

∂x
− ∂A

∂x

∂j

∂y
)

]

,

(1)

by introducing the stream function and vorticity with u = ∂ψ/∂y, v = −∂ψ/∂x

and w = ∂v/∂x − ∂u/∂y, (u, v) being the velocity field, and the magnetic
stream function and the current density with Bx = ∂A/∂y, By = −∂A/∂x,
and j = ∂By/∂x − ∂Bx/∂y, (Bx, By) being the magnetic field. The dimen-
sionless parameters are the Reynolds number (Re = �u0/ν), Prandtl number
(Pr = ν/α), magnetic Reynolds number (Rem = μmσ�u0), Rayleigh number
(Ra = gβ�3(Th − Tc)/αν), and Hartmann number (Ha = B0�

√
σ/μ). Here,

α, ν, μ,μm, β, σ, u0, and g are the fluid thermal diffusivity, kinematic viscosity,
dynamic viscosity, magnetic permeability, volume expansion coefficient, electrical
conductivity, characteristic velocity, and the gravitational acceleration, respectively.
Homogeneous initial conditions are imposed for all the unknowns at t = 0. The
velocity at the upper wall is given by (û, 0) for a prescribed û while the other
walls have zero velocity conditions. The temperature of the top and bottom walls are
taken as T = 0.5 and T = −0.5, respectively, and on vertical walls the condition
∂T /∂n = 0 is imposed. Since Bx = 0 and By = 1, the magnetic stream function is
taken as A = −x on all walls. On the other hand, the unknown boundary conditions
of the vorticity and current density are calculated numerically with the use of the
stream function and magnetic stream function equations, respectively, through the
application of the numerical methods.

3 Numerical Methods

As already mentioned, the thermally coupled full MHD flow equations are dis-
cretized spatially by using two methods, namely the Chebyshev spectral collocation
and dual reciprocity boundary element methods, both combined with an uncondi-
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tionally stable backward difference scheme given by

∂S

∂t
|n+1 = Sn+1 − Sn

δt
, (2)

for the time integration, where n and δt are the time level and time step, respectively.

3.1 Application of CSCM

The CSCM discretization of the equations in (1) is based on requiring the numerical
approximation of each unknown to be exactly satisfied on the abscissae of the
extreme points of the Chebyshev polynomials defined as xi = cos(iπ/N), i =
0, 1, . . . , N. The method is of global nature; each function spans the whole domain
under consideration and thus, the derivatives of the function depend on the entire
discretization. The interpolating polynomials are differentiated analytically by
means of the so-called Chebyshev spectral differentiation matrices. Utilization of
these matrices in combination with the time integration scheme (2) results in the
following CSCM and time discretized form of (1):

K̂ψn+1 = −wn,

K̂An+1 = −jn,

[

I − δt

Rem
K̂

]

jn+1 = jn − δtK̂P(ψn+1, An+1),

[

I + δt

(

P(ψn+1, ι)− 1

PrRa
K̂

)]

T n+1 = T n,

[

I + δt

(

P(ψn+1, ι)− 1

Re
K̂

)]

wn+1 = wn + δt
Ra

PrRe2 D̂
(1)T n+1

+δt
Ha2

ReRem
P(An+1, jn+1).

(3)

In these equations, the (N + 1)2 × (N + 1)2 matrix K̂ is given as K̂ = D̂(2) +
Ê(2), where D̂(i) and Ê(i) are the Chebyshev differentiation matrices in x− and y−
directions, respectively, and are defined with the use of the Kronecker product as
D̂(i) = I ⊗ D(i) and Ê(i) = E(i) ⊗ I , i = 1, 2, being the order. I is the identity
matrix of order (N + 1)2, and ι is the vector of order (N + 1)2 whose all entries
are 1. P(φ̂, ϕ̂) denotes the vector formed by multiplication of the approximations
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to the first partial derivatives of its argument vectors, and is defined as

P(φ̂, ϕ̂) = D(Ê(1)φ̂)D̂(1)ϕ̂ −D(D̂(1)φ̂)Ê(1)ϕ̂.

D(φ̂) denotes the diagonal matrix with the entries of a vector φ̂ on its diagonal.
The resulting fully coupled nonlinear system of equations is solved iteratively
incorporating the unknown boundary conditions of the vorticity and current density
by means of the velocity and magnetic field components, respectively. The iterative
steps are repeated until preassigned convergence criteria are met for a given
tolerance for all the unknowns on the whole problem domain. For further details
regarding the method and calculations, we refer to [8].

3.2 Application of DRBEM

The DRBEM aims to transform the governing equations (1) into boundary integral
equations by using the fundamental solution of the Laplace equation, u∗ =
1/2π ln(1/r), and treating the terms on the right hand sides (rhs) of these equations
as the non-homogeneity. Thus, Eqs. (1) are weighted by u∗ and the application of
Green’s second identity results in, [10],

ciSi +
∫

�

(q∗S − u∗ ∂S
∂n

)d� = −
∫

�

bsu
∗d�, (4)

where S is used for each unknown ψ,A, j, T ,w. Here, q∗ = ∂u∗/∂n, � is the
boundary of the domain �, and the constant ci = φi/2π with the internal angle
φi at the source point i. All the terms on the rhs of Eqs. (1) denoted by bS , are
approximated by a set of radial basis functions fj (= 1 + rj ) linked with the
particular solutions ûj of �ûj = fj , [10]. That is, these approximations are given
by bS ≈∑N+L

j=1 αSj fj =
∑N+L

j=1 αSj�ûj where αSj are undetermined coefficients,
N and L are the number of boundary and interior nodes, respectively. When Green’s
identity is applied to the rhs as well, and the boundary is discretized with constant
elements, the matrix-vector form of Eq. (4) can be expressed as

HS −G
∂S

∂n
= (HÛ −GQ̂)F−1bS, (5)

where the components of matrices H and G are calculated by integrating q∗ and u∗,
respectively, over each boundary element. The matrices Û , Q̂ and F take the vectors
ûj , q̂j and fj of sizes (N + L) as their columns, respectively. When the backward
finite difference given in Eq. (2) is applied to approximate the time derivatives in
Eq. (5), the DRBEM system of algebraic equations takes the form

Hψn+1 −Gψn+1
q = −Cwn , (6)
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HAn+1 −GAn+1
q = −Cjn , (7)

(H − PrRe

δt
C − PrReCK)T n+1 −GT n+1

q = − 1

δt
P rReCT n (8)

(H − Rem

δt
C)jn+1 −Gjn+1

q = − 1

δt
RemCj

n − RemC�KAn+1 (9)

(H − Re

δt
C − ReCK)wn+1 −Gwn+1

q = −Re

δt
Cwn − Ra

PrRe
CDxT

n+1

−Ha2

Rem
C(DyA

n+1Dxj
n+1 −DxA

n+1Dyj
n+1),

(10)

where C = (HÛ − GQ̂)F−1, K = un+1Dx + vn+1Dy , Dx = ∂F/∂xF−1 and
Dy = ∂F/∂yF−1. The resulting system of coupled equations is solved iteratively
with the initial estimates of w, j, T . In each time level, the required space derivatives
of S, the boundary conditions of the vorticity and current density are obtained by
using F as

∂S

∂x
= DxS,

∂S

∂y
= DyS, w = −(

∂2F

∂x2
+ ∂2F

∂y2
)F−1ψ, j = −(

∂2F

∂x2
+ ∂2F

∂y2
)F−1A .

4 Results and Discussions

The thermally coupled full MHD flow in a square cavity is investigated under the
effect of a vertically applied uniform magnetic field. The numerical simulations
with the CSCM and DRBEM are carried out to investigate the effect of various
combinations of problem parameters Re, Ha and Rem at a moderate Ra = 104 and
Pr = 0.1. The boundaries of the cavity with side length � = 1 are discretized by
using N = 50 nodes and constant boundary elements along one side of the cavity,
respectively, in CSCM and DRBEM, while a constant time step δt = 0.25 is used in
both methods. The stopping criteria of the iterative schemes is set to be 10−5 for all
the unknowns, and the solutions in regard to this criteria are referred as the steady-
state solutions. We specifically consider the regularized lid-driven cavity flow with
a moving upper wall whose velocity is given as û = 4x2(1− x2).

First, the validation of the present methods is performed by solving the full MHD
flow in a regularized lid-driven cavity subject to a transverse magnetic field in the
absence of heat sources. Table 1 shows that the results obtained by DRBEM and
CSCM are quantitatively in good agreement with the ones given in [5, 9] in terms of
the values of ψ , location of primary vortex, and extrema of magnetic field intensity.
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Table 1 Characteristics of the primary vortex and the magnetic field: Re = Rem = 100, Ha =
10

Primary vortex Magnetic field intensity

ψ x y min(Bx) max(Bx) min(By) max(By)

Bozkaya [5] −0.07346 0.6719 0.7656 −0.9067 1.8729 −0.1130 2.0792

Yu [9] −0.07354 0.6641 0.7656 −0.9092 1.8989 −0.1093 2.0789

CSCM [8] −0.07324 0.6545 0.7679 −0.8988 1.9093 −0.1120 2.0751

DRBEM −0.07197 0.6643 0.7643 −0.9094 1.9190 −0.1292 2.0817

Fig. 1 Condition number in 2-norm versus the number of nodes N in CSCM and DRBEM along
one side of the cavity

Figure 1 displays the variation of the condition number of the resulting CSCM
and DRBEM coefficient matrices for the discretized system of stream function
equation with respect to the number of nodes N when Ha = 50, Re = 400 and
Rem = 100. Although the matrices are dense in both methods, the condition number
is very large giving ill-conditioned matrices in spectral method when compared to
the one in DRBEM for large values of N , which is a well-known characteristics
of collocation methods. Moreover, for larger N , the condition number in CSCM
increases faster than it does in DRBEM. However, in this problem we obtain systems
of sizes that remain in solvable ranges which can be handled by both CSCM and
DRBEM.

The effects of Re on the flow, vorticity and temperature distribution are visual-
ized in Fig. 2 when Ha = 25 and Rem = 1. It is well-observed that the results of
CSCM and DRBEM are quite compatible. A circular vortex formed at the upper
right corner of the cavity due to the motion of upper lid, moves towards the center
of cavity with an increasing magnitude as Re increases from 100 to 1000. Vorticity
contours are concentrated mainly close to the upper and right walls, and form a
boundary layer at Re = 1000. As Re increases, the isotherms change their profiles
due the strong temperature gradients indicating that the heat transfer is dominated
by convection.
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Fig. 2 Effect of Re(= 100, 1000) on ψ,w and T : Ra = 104, Ha = 25, Rem = 1

Finally, the magnetic streamlines and the contours of current density obtained by
CSCM and DRBEM are drawn in Fig. 3 to analyze the effect of magnetic Reynolds
number Rem(= 1, 100) when Ra = 104, Ha = 25, Re = 100. Both methods give
similar results in each case. The magnetic streamlines extended vertically in the
same direction of the applied magnetic field at low Rem, are distorted by forming a
prominent circulation in the region close to the upper right corner at Rem = 100. On
the other hand, an increase in Rem results in a rise in the magnitude of the current
density although they have similar profiles for each Rem.

5 Conclusion

A numerical model which is divergence-free of magnetic field is proposed for
solving thermally coupled unsteady incompressible full MHD equations. Two
different techniques, namely, CSCM and DRBEM, coupled with a backward
difference time integration, have been shown to accurately represent the solution
of the physical model. The numerical simulations have demonstrated that both of
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the present approaches are accurate and reliable, and have the ability to solve the
full MHD problems in a reasonably wide range of the problem parameters.
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Minimal Sets of Unisolvent Weights for
High Order Whitney Forms on Simplices

Ana Alonso Rodríguez, Ludovico Bruni Bruno, and Francesca Rapetti

Abstract Whitney forms—degree one trimmed polynomials—are a crucial tool for
finite element analysis of electromagnetic problem. They not only induce several
finite element methods, but they also bear interesting geometrical features. If, on
the one hand, features of degree one elements are well understood, when it comes
to higher degree elements one is forced to choose between an analytical approach
and a geometric one, that is, the duality that holds for the lower degree gets lost.
Using tools of finite element exterior calculus, we show a correspondence between
the usual basis of a high order Whitney forms space and a subset of the weights, that
is, degrees of freedom obtained by integration over subsimplices of the mesh.

1 High Order Whitney Forms

In what follows T
.= [x0, . . . , xn] denotes a non degenerate oriented n-simplex.

Its (oriented) k-subsimplices are in a bijective correspondence with the subsets of
k + 1 elements so they are

(
n+1
k+1

)
. Any ordered listing of k + 1 vertices of T yields

a bijective map σ �→ fσ
.= [xσ(0), . . . , xσ(k)]. We denote by �k(T ) the set of

(oriented) k-subsimplices of T.
With each point P ∈ T we may associate a (n + 1)-uple (λ0, λ1, . . . , λn) such

that P = ∑n
i=0 λixi , with the constraints

∑n
i=0 λi = 1 and λi ≥ 0. We call such

functions barycentric coordinates for P. Similarly (see [3]) we may associate with

A. A. Rodríguez · L. B. Bruno (�)
Dipartimento di Matematica, Università degli Studi di Trento, Povo, Trento, Italy
e-mail: ana.alonso@unitn.it; ludovico.brunibruno@unitn.it

F. Rapetti
Départment de Mathématiques, Université Côte d’Azur, Nice, France
e-mail: francesca.rapetti@univ-cotedazur.fr

© Springer Nature Switzerland AG 2021
F. J. Vermolen, C. Vuik (eds.), Numerical Mathematics and Advanced Applications
ENUMATH 2019, Lecture Notes in Computational Science and Engineering 139,
https://doi.org/10.1007/978-3-030-55874-1_18

195

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-55874-1_18&domain=pdf
mailto:ana.alonso@unitn.it
mailto:ludovico.brunibruno@unitn.it
mailto:francesca.rapetti@univ-cotedazur.fr
https://doi.org/10.1007/978-3-030-55874-1_18


196 A. A. Rodríguez et al.

each subsimplex its Whitney form

ωfσ
.=

k∑

i=0

(−1)iλσ(i)dλσ(0) ∧ . . .∧ d̂λσ(i) ∧ . . . ∧ dλσ(k),

where we take σ as an increasing permutation. Consequently, we have a map

fσ �→ ωfσ ,

which is known as the Whitney map (see [8]), and provides a relationship between
the simplicial homology of a simplicial complex and the de Rham cohomology of
that complex. Observe that if fσ , fσ ′ ∈ �k(T ) and σ �= σ ′ then

ωfσ

∣
∣
fσ ′
= 0, (1)

since if i ∈ {0, . . . , k} is such that xσ(i) �∈ fσ ′ , both λσ(i) and dλσ(i) vanish on fσ ′ .
Moreover it is known (see [7]) that such forms are closed when restricted to the
subsimplex they are generated by, that is, dωfσ

∣
∣
fσ
= 0.

Whitney forms of order k form a vector space, which may be characterized
in terms of the Koszul differential (see [1]), which acts as the contraction of a
differential form ω ∈ !k(Rn) with the identity vector field X, that is

κω(v1, . . . , vk−1)
.= ω(X, v1, . . . , vk−1),

and which is assumed to map smooth functions to 0.
For r ≥ 0 and k ∈ {0, . . . , n} let us denote by Pr!

k(Rn) the space of polynomial
differential k-forms of degree r . For k > 0 the spaces of trimmed polynomial
differential k-forms of degree r are defined

P−r !k(Rn)
.= {ω ∈ Pr!

k(Rn) | κω ∈ Pr!
k−1(Rn)}, (2)

while P−r !0(Rn)
.= Pr!

0(Rn). Their elements are the so called Whitney forms of
higher degree. One has (see [1]) dimP−r !k(Rn) = (

r+k−1
k

)(
n+r
n−k

)
.

For r > 0 the following decomposition holds (see [2]):

P−r !k(Rn) = Pr−1!
k(Rn)⊕ κHr−1!

k(Rn), (3)

being Hr−1!
k(Rn) the space of homogeneous polynomial differential k-forms of

degree r − 1. Spaces P−r !k(T ) are then defined by pulling back with respect to the
inclusion map T ↪→ R

n, and from now on we will consider just such spaces.
It is easy to check that (3) implies the following result.

Lemma 1 If ω ∈ P−r !k(T ) is a closed form, then ω ∈ Pr−1!
k(T ).
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A crucial aspect of Whitney forms is that they provide a basis for the case r = 1
of the above spaces (see [1]).

Theorem 1 Whitney forms associated with the k-subsimplices of T are a basis for
P−1 !k(T ).

Property (1) suggests as degrees of freedom for Whitney forms the weights

ωfσ �→
∫

fσ

ωfσ . (4)

Concerning high order Whitney forms, in [4] it has been proved that for r > 0

P−r+1!
k(T ) = Pr (T ) · P−1 !k(T ) . (5)

Denote by I(n+ 1, r) the collection of multi-indices α = (α0, . . . , αn)
T of weight

r , and by λα
.= %n

i=0λ
αi

i . In view of (5), the set {λαωfσ : α ∈ I(n+1, r) and fσ ∈
�k(T )} provides a system of generators for P−r+1!

k(T ) but not a basis. A wise
way to get rid of redundant objects consists in considering, for each fσ ∈ �k(T ), a
subset of multi-indices Ĩσ (n + 1, r)

.= {α ∈ I(n + 1, r) : λi = 0 ∀ i < σ(0)}. A
mnemonic rule to visualize this is the following: if fσ is the subsimplex associated
with the permutation σ , then we have to discard all the possible α that have a non-
zero entry in a position smaller than σ(0). For instance, if fσ = [1, 2], then the
multi-indices α whose first entry is not empty are to be discarded, as the associated
λαωfσ turn out to be linearly dependent from other elements of the basis. We have
in fact the following (see [1]):

Theorem 2 The set {λαωfσ : fσ ∈ �k(T ) and α ∈ Ĩσ (n + 1, r)} is a basis for
P−r+1!

k(T ).

A dual question is to investigate how degrees of freedom change for high order
Whitney forms. If on the one hand moments, in the classical sense of [6], have been
proved to be unisolvent (see [5]), on the other they lack of geometrical meaning.
Thus, we aim to adapt the definition of weights, which for obvious dimensional
reasons does not follow from the case of r = 1. The solution proposed in [7] and [4]
consists in introducing of a subdivision of T into small simplices, which basically
provide a particular subtriangulation of the simplex T one deals with.

2 Small Simplices

The construction of the small simplices needs some auxiliary results.

Definition 1 (Principal Lattice 0r(T )) Let T ⊆ R
n be a simplex and r ∈ N. Let

{λi} be the set of barycentric coordinates for T . We define the principal lattice of
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order r as the set of points

0r(T )
.=
{

x ∈ T | λi(x) ∈
{

0,
1

r + 1
, . . . ,

r

r + 1
, 1

}

for each i ∈ {0, . . . , n}
}

.

(6)

For each r , 0r(T ) consists of
(
n+r+1

n

)
points, where n is the dimension of the

simplex T . Thus, an enumeration of those points yields a bijective association with
a basis of Pr+1(T ) and it is a well known matter of linear algebra to conclude that
a polynomial p(x) of degree r + 1 that vanishes for each x ∈ 0r(T ) for some
n-simplex T is identically zero.

Small simplices may be characterized in terms of their principal lattice (see [7]).

Definition 2 (Small Simplices 0k
r (T )) Let T ⊆ R

n be a simplex and 0r(T ) be its
principal lattice. We define the set of small simplices of order n and degree r as the
collection of all the n-simplices that are 1

r+1 -homothetic to T and whose vertices
belong to 0r(T ). We denote such a set by 0n

r (T ). Formally, 0n
r (T )

.= {s(α,T ) :
α ∈ I(n+ 1, r)}, being

s(α,T )
.=
{

1

r + 1
x+ [x0, . . . , xn]α : x ∈ T

}

.

For k ∈ {0, 1, . . . , n− 1} the set of small simplices 0k
r (T ) of order k and degree

r is the collection of all the k-subsimplices of all the elements of 0n
r (T ).

From the perspective of degrees of freedom the unisolvence of the set 0k
r (T ) for

P−r !k(T ) has been proved for each k = 0, 1, . . . , n. We have in fact the following.

Proposition 1 Let ω ∈ P−r !k(T ). If
∫
s(α,fσ )

ω = 0 for each s(α,fσ ) ∈ 0k
r (T ), then

ω = 0.

For a complete proof, which is a bit technical, we address the interested reader
to [4]. We here recall just the main ingredients.

Observe that every ω ∈ P−r+1!
n(T ) is closed, hence by Lemma 1 it in fact

belongs to Pr!
n(T ).

Let τξ denote the translation by the vector ξ : (τξu)(x) = u(x− ξ ). Since the map
ξ → ∫

T
τξω is a polynomial of degree r which is zero at the points of the principal

lattice 0r−1(T
′) of the n-simplex T ′ in Fig. 1, it is zero everywhere. By Lemma

3.12 of [4] ω = 0.
We also remark that for k = 0 equality can be restored by avoiding double

counting of points. In this case integrals assume the meaning of evaluations and
we thus fall into the preceding case.

Intermediate cases are trickier, as the closedness of ω is not a priori granted.
However, one may work inductively in a descending way. For k = n− 1, it follows
from Stokes’ Theorem that

∫
∂S

ω = ∫
S
dω and hence, being able to write the

boundary of each S ∈ 0k
r (T ), one gets that dω ∈ P−r !k(T ) is in fact closed and it

is now possible to reproduce more or less the same proof as before. Then one works
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by induction. This makes clear that one is not able to leave Stokes’ Theorem and
some hypotheses on the boundaries of the subtriangulation out of consideration.

3 A Minimal Set of Unisolvent Weights

As one may readily check, the set 0k
r (T ) bears some redundancy, since

#0k
r (T ) ≥ dimP−r !k(T ), (7)

where equality holds just when k = n. It is natural to investigate whether it is
possible to extract a unisolvent subfamily of 0k

r (T ) or to build a new one which is
minimal in the sense that (7) becomes an equality for each k. The answer to both
questions is yes: in the following we prove the second fact and show how the first
can be deduced.

We build a new family of “subsimplices” of T (in the sense that such subsim-
plices are topologically contained in T ) as follows. For each α ∈ I(n + 1, r) we
define the n-simplex

s̃(α,T )
.=
{

1+ α0

r + 1
x+ [ x1, . . . , xn]R(α) : x ∈ T

}

.

with R(α) = (α1, . . . , αn)
T .

They are homothetic to T (with different ratios, from 1
r+1 to 1) and their vertices

belong to 0r(T ). Moreover they have n vertices on the principal lattice of F0, the
face opposite to the vertex x0 (see Fig. 1).

We denote

0̃n
r (T )

.= {s̃(α,T ) : α ∈ I(n+ 1, r)} .

For k ∈ {0, 1, . . . , n} the set 0̃k
r (T ) is the collection of all the k-subsimplices of

all the elements of 0̃n
r (T ), namely, if fσ ∈ �k(T ) and

s̃(α,fσ )
.=
{

1+ α0

r + 1
x+ [x1, . . . , xn]R(α) : x ∈ fσ

}

,

then 0̃k
r (T ) = {s̃(α,fσ ) : fσ ∈ �k(T ) and α ∈ I(n+ 1, r)}.

Remark 1 If fσ ⊂ F0 then {s̃(α,fσ ) : α ∈ I(n+ 1, r)} ⊂ F0.

Observe that since α ranges over I(n + 1, r) we have not removed any
redundancy. Therefore, it is just a matter of adapting Proposition 1 to see that also
the following result holds true.
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Proposition 2 Let ω ∈ P−r !k(T ) be such that
∫
s̃(α,fσ )

ω = 0 for each s̃(α,fσ ) ∈
0̃k

r (T ). Then ω = 0.

It is worth noting that Lemma 3.12 of [4] can be generalized to a mapping ρξ
which is not just a translation but also contains a scaling:

(ρξu)(x) = u

(
1+ ξ0

r + 1
x+ (0, ξ1, . . . , ξn)

T

)

.

Since the map ξ → ∫
T ρξω is a polynomial of degree r which is zero at the points

of the principal lattice 0r−1(T
′′) of the n-simplex T ′′ in Fig. 1, it is zero everywhere

and then by the extension of Lemma 3.12 of [4] ω = 0.
The rest of the proof can be carried out similarly to that of Proposition 1.

In order to restore the cardinality equality (7), for 0 < k < n we define
0̃k

r,min(T ) � 0̃k
r (T ) in the following way:

s̃(α,fσ ) ∈ 0̃k
r,min(T )⇔ αi = 0 for all i such that 1 ≤ i ≤ σ(0) .

A dimension count shows that

#0̃k
r,min(T ) = dimP−r !k(T ).

Roughly speaking, 0̃n
r,min(T ) coincides with 0̃n

r (T ) and contains the collection

of n-simplices that are j
r+1 homothetic to T (for j = 1, . . . , r + 1) that have n

vertices belonging to F0, the face opposite to the vertex x0. On the other hand,
consider the face e1 ⊂ F0 which is opposite to x1. One may think of 0̃n−1

r,min(T ), as
the set that contains two kind of elements (see Fig. 2):

• f ∈ ∂0̃n
r (T ) such that int(f ) ∩ int(F0) = ∅;

• (n − 1)-simplices in F0 that have n − 1 vertices on 0r(e1) and that are l
r+1 -

homothetic to F0 for some l = 1, . . . , r + 1.

Fig. 1 On the left the elements of 02
3(T ) and the vertices of the principal lattice of T ′. On the

right the elements of 0̃2
3(T ) and the vertices of the principal lattice of T ′′. In this example n = 2
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Fig. 2 On the left the elements of 01
3 (T ), on the right the elements of 0̃1

3,min(T ). In this example
n = 2

Note that 0̃n−1
r (T ) also contains two kinds of elements: f ∈ ∂0̃n

r (T ) such that
int(f ) ∩ int(F0) = ∅, and (n− 1)-simplices in F0 with vertices on 0r(F0) and that
are l

r+1 -homothetic to F0 for some l = 1, . . . , r + 1. Hence they differ on those
(n− 1)-simplices in F0 that have not n− 1 vertices on 0r(e1).

The generalization to each k = n − 2, . . . , 1 follows by recursion, whereas for
k = 0 one just takes the remaining 0-simplices.

We need two auxiliary results: for any fσ ∈ �k(T ) and β ∈ I(k + 1, r) we put

s̃�,(β,fσ )
.=
{

1+ β0

r + 1
x+ [xσ(1), . . . , xσ(k)]R(β) : x ∈ fσ

}

.

Let us also define 0̃k
r (fσ )

.= {s̃�,(β,fσ ) : β ∈ I(k + 1, r)}. The following result is
a corollary of Proposition 2.

Lemma 2 Let ω ∈ P−r !k(fσ ) be such that
∫
s̃�,(β,fσ )

ω = 0 for each s̃�,(β,fσ ) ∈
0̃k

r (fσ ). Then ω = 0.

It is then easy to prove the following.
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Lemma 3 Let ω ∈ P−r !k(T ) be such that
∫
s̃(α,fσ )

ω = 0 for each s̃(α,fσ ) ∈
0̃k

r,min(T ). Then ω
∣
∣
fσ
= 0 for all fσ ∈ �k(T ).

Proof It is enough to prove that 0̃k
r (fσ ) ⊂ 0̃k

r,min(T ) for all fσ ∈ �k(T ). In fact,
given fσ ∈ �k(T ) and β ∈ I(k + 1, r), we consider the following α ∈ I(r + 1, n)

αj =
⎧
⎨

⎩

β0 if j = 0
βi if j = σ(i) 1 ≤ i ≤ k

0 otherwise.

Then s̃�,(β,fσ ) = s̃(α,fσ ) ∈ 0̃k
r,min(T ) because αi = 0 for all i such that 1 ≤ i ≤

σ(0). ��
We are now in a position to prove that the set of weights on the elements of

0̃k
r,min(T ) is a minimal set of unisolvent degrees of freedom for P−r+1!

k(T ).

Theorem 3 If ω ∈ P−r !k(T ) is such that
∫
s̃(α,fσ )

ω = 0 for each s̃(α,fσ ) ∈
0̃k

r,min(T ), then ω = 0.

Proof We will prove that if
∫
s̃(α,fσ )

ω = 0 for each s̃(α,fσ ) ∈ 0̃k
r,min(T ), then

∫
s̃(α,fσ )

ω = 0 for each s̃(α,fσ ) ∈ 0̃k
r (T ).

First we notice that 0̃k
r (T ) \ 0̃k

r,min(T ) ⊂ {fσ ∈ �k(T ) : σ(0) > 0}. In fact,

s̃(α,fσ ) ∈ 0̃k
r (T ) \ 0̃k

r,min(T ) if and only if there exists i such that 1 ≤ i ≤ σ(0)
and αi �= 0. If σ(0) = 0 such an i does not exist. Hence fσ ⊂ F0 and by Remark 1
s̃(α,fσ ) ⊂ F0.

From Proposition 3, ω
∣
∣
fσ
= 0 for all fσ ∈ �k(T ) hence in particular ω

∣
∣
s̃(α,fσ )

= 0

for all s̃(α,fσ ) ∈ 0̃k
r (T ) \ 0̃k

r,min(T ) and
∫
s̃(α,fσ )

ω = 0 for each s̃(α,fσ ) ∈ 0̃k
r (T ). ��

This minimal set of unisolvent weights allows to show that also the weights on
the natural subset of small simplices

0k
r,min(T ) = {s(α,fσ ) ∈ 0k

r (T ) : fσ ∈ �k(T ) and α ∈ Ĩσ (n+ 1, r)},

that are clearly in a one to one correspondence with the elements of the basis of
P−r+1!

k(T ) introduced in Theorem 2, are a minimal set of unisolvent degrees of
freedom. We have in fact the following.

Theorem 4 If ω ∈ P−r !k(T ) is such that
∫
s(α,fσ )

ω = 0 for each s(α,fσ ) ∈
0k

r,min(T ), then ω = 0.
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Experimental Comparison of Symplectic
and Non-symplectic Model Order
Reduction on an Uncertainty
Quantification Problem

Patrick Buchfink and Bernard Haasdonk

Abstract Uncertainty Quantification (UQ) is an important field to quantify the
propagation of uncertainties, analyze sensitivities or realize statistical inversion of
a mathematical model. Sampling-based estimation techniques evaluate the model
for many different parameter samples. For computationally intensive models, this
might require long runtimes or even be infeasible. This so-called multi-query
problem can be speeded up or even be enabled with surrogate models from model
order reduction (MOR) techniques. For accurate and physically consistent MOR,
structure-preserving reduction is essential.

We investigate numerically how so-called symplectic model reduction techniques
can improve the UQ results for Hamiltonian systems compared to conventional
(non-symplectic) approaches. We conclude that the symplectic methods give better
results and more robustness with respect to the size of the reduced model.

1 Introduction

Sampling-based Uncertainty Quantification (UQ) is known to benefit from surrogate
modelling which includes model order reduction (MOR) methods [1, 4]. The
problem with conventional MOR techniques is that the reduced model might lose
the original system structure and might thus produce unphysical results. A solution
are structure-preserving MOR techniques [2, 6, 9, 10].

A popular example for structured, mathematical models are Hamiltonian sys-
tems. These are known for the characteristic property to preserve the Hamiltonian
function which can in many contexts be interpreted as the energy of the system.

As structure-preserving reduction technique for parametric Hamiltonian systems,
we consider symplectic MOR with the Proper Symplectic Decomposition (PSD)
basis generation technique [2, 9, 10].
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Table 1 MOR techniques used in the experiments. Classified by orthogonality and symplecticity

MOR technique Abbreviation Ortho. Sympl. Ref.

POD of complete state POD complete ✓ ✗ [1]

Block structure preserving POD, POD separate ✓ ✗ [14]

i.e. V = blkdiag(Vq ,Vp)

PSD complex SVD PSD cSVD ✓ ✓ [10]

PSD SVD-like decomposition PSD SVD-like ✗ ✓ [2]

Based on a two-dimensional, linear elasticity problem, we compare two symplec-
tic and two non-symplectic MOR techniques (see Table 1) numerically on an UQ
experiment. We observe a significantly higher stability and more accuracy for the
symplectic techniques in comparison to the established, non-symplectic methods.

2 Symplectic Model Order Reduction for Parametrized
Hamiltonian Systems

Symplectic model order reduction (MOR) is a structure-preserving MOR technique
for parametrized, finite-dimensional, canonical, autonomous Hamiltonian systems.
These systems are formulated in terms of an even-dimensional state x(t,μ) ∈ R

2n

as

d

dt
x(t,μ) = J2n∇xH(x(t,μ),μ), J2n :=

(
0n In

−In 0n

)

, x(t0,μ) = x0(μ)

(1)

where (x0, t0) ∈ R
2n × R is the initial condition, t ∈ I := [t0,∞) is the time,

μ ∈ P ⊂ R
p is the parameter vector from a parameter space P, J2n is the so-

called canonical Poisson matrix, ∇x(·) is the gradient, H : R2n × P → R is the
Hamiltonian (function). For a detailed introduction to Hamiltonian systems, we refer
e.g. to [8].

The underlying geometry of a Hamiltonian system is the symplectic geometry.
In the following, we give a concise presentation of symplectic geometry in finite
dimensional vector spaces as a background for the motivation of symplectic MOR.
For more details, we refer e.g. to [3].

The symplectic geometry over finite dimensional vector spaces is based on
symplectic forms ω2n : R2n × R

2n → R which are special (skew symmetric and
non-degenerate) bilinear maps. The canonical form is defined by

ω2n (v, w) := vTJ2nw, v,w ∈ R
2n.
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A linear map A : R2k → R
2n, x �→ Ax with the coefficient matrix A ∈ R

2n×2k

with k ≤ n is called symplectic if it preserves the symplectic structure in the sense
that it holds for all v,w ∈ R

2k

ω2n (A, v)Aw = vT(AT
J2nA)w = vTJ2kw = ω2k (v, w)

which is equivalent to AT
J2nA = J2k. We call a matrix A symplectic (with respect

to ω2n and ω2k) if it fulfills this condition.
Most common MOR methods are projection-based techniques [1] which proceed

in two steps: firstly, the original state is approximated in a k-dimensional linear
subspace with a reduced-order basis (ROB) by

x(t,μ) ≈ Vkxk(t,μ), ROB: Vk ∈ R
2n×k, reduced state: xk(t,μ) ∈ R

k.

(2)

As a second step, the residual of this approximation is projected in a k-dimensional
space with a projection matrix Wk ∈ R

2n×k in order to get a well-posed problem.
The symplectic MOR follows this standard procedure with the requirements that

(i) V2k ∈ R
2n×2k is a symplectic matrix with (necessarily even) reduced order 2k

and (ii) the projection matrix is chosen to be the so-called symplectic inverse V+
2k ,

i.e.

(i) V T
2kJ2nV2k = J2k and (ii) W2k = V +

2k := J2k
TV T

2kJ2n.

This choice ensures that the reduced system is a 2k-dimensional Hamiltonian system

d

dt
x2k(t,μ) = J2k∇xrH2k(x2k(t,μ),μ), H2k(x2k,μ) := H(V2kx2k,μ),

x2k(t0,μ) = WT
2kx0(μ).

For further details on symplectic MOR, we refer to [2, 9, 10].
The projection-based MOR (2) leaves a high flexibility in the choice of a ROB. To

this end, basis generation techniques are required. One common class are snapshot-
based methods [11]. In [10], this idea is adapted to generate a symplectic ROB via an
optimization problem which is labelled Proper Symplectic Decomposition (PSD). A
general solution procedure for the PSD is yet unknown since it is highly non-convex.
If in addition, it is assumed that the ROB has orthonormal columns, it is shown in [2]
that a solution can be computed with the Complex Singular Value Decomposition
(complex SVD) [10]. Up to our knowledge, the only basis generation technique that
generates a non-orthogonal ROB is introduced in [2] which is based on a SVD-like
decomposition (see [13]). We will compare both of these methods together with two
non-symplectic MOR techniques in the numerical experiments and investigate the
acceleration of an UQ experiment.
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3 Model Order Reduction and Uncertainty Quantification

The connection of MOR and UQ is based on the following principle: We call the
repetitive evaluation of a mathematical model a so-called multi-query scenario. For
sampling-based UQ methods like the Monte Carlo method [12], this setting applies
since the model is evaluated for multiple samples μi ∈ P to estimate the statistics
of a quantity of interest. If a reduced model of reduced order 2k � 2n is trained,
the approximation (2) is used afterwards for the evaluations instead of the original
full-order model with x(t,μ) ∈ R

2n. The crucial point then is that the computation
of the state x2k(t,μi ) ∈ R

2k (and the approximation V2kxr(·)) is much faster than
the original model since the state dimension typically directly correlates with the
runtime of the simulation.

4 Numerical Experiment

To compare our approach with conventional MOR techniques in an UQ experiment,
we consider an oversimplified muscle model as a linear elastic problem with a
two-dimensional fusiform geometry (see Fig. 1). The specimen is loaded in axial
direction with a force homogeneously distributed on the right boundary of the
domain and an amplitude F(t) = Fmaxσ(t − 0.1) where Fmax ≥ 0 is a parameter
and σ(·) is the step function. The parameter vector μT = [λL, μL, Fmax] ∈ P :=
R

2
>0 × [0.39, 4.71] of the system consists of the Lamé constants λL, μL > 0 and

the maximal amplitude 0.49 ≤ Fmax ≤ 5.89 of the force F(t). The simulation time
is t ∈ I := [0, 0.5].

We derive a semi-discretized system with the Finite Element Method with
piecewise linear Lagrangian ansatz functions on a triangular mesh with 910 nodes
resulting in 2n = 3640 degrees of freedom. This comparably small example
is already sufficient to display the advantages of our method. The Hamiltonian
function of the underlying system for the state x = [q,p]T with displacement
q ∈ R

n and linear momentum p ∈ R
n is

H(x, t,μ) = 1

2

(
pTMp + qTK(μ)q

)
− qTf (t,μ), M ∈ R

n×n : mass matrix,

K ∈ R
n×n : stiffness matrix,

f ∈ R
n : force vector .

Fig. 1 The discretization of
our spatial domain � ⊂ R

2

simulating a fusiform muscle ·10−2

−0.5

0.5 ·10−2
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Table 2 Model parameters and respective probability distributions. The mean values λL, μL of
the Lamé constants λL, μL are obtained from [7]

Model parameter Distribution

Lamé constant λL Log-normal, log(λL) ∼ N(log(λL), σ
2),

λL = 80,069, σ 2 = 0.01

Lamé constant μL Log-normal, log(μL) ∼ N(log(μL), σ
2),

μL = 8966, σ 2 = 0.01

Maximal force Fmax Uniformly distributed on the interval [0.39, 4.71] N

The time is discretized with the implicit midpoint rule [5] with nt = 1501
equidistant time steps. This choice ensures that, in our example, the Hamiltonian
is conserved since (1) this integrator conserves quadratic invariants and (2) the
Hamiltonian is quadratic. The use of a symplectic integrator like the implicit
midpoint method is essential for structure-preserving MOR.

We consider two time-dependent quantities of interest (QoIs): this includes the
displacement s1(·) of one of the nodes on the right boundary and the potential part of
the Hamiltonian s2(x, t,μ) = 1

2q
TK(μ)q − qTf (t,μ). As point evaluation, s1(·)

is a linear and local functional. In contrast to that, s2(·) is a global and quadratic
functional. We may suppress the explicit dependence of s2 on t and μ in the
following.

As estimator for the distribution of the QoIs, we use the classical Monte Carlo
algorithm [12] with 1000 sample parameter vectors which follow the probability
distributions listed in Table 2. Let ν denote the associated probability measure.

The simulations are conducted in RBmatlab1 which is an MATLAB R©-based
open-source library that implements multiple state-of-the-art MOR techniques. The
versions used in the experiments are RBmatlab 1.16.09 and MATLAB R© 2019b.

As described in Sect. 3, MOR techniques can be used in the multi-query context
posed by the UQ problem. Thus, we approximate si (x(t,μ)) ≈ si (V2kx2k(t,μ))

with a ROB of logarithmically spaced ROB size 2k ∈ {2i
∣
∣ 2 ≤ i ≤ 10} to

investigate the reduced model for nine different sizes. The four MOR techniques
we compare are based on the Proper Orthogonal Decomposition (POD) and the
Proper Symplectic Decomposition (PSD). We either compute the ROB with a POD
of the complete state (POD complete) or separately for the displacement q and linear
momentum p (POD separate). The PSD methods are based on the complex SVD
(PSD cSVD) and the SVD-like decomposition (PSD SVD-like). The techniques
are summarized in Table 1 classified by orthogonality and symplecticity of the
associated ROB.

The training was performed on a regular 3 × 3 × 3 grid in the parameter space
resulting in 33 = 27 sample parameter vectors. For each parameter vector, a full
dynamic simulation was calculated and every ninth time step was included in the
snapshot set which gives in total ns = 4509 snapshots. To analyze the performance

1https://www.morepas.org/software/rbmatlab/, last accessed: 30. Oct. 2019.

https://www.morepas.org/software/rbmatlab/
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Fig. 2 The evolution of the mean value (bold line) and the standard deviation (shade) of the two
QoIs si (V2kx2k(t, ·)) displayed for all times t ∈ I . The different colors visualize the full-order
model (FOM) solution (black) or reduced solutions with different ROB sizes 2k ∈ {4, 16, 64}

in the prediction phase for the QoIs, we depicted in Fig. 2 the estimated mean value
and the standard deviation for times t ∈ I approximated by the different MOR
techniques for selected basis sizes 2k ∈ {4, 16, 64}. The estimation with the full-
order model (FOM) is plotted in black as reference. For 2k = 64 and t > 0.15, the
mean value of the POD methods shows heavy oscillations which are not present in
the FOM and thus are an unphysical artefact of the reduction. The best solutions for
the POD methods are obtained for a small time horizon t < 0.15 or a medium basis
size 2k = 16. In contrast, the PSD methods show very robust results considering
the ROB size 2k. Comparing the two PSD methods, we see that the PSD cSVD
struggles with small basis sizes 2k = 4 whereas PSD SVD-like, visually, yields
very accurate solutions for any basis size—even 2k = 4. This shows that the
additional requirement for the ROB to be orthonormal in PSD cSVD requires more
basis vectors to yield as accurate results as the PSD SVD-like method.

In order to quantify the error of the reduction more precisely, we plot the relative
L2,ν(P × I) error eL2,ν [si ] of the i-th QoI si (·) for different ROB sizes 2k in
Fig. 3. We again clearly see that a practical application of the POD methods is
not possible in our example since a relative error less than 60% is not obtained.
The robustness of the two PSD methods with respect to the ROB size is expressed
by the monotonic and actually exponential decrease for increasing ROB sizes. The
figure quantifies the supremacy of PSD SVD-like in comparison to PSD cSVD
between 2–30% improvement in the relative error for a fixed basis size 2k. This
superiority can especially be observed for small and medium ROB sizes 2k < 102

which supports the conjecture that the additional requirement of orthogonality in
PSD cSVD hampers the approximation for such ROB sizes.

The ultimate goal is to reduce the runtime of the multi-query setting posed by
the UQ problem with model reduction without introducing a too big error. To this
end, we inspect in Table 3 the runtime of 1000 model evaluations relative to the
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Fig. 3 The relative L2,ν(P × I) reduction error eL2,ν [si ] of the two QoIs si (·) depicted for the
ROB size 2k. For ‖·‖L2,ν (P×I), the integral over I is approximated with the trapezoidal rule and
the integral over P with measure ν with Monte Carlo. Errors bigger than 100% are excluded

Table 3 The relative runtime for the offline part, 1000 online simulations (2k = 16) and in total

FOM POD compl. POD sep. PSD cSVD PSD SVD-like

Offline – 2.7% 2.5% 2.5% 17.8%

1000·online – 8.9% 8.7% 8.6% 8.6%

Total 25 min. =̂ 100% 11.6% 11.2% 11.1% 26.4%

FOM. As typically done for MOR, we split the runtime in the offline and the online
part. The offline part consists mainly of computing the ROB. In the online part, we
evaluate the reduced model for the 1000 different parameter vectors. We see that
all investigated methods require a similar amount of runtime in the offline phase
except for the PSD SVD-like. The reason is that the PSD SVD-like method is
implemented in native MATLAB R© whereas the other methods use internal functions
which run in Fortran. In terms of complexity orders, the computation of the SVD-
like decomposition should be comparable to the computation of the underlying
matrix decompositions of the other methods. The runtime for the online part is
displayed for 2k = 16. Since all methods are projection-based MOR techniques,
the computational cost in the online part is equal which is expressed by near equal
runtimes of roughly 8.7%.

The user can trade accuracy for runtime by adjusting the basis size 2k. We
visualize this trade-off in Fig. 4 with the reduction error (from Fig. 3) in relation
to the relative runtime (from Table 3). Due to the instability of the POD methods
in our example, only the PSD methods are interesting for this purpose. Both PSD
methods are able to speed up the simulation by a factor between 2.2 and 11.6 while
introducing a relative reduction error between 1.3 and 68.5% for both QoIs si (·).
Considering only the slightly better PSD SVD-like, the error improves to numbers
between 0.9 and 59.3%. There is a plateau in the trade-off curve at a runtime of
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Fig. 4 The relative runtime for 1000 online simulations illustrated in relation to the relative
L2,ν(P× I) reduction error eL2,ν [si ] of the two QoIs si (·). Errors bigger than 100% are excluded

8.5%. The reason is that a major part of the runtime is spent in iterations over the
time steps nt and the samples ns which cannot be further reduced with (2).

5 Summary and Outlook

We presented a framework to conduct Uncertainty Quantification (UQ) experi-
ments in combination with structure-preserving model order reduction (MOR) for
Hamiltonian systems. The numerical experiments showed that the preservation of
the symplectic structure improves the stability and the accuracy of the reduction
with MOR and thus, also of the accelerated UQ framework. This enabled us to
provide a broad spectrum of reduced models ranging from a speed up of factor
2.2 up to 11.6 while introducing an error between 0.9 and 59.3%. The best results
are achieved with the symplectic, non-orthogonal basis generation technique PSD
SVD-like decomposition.

In future work, a more realistic muscle model should be considered since the
assumption of small strains is too restricting for muscle models. Furthermore,
mathematical stability analysis for non-orthogonal but symplectic bases is required.
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3D-2D Stokes-Darcy Coupling for the
Modelling of Seepage with an Application
to Fluid-Structure Interaction
with Contact

Erik Burman, Miguel A. Fernández, Stefan Frei, and Fannie M. Gerosa

Abstract In this note we introduce a mixed dimensional Stokes-Darcy coupling
where a d dimensional Stokes’ flow is coupled to a Darcy model on the d −
1 dimensional boundary of the domain. The porous layer introduces tangential
creeping flow along the boundary and allows for the modelling of boundary flow due
to surface roughness. This leads to a new model of flow in fracture networks with
reservoirs in an impenetrable bulk matrix. Exploiting this modelling capability, we
then formulate a fluid-structure interaction method with contact, where the porous
layer allows for mechanically consistent contact and release. Physical seepage in the
contact zone due to rough surfaces is modelled by the porous layer. Some numerical
examples are reported, both on the Stokes’-Darcy coupling alone and on the fluid-
structure interaction with contact in the porous boundary layer.

1 Introduction

In numerous environmental or biomedical applications there is a need to model the
coupling between a flow in a reservoir and flow in a surrounding porous medium.
This is particularly challenging if the porous medium is fractured and the bulk
matrix has very low permeability. Typically the fractures are modelled as d − 1
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dimensional manifolds, embedded in a d dimensional porous bulk matrix. For the
modelling of the fractured porous medium we refer to [3]. Observe however that if
the bulk permeability is negligible the fluid in the reservoir cannot penetrate into the
fractures since the d−1 dimensional manifolds have an intersection of the reservoir
boundary of d − 1 measure zero. This means that such a model cannot be used for
the fluid flow between two reservoirs connected by a fracture in an impenetrable
medium. Here we propose to introduce a Darcy equation for the tangential flow on
the boundary of the reservoir. Since this equation is set on a d − 1 dimensional
manifold it can provide an interface allowing for flow from the reservoir to the
cracks. The flow on the boundary communicates with the flow in the cracks through
continuity of pressure and conservation expressed by Kirchhoff’s law. This gives a
cheap and flexible model for flow in reservoirs connected by fractures.

Our original motivation for this model is the particular case of fluid structure
interaction with contact where the situation described above occurs when two
boundaries enter in contact provoking a change of topology of the fluid domain.
It has recently been observed by several authors [1, 4] that the consistent modelling
of fluid-structure interaction with contact requires a fluid model, in particular a
pressure, also in the contact zone. Indeed, some seepage is expected to occur due
to permeability of the contacting bodies or their surface roughness. Otherwise there
is no continuous mechanism for the release of contact and non-physical voids can
occur. For instance, it was argued in [1] that a consistent modelling of FSI with
contact requires a complete modelling of the FSI-poroelastic coupling. Similar ideas
were introduced in [4], but for computational reasons. Indeed, in the latter reference
an elastic body immersed in a fluid enters in contact with a rigid wall and to allow
for a consistent numerical modelling the permeability of the wall is relaxed. This
motivates the introduction of an artificial porous medium whose permeability goes
to zero with the mesh-size. Both approaches allow for the seepage that appears to be
necessary for physical contact and release. However, in case the contacting solids
are (modelled as) impenetrable, this seepage must be due to porous media flow in a
thin layer in the contact zone due to surface roughness. The complete modelling of
the poroelastic interaction of [1] or the bulk porous medium flow of [4] then appears
artificial and unnecessarily expensive. For such situations the mixed dimensional
modelling suggested above can offer an attractive compromise between model detail
and computational cost.

In this note, we will focus exclusively on the modelling aspect. The coupled
Stokes-Darcy model is introduced in Sect. 2. Then, in Sect. 3, we show how the ideas
of [4] can be used to model FSI with contact together with the mixed-dimensional
fluid system. Finally, we illustrate the two model situations numerically in Sect. 4.
First, the Stokes’-Darcy reservoir coupling (Sect. 4.1) and then the full FSI with
contact (Sect. 4.2). In the latter case, we also give comparisons with the results from
[4]. The numerical analysis of the resulting methods will be the subject of future
work.
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2 The Coupled Stokes-Darcy System

We consider the coupling of a Darcy system in a thin-walled domain �l = 0l ×
(− ε

2 ,
ε
2 ) ∈ R

d for d = 2, 3 with a Stokes equation in the bulk domain �f . The
Darcy problem on �l writes

{
ul +K∇pl = 0

∇ · ul = 0
in �l, (1)

where ul denotes the Darcy velocity, pl the Darcy pressure and K is a d × d matrix
that allows for the decomposition

K∇pl = Kτ∇τpl +Kn∂npl.

We denote the upper boundary of �l which couples to �f by γf and the outer
boundary by γo. The normal vector n of the middle surface 0l of �l is chosen in
such a way that it points towards γo.

By averaging across the thickness ε, Martin, Jaffré and Roberts derived in [3] an
effective equation for the averaged pressure across the thickness

Pl := 1

ε

∫ ε
2

− ε
2

pl.

Under the modelling assumption that the average pressure is equal to the mean of
the pressures on the upper and lower boundary

Pl = 1

2

(
pl |γf + pl |γo

)
in 0l, (2)

the authors derived the system

⎧
⎪⎨

⎪⎩

−∇τ · (εKτ∇τPl) = ul,n|γf − ul,n|γo

pl |γf = Pl + εK−1
n

4

(
ul,n|γo + ul,n|γf

) in 0l. (3)

Here, ul,n = ul ·n denotes the normal component of the velocity and τ is a tangential
vector of 0l . We will couple (3) to Stokes flow in �f

{
ρf ∂tuf −∇ · σf (uf , pf ) = 0

∇ · uf = 0
in �f , (4)
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where uf denotes the fluid velocity, pf the pressure, ρf the fluid density,

σf (uf , pf ) := μ(∇uf +∇uT
f )− pf I,

the fluid Cauchy stress tensor and μ the dynamic viscosity. We assume that the
coupling to the Darcy system (1) on γf takes place via the interface conditions

⎧
⎪⎪⎨

⎪⎪⎩

σf,nn = −pl

τT σf n = 0

uf,n = ul,n

on γf , (5)

where σf = ∇uf − pf I and σf,nn = nT σf n. In the lower porous wall γo we
assume for simplicity that ul,n = 0. Then, the relations (3) can be written as

⎧
⎪⎨

⎪⎩

−∇τ · (εKτ∇τPl) = uf,n

σf,nn = −Pl − εK−1
n

4
uf,n

in 0l.

Note that the only remaining porous medium variable is the averaged pressure Pl .
In the limit of permeability Kn → 0, the system converges to a pure Stokes system
with slip conditions on γf with an extension of the fluid forces into the porous
medium pressure Pl .

We have the following coupled variational problem for (uf , pf , Pl):

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ρf (∂tuf , vf )�f + (σf (uf , pf ),∇vf )�f + (qf ,∇ · uf )�f

+(Pl, vf,n
)
0l
+ εK−1

n

4

(
uf,n, vf,n

)
0l
= 0,

(εKτ∇τPl,∇τ ql)0l − (uf,n, ql
)
0l
= 0,

(6)

for all vf , qf , ql , where n = nf is the outer normal of the fluid domain �f .

3 The Fluid-Structure-Poroelastic-Contact Interaction
System

Now, we consider a fluid-structure-contact interaction system with a thin porous
layer on the part of the exterior boundary, where contact might take place. The
moving boundary of the solid is denoted by 0(t) and the porous layer by 0l . In
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absence of contact, we have the following system of equations

{
ρf ∂tuf − ∇ · σf (uf , pf ) = 0

∇ · uf = 0
in �f (t),

ρs∂t ḋ −∇ · σs(d) = 0 in �s(t),

uf = ḋ, σsn = σf n in 0(t),

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

−∇τ · (εKτ∇τPl) = ul,n|γf

σf,nn = −Pl − εK−1
n

4
ul,n|γf

︸ ︷︷ ︸
σp

τT σf n = 0

in 0l, (7)

where, in addition to the quantities introduced above, ρs denotes the solid density,
d stands for the solid displacement and σs denotes the tensor of linear elasticity

σs = λs

2

(
∇d +∇dT

)
+ μs

2
tr
(
∇d +∇dT

)
.

In addition, we impose that the solid �s cannot penetrate into the porous medium
0l

dn − g ≤ 0, λ ≤ 0, λ(dn − g) = 0 on 0(t). (8)

Here, g denotes the gap function to 0l and λ is a Lagrange multiplier for the no-
penetration condition defined by

λ = σs,nn − σf,nn on 0(t) \0l,

λ = σs,nn − σp on 0(t) ∩0l.

The “switch” on the right-hand side occurs, as the solid on one side of 0(t) couples
either to the fluid �f or the porous medium 0l on the other side of 0(t). The
conditions (8) can equivalently be written as

λ = −γC
[
dn − g − γ−1

C λ
︸ ︷︷ ︸

Pγ

]
+ on 0(t)

for arbitrary γC > 0. Using this notation, we can characterise the zone of “active”
contact as follows

0c(t) =
{
x ∈ 0(t) |Pγ > 0

}
.
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To summarise, we have the following interface conditions:

• Contact condition on 0(t):

dn − g ≤ 0, λ ≤ 0, λ(dn − g) = 0 on 0(t).

• Kinematic coupling on 0f si(t) = 0(t)\0l

uf = ḋ on 0f si(t).

• Dynamic coupling on 0(t):

σsn = −λn+ σpn = −γC[Pγ ]+n+ σpn on 0(t) ∩0l,

σsn = −λn+ σf n = −γC[Pγ ]+n+ σf n on 0(t) \0l.

We have the following Nitsche-based variational formulation: Find uf ∈ Vf , pf ∈
Lf , d ∈ Vs , Pl ∈ Vl such that

(∂tuf , v)�f + (∂t ḋ, w)�s + (σf (uf , pf ),∇vf )�f + (σs(d),∇w)�s

− (σf n, v−w)0(t)\0l
− (uf − ḋ, σf (v,−q))0(t)\0l

+ γfsi

h
(uf − ḋ, v−w)0(t)\0l

− (σp, v · n)0l\0(t) − (σp,w · n)0l∩0(t) +
(
γC[Pγ ]+, w · n)

0(t)

+ (εKτ∇τPl,∇τ ql)0l −
(
uf,n, ql

)
0l\0(t)

− (
ḋn, ql

)
0l∩0(t)

= 0

∀v ∈ Vf , q ∈ Lf ,w ∈ Vs, ql ∈ Vl ,

where Vf ,Lf ,Vs and Vl are suitable finite element spaces. The porous stress σp
is given by

σp = −Pl + εK−1
n

4
ul,n|γf =

{
−Pl + εK−1

n

4 uf,n on 0l \0(t)

−Pl + εK−1
n

4 ḋn on 0l ∩0(t).
(9)

4 Numerical Experiments

Here we will report on some numerical experiments using the above models.
First we consider the mixed dimensional Stokes’-Darcy system and then the fluid-
structure interaction system with contact and porous layer in the contact zone.
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4.1 Stokes-Darcy Example

In this example, we consider two disconnected fluid reservoirs, the domain �f ,
connected through a thin-walled porous media located on the bottom wall 0l , as
shown in Fig. 1. The physical parameters are μ = 0.03, ρf = 1, ε = 0.01 and
Kτ = Kn = 1. We impose a pressure drop across the two parts of the boundary �N

f .
The purpose of this example is to illustrate how the porous model is able to connect
the fluid flow between the two containers. This can be clearly inferred from the
results reported in Fig. 2, which respectively show a snapshot of the fluid velocity,
the elevation of the fluid pressure and the associated porous pressure.

4.2 Fluid-Structure Interaction with Contact

To test the FSI-contact model, we consider flow in a two-dimensional pipe, where
the upper wall is elastic, see Fig. 3. Due to the application of a large pressure P on
the left and right boundary, the upper wall is deflected downwards until it reaches the
bottom. Note that when contact occurs, the configuration is topologically equivalent
to the situation in Sect. 4.1. Shortly before the time of impact we set P to zero,
such that contact is released again after a certain time. This model problem is taken

Fig. 1 Geometrical configuration for the Stokes model with a thin-walled porous medium on the
bottom wall
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Fig. 2 Left: Snapshot of the fluid velocity. Middle: Elevation of the fluid pressure. Right: Porous
pressure
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Fig. 3 Geometrical configuration for the FSI-contact model. We apply a porous medium model
on the (rigid) lower wall, where contact might take place
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Fig. 4 Minimal distance of �s to the lower wall 0p over time. Right: zoom-in around the contact
interval. We compare the new approach presented in Sect. 3 for different parameters with the
artificial fluid and the relaxed contact approach studied in [4]

from [4], where further details on the configuration and the discretisation can be
found. To deal with the topology change in the fluid domain at the impact, we apply
a Fully Eulerian approach for the FSI problem [2]. In order to obtain a continuous
and physically relevant transition from FSI to solid-solid contact, we use the FSI-
contact model derived in Sect. 3 and place a thin porous domain 0l on the lower
boundary.

In Fig. 4 we compare this model for different parameters K = Kτ = Kn and
ε with the approaches for FSI-contact problems introduced in [4] in terms of the
minimal distance of the solid to 0p over time. In [4] two approaches were presented
in order to extend the fluid stresses to the contact region during solid-solid contact,
namely a so-called relaxed and an artificial fluid approach. It was observed that for
the artificial fluid approach contact happens earlier, as penetration of the fluid flow
into the artificial region is prevented only asymptotically, i.e. uf,n → 0 (h→ 0) on
0p, in contrast to uf,n = 0 for the relaxed approach. In the model presented here,
we have similarly from (7) and ul,n = uf,n on 0p

uf,n = −∇τ · (εKτ ∂τPl)→ 0 (εKτ → 0).
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For this reason we observe in Fig. 4 that the impact happens earlier for a larger value
of εKτ . The time of the release seems to depend also on εK−1

n , which appears in the
definition of σp (9). A detailed investigation of this dependence and the investigation
of stability and convergence of the numerical method are subject to future work.
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A Second Order Time Integration
Method for the Approximation of a
Parabolic 2D Monge-Ampère Equation

Alexandre Caboussat and Dimitrios Gourzoulidis

Abstract Parabolic fully nonlinear equations may be found in various applications,
for instance in optimal portfolio management strategy. A numerical method for the
approximation of a canonical parabolic Monge-Ampère equation is investigated in
this work. A second order semi-implicit time-stepping method is presented, coupled
to safeguarded Newton iterations A low order finite element method is used for
space discretization. Numerical experiments exhibit appropriate convergence orders
and a robust behavior.

1 Introduction

Fully nonlinear equations, and among them the elliptic Monge-Ampère equation,
have raised a lot of interest from the theoretical and numerical communities [1, 7, 9,
10], and also from the authors [4, 6]. We focus here on a time-evolutive, parabolic,
Monge-Ampère equation that has raised much less attention from a computational
perspective. Some known applications of interest arise, e.g., in finance [12], or in
mesh adaptation techniques [2, 3]. Numerical results for parabolic fully nonlinear
equations, including the equation that we study here, are given, e.g., in [8].

The purpose of this work is to introduce a second-order semi-implicit numerical
scheme for the approximation of the time-evolutive Monge-Ampère equation. It
extends the Newton-based approaches in [1, 10] to the non-stationary case by means
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of a midpoint time-stepping algorithm. Continuous, low order, finite elements are
used for the space discretization. Numerical validation is achieved with simple
examples, and appropriate convergence results are obtained from a computational
perspective.

2 Model Problem

Let � be a smooth bounded convex domain of R
2, and T > 0 a fixed time

horizon. We consider a time evolutive two-dimensional Monge-Ampère equation,
with Dirichlet boundary conditions, which reads as follows: find u : �× (0, T )→
R satisfying

⎧
⎪⎪⎨

⎪⎪⎩

∂u

∂t
− det D2u = f in �× (0, T ),

u = g in ∂�× (0, T ),

u(0) = u0 in �.

(1)

Here f = f (x, t), g = g(x, t) and u0 = u0(x) are given functions with the required
regularity, and D2u(:= D2

xu) is the Hessian of the unknown function u (with respect

to the space variable x), defined by D2u = (D2
ij u)1≤i,j≤2, and D2

ij u =
∂2u

∂xi∂xj
.

We assume in the sequel that u0 is convex, in order to favor the regularity of a
smooth transient. A constraint on the time step may have to be enforced to make
sure that the numerical solution remains convex at all times. Numerical results
will show that the right-hand side f may change sign, as long as the numerical
solution remains convex and the operator in the parabolic Monge-Ampère equation
remains coercive. Following [9], the Monge-Ampère operator can be rewritten under
a divergence form, namely

det D2u = 1

2
∇ ·

(
cof(D2u)∇u

)
.

The differential operator of (1) can thus be written as

∂u

∂t
− 1

2
∇ ·

(
cof(D2u)∇u

)
= f in �× (0, T ), (2)

meaning that (1) can be interpreted as a, strongly nonlinear, parabolic equation
reminiscent of a nonlinear heat equation. When looking for a convex solution, if
the nonlinearity cof(D2u) remains positive definite, then the operator is well-posed.
The challenge becomes thus to capture convex solutions, and to derive numerical
methods that take into account accurately the strongly nonlinear diffusion and
guarantee the coercivity of the diffusion operator at all times.
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Remark 1 In [9], an alternative formulation is considered, which consists in
augmenting the differential equation into a differential system. This approach has
proved to be very efficient in capturing a stationary solution. However, numerical
experiments have shown that it is not efficient to approximate the whole transient
trajectory of the evolutive problem.

In the sequel, we thus propose a second-order numerical method for the numerical
approximation of the solution of (1), which relies on an implicit time-stepping
scheme and a Newton’s method.

3 Numerical Algorithm

Let �t > 0 be a constant given time step, tn = n�t , n = 1, 2, . . ., to define the
approximations un * u(tn). The numerical algorithm proposed hereafter relies on
a discretization of the formulation (1). In order to handle the stiff behavior of the
Monge-Ampère equation, a semi-implicit time discretization of (1) is considered. In
this case, we advocate a midpoint rule and, un being known, we look for the next
time step approximation un+1 satisfying

un+1 − un

�t
− det

(
D2un+1/2

)
= f n+1/2 n = 0, 1, . . . , (3)

where un+1/2 := un+1 + un

2
and f n+1/2 := f

(
tn+1 + tn

2

)

. Then (3) can be

written as

un+1/2 − 1

2
�t det D2un+1/2 = un + 1

2
�tf n+1/2, (4)

and

un+1 = 2un+1/2 − un. (5)

Let us define bn := un + 1
2�tf n+1/2. Relationship (4) is rewritten at each time step

as

F(un+1/2) := un+1/2 − �t

2
det(D2un+1/2)− bn = 0.

This nonlinear problem is solved with a safeguarded Newton method at each time
step. For the ease of notation, we denote un+1/2 by v. Starting from the initial guess
v0 = un, the increments δvk of the Newton method are obtained by solving

DF(vk)δvk = −F(vk), k = 0, 1, 2, . . . , (6)

then, the next iterate is given by vk+1 = vk + δvk , until some stopping criterion
is satisfied at step M , and set un+1/2 := vM . At the end of the Newton loop, the
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approximation of the solution at the next time step is given by (5). In order to write
the variational formulation corresponding to (6) we use the following identity which
holds for 2× 2 symmetric matrices (see, e.g., [1]):

det D2(a + b) = det(D2a)+ det(D2b)+ tr(A∗D2b), (7)

where A∗ = cof(D2a) = det(D2a)(D2a)−1. This yields

tr(A∗D2b) = cof(D2a):D2b = ∇ · (cof(D2a)∇b),

where A : B := tr(AT B) is the Frobenius inner product for A, B ∈ R
2×2.

Equation (7) becomes,

det D2(a + b) = det(D2a)+∇ · (cof(D2a)∇b)+ det(D2b). (8)

We thus have, for s ∈ R,

F(vk+sδv) = vk+sδv−�t

2

(
det(D2vk)+ ∇ · (cof(D2vk)s∇δv)+ s2 det(D2δv)

)
−bn.

We thus compute DF(vk) as follows:

DF(vk)δv = lim
s→0

F(vk + sδv)− F(vk)

s
= δv− �t

2
∇ ·

(
cof(D2vk)∇δv

)
. (9)

In order to incorporate (9) in the variational formulation corresponding to (6), let
us define Vg = {

w ∈ H 1(�) : w|∂� = g
}
, and V0 = H 1

0 (�). Using (9), the
variational formulation corresponding to the Newton system (6) can be explicited
into : find δvk ∈ V0, for k = 0, 1, 2, . . ., such that

∫

�

δvkwdx+ �t

2

∫

�

cof(D2vk)∇(δvk) · ∇wdx =

−
∫

�

(

vk − �t

2
det(D2vk)− bn

)

wdx, (10)

for all w ∈ V0. This Newton’s variational problem is coupled with a safeguarding
strategy (Armijo’s rule) when needed. In addition, the method guarantees that
the matrix cof(D2vk) remains positive definite. This procedure is achieved by
computing the SVD of this matrix, and truncating its negative eigenvalues to zero.

4 Finite Element Discretization

In order to avoid the construction of finite element sub-spaces of H 2(�) and to
handle arbitrary shaped domains, we consider a mixed low order finite element
method for the approximation of (10) see, e.g., [4, 6]. Let us thus denote by
Th a regular finite element discretization of � ⊂ R

2 in triangles. From Th,
we approximate the spaces L2(�), H 1(�) and H 2(�), respectively H 1

0 (�) and
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H 2(�) ∩H 1
0 (�), by the finite dimensional space Vh, respectively V0h, defined by:

Vh =
{
v ∈ C0 (�

)
, v|K ∈ P1, ∀K ∈ Th

}
, V0,h = Vh ∩H 1

0 (�), (11)

with P1 the space of the two-variables polynomials of degree one. Moreover, let
us define Vg,h =

{
v ∈ C0

(
�
)
, v|K ∈ P1, ∀K ∈ Th, v|∂� = g

}
. As in [6], for a

function ϕ being given in H 1(�), we approximate the differential operators D2
ij by

D2
hij , for 1 ≤ i, j ≤ 2, defined by D2

hij (ϕ) ∈ V0h and

∫

�

D2
hij (ϕ)vdx = −1

2

∫

�

[
∂ϕ

∂xi

∂v

∂xj
+ ∂ϕ

∂xj

∂v

∂xi

]

dx, ∀v ∈ V0h. (12)

As emphasized in [11], the a priori estimates for the error on the second derivatives
of the solution ϕ are, in general, O(1) in the L2-norm when using piecewise
linear mixed finite elements. Therefore the convergence properties of the solution
method depend strongly on the type of triangulations one employs. To cure the non-
convergence properties associated with the approximations of D2

hij (ϕ), we use a

regularization procedure as in [6], and we replace (12) by: find D2
hij (ϕ) ∈ V0h,

1 ≤ i, j ≤ 2, such that
∫

�

D2
hij (ϕ)vdx+ C

∑

K∈Th

|K|
∫

K

∇D2
hij (ϕ) · ∇vdx =

−1

2

∫

�

[
∂ϕ

∂xi

∂v

∂xj
+ ∂ϕ

∂xj

∂v

∂xi

]

dx,

where C ≥ 0 and |K| =meas(K). Set u0
h be an approximation of u0 in Vg,h. At each

time step, the numerical approximation of (10) is computed as follows: let v0
h := un

h

at each time iteration; then, for k = 0, 1, 2, . . ., we search for δvkh ∈ V0,h such that:
∫

�h

δvkhwhdx+ �t

2

∫

�h

cof(D2vkh)∇(δvkh) · ∇whdx =

−
∫

�

(

vkh −
�t

2
det(D2vkh)− bnh

)

whdx, (13)

for all wh ∈ V0,h. Then we set vk+1
h := vkh + δvkh; when some stopping criterion

is satisfied at step M , we set un+1/2
h := vMh . To progress to the next time step, we

compute un+1
h = 2un+1/2

h − un
h.

5 Numerical Experiments

Numerical results are presented to validate the method for convex solutions. In
the following examples, � = (0, 1)2 and T = 1. Both a triangular structured
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asymmetric mesh and an unstructured isotropic mesh are used. The mesh size h

and the time step �t vary together. The stopping criterion for the Newton method is
||vk+1

h − vkh||L2(�) ≤ 10−12, with a maximal number of 200 Newton iterations. The
Newton method typically needs 9–12 iterations to converge, depending on the mesh
size and the time step. The parameter C is set to 1 (unless specified otherwise). The
convergence of the error e = u− uh is quantified by the following quantities

||e||L2(L2) :=
∫ T

0
‖u− uh‖L2 dt, ||e||L2(H 1) :=

∫ T

0
‖∇u−∇uh‖L2 dt,

In the tables below, those norms are approximated using the trapezoidal rule in time,
and quadrature formulas in space (see [5]).

5.1 A Polynomial Example

Let us consider T = 1, and the exact solution:

u(x, y, t) = 0.5 (0.5+ t) (x2 + 5y2), (x, y) ∈ �, t ∈ (0, T ) . (14)

This function is the solution of (1) with the data f (x, y, t) := 0.5
(
x2 + 5y2

) −
5 (0.5+ t)2, g(x, y, t) := 0.5 (0.5+ t) (x2+5y2), and u0(x, y) := 0.25(x2+5y2).
The solution (14) is convex for all t ∈ (0, T ). Note that the eigenvalues of the
Hessian D2u are λ1 = (0.5+ t)2 and λ2 = 5 (0.5+ t)2, and are both positive for
all t ∈ (0, T ). Figure 1 illustrates u0,h(x, y) (left) and uh(x, y, T ) (right), while
Table 1 shows that the solution method exhibits appropriate convergence orders (for
the discrete version of the norms ||u−uh||L2(0,T ;H 1(�)) and ||u−uh||L2(0,T ;L2(�))).

Fig. 1 A polynomial example corresponding to the exact solution (14). Numerical approximation
of the solution for h = 1/80 and �t = 0.25 · 10−3. Left: initial condition at time t = 0. Right:
final solution at time t = 1
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5.2 An Exponential Example

Let us consider T = 1, and the exact solution

u(x, y, t) = e−t e
1
2

(
x2+y2

)
, (x, y) ∈ �, t ∈ (0, T ) . (15)

This function is the solution of (1) with the data

f (x, y, t) := −e−t e
1
2

(
x2+y2) (

1+ e−t
(
x2 + y2 + 1

)
e

1
2

(
x2+y2))

,

together with g(x, y, t) := e−t e
1
2

(
x2+y2

)
, and u0(x, y) := e

1
2

(
x2+y2

)
. The solution

(15) is convex for all time t ∈ (0, T ), since the eigenvalues of D2u are λ1 =
e−te

1
2

(
x2+y2

)
, and λ2 = e−te

1
2

(
x2+y2

) (
x2 + y2 + 1

)
, which are both positive for all

times t ∈ (0, T ). Figure 2 illustrates u0,h(x, y) (left) and uh(x, y, T ) (right), while
Table 2 shows that the solution method exhibits nearly optimal convergence orders
(for structured and unstructured mesh we have O(h) and O(h1.5) for the discrete
version of the norm ||e||L2(H 1) and O(h1.8) and O(h2) for ||e||L2(L2), respectively).

Fig. 2 Exponential example corresponding to the exact solution (15). Numerical approximation
of the solution for h = 1/80 and �t = 0.25 · 10−3. Left: initial condition at time t = 0. Right: the
final solution at time t = 1
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Local Flux Reconstruction for a
Frictionless Unilateral Contact Problem

Daniela Capatina and Robert Luce

Abstract We are interested in the a posteriori error analysis based on locally
reconstructed fluxes for the 2D Signorini problem. We start from a P 1-conforming
approximation where the contact condition is treated by means of a Nitsche method.
We propose an extension of a general approach previously developed for the Laplace
operator, allowing to obtain H(div)-conforming conservative fluxes by a local
post-process. The reconstructed flux yields an a posteriori error indicator, which
is completed by two additional terms taking into account the non-linear contact
condition. We then prove the reliability of the indicator, without any additional
assumption.

1 Introduction

We are interested in the numerical approximation of the 2D frictionless unilateral
contact problem, modelled by Signorini’s equations. Different formulations exist
in the literature (mixed/hybrid, stabilized, penalty methods etc.), most of them
treating the contact condition by means of a variational inequality. In general, they
are suboptimal or need additional assumptions to reach optimality. In this paper,
we consider the Nitsche-type formulation introduced in [2] and its P 1-continuous
finite element approximation, for which the authors proved an optimal a priori error
estimate.

As regards the a posteriori analysis, residual-based error estimators for the
previous Nitsche formulation were proposed in [3]. However, the error analysis is
carried out under a saturation assumption. Our goal is twofold: on the one hand,
reconstruct locally a conservative flux and on the other hand, define a reliable a
posteriori error estimator based on this flux. This kind of approach is widely studied
in the literature, see [1] and references therein for the Laplace problem. It has
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also been applied to the contact problem, see for instance [4, 5] where a mixed
formulation with variational inequality is considered; however, the error estimator
contains a higher order term depending on the unknown solution.

Here, we first extend the framework proposed in [1] to the non-linear Signorini
problem, by treating the contact boundary as a Neumann one. The flux computation
is achieved by local post-processing of the finite element solution, without solving
any mixed problem. Then we use the reconstructed flux to define a standard a
posteriori indicator, to which we add two more terms on the contact boundary. This
allows us to establish the reliability of the error indicator without any saturation
assumption.

2 Model Problem and Discrete Formulation

We consider here the scalar Signorini problem in a polygonal bounded domain � ⊂
R

2 of boundary ∂� = �D ∪ �N ∪ �C, with �D, �N and the contact boundary �C

disjoint, and with |�D| > 0, |�C| > 0. The boundary value problem is given by:

−�u = f in �, u = uD on �D, ∂nu = g on �N

u ≤ 0, ∂nu ≤ 0, u ∂nu = 0 on �C (1)

where (1) are the frictionless unilateral contact conditions. We take f ∈ L2(�),
g ∈ L2(�N) and we assume that the Dirichlet data uD is continuous, piecewise
linear on �D and vanishes at �D ∩ �C (if non-empty).

It is important to note that conditions (1) are equivalent to (u− α∂nu)− = u or
to (u− α∂nu)+ = −α∂nu for a given α > 0, where a+ and a− stand for the positive
and the negative part of a ∈ R, respectively. This remark is used in the derivation of
the Nitsche’s formulation introduced in [2] and considered here.

For the discretization, we use a regular family of triangular meshes. We denote by
Kh the set of cells and by Sint

h , SD
h , SN

h and SC
h the interior, Dirichlet, Neumann and

contact sides, respectively. We put Sh = Sint
h ∪SD

h , S∂
h = SN

h∪SC
h and we use similar

notation for the nodes: Nh = Nint
h ∪ND

h and N∂
h (for the nodes lying on �N ∪ �C).

We denote by πl
ω the L2(ω) orthogonal projection on P l(ω). For S = ∂K in∩ ∂Kex,

nS is a fixed, arbitrary unit normal vector, oriented from K in towards Kex. For a
discontinuous function v, we define its jump and mean on S ∈ Sint

h by [v] = vin−vex

and {v} = 1
2

(
vin + vex

)
; on a boundary side, we set [u] = {u} = uin

S .
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The approximation of the contact problem is achieved by means of continuous,
piecewise linear finite elements. In order to focus on the contact condition, the
Dirichlet one is treated strongly. Let

V uD

h =
{
vh ∈ C0(�̄) : vh|K ∈ P 1(K) ∀K ∈ Kh, vh = uD on�D

}
,

Ah(uh, vh) =
∫

Kh

∇uh · ∇vh −
∫

SC
h

|S|
γ

∂nuh∂nvh +
∫

SC
h

|S|
γ

P(uh)+P(vh),

Lh(vh) =
∫

�

f vh +
∫

�N
gvh,

where γ > 0 is a stabilisation parameter independent of the mesh size h and where

P(v) = γ

|S|v − ∂nv, ∀S ∈ SC
h . (2)

The discrete problem introduced in [2] reads: Find uh ∈ V uD

h such that

Ah(uh, vh) = Lh(vh), ∀vh ∈ V 0
h . (3)

The authors proved the consistency and well-posedness of (3) for γ sufficiently

large, as well as an optimal O(h
1
2+ν) error estimate, for u ∈ H

3
2+ν(�) with 0 <

ν ≤ 1
2 .

3 Definition of Locally Reconstructed Flux

We are interested in defining a discrete conservative flux σh ∈ H(div,�) for
problem (3), which can be computed patch-wise. For this purpose, we first write
an equivalent mixed formulation and then we construct σh by using the Lagrange
multiplier.

3.1 Equivalent Mixed Formulation

The general idea is inspired by the hybridisation of classical finite element methods.
We dualize the continuity of uh across the sides of Sh by means of Lagrange
multipliers, and we thus obtain a mixed formulation where the primal unknown
belongs to a completely discontinuous finite element space. Let

Dh =
{
vh ∈ L2(�); vh|K ∈ P 1 ∀K ∈ Kh

}
, Mh =

{
vh ∈ L2(Sh); vh|S ∈ P 1 ∀S ∈ Sh

}
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and the mixed problem: Find Uh ∈ Dh and θh ∈ Xh ⊂Mh such that

ah(Uh, vh)+ bh(θh, vh) = lh(vh), ∀vh ∈ Dh

bh(μh,Uh) = jh(μh), ∀μh ∈ Xh,
(4)

where ah(uh, vh) = Ah(uh, vh) −
∫
Sh
{∂nuh}[vh] −

∫
Sh
[uh]{∂nvh} and lh(vh) =

Lh(vh) −
∫
SD
h
uD∂nvh. The forms bh(·, ·) and jh(·) approximate

∫
Sh

μh[vh] and
∫
�D uDμh by means of the trapeze integration formula, which allow to locally

compute θh. Thus, we define

bh(μh, vh) =
∑

S∈Sh

|S|
2

2∑

i=1

(μh[vh])(Ni
S), jh(μh) =

∑

S∈SD
h

|S|
2

2∑

i=1

(uDμh)(N
i
S)

with (Ni
S)1≤i≤2 the vertices of a side S ∈ Sh. The simplest choice Xh = Mh does

not ensure uniqueness of the multiplier θh. Guided by a node-wise identity satisfied
by the jump of a function of Dh, we are led to introduce

Xh =
{

μh ∈ Mh :
∑

S∈SN

αN,S |S|μh(N) = 0 ∀N ∈ Nh

}

, (5)

where SN is the set of sides containing N and αN,S is equal to 1 if nS is oriented
clock-wise around N , and to −1 otherwise.

It is important to note that Ker bh coincides with the P 1 conforming space V 0
h ,

which implies that Uh satisfies the weak formulation (3), and hence Uh = uh. The
key-point for the stability of the mixed formulation is the uniform inf-sup condition;
its proof closely follows the one of [1] for the Laplace problem. It allows to obtain

existence and uniqueness of θh, as well as an optimal O(h
1
2+ν) error estimate

for θh.

3.2 Local Computation of the Multiplier

The main interest of the mixed formulation (4) is that θh can be computed locally,
as the sum of local contributions θN for N ∈ Nh. Each θN is defined on the support
ωN of the P 1 shape function ϕN associated to the node N , vanishes on ∂ωN , lives
on the sides S ∈ SN and belongs to P 1(S). Let the residual and local bilinear form

rh(·) = lh(·)− ah(uh, ·), bS(θ, ϕ) = |S|
2

2∑

i=1

(θϕ)(NS
i ), ∀S ∈ Sh.
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As in [1], we impose that θN satisfies the following system, for any K ⊂ ωN, S ∈
SN :

∑

S⊂∂K

bS(θN , [ϕN ]) = rh(ϕNχK), bS(θN, ϕM) = ρS rh(ϕMχK in), (6)

where M denotes the other vertex of S and where ρS is a coefficient equal to 0, 1
2

or 1 which takes into account the overlapping of the patches ωN , see [1] for more
details. The linear system (6) is compatible thanks to the following relation:

rh(ϕN) =
∑

K⊂ωN

rh(ϕNχK) = 0, ∀N ∈ Nint
h ∪N∂

h,

which holds true because uh is solution to (3). However, (6) has a one-dimensional
kernel KN . In order to obtain a unique solution θN , we impose in addition that∑

S∈SN
αN,S |S|θN(N) = 0, which characterizes the orthogonal of KN and which

ensures that
∑

N∈Nh
θN belongs to Xh. It was shown in [1] that it also satisfies the

first equation of (4), so by uniqueness of its solution we get that θh =∑
N∈Nh

θN .

3.3 Conservative Locally Reconstructed Flux

We now use θh to define a local flux σh ∈ H(div,�). We employ the Raviart-
Thomas space RTm

h with m = 1 or m = 0. We impose the degrees of freedom of σh
on the edges as below. On the Neumann and contact boundaries, we set respectively

σh · nS = πm
S g ∀S ∈ SN

h , σh · nS = −πm
S (P (uh)+) ∀S ∈ SC

h , (7)

whereas on the interior or the Dirichlet sides we impose:

∫

S

σh · nSϕ =
∫

S

{∂nuh}ϕ − bS(θh, ϕ), ∀ϕ ∈ Pm(S), ∀S ∈ Sh. (8)

Note that for m = 0, (8) is simply equivalent to σh · nS = {∂nuh} − π0
Sθh.

The normal trace σh · nS is thus well-defined in Pm(S). In order to define σh in
RTm

h , we also prescribe interior degrees of freedom when m = 1 as follows:

∫

K

σh · r =
∫

K

∇uh · r −
∫

∂K∩SC
h

|S|
γ

(∂nuh + P(uh)+) r · nS, ∀r ∈ P 0(K)2.

(9)
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By taking now in (4) the test-function vχK with v ∈ Pm(K) and by integrating
by parts, we immediately obtain the conservation property of the flux:

divσh|K = −πm
Kf, ∀K ∈ Kh. (10)

4 A Posteriori Error Analysis

In [3], the authors studied residual a posteriori error estimators for (3). In addition
to the Laplace operator, they consider the term |S|1/2‖∂nuh + P(uh)+‖0,S on
each contact side. However, the error analysis is carried out under a saturation
assumption.

We propose an error estimator based on the correction of the flux τh = σh−∇uh,
leading to the local/global indicators ηK = ‖τh‖0,K and η0 = ‖τh‖0,�.

In the sequel, we focus on the additional terms (with respect to the Laplace
problem) in the error estimator, which are related to the contact condition. We will
establish the reliability of the estimator without any saturation assumption.

4.1 A Posteriori Error Estimator

We define the following local error estimators on a contact side S ∈ SC
h :

η1,S = |S|1/2‖∂nuh + P(uh)+‖0,S, η2,S = |S|−1/2‖|S|
γ

P(uh)− −Lhuh‖0,S.

(11)

Here above,Lhuh is P 1-continuous on �C, defined byLhuh(N) = 1
γ
{|S|P(uh)−}N

at any node N ∈ �C. The notation {·}N stands for the mean along �C if N is interior
to �C; if N ∈ �C ∩ �D then we set {A}N = 0 and if N ∈ �C ∩�N then {A}N = A.

Remark 1 Recall that u = |S|
γ
P (u)− on �C. Since uh is globally continuous, the

estimator η2,S measures the lack of continuity of |S|
γ
P (uh)− along the side S.

Furthermore, we consider the global error indicators:

η2
1 =

∑

S∈SC
h

η2
1,S, η2

2 =
∑

S∈SC
h

η2
2,S, η2 = η2

0 + η2
1 + η2

2,
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as well as the usual higher-order term εdata related to the data approximation, ε2
data *∑

K∈Kh
h2
K‖f − πm

Kf ‖2
0,K +∑

S∈SN
h
|S|‖g − πm

S g‖2
0,S . In the next subsection we

prove:

Theorem 1 One has:

|u− uh|1,� ≤ c (η + εdata) .

4.2 Upper Error Bound

As usually in a posteriori error analysis with reconstructed fluxes, we evaluate |u−
uh|21,� by means of an integration by parts, with ∇u = σ and ∇uh = σh − τh. By
using the properties (7), (10) of σh ∈ H(div,�) and the Dirichlet condition, we get:

|u− uh|21,� ≤
(
η2

0 + ε2
data

)1/2 |u− uh|1,� +
∫

�C
(σ − σh) · n(u− uh)ds. (12)

Next, we focus on the integral of (12), which we decompose as TI +T2 +T3, with

T1 =
∫

�C
(σ − σh) · n(Lhuh − uh), T2 =

∫

�C
(σ · n− σh · n− P (uh)+)(u−Lhuh),

T3 =
∫

�C
P(uh)+(u−Lhuh) =

∑

S∈SC
h

TS
3 .

In order to bound T1, we introduce a lifting Rhuh ∈ V uD

h of Lhuh, defined by:

Rhuh(N) = Lhuh(N) if N ∈ �C, and Rhuh(N) = uh(N) at the other vertices.
Thus, Rhuh−uh ∈ V 0

h and its (weighted) discrete H 1-norm can be bounded by that
of Lhuh − uh on �C, which yields:

|T1| =
∣
∣
∣
∣

∫

�

∇(u− uh) · ∇(Rhuh − uh)−
∫

�

τh · ∇(Rhuh − uh)

−
∫

Kh

(f − πm
Kf )(Rhuh − uh)−

∫

SN
h

(g − πm
S g)(Rhuh − uh)

∣
∣
∣
∣
∣

≤c
(
|u− uh|21,� + η2

0 + ε2
data

)1/2 ×
( ∑

S∈SC
h

|S|−1‖Lhuh − uh‖2
0,S

)1/2

.
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By using the definition of P(uh) and the relation a = a+ + a−, we can write that:

‖Lhuh − uh‖0,S ≤ |S|
γ
‖∂nuh + P(uh)+‖0,S + ‖|S|

γ
P(uh)− −Lhuh‖0,S

so for γ ≥ 1 we obtain |S|−1/2‖Lhuh − uh‖0,S ≤ η1,S + η2,S and hence,

|T1| ≤ c
(|u− uh|1,� + η + εdata

)
η. (13)

As regards T2, we use (σ · n)u = 0, σ · n ≤ 0, Lhuh ≤ 0 and (7) to get:

T2 ≤ −
∫

�C
(σh · n+ P(uh)+)(u−Lhuh)

=
∫

SC
h

(σh · n+ P(uh)+)(u− uh − πm
S (u− uh))+ (σh · n+ P (uh)+)(uh −Lhuh).

The Cauchy-Schwarz inequality together with a standard scaling argument gives

|S|1/2‖σh · n+ P(uh)+‖0,S ≤ η1,S + |S|1/2‖τh · n‖0,S ≤ η1,S + cηK.

Thanks to the discrete trace inequality on S ∈ SC
h , we next get that

T2 ≤ cη(|u− uh|1,� + η). (14)

Finally, we consider T3. We only have to bound TS
3 on the contact sides S where

P(uh) is non-negative. By using that u ≤ 0 and P(uh)+ ≥ 0, we first have that
TS

3 ≤ − ∫
S P (uh)+Lhuh. Thanks to the property a+a− = 0, we further get:

TS
3 ≤

∫

S

(

∂nuh+P(uh)+
)( |S|

γ
P(uh)−−Lhuh

)

−
∫

S

∂nuh

( |S|
γ

P(uh)−−Lhuh

)

.

The first integral is bounded by η1,Sη2,S . For the second one, the linear function
P(uh) either changes its sign in a point M ∈ S or is strictly positive.

In the first case, by means of the exact Simpson formula on the segment (of length
d) where P(uh) ≥ 0 we obtain that:

∫

S

(∂nuh+P(uh)+)2ds ≥ d

6
(∂nuh+P(uh))

2(M)+(|S|−d)(∂nuh)
2 ≥ |S|

6
(∂nuh)

2,

so |S|1/2‖∂nuh‖0,S ≤ cη1,S with c independent of d . Thus, TS
3 ≤ cη1,Sη2,S .

In the second case, P(uh)− = 0 so we have to bound | ∫
S
∂nuhLhuh|. We

evaluate it by the exact trapeze formula and we bound it thanks to the triangular
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inequality by

|S|
2

2∑

i=1

|(∂nuh + P(uh)+)(Ni)Lhuh(Ni)| + |S|
2

2∑

i=1

|P(uh)+(Ni)Lhuh(Ni)|.

The first sum is clearly bounded by cη1,Sη2,S . Concerning the second sum, let us
first note that only the interior nodes of �C contribute to it. We then use the definition
of Lhuh, the fact that (P (uh)−)|S(Ni) = 0, the relation a+a− = 0 and we obtain:

|S||P (uh)+(Ni)Lhuh(Ni)| =
∣
∣[|S|P (uh)+]Ni

∣
∣× |Lhuh(Ni)| ≤ c

∣
∣[|S|P (uh)+]Ni

∣
∣ η2,S .

For the jump term, we need to consider the adjacent contact side S̃ containing Ni .
If P(uh)|S̃ (Ni) ≥ 0, then [|S|P(uh)+]Ni = [|S|P(uh)]Ni = −[|S|∂nuh]Ni . By
combining an estimate established in [5] with the fact that σh ∈ H(div,�), and
hence [∂nuh] = −[τh · n] on any interior side, we next obtain that

[|S|∂nuh]2N ≤ c
∑

Sj∈Sint
N

|Sj |‖[∂nuh]‖2
0,Sj ≤ c

∑

K⊂ωN

η2
K. (15)

If P(uh)|S̃ (Ni) < 0, then we write by means of the triangular inequality that:

∣
∣[|S|P(uh)+]Ni

∣
∣ ≤ ∣

∣[|S|(P (uh)+ + ∂nuh)]Ni

∣
∣+ ∣

∣[|S|∂nuh]Ni

∣
∣ .

The second right-hand side term is bounded in (15); the first one is bounded by
∣
∣|S|(P (uh)+ ∂nuh)|S(Ni)

∣
∣ +

∣
∣
∣|S̃|(∂nuh)|S̃ (Ni)

∣
∣
∣ ≤ c(η1,S + η1,S̃), where we have

used on S̃ the estimate for ∂nuh previously established in the case where P(uh)

changes its sign (otherwise, P(uh)+ = 0 on S̃ so the estimate is obvious).
So finally, T3 ≤ cη2; together with (13) and (14), it ends the proof of Theorem 1.

Acknowledgments The authors would like to thank F. Chouly for suggesting the application to
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Study on an Adaptive Finite Element
Solver for the Cahn–Hilliard Equation

G. Fabian Castelli and Willy Dörfler

Abstract In this work we present an adaptive matrix-free finite element solver
for the Cahn–Hilliard equation modelling phase separation in electrode particles
of lithium ion batteries during lithium insertion. We employ an error controlled
variable-step, variable-order time integrator and a regularity estimator for the
adaptive mesh refinement. In particular, we propose a matrix-free applicable
preconditioner. Numerical experiments demonstrate the importance of adaptive
methods and show for our preconditioner practically no dependence of the number
of GMRES iterations on the mesh size, even for locally refined meshes.

1 Phase Separation in Electrode Particles

Lithium ion batteries have become a promising energy storage technology for
mobile power devices. For the better understanding of the cyclability and the loss
of capacity we want to investigate the degradation behaviour of single electrode
particles. For example in electrode materials like lithium manganese oxide (LMO)
or lithium iron phosphate (LFP) the occurrence of a phase transition between lithium
poor and lithium rich phases can lead to high stresses [6, 11–13], which in the end
can also cause particle fracture.

However, simulating such a complex multi-physical problem is a very challeng-
ing task. So neglecting the mechanics for the moment we focus in this work on
the efficient numerical simulation of phase separation in electrode particles during
lithium insertion. Main challenges of this problem like the almost sharp moving
phase transition as well as the varying time scales over several orders of magnitude
give rise to use adaptive methods in space and time. In particular, to be able to
use the high performance parallel matrix-free framework within the open-source
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finite element library deal.II [2, 7] in future an appropriate preconditioner is needed.
Whereas preconditioning the Cahn–Hilliard equation is already a research topic
itself, see for example [3, 4].

In the rest of this section we review the model equations for phase separation in
electrode particles. Following in Sect. 2 we explain our numerical solution algorithm
and propose our matrix-free applicable preconditioner. Numerical results will be
discussed in Sect. 3 and a conclusion is given in Sect. 4.

Model Equations In contrast to the sharp interface model we previously used in
[5], we follow the phase field modelling in [6] and consider the resulting dimension-
less mixed formulation of the Cahn–Hilliard equation from a mathematical point
of view: Let T > 0 and � ⊂ R

d (d = 1, 2, 3) be a bounded domain. Find the
normalised lithium concentration c : [0, T ]×�→ [0, 1] and the chemical potential
μ : [0, T ] ×� → R satisfying the initial boundary value problem:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tc = ∇·(m(c)∇μ
)

in (0, T )×�,

μ = ∂zψ(c,∇c)−∇·∂pψ(c,∇c) on (0, T )×�,

∇c · n = 0 on (0, T )× ∂�,

m(c)∇μ · n = −Jext on (0, T )× ∂�,

c(0, · ) = c0 in �.

(1)

The nonlinear mobility is given by m(c) = Dc(1− c) with the diffusion coefficient
D > 0. The system’s free energy density ψ(z,p) = ψdwp(z) + ψgd(p) is
decomposed into the homogeneous chemical free energy density ψdwp : [0, 1] → R,

ψdwp(z) = α1z+ 1

2
α2z

2 + z log(z)+ (1− z) log(1− z),

for which the two material parameters α1, α2 ∈ R control the shape of this function,
and the gradient energy density ψgd : Rd → R,

ψgd(p) = 1

2
κ |p|2,

with the parameter κ > 0 controlling the width of the phase transition. Note, that
phase separation can only occur if α1 and α2 are chosen, such that ψdwp has a double
well shape.

To model the lithium insertion we use an inhomogeneous boundary condition of
Neumann-type for μ, corresponding to a given particle surface flux Jext : [0, T ] ×
∂� → R, while a homogeneous Neumann-type boundary condition for c ensures
that the phase transition stays always orthogonal to the particle surface.

As initial condition for the simulation of lithium insertion we assume an
approximately zero given initial distribution of concentration c0 : � → (0, 1)
consistent with the boundary conditions.

Parameters to specify the electrode material will be given in Sect. 3.
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2 The Numerical Method

Semi-discretisation in Space We start with the weak formulation of the sys-
tem (1): Find c : [0, T ] → {

H 1(�) : c ∈ [0, 1]} and μ : [0, T ] → H 1(�)

satisfying the weak form that we get by multiplication with test functions v,
w ∈ V := H 1(�). We assume Vh ⊂ V to be a finite dimensional space with
basis {ϕi : i = 1, . . . , N}. Now we seek ch : [0, T ] →

{
Vh : ch ∈ [0, 1]} and

μh : [0, T ] → Vh to be solutions of the discrete system

(
ϕi, ∂t ch

)
�
= −(∇ϕi,m(ch)∇μh

)
�
− (

ϕi, Jext
)
∂�

,

0 = −(ϕi, μh

)
�
+ (

ϕi, ψ
′
dwp(ch)

)
�
+ κ

(∇ϕi,∇ch
)
�
,

for i = 1, . . . , N . In this set of equations we insert the basis representation for the
discrete functions ch(t, x) = ∑N

j=1 cj (t)ϕj (x) and μh(t, x) = ∑N
j=1 μj(t)ϕj (x).

Now we identify the spatially discrete function ch(t, · ) with the vector-valued
function c(t) = [cj (t)]j ∈ [0, 1]N and μh(t, · ) with μ(t) = [μj(t)]j ∈ R

N .
Gathering the solution variables for the concentration and the chemical potential in
a vector-valued solution variable y : [0, T ] → R

2N , t �→ y(t) = [c(t),μ(t)]�,
we arrive at the nonlinear differential algebraic equation (DAE) for the spatially
discretised system: Find y : [0, T ] → R

2N satisfying:

(
M 0
0 0

)

∂ty = f (t, y) for t > 0, y(0) = y0. (2)

The system mass matrix on the left hand side of the DAE is singular and its entry
M = [(ϕi, ϕj

)
�
]ij denotes the mass matrix of our finite element space. The right

hand side function is defined according to the weak formulation: If y is related to
ch, μh as described, we have f : [0, T ] × R

2N → R
2N with

(t, y) �→ f (t, y) :=
(−(∇ϕi,m(ch)∇μh

)
�
− (

ϕi, Jext
)
∂�

−(ϕi, μh

)
�
+ (

ϕi, ψ
′
dwp(ch)

)
�
+ κ

(∇ϕi,∇ch
)
�

)

i=1,...,N

.

Defining the matrices K1 = [(∇ϕi,∇ϕj

)
�
]ij , Km(y1) = [(∇ϕi,m(ch)∇ϕj

)
�
]ij

and the vectors �(y1) = [(ϕi, ψ
′
dwp(ch)

)
�
]i , J = [(ϕi, Jext

)
∂�
]i we can rewrite f

as

f (t, y) =
(
f 1(t, y1, y2)

f 2(t, y1, y2)

)

:=
(−Km(y1)y2 − J

−My2 +�(y1)+ κK1y1

)

.

Note, that an explicit dependence of f on t will only occur via Jext.

The Time Integration Method As a robust solver for the arising DAE we use the
family of NDF multistep methods in a variable-step, variable-order algorithm, in
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Matlab known as ode15s [8–10]. This incorporates an error controlled adaptive
time step size and adapted orders. We implemented this as a C++ code with the
functionalities of the deal.II library.

In summary, the resulting fully discrete problem for the approximate solution
yn+1 to the solution y(tn+1) of (2) at the time step tn+1 = tn + τn involves a
nonlinear algebraic set of equations to solve. According to the k-th order NDF time
integrator these nonlinear equations have the form [8, Sect. 2.3]:

ξkτ
−1
n M(�1 + yn+1

1 )− f 1(tn+1, y
n+1
1 , yn+1

2 ) = 0,

−f 2(tn+1, y
n+1
1 , yn+1

2 ) = 0,

with some constant ξk > 0 for the chosen order k and the fixed term �1 depending
on the solution at some previous time steps yn

1, y
n−1
1 , . . .

Solving the System of Equations Our approach follows the work [4]: We intro-
duce the scaling (for c) yn+1

1 = τ 1/4zn+1
1 , �1 = τ 1/4

˜�1 and (for μ) yn+1
2 =

τ−1/4zn+1
2 and multiply the first equation with τ 3/4 and the second equation with

τ 1/4 to get:

ξkM
(
˜�1 + zn+1

1

)+ τ 1/2Km

(
τ 1/4zn+1

1

)
zn+1

2 + τ 3/4J = 0,

Mzn+1
2 − τ 1/4�

(
τ 1/4zn+1

1

)− τ 1/2κK1z
n+1
1 = 0.

To solve this problem for zn+1, Newton’s method is applied and the essential work
is to solve the linearised problem. This is done by a GMRES method with a right
preconditioner. As in [4] we compute the Jacobian and swapping columns yields
a generalisation of the preconditioner obtained in [4] depending on the Newton
step z(i):

P(z(i)) =
(
τ 1/2Km

(
τ 1/4z

(i)
1

)+M 0
0 τ 1/2κK1 +M

)

.

The advantage of the proposed preconditioner is that it respects the nonlinear
mobility and is applicable for matrix-free computations [7]. In particular, as in [4],
for the efficient application of the preconditioner, the action of the inverse blocks
can be computed by a CG method with a suitable preconditioner. Furthermore, we
benefit from the implementation of the matrix-free framework in deal.II, since we
are able to parallelise the code directly with MPI for future simulations.

The Space-Time Adaptive Algorithm We will first present the algorithm and will
then explain some details.

1. Given cn and μn (and previous ones), τn, Tn, order k for time stepping.
2. Solve for yn+1 (defining cn+1 and μn+1).
3. Estimate time error errt and compute spatial regularity estimates estx .
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4. (b) If errt > RelTolt : Decrease time step size and/or reduce order.
(b) If estx > RelTolx : Mark elements and refine mesh.

5. If both errt and estx were OK, accept yn+1 as solution at time tn+1.
Else go to Step 2.

6. If a sufficient number of time steps were accepted with the same time step size

(b) Adapt time step size and order according to error estimate errt .
(b) Mark all cells with η2

T < 10−10 but hmax = 2−5 and coarsen mesh.

7. Advance time step.

The method to obtain yn+1 in Step 2 has been explained before. For Step 3 the
estimation of the time error is part of the NDF method [8–10]. For the spatial error
we use a method to judge the regularity of a finite element approximation uh (here
ch or μh), see [1, Chap. 4]. For uh ∈ Vh we compute a recovered gradient Gh(uh) ∈
(Vh)

d , here via an approximated L2-projection, and define for each cell T of our
spatial partition

η2
T (uh) :=

∫

T

|Gh(uh)−∇uh|2 dx

and estx :=
(∑

T ∈Tn
η2
T

)1/2
with η2

T := η2
T (ch)+ η2

T (μh). For the adaptive change
of the time step size and the order in Steps 4a and 6a, compare [8–10] and the
references cited therein. Step 4b is done with fixed energy marking up to a minimal
mesh width hmin = 2−20 and an absolute tolerance η2

T > AbsTolx .

3 Numerical Experiments

For the numerical experiments we consider the model equations from Sect. 1 for
a spherical shaped electrode particle of LFP. The parameters, taken from [13], are
α1 = 4.5, α2 = −9, κ = 3.91 × 10−4 for the free energy density and D =
1.6×103 for the diffusion coefficient. Assuming a radial symmetric solution we can
reduce the computational domain to the one-dimensional unit interval � = (0, 1)
representing the radial line from the particle centre at �0 = {0} to the particle surface
at �ext = {1}. As boundary condition we apply a constant insertion rate Jext =
−1/3 at the particle surface such that the particle would get fully charged within
1 h T = 1. To preserve the symmetry we impose homogeneous boundary conditions
of Neumann-type at the artificial boundary in the particle centre

∇c · n = m(c)∇μ · n = 0 on (0, T )× �0.

At initial time t = 0 we assume a constant concentration of c0 = 0.01.
First we solved the model equations numerically with linear finite elements and

the variable-step, variable-order time integrator, as explained in Sect. 2. We used a
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uniform mesh with mesh width h = 2−10, according to the rule of thumb that the
phase transition should be resolved with at least ten cells or unknowns. As the width
of the phase transition behaves like

√
κ it is related to the uniform mesh width h =

2−n by 2−n <
√
κ/10 ⇔ n > log

(√
κ/10

)
/ log(2), with n the number of uniform

refinements. For the time integration the relative tolerance was set to RelTolt =
10−4. In Fig. 1 we see snapshots of the numerical solution for the concentration
and the chemical potential at three characteristic time steps: (1) Initiation of phase
separation, (2) Migration of the phase transition through the particle, (3) Vanishing
of the phase transition.

The importance of adaptive methods for this problem becomes immediately clear
when we look into Fig. 2. At the times when the phase separation is initiated and
when the phase transition vanishes, the time step size jumps over several orders
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Fig. 1 Temporal evolution of the concentration (top) and the chemical potential (bottom)
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Fig. 4 Maximum number of GMRES steps per time step for different polynomial degrees with
adaptive mesh refinement (left) and number of DoFs (right)

of magnitude. In contrast, during the migration of the phase transition a large time
step size can be used. Furthermore, a full resolution of the whole spatial domain,
respecting the width of the phase transition, is obviously not necessary, since the
solution is approximately constant in regions away from the phase transition.

To show the performance of our proposed preconditioner we plotted the max-
imum number of GMRES steps needed to solve a time step in Fig. 3. For this
we solved the model equation (1) for a series of successively uniform refined
meshes, (2) for finite element methods with increasing polynomial degree holding
the number of unknowns approximately constant. Once the phase transition is fully
resolved, the number of GMRES steps is practically independent of further mesh
refinement. The variation of the polynomial degree of the finite element method
also has no significant influence on the number of iteration steps.

Allowing adaptive mesh refinement as described in the adaptive algorithm in
Sect. 2, we see in Fig. 4 that the preconditioner shows the same performance as
in the uniform refined case. In particular, compared to the uniformly refined case,



252 G. F. Castelli and W. Dörfler

the savings in degrees of freedom are enormous, especially for higher order finite
element methods. As marking parameter we used θ = 0.2 and for all polynomial
degrees we used the tolerances RelTolx = 10−2, AbsTolx = 10−10, except in the
case p = 1, where we used RelTolx = 5× 10−2 instead.

4 Conclusion

Summing up, we introduced the model equations for phase separation in electrode
particles of lithium ion batteries during lithium insertion. For this initial boundary
value problem we presented a space-time adaptive algorithm for a finite element
solver. In particular, we developed an easy to implement and matrix-free applicable
preconditioner, which respects the nonlinear character of the PDEs. Numerical
experiments showed the high demand for adaptive methods as an indispensable tool
for the fast and accurate solution of this complex application problem. Furthermore
with the proposed matrix-free preconditioner the number of GMRES steps showed
practically no dependence on the spatial resolution even for locally refined meshes.

The presented results in one space dimension give rise to exploit the capabilities
of the developed adaptive matrix-free finite element solver for future simulations of
more realistic cases, such as phase separation in arbitrary shaped electrode particles
including also a thermodynamically consistent mechanics theory.

The proof of a theoretical result for the proposed matrix-free preconditioner will
also be part of a future work.
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Numerical Study of the Fracture
Diffusion-Dispersion Coefficient
for Passive Transport in Fractured
Porous Media

Florent Chave

Abstract We propose a new definition of the normal fracture diffusion-dispersion
coefficient for a reduced model of passive transport in fractured porous media.

MSC (2010) 65N08, 65N12, 65N30

1 Introduction

In this paper, we focus on the reduced model introduced in [1, 3] describing the
Passive Transport of a solute in a Fractured Porous Media, which will be now
referred to as (PTFPM). By reduced model, we assume that the fracture is treated
as a surface of codimension one. The reduced model (PTFPM) consists of two
advection–diffusion–reaction equations, one in the porous media and one in the
fracture, with advective velocity fields taken as the solution of a decoupled problem,
and where the coupling is done by subtle transmission conditions describing the
exchanges between the different regions. A notable feature of the reduced model
(PTFPM) is that the transmission conditions between the porous media and the
fracture mimic at the discrete level the property that the advection terms do
not contribute to the energy balance of the system, allowing us to handle both
conducting and blocking fractures by letting the concentration of the solute jumps
across the fracture; see also [4] in the context of advection of a passive scalar
in a fractured porous media. However, the description of the fracture diffusion-
dispersion in both the normal and tangential directions considered in the reduced
model (PTFPM) is meaningless from the physical viewpoint. Indeed, in (PTFPM)
those coefficients are assumed to be independent from the surrounding unknowns:
this is irrelevant since they play an important role in the description of (1) the
exchanges between the porous media and the fracture, and (2) the behavior of the
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solute at the neighborhood of the fracture. The aim of this paper is to propose
a more physical definition of the fracture diffusion-dispersion coefficient, and to
present some test cases based on the previous works [2, 3]. The rest of this paper
is organized as follows: in Sect. 2 we present the main equations and in Sect. 3 we
perform numerical experiments.

2 The Differential Model

In this section, we present the reduced model for the passive transport in a fractured
porous media. We first introduce notation, then define the velocity fields and
diffusion-dispersion tensors, and finally introduce the main equations.

2.1 Notation

We consider a porous medium saturated by an incompressible fluid that occupies
a space region Ω ⊂ R

2 traversed by a fracture Γ . We assume that Ω is an open,
bounded, connected, polygonal set with Lipschitz boundary ∂Ω , and denote by n∂Ω

the unit normal vector on ∂Ω pointing out of Ω . The fracture Γ is represented by
an open line segment of nonzero length which cuts Ω into two disjoint connected
polygonal subdomains ΩB,1 and ΩB,2 with Lipschitz boundary. The sets ΩB :=
Ω \ Γ = ΩB,1 ∪ΩB,2 and ∂ΩB := ∪2

i+1(∂ΩB,i \ Γ ) correspond to the bulk region
and the external boundary of the bulk region, respectively. The boundary of the
fracture Γ is denoted by ∂Γ , and the corresponding outward unit tangential vector
is τ ∂Γ . Finally, nΓ denotes the unit normal vector to Γ pointing out of ΩB,1 This
notation is illustrated in Fig. 1.

For any scalar- or vector-valued function ϕ sufficiently regular to admit a
(possibly two-valued) trace on Γ , we define the jump and average operators such
that

[[ϕ]]Γ := (ϕ|ΩB,1 − ϕ|ΩB,2)|Γ , {{ϕ}}Γ := 1

2
(ϕ|ΩB,1 + ϕ|ΩB,2)|Γ .

Fig. 1 Illustration of the
notation introduced in
Sect. 2.1
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2.2 Advective Velocity Fields

We assume that the advective Darcy velocities follow from the decoupled reduced
model [5], which describes the flow in a fractured porous medium. This model reads
as follows: Find the bulk Darcy velocity u : ΩB → R

2, the bulk pressure p : ΩB →
R and the fracture pressure pΓ : Γ → R such that

u+K∇p = 0 in ΩB, (1a)

∇ · u = f in ΩB, (1b)

u · n∂Ω = 0 on ∂ΩB, (1c)

∇τ · (−KΓ∇τpΓ ) = �Γ fΓ + [[u]]Γ · nΓ in Γ, (1d)

−KΓ∇τpΓ · τ ∂Γ = 0 on ∂Γ, (1e)
∫

Γ

pΓ = 0, (1f)

where f ∈ L2(ΩB) and fΓ ∈ L2(Γ ) verify
∫
ΩB

f + ∫
Γ �Γ fΓ = 0 and denote

source or sink terms, K : ΩB → R
2×2 is the bulk permeability tensor, and we have

set KΓ := κτ
Γ �Γ , with κτ

Γ : Γ → R denoting the tangential permeability inside
the fracture and �Γ : Γ → R the fracture thickness. In (1d) and (1e), ∇τ and ∇τ ·
denote the tangential gradient and divergence operators along Γ , respectively. The
following transmission conditions across the fracture close the problem:

{{u}}Γ ·nΓ = κn
Γ

�Γ
[[p]]Γ on Γ, [[u]]Γ ·nΓ = κn

Γ

�Γ
ξ−1({{p}}Γ −pΓ ) on Γ, (2)

where ξ ∈
(

0, 1
2

]
is a user-dependent model parameter and κn

Γ : Γ → R represents

the normal permeability inside the fracture. From now, we refer to the advective
velocity fields as the bulk Darcy velocity u and the tangential fracture Darcy velocity
uΓ := −KΓ∇τ pΓ .

2.3 Diffusion-Dispersion Tensors

Following [6], we assume that the bulk diffusion-dispersion tensor D : ΩB → R
2×2

and the fracture diffusion-dispersion coefficient DΓ : Γ → R are such that

D := φ (dmI2 + |u|(dlE(u)+ dt(I2 − E(u)))) , (3a)

DΓ := φΓ

(
�Γ dΓ

m + |uΓ |dΓ
l

)
, (3b)
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where u and uΓ are defined in Sect. 2.2, | · | is the euclidian norm, and the scalar
functions φ, dm, dl, dt : Ω → R and φΓ , dΓ

m , dΓ
l : Γ → R are, respectively,

the bulk porosity, molecular diffusion, longitudinal and transverse dispersion coef-
ficients, and the fracture porosity, molecular diffusion and longitudinal dispersion
coefficients. In (3a), I2 ∈ R

2×2 is the identity matrix and E(u) := |u|−2(u ⊗ u) ∈
R

2×2 denotes the orthogonal projection matrix in the direction of u. In the reduced
model (PTFPM), the fracture diffusion-dispersion coefficient DΓ depends on a
fracture transverse dispersion coefficient. Here, the fracture transverse dispersion
coefficient is rather integrated into the transmission conditions; see Remark 1.

2.4 The Reduced Model

For a fixed T > 0, we denote by ΩT
B := (0, T ) × ΩB and Γ T := (0, T ) × Γ the

temporal-spatial domains of interest, and by ∂ΩT
B := (0, T ) × ∂ΩB and ∂Γ T :=

(0, T )×Γ their respective boundaries. The reduced model for the passive transport
of a solute in a fractured porous medium hinges into seeking the concentration of
the solute in the bulk c : ΩT → R and in the fracture cΓ : Γ T → R such that

φ∂t c+ ∇ · (uc − D∇c)+ f−c = f+ĉ in ΩT
B ,

(4a)

−D∇c · n∂Ω = 0 on ∂ΩT
B ,

(4b)

�Γ φΓ ∂tcΓ +∇τ · (uΓ cΓ −DΓ∇τ cΓ )+ �Γf
−
Γ cΓ = �Γf

+
Γ ĉΓ in Γ T ,

(4c)

+ [[uc − D∇c]]Γ ·nΓ

−DΓ∇τ cΓ · τ ∂Γ = 0 on ∂Γ T ,

(4d)

where u and uΓ are defined in Sect. 2.2, D and DΓ are defined in Sect. 2.3, the terms
f± := 1/2(|f | ± f ) and f±Γ := 1/2(|fΓ | ± fΓ ) denote the positive or negative part
of f and fΓ , respectively, and the scalar functions ĉ : ΩT

B → R and ĉΓ : Γ T → R

stand for the concentration of solute as it is injected in the bulk and in the fracture,
respectively. The following transmission conditions, along with initial conditions
c(t = 0) = c0 in ΩB and cΓ (t = 0) = cΓ,0 in Γ , close the problem:

{{uc − D∇c}}Γ ·nΓ = Dn
Γ

�Γ
[[c]]Γ + {{c}}Γ {{u}}Γ ·nΓ + 1

8
[[c]]Γ [[u]]Γ ·nΓ on Γ,

[[uc − D∇c]]Γ ·nΓ = Dn
Γ

�Γ
ξ−1({{c}}Γ − cΓ)+ 1

2
({{c}}Γ + cΓ)[[u]]Γ ·nΓ on Γ,

(5)
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where ξ is the user-dependent model parameter introduced in Sect. 2.2. The term
Dn

Γ : Γ → R represents the normal diffusion-dispersion coefficient of the fracture.
In the reduced model (PTFPM), Dn

Γ does not depend on the surrounding unknowns.
For a more accurate description of the exchange between the bulk and the fracture,
we propose the following definition:

Dn
Γ := φΓ (dΓ

m + dΓ
t |{{u}}Γ · nΓ |), (6)

that depends on (1) the porosity of the fracture φΓ , (2) the fracture molecular
diffusion coefficient dΓ

m , and (3) on the fracture transverse dispersion dΓ
t : Γ → R

weighted by the normal component of the average of the bulk Darcy velocity u.
From now, we refer to the reduced model (4)–(6) as (PTFPM�).

Remark 1 The fracture transverse dispersion dΓ
t describes the property of the solute

to diffuse in the orthogonal directions of the fracture advective velocity field uΓ . In
the framework of reduced models, it is assumed that the normal component of the
fracture Darcy velocity is a linear combination of the normal component of the
surrounding bulk Darcy velocity; see [5]. Therefore, it seems natural to integrate the
fracture transverse dispersion coefficient into the transmission conditions (5).

3 Numerical Experiments

In this section we numerically compare the two reduced models (PTFPM) and
(PTFPM�). For the sake of brevity, we refer to the previous works [2, 3] for the
space discretization aspects and to [3, Section 5] for an in-depth description of the
test case configurations considered in this section. To discretize in time, we use
a backward Euler scheme and consider a uniform partition (tn)0≤n≤N of the time
interval (0, T ) with t0 = 0, tN = T and tn − tn−1 = Δt for all 1 ≤ n ≤ N .

3.1 Injection and Production Wells

In petroleum engineering, the source terms f and fΓ are used to model injection
and production wells in the bulk and in the fracture, respectively; see [7]. Through
this section, the injection well sits in xi ∈ ΩB, the production one in xp ∈ ΩB, and
both are modeled by the source term f defined such that

f (x) = 1

2

(
tanh (200 (0.025− |x− xi|))− tanh

(
200

(
0.025− |x− xp|

)))
.

For a fixed Tinj > 0, the concentration of solute as it is injected is defined as
ĉ(t, x) = 1 if t < Tinj and ĉ(t, x) = 0 otherwise. In the fracture, we set
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fΓ ≡ ĉΓ (t, x) ≡ 0. We assume that the initial concentration of solute is zero in
ΩB and Γ .

3.2 Impermeable Fractures

We first consider a test case modelling the passive displacement of a solute in a
fractured porous medium where fractures act as barriers. The domain configuration
and user parameters are detailed in Fig. 2a. With this configuration the solute is
expected to go from the injection well toward the production well by avoiding the
fractures; see [3, Section 5.2]. In Fig. 2b and c, we display the bulk concentrations of
both reduced models (PTFPM) and (PTFPM�) obtained at different time t . In both
cases, the solute follows the corridors designed by the fractures acting as barriers
and goes from the injection to the production well for the two configurations.

Fig. 2 Domain configuration (left) and parameters (right) (top, a), and snapshots of the bulk
concentrations c (bottom) for the test case of Sect. 3.2 (impermeable fractures). Displayed times
(from left to right, top to bottom): t = 5, 20, 40, 60, 80, 100. (b) Reduced models (PTFPM), (c)
Reduced models (PTFPM�)



Diffusion-Dispersion in Fractured Porous Media 261

However, discontinuities of the bulk concentration c across the fractures are more
pronounced in the reduced model (PTFPM�). This arises from the fact that the
fracture transverse coefficient dΓ

t depends on the surrounding bulk Darcy velocity,
which, in this case, avoids fractures.

3.3 Permeable Fractures

We now consider fractures acting as conduits. Both the domain configuration and
user parameters are displayed in Fig. 3a. With this choice, it is expected that the
solute is attracted by the fractures; see [3, Section 5.3]. In Fig. 3b and c, we display
bulk concentrations c of both reduced models (PTFPM) and (PTFPM�), at different
time t . In both cases, we can distinctly see that the solute channeled by the fractures
flows towards the production well faster than the solute in the surrounding bulk

Fig. 3 Domain configuration (left) and parameters (right) (top, a), and snapshots of the bulk
concentrations c (bottom) for the test of Sect. 3.3 (permeable fractures). Displayed times (from
left to right, top to bottom): t = 5, 15, 30, 50, 80, 100. (b) Reduced models (PTFPM), (c)
Reduced models (PTFPM�)
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medium. We remark that the discontinuities of the concentration c are also in this
case more pronounced at the neighbourhood of the fracture tips located near the
injection well for the reduced model (PTFPM�).

In practice, the molecular diffusion coefficients are set to zero. This delicate case
is prone to instabilities since the diffusion-dispersion tensors can be degenerate in
some parts of the domain where the Darcy velocities vanish. Moreover, the fracture
normal diffusion-dispersion coefficient depends, in this case, only on the Darcy
velocity u. In Fig. 4, we display the concentrations obtained by the two reduced
models (PTFPM) and (PTFPM�) at different time t upon setting dm = dΓ

m = 0.
Clearly, one can see instabilities at the neighborhood of the fractures for the reduced
model (PTFPM); see Fig. 4a. On the other hand, the reduced model (PTFPM�)
seems to handle without difficulty this particular case; see Fig. 4b. We also note
that the discontinuities are more pronounced in the reduced model (PTFPM�), and
that the concentrations of the two reduced models (PTFPM) and (PTFPM�) behave
differently at the vicinity of the fractures.

(a) (b)

Fig. 4 Snapshots of the bulk concentration c and zoom on the vicinity of the fracture for the
test case of Sect. 3.3 (permeable fracture, vanishing molecular diffusion). Displayed times: t =
15, 20, 30. (a) Reduced models (PTFPM), (b) Reduced models (PTFPM�)
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Several Agent-Based and Cellular
Automata Mathematical Frameworks
for Modeling Pancreatic Cancer

Jiao Chen and Fred J. Vermolen

Abstract Mathematical modeling sheds light on cancer research. In addition to
reducing animal-based experiments, mathematical modeling is able to provide
predictions and prevalidate hypotheses quantitatively. In this work, two different
agent-based frameworks regarding cancer modeling are summarised. In contrast,
cell-based models focus on the behavior of every single cell and presents the
interaction of cells on a small scale, whereas, cellular automata models are used
to simulate the interaction of cells with their microenvironment on a large tissue
scale.

1 Introduction

In agent-based modeling, a collection of autonomous decision-making entities
(called agents) is utilized to model a system. Based on a set of rules, each agent
makes the decision individually and executes various behaviors for the whole system
[8]. Therefore, agent-based modeling represents a dynamic and interactive system,
which has been applied in various fields like biomedical research [5], chemistry
[10], market analysis [1], etc.
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Agent-based modeling is capable of simulating a broad spectrum of length-
scales, which has been classified by Van Liedekerke et al. [11] into the following
three types:

• Lattice-based model, where the model is developed based on regular lattice sites
in a spatial computational domain. In biomedical modeling, cell bioprocesses are
represented by transitions of each lattice state such that the model shows the
evolution of a system by a discrete time-stepping mechanism or a continuous-
time framework [9]. According to [11], the lattice-based model can be further
classified into cellular automata models, lattice gas cellular and cellular potts
models.

• Off-lattice model, which means the model is lattice-free and each agent is
allowed to move in any direction rather than restricting agents to lattice sites.
Some examples are center-based models, deformable cell models, and vertex
model, etc. [11].

• Hybrid discrete-continuum model. To solve large multicellular systems, dis-
crete agent-based models need large computational time since individual cells
are concerned. The continuum model is able to solve PDEs for tissue dynamics
or other complicated issues. Therefore, a hybrid discrete-continuum model is
proposed to simulate multiscale models [11].

2 Agent-Based Models

Agent-based (or cell-based) models deal with biological cells as discrete entities in
a computational domain. One of the advantages is the straightforward integration
of cell-level processes like cell proliferation, cell death, cell mutation, etc. and the
intracellular interactions. We develop a cell-based model with an application to
pancreatic cancer therapy at early stages [5]. In this work, we consider three cell
phenotypes, i.e. epithelial cells, cancer cells, T-lymphocytes, which are visualized
as blue, red and green colored circles in Fig. 1, respectively. Figure 1 shows
consecutive snapshots of the migration of T-lymphocytes in pancreatic cancer at an
early stage. Since pancreatic cancer cells accumulate in rounded (three dimensional)
clusters, we model the computational domain as a circular structure [5]. To visualize
cell mutation, epithelial cells change color from blue to filled red. Moreover, other
cell bioprocesses such as cell division and cell death are incorporated. Typically, in
a competitive environment, cancer cells have a growth and proliferation (division)
advantage over other healthy cells, therefore, the number of cancer cells in Fig. 1
accounts for the majority at time = 150 h.

In this model, the migration of epithelial and cancer cells is mechanotaxis
updated by

rni = rn−1
i +�tαiM̂i(rn)+ η�W(t), (1)



Several Agent-Based and Cellular Automata Mathematical Frameworks for. . . 267

Fig. 1 Consecutive snapshots of cancer progression and T-lymphocytes migration when time =
2 h (a), time = 20 h (b) and time = 150 h (c), respectively. The blue, red and green color denote
epithelial cells, cancer cells and T-lymphocytes

where ri and αi represents the position of cell i and its velocity parameter. The
M̂i(r) is the total mechanical signal comprising of traction force caused by strain
energy density and a repulsive force. In addition, η denotes a constant and �W(t)

takes care of random walk (diffusion), which is a Wiener process. In contrast, the
locomotion of T-lymphocytes is chemo-mechanotaxis, where T-lymphocytes are
attracted by a type of chemokine secreted by cancer cells. The displacement of T-
lymphocytes is described as

rnj = rn−1
j + β∇c(t, rn−1

j )�t + η�W−Mmc(rn−1
j )zn−1

j �t. (2)

Here c(t, rn−1
j ) denotes the concentration of chemokine secreted by cancer cells at

time step n−1 and β is a constant. Whenever any two cells contact with each other,
the repulsive force Mmc(rj ) repels two cells with direction zj .

Next we consider a deformable cell model. The deformable cell model simulates
the evolution of cell shape during the interaction with the microenvironment, see an
example in [3]. In Fig. 2, some snapshots at consecutive times are plotted to show
the deformation of a migrating cell and its nucleus denoted in red and green color,
respectively. Furthermore, circles in grey color are regarded as two stiff obstacles
and the cell penetrates the cavity by the attraction of two source points (blue
asterisk). The migration of the cell and its nucleus is determined by chemotaxis,
which can be expressed as

xi (t
p+1) = xi (t

p)+�t ·(β∇ci(t
p+1)+α(xn

i (t
p)+ x̂i−xi (t

p+1)))+η�W, (3)

and

xn
i (t

p+1) = xn
i (t

p)+�t ·(−α(xn
i (t

p)+x̂i−xi (t
p+1))+αn(xc(t

p)+x̂n
i − xn

i (t
p+1)))+η�W.

(4)
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Fig. 2 Consecutive snapshots of the deformation of one migrating cell and its nucleus when time
= 0 h, time= 0.0799 h, time= 0.1349 h and time= 0.1709 h, in red and green color, respectively.
Two stiff obstacles are visualized in grey circles and source points are denoted by blue asterisks

Note that xi and xn
i denote the location of a node i on the cell membrane and nucleus

surface, respectively. The second term in Eqs. (3) and (4) represents the interaction
between the nucleus surface and cell membrane. Analogously, we model random
walk by using a Wiener process �W, where η is a constant.

Cells are subject to large deformation during migration to adapt to the environ-
ment. This cell-based model can be applied to the deformation of an immune cell
with the attraction of a pathogen source. In addition, it also can be used to describe
the deformation of a cancer cell during the migration to the oxygen source as part
of the metastasis process.

3 The Cellular Automata Model

The cellular automata model is a lattice-based method, which has been used in
various fields. Specifically, a computational domain is divided into lattice sites,
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where each lattice site can be occupied by one cell or multiple cells. Each lattice
site can be in a discrete state and is able to ‘jump’ from one state into another
state. Moreover, one single cell is able to share a few lattice sites in some cases. We
develop a three-dimensional model to simulate the cancer progression and recession
under virotherapy [2], in which one lattice point is occupied by multiple cells.
As a result, Fig. 3 shows cancer progression at early stages in a 15×15×15 mm3

domain. To mimic cell mutation, epithelial cells (in blue color) are allowed to turn
into cancer cells (in red color). As mentioned earlier, cancer cells have more growth
and division rates than normal cells in a competitive environment with limited space
and nutrition. The number of cancer cells increases significantly and thereby cancer
progresses to a large volumetric fraction in the simulations.

In the model, any lattice site has three discrete states, i.e. unoccupied (or dead
cell) state, epithelial cell state, cancer cell state. Under certain conditions, a lattice

Fig. 3 Consecutive snapshots of cancer progression when time = 0 days, time = 4 days and time
= 40 days, respectively, in cellular automata model. The blue and red color represent epithelial
cells and cancer cells. The computational domain is 15×15×15 mm3
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point, i, can change state and the transition probability P within a time interval (t0,
t0 + �t) is defined as

P =
∫ t0+�t

t0

f (λi, t)dt * 1− exp(−λi�t). (5)

where f (λi, t) is an exponential distribution and λi denotes the probability rate
at grid node i per unit of time of state transition. Note that the probability rate
for the change of state depends on the two states between which the grid node
undergoes the change. Regarding our model, one of the merits is the flexibility
of the input parameters. With proper input variables, our numerical results can
reproduce experimental results very well, see Fig. 4 [2], where curves show cancer
growth during 50 days. Taking the animal-based experimental results from [6],
cancer grows under gemcitabine intervention compared with a control experiment
showing in the blue line and black line in Fig. 4. In comparison, modeled results
indicated by the red lines are able to predict the cancer progression well according
to experimental curves.

Subsequently, this cellular automata model is extended to oncolytic virotherapy
in pancreatic cancer at early stages [2]. We assume that a three-dimensional domain
is fully colonized by cancer cells and at a certain time a dose of viruses is given

Fig. 4 Cancer growth with the respect of time in days [2]. The red curves show the numerical
results from the cellular automata model, whereas the black and blue lines represent the cancer
growth without gemcitabine and with gemcitabine, respectively. The experimental results are taken
from the work [6]
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Fig. 5 Consecutive snapshots of cancer recession when time = 25 h, time = 50 h and time =
75 h, respectively, in cellular automata model with an application to virotherapy in pancreatic
cancer. In the computational domain 15×15×15 mm3, the epithelial cells, cancer cells, infected
cells are denoted in blue, red and black color, respectively. In addition, the lattice sites in white
color represent the dead cells or unoccupied states

intratumorally by injection (see Fig. 5). Figure 5 shows cancer recession under
virotherapy, where cancer cells, epithelial cells, infected cells are visualized in red,
blue and black color, respectively. Once cancer cells die due to viral replication,
the lattice points will transform from the cancer state to the unoccupied state,
which is indicated in white color. Since the viruses are injected in the center of
the domain, viruses diffuse and infect cancer cells from the central lattice points
with the evolution of time (see Fig. 5b). The model of viral diffusion is defined as

{
∂c(r)
∂t

= D�c(r)+ γ (t)δ(x − xp)+ βc(r)(1− c(r)
Nv

)

D
∂c(r)
∂n

+ T c(r) = 0, on ∂�
, (6)
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where c(r) is the viral concentration at any lattice point and D denotes the viral
diffusivity. The Dirac delta function δ(x) mimics the viral source with a time-related
secretion rate γ (t) at position xp. Note that βc(r)(1 − c(r)

Nv
) is a reaction term to

simulate the viral replication, which only takes place in the grid nodes that are in
the cancer state. Here β denotes the proliferation rate of virus and Nv represents a
burst size of viruses. On the boundary �, viruses are able to disperse to the neighbor
tissue or organs with a mass transfer rate coefficient T. As more and more cancer
cells are eliminated by viruses, there is a ‘wound’ region, characterized by cells in
the ‘unoccupied state’ appearing in the tissue as a result. However, healthy cells
migrate to this wound from neighbor tissue or organs and hence fill in this gap by
proliferation. In other words, this model could also be used for simulating wound
healing.

4 Uncertainty Quantification

Using the cell deformation model, see Eqs. (3)–(4) and Fig. 2, we quantify the
influence of uncertainty in the input data on the time of metastasis, which is modeled
by the time at which a cancer cell exists a blood vessel. In the modeling set-up,
cancer cells transmigrate through the walls of a blood vessel and subsequently they
are transported by the bloodstream to enter at a different part of the body where they
can colonize by forming new tumors. The set-up deviates from Fig. 2, more details
can be found in [4]. The uncertainty quantification is performed by Monte Carlo
simulations, see [7], in which the input parameters, here the cell size and the size of
the aperture of the blood vessel are sampled from statistical distributions. The results
indicate a significant positive correlation (sample correlation coefficient r = 0.79)
between the metastasis time and the cell size. Hence the larger the cancer cell, the
more time it takes to metastasize since transmigration through a blood vessel is more
difficult for larger cells. Furthermore, the Monte Carlo simulations hint at a weaker
negative correlation (r = −0.17) between the metastasis time and the size of the
aperture of the vessel. This confirms the intuition that a permeable vessel facilitates
the transmigration of the cell, and hence enhances metastasis (Fig. 6).

Moreover, the Monte Carlo method is further used to predict the likelihood of
successful cancer treatment in our other works [2, 5]. The corresponding results are
hopeful to aid experiment design and prevalidation before clinical trials.
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Fig. 6 Scatter plots of Monte Carlo simulations [4]. (a) Correlation between cell size and cell
metastatic time with coefficient r = 0.78592; (b) correlation between vessel size and cell metastatic
time with coefficient r = −0.16567

5 Discussion and Conclusions

Regarding cancer modeling, we develop different agent-based frameworks, namely
the cell-based model and cellular automata model, which are compared in this paper.
The cell-based model, where each individual cell is considered, is beneficial for
modeling at small scales. The morphology of the cells can be fixed as in the model
applied in pancreatic cancer at early stages [5]. Furthermore, one can zoom into the
process of cell migration where one models morphological changes of each cell,
such as in the simulation framework with an application to cancer metastasis [3].
Furthermore, the intercellular biomechanics and interactions between cells and their
microenvironment are incorporated. However, with an increase in the number of
cells, the cell-based model will be time-consuming, and therefore cellular automata
model could be a computationally ‘cheap’ alternative. Besides the cellular automata
model, a continuum model for the viral spread is taken into account by using
the reaction-diffusion equation [2]. As we expected, the numerical results show
consistency with the results from the experiments in the literature.

Computational modeling has played and will continue to play a pivotal role in
cancer research and treatment. The computational framework will possess aspects
from both complicated physics-based approaches as well as from ‘simple’ tractable
phenomenological modeling approaches.
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Error Bounds for Some Approximate
Posterior Measures in Bayesian Inference

Han Cheng Lie, T. J. Sullivan, and Aretha Teckentrup

Abstract In certain applications involving the solution of a Bayesian inverse
problem, it may not be possible or desirable to evaluate the full posterior, e.g.
due to the high computational cost of doing so. This problem motivates the use
of approximate posteriors that arise from approximating the data misfit or forward
model. We review some error bounds for random and deterministic approximate
posteriors that arise when the approximate data misfits and approximate forward
models are random.

1 Introduction

An inverse problem consists of recovering an unknown parameter u that belongs to
a possibly infinite-dimensional space U from noisy data y of the form

y = G(u)+ η ∈ Y, (1)

where Y is the ‘data space’, G : U → Y is a known ‘forward operator’, and η is a
random variable. In many problems of interest, the parameter space U is a subset of
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an infinite-dimensional Banach space, the data space Y is often taken to be R
d for

some possibly large d ∈ N, and η is assumed to be Gaussian.
One of the main difficulties with inverse problems is that they often do not satisfy

Hadamard’s definition of well-posedness. To circumvent this difficulty, one may use
the Bayesian approach, in which one incorporates information about the unknown
u from existing data and from new data in the ‘prior’ probability measure μ0 on U
and in the ‘data misfit’ ' : Y×U→ R respectively. If η ∈ R

d in (1) is distributed
according to the normal distribution N(0, �) with positive definite � ∈ R

d×d , then

'(y, u) := 1

2
‖�−1/2 (y −G(u)) ‖2. (2)

By Bayes’ formula, the posterior μy is a probability measure on U that is absolutely
continuous with respect to the prior μ0, and has Radon–Nikodym derivative

dμy

dμ0
(u) := exp(−'(y, u))

Z(y)
, Z(y) :=

∫

U
exp(−'(y, u′))dμ0(u

′). (3)

The posterior μy describes the distribution of the unknown u, conditioned upon
the data y. By imposing conditions jointly upon ' and μ0, one can show that the
Bayesian solution μy to the inverse problem depends continuously on the data, and
one can prove the well-posedness of the Bayesian inverse problem; see [1].

For simplicity, we shall assume that the data y is given and fixed, and omit the
dependence of the posterior, data misfit, and normalisation constant Z on y.

One challenge with solving Bayesian inverse problems in practice is that it is
often not possible or desirable to evaluate the data misfit '(u) exactly. It then
becomes necessary to find approximations 'N of the true data misfit ' that can
be computed more efficiently, such that for sufficiently large values of N , inference
using the approximate misfit 'N effectively approximates inference using the true
misfit '. Thus, one needs to identify conditions on 'N such that two criteria are
fulfilled: first, an approximate posterior measure μN defined by

dμN

dμ0
(u) := exp(−'N(u))

ZN

, ZN :=
∫

U
exp(−'N(u′))dμ0(u

′) (4)

exists and is well-defined; and second, the approximate posterior μN provides
an increasingly good approximation of the true posterior μ as the approximation
parameter N increases. In this paper, we review results from [2] that guarantee well-
definedness of μN and establish error bounds for μN in terms of error bounds for
'N .

In recent years, randomised numerical methods have been developed in order to
overcome limitations of their deterministic counterparts. The field of probabilistic
numerical methods [3] injects randomness into existing deterministic solvers for
differential equations in order to model the uncertainty due to unresolved subgrid-
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scale dynamics. Random approximations of the forward model have been applied
for forward uncertainty propagation in a range of applications; see e.g. [4, 5].

Randomisation has been shown to yield gains in computational efficiency.
Results from [6, Section 5.7] showed a reduction by a factor of almost 25 in
the CPU time needed for generating an independent sample with the Metropolis-
Hastings algorithm, while in [7], a multilevel Markov Chain Monte Carlo method
uses randomisation in the form of control variates for variance reduction. Stochastic
programming ideas were used for more efficient posterior sampling in [8]. The
results we describe provide theoretical support for the use of randomisation in
Bayesian inference, and extend the pioneering results from [9], which concerned
Gaussian process approximations of data misfits and forward models.

To motivate the use of random approximate misfits, consider the following
example: Let X be any R

d -valued random variable such that E[X] = 0 andE[XX�]
is the d × d identity matrix, and let {Xi}i∈N be i.i.d. copies of X. Given (2),

'(u) =1

2

(
�−1/2(y −G(u)

)
E

[
XX�] (�−1/2(y −G(u)

)

=1

2
E

[∣∣
∣X� (

�−1/2(y −G(u))
)∣∣
∣
]
≈ 1

2N

N∑

j=1

∣
∣
∣X�

j

(
�−1/2(y −G(u))

)∣∣
∣ =: 'N(u).

In [10], the misfit 'N above was used to obtain computational cost savings when
solving inverse problems associated to PDE boundary value problems. The results
we present below can be specialised to the case of X with bounded support [2,
Proposition 4.1]. For example, we can use the �-sparse distribution for some 0 ≤
� < 1; for � = 0, this is the Rademacher distribution. Similar ideas have been
applied for full waveform inversion in seismic tomography [11], for example.

2 Error Bounds for Approximate Posteriors

In what follows, we shall assume that the parameter space U admits a Borel σ -
algebra, and we shall denote by M1(U) the set of Borel probability measures on U.
Recall that the Hellinger metric dH :M1(U)×M1(U)→ [0, 1] is defined by

dH(μ, ν)2 := 1

2

∫

U

∣
∣
∣
∣
∣

√
dμ

dπ
(u′)−

√
dν

dπ
(u′)

∣
∣
∣
∣
∣

2

dπ(u′),

where π ∈M1(U) is any measure such that μ and ν are both absolutely continuous
with respect to π . It is known that dH does not depend on the choice of π .
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2.1 Error Bounds for Random Approximate Posteriors

We first present error bounds on random approximate posteriors μN associated to
random misfits 'N , where N ∈ N. That is, given a probability space (�,F,P),
we shall view a random misfit as a measurable function 'N : � × U → R.
Furthermore, we shall assume that the randomness associated to the approximate
misfit 'N is independent of the randomness associated to the unknown parameter
u. In what follows, νN denotes a probability measure on � with the property that
the distribution of the random function 'N is given by νN ⊗ μ0.

Given (3) and (4), a natural question is to establish an appropriate bound on the
Hellinger distance between the true posterior μ and the approximate posterior μN

in terms of some norm of the error between the true misfit ' and the approximate
misfit 'N . We emphasise that the approximate posterior μN in (4) is random in
the sense that it depends on ω, since the approximate misfit 'N depends on ω.
Therefore, the Hellinger distance dH(μ,μN) will depend on ω as well. To describe
such a bound, we shall take the expectation of the Hellinger distance with respect to
νN , and let

∥
∥EνN [f ('N)]

∥
∥
L
q
μ0 (U)

:=
(∫

U

∣
∣
∣
∣

∫

�

f ('N(ω, u)) dνN(ω)

∣
∣
∣
∣

q

dμ0(u)

)1/q

for any Borel-measurable function f : R → R and q ∈ [1,∞). We define the
quantity ‖EνN [f ('N)]‖L∞μ0

(U) analogously. With these preparations, we present the
following theorem, which was given in [2, Theorem 3.2].

Theorem 1 (Error Bound for Random Approximate Posterior) Let (q1, q
′
1) and

(q2, q
′
2) be pairs of Hölder conjugate exponents, and let D1, D2 be positive scalars

that depend only on q1 and q2. Suppose the following conditions hold:

∥
∥
∥
∥
∥
EνN

[(
exp

(
− 1

2'
)
+ exp

(
− 1

2'N

))2q1
]1/q1

∥
∥
∥
∥
∥
L
q2
μ0 (U)

≤ D1(5)

∥
∥
∥
∥EνN

[(
ZN max{Z−3, Z−3

N } (exp (−')+ exp (−'N))2
)q1

]1/q1
∥
∥
∥
∥
L
q2
μ0 (U)

≤ D2.(6)

Then

EνN

[
dH (μ,μN)2

]1/2 ≤ (D1 +D2)

∥
∥
∥
∥EνN

[
|'−'N |2q ′1

]1/2q ′1
∥
∥
∥
∥
L

2q′2
μ0 (U)

.

Theorem 1 provides a bound on the mean square Hellinger distance between the true
posterior μ and the random approximate posterior μN , in terms of an appropriate
norm of the error ' − 'N . The bound (5) implies that the negative tails of both
' and 'N must decay exponentially quickly with respect to the νN ⊗ μ0-measure,
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and is satisfied, for example, when both ' and 'N are bounded from below. Since
ZN max{Z−3, Z−3

N } = max{ZNZ−3, Z−2
N }, it follows that the constraint imposed

on the misfit 'N by (6) is that exp(−'N) should be neither too concentrated nor
too broad. Together, conditions (5) and (6) ensure that the random approximate
posterior μN exists, is well-defined, and satisfies the desired bound on the mean
square Hellinger distance with respect to the true posterior μ.

An alternative way to generate an approximate posterior measure given a random
approximate misfit is to compute a marginal approximate posterior μM

N , defined by

dμM
N

dμ0
(u) := EνN

[
exp(−φN(u))

]

EνN [ZN ]
. (7)

Note that, since we have taken expectations with respect to νN , the marginal
approximate posterior does not depend on ω, and is in this sense deterministic. The
following theorem was given in [2, Theorem 3.1].

Theorem 2 (Error Bound for Marginal Approximate Posterior) Let (p1, p
′
1),

(p2, p
′
2), and (p3, p

′
3) be Hölder conjugate exponent pairs, and suppose there exist

finite, positive scalars C1, C2, and C3 that depend only on p1, p2, and p3, such that
the following conditions hold:

min

{∥
∥
∥EνN

[
exp (−'N)

]−1
∥
∥
∥
L
p1
μ0 (U)

, ‖exp(')‖
L
p1
μ0 (U)

}

≤ C1 (8)

∥
∥
∥EνN

[
(exp(−')+ exp(−'N))p2

]1/p2
∥
∥
∥
L

2p′1p3
μ0 (U)

≤ C2 (9)

C−1
3 ≤ EνN [ZN ] ≤ C3. (10)

Then there exists C > 0 that does not depend on N such that

dH(μ,μM
N) ≤ C

∥
∥
∥
∥EνN

[
|'−'N |p′2

]1/p′2
∥
∥
∥
∥
L

2p′1p′3
μ0 (U)

.

The bounds in (10) ensure that the denominator in (7) is strictly positive and
finite. Thus, these bounds play a fundamental role in ensuring that the marginal
approximate posterior exists and is well-defined. The bound in (9) reiterates the
bound (5), modulo the 1

2 factor, and thus serves a similar purpose as (5). The bound
in (8) serves a similar purpose as (6). However, the minimum operator implies that
it is not necessary for both ' and 'N to be well-behaved.

The following result is a corollary of Theorems 1, 2, and [2, Lemma 3.5]. The
main idea is to specify sufficient conditions for the hypotheses of both Theorem 1
and Theorem 2 to hold.
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Corollary 1 (Joint Conditions for Error Bounds on Both Approximate Posteri-
ors) Suppose the following conditions are satisfied:

(i) There exists C0 ∈ R that does not depend on N such that ' ≥ −C0 on U
and, for all N ∈ N, νN('N ≥ −C0) = 1,

(ii) For any 0 < C3 <∞ such that C−1
3 < Z < C3, there exists N∗(C3) ∈ N

such that N ≥ N∗ implies

∥
∥EνN [|'−'N |]

∥
∥
L1
μ0

(U)
≤ 1

2
exp(−C0)min

{
Z − C−1

3 , C3 − Z
}
,

and
(iii) there exists some 2 < ρ∗ < +∞ such that ‖EνN [exp(ρ∗'N)]‖L1

μ0
(U) is

finite.

Then for each N ≥ N∗(C3),

dH

(
μ,μM

N

)
≤ C

∥
∥EνN [|'−'N |]

∥
∥
L

2ρ∗/(ρ∗−1)
μ0 (U)

(11)

and

EνN

[
dH(μ,μN)2

]1/2 ≤ D

∥
∥
∥
∥EνN

[
|'−'N |2ρ∗/(ρ∗−2)

](ρ∗−2)/(2ρ∗)
∥
∥
∥
∥
L1
μ0

(U)

,

(12)

where C,D > 0 depend on ‖EνN [exp(ρ∗'N)]‖1/ρ∗
L1
μ0

(U)
. If in addition to conditions

(i)–(iii) it holds that

sup
N≥N∗(C3)

∥
∥EνN

[
exp(ρ∗'N)

]∥∥
L1
μ0

(U)
< ∞,

then the constants C and D in (11) and (12) do not depend on N .

Condition (i) amounts to a common uniform lower bound on all the misfits, both
the true misfit and the collection of random approximate misfits, and thus plays
a role in ensuring that (5) and (9) are satisfied. Condition (ii) makes precise the
assumption that 'N approximates ' in the L1

νN⊗μ0
topology, which is a necessary

condition for ensuring that the right-hand sides of the conclusions of Theorems 1
and 2 are finite. Condition (iii) describes an exponential integrability condition on
the random approximate misfits and ensures that (6) and (8) are satisfied. Thus the
additional condition amounts to a uniform exponential integrability condition over
all sufficiently large values of N .

Remark 1 Neither Theorem 1 nor Theorem 2 require boundedness from below
of either ' or the 'N . However, the negative tails of both ' and 'N must
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decay exponentially quickly at a sufficiently high rate, as specified by (9) and (5)
respectively.

2.2 Error Bounds for Random Forward Models

Next, we consider approximate posterior measures that arise as a result of approxi-
mating the forward model G in (1). For simplicity, we shall consider only the case
when the data misfit ' and forward model G are related via the quadratic potential
(2). In particular, this means that if GN : U → Y is an approximation of the true
forward model G, then the resulting approximate data misfit is given by

'N(u) := 1

2
‖�−1 (y −GN(u)) ‖2.

The following theorem is a nonasymptotic reformulation of [2, Theorem 3.9 (b)].

Theorem 3 (Error Bounds for Approximate Posteriors) Suppose there exists
2 < ρ∗ <∞ such that supN EνN [exp(ρ∗'N)] ∈ L1

μ0
(U) is finite. If there exists an

N∗ ∈ N such that, for all N ≥ N∗,

∥
∥
∥
∥EνN

[
‖G−GN‖4ρ∗/(ρ∗−2)

](ρ∗−2)/(2ρ∗)
∥
∥
∥
∥
L

2ρ∗/(ρ∗−1)
μ0 (U)

≤ 1,

then

dH

(
μ,μM

N

)
≤ C

∥
∥
∥EνN

[
‖GN −G‖2

]∥∥
∥

1/2

L
2ρ∗/(ρ∗−1)
μ0 (U)

and

EνN

[
dH(μ,μN))2

]1/2 ≤ D

∥
∥
∥
∥EνN

[
‖GN −G‖4ρ∗/(ρ∗−2)

](ρ∗−2)/(2ρ∗)
∥
∥
∥
∥

1/2

L2
μ0

(U)

for C,D > 0 that do not depend on N .

The theorem can be rewritten so that, instead of imposing a uniform exponential
integrability condition on the approximate quadratic potentials 'N , one instead
imposes an exponential integrability condition on the true data misfit '; see [2,
Theorem 3.9 (a)]. An additional hypothesis in this case is that the expectations of
the approximate data misfit functions are νN -almost surely bounded, in the sense
that νN('N | Eμ0 ['N ] ≤ C4) = 1 for some C4 ∈ R that does not depend on N .
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3 Conclusions and Directions for Future Work

This paper has reviewed the main error bounds of [2] concerning deterministic and
random approximate posteriors that arise when performing Bayesian inference with
random approximate data misfits or random forward models. The error bounds on
the approximate posterior measures are given with respect to the Hellinger metric
on the space of Borel probability measures M1(U). Given a fixed prior measure μ0,
these error bounds describe—with specific exponents of integrability and problem-
dependent constants—the local or global Lipschitz continuity of the map that takes
a data misfit as input and produces the corresponding posterior measure as output.
Aside from the regularity assumptions made on the random approximations, the
error bounds shown above make no structural assumptions on the approximations
used. For example, we do not assume that the random approximations involve
Gaussian random variables, or random variables with bounded support.

Recent work has highlighted the importance of considering other metrics on
M1(U), and also of proving well-posedness of the solution of a Bayesian inverse
problem by establishing continuous (instead of Lipschitz continuous) dependence
on either the data, prior, or data misfit. The well-posedness of Bayesian inverse
problems in the sense of continuous dependence with respect to the data of the
posterior for given prior and data misfit was established in [12]. Local Lipschitz
continuity with respect to deterministic perturbations in the prior or data misfit was
shown in [13]. In both [12, 13], continuity is with respect to the topologies induced
by the total variation metric, by Wasserstein p-metrics, or by the Kullback-Leibler
divergence.

A key assumption made in [13] when establishing local Lipschitz continuity for a
fixed prior μ0 with respect to perturbations in the data misfit is that the deterministic
perturbed data misfit is μ0-almost surely bounded from below. As highlighted in
Remark 1, the analysis of [2] does not require that either the true data misfit or the
random approximate log-likelihood are μ0-almost surely bounded from below. For
future work, we aim to establish similar continuity results with respect to different
metrics, as demonstrated in [12, 13], but at the same level of generality of [2].
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High-Order Two and Three Level
Schemes for Solving Fractional Powers of
Elliptic Operators

Raimondas Čiegis and Petr Vabishchevich

Abstract In this paper we develop and investigate numerical algorithms for solving
the fractional powers of discrete elliptic operators Aα

hU = F , 0 < α < 1, for
F ∈ Vh with Vh a finite element or finite difference approximation space. Our
goal is to construct efficient time stepping schemes for the implementation of the
method based on the solution of a pseudo-parabolic problem. The second and fourth
order approximations are constructed by using two- and three-level schemes. In
order to increase the accuracy of approximations the geometric graded time grid is
constructed which compensates the singular behavior of the solution for t close to
0. This apriori adaptive grid is compared with aposteriori adaptive grids. Results of
numerical experiments are presented, they agree well with the theoretical results.

1 Introduction

There are different definitions of fractional power of elliptic operators [1]. We
consider the definition based on the spectral decomposition of an elliptic operator.
Let us define H = H 1

0 (�), where � ⊂ R
d . On H × H we consider the weak

formulation of the elliptic problem: find u ∈ H such that

A(u, v) :=
∫

�

(
k(x)∇u · ∇v + q(x)uv

)
dx =

∫

�

f (x)v(x)dx, ∀v ∈ H. (1)

We define the elliptic operator A, where A is an isomorphism H 1
0 (�) → H−1(�)

given by u→ a(u, ·).
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Operator A is symmetric and positive definite on L2(�). Let us denote the eigen-
pairs of this operator ψj , λj . Due to the properties of operator A its eigenvectors
ψj provide an orthonormal basis for L2(�).

Then for functions u ∈ L2(�) such that
∑∞

j=1 λ
2α
j |(u,ψj )|2 < ∞ the spectral

fractional powers Aα for 0 < α < 1 are defined by eigenvector expansions:

Aαu :=
∞∑

j=1

λαj (u,ψj )ψj , (2)

where (u, v) denotes the standard scalar product (u, v) = ∫
� u(x)v(x)dx.

The Dirichlet problem for the fractional elliptic operator is defined as follows:
given a function f and α ∈ (0, 1), we seek u ∈ H 1

0 such that

Aαu = f. (3)

For functions f such that
∑∞

j=1 λ
−2α
j |(f,ψj )|2 < ∞ negative fractional powers

A−α for 0 < α < 1 can be defined by eigenvector expansions:

A−αf :=
∞∑

j=1

λ−α
j (f,ψj )ψj . (4)

For such problems the state of the art numerical methods are based on the
following quite general approach. The given non-local differential problem is
transformed to some local differential problem of elliptic or parabolic type, but this
new problem is formulated in the extended d + 1 dimension space Rd+1. There are
a few interesting implementations of this general idea, see [1, 4, 6–8].

Our main goal is to construct and study numerical algorithms for the transfor-
mation of the non-local problem (2) to a pseudo-parabolic problem [5, 9]. The
unique solution u = A−αf of the fractional power problem can be represented
as a mapping

v(t) = (
δI+ tB

)−α
f, (5)

where B = A− δI. Then u = v(1).
The next step is to find a nonstationary PDE for which v(t) is the exact solution.

This approach can lead to different PDEs, one such equation was proposed in the
original paper [9]. It is shown that v(t) satisfies the pseudo-parabolic problem

(
δI+ tB

)∂v

∂t
+ αBv = 0, 0 < t ≤ 1, (6)

v(0) = δ−αf.
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Then different time stepping approximations can be used to solve the obtained
nonstationary PDE problem (6).

The rest of this paper is organized as follows. In Sect. 2, the symmetrical Euler
method is applied to solve the obtained pseudo-parabolic problem. It is shown that
this difference scheme is unconditionally stable. It is interesting to note that this
scheme is equivalent to the time-stepping algorithm based on the first order diagonal
Padé approximation for function (1 + x)−α (see [2, 5]). Results of numerical
experiments are provided to show that for nonregular solutions and uniform time
grids the symmetrical Euler scheme regains the second order convergence rate only
for sufficiently small time step sizes when the high modes are resolved correctly.

In order to increase the accuracy of approximations the geometric graded time
grid is constructed in Sect. 3. It compensates the singular behavior of the solution
for t close to 0. This apriori adaptive grid is compared with the aposteriori adaptive
grid, which is constructed by using the Runge rule. In Sect. 4 a family of three-
level finite difference schemes is constructed to solve the given pseudo-parabolic
problem. A general nonuniform time mesh is used and the stability of the discrete
problem is proved. It is noted that for a uniform time mesh a special value of the
weight parameter exists which leads to the fourth order scheme. In Sect. 5 a high-
order two-level finite difference scheme is developed and investigated. It is based on
the method of modified equations. Results of numerical experiments are presented.
Some final conclusions and remarks are done in Sect. 6.

2 Symmetrical Euler Method

We approximate the solution u of (2) by using the finite element approximation
U on Vh ⊂ V , where h is the discretization parameter. Then we get the discrete
operators Ah, Bh = Ah − δIh > 0. Let V n ∈ Vh be the approximation of v(tn)
on Vh. The pseudo-parabolic problem (6) is approximated by the symmetrical Euler
method

(
δIh + t

n− 1
2
Bh

)V n − V n−1

τn
+ αBhV

n− 1
2 = 0, n = 1, . . . , N, (7)

V 0 = δ−αFh,

where t
n− 1

2
= 0.5(tn + tn−1) and V n− 1

2 = 0.5(V n + V n−1).
The stability of this scheme is investigated in [2]. It is proved that (7) is

unconditionally stable.
For smooth solutions this scheme approximates the differential problem with the

second order. Still, it is well-known that the solution u = A−αf of problem (2)
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Table 1 The error EN of the discrete solution (7) and the experimental convergence order ON for
varying α = 0.1, 0.5. The uniform space grid is used with J = 100

N = 10 N = 20 N = 40 N = 80

α = 0.1, EN 0.11041 0.0818953 0.0577244 0.0380742

ON 0.431 0.505 0.600

α = 0.5, EN 0.025209 0.0154431 0.00905345 0.0050120

ON 0.707 0.770 0.853

N = 5000 N = 10000 N = 20000 N = 40000

α = 0.1, EN 2.2866e−04 6.0332e−05 1.5332e−05 3.8499e−06

ON 1.922 1.976 1.994

α = 0.5, EN 1.6317e−05 4.2534e−06 1.0769e−06 2.70125e−07

ON 1.940 1.982 1.995

exhibit less regularity. It is proved in [5] that the error of the discrete solution due to
time stepping algorithm (7) can be estimated as

‖Ah
−αF − VN‖ ≤ Cτ

α+γ

N ‖Ah
γ F‖, α + γ ≤ 2. (8)

The given estimate is valid uniformly for a broad set of time step sizes τN . Still, the
asymptotic convergence order should be obtained for time step sizes resolving the
high modes of the solution, i.e. when τNλmax ≤ C ≈ 1.

In order to illustrate these estimates we present results of numerical experiments
for the one dimensional problem � = (0, 1):

AhU = −Uj+1 − 2Uj + Uj−1

h2 , j = 1, . . . , J − 1, U0 = UJ = 0 (9)

with the function f = 1, x ∈ � (the case (d) in [5]). We report the error in the
maximum norm EN = ‖Ah

−αF − V N‖∞ and the experimental convergence order
going from N = m to N = 2m grid points O2m = log(Em/E2m)/ log(2).

Table 1 gives results for J = 100 and varying α = 0.1, 0.5.

3 Non-uniform and Adaptive Time Meshes

The error of the symmetrical Euler scheme (7) depends on the accuracy with which
we approximate the transfer operator of the scheme, i.e. on the smallness of the
factor τñλmax/

(
δ + tn−1̃λmax

)
, where λ̃j are eigenvalues of Bh. We will construct a

non-uniform mesh by using the regularization property of tn−1λ̃. Then the step sizes
of the refined time mesh are defined from the equation

τñλmax/
(
δ + tn−1λ̃max

) = q ≤ 1. (10)



High-Order Numerical Schemes for Fractional Powers of Elliptic Operators 289

Table 2 The error EN of the discrete solution (7) and the experimental convergence order ON for
varying α = 0.1, 0.5. The graded geometric time mesh and uniform space grid with J = 100 are
used

N = 20 N = 40 N = 80 N = 160

α = 0.1, EN 4.5694e−03 1.1159e−03 2.9076e−04 7.2757e−05

ON 2.033 1.940 1.999

α = 0.5, EN 8.9964e−04 2.2572e−04 5.6479e−05 1.4123e−05

ON 1.995 1.999 1.9997

Simple computations show that τn = τ1(1 + q)n−1, n ≥ 2, i.e. we construct
a geometric graded mesh [2]. The number of discrete points is defined by N =
log(λmax)/ log(1+ q)+ 1.

Next we give an alternative possibility to introduce a geometric graded mesh.
The uniform time mesh for sn = nτ̃ , n = 0, . . . , N is mapped to the non-uniform
mesh for tn by using a nonlinear function tn = χ(sn), where

χ(s) = eγ s − 1

eγ − 1
, 0 ≤ s ≤ 1 (11)

with some parameter γ > 0. It follows from (11) that sizes of adjacent time steps
for τn and τn−1 satisfy the relation

χ(sn)− χ(sn−1)

χ(sn−1)− χ(sn−2)
= eγ τ̃ .

By taking γ = log(λmax) we again get the geometric graded mesh.
The results of computational experiments are presented in Table 2: one dimen-

sional test problem (9) is solved by using the symmetrical Euler scheme (7) for
J = 100 and varying α = 0.1, 0.5. The second order convergence rate is clearly
seen from experiments.

3.1 Adaptive Mesh

In this paragraph we apply a simple time step-size control method. For a given
approximation V n−1 at tn−1 we apply the symmetrical Euler scheme (7) and
compute the discrete solution Ṽ n at tn = tn−1+τn. Then we repeat the process with
two times smaller step-size 1

2τn, apply the scheme (7) twice and compute one more

approximation V̂ n. If the estimate ‖Ṽ n − V̂ n‖ < tol is valid, where tol denotes the
required tolerance for the local error, then the current computational step is accepted
V n = V̂ n. Additionally we check if ‖Ṽ n − V̂ n‖ < tol/2.5, then the step-size of
the next step is increased τn+1 = 1.25τn, otherwise τn+1 = τn. If the local error
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Table 3 The error EN of the discrete solution (7) for adaptive grids and α = 0.1. The uniform
space grid is used with J = 100

N = 35 (126) N = 57 (189) N = 70 (235) N = 113 (360) N = 139 (441)

EN 2.579e−04 9.507−05 6.127−05 2.366−05 1.536−05

is larger than tol, then computations from mesh point tn−1 are repeated with the
smaller time step-size τn = 1

2τn.
Some results of computational experiments for α = 0.1 are presented in Table 3.

The number of successful full time steps is denoted by N . We also present the total
number of time steps, required to solve the given problem (approx. three times larger
than N). The structure of the adaptive mesh is very similar to a piecewise constant
geometric graded mesh proposed in [5]. It follows from the presented results that
geometric graded mesh is a simple but very efficient tool to increase the accuracy of
time integration algorithms.

4 Three Level Scheme

In order to resolve the singularity of the solution we use the same mapping (11) as
in previous section t = χ(s). Then instead of solving the Cauchy problem for the
pseudo-parabolic equation (6) we get the Cauchy problem

(
δIh + χ(s)Bh

)dv

ds
+ α

dχ

ds
Bhv = 0, 0 < s ≤ 1, (12)

v(0) = δ−αϕ.

For solving problem (12) we use the symmetrical three level finite difference scheme
(τ = 1/N):

(dχ

ds
(sn)

)−1(
δIh + χ(sn)Bh

)wn+1 −wn−1

2τ
+ αBh (13)

×(σwn+1 + (1− 2σ)wn + σwn−1) = 0, n = 1, 2, . . . , N − 1,

w0 = δ−αϕ, w1 = w1.

We note that the initial conditionw1 should be computed by applying some two level
numerical algorithm and the accuracy of this approximation should be the same as
of the main scheme (13).

For sufficiently smooth solutions of (12), the scheme (13) approximates the
differential problem with the second order. It is interesting to note, that for a uniform
time mesh, when χ(s) = s and taking σ0 = (2+ α)/(6α) we get the discrete
scheme of the fourth approximation order with respect to time t . By using the energy
method and applying the analysis presented in [3] the following theorem is proved.
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Table 4 The error EN of the discrete solution (13) and the experimental convergence order ON

for varying α = 0.1, 0.5

N = 20 N = 40 N = 80 N = 160

α = 0.1, EN 9.2238e−04 2.2887e−04 5.7105e−05 1.4269e−05

ON 2.011 2.003 2.001

α = 0.5, EN 2.2578e−03 5.5786e−04 1.3904e−04 3.4733e−05

ON 2.016 2.004 2.001

Theorem 1 For σ > 0.25 the three-level scheme (13) is unconditionally stable with
respect to the initial data.

The results of computational experiments are presented in Table 4. The second
initial condition is computed applying the spectral method. The second order
convergence rate is clearly seen from experiments.

5 High-Order Schemes

In this section, starting from the symmetrical Euler scheme (7) we construct a high-
order scheme. By using the Taylor expansion of the scheme residual with respect
to tn− 1

2
and applying the modified equations technique we construct a high-order

two-level finite difference scheme

(
Dh(tn− 1

2
)− τ 2

n

12
(1− α2)BhDh

−1(tn− 1
2
)Bh

)vn − vn−1

τn
(14)

+αBh
vn + vn−1

2
= 0, n = 1, . . . , N, v0 = δ−αϕ,

where Dh(t) = δIh+ tBh. This scheme approximates the differential equation with
the fourth order.

Theorem 2 The high-order finite difference scheme (14) is unconditionally stable
with respect to the initial data.

The proof of this theorem follows from the spectral analysis of the self-adjoint
transfer operator (for full details, see [2]). The results of computational experiments
are presented in Table 5. The fourth order convergence rate is clearly seen from
experiments.
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Table 5 The error EN of the discrete solution (13) and the experimental convergence order ON

for varying α = 0.1, 0.5

N = 10 N = 20 N = 40 N = 80

α = 0.1, EN 1.0811e−03 7.4307e−05 4.7576e−06 2.9916e−07

ON 3.863 3.965 3.991

α = 0.5, EN 1.7533e−04 1.1891e−05 7.5907e−07 4.7696e−08

ON 3.882 3.969 3.992

6 Conclusions

Two main directions are identified to construct efficient and high order discrete
algorithms for solving the pseudo-parabolic version of the fractional power elliptic
problems. The first one is based on the special geometric graded meshes. For
three-level discrete scheme such a non-uniform mesh is introduced by using
a special mapping of time coordinate. In the second approach the method of
modified equations used to construct high-order finite difference scheme. Results of
computational experiments have shown that a combination of high-order two level
scheme with geometric graded mesh is the most efficient algorithm for solving the
given pseudo-parabolic problem.
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Numerical Investigation of the
Boussinesq Equations Through a Subgrid
Artificial Viscosity Method

Medine Demir and Songül Kaya

Abstract This study presents a subgrid artificial viscosity method for approxi-
mating solutions to the Boussinesq equations. The stability is obtained by adding
a term via an artificial viscosity and then removing it only on the coarse mesh
scale. The method includes both vorticity in the viscous term and a grad-div
stabilization. We analyze the method from both analytical and computational point
of view and show that it is unconditionally stable and optimally convergent. Several
numerical experiments are provided that support the derived theoretical results and
demonstrate the efficiency and accuracy of the method.

1 Introduction

Natural convection is induced by the buoyancy force arising from the density
differences due to temperature gradients along with the gravitational impacts.
Because of the density differences, a full analysis of such flow problems becomes
quite complex. Therefore, fluid flow and heat transfer are generally governed by the
partial differential equation system of mass, momentum and energy conservation
along with Boussinesq approximation which states that the density differences can
be neglected, except in the buoyancy term, [1]. The governing equations for natural
convection under Boussinesq approximation can be written as

ut + (u · ∇)u− ν�u+ ∇p = Ri〈0, T 〉 + f in �,

∇ · u = 0 in �,

Tt + (u · ∇)T − κ�T = γ in �,

u(0, x) = u0 and T (0, x) = T0 in �,

u = 0 and T = 0 on ∂�

(1)
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where u is the velocity, T is the temperature, ν = O(Re−1) is the kinematic
viscosity, κ = 1/PrRe is the thermal diffusitivity parameter, Pr = ν/κ is Prandtl
number and Ri = PrRaRe2 is Richardson number.

Since Galerkin finite element discretization of Boussinesq system is itself unsta-
ble in the case of high Reynolds number, introducing a turbulence model becomes
necessary. In this study, we propose, analyze and test an accurate regularization
of subgrid artificial viscosity method for the Boussinesq system. We consider
the extension of an earlier study of [2] for the Navier-Stokes equation based on
the pioneering work of [3]. The underlying idea of this method is based on the
variational multiscale method of [3] and stabilization via an artificial viscosity.
In this method, the stability is achieved by adding an artificial viscosity and then
removing it only on the coarse mesh scale. The stability process is applied to the
viscous term by using the vector identity �u = −∇ × (∇ × u)+∇(∇ · u) and thus
results in a two level method including both vorticity in the viscous term and grad-
div stabilization. One can find many studies using similar methods to the discussed
method [4]. However, our method is more efficient for some reasons. Using a
mixed method for both velocity and vorticity significantly reduces extra storage
in 3d compared to velocity and its gradient. Furthermore, the method improves
the conditioning of the system, that is, instead of the full velocity gradient with
nine variables it leads to coarse grid storage of vorticity with just three variables.
Moreover, one can obtain more accurate numerical solutions in the presence of high
Reynolds number without choosing a computationally inefficient time-step. Hence,
it is important to extend this methodology to flows governed by the Boussinesq
system. We aimed to obtain a much better quality solution with less computational
effort.

2 Subgrid Artificial Viscosity Scheme

In this section, we present a fully discrete numerical algorithm of the proposed
method. For this purpose, we choose the natural function spaces X := H 1

0 (�)d ,
W := H 1

0 (�) and Q := L2
0(�) for the continuous velocity, temperature and

pressure spaces, respectively. Let Xh ⊂ X, Wh ⊂ W , Qh ⊂ Q be conforming
finite element spaces where the velocity, temperature and pressure spaces fulfill the
discrete inf-sup condition. We use the usual L2(�) norm and the inner product
denoted by ‖ · ‖ and (·, ·), respectively. Define the skew-symmetric forms of the
convective terms by

b∗(u, v,w) = 1

2
(u · ∇v,w) − 1

2
(u · ∇w, v), (2)

c∗(u, T , χ) = 1

2
(u · ∇T , χ)− 1

2
(u · ∇ χ, T ), (3)
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We also define LH ⊂ L2(�)d to be a large scale space defined on a regular coarse
mesh πH which is a conforming triangulation of �. For the numerical analysis, we
need to define the L2 projection PLH : (L2(�))d×d −→ LH by

(PLH φ − φ, lH ) = 0 ∀lH ∈ LH . (4)

We divide the time interval [0, T ] into N equal sub-interval with the time-step
�t = T/N and tn+1 = (n + 1)�t with n = 0, 1, 2, . . . ., N . Then, the subgrid
artificial viscosity method based on backward Euler time stepping scheme reads as
follows.

Algorithm Let DH be the new coarse mesh variable and the initial conditions
u0, T 0, the forcing function f and the heat source γ be given. Define u0

h

and T 0
h as the nodal interpolants of u0 and T 0, respectively. Then, given un

h,
T n
h , pn

h, find (un+1
h , T n+1

h , pn+1
h ) ∈ (Xh,Wh,Qh) satisfying ∀(vh, Sh, qh, lH ) ∈

(Xh,Wh,Qh,LH )

(
un+1
h − un

h

�t
, vh)+ ν(∇un+1

h ,∇vh)+ b∗(un
h, u

n+1
h , vh)− (pn+1

h ,∇ · vh)

+α1(∇ × un+1
h ,∇ × vh)− α1(D

n+1
H ,∇ × vh)+ α2(∇ · un+1

h ,∇ · vh)
= Ri(〈0, T n

h 〉, vh)+ (f n+1, vh), (5)

(∇ · un+1
h , qh) = 0, (6)

(Dn+1
H −∇ × un

h, lH ) = 0, (7)

(T n+1
h , Sh)+ κ(∇T n+1

h ,∇Sh)+ c∗(un
h, T

n+1
h , Sh) = (γ n+1, Sh). (8)

where α1 = α1(x, h) is a known, positive, bounded function and constant
elementwise and α2 is called the grad-div stabilization parameter. In our analysis,
we propose α1 and α2 as O(h2) and O(1) constants, respectively.

3 Numerical Analysis

In this section, we present the numerical analysis of the Boussinesq equations based
on the finite element formulation (5)–(8). We first prove the stability of the method
by using standard energy arguments.
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Lemma 1 The solution of (5)–(8) is unconditionally stable in the following sense:
for any �t > 0

‖T N
h ‖2 + κ�t

N−1∑

n=0

‖∇Th‖2 ≤ ‖T 0
h ‖2 +�tκ−1

n−1∑

n=0

‖γ n+1‖2−1

‖uh
N‖2 +�t

N−1∑

n=0

(

ν‖∇un+1
h ‖2 + α2‖∇ · un+1

h ‖2
)

+ α1�t‖∇ × uN
h ‖2

≤ ‖u0
h‖2 + α1�t‖∇ × u0

h‖2 + 2ν−1�t

N−1∑

n=0

‖f n+1‖2−1

+C̃T

(

‖T 0
h ‖2 +�tκ−1

n−1∑

n=0

‖γ n+1‖2−1

)

where C̃ = Cν−1Ri2.

Proof Choosing Sh = T n+1
h in (8) and vh = un+1

h in (5), using the triangle, Cauchy-
Schwarz and Young’s inequalities gives the stated result. ��

We now give the error analysis of the method. We assume that the exact solution
satisfies the following regularity assumptions for the optimal asymptotic error
estimation:

u, T ∈ L∞(0, T ;H 1(�)) ∩H 1(0, T ;Hk+1(�)) ∩H 3(0, T ;L2(�)) ∩H 2(0, T ;H 1(�))

p ∈ L2(0, T ;Hs+1(�)) ∩H 2(0, T ;L2(�)) (9)

f, γ ∈ L2(0, T ;L2(�))

Theorem 1 Let (u, p, T ) be the solution of the Boussinesq system. In addition to
the regularity assumptions (9), let (Xh,Wh,Qh) = (P2, P2, P1) be the Taylor-
Hood finite element spaces satisfying theoretical approximation estimations. Then,
the following asymptotic error estimation is satisfied for the errors enu = un − un

h

and enT = T n − T n
h :

‖eNu ‖2 + ‖eNT ‖2 +�t

N−1∑

n=0

(
ν‖∇en+1

u ‖2 + κ‖∇en+1
T ‖2)+ α1�t

N−1∑

n=0

‖∇ × en+1
u ‖2

+α2�t

N−1∑

n=0

‖∇ · en+1
u ‖2 ≤ C((�t)2 + h4 + ‖e0

u‖2 + ‖e0
T ‖2).

where C is a generic constant.
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Proof The process of this proof is similar to the proof of [2]. One can adapt it to the
proof of the error estimate of [5]. ��
Remark 1 In order to obtain optimal order of accuracy, the initial approximations
of u0

h and T 0
h need to be suitably interpolated in Xh in such a way that ‖e0

u‖ and
‖e0

T ‖ are optimal, that is ‖e0
u‖ ≤ Ch2‖u‖2 and ‖e0

T ‖ ≤ Ch2‖T ‖2. We consider
u0
h = Iu(u

0) and T 0
h = IT (T

0) for some interpolations Iu in Xh and IT in Wh,
respectively. Existence of such operators can be found in [12]. Thus, Theorem 1
implies that, the error in velocity is O(h2) and the error in temperature is O(�t),
which are optimal convergence rates for the scheme.

4 Numerical Experiments

In this section, we provide three numerical experiments to test the theoretical
findings and to show the efficiency of the proposed method. Firstly, we verify the
order of numerical convergence rates which are predicted in Theorem 1. Secondly,
we provide the so-called Marsigli’s flow example to prove that the method captures
correct flow patterns by using a coarse mesh discretization. Lastly, we present the
well-known Buoyancy driven cavity example and compare the Nusselt numbers
obtained by the proposed method to previously obtained ones in literature. All
computations are carried out with the finite element software package FreeFem++
[6]. In all simulations, we use (P2, P2, P1) Taylor-Hood finite spaces for velocity,
temperature and pressure on uniform triangular grids and P1 for the large scale space
LH .

4.1 Numerical Convergence Study

In this subsection, we test the optimal convergence rates of the scheme (5)–(8) with
a known analytic solution

u =
(
(1+ 0.1t)cos(πx)

(1+ 0.1t)sin(πy)

)

,

p = (1+ 0.2t)sin(π(x + y)),

T = sin(πx)y exp(t)

on the unit square domain � := [0, 1]2. We take the parameters Re = Ri = κ = 1,
stabilization parameters α1 = h2, α2 = 0.01 and coarse mesh size H = √

h. The
right hand side functions f, γ are determined by the given true solution.

To test the spatial errors, we fix the time-step �t = T/8 with end time T = 10−4

and calculate the errors in L2(0, T ;H 1
0 ) for varying h. To see the temporal errors,
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Table 1 Spatial errors and
rates of convergence for SAV
method

h ‖u− uh‖2,1 Rate ‖T − Th‖2,1 Rate

1/4 7.128e−4 – 5.045e−4 –

1/8 1.771e−4 2.00 1.256e−4 2.00

1/16 4.353e−5 2.024 3.069e−5 2.033

1/32 1.119e−5 1.959 7.458e−6 2.040

1/64 3.002e−6 1.898 1.844e−6 2.146

Table 2 Temporal errors and
rates of convergence for SAV
method

�t ‖u− uh‖2,1 Rate ‖T − Th‖2,1 Rate

1 1.096e−2 – 1.302e−1 –

1/2 1.373e−2 0.513 6.005e−2 1.121

1/4 9.542e−3 0.525 2.843e−2 1.078

1/8 6.542e−3 0.547 1.380e−2 1.042

1/16 4.348e−3 0.573 6.802e−3 1.021

1/32 2.786e−3 0.839 3.376e−3 1.010

1/64 1.702e−3 0.918 1.682e−3 1.004

we fix the mesh size h = 1/128 with an end time t = 1 and calculate the errors in
L2(0, T ;H 1

0 ) for varying �t . Errors and rates are presented in Tables 1 and 2. As
expected, we observe first order convergence in time and second order convergence
in space which are optimal rate of convergence for velocity and temperature for the
Taylor-Hood finite element spaces.

4.2 Marsigli’s Flow Experiment

In this subsection, we test Marsigli’s flow. In 1679, Marsigli figured out that the
reason of ocean currents is due to the density differences. He observed that the fluid
of lower density moves on the top of the fluid with higher density. In this experiment,
we simulate this physical situation on a much coarser mesh than is needed by
a direct numerical simulation which is known to fail even for finer meshes, see
[7]. The aim is to capture correct flow patterns with less computational effort. The
problem domain is a rectangular box � := (0, 1)×(0, 8). No slip velocity boundary
conditions are applied and the temperature gradients are taken to be zero at all
boundaries. The initial temperature is given precisely as

T0 =
{

1.5 x ≤ 4.0
1.0 x > 4.05

and the initial velocity is zero. The flow parameters are taken as Pr = 1, Re =
1000, Ri = 4. We choose a large time-step size �t = 0.02 and plot the temperature
contours and velocity streamlines at t = 2, 4, 6, 8.
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IsoValue
0.866635
0.919772
0.955197
0.990622
1.02605
1.06147
1.0969
1.13232
1.16775
1.20317
1.2386
1.27402
1.30944
1.34487
1.38029
1.41572
1.45114
1.48657
1.52199
1.61055

IsoValue
0.862113
0.917815
0.954949
0.992084
1.02922
1.06635
1.10349
1.14062
1.17776
1.21489
1.25202
1.28916
1.32629
1.36343
1.40056
1.4377
1.47483
1.51197
1.5491
1.64194

IsoValue
0.858317
0.911903
0.947627
0.983351
1.01907
1.0548
1.09052
1.12625
1.16197
1.19769
1.23342
1.26914
1.30487
1.34059
1.37631
1.41204
1.44776
1.48349
1.51921
1.60852

IsoValue
0.810744
0.872422
0.913542
0.954661
0.99578
1.0369
1.07802
1.11914
1.16026
1.20138
1.2425
1.28361
1.32473
1.36585
1.40697
1.44809
1.48921
1.53033
1.57145
1.67425

t = 2 t = 4

t = 6 t = 8

Fig. 1 Temperature contours and velocity streamlines at t = 2, 4, 6, 8

The resulting patterns are given in Fig. 1. As expected, the fluid at different
temperatures mix at the interface and as time evolves the warmer fluid tends to
spread out on the colder one. One can easily deduce from the Fig. 1 that the flow
patterns of our solution match perfectly with the patterns of [8] in which a fourth
order finite difference scheme is used for the Boussinesq equations. This comparison
proves the promise of the method in this sense.

4.3 Thermal Distribution in Buoyancy Driven Cavity

In engineering, it is very important to know the thermal distribution along the hot
and cold walls. The parameter of interest is called Nusselt number (Nu) which
measures this distribution. The local and average Nusselt numbers are defined in [5].
Also, the problem domain is a unit square and boundary conditions are described as
in [5]. The flow parameters are chosen as Pr = κ = ν = 1 in this test.

In Fig. 2, we plot the temperature contours and velocity streamlines for Ra =
104, 105 with the time-step �t = 0.01 and for Ra = 106 with the time-step
�t = 0.001. In addition, we provide the average Nusselt numbers of the proposed
algorithm for Ra = 104, 105, 106. As seen in Table 3, we obtain acceptable results
using a much coarser mesh than the literature known to obtain such results on a
very fine mesh, see [11]. This shows the computational power and advantage of the
proposed method against others.
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IsoValue
-0.0526316
0.0263158
0.0789474
0.131579
0.184211
0.236842
0.289474
0.342105
0.394737
0.447368
0.5
0.552632
0.605263
0.657895
0.710526
0.763158
0.815789
0.868421
0.921053
1.05263

IsoValue
-0.0526316
0.0263158
0.0789474
0.131579
0.184211
0.236842
0.289474
0.342105
0.394737
0.447368
0.5
0.552632
0.605263
0.657895
0.710526
0.763158
0.815789
0.868421
0.921053
1.05263

Fig. 2 Temperature contours (up) and streamlines (down) for Ra = 104, 105, 106 (from left to
right)

Table 3 Comparison of average Nusselt number on hot wall for varying Rayleigh Numbers

Ra Proposed method Ref. [9] Ref. [10] Ref. [11]

104 2.257 (32 × 32) 2.254 (301 × 301) 2.201 (142 × 142) 2.258 (101 × 101)

105 4.600 (64 × 64) 4.598 (301 × 301) 4.532 (142 × 142) 4.511 (101 × 101)

106 8.984 (100 × 100) 8.976 (301 × 301) 8.90 (142 × 142) 8.97 (101 × 101)

5 Conclusion

In this paper, we proposed and analyzed a subgrid artificial viscosity method for
solving the Boussinesq system based on the backward Euler time discretization
scheme. We proved that the approximate solutions of the proposed algorithm are
uniformly bounded at all time without any restriction on timestep. We also showed
that the method is optimally convergent with suitable choices of artificial viscosity
and the grad-div stabilization parameter. Finally, the efficiency and accuracy of the
method is demonstrated on several numerical tests which revealed that the method
gives superior results with a less computational effort over the previously obtained
ones in literature.
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FFT-Based Solution Schemes for the Unit
Cell Problem in Periodic Homogenization
of Magneto-Elastic Coupling

Felix Dietrich

Abstract Starting from the linear equations for magneto-elastic coupling, the
unit cell problem and the homogenized problem are derived as limits of a two-
scale convergence process in a periodic homogenization setting. Exploiting the
periodicity of the cell problem and the properties of its Fourier series representation
allows for a reformulation as a Lippmann–Schwinger type equation. Iterative
algorithms to solve these equations are presented and validated by an analytically
solvable test problem.

1 Introduction

Coupling effects from piezomagnetic or (biased) magnetostrictive materials make
them suitable for the development and production of actuators or sensors [1, 2].
Aiming at the creation of materials that follow a certain behavior, several such
phases are combined to potentially amplify these effects [3, 4]. These composite
materials may exhibit a complex micro-structural geometry that demands homog-
enization techniques [5] such as an asymptotic expansion series [6] or two-scale
limits [7] to be treated efficiently. Due to the nature of the resulting elliptic
partial differential equation spectral methods have been proven to solve the arising
equations in a fast and cost efficient manner [8, 9]. In recent years these methods
were developed further to include voids [10], to handle nonlinearities [11] or to be
applied on general periodic anisotropic translation invariant spaces [12].

The following work has three goals in mind. First, it wishes to show the
homogenization procedure and its therein derived quantities and problems for the
coupled system. Next, it is explained how spectral schemes for this problem class
are derived and how the coupling can be treated in numerical schemes. In the end,
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the correctness of the algorithms and their implementation shall be validated by an
appropriately chosen benchmark.

2 Mathematical Formulation

Let � ⊆ R
d be a bounded domain with Lipschitz boundary ∂� = !mech

D �!mech
N =

!
mag
D � !

mag
N . The strong form of the coupled linear magneto-elastic system with

periodic coefficients reads as

− div
(
C
( x
κ

)
ε (uκ ) (x)− e

( x
κ

)
H ('κ) (x)

)
= fmech (x) in � , (1)

−div
(
eT

( x
κ

)
ε (uκ) (x)+ µ

( x
κ

)
H ('κ) (x)

)
= fmag (x) in � , (2)

with Dirichlet boundary conditions uκ = 0 on !mech
D and 'κ = 0 on !

mag
D , as well

as Neumann boundary conditions

(
C
( x
κ

)
ε (uκ) (x)− e

( x
κ

)
H ('κ) (x)

)
· n = σ̃ (x) on !mech

N , (3)

(
eT

( x
κ

)
ε (uκ) (x)+ µ

(x
κ

)
H ('κ) (x)

)
· n = −B̃ (x) on !

mag
N . (4)

The material tensors, namely the stiffness C, the permeabilityµ, and the coupling
tensor e, are defined on the d-dimensional torus T

d ∼= [0, 1)d . The period length
of the material’s geometry is denoted by κ ∈ R>0 and visualized in Fig. 1. The
strain operator ε takes the symmetric gradient of a displacement field uκ , whereas
the magnetic field operator H denotes the negative gradient of a magnetic scalar
potential 'κ . The divergence operator div in (1) is applied column-wise to the
resulting stress field. For the purpose of simplification however, C,e, and ε will
refer to the Mandel-notation of these quantities.

��= [0, 1]2, k = 0.5 ��= [0, 1]2, k = 0.25 ��= [0, 1]2, k = 0.125

Fig. 1 Depiction of the domain � = [0, 1]2 with periodically repeating inclusions for κ = 0.5,
κ = 0.25, and κ = 0.125 (from left to right)
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In the case of composite materials, one can assume the material tensors to be L∞-
functions and furthermore for C and µ to be symmetric positive definite matrices
fulfilling an ellipticity condition. If additionally all right-hand sides are at least L2-
functions, the Lax–Milgram theorem ensures the existence of unique solutions uκ ∈
H1 (�,Rd

)
and 'κ ∈ H1 (�,R).

3 Periodic Homogenization

The process of periodic homogenization is equivalent to posing the question whether
the formal limits of the solutions uκ and 'κ in (1) and (2) exist for κ → 0 and to
which problem they correspond. The answer to this question is given by the two-
scale convergence method which states that there exist functions

(u0,u1) ∈ H1
mech

(
�,Rd

)
× L2

(
�,H1

(
T
d,Rd

)
\ R

)
, (5)

('0,'1) ∈ H1
mag (�,R)× L2

(
�,H1

(
T
d,R

)
\ R

)
, (6)

such that ε (uκ) � εx (u0) + εy (u1) and H ('κ) � Hx ('0) + Hy ('1). Here,
the subscripts for H1 are each indicative of the incorporated Dirichlet boundary
conditions in the sense of the trace mapping theorem. These two-scale limits
lead to a variational formulation that allows to separate between the sought-after
homogenized problem whose material tensors are not spatially dependent anymore
and the underlying cell problem which contains all geometrical information of a
period.

3.1 Cell Problem

The cell problem consists of solving the system of equations on the torus with
multiple right-hand sides. More precisely, instead of prescribing macroscopic strains
and magnetic fields directly, one only prescribes unit vectors and reconstructs the
solution of the cell problem afterwards.

Sticking with the Mandel notation for mechanical quantities, one solves for unit
vectors zmech

i ∈ R
dV , i = 1, . . . , dV := d (d + 1) /2, the system

− divy

(
Cεy

(
ωmech
i

)
− eHy

(
$mech
i

))
= divy

(
Czmech

i

)
in T

d , (7)

−divy

(
eTεy

(
ωmech
i

)
+ µHy

(
$mech
i

))
= divy

(
eTzmech

i

)
in T

d , (8)
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which corresponds to macroscopic strain fields, and analogously for unit vectors
zmag
j ∈ R

d, j = 1, . . . , d the system

− divy

(
Cεy

(
ω

mag
j

)
− eHy

(
$

mag
j

))
= divy

(
−ezmag

j

)
in T

d , (9)

−divy

(
eTεy

(
ω

mag
j

)
+ µHy

(
$

mag
j

))
= divy

(
µTzmag

j

)
in T

d , (10)

corresponding to macroscopic magnetic fields. Here, all derivatives are taken only
with respect to the microscopic variable y.

The solutions of (7)–(10) are called correctors and are used to reconstruct the
unit cell solutions

u1(x, y) =
dV∑

i=1

(εx (u0) (x))i ω
mech
i (y)+

d∑

j=1

(

−∂'0

∂xj
(x)

)

ω
mag
j (y) , (11)

'1(x, y) =
dV∑

i=1

(εx (u0) (x))i $
mech
i (y)+

d∑

j=1

(

−∂'0

∂xj
(x)

)

$
mag
j (y) , (12)

where (εx (u0) (x))i refers to the i-th component. It should be noted that
the correctors only depend on y whereas the coefficients only depend on the
variable x.

3.2 Homogenized Problem

The reason for computing the correctors instead of u1 and '1 directly is their use
in the computation of the effective material tensors. These constant tensors are no
longer spatially dependent while simulating a homogeneous material that behaves
the same as the composite.

The entries of the effective tensors for stiffness, permeability and the coupling
tensor can be computed as

Ceff
mn =

∫

Td

Cmn +
dV∑

k=1

Cmk

(
εy

(
ωmech
n

))

k
+

d∑

l=1

eml
∂$mech

n

∂yl
dy , (13)

µeff
mn =

∫

Td

µmn +
dV∑

k=1

ekm
(
εy

(
ω

mag
n

))
k
−

d∑

l=1

µml

∂$
mag
n

∂yl
dy , (14)
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eeff
mn =

∫

Td

emn −
dV∑

k=1

Cmk

(
εy

(
ω

mag
n

))
k
−

d∑

l=1

eml
∂$

mag
n

∂yl
dy

=
∫

Td

emn +
dV∑

k=1

ekn
(
εy

(
ωmech
m

))

k
−

d∑

l=1

µnl

∂$mech
m

∂yl
dy , (15)

with the correctors stemming from the previous cell problems (7)–(10).
Using (13)–(15), the homogenized problem reads as

− divx

(
Ceffεx (u0)− eeffHx ('0)

)
= fmech in � , (16)

−divx

((
eeff

)T
εx (u0)+ µeffHx ('0)

)

= fmag in � , (17)

where u0 and '0 need to fulfill the boundary conditions of the original problem
given in Sect. 2. Note that contrary to the cell problem, the homogenized problem
only contains derivatives with respect to x.

4 Spectral Schemes on the Unit Cell

While Finite Elements may be used for the homogenized problem, the periodic
nature of the cell problem offers the possibility to work with purely algebraic expres-
sions. Expressing all quantities as a Fourier Series and exploiting its properties with
respect to differentiation results in integral equations of Lippmann–Schwinger type
whose fundamental solution operators are explicitly given in the frequency domain.

4.1 Periodic Lippmann–Schwinger Equations

In the following, the strain field is split into its spatial average ε̄ := ∫
Td ε dy and

its remaining fluctuating part ε̃ := ε − ε̄. The same is done for the magnetic field.
Furthermore, the dependence on u and ' is omitted for better readability.

With this notion, Eqs. (7)–(10) fit the more general problems

− div
(
C0ε̃ + τε

)
= gε , (18)

− div
(
µ0H̃+ τH

)
= gH , (19)
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if one chooses gε and gH to be the corresponding right-hand sides given before and
sets

τε :=
(
C− C0

)
ε̃ − eH̃ , (20)

τH :=
(
µ− µ0

)
H̃+ eTε̃ , (21)

with C0 and µ0 being arbitrarily chosen constant reference tensors.
For each frequency vector k ∈ Z

d one defines

Ẑ0
ε (k) :=

(
kTC0k

)−1
and Ẑ0

H (k) :=
(

kTµ0k
)−1

, (22)

where the hat is indicative of the Fourier domain. From this, the entries of the
solution operators can be calculated explicitly as

(
�̂0
ε (k)

)

mnop
= −1

2

(
knkp

(
Ẑ0
ε (k)

)
mo
+ kmkp

(
Ẑ0
ε (k)

)
no

)
, (23)

(
�̂0
ε (k)

)

mno
= − i

4π

(
kn
(
Ẑ0
ε (k)

)
mo
+ km

(
Ẑ0
ε (k)

)
no

)
, (24)

(
�̂0

H (k)
)

mn
= −kmknẐ

0
H (k) , (25)

(
�̂0

H (k)
)

m
= i

2π
kmẐ

0
H (k) . (26)

The solution of (18) and (19) can thus be written as

ε̃ = �0
ε ∗ τε +�0

ε ∗ gε , (27)

H̃ = �0
H ∗ τH +�0

H ∗ gH , (28)

where the asterisk denotes the convolution operation.

4.2 Algorithms

The advantage of resorting to spectral methods for the cell problem lies in them
being applicable to regular grids arising directly from imaging techniques. Most
of the algorithmic operations work on each pixel or voxel independently and can
therefore be parallelized. The only exception to that would be the Discrete Fourier
Transform, which is a well-known, highly optimized computational routine at this
point. The discretization is based on collocation methods and follows straight-
forward from the truncation of the Fourier Series. While sticking to the same
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notation as before, all quantities will be understood as their discretized equivalents
from now on.

Solving the discrete system can be achieved in one of two ways. The staggered
method makes use of the fact that (27) and (28) share the same structure and can
thus be solved by the same algorithm individually. Iterating between both equations
where the approximated solution of one equation is then transferred unto the right-
hand side of the other one is an intuitive approach in which already established
solvers can be reused. The initially proposed Basic Scheme solves a single equation
through a Neumann iteration but its convergence depends strongly on the choice of
the reference tensors. It is also possible to rearrange the equation to a linear system
that, despite not being symmetric, was shown to be solvable by conjugate gradient
methods.

The monolithic method combines the strain ε̃ and the magnetic field H̃ into a
single solution vector and sets up a common linear system at once. Let Fε and
FH denote the Fourier matrices of appropriate size. Analogously, one defines the
identity matrices Idε and IdH. The linear system with system matrix

A =
(
Idε 0
0 IdH

)

−
(
F−1
ε �̂0

εFε 0
0 F−1

H �̂0
HFH

)(
C− C0 e
−eT µ− µ0

)

(29)

and right-hand side vector

b =
(
F−1
ε �̂0

εFε 0
0 F−1

H �̂0
HFH

)(
Cε̄ − eH̄
µH̄+ eTε̄

)

+
(
F−1
ε �̂0

εFε 0
0 F−1

H �̂0
HFH

)(
gε
gH

)

(30)

can again be solved with classical iterative solvers such as conjugate gradient
schemes.

5 Numerics

First, an analytically solvable test case is presented which proves useful in validating
the implemented schemes. Consider a unit cell in 2D with two different phases
denoted by superscripts α and β. Assume the stiffness tensors to be isotropic
with Lamé parameters λ and µ, diagonal permeability tensors with entries p11
and p22, and coupling tensors whose third row is all zeros. The spatial averages
ε̄ = (1, 1, 0)T and H̄ = (1, 1) are prescribed. If the material tensors were to fulfill
the additional constraints

λα = λβ , eα12 = e
β

12 , e
α
21 = e

β

21 ,

p
β

11 − pα
11 = p

β

22 − pα
22 = eα11 − e

β

11 = eα22 − e
β

22 = 2
(
μα − μβ

)
, (31)
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Fig. 2 Absolute error between numerical and analytical solution for the test case given in Sect. 5

and one was to prescribe the outer forces as

gε = −2π

((
2μα + λα − eα11

)
cos (2πy1)(

2μα + λα − eα22

)
cos (2πy2)

)

, (32)

gH = −2π
((
eα11 + pα

11

)
cos(2πy1)+

(
eα22 + pα

22

)
cos(2πy2)

)
, (33)

the solution of the coupled problem would be given by smooth solution fields

ε =
⎛

⎝
sin (2πy1)

sin (2πy2)

0

⎞

⎠ and H =
(

sin (2πy1)

sin (2πy2)

)

. (34)

It is interesting to note that the solution of this example does actually not depend on
the underlying geometry as long as the constraints (31) are met. For the case where
the α-phase was centered as a circular inclusion in the β-phase, the error between
the analytic and numerical solution on a 256×256 grid is shown in Fig. 2. A residual
tolerance of 10−6 was used.

6 Conclusion

The cell and homogenized problem were obtained for a system of coupled elliptic
partial differential equations in form of magneto-elastic coupling. Explicit formulas
for solution operators were derived in the spectral domain. Numerical schemes
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following this method were outlined and validated through an analytically solvable
test case.
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Novel Flux Approximation Schemes for
Systems of Coupled
Advection-Diffusion-Reaction Equations

J. van Dijk, R.A.M. van Gestel, C.E.M. Schoutrop,
and J.H.M. ten Thije Boonkkamp

Abstract The physical modeling of transport in multi-component mixtures results
in systems of coupled equations for the mass fractions. This contribution discusses
the mathematical structure of such transport systems and presents a novel approx-
imation scheme for the associated mass fluxes. The scheme respects the coupled
nature of the equations and allows for a linearized source term. An illustrative
example is presented.

1 Introduction

Conservation laws of advection-diffusion-reaction type are omnipresent in physics.
Examples are those describing transfer of momentum and energy in a flowing
substance and the mass balance equations for a multi-component medium. For
such medium the equations that describe the components are coupled via the
source terms, which express the result of chemical reactions, but also through the
expressions for the transport coefficients, which usually depend on all mixture
variables.

In the last decade the strong coupling between the mixture variables has
triggered the development of new flux approximation schemes that respect that
coupling [1, 2] and result in computations that guarantee conservation of mass
regardless of the number of grid points that is used for the computation. Later
extensions of the scheme take into account the source terms in the derivation of
the flux approximation scheme [3]. This Complete Flux Scheme can be shown
to be of second-order accuracy, regardless of the Péclet matrix that expresses the
relative importance of advection compared to diffusive transport of the individual
components [4].
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In recent years there has been a renewed interest in the further development of
flux approximation schemes for multi-component mixtures. This can be explained
by the development of new plasma sources that feature a bewildering chemical com-
plexity. As an example, research on Solar Fuels has resulted in the development of
microwave plasma reactors in which water and carbon-dioxide are transformed into
methane and other value-added chemicals in a process that is perhaps best described
as ‘inverse combustion’. In such devices one typically needs to consider dozens to
hundreds of components that are involved in many thousands of reactions [5].

The second-order differential equations that describe the mass fractions of the
components in such a mixture are of advection-diffusion-reaction type and form
a set of coupled quasi-linear equations. In recent years the authors have made
significant progress in the development of flux approximation schemes for such
systems and their application in finite-volume simulations. This work presents the
physical model for multi-component diffusion that underlies those efforts, which is
based on the work of Giovangigli et al. [6] (Sect. 2) and demonstrates a novel flux
approximation scheme that allows a linearization of the source terms (Sect. 3). A
numerical example is presented in Sect. 4.

2 Mathematical Model of Multi-Component Diffusion

For a one-dimensional Cartesian coordinate system the mass balance for a compo-
nent i in a multi-component mixture takes the form

∂tρi + ∂x(ρivi) = ωi, (1)

where ρi is the mass density of component i, vi its velocity and ωi its volumetric
mass production rate. Summation of these equations over all components results in
the continuity equation,

∂tρ + ∂x(ρv) = 0, (2)

where the total mass density ρ is given by ρ = ∑
i ρi . Note that

∑
i ωi = 0

since no net mass is produced in chemical reactions. Finally, the mass-averaged
or barycentric velocity field v is defined by the relation

ρv =
∑

i

ρivi . (3)

Instead of the mass densities ρi one usually adopts the components’ mass fractions
yi = ρi/ρ as solution variables. In terms of these variables the mass balance
equations (1) take the form

∂t (ρyi)+ ∂x(ρyivi) = ωi. (4)
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The further analysis of the subject is greatly facilitated by collecting the properties
of the components in vectors. As an example, the mass fractions can be combined
into the vector y = (y1 . . . yN)T, the mass flux densities Ji = ρyivi into J =
(J1 . . . JN)T, etc. Here T indicates transposition. The mass balance equations then
read

∂t (ρy)+ ∂xJ = ω. (5)

In order to solve equation (5) for the mass fractions yi one needs, in addition
to the expressions for the chemical source terms ωi , knowledge of the component
velocities vi . In principle these can be obtained from a set of momentum balance
equations. Each such equation is of the Navier-Stokes type, but carries additional
terms due to the forces that the individual components exert on each other.

Solving such momentum balance for each individual component is excessively
time-consuming for mixtures that consist of many components. Fortunately, in many
cases of practical interest the momentum balance equations can be simplified to a
set of coupled algebraic equations for the local diffusion velocities. The diffusion
velocity ui of component i is defined as the velocity of that component relative to
the mass-averaged velocity,

ui = vi − v. (6)

From the definition of the diffusion velocity it follows that diffusion does not
result in net mass transport: multiplying equation (6) with ρi and summing over
all components one finds

∑

i

ρiui =
∑

i

ρivi −
(∑

i

ρi

)
v = ρv − ρv = 0. (7)

The result of the Stefan-Maxwell approach is that the Navier-Stokes equation needs
to be solved only for the mass-averaged velocity. The component velocities are then
obtained by adding the diffusion velocities to the mass-averaged velocity.

The diffusion velocities ui are governed by a set of algebraic equations which
are known as the Stefan-Maxwell equations. For a component i the result is

∑

j �=i

fij (ui − uj ) = −di, (8)

where fij = fji is a friction coefficient, which describes the momentum exchange
between components i and j . Furthermore di is the diffusive driving force that
acts on component i. The latter is related to spatial inhomogeneities and will be
discussed later. For a further discussion of the Stefan-Maxwell equations and the
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calculation of the friction coefficients we refer to references [6] and [7]. In the vector
notation the Stefan-Maxwell equations take the form

Fu = −d, (9)

where the matrix F has elements

Fij =
{
−fij i �= j,
∑

k �=i fik =
∑

k �=j fkj i = j.
(10)

From equation (8) it is immediately clear that the Stefan-Maxwell equations are
linearly dependent: it only gives relations between the differences of the diffusion
velocities; the sum of the left-hand sides over all components vanishes. In order
to solve the system (9) for the diffusion velocities one must therefore combine the
Stefan-Maxwell equations with an additional constraint. That is given by equation
(7), which, in matrix-vector form can be written as

yTu = 0. (11)

In order to arrive at a non-singular formulation of the Stefan-Maxwell equations
one could replace one of the equations with the constraint (11). However, we adopt
another formulation, proposed by Giovangigli [6], to regularize the Stefan-Maxwell
equations in a symmetric way. The idea is to left-multiply equation (11) with the
column vector αy, where α > 0 is a constant. By adding the result to the Stefan-
Maxwell equations one obtains

F̃u = −d, with F̃ = F + αyyT. (12)

Giovangigli has demonstrated that the modified friction matrix F̃ is non-singular
for α > 0. Numerical considerations suggest that the value of α is chosen such that
the diagonal elements of F and those of αyyT are balanced. The resulting system
can be solved to obtain an expression for the diffusion velocities,

u = −
(
F + αyyT

)−1
d. (13)

It has been shown [6, section 4.1] that the driving forces related to ordinary diffusion
can be written in the form

d = M̃∂xy, (14)

where M̃ is a non-singular matrix that depends solely on the mass fractions. If
we furthermore add the advective velocity to the diffusion velocities of the species
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and multiply each term with the mass density ρyi of that component we obtain an
expression for the total mass flux densities. The result is

J = ρvy − ρ diag(y)
(
F + αyyT

)−1
M̃∂xy. (15)

The reader will notice the resemblance of this expression with the single-variable
flux expressions of advection-diffusion type: it is a quasi-linear system with one
term that is proportional to the solution variables y and one that is proportional to
the gradient of this variable. In order to emphasize this structure it useful to write
this expression in the generic form

J = U (y)y − E(y)∂xy. (16a)

For the present case we find that

U = ρvI , E = ρ diag(y)
(
F + αyyT

)−1
M̃ . (16b)

The mass flux diffusion matrix E is positive definite (but not symmetric) and
diagonalizable. When other types of diffusion are considered the matrices U and E
take different forms, but the general structure of equation (16a) will stay the same.
For the example of ambipolar diffusion in plasmas, see [1], for an application to
transport in magnetized plasmas, see [2].

3 Special Case: Homogeneous Flux Scheme for a Coupled
Diffusion-Reaction System

As a special case, we outline the derivation of the homogeneous flux scheme
for a system of diffusion-reaction equations containing a linear source term. The
derivation of the complete flux scheme for a generic system of advection-diffusion-
reaction equations is covered in [3].

Consider the following system of one-dimensional, stationary conservation laws
for the vector of unknowns y, i.e.,

J ′ = Cy + s(y), J = −Ey ′, (17)

where the prime (′) denotes differentiation w.r.t. x. J is the (diffusive) mass flux
vector and E the mass flux diffusion matrix, which we assume to be positive definite.
Note that the source in the right hand side contains a linear term Cy, typically
resulting from a linearisation about an equilibrium solution, and a nonlinear part
s(y). For discretisation of (17) we employ the (cell-centred) finite volume method.
We introduce an equidistant spatial grid {xj } with grid spacing �x and cover the
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domain with a disjunct set of control volumes Vj = [xj−1/2, xj+1/2] with xj±1/2 =
1
2 (xj+xj±1). Integrating the first equation in (17) overVj and applying the midpoint
rule for the right hand side, we obtain the discrete conservation law for the numerical
approximation yj ≈ y(xj ), i.e.,

J j+1/2 − J j−1/2 = �x
(
Cyj + s(yj )

)
, (18)

where J j+1/2 denotes the numerical flux at the cell interface x = xj+1/2
approximating J (xj+1/2).

In the following we assume that E and C are piecewise constant, i.e., E =
E(yj+1/2) and C = C(yj+1/2) for xj ≤ x ≤ xj+1. Let A = E−1C. The key
idea is to compute the numerical flux J j+1/2 from the local BVP

− J ′ + Cy = E
(
y ′′ +Ay

) = 0, xj < x < xj+1, (19a)

y(xj ) = yj , y(xj+1) = yj+1, (19b)

ignoring the nonlinear source term s(y), however, including the linear term Cy

to account for exponential and oscillatory solution components. From this BVP
we determine a representation of the solution y(x) on the interval [xj , xj+1] and
subsequently compute the numerical flux according to J j+1/2 = −Ey ′(xj+1/2).

In the derivation that follows, we need to evaluate several matrix functions.
Therefore we compute the eigenvalues λk and corresponding eigenvectors vk of
the matrix A, which satisfy the eigenvalue problem

(
C − λE

)
v = 0. (20)

We assume that A has a complete set of eigenvectors, thus A = V�V −1, where �
and V are defined by

� = diag(λ1, λ2, . . . , λm
)
, V = (

v1, v2, . . . , vm
)
. (21)

Note that by assumption V is regular. Multiplying the ODE (19a) with the inverse
V −1E−1, we obtain the decoupled systemψ ′′+�ψ = 0 for the variableψ = V−1y,
or written componentwise

ψ ′′
k + λkψk = 0, (k = 1, 2, . . . ,m). (22)

The solutions of (22) can be written as

ψk(x) = αkeνkωkx + βke−νkωkx, (23a)

ωk =
√|λk|, νk =

{
1 if λk < 0,

i if λk > 0,
(k = 1, 2, . . . ,m). (23b)
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Next, assembling the solution components in the vector ψ = (ψk), we find

ψ(x) = ex�α + e−x�β, � = diag
(
νkωk

)
(24)

with α = (αk) and β = (βk). Transforming back to y = Vψ and applying the
boundary condition (19b) we can determine the solution of (19). Introducing the
matrix B = V�V −1, we obtain the representation

y(x) = (
sinh(�xB)

)−1(−sinh((x−xj+1)B)yj+sinh((x−xj )B)yj+1
)
, (25a)

where the matrix function sinh(zB) is defined by

sinh(zB) = V sinh(z�)V −1, sinh(z�) = diag
(

sinh(νkωkz)
)
. (25b)

Alternatively, sinh(zB) can be evaluated as sinh(zB) = 1
2 (e

zB − e−zB). Finally, by
straightforward differentiation we find for the numerical flux

J j+1/2 = − 1

�x
E
( 1

2�xB
)(

sinh
( 1

2�xB
))−1(

yj+1 − yj

)

= − 1

�x
E
(
Sinhc( 1

2�xB)
)−1(

yj+1 − yj

)
,

(26)

referred to as the homogeneous flux approximation scheme, where the Sinhc
function is defined as Sinhc(z) = sinh(z)/z.

4 Numerical Example

As an example we simulate the dissociation of NO in a nitrogen-oxygen mixture at
low temperature, typically T = 300K. We assume there is no flow and a uniform
pressure of p = 2 × 104Pa. Thus, consider a mixture of N2, O2 and NO. Since the
temperature is low, we consider one single reaction 2NO → N2+O2. Moreover, we
assume the mixture is confined between two walls, located at x = 0 and x = 1m,
such that in the center of the physical domain (vessel) the multi-species diffusion
process can be considered one-dimensional. The governing system of equations for
the mass fractions y = (

yN2 yO2 yNO
)T then reads −(E(y)y ′)′ = C(y)y, where

E(y) is defined as in (16b) and where C = C(y) is defined by

C(y) = k(T )ρ2 yNO

m2
NO

diag(m)

⎛

⎝
0 0 1
0 0 1
0 0 −2

⎞

⎠ , (27a)

k(T ) = A(T/K)qe−Ea/(RT ), (27b)
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Fig. 1 Dissociation of NO: mass fractions (left) and mass deficit (right)

where k = k(T ) is the reaction rate, m = (
mN2 mO2 mNO)

T the vector of the
component masses and R the gas constant. Parameter values are A = 1.83 ×
10−17m3/s, q = 0.3 and Ea = 52.5kJ/mol.

For space discretisation we employ the finite volume method with the numerical
flux vector given by (26). Our numerical results are shown in Fig. 1 computed with
grid size �x = (1/160)m. In the left figure we present the mass fractions. Observe
that the solution contains boundary layers at both ends of the interval, and that the
mass fraction of NO is rapidly decreasing towards the centre of the interval. In
the right figure, we present mass deficit 1 − σm, where σm is the sum of all mass
fraction, which should obviously sum to 1. Clearly, mass is conserved almost up to
the machine precision.

Finally, in convergence tests we observed second order convergence of the
scheme. Moreover, the scheme turned out to be slightly more accurate than the
standard central difference scheme.

References

1. K.S.C. Peerenboom, J. van Dijk, W.J. Goedheer and J.J.A.M. van der Mullen, On the ambipolar
constraint in multi-component diffusion problems, J. Comp. Phys. 230(10), 3651–3655 (2011)

2. K.S.C. Peerenboom, J. van Dijk, W.J. Goedheer, G. Degrez and J.J.A.M. van der Mullen, A
finite volume model for multi-component diffusion in magnetically confined plasmas, J. Phys. D:
Appl. Phys. 44(19) 194006 (2011)

3. J.H.M. ten Thije Boonkkamp, J. van Dijk, L. Liu, K.S.C. Peerenboom, Extension of the complete
flux scheme to systems of conservation laws, J. Sci. Comput. 53, 552–568 (2012)

4. L. Liu, J. van Dijk, J.H.M. ten Thije Boonkkamp, D.B. Mihailova and J.J.A.M. van der Mullen,
The complete flux scheme—Error analysis and application to plasma simulation, Journal of
Computational and Applied Mathematics, 250, 229–243 (2013)

5. P.M.J. Koelman, S. Heijkers, S. Tadayon Mousavi, W.A.A.D. Graef, D.B. Mihailova, T. Kozak,
A. Bogaerts and J. van Dijk, A Comprehensive Chemical Model for the Splitting of CO2 in
Non-Equilibrium Plasmas, Plasma Processes and Polymers, 15(4–5) 1600155 (2017)



Novel Flux Approximation Schemes 321

6. Vincent Giovangigli, Mass conservation and singular multicomponent diffusion algorithms,
IMPACT of Computing in Science and Engineering, 2(1), 73–97 (1990)

7. J.D. Ramshaw and C.H. Chang, Plasma Chem. Plasma Proc., 12(3) 299 (1992)



PDE-Constrained Optimization: Optimal
control with L1-Regularization, State and
Control Box Constraints

Ivo Dravins and Maya Neytcheva

Abstract We present a method for solving optimal control problems constrained by
a partial differential equation, where we simultaneously impose sparsity-promoting
L1-regularization on the control as well as box constraints on both the control and
the state. We focus on numerical implementation aspects and on preconditioners
used when solving the arising linear systems.

1 Introduction

We consider a distributed optimal control problem where the constraining PDE is
Poisson’s equation although the presented methods are also applicable to related
PDEs such as the convection-diffusion equation. The main novelty of this paper
is the combination of several additional constraints, namely, L1 regularization on
the control in order to promote sparsity and box constraints on both the control
and the state. In earlier related studies these extra constraints have been considered
separately but, to the authors knowledge, they have not been combined except briefly
mentioned in [1]. The L1-regularization and the box constraints on the control
are implemented following [2] while the state-constraints are implemented by
Moreau-Yosida forcing terms [3–6]. For completeness and to aid reproducibility, a
demonstration code is made available at https://github.com/dravinsi/demoPDEOPT.
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2 Problem Formulation and Optimality System

We consider the task to minimize the cost functional

J(y, u) = 1
2‖y − yd‖2

L2(Ω)
+ α

2 ‖u‖2
L2(Ω)

+ β‖u‖L1(Ω)

+ 1
2ε‖max{0, y − yb}‖2

L2(Ω)
+ 1

2ε‖min{0, y − ya}‖2
L2(Ω)

,

such that: −Δy = f + u in Ω , y = g on ∂Ω and ua ≤ u ≤ ub a.e. in Ω , where
ua < 0 < ub. Following [2] and [3], the first order necessary conditions in strong
form read:

(1s) y + 1
ε

max{0, y − yb} + 1
ε

min{0, y − ya} −Δp = yd in Ω ; p = 0 on ∂Ω

(2s) −Δy − u = f in Ω; y = g on ∂Ω

(3s) αu− p + λ = 0 in Ω

(4s) u−max{0, u+ c1(λ− β)} − min{0, u+ c1(λ+ β)} +max{0, c2(u− ub)+
c1(λ− β)} +min{0, c2(u− ua)+ c1(λ+ β)} = 0 in Ω ; ∀c1,2 > 0.

The presence of conditional terms in the above system result in a non-linear
problem. These terms are to be understood point-wise (cf., e.g., [7]), thus these
are checked in each individual point. In a finite element setting this means we check
the conditions on every mesh node. The sets of points where the various conditions
are not fulfilled, are referred to as the “active sets”. The constant c2 in (4s) is not
present in [2], it is added to facilitate and stabilize the convergence of the non-linear
problem for a broader range of parameter values. To see why this can be added, it is
useful to write out the possible outcomes of (4s) and their impact on the control:

(4s)⇔

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(4s1) u = 0 ; Sparsity enforcing: u = 0,

(4s2) − c1(λ− β) = 0 ; Non-zero positive: 0 < u < ub,

(4s3) − c1(λ+ β) = 0 ; Non-zero negative: ua < u < 0,

(4s4) c2(u− ub) = 0 ; Positive box-constraint: u = ub,

(4s5) c2(u− ua) = 0 ; Negative box-constraint: u = ua.

The latter shows that c2 can be added and chosen as any positive number, indeed
we could also multiply the u-term in the sparsity-enforcing case by a third constant.
As we are interested in controlling the relations between the terms, it suffices with
two constants. The values of the constants in (4s) regulate the rules for classifying
a point as active or inactive, so while they do not appear explicitly in the linear
system, they are of importance for the non-linear behavior of the problem. We next
use (3s) to reduce the system by u = 1

α
(p − λ) and we are left with y, p and λ.

To reduce the system further, we can use (4s) to eliminate λ, though this reduction
depends on the current non-linear iterate. After solving the reduced linear system,
λ needs to be recovered by back-substitution in order to generate the next linear
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system, necessitating that we keep track of the active sets (4s1) through (4s5). As
the unknowns that appear in (1s) are unaffected by the substitutions, we need only
to consider the resulting cases for (2s) −Δy − 1

α
(p − λ) = f , namely,

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(2s1) −Δy = f ; Sparsity enforcing: u = 1
α
(p − λ) = 0,

(2s2) −Δy − 1
α
p = f − β

α
; Non-zero positive: 0 < u < ub ; λ = β,

(2s3) −Δy − 1
α
p = f + β

α
; Non-zero negative: ua < u < 0 ; λ = −β,

(2s4) −Δy = f + ub ; Positive box-constraint: u = 1
α
(p − λ) = ub,

(2s5) −Δy = f + ua ; Negative box-constraint: u = 1
α
(p − λ) = ua.

In discrete (FEM) notation with K denoting the stiffness matrix and M - the mass
matrix, (2s) becomes

(2s) Ky − 1

α
IpMp = M(f + bu),

where Ip is a diagonal matrix with ones in the rows corresponding to nodes where
conditions (2s2) and (2s3) are active, and zeros elsewhere. As we zero out rows
of the mass matrix, to retain symmetry, it is useful to work with the lumped mass
matrix. The vector bu accounts for the conditional terms in the right-hand-side of
the cases (2s1) through (2s5). For brevity we denote M

(i)
p = IpM . Similarly, we

write (1s) in discrete form as

(1s) (M + 1

ε
IyM)y +Kp = M(yd + by),

where Iy is a diagonal matrix with ones in the rows corresponding to nodes where
any of the two min/max conditions are active and zeros elsewhere. The conditional
terms in the right-hand-side are in the vector by . We denote M

(a)
y = IyM and

combine (1s) and (2s) to obtain the linear system

[
M + 1

ε
M

(a)
y K

K − 1
α
M

(i)
p

][
y

p

]

=
[
M(yd + by)

M(f + bu)

]

. (1)

This is the linear system we solve in each non-linear step. We then use p together
with the active sets (2s1) through (2s5) to recover λ and generate the system for the
next Newton step. In order to reduce the impact of ε and α on the conditioning of
the system matrix, we rescale the system as follows. We first introduce p̂ = −√αp

and multiply the bottom block-row by
√
α:

[
M + 1

ε
M

(a)
y −√αK√

αK M
(i)
p

][
y

p̂

]

=
[

M(yd + by)√
αM(f + bu)

]

.
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Note that M + 1
ε
M

(a)
y = (I + 1

ε
Iy)M . Since Iy = (I + 1

ε
Iy) is a positive definite

diagonal matrix, we can use both its square-root and inverse. We introduce ŷ = I

1
2
y y

and multiply the top block-row by I
− 1

2
y to obtain (assuming lumped mass matrix)

⎡

⎣ M −I−
1
2

y

√
αK

√
αKI

− 1
2

y M
(i)
p

⎤

⎦
[
ŷ

p̂

]

=
[
I
− 1

2
y M(yd + by)√
αM(f + bu)

]

.

Denoting K̂ = √
αKI

− 1
2

y we obtain the form of the system, used in the sequel,

A

[
ŷ

p̂

]

=
[
M −K̂T

K̂ M
(i)
p

][
ŷ

p̂

]

=
[
I
− 1

2
y M(yd + by)√
αM(f + bu)

]

. (2)

3 Preconditioning

For solving systems with the matrix A in (2) we suggest the preconditioner

P =
[

M −K̂T

K̂ +M
(i)
p K̂ +M

(i)
p

]

=
[
I 0
0 K̂ +M

(i)
p

][
M −K̂T

I I

]

= P1P2. (3)

Solutions with P consist of solving systems with the factors P1 and P2. For P1 we
need to solve for the lower diagonal block

(
√
αKI

− 1
2

y +M(i)
p )x = b⇔ (

√
αK +M(i)

p I

1
2
y )I

− 1
2

y x = b.

As M is diagonal, the matrix
√
αK +M

(i)
p I

1
2
y is symmetric positive definite (spd)

and can be efficiently solved for, using the conjugate gradient (CG) method,
preconditioned by an algebraic multigrid (AMG). To solve for P2(x1, x2)

T =
(b1, b2)

T we use the bottom block row to reduce x2 = b2 − x1. Inserting x2 into
the top block row we obtain

Mx1 − K̂T (b2 − x1) = b1 ⇔ (K̂T +M)x1 = b1 + K̂T b2,

which we reformulate into an spd system

(
√
αK + I

1
2
y M)x1 = I

1
2
y (b1 + K̂T b2)

and also solve by an AMG-preconditioned CG. The total cost of solving with P

is then two solutions of spd systems of half the dimension of the original system,
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Fig. 1 Eigenvalues of the 14 linear systems we solve in Problem 1, h = 2−5, α = 10−6

one matrix-vector multiplication with the matrix K and applying a few diagonal
scalings.

An eigenvalue analysis of the preconditioned system P−1A is beyond the
scope of this paper. To illustrate the behavior, in Fig. 1 we provide a plot of the
eigenvalues of the preconditioned systems for all linear systems arising during the
nonlinear iteration when solving Problem 1 (Sect. 5). For all tested parameter sets
the eigenvalues of P−1A lie broadly in the same range.

4 Solvers, Tolerances and Termination Criteria

The conditional terms in the optimality system lead to a non-linear problem.
Specifically we need to find x such that f (x) = A(x)x − b(x) = 0, where
A(x) is a piece-wise linear function. We thus start with some initial guess x(0)

and generate the Jacobian and the right-hand-side. The next step is obtained by
solving A(x(0))x(1) = b(x(0)), i.e., we are using a semi-smooth Newton method. An
important consideration when solving these problems is the choice of termination
criteria, both for the linear and the non-linear solver. For the non-linear solver, a
natural termination criterion is that we stop when the active sets stop changing,



328 I. Dravins and M. Neytcheva

referred to as set-convergence and used in the tests. We observe however, that a
stopping criterion for the nonlinear problem, based only on set-convergence may
have to be combined with other measures, to avoid cycling of a few points between
the active and inactive sets. There is also a certain interplay between the stopping
tolerances for the linear and non-linear solvers. In general, the required tolerance for
the linear solver to achieve set convergence is problem dependent. The semi-smooth
Newton method is sensitive to the initial guess. A good initial guess can be found by
utilizing mesh hierarchy, solving the problem on the coarser grids and interpolating
the solution to a finer grid, to become the new initial guess. Alternatively, one
can solve the problem with a larger α, gradually decreasing it, using the previous
solution as initial guess.

As an outer solver for systems with the matrix A in (2) we use the Generalized
Conjugate Residual (GCR) method, preconditioned from the right using P in (3).
For the stopping criteria we use the relative preconditioned residual ‖P−1(Ax −
b)‖/‖P−1b‖ < tol. In the first step in each non-linear iteration we use a zero-
initial guess for the GCR, in subsequent steps we use the solution from the previous
step. Finding a stopping criterion that is both efficient and sufficient for a range of
different parameters, problems and discretizations remains a challenge. For earlier
work we refer, e.g., to [8, 9] and the references therein.

5 Numerical Illustrations

We illustrate the performance of the involved nonlinear and linear solvers with some
numerical experiments. The tests are performed in Julia [10]. Common for all
tests are: ε = α1/4, c1 = c2 = 1/α, tolerance for the inner (CG) solver 10−6 and
tolerance for the outer linear solver 10−6, based on the norm of the preconditioned
relative residual. We use a mesh hierarchy to generate initial guesses. On the coarsest
grid, we start with an initial guess of all ones, for each subsequent grid the initial
guess is obtained by interpolating the solution from the previous grid. For these
tests we consider the non-linear iteration to be converged when all active sets stop
changing, i.e., set convergence is achieved. Boundary state values are equal to
the desired state. For all test problems we choose Ω = [0, 1]2, discretized using
triangular finite elements and linear basis functions. The mesh is generated with
FEniCS [11]. We consider the following three problems:

Problem 1 yd(x1, x2) = sin(2πx1) sin(2πx2)e
2x1/6, −30 ≤ u ≤ 30, ya = −0.2,

yb = 0.3, β = 10−4.

Problem 2 yd(x1, x2) = − exp(|x − 1
2 | + |y − 1

2 |), −∞ < u ≤ 30, ya = −∞,
yb = −1.3, β = 10−4.

Problem 3 yd(x1, x2) = | sin(2πx1) sin(2πx2)|, −100 ≤ u ≤ 75, ya = −∞,
yb = 0.75, β = 0.5 · 10−4.
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Table 1 Numerical tests: (M) denotes that we reached the maximum number of iterations

Problem 1 Problem 2 Problem 3

Nonlin. Av. lin. Nonlin. Av. lin. Nonlin. Av. lin.

iter. iter. iter. iter. iter. iter.

Level ↓ h = 2−n α = 10−6

1 5 14 16 7 10 6 10

2 6 9 18 3 10 4 11

3 7 4 19 3 11 3 12

4 8 4 19 3 11 3 12

5 9 4 20 3 12 3 13

6 10 4 21 3 13 3 13

Level ↓ h = 2−n α = 10−7

1 5 41(M) 38 8 14 41(M) 16

2 6 41(M) 30 6 18 22 16

3 7 41(M) 29 6 18 8 18

4 8 14 31 4 18 4 19

5 9 8 31 5 18 4 19

6 10 5 32 4 18 3 20

(a) (b) (c)

Fig. 2 Problem 2: α = 10−7: Left: achieved state, blue—desired state. Right: control with contour
plot below

Iteration counts are listed in Table 1, plots of the solutions to Problems 2 and 3
are displayed in Figs. 2 and 3.

We note that for Problem 1 and 3 with α = 10−7 the non-linear iterations
do not converge on the coarser grids. This seems to be due to the discretization
not being able to resolve the problem well enough. We also note that the average
linear iterations increase as α decreases. Examples not included here show that
the iterations depend on the value of ε - both the linear and the nonlinear solvers
encounter difficulties as ε → 0. Alternative methods for similar problems in
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Fig. 3 Problem 3: α = 10−7: Left: achieved state, blue—desired state. Right: control with contour
plot below

a different setting are considered in [12]. To summarize, the interplay between
α, ε, c1, c2 and h is problem-dependent and needs further study.

6 Concluding Remarks

We have presented a method for solving a distributed control optimal control
problem with box-constraints on the control and the state combined with sparsity
enforcing L1 regularization. The method allows for efficient solutions to many
problems but the approach is problem dependent and difficulties remain in choosing
efficient general stopping criteria.
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A Time-Simultaneous Multigrid Method
for Parabolic Evolution Equations

J. Dünnebacke, S. Turek, P. Zajac, and A. Sokolov

Abstract We present a time-simultaneous multigrid scheme for parabolic equa-
tions that is motivated by blocking multiple time steps together. The resulting
method is closely related to multigrid waveform relaxation and is robust with respect
to the spatial and temporal grid size and the number of simultaneously computed
time steps. We give an intuitive understanding of the convergence behavior and
briefly discuss how the theory for multigrid waveform relaxation can be applied
in some special cases. Finally, some numerical results for linear and also nonlinear
test cases are shown.

1 Motivation

Modern high performance computing systems feature a growing number of pro-
cessors and massively parallel co-processors, e.g. GPUs, while the performance
of each processor does barely increase or even stagnates. To efficiently use such
supercomputers the algorithms have to be massively parallel. The usual time
stepping approach to solve time dependent partial differential equations (PDEs)
is inherently sequential and does only allow spatial parallelization. If we want to
simulate problems with a relatively low number of spatial degrees of freedoms
(DOFs), we can only use a certain degree of parallelism, while the number of
time steps may be very high due to a long time frame or short time steps. These
simulations can not be sped up even if there is more parallel compute power
available.
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The parallel scalability is limited because the communication between the
processes will outweigh the actual computation time, if too many processes are
used. It is important to note that usually the main cost of the communication stems
from latency and not from limited bandwidth. If the number of communication
operations is reduced by communicating more data at once, the scaling behavior
can be improved, so that more processors can be used efficiently in such simulations
(see Fig. 3). To achieve this we have to abandon the sequential time stepping.

There already exists a lot of work on time parallel integration. Many methods
are based on integrating ODEs parallel in time. The most prominent examples of
this group are Parareal [6] and its variants. Another group of time parallel methods
is based on solving a global discrete system with multigrid methods. The first
parabolic multigrid was developed by Hackbusch [3]. Other representers of such
schemes are the one developed by Horton and Vandewalle [4] as well as the recent
variant by Gander and Neumüller [2]. The method our approach resembles the
most is multigrid waveform relaxation which was first published by Lubich and
Ostermann [7]. For a more complete overview on parallel in time methods, we refer
to [1].

2 Time-Simultaneous Multigrid

In the following, we propose a multigrid scheme that computes many time steps
simultaneously but relies solely on spatial parallelization. Here, we start with a
second order parabolic evolution equation

∂tu(x, t)+L(t)u(x, t) = f (x, t) (x, t) ∈ �× (0, T ) (1)

with suitable initial and boundary conditions. L(t) is a linear elliptic operator for
every t ∈ (0, T ). As discretization schemes we consider linear one- or multistep
methods in time and finite element (FE) or finite difference (FD) methods in space
so that the discrete linear systems of equations (LSE) can be written as

M∑

m=0

Ak,muk−m = fk , k = 1, . . . ,K , (2)

with matrices Ak,m ∈ R
N×N . N ∈ N is the number of spatial degrees of freedom,

K ∈ N is the number of time steps and M ∈ N is the number of steps in the multistep
scheme, e.g. M = 1 for Crank-Nicolson and Euler schemes or M = R for linear
R-step methods. Then we can gather the time stepping equations (2) in one global
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system of the form

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A1,0
..
.

. . .

AM,M−1 . . . AM,0

AM+1,M . . . AM+1,1 AM+1,0
. . .

. . .
. . .

AK,M . . . AK,1 AK,0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

︸ ︷︷ ︸
=:Ā∈RNK×NK

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

u1
..
.

uM

uM+1
...

uK

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

︸ ︷︷ ︸
=:ū∈RNK

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

f1 −
∑M

m=1 A1,mu1−m
..
.

fM − AM,Mu0

fM+1
...

fK

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

︸ ︷︷ ︸
=:f̄∈RNK

.

(3)

The main idea is to reorder the unknowns from a space-major ordering

ū = [u1,1, . . . , u1,N , u2,1, . . . , u2,N , . . . , uK,1, . . . , uK,N ]

to a time-major ordering

u = [u1,1, . . . , uK,1, u1,2, . . . , uK,2, . . . , u1,N , . . . , uK,N ] ,

where uk,i = (uk)i denotes the i-th degree of freedom at the k-th time step.
Reordering the right hand side vector f̄ and the global matrix Ā accordingly leads to
the time-blocked system matrix A and the vector f. The Matrix A has the same outer
block-structure as the matrices Ak,l , but each block is a lower triangular K × K

matrix with M + 1 diagonals.
Now, when we adapt the spatial multigrid method for those systems, we treat

each block of the matrix as one entry and use the same transfers and smoothers we
would use in a sequential time stepping approach. In our work, we take a Jacobi
smoother given by the iteration

um+1 = um + ωD−1(f− Aum) , (4)

where D is the block-diagonal part of the reordered matrix A and ω ∈ R is the
damping parameter. As we are formally treating the matrix A as a matrix of blocks,
we have to use the complete block-diagonal of A to construct the matrix D instead of
only using the main diagonal of A. This leads to a block-Jacobi smoother with block
dimension K . Different smoothers that can be written in the form of Eq. (4) with
different block-matricesD are applicable in the same manner. The transfer operators
are constructed by the same reasoning leading to semi-coarsening in space which
means that the transfers in space are applied to each time step independently and
the temporal grid stays the same across all levels. With these transfer and smoothing
operators the usual multigrid algorithm can be used to solve the LSE incorporating
multiple time steps simultaneously.
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2.1 Intuitive Explanation for Small and Large Time Steps

We want to give a short intuitive understanding of two special cases that can help
to tweak the algorithm in practice. To do this we consider the one dimensional heat
equation. In the most simplistic case of central differences as space discretization
and an implicit Euler time discretization the discrete scheme is given by

1

τ
(uk,i − uk−1,i)− 1

h2 (uk,i+1 − 2uk,i + uk,i−1) = fk,i (5)

with the (fixed) spatial grid size h and the (fixed) time step size τ .
Therefore, the matrix entries belonging to the time derivative are of size O(τ−1)

whereas the values belonging to discrete Laplace operator are of size O(h−2). To
describe the ratio between them we introduce the anisotropy factor λ = τ

h2 that is
widely used in the convergence analysis of space-time multigrid methods [2, 4, 11].

As this parameter depends on the temporal and spatial grids, it changes on
different levels of the multigrid scheme. Furthermore, it changes locally on each
level, if local refinements or space and time dependent diffusion coefficients are
used. Consequently the multigrid method should yield fast convergence for all
possible λ.

In the extreme case λ → ∞ the matrix entries belonging to the spatial
discretizations prevail. If we ignore the significantly smaller values with a factor
of τ−1, each block of the global matrix becomes diagonal, so that the global
system consists of K independent N × N systems. Thus, using the time-blocked
multigrid is equivalent to solving each time step with a multigrid scheme on its
own. This consideration holds true for all BDF-like time discretizations. Other
time discretizations show a similar behavior (see Sect. 3). In the opposite case of
λ ↘ 0 the values of the time derivative dominate and therefore the global system
becomes block-diagonal, if the mass matrix is diagonal. A diagonal mass matrix
arises naturally in FD discretizations or can be created by using finite elements
with mass lumping. With those block-diagonal matrices the undamped block-Jacobi
smoother (ω = 1.0) becomes exact and the multigrid solver converges in one step.

An undamped Jacobi smoother is not a suitable smoother generally and we do not
want to choose the damping parameter ω based on λ manually. Instead, we suggest
to use different smoothers, like the Krylov subspace methods BiCGSTAB [9] or
GMRES [8] with the block-diagonal matrix D as a preconditioner. These smoothers
yield convergence rates similar to the Jacobi smoothing with comparable effort for
large λ, while they can recover the convergence in one step in the case of λ ↘ 0 and
a diagonal mass matrix (see Sect. 3).
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2.2 Characteristics of the Proposed Method

The time-simultaneous multigrid scheme can be interpreted as a variation of
multigrid waveform relaxation (WRMG) (c.f. [5, 7]). Multigrid waveform relaxation
methods are based on discretizing the PDE in space and applying a multigrid
splitting to the stiffness matrix of the semi-discrete ODE system. When using finite
elements such a splitting has to be applied to the mass matrix as well to be able
to solve the ODEs that arise in every step of the algorithm independently. These
methods are equivalent to the time-simultaneous algorithm if a multigrid splitting
with a smoother of the form (4) is used for the mass and stiffness matrices and if the
same linear multistep method is used to solve every ODE in the multigrid waveform
relaxation scheme. Therefore, we do not provide a more detailed convergence
analysis but refer to the literature on WRMG [5, 11].

Remark 1 As was shown by Janssen and Vandewalle [5] the time discrete WRMG
method for finite elements with a time constant operator L converges and yields the
same asymptotic convergence rates as the traditional multigrid algorithm in the time
stepping case, if the coarse grid system matrix A0 and the preconditioning matrices
Dl on each level l are regular. Due to the equivalence of both methods this result
holds true for the time-simultaneous algorithm.

The spectral radius of the iteration matrix is bounded, but that does not imply that
the defect reduction in each iteration is bounded as well, since the iteration matrix
is not symmetric. For more complex smoothers like BiCGSTAB and GMRES with
a time-blocked preconditioner the result mentioned in Remark 1—that is based on
the spectral radius of the iteration matrix—cannot be applied, because the resulting
multigrid iteration is not linear.

The number of necessary floating point operations (FLOPs) in each iteration of
the time-simultaneous method with K blocked time steps is still linear in the number
of unknowns NK . Compared to the time stepping case where a N × N system
is solved by a multigrid method in K time steps, the cost of the grid transfer per
iteration and time step is the same. The cost of the defect calculation per iteration
and time step is slightly higher in the time-simultaneous case, because the global
matrix has a higher bandwidth. The application of the block-diagonal preconditioner
D in the smoothing operation (4) also has linear complexity, as each block is a lower
triangular matrix with M bands and can be solved by forward substitution.

While the number of required FLOPs of the time-simultaneous method is slightly
higher, the number of required communications per multigrid iteration and time step
is reduced by a factor of K−1, because one multigrid solve yields the solution to
K time steps. Consequently, the latency induced time of the communications can
be lowered and better parallel scaling is possible. In order to actually achieve this
a telescopic multigrid scheme, where on coarser levels fewer processes are used,
needs to be applied. When only a single process is used on the coarse grid, the coarse
solve can also be done by time stepping, since no communication is necessary.
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The lower triangular solves are inherently sequential, therefore, parallelization in
time direction is not trivial. Nevertheless, it is still possible using parallel triangular
solvers (c.f. [10]).

To solve non-linear evolution equations we use a time-simultaneous fixed-point
or Newton iteration. Using a time stepping scheme we would discretize the equation
in time and apply the linearization in each time step, but now we want to solve
multiple time steps simultaneously. Therefore, we have to linearize the PDE itself
or the global non-linear discrete system.

3 Numerical Results

In the following, we provide some exemplary results. As a linear test problem we
choose the heat equation

∂tu−�u = 1+ 0.1 sin(t) (x, t) ∈ (0, 1)2 × (0, T )

u(0, t) = u(1, t) = 0 t ∈ (0, T )

u(x, 0) = 0 x ∈ (0, 1)

with linear finite elements with mass-lumping as space and a Crank-Nicolson
scheme as time discretization. The time-blocked multigrid algorithm uses the F-
cycle with one block-Jacobi preconditioned BiCGSTAB pre- and post-smoothing
step. For each test 1000 time steps were computed using a different number of
blocked time steps. Additionally, we solve the same problem by time stepping and
the stationary problem with the same multigrid configuration to create reference
results. This was done using spatial grids with grid sizes h = 1

32 and h = 1
128 . The

results are shown in Figs. 1 and 2.
The number of iterations for very small and large time steps behaves as expected.

For λ - 1 the number of iterations needed to reduce the global defect by a factor of
10−8 is independent of the block size and corresponds to the number of iterations
that are needed in the stationary test. In the case of λ � 1, the multigrid algorithm
converges in one step and in between the number of iteration is at most slightly
higher than in the case of large time steps. The only major difference between
different block sizes is that the transition area between small and large time steps
shifts to smaller time steps if the block size increases.

Comparing the results of different spatial grids shows that the grid size only
affects the convergence speed due to its influence on λ. Other linear multistep
methods, higher order finite elements and different test cases show the same
qualitative behavior.

To demonstrate the possible benefits of this approach we show the results of a
strong scaling test with the same configuration (see Fig. 3) and grid sizes of h =
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Fig. 1 Number of iterations
in the heat eq. test case with
different time step sizes and
block dimensions, h = 1/32
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Fig. 2 Number of iterations
in the heat eq. test case with
different time step sizes and
block dimensions, h = 1/128
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1/256 and τ = 0.001. The method was implemented using the C++ based software
package FEAT31 and the tests were executed on the LiDO3 cluster.2

With sequential time stepping the best run time is achievable with 32 CPUs and
using more processors yields no benefit. Due to the computational overhead, the
time-simultaneous approach needs approximately twice the time for low core counts
but provides better scaling. Even with a small block size of 20 time steps, more
processors can be efficiently used and the run time can be reduced, but with greater
block sizes the time-simultaneous scheme scales even better.

1http://www.featflow.de/en/software/feat3.html.
2https://www.lido.tu-dortmund.de/.

http://www.featflow.de/en/software/feat3.html
https://www.lido.tu-dortmund.de/
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Fig. 3 Strong scaling test: Solver time for a increasing number of processors, h = 1/256 (65536
spatial elements), τ = 0.001, T = 1 (1000 time steps)

To investigate whether this method can be used for non-linear problems we study
the behavior of a time-simultaneous linearization with the one-dimensional viscous
Burgers’ equation

∂tu− ε∂xxu+ u∂xu = 0 (x, t) ∈ (0, 1)× (0, T )

u(0, t) = 1 , u(1, t) = 0 t ∈ (0, T )

u(x, 0) = max(1− 5x, 0) x ∈ (0, 1)

with the viscosity 0 < ε ∈ R. Here, we use a FD-discretization with upwind
stabilization as discretization in space and Crank-Nicolson in time.

The number of necessary fixed point iteration it to achieve a global defect
reduction by 10−6 depends on the simulated time frame in the case of small diffusion
coefficients ε. For example, in the case of T = 1, ε = 10−3 the non-linear solver
does not converge in 50 iterations, whereas the averaged number of iterations per
time step itref is only 13.95 in the time stepping approach with time step size
τ = 0.05 and decreases with smaller time step sizes. Therefore, a time-simultaneous
fixed-point iteration is not suitable for the Burgers’ equation with a small viscosity
(Table 1).

The Newton scheme provides quadratic convergence if the initial guess is close
to the solution. Thus, we compute the solution for the same problem with 2h, τ and
2ε and use it as the initial guess for the simulation with the grid sizes τ , h and the
viscosity ε. Using those starting values the number of iterations shows only a slight
increase if a longer time frame is calculated simultaneously and in those tests at
most 5 iterations are necessary to achieve the desired defect reduction (see Table 2).
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Table 1 Burgers’ equation:
number of fixed-point
iterations, h = 1

2048

ε = 1 ε = 10−2 ε = 10−3

T τ it it ref it it ref it it ref

0.1 0.050 4 4.00 8 7.50 10 8.50

0.1 0.005 4 3.00 7 4.00 8 4.00

0.1 0.001 4 2.23 7 3.00 8 3.00

1.0 0.050 5 3.55 25 7.95 – 13.95

1.0 0.005 5 3.00 25 4.00 – 6.47

1.0 0.001 5 2.02 25 3.00 – 3.82

Table 2 Burgers’ equation:
number of Newton iterations,
h = 1

2048

ε = 1 ε = 10−2 ε = 10−3

T τ it it ref it it ref it it ref

0.1 0.050 2 2.50 3 3.00 3 3.00

0.1 0.005 2 2.00 3 2.00 3 2.40

0.1 0.001 2 2.00 3 2.00 3 2.00

1.0 0.050 2 2.90 3 3.80 4 –

1.0 0.005 2 2.00 4 2.88 5 3.25

1.0 0.001 2 2.00 4 2.00 5 2.82

4 Conclusion

We have presented an algebraic approach leading to a time-simultaneous multigrid
method that is closely related to multigrid waveform relaxation. The proposed
method shows convergence rates that are stable with respect to the number of
simultaneous time steps, the grid size and the time step size. The computational
cost is slightly higher than in the time stepping case and no parallelization in
time direction was done, but the time-simultaneous multigrid method enhances
the scalability of the spatial parallelization. The application of this scheme to non-
linear equations is also possible by using a time-simultaneous Newton scheme with
suitable initial guesses whose choice remains challenging and has to be further
examined.
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Computing Function of Large Matrices
by a Preconditioned Rational Krylov
Method

Daniele Bertaccini and Fabio Durastante

Abstract Rational Krylov methods are a powerful alternative for computing the
product of a function of a large matrix times a given vector. However, the creation
of the underlying rational subspaces requires solving sequences of large linear
systems, a delicate task that can require intensive computational resources and
should be monitored to avoid the creation of subspace different to those required
whenever, e.g., the underlying matrices are ill-conditioned. We propose the use of
robust preconditioned iterative techniques to speedup the underlying process. We
also discuss briefly how the inexact solution of these linear systems can affect the
computed subspace. A preliminary test approximating a fractional power of the
Laplacian matrix is included.

1 Rationale

Many applications in science and engineering require the evaluation of expressions
of the form f (A) or f (A)v, where A ∈ C

n×n, v ∈ C
n. Among them we recall the

numerical integration of (fractional) partial differential equations, of stiff differential
equations, solution of linear systems, exponential integrators, which require the
computation of the matrix exponential exp(A), simulating chiral fermions in lattice
quantum chromodynamics (QCD), computation of relevant quantities in complex
networks and many of others from very different fields of applications.
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We consider here a rational Krylov method approximating the action of the
product of a function of a large matrix An by a given vector using new poles recently
introduced in [1] used to compute the underlying rational Krylov subspaces. To
build up the rational Krylov subspace requires solving large linear systems thus
requiring often heavy computational resources. To defray this, we propose the use
of Krylov methods to solve the underlying linear systems. We note that in the
literature the related linear systems are mostly solved by direct methods even when
the underlying matrices are large and sparse or structured, or without using the
“shifted” structure of the matrices in the underlying linear systems. Moreover, in
order to have convergence in a reasonable number of iterations, a strategy based on
a combination of nonpreconditioned and sequences of preconditioners is proposed
and compared with other popular solvers.

Note that the entire process of evaluating f (An)v can be completely matrix-free,
without forming explicitly the matrices. In particular, for the creation of the rational
Krylov subspace by using our preconditioned iterative solver we need just to be
able to form matrix-vector products with the underlying matrix. Details, analysis
and practical consequences will be pursued in a future work.

Preliminary numerical experiments, with notes on the convergence and the role
of the inner tolerances of the Krylov inner accelerators are also given.

2 Rational Krylov Approximation for f (An)v

Let Vk be an orthogonal matrix whose columns v1, . . . , vk span an arbitrary
subspace Wk of dimension k. An approximation of f (An)v is

f (An)v = 1

2πi

∫

�

f (z)(zI − An)
−1v d z

≈ 1

2πi

∫

�

f (z)Vk(zI − V T
k AnVk)

−1V T
k v d z = Vkf (V T

k AnVk)V
T
k v,

where the function f is analytic on and inside a closed contour � that encloses the
spectrum of An.

Different methods for the approximation of matrix functions can be pro-
vided for different choices of the projection spaces Wk . Given a set of scalars
{σ1, . . . , σk−1} ⊂ C (the extended complex plane), that are not eigenvalues of An,
let

qk−1(z) =
∏k−1

j=1
(σj − z).
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We select Wk as the rational Krylov subspace of order k associated with An, v
and qk−1 defined by

Qk(An, v) = [qk−1(An)]−1 Kk(An, v), with Kk(An, v) = Span{v, Anv, . . . , Ak−1
n v}.

By defining the matrices

Cj =
(
μjσjAn − I

)
(σj I − An)

−1, for {μ1, . . . , μk−1} ⊂ C and μj �= σ−2
j

the rational Krylov space Qk(An, v) can also be written as follows (see [11])

Qk(An, v) = Span{v, C1v, . . . , Ck−1 · · ·C2C1v}.

This general formulation allows to recast most of the standard Krylov methods
in terms of a rational Krylov method with a specific choice of σj and μj . In
particular, the standard (polynomial) Krylov method in which Wk = Kk(An, v)
can be recovered by defining μj = 1 and σj = ∞ for each j . Other rational Krylov
approaches such as extended Krylov and the well-known shift-and-invert techniques
and some bibliography are briefly recalled in [1, 2]. Rational approximations
with numerator different from 1 can be used, e.g., trying to optimizing a rational
approximation like with RKFIT; see [6].

Here we focus on the fast computation of a rational Krylov subspace by using
a preconditioned iterative solver. For brevity, we consider the approach in which
μj = 0 for each j , and where −σj = ξj > 0 are all positive and real, computed
from poles positive, real and simple; see [1, Proposition 1] for details. The rational
Krylov method is then built by choosing Wk = Qk(An, v), where

Qk(An, v) = Span{v, (ξ1I + An)
−1v, . . . , (ξk−1I + An)

−1 · · · (ξ1I + An)
−1v}.

(1)

The rational Krylov subspace (1) is computed starting from v1 = v/β, where β =
‖v‖2. Then vj+1 is determined by orthogonalizing the vector wj = (ξj I +An)

−1vj

against v1, . . . , vj and normalizing it. Since it is highly unrecommended to invert
a matrix (usually the inverse of a sparse matrix is full) wj is computed by solving
instead the linear system

(An + ξj I)wj = vj . (2)
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Note that the matrix in (2) is a shifted version of An and can be of very large
dimension. Therefore, the handling of this step is crucial. In this way, a sequence of
vectors {vj }kj=1 is generated such that

vj = (ξj I + An)

j+1∑

i=1

hi,jvi , for j ≤ k − 1,

vk = (ξkI + An)

k∑

i=1

hi,kvi + (ξkI + An)hk+1,kvk+1

and the following Arnoldi-like decomposition is obtained

V T
k AnVk = (I −HkDk)H

−1
k − hk+1,kV

T
k Anvk+1eTk H

−1
k ,

where Dk = diag({ξ−1
j }kj=1) and Hk is the Hessemberg matrix Hk = [hi,j ]. Since

hk+1,kV
T
k Anvk+1eTk H

−1
k = hk+1,kV

T
k Vk+1Hk+1ek+1eTk H

−1
k = Ok,

the following expression for the projected matrix is true:

V T
k AnVk = (I −HkDk)H

−1
k .

Therefore, f (An)v can be approximated as

f (An)v ≈ βVkf (V T
k AnVk)e1, where e1 = (1, 0, . . . , 0)T ∈ R

k.

We observed that often rational Krylov methods exhibit a fast convergence in
term of iteration numbers compared to polynomial Krylov methods whenever An

represents an unbounded self-adjoint operator; see, e.g., [1] and references on
rational Krylov methods therein. This comes at the cost of the solution of the linear
systems (2) that is the most computationally demanding part of these methods. The
computational cost of an iterative solver for (2), whenever An is large, is highly
problem-dependent, and determines its competitiveness with respect to polynomial
methods.

Here we present some preliminary tests using an iterative solver with and without
some preconditioners; see, e.g., [3] for iterative solvers and preconditioners, to solve
the sequence of linear systems (2) necessary to generate the underlying rational
Krylov space. In particular, we also apply some ideas developed successfully in the
past years in [4, 5, 7–10].
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3 A Sequence of Preconditioners for the Rational Krylov
Subspace

In order to produce the rational Krylov subspace (1) we need to solve, for each
new vector of the basis of Wk(An, v), the systems (2). To simplify the treatise,
suppose An symmetric and positive definite. The discussion will be extended to
positive definite normal matrices An, not necessarily symmetric, in a future research.
By [1, Proposition 1], the zeros of polynomials related to Gauss-Jacobi quadrature
formulas σj , are all negative and therefore the matrices

M
(j)
n = (An − σj I) = An + ξj I, ξj = −σj j = 1, 2, . . . , (3)

are again positive definite matrices. When An is a large sparse (or structured) matrix,
an iterative solver for the linear systems (2) can provide a computationally effective
alternative to direct solvers usually used, e.g., in [1, 11, 15] and many others. In
particular, for symmetric and positive definite linear systems, the natural choice is
the Conjugate Gradient method (CG). In order to do this efficiently, we should take
care of the value of ξj : in general (in this setting ξj are all positive; see Sect. 2
and [1]), if |ξj | is larger or equal to a certain threshold ξ̄ , dependent on An, then
we can try to approximate wj by vj /ξj . When the convergence of CG is slow,
we experienced that a preconditioning strategy can be beneficial; see the numerical
experiments in Sect. 5. However, computation of a new preconditioner for each of
the values of j such that |ξj | > ξ̄ can be expensive but using the same preconditioner
for all vectors can give again a slow convergence; see also Fig. 1. A possibility is to
use the information we have in order to generate all the needed preconditioners with
a computational complexity linear in the number of the unknowns, whenever An is
sparse.

Suppose that there exists an incomplete factorization for Anin the form

P0 = Ln Dn U
H
n = Ln Dn L

H
n , (4)

with Ln and Un sparse unit lower triangular and Dn a diagonal matrix with positive
entries. This can be extended easily by using another starting matrix instead of An

by computing a decomposition (4) for An − σkI for a given value of k; see [7].
In order to determine a sequence of preconditioners for (2), let us consider the

matrices related to M
(j)
n in (3)

P
(j)
n = Ln

(
Dn + ξj En

)
LH
n , (5)

where En is a matrix chosen such that Dn + ξj En is nonsingular and

||P (j)
n −M

(j)
n || ≤ c τ, (6)
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where τ is the drop tolerance used to compute (4). By using arguments similar to
those in [5, 7, 10], if Zn = L−H

n , taking

En = L−1
n L−H

n = ZH
n Zn, (7)

we get the desired result and (6) is still valid. However, since the inverse of Ln

can be full even if Ln is sparse, we cannot use Zn = L−H
n in general but, formally

Zn = g(L−H
n ), where g extracts a sparse matrix from the (full) L−1

n . In [5] and other
papers, to solve linear systems coming from a time-dependent partial differential
equation, the authors chose to extract a narrow band or even diagonal matrix from
L−1
n , but it is not the only possible (or best) choice to be made. We can also use a

preconditioner in inverse form, i.e. approximating the inverse of the matrix instead
of the matrix itself, P−1

n , that is generated directly as

K
(j)
n =

(
P

(j)
n

)−1 = Zn

(
Dn + ξj En

)−1
ZH

n , (8)

because the sparse approximate inverse preconditioner generates the sparse Zn and
D−1

n as an incomplete factorization for A−1
n . However, here we use a sequence of

preconditioners of type (5) produced by an inversion and sparsification process
for incomplete Cholesky factorizations analyzed in [10] because is faster for
our prototype Matlab implementation. Building the proposed strategy by using
preconditioners in inverse form and a suitable parallel implementation will be
the argument of a future research. For some approximate inverse preconditioners,
see [3, 14] and for approximate inverse preconditioners suitable for a matrix-
free implementation see [9, Chapter 3, Section 5]. Using an approximate inverse
preconditioner, gives an algorithm that is more suitable for parallel implementation
since no triangular linear systems are solved and only matrix-vector products are
performed. Moreover, the usually computationally expensive setup phase is done
mostly once (or few times) and updated many times and this can give an overall
reasonable computational cost.

4 What Subspace Are We Computing in Practice?

Projection techniques are sensitive to propagation of rounding errors. For space
reasons and because it is out of the scope of this brief note, we do not provide a
detailed error analysis of the process of the creation of the basis of our rational
Krylov subspaces but some comments are mandatory in order to understand what
we are doing in practice. Note that in [1] and in many other papers, auxiliary linear
systems are solved by Matlab’s standard backslash and no discussions on which
kind of subspace Qk(An, v) is computed in practice are made.
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Here, we propose to solve the underlying linear systems using an iterative solver,
therefore adding also a (small) analytical error, due to stopping whenever the relative
residual is less than a prescribed tolerance.

First, as observed in [15], we should note that residuals of the linear systems (2)
must be small. This is a necessary (but not sufficient because the norm of the residual
can be smaller than the norm of the error; see, e.g., [9, Section 2.1]) requirement for
the correct representation of the underlying Krylov subspace.

What is less trivial is the effect of finite precision, in particular whenever the
underlying matrices are severely ill-conditioned. This is the case of the function of
matrices whose arguments come from the discretization of differential operators.
Here we only observe that generating Qk(An, v) by the preconditioned iterative
solution of (2) can benefit from a more favorable accumulation of rounding errors,
in particular whenever preconditioning reduces the condition number.

5 Numerical Test

Let us consider one sample of various tests we performed in Matlab. The general
settings are the same as those in [1]. We test our proposal by computing the function
f (A) = A−α

n v, α ∈ (0, 1), where the argument is the matrix An, the second order
centered differences discretization of the bidimensional Laplacian discretized on
the unit square [0, 1]2 with an equispaced mesh and v is a given random vector.
Similar results are observed also for the Laplacian with variable coefficients and
in multiple dimensions. Note that, by considering the Matrix Transfer Technique
(MTT) [12, 13], this function can be used to compute the numerical solution of the
fractional partial differential equation

{
(−�)αu = s(x, u), x ∈ �,

u(x) = 0, x ∈ ∂�.
(9)

We perform several preliminary tests by comparing the performances of the
underlying rational Krylov approximation for f (An)v by solving the linear systems
(2) by (in brackets the legends for the Fig. 1 with the results): the Matlab’s
“backslash” (“Direct”); the conjugate gradient (“CG”); the conjugate gradient with a
fixed preconditioner by choosing the zero fill-in incomplete Cholesky that gives the
lowest number of overall iterations for all the matrices in the sequences (2) (“PCG
fix”); the conjugate gradient recomputing the zero fill-in incomplete Cholesky for
each linear system (2) (“PCG”); the conjugate gradient updating the incomplete
Cholesky preconditioner as described in Sect. 3 with droptol 0.1 with the starting
factorized preconditionerP0 computed not for An but for An−σk+1 I (“PCG upd”);
σk defined as in (3). The value k is selected such as, if |σk| ≥ |σ∗|, σ∗ a threshold
value such that, for j ≤ k, (2) can be solved with the conjugate gradient without
preconditioning because of the major influence of the identity in the matrix of (2);
see, e.g., [5, Section 4]. Of course, for the Laplacian with constant coefficients, a
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Fig. 1 Performance test plot on the computation of f (z) = zα , α = 1.2, 1.5, 1.8, z = A, A
generated by the 2nd order centered difference discretization of the Laplacian. (a) The test matrices
are 16384 × 16384. (b) The test matrices are 262144 × 262144

structured preconditioner could certainly perform better (e.g., a geometric multigrid)
and could be also updated, but here we prefer to test a black-box preconditioner
like the incomplete factorizations in order to stress the advantages of the general
framework over a specialized technique that is too problem dependent for a very
well know problem such as the one considered. All the iterative solvers were
initialized by the null vector. As can be observed from Fig. 1, computing the rational
Krylov subspace by the updated preconditioned iterative solver can be beneficial
over all the other solvers.

6 Conclusions

We propose to speed up the application of rational Krylov methods for computing
the product of some function of a large matrix times a given vector. Indeed, they
often require solving sequences of large linear systems, a task that can require
intensive computational resources. Preliminary tests on some fractional partial
differential equations show that the approach is promising.

Details, analysis and large tests using a parallel implementation will be pursued
in a future work.
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On Energy Preserving High-Order
Discretizations for Nonlinear Acoustics

Herbert Egger and Vsevolod Shashkov

Abstract This paper addresses the numerical solution of the Westervelt equation,
which arises as one of the model equations in nonlinear acoustics. The problem is
rewritten in a canonical form that allows the systematic discretization by Galerkin
approximation in space and time. Exact energy preserving methods of formally
arbitrary order are obtained and their efficient realization as well as the relation
to other frequently used methods is discussed.

1 Introduction

The modeling of nonlinear effects arising in the presence of high intensity acoustic
fields is one of the central subjects of nonlinear acoustics [11]. One widely used
model in this area is the Westervelt equation [13, 20] which in dimensionless form
can be written as

∂ttψ −�ψ = α�(∂tψ) + β∂t (∂tψ)2. (1)

The two terms on the right hand side, scaled with constants α, β ≥ 0, account for
viscous and nonlinear effects of the medium and constitute the deviations from the
standard linear wave equation. Equation (1) is written here in terms of the velocity
potential ψ which is related to the acoustic velocity and pressure variations by

v = −∇ψ and p = ∂tψ. (2)

Similar to the linear wave equation, the Westervelt equation also encodes the
principle of energy conservation. Using (2), the dimensionless acoustic energy
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contained in a bounded domain � can be expressed in terms of the velocity potential
by

E(ψ, ∂tψ) =
∫

�

1
2 |∇ψ|2 +

(
1
2 − 2β

3 ∂tψ
)
|∂tψ|2dx (3)

One can verify by elementary computations that solutions of (1), when comple-
mented, e.g., by homogeneous boundary conditions ∂nψ = 0, satisfy

d

dt
E(ψ, ∂tψ) = −α

∫

�

|∇(∂tψ)|2dx. (4)

This energy identity states that in a closed system the acoustic energy is conserved
exactly up to dissipation caused by viscous effects. For α ≥ 0, the Westervelt
equation (1) thus models a passive system. This property is of fundamental
importance not only for the analysis of the problem [13] but also for the accuracy
and long-term stability of discretization schemes; see [15] and the references given
there.

Various discretization schemes for the linear wave equation can be extended
to nonlinear acoustics. Among the most widely used approaches are the finite-
difference-time-domain method [10, 14, 17], finite-volume schemes [5, 19], and
finite-element methods together with Newmark time-stepping [2, 12, 18]. To the best
of our knowledge, none of the mentioned approaches is capable to exactly reproduce
the energy identity (4) on the discrete level in the presence of nonlinearities.

In this paper, we propose a systematic strategy for the high-order approximation
of nonlinear acoustics in space and time which exactly satisfies an integral version
of the energy identity (4) on the discrete level. Our approach utilizes the fact that
the Westervelt equation (1) can be written as a generalized gradient system

C(u)∂tu = −H′(u) (5)

with u = (ψ, ∂tψ) denoting the state and H(u) = E(ψ, ∂tψ) the energy of the sys-
tem. The energy identity (4) is then a direct consequence of the particular structure
of this system; see below. As illustrated in [4], the structure-preserving discretization
of (5) can be obtained in a systematic manner by Galerkin approximation in space
and time. For the space discretization, we utilize a finite-element approximation
with mass-lumping. The time-integration resulting from our approach can be
interpreted as a variant of particular Runge-Kutta methods and is strongly related
to discrete gradient and average vector field collocation methods [7, 8, 16].

The remainder of the manuscript is organized as follows: In Sect. 2, we
rewrite the Westervelt equation (1) into the non-standard canonical form (5). Our
discretization strategy is then introduced in Sect. 3, and we show that the energy
identity remains valid after discretization. In Sect. 4, we briefly discuss some details
of the numerical realization and the connection to other discretization methods. In
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Sect. 5, we illustrate the exact energy-conservation in the absence of viscous effects
for one-dimensional example.

2 A Canonical Form of the Westervelt Equation

We introduce p = ∂tψ as new variable and write u = (ψ, p) and H(u) = E(ψ, p).
The derivative H′(u) of the energy in direction v = (η, q) is then given by

〈H′(u), v〉 = 〈E′(ψ, p), (η, q)〉 =
∫

�

∇ψ · ∇η + (1− 2βp)p · q dx.

Using integration-by-parts for the first term under the integral and homogeneous
boundary conditions ∂nψ = 0 on ∂�, we can now formally represent the negative
derivative of the energy functional as a two-component function

−H′(u) = (�ψ,−(1− 2βp)p) . (6)

In order to bring equation (1) into the canonical form (5), we should thus derive an
equivalent first order system with right hand sides given by −H′(u). By elementary
computations, one can verify the following statements.

Lemma 1 The Westervelt equation (1) is equivalent to the system

(1− 2βp)∂tp − α�∂tψ = �ψ. (7)

−(1− 2βp)∂tψ = −(1− 2βp)p. (8)

Proof Differentiating the last term in (1) yields

β∂t (∂tψ)2 = 2β(∂tψ)∂ttψ.

Using this identity and a slight rearrangement of terms, the Westervelt equation can
thus be rewritten equivalently as

(1− 2β∂tψ)∂ttψ − α�(∂tψ) = �ψ.

By replacing ∂tψ and ∂ttψ in the first term by p and ∂tp, we already obtain (7). The
second equation (8) is an immediate consequence of the identity p = ∂tψ . ��
Remark 1 Abbreviating u = (ψ, p) and H(u) = E(ψ, p) as above, the system
(7)–(8) can be seen to formally be in the canonical form (5) with

C(u) =
( −α� (1− 2βp)
−(1− 2βp) 0

)

.
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The somewhat unconventional form of the system (7)–(8) is dictated by the
underlying energy, whose derivative has to appear in the right hand side of the
equations.

Our discretization will be based on the following weak formulation of (7)–(8).

Lemma 2 Let (ψ, p) denote a smooth solution of the system (7)–(8) on � with
homogeneous boundary values ∂nψ = 0 on ∂� for 0 ≤ t ≤ T . Then

〈(1 − 2βp(t))∂tp(t), η〉 + α〈∇∂tψ(t),∇η〉 = −〈∇ψ(t),∇η〉 (9)

−〈(1− 2βp(t))∂tψ(t), q〉 = −〈(1− 2βp(t))p(t), q〉 (10)

for all test functions η, q ∈ H 1(�) and all 0 ≤ t ≤ T . The bracket 〈u, v〉 =∫
� uv dx is used here to denote the scalar product on L2(�).

Proof The two identities follow by multiplying (7)–(8) with appropriate test func-
tions, integrating over �, and integration-by-parts for the terms with the Laplacian.
The boundary terms vanish due to the homogeneous boundary conditions. ��
We now show that the energy identity (4) follows directly from this weak formula-
tion.

Lemma 3 Let (ψ, p) denote a solution of the weak formulation (9)–(10). Then

d

dt
E(ψ(t), p(t)) = −α

∫

�

|∇(∂tψ(t))|2dx.

Proof Formal differentiation of the energy yields

d

dt
E(ψ, p) = 〈E′(ψ, p), (∂tψ, ∂tp)〉

= 〈∇ψ,∇∂tψ〉 + 〈(1 − 2βp)p, ∂tp〉,

where we used the representation of the energy derivative derived above. The two
terms correspond to the right hand sides of the weak formulation (9)–(10) with test
functions η = ∂tψ and q = ∂tp. Using the weak formulation, we thus obtain

d

dt
E(ψ, p) = −〈(1− 2βp)∂tp, ∂tψ〉 − α〈∇∂tψ,∇∂tψ〉 + 〈(1 − 2βp)∂tψ, ∂tp〉.

Now the first and last term on the right hand side cancel out and the assertion follows
by noting that 〈∇∂tψ,∇∂tψ〉 =

∫
�
|∇∂tψ|2dx by definition of the bracket. ��

Remark 2 The proof of the previous lemma reveals that the energy identity (4) is a
direct consequence already of the particular structure of the weak formulation (9)–
(10). Since this form is preserved automatically under projection, one can obtain a
structure preserving discretization by Galerkin approximation; see [4] for details.
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In the following section, we discuss a particular approximation based on finite
elements.

3 Structure-Preserving Discretization

Let Th = {K} denote a mesh, i.e., a geometrically conforming and uniformly shape-
regular simplicial partition, of the domain �. We write hK and h = maxK hK for
the local and global mesh size. We further denote by

Vh = {v ∈ H 1(�) : v|K ∈ Pk(K) ∀K ∈ Th}

the standard finite element space consisting of continuous piecewise polynomial
functions of degree≤ k. Let Iτ = {0 = t0 < t1 < . . . < tN = T } denote a partition
of the time interval [0, T ] into elements [tn−1, tn] of size τn = tn − tn−1 and, as
before, write τ = maxn τn for the global time step size. We denote by

Pq(Iτ ;X) = {v : v|[tn−1,tn] ∈ Pq([tn−1, tn];X)}

the space of piecewise polynomial functions in time of degree ≤ q with values in
X. As approximation for the Westervelt equation (1) we now consider the following
inexact Galerkin-Petrov Galerkin approximation of the weak formulation (9)–(10).

Problem 1 Find ψh, ph ∈ Pq(Iτ ;Vh) ∩ H 1([0; T ];Vh) such that ψh(0) = ψh,0,
ph(0) = ph,0, for given initial values ψh,0, ph,0 ∈ Vh, and such that

∫ tn

tm
〈(1 − 2βph)∂tph, η̃h〉h + α〈∇∂tψh,∇η̃h〉 dt = −

∫ tn

tm
〈∇ψh,∇η̃h〉 dt

−
∫ tn

tm
〈(1− 2βph)∂tψh, q̃h〉h dt = −

∫ tn

tm
〈(1− 2βph)ph, q̃h〉h dt.

for all 0 ≤ tm ≤ tn ≤ T and all η̃h, q̃h ∈ Pq−1(Iτ ;Vh). Here 〈u, v〉h is a symmetric
positive definite approximation for 〈u, v〉 obtained by numerical integration.

Due to the inexact realization of the scalar product in some of the terms, we have
to modify the discrete energy accordingly and define

Eh(ψh, ph) = 〈 1
2∇ψh,∇ψh〉 + 〈( 1

2 − 2β
3 ph)ph, ph〉h.

Note that Eh(ψh, ph) = E(ψh, ph) when the scalar products are computed exactly,
so this defines a natural modification of the energy on the discrete level. With
similar arguments as used in Lemma 3, we now obtain the following discrete energy
identity.
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Lemma 4 Let (ψh, ph) denote a solution of Problem 1. Then one has

Eh(ψh(t
n), ph(t

n)) = Eh(φh(t
m), ph(t

m)))− α

∫ tn

tm

∫

�

|∇∂tψh(s)|2dx ds,

for all 0 ≤ tm ≤ tn ≤ T , which is the discrete equivalent of the integral form of (4).

Proof Let un = u(tn) denote the value of a function a time tn. Then by the
fundamental theorem of calculus and the expression of the energy derivative, we
obtain

Eh(ψ
n
h , p

n
h)− Eh(ψ

m
h , pm

h ) =
∫ tn

tm

d

dt
Eh(ψh, ph)dt

=
∫ tn

tm
〈∇ψh,∇∂tψh〉 + 〈(1 − 2βph)ph, ∂tph〉h dt.

The two terms in the second line correspond to the negative of the right hand side in
Problem 1 with test functions η̃h = ∂tψh and q̃h = ∂tph, which directly leads to

Eh(ψ
n
h , p

n
h)− Eh(ψ

m
h , pm

h ) = −α

∫ tn

tm
〈∇∂tψh,∇∂tψh〉 dt.

The assertion of the lemma now follows from the definition of the bracket 〈·, ·〉. ��
Remark 3 Let us note that, exactly in the same way as in the previous section, the
discrete energy identity is a direct consequence of the particular structure of the
weak formulation used in the definition of Problem 1, which adequately accounts
for the underlying nonlinear discrete energy.

4 Remarks on the Implementation

Before we proceed to numerical tests, let us briefly comment on the implementation
of the method resulting from Problem 1. For ease of presentation, we consider
piecewise linear approximations in space and time, i.e., k = q = 1. We choose
the standard nodal basis for the finite elements in space and utilize the vertex rule
for numerical integration in 〈u, v〉h, which gives rise to diagonal matrices associated
with these integrals. The system to be solved on every time step then takes the form

D(1 − 2βpn+1/2)
pn+1 − pn

τ
+ αK(1)

ψn+1 − ψn

τ
= −K(1)ψn+1/2

−D(1 − 2βpn+1/2)
ψn+1 − ψn

τ
= −D(1 − 2βpn+1/2)pn+1/2 − β

6 D(pn+1 − pn)(pn+1 − pn)
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with un+1/2 = 1
2 (u

n + un+1) denoting the value at the midpoint of the time
interval. Furthermore, the matrices D(a), K(b) represent the integrals 〈au, v〉h and
〈b∇u,∇v〉.
Remark 4 Apart from the last term in the second equation, the time-step iteration
amounts to the Gauß-Runge-Kutta method with s = 1 stages and could also be
interpreted as an inexact realization of the Lobatto-IIIA method with s = 2 stages.
Similar statements can be made for and order q ≥ 1 in Problem 1. Using an inexact
computation of the time integrals arising on the left-hand side in Problem 1 leads to
the average vector field collocation methods discussed in [9]. The inexact realization
〈·, ·〉h of the scalar product in space allows to utilize mass-lumping strategies which
facilitates the handling of the nonlinear terms in the numerical realization, since they
only appear in the diagonal matrices D(·). Using the considerations of [2, 6], mass
lumping can be achieved in principle for any order of approximation k ≥ 1 in space.

5 Numerical Tests

For illustration of our results, we now report about numerical tests for a simple
example. We consider the Westervelt equation (1) on the domain � = (0, 16) with
homogeneous boundary conditions ∂xψ = 0 at ∂�. The model parameters are set to
α = 0 and β = 0.3, i.e., we consider a problem without dissipation. By Lemma 3,
the acoustic energy of the system is then preserved for all times. As initial conditions
for our computational tests, we choose ψ0(x) = 0 and p0(x) = e−0.2x2

. Some
snapshots of the numerical solution obtained with the method of Problem 1 with
polynomial orders k = q = 2 are depicted in Fig. 1. In comparison to the solution

Fig. 1 Solution ph(t) of the Westervelt equation with α = 0, β = 0.3 (red) and the linear wave
equation with α = β = 0 (black dashed) at time steps t = 1, t = 4, and t = 8
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Table 1 Convergence rates for discrete error in the pressure at gridpoints for the nonlinear
wave equation β = 0.3 (left) and the linear wave equation β = 0 (right) for comparison

h = τ err ×10−3 eoc h = τ err×10−5 eoc

0.25 1.7758 – 0.25 2.4964 –

0.125 0.1841 3.27 0.125 0.1565 3.99

0.0625 0.0131 3.81 0.0625 0.0098 4.00

0.03125 0.0008 4.03 0.03125 0.0006 4.03

of the linear wave equation, which corresponds to (1) with α = β = 0, the presence
of the nonlinear terms (β = 0.3) leads to a steepening of the wave front. In the
absence of viscous damping, this leads to the formation of a shock in the long run.
For the linear wave equation (β = 0), our method coincides with the Lobatto-IIIA
method and the energy is preserved exactly for both schemes. While the proposed
method still yields exact energy preservation also in the nonlinear case (β > 0),
the Lobatto-IIIA method fails to do so. Similar statements also hold for the Gauß-
Runge-Kutta and the Newmark scheme.

From the usual error analysis of Galerkin methods [1], we expect that the error

err = max
0≤tn≤T

‖p(tn)− pn
h‖h

of the method resulting from Problem 1 with approximation orders q = k converges
with orderp = k+1 in space and time. In Table 1, we report about the corresponding
convergence rates observed in our numerical tests. For our numerical tests, we use
polynomial orders k = q = 2 in space and time, and thus would expect third
order convergence. As can be seen in Table 1, we here even observe fourth order
convergence on grid-points. This kind of super-convergence on uniform grids can
be observed also for finite-difference approximations of linear wave equations [3].
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Hierarchical DWR Error Estimates
for the Navier-Stokes Equations:
h and p Enrichment

B. Endtmayer, U. Langer, J.P. Thiele, and T. Wick

Abstract In this work, we further develop multigoal-oriented a posteriori error
estimation for the nonlinear, stationary, incompressible Navier-Stokes equations.
It is an extension of our previous work on two-side a posteriori error estimates
for the DWR method. We now focus on h enrichment and p enrichment for the
error estimator. These advancements are demonstrated with the help of a numerical
example.

1 Introduction

Multigoal-oriented error estimation offers the opportunity to control several quan-
tities of interest simultaneously. In recent years, we have developed a version
[3, 4] which relies on the dual-weighted residual method [2], and also balances
the discretization error with the nonlinear iteration error [12]. The localization is
based on the weak formulation proposed in [13]. Our method uses hierarchical
finite element spaces. Here, we investigate h-refinement along with p-refinement
to generate enriched spaces. This we call h and p enrichment, respectively. It is
an extension of our previous work on two-side a posteriori error estimates for the
DWR method [4]. These ideas are applied to the stationary incompressible Navier-
Stokes equations. It is well-known that the spaces for the velocities and the pressure
must be balanced in order to satisfy an inf-sup condition [6]. These requirements
must be reflected in the design of the adjoint problems in dual-weighted residual
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error estimation and the p enrichment proposed in this paper. To demonstrate the
performance of the error estimator, we adopt the 2D-1 fluid flow benchmark [14].

2 The Model Problem and Discretization

2.1 The Model Problem

We consider the stationary Navier-Stokes 2D-1 benchmark problem [14] as our
model problem. This configuration was also considered in [4]. The domain � ⊂ R

2

is given by (0, 2.2)× (0,H) \B, and B is the ball with the center (0.2, 0.2) and the
radius 0.05 as given in [14] and visualized in Fig. 1. Find u = (u, p) such that

−div(ν(∇u+∇uT ))+ (u · ∇)u−∇p = 0, in �,

−div(u) = 0, in �,

u = uin on �in,

u = 0 on �no-slip,

ν(∇u+∇uT )n+ pn = 0 on �out,

where �in := {x = 0} ∩ ∂�, �no-slip := ∂� \ (�in ∪ �out) and �out := ({x =
2.2}∩∂�)\∂({x = 2.2}∩∂�). Furthermore, the viscosity u = 10−3 and uin(x, y) =
(0.3w(y), 0) with w(y) = 4y(H − y)/H 2 and H = 0.41. Let [H 1(�)]2BC :=
{u ∈ [H 1(�)]2 : u|�in = uin ∧ u|�no-slip = 0} and [H 1

0 (�)]2 := {v ∈ [H 1(�)]2 :
v|�in = 0 ∧ v|�no-slip = 0}. The corresponding weak form reads as follows: Find
u = (u, p) ∈ VBC := [H 1(�)]2BC × L2(�) such that

A(u)(v) = 0 ∀v = (vu, vp) ∈ V0 := [H 1
0 (�)]2 × L2(�), (1)

with

A(u)(v) := (ν(∇u+∇uT ),∇vu)[L2(�)]2×2 + ((u · ∇)u, vu)[L2(�)]2

+(p, div(vu))L2(�) − (div(u), vp)L2(�).

Γin Γout
Γno-slip

Fig. 1 The computational domain � (left) and the initial mesh (right)
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2.2 Discretization

Let Th be a decomposition of � ⊂ R
2 into quadrilateral elements. Furthermore,

we assume that T h
2

is the uniform refinement of Th. We discretize our problem

using piecewise bi-quadratic elements [Q2
c]2 for the velocity u, and piecewise bi-

linear elements Q1
c for the pressure p. The resulting space using the mesh Th will

be denoted by Vh. For a more detailed explanation of the discretization, we refer
to [4]. The resulting space using the mesh T h

2
will be denoted by Vh

2
. We say Vh

2
is the (hierarchical) h-refined finite element space of Vh. Furthermore, we consider
piecewise bi-quartic elements [Q4

c]2 for the velocity u, and piecewise bi-quadratic
elements Q2

c for the pressure p. The resulting finite element space using the mesh

Th will be denoted by V
(2)
h . Here we have the property that Vh ⊂ V

(2)
h . We say

V
(2)
h is the (hierarchical) p-refined finite element space of Vh. The corresponding

discretized problems read as: Find uh ∈ Vh ∩ VBC , u h
2
∈ Vh

2
∩ VBC and u

(2)
h ∈

V
(2)
h ∩ VBC such that

A(uh)(vh) = 0 ∀vh ∈ Vh ∩ V0,

A(u h
2
)(v h

2
) = 0 ∀v h

2
∈ Vh

2
∩ V0,

A(u
(2)
h )(v

(2)
h ) = 0 ∀v(2)h ∈ V

(2)
h ∩ V0.

Remark 1 We would like to mention that the domain � is not of polygonal shape.
Therefore, a decomposition into quadrilateral elements is not possible. However,
we approximate the ball B by a polygonal domain, which is adapted after every
refinement process by describing it as a spherical manifold in deal.II [1] using
the command Triangulation::set_manifold .

3 Dual Weighted Residual Method and Error Representation

We are primarily interested in one or more particular quantities of interest. We
employ the dual weighted residual (DWR) method [2] for estimating the error in
these quantities. To connect the quantity of interest J with the model problem, we
consider the adjoint problem.

3.1 The Adjoint Problem

The adjoint problem reads as follows: Find z ∈ V0 such that

A′(u)(v, z) = J ′(u)(v) ∀v ∈ V0, (2)
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where A′ and J ′ denote the Frechet derivative of A and J , respectively, and u is the
solution of the model problem (1).

Theorem 1 Let us assume that J ∈ C3(VBC,R). If u solves the model problem (1)
and z solves the adjoint problem (2), then, for arbitrary fixed ũ ∈ VBC and z̃ ∈ V0,
the following error representation formula holds:

J (u)− J (ũ) = 1
2ρ(ũ)(z − z̃)+ 1

2ρ
∗(ũ, z̃)(u− ũ)+ ρ(ũ)(z̃)+ R(3),

where ρ(ũ)(·) := −A(ũ)(·), ρ∗(ũ, z̃)(·) := J ′(ũ)(·)− A′(ũ)(·, z̃), and

R(3) := 1

2

∫ 1

0
[J ′′′(ũ+ se)(e, e, e)− A′′′(ũ+ se)(e, e, e, z̃ + se∗)

−3A′′(ũ+ se)(e, e, e∗)]s(s − 1) ds, (3)

with e = u− ũ and e∗ = z− z̃.

Proof We refer the reader to [3] and [12]. ��
Remark 2 In practice, the arbitrary elements ũ ∈ VBC and z̃ ∈ V0 will be replaced
by approximations uh and zh to the corresponding finite element solutions.

Remark 3 The error representation formula in Theorem 1 is exact but not com-
putable, because u and z are not known.

3.2 Error Estimation and Adaptive Algorithm

The different error estimator parts are discussed in [4]. In particular, it turns out
that ηh := 1

2ρ(ũ)(z − z̃) + 1
2ρ

∗(ũ, z̃)(u − ũ) is related to the discretization error
[3, 4, 12]. The idea is to replace the quantities u− ũ and z− z̃ by some computable
quantities. This can be done via higher order interpolation [2, 12] or hierarchically
(via an additional solve on an enriched space) [2, 3, 10]. If u+

h
, z+

h
are the solution,

then we approximate u− ũ and z− z̃ by u+
h
− ũ and z+

h
− z̃, respectively. The new

computable error estimator then reads as

η+h := 1

2
ρ(ũ)(z+

h
− z̃)+ 1

2
ρ∗(ũ, z̃)(u+

h
− ũ).

Under some saturation assumption, it was shown in [4] that the resulting error
estimator is efficient and reliable. We consider the two different error estimators

η
(2)
h := 1

2ρ(ũ)(z
(2)
h − z̃)+ 1

2
ρ∗(ũ, z̃)(u(2)

h − ũ),

η h
2
:= 1

2ρ(ũ)(z h
2
− z̃)+ 1

2
ρ∗(ũ, z̃)(u h

2
− ũ).
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We call η(2)h and ηh
2

the p enriched and h enriched error estimators, respectively.
The error estimators are localized using the partition of unity technique proposed in
[13]. The marking strategy and algorithms are the same as in [4].

Remark 4 The efficiency and reliability are not guaranteed under the corresponding
saturation assumption in [4] for ηh

2
, since the boundary is adapted in every

refinement step.

Remark 5 We use the algorithm presented in [4]. The algorithm using p-enrichment
coincides with Algorithm 3 in [4]. In the algorithm, where we use h enrichment, we
replace V

(2)
h by Vh

2
.

4 Numerical Experiment

We compare the two error estimators introduced in Sect. 3.2. In the p-enriched
case, we use uniform p-refinement for the hierarchical approximation. The results
for p enrichment have already been computed in [4]. In the h-enriched case, we use
uniform h-refinement. The configuration of the problem is given in Sect. 2.1.

4.1 Quantities of Interest

We use the quantities of interest defined in [4, 14]:

�p(u) := p(X1)− p(X2),

cdrag(u) := C
∫
∂B

[
ν(∇u+∇uT )n− pn

] · e1 ds(x,y),

clift(u) := C
∫
∂B

[
ν(∇u+∇uT )n− pn

] · e2 ds(x,y),

where C = 500, X1 = (0.15, 0.2), X2 = (0.25, 0.2), e1 := (1, 0), e2 := (0, 1),
and n denotes the outer normal vector. To do adaptivity for all of them at once, we
combine them to one functional

JE(vh) := |�p(u+h − vh)|
|�p(uh)| + |cdrag(u

+
h − vh)|

|cdrag(uh)| + |clift(u
+
h − vh)|

|clift(uh)| .

By J
p

E or J h
E, we denote the functionals where we replace u+h with u

(2)
h or u h

2
,

respectively. More information on how to treat multiple functionals at once can be
found in [3–5, 7–9, 11, 15]. The implementation is done in the finite element library
deal.II [1], and follows the code in [4]. In this section, we compare two different
sequences of meshes. The sequences are generated by the error estimators η

(2)
h and
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ηh
2
. First of all, let us define the effectivity indices by

I
p

eff :=
η
(2)
h

|Jp

E(u)− J
p

E(uh)| and Iheff :=
ηh

2

|J h
E(u)− J h

E(uh)|
.

The p enriched discrete remainder part of the error estimator η(2)R is defined as the

quantity (3), where we replace ũ, z̃,u, z by uh, zh,u
(2)
h , z

(2)
h , respectively. The h-

enriched discrete remainder part of the error estimator ηR, h2
is defined as the quantity

(3), where we replace ũ, z̃,u, z by uh, zh,u h
2
, z h

2
, respectively. Finally, we define

the gaps between the theoretical findings in [4] by

η
(2)
E
:=

∣
∣
∣|J (u(2)

h )− J (uh)| − |η(2)h + ρ(uh, zh)+ η
(2)
R |

∣
∣
∣ ,

and

η
E, h2

:=
∣
∣
∣|J (u h

2
)− J (uh)| − |ηh

2
+ ρ(uh, zh)+ ηR, h2

|
∣
∣
∣ .

4.2 Discussion of the Results

In Fig. 2, the effectivity indices for the two different types of error estimators are
shown on their respective grids. We see that h enrichment delivers effectivity indices
which are very close to one, whereas, for p enrichment, we have effectivity indices
in the range of 0.2−8.1. This was also observed in [4]. In the case of p enrichment,
the saturation assumption is violated multiple times, as we observe in Fig. 3. The
saturation assumption is violated if the error |Jp

E(u
(2)
h ) − J

p

E(u)| in the enriched
solution is larger than |Jp

E(uh) − J
p

E(u)|. In the case of h enrichment, this always
happens. If we compare the errors of the single functionals, which are monitored
in Figs. 4, 5 and 6, we conclude that the meshes generated by the p enriched error
estimator lead to smaller errors in the single functionals. If all the conditions in [4]
are fulfilled, then η

(2)
E

and η
E, h2

are zero. However, in the computation of the error

estimators, our overall round-off error is in the order of ε(double) × DOFs, where
ε(double) = 2−52 is the machine precision for double floating point numbers.1

In the case of p enrichment, we observe in Fig. 7 that η(2)
E

indeed is in the order
or even better than the round off errors when summing up the different error
contributions. In this case, all requirements are fulfilled. For h enrichment, we do not
have the inclusion Vh ⊂ Vh

2
due to the geometrical approximation. Therefore, these

conditions are violated. The effects are monitored in Fig. 7 as well. The quantity

1https://en.wikipedia.org/wiki/Machine_epsilon.

https://en.wikipedia.org/wiki/Machine_epsilon
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Fig. 2 The two effectivity indices on the corresponding meshes

Fig. 3 Errors in J
p

E and J h
E at the solution and the enriched solution

η
E, h2

does not only contain numerical round off errors, but also errors coming
from the geometrical approximation. However, this is a non-local quantity, and the
localization is not straightforward.
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Fig. 4 The errors in clift for refinement with p enriched error estimation (cplift), refinement with h

enriched error estimation (chlift), and uniform refinement (clift)

Fig. 5 The errors in cdrag for refinement with p enriched error estimation (cpdrag), refinement with

h enriched error estimation (chdrag), and uniform refinement (cdrag)
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Fig. 6 The errors in �p for refinement with p enriched error estimation (�pp), refinement with
h enriched error estimation (�ph), and uniform refinement (�p)

Fig. 7 The remainder parts η
(2)
R , ηR, h2

and gap parts η
(2)
E

, η
E, h2

for p and h enrichment
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Towards Confident Bayesian Parameter
Estimation in Stochastic Chemical
Kinetics

Stefan Engblom, Robin Eriksson, and Pedro Vilanova

Abstract We investigate the feasibility of Bayesian parameter inference for chem-
ical reaction networks described in the low copy number regime. Here stochastic
models are often favorable implying that the Bayesian approach becomes natural.
Our discussion circles around a concrete oscillating system describing a circadian
rhythm, and we ask if its parameters can be inferred from observational data. The
main challenge is the lack of analytic likelihood and we circumvent this through the
use of a synthetic likelihood based on summarizing statistics. We are particularly
interested in the robustness and confidence of the inference procedure and therefore
estimates a priori as well as a posteriori the information content available in
the data. Our all-synthetic experiments are successful but also point out several
challenges when it comes to real data sets.

1 Introduction

Systems Biology deals with the study of complex biological systems underpinning
biological life, in particular chemical reaction networks (CRNs) and their qualitative
properties. At low copy numbers, the dynamics of CRNs is accurately modeled as a
continuous-time Markov chain. Such stochastic models are more difficult to analyze
than their deterministic counterparts, but have gained widespread recognition since
experimentalists have noticed that observed data variations can consistently be
attributed to the inherent network noise. Prototypical cases for pronounced stochas-
tic effects include gene transcription regulation processes [2, 14], robustness in
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biological oscillations [1, 10], stationary behavior [15], and cellular reprogramming
[12].

Through the rapid development of imaging- and sequencing techniques, inter-
facing CRN models with data becomes an important and, as it turns out, a
very challenging problem. For models driven by intrinsic stochasticity, Bayesian
approaches are favorable since they are formulated in a consistent probabilistic
framework. One of the major obstacles is the likelihood function, the conditional
probability of the data given a proposed parameter. Computing the likelihood
formally requires the solutions to high-dimensional forward evolution equations,
e.g., the Chemical Master Equation (CME) [4–6]. Another challenge stems from
the fact that the comparably large levels of noise forces the data volumes to go up to
ensure an accurate identification. This also means that the problem of identifiability
should be addressed, preferably already in a prior phase.

In this paper we attempt to highlight the feasibility of the Bayesian approach for
CRNs. We select a fairly challenging network in the form of a Circadian rhythm
[1] and set out to invert synthetic data from this model via Bayesian methods. To
circumvent the issue with high-dimensional density equations, we follow the idea in
[17] and develop suitable summarizing statistics for which the limiting distributions
are multivariate normal, and the computational procedure then becomes completely
simulation-driven. We stress the identifiability of the model by investigating its
information theoretic properties, in a prior as well as in a posterior setting. We find
that our proposed Bayesian set-up is promising in the setting of CRNs, but we also
point out a few challenges.

2 Bayesian Inversion of the Circadian Rhythm

We investigate the qualities of a Bayesian approach to parameter inversion of CRNs
by looking at a specific example in the form of an oscillating system modeling
Circadian clocks as specified in Sect. 2.1. A prior investigation of the information
content in synthetic measurements is presented in Sect. 2.2 and summarizing
statistics are selected in Sect. 2.3. The obtained posterior distribution itself is finally
investigated in Sect. 2.4.

2.1 The Circadian Rhythm by Vilar et al.

As a challenging example for Bayesian inversion we propose to use the circadian
clock by Vilar et al. [1]. A circadian clock enjoys an oscillating dynamics and is
used by various organisms to keep track of time. The model is defined by 9 species
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and 18 transitions,

D′
a

θaD
′
a−−−→ Da

Da + A
γaDaA−−−−→ D′

a

D′
r

θrD
′
r−−→ Dr

Dr + A
γrDrA−−−−→ D′

r

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

∅ α′aD′
a−−−→ Ma

∅ αaDa−−−→ Ma

Ma
δmaMa−−−−→ ∅

⎫
⎪⎪⎬

⎪⎪⎭

∅ α′rD′
r−−−→ Mr

∅ αrDr−−−→ Mr

Mr
δmrMr−−−→ ∅

⎫
⎪⎪⎬

⎪⎪⎭

∅ βaMa−−−→ A

∅ θaD
′
a−−−→ A

∅ θrD
′
r−−→ A

A
δaA−−→ ∅

A+ R
γcAR−−−→ C

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

∅ βrMr−−−→ R

R
δrR−−→ ∅

C
δaC−−→ R

⎫
⎪⎪⎬

⎪⎪⎭

In terms of which the rate parameters are

αa 50 αr 0.01 βa 50 γa 1 γc 2 δma 10 δa 1 θa 50

α′a 500 α′r 50 βr 5 γr 1 δmr 0.5 δr 0.20 θr 100

Interestingly, certain choices of the parameters are known to produce oscillating
behavior using a stochastic formulation, whereas a deterministic formulation rapidly
reaches a steady-state solution [16]. Hence the noise has a stabilizing effect on the
rhythm making it an interesting test case.

In this work we assume perfect measurements consisting of samples of R and
C gathered every 2 min for 2 h. This data, chiefly shown in Fig. 4, consists in all
of roughly 5 full periods and we now set out to transform this data to posterior
distributions of the model parameters.

2.2 Prior Information Content

The Hessian associated with the path-wise relative entropy, corresponding to a
parameter vector θ , contains the information of the sensitive directions of the
system, in the sense of the local index

Sk := ∂

∂θk
EPθ [g(Xt )] ,

for a suitable path-wise observable g of the stochastic reaction network process Xt

with density Pθ . The following sensitivity bound holds:

|Sk| ≤
√

Var(g)
√
Ik,k(P θ ) , k = 1, . . . ,K,

where I(P θ ) is the path-wise Fisher Information Matrix (pFIM) of the K-
dimensional parameter vector θ (see [3]).
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The FIM constitutes a classical criterion for local parameter identifiability, since
it is a measure of how the process changes in response to infinitesimal changes in
the parameters, in view of the expansion

R(P θ |Pθ+ε) = 1

2
εTI(P θ )ε +O(|ε|3) ,

where R(P θ |Pθ+ε) is the relative entropy (RE), which is the loss of information
when ε-perturbing the parametric density Pθ . Thus, the FIM is the Hessian of the
RE which describes the local curvature around the minimum value of the RE [3, 9,
13].

In the present context, the parameter vector θ is locally identifiable if and only if
the pFIM has full rank [11], which is the case in the model considered in this work.
In this respect, all the parameters of the model are, in principle, identifiable, but in
practice the conditioning of the problem may well be prohibitive. The conditioning
translates to small eigenvalues. In Fig. 1 we show the eigenvalues of the pFIM under
a uniform prior distribution in [0, 3θ0], where θ0 are the parameters from Sect. 2.1.

The pFIM is also a key tool to parameter inference via the Cramer-Rao bound,
since the inverse diagonal elements of the pFIM constitute a lower-bound for the
variance of any unbiased estimator of elements of θ . From this and from the fact
that the median eigenvalue corresponding to αr under our prior is close to 10−6, we
argue that αr cannot be retrieved at our sample volume of data. We therefore set a
sharp delta-function prior at the true value for this parameter.

a a r r
'
a a ma a a c

'
r r mr r r

10 -5

10 0

10 5

10 10

Fig. 1 Eigenvalues of the pFIM under a uniform prior in [0, 3θ0]
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2.3 Summarizing Statistics

The Circadian rhythm has an oscillating dynamics and is challenging to summarize
by suitable statistics. We propose 15 statistics consisting of first and second
moments and statistics from the frequency domain. The list of the used statistics
includes the maximum, the mean, the standard deviation, the 91% percentile, the
index of dispersion (ID), the amplitude of fast Fourier transform (FFT) coefficients
1 and 6, and the correlation between R and C.

The summarizing statistics (SS) takes on some distribution given measurements
of the stochastic process. The synthetic likelihood (SL) approach is convenient
provided the distribution is multivariate normal [17]. We thus investigate the
marginal distribution for each of the SS to support that the SL ansatz is reasonable.
See Fig. 2 for selected examples.

Next we need to support that the SL includes enough information for parameter
inversion. We investigated the convexity along each model parameter dimension as
follows. We perturb one parameter at a time around the true value θ0 and sample the
SL on a grid, constructing a 95% credible interval (CI) for the SL and calculate the

Fig. 2 (a) The distribution of 80 samples of three of the chosen summary statistics. From left
to right: index of dispersion of R, amplitude of the dominating Fourier coefficient of C, and the
correlation between R and C. The solid red line is a normal fit. (b) Check of single dimension
convexity for three rates (scaled by the true values), together with the minimum interval (MI)
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mean. We search for the minimum SL on the mean, and if this minimum is included
in the CI of any other grid-point, that point is added to the minimum interval (MI).
A narrow MI is of course indicative of a well defined parameter space. Sample
outcomes of this procedures are illustrated in Fig. 2.

2.4 Posterior Distribution and Prediction

We employ an efficient Bayesian sampler, adaptive Metropolis (AM) [8], together
with the SL induced by our SS. For more information on the combination of SL
in AM (“SLAM”), see [7]. The prior knowledge we supply is a uniform prior
[0, 3θ ], motivated simply by considering too large values of the rate parameters
to be unphysical. Note that the prior is unsymmetric around the true values.

In Fig. 3, we summarize the resulting posterior from 1.2 · 105 posterior samples
after removal of burn-in. All 14 parameter values were retrieved reasonably well
with our set-up, albeit with some outliers (notably γr and θr ).

To evaluate the qualities of the posterior distribution, we can assess the posterior
residual, i.e., a posterior predictive check of how well generated data from the
posterior agrees with the observations. In Fig. 4, we evaluate 2000 realized samples

Fig. 3 (a) The marginal posterior scaled by the true value for three of the rates. (b) Sample
pairwise marginal posterior density
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Fig. 4 2000 posterior samples demonstrating the posterior residual with a 99% CI. As an aid in
visualization and to address the diverging phase of the model, the simulations are restarted from
the true observations on every 5th data point. The displayed CI is then constructed from this sample
CI by smoothing through an exponential moving average of window size 3

from the posterior for which we compute the 99% CI. All in all the posterior
predictor covers the data rather convincingly.

3 Discussion

We have demonstrated that synthetic inversion of the Circadian rhythm is doable for
qualities of data which appear reasonable to achieve under experimental conditions.
During the course of experimenting it was noted that a bounded prior was necessary
in order to obtained bounded posteriors. An extended set of summarizing statistics
would likely make the problem more definite and allow also for non-informative
prior distributions. Importantly, the initial analysis of the information content in
measurements revealed that one parameter could not be retrieved from data and, in
fact, that the associated reaction channel could be removed fully. We conclude that
Bayesian methods are attractive in the context of inversion of CRNs, but that both
the set-up and the end-result should be subjected to careful synthetic tests before
considering real experimental data.
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Strategies for the Vectorized Block
Conjugate Gradients Method

Nils-Arne Dreier and Christian Engwer

Abstract Block Krylov methods have recently gained a lot of attraction. Due
to their increased arithmetic intensity they offer a promising way to improve
performance on modern hardware. Recently Frommer et al. (Electron Trans Numer
Anal 47:100–126, 2017). presented a block Krylov framework that combines the
advantages of block Krylov methods and data parallel methods. We review this
framework and apply it on the Block Conjugate Gradients method, to solve linear
systems with multiple right hand sides. In this course we consider challenges that
occur on modern hardware, like a limited memory bandwidth, the use of SIMD
instructions and the communication overhead. We present a performance model
to predict the efficiency of different Block CG variants and compare these with
experimental numerical results.

1 Introduction

Developers of numerical software are facing multiple challenges on modern HPC-
hardware. Firstly, multiple levels of concurrency must be exploited to achieve the
full performance. Secondly, due to that parallelism, communication between nodes
is needed, which must be cleverly organized to avoid an expensive overhead. And
most importantly, modern CPUs have a low memory bandwidth, compared to the
peak FLOP rate, such that for standard linear solvers the memory bandwidth is the
bottleneck for the performance. Therefore only algorithms with a high arithmetic
intensity will perform well.

Instruction level parallelism is now apparent on all modern CPU architectures.
They provide dedicated vector (or SIMD) instructions, that allow to proceed
multiple floating point operations with one instruction call, e.g. AVX-512 allows
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processing 8 double at once. The efficient use of these instructions is a further
challenge.

The Conjugate Gradients method (CG) is a standard tool for solving large, sparse,
symmetric, positive definite, linear systems. The Block Conjugate Gradient (BCG)
method was introduced in the 1980s to improve the convergence rate for systems
with multiple right hand sides [12]. Recently these methods have been rediscovered
to reduce the communication overhead in parallel computations [1, 6, 7].

In this paper we present a generalization of the BCG method, which makes it
applicable to arbitrary many right-hand-sides. We consider a symmetric, positive
definite matrix A ∈ R

n×n and want to solve the matrix equation

AX = B, with B,X ∈ R
n×k. (1)

This paper is structured as follows. In Sect. 2 we briefly review the theoretical
background of block Krylov methods, using the notation of [5]. Then in Sect. 3
we apply this theory on the BCG method. The implementation of the method, a
theoretical performance model and some numerical experiments are presented in
Sect. 4.

2 Block Krylov Subspaces

Considering functions of matrices, Frommer et al. presented in [5] a generic
framework for block Krylov methods. Further work on this framework can be found
in the PhD thesis of Lund [11]. In the following we review the most important
definitions, which we will need in Sect. 3. Frommer et al. used C as numeric field,
for simplicity of the following numerics, we restrict our self to R.

Definition 1 (Block Krylov Subspace) Let S be a *-subalgebra of Rk×k and R ∈
R

n×k . The m-th block Krylov subspace with respect to A,R and S is defined by

Km
S
(A,R) =

{
m−1∑

i=0

AiRci
∣
∣ c0, . . . , cm−1 ∈ S

}

⊂ R
n×k. (2)

From that definition we find the following lemma directly.

Lemma 1 If S1 and S2 are two *-subalgebras of Rn×n, with S1 ⊆ S2. Then

Km
S1
(A,R) ⊆ Km

S2
(A,R) (3)

holds.

In this paper we want to consider the following *-subalgebras and S-products
and the corresponding Krylov spaces.
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Definition 2 (Relevant *-Subalgebras) Let p ∈ N be a divider of k. We define the
following *-subalgebras and corresponding products:

hybrid: S
p

Hy := diag
((
R

p×p
)q) ⇒ ⟪·, ·⟫

S
p
Hy
= diag

(
X∗

1Y1, . . . ,X
∗
qYq

)
,

global: S
p
Gl := R

p×p ⊗ Iq ⇒ ⟪·, ·⟫
S
p
Gl
=

q∑

i=0

X∗
i Yi ⊗ Iq ,

where Iq denotes the q dimensional identity matrix and diag
((
R

p×p
)q) denotes the

set of k × k matrices where only the p × p diagonal matrices have non-zero values.
Furthermore we define the special cases

classical: SCl := R
k×k = S

k
Hy = S

k
Gl and

parallel: SPl := diag
(
R

k
)
= S

1
Hy.

The names result from the behavior of the resulting Krylov method; SCl yields in
the classical block Krylov method as presented by O’Leary [12], whereas SPl results
in a CG method, which is carried out for all right hand sides simultaneously, in a
instruction level parallel fashion.

From that definition we could conclude the following embedding lemma.

Lemma 2 (Embeddings of *-Subalgebras) For p1, p2 ∈ N, where p1 is a divisor
of p2 and p2 is a divisor of k, we have the following embedding:

SPl ⊆ S
p1
Hy ⊆ S

p2
Hy ⊆ SCl

⊂ ⊆ ⊆ =

S
1
Gl ⊆ S

p1
Gl ⊆ S

p2
Gl ⊆ SCl

(4)

3 Block Conjugate Gradient Method

Algorithm 1 shows the preconditioned BCG method. We recompute ρi−1 in line 6
to improve the stability of the method. A more elaborate discussion of the stability
of the BCG method can be found in the paper of Dubrulle [3]. This stabilization has
only mild effect on the performance as the communication that is needed to compute
the block product could be carried out together with the previous block product.

The algorithm is build-up from four kernels:

• BDOT: Computing the block product, γ ← ⟪X,Y⟫S
• BAXPY: Generic vector update X ← X + Yγ

• BOP: Applying the operator (or preconditioner) on a block vector Y ← AX

• BSOLVE: Solve a block system in the *-subalgebra δ ← γ−1δ
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Algorithm 1 Preconditioned Block Conjugate Gradients method (stabilized)

1: R0 ← B − AX0

2: P 1 ← M−1R0

3: for i = 1, . . . to convergence do
4: Qi ← AP i

5: αi ← ⟪P i,Qi⟫S
6: ρi−1 ← ⟪P i, Ri−1⟫S / recompute

7: λi ← (
αi
)−1

ρi−1

8: Xi ← Xi−1 + P iλi

9: Ri ← Ri−1 −Qiλi

10: Zi+1 ← M−1Ri

11: ρi ← ⟪Zi+1, Ri⟫S

12: βi ← ρi−1−1
ρi

13: P i+1 ← Zi+1 − P iβi

14: end for

O’Leary showed the following convergence result to estimate the error of the
classical BCG method.

Theorem 1 (Convergence of Block Conjugate Gradients [12, Theorem 5]) For
the energy-error of the s-th column ‖eis‖A of the classical BCG method, the
following estimation hold:

‖eis‖A ≤ c1μ
i

with μ =
√
κk − 1√
κk + 1

, κk = λn

λk
and constant c1,

where λ1 ≤ . . . ≤ λN denotes the eigenvalues of the preconditioned matrix

M− 1
2 AM− 1

2 . The constant c1 depends on s and the initial error e0 but not on i.

This theorem holds for the classical method. However as the hybrid method is
only a data-parallel version of the classical block method the same convergence rate
hold with k = p for the S

p

Hy method. The following lemma gives us a convergence
rate for the global methods.

Lemma 3 (Theoretical Convergence Rate of Global Methods) The theoretical
convergence rate of a global method using S

p
Gl is

μ̂ = κ̂p − 1

κ̂p + 1
, with κ̂p = λN

λ⌈ p
q

⌉
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Proof A global method is equivalent to solve the qn-dimensional system

⎛

⎜
⎜
⎜
⎝

A

A

.. .

A

⎞

⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

X1 · · · Xp

Xp+1 · · · X2p
...

Xk−p+1 · · · Xk

⎞

⎟
⎟
⎟
⎠
=

⎛

⎜
⎜
⎜
⎝

B1 · · · Bp

Bp+1 · · · B2p
...

Bk−p+1 · · · Bk

⎞

⎟
⎟
⎟
⎠

with the classical block Krylov method with p right hand sides. The matrix of this
system has the same eigenvalues as A but with q times the multiplicity. Thus the
p-smallest eigenvalue is λ⌈ p

q

⌉. Therefore and by applying Theorem 1 we deduce

the theoretical convergence rate. ��
This result makes the global methods irrelevant for practical use. In particular for

q > 1 the non-global hybrid method would perform better.

4 Implementation and Numerical Experiments

With the DUNE 2.6 release an abstraction for SIMD data types was introduced. The
aim of these abstraction is the possibility to use the data types as a replacement for
the numeric data type, like double or float, to create data parallel methods. For
a more detailed review see Bastian et al. [2]. Usually these SIMD data types are
provided by external libraries like Vc [9] or vectorclass [4], which usually provide
data types with the length of the hardware SIMD (e.g. 4 or 8). For problems with
more right hand sides we use the LoopSIMD type. This type is basically an array but
implements the arithmetic operations by static sized loops.

Listing 1 shows the implementation for the BAXPY kernel for the case p = k.

Listing 1 Implementation of BAXPY

1 void baxpy(scalar_field_type alpha,
2 const BlockProduct<scalar_field_type>& gamma,
3 const X& x, X& y){
4 for(size_t i=0;i<x.size();++i){
5 field_type xi = x[i]
6 field_type yi = y[i];
7 for(size_t r=0;r<P;++r){
8 yi += lane(r, xi)*gamma[r];
9 }

10 y[i] = yi;
11 }
12 }



386 N.-A. Dreier and C. Engwer

In a first test series we examine the runtime of the kernels BDOT, BAXPY
and BOP. To check the efficiency of our implementation we, take the following
performance model into account. This performance model is a simplified variant of
the ECM model presented by Hofmann et al. [8]. We assume that the runtime of a
kernel is bounded by the following three factors:

• Tcomp = ω
peakflops : The time the processor needs to perform the necessary number

of floating point operations. Where ω is the number of floating point operations
of the kernel.

• Tmem = β
memory bandwidth: The time to transfer the data from the main memory to

the L1 cache. Where β is the amount of data that needs to be transferred in the
kernel.

• Treg = τ
register bandwidth: The time to transfer data between L1 cache and registers.

Where τ is the amount of data that needs to be transferred in the kernel.

Finally the expected runtime is given by

T = max
(
Tcomp, Tmem, Treg

)
. (5)

Table 1 shows an overview of the performance relevant characteristics of the kernels.
We observe that for the BOP kernel the runtime per right hand side decreases rapidly
for small k, this is in accordance with our expectation. For larger k the runtime per
right hand side increases slightly. We suppose that this effect is due to the fact that
for larger k one row of a block vector occupies more space in the caches, hence
fewer rows can be cached. This effects could be mitigated by using a different sparse
matrix format, like the Sell-C-σ format [10].

Furthermore we see that the runtime of the BDOT and BAXPY kernels is constant
up to an certain p (p � 16). This is in accordance with our expectation, as it is
memory bound in that regime and β does not depend on p. At almost all p the
runtimes for global and hybrid version coincide except for p = 64. The reason for
that is, that a 64× 64 takes 32 kbyte memory, which is exactly the L1 cache size. In
the non-global setting two of these matrices are modified during the computation,
which then exceeds the L1 cache. This explains as well why the runtime for the
p = 128 case is so much higher than expected.

Figure 1 shows the measured data compared with the expected runtimes. All
tests are performed on an Intel Skylake-SP Xeon Gold 6148 on one core. The

Table 1 Performance relevant characteristics for the BDOT and BAXPY kernels. Number of
floating point operations (ω), amount of data loaded from main memory (β), number of data
transfers between registers and L1-Cache (τ ). z is the number of non-zeros in A

ω β τ

BDOT 2np2q 2nk 2nqp2 + 2nk

BAXPY 2np2q 3nk nqp2 + 2nk

BOP 2kz 2z+ 2kn z(2+ 2k)
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Fig. 1 Microbenchmarks for kernels BDOT, BAXPY and BOP using k = 128
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Fig. 2 Time to solution for different parameters. Numbers on top of the bars denote the number of
iterations. Left: k = 128 Right: Different configurations: r = 128/k is the number of repetitions
to solve for all 128 right hand sides

theoretical peakflops are 76.8 GFLOP/s, the memory bandwidth is 13.345 Gbyte/s
and the register bandwidth is 286.1 Gbyte/s.

In a second experiment we compare the runtime of the whole algorithm with each
other. For that we discretized a 2D heterogeneous Poisson problem with a 5-point
Finite Difference stencil. The right hand sides are initialized with random numbers.
We iterate until the defect norm of each column has been decreased by a factor of
10−8. An ILU preconditioner was used. Figure 2 shows the results. We see that the
best block size is p = 16. In another test we compare the runtimes for different
parameters, where the algorithm is executed r times until all 128 right hand sides
are solved. In this case the k = 16, p = 16 case is the fastest but only slightly
slower as the k = 128, p = 16. The reason for that is the worse cache behavior of
the BOP kernel, like we have seen before. Note that on a distributed machine the
latter case would need 8x less communication.
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5 Conclusion and Outlook

In this paper we have presented strategies for the vectorized BCG method. For that
we reviewed the block Krylov framework of Frommer et al. and apply it on the BCG
method. This makes it possible to use the advantages of the BCG method as far as
it is beneficial, while the number of right hand sides can be further increased. This
helps to decrease the communication overhead and improve the arithmetic intensity
of the kernels. We observed that the runtime of the individual kernels scale linearly
with the number of right hand sides as long as they are memory bound (p � 16 on
our machine). That means that it is always beneficial to use at least this block size
p, depending on the problem it could also be beneficial to choose even larger p.

The found optimizations are also applicable to other block Krylov space methods
like GMRes, MINRES or BiCG, and could be combined with pipelining techniques.
These approaches are the objective of future work.
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The Unfitted HHO Method for the Stokes
Problem on Curved Domains

Erik Burman, Guillaume Delay, and Alexandre Ern

Abstract We design a hybrid high-order (HHO) method to approximate the Stokes
problem on curved domains using unfitted meshes. We prove inf-sup stability and
a priori estimates with optimal convergence rates. Moreover, we provide numerical
simulations that corroborate the theoretical convergence rates. A cell-agglomeration
procedure is used to prevent the appearance of small cut cells.

1 Introduction

Generating meshes to solve problems posed on domains with a curved boundary can
be a difficult task when high-order methods are used. The use of unfitted meshes
that do not fit this boundary can circumvent this difficulty. In the framework of
finite element methods, the main paradigm for unfitted methods [5] is the use of
Nitsche’s method [21] to enforce weakly the boundary conditions at the boundary.
One difficulty with this method is the possible presence of small cut cells, i.e. cells
that have only a small fraction of their volume inside the actual physical domain.
These small cut cells can have an adverse effect on the conditioning of the system
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matrix and can even hamper convergence (see [11] for a recent study on the topic).
The most common way to deal with the problem of small cut cells is to add a
stabilizing term such as the ghost penalty [3]. In the present study we use a cell-
agglomeration technique to prevent the appearance of small cut cells. Such a method
has been considered in [17, 23] and more recently in [1, 4, 6, 7].

In order to easily handle the various shapes of the cells produced by the
agglomeration process, we consider the hybrid high-order (HHO) method, which
is a polyhedral method. HHO methods have been introduced recently in [12, 13].
As shown in [10], they are closely related to hybridizable discontinuous Galerkin
methods and to nonconforming Virtual element methods. Moreover, the unfitted
HHO method has already been studied in [4, 7] for elliptic interface problems. More
precisely, it was adapted to the unfitted framework in [7], a mixed-order polynomial
setting was considered with the cell unknowns being one degree higher than the face
unknowns and a first algorithm for the cell-agglomeration procedure was provided.
This study was continued in [4], where the use of a novel gradient reconstruction
operator eliminated the requirement on the Nitsche’s penalty parameter to be
large enough. An improvement of the cell-agglomeration algorithm and numerical
simulations were also provided.

The present study extends the unfitted HHO method presented in [4] to the
Stokes problem. Unfitted schemes have already been used to approximate the Stokes
problem in e.g. [8, 15, 16, 20]. A HHO scheme was already provided on fitted
meshes for the Stokes problem in [14] and for the Navier–Stokes equations in
[2]. In addition to the usual stabilization and gradient reconstruction operators, a
divergence reconstruction operator is also defined. We here focus on the Stokes
problem in curved domains. The extension to the Stokes problem for two immiscible
fluids separated by a curved interface will be treated in a future work. We also
mention that a HDG scheme for the Stokes problem in curved domains was devised
in [22].

Let � be a smooth domain in R
d , d ∈ {2, 3} and � = ∂� its boundary. We

consider the Stokes problem

−�u+∇p = f in �, (1a)

∇·u = 0 in �, (1b)

u = g on �, (1c)

where u and p are the velocity and pressure of the fluid. In the sequel, we denote
by n� the unit outward normal of �. For all f ∈ L2(�;Rd) and g ∈ H 1/2(�;Rd )

with
∫
� g·n� = 0, the problem (1) admits a unique solution in H 1(�;Rd)×L2

0(�),
where L2

0(�) := {q ∈ L2(�) | ∫� q = 0}.
In Sect. 2, we introduce the unfitted HHO method for the Stokes problem on

curved domains. We also state the main stability result in the form of an inf-
sup condition and the main error estimates. In Sect. 3, we present some numerical
simulations.
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2 The Unfitted HHO Method

We consider a larger domain �̃ such that � ⊂ �̃. Let Th be a discretization of �̃.
We assume that (Th)h>0 is a shape-regular polyhedral mesh sequence in the sense
of [12]. In particular, all the cells T ∈ Th are assumed to have planar faces and
straight edges. We denote by ρ > 0 the parameter that quantifies the regularity of
the mesh. We denote by hT the diameter of the cell T ∈ Th and nT its unit outward
normal. We set conventionally h := maxT ∈Th

hT . The meshes do not necessarily fit
�.

For all T ∈ Th, we denote by T ◦ := T ∩�, (∂T )◦ := ∂T ∩� and T � := T ∩�.
Let P�(S) (resp. P�(S;Rd), P�(S;Rd×d)) be the space composed of scalar (resp.
vectorial, matricial) polynomials of degree at most � ≥ 0 in S. We denote by (·, ·)S
the L2-scalar product on S, ‖ ·‖S the associated norm, and B(x, r) the ball of center
x and radius r . We assume that the meshes fulfill the following three assumptions.

Assumption 1 (Cut Cells) There is δ ∈ (0, 1) such that, for all T ∈ Th, there is
x̃T ∈ T ◦ such that B(x̃T , δhT ) ⊂ T ◦.

Assumption 2 (Multiplicative Trace Inequality) There are cmtr > 0 and θmtr ≥
1, such that for all T ∈ Th, there is x̌T ∈ R

d so that for all v ∈ H 1(T †;Rd) with
T † := B(x̌T ; θmtrhT ), ‖v‖(∂T )◦ + ‖v‖T � ≤ cmtr(h

−1/2
T ‖v‖T † + ‖v‖1/2

T † ‖∇v‖1/2
T † ).

Assumption 3 (Resolving T †) There exists N0 ∈ N (independent from h) such
that for every T ∈ Th, T † ⊂ �N0(T ), where �0(T ) := T and �j+1(T ) := {T ′ ∈
Th | T ′ ∩�j(T ) �= ∅} for all j ≥ 0.

Assumption 1 means that there are no bad cut cells in the mesh. This assumption
provides a discrete trace inequality [7], and it can be satisfied by the cell-
agglomeration procedure described in [4] if the mesh is fine enough w.r.t. the
curvature of �, see [7]. Assumption 2 is classical in the framework of unfitted finite
element methods. It can be established if the mesh is fine enough w.r.t. the curvature
of the boundary [7]. Assumption 3 is reasonable for meshes that are not too graded.

2.1 The Local Discrete Problem

Let k ≥ 0 be the face polynomial degree in the unfitted HHO method. The velocity
is represented by a vector-valued polynomial of degree at most k + 1 in every cell
and a vector-valued polynomial of degree at most k on every face. The pressure is
represented by a polynomial of degree at most k in every cell. The local degrees of

freedom are denoted ûT = (uT ,u∂T ) ∈ P
k+1(T ◦;Rd) × P

k(F(∂T )◦;Rd) =: Ûk

T

and pT ∈ P
k(T ◦), where Pk(F(∂T )◦;Rd) :=∏

F ◦∈F(∂T )◦ P
k(F ◦;Rd) and F(∂T )◦ :=

{F ◦ := F ∩� | F ∈ Fh, F ⊂ ∂T }, with Fh the set of faces of Th.
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We define the gradient reconstruction operator Gk
T : Û

k

T → P
k(T ◦;Rd×d) such

that for all ûT ∈ Û
k

T and all q ∈ P
k(T ◦;Rd×d), we have

(Gk
T (ûT ),q)T ◦ := (∇uT ,q)T ◦ + (u∂T − uT ,qnT )(∂T )◦ − (uT ,qn�)T � . (2)

In a similar way, we define the divergence reconstruction operator Dk
T : Û k

T →
P
k(T ◦) such that for all ûT ∈ Û

k

T and all q ∈ P
k(T ◦), we have

(Dk
T (ûT ), q)T ◦ := (∇·uT , q)T ◦ + (u∂T − uT , qnT )(∂T )◦ − (uT , qn�)T � , (3)

so that Dk
T (ûT ) = T r(Gk

T (ûT )). Furthermore, we define the stabilization operator

sT (uT , vT ) := h−1
T (%k

(∂T )◦(u∂T − uT ), v∂T − vT )(∂T )◦ + h−1
T (uT , vT )T � , (4)

where %k
(∂T )◦ denotes the L2-orthogonal projection onto P

k(F(∂T )◦;Rd). We define

the following bilinear and linear forms: For all v̂T , ŵT ∈ Û
k

T and all qT ∈ P
k(T ◦),

aT (v̂T , ŵT ) := (Gk
T (v̂T ),G

k
T (ŵT ))T ◦ + sT (v̂T , ŵT ), (5a)

bT (v̂T , qT ) := (Dk
T (v̂T ), qT )T ◦, (5b)

�aT (ŵT ) := (f ,wT )T ◦ + (g, h−1
T wT −G

k
T (ŵT )n�)T � , (5c)

�bT (qT ) := −(g, qT n�)T � . (5d)

Note that sT and G
k
T (ûT ) are similar to the operators proposed in [4].

Remark 1 (Variants) The gradient reconstruction operators can also be defined in
∇Pk+1(T ◦;Rd) instead of Pk(T ◦;Rd×d) (see for instance [7]). Moreover one can
also use cell unknowns in P

k(T ◦;Rd) (instead of P
k+1(T ◦;Rd)) away from the

interface provided the stabilization operator from [12] is used.

2.2 The Global Discrete Problem

The global unknowns are ûh ∈ P
k+1(Th;Rd) × P

k(Fh;Rd) =: Û k

h and ph ∈
P
k(Th) =: Pk

h . For all T ∈ Th, ûT and pT are the local components of ûh

and ph attached to T (see Sect. 2.1). Let Pk
h∗ := {qh ∈ Pk

h |
∫
�
qh = 0}. We

define the global bilinear forms ah(v̂h, ŵh) := ∑
T ∈Th

aT (v̂T , ŵT ), bh(v̂h, qh) :=∑
T ∈Th

bT (v̂T , qT ), and the global linear forms �ah(ŵh) := ∑
T ∈Th

�aT (v̂T ),

�bh(qh) := ∑
T ∈Th

�bT (qT ). The discrete global problem reads: find (ûh, ph) ∈
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Y k
h := Û

k

h × Pk
h∗ such that

ah(ûh, v̂h)− bh(v̂h, ph) = �ah(v̂h), (6a)

bh(ûh, qh) = �bh(qh), (6b)

for all (v̂h, qh) ∈ Y k
h . This discrete global problem can be solved in an efficient way

by means of a static condensation procedure as described e.g. in [9, 14]. Specifically,
the global problem that actually has to be solved involves only the face degrees of
freedom of the velocity and the mean pressure value in every cell. The other degrees
of freedom can be computed in a post-processing step by means of local solves.

2.3 Stability and Error Estimates

For all v̂h ∈ Û
k

h, we denote by ‖v̂h‖2∗ :=
∑

T ∈Th
‖∇vT ‖2

T ◦ +h−1
T ‖v∂T −vT ‖2

(∂T )◦ +
h−1
T ‖vT ‖2

T � and for all (v̂h, qh) ∈ Y k
h , we denote by ‖(v̂h, qh)‖2

# := ‖v̂h‖2∗+‖qh‖2
�.

We also denote by Ah((v̂h, qh), (ŵh, rh)) := ah(v̂h, ŵh)−bh(ŵh, qh)+bh(v̂h, rh).
A numerical analysis leads to the following results. We only sketch the proof of the
inf-sup condition; see [6, Lemma 10 & Theorem 12] for detailed proofs.

Theorem 4 (Inf-Sup Condition) Under the Assumption 1, there exists β > 0,
depending only on k, δ and ρ, such that for every (v̂h, qh) ∈ Y k

h , we have

β‖(v̂h, qh)‖# ≤ sup
(ŵh,rh)∈Y k

h

Ah((v̂h, qh), (ŵh, rh))

‖(ŵh, rh)‖#
.

Moreover, there exists a unique solution (ûh, ph) ∈ Y k
h to (6).

Proof (Sketch of the Proof)

• We prove the coercivity and the continuity of ah w.r.t. the norm ‖ · ‖∗ by
proceeding as in [4].

• Let (v̂h, qh) ∈ Y k
h . Using the test function (ŵh, rh) := (v̂h, qh) proves ‖v̂h‖2∗ ≤

CS‖(v̂h, qh)‖#, where S := sup(ŵh,rh)∈Y k
h

Ah((v̂h,qh),(ŵh,rh))

‖(ŵh,rh)‖#
and C is a generic

constant that has the same dependencies as β.
• We use the surjectivity of the ∇· operator to prove that ‖qh‖2

� ≤ C(S2+‖v̂h‖2∗+∑
T ∈Th

h2
T ‖∇qT ‖2

T ◦).

• Using the test function (ŵh, rh) := (ŵh, 0) where ŵT := (−h2
T∇qT , 0) proves∑

T ∈Th
h2
T ‖∇qT ‖2

T ◦ ≤ C(S2 + ‖v̂h‖2∗).
• This shows the inf-sup condition and thus the well-posedness of (6). ��
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Theorem 5 (Error Estimates) Under the Assumptions 1, 2 and 3, there exists C >

0, depending on k, δ, cmtr, N0 and ρ, such that, if (u, p) belongs to Hk+2(�) ×
Hk+1(�), we have

( ∑

T ∈Th

‖∇u−∇uT ‖2
T ◦+‖p−pT ‖2

T ◦
)1/2 ≤ Chk+1(|u|Hk+2(�)+|p|Hk+1(�)). (7)

Remark 2 Contrary to the classical Nitsche’s method, we do not need here any
parameter to be large enough. This is a consequence of the construction of Gk

T (ûT )

in (2). For more details, the reader can refer to [4] and [18] for similar ideas using
FEM.

3 Numerical Simulations

On the circular domain � := C((0.5, 0.5); 1/3), the disk of center (0.5, 0.5) and
radius 1/3 (see Fig. 1), we consider the exact solution u1(x, y) := X2(X2 −
2X + 1)Y (4Y 2 − 6Y + 2), u2(x, y) := −Y 2(Y 2 − 2Y + 1)X(4X2 − 6X + 2),
and p(x, y) := sin(X + Y ) where X := x − 0.5, Y := y − 0.5. The circular
domain � is embedded into the unit square �̃ := (0, 1)2 which is meshed with a
uniform Cartesian mesh. The mesh size h refers to the number of subdivisions of
each side of �̃. In a pre-processing step, we use the cell-agglomeration technique
described in [4]. Static condensation is used to decrease the total number of degrees
of freedom. The global problem is solved by means of a sparse LU decomposition.
The numerical developments follow the DiSk++ framework [9] and are available in
the proton1 library. The profiles of the Euclidean velocity norm and the pressure are
shown in Figs. 2 and 3, respectively.

The cells lying completely outside the domain are not considered. The results
of the numerical simulations are reported in Table 1. The rates of convergence are
computed by comparing the result of one refinement step to the previous one. We
recover the convergence rates stated in Theorem 5.

Note that, as in [4, 6], the interface is represented in every cut cell by 2nint

segments, and every cut cell is then triangulated for the purpose of numerical
integration. In the computations in Table 1, we used nint = 11. We think that the
slightly lower rate of convergence observed for the pressure for k = 3 and h = 1/64
is due to the error in the representation of the boundary since the rate improves when
nint is increased (at the price of a more expensive assembly of the system matrix). A
similar observation was made in [6]. Instead of increasing nint, one can also consider
a higher-order representation of the boundary as for instance in [19].

1https://github.com/wareHHOuse.

https://github.com/wareHHOuse
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Fig. 1 The mesh and the computational domain for h = 1/16. The highlighted cells are the ones
that are agglomerated. The boundary of the domain is in red

Fig. 2 Euclidean velocity norm (h = 1/16, k = 1)
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Fig. 3 Pressure field (h = 1/16, k = 1)

Table 1 Convergence of the
errors for various polynomial
orders

h−1 u (H 1-seminorm) Rate p (L2-norm) Rate

k = 0

8 9.54e−2 · 4.53e−2 ·
16 3.85e−2 1.31 2.11e−2 1.11

32 1.71e−2 1.17 8.84e−3 1.25

64 8.60e−3 0.99 4.24e−3 1.06

k = 1

8 4.80e−2 · 7.44e−3 ·
16 9.36e−3 2.36 1.98e−3 1.91

32 1.68e−3 2.48 3.32e−4 2.57

64 4.15e−4 2.02 6.49e−5 2.35

k = 2

8 7.41e−3 · 5.15e−4 ·
16 7.69e−4 3.27 6.99e−5 2.88

32 6.63e−5 3.54 6.66e−6 3.39

64 8.89e−6 2.90 6.40e−7 3.38

k = 3

8 7.60e−4 · 2.51e−5 ·
16 3.44e−5 4.46 1.14e−6 4.46

32 1.44e−6 4.57 5.16e−8 4.47

64 9.89e−8 3.87 5.90e−9 3.13
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A Non-reflective Boundary Condition
for LBM Based on the Assumption
of Non-equilibrium Symmetry

R. Euser and C. Vuik

Abstract In this study a new type of non-reflective boundary condition (NRBC) for
the Lattice Boltzmann Method (LBM) is proposed; the Non-equilibrium Symmetry
Boundary Condition (NSBC). The idea behind this boundary condition is to utilize
the characteristics of the non-equilibrium distribution function to assign values to
the incoming populations. A simple gradient based extrapolation technique and a
far-field criterion are used to predict the macroscopic fluid variables. To demonstrate
the non-reflective behaviour of the NSBC, two different tests have been carried
out, examining the capability of the boundary to absorb acoustic waves respectively
vortices. The results for both tests show that the amount of reflection generated by
the NSBC is nearly zero.

1 Introduction

In many fluid dynamics applications the region of interest comprises of only a small
subdomain in space and time. When modelling such applications using numerical
methods, ideally, one would like to isolate this region, as to minimize computational
expenses and to allow for a sufficiently fine grained discretization. Isolating this
region often requires advanced boundary treatment, in which continuity of the
flow field is assumed. In other words, the amount of energy being reflected at
the boundary has to be zero. This is where the so-called Non-Reflective Boundary
Conditions (NRBC’s) come into practise. Focusing on compressible flow solvers
like LBM, the NRBC’s can be divided into two different groups. The first group,
known as the Characteristic Boundary Conditions (CBC’s), aims at canceling out
reflections by suppressing any incoming waves. The second group, the Absorbing
Layer (AL) approach, uses a layer of several nodes thick to absorb any outgoing
waves. Over the years, various efforts have been made to model such NRBC’s with
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LBM. We list some important studies regarding these efforts, where we remark that
all references can be found in our extended paper [1]. In 2006 Chikatamarla et al.
proposed Grad’s approximation for missing data, in which incoming populations are
assigned values based on a low-dimensional sub-manifold in distribution function
space. Shortly thereafter Kam et al. published about the use of NRBC’s for
aeroacoustics simulations, in which he compares several boundary treatments based
on extrapolation, filtering and absorbing layers. By the end of 2008 Izquierdo and
Fueyo proposed an LBM formulation for the Characteristic Boundary Condition
(CBC), based on the one-dimensional (LODI) characteristics of the Euler equations
and their extension to the Navier-Stokes equivalent (NS-CBC). Following the
work of Hu, Najafi-Yazdi and Mongeau developed a direction independent AL-
NRBC based on the Perfectly Matched Layer (PML) approach. In 2013 Schlaffer
presented an extensive research on NRBC’s, in which he introduced the Impedence
Boundary Condition (IBC). To continue with the CBC developments, Heubes et
al. proposed a linear combination between Thompson’s boundary conditions and
the LODI relations. Comparing the approaches of Izquierdo and Heubes, Puig-
Arànega et al. found that the LODI equations become inappropriate when the
dimensionality of the flow increases. Consequently, Jung et al. developed a two-
dimensional generalization of the CBC, by recovering the transverse and viscous
terms in the characteristics analysis. Extending on the above approaches, Wissocq
et al. were able to improve the numerical stability of the CBC at high Reynolds
numbers by taking advantage of a regularized collision scheme. In this study a new
type of boundary concept is proposed to approximate non-reflective flow behavior
at the boundary. The idea of this concept is to utilize the characteristics of the non-
equilibrium distribution function to assign values to the incoming populations. A
simple gradient extrapolation technique coupled with a far-field reference vector is
used to predict the macroscopic fluid variables.

2 The Boltzmann Transport Equation

Based on kinetic theory, the Boltzmann Transport Equation (BTE) (1) describes
the statistical behavior of molecular motion inside a system by using a seven-
dimensional probability density function f , also referred to a particle distribution
function (PDF) or simply distribution function when using the concept of fictitious
particles:

∂f

∂t
+ ξα

∂f

∂xα
+ Fα

ρ

∂f

∂ξα
= �(f ) (1)
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where f is a function of time (t) space (x) and velocity space (ξ ). Whenever
a medium relaxes towards steady state, the solution of the BTE becomes the
equilibrium distribution function f eq (EDF):

f eq(ρ,u, θ, ξ ) = ρ

(2πθ)d/2 e
− |ξ−u|2

2θ (2)

where all quantities are non-dimensional; ρ is the density and θ is the temperature,
equal to RT/u0, in which R and u0 are respectively the gas constant and charac-
teristic velocity; u is the macroscopic velocity of the medium and d the number
of spatial dimensions. A key component of Eq. (1) is the collision operator �(f ),
which represents all possible ways in which particles can collide with one another:

�(f ) = −1

τ
(f − f eq) (3)

where τ is the relaxation time, a direct function of the transport coefficients of a
medium, such as viscosity and heat diffusivity. The macroscopic moments like mass
density (4) and momentum density (5) can be obtained by integrating the moments
of f respectively f eq over the d-dimensional velocity space:

ρ =
∫

f ddξ =
∫

f eq ddξ (4)

ρuα =
∫

ξαf ddξ =
∫

ξαf
eq ddξ (5)

3 The Lattice Boltzmann Method

Based on the Lattice Boltzmann equation (LBE) (6), the Lattice Boltzmann method
(LBM) is a direct discretization of the BTE in both time, space and velocity space:

fi(x+ ci�t, t +�t)− fi(x, t) = �i(x, t) (6)

The method constructs numerical approximations by iteratively streaming and
colliding discrete distribution functions fi , confined by the discrete velocities ci
of a lattice (Fig. 1). By introducing compact notation for (6) and substituting the
collision operator (3), the LBE can be rewritten as:

f ∗i = fi − �t

τ

(
fi − f

eq
i

)
(7)
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c0 c1c2

c3

c4

c5

c6

c7

c8

i ci wi

0 (0, 0) 4/ 9
1–2 (±1, 0) 1/ 9
3–4 (0, ±1) 1/ 9
5–8 (±1, ±1) 1/ 36

Fig. 1 D2Q9 model—Lattice configuration (left) and exchange between lattices (right)

where f ∗i are the discrete post-collision distribution functions and �t is the discrete
time step. The discrete equilibrium distribution function f

eq
i is given by:

f
eq
i = wiρ

(

1+ u · ci
c2
s

+ (u · ci )2

2c4
s

− u · u
2c2

s

)

(8)

where cs = 1√
3

is the LBM speed of sound and wi are the discrete weights,

associated with the lattice velocities ci .

4 The Multiple-Relaxation-Time Collision Model

To increase the accuracy and stability of the current solution, the so-called Multiple-
relaxation-time (MRT) collision model has been added. By relaxing the velocity
moments of f at different rates, rather than relaxing f itself at a single rate, the MRT
collision model is capable of modelling a large range of Reynolds numbers. Similar
to (7) the MRT LBE is given by:

f∗ = f− M−1S
(
m−meq)�t (9)

where m and meq are respectively the velocity moments and the equilibrium velocity
moments:

m = M · f meq = M · feq (10)

The quantity M is a Q × Q transformation matrix, whose entries can be found
by constraining the moments of m. Following the Gram-Schmidt (GS) procedure
[1], M can be formed by constructing a set of mutually orthogonal vectors, each
corresponding to a certain moment of f. The quantity S in (9) represents the
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relaxation matrix and is used to relax the different velocity moments. In the case
of the GS approach, this matrix has the following diagonal form:

S = diag
(
Cρ,ωe, ωε, Cjx , ωq, Cjy , ωq, ων, ων

)
(11)

where ωe and ωε are the energy relaxation rates; ωq is the relaxation rate for the
energy flux and ων is the viscous relaxation rate. The constants Cρ , Cjx and Cjy

represent the conserved quantities and can be assigned any value.

5 The Non-equilibrium Symmetry Boundary

Based upon the approximately symmetrical shape of the non-equilibrium distribu-
tion function f neq, a new type of non-reflective boundary condition (NRBC) has
been constructed, known as the Non-equilibrium Symmetry Boundary Condition
(NSBC). The key behind the NSBC is the approximation that the discrete non-
equilibrium populations f

neq
i are assumed to be equal to their anti-symmetric

counterparts f neq
ī

:

f
neq
i = f

neq
ī

(12)

As a result the incoming populations fin at the boundary nodes can be calculated
using the non-equilibrium contributions of the outgoing populations fout:

fin = f
eq
in + f

neq
out (13)

As this approach requires the equilibrium populations f
eq
in to be computed first,

correct values for the macroscopic fluid vector m = (ρ,u) need to be predicted
in advance. Although there exist various approaches to accomplish this [1], good
results were obtained by simply taking the gradient of m along the normal n of the
boundary, multiplied by the coefficient γ , a relaxation parameter used to minimize
the amount of reflection. As for the D2Q9 model γ = 0.6 was found to give the best
results:

mp = m− γ ∂nm (14)

To allow for the predicted fluid vector mp to convergence towards a certain reference
fluid vector, a so-called far-field flow criterion is introduced, yielding:

mc = (1− β)mp + βm0 (15)

where the coefficient β is the far-field factor and m0 the reference fluid vector. After
all boundary populations have been assigned they are corrected by rescaling them
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with respect to ρc and shifting them with respect to uc, as to guarantee conservation
of the macroscopic moments:

f̃i = fi −wi [�ρ + ci�(ρu)] with:

{
�ρ =∑

i fi − ρc

�(ρu) =∑
i cifi − ρcuc

(16)

After the correction has been performed, the standard collision procedure can be
carried out, in which there is no distinction between the boundary and the internal
fluid.

6 Test Case 1: Propagation of Acoustic Waves

Acoustic waves, also known as sound waves, are characterised by local pressure
variations propagating at a certain speed cs through a medium. When considering
this medium to be a fluid with negligible viscosity, the propagation of such waves is
governed by the ideal wave equation:

∇2s = 1

c2
s

∂2
t s (17)

A possible solution of (17) is the one-dimensional Gaussian plane wave given by:

p(x, t) = ρ0c
2
s [1+ s(x, t)] (18)

u(x, t) = ∓css(x, t) (19)

s(x, t) =
√
eζ

ρ0λ
(x ± cst) e

− (x±cs t)
2

2λ2 (20)

where p is the total wave pressure, u the wave velocity, s the condensation,
ζ the wave amplitude and λ a steepness factor. To examine the capability of
the NSBC to absorb such a wave, a two-dimensional square domain of fluid
is considered, containing an initially inhomogeneous distribution of density and
velocity, representing a plane wave. To observe the behaviour of the NSBC under
different angles of incidence, the wave is configured to approach the boundary under
an angle of 60o with respect to the horizontal axis. The domain consists of 128×128
lattice units and is fully bounded by NSBC’s (γ = 0.6 and ff = 0.0). The wave
properties are set to ρ0 = 1.0, ζ = 0.01 and λ = l/32. To approximate Eq. (17), the
fluid viscosity is assumed to be zero (e.g. τ = 0.5). The MRT relaxation rates have
been chosen as ωe = ωε = ωq = 1.9. The pressure results of Fig. 2 show that the
reflectivity of the NSBC is nearly zero.
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Fig. 2 Test case 1: Propagation of a plane wave under an angle—Pressure results

7 Test Case 2: Convected Vortex

Formed in stirred fluids, vortices are a major component in many flow applications.
Due to their characteristics and complex interaction with the surrounding fluid,
absorption of vortices can be challenging. To examine the capability of the NSBC in
this area, a two-dimensional Lamb-Oseen vortex [1] is convected towards the right
boundary of a square domain with a grid size of 128× 128 lattice units. The vortex
is initialized by introducing a local perturbation of the flow field according to:

u = u0 − βu0
(y − y0)

Rc

e
− r2

2Rc (21)

v = βu0
(x − x0)

Rc

e
− r2

2Rc (22)

ρ =
[

1− (βu0)
2

2Cv

e−
r2
2

] 1
γ−1

(23)

r = (x − x0)
2 + (y − y0)

2 (24)

where u0 = 0.1 is the reference velocity, β = 0.5 a coefficient and Rc = 20
the vortex radius (All quantities are in lattice units). The gas constant γ and the
volumetric heat capacity Cv are defined by:

γ = d + 2

d
Cv = d

2
c2
s (25)

where d is the number of spatial dimensions. The Reynolds number equals Re =
103 and is based on u0 and the size of the computational domain. Concerning the
domain boundaries; a Dirichlet velocity boundary [1] is defined at the left and an
NSBC with γ = 0.6 and ff = 0.0 is defined at the right; the bottom and top
boundaries are assumed to be periodic. The MRT relaxation rates are ωe = ωε = 1.4
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Fig. 3 Test case 5: Convected vortex—Isovalues of longitudinal velocity

and ωq = 1.2. The results from Fig. 3 show that the vortex is fully absorbed by the
boundary.

8 Summary

A new type of non-reflective boundary formulation (NSBC) is proposed, based on
the approximately symmetrical shape of the non-equilibrium distribution function.
In this formulation, the incoming populations at a boundary node are assigned
the non-equilibrium contributions of the outgoing populations. The equilibrium
contributions of these incoming populations are computed using a predicted macro-
scopic fluid vector, determined by a simple gradient based extrapolation method.
Additionally, a far-field flow criterion can be applied to this fluid vector, to allow
for convergence towards a certain reference value. After all populations have been
assigned, they are rescaled and shifted with respect to the fluid vector, as to satisfy
conservation of the macroscopic moments. To examine the non-reflectiveness of
proposed boundary condition, two different tests have been carried out. In the first
test the capability of the NSBC to absorb acoustic waves has been studied. Results
show that the reflections are nearly zero, even when considering a large angle of
incidence. As a second test the absorption of a convected vortex has been modelled.
Isovalues of the longitudinal velocity indicate that the vortex is completely absorbed
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by the boundary. To summarize, the NSBC has found to be an interesting alternative
for modelling non-reflective boundaries. However further investigations are needed
to determine the validity of present boundary formulation.
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Abstract The paper deals with the discontinuous Galerkin method (DGM) for
the solution of compressible Navier-Stokes equations in the ALE form in time-
dependent domains combined with the solution of linear and nonlinear dynamic
elasticity. The developed methods are oriented to fluid-structure interaction (FSI),
particularly to the simulation of air flow in a time-dependent domain representing
vocal tract and vocal folds vibrations. We compare results obtained with the aid of
linear and nonlinear elasticity models. The results show that it is more adequate
to use the nonlinear elasticity St. Venant-Kirchhoff model in contrast to the linear
elasticity model.

1 Compressible Navier-Stokes Problem in a Time Dependent
Domain and Dynamic Elasticity Problem

1.1 Compressible Flow

We are concerned with the problem of compressible flow in a time-dependent
bounded domain �t ⊂ R2 with t ∈ [0, T ] . The boundary of �t is formed by
three disjoint parts: ∂�t = �I ∪ �O ∪ �Wt , where �I is the inlet, �O is the outlet
and �Wt represents impermeable time-dependent walls.
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The time dependence of the domain �t is taken into account with the aid of
the Arbitrary Lagrangian-Eulerian (ALE) method. It is based on a regular one-to-
one ALE mapping of the reference configuration �0 onto the current configuration
�t : At : �̄0 −→ �̄t . Further, we define the domain velocity z̃(X, t) =
∂
∂t
At (X), t ∈ [0, T ] , X ∈ �0, z(x, t) = z̃(A−1

t (x), t), t ∈ [0, T ] , x ∈ �t and
the ALE derivative of the state vector function w = w(x, t) defined for x ∈ �t and
t ∈ [0, T ]: DA

Dt
w(x, t) = ∂w̃

∂t
(X, t), where w̃(X, t) = w(At (X), t), X ∈ �0, x =

At (X). Then the continuity equation, the Navier-Stokes equations and the energy
equation can be written in the ALE form

DAw

Dt
+

2∑

s=1

∂gs (w)

∂xs
+ wdivz =

2∑

s=1

∂Rs (w,∇w)

∂xs
, (1)

where w = (ρ, ρv1, ρv2, E)T ∈ R4, gs(w) = f s(w) − zsw, f s(w) =
(ρvs, ρv1vs+δ1sp, ρv2vs+ δ2sp, (E+p)vs)

T , Rs (w,∇w) = (0, τV
s1, τ

V
s2, τ

V
s1v1

+ τV
s2v2 + k ∂θ

∂xs
)T , s = 1, 2, τV

ij = λδijdivv + 2μdij (v), dij (v) =
1
2

(
∂vi
∂xj

+ ∂vj
∂xi

)
, i, j = 1, 2. We have Rs(w,∇w) = ∑2

k=1 Ks,k(w) ∂w
∂xk

, where

Ks,k(w) are 4 × 4 matrices depending on w, and f s(w) = Å(w)w with
Å(w) = Df s(w)/w, see [2]. The following notation is used: ρ—fluid density, p—
pressure, E—total energy, v = (v1, v2)—velocity vector, θ—absolute temperature,
cv > 0—specific heat at constant volume, γ > 1—Poisson adiabatic constant,
μ > 0, λ = −2μ/3—viscosity coefficients, k > 0—heat conduction coefficient,
τV
ij —components of the viscous part of the stress tensor. System (1) is completed

by the thermodynamical relations p = (γ − 1)
(
E − ρ

|v|2
2

)
, θ = 1

cv

(
E
ρ
− |v|2

2

)

and equipped with the initial conditionw(x, 0) = w0(x), x ∈ �0 and the boundary
conditions:
ρ = ρD, v = vD,

∑2
j=1

(∑2
i=1 τ

V
ij ni

)
vj + k ∂θ

∂n
= 0 on the inlet �I ,

v = zD(t) = velocity of a moving wall, ∂θ
∂n
= 0, on the moving wall �Wt ,∑2

j=1 τ
V
ij nj = 0, ∂θ

∂n
= 0, i = 1, 2, on the outlet �O ,

with prescribed data ρD, vD, zD. By n we denote the unit outer normal.

1.2 Dynamic Elasticity

We assume that an elastic body is represented by a bounded domain �b ⊂ R
2

with boundary ∂�b = �b
D ∪ �b

N . Let T > 0. We seek a displacement function
u : �b × [0, T ] → R

2 such that

ρ
∂2u

∂t2 + cMρ
∂u

∂t
− divP (F ) = f in �b × [0, T ], (2)

u = uD in �b
D × [0, T ], (3)
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P (F ) · n = gN in �b
N × [0, T ], (4)

u(·, 0) = u0,
∂u

∂t
(·, 0) = y0 in �b. (5)

Here f is outer volume force, ρ > 0 is material density, P denotes stress tensor and
the quantity F depends on u as shown further. The expression cMρ ∂u

∂t
with cM > 0

represents structural damping.
In case of linear elasticity the stress tensor depends linearly on the strain tensor

e(u) = (∇u + ∇uT )/2 according to the relation P (F ) = σ (u) = λb tr(e(u))I +
2μbe(u). Here λb and μb are the Lamé parameters that can be expressed with the aid
of the Young modulus E and the Poisson ratio ν: λb = Eν

(1+ν)(1−2ν), μb = E
2(1+ν)

.
In the case of nonlinear model we introduce the deformation mapping ϕ(x) =

x+u(x), deformation gradient (i.e., the Jacobian matrix of the deformation mapping
ϕ) F := ∇ϕ(x), the Jacobian of the deformation J = detF > 0 and the Green
strain tensor E = (Eij )

2
i,j=1 = e +E∗ with components

Eij = 1

2

(
∂ui

∂xj
+ ∂uj

∂xi

)

︸ ︷︷ ︸
eij−linear part

+ 1

2

2∑

k=1

∂uk

∂xi

∂uk

∂xj
︸ ︷︷ ︸

E∗ij−nonlinear part

. (6)

In the case of a nonlinear material we consider the St. Venant-Kirchhoff model with
the stress tensor defined by the following relations:

� = λbtr(E)I + 2μbE, P (F ) = F�, (7)

where � is the second Piola-Kirchhoff stress tensor. Writing �(u) = (0ij )
2
i,j=1,

we get

0ij = λb

(
2∑

l=1

∂ul

∂xl
+ 1

2

2∑

l=1

2∑

k=1

(
∂uk

∂xl

)2
)

δij + μb

(
∂ui

∂xj
+ ∂uj

∂xi
+

2∑

k=1

∂uk

∂xi

∂uk

∂xj

)

.

(8)

For a detailed description we can refer the reader to the monograph [1].

1.3 Transmission Conditions

On the common boundary between fluid and structure
�̃Wt =

{
x ∈ R2; x = X + u(X, t), X ∈ �b

N

}
we consider interface conditions

representing the continuity of the normal stress and velocity:
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(a) linear elasticity:

2∑

j=1

σb
ij (X)nj (X) =

2∑

j=1

τ
f
ij (x)nj (X), i = 1, 2, v(x, t) = ∂u(X, t)

∂t
,

(b) nonlinear elasticity:

P (F (u(X, t)))n(x) = τf (x, t)Cof(F (u(X, t)))n(x), v(x, t) = ∂u(X, t)

∂t
.

Here τ f = {τf
ij }2i,j=1 is the stress tensor of the fluid.

2 Discretization

In both flow and elasticity problems we assume that the domains �t and �b are
polygonal.

2.1 Discretization of the Flow Problem

The flow problem is discretized by the space-time discontinuous Galerkin method
(STDGM). By Tht we denote a triangulation of the domain �ht with standard
properties. By Fht , FB

ht ,F
I
ht we denote the systems of all faces of all elements

K ∈ Tht , boundary faces and inner faces, respectively. Further, we introduce
the set of “Dirichlet” boundary faces FD

ht = {� ∈ FB
ht ; a Dirichlet condition is

prescribed on �}. Each face � is associated with a unit normal n� , which has the
same orientation as the outer normal on � ∈ FB

ht . We set h� = length of �. The
symbol 〈·〉 denotes the mean value from the sides of � ∈ FI

ht , and [·] denotes the
jump on �.

For the space-time discretization we introduce a partition 0 = t0 < t1 < . . . <

tM = T of the time interval [0, T ] and denote Im = (tm−1, tm), τm = tm− tm−1, for
m = 1, . . . ,M . Then we define the space SSr

ht = {v; v|K ∈ Pr(K) ∀K ∈ Tht }4
and the approximate solution is sought in the space

S
rq
hτ =

{
φ ; φ|Im =

q∑

i=0

ζiφi , where φi ∈ Sr
ht , ζi ∈ Pq(Im)

}2
, (9)

where integers r, q ≥ 1, Pr(K) denotes the space of all polynomials on K of degree
≤ r and Pq(Im) denotes the space of all polynomials in t on Im of degree ≤ q . For
ϕ ∈ S

rq
hτ we set ϕ±m = ϕ(t±m) = limt→tm± ϕ(t), {ϕ}m = ϕ+m − ϕ−m. The initial
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state whτ (0−) ∈ S
p

h0 is defined as the L2(�h0)-projection of w0 on Sr
h0. Moreover,

we introduce the prolongation whτ (t) of whτ |Im−1 on the interval Im. By (·, ·)t we
denote the L2(�ht )-scalar product.

The discrete problem is based on the use of the following forms defined for
wh,wh,ϕh ∈ SSr

ht (see, e.g. [2]):

âh(wh,wh,ϕh, t) =
∑

K∈Tht

∫

K

2∑

s=1

2∑

k=1

Ks,k(wh)
∂wh

∂xk
· ∂ϕh

∂xs
dx (10)

−
∑

�∈FI
ht

∫

�

2∑

s=1

〈
2∑

k=1

Ks,k(wh)
∂wh

∂xk

〉

(n�)s · [ϕh] dS

−
∑

�∈FD
ht

∫

�

2∑

s=1

2∑

k=1

Ks,k(wh)
∂wh

∂xk
(n�)s · ϕh dS,

Jh(wh,ϕh, t) (11)

=
∑

�∈FI
ht

∫

�

μCW

h�

[wh] · [ϕh] dS +
∑

�∈FD
ht

∫

�

μCW

h�

wh · ϕh dS,

dh(wh,ϕh, t) =
∑

K∈Tht

∫

K

(wh · ϕh) divz dx, (12)

b̂h(wh,wh,ϕh, t) (13)

= −
∑

K∈Thtk+1

∫

K

2∑

s=1

(Ås (wh(x))− zs(x))I)wh(x))· ∂ϕh(x)

∂xs
dx

+
∑

�∈FI
ht

∫

�

(
P
+
g

(〈
wh

〉
�
,n�

)
w

(L)
h + P

−
g

(〈
wh

〉
�
,n�

)
w

(R)
h

)
· [ϕh] dS

+
∑

�∈FB
ht

∫

�

(
P
+
g

(〈
wh

〉
�
,n�

)
w

(L)
h + P

−
g

(〈
wh

〉
�
,n�

)
w

(R)
h

)
·ϕh dS,

�h(wh,ϕh, t) =
∑

�∈FD
ht

∫

�

μCW

h�

wB · ϕh dS, (φ,ψ)�t =
∫

�t

φψ dx. (14)



414 M. Feistauer et al.

Here CW > 0 is a sufficiently large constant. The symbols P+g (w,n) and P
−
g (w,n)

denote the “positive” and “negative” parts of the matrix Pg(w,n) =∑2
s=1(Ås (w)−

zsI)ns defined, e.g., in [2]. The boundary state wB is defined on the basis of the
prescribed Dirichlet boundary conditions and extrapolation.

Now the space-time DG approximate solution is defined as a functionwhτ ∈ §rq

hτ

satisfying the following relation for m = 1, . . . ,M:

∫

Im

((
DAwhτ

Dt
(t),ϕhτ

)

�t

+ âh(whτ ,whτ ,ϕhτ , t)

)

dt (15)

+
∫

Im

(
b̂h(whτ ,whτ ,ϕhτ , t)+ Jh(whτ ,ϕhτ , t)+ dh(whτ ,ϕhτ , t)

)
dt

+({whτ }m−1,ϕhτ (tm−1+)) =
∫

Im

�h(whD,ϕhτ , t) dt, ∀ϕhτ ∈ Srq

hτ .

The function whτ is a prolongation of whτ |Im−1 to the time interval Im.
It can be seen that this relation is equivalent to a linear algebraic system on every

time interval Im, m = 1, . . . ,M .

2.2 Discretization of the Elasticity Problem

Because of the discretization of the elasticity problem we consider the displacement
u and introduce the deformation velocity y. The basic system (2) is split into two
systems of first-order in time:

ρb ∂y

∂t
+ cMρby − divP (F ) = f ,

∂u

∂t
− y = 0 in �b × [0, T ], (16)

with boundary and initial conditions (3)–(5)
Now we proceed in a similar way as in the flow problem. In the domain �b

we construct a triangulation Th. The approximate solution at every time instant
t ∈ [0, T ] will be sought in the finite-dimensional space

Shs =
{
v ∈ L2(�b); v|K ∈ Ps(K),K ∈ Th

}2
, (17)

where s > 0 is an integer. By Fh we denote the system of all faces of all elements
K ∈ Tb

h and distinguish there sets of boundary, “Dirichlet”, “Neumann” and

inner faces: FBb
h =

{
� ∈ Fb

h;� ⊂ ∂�b
}

, FDb
h = {

� ∈ Fh;� ⊂ �b
D

}
, FNb

h =
{
� ∈ Fb

h;� ⊂ �b
N

}
and FIb

h = Fh\FBb
h .
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Elasticity forms:

ab
h(u,ϕ) =

∑

K∈Tb
h

∫

K

P (F ) : ∇ϕ dx −
∑

�∈F Ib
h

∫

�

(〈P (F )〉n) · [ϕ] dS (18)

−
∑

�∈FDb
h

∫

�

(P (F )n) · ϕ dS,

J b
h (u,ϕ) =

∑

�∈F I
h

∫

�

Cb
W

h�
[u] · [ϕ] dS +

∑

�∈FD
h

∫

�

CW

h�

u · ϕ dS, (19)

�bh(ϕ)(t) =
∑

K∈Th

∫

K

f (t) · ϕ dx +
∑

�∈FN
h

∫

�

gN(t) · ϕ dS (20)

Ab
h = ab

h + J b
h , (u,ϕ)�b =

∫

�b

u · ϕ dx. (21)

The time discretization is carried out with the use of a backward difference
formula (BDF) ∂u

∂t
(tm) ≈ Dappru

m
h

Dt
= α0 u

m
h + ∑q

�=1 α�u
m−�
h . Similar formula is

used for the approximation of ∂y/∂t . The coefficients α� depend on time steps
τm, τm−1, . . .. See, e.g. Tables 8.2 and 8.3 in [2].

Now we come to the complete BDF-DG discrete problem: Find um
h , zmh ∈ Shs

such that for all ϕh ∈ Shs, m = 1, . . . ,M ,

(a)

(

ρ
Dapprz

m
h

Dt
,ϕh

)

�b

+ cM
(
ρ ym

h ,ϕh

)
�b + Ab

h

(
um
h ,ϕh

) = �bh(ϕh) (tm), (22)

(b)

(
Dappru

m
h

Dt
, ϕh

)

�b

− (
ym
h ,ϕh

)
�b = 0, (23)

(c)
(
u0
h,ϕh

)

�b
= (

u0,ϕh

)
�b ,

(
y0
h,ϕh

)

�b
= (

y0,ϕh

)
�b . (24)

Nonlinear discrete problems are solved by the Newton method. Linear systems
are solved by the direct solver UMFPACK or iterative method GMRES.

3 Numerical Experiments

Our goal is to apply the developed method to the simulation of flow-induced
vibrations of vocal folds excited by airflow coming from a model of trachea, through
the glottis region to the vocal tract model ended in ambient air. The geometry of
the domain occupied by the fluid and vocal folds is shown in Fig. 1. Moreover we
add to this geometry a semicircle subdomain with a radius 3.0 cm as an outlet �O .
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Fig. 1 Geometry of the computational domain at time t = 0 and the description of its size: LI =
20.0 mm, Lg = 17.5 mm, LO = 55.0 mm, HI = 25.5 mm, HO = 2.76 mm

Fig. 2 Nonhomogeneous model of vocal folds—values of Young modulus Eb and Poisson
ratio μb

The fluid flow problem is computed on the triangulation with 17,652 elements.
Further, for the fluid flow problem the following data are used: magnitude of the
inlet velocity vin = 4,m s−1, dynamic viscosity μ = 1.80 · 10−5 kg m−1 s−1,
inlet density ρin = 1.225 kg m−3, outlet pressure pout = 97,611 Pa, Reynolds
number Re = ρinvinHI /μ = 6941.7, κ = 2.428 · 10−2 kg m s−3 K−1, cv =
721.428 m2 s−2 K−1, γ = 1.4. We use the polynomial approximation of degree 2
in space and degree 1 in time. We employ the penalization constant CW = 500
for inner faces and CW = 5000 for boundary edges. The time step τ is set to
10−6 s. In the elasticity problem we consider the St. Venant-Kirchhoff model. We
set ρb = 1040 kg m−3. The triangulation has 5118 elements. The division of the
domain into four regions with different material characteristics is illustrated in Fig. 2
with the material characteristics ordered from the lower layer to the upper one. The
penalization constant Cb

W = 4 ·106, the BDF method of order 2 and piecewise linear
approximation in space are used.

Figure 3 shows velocity field in the glottal region at two time instants of the
vocal folds self-oscillation. In these time instants different jet declination behind the
channel constriction, i.e. the Coanda effect can be observed.

There is a question if it is possible to use a linear elasticity model or if it is
necessary to apply a nonlinear model. It is tested with the ratio R, computed from
the strain tensor, defined by R := ‖e‖

‖E‖ = ‖e‖
‖e+E∗‖ (see (6)). If R ≈ 1, then the
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Fig. 3 Velocity field in the glottal region at two time instants of the vocal folds self-oscillation

Fig. 4 Deformation of vocal folds in dependence on time and the ratios of the norms at two
different time instants

nonlinear part of the strain tensor has no influence to the computation (the linear
elasticity model is sufficient), but if R ≈ 0, then the nonlinear part strongly takes
effect and it is necessary to use a nonlinear elasticity model. Figure 4 shows the
deformation of the vocal folds at 2 time instants for a maximal and minimal glottal
gap during vocal folds oscillations. The ratio R ≈ 1 is depicted by grey and case
R ≈ 0 by dark red color. It can be seen that nonlinear part of the strain tensor takes
effect in elements near to the boundary. Therefore, to correctly capture deformations
of the vocal folds, it is necessary to use a nonlinear model of elasticity.
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Efficient Solvers for a Stabilized
Three-Field Mixed Formulation
of Poroelasticity

Massimiliano Ferronato, Matteo Frigo, Nicola Castelletto, and Joshua
A. White

Abstract We focus on a three-field (displacement-velocity-pressure) stabilized
mixed method for poroelasticity based on piecewise trilinear (Q1), lowest order
Raviart-Thomas (RT0), and piecewise constant (P0) approximations for displace-
ment, Darcy’s velocity and fluid pore pressure, respectively. Since the selected
discrete spaces do not intrinsically satisfy the inf-sup condition in the undrained/in-
compressible limit, we propose a stabilization strategy based on local pressure
jumps. Then, we focus on the efficient solution of the stabilized formulation by
a block preconditioned Krylov method. Robustness and efficiency of the proposed
approach are demonstrated in two sets of numerical experiments.

1 Introduction

The strong form of the poroelasticity initial/boundary value problem on the domain
� ⊂ R

d (d = 2, 3) and in the time interval I = (t0, tmax) can be stated as follows
[1]: given appropriate boundary and initial conditions, find the displacement vector
u, Darcy’s velocity q, and the pore pressure p such that

div (Cdr : sym(grad u)− bp1) = 0 on �× I, (1a)

μκ−1 · q + grad p = 0 on �× I, (1b)

b div u̇+ Sεṗ + div q = f on �× I, (1c)
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whereCdr is the rank-four elasticity tensor, b the Biot coefficient, and 1 the rank-two
identity tensor; μ and κ are the fluid viscosity and the rank-two permeability tensor,
respectively; Sε is the constrained specific storage coefficient, i.e. the reciprocal
of Biot’s modulus, and f the volumetric source term. For additional details about
the formulation and its well-posedness, see [2]. By using a mixed Q1-RT0-P0
discretization in space and backward Euler time-marching scheme, the discrete
solution for each time instant t is obtained by solving the block linear system [3]:

Ax = b with A =
⎡

⎣
K 0 −Q

0 A −B

QT �tBT P

⎤

⎦ , x =
⎡

⎣
u
q
p

⎤

⎦ , b =
⎡

⎣
fu
fq
fp

⎤

⎦ , (2)

where u, q and p denote the vectors of displacement, Darcy’s velocity, and pressure
unknowns, respectively, at the current time, and �t is the time-step size. The blocks
K , A and P are the classical small displacement stiffness, (scaled) velocity mass,
and (scaled) pressure mass matrix, respectively, with Q and B the rectangular
coupling blocks. K and A are symmetric positive definite (SPD), while P is
diagonal with non-negative entries. For more details about the linear system and
the solution approaches, see [3, 4] and references therein.

The Q1-RT0-P0 discretization is a popular and effective choice, but it is unstable
in the limit of undrained conditions with incompressible solid and fluid phases [5].
In this paper, we focus on the stabilization of problem (1) by a technique based on
the macroelement concept, known as Local Pressure Jump (LPJ) stabilization. This
strategy was originally introduced in [6] for stabilizing the Q1-P0 discretization of
the Stokes equations and recently used in multiphase poromechanics [7]. Two sets
of numerical experiments, testing the effectiveness of the stabilization, conclude the
paper.

2 Local Pressure Jump Stabilization

In presence of undrained conditions (q = 0), either for low permeability, κ → 0, or
small time-step, �t → 0, and incompressible fluid and solid grain (Sε → 0), the
system (2) reduces to:

By = c with B =
[
K −Q

Q 0

]

, y =
[

u
p

]

, c =
[

fu
fp

]

, (3)

which resembles the Q1-P0 discretization of the Stokes equations where spurious
modes can appear in the pressure solution. The LPJ stabilization relies on the
macroelement construction, which is an elegant theoretical framework used to prove
the inf-sup condition in a saddle-point problem. The grid elements are grouped
in macroelements, composed in our case by either four quadrilaterals (d = 2) or
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eight hexahedra (d = 3). Let us denote with Mh the macroelement grid, with
M ∈ Mh, �∂

M and �M the generic macroelement, its external and internal faces,
respectively. Let B∗ be the restriction of B in (3) to the macroelement M with null-
displacement Dirichlet conditions on �∂

M and S∗ the related Schur complement.
The basic idea is to ensure the discrete solvability condition, i.e., ker S∗ = {1}, on
every macroelement. The inf-sup condition holds true for any grid constructed by
patching together these stable macroelements. The local Schur complement reads
S∗ = Q∗T K∗−1Q∗, where Q∗ and K∗ are the d × 2d and d × d macroelement
restrictions of Q and K . Then, the size of ker S∗ is at least equal to 2d−d . The idea is
to add a new term P ∗

s to the mass balance equation such that the new macroelement
system with B∗s is consistent, i.e., kerS∗s = {1}, with:

B∗s =
[
K∗ −Q∗
Q∗T P ∗

s

]

, S∗s = P ∗
s +Q∗T K∗−1

Q∗. (4)

The LPJ stabilization matrix P ∗
s is given by the area-weighted inter-element

pressure jumps [6]:

[P ∗
s ]ij =

∑

M∈Mh

∑

e∈�M

βh

∫

e

�χi�e�χj �e d�,

with {χi, χj } ranging over the element-wise constant basis for the pressure space,
�·�e the jump across the face e, h the mesh parameter (defined locally), and β

a stabilization parameter. From a physical viewpoint, the term P ∗
s relaxes the

incompressibility constraint by introducing a fictitious flux through the inner faces
of each macroelement. Such fluxes counterbalance the spurious pressure modes
lying in the kernel of S∗ and the mass-conservation is still guaranteed at the
macroelement level. Note also that these fluxes are effective only in undrained
condition, while they become irrelevant when q �= 0.

One last point concerns the choice of the stabilization parameter β. An optimal
candidate can be guessed from the eigenspectrum of S∗. Following the ideas in [8],
we obtain β = (b/2)2/(2G+ λ) for d = 2, where λ and G are the Lamé parameter
and the shear modulus, respectively. For d = 3, a recent analysis [7], based on
minimizing the conditioning number of S∗, suggests setting β = (3b)2/(32(4G+
λ)).

2.1 Linear Solver

By introducing the LPJ stabilization, the global block system (2) becomes:
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Asx = b with As =
⎡

⎢
⎣

K 0 −Q

0 A −B

QT �tBT P + Ps

⎤

⎥
⎦ , (5)

with Ps composed by the m = dim(Mh) blocks P ∗
s . Recalling that the pattern of

the block B provides the face-to-element connections, i.e., [B]ij �= 0 means that
the face i belongs to the element j , it is possible to see that the sparsity pattern
of P ∗

s is the same as B∗T B∗, being B∗ the restriction of B on the macroelement
M with no-flow conditions on �∂

M . Hence, the sparsity pattern of Ps is a subset of
the sparsity pattern of BT B. This property allows for the straightforward use of the
Block Triangular Preconditioner (BTP) developed in [3] for the system (5):

M−1
s =

⎡

⎢
⎣

M−1
K 0 0

0 M−1
A 0

−M−1
S QT M−1

K −�tM−1
S BTM−1

A M−1
S

⎤

⎥
⎦ , (6)

with S = Ps + P + SK + �tSA, and M−1
K , M−1

A and M−1
S inner preconditioners

for K , A and S, respectively. SK is the diagonal fixed-stress matrix approximating
QTK−1Q, while SA = BT Ã−1B with Ã a diagonal spectrally equivalent approx-
imation of A. Since P is diagonal, the sparsity pattern of S is still that of BT B

independently of the presence of Ps .

3 Numerical Results

Two test cases are used to investigate the effectiveness of the proposed stabilization
and its influence on the linear solver: (1) Barry-Mercer’s problem [9], a 2D
benchmark of linear poroelasticity particularly suitable for validation purposes; (2)
an impermeable cantilever beam, used to analyze the efficiency of the stabilization in
both eliminating spurious oscillations and improving the linear solver performance.

3.1 Barry-Mercer’s Problem

The problem domain and the physical parameters are provided in Table 1. A periodic
source term is set at point q of a square domain with homogeneous boundary
conditions. For the details and the analytical solution, the reader can refer to [9].

Figure 1 shows the convergence behavior of the L2-norm of the error for the
pressure field, which is linear as expected. Figure 2 compares the unstabilized and
stabilized formulations for a uniform discretization with spacing h = 1/16. The
unstabilized model presents the classical checkerboard oscillations in the pressure
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Table 1 Barry-Mercer’s problem: (a) domain sketch and (b) physical parameters
y

x

q

l

l

p
=

u
y
=

∂
u
x

∂
x
=

0

p
=

u
y
=

∂
u
x

∂
x
=

0

p = ux = ∂uy

∂y
= 0

p = ux = ∂uy

∂y
= 0

(a)

Quantity Value Unit

Young’s modulus (E) 105 Pa

Poisson’s ratio (ν) 0.1 –

Biot’s coefficient (b) 1.0 –

Constrained specific
storage (Sε )

0 Pa

Isotropic permeability
(κ)

10−9 m2

Fluid viscosity (μ) 10−3 Pa
s

Domain size x-y (l) 1.0 m

(b)

Fig. 1 Barry-Mercer’s
problem: convergence in the
L2 norm of the pressure
solution

1.e-3 1.e-2 1.e-1
1.e-2

1.e-1

1.e0

1
1

h

||p
−
ph

|| 2
/||

p|
| 2

behavior. The oscillations disappear with the proposed stabilization with no loss of
accuracy. The same results can be observed in Fig. 3 along three vertical profiles
close to the source point.

3.2 Cantilever Problem

A porous cantilever beam is considered, with the same physical properties as Barry-
Mercer’s problem (Table 1). The domain is the unit square or cube for the 2-D and
3-D case, respectively. No-flow boundary conditions along all sides are imposed,
with the displacements fixed along the left edge and a uniform load applied at the
top. Figure 4 shows the pressure solution obtained with a grid spacing h = 1/10.
In the unstabilized formulation, checkerboard oscillations arise close to the left
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Fig. 2 Barry-Mercer’s problem: pressure solution for the unstabilized and stabilized formulations
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Fig. 3 Barry-Mercer’s problem (h = 1/16): pressure along the y-direction for the unstabilized
(left) and stabilized (right) formulations

constrained edge. As in the previous test case, the proposed stabilization eliminates
the spurious pressure modes. This behavior can be better observed along the three
vertical profiles provided in Fig. 5.

Finally, we analyze the effects of the stabilization procedure on the linear solver.
In order to emphasize the role of the approximations introduced in the Schur
complement S, the inner preconditioners MK , MA and MS are applied via a nested
direct solver, using the Separate Displacement Component for MK . Table 2 provides
the iteration count for different time-step and grid sizes. For �t = 0.1 s, the
two formulations give essentially the same outcome. Indeed, when the conditions
are far from the incompressible/undrained limit the effect of the stabilization
vanishes as to both the solution accuracy and the solver performance. On the
other hand, with a small time-step size, e.g., �t = 0.00001 s, the preconditioned
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Fig. 4 2D Cantilever beam: pressure solution for the unstabilized and stabilized formulations
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Fig. 5 2D Cantilever beam: pressure solution along the y-direction for the unstabilized (left) and
stabilized (right) formulations

Table 2 3D Cantilever beam: iteration count for (a) �t = 10−1 s and (b) �t = 10−5 s

1/h # cells No stab. Stab.

10 1000 47 47

20 8000 52 52

40 64,000 55 55

(a)

1/h # cells No stab. Stab.

10 1000 116 49

20 8000 267 57

40 64,000 231 63

(b)
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Krylov method behavior can significantly differ between the two formulations. An
important degradation in the linear solver performance is observed when using the
unstable formulation, as a consequence of the presence of near-singular modes. In
the stabilized formulation, such an issue is completely removed and the iteration
counts prove also quite stable with the grid size h.

4 Conclusion

In this work, we have introduced a stabilized formulation for three-field Q1-RT0-
P0 coupled poromechanics. This stabilization is obtained from the LPJ technique
originally advanced for Stokes’ problems. The LPJ stabilization method turns out
to be effective not only in fulfilling the inf-sup condition on the approximation
spaces, but also in improving the linear solver performance. In particular, efficient
algorithms already developed for the classical three-field formulation, such as the
BTP approach [3], can be used straightforwardly, with just a slight and inexpensive
modification in the approximate Schur complement computation. The effectiveness
of the proposed stabilization has been investigated in two test cases, showing its
capability of eliminating spurious pressure oscillations in undrained conditions,
preserving the solution accuracy and convergence, and accelerating the solver
convergence.
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Time-Dependent Two-Dimensional
Fourth-Order Problems: Optimal
Convergence

J.-P. Croisille and D. Fishelov

Abstract Here we present a new approach for the analysis of high-order compact
schemes for the clamped plate problem. A similar model is the Navier-Stokes
equation in streamfunction formulation. In our book “Navier-Stokes Equations in
Planar Domains”, Imperial College Press, 2013, we have suggested fourth-order
compact schemes for the Navier-Stokes equations. The same type of schemes may
be applied to the clamped plate problem. For these methods the truncation error is
only of first-order at near-boundary points, but is of fourth order at interior points.
It is proven that the rate of convergence is actually four, thus the error tends to zero
as O(h4).

1 Introduction

The 2D incompressible Navier-Stokes (NS) equations ∂t (�ψ)+(∇⊥ψ) ·∇(�ψ) =
ν�2ψ , where ψ is the streamfunction, play an important role in various areas of
physics. In [2] we suggested fourth-order compact schemes for the NS problem,
including important foundations for their error analysis.

In Sect. 2 we analyze the error for the two-dimensional problem ∂tu+�2u = f -
the time-dependent clamped plate problem. This is related to the time dependent
Navier-Stokes equations since both equations include the biharmonic operator. We
prove that even though the truncation error is only O(h) at near boundary points,
the scheme is fourth-order accurate and the error is O(h4), where h is the mesh size.
Similar situations occur also for the high-order finite difference schemes suggested
in [1] and [6].
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2 The Equation ∂tu+ 	2u = f

Consider the fourth-order partial differential problem

∂tu+�2u = f (x, y, t), (x, y) ∈ (0, 1)× (0, 1), t > 0,
u(0, y, t) = u(1, y, t) = 0, ux(0, y, t) = ux(1, y, t) = 0, 0 ≤ y ≤ 1,
u(x, 0, t) = u(x, 1, t) = 0, uy(x, 0, t) = uy(x, 1, t) = 0, 0 ≤ x ≤ 1,
u(x, y, 0) = g(x, y), (x, y) ∈ [0, 1] × [0, 1].

(1)

In order to approximate the solution of Eq. (1), we lay out a uniform grid (xj , yk) =( j
N
, k
N

)
, j, k = 0, 1, . . . , N. Let f(t) be the evaluation of f at the grid points. Then,

we define a grid function vj,k(t), which serves as an approximation of u(xj , yk, t)
for j, k = 0, . . . , N , to be the solution of

∂tvj,k(t)+ �̃2
hvj,k(t) = fj,k(t), j, k = 1, . . . , N − 1,

v0,k(t) = vN,k(t) = 0, (vx)0,k(t) = (vx)N,k(t) = 0, k = 0, . . . , N,

vj,0(t) = vj,N (t) = 0, (vy)j,0(t) = (vy)j,N (t) = 0, j = 0, . . . , N,

vj,k(0) = gj,k, j, k = 0, . . . , N.

(2)

Here

�̃2
h = δ4

x + δ4
y + 2[δ2

xδ
2
y −

h2

12
(δ4

xδ
2
y + δ4

yδ
2
x)], (3)

where, for j, k = 1, . . . , N − 1,

(δ4
xv)j,k = 12

h2 (δxvx − δ2
xv)j,k,

(δ4
yv)j,k = 12

h2 (δyvy − δ2
yv)j,k,

(4)

(σxvx)j,k = (δxv)j,k,

(σyvy)j,k = (δyv)j,k,
(5)

(σxw)j,k = 1
6 (wj−1,k + 4wj,k +wj+1,k),

(σyw)j,k = 1
6 (wj,k−1 + 4wj,k +wj,k+1).

(6)

Thus, the approximated solution satisfies

∂tvj,k(t)+ �̃2
hvj,k(t) = fj,k(t), j, k = 1, . . . , N − 1. (7)

Let u∗(t) be the evaluation of u on the grid points at time t . Then,

∂tu
∗
j,k(t)+ �̃2

hu
∗
j,k(t) = fj,k(t)− rj,k(t) j, k = 1, . . . , N − 1, (8)
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where r(t) is the truncation error. By Taylor expansions, if u has continuous
derivatives up to order 8, the components of the truncation error r for all t may
be written as (see [2], Proposition 10.8)

rj,k = O(h4) j, k = 2, . . . , N − 2,
r1,k = O(h), rN−1,k = O(h), k = 1, . . . , N
rj,1 = O(h), rj,N−1 = O(h), j = 1, . . . , N.

(9)

Define the error e(t) = v(t)− u∗(t). Then, by subtracting (8) from (7), we have

∂t e(t)+ �̃2
he(t) = r(t). (10)

The following Optimal Convergence Theorem holds (see [2, 4, 5]).

Theorem 1 (One-Dimensional Case) Suppose that the vector τ ∈ R
(N−1),

containing the truncation errors, satisfies

τ1 = O(h) τj = O(h4), j = 2, . . . , N − 2, τN−1 = O(h). (11)

Then, the operator δ−4
x , operating on τ satisfy

max1≤j≤N−1 |(δ−4
x τ )j | ≤ Ch4, where C does not depend on N. (12)

We relate the grid function vj,k, j, k = 1, . . . , N − 1 with the column vector

V = [
v1,1, . . . , vN−1,1, v1,2, . . . vN−1,2, . . . , v1,N−1, . . . , vN−1,N−1

]T ∈ R
(N−1)2

.

(13)

The bottom ordering of vector V ∈ R
(N−1)2

is obtained by letting the index j vary
first while keeping k fixed, then vary the index k (see [3]). Then, we relate the two-
dimensional finite difference operators with matrix operators of size (N − 1) ×
(N − 1) for N ≥ 2, acting on a vector V . Most of those operators are obtained
as Kronecker products of (N − 1) × (N − 1) matrices. Recall that the Kronecker
product of the matrices G ∈ Mm,n and H ∈ Mp,q is the matrix G ⊗ H ∈ Mmp,nq

defined by

G⊗H =

⎡

⎢
⎢
⎣

g1,1H g1,2H . . . g1,nH

. . .

. . .

gm,1H gm,2H . . . gm,nH

⎤

⎥
⎥
⎦ . (14)

Let the matrix B represent the biharmonic discrete operator in one dimension and
the matrix D represent −δ2

x (or −δ2
y) in one dimension. Then, I ⊗ B and B ⊗ I
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represent the biharmonic operators δ4
x and δ4

y , respectively. Similarly, I ⊗ D and

D ⊗ I represents the operator−δ2
x and −δ2

y , respectively. In addition,

R(t) = [
r1,1, . . . , rN−1,1, r1,2, . . . , rN−1,2, . . . , r1,N−1, . . . , rN−1,N−1

]T ∈ R
(N−1)2

(15)

is related to the truncation error. Therefore, inequality (12) may be written in vector
notation as follows.

Corollary 1 Let R(t) = R(1)(t)+ R(2)(t) ∈ R
(N−1)2

, where

R(1)(t) = [
r1,1, 0, . . . , 0, rN−1,1, r1,2, . . . , rN−1,2, . . . , r1,N−1, 0, . . . , 0, rN−1,N−1

]T
,

(16)

R(2)(t) = [
0, r2,1, .., rN−2,1, 0, 0, . . . , 0, . . . , 0, . . . , 0, 0, r2,N−1 . . . , rN−2,N−1, 0

]T
.

(17)

Then,

max
1≤m≤(N−1)2

|((I ⊗ B−1)R(1)(t))m| ≤ Ch4, 0 < t < T, (18)

where I ⊗ B−1 represents the operator δ−4
x , and

max
1≤m≤(N−1)2

|((B−1 ⊗ I)R(2)(t))m| ≤ Ch4, 0 < t < T, (19)

where (B−1 ⊗ I) represents the operator δ−4
y .

Proof We may write (16) and (17) as R(1) = [
R

(1)
1 ; . . . ;R(1)

N−1

]
and R(2) =

[
R

(2)
1 ; . . . ;R(2)

N−1

]
, respectively, where

R
(1)
1 = [r1,1, 0, . . . , 0, rN−1,1]T ,

R
(1)
j = [r1,j , . . . , rN−1,j ]T , j = 2, . . . , N − 2,

R
(1)
N−1 = [r1,N−1, 0, . . . , 0, rN−1,N−1]T .

R
(2)
1 = [0, r2,1, . . . , rN−2,1, 0]T ,

R
(2)
j = [0, . . . , 0]T , j = 2, . . . , N − 2,

R
(2)
N−1 = [0, r2,N−1, . . . , rN−2,N−1, 0]T .

(20)

Using the definition of a Kronecker product, we have

I ⊗ B =

⎡

⎢
⎢
⎣

B 0
¯
. . . . . . 0

¯0
¯

B 0
¯

. . . 0
¯

. . .

0
¯

0
¯
. . . 0

¯
B

⎤

⎥
⎥
⎦ , (I ⊗ B)−1 =

⎡

⎢
⎢
⎣

B−1 0
¯

. . . . . . 0
¯0

¯
B−1 0

¯
. . . 0

¯
. . .

0
¯

0
¯

. . . 0
¯

B−1

⎤

⎥
⎥
⎦ .

(21)
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Therefore, (I ⊗B−1)R(t) =
[

B−1R
(1)
1 (t), B−1R

(1)
2 (t), . . . , B−1R

(1)
N−2(t), B

−1R
(1)
N−1(t)

]T
.

By the optimal convergence theorem

max
1≤m≤(N−1)2

|((I ⊗ B−1)R(1)(t))m| ≤ Ch4, 0 < t < T . (22)

Hence (18) holds. By a similar proof (19) holds. ��
Theorem 2 Suppose the solution u(x, y, t) to the system (1) has derivatives up to
order 8 with respect to x and y, then the error e(t) is bounded by

|e(t)|h ≤ Ch4, 0 < t < T, (23)

where |e(t)|h =
√∑N−1

j=1
∑N−1

k=1 h2|ej,k(t)|2 and C depends only on u0(x, y) and
T .

Proof Define E(t) as the vector containing the components of the error at time t

E = [
e1,1, . . . eN−1,1, e1,2, . . . eN−1,2, . . . , e1,N−1, . . . eN−1,N−1

]T ∈ R
(N−1)2

.

(24)

The operator �̃2
h may be represented by the matrix A of size (N − 1)2 × (N − 1)2

(see [3]), where

A = I ⊗ B + B ⊗ I + 2
[
(I ⊗D)(D ⊗ I )+ h2

12
(I ⊗D)(B ⊗ I )+ h2

12
(D ⊗ I )(I ⊗ B)

]
.

(25)

Hence, A is a symmetric positive definite matrix. In vector notation Eq. (10) may be
written as ∂tE(t) + A E(t) = R(t). Multiplying both sides of the last equation by
eAt , we have ∂t (e

At E(t)) = eAt R(t). Integrating the last equation for ρ from 0 to
t and multiplying by e−At , we have

E(t) =
∫ t

0
e−A(t−ρ)R(ρ)dρ. (26)

Multiplying R(ρ) from the left by AA−1 yields

E(t) =
∫ t

0
[e−A(t−ρ) A] [A−1R(ρ)]dρ =

∫ t

0
[e−A(t−ρ) A] [A−1(R(1)(ρ)+ R(2)(ρ))]dρ,

(27)
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where R(1) and R(2) are defined in (16) and (17) (see also (20)). We decompose
E(t) in the sum E(t) = E(1)(t)+ E(2)(t), where

E(1) = ∫ t
0 [e−A(t−ρ) A] [A−1 R(1)(ρ)]dρ, E(2) = ∫ t

0 [e−A(t−ρ) A] [A−1 R(2)(ρ)]dρ.
(28)

We show that ‖E(1)‖2 ≤ Ch3 and ‖E(2)‖2 ≤ Ch3. Using (25), then for the term
E(1) we decompose A as follows. A = (I ⊗ B)Q1, where Q1 is defined by

Q1 = I ⊗ I + (I ⊗ B)−1(B ⊗ I)+ 2(I ⊗ B)−1

[
(I ⊗D)(D ⊗ I)+ h2

12
(I ⊗D)(B ⊗ I)+ h2

12
(D ⊗ I)(I ⊗ B)

]
. (29)

Using (25), then for the term E(2) we decompose A as follows. A = (B ⊗ I)Q2,

where Q2 is defined by

Q2 = I ⊗ I + (B ⊗ I)−1(I ⊗ B)+ 2(B ⊗ I)−1

[
(I ⊗D)(D ⊗ I)+ h2

12
(I ⊗D)(B ⊗ I)+ h2

12
(D ⊗ I)(I ⊗ B)

]
. (30)

Therefore,

E(1)(t) = ∫ t

0 [e−A(t−ρ) A] Q−1
1 [(I ⊗ B)−1R(1)(ρ)]dρ

E(2)(t) = ∫ t

0 [e−A(t−ρ) A] Q−1
2 [(I ⊗ B)−1R(2)(ρ)]dρ. (31)

First we consider ‖E(1)(t)‖2. Expanding on Q−1
1 [(I ⊗ B)−1R(1)(ρ)], we prove

that the norm of Q−1
1 is bounded from above. Note that (since Q−1

1 and Q1 are not
necessarily symmetric matrices),

‖Q−1
1 ‖2 =

√
max

1≤k≤(N−1)2
|λk((Q−1

1 )T Q−1
1 )|. (32)

We show that the eigenvalues of (Q−1
1 )T Q−1

1 are positive and bounded from above
by 1. Alternatively, we show that eigenvalues of QT

1 Q1 are bounded from below by
1. We may decompose Q1 as a sum Q1 = K1 +K2, where

K1 = I ⊗ I + (I ⊗ B)−1(B ⊗ I)

K2 = 2(I ⊗ B)−1
[
(I ⊗D)(D ⊗ I)+ h2

2 (I ⊗D)(B ⊗ I)+ h2

2 (D ⊗ I)(I ⊗ B)
]
.

(33)

Thus, QT
1 Q1 = (K1 +K2)

T (K1 + K2) = KT
1 K1 + (KT

1 K2 +KT
2 K1) +KT

2 K2.

The matrix K1 is decomposed as a sum of the two positive definite matrices K1 =
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P1 + P2, where P1 = I ⊗ I, P2 = (I ⊗ B)−1(B ⊗ I). Note that P1 and P2 are
symmetric positive-definite matrices. Therefore, the matrix KT

1 K1 may be written
as

KT
1 K1 = I ⊗ I + 2P2 + P 2

2 . (34)

Thus, KT
1 K1 is a sum of a symmetric positive definite matrix I⊗I and a symmetric

positive definite matrix 2P2 + P 2
2 . Since all the eigenvalues of I ⊗ I are 1, then all

the eigenvalues of KT
1 K1 are greater than 1. Now we consider the matrix KT

1 K2 +
KT

2 K1, which is a symmetric matrix. We show that its eigenvalues are positive.
First, the matrix K1 is symmetric positive definite. Next, the matrix K2 is a product
of two symmetric positive definite matrices S and T , where

S = 2(I ⊗ B)−1, T = (I ⊗D)(D ⊗ I )+ h2

2 (I ⊗D)(B ⊗ I )+ h2

2 (D ⊗ I )(I ⊗ B).

(35)

Thus,

K2 = ST = ST 1/2T 1/2 = T −1/2T 1/2ST 1/2T 1/2 = T −1/2(T 1/2ST 1/2)T 1/2.

(36)

Therefore, K2 is similar to a positive definite matrix, thus its eigenvalues are
positive. Since KT

1 and K2 are positive definite matrices, then by a similar argument
as in (35)–(36), the eigenvalues of KT

1 K2 are positive. Similarly, the eigenvalues
of KT

2 K1 are also positive. Therefore, the matrix KT
1 K2 + KT

2 K1 is symmetric,
having positive eigenvalues. Consider now the symmetric matrix KT

2 K2. We have
shown that the eigenvalues of K2 are positive, therefore so are the eigenvalues of
KT

2 K2. Hence, all the eigenvalues of QT
1 Q1 are greater than 1. As a result, all the

eigenvalues of (Q−1
1 )T Q−1

1 are smaller than 1. Hence,

‖Q−1
1 ‖2 =

√
max1≤k≤(N−1)2 |λk

(
(Q−1

1 )T Q−1
1

)| ≤ 1. (37)

are symmetric positive definite matrices. Similarly, ‖Q−1
2 ‖2 ≤ 1. We continue with

bounding E(1)(t). The matrix e−A(t−ρ)A may be diagonalized by a unitary matrix
Z, which is independent of t − ρ containing the normalized eigenvectors of the
symmetric matrix A. Thus,

e−A(t−ρ)A = Z !(t − ρ) ZT , (38)
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where !(ρ) = diag(e− λ1(t−ρ)λ1, . . . , e
− λ

(N−1)2 (t−ρ)
λ(N−1)2) and λ1, . . . , λ(N−1)2

are the eigenvalues of A. Since Z is independent of t − ρ, we obtain from (31) and
(38)

E(1)(t) = Z

∫ t

0
!(t − ρ)ZT Q−1

1 [(I ⊗ B)−1R(1)(ρ)]dρ. (39)

We consider now the component i (for i = 1, . . . , (N − 1)2) of the vector E(1)(t).

E
(1)
i (t) =∑(N−1)2

k=1 Zik

∫ t

0 !k,k(t − ρ) (ZT Q−1
1 (I ⊗ B)−1 R(1)(ρ))kdρ.

(40)

Expanding on (ZT Q−1
1 (I ⊗ B)−1 R(1)(ρ))k , we have

(ZT Q−1
1 (I ⊗ B)−1 R(1)(ρ))k =∑(N−1)2

l=1 (ZT Q−1
1 )kl ((I ⊗ B)−1 R(1)(ρ))l

=∑(N−1)2

l=1 (ZT Q−1
1 )kl

∑(N−1)2

m=1 (I ⊗ B)−1
lm R

(1)
m (ρ).

(41)

E
(1)
i (t) =∑(N−1)2

k=1 Zik

∑(N−1)2

l=1 (ZT Q−1
1 )kl

∑(N−1)2

m=1 (I ⊗ B)−1
lm

∫ t

0 !k,k(t − ρ) R
(1)
m (ρ)dρ.

(42)

Since !k,k(t − ρ) = e−λk(t−ρ)λk and e−λk(t−ρ)λk ≥ 0, we have (by the extended
mean-value theorem for integration)

E
(1)
i (t) =∑(N−1)2

k=1 Zik

∑(N−1)2

l=1 (ZT Q−1
1 )kl

∑(N−1)2

m=1 (I ⊗ B)−1
lm

[ ∫ t

0 e−λk (t−ρ) λkdρ
]
R

(1)
m (ρm,k)

=∑(N−1)2

k=1 Zik

[
1− e−λk t

] ∑(N−1)2

l=1 (ZT Q−1
1 )kl

∑(N−1)2

m=1 (I ⊗ B)−1
lm R

(1)
m (ρm,k),

(43)

where 0 ≤ ρm,k ≤ t .
Let L(k) = [R1(ρ1,k), R2(ρ2,k), . . . , R(N−1)2(ρ(N−1)2,k)]T . Using (16), we have

L(k) = [O(h), 0, . . . , 0,O(h),O(h),O(h4), . . . ,O(h4),O(h), . . . ,O(h), 0, . . . , 0,O(h)]T .
(44)

Define V (k) = (I ⊗ B)−1L(k). Then, Eq. (43) may be written as

Ei(t) =∑(N−1)2

k=1 Zik

[
1− e−λkt

] ∑(N−1)2

l=1 (ZT Q−1
1 )kl V

(k)
l . (45)
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By the Corollary 1, Eq. (18), we have

|V (k)
l | = |

(N−1)2
∑

m=1

((I ⊗ B)−1)lm L(k)
m | ≤ Ch4, 0 < t < T, (46)

where C is independent of N . Define the vectorW by Wl = maxk=1,...,(N−1)2 |V (k)
l |.

By Eq. (46) the L2 norm of the vector W is bounded by

‖W‖2 ≤ Ch3. (47)

Define D1 = diag(1− e−λ1t , . . . , 1− e
−λ

(N−1)2 t ). Therefore, Eq. (45) yields

‖E(1)(t)‖2 ≤ ‖Z‖2‖D1‖2 ‖ZT ‖2 ‖Q−1
1 ‖2 ‖W‖2. (48)

Since ZT = Z−1 and by Eq. (37), we have ‖Z‖2 = ‖ZT ‖2 = 1, ‖Q−1
1 ‖2 ≤ 1.

We show now that ‖D1‖2 ≤ C. Since the eigenvalues A are positive, we have
‖D1‖2 = max1≤j≤(N−1)2 |1 − e−λj t | ≤ 1. We conclude from (48) and (47)

that ‖E(1)(t)‖2 ≤ Ch3. Similarly, ‖E(2)(t)‖2 ≤ Ch3. Therefore, for |e(t)|h =√∑N−1
j=1

∑N−1
k=1 h2|ej,k|2, we have |e(t)|h ≤ Ch4, 0 < t < T, which concludes

the proof. ��

3 Numerical Results

Consider the equation ut +�2u = f with the exact solution u = e−t (1− x2)2(1−
y2)2 on [−1, 1], t > 0, where f (x, t) is chosen so that u is the solution of the
differential equation above (Table 1).

Table 1 Compact scheme for ut +�2u = f with exact solution: u = e−t (1− x2)2(1− y2)2 on
[−1, 1], t > 0. We present |e|h the error in u, and |ex |h the error in ux in the l2 norm at t = 0.25

Mesh N = 8 Rate N = 16 Rate N = 32 Rate N = 64

|e|h 1.0819(−4) 3.91 7.2142(−6) 4.00 4.5152(−7) 4.00 2.8221(−8)

|ex |h 1.8773(−6) 3.97 1.2001(−5) 4.01 7.4422(−7) 4.00 4.6480(−8)
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Accurate Numerical Eigenstates
of the Gross-Pitaevskii Equation

Bo Gervang and Christian Bach

Abstract We consider a bosonic gas of N bosons. Hartree-Fock approximation
allows for a product wave function of single particle solutions 1(xi)

1(x1, x2, · · · , xN) =
N∏

i

1(xi )

Using a pseudo-potential to account for the condensate self-interaction, the Hamil-
tonian is found to be

H =
N∑

i=1

(

− h̄2

2m

∂2

∂x2
i

+ V (xi )

)

+
∑

i<j

4πh̄2as

m
δ(xi − xj ),

In this setting m is the mass of the particles, as is the scattering length of the bosons
and h̄ = h

2π . If all single particle solutions satisfy the governing equation, we arrive
at

(

− h̄2

2m

∂2

∂x2 + V (x)+ γ |ψ(x)|2
)

︸ ︷︷ ︸
HGPE[ψ](x)

ψ(x) = μψ(x), (1)

where μ is the chemical potential. Equation (1) is the non-linear Gross-Pitaevskii

equation and γ = 4πh̄2as
m

. We use a spectral element method to discretise (1). To
compute the eigenstates {ψ(x)} of the nonlinear Hamiltonian HGPE, we use two
different methods the first is an iterative eigenstate solver and in the second we use
a constrained Newton method.
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1 Introduction

The first experimental realisation of a Bose-Einstein condensate (BEC) took place in
1995 and then an increased attention in the experimental as well as in the theoretical
physics community has taken place. The non-linear Schrodinger equation can well
describe the properties of BECs. Specifically we will use the form of the non-
linear Schrodinger equation denoted as the Gross-Pitaevskii equation, PGE. In this
description, the BEC is treated as a non-uniform, interacting Bose gas at zero
temperature. The term “interacting” refers in the GPE-description to at least two-
particle interactions, which are modelled in a mean-field approximation and gives
rise to a non-linear term.

In general it is not possible to solve the GPE using analytical methods, however
in one dimension it is possible to use the Thomas-Fermi approximation to obtain
analytical solutions of solitons [4]. We are interested in numerical solution of the
eigenstates of the PGEs.

In the interaction of quantum matter with gravity, excited states are observed. In
ultra cold neutrons in a gravitational trap excited states have been investigated in
order to test Newton’s inverse-square law at small distances [6]. Another physical
system available for investigating the quantum-gravity regime for a wide range of
parameters is the Bose-Einstein condensates under microgravity conditions [5].

Similar experiments with ultra cold atoms in a Gravito-Optical Surface Trap,
GOST, with a small and variable gravitational acceleration can be performed so
that the density profile of the quantum states related to various energy levels can
be measured with better resolution. The Airy functions were used to solve the
eigenvalue problem for the schrodinger equations in a GOST [1].

In order to be able to describe the eigenstates for a BEC, we are solving the
eigenvalue problem for the nonlinear Schrodinger equations, which in our case is
the Gross-Pitaevskii equation (GPE).

2 The Mathematical Model

To describe the dynamics of a BEC subject to two-particle interactions, given by
the non-linear term gs |1(x, t)|2 and to an external potential Vext we use the time-
dependent GPE,

ih̄∂t1(x, t) =
(
− h̄

2m
�+ Vext (x, t) + gs |1(x, t)|2

)
1(x, t), (2)

where 1(x), x = (x, y, z) is normalised to the total number of particles N =∫
�
|1(x)|2d3x. The GPE is valid for dilute condensates obeying the diluteness

criterion that the s-wave scattering length a and the average density of the gas n̄

must fulfill n̄|a|3 � 1. The nonlinearity parameter gs is determined by the scattering
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length via gs = 4πh̄2a
m

, where m is the mass of the atom. Furthermore, the scattering
length can acquire both signs having magnitudes of some nanometres. We will only
consider repulsive two-particle interactions, which implies gs > 0. The function
1(x, t) is the wave function or state function of the condensate.

To obtain a time independent solution we use the ansatz, 1(x, t) =
1(x)exp(−iμt/h̄) from which we obtain

μ1(x) =
(
− h̄

2m
�+ Vext (x)+ gs |1(x)|2

)
1(x), (3)

where μ is the chemical potential. Usually, the external potential Vext (x) models a
trap in order to spatially confine the condensate, but can also account for an external
perturbation on the system. We assume that the potential is bounded from below and
we take Vext(x) > 0.

The stationary GPE can be derived from an action

A[1;μ] = F [1] − 1/2μN[1], (4)

where the free energy is given by

F [1] =
∫

�

( h̄

2m
(∇1(x))2 + 1/2Vext(x)12(x)+ gs

4
14(x)

)
d3x, (5)

and we assume that 1 is real.
From now on we restrict our attention to one-dimensional problems. In the

following we scale coordinates and normalise the wave function according to

x −→ Lx, 1 −→ √
N1/L3/2,

where 1(x) is normalised to 1 and we obtain the normalised stationary GPE

(
− d2

dx2 + V̄ext (x)+ γ12(x)
)
1(x) = ε1(x), (6)

where the dimensionless parameters are

V̄ext (x) = 2mL2Vext(x)

h̄2 , γ = 2mNgs

Lh̄2 , ε = 2mμL2

h̄2 .

The length scale L is arbitrary and can be chosen of convenience. It is observed
that the non-linearity parameter γ depends on L. We also note that we don’t restrict
ourselves to wave functions that are normalised to one. Instead we are searching for
solutions that are not normalised for a given pair of γ, ε. From (7) it is observed
that each found solution can be normalised to one by adjusting the non-linearity
parameter γ .
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2.1 Discretisation

The expansion of the solution in space is chosen to be Lagrange polynomials defined
on a Gauss-Lobatto quadrature point grid. Lagrange polynomials in one dimension
are given by

hi(x) =
n∏

j=0,j �=i

x − xj

xi − xj
.

The Lagrange polynomials hi form a complete orthogonal set. Another thing we
will exploit is their cardinality hi(xj ) = δij . Using a pseudo spectral discretisation,
solutions are on the form

1(x) =
n∑

i

1ihi(x)

Since the Lagrange polynomials can easily be differentiated we also can obtain the
discrete nabla and Laplace operators of the unknown. The discrete algebraic system
can now be assembled, see e.g. [2].

3 The Picard Iteration Scheme

If the PGE hadn’t contained the non-linear coupling term we could have solved
the problem using a standard eigendecomposition method. Unfortunately, the non-
linear coupling term prevents us from using a standard method, but by introducing
a Picard iteration scheme we can solve the problem in a three step procedure.

First Step
Solve the discrete system of

(
− d2

dx2
+ V̄ext (x)+ γ (12(x))n

)
1̂(x) = ε1̂(x), (7)

where (1(x))n is known from the previous iteration.

Second Step
Perform the eigendecomposition.

Third Step
Update 1 as: (1)n+1 = 1n ∗ (1−β)+ 1̂ ∗β, where β is an under-relaxation factor
of the order 0.01.

Iterate the above three steps until convergence has been reached.
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4 Results for the Picard Method

In Fig. 1 we plot the probability function (|1|2) over the domain L ∈ [−10, 10] for
the ground state and the first seven excited states. The start guess is shown in blue
and the final solution is shown in red.

In Fig. 2 we plot the iteration history for the solution of the eight states. It is
observed that it takes approximately 1000 iterations for the ground state and the
first excited state. For the remaining excited states it takes more than 3500 iterations.
Even though it is possible to obtain the solutions using a Picard iteration method the
iteration count is prohibitive large for practical applications. In the next section we
will discuss the constrained Newton method, which is a faster method to obtain the
solutions.

5 The Constrained Newton Method

Another approach is to use a Newton method that is a gradient method that follow
a descent direction until a local minimum of the action is reached. Solutions can be
understood as critical points of some action A, see (4). The type of critical point
related to a solution is determined by eigenvalues of the Hessian evaluated at the
critical point:

• If all eigenvalues are positive then the critical point is a local minimum of A
• If all eigenvalues are negative then we have a local maximum
• If we have a finite number of negative eigenvalues and all other values are positive

then we have a horse saddle. In this situation the number of negative eigenvalues
is the number of linear independent descent directions at this critical point

• When the Hessian is degenerate at a critical point we have a monkey saddle

In Fig. 3 we show an example of a horse saddle and a monkey saddle.
Finding critical points at certain saddle types depend on educated guesses. In

order to have a straight forward method it is necessary to confine the search to a
sub-manifold in the underlying function space. Previous we defined the action as

A[1;μ] = F [1] − 1/2μN[1]. (8)

Using the principle of least action we know that if 1 is a critical point of the action
A then the gradient of A vanishes and hence 1 is a solution of the GPE. Using the
gradient of the action

∇A[ψ;μ] =
(
− d2

dx2 + (Vext − μ)+ γ (ψ)2
)
ψ(x),



444 B. Gervang and C. Bach

F
ig

.1
E

vo
lu

ti
on

of
th

e
sq

ua
re

of
th

e
w

av
e-

fu
nc

ti
on

fo
r

th
e

gr
ou

nd
st

at
e

an
d

th
e

fir
st

se
ve

n
ex

ci
te

d
st

at
es

in
th

e
do

m
ai

n
L
∈[
−1

0,
10
]



Accurate Numerical Eigenstates of the Gross-Pitaevskii Equation 445

101
0
1
2
3
4
5
6
7

100

10–1

10–2

va
r(

H
)

10–4

10–3

10–5

10–6

0 500 1000 1500 2000
Iteration

2500 3000 3500 4000

Fig. 2 Variance of the Hamiltonian with respect to the found eigenstates versus iteration step

–1
–1/2

1/2
1

0
–1

–1/2

1/2
1

0

–1

–1/2

1/2

1

0

Fig. 3 An example of a horse and a monkey saddle

we can use a discrete Newton method given by Marojevic et al. [3]

ψk+1 = ψk − τH−1∇A[ψk;μ],

where H−1 could be the inverse of the Hessian or another preconditioning operator.
Unfortunately, in the non-linear case the Newton method is only capable of finding
Morse index zero solutions (number of negative eigenvalues). Finding higher Morse
index solutions for strong non-linearities can in general not be handled by a standard
Newton method. It is, in general, very useful to confine the search for a solutions to
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a manifold where the critical point lies in a local minimum on this manifold so that
classical Newton methods are able to find such solutions. A possible method is [3]

〈∇A[rks ψn,s + qk
s φ

k
n,s;μn,s], ψn,s〉 = 0,

〈∇A[rks ψn,s + qk
s φ

k
n,s;μn,s], φk

n,s〉 = 0.
(9)

We solve for the two unknown r and q . n is the quantum number and k and s are
counter variables. φk

n,s can be viewed as a correction to the solution ψn,s for the
previous eigenvalue.

Remark 1 We are working with a fixed eigenvalue μn,s , which is increased by a
value �μ after a solution is found for the current μn,s , thus μn,s+1 = μn,s + �μ.
The non-linearity γn,s is determined as a function of this chosen μn,s .

Remark 2 The solution found in this way is not normalized to one. Therefore we
normalize it and readjust γn,s according to the particle number N .

Remark 3 The search direction in each Newton step is

dk = H−1∇A[φk
n,s :;μn,s] =

(
− d2

dx2 + (Vext − μn,s)+

3γn,s(φk
n,s)

2
)−1∇A[φk

n,s;μn,s].

This assures that together with (9) we don’t leave the subspace with the same nodal
structure.

6 Results for the Constrained Newton Method

In Fig. 4 we show the results of the constrained Newton method. The wave functions
are plotted over the domain L ∈ [−10, 10].
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Fig. 4 The first eight wave functions obtained by the constrained Newton method

7 Conclusion

The Gross-Pitaevskii equation has been solve using two different numerical tech-
niques. The first used an eigendecomposition coupled with a Picard iteration scheme
and the second used a constrained Newton method. With both methods we could
obtain the solution, but the constrained Newton method was more stable and
converged much faster.
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Basic Machine Learning Approaches
for the Acceleration of PDE Simulations
and Realization in the FEAT3 Software

Hannes Ruelmann, Markus Geveler, Dirk Ribbrock, Peter Zajac,
and Stefan Turek

Abstract In this paper we present a holistic software approach based on the
FEAT3 software for solving multidimensional PDEs with the Finite Element
Method that is built for a maximum of performance, scalability, maintainability and
extensibility. We introduce basic paradigms how modern computational hardware
architectures such as GPUs are exploited in a numerically scalable fashion. We
show, how the framework is extended to make even the most recent advances on
the hardware market accessible to the framework, exemplified by the ubiquitous
trend to customize chips for Machine Learning. We can demonstrate that for a
numerically challenging model problem, artificial neural networks can be used
while preserving a classical simulation solution pipeline through the incorporation
of a neural network preconditioner in the linear solver.

1 Introduction

Multidimensional PDE-based simulation is one of the most important yet also most
challenging tasks of our time concerning computational resources both hardware-
and software-side. Here the Finite Element Method (FEM) is proven to be a superior
tool on complex geometries that however needs sophisticated software approaches
to be feasible for production in academia and industry: Local performance on each
core/CPU or device has to be provided by exploiting the underlying hardware.
Numerical scale-up has to be addressed through the design and implementation
of advanced parallelisation techniques. Both aspects have to be taken into account
in a holistic software framework design that also provides maintainability and
extensibility.
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In this paper we offer insight into the third generation of the Finite Element
Analysis Toolbox software family (FEAT3), developed at TU Dortmund University.
In order to address the aforementioned aspects, we introduce the paradigms of
Hardware-oriented Numerics and Unconventional High Performance Computing
(UCHPC) in the context of performance, scalability and maintainability in Sect. 2.

Under the aspect of extensibility, we demonstrate how the framework is catching
up with modern hardware trends: Machine Learning (ML) opens a variety of
options to support traditional methods of the numerical treatment of solving PDEs
particularly for application-oriented CFD simulations with new algorithms on the
software level. Any such approach provides access to modern hardware, since chip
vendors tailor their designs to ML techniques to satisfy the upcoming and rapidly
growing AI-market. In this paper we demonstrate, how artificial neural networks
can assist in solving PDEs and how this is implemented in the FEAT3 framework in
Sect. 3.

2 FEAT3: Unconventional High Performance Finite
Elements

2.1 Trends in Modern Hardware and Green HPC

In the last two decades, it became clear that the continuously increasing single-
core speed, which was driven by Moore’s law, will stagnate at some point. In
consequence, hardware vendors are switching their focus to parallelism, both in the
sense of supercomputer clusters as well as various forms of specialized many-core
hardware accelerators such as general-purpose Graphics Processing Units or Tensor
Processing Units, where the latter are custom-designed chips tailored to Machine
Learning applications. From a programmer’s point of view, these specialized
hardware units differ from ordinary CPUs and their built-in vector extensions in the
sense that one cannot simply utilize them by enabling a compiler switch. Instead,
new specialized algorithms, which efficiently exploit the underlying hardware’s
strengths, have to be designed and implemented by using third-party libraries. In
the context of scientific computing, the concept, where the available hardware
determines what algorithms are run on it, can be labeled as Unconventional High
Performance Computing.

Another aspect, which is slowly (but steadily) gaining attention, is the continu-
ously increasing energy consumption of supercomputers and the subsequent need
for improved energy efficiency. As a consequence, the Green500 list1 has been
launched in 2007 as a means to benchmark the energy efficiency of supercomputers
measured in Flops per Watt rather than the total compute power measured in Flops
that is used in the famous Top500 list. Again, special accelerator hardware as well as

1See https://www.top500.org/green500.

https://www.top500.org/green500


Basic Machine Learning Approaches for the Acceleration of PDE Simulations. . . 451

hardware primarily designed for mobile/embedded systems, which are designed to
work with a limited battery power supply, play a key role when it comes to achieving
high energy efficiency on modern supercomputers.

2.2 Finite Elements and the Need for Speed

The finite element method has proven to be a powerful numerical tool for solving
PDEs arising from various scientific fields. Researchers in the academia value the
FEM due to its underlying variational formulation, which also forms the backbone
of a rigorous theory for the analysis of PDEs, as well as the properties that can
be derived from this close relationship between mathematical theory and practical
implementability. One notable example is the large set of methods that can be used
for error estimation and error control. However, simulations of realistic problems—
especially those arising from the industry—result in problem sizes, which are often
several orders of magnitude larger than what the academia is typically dealing with
and therefore require a different focus in software design and implementation. In
consequence, any simulation toolkit that aims to tackle large problems needs to be
capable of utilizing modern large-scale parallel hardware beyond the usual small-
scale workstation setup, which makes parallel programming, hardware-efficient
optimizations and performance engineering indispensable.

2.3 Fast Linear Solvers Based on Geometric Multigrid Methods

One major component of any FEM simulation, which often dominates the overall
runtime, is the solution of (non-)linear systems of equations (LSEs). In addition
to the usual direct factorization solvers and iterative Krylov subspace methods, the
FEM also allows for more specialized solvers that take the underlying discretization
into account. The most prominent class of such specialized linear solvers is the class
of geometric multigrid methods (GMG), which is one of the few solvers that can
solve many LSEs arising from the FEM in linear runtime, thus making it an ideal
candidate for large-scale simulations. The GMG is an iterative method which (in its
simplest form) solves the LSE by recursively restricting the system onto a coarser
mesh, solving the LSE on the coarser mesh, and then projecting the coarse solution
back onto the original LSE and post-processing this coarse solution by a smoother.
The smoother is typically the most costly part of the GMG and its convergence
properties are a crucial ingredient for obtaining the h-independent convergence (and
thus linear runtime) of the GMG, see e.g. [5, 6].
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2.4 FEAT3: FEM+GMGMeets UCHPC

To tackle the above mentioned challenges that come with modern unconventional
hardware, we have been implementing the Finite Element Analysis Toolbox 3
(FEAT3) software package, which is a modular template-based parallel FEM+GMG
framework written in C++11. FEAT3 utilizes MPI to implement parallelization
paradigms for large-scale supercomputer clusters based on finite element domain
decomposition, which support both simple data-parallel algorithms as well as more
powerful geometric multigrid solvers based on the concept of scalable recursive
clustering (ScaRC), see [8, 10].

FEAT3 supports 2D and 3D triangular, quadrilateral, tetrahedral and hexahedral
unstructured meshes as well as structured meshes, and is currently being extended
to support PDEs on manifolds. A large variety of finite element ansatz spaces have
already been implemented, including (but not limited to) the standard conforming
Lagrangian elements up to third order, the non-conforming Crouzeix-Raviart and
Rannacher-Turek elements as well as a few higher order elements like the Argyris
element, see e.g. [11].

FEAT3 can assemble the arising LSEs in various floating point formats, including
the standard IEEE-754 single and double precision formats as well as the quadruple
precision format offered by the libquadmath, which is part of the GCC’s standard
library set. We also currently experimenting with various third-party libraries, which
offer simulated support for low-precision data types like the half precision or the
competing bfloat16 format, which is used by many modern TPUs.

Sparse matrices can not only be assembled as generic unstructured matrices in
the well-known compressed sparse rows (CSR) format, but also in various special
matrix formats including banded or stencil-based matrices. In the case of PDE
systems with multiple variables, e.g. the (incompressible) Navier-Stokes equations
with velocity and pressure variables, FEAT3 additionally offers various forms of
nested meta-matrix and -vector class templates. These templates allow for an almost
arbitrary mixing of the array-of-structures and structure-of-arrays data blocking
concepts, which play an important role in the design of flexible and efficient data
structures.

As mentioned before, one primary challenge in the context of node-level
performance engineering is the development of specialized algorithms which are
suitable to utilize the underlying hardware efficiently and unfortunately many of
these algorithms cannot be hidden behind an opaque back end which serves as
a simple hardware abstraction layer. Based on the experiences we have gained
with our previous software packages, see [7, 8], as well as several specialized
benchmarking projects, see [9], we have realized that it is often necessary to
access low-level hardware API functions throughout the whole simulation code
directly and this often competes with the desire to provide an easy-to-use abstract
high-level interface, which is what most other academic FEM software packages
prioritize. FEAT3, on the other hand, has been designed from ground up to
support unconventional hardware (including GPUs and TPUs) in numerical research
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software applications, especially by offering low-level access to all underlying
data structures and algorithms, thus making it an ideal testing ground in early
development stages. This focus on specialized hardware support via transparent
class templates is a major distinguishing feature of FEAT3.

It is important to mention that all third-party libraries (including CUDA and
MPI) are supported in an opt-in fashion, i.e. FEAT3 can be compiled and used in
a naked build mode (with reduced functionality) without any other dependencies
than the C++ standard library. This ensures that FEAT3 can be easily ported to
new hardware and operating systems other the usual Linux/Unix ecosystems, even
if one or more third-party libraries cannot be compiled on these platforms, which
allows us to easily exploit a broad range of hardware from PowerPC Clusters over
Windows desktop machines to embedded ARM systems. FEAT3 has already been
tested successfully on low-energy systems running on solar-powered battery power
supplies, see [3, 4].

The build system for FEAT3 is based on the popular CMake system along
with a small set of scripts written in the Python programming language, which
help to enhance the capabilities of CMake to support various build settings via
a custom user-controlled build-id system. Our build system also includes a basic
test system based on the test driver of CMake, which is executed nightly on our
Linux compute servers as well as our university’s cluster LiDO3.2 The correctness
of most core classes of the FEAT3 kernel is ensured by a set of unit-tests, which test
individual classes and their member functions in an isolated testing environment.
In addition, the test system also contains a basic set of more complex regression
test applications, which help to determine whether changes to the kernel classes
have changed the behaviour of code that is composed of many interacting classes,
which therefore cannot be tested by isolated unit-tests. These nightly tests are
compiled with a set of different compilers and different build configurations to
continuously ensure the C++11 standard conformity and to detect unexpected
changes in code behavior induced by platform changes or compiler bugs. This unit
test system is complemented by several specialized benchmarking projects, e.g. the
CFD Benchmarking Project [2].

The source code of FEAT3 is released under the GPL3 open source license and
is publicly available in the form of a git repository, which can be accessed from the
FEATFLOW website.3

2See https://www.lido.tu-dortmund.de/cms/en/home/index.html.
3See http://www.featflow.de/en/software/feat3.html.

https://www.lido.tu-dortmund.de/cms/en/home/index.html
http://www.featflow.de/en/software/feat3.html
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3 A Concise Machine Learning Framework to Accelerate
Linear Solvers

3.1 Poisson Problem and Anisotropies

When solving the incompressible Navier-Stokes equation with global Multilevel
Pressure Schur Complement techniques, the so called Pressure Poisson problem is
dominant regarding calculation time [2]. For the sake of simplicity we therefore
choose the Poisson equation to be our model problem, which reads:

Find u : � → R such that

−�u = f in �, u = 0 on ∂� (1)

and discretize it with the Finite Element method.
For the unit square � = (0, 1)2 domain the standard quadrilateral triangulation

results in h-independent convergence of the multigrid method with a fixed number of
smoothing basis iterations for different smoother. By introducing some anisotropies
to the initial mesh, see Fig. 1, the convergence commences to be dependent on the
grid size. Merely the ILU method with the Reverse Cuthill-McKee renumbering
algorithm maintains the h-independence for the directional anisotropy (Fig. 1a). In
case of aspect ratios in both direction (Fig. 1b) renumbering has no further effect
and the ILU even with renumbering as well as the other smoothing methods will
lead to more multigrid iterations for finer meshes.

a)

lvl dofs Jac (0.5) GS (1.0) SPAI-1(1.0) ILU-0 (0.5) ILU-RCMK
10 2,100,225 109 33 24 26 7
9 525,825 106 32 23 25 7
8 131,841 103 30 22 24 7
7 32,960 98 28 21 23 7
6 8,240 90 25 19 21 6
5 2,060 78 22 17 18 6
4 515 55 16 13 12 6

b)

lvl dofs Jac (0.5) GS (0.7) SPAI-1(1.0) ILU-0 (0.7)
9 2,362,369 654 370 140 102
8 591,361 619 350 130 95
7 148,225 562 319 118 85
6 37,249 486 289 103 75
5 9,409 377 218 80 57
4 2,401 258 166 51 34
3 625 175 96 31 20

Fig. 1 Left: coarse grid; right: Number of multigrid V-cycles for different smoothers with eight
pre- and post-smoothing steps each. Damping parameter in brackets. Aspect ratio: (a) 1:10, (b)
1:20
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3.2 Approximate Inverses with Neural Network

In this approach we use a neural network prototype trained on function regression
to map the FEM system matrix to its corresponding inverse and thus get a beneficial
approximation of that inverse which we can use as smoother in multigrid methods
or as preconditioner. The structure of the neural network is important to yield strong
approximate inverses which are able to smooth the system or lead to converging
methods when used e.g. in a Richardson iteration solver. On the other hand it
provides a large design space in which we can keep balance between calculation
time and accuracy. In [1] we show that fully-connected feed forward multilayer
perceptrons are able to extrapolate coefficient matrices which are suitable SPAI-
like preconditioners within defect correction methods. In this paper we expand the
working system to anisotropic meshes.

To avoid storage problems for larger matrices we use the online-learning method
plus only feed the non-zero entries of the system matrix to the neural network.
The approximate inverse can be filtered to a sparse matrix thus the assembly of
the preconditioner is one pass of the neural network in addition to the application,
which is a sparse-matrix-vector-multiplication. With sophisticated matrix formats
this performs in parallel and efficiently on modern hardware accelerators. This
perfectly couples with FEAT3, which is also used to generate the training data
tensor. We randomly shift the inner nodes in order to get a training dataset with
the system matrices and associated inverses. This procedure bases on r-adaption
techniques we want to use during the CFD simulation, with which the node shift is
used to minimize the error.

3.3 Neural Networks for Anisotropic Meshes

To measure the quality of the approximate inverse out of neural networks we use the
modified Richardson iteration and compare the number of solver iterations with the
conventional damped Jacobi as well as the Gauß-Seidel method. Figure 2 displays
the results for different aspect ratios on disturbed meshes. For higher anisotropies,
e.g. 1:10 (see Fig. 2b), the common methods collapse and the Jacobi method reaches
the maximum iteration number. The low number of iterations even for finer meshes

a)

dim Jac (0.7) GS (1.0) NN
25 422 147 26

121 1955 683 39
529 8622 3017 64

b)

dim Jac (0.7) GS (1.0) NN
25 1101 385 22

121 5036 1762 32
529 10000 7939 37

Fig. 2 Number of iterations for damped Jacobi (Jac), Gauß-Seidel and Richardson iteration with
neural networks. Aspect ratio 1:3 (left) and 1:10 (right)
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gives strong evidence that neural networks can generate valuable preconditioners.
The number of iterations raise just slightly for different refinements and the behavior
depends on the training parameter of the neural network.

4 Conclusion and Future Work

We showed that it is possible to combine methods of Machine Learning, which
empowers several scientific fields and industry, with the numerical treatment of
solving PDEs. Regarding real world CFD simulation, large problem sizes and
difficulties like anisotropies arise. The presented Finite Element Analysis Toolbox
3 is specially tailored to solve such problems with respect to performance, hardware
efficiency as well as a high accuracy. FEAT3 offers the ability to future-oriented
UCHPC along with a easy-to-use framework for academic researchers. On the one
hand Machine Learning fits perfectly into this gap of using modern hardware, since
chip vendors specially adjust their portfolio to satisfy the fast-growing AI-market.
And we demonstrated in a small test scenario, that the designed Machine Learning-
based preconditioner with a Richardson iteration as solver maintained low numbers
of iteration even for anisotropies with such a high aspect ratio that common solvers
fail on the other hand. This is an evidence that Machine Learning techniques can
perfectly empower and amplify current numerical PDE solving methods.

One of the most important enhancements in future work will be the extension of
the neural network to real applications including large problem sizes.
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Deflated Preconditioned Conjugate
Gradients for Nonlinear Diffusion Image
Enhancement

Xiujie Shan and Martin van Gijzen

Abstract Nonlinear diffusion equations have been successfully used for image
enhancement by reducing the noise in the image while protecting the edges. In
discretized form, the denoising requires the solution of a sequence of linear systems.
The underlying system matrices stem from a discrete diffusion operator with large
jumps in the diffusion coefficients. As a result these matrices can be very ill-
conditioned, which leads to slow convergence for iterative methods such as the
Conjugate Gradient method. To speed-up the convergence we use deflation and
preconditioning. The deflation vectors are defined by a decomposition of the image.
The resulting numerical method is easy to implement and matrix-free. We evaluate
the performance of the method on a simulated image and on a measured low-field
MR image for various types of deflation vectors.

1 Introduction

Many people have benefited from the development of the MRI scanner. However,
MRI scanners are expensive and therefore unaffordable for many people in low-
income countries. Thus developing a simple and affordable MRI system is urgently
needed. The research described in this paper is part of the work to develop a low-
field MRI machine for imaging the head of small infants to detect hydrocephalus,
a disease that affects many newborns in Africa. A Halbach-array of permanent
magnets was designed, optimized, and built [3, 6] to replace the expensive super-
conducting magnets that are used in conventional MRI systems. This simpler and
inexpensive hardware yields more noisy images, which requires the use of denoising
processing for medicine practice.
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The diffusion filtering method interprets pixel intensities as a physical quantity
that spreads by a diffusion process in the image [2]. The most simple diffusion
model for image denoising is standard heat diffusion. The solution of the model is
equivalent to a Gaussian low-pass filter, which is also considered to be the filter
in signal processing. The major drawback of this model is that it diffuses edges as
well as noise. To overcome this, the constant diffusion coefficient is replaced by a
coefficient that depends on the image gradient. This idea was first proposed in [7]
by Perona and Malik. The resulting PM-model is given by:

∂u

∂t
= ∇ · (c(‖∇u‖)∇u) in �× (0, T ),

u(x, 0) = f in �,

∂u

∂n
= 0 on ∂�× (0, T ), (1)

where � is the image domain, T is the stopping time, u is the pixel value (which is
complex for MR images), f is the noisy image and c is a nonnegative monotonically
decreasing function with c(0) = 1 and c(+∞) → 0. Because of the ill-posedness
of the PM model, Catté et al. [1] have introduced a regularization method that makes
the problem well-posed.

In this paper, we consider the following diffusion coefficient which was orig-
inally proposed in [7], modified with the technique in [1] to make the problem
well-posed:

c(‖∇u‖) = e−(‖Gσ ∗∇u‖/K)2
. (2)

In this equation, Gσ is a Gaussian with standard deviation σ and K is a damping
parameter.

We discretize Eq. (1) in space using the standard finite different method, see e.g.
[1]. We use implicit Euler to discretize in time and take the diffusion coefficient
corresponding the previous time step to linearize the equation. In every time step,
we have to solve a large and sparse linear system

Au = b (3)

where A is symmetric and positive definite. For such systems, the conjugate gradient
(CG) method [4] is the method of choice. A classical result for the convergence of
CG is that after k iterations the error is bounded by

‖u− uk‖A ≤ 2‖u− u0‖A
(√

κ − 1√
κ + 1

)k

(4)

where κ = λn/λ1 is the spectral condition number and the A-norm of u is given by
‖u‖A = (uT Au)1/2. The convergence is slow when the condition number κ is very
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large. One way to improve this is to solve the preconditioned system M−1Au =
M−1b, where M is a matrix that resembles the matrix A. To further speed up the
convergence, one can use a deflation technique to map isolated extreme eigenvalues
to zero, effectively removing them from the system. Nicolaides [5] chooses deflation
vectors that correspond to subdomains: entries of the deflation vector are one for the
nodes in its subdomain and others are zero. In [10], subdomain deflation is applied
to Poisson problems with strong contrasts in the coefficient which results in a strong
improvement of the convergence. This has motivated us to apply this technique to
our problem. To define subdomains, we segment the image. Thresholding, region
growing, and small patches are used for segmentation, leading to different ways to
define the deflation vectors.

The structure of our paper is as follows. Section 2 describes the deflated and
preconditioned CG method and we give three choices of the deflation vectors. The
influence of preconditioner for the systems is also investigated by analyzing the
eigenvalues in Sect. 2. Section 3 gives numerical experiments for the simulated
Shepp-Logan image [9] and for a measured Shepp-Logan image. The comparison
of the different deflation vectors is presented in Sect. 3 using a simulated and a
measured Shepp-Logan image. We end with conclusions in Sect. 4.

2 PCG Methods with Subdomain Deflation

Deflation has been successfully applied to speed up the convergence of the
Preconditioned Conjugate Gradient method (PCG) for a number of problem with
strong variations in coefficients [8, 10]. The main idea [5] of this DPCG method is
summarized below.

2.1 DPCG

The idea of deflation is to split the solution into two parts, one in the range of the
deflation subspace R(Z) and one in its complement. In order to achieve this, we
define the projector P by

P = I − AZ(ZT AZ)−1ZT , Z ∈ R
n×m (5)

where Z = [z1 z2 · · · zm] is the deflation matrix, which we assume to be of full
rank. I is the identity matrix. Since u = (I − PT )u+ PT u we have

(I − PT )u = Z(ZT AZ)−1ZTAu = ZA−1
c ZT b (6)
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where Ac = ZTAZ. Equation (6) is easy to calculate, we only need to calculate
PT u. Using APT = PA, we can solve the deflated system

PAũ = Pb (7)

for ũ using the PCG method and then multiplying ũ by PT to obtain PT u.
A common choice for the matrix Z, first proposed in [5], is based on a

decomposition of the domain �. Decomposing domain � into m nonoverlapping
subdomains �i , i = 1, 2, · · · ,m, we choose vectors zi for i ∈ {1, 2, . . . ,m} such
that zi = 1 on �i and zi = 0 on �j , j �= i, j ∈ {1, 2, . . . ,m}. With this special
choice of Z, the technique for solving the system is referred to subdomain deflation.

We now give the DPCG algorithm for solving the system (3) as follows. Since
the pixels values correspond to MR images they are complex valued. For this reason
we have to take complex inner products. We therefore use conjugate transpose
H instead of normal transpose T in the algorithm. The preconditioning matrix is
denoted by M .

DPCG Algorithm

Ac = ZHAZ

P = I − AZ(Ac)
−1ZH

r0 = Pb − PAu0
k = 0

while rk �= 0 do
Solve zk = M−1rk
k = k + 1
if k = 1 then

p1 = z0
else

βk = rHk−1zk−1/(r
H
k−2zk−2)

pk = zk−1 + βkpk−1
end if
αk = rHk−1zk−1/(p

H
k PApk)

ũk = ũk−1 + αkpk

rk = rk−1 − αkPApk

end while
u = Z(Ac)

−1ZHb + PH ũk .

2.2 Three Different Choices for the Deflation Vectors

We use DPCG to solve Eq. (3). We construct the matrix Z by segmenting the image
into small images in three different ways: using thresholding, region growing, and
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same size patches. For the thresholding and region growing method, we expect that
by choosing the interface at edges in the image, i.e., at the location of the jumps
in the coefficients, the convergence of the iteration method can be improved. The
third technique of same size patches corresponds to the method described in [5]. It
does not make use of the image structure, but has the advantage that it is easy to
implement. Below we describe the segmentation methods in more detail.

Thresholding

The thresholding method is frequently used for image segmentation. It is a
simple and effective segmentation method for images with different intensities [2].
Assuming that the intensity values of image |f | are between 0 and 1, we divide [0, 1]
into subintervals Ik . The image is segmented by dividing it into (not necessarily
connected) regions with pixel intensities in the same subinterval.

Region Growing

Region growing (RG) segments the image into connected regions with pixel
intensities in the same subinterval. To this end, neighbouring pixels are examined,
starting from an initial seed point, to determine whether the pixel neighbors should
be added to the same region based on a growing condition. The region growing
condition we use is as follows: let |f (i0, j0)| ∈ Ik and pixel (i, j) be a neighbour of
(i0, j0). Then if |f (i, j)| ∈ Ik , the two pixels belong to the same region.

Region Growing

Divide the interval I = [0, 1] into parts Ik , k = 1, . . . , s
for k = 1 : s do

while stack is empty do
1 Search image sequentially, find the first pixel (i0, j0) that belongs to
Ik that does not belong to a segment and set (i0, j0) to be seed point.

2 For all neighbour pixels (i, j) of (i0, j0)

if (i, j) is not visited and satisfies the region growing condition then
Add pixel (i, j) to the stack.

end if
3 Take a new pixel from the stack and return it to step 2 as (i0, j0)

end while
end for
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Same Size Patches

The square domain � (image) with resolution m × n is segmented into s × r

subdomains of the same size (patches), where m/s, n/r are integers.

2.3 Preconditioner

Subdomain deflation works well if the system matrix contains a few small eigen-
values. In order to achieve this, deflation has to be combined with a suitable
preconditioning technique. A simple preconditioner that can achieve this is diagonal
scaling. This is illustrated in Fig. 1. The left panel shows the spectrum of the
unpreconditioned matrix for the simulated Shepp-Logan image considered in
numerical experiments. The right panel shows the spectrum of the preconditioned
matrix. Clearly, diagonal scaling maps most eigenvalues to values close to one, with
the exception of a few eigenvalues that are mapped to small values.

3 Experimental Results

In this section, we evaluate our method on two images: a simulated Shepp-
Logan phantom (128 × 128) and a measured low-field MR image (128 × 128).
Comparisons between CG, PCG, DPCG with the three different deflation methods
are presented. Our results correspond to one time step of implicit Euler. For the
time step, we take τ = 0.06 and the damping parameter in the diffusion coefficient
is K = 3. For the CG, PCG and DPCG iterations, initial gues is u0 = 0 and as

Fig. 1 From left to right: eigenvalues of the system matrix and eigenvalues after diagonal scaling.
The eigenvalues are displayed in the log scale
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convergence criterion we use ‖rk‖ ≤ tol · ‖r0‖ with tol = 10−5. All numerical
experiments are carried out using Matlab R2016b on a standard laptop computer.

3.1 Simulated Shepp-Logan Image

Simulated Shepp-Logan image degraded with Gaussian noise with zero mean and
variance 0.005 has been tested. The denoising results of the diffusion model are
given in Fig. 2. We only show the denoising result of CG because all denoising
results based on different numerical algorithms are the same (as they should be).
Table 1 shows that CG and PCG need more iterations to converge than the deflated
methods. Region growing based DPCG takes more time because of the clustering
algorithm. Compared to thresholding segmentation, region growing seems to be
more sensitive to noise.

Fig. 2 First row from left to right: original image, noisy image and CG result. Second row from
left to right: segmentation (Region growing) and segmentation (Thresholding)

Table 1 Comparisons for simulated Shepp-Logan

Methods CG PCG RG-DPCG Patches-DPCG(82) Thres-DPCG

Iterations 455 349 230 212 212

Time a(s) 0.27 0.20 1.21 0.34 0.16
aTimings are obtained using Matlab’s cputime routine. These include the time to segment the
image and to construct the deflation matrix



466 X. Shan and M. van Gijzen

3.2 Measured Shepp-Logan Image

In this section, we test our algorithms on an image of 128×128 pixels acquired with
the low-field MRI system described in [6]. Results of this Shepp-Logan image are
given in Figs. 3 and 4.

From Fig. 3, we know that the diffusion model achieves a good result for
denoising. However, due to the strong noise, segmentation of region growing and
thresholding result in many small regions. We observe in Fig. 4 that patches-DPCG
achieves the fastest convergence. In the above experiments, we use 42 patches to
construct the deflation vectors. In Table 2, we investigate how the number of DPCG
iterations and solution times depend on the number of patches. The number of
iterations is reduced considerably for the three Patches-DPCG methods compared
to standard CG and PCG. For this example, 42 patches yields the fastest solution
time.

Fig. 3 First row from left to right: original image, DPCG (RG). Second row from left to right:
segmentation (RG) and segmentation (Thresholding)
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Fig. 4 Residual rk for the measured MRI Shepp-Logan phantom image

Table 2 Different patches-DPCG methods, results for measured Shepp-Logan

Methods CG PCG Patches-DPCG(42) Patches-DPCG(82) Patches-DPCG(162)

Iterations 487 316 198 188 162

Time (s) 0.35 0.25 0.23 0.37 0.88

4 Conclusions

We studied the DPCG method to solve the diffusion equation for image denoising.
We used three different ways to construct the deflation vectors. The algorithm is
tested on a simulated and a measured image. The deflation method works well
for image denoising and the DPCG method converges faster than CG and PCG.
Comparing the patch-based DPCG with region growing and thresholding-DPCG,
we conclude that patches-DPCG achieves the best convergence and is not sensitive
to noise.

Acknowledgments The authors thank the LUMC team for providing the low-field MR image.
This work is partly funded by NWO WOTRO under grant W07.303.101 and by the Chinese
Scholarship Council.
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Coupled Flow and Mechanics in a 3D
Porous Media with Line Sources

Nadia S. Taki and Ingeborg G. Gjerde

Abstract In this paper, we consider the numerical approximation of the quasi-
static, linear Biot model in a 3D domain � when the right-hand side of the flow
equation is concentrated on a 1D line source δ!. This model is of interest in the
context of medicine, where it can be used to model flow and deformation through
vascularized tissue. The model itself is challenging to approximate as the line
source induces the pressure and flux solution to be singular. To overcome this,
we here combine two methods: (1) a fixed-stress splitting scheme to decouple
the flow and mechanics equations and (2) a singularity removal method for the
pressure and flux variables. The singularity removal is based on a splitting of
the solution into a lower regularity term capturing the solution singularities and a
higher regularity term denoted the remainder. With this in hand, the flow equations
can now be reformulated so that they are posed with respect to the remainder
terms. The reformulated system is then approximated using the fixed-stress splitting
scheme. We conclude by showing the results for a test case simulating flow through
vascularized tissue. Here, the numerical method is found to converge optimally
using lowest-order elements for the spatial discretization.

1 Introduction

The coupling of mechanics and flow in porous media is relevant for a wide range of
applications, occurring for instance in geophysics [1, 21] and medicine [16, 20].
We put forward a model relevant for simulating perfusion, i.e., blood flow, and
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deformation in vascularized tissue. This problem is of high interest in the context
of medicine, as clinical measurements of perfusion provide important indicators
for e.g. Alzheimer’s disease [4, 13], stroke [18] and cancer [8]. Moreover, both the
tissue and blood vessels are elastic, and these properties constitute another valuable
clinical indicator. Vascular compliance, as one example, is reduced in cases of
vascular dementia, but not in cases Alzheimer’s disease [6].

We consider the fully coupled quasi-static, linear Biot system [2], modeling a
poroelastic media when the source term in the flow equation is concentrated on !.
Let � ⊂ R

3 denote a bounded open 3D domain with smooth boundary ∂� and
! = ∑n

i=1 !i a collection of straight line segments !i ⊂ R ⊂ � embedded in �.
The equations on the space-time domain �× (0, T ) read:

Find (u, p,w) such that:

−∇ · [2 μ ε(u) + λ(∇ · u) I] + α∇p = f, (1a)

∂t

(
p

M
+ α∇ · u

)

+ ∇ ·w = ψ + f δ!, (1b)

κ−1 w + ∇p = ρf g, (1c)

where u denotes the displacement, ε(u) = 1
2 (∇u +∇uT ) the (linear) strain tensor,

p the pressure, w the Darcy’s flux, α the Biot coefficient, κ the permeability tensor
divided by the fluid viscosity, ρf the fluid density, g the gravity vector, M the
Biot modulus, μ and λ are Lamé parameters, f ∈ L2(�) the contribution from
body forces and a source term ψ ∈ L2(�). We assume M,α,μ, λ ∈ L∞(�) to
be strictly positive and uniformly bounded and ρf ∈ R, g ∈ R

3. Additionally,
κ ∈ W 2,∞(�) is assumed scalar-valued, as required by the singularity removal
method. For simplicity, we use homogeneous boundary conditions u = 0, p = 0 on
∂�× [0, T ] and initial conditions u = u0, p = p0 in �× {0}.

The system (1a)–(1c) is made non-standard by a generalized Dirac line source
δ! of intensity f in the right-hand side of (1b). The line source is defined
mathematically as

∫

�

f δ!v d� =
m∑

j=1

∫

!j

f (sj , t)v(sj ) dS ∀v ∈ C0(�̄).

Physically, it is introduced to model the mass exchange between the vascular
network and the surrounding tissue. This exchange occurs through the capillary
blood vessels, which have radii ranging from 5 to 10µm. These blood vessels
are too small to be captured as 3D objects in a mesh; instead, they are typically
reduced to being one-dimensional line segments, see e.g. [5, 9, 14, 15, 22]. The
system (1a)–(1c) would then be on the same form as the one considered in [16],
with the exception that the exchange term is here concentrated on the 1D vascular
network.
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We take f ∈ C0(�) and focus our attention on the challenges introduced by
the line source δ!. The line source induces p and w to be singular, i.e., they both
diverge to infinity on !. Consequently, one has p ∈ L2(�) but w /∈ (L2(�))3;
the solution is then not regular enough to fit the analytic framework of [3, 19].
They both prove global convergence for the fixed-stress splitting scheme applied to
Biot’s equations. Moreover, these singularities are expensive to resolve numerically,
making the solution highly challenging to approximate.

In order to tackle this issue, we here combine two strategies: (1) a fixed-stress
splitting scheme that decouples the mechanics equation (1a) from the flow equations
(1b)–(1c), and (2) a singularity removal method for the flow equations. For an
introduction to the fixed-stress splitting scheme, we refer to the works of Mikelić
et al. [19] and Both et al. [3]; for an introduction to the singularity removal method,
we refer to our earlier work [10, 11].

2 Mathematical Model and Discretization

In this section, we begin by introducing a splitting method that decomposes p and
w into higher and lower regularity terms. Here, the lower regularity terms are given
explicitly. The model (1a)–(1c) can be reformulated so that it is given with respect to
the higher regularity terms; we refer to this as the singularity removal method. Next,
we show how this model can readily be approximated by the fixed-stress splitting
scheme.

2.1 Singularity Removal Method

For the sake of notational simplicity, we assume κ to be constant; a spatially varying
κ could be handled as shown in [11, Sect. 3.3]. Let ai ,bi denote the endpoints of
the line segment !i . From [11, Sect. 3.2], we have a function G defined as

G(x) =
n∑

i=1

1

4π
ln

(
rb,i + Li + γi · (ai − x)

ra,i + γ i · (ai − x)

)

, (2)

with ra,i = ‖x − ai‖, rb,i = ‖x − bi‖, Li = ‖bi − ai‖ and γ i = bi−aaai
Li

as the
normalized tangent vector of !i . Centrally, this function solves −�G = δ! in the
appropriate weak sense; i.e., we have:

−
∫

�

�G v d� =
∫

!

v dS ∀v ∈ C0(�̄).

Having this function in hand, we next formulate the following splitting ansatz:
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p = ps + pr, w = ws + wr , (3)

where ps = fG(x)
κ

and ws = −κ∇ps . The terms ps and ws capture the singular
part of the solution, and are explicitly given via the function G. This allows pr and
wr to enjoy higher regularity and improved approximation properties. Assume for
the moment that the solution u is given. Inserting the splitting (3) into (1b)–(1c) one
finds the following reformulated flow equation:

Find (pr ,wr ) such that:

∂t

(
pr

M
+ α∇ · u

)

+ ∇ ·wr = ψr, (4a)

κ−1 wr + ∇pr = ρf g, (4b)

where ψr = ψ − ∂tps

M
+G�f + 2∇G · ∇f . Here, (4b) is straightforward to obtain.

For (4a), we used that

∂t

(
pr

M
+ α∇ · u

)

+∇ · wr = ψ + f δ! − ∂tps

M
−∇ ·ws

= ψ + f δ! − ∂tps

M
+∇ · (κ∇ fG

κ
)

= ψ − ∂tps

M
+ 2∇f · ∇G+ (�f )G.

In the last line we used the product rule to obtain ∇ · (κ∇ fG
κ

) = �(fG) = f�G+
2∇f · ∇G+ (�f )G along with the relation f�G = −f δ!.

The value of the reformulation lies in the fact that ψr can now be expected to
belong to L2(�). To see this, note that ψ ∈ L2(�) by assumption. G ∈ L2(�) can
be shown by straightforward calculation; it follows that ps ∈ L2(�). Finally, one
can show that ∇G ·∇f ∈ L2(�); for verification of this, we refer to the calculations
in [10, Sect. 4.2] along with the embedding f ∈ C0(�) ⊂ H 1(�).

Let now (1a) and (4a)–(4b) denote the reformulated Biot equation. As ψr ∈
L2(�), this system fits the analytic framework of [3].

2.2 Fixed-Stress Splitting Scheme

Next, we show how the reformulated Biot equations (1a) and (4a)–(4b) can
be approximated via the fixed-stress splitting scheme from [3]. Let Th be the
triangularization of the domain � with mesh size h. We let 0 = t0 < · · · < tN = T

be a partition of the time interval (0, T ) with N ∈ N
∗ and define a constant time

step size τ = tk+1 − tk := T/N for k ≥ 0. To discretize the system, we employ
backward Euler for time and a finite element method for space. The solutions are
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approximated with linear piecewise polynomials, constant piecewise polynomials
and lowest-order Raviart-Thomas spaces for the displacement, pressure and flux,
respectively. The discrete spaces are given by:

Vh = { vh ∈ [ H 1
0 (�) ]3 | ∀K ∈ Th, vh|K ∈ [ P1 ]3},

Qh = { qh ∈ L2(�) | ∀K ∈ Th, qh|K ∈ P0},
Zh = {zh ∈ H(div;�) | ∀K ∈ Th, zh|K(x) = η + ξx, η ∈ R

3, ξ ∈ R},

with P1 and P0 as the linear and constant piecewise polynomials.
Take now 〈·, ·〉 to be the L2(�)-inner product and (u0

h, p
0
h,w0

h) ∈ Vh×Qh×Zh

to be the initial values of the solution. We assume the solution of the displacement,
pressure and flux is known for the previous time step. The time-discretization of
(1a) and (4a)–(4b) then reads:

Given (un−1
h , pn−1

r,h ,wn−1
r,h ) ∈ Vh×Qh×Zh, find (un

h, p
n
r,h,wn

r,h) ∈ Vh×Qh×Zh

such that

〈2με(un
h), ε(vh)〉 + 〈λ(∇ · un

h),∇ · vh〉 − 〈αpn
h,∇ · vh〉 = 〈fn, vh〉,

〈
1

M
pn
r,h, qh

〉

+ 〈α∇ · un
h, qh〉 + τ 〈∇ · wn

r,h, qh〉 = τ 〈ψn
r , qh〉 +

〈
1

M
pn−1
r,h , qh

〉

+ 〈α∇ · un−1
h , qh〉,

〈κ−1w n
r,h, zh〉 − 〈pn

r,h,∇ · zh〉 = 〈ρf g, zh〉,

for all (vh, qh, zh) ∈ Vh ×Qh × Zh.
The idea of the fixed-stress splitting scheme is to decouple the flow and

mechanics equation while keeping an artificial volumetric stress σβ = σ0 +
Kdr∇ · u − αp constant. Here, Kdr ∈ L∞(�) is referred to as the drained bulk
modulus. We consider the theoretically optimal tuning parameter βFS = α2/Kdr

with Kdr = d
2 (μ+ λ) [3].

We define a sequence (un,i
h , p

n,i
r,h, wn,i

r,h), i ≥ 0. Let i denote the current iteration
step and i − 1 denote the previous iteration step. Then initialize u, pr and wr by
un,0
h = un−1

h , pn,0
r,h = pn−1

r,h and wn,0
r,h = wn−1

r,h , respectively. The algorithm iterates
until a stopping criterion is reached. The full scheme reads:

Step 1 Given (un,i−1
h , p

n,i−1
r,h , wn,i−1

r,h ) ∈ Vh × Qh × Zh. Find (p
n,i
h , wn,i

h ) ∈
Qh × Zh such that ∀ (qh, zh) ∈ Qh × Zh:

〈(
1

M
+ βFS

)

p
n,i
r,h, qh

〉

+ τ 〈∇ ·wn,i
r,h, qh〉 = τ 〈ψn

r , qh〉 +
〈

1

M
pn−1
r,h , qh

〉

(6)

+ 〈α∇ · un−1
h , qh〉 + 〈βFS p

n,i−1
r,h , qh〉

− 〈α∇ · un,i−1
h , qh〉,
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〈κ−1wn,i
r,h, zh〉 − 〈pn,i

r,h,∇ · zh〉 = 〈ρf g, zh〉. (7)

Step 2 Update the full pressure and flux solutions: pn,i
h = pn

s,h + p
n,i
r,h and wn,i

h =
wn

s,h + wn,i
r,h.

Step 3 Given p
n,i
h ∈ Qh. Find un,i

h ∈ Vh, such that ∀ vh ∈ Vh:

〈2με(un,i
h ), ε(vh)〉 + 〈λ(∇ · un,i

h ),∇ · vh〉 = 〈αpn,i
h ,∇ · vh〉 + 〈fn, vh〉. (8)

3 Numerical Results

In this section, we provide numerical convergence results for a test case using
parameters relevant for flow through vascularized tissue. Let the medium of
consideration be an isotropic, homogeneous porous medium and κ a positive
scalar quantity. We let (pi

r,h,wi
r,h,ui

h) be the solutions at iteration step i and

(pi−1
r,h , wi−1

r,h , ui−1
h ) the solutions at the previous iteration step i− 1. The procedure

stops when reaching the following criterion:

∥
∥
∥(pi

r,h, wi
r,h, ui

h)− (pi−1
r,h , wi−1

r,h , ui−1
h )

∥
∥
∥ ≤ εa + εr

∥
∥
∥(pi

r,h, wi
r,h, ui

h)

∥
∥
∥ ,

where εa, εr > 0 are given tolerances (see Table 1).
Let � = {(0, 1)×(0, 1)×(0, 1) ⊂ R

3} be a cube discretized by 1/h×1/h×1/h
tetrahedrons. The numerical results are obtained by the fixed-stress splitting scheme
proposed in Sect. 2.2 and the programming platform FEniCS [17]. Convergence is
tested against the following analytic solutions

Table 1 Material parameters used to solve the Biot’s equations with lower dimensional source
terms (1a)–(1c) in Sect. 3. There is a wide rage of parameters used in literature. The ones
represented here are a sample of representative parameters

Symbol Quantity Value Reference

κ Permeability divided by the fluid viscosity 1.57e−2 mm2 mPa−1 s−1 [23, Table 1]

E Tuning parameter 1.5e6 mPa [16, Table 6]

M Biot modulus 3.9e7 mPa [12, Table 2]

α Biot coefficient 1.0

ν Poisson’s ratio 0.2

g Gravitational vector 0 mm s−2 [7]

T Final time 1.0 s

τ Time step 0.1 s

εa Absolute error tolerance 1e−6

εr Relative error tolerance 1e−6
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Table 2 Errors and convergence rates obtained solving (6)–(8) with analytical solutions found in
this section. For reference, optimal convergence rates are listed in the bottom row

h ‖pa − ph‖L2(�) ‖wa − wh‖L2(�) ‖ua − uh‖L2(�)

1/8 1.2e−01 7.2e−03 5.9e−04

1/16 6.3e−02 3.5e−03 1.5e−04

1/32 3.1e−02 1.7e−03 3.7e−05

Rate 1.0 1.0 2.0

Optimal 1.0 1.0 2.0

Fig. 1 Left: Plot of the reconstructed pressure. Middle: Magnitude of the full flux. Right:
Magnitude of the displacement. All plots are numerical solutions obtained by the fixed-stress
splitting scheme (6)–(8) with one line source

pr = 1

4πκ
f (t)(ra−rb), wr = −κ∇pr , u = tx(1−x)y(1−y)z(1−z)[1 1 1]T ,

where f (t) = sin(t) is a pulsative intensity function. We selected two points
a = [0.5 0.8 0.5]T and b = [0.5 0.2 0.5]T to describe the line segment. Then
computed the solutions using mixed-finite element formulations for the correction
terms pr and wr , and the solution displacement u is calculated with the conformal
finite element formulation.

Table 2 shows the error and convergence rates obtained using the parameters
listed in Table 1. The singularity removal based fixed-stress splitting scheme is
seen to converge optimally for each variable uh, ph, and wh. The plots for this
problem are illustrated in Fig. 1. The figure includes the plot of the full pressure, the
magnitude of the full flux and the magnitude of the displacement, accordingly.
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A Semismooth Newton Solution of the
Steady-State Non-isothermal Bingham
Flow with Temperature Dependent
Nonlocal Parameters

Sergio González-Andrade

Abstract In this paper, we discuss the numerical solution of the non-isothermal
steady-state Bingham flow considering that the viscosity and the yield limit variate
with temperature. In the present contribution, we focus on the asymptotic limit case
of high thermal conductivity. In this case, the energy equation collapses into an
implicit energy equation which involves the viscosity and the yield stress functions,
while the temperature becomes a constant solution for this equation. Once we
obtain the coupled limit system of this energy equation and the classical Bingham
variational inequality of the second kind, we propose a mixed formulation for
the resulting limit variational inequality and a finite element discretization for the
resulting system of PDEs. Next, we develop a semismooth Newton algorithm for
the coupled flow model. Finally, we carry on several numerical experiments for
validating our method.

1 Problem Statement

We are concerned with the non-isothermal flow of a Bingham fluid, considering
temperature dependent parameters. Bingham fluids are materials characterized
by the existence of a yield stress. This means that the material behaves like a
viscoplastic fluid if the stress tensor overpasses a given constant (yield stress or
plasticity threshold), and it behaves like a rigid solid if the stress is beneath this
threshold. In this contribution, we focus on the numerical solution of the steady
flow of these materials, considering that the viscosity and the yield stress depend on
temperature.

Let � ⊂ R
d , d = 2, 3, be an open and bounded set with Lipschitz boundary ∂�.

Let us assume that there exist �,�0 ⊂ ∂�, such that |�0| > 0 and ∂� = � 2 �0.
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The governing equations for this phenomenon are

(u · ∇)u− ∇ · τ (θ)+∇p = f, in �

∇ · u = 0, in �

τ (θ) = μ(θ)Eu+ g(θ) Eu
|Eu| if Eu �= 0,

|τ (θ)| ≤ g(θ) if Eu = 0.

}

in �

u · ∇θ − κ�θ = τ (θ) : Eu− αθ, in �,

u = 0, on ∂�,
∂θ
∂n = 0 in �0,

κ ∂θ
∂n + βθ = 0 in �.

(P)

Here, κ > 0 stands for the thermal conductivity and f stands for the external body
forces. We allow the existence of a possible external heat source proportional to θ ,
if α > 0. We assume the classical non-slip boundary conditions for u and Robin
conditions for the energy equation [1, 3].

The variational formulation of system (P) corresponds to the problem: find
(u, θ) ∈ V ×W 1,q(�), for 1 < q < n/(n− 1), such that [1]

∫
� [μ(θ)Eu− (u · ∇)u] : Eu dx + ∫

�
g(θ)|Ev| dx − ∫

�
g(θ)|Eu| dx

≥ ∫
� f · (v− u) dx, ∀v ∈ V,

κ
∫
� ∇θ · ∇φ dx + ∫

�(u · ∇θ)φ dx + α
∫
� θφ dx + β

∫
� θφ ds

= ∫
�

[
μ(θ)|Eu|2 + g(θ)|Eu|]φ dx, ∀φ ∈ W 1,q ′(�).

(VP)

Here, V := {v ∈ H1(�) : ∇ · v = 0 in � and v = 0 on �0} and f ∈ V ′. The term
τ (θ) : Eu corresponds to the dissipated energy, and it makes sense only if Eu �= 0.
Thus, we use the corresponding form of τ (θ) in the energy equation. Furthermore,
the associated integral term in the variational formulation is well posed since for
1 < q < n/(n−1) we have that q ′ > n, which implies that W 1,q ′(�) is continuously
embedded in L∞(�).

Existence of solutions for (VP) has been established in [1], by assuming that
α, β ≥ 0, α + β > 0, μ ∈ C(R), g ∈ C(R), and that there exist μ0, μ1, g0 and g1
such that

0 < μ0 ≤ μ(t) ≤ μ1, and 0 ≤ g0 ≤ g(t) ≤ g1, ∀t ∈ R. (1)

Based on the Houska model (see [4]), we consider the following piecewise linear
functions

μ(t) = max(μ0,min(μ1, �μ(t))) and g(t) = max(g0,min(g1, �g(t))), (2)

where �μ and �g represent a line segment in the interval [0, 1] for μ and g,
respectively (see Fig. 1). These functions satisfy the assumption (1), which implies
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Fig. 1 Model functions for the temperature dependent viscosity μ and yield stress g, respectively

that existence of solutions for the problem (VP) is guaranteed. However, μ(θ) and
g(θ) are clearly non differentiable.

Usually, the dissipation term is neglected and the coupling between the velocity
and the temperature lies only on the convective term u · ∇θ . In several applications,
however, the dissipated energy needs to be analyzed in order to fully understand the
phenomenon. This is the case of geophysical flows or fluids in food industry.

In this contribution, we will approach the analysis of the coupled model in the
limit case κ → ∞. This limit model can be associated with the so called super
fluids. These materials are supposed to have infinite thermal conductivity, which
means that any volume of the fluid, no matter how large, will always be precisely
the same temperature throughout.

In order to obtain the limit problem, we start by recalling that system (VP) has a
solution (uκ , θκ) ∈ V ×W 1,q (�), corresponding to each κ > 0. Next, in [1, Th. 2.2]
it is proven that under Assumption (1), the sequence (uκ , θκ) converges, as κ →∞,
to a couple (u,�) ∈ V × R, solution of

μ(�)
∫
� Eu : E(v− u) dx − ∫

�(u · ∇)u : E(v− u) dx + g(�)
∫
� |Ev| dx

−g(�)
∫
� |Eu| dx ≥ ∫

� f · (v− u) dx, ∀v ∈ V,

(α meas(�)+ β meas(�))� = μ(�)
∫
�
|Eu|2 dx + g(�)

∫
�
|Eu| dx.

(NVP)

System (NVP) corresponds to the steady-state Bingham flow with nonlocal
temperature dependent parameters [1, 5]. The second equation in the system above
follows from the energy equation in (VP), taking φ = 1, and considering the
following limits, which are obtained in [1, Sec. 4.2, pp. 156]

∇θκ → 0, in Lq(�) and θκ → � = constant, in W 1,q (�), as κ →∞.
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2 Regularization and Numerical Approach

In this section, we focus on the numerical solution of system (NVP) by a semis-
mooth Newton algorithm. The main difficulty concerning the numerical solution of
(NVP) is given by the uncertainty regarding the yielded and unyielded regions.
In fact, in most cases, there is no a priori knowledge about the regions in which
the material behaves like a fluid (yielded regions) or as a rigid solid (unyielded
regions). The variational approach analyses this model as a free boundary problem,
being the free boundary the phase separating the yielded from the unyielded regions.
As a consequence, the flow is modelled by a variational inequality instead of
a PDE. In the present contribution, we propose a regularization approach based
on the so called Huber local regularization. Indeed, the idea lies in the fact that
the variational inequality in (NVP) constitutes a first order optimality condition
for an optimization problem involving the nondifferentiable term

∫
� |Eu| dx (see

[2]). Thus, we replace this term by a local approximation given by the expression∫
� ϒ(Eu) dx, where

R
d×d 3 p �→ ϒ(p) =

{
g(�)|p| − g(�)

2γ , if |p| ≥ g(�)/γ
γ
2 |p|, if |p| < g(�)/γ.

This function is a local regularization of the Frobenius norm and gives us a local
regularization of

∫
�
|Eu| dx. In [2], this approach has been discussed in great detail

for the isothermal flow.
In the present case, � is a constant solution of a real nonlinear equation, which is

defined by the two nondifferentiable functions μ(�) and g(�). This fact allows us
to extend the analysis in [2], based on the Fenchel duality theory and the de Rahm’s
theorem, to guarantee the existence of a tensor function q ∈ L

2×2(�) and a function
p ∈ L2

0(�) such that the following system has a unique solution, for each γ > 0

μ(�)
∫
� Euγ : Ev dx + ∫

� q : Ev dx + ∫
� p∇ · v dx = ∫

� f · v dx, ∀v ∈ H1
0(�),

∫
�
r ∇ · uγ dx = 0, ∀r ∈ L2

0(�),

max(g(�), γ |Euγ |)q− γg(�)Euγ , a.e. in �,

(α meas(�)+ β meas(�))� = μ(�)
∫
�
|Euγ |2 dx + g(�)

∫
�
|Euγ | dx.

(3)

Further, we can extend the analysis in [2, Th. 4.1] to the present case, so we can
state that uγ → u in H1

0(�), as γ →∞, for each � ∈ R.
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2.1 Discretization and Semismooth Newton Algorithm

The form of μ and g, the presence of the L1-norm of Euγ in the fourth equation in
(3) and the characterization of q in the third equation in (3) imply that the coupled
system (3) is not differentiable.

Fortunately, the max and min functions, as well as the Frobenius norm are
Newton or slantly differentiable in finite dimension spaces [6]. Following this fact,
we propose a first order finite element discretization for the system (3), using the so
called (cross-grid P1)-Q0 elements. It is known that these elements are LBB-stable
and lead to a direct relation between the discrete primal and dual variables [2].

We start by constructing the finite dimension spaces Vh ⊂ H1
0(�), Wh ⊂

L
2×2(�) and Qh ⊂ L2

0(�), with dim(Vh) = n, dim(Wh) = m and dim(Qh) = s.
Next, by using the classical Galerkin approach, we obtain the following system,
written as an operator equation

'(uh,qh, ph,�) :=

⎛

⎜
⎜
⎜
⎝

μ(�)Ahuh +Qhqh + Bhph − fh

D(mh) qh − g(�)γEhuh

(Bh)�uh

(ωh
α,β)�− μ(�)(uh)�Ahuh − g(�)K�N̂

h
(Ehuh)

⎞

⎟
⎟
⎟
⎠
= 0,

(4)

where ωh
α,β := α |�h| + β |�h|. Here, Ah is the stiffness matrix, while the matrices

Qh and Bh are obtained in the usual way, from the bilinear forms
∫
� q : Ev dx and∫

�
p∇ · v dx, respectively. Further, Eh is a discretized version of the deformation

tensor, constructed using the basis functions of Vh (see [2, Sec. 5]) and D(mh) :=
diag(max{g(�), γNh(Ehyh)}). We approximate the value of the Frobenius norm
of a discretized tensor, at each triangle in the discretized geometry, by using the
following function Nh : R4m → R

4m, given by

Nh(qh)i = Nh(qh)i+m = · · · = Nh(qh)i+4m := |(qi , qi+m, . . . , qi+4m)�|, i = 1, . . . , m.

Further, N̂
h : R

4m → R
m is given by N̂

h
(qh)i := |(qi, qi+m, . . . , qi+4m)

�|.
Finally, we use a composite midpoint formula to approach the integral

∫
� |Euγ | dx.

Therefore, K ∈ R
m is a vector whose components are the area of every triangle in

the discretization.
Once we have discretized the system (3), we can discuss its generalized differ-

entiability. In particular, we have to calculate the Newton derivative of D(mh) and
the fourth equation in '. Let us start by D(mh) qh. In [2, Sec. 6.1] it is proven that
the Newton derivative of this term is given, for any �, by γ (χAuD(qh)Nh

u(Ehuh)−
g(�))Eh, where χAu = D(th), with

th :=
{

1 if N(Euh)i ≥ g(�)
γ

0 otherwise.
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χAu is the indicator of the approximated yielded zones (N(Euh)i ≥ g(�)
γ

), i.e.,
triangles in which χAu = 1 correspond to yielded regions in the material. Further,
Nh

u(Ehuh) stands for the Jacobian of the discrete norm function Nh, and is given, for
a discretized tensor function qh, by

Nh
u(q

h) = D(Nh(qh))−1

⎛

⎜
⎜
⎝

D(q1) D(q2) D(q3) D(q4)

D(q1) D(q2) D(q3) D(q4)

D(q1) D(q2) D(q3) D(q4)

D(q1) D(q2) D(q3) D(q4)

⎞

⎟
⎟
⎠ . (5)

Now, we turn to the discretized energy equation. In this case, it is known that the
Newton derivatives of μ(t) and g(t) are given by Mμ := χAμ

+χAμ
−�

′
μ(t) and Mg :=

χAg
+χAg

−�
′
g(t), respectively, where

χAμ
+ :=

{
1 if min(μ1, �μ(t)) ≥ μ0

0 otherwise,
and χAμ

− :=
{

1 if �μ(t) ≤ μ1

0 otherwise.

χAg
+ and χAg

− are similarly defined (see [6]).
Summarizing, the SSN step for the operator equation (4) is given by

1(u,q, p,�)
(
δu, δq, δp, δ�

)� = −'(uh,qh, ph,�), (6)

where the generalized Jacobian is given by

1(u,q, p,�) :=

⎛

⎜
⎜
⎜
⎝

Ah Qh Bh MμAhuh

γ (χAk+1 Nh
u(Ehuh)D(qh)− g(�)I )Eh D(mh

k ) 0 0
(Bh)� 0 0 0
1�,u 0 0 1�,�

⎞

⎟
⎟
⎟
⎠

,

where 1�,u := −μ(�)(uh)�Ah − g(�)K�N̂
h

u(Ehuh)Eh and 1�,� := ωh
α,β −

Mμ(uh)�Ahuh −MgN̂
h
(Ehuh). The matrix N̂

h

u is defined analogously as (5).

Theorem 1 The sequence {�k+1 := �k + δk}, where �k := (uk, qk, pk,�k)} and
δk := (δu, δq, δp, δ�) is given by (6), converges superlinearly to the solution of the
operator equation (4), provided that �0 is sufficiently close to such solution.

Proof By extending the results in [2, Lem. 6.3 and 6.4], we can state that the
submatrix 1(u,q, p,�)(1 : 3, 1 : 3) is positive definite for a given constant value
for �. On the other hand, since functions μ and g are Newton differentiable, and
since given a vector uh, the fourth equation in (4) has a unique solution �, 1�,u
and 1�,� does not affect the positive definiteness of the full matrix 1(u,q, p,�).
Therefore, the result follows from [2, Th. 6.5] and the references therein. ��
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3 Numerical Results

In this section, we present a detailed numerical experiment to show the performance
of our numerical approach. We work in the unitary square � = (0, 1)×(0, 1) and we
consider the presence of a body force given by f(x1, x2) := 300(x2−0.5, 0.5−x1)

�.
This forcing term has non zero curl (curlf = −600), which provokes a rotating
movement in the interior of the geometry. We recall that, for the fluid, we consider
that non-slip boundary condition holds, i.e., u = 0 on ∂�.

For the experiment, we consider μ0 = 1, μ1 = 2, g0 = 10 and g1 = 15.
Thus, we start with a Bingham fluid with a starting yield limit of 10. In Table 1, we
show the reached temperature �f , yield limit gf , viscosity μf and the number of
iterations needed by the algorithm, for several values of β with fixed α (up), and
with fixed β and changing α (low).

In Fig. 2, the convergence behavior of the algorithm is depicted. There it can be
appreciated the superlinear convergence rate, since the residual decays fast in the
last iterations.

In Fig. 3, we show the yielded and unyielded regions in the flow for the starting
yield limit g0 = 10 and the reached yield limit g1 = 11.9753 in the regime α = 100
and β = 0. The unyielded regions, here depicted as the black regions, corresponds
to the portions of the material which are not moving (stagnation zones, which can
be seen in the corners) or are moving without plastic deformation i.e. moving as

Table 1 Parameters: μ0 = 1,
μ1 = 2, g0 = 10, g1 = 15
and γ = 103

α = 100 �f gf = g(�f ) μf = μ(�f ) #it.

β = 0 0.3977 11.9884 1.3977 14

β = 1 0.3951 11.9753 1.3951 12

β = 10 0.3731 11.8657 1.3731 14

β = 1 �f gf = g(�f ) μf = μ(�f ) #it.

α = 0 18.8669 15 2 14

α = 10 1.7152 15 2 14

α = 1000 0.0625 10.3124 1.0625 11

Fig. 2 Convergence behavior of the algorithm for α = 100 and β = 0 (left) and β = 1 (right).
Parameters: γ = 103
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Fig. 3 Yielded (red) and unyielded (black) regions in the flow for α = 100 and g0 = 0 (left) and
g1 = 11.9753 (right). Parameters: γ = 103

Fig. 4 Evolution of g(θ) (left) and μ(θ) (right) for α = 100. Parameters: γ = 103

rigid solids. These last regions are called nucleus, and are the cross-like regions in
the center of the geometry. Clearly, as expected, the reached yield limit is bigger,
so the material exhibits bigger unyielded zones. Further, these pictures are in good
agreement with previous contributions.

Finally, in Fig. 4, we show the evolution of g and μ. We can observe that at
first the temperature oscillates, but at the end the functions tend to stabilize, which
is in good agreement with the expected behavior of the phenomena, where the
temperature stabilizes prior to a change of phase.
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A Sequential Sensor Selection Strategy
for Hyper-Parameterized Linear
Bayesian Inverse Problems

Nicole Aretz-Nellesen, Peng Chen, Martin A. Grepl, and Karen Veroy

Abstract We consider optimal sensor placement for hyper-parameterized linear
Bayesian inverse problems, where the hyper-parameter characterizes nonlinear
flexibilities in the forward model, and is considered for a range of possible values.
This model variability needs to be taken into account for the experimental design
to guarantee that the Bayesian inverse solution is uniformly informative. In this
work we link the numerical stability of the maximum a posterior point and A-
optimal experimental design to an observability coefficient that directly describes
the influence of the chosen sensors. We propose an algorithm that iteratively chooses
the sensor locations to improve this coefficient and thereby decrease the eigenvalues
of the posterior covariance matrix. This algorithm exploits the structure of the
solution manifold in the hyper-parameter domain via a reduced basis surrogate
solution for computational efficiency. We illustrate our results with a steady-state
thermal conduction problem.
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1 Introduction

Mathematical models of physical processes often depend on parameters, such as
material properties or source terms, that are known only with some uncertainty.
Experimental measurement data can help estimate these parameters and thereby
improve the meaningfulness of the model. The Bayesian approach to inverse
problems (cf. [7]) yields a (posterior) probability distribution for these parameters
that reflects both the prior distribution in the parameters and measurement data.

A major challenge in inverse problems is sensor placement to obtain informative
measurement data at restricted experimental cost. There exists a vast optimal exper-
imental design (OED) community focused on different problem types and optimal
design criteria. The literature most related to this contribution is the discussion of
A-optimality for infinite-dimensional linear Bayesian inverse problems in [1, 2], and
the greedy orthogonal matching pursuit algorithm for data assimilation in [4, 6].

In this paper, we consider the optimal placement of sensors to infer a parameter
from noisy data in a linear Bayesian inverse problem subject to flexible hyper-
parameters. The hyper-parameters characterize variability of the forward model,
e.g. variable material properties or geometry, that needs to be taken into account
for the sensor placement. For instance, the Bayesian inference problem might
need to be solved for multiple data sets with known hyper-parameters, or a most
suitable hyper-parameter might need to be sought for fixed data in an “outer loop”
optimization. In either case, the same sensors are used within all inference problems,
thus necessitating a uniformly “good” choice. The objective of this paper is to
provide a sensor selection strategy that follows, uniformly for all hyper-parameters,
the A-optimal design criterion of minimizing the trace of the posterior covariance
matrix.

In [3], we developed and utilized a numerical stability analysis for parameterized
3D-VAR data assimilation over a linear model correction term to find design criteria
for stability-based sensor selection. In this contribution, we first re-interpret these
results in the hyper-parameterized linear Bayesian inversion setting, and then show
their relation to A-optimal experimental design. This analysis leads to a greedy
algorithm that iteratively chooses sensor locations that, under certain assumptions,
uniformly decrease the trace of the posterior covariance matrix.

In the upcoming section, we specify our linear forward model, and pose the
Bayesian inversion problem in a hyper-parameterized context. We then, in Sect. 3,
show the link between its numerical stability, different model coefficients, the
eigenvalues of the posterior covariance matrix, and A-optimal experimental design.
In Sect. 4 we propose an algorithm to exploit this connection, and present numerical
results in Sect. 5 for a thermal conduction problem. We conclude in Sect. 6.
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2 A Hyper-Parameterized Bayesian Inverse Problem

We consider a linear Bayesian inverse problem setting for the inference of a finite-
dimensional1 parameter2 m ∈ R

M from noisy data d ∈ R
K subject to different

hyper-parameters θ that characterize nonlinear (in θ ) flexibility in the linear (in m)
forward model. Our objective is to find conditions for an observation operator that
is uniformly informative for all hyper-parameters. In the following, we specify the
forward model and the Bayesian inverse problem, before analysing it in Sect. 3.

Following the Bayesian approach to inverse problems, we consider m to be
a random variable, and model our prior belief in its distribution through a non-
degenerate Gaussian prior measure μ0 = N(m0,00) with mean m0 and symmetric
positive-definite (s.p.d.) covariance 00 ∈ R

M×M . We define the inner product
(m1,m2)0−1

0
:= mT

1 0
−1
0 m2 and norm ||m1||2

0−1
0

:= (m1,m1)0−1
0

for m1,m2 ∈
R

M .
For the forward model, let (U, (·, ·)U) be a Hilbert space with induced norm

||u||2U := (u, u)U, and let P ⊂ R
p be a compact set of possible hyper-parameters.

For any θ ∈ P, we let aθ : U × U → R and bθ : R
M × U → R be non-

trivial bilinear forms that are affine3 and bounded uniformly in θ , with the additional
assumption that aθ is also uniformly coercive.4 Under these assumptions there
exists, for any parameter m ∈ R

M , a unique, bounded solution to the problem

find uθ (m) ∈ U s.t. aθ(uθ , ψ) = bθ (m,ψ) ∀ψ ∈ U. (1)

We define, for X ⊂ R
M , the ratios ηX,θ := infm∈X ||uθ (m)||U/||m||

0−1
0

≥ 0

and ηX,θ := supm∈X ||uθ (m)||U/||m||
0−1

0
< ∞. Moreover, we define the closed

subspace

Xθ := {m ∈ R
M : uθ (m) = 0} = {m ∈ R

M : bθ (m, ·) = 0} ⊂ R
M (2)

of all parameter directions that do not change the state, and let X⊥
θ denote its

orthogonal complement in the Euclidean inner product. In particular, we have
ηX⊥

θ ,θ > 0.

For our sensors, we consider a library L = {lk}KL
k=1 of KL < ∞ sensors lk ∈

U′. For a selection lk1 , . . . , lkK ∈ L of these sensors, we define the observation
operator L = (lk1 , · · · , lkK )T : U → R

K . Measurement data for a parameter

1The extension to the infinite-dimensional setting poses additional challenges that will be discussed
in a future work.
2A general finite-dimensional space can be considered via an affine transformation, c.f. [2, 5].
3For conciseness, we refer the reader to [3] for a definition of these properties.
4We can readily generalize this setting to non-coercive problems by employing a Petrov-Galerkin
formulation. A stability analysis similar to [3] will be explored in a future publication.
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m ∈ R
M is obtained by applying L to the state uθ (m). This gives us the linear,

bounded parameter-to-observable map Gθ,L : RM → R
K , Gθ,L(m) := Luθ(m).

Our objective is to choose L from L so that it is approximately A-optimal over P.
For the noise model, we assume to be given an s.p.d. covariance matrix 0noise ∈

R
KL×KL that describes how the observation noise between all sensors in L is

correlated. The covariance for the sensors in L is then described by the submatrix
0L ∈ R

K×K with (0L)i,j = (0noise)ki ,kj . For fixed L and for data d1, d2 ∈ R
K we

define the inner product (d1, d2)0−1
L
:= dT

1 0−1
L d2 and induced norm ||d1||2

0−1
L

:=
(d1, d1)0−1

L
. We define γL := supu∈U ||Lu||

0−1
L
/||u||U as the norm of L. We model

the data to be of the form

d = Gθ,L(m)+ η with Gaussian additive noise η ∼ N(0, σ 20L) (3)

and scaling parameter σ > 0. For given data d ∈ R
K from an observation operator

L, the posterior probability density function of the posterior measure μL,d is then
given through Bayes’ theorem by

πpost(m|d) ∝ exp
(− 1

2σ 2 ||Gθ,L(m)− d||2
0−1

L

− 1
2 ||m−m0||2

0−1
0

)
, (4)

where we omit the normalization constant Z = ∫
RM exp(− 1

2σ 2 ||Gθ,L(m) −
d||2

0−1
L

)dμ0. Since Gθ,L is linear, the posterior is a Gaussian (see, e.g., [7, Thm 2.4]),

μL,d = N(m
θ,L
post(d),0

θ,L
post), with mean m

θ,L
post(d)=0

θ,L
post

(
1
σ 2 G

∗
θ,L0

−1
L d +0−1

0 m0

)

and covariance matrix 0
θ,L
post =

(
1
σ 2 G

∗
θ,L0

−1
L Gθ,L +0−1

0

)−1
.

3 Numerical Stability and A-Optimal Experimental Design

In the following, we first comment on the connection between the numerical stability
of the MAP point and the observation operator L. We then link this analysis to A-
optimal experimental design.

Since μL,d is Gaussian, its mean m
θ,L
post is the maximum a posteriori (MAP) point,

and hence the solution to the minimization problem

min
m∈RM

1
2σ 2 ||Luθ(m)− d||2

0−1
L

+ 1
2 ||m−m0||2

0−1
0
. (5)

Through a reformulation as a saddle-point problem, the numerical stability of (5)
can be analyzed with respect to θ , L, and σ 2 (c.f. [3] for an analogous analysis). In
particular, the difference in the MAP points and states for different d1, d2 ∈ R

K is
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bounded by the difference in data. We have, with m̃(d) := m
θ,L
post(d) for readability,

||m̃(d1)− m̃(d2)||2
0−1

0
+ ||uθ (m̃(d1))− uθ (m̃(d2))||2U ≤ (Cθ,L,σ 2)

2||d1 − d2||2
Σ−1

L

.

(6)

The stability coefficient Cθ,L,σ 2 > 0 quantifies the influence of noise on the MAP
point. It has the form Cθ,L,σ 2 = γL(1 + η2)/(σ 2 + β2

θ,Lη
2), where η = ηRM,θ if

β2
θ,L ≤ σ 2, and η = ηRM,θ otherwise, and βθ,L is the observability coefficient

βθ,L := inf{||Luθ(m)||
0−1

L
: ||uθ (m)||U = 1, m ∈ R

M}. (7)

Cθ,L,σ 2 decreases in βθ,L, and remains bounded for σ 2 → 0 iff ηRM,θ > 0 and

βθ,L > 0. Increasing βθ,L can hence help improve robustness of mθ,L
post against noise.

The goal in A-optimal experimental design is to choose sensors to minimize the
trace of the posterior covariance matrix 0

θ,L
post. Geometrically, this corresponds to

minimizing the mean axis of the uncertainty ellipsoid (c.f. [8]). In the following,
we bound the eigenvalues of 0

θ,L
post via βθ,L and ηX⊥

θ ,θ . These can then be used to
choose sensors to decrease the bounds of the eigenvalues, and consequently of the
trace.

Utilizing the definitions of Gθ,L and ηmλi
,θ in Sect. 2, and βθ,L in (7), we observe

mTG∗
θ,L0

−1
L Gθ,Lm = ||Luθ(m)||2

0−1
L

≥ β2
θ,L||uθ (m)||2U = β2

θ,L||uθ(%X⊥
θ
m)||2U

≥ β2
θ,Lη

2
X⊥

θ ,θ
||%X⊥

θ
m||2

0−1
0
≥ β2

θ,Lη
2
X⊥

θ ,θ
C−2
0−1

0
||%X⊥

θ
m||2

RM ,

(8)

where %X⊥
θ

is the orthogonal projection onto X⊥
θ in the Euclidean inner product and

C
0−1

0
:= supm∈RM ||m||RM/||m||

0−1
0

is a norm equivalence constant.

Let 0 < λ1 ≤ · · · ≤ λM be the eigenvalues of the posterior covariance
matrix 0

θ,L
post, including duplicates. Since 0

θ,L
post is s.p.d., there exists an orthonormal

eigenvector basis (mλi )
M
i=1 of RM , i.e. mT

λi
mλj = δi,j and 0

θ,L
postmλi = λimλi . With

the explicit formula for 0θ,L
post from Sect. 2, the last equation is equivalent to 1

λi
mλi =

1
σ 2 G

∗
θ,L0

−1
L Gθ,Lmλi + 0−1

0 mλi . Premultiplying by mT
λi

and inserting (8) yields
1
λi
= 1

λi
||mλi ||2RM ≥ ( 1

σ 2 β
2
θ,Lη

2
X⊥

θ ,θ
C−2
0−1

0
||%X⊥

θ
mλi ||2RM + C−2

0−1
0
), and hence

λi ≤ C2
0−1

0
/( 1

σ 2 β
2
θ,Lη

2
X⊥

θ ,θ
||%X⊥

θ
mλi ||2RM + 1).
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Summing over all eigenvalues, including duplicates, we can now bound

trace(0θ,L
post) =

∑M
i=1λi ≤ C2

0−1
0

∑M
i=1(

1
σ 2 β

2
θ,Lη

2
X⊥

θ ,θ
||%X⊥

θ
mλi ||2RM + 1)−1.

Although ||%X⊥
θ
mλi ||RM ≥ 0 is unknown for any individual λi , by exploiting that

(mλi )
M
i=1 is an orthonormal basis, it can be shown that

∑M
i=1 ||%X⊥

θ
mλi ||2RM =

dimX⊥
θ . Our strategy is to choose L to increase βθ,L; this decreases the bound

for each λi with ||%X⊥
θ
mλi ||RM > 0, and hence also the bound for the trace. The

coefficient βθ,L becomes more influential the more the data is trusted, i.e. for σ 2

small.

4 Sensor Selection Strategy

Our goal is to choose sensors {lk}Kk=1 so that βθ,L is uniformly large over the
hyper-parameter domain P. The major challenge for achieving this goal is that
evaluating βθ,L for any θ involves solving the forward problem (1) for each basis
vector of R

M . We address this problem by approximating the solution uθ (m) of
(1) with a surrogate reduced basis (RB) solution uθ,R(m), that can be computed at
a considerably reduced computational cost for a specified accuracy: Suppose for
every hyper-parameter θ ∈ P and every parameter m ∈ R

M , we can compute
uθ,R(m) ∈ U such that ||uθ (m) − uθ,R(m)||U ≤ εθ ||uθ (m)||U for a relative
accuracy 0 ≤ εθ ≤ ε < 1. It can then be shown analogously to [3, sec. 5.1] that
βθ,L ≥ (1 − εθ)βθ,L,R − γLεθ , where βθ,L,R is defined over the surrogate model
analogously to (7), and γL is the norm of L. The upper bound ε < 1 ensures that
uθ,R(m) = 0 iff uθ (m) = 0; therefore βθ,L,R is defined over the same parameter
subspace X⊥

θ as βθ,L. Supposing ε is small enough, we propose to exploit the lower
bound of βθ,L by choosing the sensors in L via an iterative greedy approach over P
to increase βθ,L,R, and subsequently βθ,L.

Algorithm 1 Stability-based sensor selection
Given: a training set 3train, a library L, a target value β0, a starting parameter θ1 ∈ 3train, and an
upper limit Kmax to the number of sensors.
1: L← {0}, β ← 0, K ← 0
2: while β < β0 and K < Kmax do
3: uK+1 ← arg min{||LuR||0−1

L
/||uR||U : uR = uθK+1,R(m) for m ∈ R

M }
4: choose l ∈ L such that ||[L, l]uK+1||0−1

[L,l]
is maximal

5: L← [L, l], K ← K + 1
6: θK+1 ← arg minθ∈3train βθ,L,R, β ← βL,R(θK+1)

7: end while
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Fig. 1 (a) Domain decomposition of the thermal block problem with boundary conditions. Sensor
centres chosen by Algorithm 1 are indicated as circles (filled out for βθ,L-criterion), reference
Chebyshev centres are marked with stars. (b) Mean of the trace of the posterior covariance matrix
vs. the mean of βθ,L. Mean values are computed over the 1681 hyperparameters in 3test

Following the ideas in [4, 6], in each iteration of the loop, the algorithm
first chooses (line (3)) the state uK+1 which realizes the minimum observability
coefficient; it then searches the library L for the best sensor to observe this state
(line (4)), and then extend the observation operator. Line (4) involves first computing
l(uK+1) (in FE dimension) and then ||[L, l]uK+1||0−1

[L,l]
(in O(K3)) for each l ∈ L.

In line (6) the algorithm then finds the hyper-parameter by iterating over θ ∈ 3train
and computing βθ,L,R via an eigenvalue problem. Any computation of βθ,L,R
involves solving the RB problem for each basis vector of R

M . The algorithm
terminates when either a maximum number of sensors or a target value 5 β0 has
been reached.

The uniform increase of βθ,L,R over P relies on the property that extending the
observation operator with a sensor does not decrease βθ,L,R at different hyper-
parameters. This property is straightforward to prove for uncorrelated noise, but
more involved for the general case. We will explore this aspect in a future
publication.

5 Numerical Results

We consider a steady-state heat conduction problem−θ�u = 0 over the unit square
�. The hyper-parameters θi ∈ [0.1, 10] specify different thermal conductivities on
three subdomains (overview in Fig. 1a). We impose an uncertain inflow boundary

5Possibilities for target values are highly dependent on the library L. In practice, β0 should be
chosen by carefully monitoring the changes in β.
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condition u = ∑3
i=0 mipi on �in, where pi is the Legendre polynomial of degree

i, and m is distributed as N((1, 0, 0, 0)T , I ) in R
M = R

4, with identity matrix
I . We refer to [3] for a full description of the model problem and algorithm
implementation.

Our library consists of functionals lk(u) := ∫
�
gk(x)u(x)dx, where the gk

are Gaussian functions with standard deviation 0.01 and centres in a 97 × 97
regular grid on [0.02, 0.98]2. We model 0noise as the U-inner-product of the
sensors’ Riesz representations, and choose σ = 0.01. The noise correlation at
different sensors is then higher the closer they are placed to each other. We apply
Algorithm 1 with target value β0 := 0.5. In addition to βθ,L, we also consider
β̃L,θ1,θ2 := inf{||Lu||

0−1
L
/||u||U : u = uθ1(m1)+ uθ2(m2), m1,m2 ∈ R

M}, which

distinguishes between different hyper-parameters, and selects sensors for “outer-
loop” hyper-parameter estimation (c.f. discussion in [3]). The 16 selected sensors
are indicated in Fig. 1a as circles.

We compute the mean trace of the posterior covariance matrix and the mean
of βθ,L over a testing set 3test of 41 × 41 hyper-parameters located in a regular
grid on the logarithmic plane of P = (0.1, 10)2. For comparison, we repeat the
process 50 times with 16 randomly chosen positions, and another 50 times with
16 randomly chosen positions of which at least 4 are placed close to the inflow
boundary with x2 = 0.02. Also, we consider another set of 16 centers (indicated
as stars in Fig. 1a), where the x1-locations are chosen in our library closest to the
Chebyshev interpolation points for polynomials with degree smaller or equal to 3.
These would be the theoretically optimal points (in x1-direction) for interpolating
the Neumann flux. Figure 1b shows the mean trace and the mean βθ,L over 3test for
the different sensor sets.

We observe that the sensors chosen by Algorithm 1 near the inflow boundary
are close to the Chebyshev positions. Both sensor sets have a similarly high mean
value for βθ,L and a similarly small trace of the posterior covariance. In contrast,
the randomly chosen sensor sets have a larger mean trace and smaller mean βθ,L.
Here the sets chosen with four centres near the inflow boundary outperform the
completely random ones. Altogether, we observe a strong correlation between βθ,L

and trace(0θ,L
post).

6 Conclusion

In this paper we considered a hyper-parameterized linear Bayesian inverse problem
and linked its numerical stability analysis to A-optimal experimental design. This
analysis permits the development of an algorithm that iteratively chooses sensor
locations from a library to reduce the eigenvalues of the posterior covariance matrix
uniformly over the hyper-parameter domain. Future work will extend this analysis
to Petrov-Galerkin and time-dependent formulations, as well as application to high-
dimensional parameter spaces and nonlinear problems.
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Biomechanical Surrogate Modelling
Using Stabilized Vectorial Greedy Kernel
Methods

Bernard Haasdonk, Tizian Wenzel, Gabriele Santin, and Syn Schmitt

Abstract Greedy kernel approximation algorithms are successful techniques for
sparse and accurate data-based modelling and function approximation. Based
on a recent idea of stabilization (Wenzel et al., A novel class of stabilized
greedy kernel approximation algorithms: convergence, stability & uniform point
distribution. e-prints. arXiv:1911.04352, 2019) of such algorithms in the scalar
output case, we here consider the vectorial extension built on VKOGA (Wirtz and
Haasdonk, Dolomites Res Notes Approx 6:83–100, 2013. We introduce the so called
γ -restricted VKOGA, comment on analytical properties and present numerical
evaluation on data from a clinically relevant application, the modelling of the human
spine. The experiments show that the new stabilized algorithms result in improved
accuracy and stability over the non-stabilized algorithms.

1 Introduction

Kernel methods are used in various fields of machine learning or pattern analysis.
They yield efficient and flexible ways to recover functions from data since they can
deal with arbitrarily scattered points. The combination of their flexibility with the
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strong mathematical theory about e.g. existence, convergence, stability make them
a nice tool for applications [3, 10].

In this paper we apply a recently introduced idea that has lead to a new
class of stabilized greedy kernel algorithms [11], extend it to vectorial function
approximation and apply it to a real life setting from research in biomechanics.
Some theoretic statements can be extended from the scalar to the vectorial case. All
in all these stabilized methods provide further flexibility and are able to efficiently
mitigate the problem of having numerical instabilities.

The paper is organized as follows. To begin with we recall in Sect. 2 some
basics about kernel interpolation with a focus on greedy kernel approximation and
explain the stabilized extension. Section 3 gives background information about our
application settings and the use of kernel methods. The following Sect. 4 explains
the conducted numerical experiments as well as the practical results. Section 5
concludes with a summary and an outlook.

2 Stabilized VKOGA Algorithm

We start with a nonempty set � ⊂ R
d . A real-valued kernel is a symmetric function

k : � × � → R. For arbitrary points XN := {x1, .., xN } ⊂ � the kernel matrix
A ∈ R

N×N is a symmetric matrix with entries Aij = k(xi, xj ). If this kernel matrix
is positive semi-definite for any set of points XN ⊂ �, then the kernel is called
positive definite. If the kernel matrix is even positive definite for any set of pairwise
distinct points, then the kernel is called strictly positive definite. In the following
we will focus on this case of strictly positive definite kernels and we refer to the
monographs [3, 10] for more details.

For any such kernel there is a unique Hilbert space of functions, namely the
native space (Hk(�), (·, ·)Hk(�)), which is a Reproducing Kernel Hilbert Space
(RKHS). A popular choice is given by radial basis function kernels, i.e. the kernel
can be expressed with the help of some function ' and a kernel parameter ε ∈ R as
k(x, y) = '(ε‖x − y‖). Examples are given by the Gaussian kernel 'Gauss(r) =
exp(−(ε · r)2)and the linear Matérn kernel '(r) = (1+ r) · exp(−r). The decay of
the Fourier transform of those radial basis functions is decisive for their properties.
The Fourier transform of the Gaussian decays exponentially, whereas the Fourier
transform of the linear Matérn decays only algebraically.

In such RKHS the interpolation of functions—or more general data based
approximation tasks—can be analyzed. For a given function f ∈ Hk(�) and some
interpolation points XN the interpolant sN is given by the orthogonal projection
%V(XN)(f ) of f onto V (XN) := {k(·, xi), xi ∈ XN } and thus can be expressed as

sN(·) = %V(XN)(f ) =
N∑

i=1

αik(·, xi), αi ∈ R, 1 ≤ i ≤ N.
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In some applications the data is affected by noise, so it does not make sense to
interpolate the given values, while it is rather advisable to approximate them while
taking some regularization into account. For this one can consider minimizing∑N

i=1 ‖f (xi) − sN (xi)‖2
2 + λ · ‖sN‖2

Hk(�)
which corresponds to solving the linear

system

(A+ λ · I)α = y (1)

with y = (f (xi))
N
i=1. To measure the interpolation error ‖f −%V(XN)(f )‖L∞ one

can introduce the Power function PXN : �→ R as

PN(x) := PXN (x) = sup
0 �=f∈Hk(�)

|f (x)−%V(XN)(f )(x)|
‖f ‖Hk(�)

. (2)

From this definition we can directly conclude

|f (x)−%V(XN)(f )(x)| ≤PN(x) · ‖f ‖Hk(�).

For the analysis of the kernel interpolants geometric quantities about the
distribution of the interpolation points are important. The fill distance hN and the
separation distance qN are defined as

hN := sup
x∈�

min
xi∈XN

‖x − xi‖2, qN := min
xi �=xj∈XN

‖xi − xj‖2. (3)

A priori it is unclear how to select good interpolation points for a given set of
data or some functions. To circumvent this, one applies greedy methods which start
with an empty set X0 = {} and iteratively add another interpolation point according
to some selection criterion, XN+1 = XN ∪ {xN+1}.

There are three main selection criteria in the literature, namely f -greedy, f/P -
greedy and P -greedy [1, 6, 9] which choose the next point from � according to
some indicator. For the vectorial case [12], for x ∈ � they are:

1. f -greedy: η
(N)
f (x) = ‖f (x)−%V(XN )(f )(x)‖2

2. P -greedy: η
(N)
P (x) = PXN (x)

3. f/P -greedy: η
(N)
f/P (x) = ‖f (x)−%V(XN)(f )(x)‖2/PXN (x).

In order to create a scale of selection criteria which lie in between those known
criteria, one introduces a restriction parameter γ ∈ (0, 1] and a restricted set
�

(N)
γ := {x ∈ �,PN(x) ≥ γ · ‖PN‖∞} and chooses the next interpolation point

within �
(N)
γ according to some standard selection criterion. This works since the

Power function is scalar valued and the interpolation points are shared among all
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dimensions.1 For γ = 1 it holds �(N)
γ = {x ∈ �,PN(x) = ‖PN‖∞}, thus we obtain

the standard P -greedy algorithm for any selection criterion η(N)(x). For γ = 0 it
holds �

(N)
γ = �, thus we obtain the unrestricted algorithm. The naming restricted

is obviously related to the restriction of the set � to �
(N)
γ , the name stabilized is

motivated by part of the results within [11], which are summarized in Theorem 1. If
the maximum within a selection rule is not unique, any point realizing the maximum
can be picked.

As an example, the γ -stabilized f -greedy chooses the next point according to

xN+1 = arg max
x∈�(N)

γ

‖f (x)−%V(XN)(f )(x)‖2.

Several rigorous analytical statements can be derived for this kind of algorithms
and we will summarize a few of them in the following Theorem 1. The proofs are
straightforward consequences of those which can be found in [11].

Theorem 1 Assume that � ⊂ R
d is a compact domain which satisfies an interior

cone condition and has a Lipschitz boundary. Suppose that k is a translational
invariant kernel such that its native space is norm equivalent to the Sobolev space
Hτ(�) with τ > d/2. Then any γ -stabilized algorithm applied to a function in
f ∈ Hk(�) gives a sequence of point sets XN ⊂ � such that it holds:

• Lower and upper bound on the Power function:

cP · N 1
2− τ

d ≤ ‖PN‖L∞(�) ≤ CP · γ−2 ·N 1
2− τ

d .

• Asymptotic uniform point distribution:

ρXN :=
hN

qN
≤ c · γ−4 ∀N ∈ N.

• Lower and upper bounds on the smallest eigenvalue:

c1 · γ 8τ−4d−4 · N1−2τ/d ≤ λmin(XN) ≤ c2 · γ−4 ·N1−2τ/d .

Finally we want to point out that the γ -parameter only affects the choice of
points, i.e. it modifies the greedy selection. However, if given points are used the
γ parameter does not change the computed interpolant anymore. This is in contrast
to the parameters λ and ε, which modify also the interpolant if points are given.

From Theorem 1 we can conclude that the product λmin · ‖PN‖2∞ is bounded
from both sides for γ > 0. This motivates to take the value of the Power function of

1This corresponds to the case of using separable matrix-valued kernels, i.e. K(x, y) := k(x, y) · I
where I is the d × d identity matrix [14].
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the previously chosen point as a measure of stability. This will be used in Eq. (4) to
implement a stopping criterion based on stability.

3 Application to Spine Modelling

Biomechanical models of the human spine account for the most significant struc-
tures which carry the load of daily life. That are mostly the ligaments, the muscles
with both passive and active contributions and the intervertebral discs (IVDs), of
course. An IVD, in this sense, can be seen as a combination of both the defining
structure for the degrees of freedom between two vertebral bodies and the force and
rotational moment transducing elements between these two bones, cf. Fig. 1.

Mostly, IVDs are modelled by a linear approximation of forces and rotational
moments calculated according to the respective displacements, e.g. [5]. Alterna-
tively, as long as quasi-static movements are studied, very detailed, finite element
models of isolated IVDs or a combination of few spinal segments are used [2].
Another approach to model a reduced IVD used a polynomial approximation and
showed that the classical linear approximations overestimate actual stiffnesses in
the working range [4, 7]. This observation gave rise to the idea of looking into an
even more sophisticated mapping of displacements on the input to output forces and
rotational moments.

Obviously, kernel modelling seems to be an ideal approach for this need. First,
kernel surrogates promise to capture the mapping characteristics well, second,
extensions to higher input and output dimensions seem feasible and third, compared
to respective detailed finite element models surrogate models evaluate the mapping
stunningly fast [13].

Fig. 1 Visualization of the biomechanical model. On the left the whole spine model is depicted,
on the right the modelling scheme of an IVD reduced to a 3-d force/torque element is shown [4]



504 B. Haasdonk et al.

Assuming symmetry in the sagittal and frontal plane, an input-output relation
f : R3 → R

3 is considered and studied, here.

4 Numerical Experiments

The considered dataset consists of 1370 input points in R
3 with corresponding

output points in R
3. 1238 points are used for training and validation, the remaining

points are used as a test set. No scaling is applied to the data. In order to show
the flexibility and thus improved accuracy of the stabilized algorithms on the
presented data set, we compute unstabilized approximants, used as base models,
as well as stabilized models for the f - and the f/P -greedy algorithm. For both the
unstabilized and stabilized models we also use regularization in a second step. The
experiments are related to those in [8, 13], however due to different setups they are
not identical.

The base models are given by standard kernel surrogates where the point
selection is done either with vectorial f -greedy or f/P -greedy. To evaluate good
parameters, first of all a 5-fold cross validation is run on 20 logarithmic equally
spaced kernel parameters ε. The best ε value is used for a second step, where the best
λ parameter from Eq. (1) is evaluated with help of another 5-fold cross validation.
For this we use 20 logarithmic equally spaced values between 10−16 and 103. As an
error measure we use the Root Mean Square Error (RMSE)

ERMSE(s,X, Y ) =
⎛

⎝ 1

|X| ·
|X|∑

i=1

‖s(xi)− yi‖2
2

⎞

⎠

1/2

.

The stabilized models are given by kernel surrogates where the points are selected
with help of stabilized vectorial f - or f/P -greedy algorithms. We start by using
the same kernel parameter ε which was selected for the base model and run instead
a 5-fold cross validation on 11 equally spaced stabilization parameters γ ∈ [0, 1].
As a second step we evaluate again the best λ parameter with help of a 5-fold cross
validation. This procedure keeps the computation time similar to the base model.

The used hyperparameters are summarized in Table 1. For the experiments the
linear Matérn kernel is used since it satisfies all the prerequisites of Theorem 1.

The greedy selection algorithms stop either when all points within the training
set are selected or if some threshold on the residual or on the Power function is met.

Table 1 Overview of the hyperparameter ranges. The γ values are equally spaced, the others are
logarithmically equally spaced

k εmin εmax nε γmin γmax nγ λmin λmax nλ

5 10−2 101 20 0 1 11 10−16 103 20
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As a tolerance on the residual we use τf = 10−7, that means the selection is stopped
if max ‖sN (xi) − yi‖2 < τf is met. As a tolerance for the Power function we use
τP = 10−3 and the selection is stopped if

PN(xN+1) < τP . (4)

We remark that this last criterion is directly linked to the stability. If points with
small Power function value are selected, it means that the interpolation points
cluster. We recall that this means in particular that λmin(XN) is below a certain
threshold, making further computations unstable. Moreover, although a thorough
discussion on the fine tuning of these thresholds is beyond the scope of this paper,
we remark that the chosen values appear to be reasonable in this setting since they
are sufficient to achieve the desired accuracy, while avoiding instabilities.

Table 2 lists both the hyperparameters which were selected by the cross-
validations and the resulting accuracies of the interpolants. The Emax,rel and the
ERMSE,rel errors are defined according to

Emax,rel := max
i=1,..,|X| ‖s(xi)− yi‖2/‖yi‖2, ERMSE,rel :=

⎛

⎝ 1

|X| ·
|X|∑

i=1

‖s(xi)− yi‖2
2

‖yi‖2
2

⎞

⎠

1/2

.

In the left plot of Fig. 2 the number of selected points during the cross validation
are depicted for the f/P -greedy. One can see that increasing the stabilization
parameter γ yields more interpolation points. The reason is that the stopping
criterion PN(xN+1) < τP is reached later since the selected points are distributed
more uniformly as quantified in Theorem 1 and thus the greedy algorithms run
further. We omit plotting results for the f -greedy as they do not differ considerably.
Eventually these further interpolation points yield a better interpolation accuracy,
which can be seen in Table 2. Especially the maximal relative error Emax,rel and
the relative RMSE error ERMSE, rel are improved. In the right plot of Fig. 2 the
error decay for f/P -greedy depending on the number of chosen points during the
selection (first step of training) is visualized for the ERMSE error. One can observe
that the algorithm stops quite early since the stability stopping criterion (4) is met.
Larger stabilization parameters yield a slower drop, however more interpolation
points.
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Fig. 2 Left plot: Number of chosen interpolation points (y-axis) during the 5-fold cross validation
procedure for f/P -greedy in dependence of the restriction parameter γ ∈ {0, 0.1, .., 1} (x-axis).
The black crosses indicate the five numbers of chosen points during the validation, the red line
describes the mean value of those. Right plot: ERMSE error decay (y-axis) during the training of the
f/P -greedy model depending on the number of interpolation points (x-axis) for the unstabilized
model (γ = 0), the stabilized model with validated γ -parameter (γ = 0.2) and the fully stabilized
model (γ = 1, i.e. P -greedy)

5 Conclusion and Outlook

In this paper a vectorial extension of a recent idea of stabilization of greedy kernel
approximation algorithms was introduced and analytical properties were stated. A
numerical application was addressed using data that emerge in the simulation of
the human spine and the stabilization led to significant improvements in terms of
accuracy and stability due to a better point distribution.

A two-step approach was used to combine the stabilization with regularization.
In future work we will consider a combined approach of stabilization and regular-
ization and use data with more input and output dimensions. Ultimatively we aim
at using real patient data and dataset extension approaches by using invariances and
symmetries or the use of invariant kernels.
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Augmented Lagrangian Method for Thin
Plates with Signorini Boundaries

Erik Burman, Peter Hansbo, and Mats G. Larson

Abstract We consider C1-continuous approximations of the Kirchhoff plate prob-
lem in combination with a mesh dependent augmented Lagrangian method on a
simply supported Signorini boundary.

1 Introduction

To introduce the augmented Lagrangian method we first consider a simple Poisson
problem, find u such that

−�u = f in �, u = g on � (1)

where � is a bounded domain with boundary � := ∂� and exterior unit normal n,
The Lagrange multiplier approach to prescribing u = g is to seek stationary

points to

L(v, μ) := 1

2
a(v, v) − 〈μ, v − g〉� − (f, v) (2)

E. Burman
Department of Mathematics, University College London, London, UK
e-mail: e.burman@ucl.ac.uk

P. Hansbo (�)
Department of Mechanical Engineering, Jönköping University, Jönköping, Sweden
e-mail: peter.hansbo@ju.se

M. G. Larson
Department of Mathematics and Mathematical Statistics, Umeå University, Umeå, Sweden
e-mail: mats.larson@math.umu.se

© Springer Nature Switzerland AG 2021
F. J. Vermolen, C. Vuik (eds.), Numerical Mathematics and Advanced Applications
ENUMATH 2019, Lecture Notes in Computational Science and Engineering 139,
https://doi.org/10.1007/978-3-030-55874-1_50

509

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-55874-1_50&domain=pdf
mailto:e.burman@ucl.ac.uk
mailto:peter.hansbo@ju.se
mailto:mats.larson@math.umu.se
https://doi.org/10.1007/978-3-030-55874-1_50


510 E. Burman et al.

where

(f, v) :=
∫

�

f v d�, a(u, v) :=
∫

�

∇u · ∇v d� (3)

and 〈·, ·〉� denotes the H−1/2/H 1/2-duality pairing. Whenever the arguments are
smooth enough we define,

〈μ, v − g〉� :=
∫

�

μ(v − g) ds (4)

Stationary points are given by finding (u, λ) ∈ H 1(�)×H−1/2(�) such that

a(u, v)− 〈λ, v〉� = (f, v) ∀v ∈ H 1(�) (5)

〈μ, u〉� = 〈μ, g〉� ∀μ ∈ H−1/2(�) (6)

Formally, the Lagrange multiplier is given by λ = ∂nu, where ∂nv := n · ∇v.
In a discretization of this problem, the approximation of the multiplier and the
displacement must fulfil an inf–sup condition ensuring that the problem will not
be overconstrained.

We now augment the Lagrangian by a penalty term and seek stationary points to

L(v, μ) := 1

2
a(v, v) − 〈μ, v − g〉� + 1

2
‖γ 1/2(v − g)‖2

� − (f, v) (7)

leading to the problem of finding (u, λ) ∈ H 1(�)×H−1/2(�) such that

a(u, v)− 〈λ, v〉� + 〈γ u, v〉� − 〈μ, u〉� = (f, v)+ 〈γ g, v〉� − 〈μ, g〉� (8)

for all (v, μ) ∈ H 1(�)×H−1/2(�). The discretization of this problem requires the
same careful balance between approximation spaces for the primal variable and the
multiplier as does the standard Lagrange multiplier method. Indeed if we introduce
the space

Vh := {vh ∈ H 1(�) : vh|K ∈ Pk(K), ∀K ∈ Th}, for k ≥ 1 (9)

where Th is a conforming quasi-uniform partition of � and Pk(K) denotes the set of
polynomials of degree less than or equal to k on the element K for the discretization
of u, we must find a multiplier space !h such that the inf-sup condition is satisfied.
However, if we seek uh ∈ Vh with the discrete multiplier λh := ∂nuh, we recover
Nitsche’s method:

a(uh, v)−〈∂nuh, v〉�−〈∂nv, uh〉�+〈γ uh, v〉� = (f, v)+〈g, γ v−∂nv〉� (10)
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for all v ∈ Vh, with μ = ∂nv, which is stable with the choice γ = γ0/h, where h is
the local meshsize and γ0 large enough.

If we alternatively consider a stable discretization λh ∈ !h, the discrete problem
can be seen as seeking stationary points (uh, λh) ∈ Vh × !h to the modified
Lagrangian

Lh(v, μ) := 1

2
a(v, v)+ 1

2
‖γ 1/2(v−g−γ−1μ)‖2

�−‖γ−1/2μ‖2
�−(f, v)� (11)

which is obtained from L in (7) by rearranging terms and noting that the discrete
multiplier is in L2(�).

We now turn to an inequality constraint on the boundary: u ≤ g on �. The
corresponding Kuhn–Tucker conditions read:

u− g ≤ 0, λ ≤ 0, λ(u− g) = 0 on �. (12)

These conditions can alternatively be written (cf. [6])

λ = −γ [u− g − γ−1 λ]+ (13)

where γ ∈ R
+, [x]+ = max(x, 0). We can now, following Alart and Curnier [1],

define the following discrete augmented Lagrangian

Lh(v, μ) := 1

2
a(v, v)+ 1

2
‖γ 1/2[v−g−γ−1μ]+‖2

�−‖γ−1/2μ‖2
�−(f, v) (14)

The corresponding Euler-Lagrange equations read: find (uh, λh) ∈ Vh × !h such
that

a(uh, v)+ 〈γ
[
uh − g − γ−1λh

]

+ , v〉� = (f, v) ∀v ∈ Vh (15)

and

〈γ
[
uh − g − γ−1λh

]

+ + λh, γ
−1μ〉� = 0 ∀μ ∈ !h (16)

If [uh − g− γ−1λh]+ = 0 (no contact) then λh = 0 and if [uh− g− γ−1λh]+ > 0
(contact) we recover the standard augmented formulation for the imposition of the
Dirichlet condition u = g. The multiplier approach (15)–(16) using a stable pair
Vh×!h was shown to produce approximations of optimal accuracy in [4]. Now set
λh = ∂nuh, μ = ∂nv and seek uh ∈ Vh such that

a(uh, v)+ 〈γ [uh − g − γ−1 ∂nuh]+, v − γ−1 ∂nv〉� − 〈γ−1 ∂nuh, ∂nv〉� = (f, v)

(17)
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for all v ∈ Vh. With the choice γ = γ0/h this is the Nitsche method for Signorini
problems first proposed in the context of elastic contact by Chouly and Hild [6]. For
more information on augmented Lagrangian methods and variants thereof, see [3].

2 The Kirchhoff Plate Model

We now proceed formally to extend the discussion to the Kirchhoff plate model,
posed on a domain � ⊂ R

2 with boundary � = ∂� and exterior unit normal n.
We seek an out-of-plane (scalar) displacement u to which we associate the strain
(curvature) tensor

κ(u) := ε(∇u) := 1

2
(∇ ⊗ (∇u)+ (∇u)⊗∇) = ∇ ⊗ ∇u (18)

and the plate stress (moment) tensor

M(u) := σ (∇u) :=D
(
ε(∇u)+ ν(1− ν)−1div∇u I

)
(19)

=D
(
κ(u)+ ν(1 − ν)−1�uI

)
(20)

where

D = Et3

12(1+ ν)
(21)

with E the Young’s modulus, ν the Poisson’s ratio, and t the plate thickness. We
will use the standard convention that all quantities are positive downwards.

The Kirchhoff equilibrium problem takes the form: given the out-of-plane load
(per unit area) f , find the displacement u such that

div divM(u) = f in � (22)

where div and div denote the divergence of a tensor and a vector field, respectively.
We shall first consider a smooth boundary � with simply supported boundary
conditions

u = 0 on �, Mnn(u) = 0 on � (23)
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where Mab = a ·M · b for a, b ∈ R
2. Defining the tangent vector on the boundary

as t = (n2,−n1), multiplying by a test function v and using repeated integration by
parts we find that

(div divM(u), v) = (M(u), κ(v))− 〈Mnn(u), ∂nv〉� (24)

− 〈Mnt (u), ∂tv〉� + 〈n · divM(u), v〉� (25)

In the case of a smooth boundary we note that

〈Mnt (u), ∂tv〉� = −〈∂tMnt (u), v〉� (26)

and by introducing the Kirchhoff shear force T := n · divM + ∂tMnt we have

(div divM(u), v) = (M(u), κ(v))− 〈Mnn(u), ∂nv〉� + 〈T (u), v〉� (27)

Taking into account the boundary conditions, the variational problem thus takes the
form: find u ∈ V = {v ∈ H 2(�) : v = 0 on �}
such that

(M(u), κ(v)) = (f, v) ∀v ∈ V (28)

We will next consider the Signorini condition u ≥ g on �, which corresponds
to a case where the plate boundary rests on a rigid foundation but is not fixed to it.
Introducing a multiplier representing T (u) we have that

div divM(u) = f in � (29)

Mnn(u) = 0 on � (30)

T (u)+ λ = 0 on � (31)

u− g ≥ 0 on � (32)

λ ≤ 0 on � (33)

λ(u− g) = 0 on � (34)

In this case, the Kuhn–Tucker conditions can be rewritten

λ = −γ [g − u− γ−1λ]+ (35)

Remark 1 (Handling Polygonal Domains) In the case of a domain with piecewise
smooth boundaries, so called Kirchhoff corner forces occur in corner points
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[9, Chapter 5.5]. This case was considered by Nazarov et al. [8] but with an
alternative formulation (the biharmonic operator, leading to quite different boundary
conditions). We here assume that � consists of smooth connected parts �i with
corner intersections at xi . Now (26) has to be modified as follows:

〈Mnt (u), ∂t v〉� = −〈∂tMnt (u), v〉� +
∑

i

(
M−

nt (u(xi )−M+
nt (u(xi ))

)
v(xi )

(36)

where M±
nt (u(xi )) = limε↓0 Mnt (u(xi ± ε, yi ± ε)), giving rise to (virtual work of)

point forces in the corners. Unlike the Kirchhoff shear forces, the corner forces are
present whether there is contact or not, and are implemented as contributions to the
stiffness matrix.

3 Finite Element Method

We will use C1-continuous element on meshes Kh made up of rectangles. On each
element K ∈ Kh we let Q3 denote the outer product of cubic polynomials:

Q3 =
⎧
⎨

⎩
p(x, y) : p(x, y) =

∑

0≤i,j≤3

cij x
iyj

⎫
⎬

⎭

where cij are constants. The approximation space associated with the Bogner-Fox-
Schmit (BFS) element first proposed in [2] is defined by

Vh =
{
v ∈ C1(�) : v|K ∈ Q3, ∀K ∈ Kh

}
(37)

The shape functions on the BFS element are then made up of outer products of cubic
splines, typically used for beam problems. We refer to Zhang [10] for further details
on this approximation. Though this element might seem limited in view of it only
being defined on rectangular meshes, the recent CutFEM for BFS [5] extends its use
to arbitrary geometries.

In analogy with (17) we now pose the following discrete problem: find (uh, λh) ∈
Vh ×!h, !h to be chosen, such that

(M(uh), κ(v))− 〈γ
[
g − uh − γ−1λh

]

+ , v〉� = (f, v) ∀v ∈ Vh (38)

and

− 〈γ
[
g − uh − γ−1λh

]

+ , γ−1μ〉� − 〈γ−1λh,μ〉� = 0 ∀μ ∈ !h (39)
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We next consider replacing λh following the ideas of Sect. 1. To this end, we
formally set λh = −T (uh) and μ = −T (v) to obtain the problem of finding
uh ∈ Vh such that

(M(uh), κ(v))− 〈γ [g − ψ(uh)]+ , ψ(v)〉� − 〈γ−1T (uh), T (v)〉� = (f, v)

(40)

for all v ∈ Vh, where ψ(w) := w − γ−1T (w). Setting now γ = γ0/h
3, stability,

existence and uniqueness of the discrete solution can be shown combining the
results of [7] and [4]. We leave the details to a forthcoming publication.

4 Numerical Results

We consider a quadratic plate (0, 1)× (0, 1) of thickness t = 0.1 and with moduli
of elasticity E = 100, ν = 0.5. This plate is loaded by a point force of unit strength.
The free parameter was chosen as γ1 = 104D, where D is given by (21). The
maximum displacement on the boundary is set to g = 0.

4.1 Point Load in the Center of the Plate

We load the plate with a unit point load at the center. In Fig. 1 we show the computed
displacement field with the Signorini boundary indicated by a dotted line. In Fig. 2

Fig. 1 Elevation of the solution on the finest mesh in a sequence. Point load at (1/2, 1/2)
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Fig. 2 Kirchhoff shear forces in the contact zone on consecutively refined meshes



Augmented Lagrangian Method for Thin Plates with Signorini Boundaries 517

we show the computed Kirchhoff shear force in the contact zone (evaluated at the
midpoint of each element side) on a sequence of uniformly refined meshes. We note
the symmetry of the solution.

4.2 Point Load at (3/4, 3/4)

The same plate is now loaded with unit point load at (3/4, 3/4). In Fig. 3 we show
the computed displacement field, again with the Signorini boundary indicated by a
dotted line. In Fig. 4 we show the corresponding Kirchhoff shear force in the contact
zone. We note the elevation of the shear force close to the first point of contact,
similar, but more pronounced, to Fig. 2.

Fig. 3 Elevation of the solution on the finest mesh in a sequence. Point load at (3/4, 3/4)
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Fig. 4 Kirchhoff shear forces
in the contact zone on
consecutively refined meshes
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A Hybrid High-Order Method for Flow
Simulations in Discrete Fracture
Networks

Florent Hédin, Géraldine Pichot, and Alexandre Ern

Abstract We are interested in solving flow in large tridimensional Discrete Frac-
ture Networks (DFN) with the hybrid high-order (HHO) method. The objectives
of this paper are: (1) to demonstrate the benefit of using a high-order method
for computing macroscopic quantities, like the equivalent permeability of fracture
rocks; (2) to present the computational efficiency of our C++ software, NEF++,
which implements the solving of flow in fractures based on the HHO method.

1 The Flow Problem in Fractured Rocks

In fractured rocks, fluid flows mostly within a complex arrangement of fractures,
classically modeled as a Discrete Fracture Network (DFN) [1, 2]. In the present
reduced model, the fractures, denoted by �f , f = 1, . . . , Nf , are distributed in
a three-dimensional domain � and are modeled as ellipses whose position and
orientation are evaluated from statistical laws given by geological studies [3, 4]. We
consider single phase flow problems within these networks of fractures. As we are
mainly interested in flow simulations in granite type rocks, a classical assumption is
to consider the rock matrix as impervious. Figure 1 presents three examples of DFN
in a cubic domain.

Let x be the local 2D coordinates of fracture �f . Let N be the total number of
intersections between fractures, Ik be the kth intersection, k = 1, . . . , N , and Fk be
the set of fractures containing Ik . In each fracture �f , we assume that the governing
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Fig. 1 (left) B1: 19,007 fractures; (center) B2: 152,399 fractures ; (right) B3: 508,338 fractures

equations for the hydraulic head scalar function p and for the flux per unit length
function u are the mass conservation equation and Poiseuille’s law [1]:

∇ · u(x) = f (x) for x ∈ �f , (1a)

u(x) = −T(x)∇p(x) for x ∈ �f . (1b)

The parameter T(x) is a given transmissivity field (unit [m2.s−1]). The function
f ∈ L2(�f ) represents the sources/sinks. Additionally, continuity of the hydraulic
head and continuity of the transversal flux apply at the intersections between the
fractures [2, 5]:

pk,i = pk on Ik,∀f ∈ Fk, (2a)
∑

i∈Fk

uk,f · nk,f = 0 on Ik, (2b)

where pk,i is the trace of hydraulic head on Ik in fracture �f , pk is the unknown
hydraulic head on the intersection Ik and uk,f · nk,f is the normal flux through
Ik coming from fracture �f , with nk,f the outward normal unit vector of the
intersection Ik with respect to the fracture �f . Boundary conditions (BC) on the
cube faces are of Dirichlet or Neumann type. For edges that belong to the border
of the fractures but not to a cube face, a homogeneous Neumann BC is applied to
express the imperviousness of the rock matrix.

2 The HHO Method for Solving Flow in DFN

Several methods have been developed to solve flow in DFN in the recent years as
detailed in the survey [6] and the references therein. The methods highly depend
on the mesh strategy chosen to mesh the DFN [7, 8]. In our work, we keep the
intersections explicitely. It implies a substantial work regarding the development of
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robust and efficient software in order to be able to mesh efficiently large networks
with a good quality mesh [9]. In all our test cases, the mesh is generated with the
software BLSURF_FRAC [10, 11] and the planar mesher is BL2D[12]. The data files
generated by BLSURF_FRAC follow the description given by Appendix A in [13].
Here we consider the so-called conforming discretizations at the intersections
between the ellipses but the software BLSURF_FRAC is also able to generate
non-conforming discretizations as well. The advantage of keeping the intersections
explicitely in the mesh generation is that it allows to attach unknowns to the edges
and then continuity conditions (2) are easier to impose.

Among the methods that attach unknowns to the edges, let us cite the mixed-
hybrid finite elements method (MHFEM), for conforming [5, 14–17] or non-
conforming [18, 19] discretizations at the intersections. More recently, a hybrid
high-order (HHO) method has been developed [20, 21]. HHO is already used in
many applications and has been recently used for fracture/matrix coupling [22].
HHO is closely related to Hybridizable Discontinuous Galerkin methods (HDG)
[23]. The main advantages of HHO are (1) it allows general meshes (including
polytopal cells and nonmatching interfaces), (2) it manages arbitrary polynomial
face orders k, (3) it leads solve a linear system with only the unknowns at the
edges and the matrix of this system is symmetric positive definite, (4) it delivers
approximate solutions converging at order hk+1 in the energy norm and hk+2 in
the L2-norm (if full elliptic regularity holds) [20, 21]. Moreover, this HHO method
is implemented in the open source library, DiSk++ [24], which is a C++ template
based library, both in the dimension and also in the finite element shapes. Notice that
only the 2D feature of the DiSk++ library is used in this study as the rock matrix is
assumed impervious, however the dimensional templating offered by DiSk++ will
be very useful for future porous fractured rocks simulations.

3 Computation of the Equivalent Permeability
with the HHO Method

The goal of this section is to demonstrate the benefit of using a high-order method
for computing upscaled quantities, like the equivalent permeability.

The equivalent permeability tensor is a macroscopic quantity of interest classi-
cally used by hydrogeologists for upscaling [25]. Its components can be derived
from numerical simulations. Typically, the three diagonal components of the
permeability tensor are given by applying permeameter boundary conditions in
the directions x, y and z respectively. As we are rather interested in analyzing the
performance of the HHO method to compute such macroscopic quantities, we focus
here only on a flow in the direction x to derive the x-component of the permeability

tensor defined as: Kx = Qin,x

L�h
for a cubic domain of size L, with Qin,x the

input flux (units m3 s−1) with respect to permeameter boundary conditions in the
direction x.
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Fig. 2 (left) B0: 1,397 fractures, (right) mean hydraulic head for permeameter BC

Table 1 Test case B0: 1397 fractures, computed values of the x-component of the equivalent
permeability Kx with mesh refinement and different numerical methods

Equivalent permeability Kx

DFN B0 #edges MHFEM RT0 HHO, k = 0 HHO, k = 1 HHO, k = 2

137,680 0.090929 0.090929 0.098410 0.099924

528,611 0.096663 0.096663 0.100556 0.101296

2,120,115 0.099615 0.099615 0.101507 0.101892

8,533,221 0.101032 0.101032 0.101943 0.102171

34,299,544 0.101696 0.101696 − −

We propose to compute the equivalent permeability in the direction x of the
small network B0 shown on Fig. 2 (left). The domain is a cube of size L = 20.
This network has 1397 fractures and 2481 intersections. We imposed a permeameter
boundary condition in the direction x with a difference of hydraulic head of 10 m
between the two opposite cube faces. The mean hydraulic head solution obtained
with the MHFEM (Raviart-Thomas 0) for a mesh with 8, 533, 221 edges is shown
on Fig. 2 (right). We compute Kx with the MHFEM RT0 and with the HHO method
for face polynomial degrees k = 0, 1 and 2 and we compare the results. Table 1
presents the values of Kx as the mesh is refined.

The simulations for k = 1 and k = 2 on the finer mesh are not available yet
as they require a lot of computational resources. For the MHFEM RT0 method, the
software that is used is a Matlab software, called NEF-Flow [11], developed at
Inria and CNRS (France), and for the HHO method for DFN, the simulations are
performed with the C++ software NEF++, developed at Inria and described in more
details in the following section.
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Fig. 3 Test case B0: x-component of the equivalent permeability tensor

Figure 3 presents the equivalent permeability with respect to the number of
degrees of freedom (dofs). For the MHFEM RT0 and the HHO method with k = 0,
the number of dofs are equal to the total number of edges, denoted by nE . For the
HHO method with k = 1, the number of dofs are 2 nE . For the HHO method with
k = 2, the number of dofs are 3 nE . At low order (k = 0), the curves for Kx obtained
with the HHO method and the MHFEM RT0 method almost superimpose, which
was expected as the two methods are very close. The benefits of the increased orders
of convergence are clearly seen from Fig. 3 since the equivalent permeability is
better approximated by a fixed number of dofs if resorting to a higher-order method.
This result shows that the exact solution has enough regularity to take advantage of
the computational efficiency delivered by higher-order methods.

4 Performance Obtained with the NEF++ Software

Solving the flow problem (1)–(2) within large 3D DFNs requires robust and efficient
software. The goal of this section is to present the C++ software we have developed
at Inria, called NEF++, and based on the C++17 standard. NEF++ relies on the
Eigen library, which is a C++ template library for linear algebra [26] and on the
DiSk++ library for HHO. The linear systems can be solved with direct solvers
or with iterative solvers like the preconditioned conjugate gradient or multigrid
solvers. In NEF++, the following two direct solvers can be called: Pardiso from
Intel MKL library [27] or SuiteSparse [28]. Both solvers support tasks parallelism,
either using OpenMP or Intel TBB and support SIMD (Single Instruction, Multiple
Data) vectorization.
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We propose to solve flow in the three DFN B1, B2 and B3 shown on Fig. 1. We
imposed a permeameter boundary condition in the direction x with a difference of
hydraulic head of 10 m between the two opposite cube faces. The transmissivity
is taken as a constant per fracture and is different from one plane to another. We
consider a cubic domain � of size L = 100 for B1 and B2 and L = 150 for B3.
The network information about the geometry and the range of transmissivity values
are given in Table 2.

For the larger linear systems (for B1 and B2 with k = 1 and k = 2 and for
B3 with k = 0, 1 and 2), we are facing with the Intel Pardiso LLT solver some
problems that we are currently investigating. On the contrary, we have no problem
with the Intel Pardiso LU solver. In the following Tables 3, 4 and 5, the solver
information (LLT or LU ) will be given for each simulation. Moreover, depending
on the requirements in computational resources, the simulations have been run either
on a Intel Core i7 6 cores CPU laptop (denoted by IC in the following Tables) or

Table 2 Details about the three DFN test cases B1, B2 and B3

L #fractures #intersections Range of transmissivity value [m2 s−1]
B1 100 19,007 28,727 [2.8e−06; 47.4]

B2 100 152,399 302,907 [3.4e−06; 20.33]

B3 150 508,338 1,031,231 [0.3e−05;25.8]

Table 3 Performance obtained with NEF++ for the HHO method with k = 0 on B1, B2 and B3

Read
#fractures nE mesh Assemb. Solving Total time RAM peak Solver Run

B1 19,007 18,494,551 16.1 s 53.1 s 50.5 s 2 min 26.89 GiB LLT IC

B1 19,007 18,494,551 16.0 s 50.4 s 1 min 10 s 2 min17 s 30.59 GiB LU IC

B2 152,399 11,054,762 8.6 s 30.2 s 37.3 s 1 min 16 s 16.48 GiB LLT IC

B3 508,338 12,219,167 10.3 s 38.7 s 1 min 17s 2 min 7s 24.84 GiB LU IC

Table 4 Performance obtained with NEF++ for the HHO method with k = 1 on B1, B2 and B3

Read
#fractures nE mesh Assemb. Solving Total time RAM peak Solver Run

B1 19,007 18,494,551 20 s 5 min 57 s 3 min 36 s 9 min 53 s 105 GiB LU IX

B2 152,399 11,054,762 10 s 3 min 52 s 2 min 24 s 6 min 26 s 64 GiB LU IX

B3 508,338 12,219,167 12 s 4 min 42 s 3 min 52 s 8 min 47 s 78 GiB LU IX

Table 5 Performance obtained with NEF++ for the HHO method with k = 2 on B1, B2 and B3

Read Total RAM
#fractures nE mesh Assemb. Solving time peak Solver Run

B1 19,007 18,494,551 20 s 13 min 48 s 11 min 4 s 25 min 12 s 204 GiB LU IX

B2 152,399 11,054,762 10 s 8 min 39 s 5 min 27 s 14 min 16 s 124 GiB LU IX

B3 508,338 12,219,167 12 s 9 min 48 s 12 min 9 s 22 min 9 s 153 GiB LU IX
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on a cluster node with 4 Intel Xeon E7-8890 processors and 1,024 GiB of RAM
(denoted by IX in the following Tables).

Table 3 gives the computational time (for reading the mesh, assembling and
solving the linear system) and peak memory of the NEF++ software for k = 0
for the three test cases. For the B1 test case, we provide the results obtained with the
LLT and LU solvers. With LU , the RAM memory requirements are higher than
with LLT , as expected.

Tables 4 and 5 give the computational time (for reading the mesh, assembling
and solving the linear system) and peak memory of the NEF++ software for k = 1
and k = 2 respectively for the three test cases. Despite B3 has fewer edges than
B1, it takes more time to solve the associated linear system with a direct solver as
it has more intersections (see Table 2). As shown by Tables 3, 4 and 5, increasing k

requires more computation times and memory as the number of dofs increases but
the solutions are more accurate, as highlighted in Sect. 3.

5 Conclusion

The results in terms of computational time and accuracy we are currently obtaining
with the NEF++ software are very promising to handle in a near future the
millions of fractures networks provided by external industrial partners. As the RAM
requirements with direct solvers are quite large, we are currently investigating the
use of iterative solvers. As emphasized in this paper, the HHO method has a strong
potential, also for deriving upscaled quantities owing to its high-order feature.
Moreover, as HHO naturally deals with general shape elements, non-conforming
discretizations at the intersections between the fractures can be naturally handled
in a conforming way. Finally, as a future work, we are interested in using the
dimensional templating feature offered by the DiSk++ library to solve flow in
porous fractured rocks.
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Fully Algebraic Two-Level Overlapping
Schwarz Preconditioners for Elasticity
Problems

Alexander Heinlein, Christian Hochmuth, and Axel Klawonn

Abstract Different parallel two-level overlapping Schwarz preconditioners with
Generalized Dryja–Smith–Widlund (GDSW) and Reduced dimension GDSW
(RGDSW) coarse spaces for elasticity problems are considered. GDSW type
coarse spaces can be constructed from the fully assembled system matrix, but they
additionally need the index set of the interface of the corresponding nonoverlapping
domain decomposition and the null space of the elasticity operator, i.e., the rigid
body motions. In this paper, fully algebraic variants, which are constructed solely
from the uniquely distributed system matrix, are compared to the classical variants
which make use of this additional information; the fully algebraic variants use an
approximation of the interface and an incomplete algebraic null space. Nevertheless,
the parallel performance of the fully algebraic variants is competitive compared to
the classical variants for a stationary homogeneous model problem and a dynamic
heterogenous model problem with coefficient jumps in the shear modulus; the
largest parallel computations were performed on 4096 MPI (Message Passing
Interface) ranks. The parallel implementations are based on the Trilinos package
FROSch.

1 Introduction

We consider the solution of large, parallel distributed stationary and dynamic
discretized elasticity problems with a moderate Poisson ratio; i.e., we do not
consider the nearly incompressible case. As the solver, we use the Generalized
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Minimal Residual (GMRES) method preconditioned by two-level overlapping
Schwarz preconditioners with Generalized Dryja–Smith–Widlund (GDSW) [2, 3]
and Reduced dimension GDSW (RGDSW) [5, 12] coarse spaces. Even though
these preconditioners can be constructed from the fully assembled system matrix,
a minimum of geometric information is also needed. In particular, the domain
decomposition interface and the null space are used for their construction. Here,
we focus on the construction of fully algebraic GDSW type coarse spaces if this
information is not available. In particular, we consider the case when the system
matrix is uniquely distributed, such that the interface cannot be identified.

Therefore, we will describe a method to approximate the nonoverlapping subdo-
mains, resulting in an approximate interface; cf. [10]. Our parallel implementation
is based on the FROSch framework [9], which is part of the ShyLU package in
Trilinos [13]; see [10, 11] for more details on the implementation. To discuss the
performance of the fully algebraic approach, we will compare it to the classical
GDSW type coarse spaces using all necessary information.

2 Model Problems

The equilibrium equation for an elastic body covering the domain � = [0, 1]3 under
the action of a body force f in the time interval [0, T ] is

∂ttu− divσ = f in �× [0, T ], (1)

with the symmetric Cauchy stress tensor σ and the displacement u. We consider a
Saint Venant-Kirchhoff material, a hyperelastic material with the linear material law

σ (E) = λ

2
(trace E)2 + μ trace EI (2)

and the nonlinear strain tensor given by E := 1
2 (C − I) , where C is the right

Cauchy-Green tensor. Furthermore, we consider the boundary conditions

u = 0 on ∂�D := {0} × [0, 1]2,
σ · n = 0 on ∂�N := ∂� \ ∂�D,

and the body force f = (−20, 0, 0)T , for t < 5 · 10−3, and f = 0, afterwards.
In addition to this, we also consider a stationary problem with ∂ttu = 0, i.e.,

div σ = (0,−100, 0)T in �,

u = 0 on ∂�D := {0} × [0, 1]2,
σ · n = 0 on ∂�N := ∂� \ ∂�D.

(3)
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We transform the model problems to their respective variational formulations and
discretize them using piecewise linear or quadratic finite elements; we denote the
corresponding finite element spaces by V h = V h (�). For the time-dependent prob-
lem, the resulting semi-discrete problem is further discretized with the Newmark-β
method. In particular, we choose the parameters for the fully implicit constant
average acceleration method, i.e., β = 1/2 and γ = 1/4.

The fully discrete nonlinear equations are linearized using Newton’s method. We
solve the equation

J (u(k))δu(k+1) = R(u(k)), (4)

for the update δu(k+1). Here, J (u(k)) and R(u(k)) are the Jacobian and the nonlinear
residual for the solution u(k), respectively.

2.1 GDSW and RGDSW Preconditioners

We consider the system of linear equations (4) as derived in the previous section.
For simplicity, we use the notation Ax = b in this section.

Let � be decomposed into nonoverlapping subdomains {�i}Ni=1 with typical

diameter H and corresponding overlapping subdomains
{
�′

i

}N
i=1, resulting from

extending the nonoverlapping subdomains by k layers of elements. We define
Ri : V h → V h

i , i = 1, . . . , N , as the restriction from the global finite element
space V h to the local finite element space V h

i := V h
(
�′

i

)
and corresponding

prolongation operators RT
i . In addition to that, we can also define restricted and

scaled prolongation operators R̃T
i ; cf., e.g., [1, 4, 7].

Furthermore, let

� := {
x ∈ (�i ∩�j) \ ∂�D : i �= j, 1 ≤ i, j ≤ N

}

be the interface of the nonoverlapping domain decomposition.
The GDSW preconditioner, which was introduced by Dohrmann, Klawonn, and

Widlund in [2, 3], is a two-level additive overlapping Schwarz preconditioner with
energy minimizing coarse space and exact solvers. Thus, the preconditioner can be
written in the form

M−1
GDSW = 'A−1

0 'T +
N∑

i=1

RT
i A

−1
i Ri , (5)

where Ai = RiART
i . In the second level, we solve the coarse problem matrix

A0 = 'TA'. The columns of ' are the basis functions of the coarse space.
To construct the GDSW coarse basis functions, let R�j be the restriction from �
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onto the interface component �j . For the GDSW coarse space in three dimensions,
the interface components are the vertices, edges, and faces. Then, the values of the
GDSW basis functions on � read

'� =
[
RT

�1
'�1 . . . RT

�M
'�M

]
,

where the columns of '�j are the restrictions of the null space of subdomain
Neumann matrices to the interface component �j . For elasticity, the null space
consists of the rigid body motions, i.e., the translations and rotations. After
partitioning the degrees of freedom into interface (�) and interior (I ) ones, the
matrix A can be written as

A =
[
AII AI�

A�I A��

]

and the GDSW coarse basis functions are the discrete harmonic extensions of '�

into the interior,

' =
[
'I

'�

]

=
[−A−1

II AI�'�

'�

]

. (6)

The RGDSW coarse space is constructed similarly. However, in general, we only
obtain one basis function for each vertex, resulting in a much smaller dimension of
the coarse space; cf. [5] and, for more details on the parallel implementation in
FROSch, [7, 12]. The reduction of the coarse space dimension can also be seen
in Table 1. There are several variants of RGDSW coarse spaces, which differ in
a scaling of the interface degrees of freedom. Here, we will only consider the
most algebraic variant, which is denoted as Option 1 in [5]; cf. [7] for a detailed
description of our implementation of Option 1 of the RGDSW coarse space.

In our numerical simulations, we will also employ the recycling strategies
presented in [7]. We always reuse the symbolic factorizations from previous time

Table 1 Comparison of coarse matrix sizes for a structured domain decomposition and the
approximated subdomain maps for a P1 (H/h = 21) and P2 (H/h = 9) discretization

#cores 64 512 4096

GDSW Rotations 1593 16,149 144,045

No rotations 837 8589 77,085

Algebraic P1 disc. 1395 11,355 84,762

Algebraic P2 disc. 1554 11,466 84,708

RGDSW Rotations 162 2058 20,250

No rotations 81 1029 10,125

Algebraic P1 disc. 93 1065 10,218

Algebraic P2 disc. 93 1038 10,134
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or Newton iterations. Moreover, we reuse the coarse space from previous iterations
and, for the dynamic problem, additionally the coarse matrix. Furthermore, as in [7],
we always use a scaled first level operator with overlap δ = 1h.

3 Fully Algebraic Construction of GDSW and RGDSW
Coarse Spaces

As previously described, the construction of GDSW and RGDSW coarse spaces
for elasticity problems requires both the domain decomposition interface and the
null space of the operator, i.e., the rigid body motions. Here, we describe how we
construct the coarse space if this information is not available.

Algebraic Approximation of the Interface If the distribution of the system
matrix is unique, the interface cannot be recovered. Therefore, we will carry out
the following process to approximate the nonoverlapping subdomains and hence
the interface. Starting from the unique distribution, we first add one layer of
elements to each subdomain. The overlap of the resulting domain decomposition
now contains the interface but also other finite element nodes. In order to reduce
the number of unnecessary nodes, we compare the subdomain ID of the original
unique decomposition and the decomposition with one layer of overlap and remove
nodes from the overlapping subdomains if the subdomain ID is lower compared to
the original decomposition; this process is sketched in [10] and Fig. 1.

Incomplete Null Space The rigid body modes are the translations and rotations of
the elastic body. The translations are constant functions which can be constructed
without any geometric information. Since we are not able to compute the rotations
from the fully assembled matrix and without coordinates of the finite element nodes,
we just omit them in the fully algebraic coarse space; see also [11]. For the results

Distributed Map Overlapping Map Repeated Map
(colored boxes) (colored boxes)

Fig. 1 Sketch of the approximation of the nonoverlapping subdomains and the interface, respec-
tively: uniquely distributed map (left); extension of the uniquely distributed map by one layer
of elements resulting in an overlapping map, where the overlap contains the interface (middle);
by selection, using the lower subdomain ID, the a map approximating to the nonoverlapping
subdomains is constructed (right). Taken from [10]
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in Sect. 4, only the number of iterations is negatively affected by omitting rotations
from the coarse space but the time to solution actually benefits from the smaller
coarse space. Note that, from theory, the rotational basis functions are necessary for
numerical scalability. Therefore, we expect that there are problems for which the
full coarse space performs better.

4 Numerical Results

In this section, we compare the GDSW and RDSW preconditioners with exact
interface maps and full coarse space, GDSW and RGDSW preconditioners with
exact interface map but without rotational basis functions, and the fully algebraic
variant with approximated interface and without rotational basis functions; for the
sake of brevity, we denote the three variants as “rotations”, “no rotations”, and
“algebraic”, respectively. As discussed in Sect. 2, we consider a stationary elasticity
problem with homogeneous shear modulus of μ = 5 · 103 and a dynamic elasticity
problem with two material phases; cf. Fig. 2 (left) for a graphical representation
of the coefficient distribution of the shear modulus. For both cases, we choose
ν = 0.4. For the stationary homogeneous model problem, we use structured grids
and structured decompositions into square subdomains, whereas for the dynamic
problem, we use a fixed unstructured tetrahedral mesh with roughly 3.3 million
elements and 588 k nodes. We use the inexact Newton method of Eisenstat and
Walker [6] with a type 2 forcing term until a relative residual of εnl = 10−8 is
achieved. The initial forcing term is ηinit = 10−3 and the maximum and minimum
forcing terms are ηmax = 10−2 and ηmin = 10−8, respectively. Therefore, we use a

Fig. 2 Left: Slice through elements with high coefficient (μhigh = 103) displayed as a wireframe.
Low coefficient is μlow = 1; cf. [8], for a detailed discussion of the foam geometry used for an
heterogeneous Poisson problem. Right: Solution of dynamic problem at T = 10−2 for �t = 10−3

with a warp filter and a 5 times scaling factor
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combination of the Trilinos packages Thyra and NOX. Furthermore, NOX is used
for a backtracking globalization strategy. In particular, the step length is chosen as
0.5l with l = 0, 1, . . . until the Armijo condition is satisfied. All linearized problems
are solved with right-preconditioned GMRES with the corresponding GDSW and
RGDSW preconditioners and the tolerance for the relative residual error is the
forcing term η. All computations were carried out on the supercomputer magnitUDE
of the University Duisburg-Essen, Germany.

In Tables 2 and 3, weak scaling results for the stationary model problem with
piecewise linear and piecewise quadratic elements are depicted. Although, iteration
counts are slightly higher for the RGDSW coarse spaces compared to the respective

Table 2 Stationary problem, discretization P1 (H/h = 21), iteration counts are averages over all
Newton iterations. All problems were solved in 4 Newton iterations. The three timings are for the
setup/solve/total time and are in seconds. All total times are highlighted

Prec. Type #cores 64 512 4096

GDSW Rot. #its. 17.8 19.0 19.0

time 35.1 / 7.4 / 42.5 45.3 / 9.7 / 55.0 167.1 / 26.1 / 183.2
No rot. #its. 27.3 32.0 35.5

time 29.3 / 10.6 / 39.9 32.9 / 13.8 / 46.7 70.8 / 23.3 / 94.1
Algebraic #its. 32.8 38.5 39.0

time 39.5 / 13.4 / 52.9 41.6 / 17.2 / 58.8 84.3 / 27.3 / 111.6
RGDSW Rot. #its. 20.5 22.5 22.5

time 28.8 / 8.2 / 37.0 30.9 / 9.5 / 40.4 42.0 / 11.7 / 53.7
No rot. #its. 33.0 37.3 39.5

time 25.2 / 12.4 / 37.6 26.5 / 14.7 / 41.2 30.1 / 18.0 / 48.1
Algebraic #its. 40.0 42.0 43.0

time 27.2 / 15.5 / 42.7 28.7 / 16.8 / 45.5 32.9 / 19.6 / 52.5

Table 3 Stationary problem, discretization P2 (H/h = 9), iteration counts are averages over all
Newton iterations. All problems were solved in 4 Newton iterations. The three timings are for the
setup/solve/total time and are in seconds. All total times are highlighted

Prec. Type #cores 64 512 4096

GDSW Rot. #its. 16.3 17.3 19.3

time 40.1 / 5.9 / 46.0 55.0 / 8.5 / 63.5 223.3 / 24.4 / 247.7

No rot.
#its. 24.5 29.3 32.3

time 32.5 / 8.4 / 40.9 38.4 / 11.8 / 46.7 102.2 / 20.0 / 122.2
Algebraic #its. 57.5 74.8 78.0

time 42.0 / 20.5 / 62.5 46.0 / 29.9 / 75.9 124.8 / 50.5 / 175.3
RGDSW Rot. #its. 18.8 21.3 19.8

time 27.8 / 6.4 / 34.2 31.1 / 8.0 / 39.1 41.3 / 8.9 / 50.2
No rot. #its. 29.0 32.8 35.5

time 26.2 / 9.4 / 35.6 27.3 / 11.8 / 39.1 31.1 / 14.3 / 45.4
algebraic #its. 60.7 78.5 83.0

time 27.9 / 19.9 / 47.8 28.7 / 27.9 / 56.6 34.1 / 33.1 / 67.2
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Fig. 3 Strong scaling for dynamic problem up to time T = 2 · 10−2 for the foam geometry

GDSW coarse spaces, the total computation time is much smaller for RGDSW due
to the lower dimension of the coarse problem. This effect is even stronger for larger
numbers of subdomains and cores; cf. Table 1. Furthermore, we observe competitive
iteration counts and computing times when using the fully algebraic coarse spaces.
In addition to that, the approximation strategy for the interface seems to perform
better for piecewise linear than for piecewise quadratic elements.

In Fig. 3, we present strong scaling results from 48 to 720 cores for the dynamic
model problem. The reported times are the total times for our preconditioners, i.e.,
the sum of the times needed for their construction and their applications in GMRES.
We solve the problem with �t = 10−3 up to a final time T = 2 · 10−2 using the
RGDSW rotations coarse space and using the RGDSW algebraic coarse space both
with matrix recycling; cf. [7]. Here, we observe very good strong scalability results
for both variants even though the model problem has coefficient jumps. Again, the
fully algebraic variant is competitive.
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Stationary Flow Predictions Using
Convolutional Neural Networks

Matthias Eichinger, Alexander Heinlein, and Axel Klawonn

Abstract Computational Fluid Dynamics (CFD) simulations are a numerical tool
to model and analyze the behavior of fluid flow. However, accurate simulations are
generally very costly because they require high grid resolutions. In this paper, an
alternative approach for computing flow predictions using Convolutional Neural
Networks (CNNs) is described; in particular, a classical CNN as well as the U-
Net architecture are used. First, the networks are trained in an expensive offline
phase using flow fields computed by CFD simulations. Afterwards, the evaluation
of the trained neural networks is very cheap. Here, the focus is on the dependence
of the stationary flow in a channel on variations of the shape and the location of an
obstacle. CNNs perform very well on validation data, where the averaged error for
the best networks is below 3%. In addition to that, they also generalize very well to
new data, with an averaged error below 10%.

1 Introduction

Computational Fluid Dynamics (CFD) simulations are a numerical tool to model
and analyze the behavior of fluid flow. They are used in a wide range of application
areas, such as, e.g., civil and mechanical engineering, meteorology or medical
science, a wide range of different fluids and settings. In CFD simulations, the input
parameters are classically the material parameters of the fluid, such as density and
viscosity, the geometry of the computational domain, and the boundary conditions
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Geometry

Material
parameters

Initial
conditions

Boundary
conditions &

Volume forces

CFD simulations

Classical approach

Neural network

Surrogate model

Flow field

Fig. 1 Our approach is to train a neural network as a surrogate model for CFD simulations. Here,
we do not consider varying initial conditions, material parameters, boundary conditions, or volume
forces but focus on varying geometries for the computational domain

as well as volume forces. Transient simulations additionally depend on the initial
condition. Depending on the underlying model for the fluid flow, the resulting
flow field may depend on all these input parameters in a highly nonlinear way.
Furthermore, CFD simulations often require a high spatial and temporal resolution
in order to obtain accurate results. Therefore, CFD simulations are generally very
compute intensive.

The complexity of CFD simulations may be reduced using, e.g., Proper Orthog-
onal Decomposition (POD), Reduced Basis (RB), or simplified physics methods;
these techniques are all Model Order Reduction (MOR) techniques. In this work,
we propose a different approach, which can also be regarded as a MOR technique.
In particular, we propose to use appropriate neural networks as surrogate models
for CFD simulations; cf. Fig. 1. As for MOR techniques, we will have to perform
many CFD simulations in advance in a very expensive offline phase. However,
the evaluation of the trained model will then be much faster compared to a CFD
simulation. Here, we focus on predicting the fluid flow with respect to variations
in the geometry of the computational domain. Therefore, we consider a steady
flow problem in order to eliminate the time-dependence of the flow field and
the dependence of the solution on an initial condition. Furthermore, we keep the
material parameters, as well as boundary conditions and volume forces constant.

A different approach for the prediction of fluid flow using neural networks for
fixed geometries can be found in, e.g., [9, 10].

Our approach is inspired by the work of Guo, Li, and Iorio [6], where the authors
used a Convolutional Neural Network (CNN) to predict the steady flow around
obstacles in a channel. In our work, we further extend this approach by using the
more complex network architecture of the U-Net, which was introduced in [11],
and considering different types of loss functions. In particular, we will compute
synthetic training data from CFD simulations using OpenFOAM 5.0 [5] and train
CNNs using Keras 2.2.4 [2] with Tensorflow 1.12 [1] backend to approximate the
resulting flow fields.
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This paper is organized as follows: in Sect. 2, we describe our model problem and
the computation of the reference data using CFD simulations. Next, we describe the
CNN architectures and the training settings used for our surrogate model in Sect. 3.
Section 4 shows the performance of our models on training and validation data as
well as the generalization properties for some types of unseen data. Finally, we
present a short conclusion and outlook.

2 CFD Simulations

Let us consider computational domains �P := [0, 6] × [0, 3] \ P , where P ⊂
[0, 6] × [0, 3] is a polygonal star-shaped domain; see Fig. 2.

The stationary flow of an incompressible Newtonian fluid with kinematic
viscosity ν > 0 within the computational domain �P is modeled by the steady
Navier-Stokes equations,

−ν�u+ (u · ∇) u+∇p = f in �,

∇ · u = 0 in �,
(1)

with velocity u and pressure p. Now, let ∂�in := 0× [0, 3] and ∂�out := 6× [0, 3]
be the inlet and outlet, respectively, and ∂�wall := ([0, 6] × 0) ∪ ([0, 6] × 3) ∪ δP

be the remainder of the boundary of �. We prescribe

u = 3 on ∂�in,

∂u

∂n
− pn = 0 on ∂�out, and

u = 0 on ∂�wall

∂Ωin

∂Ωwall

∂Ωout

∂Ωwall

∂Ωwall

Type I

Type II

Fig. 2 Left: the computational domain is a channel of length 6 and width 3 with a polygonal
obstacle. Right: type I obstacles are connected with the bottom wall, type II obstacles have a
distance of 0.75 to each part of the boundary (yellow). Both types of obstacles have a distance of
1.5 to the inlet and the outlet (red) and may not cover more than 50% of the cross section of the
channel



544 M. Eichinger et al.

as boundary conditions; cf. Fig. 2 for an exemplary resulting flow field. Here, n is
the outward pointing normal vector.

In order to perform the CFD simulations, we employ the CFD software Open-
FOAM 5.0 [5], which is based on the FVM (Finite Volume Method). In particular,
we first use SnappyHexMesh to generate compute meshes from STL (Standard
Triangle Language) files that describe the polygonal obstacles. Secondly, we
compute corresponding stationary flow fields using the SimpleFoam solver.

Since we fix all parameters and boundary conditions, the resulting flow field
only depends on the shape and location of the polygonal obstacle P . As shown
in Fig. 2, we only consider two different types of obstacles here: obstacles that are
connected with the bottom wall and obstacles that are not connected with any part
of the boundary of the channel.

3 Surrogate Convolutional Neural Network

To predict fluid flow using neural networks, we fix the structure of the input and
output data of our models. Whereas, in numerical CFD simulations, the structure
and size of the compute mesh and the solution vector may differ significantly for
different configurations, neural networks rely on structured data. Therefore, our
approach is to convert both the input, i.e., the description of the obstacle geometry,
and the output, i.e., the flow field, to 256 × 128 pixel images; cf. Fig. 3. As input,
we either use a binary representation of the geometry, i.e., 0 if the center of a pixel
is covered by the obstacle and 1 otherwise, or a Signed Distance Function (SDF)
representation, i.e., the value in each pixel is the smallest distance of its center to
the boundary of the obstacle multiplied with−1 if the center lies within the obstacle.
As output, we interpolate the x and y components of the flow field to 256×128 pixel
images.

atadtuptuOatadtupnI

Binary

SDF

0
1

< 0
> 0

ux

uy

Fig. 3 Generation of structured input data (left) and output data (right) for training the neural
networks. As input, we generate a 256 × 128 pixel image with a binary or SDF representation of
the obstacle. As output, we interpolate the components ux and uy of the flow field on a 256× 128
pixel image
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Due to their good performance on image data, we apply CNNs in order to
approximate the nonlinear relation between out input and output data. In particular,
we consider the CNN used in [6] as well as the U-Net [11] with both one and
two decoder paths and Rectified Linear Unit (ReLU) activation; for more details
on neural network, see, e.g., [4, 12].

Furthermore, we consider a total of 100,000 data sets (50,000 type I and 50,000
type II obstacles) consisting of equally many polygons with 3, 4, 5, 6, and 12 edges,
respectively; the shapes and sizes of the polygons are randomly chosen under the
conditions described in Fig. 2. Out of the 100,000 data sets, we randomly select
90,000 as training data and 10,000 as validation data. We optimize applying a
Stochastic Gradient Descent (SGD) method with a batch size of 64 and an adaptive
scaling of the learning rate using the Adam (Adaptive moments) [8] algorithm with
an initial learning rate λ = 0.001. We use a maximum of 300 epochs for the training
and reduce the learning rate by 20% in case of stagnation for more than 50 epochs.
In case of SDF input data, we apply Z-normalization, and in case of binary input
data, we use batch normalization [7]. Our implementation uses Keras 2.2.4 [2] with
Tensorflow 1.12 [1] backend.

Even though, our neural networks may be very complex with approximately 50
million parameters on average, their evaluation is still much cheaper compared
to corresponding CFD simulations; on a single core of an AMD Threadripper
2950X (8 × 3.8 Ghz), the evaluation of our neural network models (less than
0.01 s) was more than two orders of magnitude faster than the average CFD
simulation (approximately 50 s). On GPU (Graphics Processing Unit) architectures,
the speedup will be even larger. However, the training of the neural networks, which
includes the computation of the training data using CFD simulations, may take hours
or even days.

We refer to [3] for a detailed discussion of the employed models, our software
framework, as well as a more detailed discussion the different types of obstacles and
a discussion of techniques for efficient generalization to other types of obstacles.
In [3], we will also discuss the speedup of our neural networks compared to the
CFD simulations in more detail.

4 Results

In order to measure the performance of our neural networks, we first introduce our
error measure. Therefore, let V be the set of all polygons P in the set of validation
data and IP be the set of all non-obstacle pixels for one specific polygonal obstacle
P . As the error measure to evaluate our neural network models, we consider the
averaged relative error

1

|V |
∑

P∈V

1

|IP |
∑

p∈IP

‖up − ûp‖2

‖up‖2 + 10−4 , (2)
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with up and ûp being the reference velocity, computed in a CFD simulation, and
the predicted velocity, computed by evaluating the neural networks, respectively.
The term 10−4 acts as a regularization in case of very low reference velocities up.

We compare the CNN from [6] to the U-Net [11] using one and two decoder paths
using binary and SDF input data. Furthermore, we will observe that the performance
depends significantly on the loss function used to train the neural network. As
the loss function, we compare four different choices, i.e., the Mean Squared Error
(MSE), the sum of the MSE and the averaged relative error (2), the Mean Absolute
Error (MAE), and the sum of the MAE and the averaged relative error (2).

Performance on the Original Data As can be seen in Figs. 4 and 5, the prediction
may be very good but may also show qualitative and quantitative differences to
the reference solution. However, if a good combination of the network architecture,

ux CFD ux NN ux error

uy CFD uy NN uy error

Fig. 4 Comparison of the ground truth flow field (left) computed in a CFD simulation, the
prediction by a neural network (middle), and the pointwise error (right) for an example with low
averaged relative error (2) is 2%

ux CFD ux NN ux error

uy CFD uy NN uy error

Fig. 5 Comparison of the ground truth flow field (left) computed in a CFD simulation, the
prediction by a neural network (middle), and the pointwise error (right) for an example with higher
averaged relative error (2) is 31%
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Table 1 Comparison of the performance of different CNN models based on the error (2). The best
error rates for a given CNN architecture and input type are marked in bold face

CNN [6] U-Net [11]

Input # Dec. Loss Total Type I Type II Total Type I Type II

SDF 1 MSE 61.16% 110.46% 11.86% 17.04% 29.42% 4.66%

MSE+(2) 3.97% 3.31% 4.63% 2.67% 2.11% 3.23%

MAE 25.19% 41.52% 8.86% 9.10% 13.89% 4.32%

MAE+(2) 4.45% 3.84% 5.05% 2.48% 1.87% 3.10%
2 MSE 49.82% 89.12% 10.51% 13.01% 21.59% 4.42%

MSE+(2) 3.85% 3.05% 4.64% 2.43% 1.78% 3.23%

MAE 45.23% 81.38% 9.08% 5.47% 7.06% 3.89%

MAE+(2) 4.33% 3.74% 4.91% 2.57% 1.98% 3.17%

Binary 1 MSE 49.78% 88.28% 11.28% 27.15% 49.15% 5.15%

MSE+(2) 10.12% 11.44% 8.80% 5.49% 6.25% 4.74%

MAE 39.16% 64.77% 13.54% 15.69% 26.36% 5.02%

MAE+(2) 10.61% 12.34% 8.87% 4.48% 5.05% 3.90%
2 MSE 51.34% 91.20% 11.48% 24.00% 43.14% 4.85%

MSE+(2) 10.03% 11.37% 8.69% 5.56% 6.79% 4.33%

MAE 37.16% 62.01% 12.32% 21.54% 38.12% 4.96%

MAE+(2) 9.53% 10.91% 8.15% 6.04% 7.88% 4.20%

the type of input data, the number of decoder paths, and the loss function is used,
the average performance of the CNN model over all data is very convincing; see
Table 1. Compared to the worst configuration with a total averaged error of 61.16%,
the optimal configuration, using the U-Net [11], SDF input, two decoder paths, and
MSE+(2) loss function, the total averaged error can be reduced to 2.43%. Using
only one decoder path and MAE+(2) loss function yields comparable results but
results in a reduction of the number of parameters of the CNN by more than 30%.

The choice of the network architecture and the loss function have the greatest
influence on the performance of the model. In particular, the U-Net generally
performs much better than the other CNN, and a combination of MSE or MAE
with (2) improves then performance significantly compared to only using MSE or
MAE.

Generalization Properties In order to investigate the generalization properties, we
now only consider the U-Net architecture with one decoder path, and MAE+(2)
loss function and only vary the type of input data. This model performed very well
for the training and validation data but is more efficient compared to the models
with two decoder paths. In Fig. 6, we present the flow field for a circular obstacle,
which was not part of the training and validation data. It can be observed that the
averaged relative error (2) for this example is only 3%. The very good generalization
properties of our model are also apparent in the results in Table 2, which shows the
results for several different types of polygonal obstacles which were not part of the
training and validation data. The maximum total averaged error is below 10%.
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ux CFD ux NN ux error

uy CFD uy NN uy error

Fig. 6 Generalization properties for the U-Net with one decoder path, MAE+(2) loss function,
and SDF input data: comparison the ground truth flow field (left) computed in a CFD simulation,
the prediction by the neural network (middle), and the pointwise error (right). Circular obstacles
were not part of the training data of the CNN. The averaged relative error (2) is 3%

Table 2 Generalization properties of the U-Net with one decoder path, and MAE+(2) loss
function. Error (2) for polygon types which were not in the data set used for training: 1000 polygons
(500 type I and 500 type II) for each different number of edges

SDF input Binary input

Polygon # Edges Total Type I Type II Total Type I Type II

7 2.71% 1.89% 3.53% 4.39% 4.61% 4.16%

8 2.82% 1.98% 3.65% 4.67% 4.89% 4.44%

10 3.21% 2.32% 4.10% 5.23% 5.51% 4.94%

15 4.01% 3.16% 4.86% 7.76% 7.85% 6.66%

20 5.08% 4.22% 5.93% 9.70% 10.43% 8.97%

These results confirm that the neural network is able to generalize to other types
of polygonal obstacles and is not overfitted to training data.

5 Conclusion

In this work, we have shown that CNNs may serve as efficient surrogate models
for CFD simulations. We have focussed on the dependence of the flow field on the
geometry of the computational domain, and the extension of this framework to, e.g.,
varying boundary conditions or material parameters will be future work.

Due to the limited available space, we are not able to discuss, e.g, further
generalization techniques for our models or to compare computing times of the CFD
simulations and the CNNs in detail. We refer to [3] for a more detailed discussion.
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Discontinuous Galerkin Model Order
Reduction of Geometrically
Parametrized Stokes Equation

Nirav Vasant Shah, Martin Wilfried Hess, and Gianluigi Rozza

Abstract The present work focuses on the geometric parametrization and the
reduced order modeling of the Stokes equation. We discuss the concept of a
parametrized geometry and its application within a reduced order modeling tech-
nique. The full order model is based on the discontinuous Galerkin method with an
interior penalty formulation. We introduce the broken Sobolev spaces as well as the
weak formulation required for an affine parameter dependency. The operators are
transformed from a fixed domain to a parameter dependent domain using the affine
parameter dependency. The proper orthogonal decomposition is used to obtain the
basis of functions of the reduced order model. By using the Galerkin projection the
linear system is projected onto the reduced space. During this process, the offline-
online decomposition is used to separate parameter dependent operations from
parameter independent operations. Finally this technique is applied to an obstacle
test problem.The numerical outcomes presented include experimental error analysis,
eigenvalue decay and measurement of online simulation time.

1 Introduction

Discontinuous Galerkin Method (DGM) has shown quite promising results for
the elliptic problems [6] as well as for the hyperbolic problems [2]. DGM uses
polynomial approximation for sufficient accuracy and allows discontinuity at the
interface for greater flexibility. Model Order Reduction (MOR) allows reducing the
size of the system by retaining only “dominant” modes. The faster computations
obtained by MOR has helped in many query contexts, real time computations and
quick transfer of computational results to industrial problems. MOR in combina-
tion with geometric parametrization has emerged as an alternative to the shape
optimization and has been used in many engineering applications. As evident

N. V. Shah · M. W. Hess (�) · G. Rozza
Scuola Internazionale Superiore di Studi Avanzati, Trieste, Italy
e-mail: snirav@sissa.it; mhess@sissa.it; grozza@sissa.it

© Springer Nature Switzerland AG 2021
F. J. Vermolen, C. Vuik (eds.), Numerical Mathematics and Advanced Applications
ENUMATH 2019, Lecture Notes in Computational Science and Engineering 139,
https://doi.org/10.1007/978-3-030-55874-1_54

551

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-55874-1_54&domain=pdf
mailto:snirav@sissa.it
mailto:mhess@sissa.it
mailto:grozza@sissa.it
https://doi.org/10.1007/978-3-030-55874-1_54


552 N. V. Shah et. al.

from above advantages, the application of geometric parametrization and reduced
order modeling to discontinuous Galerkin method will remain at the forefront
of scientific work. The present work is organized as follow. We first explain the
concept of geometric parametrization. Thereafter, the governing equations, broken
Sobolev spaces and weak formulation are stated. The affine expansion and Proper
Orthogonal Decomposition (POD) are briefly described in the subsequent sections.
Finally, an obstacle test problem demonstrates the application of the introduced
method with outcomes involving comparison of full order and reduced order model
solutions, error analysis and eigenvalue decay.

2 Geometric Parametrization

Let us consider � = �(μ) ∈ R
d as an open bounded domain. The parameter

tuple μ ∈ P, where P is the parameter space, completely characterizes the
domain. Also, consider a parameter tuple μ̄ ∈ P, as the known parameter
tuple and �(μ̄) as the reference domain, whose configuration is completely
known. We divide the domain �(μ) into nsu triangular subdomains such that

�(μ) =
nsu⋃

i=1
�i(μ) , �i(μ)

⋂
�j(μ) = ∅ , for i �= j . The bijective mappings

F i (·, μ) : �i(μ̄) → �i(μ) link the reference subdomains �i(μ̄) ⊂ �(μ̄) and the
parametrized subdomains �i(μ) ⊂ �(μ). We consider here maps, F i , of the form,

x = F i (x̂, μ) = GF,i (μ)x̂ + cF,i(μ) ;
∀x ∈ �i(μ) , ∀x̂ ∈ �i(μ̄) , GF,i(μ) ∈ R

d×d , cF,i ∈ R
d×1 , 1 ≤ i ≤ nsu .

The boundary of �(μ), that is ∂�(μ) is divided into a Neumann boundary �N(μ)

and a Dirichlet boundary �D(μ) i.e. ∂�(μ) = �N(μ) ∪ �D(μ). The Jacobian
matrices GF,i and the translational vectors cF,i depend only on parameter tuple
μ. The construction of maps {F i}nsui=1 has been explained in literatures such as [4].

3 Discontinuous Galerkin Formulation

The domain � is divided into Nel number of triangular elements τk such that � =
Nel⋃

k=1
τk . The triangulation T is the set of all triangular elements i.e. T = {τk}Nel

k=1.

The internal boundary is denoted by � =
Nel⋃

k=1
∂τk\∂�. −→n is the outward pointing

normal to an edge of element.
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The governing equations in strong form can be stated as,

Stokes equation: − ν�
−→
u + ∇p = −→

f , in � ,

Continuity equation: ∇ · −→u = 0 , in � ,

Dirichlet condition:−→u = −→
u D , on �D ,

Neumann condition: − p
−→
n + ν

−→
n · ∇−→u = −→

t , on �N .

(1)

The velocity vector field−→u and pressure scalar field p are the unknowns. ν is the

material property known as kinematic viscosity. Vector
−→
f is the external force term

or source term. −→u D is the Dirichlet velocity and vector −→t is the Neumann value.
Let us introduce the broken Sobolev space, for any p ∈ N,

Hp(�,T) = {v ∈ L2(�) | v|τk ∈ Hp(τk) , ∀τk ∈ T}.

We consider finite dimensional subspaces of broken Sobolev spaces (see [2]), that
is the spaces of discontinuous piecewise polynomial functions, for the unknowns.

For velocity: V = {−→φ ∈ (L2(�))d | −→φ |τk ∈ (PD(τk))
d , τk ∈ T} ,

For pressure: Q = {ψ ∈ (L2(�))| ψ|τk ∈ (PD−1(τk)) , τk ∈ T} .

Here, PD(τk) denotes the space of polynomials of degree D, D ≥ 2 over τk . It is to
be noted that, due to the application of interior penalty (IP ) and boundary penalty,
the construction of subspace of Sobolev space is not required for imposing Dirichlet
boundary condition.

In finite dimensional or discrete system, velocity approximation −→u h(x) and
pressure approximation ph(x) at any point x ∈ � are given by,

−→
u h(x) =

Nu∑

i=1

−→
φ iûi , ph(x) =

Np∑

i=1

ψip̂i , (2)

where ûi’s and p̂i ’s are coefficients of velocity basis functions and pressure basis
functions respectively.

We expect that −→u h → −→u and ph → p as Nu → ∞ and Np → ∞
respectively. Considering the scope of present work, the convergence analysis will
not be discussed here. The readers are advised to refer to [1, 5, 7].

In the subsequent sections, (·) , (·)�D
, (·)�N

, (·)� represent the L2 scalar product
over �,�D,�N,� respectively. The jump operator [·] and the average operator {·}
are important concepts in the DGM formulation and are required to approximate the
numerical flux. We use the jump and average operators as represented in [5].
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The weak form of the Stokes equation is given by,

aIP (
−→u ,

−→
φ )+ b(

−→
φ , p) +

(
{p}, [−→n · −→φ ]

)

�∪�D

= lIP (
−→
φ ) , (3)

aIP (
−→
u ,
−→
φ ) =

(
∇−→u ,∇−→φ

)
+ C11

(
[−→u ], [−→φ ]

)

�∪�D

−ν
(
{∇−→u }, [−→n ⊗−→

φ ]
)

�∪�D

− ν
(
[−→n ⊗−→

u ], {∇−→φ }
)

�∪�D

,

(4)

b(
−→
φ ,ψ) = −

∫

�

ψ∇ · −→φ , (5)

lIP (
−→
φ ) =

(−→
f ,

−→
φ
)
+
(−→

t ,
−→
φ
)

�N

+ C11

(−→
u D,

−→
φ
)

�D

−
(−→
n ⊗−→

u D, ν∇−→φ
)

�D

.

(6)

The penalty parameter C11 > 0 is an empirical constant to be kept large enough
to maintain the coercivity of aIP (

−→
u ,
−→
φ ) (see [5]).

The weak form of the continuity equation is as follows,

b(
−→
u ,ψ) + (ψ, [−→n · −→u ])�∪�D = (ψ,

−→
n · −→u D)�D . (7)

In the discrete form the system of equations can be written as,

(
A B

BT 0

)

Stiffness matrix

(
U

P

)

Solution vector

=
(
F1

F2

)

Right hand side (Known)

. (8)

Here, Aij = aIP (
−→
φ i,

−→
φ j ), B ij = b(

−→
φ i, ψj ) +

(
{ψj }, [n · −→φ i]

)

�∪�D

, F1 =
lIP (

−→
φ i) and F2 =

(
ψj ,

−→
n · −→u D

)
�D

for i = 1, . . . , Nu and j = 1, . . . , Np . The
column vectors U and P are coefficients ûi’s and p̂i’s respectively (Eq. (2)).

4 Affine Expansion

We evaluate and solve the Stokes equation weak formulation on the reference
domain �(μ̄). Given a parameter tuple μ �= μ̄, we need to evaluate the linear system
of equations (8) on a new domain �(μ). To accomplish this, we use the affine
expansion using linearity of equation and dividing �(μ̄) into triangular subdomains
�i(μ̄) , i = {1, 2, . . . , nsu} as explained earlier in Sect. 2. The affine expansion
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of operators has been explained in the literatures such as [4]. The bilinear form
aIP (·, ·;μ) can be expressed as,

aIP (
−→
u ,
−→
φ ;μ) =

i=Qa∑

i=1

θ ia(μ)ai
IP (

−→
u ,
−→
φ ; μ̄) , (9)

for some finite Qa and some bilinear forms {ai
IP (·, ·)}Qa

i=1. The bilinear form
aIP (·, ·; μ̄) is evaluated once on the reference domain �(μ̄). To evaluate the bilinear
form aIP (·, ·;μ) on the parametrized domain �(μ), we use the affine expansion (9).
Since the evaluation of scalar terms {θ ia(μ)}Qa

i=1 is much faster than the evaluation of

bilinear form aIP (
−→
u ,
−→
φ ;μ), significant speedup can be obtained with the help of

affine expansion. Similar affine expansion can be used for other terms of the weak
form (3). In the case of geometric parametrization, the affine expansion is essentially
a change of variables [8]. However, it is pertinent to explain two expansions as
specific to DGM formulation.

• In order to transfer the terms containing jump and average operator, following
approach is used in the present analysis.

(
{∇−→φ },

[−→
n ⊗−→

φ
])
=
(
∇−→φ +,−→n + ⊗ −→

φ +)+
(
∇−→φ +,−→n − ⊗ −→

φ −)+
(
∇−→φ −,−→n + ⊗ −→

φ +)+
(
∇−→φ −,−→n − ⊗−→

φ −) .

Each term on the right hand side of the above equation can be transformed using
the affine map.

• The coercivity term C11

(
[−→φ ], [−→u ]

)

�∪�D

is not transformed but used as

evaluated on reference domain �(μ̄). The affine transformation is given by,

C11

(
[−→φ (x),−→u (x)]

)

�(μ)∪�D(μ)
= C11α

(
[−→φ (F (x̂)),−→u (F (x̂))]

)

�(μ̄)∪�D(μ̄)
,

α = length of (�(μ) ∪ �D(μ))

length of (�(μ̄) ∪ �D(μ̄))
, x̂ ∈ �(μ̄) , x ∈ �(μ) .

Since, C11 is an empirical coefficient replacing C11α with C11 will not change
the formulation as long as the coercivity of aIP (

−→
u ,
−→
φ ) over parameter space P

is maintained.
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5 Reduced Basis Method

Snapshot POD exploits the information contained in the snapshots to construct
low dimensional reduced basis space which can approximate the solution within
desirable accuracy. The offline phase consists of construction of reduced basis space
while the online phase consists of computing coefficients of the reduced basis. For
detailed explanation about POD-Galerkin method and offline-online decomposition,
we refer to [4].

As first step, the DGM solutions based on μn, n ∈ {1, . . . ., ns} are calculated i.e.
ns snapshots are generated. The velocity snapshots and the pressure snapshots are
stored in Sv ∈ R

Nu×ns and Sp ∈ R
Np×ns respectively. Let us also introduce inner

product matrices Mv ∈ R
Nu×Nu and Mp ∈ R

Np×Np .

Mv,ij =
∫

�

−→
φ i · −→φ j +

Nel∑

k=1

∫

τk

∇−→φ i : ∇−→φ j , i, j = 1, . . . , Nu ,

Mp,ij =
∫

�

ψiψj , i, j = 1, . . . , Np .

The dimension of the reduced basis is denoted as N and it is asserted that N <<

Nu, N < ns . Proper Orthogonal Decomposition obtains orthogonal basis for the
low dimensional reduced basis space, by using spectral decomposition.

ST
v MvSv = V�V T . (10)

The columns of V are eigenvectors and � has eigenvalues θi , 1 ≤ i, j ≤ ns , in
sorted order (θ1 ≥ . . . ≥ θns ) such that, �ij = θiδij . Eigenvalue decay, the drop in
the magnitude of the eigenvalues, provides upper bound for the error between the
solution computed by full order model and the solution computed by POD (see [4]).

The projection matrix Bv ∈ R
Nu×N , used for the projection from the space of

full order model to the space of reduced order model, is given by,

Bv = SvV�
− 1

2R , R = [IN×N ; 0(ns−N)×N ] , (11)

where, IN×N is the identity matrix of size N × N . The reduced basis space Bp

can be generated in a similar manner using the pressure snapshots Sp and the inner
product matrix Mp. Above procedure is performed during the offline phase.
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The discrete system of equations is projected onto the reduced basis space by
Galerkin projection as,

(
BT

v A(μ)Bv BT
v B(μ)Bp

BT
pB(μ)TBv 0

)

K̃

(
UN

PN

)

ζ

=
(
BT

v F1(μ)

BT
pF2(μ)

)

F̃

. (12)

The solution vectors U and P (Eq. (8)) are then computed as U = BvUN , P =
BpPN . Projection onto the reduced basis space, solution of smaller system of
equations and computation of U and P are steps performed during online phase.
During the online phase, the matrices A(μ), B(μ) and the vectors F1(μ), F2(μ) are
evaluated using affine expansion.

6 A Numerical Example

The numerical experiments were performed using RBmatlab [3, 9]. The reference
domain �(μ̄) is the unit square domain [0, 1] × [0, 1] with triangle having vertices
(0.3, 0), (0.5, 0.3), (0.7, 0) as obstacle. The domain�(μ̄) is divided into 9 mutually
non-overlapping subdomains. Two geometric parameters, the coordinates of the tip
of the obstacle, with reference values collected in parameter tuple μ̄ = (0.5, 0.3)
characterize the domain. The x-direction refers to the horizontal direction and the y-
direction refers to the vertical direction. The boundary x = 0 is a Dirichlet boundary
with inflow velocity at point (0, y) as u = (y(1 − y), 0). The boundary x = 1 is a
Neumann boundary with zero Neumann value i.e. −→t = (0, 0). Other boundaries

are Dirichlet boundary with no slip condition. The source term is
−→
f = (0, 0).

The training set contained 100 uniformly distributed random parameters within
the [0.4, 0.6] × [0.2, 0.4]. The test set contained 10 uniformly distributed random
parameters within the range [0.4, 0.6] × [0.2, 0.4]. For velocity basis function
polynomial of degree D = 2 and for pressure basis function polynomial of degree
D − 1 = 1 were used. The number of velocity degrees of freedom and pressure
degrees of freedom were Nu = 4704 and Np = 1176 respectively.

Figure 1 compares the solutions computed by DGM and Reduced Basis (RB) at
parameter value μ = (0.47, 0.33) with reduced basis of size 10. The drop in error
with respect to the increased size of the reduced basis space (Fig. 2) is inline with the
expectation based on the eigenvalue decay (Fig. 3). The average speedup was 20.6.
Typically, during the offline phase, the full order system was assembled in 35.37
seconds and was solved in 6.74 s. During the online phase, the reduced system was
assembled in 2.03 s and was solved in 0.009 s.
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Fig. 2 Size of the reduced basis space vs Relative error. (a) Size of the reduced basis space vs.
Relative error in velocity with inner product induced by Mv . (b) Size of the reduced basis space
vs. Relative error in pressure with inner product induced by Mp

7 Some Concluding Remarks

As demonstrated by the numerical example, proper orthogonal decomposition can
accelerate the computations involving geometrically parametrized discontinuous
Galerkin interior penalty formulation while maintaining the reliability of solution
above minimum acceptable limit. The paper also discussed, the specific issues
related to the geometric parametrization and the affine expansion as pertaining
to the discontinuous Galerkin interior penalty formulation. We expect the current
work to contribute towards exploring further potentials in the field of geometric
parametrization and reduced basis approach for the discontinuous Galerkin method.
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Fig. 3 Eigenvalue decay. (a) x-Velocity eigenvalues (semilog scale). (b) y-Velocity eigenvalues
(semilog scale). (c) Pressure eigenvalues (semilog scale)
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An Efficient Numerical Scheme for Fully
Coupled Flow and Reactive Transport
in Variably Saturated Porous Media
Including Dynamic Capillary Effects

Davide Illiano, Iuliu Sorin Pop, and Florin Adrian Radu

Abstract In this paper we study a model for the transport of an external component,
e.g., a surfactant, in variably saturated porous media. We discretize the model in time
and space by combining a backward Euler method with the linear Galerkin finite
elements. The Newton method and the L-Scheme are employed for the linearization
and the performance of these schemes is studied numerically. A special focus is set
on the effects of dynamic capillarity on the transport equation.

1 Introduction

In this work, we concentrate on efficiently solving reactive transport models in
saturated/unsaturated porous media [8, 10]. Such media are observable in the section
of the soil closer to the surface where, in the upper part of the domain, we have
a coexistence of both water and air phases while, below the water table, the soil
becomes fully saturated.

In particular, our model includes dynamic capillarity effects. The capillary
pressure is commonly defined as the difference between the pressures of the two
phases, in our case, the air and the water. Note that, in the Richards model, the air
pressure is set to be equal to zero.

Typically, the capillary pressure is assumed to be a nonlinear decreasing function
depending on the water saturation. However, numerous studies are showing that
such formulation is often too simplistic and that dynamic effects, due to the changes
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in time of the water phase, should also be included [2, 3, 5, 11, 13]. Based on this,
we consider here the system:

∂tθ − ∇ · (K(θ,1)(∇1 + ez)
) = S1,

1 + pcap(θ, c) = τ (θ)∂t θ,

∂t (θc)−∇ · (D∇c − uwc)+ R(c) = S2.

(1)

The first equation is the Richards equation, whereas the second is an ordinary
differential equation used to include the non-equilibrium effects in the capillary
pressure/water content relation. Equilibrium models are obtained for τ = 0.
Furthermore, the third equation is the reactive transport equation. Here, θ is the
water content, 1 the pressure head, c the concentration of the chemical component,
K the conductivity, ez the unit vector in the direction opposite to gravity, D the
diffusion/dispersion coefficient, uw the water flux, R(c) the reaction term and finally
S1 and S2 are any source terms or external forces involved in the process. Note that
uw := −K(θ,1)(∇1 + ez) where K is a nonlinear function depending on θ and
1 . In the van Genuchten model [4] one has:

K(θ,1) =

⎧
⎪⎨

⎪⎩

Ksθ
1
2

[

1−
(

1− θ
n

n−1

) n−1
n

]2

, 1 ≤ 0

Ks, 1 > 0.

(2)

Ks is the saturated conductivity and n is a soil dependent parameter.
The system (1) is completed by boundary conditions for 1 and c, and initial

conditions for θ and c.
The rest of the paper is organized as follows: in Sect. 2 the equations are

discretized and linearized. Section 3 includes a numerical example, based on the
literature [6], which allows us to compare the different numerical schemes. Finally,
Sect. 4 will conclude this paper with our final remarks.

2 The Numerical Schemes

Applying an Euler implicit time-stepping to (1) gives a sequence of time discrete
nonlinear equations. To solve them we apply different linearization schemes: the
Newton method, the L-Scheme and a combination of the two [7, 9]. They are
compared here thanks to a numerical example inspired by reactive models.

The equations in (1) are fully coupled due to the double dependency of the
capillary pressure of both the water content θ and the concentration c. In general,
pcap is a function of only θ , e.g., pcap := 1/α(θ−1/m − 1)1/n as presented in [4].
Anyhow, it has been observed [12] that, if an external component is involved, the
surface tension becomes a function of the concentration c and thus, the capillary
pressure itself is influenced by this, i.e. pcap := pcap(θ, c).
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In the following, we use the standard notations of functional analysis. The
domain � ⊂ R

d , d = 1, 2 or 3, is bounded, open and has a Lipschitz continuous
boundary ∂�. We denote by L2(�) the space of real-valued, square-integrable
functions defined on � and H 1(�) its subspace containing the functions having
also the first order weak partial derivatives in L2(�). H 1

0 (�) is the space of
functions belonging to H 1(�), having zero values on the boundary ∂�. We denote
by < ·, · > the L2(�) scalar product and by ‖·‖ the associated norm. Finally, assume
that K is continuous and increasing, pcap ∈ C1

(
(0, 1], [0,∞)

)
is decreasing and

τ ∈ C1
(
(0, 1], [0,∞)

)
.

We now combine the backward Euler method with linear Galerkin finite elements
for the discretization of the problem (1). Let N ∈ N be a strictly positive natural
number, define the time step size �t = T/N and tn = n�t (n ∈ 1, 2, . . . , N).
Furthermore, Th is a regular decomposition of �, � = ∪

T∈Th

T, into d-dimensional

simplices, with h denoting the maximal mesh diameter. The finite element space
Vh ⊂ H 1

0 (�) is defined by

Vh := {vh ∈ H 1
0 (�) s.t. vh|T ∈ P1(T), T ∈ Th}, (3)

where P1(T) denotes the space of the afine polynomials on T.
The fully discrete Galerkin formulation of the system (1) can be written as:

Problem P(n) Let n ≥ 1 be fixed. Given 1n−1
h , θn−1

h , cn−1
h ∈ Vh, find 1n

h, θ
n
h , c

n
h ∈

Vh such that there holds

< θnh−θn−1
h , v1,h > +�t < K(θnh ,1

n
h)(∇1n

h+ez),∇v1,h >= �t < S1, v1,h >,

(4)

�t < 1n
h, v2,h > +�t < pcap(θ

n
h , c

n
h), v2,h > = < τ(θnh )(θ

n
h − θn−1

h ), v2,h >,

(5)

and

< θnh c
n
h − θn−1

h cn−1
h , v3,h > +�t < D∇cnh + un−1

w cnh,∇v3,h >

+�t < R(cnh), v3,h > = �t < S2, v3,h >,
(6)

for all v1,h, v2,h, v3,h ∈ Vh.

Remark 1 We use un−1
w := −K(θn−1

h ,1n−1
h )(∇1n−1

h +ez) for the convective term
in the transport equation, for simplicity reasons. Nevertheless, all the simulations
presented in this paper have also been performed with un

w := −K(θnh ,1
n
h)(∇1n

h +
ez) instead of un−1

w and the results were almost identical.

In the following, we propose different solving strategies for the system of
equations presented above. These strategies are built on the ones discussed in [7],
extending them to the case of dynamic capillary pressure (τ (θ) �= 0). They are either
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a monolithic solver of the full system, or a splitting approach obtained by solving
first the flow component, using a previously computed concentration, then updating
the transport equation, using the newly computed pressure and water content. In
both cases, one has to iterate. Each iteration requires solving a non-linear problem,
for which, either the Newton methods or the L-Scheme [7, 9, 10] are considered.
These strategies are then named: monolithic-Newton scheme (MON-Newton),
monolithic-L-Scheme (MON-LS), nonlinear splitting-Newton (NonLinS-Newton)
and nonlinear splitting-L-Scheme (NonLinS-LS). The splitting methods are also
known as sequential or segregated approaches.

The index j denotes the iteration index. As a rule, the iterations start with the
solution obtained at the previous time step, for example 1n,1 := 1n−1. This is not
necessary for the L-Scheme, which is globally convergent, but it appears to be a
natural choice.

2.1 The Monolithic Newton Method (MON-NEWTON)

The Newton method is a well-known linearization scheme, which is quadratic but
only locally convergent. Applying the monolithic Newton method to (4)–(6) leads
to

Problem MN(n,j+1) Let 1n−1
h , θn−1

h , cn−1,1
n,j
h , θ

n,j
h c

n,j
h ∈ Vh be given, find

1
n,j+1
h , θ

n,j+1
h , c

n,j+1
h ∈ Vh such that

< θ
n,j+1
h − θn−1

h , v1,h > +�t < K(θ
n,j
h ,1

n,j
h )(∇(1

n,j+1
h )+ ez),∇v1,h >

+�t < ∂θK(θ
n,j
h ,1

n,j
h )(∇(1

n,j
h )+ ez)(θ

n,j+1
h − θ

n,j
h ),∇v1,h >

+�t < ∂1K(θ
n,j
h ,1

n,j
h )(∇(1

n,j
h )+ ez)(1

n,j+1
h −1

n,j
h ),∇v1,h >

= �t < S1, v1,h >,

(7)
�t < 1

n,j+1
h , v2,h > +�t < pcap(θ

n,j
h , c

n,j
h ), v2,h >

+�t < ∂θpcap(θ
n,j
h , c

n,j
h )(θ

n,j+1
h − θ

n,j
h ), v2,h > +�t < ∂cpcap(θ

n,j
h , c

n,j
h )

(c
n,j+1
h − c

n,j
h ), v2,h >= < τ(θ

n,j
h )(θ

n,j+1
h − θn−1

h ), v2,h >

+ < ∂θτ(θ
n,j

h )(θ
n,j

h − θn−1
h )(θ

n,j+1
h − θ

n,j

h ), v2,h >,

(8)
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and

< θ
n,j

h c
n,j+1
h − θn−1

h cn−1
h , v3,h > +�t < D∇c

n,j+1
h + un−1

w c
n,j+1
h ,∇v3,h >

+�t < R(c
n,j

h ), v3,h > +�t < ∂cR(c
n,j

h )(c
n,j+1
h − c

n,j

h ) >

= �t < S2, v3,h >,

(9)

hold true for all v1,h, v2,h, v3,h ∈ Vh.

2.2 The Monolithic L-Scheme (MON-LS)

The monolithic L-scheme for solving (4)–(6) reads as

Problem ML(n,j+1) Let 1n−1
h , θn−1

h , cn−1,1
n,j
h , θ

n,j
h c

n,j
h ∈ Vh be given,

L1
1 , Lθ

1, L2, L3 > 0, big enough.

Find 1
n,j+1
h , θ

n,j+1
h , c

n,j+1
h ∈ Vh such that

< θ
n,j+1
h − θn−1

h , v1,h > +�t < K(θ
n,j
h ,1

n,j
h )(∇(1

n,j+1
h )+ ez),∇v1,h >

+�t < L1
1 (1

n,j+1
h − 1

n,j
h ),∇v1,h > +�t < Lθ

1(θ
n,j+1
h − θ

n,j
h ),∇v1,h >

= �t < S1, v1,h >,

(10)
�t < 1

n,j+1
h , v2,h > = −�t < pcap(θ

n,j

h , c
n,j

h ), v2,h >

+ < τ(θ
n,j

h )(θ
n,j+1
h − θn−1

h ), v2,h > + < L2(θ
n,j+1
h − θ

n,j

h ), v2,h >

(11)

and

< θ
n,j
h c

n,j+1
h − θn−1

h cn−1
h , v3,h > +�t < D∇c

n,j+1
h + un−1

w c
n,j+1
h ,∇v3,h >

+�t < R(c
n,j
h ), v3,h > + < L3(c

n,j+1
h − c

n,j
h ), v3,h > = �t < S3, v3,h >,

(12)

hold true for all v1,h, v2,h, v3,h ∈ Vh.
The L-Scheme does not involve the computations of derivatives, the linear

systems to be solved within each iteration are better conditioned, compared to the
ones given by the Newton method [7, 9], and it is globally (linearly) convergent. The
convergence of the scheme has been proved, for the equilibrium model (τ (θ) = 0)
in [7], and can be easily extended to the non-equilibrium formulation given by the
system (10)–(12).
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2.3 The Splitting Approach (NonLinS)

The splitting approach for solving (4)–(6) reads as

Problem S(n,j+1) Let 1n−1
h , θn−1, cn−1,1

n,j
h , θ

n,j
h , c

n,j
h ∈ Vh be given, find

1
n,j+1
h , θ

n,j+1
h ∈ Vh such that

< θ
n,j+1
h − θn−1

h , v1,h > +�t < K(θ
n,j+1
h ,1

n,j+1
h )(∇(1

n,j+1
h )+ ez),∇v1,h >

= �t < S1, v1,h >,

(13)
�t < 1

n,j+1
h , v2,h > +�t < pcap(θ

n,j+1
h , c

n,j
h ), v2,h >

= < τ(θ
n,j+1
h )(θ

n,j+1
h − θn−1

h ), v2,h >,

(14)

hold true for all v1,h, v2,h ∈ Vh.

Then, with 1
n,j+1
h and θ

n,j+1
h obtained from the equations above, find c

n,j+1
h ∈

Vh such that

< θ
n,j+1
h c

n,j+1
h − θn−1

h cn−1
h , v3,h > +�t < D∇c

n,j+1
h + un−1

w c
n,j+1
h ,∇v3,h >

+�t < R(c
n,j+1
h ), v3,h > = �t < S2, v3,h >,

(15)

holds true for all v3,h ∈ Vh.
The three equations above can be then linearised using either the Newton method

(NonLinS-Newton) or the L-Scheme (NonLinS-LScheme).

2.4 The Mixed Linearization Scheme

It has been already observed, for a different set of equations [9], that combining
the Newton method and the L-Scheme can improve the convergence of the scheme.
The Newton method is quadratically but only locally convergent and it can produce
badly conditioned linearized systems. Moreover, the time step is subject to severe
restrictions for guaranteeing the convergence of the scheme, and this has also been
observed in numerical examples [1, 7, 9].

Contrarily, the L-Scheme is globally convergent and the linear systems to be
solved within each iteration are better conditioned, however, it has only a linear rate
of convergence.

The mixed formulation, obtained combining the two schemes, appears to be the
best approach and shows practically both global and quadratic convergence. The
Newton method commonly fails to converge, if the initial guess is too far from the
actual solution. Since this guess is usually the solution at the previous time, this can
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force restriction on the time step. Instead of reducing the time step one can obtain a
better approximation of the initial guess, for the Newton method, by performing few
L-Scheme iterations. In the numerical simulation here presented, up to 5 iterations
were sufficient to reach a good initial guess for the Newton iteration, which ensured
its convergence.

3 Numerical Examples

In this section, we use a benchmark problem, from [6], to compare the different
linearization schemes and solving algorithms defined above. It describes the
recharge of a two-dimensional underground reservoir � ⊂ R

2, in the interval of
time t ∈ (0, 3]. The boundary of the domain and the Dirichlet boundary conditions
are defined below.

� = (0, 2)× (0, 3),

�D1 = {(x, y) ∈ ∂�|x ∈ [0, 1] ∧ y = 3},
�D2 = {(x, y) ∈ ∂�|x = 2 ∧ y ∈ [0, 1]},
�D = �D1 ∪ �D2 ,

�N = ∂� \ �D,

1(x, y, t) =

⎧
⎪⎪⎨

⎪⎪⎩

−2+ 2.2 ∗ t, on �D1 , t ≤ 1

0.2, on �D1 , t > 1

1− y, on �D2 ,

c(x, y, t) =

⎧
⎪⎪⎨

⎪⎪⎩

1, on �D1 , t ≤ 1

0, on �D1 , t > 1

3− y, on �D2 ∪ �N.

Furthermore, no flow conditions are imposed on �N . The initial conditions are
given by 1(x, y, 0) := 1 − y, c(x, y, 0) := 3 − y and θ(x, y, 0) := 0.39. The
capillary pressure is defined as pcap(θ, c) := (1− θ)2.5 + 0.1 ∗ c, the conductivity
is given by (2) and τ (θ) = 1. Finally, the parameters implemented are: Ks = 1,
L1

1 , Lθ
1, L2 = 0.01, L3 = 0.1 and the iterations stop whenever all the error norms,∥

∥1n,j+1 −1n,j
∥
∥ ,

∥
∥θn,j+1 − θn,j

∥
∥ and

∥
∥cn,j+1 − cn,j

∥
∥, are below 10−6.

We performed the simulations using regular meshes, consisting of squares, with
sides dx = {1/10, 1/20, 1/40}. We considered two fixed time steps �t = 1/10 and
�t = 1/50.

In Fig. 1, we can observe the total numbers of iterations required by the different
linearization schemes and solving algorithms. Next to the name of each scheme we
report, between parenthesis, which time step �t has been used.

We can observe, as the Newton method in the monolithic formulation, converges
only for coarse meshes, for �t = 1/10. For the smaller time step, �t = 1/50, it
converges for all of the tested meshes. The L-Scheme converges for both time steps,
but, since it is linearly convergent, for �t = 1/50 would require more iterations
than the Newton method.

The results obtained thanks to the mixed formulation are particularly interesting.
We can observe that this scheme, both in the monolithic and splitting formulation,
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Fig. 1 Total numbers of iterations for different solvers

converges for all the tested meshes also in case of a large time step. Moreover,
thanks to the Newton iterations, it appears to be faster than the classical L-Scheme.
It is as robust as the L-Scheme and as fast as the Newton method. For more details
regarding the mixed scheme, we refer to [9].

4 Conclusions

In this paper, we considered multiphase flow coupled with a one-component reactive
transport in variably saturated porous media, including also the dynamic effects in
the capillary pressure. The resulting model is nonlinear and for this reason, three
different linearization schemes are investigated: the L-Scheme, the Newton method
and a combination of the two. We also studied both monolithic solvers and splitting
ones.

The tests show that, for this particular set of equations, the best linearization
scheme is the one obtained combining the Newton method and the L-Scheme. Such
scheme appears to be both quadratically and globally convergent. Finally, this results
in a clear reduction of the workload, compared to the classical L-scheme.
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Multistage Preconditioning for Adaptive
Discretization of Porous Media
Two-Phase Flow

Birane Kane

Abstract We present a constrained pressure residual (CPR) two-stage precon-
ditioner applied to a discontinuous Galerkin discretization of a two-phase flow
in strongly heterogeneous porous media. We consider a fully implicit, locally
conservative, higher order discretization on adaptively generated meshes. The
implementation is based on the open-source PDE software framework Dune and
its PETSc binding.

1 Introduction

The significant geologic complexity involved in multi-phase flow and the treatment
of strongly heterogeneous soil properties need efficient preconditioning strategies
for fully implicit formulations. Multilevel techniques such as the constrained
pressure residual (CPR) two-stage preconditioner allow to exploit the algebraic
properties of the Jacobian matrix of the system. The two-stage CPR preconditioner
was introduced by Wallis [2, 3] from the previous work of Behie and Vinsome [4] on
combinative preconditioners in reservoir engineering. Lacroix et al. [5] combined
a first stage preconditioner on the pressure subsystem with Algebraic Multigrid
(AMG) and a second stage preconditioner on the full system with ILU-0. The CPR-
AMG has proven to be efficient for the simulation of complex problems in reservoir
engineering [6–9] and in basin modeling [10]. The CPR impact on h and hp adaptive
DG schemes is still not well understood as most of the work with regards to the CPR
has so far mainly focused on finite volume methods. To our knowledge this is the
first time the CPR-AMG is applied within an adaptive DG discretization framework.

This work is organized as follows: Sect. 2 provides a description of the Jacobian
matrix arising from a fully implicit discretization of a two-phase flow problem.

B. Kane (�)
NORCE Norwegian Research Centre AS, Bergen, Norway
e-mail: birane.kane@norceresearch.no

© Springer Nature Switzerland AG 2021
F. J. Vermolen, C. Vuik (eds.), Numerical Mathematics and Advanced Applications
ENUMATH 2019, Lecture Notes in Computational Science and Engineering 139,
https://doi.org/10.1007/978-3-030-55874-1_56

573

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-55874-1_56&domain=pdf
mailto:birane.kane@norceresearch.no
https://doi.org/10.1007/978-3-030-55874-1_56


574 B. Kane

Section 3 sets out the formulation of the CPR-AMG method. Section 4 provides
numerical tests implemented within Dune [1].

2 Structure of the Jacobian Matrix

We consider a domain � ∈ R
d , d ∈ {2, 3}. The phases α = {w, n} are

incompressible and immiscible. Unknown variables are the pressure pw and the
saturation sn.

−∇ ·
(

(λw + λn)K∇pw + λnp
′
cK∇sn − (ρwλw + ρnλn)Kg

)

= qw + qn,

φ
∂sn

∂t
− ∇ ·

(

λnK(∇pw − ρng)
)

− ∇ ·
(

λnp
′
cK∇sn

)

= qn.

(1)

λα := λα(sα) phase mobility
g gravity
φ > 0 porosity

pc := pc(sn) capillary-pressure
K permeability tensor
ρα phase density
qα source/sink term

In order to have a complete system we add appropriate boundary and initial
conditions. For a more thorough description of the complete system and its DG
discretization see [11–14].

The development of effective and robust preconditioning techniques requires to
fully understand and exploit the algebraic properties of each individual block of
the Jacobian matrix JG stemming from the fully-implicit and fully-coupled DG
discretization of the two-phase flow system (1). Following [11], let JGX = b be
the linear system to solve and r = b − JGX the residual, where X = (Xp,Xs)

is the unknown and b = (bp, bs)
ᵀ the right-hand side. The Jacobian matrix JG is

expressed as

JG =
⎛

⎝
Jpp Jps

J sp J ss

⎞

⎠ =
⎛

⎜
⎝

∂Gp

∂p

∂Gp

∂s

∂Gs

∂p

∂Gs

∂s

⎞

⎟
⎠ . (2)

Here, Jpp ∈ R
np×np is the pressure block, J ss ∈ R

ns×ns is the saturation block.
Jps ∈ R

np×ns and J sp ∈ R
ns×np are the coupling blocks. The term Gp (resp. Gs)

denotes the discretization of the first (resp. second) equation of system (1).
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We consider in our implementation a dof-based re-ordering of variables where
JG is reformulated as

JG =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

(J pp)1,1 (J ps)1,1

(J ss)1,1 (J ss)1,1
· · · (J pp)1,ns (J ps)1,ns

(J ss)1,ns (J ss)1,ns
...

. . .
...

(J pp)np,1 (J ps)np,1

(J ss)np,1 (J ss)np,1
· · · (J

pp)np,ns (J ps)np,ns
(J ss)np,ns (J ss)np,ns

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (3)

Above, np is the number of dofs for the pressure and ns is the number of dofs for
the saturation. (J )i,j represents the coupling between two dofs.

3 Constrained Pressure Residual Preconditioner

This section provides an extended insight into the structures and the different stages
involved in the construction of the CPR preconditioner.

3.1 Method Description

The CPR belongs to the family of two-stage preconditioners, first it extracts
and solves a pressure subsystem. The residual associated with this solution is
subsequently corrected with an additional preconditioning step that recovers part
of the global information contained in the original system. The elliptic feature
exhibited by the pressure subsystem allows it to be handled well by multigrid
methods. The other equation is usually degenerate parabolic and might be handled
by an ILU preconditioner. Figure 1 provides a sketch of the CPR preconditioning.

Definition 1 The general formulation of a two-stage preconditioner is:

M−1
2st = M−1

2

[
I − J̃M−1

1

]+ (
M−1

1

)
(4)

where M−1
1 (resp. M−1

2 ) corresponds to the first (resp. second) stage of the
preconditioner and the operator J̃ is such that

D−1
1 JGD−1

2 = J̃ =
⎛

⎝
J̃pp J̃ps

J̃sp J̃ss

⎞

⎠ . (5)

Here D1 and D2 are decoupling operators, different choices of Di , i ∈ {1, 2} gener-
ate different first stage preconditioners [6]. We provide more details concerning the
decoupling operators in the next section.
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Fig. 1 Sketch of the CPR preconditioning

For the CPR, the first stage in (4) corresponds to

M−1
1 = CJ̃−1

pp CT , (6)

where CT and C are respectively, restriction and prolongation operators. In
particular, C is given by

C =
⎛

⎜
⎝

e

. . .

e

⎞

⎟
⎠ and e =

(
1
0

)

.

The second stage in (4) is

M−1
2 = M−1

ILU , (7)

where M−1
ILU is an ILU preconditioner.

CPR Procedure

The CPR preconditioning step δ = M−1
CPRr can be outlined as follows:

1. Weakening of the coupling between the pressure and non pressure blocks:

D−1
1 JG = J̃ =

⎛

⎝
J̃pp J̃ps

J̃sp J̃ss

⎞

⎠ ; (8)
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2. Compute the pressure subsystem residual:

rp = CT D−1
1 r; (9)

3. Solve the pressure system (e.g. with an AMG preconditioner or as a solver):

J̃ppδp = rp; (10)

4. Expand the pressure solution to the full system:

γ = Cδp =
(
δp

0

)

; (11)

5. Compute the new residual:

r̂ = r − J̃ γ ; (12)

6. Prediction and correction step:

δ = M−1
2 r̂ + γ. (13)

Here δ = (δp, δs)
t denotes the correction obtained after the two stages and for

the sake of simplicity, we set D−1
2 = I for the decoupling step (i.e. (8)).

Remark 1 More robust preconditioners can be formulated with the inclusion of the
convective-diffusive block [6],

M−1
CPR∗ = M−1

2

(

I − (
J̃ −M2

)
(
J̃−1
pp −J̃−1

pp J̃ps J̃ ss
−1

0 J̃−1
ss

))

. (14)

3.2 Decoupling Operators

The decoupling introduced in (5) is a very important preprocessing step allowing
to weaken the coupling between the pressure and non-pressure blocks while
preserving the good algebraic properties for the extracted pressure subsystem [10,
and references therein]. The main decoupling strategies usually considered in the
literature are the Alternate-Block Factorization (ABF) procedure [15], the Quasi-
IMPES procedure [5, 10] and the True-IMPES procedure [16].

Definition 2 Following Bank et al. [15], the ABF method is defined such that

D1 =
⎛

⎝
Dpp Dps

Dsp Dss

⎞

⎠ =
⎛

⎝
diag(Jpp) diag(Jps)

diag(Jsp) diag(Jss)

⎞

⎠ and D2 = I.
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Remark 2 Considering a dof-wise re-ordering, the ABF method corresponds to a
simple to block diagonal scaling with

D1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

(J pp)1,1 (J ps)1,1

(J ss)1,1 (J ss)1,1
. . .

(J pp)np,ns (J ps)np,ns
(J ss)np,ns (J ss)np,ns

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (15)

In this work we only focus on the ABF method owing to its structural simplicity
and ease of implementation. We might although expect some potential drawbacks
because J̃pp may be “strongly” non-symmetric compared to Jpp. It is also important
to emphasize the fact that computing the exact inverse of J̃pp not feasible for large
scale settings. It is therefore crucial to calibrate carefully inner and outer tolerances
within the nested iterative procedure defined from (5) to (13).

4 CPR Preconditioner Performances

In this section, we analyze the performance of the two stage CPR preconditioner.
We consider the 3d heterogeneous model in Fig. 2 introduced in [11]. We use a
GMRES PetSc solver with a relative residual norm of 10−7 and a Newton tolerance
of 5 × 10−7. The computations are done in serial on a standard Intel workstation.
Figure 3 and Table 1 summarize the results of this test case.

Fig. 2 3d infiltration problem
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Fig. 3 Average number of
linear iterations per Newton
step

0

20

40

60

80

100

2000 60000 300000
Number of dofs

Nu
m

be
ro

fli
ne

ar
ite

ra
tio

n

AMG PetSc

CPR PetSc

Table 1 Comparison of
different preconditioners

Preconditioner AMGPetSc CPR PetSc

Avg lin it/Newton 125.4 120.65

Avg assem time/lin it [s] 24.27 24.69

Avg inv time/lin it [s] 8.54 11.22

Total comput time [s] 2856 3075

Fig. 4 Average convergence
rates (60,000 dofs, T =
1500 s, Newton tol. 10−7)
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The performances of the CPR and AMG are quite comparable with respect to
the total CPU time. Indeed, the AMG is slightly faster up to 300,000 dofs. The
relative residuals with respect to the average number of linear iterations per Newton
step are depicted in Fig. 4, it illustrates the typical rate of convergence of the two
preconditioners (here the Newton tolerance is 10−7). In order to converge to a
residual norm of less than 10−13, AMG is slightly faster than CPR. However, the
convergence rate of CPR is better than that of AMG.
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5 Conclusion

The performances of the CPR for DG discretizations of porous media multiphase
flow are not yet quite satisfactory compared to classical preconditioners such as
AMG or ILU. One way to improve the performances of the CPR might consist in
loosening the relative residual tolerances for the solution of the pressure subsystem
as suggested in [17]. Another alternative consists in implementing more efficient
decoupling operators such as the True-Impes and the Quasi-Impes [5, 6, 10, 16].
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Biorthogonal Boundary Multiwavelets

Fritz Keinert

Abstract The discrete wavelet transform is defined for functions on the entire real
line. One way to implement the transform on a finite interval is by using special
boundary functions. For orthogonal multiwavelets, this has been studied in previous
papers. We describe the generalization of some of these results to biorthogonal
multiwavelets.

1 Introduction

The Discrete Wavelet Transform (DWT) is designed to act on infinitely long signals.
For signals on a finite interval the algorithm breaks down near the boundaries. This
can be dealt with by extending the data by zero padding, extrapolation, symmetry,
or other methods, or by using special boundary functions. We concentrate on the
latter approach.

The boundary functions can be constructed as linear combinations of scaling
functions near the boundary, or from boundary recursion relations. For orthogonal
multiwavelets, the relationship between the two approaches was investigated in [1].

We extend these results to the case of biorthogonal multiwavelets. Most of
the content of Sects. 2–4 is a relatively straightforward generalization of previous
results. We describe some of the new challenges posed by the biorthogonal setting
in Sect. 5. The full algorithm and an example are given in Sects. 6 and 7.
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2 Biorthogonal Multiwavelets

This section lists a few relevant properties of biorthogonal multiwavelets here,
mostly to establish notation. More details can be found in [8].

The multiscaling function φ and multiwavelet function ψ are function vectors of
length r which satisfy recursion relations

φ(x) = √
2
∑

k

Hkφ(2x − k),

ψ(x) = √
2
∑

k

Gkφ(2x − k),

(1)

with r × r coefficient matrices Hk, Gk. In the biorthogonal setting, we have
dual functions φ̃, ψ̃ in addition to the primal φ, ψ . These functions satisfy the
biorthogonality relations

〈φ(x), φ̃(x − �)〉 = 〈ψ(x), ψ̃(x − �)〉 = δ0�I,

〈φ(x), ψ̃(x − �)〉 = 〈ψ(x), φ̃(x − �)〉 = 0

for all � ∈ Z.
Properties of φ etc. of practical interest include continuity and approximation

order. Continuity can be established by estimating the joint spectral radius of certain
matrices [6], or by estimating the Sobolev smoothness [7].

A multiscaling function φ has approximation order p if all polynomials of degree
less than p can be expressed locally as linear combinations of integer shifts of φ.
The approximation order can be determined from certain sum rules. A minimum
approximation order of 1 is a required condition in many theorems.

One decomposition step of the Discrete Wavelet Transform (DWT) can be
described by an infinite block banded matrix

�̃ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

. . .
. . .

. . .

. . . T̃−1 T̃0 T̃1
. . .

. . . T̃−1 T̃0 T̃1
. . .

. . . T̃−1 T̃0 T̃1
. . .

. . .
. . .

. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, T̃k =
(
H̃2k H̃2k+1

G̃2k G̃2k+1

)

. (2)

Reconstruction corresponds to multiplication by �∗, the transpose of the corre-
sponding matrix formed from the primal recursion coefficients Hk , Gk . We have
perfect reconstruction: �∗�̃ = I .
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3 Refinable Boundary Functions

We will state most results in this paper for the primal functions φ, ψ only, with the
understanding that corresponding results also hold for the dual functions. We also
state most results only for the left boundary functions, since the notation is easier
there.

We make the following assumptions:

• The underlying functions φ, ψ , φ̃, ψ̃ are biorthogonal, continuous, with mul-
tiplicity r and approximation order p ≥ 1, and have recursion coefficients
numbered k = 0, . . . , N . If necessary, we shift the subscripts and pad the
coefficient sequences with zeros. This condition implies that all functions have
support in the interval [0, N].

• The boundary functions have shorter support length of at most (N − 1).
• The interval is [0,M], with M ≥ 2(N − 1). This guarantees that the supports of

the left and right endpoint functions do not overlap.
• There are L left and R right endpoint scaling and wavelet functions, grouped

together into vectors φL etc. We stress that this means L, R scalar functions, not
function vectors, and that L, R are not necessarily multiples of r .

The left endpoint functions are called refinable if they satisfy recursion relations
of the form

φL(x) = √
2AφL(2x)+√2

N−2∑

k=0

Bkφ(2x − k),

ψL(x) = √
2EφL(2x)+√2

N−2∑

k=0

Fkφ(2x − k).

(3)

We will call φL a regular boundary function if it is refinable, continuous, and has
approximation order at least 1, which implies φL(0) �= 0. For practical applications
we are usually interested in regular boundary functions. The continuity and approx-
imation order of the boundary functions can be determined from conditions on the
recursion coefficients A and Bk .

The biorthogonality conditions for boundary multiwavelets at the left end are

〈φL, φ̃
L〉 = 〈ψL, ψ̃

L〉 = I,

〈φL, ψ̃
L〉 = 〈ψL, φ̃

L〉 = 0,

〈φL, φ̃(x − �)〉 = 〈φL, ψ̃(x − �)〉 = 0,

〈ψL, φ̃(x − �)〉 = 〈ψL, ψ̃(x − �)〉 = 0.
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The first two lines describe biorthogonality among the boundary functions; the
remaining two lines describe biorthogonality between boundary and interior func-
tions.

To define the DWT on a finite interval, asssume that N = 2K + 1 is odd,
by introducing an extra recursion coefficient HN = 0 if necessary. The resulting
structure for the DWT decomposition matrix is

�̃M =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

L̃0 L̃1 · · · L̃K 0 · · · · · · 0 0
0 T̃0 T̃1 · · · T̃K 0 · · · 0 0
... 0 T̃0 T̃1

. . . T̃K
. . .

...
...

...
...

. . .
. . .

. . .
. . .

. . . 0
...

0 0 · · · 0 T̃0 T̃1 · · · T̃K 0
0 0 · · · · · · 0 R̃0 R̃1 · · · R̃K

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (4)

This corresponds to a segment of the infinite matrix �̃ in (2) with some end point
modifications. The T̃k are as in (2), and

L̃0 =
(
Ã

Ẽ

)

, L̃k =
(
B̃2k−2 B̃2k−1

F̃2k−2 F̃2k−1

)

, k = 1, . . . ,K.

In order to have perfect reconstruction, we require �∗
M�̃M = I .

By a generalization of the arguments in [1] one can show that with these
assumptions, perfect reconstruction is only possible if L = L̃, R = R̃, and
L+ R = 2Kr . See Sect. 5 for more details.

4 Refinable Linear Combinations

One approach that has been used repeatedly is to construct boundary functions from
linear combinations of boundary-crossing multiscaling functions [3–5].

The boundary-crossing multiscaling functions are those φ(x − k) whose support
potentially contains 0 or M in its interior. At the left endpoint, these are k = (−N +
1), . . . , (−1). Since the actual support of φ could be strictly smaller than [0, N],
some of these functions might in fact be in the interior or exterior, especially if the
coefficients have been padded with zeros, but that causes no problems.

A linear combination of boundary-crossing basis functions is of the form

φL(x) =
−1∑

k=−N+1

Ckφ(x − k) for x > 0.
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Constructing boundary functions from linear combinations has the advantage that
the functions automatically inherit continuity, and it is easy to preserve approxima-
tion orders. However, an arbitrary linear combination is not usually refinable. This
is a problem, since the DWT algorithm requires recursion coefficients.

Refinable boundary functions give rise to a DWT algorithm, but continuity and
approximation order are not automatic. They can be enforced by premultiplying the
coefficients with suitable matrices, but the details get rather complicated.

The best of both worlds is to look for refinable linear combinations. If boundary
functions are both refinable and linear combinations, they must satisfy

CV = AC,

CW = B,
(5)

where

C = (C−N+1, C−N+2, · · · , C−1),

(
V W

) =

⎛

⎜
⎜
⎜
⎜
⎝

HN−1 HN 0 · · · · · · 0 0 · · · · · · · · · · · · 0

HN−3 HN−2 HN−1 HN 0 0
...

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . . H3 H4 · · · · · · HN 0 0

0 · · · · · · 0 H0 H1 H2 · · · · · · HN−2 HN−1 HN

⎞

⎟
⎟
⎟
⎟
⎠

.

Equation (5) is a kind of eigenvalue problem, and has only a small number of
solutions.

If φ has approximation order p, then the eigenvalue solutions include the linear
combinations required for approximation orders 1, 2, etc. Including them in φL

produces boundary functions with approximation order min(p,L). The solution
corresponding to approximation order 1 is the only one with nonzero values at the
endpoint, and must always be included.

5 The Biorthogonal Setting

Many of the previous results for orthogonal multiwavelets carry over to the
biorthogonal case with very minor changes. In this section, we highlight two places
where new results are required.

First, we need to enforce biorthogonality between φL and φ̃
L

. When we
construct primal and dual boundary functions using Eq. (5), they are automatically
biorthogonal to the interior functions, but not to each other.

In the orthogonal case, this is simply a matter of orthonormalizing the basis
functions using a Gram-Schmidt process. In the biorthogonal case, it becomes a
nontrivial linear algebra problem.
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We observe that if M is any invertible matrix, then φL and φL
new = MφL span

the same space of boundary functions, and continuity and approximation orders are

preserved. We want to multiply φL by a suitable M on the primal side, and φ̃
L

by
some M̃ on the dual side, so that they become biorthogonal. It is not obvious how
to find such matrices.

Second, and more importantly, we need a non-orthogonal generalization of the
singular value decomposition to prove Lemma 1 below, and for other applications.

One can reduce the DWT matrix (2) to the case of only two coefficients T0, T1
by forming blocks. For example, if we have H0, . . . , H7 and therefore T0, . . . , T3,
we form

newT0 =
⎛

⎝
T0 T1 T2

0 T0 T1

0 0 T0

⎞

⎠ , newT1 =
⎛

⎝
T3 0 0
T2 T3 0
T1 T2 T3

⎞

⎠ . (6)

These new coefficients satisfy

T0T̃
∗
0 + T1T̃

∗
1 = I,

T0T̃
∗

1 = T1T̃
∗

0 = 0.
(7)

One can prove the following lemma:

Lemma 1 If T0, T1, T̃0, T̃1 are square matrices of size 2Kr × 2Kr which satisfy
relations (7), then there exist nonsingular matrices U , V so that

T0 = U

(
Iρ0 0
0 0ρ1

)

V−1, T1 = U

(
0ρ0 0
0 Iρ1

)

V −1,

T̃ ∗0 = V

(
Iρ0 0
0 0ρ1

)

U−1, T̃ ∗1 = V

(
0ρ0 0
0 Iρ1

)

U−1

where ρ0 = rank(T0), ρ1 = rank(T1), and ρ0 + ρ1 = 2Kr .

For the case of orthogonal wavelets, this is Lemma 3.1 in [2]. The proof is based
on a joint Singular Value Decomposition (SVD) of T0 and T1. The proof for the
biorthogonal case has not been published yet. It is quite similar to the orthogonal
case, but requires a generalization of the SVD.

This result can then be used to prove that L = L̃ = ρ1, R = R̃ = ρ0. It can also
be used to derive an algebraic completion algorithm similar to the one in [2].
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6 Algorithm

A complete algorithm for constructing biorthogonal boundary wavelets at the left
end proceeds as follows:

1. Determine L

2. Find primal and dual solutions of the eigenvalue problem (5)
3. Select L primal and dual boundary functions among the solutions, making sure

to include the regular solution
4. Biorthogonalize the boundary functions
5. Extend the coefficient matrices to include the coefficients for the boundary

multiwavelet functions ψL, ψ̃
L

.

The last step is another linear algebra problem.
For both theoretical proofs and implementation, the solutions at the right end

can be found by reversing the recursion coefficients (which reverses the functions),
computing the left endpoint functions, and reversing again.

7 Example

The YCW biorthogonal multiwavelet is described as example 1 in [9]. Both primal
and dual scaling functions have an approximation order of 2, and all functions have
support in [0, 2]. The multiscaling functions are shown in the top row of Fig. 1.

At the left end, the eigenvalue problem (5) has four solutions, but only two of
them correspond to functions nonzero for x ≥ 0. One of them is regular. Likewise,
there are two nonzero dual functions, one of them regular. We find ρ1 = 1, so we
only get to choose one left endpoint function, which needs to be the regular solution.
These are shown in the middle row of Fig. 1.

At the right end, there are also four solutions, this time all of them nonzero. Since
ρ0 = 3 we need three functions at the right end. One choice is shown in the bottom
row of Fig. 1.

8 Summary

In two previous papers [1, 2] we developed a strategy and an algorithm for the
construction of boundary functions for orthogonal wavelets and multiwavelets on an
interval. The feasibility of this approach was demonstrated with several examples.
In the present proceedings, we have outlined a generalization of this approach to the
biorthogonal case. The biorthogonal setting presents some additional challenges,
but the development mostly proceeds along the same lines as before. Further details
will be published in the near future.
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Fig. 1 Top row: The original primal and dual multiscaling functions of the YCW multiwavelet.
Middle row: Primal and dual left boundary scaling function, after biorthogonalization. Bottom row:
Primal and dual right boundary scaling functions, after biorthogonalization
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Abstract The convergence rate of classic domain decomposition methods in
general deteriorates severely for large discontinuities in the coefficient functions of
the considered partial differential equation. To retain the robustness for such highly
heterogeneous problems, the coarse space can be enriched by additional coarse basis
functions. These can be obtained by solving local generalized eigenvalue problems
on subdomain edges. In order to reduce the number of eigenvalue problems and thus
the computational cost, we use a neural network to predict the geometric location of
critical edges, i.e., edges where the eigenvalue problem is indispensable. As input
data for the neural network, we use function evaluations of the coefficient function
within the two subdomains adjacent to an edge. In the present article, we examine
the effect of computing the input data only in a neighborhood of the edge, i.e., on
slabs next to the edge. We show numerical results for both the training data as well as
for a concrete test problem in form of a microsection subsection for linear elasticity
problems. We observe that computing the sampling points only in one half or one
quarter of each subdomain still provides robust algorithms.

A. Heinlein · A. Klawonn (�) · M. Lanser
Department of Mathematics and Computer Science, University of Cologne, Köln, Germany
http://www.numerik.uni-koeln.de

Center for Data and Simulation Science, University of Cologne, Köln, Germany
e-mail: alexander.heinlein@uni-koeln.de; axel.klawonn@uni-koeln.de;
martin.lanser@uni-koeln.de
http://www.cds.uni-koeln.de

J. Weber
Department of Mathematics and Computer Science, University of Cologne, Köln, Germany
e-mail: janine.weber@uni-koeln.de
http://www.numerik.uni-koeln.de

© Springer Nature Switzerland AG 2021
F. J. Vermolen, C. Vuik (eds.), Numerical Mathematics and Advanced Applications
ENUMATH 2019, Lecture Notes in Computational Science and Engineering 139,
https://doi.org/10.1007/978-3-030-55874-1_58

593

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-55874-1_58&domain=pdf
http://www.numerik.uni-koeln.de
mailto:alexander.heinlein@uni-koeln.de
mailto:axel.klawonn@uni-koeln.de
mailto:martin.lanser@uni-koeln.de
http://www.cds.uni-koeln.de
mailto:janine.weber@uni-koeln.de
http://www.numerik.uni-koeln.de
https://doi.org/10.1007/978-3-030-55874-1_58


594 A. Heinlein et al.

1 Introduction

Domain decomposition methods are highly scalable iterative solvers for large linear
systems of equations, e.g., arising from the discretization of partial differential
equations. While scalability results from a decomposition of the computational
domain into local subdomains, i.e., from a divide and conquer principle, robustness
is obtained by enforcing certain constraints, e.g., continuity in certain variables
or averages over variables on the interface between neighboring subdomains.
These constraints build a global coarse problem or second level. Nevertheless,
the convergence rate of classic domain decomposition approaches deteriorates or
even stagnates for large discontinuities in the coefficients of the partial differential
equation considered. As a remedy, to retrieve a robust algorithm, several adap-
tive approaches to enrich the coarse space with additional constraints obtained
from the solution of generalized eigenvalue problems have been developed, e.g.,
[2, 3, 7, 8, 11, 12]. The eigenvalue problems are in general localized to parts of
the interface, e.g., edges or faces. In the present paper, we only consider two-
dimensional problems for simplicity and thus only eigenvalue problems on edges.
Let us remark that for many realistic coefficient distributions, only a few adaptive
constraints on a few edges are necessary to obtain a robust algorithm and thus
many expensive solutions of eigenvalue problems can be omitted. Although some
heuristic approaches [7, 8] exist to reduce the number of eigenvalue problems, in
general, it is difficult to predict a priori which eigenvalue problems are necessary for
robustness. In [5], we successfully used a neural network to predict the geometric
location of necessary constraints in a preprocessing step, i.e., to automatically
make the decision whether or not we have to solve a specific eigenvalue problem.
Additionally, we discussed the feasibility of randomly, and thus automatically
generated training data in [4]. In the present paper, we extend the results given in [4]
by providing also results for linear elasticity problems.

Both in [5] and [4], we use samples of the coefficient function as input data for
the neural network. In particular, in case of regular decompositions, the resulting
sampling points cover the complete neighboring subdomains for a specific edge.
Even though the training of the neural network as well as the generation of the
training data can be performed in an offline-phase, we aim to further optimize
the complexity of our approach by reducing the size of the input data by using
fewer sampling points; see also Fig. 1 for an illustration. In particular, for the first
time, we only compute sampling points for slabs of varying width around a specific
edge between two subdomains. Since our machine learning problem, in principle, is
an image classification task, this corresponds to the idea of using only a fraction
of pixels of the original image as input data for the neural network. We show
numerical results for linear elasticity problems in two dimensions. As in [5], we
focus on a certain adaptive coarse space for the FETI-DP (Finite Element Tearing
and Interconnecting—Dual Primal) algorithm [11, 12].
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Fig. 1 Sampling of the coefficient function; white color corresponds to a low coefficient and red
color to a high coefficient. In this representation, the samples are used as input data for a neural
network with two hidden layers. Only sampling points from slabs around the edge are chosen

2 Linear Elasticity and an Adaptive FETI-DP Algorithm

In our numerical experiments, we exclusively consider linear elasticity problems.
We denote by u : � → R

2 the displacement of an elastic body, which occupies
the domain � in its undeformed state. We further denote by f a given volume force
and by g a given surface force onto the body. The problem of linear elasticity then
consists in finding the displacement u ∈ H1

0(�, ∂�D), such that

∫

�

G ε(u) : ε(v) dx+
∫

�

Gβ divu divv dx = 〈F, v〉

for all v ∈ H1
0(�, ∂�D) for given material functions G : � → R and β : � → R

and the right-hand side

〈F, v〉 =
∫

�

fT v dx+
∫

∂�N

gT v dσ.

The material parameters G and β depend on the Young modulus E > 0 and the
Poisson ratio ν ∈ (0, 1/2) given by G = E/(1 + ν) and β = ν/(1 − 2ν). Here,
we restrict ourselves to compressible linear elasticity; hence, the Poisson ratio ν is
bounded away from 1/2.

In the present article, we apply the proposed machine learning based strategy
to an adaptive FETI-DP method, which is based on a nonoverlapping domain
decomposition of the computational domain �. Here, we decompose � into N

regular subdomains of width H and discretize each subdomain by finite elements
of width h. For simplicity, we assume matching nodes on the interface between
subdomains. Due to space limitations, we do not explain the standard FETI-DP
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algorithm in detail. For a detailed description, see, e.g., [10]. Let us just note that
we enforce continuity in all vertices of all subdomains to define an initial coarse
space.

As already mentioned in Sect. 1, for arbitrary and complex material distributions,
e.g., a highly varying Young modulusE, using solely primal vertex constraints is not
sufficient to guarantee a robust condition number bound. Thus, additional adaptive
constraints, typically obtained from the solution of local generalized eigenvalue
problems, are used to enrich the coarse space and retrieve robustness.

The central idea of the adaptive FETI-DP algorithm [11, 12] is to solve local gen-
eralized eigenvalue problems for all edges between two neighboring subdomains.
For a description of the local edge eigenvalue problems and the resulting enforced
coarse constraints, see [11, 12]. In a parallel implementation, the set-up, e.g., the
computation of local Schur complements, and the solution of the local eigenvalue
problems take up a significant amount of the total time to solution. To reduce the
set-up cost without losing robustness, a precise a priori prediction of all edges,
where an eigenvalue problem is useful, is necessary; see Sect. 3 for a description
of our machine learning based approach. Let us remark, that the additional adaptive
constraints are implemented in FETI-DP using a balancing preconditioner. For a
detailed description of projector or balancing preconditioning, see [6, 9].

3 Machine Learning for Adaptive FETI-DP

Our approach (ML-FETI-DP) is to train a neural network to automatically make the
decision whether an adaptive constraint needs to be enforced or not on a specific
edge to retain the robustness of the adaptive FETI-DP algorithm. This corresponds
to a supervised machine learning technique.

Sampling Strategy and Neural Network More precisely, we use a dense feedfor-
ward neural network, i.e., a multilayer perceptron, to make this decision. For more
details on multilayer perceptrons, see, e.g., [1, 13, 14]. As in [5], we use samples,
i.e., function evaluations of Young’s modulus within the two subdomains adjacent
to an edge, as input data for our neural network. Note that our sampling approach
is independent of the finite element discretization. In particular, we assume that
the sampling grid resolves all geometrical details of the coefficient function or the
material distribution. The output of our neural network is the classification whether
an adaptive constraint has to be included for a specific edge or not. Our neural
network consists of three hidden layers with 30 neurons for each hidden layer. We
use the ReLU activation function for all hidden layers and a dropout rate of 20%.
See [5] for more details on the machine learning techniques and the preparation of
data.

Training Data Sets For the numerical results presented here, we train on two
regular subdomains sharing a straight edge. In general, also irregular domain
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Fig. 2 Nine different types of coefficient functions used for training and validation of the neural
network. The inclusions, channels, boxes, and combs with high coefficient are displaced, modified
in sized, and mirrored with respect to the edge in order to generate the complete smart data set

Fig. 3 Examples of three different coefficient functions taken from the random data set obtained
by using the same randomly generated coefficient for a horizontal (left) or vertical (middle) stripe
of a maximum length of four finite element pixels, as well as by pairwise superimposing (right)

decompositions can be considered; see [5]. As in [4], we use different sets of
coefficient distributions to generate different sets of training data for the neural
network. For the first set of training data, we use a total of 4500 configurations
varying the coefficient distributions as presented in Fig. 2. We set the Poisson ratio ν

constantly and just vary the Young modulusE. The coefficient distributions in Fig. 2
are varied in size, orientation and location to obtain the full set of training data. We
refer to this set of training data as smart data; see also [4]. We further consider a
randomly generated training data set. In particular, we use the same training sets
as in [4] but now additionally provide results for linear elasticity problems. Note
that completely randomized coefficient distributions lead to insufficient accuracies
and too many false negatives; see [4] for details. Instead, we explicitly control the
ratio of high coefficients as well as the distributions of the coefficients to a certain
degree by randomly generating either horizontal or vertical stripes of a maximum
length of four or eight pixels, respectively; see Fig. 3. We refer to this second set of
training data as random data and we also consider combinations of both, the smart
and random data sets. For more technical details on the construction of the data sets,
we refer to [4].

Sampling Strategy on Slabs We now describe how we reduce the number of
sampling points used as input data for the neural network. In [5], the computed
sampling grid covers both neighboring subdomains of an edge entirely—at least
in case of a regular domain decomposition. Let us remark that in case of irregular
domain decompositions, our sampling strategy might miss small areas further away
from the edge; see, e.g., [5, Fig. 4]. However, this does not affect the performance of
our algorithm. Although the preparation of the training data as well as the training
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Fig. 4 Left: Subsection of a microsection of a dual-phase steel obtained from the image on the
right. We consider E = 1e3 in the black part and E = 1 elsewhere. Right: Complete microsection
of a dual-phase steel. Right image: Courtesy of Jörg Schröder, University of Duisburg-Essen,
Germany, orginating from a cooperation with ThyssenKruppSteel

of the neural network can be performed in an offline-phase, we try to generate the
training data as efficient and fast as possible. For all sampling points, we need to
determine the corresponding finite element as well as to evaluate the coefficient
function for the respective finite element. Therefore, there is clearly potential to
save resources and compute time in the training as well as in the evaluation phase
by reducing the number of sampling points used as input data for the neural network.
In general, the coefficient variations close to the edge are the most relevant, i.e., the
most critical for the condition number bound of FETI-DP. Therefore, to reduce the
total number of sampling points in the sampling grid, reducing the density of the grid
points with increasing distance to the edge is a natural approach. More drastically,
one could exclusively consider sampling points in a neighborhood of the edge, i.e.,
on slabs next to the edge. We consider the latter approach here; see also Fig. 1 for
an illustration of the sampling points inside slabs.

To generate the output data necessary to train the neural network, we solve the
eigenvalue problems as described in [11, 12] for all the aforementioned training and
validation configurations. Concerning the classification of the edges, we use both a
two-class and a three-class classification approach. For the two-class classification,
we only distinguish between edges of class 0 and class 1. By class 0 we denote edges
for which no additional constraints are necessary for a robust algorithm, and by class
1 edges where at least one constraint is required. For the three-class classification,
we further differentiate between class 1 and class 2. In this case, we assign only
edges to class 1, where exactly one additional constraint is necessary, and assign all
other edges, for which more than one constraint is necessary, to class 2.
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4 Numerical Results

We first provide results for some microsection problems, i.e., linear elasticity
problems with a material distribution as shown in Fig. 4 (left). We considered
the different training sets smart data, random data, and a combination of both;
see Table 1. Here, we exclusively use the approach of sampling on the complete
subdomains. Since training with the smart data set seems to be the best choice for
this specific example, we exclusively use this data set in the following investigations
with slabs of different width. Additionally, using the ML threshold τ = 0.45 for the
two-class classification or τ = 0.4 for the three-class classification, respectively,
leads to the most robust results when sampling on the complete subdomains. We
therefore focus on these thresholds in the following discussion.

We compare the performance of the original sampling approach introduced in [5]
to sampling in parts of each subdomain of width H , i.e., in one half and in one
quarter (see also Fig. 1). We also consider the extreme case, i.e., sampling only
inside minimal slabs of the width of a single finite element. For the training data,
both sampling in H/2 and H/4 leads to accuracy values which are only slightly
lower than for the full sampling approach (see Table 2). In particular, we get
slightly higher false positive values, especially for the three-class classification. For
the extreme case of sampling only in slabs of width h, i.e., using slabs with the
minimal possible width in terms of finite elements, the accuracy value drops from
92.8% for the three-class model to only 68.4% for the threshold τ = 0.4. Note
that we did not observe a significant improvement for this sampling strategy for
more complex network architectures. Thus, it is questionable if the latter sampling
approach still provides a reliable machine learning model. For the microsection
problem, sampling in slabs of width H/2 and H/4 results in robust algorithms for
both the two-class and the three-class model when using the ML threshold τ = 0.45
or τ = 0.4, respectively; see Tables 3 and 4. For all these approaches, we obtain
no false negative edges, which are critical for the convergence of the algorithm.
However, the use of fewer sampling points results in more false positive edges and
therefore in a larger number of computed eigenvalue problems. When sampling only
in slabs of width h, we do not obtain a robust algorithm for the microsection problem
for neither the two-class nor the three-class classification. This is caused by the
existence of a relatively high number of false negative edges.

Let us summarize that reducing the effort in the training and evaluation of the
neural network by reducing the size of the sampling grid still leads to a robust
algorithm for our model problems. Nevertheless, the slab width cannot be chosen
too small and enough finite elements close to the edge have to be covered by the
sampling grid.
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Table 3 Comparison of standard FETI-DP, adaptive FETI-DP, and ML-FETI-DP for a regular
domain decomposition into 8 × 8 subdomains with H/h = 64, linear elasticity, the two-class
model, and the microsection subsection in Fig. 4 (left). See Table 1 for the column labelling

Model problem Algorithm τ cond it evp fp fn acc

Microsection Standard − − >300 0 − − −
problem Adaptive − 84.72 89 112 − − −

ML, full sampling 0.5 9.46e4 91 41 2 2 0.96

ML, full sampling 0.45 84.72 89 46 5 0 0.95

ML, sampling in H/2 0.45 84.72 89 47 6 0 0.95

ML, sampling in H/4 0.45 85.31 90 48 7 0 0.94

ML, sampling in h 0.45 10.9e5 137 50 19 10 0.74

Table 4 Comparison of standard FETI-DP, adaptive FETI-DP, and ML-FETI-DP for a regular
domain decomposition into 8× 8 subdomains with H/h = 64, linear elasticity, the three-class
model, and the microsection subsection in Fig. 4 (left). See Table 1 for the column labelling. Here,
e-avg denotes an approximation of the coarse constraints for edges in class 1, see also [5]

Model problem Algorithm τ cond it evp e-avg fp fn acc

Microsection Standard − − >300 0 − − − −
problem Adaptive − 84.72 89 112 − − − −

ML, full sampling 0.5 274.73 101 15 31 3 2 0.96

ML, full sampling 0.4 86.17 90 22 24 6 0 0.95

ML, sampling in H/2 0.4 85.29 90 25 26 9 0 0.92

ML, sampling in H/4 0.4 85.37 90 25 27 10 0 0.92

ML, sampling in h 0.4 2.43e4 111 27 52 29 7 0.68
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A New Algebraically Stabilized Method
for Convection–Diffusion–Reaction
Equations

Petr Knobloch

Abstract This paper is devoted to algebraically stabilized finite element methods
for the numerical solution of convection–diffusion–reaction equations. First, the
algebraic flux correction scheme with the popular Kuzmin limiter is presented. This
limiter has several favourable properties but does not guarantee the validity of the
discrete maximum principle for non-Delaunay meshes. Therefore, a generalization
of the algebraic flux correction scheme and a modification of the limiter are
proposed which lead to the discrete maximum principle for arbitrary meshes.
Numerical results demonstrate the advantages of the new method.

1 Introduction

The aim of this paper is the numerical solution of the scalar steady-state convection–
diffusion–reaction problem

− ε �u+ b · ∇u+ c u = g in � , u = ub on ∂� , (1)

where � ⊂ R
d , d ≥ 1, is a bounded domain with a Lipschitz-continuous boundary

∂� that is assumed to be polyhedral (if d ≥ 2). Furthermore, ε > 0 is a constant

and b ∈ W 1,∞(�)d , c ∈ L∞(�), g ∈ L2(�), and ub ∈ H
1
2 (∂�)∩C(∂�) are given

functions satisfying ∇ · b = 0 and c ≥ 0 in �.
In particular, we are interested in the convection-dominated case ε � |b|

whose numerical solution still represents a challenge. This is due to the fact that,
in this case, the solution of (1) typically contains layers and the approximate
solutions obtained using standard discretization techniques are then usually polluted
by spurious oscillations unless the layers are resolved by the mesh. In the finite
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element framework, the usual strategy to suppress the spurious oscillations is to
add stabilization terms to the discrete variational formulation. The stabilization
introduces a certain amount of artificial diffusion which should be not too small
to suppress the spurious oscillations sufficiently but also not too large to avoid
excessive smearing of the layers. To restrict the addition of artificial diffusion to
regions where it is really needed, nonlinear techniques have been developed. An
alternative to modifying the discrete variational formulation by adding additional
integral terms is to modify the corresponding algebraic problem by purely algebraic
means, see, e.g., [7]. The advantage of these techniques is that they satisfy the
discrete maximum principle (DMP) by construction (so that spurious oscillations
cannot appear) and often provide sharp approximations of layers. Techniques of
this type are the subject of the present paper.

First, in Sect. 2, we formulate two finite element discretizations of problem (1)
and write down the corresponding linear algebraic problem. Then, in Sect. 3, we
formulate the algebraic flux correction (AFC) scheme as considered, e.g., in [6, 7]
and describe the Kuzmin limiter [5]. This limiter has various favourable properties,
however, it does not guarantee the validity of the DMP for non-Delaunay meshes.
Moreover, if the reaction term is not lumped, then the DMP may be not satisfied
also on Delaunay meshes. Therefore, in Sect. 4, we generalize the AFC scheme
and introduce a modification of the Kuzmin limiter, leading to a new algebraically
stabilized method satisfying the DMP on arbitrary meshes and without a lumping
of the reaction term. Finally, in Sect. 5, we present numerical results illustrating the
properties of the new method.

2 Finite Element Discretization

To define a finite element discretization of problem (1), we first introduce its weak
formulation: The weak solution of (1) is a function u ∈ H 1(�) satisfying the
boundary condition u = ub on ∂� and the variational equation

a(u, v) = (g, v) ∀ v ∈ H 1
0 (�) ,

where

a(u, v) = ε (∇u,∇v)+ (b · ∇u, v)+ (c u, v) . (2)

As usual, (·, ·) denotes the inner product in L2(�) or L2(�)d . It is well known that
the weak solution of (1) exists and is unique. An important property of problem (1)
is that, for c ≥ 0 in �, its solutions satisfy the maximum principle.

Now let Th be a simplicial triangulation of � that belongs to a regular family of
triangulations. Furthermore, let us introduce finite element spaces

Wh = {vh ∈ C(�) ; vh|T ∈ P1(T ) ∀ T ∈ Th} , Vh = Wh ∩H 1
0 (�) ,
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consisting of continuous piecewise linear functions. The vertices of the triangulation
Th will be denoted by x1, . . . , xN and we assume that x1, . . . , xM ∈ � and
xM+1, . . . , xN ∈ ∂�. Then the usual basis functions ϕ1, . . . , ϕN of Wh are defined
by the conditions ϕi(xj ) = δij , i, j = 1, . . . , N , where δij is the Kronecker symbol.
Obviously, the functions ϕ1, . . . , ϕM form a basis of Vh.

Now an approximate solution of problem (1) can be introduced as the solution of
the following finite-dimensional problem: Find uh ∈ Wh such that uh(xi) = ub(xi),
i = M + 1, . . . , N , and

ah(uh, vh) = (g, vh) ∀ vh ∈ Vh , (3)

where ah is a bilinear form approximating the bilinear form a. In what follows, we
shall consider two choices of ah. The first one is simply ah = a, the second one is
to set

ah(uh, vh) = ε (∇uh,∇vh)+ (b · ∇uh, vh)+
M∑

i=1

(c, ϕi) ui vi (4)

for any uh ∈ Wh and vh ∈ Vh, i.e., to consider a lumping of the reaction term
(c uh, vh) in a(uh, vh). This may help to satisfy the discrete maximum principle for
problem (3), cf. Sect. 3.

We denote aij = ah(ϕj , ϕi), i, j = 1, . . . , N , gi = (g, ϕi), i = 1, . . . ,M , and
ub
i = ub(xi), i = M + 1, . . . , N . Then uh ≡ ∑N

i=1 ui ϕi is a solution of the finite-
dimensional problem (3) if and only if the coefficient vector U = (u1, . . . , uN)

satisfies the algebraic problem

N∑

j=1

aij uj = gi , i = 1, . . . ,M , (5)

ui = ub
i , i = M + 1, . . . , N . (6)

In the convection-dominated regime, the above discretizations do not satisfy the
DMP and the approximate solutions are usually polluted by spurious oscillations.
To enforce the DMP, one can add a sufficient amount of artificial diffusion to (5). A
possible way will be described in the following section.

3 Algebraic Flux Correction

In this section we present an example of algebraic stabilization based on algebraic
flux correction (AFC), as presented, e.g., in [6, 7]. A detailed derivation of an AFC
scheme for problem (5)–(6) can be found, e.g., in [2]. First, one defines a symmetric
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artificial diffusion matrix D = (dij )
N
i,j=1 possessing the entries

dij = dji = −max{aij , 0, aji} ∀ i �= j , dii = −
∑

j �=i

dij .

Then, the idea is to add the term (DU)i to both sides of (5) and, on the right-hand
side, to use the identity

(DU)i =
N∑

j=1

fij with fij = dij (uj − ui)

and to limit those anti-diffusive fluxes fij that would otherwise cause spurious oscil-
lations. The limiting is achieved by multiplying the fluxes by solution dependent
limiters αij ∈ [0, 1]. This leads to the nonlinear algebraic problem

N∑

j=1

aij uj +
N∑

j=1

(1− αij (U)) dij (uj − ui) = gi , i = 1, . . . ,M , (7)

ui = ub
i , i = M + 1, . . . , N . (8)

It is assumed that

αij = αji , i, j = 1, . . . , N , (9)

and that, for any i, j ∈ {1, . . . , N}, the function αij (U)(uj − ui) is a continuous
function of U ∈ R

N . A theoretical analysis of the AFC scheme (7)–(8) concerning
the solvability, discrete maximum principle and error estimation can be found in [2].

The symmetry condition (9) is particularly important since it guarantees con-
servativity and implies that the matrix corresponding to the term arising from the
AFC is positive semidefinite. Moreover, it was demonstrated in [1] that, without the
symmetry condition (9), the nonlinear algebraic problem (7)–(8) is not solvable in
general.

Of course, the properties of the AFC scheme (7)–(8) significantly depend on the
choice of the limiters αij . Here we present the popular Kuzmin limiter [5]. To define
it, one first computes, for i = 1, . . . ,M ,

P+
i =

N∑

j=1
aji ≤ aij

f+ij , P−
i =

N∑

j=1
aji ≤ aij

f−ij , Q+
i = −

N∑

j=1

f−ij , Q−
i = −

N∑

j=1

f+ij ,

(10)

where fij = dij (uj − ui), f
+
ij = max{0, fij }, and f−ij = min{0, fij }. Then, one

defines
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R+i = min

{

1,
Q+

i

P+
i

}

, R−i = min

{

1,
Q−

i

P−
i

}

, i = 1, . . . ,M . (11)

If P+
i or P−

i vanishes, one sets R+i = 1 or R−i = 1, respectively. For i = M +
1, . . . , N , one defines R+i = R−i = 1. Furthermore, one sets

α̃ij =
⎧
⎨

⎩

R+i if fij > 0 ,

1 if fij = 0 ,

R−i if fij < 0 ,

i, j = 1, . . . , N . (12)

Finally, one defines

αij = αji = α̃ij if aji ≤ aij , i, j = 1, . . . , N . (13)

It was proved in [4] that the AFC scheme (7)–(8) with the above limiter satisfies
a local DMP provided that

min{aij , aji} ≤ 0 ∀ i = 1, . . . ,M , j = 1, . . . , N , i �= j . (14)

If ah is given by (4), then, as discussed in [2], the validity of (14) is guaranteed if
the triangulation Th is weakly acute. In the two-dimensional case, it is sufficient
if Th is a Delaunay triangulation. However, for non-Delaunay triangulations, the
validity of (14) cannot be guaranteed. Moreover, if the lumped bilinear form (4) is
replaced by the original bilinear form (2), then the validity of the condition (14)
may be lost also for Delaunay triangulations since some off-diagonal entries of the
matrix corresponding to the reaction term from (2) are positive.

It was shown in [4] that the DMP generally does not hold if the condition (14) is
not satisfied. This is due to the condition aji ≤ aij used in (13) to symmetrize the
factors α̃ij . As discussed in [4], in many cases (depending on b and the geometry
of the triangulation), this condition causes that αij = αji is defined using quantities
computed at the upwind vertex of the edge with end points xi , xj . It turns out that
this feature has a positive influence on the quality of the approximate solutions and
on the convergence of the iterative process for solving the nonlinear problem (7)–
(8).

4 A New Algebraically Stabilized Method

As we discussed in the preceding section, the symmetrization (13) of the limiter
causes that the DMP does not hold for the AFC scheme (7)–(8) in general. In this
section we modify the AFC scheme in such a way that the symmetry of the limiter
will not be needed and the DMP will be always satisfied.

Obviously, the AFC scheme (7)–(8) can be written in the form
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N∑

j=1

aij uj +
N∑

j=1

bij (U) (uj − ui) = gi , i = 1, . . . ,M , (15)

ui = ub
i , i = M + 1, . . . , N , (16)

with

bij (U) = −max{(1− αij (U)) aij , 0, (1− αji(U)) aji} , (17)

where we employed the symmetry condition (9). In the preceding section, we
discussed the important consequences of this symmetry condition. However, these
consequences remain valid for the scheme (15)–(16) with any symmetric matrix
(bij (U))Ni,j=1 with nonpositive off-diagonal entries. Now, it is easy to see that
the entries bij (U) defined in (17) are symmetric also if the limiters αij are not
symmetric. This enables us to get rid of the symmetry condition (9) and to consider
the problem (15)–(17) with any functions αij satisfying, for any i, j ∈ {1, . . . , N},

αij : RN → [0, 1] , (18)

if aij > 0, then αij (U)(uj − ui) is a continuous function of U ∈ R
N . (19)

Then it follows like in [2] that the nonlinear algebraic problem (15)–(17) has a
solution. Of course, if the functions αij form a symmetric matrix, then the AFC
scheme (7)–(8) is recovered.

If the condition (14) is satisfied, then

bij (U) =
{
(1− αij (U)) dij if aji ≤ aij ,

(1− αji(U)) dij otherwise .

Thus, if (14) holds, then the definition (17) implicitly comprises the favourable
upwind feature mentioned in the preceding section and the method (15)–(16) can
be written in the form of the AFC scheme (7)–(8). Moreover, if one sets

bij (U) = −max{(1− α̃ij (U)) aij , 0, (1− α̃j i (U)) aji} , (20)

then one obtains the AFC scheme (7)–(8) with limiters αij defined by (13).
Now, we would like to use the scheme (15)–(16) with bij (U) defined by (20)

also if (14) is not satisfied. However, then P±
i may vanish and one can show that,

independently of how R±i are defined in these cases, the continuity assumption (19)
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is not satisfied in general. Therefore, we replace the definition of P±
i by

P+
i =

N∑

j=1
aij > 0

aij (ui − uj )
+ , P−

i =
N∑

j=1
aij > 0

aij (ui − uj )
− . (21)

If (14) holds, then these formulas give the same values as (10).
Thus, the algebraically stabilized method (ASM) introduced in this paper is given

by (15)–(16) with bij (U) defined by (20), where α̃ij are given as in Sect. 3, but
with P±

i defined by (21). It follows from [2], that the continuity assumption (19) is
satisfied and hence the ASM is solvable.

It is clear that, if the condition (14) holds, then the ASM is equivalent to the AFC
scheme (7)–(8) with limiters αij defined by (10)–(13). Therefore, the new method
preserves the advantages of the AFC scheme from the preceding section which are
available under the condition (14). However, in contrast to the method from the
preceding section, the new method satisfies the DMP also if the condition (14) is not
satisfied, which can be verified using the techniques of [4] and [3]. Consequently,
the ASM satisfies the DMP for both definitions (2) and (4) of the bilinear form and
for any triangulation Th.

5 Numerical Results

Since the AFC scheme from Sect. 3 and the ASM from Sect. 4 are equivalent under
the condition (14), we shall present numerical results only for cases when (14) is
not satisfied. To this end, we shall consider the following two examples.

Example 1 We consider problem (1) defined in � = (0, 1)2 with the data ε = 10−8,
b = (cos(−π/3), sin(−π/3))T , c = 100, g = 1, and the boundary condition

ub(x, y) =
{

0 for x = 1 or y = 0,
1 else.

Example 2 We consider problem (1) defined in � = (0, 1)2 with the data ε = 10−2,
b = (cos(−π/3), sin(−π/3))T , c = 0, g = 0, and the boundary condition

ub(x, y) =
{

0 for x = 1 or y ≤ 0.7,
1 else.

Example 1 was computed on a triangulation of the type from Fig. 1 (left) and
for ah = a. One observes in Fig. 2 that the solution of the AFC scheme contains
undershoots violating the DMP whereas the ASM provides the nodally exact
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solution. For ah defined by (4), the condition (14) is satisfied so that also the AFC
scheme satisfies the DMP, however, the layers are then smeared.

To violate the condition (14) for Example 2, we used a non-Delaunay triangula-
tion of the type depicted in Fig. 1 (middle) which was constructed starting from the
triangulation shown in Fig. 1 (right) by shifting interior nodes to the right by half
of the horizontal mesh width on each even horizontal mesh line. One observes in
Fig. 3 that the solution of the AFC scheme again violates the DMP while the DMP
is satisfied for the ASM.

Fig. 1 Types of triangulations used in the computations
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Fig. 2 Example 1: approximate solutions obtained using the AFC scheme (left) and the ASM
(right)

 0
 0.2

 0.4
 0.6

 0.8
 1

 0 0.2 0.4 0.6 0.8 1

 0
 0.2

 0.4
 0.6
 0.8

 1
 1.2

x

y  0
 0.2

 0.4
 0.6

 0.8
 1

 0 0.2 0.4 0.6 0.8 1

 0
 0.2

 0.4
 0.6
 0.8

 1
 1.2

x

y

Fig. 3 Example 2: approximate solutions obtained using the AFC scheme (left) and the ASM
(right)
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Analysis of Kuramoto-Sivashinsky Model
of Flame/Smoldering Front by Means
of Curvature Driven Flow

Miroslav Kolář, Shunsuke Kobayashi, Yasuhide Uegata, Shigetoshi Yazaki,
and Michal Beneš

Abstract In this paper we summarize our results on the investigation of the
Kuramoto-Sivashinsky model, which describes the motion of flame/smoldering
interface. We propose the generalization of the model formulated in terms of math-
ematical theory of moving parametrized curves, and investigate it from numerical
and analytical point of view. In the part dedicated to computational studies, we
present the verification of our scheme by measurement of experimental order of
convergence. In the analytical part of the paper we summarize biffurcation analysis
of the model and study of rotational wave solutions.

1 Introduction

Interfacial dynamics of flame fronts is a topic of increased interest in fire research
and combustion phenomena (c.f. the introduction in [1]). Also, this topic has
attracted an interest in the field of applied mathematics. The first pioneering works
on this topic are dated to 1970s in, e.g., [2, 3]. In this paper, we investigate the
Kuramoto-Sivashinsky (KS model in short), which describes the propagation of
a curved flame-front represented by a graph of a smooth function y = f (x, t)
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Fig. 1 Experimental images of flame/smoldering front on a paper sheet. Blue curve represents
flame/smoldering interface segmented to determine the parameters of the KS model [5]

satisfying the following dynamical system

ft + f 2
x /2+ (α − 1)fxx + 4fxxxx = 0. (1)

Here, parameter α > 0 depends on the scaled Lewis number [1], ft = ∂f/∂t ,
fx = ∂f/∂x, fxx = ∂2f/∂x2 and fxxxx = ∂4f/∂x4. The typical profile of
flame/smoldering interface is in Fig. 1. Recently, this problem was investigated in,
e.g. [1, 4] from numerical and experimental point of view. In [5], the framework for
validation of experimental data was established.

When certain conditions are satisfied, the KS model can be generalized as
a flow of a family of smooth Jordan curves �t in the plane, representing the
flame/smoldering front. For details, we refer the reader to, e.g. [4, 6]. The curve
�t is parametrized by a smooth mapping x : [0, 1] × [0, Tmax] → R

2 as

�t = {x(u, t) = (x1(u, t), x2(u, t)) : u ∈ [0, 1]}. (2)

Then parametrization x for the KS model (1) satisfies the following geometric
evolution equation

xt = VN +WT, (3)

where T = ∂ux/|∂ux| and N = ∂ux⊥/|∂ux| are unit tangent and normal vectors to
�t , respectively. Here, (a, b)⊥ = (−b, a) and the orientation of the parametrization
x is chosen to be counterclockwise. The normal component of the velocity is given
as

V = V0 + (α − 1)κ + δκss. (4)

Flow (3) with the normal velocity (4) corresponds to the KS model (1) by the choice
of parameter δ as δ = 4 (see [4]). Next, V0 is a prescribed constant speed and κ

denotes the curvature of �t . Parameters V0 and α can be determined from exper-
imental data, e.g., by means of the image segmentation of the flame/smoldering
front—see [5].
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Here and hereafter, we use the subscript s to denote the derivative with respect to
the arc-length, i.e., Fs = g−1∂uF for a quantity F , where g = |∂ux| is the relative
local length. It is well known that the curve �t is determined by the normal velocity
V and the tangential velocity W does not affect its shape. However, the particular
choices of W can provide some desirable properties. For example, the tangential
velocity proposed by Ševčovič and Yazaki [7] or Beneš et al. [8] helps to control the
position of discretization points along �t , which is especially helpful in long-term
numerical computations. In this paper, we propose the following form of tangential
velocity

W = 3δ(κ2)s
/

2, (5)

which is particularly helpful in a bifurcation analysis of the KS model in Sect. 3.
The organization of the rest of the paper is the following. In Sect. 2, we

demonstrate the qualitative and quantitative behavior of the numerical solution of
the KS model. The numerical approximation scheme for flow (3) with the normal
velocity (4) was proposed in [4]. We verify the scheme by means of the measurement
of experimental orders of convergence and apply it to the case of rotational solution.
In Sect. 3, we present our latest results on theoretical analysis of rotating wave
solutions of KS model for the case of the flame/smoldering front in the shape of
the initial expanding circle.

2 Computational Studies of the KS Model

In this section, we demonstrate the qualitative and quantitative behavior of a closed
curve expanding according to the geometric evolution equation (3) with the normal
velocity given by the KS model (4). The details of spatial discretization of the
evolution equation are elaborated in [4]. For the time integration, the fourth-order
Runge-Kutta method with the time step �t = 2−18 ≈ 10−6 was employed.

As the initial condition for the KS model, we consider the following Cassini
curve

R = RC

[
CC cos(4πu)+ [(CC cos(4πu))2 +DC ] 1

2
] 1

2 ,

x = R(cos(2πu), sin(2πu)),
(6)

where u ∈ [0, 1] and RC = 10, DC = 4 and CC = 10. We set the final time
for our simulation as T = 250. In Fig. 2 the numerical solution of (3) with the
normal velocity (4) is shown. The quantitative analysis of numerical solution of the
flow (3) is given by the measurement of experimental order of convergence (EOC).
The EOCs were measured by means of the Hausdorff distances Hk between the
numerical solution and the solution calculated on extra-fine mesh at the k−th time
level (k = 1, 2, . . . , N) with the time step �t . For a mesh with M discretization
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Fig. 2 Time evolution of initial Cassini curve (solid line) driven by (3) with normal velocity (4)
and tangential velocity calculated according to [7, 8] in time t ∈ (0, 250). The corresponding EOCs
are shown in Table 1

points, the maximum norm errmax(M) = maxk=1,2,...,NHk and the discrete L1

norm errL1(M) = �t
∑N

k=1 Hk/T were used. Then, the experimental order
of convergence between two meshes with M1 and M2 discretization points was
estimated as

EOC = [log errI (M1)− log errI (M2)]
/[logM2 − logM1], I = max, L1.

In Table 1 we summarize the values of EOC for the computational experiment
with the Cassini curve (6) as the initial condition. The values of calculated EOCs
suggest that the numerical approximation scheme proposed in [4] has about the
first order of convergence, which is caused by the discretization procedure which
assumes the uniform redistribution of discretization points along the curve. In the
case of nontrivial shape, such as the Cassini curve, this assumption can be fulfilled
only approximately by evolving the initial curve with zero normal velocity and
asymptotically uniform tangential velocity chosen according to [7, 8] for a short
time.

Table 1 EOCs for errors
measured in discrete L1 and
maximum norms for the KS
model depicted in Fig. 2 with
Cassini curve as the initial
condition

M EOC (L1) EOC (max)

64 – –

128 1.0045 1.0251

256 1.0017 1.0013

512 1.0005 1.0025

1024 1.0001 1.0002
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3 Rotating Wave Solution

In this section we present our latest result on theoretical analysis of the KS model.
We present the study of the KS model by means of the bifurcation theory and show
the existence of a rotating wave solution bifurcating from an expanding circle.

Rewriting the curvature κ in terms of parametrization x by means of the Frenet
formulae and substituting (4) to (3), we have

xt = −δxssss − ((α − 1)+ δκ2)xss − (3δ(κ2)s/2−W)xs + V0N. (7)

We chose the tangential velocity as (5) and consider a perturbation ε(u, t) from an
expanding circle solution, such that

x(u, t) = C(u, t)+ ε(u, t)y(u), (8)

where y(u) = (cos (2πu), sin (2πu)), ε ∈ R is a periodic function w.r. to u ∈ [0, 1],
C(u, t) = R(t)y(u) is the expanding circle solution, and R(t) is the solution of
Ṙ = V0+(α−1)R−1. Here and hereafter, we denote Ḟ = dF/dt . By substituting (8)
to (7), we derive an evolution equation for ε as the following

εt = − δ

16π4R4
εuuuu − δ + R2(α − 1)

4π2R4
εuu − α − 1

R2
ε + α − 1

R3
ε2 − V0

8π2R2
ε2
u

+ εεuu

π2R3

(
α − 1

2
+ δ

R2

)

+ 3δ

16π4R5
ε2
uu +

δ

4π4R5
εεuuuu + 3δ

16π4R5
εuεuuu + O3,

(9)

where O3 = O(|(ε, εu, εuu, εuuu, εuuuu)|3).
Since R(t) is the known function of t , the dynamical system (9) is non-

autonomous. In order to apply the standard bifurcation theory, R(t) is regarded as
the bifurcation parameter R, and by omitting O3 in (9), the truncated dynamical

system is defined H4
per =

{
ε ∈ H4

loc; ε(u) = ε(u+ 1)
}

. Substituting the Fourier

expansion ε(u, t) = ∑
m∈Z εm(t)e2imπu into (9) and omitting O3, we arrive at the

following infinite dimensional dynamical system:

ε̇m(t) = λmεm(t)+
∑

m1+m2=m

Cm1,m2εm1(t)εm2(t), (10)

where λm = (m2 − 1)(R2(α − 1)− δm2)/R4 and

Cm1,m2 =
α − 1

R3
+ V0m1m2

2R2
− 4m2

2

R3

(
α − 1

2
+ δ

R2

)

+ δm2
2(3m

2
1 + 3m1m2 + 4m2

2)

R5
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in the phase space F = {{εm}m∈Z; ε−m = ε̄m, ‖{εm}m∈Z‖2
F < ∞}

with the norm
‖{εm}m∈Z‖2

F = ∑
m∈Z(1 + m2)4|εm|2. We note that ε−m = ε̄m always holds.

Although εm is a complex number, one can verify ε−m = ε̄m since ε is a real
number. Also it is well known that the linearized operator becomes a generator for
the analytical semi-group (see Sec. 2 in [9]).

To find the primary bifurcation point of the circle solution, it is convenient to
introduce the neutral stability curves defined from λm = 0.

Definition 1 The neutral stability curves are defined as a set of parameters
{(δ, R); δ = (α − 1)R2/m2, m ∈ Z} on which the linearized operator of (10)
has a simple zero eigenvalue.

Note that the eigenvalues λ±1 ≡ 0 hold for any R > 0. On the other hand,
λm < 0 holds for |m| = 2, 3, · · · and R < R∗ = 2

√
δ/(α − 1). Therefore, the

circle solution is neutral stable as in the gray region in Fig. 3. In particular, when
|m| = 2, for any fixed δ > 0 the value R∗ is the minimum value on which the
stability of the circle solution changes from neutral stable to unstable.

Around the bifurcation parameter value R = R∗, we apply the central manifold
theory to the dynamical system (10). Let μ = R − R∗. Then the ±2-mode
eigenvalues are expanded as λ±2 = 12δ(2 − R∗)/(R∗)5μ + O(μ2). For a
small ρ > 0, we define a neighborhood Nρ in F × R such that Nρ =
{(εm,μ) ∈ F× R; ‖{εm}m∈Z‖F + |μ| < ρ}. By the center manifold reduction, we
obtain the following reduced system.

Proposition 1 For α > 1 and δ > 0 there exists a positive constant ρ such that the
local center manifold Mc

loc of (10) is contained in Nρ . Furthermore, the dynamics
of (10) on Mc

loc is given by the following system:

{
ε̇1 = a1ε̄1ε2 + a2ε1|ε2|2 + O4,

ε̇2 = λ2ε2 + b1ε
2
1 + (b2|ε1|2 + b3|ε2|2)ε2 + O4.

(11)

Fig. 3 The |m|-mode neutral
stability curves when α = 1.2
with |m| = 2, 3, 4, 5
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Here we put ci,j = Ci,j + Cj,i , and a1 = c2,−1, a2 = −c1,2c3,−2/λ3, b1 = C1,1,
b2 = −c2,0c1,−1/λ0− c1,2c3,−1/λ3, b3 = −c2,0c2,−2/λ0−C2,2c4,−2/λ4 and O4 =
O(|(ε±1, ε±2)|4).
Remark 1 To compute the third-order terms of (11) rigorously, we must calcu-
late (9) up to the third-order terms. However, the form of the reduced system are
the same as (11) due to the normal form theory. Moreover, we will see that the
necessary condition for the existence of rotating wave solution is independent of the
third-order terms.

Set εj = rj (t)eiθj (t) for j = 1, 2 and φ = 2θ1 − θ2. Then the third-order
truncated system of (11) is

⎧
⎪⎪⎨

⎪⎪⎩

ṙ1 = r1r2(a1 cosφ + a2r2),

ṙ2 = λ2r2 + b1r
2
1 cosφ + r2(b2r

2
1 + b3r

2
2 ),

φ̇ = −(2a1r2 + b1r
2
1/r2) sin φ.

(12)

In this paper, we call the rotating wave solution a non-trivial stationary solution
of (12) under sinφ �= 0. Hence the equilibrium which corresponds to the rotating
wave solution is as follows

r1 =
√

−2a1

b1
r2, r2 =

√
λ2b1

2a1b2 − b1(2a2 + b3)
, cosφ = −a2

a1
r2 (13)

in the phase space {(r1, r2, φ)}. Therefore, the necessary condition for the existence
of rotating wave is a1b1 < 0, which holds for arbitrary V0 > 0, α > 1 and δ > 0.
The rotating wave of (11) means that the phase difference φ remains constant, but θ1
and θ2 both increase or both decrease linearly w.r. to the time, and this is the reason
of the rotating. The rotating wave solution is approximately inherent in the solution
structure of the dynamical system (9) without O3, and the leading terms of it are

ε(u, t) ∼ r1ei(θ1(t)+2πu) + r2ei(θ2(t)+4πu) + c.c.,

where “c.c.” denotes complex conjugate for the first two terms. Then, the linearized
matrix at the equilibrium point (13) is given by

⎛

⎜
⎜
⎝

0 pa2r
2
2 −pa1r

2
2 sin φ

2pr2
2

(

b2 − a2b1

a1

)

2(b3 − a2)r
2
2 2a1r

2
2 sinφ

−2b1p sinφ −4a1 sin φ 0

⎞

⎟
⎟
⎠ , (14)

where p = √−2a1/b1. Thus, we conclude that the rotating wave equilibrium
is locally asymptotically stable provided that all eigenvalues of this matrix have
negative real part.
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In the case where V0 = 1.8, α = 1.2, δ = 4.0, we have the bifurcation point
R∗ = 4

√
5, and the coefficients of (11) are a1 = (

√
5−144)/3200,a2 = 3(288

√
5−

102,385)/1,280,000, b1 = (
√

5+180)/16,000, b2 = −3(108
√

5+5095)/128,000
and b3 = −(16,776

√
5 + 47,735)/720,000. In Fig. 4 we show the numerical

solution of (12) with the above parameters and λ2 = 10−5. Since the rotating
wave solution is unstable in this case, the orbit escapes from the rotating wave
equilibrium point and the numerical experiment suggests its trajectory converges to
a heteroclinic cycle which connects two equilibria (0, r∗2 , 0) and (0, r∗2 , π), where
r∗2 =

√−λ2/b3.
Figure 5 shows the time evolution of the perturbed curves x̃(u, t) = (R∗/500+

ε(u, t))y(u) by using the numerical data given by (12) (see also Fig. 4). To visualize
the form of rotating solution we formally set R∗/500. Here x̃ is an approximation
of x in (8) in the sense that R(t) is replaced by R∗ := 4

√
5. In the snapshots,

the circles are of the radius 0.018 ≈ R∗/500. The color-change of the perturbed
curves visualize the perturbation ε (the origin is represented by “+” and the parts
far from the origin is colored brightly, whereas the parts close to the origin are

Fig. 4 Orbit of the numerical solution of (12). The initial value is set near the rotating wave
equilibrium (13)

Fig. 5 The numerical approximation of rotating wave solution of (8) obtained by the orbit in
Fig. 4. Time snapshots are depicted for t ∈ [20,500, 76,500], which corresponds to the yellow
region in Fig. 6
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Fig. 6 The time sequence of gravity point (yellow points in Fig. 5) of the solution curves
(R∗/500+ ε(u, t))y(u). The upper figure represents its amplitude, and the lower one represents its
argument (angle)

colored darkly). The yellow dots represent the gravity points of perturbed curves
and the time evolution of the gravity points is shown in Fig. 6. This phenomena
suggests that not only normal component but also rotating component are inherent
in a curved propagating front.

4 Conclusions

In this paper we summarized our recent results on investigation of the Kuramoto-
Sivashinsky model for evolution of flame/smoldering front. We introduced the
formulation of the problem by parametrically described moving curves with nontriv-
ial tangential velocity, and verified our numerical approximation scheme originally
proposed in [4] by measurement of experimental orders of convergence. Our results
suggest that even for nontrivial initial conditions, our scheme is of about first order.
The last section gives mathematical results on quantitative properties of solutions.
There, we derived the perturbation equation (9) from a circle solution, and obtained
the reduced system (11). Furthermore, analysis of (11) revealed that rotating wave
solution bifurcates from the circle solution. In fact, modulated traveling waves
and heteroclinic cycles also had been found in (1) by Armbruster et al. [10, 11].
However, we cannot obtain them since (11) has codimension one bifurcation.
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8. Beneš M., Kratochvíl J., Křišt’an J., Minárik V., Pauš P.: A parametric simulation method for
discrete dislocation dynamics, Eur. Phys. J-Spec. Top. 177, 177–192 (2009)

9. Brauner C. M., Frankel M., Hulshof J., Sivashinsky G. I.: Weakly nonlinear asymptotics of the
κ-θ model of cellular flames: the Q-S equation, Interfaces Free Bound., 7, 131–146, (2005)

10. Armbruster D., Guckenheimer J., Holmes P.: Heteroclinic cycles and modulated travelling
waves in systems with O(2) symmetry Physica D 29 257–282 (1988)

11. Armbruster D., Guckenheimer J., Holmes P.: Kuramoto-Sivashinsky dynamics on the center-
unstable manifold, SIAM J. Appl. Math. 49 676–691 (1988)



The Master-Slave Splitting Extended
to Power Flow Problems on Integrated
Networks with an Unbalanced
Distribution Network

M. E. Kootte and C. Vuik

Abstract An integrated network consists of a transmission network and at least
one distribution network which are connected to each other via a substation. One
way to do power flow simulations on these integrated networks is the Master-Slave
splitting method. This method splits the integrated network and iterates between
the separate transmission (the master) and distribution (the slave) network. In this
paper, we extend the method to hybrid networks: a network consisting of a balanced
transmission and an unbalanced distribution network. An extra handling is necessary
to get the Master-slave splitting to work on hybrid networks. We explain two
approaches to use the Master-Slave splitting on a hybrid network and compare
these approaches on accuracy, computational time, and convergence, by doing
test-simulations. The Master-Slave splitting is interesting when distribution and
transmission systems have different characteristics, are in geographically distinct
locations, or when system operators are not able or allowed to share data of their
network with each other. The extension to hybrid networks makes this method
generally applicable and an interesting choice to do power flow simulations on
integrated networks.

1 Introduction

System operators (SO’s) use power flow simulations for safe operation and planning
of the electricity grid. In general, a country has one high-voltage transmission
network and several medium/low-voltage distribution networks and each SO studies
its network separately. The electricity system is changing because of the increasing
demand of electricity, the supply of renewable resources, and distributed generation.
These changes lead to network interactions that need to be studied with power flow
simulations that run on integrated transmission-distribution networks. The different

M. E. Kootte (�) · C. Vuik
Delft Institute of Applied Mathematics, Delft, TU, Netherlands
e-mail: m.e.kootte@tudelft.nl

© Springer Nature Switzerland AG 2021
F. J. Vermolen, C. Vuik (eds.), Numerical Mathematics and Advanced Applications
ENUMATH 2019, Lecture Notes in Computational Science and Engineering 139,
https://doi.org/10.1007/978-3-030-55874-1_61

625

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-55874-1_61&domain=pdf
mailto:m.e.kootte@tudelft.nl
https://doi.org/10.1007/978-3-030-55874-1_61


626 M. E. Kootte and C. Vuik

characteristics of the transmission and distribution network require different power
flow models and makes integration difficult.

Researchers are paying more attention to integrating power flow models. One of
the presented ideas is to unify the power flow models and solve them as a whole [1].
This method has several disadvantages: system operators are not always allowed to
share data of their complete network with each other, transmission and distribution
systems have different characteristics and require own power flow solvers [2], and
the systems are modeled in different units.

Another way to do integrated simulations that overcomes these disadvantages
is the Master-Slave splitting (MSS) method [3]. The MSS-method is an iterative
method, in which the solution is based on convergence of the voltage mismatch
on the boundary between the master (the transmission network) and the slave (the
distribution network). At every iteration, the two systems are solved on its own and
share only information of the boundary bus with each other. This allows for using
power flow algorithms that are appropriate for the specific network conditions and
minimizes the data communication between systems. Previous research has shown
that the MSS-method has good convergence characteristics when they are applied
on a balanced integrated network. However, the distribution network is in general
not balanced. Although the authors of the MSS-method describe how the MSS-
method is applied on unbalanced distribution networks, they do not test if their
method indeed still works.

In this paper, we extend the MSS-method to work on a balanced-unbalanced
integrated network and evaluate its behavior on several test-cases. We compare its
solution on accuracy and convergence with non-integrated network simulations, i.e.
simulations that SO’s currently use to study their network separately. In the rest
of the paper we describe how we model the power flow problem for balanced and
unbalanced networks (Sect. 2), we explain and extend the MSS-method (Sect. 3),
we run several numerical simulations and analyze the results (Sect. 4), and draw
conclusions from these results (Sect. 5).

2 Characterization of the Power Flow Problem

The steady-state power flow problem is the problem of determining the voltages V

in a network, given the specified power S = P + ιQ and current I [4], ι being
the imaginary number. V and I are related by Ohm’s Law, I = YV , where Y is
the admittance. S and V are related by S = V I∗. Because the currents are never
given in an electricity system, we substitute Ohm’s Law into S = V I∗ and get
a nonlinear equation for S. Power is generated in three phases leading to three
sinusoidal functions that describe phase a, b, and c of the voltage, represented by
V = |V |eδι (a magnitude and phase-angle), and of the current. In balanced systems,
the phase magnitudes (| · |) and angles (φ) between two phases are equal: For a
voltage V this means that |V |a = |V |b = |V |c and φab = φbc = φca = 2

3π . To
simplify and speed-up the computations, we only have to model phase a and deduct
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the other two phases from here. In unbalanced systems, the magnitudes and angles
are not equal: All the three-phases are included in the model. The nonlinear power
flow equation can be described as follows:

Sp = Vp(YV )∗p,
{
p ∈ {a}, balanced systems,

p ∈ {a, b, c} unbalanced systems.
(1)

We represent an electricity network as a graph consisting of buses i = 1, .., N and
branches (named after the two buses connecting them). These buses are either a
PQ-bus, a PV-bus, or a slack bus, depending on the information we know at that
point [5]. We solve equation (1) in an iterative manner for V . All loads in a network
are modeled as PQ-buses: Power is consumed at these buses. Generators, buses
where power is supplied, are modeled as PV-buses, except for the first generator
bus: This is the slack bus. Each network has exactly one slack bus and can have one
or multiple PQ and PV-buses. Table 1 describes the known and unknown variables
of these buses. We explain in Sect. 3 how we treat the slack buses.

We do power flow simulations in per-unit (pu) quantities and not in engineering
quantities. This means that the quantities are scaled by base values such that the
voltage is close to unity. This has the advantage that it eliminates erroneous values
by scaling them in a narrow range [4].

2.1 Integrated Networks

An integrated network consists of a transmission network and at least one distri-
bution network. The separate transmission and distribution networks have distinct
characteristics and therefore require own appropriate algorithms. Transmission
networks are balanced networks and modeled in single-phase. As the MSS-method
solves the two systems on its own, it allows for using a preferred algorithm for each
network. We use the Newton-Raphson power mismatch (NR-power) [4] method
to solve single-phase transmission networks. Distribution networks are in general
unbalanced networks and must be modeled in three-phase. We use the Newton-
Raphson three-phase current injection method (NR-TCIM) [6] to solve distribution
networks.

Table 1 Bustypes in a
network and the information
we know and not know at
each bus i

Bus type Known Unknown

PQ-bus Pi, Qi δi , |Vi |
PV -bus Pi, |Vi | Qi, δi

Slack bus δi , |Vi | Pi, Qi
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3 Solving the Power Flow Problem with the Master-Slave
Splitting Method

The Master-Slave splitting method [3] is an iterative method that splits the integrated
network in a master, the transmission network, and a slave, the distribution network,
and solves them on their own. Because the master and slave are solved on its own,
they both require a slack bus. One of the load buses of the master is taken as the
slack bus of the slave and this bus becomes a direct voltage source for the slave.
This load bus is called the boundary B. When multiple slaves are connected to the
master, the connecting load buses form the boundary-set B. The voltage source must
be equal to the loads in the slave system.

The MSS-method starts by solving the slave: The voltage source from the master
is taken as the slack bus for the slave. The slack bus needs the voltage magnitude
and angle as known parameter, but as the master is not yet solved, we start with an
initial guess of the voltage source, i.e. V 0

B . With this information, we solve the slave
with NR-TCIM. We then continue to the master: The boundary bus B is a load-bus
for the master, hence we must know active and reactive power SB = PB + ιQB

at this bus. From the slave, we know SB and we inject this output into the master.
The slack bus, as present in the original transmission network when it is modeled
as a separated network, remains the slack bus for the master. This gives us enough
information to solve the master, which we do with the NR-power method. Solving
the master gives us the voltage VB . We compare this voltage with the voltage that
was previous injected into the slave. When the difference is smaller than a certain
tolerance value ε, the system has converged. Otherwise, we repeat these steps until
we reach convergence. We summarize these steps in Algorithm 1.

Algorithm 1 General algorithmic approach of the Master-Slave splitting method

1: Set iteration counter ν = 0. Initialize the voltage V 0
B of the Slave.

2: Solve the slave system. Output: Sν+1
B .

3: Inject Sν+1
B into the Master.

4: Solve the Master. Output: V ν+1
B .

5: Is |V ν+1
B − V ν

B |1 > ε ? Repeat step 2 till 5.

3.1 The Master-Slave Splitting Extended to
Balanced/Unbalanced Networks

We are working with a combined balanced-unbalanced system. In order to use the
boundary output from the slave and use it as input for the master (and vice-versa),
we need to make some modifications. We can do this in two ways: (1) modeling the
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transmission network in three-phase or (2) transform only the boundary state output
such that it matches the input format. If we model the transmission network in three-
phase, we integrate two three-phase networks. We call this network an homogeneous
network. We keep the assumption that the entire transmission network is balanced.
For method (2), we need to transform the three-phase power output Sabc

B to a single-
phase quantity and the single-phase voltage output V a

B to a three-phase quantity.
We make the assumption that this boundary bus B is balanced. This means that
the power injected into the single-phase system is equally influenced by all three-
phases:

Sa
B =

1

3
[1 1 1][Sa

B Sb
B Sc

B ]T . (2)

For the voltage, this means that we can deduct phase b and c, as explained in the
beginning of Sect. 2, from phase a:

[V a
B V b

B V c
B] = V a

B [1 a2 a]T , a = e2/3πι. (3)

After we received the output in line 2 and 3 of Algorithm 1, we apply transforma-
tions (2) and (3) respectively, before we continue to the next line of the algorithm.

The Master-Slave Iterative Schemes

Two iterative schemes to solve the Master-Slave splitting are the Convergence-
Alternating-Iterative (CAI)-scheme and the Multistep-Alternating-Iterative (MAI)-
scheme [7]. In the CAI-scheme, explicit convergence tolerance is defined for the
transmission and distribution system. At each MSS iteration step, the system is
solved once its convergence condition is met. Then its output is injected into the
other system. In the MAI-scheme, a maximum number of iterations per transmission
and distribution system, ITmax and IDmax respectively, is defined. At each MSS
iteration step, the system is solved within this number of subiterations.

4 Numerical Assessment of Integration Methods

We work in the Matpower1 library where we created 5 test-cases: T9-D13, T118-
D37, T3120-D37, T9-2D13, and T9-3D13. The distribution networks are connected
via their original slack bus. The connection node of the transmission network is
given. Table 2 explains the networks.

1MATPOWER is a package of free, open-source Matlab-language M-files for solving steady-state
power system simulation and optimization problems [8].
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Table 2 Comparison on number of iterations (for the MSS-method (IMSS ) and the necessary
iterations per system (IT and ID )), and CPU-time of the four different MSS-methods, applied on
five test-cases. The star-marked numbers converged to wrong results. In this case, the MAI method
required more than 2 subiterations to converge correctly. The lowest CPU times are printed in bold

MS-homo-CAI MS-hybrid-CAI MS-homo-MAI MS-hybrid-MAI

IMSS IT ID CPU IMSS IT ID CPU IMSS IT ID CPU IMSS IT ID CPU

# # # s # # # s # # # s # # # s

T9-D13 4 4 4 0.247 4 5 4 0.296 6 2 2 0.254 6 2 2 0.315

T118-D37 4 6 4 0.352 4 5 4 0.368 8* 2* 2* 0.376∗ 6 2 2 0.332
T3120-D13 4 5 3 2.27 4 8 4 0.635 4* 2* 2* 1.56∗ 4 2 2 0.458
T9-2D13 4 4 4 0.247 4 4 4 0.306 6 2 2 0.285 6 2 2 0.334

T9-3D13 5 4 4 0.288 4 4 4 0.346 7 2 2 0.313 7 2 2 0.415

• The Matpower Transmission 9-bus network connected at node 7 with a IEEE
Distribution 13-bus network (T9-D13).

• The Matpower Transmission 118-bus network connected at node 117 with a
IEEE Distribution 37-bus network (T118-D37).

• The Matpower Transmission 3120-bus network connected at node 1000 with the
13-bus Distribution network (T3120-D13).

We changed the 13-bus Distribution network to a 10-bus network by deleting the
buses that are connected to a regulator. The 37-bus network is originally a balanced
distribution network. We changed it to an unbalanced network by shifting 20% of
the loads of phase b equally to phase a and c, as explained by Taranto and Marinho
[1]. We created two test-cases with multiple Distribution networks: T9-2D13 and
T9-3D13, respectively 2 and 3 D13-networks connected to the T9-network.

We run all simulations in Matlab. We set the tolerance value of the MSS-method
to εMSS = 1e−7 and the tolerance of the NR-power method and NR-TCIM both as
εNR−P = εNR−T CIM = 1e−8.

Table 2 shows the number of iterations and CPU time to solve integrated
networks with four different MSS-methods. At first glance, the results show that all
the methods have good convergence characteristics: they converge within a small
number of iterations and amount of time. These numbers are comparable for most
of the test-cases. If we take a closer look at the bigger test-case, T3120-D13, we
see that the MS-homogeneous methods are slower than the MS-hybrid methods. In
this bigger test-case, the difference in size of a single-phase and three-phase model
becomes more significant and it is thus expected that hybrid methods would perform
better. A last remark is that the MS-homo-MAI method did not always converge to
the correct results. Therefore, one should be careful here when using this method.
Increasing the number of sub iterations of the transmission system leads to better
results, but this brings MAI-method closer to the CAI-method.

In Table 3, we compare the outcome of the first test-case, T9-D13, with the output
from separated networks T9 and D13. To make generation and load output of the
distribution system match, we changed the load at bus 7 in the transmission network,
to the total contribution of the loads in the distribution network. To make a fair
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Table 3 Comparison on voltage magnitude |V | and angle δ (in radians) of phase a only of
the four Master-Slave splitting methods. The first four rows compare the exact values of the
boundary bus B in the MSS network with connection bus (bus 7) of the separated transmission
network. The last four rows compare the relative differences of the voltage magnitudes
and angles with the separated networks. The two networks are compared individually. E.g.:
|| ||V |MSS−|V |T ||V |T ||∞ is the infinity norm of relative difference between the voltage magnitude of
the transmission part of the MSS-method and the separated transmission model

MS-homo-CAI MS-hybrid-CAI MS-homo-MAI MS-hybrid-MAI

|V |BMSS 1.0440 1.0440 1.0443 1.0443

|V |BSep 1.0446 1.0446 1.0446 1.0446

δBMSS 0.2261 0.2260 0.2271 0.2272

δBSep 0.2308 0.2308 0.2308 0.2308

|| ||V |MSS−|V |T ||V |T ||∞ 5.9E–4 5.6E–4 9.2E–4 9.1E–4

|| ||V |MSS−|V |D ||V |D ||∞ 5.9E–4 5.6E–4 3.4E–4 3.2E–4

|| |δMSS−δT |
δT

||∞ 8.2E–2 8.3E–2 6.5E–2 6.3E–2

|| |δMSS−δD |
δD

||∞ 2.1E–2 2.2E–2 1.8E–2 1.7E–2

comparison, we multiplied the pu values of the voltage of the separated distribution
network by the pu value of the voltage of the connection bus of the transmission
network. Because the slack bus of the distribution network is a reference value for
the rest of the network and thus it always holds that V = 1 pu. If we multiply this
value by the value of V T

7 , we receive this as a new reference for the rest of the
network.

Table 3 shows that all methods have similar and accurate output compared with
the separated systems. It is also clear that the voltage magnitude is more accurate
than the voltage angle. To explain this is an interesting follow-up study.

The MSS-method is an excellent choice if one wants to run parallel computa-
tions. The amount of communication between two networks is limited, on average 4
iterations, which makes it a suitable option for parallel computing where one master
is connected to several slaves, which are all solved in parallel. Real electricity grids
are designed like this, with the distribution networks having a size up to millions
of buses, which makes parallel high performance computing a necessary choice. In
future research, we want to test the four different MSS-methods on realistic size
test-cases.

5 Conclusion

We studied the MSS-method applied on hybrid integrated networks. We showed
four possible MSS-methods that deal with unbalanced distribution networks. The
four different methods were named after the two possible ways we modeled the
balanced networks, as a three-phase or as a single-phase network leading to MS-
homogeneous and MS-hybrid methods respectively, and after how we put up
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the iterative schemes, the CAI-scheme and the MAI-scheme. Three out of four
methods have shown to be accurate and efficient to run power flow simulations
on integrated networks: The MS-homo-CAI, MS-hybrid-CAI, and MS-hybrid-MAI
method. They all converged within reasonable amount of time and number of
iterations, while obtaining accurate solutions. The MS-hybrid methods showed their
speed-up potential when they are applied on bigger test-cases. The MS-homo-MAI
method performed not so well over-all: Although the method has shown to be
efficient, it does not always converge to the accurate solution. Therefore, we would
not recommend to use this one.

With this extension, we showed that the MSS-method can solve integrated bal-
anced/unbalanced networks with different characteristics. The splitting allows for
solving the subsystems with their required algorithm and for sharing of information
of only one overlapping boundary bus. Furthermore, it has good potential for parallel
high-performance computing, which is necessary to do power flow simulations on
real integrated networks.
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On Mesh Regularity Conditions
for Simplicial Finite Elements

Ali Khademi, Sergey Korotov, and Jon Eivind Vatne

Abstract We review here various results (including own very recent ones) on mesh
regularity conditions commonly imposed on simplicial finite element meshes in the
interpolation theory and finite element analysis. Several open problems are listed as
well.

1 Introduction

In 1968, M. Zlámal [32] introduced the so-called minimum angle condition that
ensures the convergence of the finite element approximations for solving linear ellip-
tic boundary value problems of the second and fourth order on planar triangulations:
there exists a positive constant α0 such that the minimal angle αT of each triangle
T in all triangulations used satisfies

αT ≥ α0 > 0. (1)

(To be more precise, Zlámal used the equivalent condition sin αT ≥ sin α0.) The
same condition was also introduced by A. Ženíšek [31] for the finite element method
applied to a system of linear elasticity equations of second order.

Later, the so-called inscribed ball condition was introduced, see, e.g. [11, p. 124],
which uses a ball (or its radius) contained in a given element (cf. (4)). Thus, it can
also be used for nonsimplicial elements in any dimension. This condition reads as
follows: the ratio of the radius of the inscribed ball of any element and the diameter
of this element must be bounded from below by a positive constant over all partitions
from a given family, thus preventing elements from shrinking. For a family of planar
triangulations it is, obviously, equivalent to Zlámal’s condition (1).
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Fig. 1 Classification of degenerated tetrahedra according to [12]

In [24] the inscribed ball condition was replaced by a simpler equivalent condi-
tion on the volume of every element (cf. (3)). Another equivalent circumscribed ball
condition for simplices (cf. (5)) was first introduced in [10].

In practical calculations we sometimes produce simplicial elements degenerating
in some way, see Fig. 1 for the tetrahedral case. Shrinking (for example, flat and
narrow) elements are also commonly used in covering thin slots, gaps or strips
of different materials or to approximate functions that change more rapidly in one
direction than in another direction [3]. Therefore, much effort has been devoted to
finding suitable (and practical) concepts, which are weaker than the Zlámal-type
conditions. The first result in this direction is usually attributed to J. L. Synge [30],
who however did not consider any convergence of the finite element method, but
got it in the context of interpolation theory. Already in 1957, he proved that linear
triangular elements yield the optimal interpolation order in the maximum norm
under the so-called maximum angle condition: there exists a constant γ0 < π such
that for any triangulation Th ∈ F and any triangle T ∈ Th we have

γT ≤ γ0 < π, (2)

where γT is the maximum angle of the triangle T . This condition is obviously
weaker than the minimum angle condition (1) and was widely used later on in the
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finite element community for various convergence results, see e.g. [3–5, 26, 28] and
many other works.

Whereas the connection between the notions introduced was clear in dimension
two, much effort was later focused on extending the notions to higher dimensions
and clarifying the interplay between them. This article surveys various results in this
direction including our very recent contributions.

2 Main Definitions and Concepts

Recall that a simplex S in Rd, d ∈ {1, 2, 3, . . . }, is the convex hull of d + 1 vertices
A0, A1, . . . , Ad that do not belong to the same (d−1)-dimensional hyperplane, i.e.,
S = conv {A0, A1, . . . , Ad}. We denote by hS the length of the longest edge of S.

The dihedral angle α between two facets of S is defined by means of the inner
product of their outward unit normals n1 and n2,

cosα = −n1 · n2.

Let Ω ⊂ Rd be a bounded domain. Assume that Ω is polytopic. By this we
mean that Ω is the closure of a domain whose boundary ∂Ω is contained in a finite
number of (d − 1)-dimensional hyperplanes.

Next we define a simplicial partition of a bounded closed polytopic domain Ω ⊂
Rd as follows. We subdivide Ω into a finite number of simplices (called elements
and denoted by S), so that their union is Ω , any two distinct simplices have disjoint
interiors, and any facet of any simplex is either a facet of another simplex from the
partition or belongs to the boundary ∂Ω . The set of such simplices will be called
simplicial partition and denoted by Th, where h = max

S∈Th

hS .

Definition 1 The sequence of simplicial partitions F = {Th}h→0 of Ω is called a
family of simplicial partitions if for every ε > 0 there exists Th ∈ F with h < ε.

In this paper, all constants Ci are independent of S and h, but can depend on the
dimension d . The p-dimensional volume for p ≤ d is denoted by vol p.

2.1 Volumic Regularity Conditions

First we present three volumic regularity conditions usually imposed on simplicial
partitions in Rd . They guarantee the optimal order of the interpolation error of
simplicial finite elements, which is employed in various convergence proofs of the
finite element method by means of Céa’s lemma [11].
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Condition 1 There exists C1 > 0 such that for any Th ∈ F and any S ∈ Th we
have

vol d S ≥ C1h
d
S . (3)

Condition 2 There exists C2 > 0 such that for any Th ∈ F and any S ∈ Th we
have

vol d b ≥ C2h
d
S , (4)

where b ⊂ S is the inscribed ball of S.

Condition 3 There exists C3 > 0 such that for any Th ∈ F and any S ∈ Th we
have

vol d S ≥ C3 vol d B, (5)

where B ⊃ S is the circumscribed ball about S.

Theorem 1 Conditions 1–3 are equivalent.

For the proof see [8].

2.2 Minimum Angle Conditions in Higher Dimensions

In this section we present two equivalent generalizations of Zlámal’s condition to
higher dimensions.

In 1978, F. Eriksson proposed an appropriate definition for the d-dimensional
sine of angles in Rd . In terms of the simplex S, for any of its vertices Ai , the d-
dimensional sine of the angle of S at Ai , denoted by Âi , is defined as follows (see
(3) in [13, p. 72]):

sind (Âi |A0A1 . . . Ad) = dd−1 (vol dS)d−1

(d − 1)! ∏d
j=0,j �=i vol d−1Fj

. (6)

In [9] the following new angle-type condition was proposed.

Condition 4 There exists C4 > 0 such that for any Th ∈ F and any S =
conv{A0, . . . , Ad } ∈ Th we have

sind (Âi |A0A1 . . . Ad) ≥ C4 > 0 ∀ i ∈ {0, 1, . . . , d}, (7)

where sind is defined in (6).
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Remark 1 For d = 2, sin2(Âi |A0A1A2) is the standard sine of the angle Âi in the
triangle A0A1A2, due to the following well-known formula, e.g. for i = 0,

vol 2(A0A1A2) = 1

2
|A0A1||A0A2| sin Â0, (8)

therefore we observe that (7) presents a generalization of Zlámal’s condition to
higher dimensions, i.e. for d ≥ 3.

Recently, in [20] another angle-type condition was introduced, which generalizes
the three-dimensional version of the condition proposed in [7].

Condition 5 There exists a constant C5 > 0 such that for any partition Th ∈ F ,
any simplex S ∈ Th and any subsimplex S′ ⊂ S with vertex set contained in the
vertex set of S, the minimum dihedral angle αS ′ in S′ satisfies

αS ′ ≥ C5. (9)

Theorem 2 Conditions 1–5 are equivalent in Rd for any d ≥ 2.

For the proof see [20].

Remark 2 Each of Conditions 4 and 5 can be called the minimum angle condition
as they really present a limitation of angles (or its sines) from below.

Definition 2 A family of simplicial partitions satisfying one of Conditions 1–5 is
called regular.

3 The Maximum Angle Conditions

Now we present two conditions which weaken Conditions 4 and 5. They turn to be
equivalent and might be called the maximum angle conditions.

As mentioned in the introduction, the Synge-condition (2) was essentially the
first step in this direction. It was later on generalized by M. Křížek for tetrahedra
as follows: there exists a constant γ0 < π such that for any tetrahedral partition
Th ∈ F and any tetrahedron T ∈ Th one has

γ T
D ≤ γ0 & γ T

F ≤ γ0, (10)

where γ T
D is the maximum dihedral angles between faces of T and γ T

F is the
maximum angle in all four triangular faces of T , see [22].

Probably a large number of various angles in simplices for large values of d

has been the reason for not elaborating the natural higher-dimensional analog of
the Synge and Křížek condition until a very recent work [18], see Definition 4.
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Therefore following the chronology we first present the weakened version of
Condition 4 as follows, see [15].

Definition 3 A family F is called a semiregular family of partitions of a polytope
into simplices if there exists C6 > 0 such that for any Th ∈ F and any S =
conv{A0, . . . , Ad } ∈ Th we can always find d edges of S, which when considered
as vectors, constitute a (higher-dimensional) angle whose d-sine is bounded from
below by the constant C6.

Remark 3 We observe that for the case d = 2, Definition 3 is equivalent to the
maximum angle condition of Synge.

Remark 4 The d edges mentioned in the above definition do not necessarily
emanate from the same vertex. An example is a path-simplex with its d orthogonal
edges forming a path (in the sense of graph theory). The path element can degenerate
(e.g. the d-dimesional sine of some of its angles can be close to zero) but the d-
sine made by the orthogonal d edges stays the same. Thus, families of needle,
splinter, and wedge elements from Fig. 1 satisfy Definition 3. They yield the optimal
interpolation order of linear elements provided the lengths of their edges are as
indicated, for example, in Fig. 2.

Recently, in [18] another condition was introduced, which presents a natural
generalization of maximum angle conditions by Synge and Křížek to any dimension.

Definition 4 A family F of partitions of a polytope into simplices satisfies the d-
dimensional maximum angle condition if there exists a constant C7 > 0 such that
for any partition Th ∈ F , any simplex S ∈ Th and any subsimplex S′ ⊂ S with
vertex set contained in the vertex set of S, the maximum dihedral angle γS ′ in S′
satisfies

γS ′ ≤ π − C7. (11)

The following result was proved in [18].

Theorem 3 Definitions 3 and 4 are equivalent in Rd for any d ≥ 2.

h hh

h

h h h

2

h

2 2 2

2

h

Fig. 2 Three types of degenerating tetrahedra which do not deteriorate the optimal interpolation
order [22]. The length h2 can be replaced by h1+ε for any ε > 0
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4 Final Remarks and Some Open Problems

• Having several equivalent forms of some condition may sometimes considerably
simplify proofs of regularity of produced meshes, see e.g. [21].

• A suitable analogue of the maximum angle condition for prismatic finite elements
has been recently proposed in [17].

• We note that the maximum angle condition is, in fact, not necessary for
convergence of finite element approximations as shown e.g. in [14, 19, 23].
Is there a way to prove some interpolation/convergence properties of finite
element approximations constructed on simplicial meshes with other types of
degeneracies than those covered by the semiregularity property?

• Is there a natural generalization of the volumic conditions that characterize
semiregularity, or some weaker property (addressing to the open problem
formulated above)?

• In [18] it is proved that the condition of Definition 4 is equivalent to the condition
of P. Jamet from [16]. In [6], N. Baidakova proposed another angle condition
which is also equivalent to the condition of Jamet.

• Some other angle-type regularity conditions used in the literature (mostly for
tetrahedra) can be found in [1, 2, 25, 29].

• Closely related interesting issue of divergence of finite element approximations
is discussed in [27].
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Assembly of Multiscale Linear PDE
Operators

Miroslav Kuchta

Abstract In numerous applications the mathematical model consists of different
processes coupled across a lower dimensional manifold. Due to the multiscale cou-
pling, finite element discretization of such models presents a challenge. Assuming
that only singlescale finite element forms can be assembled we present here a
simple algorithm for representing multiscale models as linear operators suitable for
Krylov methods. Flexibility of the approach is demonstrated by numerical examples
with coupling across dimensionality gap 1 and 2. Preconditioners for several of the
problems are discussed.

1 Introduction

This paper is concerned with implementation of the finite element method (FEM) for
multiscale models, that is, systems where the unknowns are defined over domains
of (in general) different topological dimension and are coupled on a manifold,
which is possibly a different domain. The systems arise naturally in applications
where Lagrange multipliers are used to enforce boundary conditions, e.g. [4, 7],
or interface coupling conditions e.g. [3, 23]. In modeling reservoir flows [10],
tissue perfusion [9, 11, 20] or soil-root interaction [19] resolving the interface as
a manifold of co-dimension 1 can be prohibitively expensive. In this case it is
convenient to represent the three-dimensional structures as curves and the model
reduction gives rise to multiscale systems with a dimesionality gap 2.

Crucial for the FEM discretization of the multiscale models is the assembly of
coupling terms, in particular, integration over the coupling manifold. There exists a
number of open source FEM libraries, e.g. [1, 6, 14, 17], which expose this (low-
level) functionality and as such can be used for implementation. However, for rapid
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prototyping, it is advantageous if the new models are described in a more abstract
way which is closer to the mathematical definition of the problem.

FEniCS is a popular open source FEM framework which employs a compiler to
generate low level (C++) assembly code from the high-level symbolic representation
of the variational forms in the UFL language embedded in Python, see [24]. Here
the code generation pipeline provides convenience for the user. At the same time,
implementing new features is complicated by the fact that interaction with all the
components of the pipeline is required. As a result, support for multiscale models
has only recently been added to the core of the library [12] and is currently limited to
problems with dimensionality gap 0 and 1. Moreover, in case of the trace constrained
systems the coupling manifold needs to be triangulated in terms of facets of the bulk
discretization. We remark that similar functionality for multiscale systems is offered
by the FEniCS based library [2].

Here we present a simple algorithm1 which extends FEniCS to support a more
general class of multiscale systems by transforming symbolic variational forms
in UFL language into a domain specific language [25] which represents (actions
of) discrete linear operators. As this representation targets solutions by iterative
methods, preconditioning strategies shall also be discussed. Our work is structured
as follows. Section 2 details the algorithm. Numerical examples with dimensionality
gap 1 and 2 are presented in Sects. 3 and 4 respectively.

2 Multiscale Assembler

In the following (·, ·)� denotes the L2 inner product over a bounded domain � ⊂
R
d , d = 1, 2, 3. The duality pairing between the Hilbert space V and its dual space

V ′ is denoted by (·, ·). Given basis of a discrete finite element space Vh, the matrix
representation of operator A is Ah. Adjoints of A and Ah are denoted as A′ and A′h
respectively.

Our representation of multiscale systems builds on two observations, which shall
be presented using the Babuška problem [4]. Let � = ∂� and V = H 1(�), Q =
H−1/2(�), W = V × Q. Then for every L ∈ W ′ there exists a unique solution
w = (u, p) ∈ W satisfying Aw = L where

A =
(
A B ′
B 0

)

and
(Au, v) = (∇u,∇v)� + (u, v)� v ∈ V,

(Bu, q) = (T u, q)� q ∈ Q.
(1)

1Implementation can be found in the Python module FEniCSii https://github.com/MiroK/
fenics_ii.

https://github.com/MiroK/fenics_ii
https://github.com/MiroK/fenics_ii
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Here T : H 1(�) → H 1/2(�) is the trace operator such that T u = u|�, u ∈ C(�).
We remark that (1) is the weak form of −�u + Iu = f in � with u = g on ∂�

enforced by the Lagrange multiplier p.
Given the structure of A in (1) it is natural to represent the operator on a finite

element space Wh as a block structured matrix (rather then a monolithic one).
Moreover, observe that the multiscale operator B : V → Q (operator A : V → V ′
is singlescale) is a composition B = I ◦ T where I : H 1/2(�) → Q is a singlescale
operator. Therefore, matrix representation of B is a matrix product Bh = IhTh.
Assuming that the FEM library at hand can only assemble singlescale operators, e.g.
I and A, the multiscale operators Bh and Ah can be formed, if representation of the
trace operator is available. We remark that the block representation is advantageous
for construction of preconditioners; for example the blocks can be easily shared
between the system and the preconditioner, cf. [18, 25].

Based on the above observations the multiscale systems can be represented as
block structured operators where the blocks are not necessarily matrices. Cbc.block
[25] defines a language for matrix expressions using the lazy evaluation pattern. In
particular, block matrix(block_mat) and matrix product(∗) are built-in operators.
We remark that the operators are not formed explicitly, however, they can be
evaluated if e.g. action in a matrix-vector product in a Krylov solver is needed.
Using B from (1) as an example we thus aim to build an interpreter which translates
UFL representation of (T u, q)� into a cbc.block representation Ih∗Th. We remark
that Th is here assumed to be a mapping between primal representations, cf. [26].

The core of the multiscale interpreter is the algorithm (Fig. 1) for translating
from one symbolic representation to another. Observe that in multi_assemble
different reduced assemblers are recursively called on the transformed UFL form
with the singlescale form being the base case. An example of a reduced assembler
is the trace_assemble function which, having found trace-reduced argument
(ln. 12) in form a, e.g. a(u, q) = (Bu, q) = (T u, q)� , u ∈ Vh, q ∈ Qh builds a
finite element trace space V̄h = V̄h(�) (ln. 14), an algebraic representation of the
operator T : Vh → V̄h (ln. 15) and delegates assembly of the transformed form
I (ū, q) = (ū, q)� , ū ∈ V̄h, q ∈ Qh (ln. 19) to multi_assemble (ln. 20). As I is
singlescale the native FEniCS assemble function can be used to form the matrix Ih
and the symbolic matrix-matrix product representation can be formed (ln. 20). The
translation can thus be summarized as (T u, q)� → (ū, q)�∗Th → Ih∗Th.

Algorithm 1 can be easily extended to different multiscale couplings by adding a
dedicated assembler. In particular, given � ⊂ R

3 and γ a curve contained in �, the
3d-1d coupled problems [10, 11] require operators T , % such that for u = C(�),
T u = u|γ and

(%u)(x) = |CR(x)|−1
∫

CR(x)

u(y) dy. (2)

Here CR(x) is a circle of radius R in a plane {y ∈ R
3, (y−x)· dγ

ds (x) = 0} defined by
the tangent vector of γ at x. Observe that assembling 3d-1d constrained operators



644 M. Kuchta

Fig. 1 Translation of UFL representation of multiscale variational form into cbc.block matrix
expression. Several passes by different scale assemblers might be needed to reduce the form into
singlescale base case which can be assembled as matrix or vector by FEniCS. Handling of test
function and function type terminals is omitted for brevity

follows closely Algorithm 2, with the non-trivial difference being the representation
of %. We remark that in assembly of % or T we do not require that γ is discretized
in terms of edges of the mesh of �. In fact, the two meshes can be independent.
This is also the case for d–(d−1) trace. Let us also note that the restriction operator
Ru = u|ω, where ω ⊆ � ⊂ R

d can be implemented similar to the trace operator.
Finally, observe that the Algorithm 1 is not limited to forms where the arguments
are reduced to the coupling manifold. Indeed, [10, 16, 21] utilize extension from γ

to � by a constant or as Green function of a line source respectively. Such couplings
can be readily handled if realization of the discrete extension operator is available.

We conclude the discussion by listing the limitations of our current implementa-
tion. Unlike in [2, 12] the MPI-parallelism is missing2 as is the support for nonlinear

2The serial performance of our pure Python implementation is cca. 2× slower than the native
FEniCS implementation [12]. More precisely, assembling (1) on � = [0, 1]2 discretized by
2 · 10242 triangles and continuous linear Lagrange elements (the system matrix size is cca. 106,
however, it is not explicitly formed here) takes 3.86 s (to be compared with 1.79 s). Most of the
time is spent building Th. The trace matrix is reused by the interpreter to evaluate both Bh and B ′

h.
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forms. Moreover, the reduction operators cannot be nested and can only be applied
to terminal expressions in UFL, e.g. T (u + v) cannot be interpreted. In addition,
point constraints are not supported. With the exception of parallelism the limitations
will be addressed by future versions.

In the following we showcase the multiscale interpreter by considering coupled
problems with dimensionality gap 1 and 2. We begin by a trace constrained 2d-1d
Darcy-Stokes system.

3 Trace Constrained Systems

Let �1, �2 ⊂ R
2 be such that � = ∂�1 ∩ ∂�2 and |�| �= 0. Further let ∂�i =

� ∪ �D
i ∪ �N

i where |�k
i | �= 0, i = 1, 2, k = N,D and � ∩ �N

i = ∅, cf. Fig. 2. We
then wish to solve the coupled Darcy-Stokes problem (with unit parameters)

−∇ · σ = f1,∇ · u1 = 0 in �1,

u2 +∇p2 = 0,∇ · u2 = f2 in �2,

u1 · n− u2 · n = 0 on �,

n · σ · n+ p2 = 0 on �,

−n · σ · τ − u1 · τ = 0 on �.

(3)

Here σ(u1, p1) = D(u1) − p1I with D(u) = 1
2 ((∇u) + (∇u)′). The unknowns

u1, p1 and u2, p2 are respectively the Stokes and Darcy velocity and pressure. The

Fig. 2 Domain for (3)
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system is closed by prescribing Dirichlet conditions on �D
i and Neumann conditions

on �N
i .

Let Tn, Tt be the normal and tangential trace operators on �. We shall consider
variational formulations of (3) induced by a pair of operators

Ap =
⎛

⎜
⎝

−∇ ·D + T ′t Tt −∇ T ′n
div

−Tn −�

⎞

⎟
⎠ ,Am =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

−∇ ·D + T ′t Tt −∇ T ′n
div

I −∇ −T ′n
div

Tn −Tn

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

(4)

Using the (mixed) operator Am problem (3) is solved for both u2, p2 and an
additional unknown, the Lagrange multiplier, which enforces mass conservation
u1 ·n−u2 ·n = 0 on �. In the (primal) operator Ap the condition appears naturally.
Observe that the primal operator is non-symmetric.

Well-posedness of the primal and mixed formulations as well the corresponding
solution strategies have been studied in a number of works, e.g. [13] and [15, 23].
Here we compare the formulations and discuss monolithic solvers which utilize
block diagonal preconditioners

Bp = diag
(−∇ ·D + T ′t Tt , I,−�

)−1
,

Bm = diag
(
−∇ ·D + T ′t Tt , I, I −∇div, I, (−�+ I)1/2

)−1
.

(5)

The preconditioner Bp has been proposed by Cai et al. [8], while Bm follows from
the analysis [15] by operator preconditioning technique [26]. More precisely, Bm is
a Riesz map with respect to the inner product of the space in which [15] prove well-
posedness of Am, i.e. H 1

0, �D
1
(�1)×L2(�1)×H0, �D

2
(div,�2)×L2(�2)×H 1/2(�).

We remark that all the blocks of the preconditioners can be realized by efficient and
order optimal multilevel methods. In particular, we shall use further the multigrid
realization of the fractional Laplace preconditioner [5].

In order to check mesh independence of the preconditioners let us consider the
geometry from Fig. 2 and let �1 = [0, 0.5]× [0, 1], �2 = [0.5, 1]× [0, 1]. In both
Am, Ap the triangulations of the domains shall be independent,3 cf. Fig. 2, with the
mesh of � defined in terms of facets of �2. Finally, the finite element approximation

3Details of experimental setup. We discretize �i uniformly by first dividing the domains into n×m

rectangles and afterwords splitting each rectangle into two triangles. For �1 we have m = n,
m = 2n for �2 so that the trace meshes of the domains are different. Krylov solvers are started
from random initial guess. Convergence tolerance for relative preconditioned residual norm of
10−10 is used. Unless specified otherwise the preconditioner blocks use LU factorization.



Assembly of Multiscale Linear PDE Operators 647

Table 1 Number of iterations required for convergence of GMRes(Ap) and MinRes(Am) using
preconditioners (5). Multigrid preconditioner for H 1/2 leads to slightly increased number of
iterations compared to eigenvalue realization [22]

h BpAp BEIG
p Ap BMG

p Ap

2−3 48 53 59

2−4 48 51 59

2−5 47 50 63

2−6 47 49 65

2−7 46 49 65

Fig. 3 Convergence of the primal(red) and mixed formulation of (3). The approximation error is
computed in the norms of B−1

p and B−1
m

of Ap shall be constructed using P2-P1-P2 elements4 while P2-P1-RT0-P0-P0 is
used for the mixed formulation Am.

Results of the numerical experiment are summarized in Table 1. It can be seen
that the preconditioners (5) are robust with respect to the discretization. Further,
Fig. 3 shows that both formulations lead to expected order of convergence in all
the unknowns. The approximation of Stokes variables is practically identical. We
remark that p2 convergence in Ap is reported in the L2 norm for the sake of
comparison with the mixed formulation,5

4Finite element space of continuous Lagrange elements of order k is denoted by Pk while RT0
denotes the space of lowest order Raviart-Thomas elements.
5The implementation of the Darcy-Stokes problems with conforming meshes can be found at
https://github.com/MiroK/fenics_ii/blob/master/demo/ as dq_darcy_stokes_2d.py (primal formu-
lation) and darcy_stokes_2d.py (mixed formulation).

https://github.com/MiroK/fenics_ii/blob/master/demo/
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4 More General Multiscale Systems

To show flexibility of the interpreter we finally consider a simple prototypical 3d-
1d coupled problem. Let � ⊂ R

3 be a bounded domain and let γ be a curve
embedded in �. Assuming γ is a representation of the vasculature (e.g. as center
lines) parameterized by arc length coordinate s a model of tissue perfusion by
D’Angelo and Quarteroni [11] can be represented as an operator equation

Ap

(
u

p

)

=
(−k�+ T ′% βT ′

−β% −k̂�+ βI

)(
u

p

)

=
(
fu

fp

)

. (6)

Here k, k̂ are the conductivities of the tissue and the vasculature, while β is the
permeability. We denote fu and fp potential source terms in � and � respectively.

Compared to Babuška problem (1) or Darcy-Stokes problem (4) the system (6)
introduces new multiscale coupling as in the perfusion operator Ap the test
functions in the bulk are reduced to γ by a 3d-1d trace operator (T ) while % in (2)
is used for the trial functions.

We test the abilities of the assembler by considering FEM discretization of (6)
in terms of P1-P1 elements with the problem setup on a uniform discretization of
[0, 1]3 and γ a straight line which, in general, is not aligned with the edges of the
mesh of �. Figure 4 shows that the relative norm of the refined solution decreases
linearly.

Fig. 4 Error convergence of the FEM approximation of 3d-1d coupled problem (6)
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A Least-Squares Galerkin Gradient
Recovery Method for Fully Nonlinear
Elliptic Equations

Omar Lakkis and Amireh Mousavi

Abstract We propose a least squares Galerkin based gradient recovery to approx-
imate Dirichlet problems for strong solutions of linear elliptic problems in non-
divergence form and corresponding a priori and a posteriori error bounds. This
approach is used to tackle fully nonlinear elliptic problems, e.g., Monge–Ampère,
Hamilton–Jacobi–Bellman, using the smooth (vanilla) and the semismooth Newton
linearization. We discuss numerical results, including adaptive methods based on
the a posteriori error indicators.

1 Introduction

Let Ω denote a bounded convex domain in Rd , d ∈ N (typically d = 2, 3). Consider
the Dirichlet problem of finding a function u : Ω → R such that

F [x, u,∇u,D2 u] = 0 and u|∂Ω = r. (1)

Here, ∇u,D2 u denote the gradient and the Hessian of u and F : Ω × R × Rd ×
Rd×d → R is assumed to be elliptic and Newton differentiable which is defined by
Definition 2.

While viscosity solutions are possible, in a natural way, for this type of
equations, we here focus on smoother solutions. Namely, we look at the numerical
approximations of u in H2(Ω) satisfying (1), termed strong solution. We follow
a series of papers on the matter [3, 4, 11], but with a focus on the different and
somewhat more flexible numerical methodology of least squares gradient recovery
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Galerkin finite element method to discretize the linear equations in nondivergence
form that ensue from linearizing (1) using semismooth Newton method. We only
state the results here, respectively referring for the details of Sects. 2 and 3 to Lakkis
and Mousavi [7] and Lakkis and Mousavi [8]. We look at some numerical examples,
outlining an adaptive algorithm based on a posteriori error estimates for the linear
elliptic equations in nondivergence form with Cordes coefficients.

2 A Least-Squares Galerkin Approach to Gradient Recovery
for Linear Equations in Nondivergence Form

We outline the proposed numerical method of the strong solution of the linear
second order equation in nondivergence form; the details, including the proofs of all
stated results can be found in [7]. To prevent difficulties arising from numerically
working in H2(Ω) space, we consider an equivalent problem with solution in a H1-
regularity space. For this we minimize a cost (least-squares) functional associated
to the main problem. We prove that the equivalent problem is well posed using
a coercivity argument, deducing thus the same result for the discrete counterpart.
By setting Galerkin finite element spaces within H1(Ω), we provide a priori and a
posteriori error bounds.

In this section we consider the following linear second order elliptic equations in
nondivergence form of finding u ∈ H2(Ω) such that

L u := A : D2 u+ bᵀ∇u− cu = f and u|∂Ω = 0 (2)

where the coefficients A ∈ L∞(Ω; Sym (Rd)), with Sym(X) =: symmetric
operators on X, is uniformly elliptic, b ∈ L∞(Ω;Rd) and c ∈ L∞(Ω), c � 0
satisfy exactly one of the following two Cordes conditions for some ε ∈ (0, 1)

b �= 0 or c �= 0 ⇒ |A|2 + |b|2/2λ+ (c/λ)2

(traA+ c/λ)2 � 1

d + ε
a.e. in Ω for some λ > 0, ,

(3)

b ≡ 0 and c ≡ 0 ⇒ |A|2
(traA)2

� 1

d − 1+ ε
a.e. in Ω, (4)

where |X| = (
traXᵀX

)1/2
. The right-hand side f is a generic element of L2(Ω).

We consider the right-hand side r in (1) to be 0 for simplicity (although the
developments can be extended to r|∂Ω being the trace of a function r ∈ H2(Ω).

Problem (2) is well posed under these assumptions as shown by Smears and Süli
[10]. In numerical approximating solutions, dealing with more regular than H1(Ω)

spaces leads to complicated computations. To avoid this difficulty, we intend to
consider an alternative equivalent problem with H1(Ω) solution.
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We denote the outer normal to Ω at x ∈ ∂Ω by nΩ(x), which we assume defined
for S -almost every x ∈ ∂Ω (S being the (d − 1)-dimensional “surface” measure)
and recall the tangential trace of ψ ∈ H1(Ω;Rd) is expressed (or defined) by

(
I − nΩnΩ

ᵀ) ψ|∂Ω . (5)

Define the following function spaces

W :=
{
ψ ∈ H1(Ω;Rd) : (I − nΩnΩ

ᵀ) ψ|∂Ω = 0
}
, (6)

Y := H1(Ω)× H1
(
Ω;Rd

)
(7)

V := H1
0(Ω)×W ⊆ Y , (8)

endowed with the H1-norm for W and the following norm for Y and V ,

‖(ϕ,ψ)‖2
Y := ‖ϕ‖2

H1(Ω)
+ ‖ψ‖2

H1(Ω)
for each (ϕ,ψ) ∈ Y ⊇ V . (9)

We denote by 〈ϕ,ψ〉 the L2(D;V ) inner product with respect to the Lebesgue or
surface measure on D. For a fixed θ ∈ [0, 1] we introduce the linear operator Mθ :
Y → L2(Ω)

(ϕ,ψ) �→ A : Dψ + bᵀ(θψ + (1− θ)∇ϕ)− cϕ =:Mθ (ϕ,ψ). (10)

The parameter θ is at the user’s disposal, but the most useful values are 0, 1/2 and 1.
We introduce the following quadratic functional of (ϕ,ψ) ∈ V

Eθ(ϕ,ψ) := ‖∇ϕ − ψ‖2
L2(Ω) + ‖∇×ψ‖2

L2(Ω) + ‖Mθ (ϕ,ψ) − f ‖2
L2(Ω) (11)

where∇×ψ denotes curl (rotation) of ψ , and then consider the convex minimization
problem of finding

(u, g) = arg min
(ϕ,ψ)∈V

Eθ(ϕ,ψ). (12)

Remark 1 (Equivalent Problems) The problem of finding strong solution to (2) and
convex minimization problem (12) are equivalent and in (12), g = ∇u holds. Thus,
in the rest of the paper, g is equal to ∇u.

The Euler–Lagrange equation of the minimization problem (12) consists in
finding (u, g) ∈ V such that

〈∇u− g,∇ϕ − ψ〉 + 〈∇×g,∇×ψ〉 + 〈Mθ (u, g),Mθ (ϕ,ψ)〉
= 〈f,Mθ (ϕ,ψ)〉 for each (ϕ,ψ) ∈ V . (13)
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We introduce the symmetric bilinear form aθ : Y 2 → R via

aθ (ϕ,ψ;ϕ′, ψ ′) := 〈∇ϕ − ψ,∇ϕ′ − ψ ′〉+〈∇×ψ,∇×ψ ′〉+〈Mθ (ϕ, ψ),Mθ (ϕ
′, ψ ′)

〉
.

(14)

Theorem 1 (Coercivity and Continuity) Let Ω be a bounded convex open subset
of Rd and the uniformly bounded coefficients A, b, c satisfy either (3) with λ > 0
or (4) with b ≡ 0 and c ≡ 0. Then aθ on V is coercive and continuous, there exist
C15, C16 > 0 such that

aθ (ϕ,ψ; ϕ,ψ) � C15 ‖(ϕ,ψ)‖2
Y for each (ϕ,ψ) ∈ V , (15)

aθ
(
ϕ,ψ; ϕ′, ψ ′) � C16 ‖(ϕ,ψ)‖Y

∥
∥(ϕ′, ψ ′)

∥
∥
Y for each (ϕ,ψ), (ϕ′, ψ ′) ∈ V .

(16)

Theorem 1 ensures the well-posedness of the problem (13) through the Lax-
Milgram setting.

Definition 1 (A Least Squares Finite Element Method) Let T be a collection of
conforming shape-regular triangulations on Ω which also known as meshes. If the
domain, Ω , is a polyhedral then it coincides with the interior area of the mesh.
Otherwise, if the domain includes curved boundary, the coincidence is lost. Hence
this leads to have simplices with curved sides and isoparametric elements. For each
element K ∈ T ∈ T, denote hK := diamK , and h := hT := maxK∈T hK . Now,
consider the following Galerkin finite element spaces

U := Pk (T ) ∩ H1
0(Ω), G := Pk(T ;Rd ) ∩W ⊆ H1(Ω;Rd ). (17)

Corresponding to these spaces, the discrete problem corresponding to (13) turns to
finding (uU,gG) ∈ U× G such that

aθ (uU,gG; ϕ,ψ) = 〈f,Mθ (ϕ,ψ)〉 for each (ϕ,ψ) ∈ U× G. (18)

The coercivity is inherited to subspaces, therefore the solution of discrete prob-
lem (18) is also well-posed. The discrete problem (18) leads to an approximate
solution satisfying the following error estimate theorems.

Remark 2 (Implementing the Boundary Conditions) Since imposing zero-
tangential trace condition to the finite element spaces is not trivial. In the
implementation we used in Sect. 4 we replace in (18) the space G := Pk

(
T ;Rd

) ∩
W ⊆ H1(Ω;Rd) with the larger space G̃ := Pk

(
T ;Rd

) ∩ H1(Ω;Rd ).

Theorem 2 (A Priori Error Estimate) Let T ∈ T be a mesh on the polyhedral
domain Ω ⊆ Rd . Moreover assume that the strong solution u of (2) satisfies u ∈
Hβ+2(Ω), for some real β > 0. Let (uU,gG) ∈ U×G be the finite element solution
of (18) on the mesh T . Then for some C19 > 0, independent of u and h we have

‖(u,∇u)− (uU,gG)‖Y � C19h
min {k,β} ‖u‖Hk+2(Ω) . (19)
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Remark 3 (Curved Domain) In the case that Ω has a curved boundary we use
isoparametric finite element. A piecewise smooth domain guarantees an optimal
rate error bound using isoparametric finite element similarly to Theorem 2 [2].

Theorem 3 (Error-Residual a Posteriori Estimates) Let (uU,gG) is the unique
solution of the discrete problem (18).

(i) The following a posteriori residual upper bound holds

‖(u,∇u)− (uU,gG)‖2
Y � C−1

15
(
‖∇uU − gG‖2

L2(Ω) + ‖∇×gG‖2
L2(Ω) + ‖Mθ (uU,gG)− f ‖2

L2(Ω)

)
.

(ii) For any open subdomain ω ⊆ Ω we have

‖∇uU − gG‖2
L2(ω)

+ ‖∇×gG‖2
L2(ω)

+ ‖Mθ (uU,gG)− f ‖2
L2(ω)

� C16,ω

(
‖u− uU‖2

H1(ω)
+ ‖∇u− gG‖2

H1(ω)

)
, (20)

where C16,ω is the continuity constant of aθ restricted to ω ⊆ Ω .

3 Linearization of Fully Nonlinear Problems

In this section, we present the Newton differentiability concept to operators, which
can even include non-smooth operators. This concept is useful to extend the standard
Newton linearization to the problems with non-smooth operator. We state the
convergence analysis of a linearization method which is based on this concept. We
then discuss linearization of two specific fully nonlinear PDEs, namely Monge–
Ampère and Hamilton–Jacobi–Bellman equations that lead to a sequence of linear
equations in nondivergence form. We refer the reader to [1] or [6] for details on such
equations.

Definition 2 (Newton Differentiable Operator, Ito and Kunisch [5]) Let X and
Z be Banach spaces and let U be a non-empty open subset of X . An operator
F : U ⊂ X → Z is called Newton differentiable at x ∈ U if there exists a
set-valued map with non-empty images DF : U ⇒ Lin (X → Z ) (where the
double arrow signifies values in the power set of the right-hand side) such that

lim‖e‖X→0

1

‖e‖X
sup

D∈DF [x]
‖F [x + e] −F [x] −De‖Z = 0 for each x ∈ U .

(21)

The nonlinear operator F is called Newton differentiable on U with Newton
derivative DF if F is Newton differentiable at x, for every x ∈ U .
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The set-valued map DF [x] is single-valued at x if and only if F is Fréchet
differentiable and DF [x] = {DF [x]}.
Theorem 4 (Superlinear Convergence) Suppose that a nonlinear operator F is
Newton differentiable in an open neighborhood U of x∗, solution of F [x] = 0. If
for any x ∈ U , the all D ∈ DF [x] are non-singular and

∥
∥D−1

∥
∥ are bounded, then

the Newton iteration

xn+1 = xn −D−1
n F [xn], Dn ∈ DF [xn] (22)

converges superlinearly to x∗ provided that x0 is sufficiently close to x∗.

Definition 3 (The Monge–Ampère Equation) Let Ω ⊆ R2 be a bounded convex
domain. Consider the Monge–Ampère (MA) equation with Dirichlet boundary
condition

det D2 u = f in Ω, u|∂Ω = 0 and u is strictly convex in Ω, (23)

where f ∈ L2(Ω), f > 0 . Let K := {
v ∈ H2(Ω) ∩ H1

0(Ω) : v is strictly convex
}

and define the operators M : K → L2(Ω) by

M [v] := det D2 v − f (24)

and DM : K → Lin
(
H2(Ω) ∩ H1

0(Ω)→ L2(Ω)
)

by

DM [v] := Cof D2 v : D2 . (25)

Theorem 5 (Superlinear Convergence of Iterative Method to MA Equation)
The operator M is Fréchet differentiable and thus Newton differentiable. Moreover,
if the initial guess u0 ∈ K is close to the exact solution u ∈ H2(Ω) ∩ H1

0(Ω)

of (23), then the recursive problem

Cof D2 un : D2 un+1 = f − det D2 un + Cof D2 un : D2 un in Ω, and un+1|∂Ω = 0

(26)

converges with superlinear rate to u.

Definition 4 (Hamilton–Jacobi–Bellman Equation) Let Ω be a bounded convex
domain in Rd , d ∈ N (typically d = 2, 3). Consider the Hamilton–Jacobi–Bellman
(HJB) equation with Dirichlet boundary condition

sup
α∈A

(
Aα : D2 u+ bαᵀ∇u− cαu− f α

)
= 0 in Ω and u|∂Ω = 0 (27)

where A is a compact metric space, A ∈ L∞(Ω;C0(A ; Sym (Rd))), b ∈
L∞(Ω;C0(A ;Rd )), c ∈ L∞(Ω;C0(A )) and f ∈ L2(Ω;C0(A )). We suppose
Aα(x) is uniformly elliptic in both x and α and together with bα, cα meets, for
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some ε ∈ (0, 1) the Cordes condition (3), or (4) if bα ≡ 0, cα ≡ 0, independent of
α ∈ A . For each α ∈ A , define the linear operator

L αv := Aα : D2 v + bαᵀ∇v − cαv, (28)

the following set of A -index-valued maps:

Q := {q : Ω → A | q is measurable} , (29)

and the set-valued map N , for v ∈ H2(Ω) ∩ H1
0(Ω), such that

N [v] := {
q ∈ Q : q(x) ∈ Argmaxα∈A

([
L αv − f α

]
x
)

for almost all x in Ω
}
.

(30)

Now, we define the HJB operator by

B[v] := sup
q∈Q

L qv − f q, (31)

and the set-valued mapDB : H2(Ω) ∩ H1
0(Ω)⇒ Lin

(
H2(Ω) ∩H1

0(Ω)→L2(Ω)
)

by

DB[v] :=
{
L q := (Aq : D2 +bqᵀ∇ − cq) | q ∈ N [v]} . (32)

Theorem 6 (Superlinear Convergence of Iterative Method to HJB Equation)
The operator B is Newton differentiable with Newton derivative DB. Moreover, if
the initial guess u0 is close to the exact solution u ∈ H2(Ω) ∩ H1

0(Ω) of (27), the
recursive problem

L qnun+1 = f qn in Ω, and un+1|∂Ω = 0 (33)

where qn ∈ N [un], converges with superlinear rate to u.

To follow (26) and (33), we need to approximate a linear problem in nondiver-
gence form in each iteration, which we apply the method discussed in Sect. 2. The
convergence of the iterative methods (26) and (33) implies that the finite element
approximation (uU,gG) ∈ U×G achieved via the recursive problems also satisfies
the error bound of Theorems 2 and 3.

Remark 4 The a posteriori residual bound of Theorem 3 can be used as an explicit
error indicator to determine a locally refined mesh in the adaptive scheme.
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4 Numerical Experiments

We discuss two numerical tests one for each of Monge–Ampère via Newton and
Hamilton–Jacobi–Bellman problems that demonstrate the robustness of our method
to the fully nonlinear problems. For both test problems, the domain, Ω , is taken to be
the unit disk in R2 with center at the origin. The criterion to stop the iteration is either
‖(un+1,gn+1)− (un,gn)‖Y < 10−8 or maximum 8 iterations. In implementation,
we take the parameter θ of (18) equal to 0.5. Both implementations were done by
using FEniCS package.

In the first test problem, the known solution is considered smooth and we see that
the numerical results which obtained on the uniform mesh confirm the convergence
analysis of Theorem 2. In the second test problem, we choose the known solution
near singular and test the performance of the adaptive scheme as mentioned in
Remark 4. Through comparing the convergence rate by the adaptive with uniform
refinement, we observe the efficiency of the adaptive scheme.

Problem 1 (Monge–Ampère Test) Consider problem (23) and choose f corre-
sponding to the exact solution

u(x) = −
√
R2 − x2

1 − x2
2 +

√
R2 − 1, for a fixed R > 1. (34)

As suggested by Lakkis and Pryer Lakkis and Pryer [9] the first iterate u0 is the
discretization of u0 satisfying

Δu0 = 2
√
f in Ω, and u0|∂Ω = 0 (35)

and then we track the recursive problem (26). We show various error norms of linear
(P1) and quadratic (P2) finite element approximation for two values R in Figs. 1
and 2.

Problem 2 (Hamilton–Jacobi–Bellman Test) Consider problem (27) and let
A = [0, 2π],

Aα(x) =
[

cos(α) sin(α)
− sin(α) cos(α)

][
1+ (x2

1 + x2
2 ) 0.005

0.005 1.01− (x2
1 + x2

2 )

][
cos(α) − sin(α)
sin(α) cos(α)

]

,

(36)

bα = 0, cα = 2−0.5(cos(2α)+sin(2α)), f α = L αu−(1−cos(2α−π(x1+x2))),

(37)

with the exact solution

u(x) :=
{
r(x)5/3(1 − r(x))5/2 sin(ϕ(x))5/2 if 0 < r(x) � 1 and , 0 < ϕ(x) < 3π/2,

0 otherwise,
(38)
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Fig. 1 Experimental order of convergence (EOC) for the Monge–Ampère test problem with R =√
2. (a) P1 elements. (b) P2 elements
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Fig. 2 Experimental order of convergence (EOC) for the Monge–Ampère test problem with R =
2. (a) P1 elements. (b) P2 elements
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Fig. 3 Mesh in a and b–d show the convergence rate in both the uniform and adaptive refinement
for the HJB test problem Sect. 2 with P2 elements. While the adaptive scheme does not yield
any noticeable gain for the function value approximation (‖u− u�‖H1(Ω)), it does so in the
reconstructed gradient (‖∇u− g�‖Y )

(r(x), ϕ(x)) are polar coordinates centered in the origin. One can check that the near
degenerate diffusion Aα together with bα and cα satisfy the Cordes condition (3)
with λ = 1 and ε = 0.0032. Note that u ∈ Hs for any s < 8/3. As u ∈ H2(Ω), we
do not expect the advantage of the adaptive scheme over than the uniform refinement
for H1(Ω)-norm of the error of uU; it is shown in Fig. 3b. But since ∇u does
not have such smoothness, we observe the superiority of the adaptive scheme for
H1(Ω)-norm of the error of gG (and Y -norm of the error of (uU,gG)) in Fig. 3c
and d.
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A Posteriori Model Error Analysis
of 3D-1D Coupled PDEs

Federica Laurino, Stefano Brambilla, and Paolo Zunino

Abstract The objective of this work is to extend the model reduction technique
for coupled 3D-1D elliptic PDEs, previously proposed by the authors, with an a
posteriori analysis of the model error, defined as the difference between the solutions
of the reference and reduced problem. More precisely, we introduce an estimator for
a user-defined functional of the error, computed using a duality approach. This result
is particularly useful since it allows to localize the model error on the computational
mesh and to investigate the reliability of the model reduction approach.

1 Introduction

Model reduction techniques have been extensively analyzed and applied in many
fields. For instance, they result very useful in case of PDEs defined in domains with
small inclusions because the scale separation between the domains can be exploited
in order to reduce the computational cost. When the inclusions are shaped as slender
bodies the model describing the action of the inclusions can be transformed in a
simpler 1D problem. In particular, we consider the 3D-1D model reduction approach
addressed recently in [2–7] and in particular the formulation proposed in [7] and we
perform an a posteriori analysis of the model error. The insight provided by the
analysis is twofold: we understand how well the reduced problem represents the
original one and we localize the error on the computational mesh.
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2 Problem Setting

We consider the prototypal problem based on Robin-Neumann coupling conditions
addressed in [7]. The domain is denoted by � and composed by two parts, 0 and
�⊕ := � \ 0. We assume � is convex and 0 (the interior domain) is completely
embedded into �, such that the distance between ∂� and ∂0 is strictly positive.
Let 0 be a generalized cylinder, that is the swept volume of a two dimensional set
moved along a curve in the three-dimensional space. We denote by � the lateral
boundary of the cylinder and ! = {!(s), s ∈ (0, S)} the centerline. Moreover,
D(s) is the cross section and ∂D(s) its boundary. Let | · | denote the Lebesgue
measure of a set. We assume that 0 has top and bottom boundaries, namely
|D(0)|, |D(S)| > 0, and they are denoted by �0 and �S respectively. We refer
to [7] for more details. The problem consists to find u⊕, u7 (where⊕,7 denote the
exterior and the interior of 0, respectively) such as:

−�u⊕ = f in �⊕, (1a)

−�u7 = g in 0, (1b)

−∇u⊕ · n⊕ = κ (u⊕ − u7) on �, (1c)

−∇u7 · n7 = κ (u7 − u⊕) on �, (1d)

−∇u⊕ · n⊕ = 0 on �0 ∪ �S, (1e)

−∇u7 · n7 = 0 on �0 ∪ �S, (1f)

u⊕ = 0 on ∂� . (1g)

It is assumed that the interface of 0 is permeable, namely it is crossed by a normal
flux proportional to κ (u⊕ − u7). The coefficient κ plays the role of permeability
or transfer coefficient and it is uniform on each cross section ∂D(s). As a result of
that, κ is only a (regular) function of the arc-length s. In [7], a topological model
reduction technique, based on averaging, is applied to (1) in order to transform
the problem on 0 into a simpler one. In particular, the domain 0 is shrunk to its
centerline ! and the corresponding partial differential equation is averaged on the
cylinder cross section, namely D. This new problem setting is called the reduced
problem.

2.1 Reduced 3D-1D Coupled Problem

The averaging technique presented in [7] is based on four fundamental assumptions,
described below.

A0 The transversal diameter ε of 0 is small compared to the diameter of �.
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A1 The function u7 has a uniform profile on each cross section D(s), namely
u7(r, s, t) = U(s).

A2 The domain �⊕ can be identified with the entire �, and we correspondingly
omit the subscript ⊕ to the functions defined on �⊕.

We denote by (·) and (·) the average operators computed on D and ∂D
respectively. Namely, for any sufficiently regular function w, w(s) =
|D(s)|−1

∫
D(s) wdσ and w(s) = |∂D(s)|−1

∫
∂D(s) wdγ . We decompose the

solution and the test functions on every cross section ∂D(s) as their average
plus some fluctuations, namely u⊕ = u⊕ + ũ⊕, u7 = u7 + ũ7, v = v + ṽ,
where ũ⊕ = ũ7 = ṽ = 0, and

A3 the energy of fluctuations is small, i.e.
∫
∂D(s) ũ∗ṽdγ * 0 .

Applying the assumptions A0–A3 to (1), we obtain the 3D-1D coupled problem that
is to find u ∈ H 1

0 (�) and U ∈ H 1(!) such that for any v ∈ H 1
0 (�), V ∈ H 1(!)

(∇u,∇v)� + (κu, v)!,|∂D| = (κU, v)!,|∂D| + (f, v)�, (2a)

(dsU, dsV )!,|D| + (κU, V )!,|∂D| = (κu⊕, V )!,|∂D| + (g, V )!,|D|, (2b)

where (·, ·)X denotes the standard L2 scalar product in X and (·, ·)X,|w| =
(|w|·, ·)X.

3 A-posteriori Model Error Analysis

In [7] an a-priori analysis of the model error is performed. More precisely, the model
error, e, is defined as the difference of the reference and reduced solutions, namely
e = (u⊕ + u7)− (u+ U). The error is split in three components e(i), i = 1, 2, 3,
representing the errors arising from assumptions Ai, i = 1, 2, 3. It can be proved
that each e(i) goes to zero with ε. Therefore, the smaller is the radius of the inclusion,
the better the reduced problem approximates the original one. The proof is based on
the theory developed in [1]. In particular, with the aim of analyzing the error e(i)

arising from the application of assumption Ai, the related reference and reduced
problems are introduced,

find u
(i)
ref ∈ X(i) : a(i)

ref(u
(i)
ref, v) = F(i)

ref(v), ∀v ∈ X(i), (3)

find u(i) ∈ X(i) : a(i)(u, v) = F(i)(v), ∀v ∈ X(i). (4)

For the sake of simplicity, from now on we omit the superscript (i) where there is
no ambiguity of notation. However, all the quantities must be interpreted as referred
to the i-th component of the error. The bilinear form aref and the functional Fref

can be expressed as a modification of a and F as follows

aref(u, v) = a(u, v)+ d(u, v), ∀u, v ∈ X , F ref(v) = F(v)+ l(v), ∀v ∈ X
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where d(u, v) and l(v) can be seen as perturbation operators, related to the small
parameter ε. Let j (·) : X → R be a linear output functional. In order to estimate
the modeling error measured by j (e), the reference dual problem

find zref ∈ X : aref(v, zref) = j (v), ∀v ∈ X , (5)

is introduced and the error output functional is represented as follows,

j (e) = l(zref)− d(u, zref) . (6)

Using (6), it can be proved that the error e vanishes for infinitesimal ε, see [7].

3.1 Localization of the Model Error

Starting from the definitions of the difference operators d(i)(·, ·) and l(i)(·), i =
1, 2, 3, in [7] the error output functional j (e) is computed, through the error
representation formula (6). However, this requires solving the dual reference
problem. On one side it is less expensive than the primal one since it is uncoupled,
but on the other side it can be still demanding from a computational point of view.
Therefore, when the radius ε is small enough we aim to replace the reference dual
solution with the reduced one, using an approximated representation formula.

Approximated Representation Formula

For the sake of simplicity, let us neglect the role of l (·) in (6) as the following
considerations will apply similarly when l (·) �= 0. Our goal is to separate the
contribution of the representation formula (6) depending on the reference solutions
uref and zref from the contribution depending on the reduced solutions u and
z. To this purpose, we follow the general theory developed in [1] that is briefly
summarized here for the sake of clarity. Let z be the solution of the following dual
reduced problem

a(v, z) = j (v), ∀v ∈ X. (7)

The functional j (·) applied to the error e can be written as:

j (e) = −d
(
u, zref

) = −d (u, z)− d
(
u, zref − z

)
. (8)

Let us assume that d(·, ·) is continuous; therefore, with ‖·‖ denoting the usual norms
on X and X × X, it holds |d(u, z)| ≤ ‖d‖‖u‖ ‖z‖. If the mapping A : X → X′,
A(u) = a(u, ·) is bijective, the adjoint A∗ is bijective too. Using the open mapping
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theorem, there exists a constant α > 0 such that:

‖z‖ ≤ α sup
v∈X

a (v, z)

‖v‖ , ∀z ∈ X. (9)

The last result we need is the dual perturbed Galerkin orthogonality: subtracting
(7) from (5), we obtain a

(
v, zref − z

) = −d
(
v, zref

)
, ∀v ∈ X. Combining the

previous equality with (9), we deduce the a-priori estimate:

∥
∥zref − z

∥
∥ ≤ α sup

v∈X
a
(
v, zref − z

)

‖v‖ ≤ α sup
v∈X

d
(
v, zref

)

‖v‖ ≤ α ‖d‖ ∥∥zref
∥
∥ .

Finally, employing the continuity of d (·, ·) , we find:

∣
∣d
(
u, zref − z

)∣∣ ≤ ‖d‖ ‖u‖ ∥∥zref − z
∥
∥ ≤ α ‖d‖2 ‖u‖ ∥∥zref

∥
∥ . (10)

In conclusion, the representation (8) can be bounded estimated as:

|j (e)| ≤ ‖d‖ ‖u‖ ‖z‖ + α ‖d‖2 ‖u‖ ∥∥zref
∥
∥ . (11)

Equation (11) achieves the goal to separate the contributions depending on the
reduced and the reference solutions. More importantly, Eq. (11) shows that the
model error is characterized by a first order term with respect to ‖d‖, which
depends on ‖z‖, combined with a second order term on ‖d‖ that depends on ‖zref ‖.
Reminding that ‖d‖ is the norm of the perturbation operator, such that ‖d‖ −→ 0
when ε vanishes, (11) shows that the model error can be reasonably estimated using
u and z solely for ε sufficiently small. Repeating the same estimate for l (·), at first
order in ‖d‖ and ‖l‖, the model error can be approximated as following using the
approximated representation formula:

j (e) ≈ l (z)− d (u, z) . (12)

Local Error Estimator

In what follows we introduce a local error estimator based on the approximated
representation formula (12). Let T �

h be a triangulation of � and Xh ⊂ X be
a suitable finite element space of dimension N . We denote with uh and zh the
discrete solutions of the reduced problem (4) and the reduced dual problem (7),
respectively. Considering the Lagrangian nodal basis {ϕk} ⊂ Xh, we define the
vector of residuals, � = {$k}Nk=1 as $k = l (ϕk)− d (uh) (ϕk) and the local weights
ω̃ = {ω̃k}Nk=1 correspond to the degrees of freedom of the discrete dual reduced
solution, namely zh =∑N

k=1 ω̃kϕk. Let 〈·, ·〉 be the Euclidean scalar product in R
N .

According to (12), the model error output functional j (e) can be approximated by
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〈
�, ω̃

〉
and the components of the local error estimator η̃ ∈ R

N are η̃k = $kω̃k . The

vector η̃ can be represented on � as a finite element function η̃h = ∑N
k=1 η̃kϕk .

Each nodal component of η̃ represents the localization of the approximated error on
Th

�.
Using this general approach we explicitly calculate the estimators η̃1, η̃2, η̃3 of

the model errors e(1), e(2), e(3) related to the assumptions A1, A2, A3. To this aim,
we must compute the residuals �(i) and the weights ω̃(i) for i = 1, 2, 3. Since the
different components of the error are defined on different domains, in particular 0
and �, we should introduce different finite element spaces over 0, �⊕, �. However,
for computational convenience, we define all the estimators using the basis functions
ϕk of the finite element space V �

h ⊂ H 1
0 (�), under the additional assumption that

the mesh Th
� nodally conforms with the interface �. Let N�

h = dimV �
h be the

degrees of freedom of such space. As a result, all the vectors of weights and residuals
belong to R

N�
h . We first build the residuals �(i) for i = 1, 2, 3, depending on the

discrete reduced solutions uh and Uh, computed by means of the discretization
of (2). Following [7], we decompose the perturbation operators d(·, ·) and l(·) into
their contributions related to the assumptions A1, A2, A3. For k = 1, . . . , N�

h the
nodal components of the residuals are,

$
(1)
k = l(1)(ϕk)− d(1)(Uh, ϕk) =((I− (·))g, ϕk)0 + (κ(I− (·))uh, ϕk)�,

(13a)

$
(2)
k = l(2)(ϕk)− d(2)(uh, ϕk) =(∇uh,∇ϕk)0 − (f, ϕk)0, (13b)

$
(3)
k = l(3)(ϕk)− d(3)(uh, ϕk) =− (κ(I− (·))uh, ϕk)�, (13c)

Concerning the weights, we recall that in [7] they are computed using the solutions
of the following reference dual problems, defined on 0, �⊕ and � respectively,

find z
(1)
ref,h ∈ V 0

h : (∇vh,∇z
(1)
ref,h)0 + (κvh, z

(1)
ref,h)� = j (1)(vh), ∀vh ∈ V0

h

find z
(2)
ref,h ∈ V

�⊕
h : (∇vh,∇z

(2)
ref,h)�⊕ + (κvh, z

(2)
ref,h)� = j (2)(vh), ∀vh ∈ V

�⊕
h

find z
(3)
ref,h ∈ V �

h : (∇vh,∇z
(3)
ref,h)� + (κvh, z

(3)
ref,h)� = j (3)(vh), ∀vh ∈ V�

h ,

being j (i), i = 1, 2, 3 suitable output functionals. Conversely, we calculate the
weights using the reduced dual solutions zh and Zh arising from the discretization
of the reduced dual problem consisting to find zh ∈ V �

h , Zh ∈ V !
h such that

(∇vh,∇zh)� + (κvh, zh)!,|∂D| = j red� (vh), ∀vh ∈ V�
h , (14a)

(dsVh, dsZh)!,|D| + (κVh,Zh)!,|∂D| = J red
! (Vh), ∀Vh ∈ V !

h , (14b)
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where the functionals j red� (·) : H 1
0 (�)→ R and J red

! (·) : H 1
0 (!)→ R are

j red� (v) =
∫

�

v d�, J red
! (v) =

∫

!

v d! (15)

More precisely, since the residual $(1) corresponds to the model error on !, due to
the assumption A1, we choose ω̃(1) as the extension on 0 of the function Zh. Such
extension is called E0Zh. For ω̃(2) and ω̃(3) we use zh which is defined on the entire
� because the corresponding model error is defined on �⊕ and � respectively, as
shown in full details in [7]. Therefore,

ω̃(1) =
{
E0Zh in 0

0 in �⊕
ω̃(2) = zh in � ω̃(3) = zh in �. (16)

Finally, we combine the weights and the residuals in order to compute the local
estimators,

η̃(1) =
N�

h∑

k=1

ω̃
(1)
k $

(1)
k , η̃(2) =

N�
h∑

k=1

ω̃
(2)
k $

(2)
k , η̃(3) =

N�
h∑

k=1

ω̃
(3)
k $

(3)
k . (17)

4 Results

We solve the primal reduced coupled problem (2) on a segment ! from
(−0.51, 0, 0) to (0.51, 0, 0) completely embedded in the parallelepiped � =
(−1, 1)2 × (−0.51, 0.51); the tessellation of � is a quasi-uniform regular mesh,
with characteristic length h = 1/32. The other parameters are: R = 0.25, k = 1,
f = 1 and g = 1. The discrete solutions of (2), uh and Uh, are computed using
piecewise linear finite elements. We calculate the residuals $(i) by means of (13).
We then solve the reduced dual problem (14), using as right hand sides the output
functionals (15), and we compute the weights ω̃(i) as in (16). In Fig. 1 we show the
estimators given by (17) on a slice of the domain. As expected, the error is localized
in 0 and at the interface �. We notice that from the definition of the residual $(1)

and the weight ω̃(1), we would expect a contribution in η̃(1) also inside 0. However,
since we are considering g = 1, the term (g − g, ϕk)0 in $(1) vanishes and the
residual results to be located only at the interface �. Consequently, also η̃(1) is zero
inside the cylinder. In [7] it is shown that for non constant right hand side g, the
residual $(1) has non zero values in 0.

Moreover, we perform a second test in which an inclusion with a smaller radius
is considered (R = 0.1). In Table 1 we show a comparison between the results
obtained in the two cases, highlighting that the error decreases for a thinner cylinder.
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Fig. 1 The reduced estimators η̃(1), η̃(2), η̃(3)

Table 1 Variation of the error output functionals j (k)(e) when the radius of the inclusion 0

decreases from R = 0.25 to R = 0.1

j (1)(e) =∑
i η

(1)
i j (2)(e) =∑

i η
(2)
i j (3)(e) =∑

i η
(3)
i

R = 0.25 4e–05 −1e–03 −1e–05

R = 0.1 3e–05 −1e–03 −1e–06

Table 2 Comparison of the error output functionals j (i)(e) computed using the estimator η(i)

based on (6) and the estimator η̃(i) based on (12)

j (1)(e) j (2)(e) j (3)(e)

η(i) 2e–04 −1e–02 −1e–05

η̃(i) 4e–05 −1e–03 −1e–05

Finally, we discuss the usage of the estimators η̃(i) based on the reduced weights
instead of the estimators η(i) based on the reference ones adopted in [7]. From
the previous section and the theory developed in [1], we know that with the
approximated representation formula of the modeling error we neglect higher-order
terms, depending on the reference dual solution. Although we cannot a priori infer
that the reduced estimators are smaller than the reference ones, Table 2 shows that
that η(i) > η̃(i). The larger difference between the reference and residual estimators
lays in η(2), which depends on the extension in 0 of the dual solution. However,
from the comparison with the results presented in [7], one can notice that, even
though the values of η(i) are different from the values of η̃(i), their distribution on
the domain is almost the same.
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CG Variants for General-Form
Regularization with an Application
to Low-Field MRI

M. L. de Leeuw den Bouter, M. B. van Gijzen, and R. F. Remis

Abstract In an earlier paper, we generalized the CGME (Conjugate Gradient
Minimal Error) algorithm to the �2-regularized weighted least-squares problem.
Here, we use this Generalized CGME method to reconstruct images from actual
signals measured using a low-field MRI scanner. We analyze the convergence of
both GCGME and the classical Generalized Conjugate Gradient Least Squares
(GCGLS) method for the simple case when a Laplace operator is used as a
regularizer and indicate when GCGME is to be preferred in terms of convergence
speed. We also consider a more complicated �1-penalty in a compressed sensing
framework.

1 Introduction

In Magnetic Resonance Imaging (MRI), the measured signal b is related to x, the
object being imaged, by a Fourier Transform:

b = F x+ v. (1)

Here, v denotes a noise vector. Based on measurements b, we will reconstruct x,
which makes this an inverse problem. In this work, we will assume the object of
interest to be 2D, which means that F is a 2D Fourier Transform operator. However,
all the results can be extended to 3D.

In conventional MRI, the signal-to-noise ratio (SNR) is so high that applying
an Inverse Fourier Transform usually results in an image of very good quality.
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This is because superconducting magnets are used to generate strong magnetic
field strengths of several tesla and the SNR is higher in the case of a stronger
magnetic field. In [8], O’Reilly et al. describe a low-field MRI scanner based on a
configuration of permanent magnets. The magnetic field strength inside this scanner
is 50 mT, whereas conventional scanners have background fields of several teslas.
For very noisy signals, it can be useful to minimize a regularized least-squares
problem of the form

arg min
x

1

2
||b− F x||2

C−1 + 1

2
τ ||x||2R, (2)

instead of disregarding the noise v and solving Eq. (1) for x. In Eq. (2), the
regularization parameter τ determines the tradeoff between the least-squares term
||b − F x||2

C−1 and the regularization term ||x||2R. In the least-squares term, C
denotes the covariance matrix of the noise, and in the regularization term, R is a
regularizing matrix, which we will assume to be Hermitian positive definite (HPD).
Regularization allows us to enforce prior information we have about the solution.
For a thorough exploration of the regularization of inverse problems, the reader is
referred to [5].

2 GCGLS and GCGME

In [2], we introduced the Generalized Conjugate Gradient Minimal Error (GCGME)
method for general form regularization. In this section we will review the main
ideas. We are interested in solving minimization problems of the form

arg min
x

1

2
||b− Ax||2

C−1 + 1

2
τ ||x||2R. (3)

Note that Eq. (3) is of the same form as Eq. (2), but we have replaced F by a general
forward model matrix A.

Usually, minimization problem (3) is solved using the Generalized Conjugate
Gradient Least-Squares (GCGLS) method. (We add the word “generalized” because
CGLS is often used to denote the CG variant that solves the normal equations
A∗Ax = A∗b of the minimized least-squares problem without regularization.) By
taking the gradient of Eq.,(3) and setting it equal to zero, we find

(
A∗C−1A + τR

)
x = A∗C−1b. (4)

Equation (4) can be solved using the conjugate gradient (CG) method. Some
adjustments can be made to improve stability, see for example [1], leading to the
GCGLS method. By rewriting Eq. (3) as a constrained minimization problem, we
can find another set of equations that can be used to find the solution x. We define
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r = C−1(b− Ax) and rewrite minimization problem (3):

min
r,x

1

2
||r||2C +

1

2
τ ||x||2R (5)

s.t. r = C−1(b− Ax).

We will assume τ > 0. By applying the method of Lagrange multipliers and
eliminating x, we get

(
1

τ
AR−1A∗ + C

)

r = b. (6)

Additionally, the following relationship between r and x holds:

x = 1

τ
R−1A∗r. (7)

So by applying CG to Eq. (6) and subsequently solving Eq. (7) for x, we can
obtain our solution. The resulting algorithm, which we call Generalized Conjugate
Gradient Minimal Error (GCGME), is given below.

Algorithm 1 GCGME

Require: A ∈ CM×N ,C ∈ CM×M,R ∈ CN×N , r0 ∈ CM,b ∈ CM, τ ∈ R>0;
Ensure: Approximate solution xk such that ‖b−Axk −Crk‖ � TOL.
1: x0 = 1

τ
R−1AH r0

2: s0 = b− Ax0 − Cr0, p0 = s0, q0 = AH p0, γ0 = sH0 s0, k = 0
3: while

√
γk > TOL and k < kmax do

4: ξk = 1
τ

qH
k R−1qk + pH

k Cpk

5: αk = γk
ξk

6: rk+1 = rk + αkpk

7: xk+1 = xk + αk

τ
R−1qk

8: sk+1 = sk − αk(
1
τ

AR−1qk +Cpk)

9: γk+1 = sHk+1sk+1

10: βk = γk+1
γk

11: pk+1 = sk+1 + βkpk

12: qk+1 = AHpk+1
13: k = k + 1
14: end while

2.1 Comparison of the Condition Numbers: A Simple Case

In this section we consider a very simple but illustrative case that allows us to
analyze the condition numbers, and hence the convergence speed, of GCGME and
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GCGLS. We demonstrate, depending on the regularization parameter, which method
is to be preferred. We set A = F and the noise is assumed to be white noise, so
C = I. We define the regularization matrix to be the discretized 2D Laplacian
L complemented with Dirichlet boundary conditions. Choosing the regularization
matrix in this way means that large jumps in the reconstructed image x are
discouraged. In that case, GCGLS solves

(I+ τL) x = F ∗b, (8)

where F ∗ = F−1 is the inverse 2D Fourier Transform. GCGME solves

(
1

τ
FL−1F ∗ + I

)

r = b , (9)

x = 1

τ
L−1F ∗r.

The convergence speed of GCGLS and GCGME depends on the condition number
of the matrices I + τL and 1

τ
FL−1F ∗ + I, respectively. The eigenvalues of the

Laplacian L are well-known and hence we can find explicit expressions for the
condition numbers. For GCGLS, we have

κ2 (I+ τL) =
1+ 8τ cos2

(
π
2

1
N+1

)

1+ 8τ sin2
(
π
2

1
N+1

) . (10)

Here, we assume that our image consists of N × N pixels. For GCGME, we make
use of the fact that FL−1F ∗ is a similarity transformation and therefore has the
same eigenvalues as L−1, yielding

κ2

(
1

τ
FL−1F ∗ + I

)

=
1+ 1

8τ sin2
(
π
2

1
N+1

)

1+ 1

8τ cos2
(
π
2

1
N+1

)
. (11)

These condition numbers can be shown to be equal when

τ ∗ = 1

8 cos
(

π
2(N+1)

)
sin

(
π

2(N+1)

) . (12)

Figure 1 shows a plot of the condition numbers as a function of the value of
the regularization parameter τ , in case N = 128. We observe that when τ < τ ∗,
GCGLS has a smaller condition number, whereas GCGME has a smaller condition
number when τ > τ ∗. Therefore, we expect GCGME to attain faster convergence
for large τ .
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Fig. 1 Condition numbers of
the GCGLS matrix I+ τL
and the GCGME matrix
1
τ
FL−1F ∗ + I as a function

of the value of the
regularization parameter τ

10-4 10-2 100 102 104 106100

101

102

103

104

CGLS

CGME

2.2 GCGLS and GCGME for IRLS

The �2-penalty tends to lead to overly blurry images, due to the quadratic penalty
term. Therefore, we are more interested in the �p-regularized least squares problem
with p ∈ (0, 1]:

min
x

1

2
||Ax− b||22 +

1

p
τ ||Fx||pp, (13)

For the �p-penalty with p ∈ (0, 1], the blurring effect is less pronounced.
Additionally, the �p-penalty induces sparsity in Fx, see for example [4]. However,
solving minimization problem (13) is not as straightforward as Eq. (3). One way of
solving it is by using Iterative Reweighted Least Squares (IRLS). This means that
we replace minimization problem (13) by a sequence of �2-regularized problems of
the same form as Eq. (3). Given an estimate xk of the solution x, the matrix Rk in
the penalty term is recalculated based on xk:

Rk = F∗DkF, Dk = diag

(
1

|Fxk|2−p

)

. (14)

So in each IRLS step, one minimization problem of the form (3) is solved. We will
compare GCGLS and GCGME for this step. In case F is an invertible matrix, we
have R−1

k = F−1D−1
k (FH )−1, with

D−1
k = diag

(
|Fxk|2−p

)
. (15)
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When GCGME is used, we can take advantage of this structure, instead of
calculating Rk and working with its inverse. Moreover, when F is an orthogonal
matrix, no additional computations are necessary to compute inverses.

In [2], we showed that when

κ2(R)- κ2(C), (16)

GCGME is expected to exhibit faster converge than GCGLS. When the sparsifying
�p-penalty with p ∈ (0, 1] is used, some elements of Dk will tend to infinity.
Therefore, R is expected to become increasingly ill-conditioned, in which case
Eq. (16) holds. Therefore, we expect GCGLS to be outperformed by GCGME in
terms of convergence speed.

3 Experiments

Experiments were carried out using the low-field MRI scanner described in [8],
a picture of which is shown in Fig. 2a. Inside the scanner, the magnetic field
generated by the configuration of magnets is approximately homogeneous. Linear
gradient fields are applied before and during readout for phase and frequency
encoding. These steps ensure that the resulting signal is essentially equal to the
Fourier Transform of the object inside the scanner. For an introduction to the
principles of MRI, the reader is referred to [6]. The object being imaged, see
Fig. 2b, is a real-life version of the Shepp-Logan phantom, which was introduced
in [9]. It is approximately 10 cm in diameter. This phantom is often used to test
reconstruction algorithms for tomographic imaging. The sampling rate was set to

Fig. 2 Experimental setup. (a) Low-field MRI scanner. (b) Object being imaged
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20 µs, corresponding to a bandwidth of 50 kHz. A spin echo pulsing sequence was
used with an echo time TE of 10 ms and a repetition time TR of 500 ms. The length
of the RF pulse was 100 µs. The Field of View (FoV) was 12 × 12 cm2, with the
target image having 128× 128 pixels. No slice selection was carried out.

4 Numerical Results

First, we solve minimization problem (3) with A = F, C = I and R = L, which
is the scenario we reviewed earlier. GCGLS and GCGME solve different normal
equations, so a comparison using a stopping criterion based on residuals would
not be fair. Instead, we use a fixed number of CG iterations for both methods. For
the �2 case, we use 100 iterations. Figure 3 shows plots of the value of objective
function (2) with R = L as a function of the iteration number for 5 different
values of the regularization parameter τ . We observe that in all cases, both methods
lead to the same objective function value, as expected. For τ = 10, which is
approximately equal to τ ∗, we note that both methods converge equally fast. For
smaller values of τ , GCGLS converges faster while for larger values, GCGME
shows faster convergence. The corresponding images are shown in Fig. 4. Both
methods need the same amount of time per iteration.
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Fig. 3 Objective function value as a function of the iteration number for different values of the
regularization parameter τ . (a) τ = 0.1. (b) τ = 1. (c) τ = 10. (d) τ = 100. (e) τ = 1000
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In MRI, scan times tend to be long. They can be reduced by using compressed
sensing. In compressed sensing, the number of data points acquired is reduced,
compared to traditional scans. This can be done by measuring a subset of the lines in
k-space, or the frequency domain. For more information about compressed sensing
in MRI, [7] can be consulted. We will use the notation Fu to denote the Fourier
Transform of the undersampled measurements. One of the assumptions made in
compressed sensing is that the image is sparse in some known transform domain,
for example a wavelet transform. We also investigate the two CG variants in a
compressed sensing framework with an undersampling factor of 3.

We solve minimization problem (13) with A = Fu, C = I, F = W, τ = 6×10−3

and p = 1. The regularization parameter is chosen heuristically. Here, W is the 2D
Daubechies wavelet transform [3]. We choose Fub, which is shown in Fig. 5a, as
our initial guess. We use 10 IRLS iterations and in each of these, 10 CG iterations
are carried out. Figure 5 shows the reconstructed images and the value of the
objective function as a function of the iteration number. GCGME shows rapid
convergence, whereas the convergence of GCGLS is so slow that it seems that
GCGLS has converged to a higher objective function value than GCGME. However,
both methods converge to the same value if the number of GCGLS iterations is
increased significantly, see [2]. GCGLS and GCGME need the same amount of
time per iteration.
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different CG variants. (d) shows a plot of the objective function value as a function of the iteration
number for both methods. The vertical black lines indicate the start of a new IRLS iteration. (e)
shows the lines in k-space that were used for reconstruction
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5 Conclusion

We analyzed the condition numbers of the matrices used in GCGME and GCGLS
in the simple but illustrative case where the discretized Laplacian is used as the
regularization matrix. The value of the regularization parameter τ ∗ determines
which method is to be preferred in terms of convergence speed. We can easily
calculate τ ∗, the value for which both methods have the same condition number.
For τ < τ ∗, GCGLS is expected to converge faster and for τ > τ ∗, GCGME is
to be preferred. We applied both methods to data measured using a low-field MRI
scanner and our numerical results show that the two methods behave as expected.

We also considered the more relevant case of an �1-regularization penalty in
a compressed sensing framework and used IRLS to solve this problem. Inside
each IRLS iteration, GCGLS or GCGME can be used as a building block. Due
to the sparsifying properties of the �p-penalty with p ∈ (0, 1], the reweighting
of the regularization matrix leads to an increasingly ill-conditioned matrix, which
corresponds to the regime in which GCGME is expected to show rapid convergence.
Our numerical results show that indeed, GCGME converges much faster than
GCGLS for this problem.
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Data-Driven Modeling for
Wave-Propagation

Tristan van Leeuwen, Peter Jan van Leeuwen, and Sergiy Zhuk

Abstract Many imaging modalities, such as ultrasound and radar, rely heavily on
the ability to accurately model wave propagation. In most applications, the response
of an object to an incident wave is recorded and the goal is to characterize the object
in terms of its physical parameters (e.g., density or soundspeed). We can cast this
as a joint parameter and state estimation problem. In particular, we consider the
case where the inner problem of estimating the state is a weakly constrained data-
assimilation problem. In this paper, we discuss a numerical method for solving this
variational problem.

1 Introduction

Many imaging modalities, such as ultrasound, geophysical exploration, and radar,
rely heavily on the ability to accurately model wave propagation. In most appli-
cations, the response of an object to an incident wave is recorded and the goal
is to characterize the object in terms of its physical parameters (e.g., density or
soundspeed). We can capture this setup in terms of a process and measurement
model

L(c)u = q, (1)

d = Pu, (2)
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where u denotes the wavefield, L(c) = ∂2
t − c2∇2 represents the wave equation

depending on the physical parameters, c, and P is the sampling operator that models
the measurement process. In particular, consider the case where we are given a
finite number of samples of the state. We are ultimately interested in estimating
the parameters c from the measurements d . There are different ways to go about
this;

PDE-constrained optimization: Eliminate the process model and set up a non-
linear data-fitting problem to match the solution of (1) to the data [13].

Equation-error approach: Estimate the state directly from the measurements by
solving (2) and subsequently solve for c from (1) [3, 9].

Joint parameter and state estimation: Find the parameter and state that satisfy
both (1) and (2) approximately [14].

The former two can be thought of as limiting cases of the latter where the state is
estimated either completely determined by the process model or determined solely
from the data. The joint approach gives rise to a data-driven modelling problem,
where one aims to estimate a state that satisfies both the data and the physics to
some extent. We can formally express this as a variational problem

min
u
‖Pu− d‖2 + ρ‖L(c)u− q‖2, (3)

where ρ is a parameter that controls the trade-off between the two terms. How well
we are able to approximate the true state by solving (3) depends on how many
measurements are available, the observability of the system, how close c is to the
true parameter and requires an appropriate choice of ρ. We will not address this
issue here and focus solely on solving (3) for given c and ρ.

A straightforward approach to solving (3) would be to derive the Euler-Lagrange
equations, and solve the resulting PDE numerically. Alternatively, one could
discretize the wave-equation first and set up a large sparse system of equations for
the state [4, 5, 8, 10]. In both cases, the dimensionality of the problem is governed
by the numerical discretization. In this paper, we cast the problem in a reproducing
kernel Hilbert space, allowing us to express the solution of (3) as a finite linear
combination of kernel functions [6, 12]. This leads to a system of linear equations
involving a kernel matrix. The dimension of this system is given by the number of
measurements and is thus independent of the underlying numerical discretisation
of the PDE. We discuss a preconditioned iterative method for solving this system.
Finally, we present some numerical examples and conclude the paper.

2 Theory

We consider a scalar wave-equation in [0, T ]×R
d of the form Lu = q with L(c) =

∂2
t − c2∇2 and initial conditions u(0, x) = ∂tu(0, x) = 0. Without elaborating on
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the details, we assume that this problem is well-posed for all parameters c of interest
and that the solution is given by u = Gq with

Gq(t, x) =
∫ t

0

∫

R
d
g(t − s, x, y)q(s, y)dyds,

where g is the Green’s function. The corresponding adjoint problem L∗v = r (with
u(T , x) = ∂tu(T , x) = 0) has solution v = G∗r , where

G∗r(t, x) =
∫ T

t

∫

R
d
g(s − t, x, y)r(s, y)dyds.

For further details regarding the well-posedness of variable-coefficient wave-
equations we refer to [2].

The measurements are obtained by sampling the state at given locations
{(ti, xi)}Mi=1:

Pu = {u(ti, xi)}Mi=1.

We introduce a Hilbert space U with inner product:

〈u, v〉U = 〈Lu,Lv〉L2(Rd+1).

We can think of this as the space of solutions of the wave equation with square
integrable source term. The space U is a Reproducing Kernel Hilbert Space
(RKHS) [7]. A special property of an RKHS is that point-evaluation is a bounded
linear functional with Riesz representation kt,x ∈ U so that 〈kt,x, u〉U = u(t, x).1

The reproducing kernel of U is given by k(t, x, t ′, x ′) = 〈kt,x, kt ′,x ′ 〉U . It is the
Green’s function of L∗L and is thus given by

k(t, x, t ′, x ′) =
∫ T

0

∫

R
d
g(t − s, x, y)g(t ′ − s, y, x ′)dyds.

We can think of k as a spline that is tailored to represent solutions of the wave
equation.

The aim is to solve a variational problem of the form

min
u∈U

M∑

i=1

(u(ti, xi)− di)
2 + ρ‖Lu− q‖2

L2(Rd+1)
. (4)

1This requires that the solution of Lu = q can be bounded point-wise as |u(t, x)| ≤ C‖q‖L2 .
While this is possible in general for d = 1, it perhaps requires more regularity of the source
function for d > 1.
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By splitting the solution as u = Gq + w and introducing r = d − Gq , we can
re-write this as

min
v∈U

M∑

i=1

(w(ti , xi)− ri )
2 + ρ‖w‖2

U . (5)

Utilizing the Representer Theorem [1, 11], we know that the solution to this
variational problem has the following form

w(t, x) =
M∑

i=1

wik(ti , xi, t, x).

We can use this finite-dimensional representation of the solution to express (4) as a
finite-dimensional least-squares problem

min
w∈RM

‖Kw− r‖2
2 + ρwTKw, (6)

where K is the kernel matrix with elements kij = k(ti, xi, tj , xj ). The kernel matrix
is guaranteed to be positive definite, ensuring a unique solution given by

ŵ = (K + ρI)−1 r.

2.1 Example: Constant Coefficients

With c(x) = 1 we can express all quantities in the spatial Fourier domain. The
Green’s function is then given by

ĝ(t, ξ) = sin((t − s)|ξ |)
|ξ | ,

giving

k̂(t, t ′, ξ) = |ξ |−2
∫ min(t,t ′)

0
sin((t − s)|ξ |) sin((t ′ − s)|ξ |)ds,

which yields

k̂(t, t ′, ξ) =
{
t|ξ |−2 cos((t − t ′)|ξ |)− |ξ |−3 cos(t ′|ξ |) sin(t|ξ |) t ≤ t ′

t ′|ξ |−2 cos((t − t ′)|ξ |)− |ξ |−3 cos(t|ξ |) sin(t ′|ξ |) t > t ′.
(7)
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To get some insight into the properties of the continuous kernel operator defined by

K û(t) =
∫ ∞

0
k̂(t, t ′, ξ )̂u(t ′)dt ′,

we take û(t) = sin(ωt) and find that this is an eigenfunction with eigenvalue λ =
(ω2−|ξ |2)−2. The continuous operator can thus have an arbitrarily large norm due to
modes with ω ≈ ±‖ξ‖. The corresponding kernel matrix, K , can thus be extremely
ill-conditioned.

3 Algorithm

We discretize all quantities on a regular grid and introduce the notation uk =
(u(k · �t, x1), u(k · �t, x2), . . . , u(k · �t, xnx )). A second order finite-difference
discretization of L on [0, T ]×[−D,D] with Dirichlet boundary conditions leads to
forward and adjoint systems of the form Lu = q, L′v = r with u = (u1, . . . ,unt ),
q = (q0,q1, . . . ,qnt−1) and

L = (�t)−2

⎛

⎜
⎜
⎜
⎜
⎜
⎝

2I
S I

I S I

. . .

I S I

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, L′ = (�t)−2

⎛

⎜
⎜
⎜
⎜
⎜
⎝

I ST I

. . .

ST I ST I

I ST

2I

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, (8)

where S = −2I − (�t)2A and A ∈ R
nx×nx is a second order central finite-

difference discretization of c2∇2. Note that L′ �= LT . The sampling operator is
discretized using piecewise linear interpolation, yielding a matrix P ∈ R

M×N .
Using adjoint interpolation is an appropriate way to represent the point source [15].
The combination of a second-order finite-difference approximation of L and linear
interpolation ensures an overall second order approximation of the elements of K .

Storing the full matrix K = P(L′L)−1PT may not be very attractive, but we
can compute matrix-vector products with K by solving one forward and one adjoint
problem;

Kw = Pu,

with Lu = v and L′v = PT w. Since the matrix is symmetric we can apply CG
to solve the system (K + ρI)w = r. As this system becomes increasingly ill-
conditioned as ρ decreases, preconditioning is of paramount importance. Due to
the specific form of K , we propose a preconditioner of the form K−1 ≈ M =
QL′LQT , where Q is chosen so that QTPu ≈ u for solutions of Lu = q. When
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P samples the solution on a grid we can take Q to be a high-order interpolation
operator (e.g. cubic splines).

4 Numerical Results

4.1 Harmonic Oscillator

For a single spatial Fourier mode, the kernel is given by (7). Figure 1a shows an
example of k̂(t, t ′) for ξ = 20, t ′ = 1

3 and t ′ = 1
2 . We take samples on a regular grid

with m = 20 samples in (0, 1). The spectrum of the corresponding kernel matrix is
shown in Fig. 1b. Also shown is the Fourier approximation of the spectrum. The kink
in the spectrum is due to the singularity in the spectrum of the continuous operator
at ω = ‖ξ‖. Figure 1c shows the absolute error as a function of �t when using the
numerical approximation described above. The effect of the preconditioner is shown
in Fig. 2. We see that when using 1D spline interpolation, most of the eigenvalues
of MK are clustered around one.

4.2 1D Wave-Equation

We generate data by solving the non-constant coefficient wave equation with
soundspeed c(x) and sampling the solution on a regular grid. We then solve the
variational problem for a constant reference soundspeed, c0. The grid and velocity
profiles are depicted in Fig. 3. The true state, reference state and reconstructed state
for ρ = 10−4‖K‖2 are depicted in Fig. 4. As preconditioner for small ρ we use
(K + ρI)−1 ≈ K−1 ≈ M while for large ρ we use (K + ρI)−1 ≈ ρ−1I − ρ−2K
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with M = QL′LQT and Q is a 2D spline interpolation. The convergence history of
CG, with and without preconditioner, for various values of ρ is shown in Fig. 5.

5 Conclusion and Discussion

We presented a numerical method for solving a variational data-assimilation
problem involving the wave equation. By casting the problem in a Reproducing
Kernel Hilbert Space, we derived a finite-dimensional system of equations involving
a kernel matrix. Computing the action of this kernel on a given vector involves
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numerically solving a forward and adjoint wave equation and we described a
non-self-adjoint second-order finite difference scheme for the wave equation to
approximate the kernel. Using a simple Fourier analysis we show that the kernel
matrix can be arbitrarily ill-conditioned. A simple preconditioner was proposed that
appears to perform reasonably well in practice. The numerical examples presented
in this paper involved a 1D wave equation and a relatively dense measurement grid.
While the methodology described here can be easily extended to higher dimensions,
the simple preconditioner will probably not perform as well on coarser measurement
grids. Further analysis of the kernel for non-constant coefficients may shed some
light on this issue.
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Numerical Simulation of Coupled
Electromagnetic and Thermal Problems
in Permanent Magnet Synchronous
Machines

A. Lotfi, D. Marcsa, Z. Horváth, C. Prudhomme, and V. Chabannes

Abstract The main objective of our task is to develop mathematical models,
numerical techniques to analyse the thermal effects in electric machines, to imple-
ment the developed algorithm in multiprocessor or multi-core environments and
to apply them to industrial use cases. In this study, we take into account coupled
character of the electromagnetic and thermal features of the physical process. Both
thermal and electromagnetic processes are considered transient, solved by means
of the FEM method on independent meshes and the time-discretization is realized
using time operator splitting. Two examples are presented to assess the accuracy
of the developed coupled solvers and the numerical results are compared with the
experimental ones, which are obtained from a prototype machine.

1 Introduction

The main objective of our task is to develop a finite element model to analyse
the thermal effects in electric machines during its various operating conditions. In
electrical machines the permanent magnets and the insulation in the stator windings
are sensitive to temperature variations. In order to control the temperature rise and
to avoid overheating, the prediction of the temperature distribution is required at the
machine design stage.

Several numerical studies have been developed in order to study the thermal-
magnetic coupling present in PM motors. In these studies, the approach employed
is often based on 2D or 3D finite elements simulations, considering either strong
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or weak coupling between the magnetic and thermal models. In strong coupling
schemes, the electromagnetic and thermal computations are solved simultaneously
in one global system of nonlinear equations. These procedures are not efficient in
terms of the required computing time. By contrast, the weak coupling, used here,
is based on solving independently and successively each sub-problem and then
transferring the results between the two problems. This allows the use of appropriate
numerical schemes to solve each sub-problem. Efficient implementation of this
method might reduce the amount of computation time and memory requirements.
The electromagnetic-thermal coupling proposed in this study is based on a coupling
between the 2D transient electromagnetic computation with temperature-dependent
material properties and the 3-D thermal computation using as heat sources the
estimated losses from the electromagnetic model.

We start by introducing some standard notations. Let [0, tf ] be the time interval
of interest. The problem is set up in a bounded domain � = ∪�i ⊂ R3 consisting
of a finite number of connected sub-domains. We first denote by L2(�) the space
of real valued measurable functions which are square integrable on �: L2(�) =
{v : � −→ R,

∫
�
v2d� � ∞}. We define the function spaces: H 1(�) = {v ∈

L2(�), ∂v
∂xi

∈ L2(�), 1 � i � d}, H 0
1 (�) = {v|v ∈ H 1(�), v|∂� = 0} and L∞(�)

is the space of bounded functions defined on �. Finally, let V be a function space
and let L2([0, tf ];V ) be the Bochner space of functions in L2 defined on I = [0, tf ]
with values in V .

2 Thermal Analysis of Electrical Machines

The thermal analysis of electric motors is essential today to prevent overheating
problems. The power loss due to eddy current is converted into heat, resulting
temperature rise. The properties of the materials change as their temperature
changes and thus also the electromagnetic field. The accuracy of the thermal
model depends on the material properties and the knowledge of losses in electrical
machine. To achieve that, a coupled mathematical models of magneto-thermal
problem is required.

The thermal model considers the transient heat transfer between all components
of the PM motor including the air-gap, [1, 2]. During the simulation the air gaps
inside the machine are defined as a solid domain, the heat is mostly transferred by
conduction. The effective conductivity is calculated considering the state of the air
flow in the air gap from empirical correlations, [2, 5, 7]. For stator and windings, the
thermal and physical properties are considered as anisotropic and homogenisation
technique is used in order to simplify the thermal model [5, 6]. Afterwards, the
model does not take into account the effect of temperature on thermal properties.
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The electromagnetic problem is performed under the conditions that the displace-
ment currents are neglected and the electromagnetic field is two-dimensional, i.e. the
magnetic vector potential has only one component in z-direction, this component

does not depend on z, and the magnetization has the form
−→
H c = (Hcx,Hcy, 0) and

does not depend on z.
The mathematical model involves the solution of two submodels and the coupling

is established by the temperature dependent materials and the electromagnetic
losses. The two sub-models are presented as follows, [3, 4, 10, 11]:

(HT) Thermal equation (EM) Magnetic equation

ρcp∂tT +∇ ·
(

[−λ]∇T

)

σ(T )∂t
−→
A +∇ ×

(

ν(
−→
A )∇ ×−→

A

)

= Q(
−→
A ), = −→

J S + ∇ ×−→
H c,

where T is the temperature, cp is the specific heat capacity, ρ represents the density,

[λ] is the thermal conductivity matrix,
−→
A is the magnetic vector potential, Q(

−→
A )

is the heat source, σ(T ) is the electrical conductivity which is dependent on the
temperature, ν is the magnetic reluctivity which is dependent on the magnetic field

intensity,
−→
JS is the external current source and

−→
H c is called the coercive field

strength of the permanent magnet. The following boundary and initial conditions
can be considered:

−→
n .

(

[−λ]∇T

)

= h(T − T0), on δ�× [0, tf ], −→A ×−→
n = −→

0 , on δ�× [0, tf ],
T (., 0) = T0, on �

−→
A (., 0) = −→

A 0, on �

where −→n is normal vector to the boundary, h is heat transfer coefficient and T0, A0
are the initial temperature distribution and the vector field at t = 0. The thermal and
electromagnetic problems are interconnected by the following relations [12]:

σ(T ) = σ0
1

1+α(T−T0)
, Q(

−→
A ) = Khf (Bm)

2 +Kc(fBm)
2 +Kc(fBm)

1.5,

where σ0 is the electrical conductivity at reference temperature T0, α is temperature
coefficient, Kh, Kc, Ke are the static hysteresis loss, eddy current loss and excess

loss coefficients and Bm is the peak flux density where
−→
B = rot (

−→
A ).

In the following, the variational formulation of the problem is presented briefly.
Using Green’s formula, boundary condition and interface conditions we can derive
the weak formulation of the thermo-magnetic problem:
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Find T ∈ L2([0, tf ];H 1(�)) and Az ∈ L2([0, tf ];H 1
0 (ω)) such that:

a1(∂tT ,w)+ b1(T ,w) = l1(w),∀w ∈ H 1
0 (�), (1)

a2(∂tAz,w) + b2(Az,w) = l2(w),∀w ∈ H 1
0 (ω), (2)

a1(u, v) =
∫
� ρcpu.wd�, a2(u, v) =

∫
ω σ(T )u.wdω,

b1(u, v) =
∫
�(∇v)T [λ](∇u)d�+ ∫

∂� hu.vd� b2(u, v) =
∫
ω(∇v)T Mν(∇u)dω

l1(v) =
∫
� Q(A).vd�+ ∫

∂� hT0.v, l2(v) =
∫
ω JSwdω + ∫

ω rot2D
−→
H cwdω

where Mν =
[
ν 0
0 ν

]

is the magnetic reluctivity tensor and rot2D =
(

∂Hcy

∂x
− ∂Hcx

∂y

)

.

The time scales of heat transfer and electromagnetic processes have different
orders. The time scale for heat diffusion is greater than the time scale for electro-
magnetic effect. The coupled problem is multi-scale problem in time, therefore the
time-discretization can be realized using time operator splitting. The application of
this approach leads to the decomposition of the problem into two sub-problems and
allows the use of appropriate numerical schemes to solve each time dependent sub-
problem, [9]. To achieve this goal, the overall simulation time [0, tf ] is divided into
N time windows [tj , tj+1] with j = 0, 1, . . . , N − 1. The time tj denotes the time
where the coupling variables are exchanged between the two sub-problems. The
size of each interval is determined based upon the variation of material properties
in the electromagnetic problem. First, we assume that the temperature variations
are not significant, meaning that the electrical conductivity remains approximately
constant in each sub-interval and the parameter σ(T ) can be introduced explicitly in
the electromagnetic problem (1), using the solution values from previous time step.
Secondly, the problem (2) has a rapidly varying right-hand side due to variations of
magnetic field produced by induced current. In this equation, for each sub-interval
[tj , tj+1], Q(A) can be replaced by an average value over this time period as:

Q̃(A) = 1

tj+1 − tj

∫ tj+1

tj

Q(A)dt. (3)

Finally, with this two assumptions, the problem is decoupled and the vector potential
equation and the heat equation can be solved independently with internal step-sizes
using the following scheme:
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0. Initialization step:

- Set window counter n := 0 and initial values T0 ,
A0 . Go to Step 1).

1. Solve the coupled problem.

a. Find Az ∈ L2([tn, tf ];H 1
0 (ω)) such that:

a2(∂tAz,w) + b2(Az,w) = l2(w),∀w ∈ H 1
0 (ω), (4)

with initial value An and σ = σ(Tn).

b. Find T ∈ L2([tn, tf ];H 1(�)) such that:

a1(∂tT ,w) + b1(T ,w) = l1(w),∀w ∈ H 1
0 (�), (5)

with initial value Tn and Q(A) = Q̃ (Az).

2. Set the value for tn+1 as indicated below, If tn+1 ≥ tf
then go to Step 3), else set n := n+1, An+1 and Tn+1 are
the calculated solution of (4) and (5), go to Step 1)
for the next window.

3. Stop.

At each step of the previous algorithm, the time discretization is performed as
follow:

• We replace the time derivative with the backward difference quotient in (4) using
the time step δt . Indeed, starting with (Az)

0 = An, we can successively compute
the unknowns (Az)

k at time (tn + kδt), k = 1, 2, . . ., by repeatedly solving the
obtained nonlinear equation until steady-state solution is reached.

• We replace the time derivative with the backward difference quotient in (5) using
the time step �t >> δt . Indeed, starting with T 0 = Tn, we can successively
compute the unknowns T k at time (tn+k�t), k = 1, 2, . . ., by repeatedly solving
the obtained linear equation. During the resolution of the thermal problem,
the iteration process is stopped when the variation of the relative electrical
conductivity is higher than a threshold defined by the user, as:

|σ(T k+1)− σ(T k)|
σ(T k)

> ε, (6)

thus the new communication time is tn+1 = tn+(k+1)�t and the EM simulation
is re-launched.
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3 Verification of the Proposed Coupled Model

To validate the effectiveness of the coupled thermo-magnetic model and code, two
examples are presented. The first examines the transient thermal analysis of a 18-
slots/16-poles PMSM with exterior rotor (BMW C1 11 kW) manufactured by the
Vehicle Developing Centre of the Széchenyi István University, [8]. The second
presents a numerical computation for the heat transfer in Toyota Prius 2004 electric
motor.

3.1 Case 1: The First Example: BMW C1 11 kW Electric Motor

The measurements were performed on the BMW C1 11 kW motor presented in
Fig. 1. The temperature was measured using a thermocouple type PT100 in contact
with the surface of the tested motor. As shown in Fig. 1, the electric motor model
has a very complicated geometry. The stator coils are supplied with a maximum
current of 100 A for duration of 1800 s and then the current is turned off; the rotor
is locked in a stand still position. During the temperature test, the most significant
heat source in the tested motor is copper losses. The left figure in Fig. 2 shows
the instantaneous Joule losses calculated from experimental data, used in thermal
analysis. The computational grids used for this simulation, shown in Fig. 1, has
approximately 4,000,000 tetrahedral elements. According to the model mentioned
above, a transient 3D FE thermal was carried out using the FEEL++ library [13]
and it was executed on 30 processors. Figure 2 shows the temperature distribution
of the motor at time t = 1600 s. Figure 3 shows a comparison of the simulated and
measured temperature variation obtained by a few thermocouples [8]. The simulated

Fig. 1 Temperature test set up for the prototype machine, sensors position, geometry, 3D mesh

Fig. 2 Joule losses from experimental data, contours of temperature of the electric motor
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Fig. 3 Simulated and measured temperature variation at different position of PM motor

temperatures are very accurate for locations in the motor obtained by thermocouples
1, 2, 3, 4, 5, 6, 9, 10, 11, 12, but the results from the model are not in good agreement
with the results obtained by the remaining thermocouples. However, the reasons for
the discrepancy between transient temperature simulation and measurement need
to be explained. The difference between transient temperature simulation and the
results of the experiments can be attributed to the following: the glue layers between
the thermocouples and the prototype motor can decrease heat transfer, the material
properties were assumed to be independent of temperature.

3.2 Case 2: The Second Example: Toyota Prius 2004 Electric
Motor

The developed numerical technique is used to simulate distributions of electromag-
netic and thermal fields in Toyota Prius 2004 electric motor, as shown in the left
figure in Fig. 4. The 3D mesh used for the for the thermal analysis has more than

Fig. 4 Toyota Prius 2004 electric motor; 3D mesh for the thermal analysis; B(H) curve; 2D mesh
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Fig. 5 Contours of temperature of the electric motor, magnetic flux density and Ohmic loss

Fig. 6 Time evolution of the temperatures, losses and relative errors

7,500,000 cells and it is shown in Fig. 4. The electromagnetic analysis is performed
on a periodic section of the PM considering a soft ferromagnetic material with the
B(H) curve shown in Fig. 4. The thermal simulation was executed on 60 cores using
the FEEL++ library, [13]. The electromagnetic simulation was performed with the
help of the finite element package ANSYS Maxwell.

Figure 5 represents the temperature distribution, magnetic flux density distri-
bution with equipotential lines and Ohmic loss in magnets with magnetic flux
density vectors. These results are obtained at maximum current of 100 A and angular
velocity 3000 rpm.

The first two figures in Fig. 6 show the calculated time evolution of the
temperature and losses in different parts of the PM motor and the last two represent
the convergence history of the relative errors.

4 Conclusions

The developed method, electromagnetic field and thermal linked analysis, gives the
possibility to evaluate magnetic field intensity, the core losses in the material and the
temperature distribution of PM motor for different currents and for different geomet-
rical parameters and the result of the simulation allows a better understanding of the
thermal behaviour. The developed model enables to predict temperature distribution
with good accuracy of the critical parts of the electric machine such the winding,
the rotor and the magnets without using the time-consuming CFD simulations.
Convection heat-transfer problems are treated with dimensionless numbers and
empirical correlations are used to determine heat-transfer coefficient.
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Parameter Robust Preconditioning for
Multi-Compartmental Darcy Equations

Eleonora Piersanti, Marie E. Rognes, and Kent-Andre Mardal

Abstract In this paper, we propose a new finite element solution approach to
the multi-compartmental Darcy equations describing flow and interactions in a
porous medium with multiple fluid compartments. We introduce a new numerical
formulation and a block-diagonal preconditioner. The robustness with respect to
variations in material parameters is demonstrated by theoretical considerations and
numerical examples.

1 Introduction

The multi-compartment Darcy equations1 extend the single compartment Darcy
model and describe fluid pressures in a rigid porous medium permeated by multiple
interacting fluid networks. These equations have been used to model perfusion in
e.g. the heart [4, 8], the brain [3] and the liver [1]. The static variant of the equations
read as follows: for a given number of networks J ∈ N, find the network pressures
pj for j = 1, . . . , J such that

−Kj div∇ pj +
J∑

i=1

ξj←i (pj − pi) = gj in �, (1)

1In this paper, we will also refer to these equations as the multiple–network porosity (MPT)
equations.

E. Piersanti · M. E. Rognes
Simula Research Laboratory, Lysaker, Norway
e-mail: eleonora@simula.no; meg@simula.no

K.-A. Mardal (�)
Department of Mathematics, University of Oslo, Oslo, Norway
e-mail: kent-and@math.uio.no

© Springer Nature Switzerland AG 2021
F. J. Vermolen, C. Vuik (eds.), Numerical Mathematics and Advanced Applications
ENUMATH 2019, Lecture Notes in Computational Science and Engineering 139,
https://doi.org/10.1007/978-3-030-55874-1_69

703

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-55874-1_69&domain=pdf
mailto:eleonora@simula.no
mailto:meg@simula.no
mailto:kent-and@math.uio.no
https://doi.org/10.1007/978-3-030-55874-1_69


704 E. Piersanti et al.

where pj = pj (x) for x ∈ � ⊂ R
d (d = 1, 2, 3), and � is the physical domain.

The scalar parameter Kj > 0 represents the permeability of each network j . The
parameter ξj←i ≥ 0 is the exchange coefficient into network j from network i.
These are assumed to be symmetric: ξj←i = ξi←j . The right hand side gj can be
interpreted as a source/sink term for each j . For simplicity, let pj = 0 on ∂� for
1 ≤ j ≤ J .

The system of equations is elliptic as long as Kj > 0, but for Kj � ξj

the diagonal dominance is lost for smooth components for which ‖K1/2
j ∇ pj‖ ≤

‖ξ1/2
j pj‖. As diagonal dominance is often exploited in standard preconditioning

algorithms such as for example multigrid, the consequence is a loss of performance.
Here, we will therefore propose a transformation of the system of equations that
enable the use of standard preconditioners. In detail, we propose and analyze a new
approach to constructing finite element formulations and associated block–diagonal
preconditioners of the system (1). The key idea is to change variables through
a transformation T that gives simultaneous diagonalization by congruence of the
operators involved. We preface and motivate the new approach by a demonstration
of lack of robustness of a standard formulation for high exchange parameters.

2 Lack of Parameter Robustness in Standard Formulation

A standard variational formulation of (1) reads as follows: find pj ∈ H 1
0 = H 1

0 (�)

for 1 ≤ j ≤ J such that:

(
Kj ∇ pj ,∇ qj

)+∑J
i=1

(
ξj←i (pj − pi), qj

) = (
gj , qj

) ∀ qj ∈ H 1
0 , (2)

where (·, ·) denotes the L2(�) inner product. The system (2) can be written in the
alternative form:

k(p,q)+ e(p,q) = (g,q) , (3)

with p = (p1, p2, . . . , pJ ), q = (q1, q2, . . . , qJ ), g = (g1, g2, . . . , gJ ), and with
matrix form

Ap = g,

where

A = K+ E =

⎛

⎜
⎜
⎜
⎜
⎝

K1� 0 · · · 0

0 K2� · · · 0
...

...
. . .

...

0 0 · · · KJ�

⎞

⎟
⎟
⎟
⎟
⎠
+

⎛

⎜
⎜
⎜
⎜
⎝

∑J
i=1 ξ1←i −ξ1←2 · · · −ξ1←J

−ξ1←2
∑J

i=1 ξ2←i · · · −ξ2←J

...
...

. . .
...

−ξ1←J −ξ2←J · · · ∑J
i=1 ξJ←i

⎞

⎟
⎟
⎟
⎟
⎠

.
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Taking the blocks on the diagonal of A we can immediately define a block
diagonal preconditioner B:

B = diag

(

−K1�+
J∑

i=1

ξ1←i ,−K2�+
J∑

i=1

ξ2←i , · · · ,−KJ�+
J∑

i=1

ξJ←i

)

(4)

Alas, this formulation and preconditioner is not robust for high exchange parameters
as illustrated by the following example.

Example 1 In this example we illustrate the poor performance of the block diagonal
preconditioner (4) for the standard finite element discretization of the MPT equa-
tions (1) with J = 2. In particular, we show that the proposed preconditioner is
not robust with respect to the exchange coefficient ξ1←2 and mesh refinement. Let
� = [0, 1]2 ⊂ R

2, and let K1 = K2 = 1.0, gj = 0. To discretize the pressures
p1, p2 we consider continuous piecewise linear finite elements defined relative to a
2N × N triangular mesh of �. The results in Table 1 show that both the number of
iterations and condition numbers increase somewhat less than linearly (predicted by
our theoretical analysis) in ξ1←2, for ξ1←2 above a threshold > 100. The number of
iterations also grow for increasing N (decreasing mesh size h) in this case.

We can examine Example 1 analytically. Define the induced norm

‖p‖2
B = (Bp,p) =∑J

j=1

(
Kj ∇ pj ,∇ pj

)+ ξj
(
pj , pj

)
, (5)

where ξj =∑J
i=1 ξj←i . We can show that there exists an α > 0 such that

(Ap,p) ≥ α (Bp,p) (6)

for all p, but depending on Kj and ξj←i , as follows. Note that for all p

(Ap,p) = ((K+ E)p,p) ≥ (Kp,p) , (7)

Table 1 Number of iterations (and condition number estimates) of a CG solver of the system (1)
with an algebraic multigrid (Hypre AMG) preconditioner of the form (4) with a random initial
guess. Results for ξ1←2 = 10−4, 10−6 are nearly identical to the 10−2 case

N

ξ1←2 8 16 32 64 128

10−2 3 (1.0) 4 (1.1) 4 (1.1) 4 (1.1) 4 (1.1)

100 4 (1.1) 4 (1.1) 5 (1.1) 5 (1.1) 5 (1.1)

102 29 (11) 30 (11) 28 (11) 25 (11) 24 (11)

104 215 (1053) 740 (1026) 1131 (1012) 1232 (1014) 1058 (1014)

106 7 (2.0) 20 (581) 84 (686) 394 (1140) 1467 (1755)
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since

(Ep,p) =∑J
i=1

∑J
j=1

(
ξj←i (pj − pi), pj

) = 1

2

∑J
j=1

∑J
i=1 ξj←i‖pj − pi‖2 ≥ 0.

By definition and by applying the Poincaré inequality, we find that there exists a
constant C� depending on the domain �, such that

(Kp,p) =
J∑

j=1

Kj

2
‖∇ pj‖2 + Kj

2
‖∇ pj‖2 ≥ 1

2

J∑

j=1

Kj‖∇ pj‖2 + C�Kj

ξj
ξj‖pj‖2.

(8)

Thus, using the definition of B, we obtain that

(Kp,p) ≥ 1

2
min

(

1,min
j

C�Kj

ξj

)

(Bp,p) . (9)

We observe that the coercivity constant depends on the permeability and exchange
parameters and is such that it vanishes for vanishing ratios of Kj to ξj .

We can also show that there exists a constant β such that

(Ap,q) ≤ β‖p‖B‖q‖B. (10)

For any p and q, applying the Cauchy–Schwartz inequality twice we obtain

(Ap,q) ≤∑J
j=1

(
Kj‖∇ pj‖‖∇ qj‖ +∑J

i=1 ξj←i (‖pj‖ + ‖pi‖)‖qj‖
)
.

Applying the Cauchy–Schwartz inequality, the diffusion term is bounded as follows

∑J
j=1 Kj‖∇ pj‖‖∇ qj‖ ≤

(∑J
j=1 Kj‖∇ pj‖2

)1/2 (∑J
j=1 Kj‖∇ qj‖2

)1/2
.

For the exchange terms, we can use the Cauchy–Schwartz inequality, the symmetry
of the exchange coefficients and Chebyshev’s inequality to show that

∑J
j=1

∑J
i=1 ξj←i‖pi‖‖qj‖ ≤ J

(∑J
j=1 ξj‖pj‖2

)1/2 (∑J
j=1 ξj‖qj‖2

)1/2
,

and similarly for ‖pj‖ in place of ‖pi‖. Thus (10) holds with continuity constant β
equal to J + 1.

The condition number of the preconditioned continuous system can be estimated
as the ratio between (10) and (8), c.f. for example [7], and tends to∞ as ξj←i →∞.
CG convergence is governed by the square root of the condition number which in
Example 1, explains how the number of iterations increase as ξ1←2 grows in Table 1.
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3 Change of Variables Yields Parameter Robust Formulation

In this section, we present a new approach to variational formulations for the
MPT equations. The key idea is to change from variables p to variables p̃ via a
transformation T such that the equation operators decouple. We can show that this
is always possible by simultaneous diagonalization of matrices by congruence.

To this end, we define p̃ and q̃ as a new set of variables such that

p = T p̃, q = T q̃. (11)

for a linear transformation map (matrix) T : RJ → R
J to be further specified.

Substituting (11) into (3), we obtain a new variational formulation reading as: find
p̃ ∈ (H 1

0 )
J such that

k(T p̃, T q̃)+ e(T p̃, T q̃) =
(
T T g, q̃

)
∀ q̃ ∈ (H 1

0 )
J . (12)

The matrix form of the system is

Ãp̃ = (K̃+ Ẽ)p̃ = T T g = g̃, (13)

where

K̃ = (−�)K̃, K̃ = T T KT, Ẽ = T T ET, (14)

where the matrix E ∈ R
J × R

J is given in Sect. 2 and where we write K =
diag(K1,K2, . . . ,KJ ).

The key question is now whether there exists an (invertible) transformationT that
simultaneously diagonalizes (by congruence) K and E? More precisely, is there a
matrix T ∈ R

J × R
J such that

K̃ = diag(K̃1, K̃2, . . . , K̃J ), Ẽ = diag(ξ̃1, ξ̃2, . . . , ξ̃J ) ? (15)

By matrix analysis theory, see e.g. [2, Theorem 4.5.17, p. 287], there exists indeed
such a T since K is diagonal and non-singular and E is symmetric and thus
C = K−1E is diagonalizable. In particular, consider the case where C has J

distinct eigenvalues λj and eigenvectors vj for j = 1, . . . , J . By taking T =
[v1, v2, . . . , vJ ], (15) holds. Moreover, the eigenvalues λj are all real.

Example 2 To exemplify, we here show the diagonalization by congruence of a
general 2-network system explicitly. Let

K =
(
K1 0
0 K2

)

, E =
(

ξ1←2 −ξ1←2

−ξ1←2 ξ1←2

)

.
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Then,

C = K−1E =
(

ξ1←2/K1 −ξ1←2/K1

−ξ1←2/K2 ξ1←2/K2,

)

has eigenvalues e1 = 0 and e2 = ξ1←2(K1 + K2)/(K1K2) and the eigenvectors
form the columns of T :

T =
(

1 K2(ξ1←2/K2 − ξ1←2(K1 +K2)/(K1K2))/ξ1←2

1 1

)

,

Finally, we can verify that

K̃ = T T KT =
(
K1 +K2 0

0 K2(K1 +K2)/K1

)

,

Ẽ = T T ET =
(

0 0
0 ξ1←2(K

2
1 +K1K2 +K2(K1 +K2))/K

2
1

)

.

As the transformed system is diagonal and decoupled, a block-diagonal precon-
ditioner is readily available. In particular, we define

B̃ = Ã = diag
(
−K̃1�+ ξ̃1,−K̃2�+ ξ̃2, . . . ,−K̃J�+ ξ̃J

)
. (16)

with norm

‖p̃‖2
B̃ =

(
B̃p̃, p̃

)
=

J∑

j=1

(
K̃j ∇ p̃j ,∇ p̃j

)
+ ξ̃j

(
p̃j , p̃j

)
. (17)

Clearly, by definition, Ã and B̃ are trivially spectrally equivalent (with upper and
lower bounds independent of the material parameters).

4 Numerical Examples for the New Formulation

In this section, we present numerical results supporting the theoretical consid-
erations. All numerical experiments have been conducted using a finite element
discretization, using the FEniCS library [5] and the cbc.block package [6]. To dis-
cretize the pressures pj and the transformed variables p̃j , we consider continuous
piecewise linear (P1) finite elements defined relative to each mesh Th of the domain
� = [0, 1]2. We impose homogeneous Dirichlet conditions on the whole boundary,
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Table 2 Number of iterations (and condition number estimates) of a CG solver of the system (2)
with an algebraic multigrid (Hypre AMG) preconditioner of the form (4)

ξ1←2 K2 N = 8 N = 16 N = 32 N = 64 N = 128

104 10−6 277 (2139) 1178 (2135) 2395 (2035) 3001 (2034) 3001 (2034)

10−4 280 (2139) 1180 (2135) 2283 (2035) 2860 (2034) 3001 (2034)

10−2 275 (2117) 1181 (2113) 2325 (2014) 2859 (2013) 2988 (2011)

100 242 (1054) 935 (1026) 1629 (1012) 1556 (1014) 1557 (1014)

102 62 (21) 74 (22) 74 (22) 66 (22) 64 (22)

104 12 (1.6) 11 (1.6) 11 (1.6) 11 (1.6) 10 (1.6)

106 7 (1.1) 7 (1.1) 7 (1.1) 7 (1.1) 7 (1.1)

106 10−6 138 (34,499) 692 (42,936) 2999 (45,584) 3001 (17,128) 3001 (5730)

10−4 133 (33,287) 773 (43,459) 2967 (45,532) 3001 (17,192) 3001 (5774)

10−2 141 (36,327) 695 (41,605) 2982 (45,144) 3001 (16,773) 3001 (5657)

100 366 (105,246) 1816 (111,467) 3001 (22,961) 3001 (9060) 3001 (3623)

102 280 (2117.4) 1110 (2113) 2608 (2014) 3001 (2013) 2979 (2011)

104 65 (22) 77 (22) 74 (22) 67 (22) 64 (22)

106 12 (1.6) 12 (1.6) 11 (1.6) 11 (1.6) 10 (1.6)

and zero right hand side(s). The linear systems were solved using a conjugate
gradient (CG) solver, with algebraic multigrid (Hypre AMG) with the respective
preconditioners, starting from a random initial guess. The tolerance is set to 10−9,

iterations are stopped at 3000, the condition number is just an estimation provided
by the Krylov spaces involved in the iterations and will be lower than the real value.

Example 3 We first compare the performance of the preconditioners (4) and (16).
We let K1 = 1.0, and consider different values of the parameters K2, ξ1←2 and
different mesh resolutions N . For the standard formulation (Table 2), the number
of iterations (and condition number) is not bounded and increases with the ratio
between ξ1←2 and K2. We see that the growth is somewhat less than the predicted
linear growth. In contrast, for the new formulation (Table 3), we observe that both
the number of iterations and the condition number stays nearly constant across the
whole range of parameter values tested.

Example 4 In this final example, we study the performance of the precondi-
tioner (16) for three networks. We report the results for K1 = 1.0, and different
values of the parameters K2,K3, ξ1←2, ξ1←3, ξ2←3 = (10−4, 10−2, 100, 102, 104)

and different mesh resolutions N = (16, 32, 64). The results are shown in Fig. 1.
We observe that the number of iterations stays between 4 and 6 across the whole
range of parameters tested, with condition numbers estimated in the range 1.0–1.25.
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Table 3 Number of iterations (and condition number estimates) of a CG solver of the system (12)
with an algebraic multigrid (Hypre AMG) preconditioner of the form (16)

ξ1←2 K2 N = 8 N = 16 N = 32 N = 64 N = 128

104 10−6 8 (1.2) 9 (1.2) 9 (1.2) 9 (1.2) 9 (1.2)

10−4 8 (1.2) 9 (1.2) 9 (1.2) 9 (1.2) 9 (1.2)

10−2 8 (1.2) 9 (1.2) 9 (1.2) 8 (1.2) 7 (1.1)

100 8 (1.2) 8 (1.1) 6 (1.1) 6 (1.1) 6 (1.1)

102 8 (1.1) 7 (1.1) 6 (1.1) 6 (1.1) 6 (1.1)

104 7 (1.1) 6 (1.1) 6 (1.1) 6 (1.1) 7 (1.1)

106 7 (1.1) 6 (1.1) 6 (1.1) 6 (1.1) 7 (1.1)

106 10−6 8 (1.2) 9 (1.2) 9 (1.2) 9 (1.2) 9 (1.2)

10−4 8 (1.2) 9 (1.2) 9 (1.2) 9 (1.2) 9 (1.2)

10−2 8 (1.2) 9 (1.2) 9 (1.2) 9 (1.2) 9 (1.2)

100 8 (1.2) 9 (1.2) 9 (1.2) 9 (1.2) 8 (1.1)

102 8 (1.2) 9 (1.2) 9 (1.2) 8 (1.2) 7 (1.1)

104 8 (1.2) 9 (1.2) 9 (1.2) 8 (1.2) 7 (1.1)

106 8 (1.2) 8 (1.2) 8 (1.2) 8 (1.2) 7 (1.1)

Fig. 1 Example 4: each point on the graphs represents a simulation performed with different
parameters. The color represents the magnitude of ξ1←2 + ξ1←3 + ξ2←3 from smaller (blue) to
larger (red). Left: the condition number of the operator versus the number of iterations. Right:
condition number versus the ratio between the sum of ξj←i and sum of Kj (x-axis is logarithmic
y-axis is linear)

5 Conclusion

In this paper we have introduced a transformation, based on the congruence of the
involved matrices, that transforms MPT systems to a form where diagonal block
preconditioners are highly effective. The transformation removes a problem that
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elliptic systems may have when the elliptic constant is small compared to the
continuity constant because of large low order terms.
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Scaling of the Steady-State Load Flow
Equations for Multi-Carrier Energy
Systems

A. S. Markensteijn, J. E. Romate, and C. Vuik

Abstract Coupling single-carrier networks (SCNs) into multi-carrier energy sys-
tems (MESs) has recently become more important. Steady-state load flow analysis
of energy systems leads to a system of nonlinear equations, which is usually
solved using the Newton-Raphson method (NR). Due to various physical scales
within a SCN, and between different SCNs in a MES, scaling might be needed to
solve the nonlinear system. In single-carrier electrical networks, per unit scaling is
commonly used. However, in the gas and heat networks, various ways of scaling
or no scaling are used. This paper presents a per unit system and matrix scaling
for load flow models for a MES consisting of gas, electricity, and heat. The effect
of scaling on NR is analyzed. A small example MES is used to demonstrate the
two scaling methods. This paper shows that the per unit system and matrix scaling
are equivalent, assuming infinite precision. In finite precision, the example shows
that the NR iterations are slightly different for the two scaling methods. For this
example, both scaling methods show the same convergence behavior of NR in finite
precision.

1 Introduction

Multi-carrier energy systems (MESs) have become more important over the years,
as the need for efficient, reliable and low carbon energy systems increases. In these
energy systems, different energy carriers, such as gas, electricity, and heat, interact
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with each other leading to one integrated energy network. An important tool for the
design and operation of energy systems is steady-state load flow (LF) analysis of the
energy networks. LF models for single-carrier networks (SCNs) have been widely
studied, but only recently LF models for MESs have been proposed.

Steady-state LF analysis leads to a system of nonlinear equations, which is
usually solved using the Newton-Raphson method (NR). The quantities in the LF
equations can be several orders of magnitude apart, such that scaling might be
needed to solve the nonlinear system.

In single-carrier electricity networks, per unit scaling is generally used (e.g.
[1]). In the per unit system, every variable and parameter is scaled to obtain
dimensionless equations. In gas and heat networks, a more ad hoc approach to
scaling is used. In MESs, the SCN variables, having various scales, are combined.
This requires a consistent way to scale the LF equations for MES. In [2], the per
unit system is extended to the heat network for consistency throughout an example
MES. To the best of the authors knowledge, there is no equivalent of the per unit
system for a gas network.

Another option to scale the system of nonlinear LF equations is by scaling the
equations and variables using scaling matrices. Even though this method is a well
known scaling method, it is not generally used for LF analysis in any of the SCNs.

We introduce a per unit scaling for MESs consisting of gas, electricity, and heat,
by extending the per unit scaling of an electricity network to gas and heat. We
compare the per unit scaling with matrix scaling for NR, and show that they are
equivalent when using the same base values. The advantages and disadvantages of
both methods are discussed.

Using a small MES consisting of gas, electricity, and heat, we investigate the
effect of the two scaling methods on the convergence of NR. Despite numerical
(round-off) errors, both scaling methods show the same convergence behavior.

2 Steady-State Load Flow

An important tool for the design and operation of energy systems is steady-state LF
analysis. The inflow and outflow of the energy system are assumed constant, and the
network flows and potentials are determined by the LF equations. For instance, in a
gas pipeline network, the gas inflow and outflow are assumed constant, and the gas
flow in the pipes and the pressures at the start and end of the pipes are determined.

Energy systems are mathematically represented by a network or graph, which is a
collection of nodes, connected by (directed) links. Flow enters the network through
sources and leaves the network through sinks. This is represented by an open link
connected to a single node only, called terminal link and terminal node respectively.
For steady-state LF, the variables of interest are associated with the network nodes,
links, or terminal links. Conservation of energy holds in all the single-carrier
(SC) nodes. All SC (terminal) links representing a physical component have a
link equation that relates link and nodal variables. SC nodes and coupling nodes
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can have additional node equations that relate the (terminal) link variables of the
links connected to that node. There are generally more variables than nodal and
link equations. Therefore, some variables are assumed known, called the boundary
conditions (BCs) of the network. Collecting all the nodal and link equations, some
of which are nonlinear, into one system, and substituting the BCs, gives the system
of LF equations:

F (x) = 0 (1)

with F ∈ R
n the vector of (nonlinear) LF equations and x ∈ R

n the vector of
variables. For specific LF models, see for instance [1] for electricity, [3] for gas, and
[4] for MESs.

3 Scaling

The parameters and the dependent and independent variables in the LF equations
can be several orders of magnitude apart, even within one SCN. For instance, gas
flow ∼ 1 kg s−1 whereas pressure ∼ 105 Pa. These different scales might result in
issues with solving the system of nonlinear equations, see Sect. 4. Normalizing or
scaling the variables and parameters for electricity networks is commonly done,
and is called the per unit system (e.g. [1]). Another option is to scale the system
of equations and the independent variables by scaling matrices, without scaling the
equation parameters. To investigate the effect of scaling on the system of equations,
we consider dimensional analysis.

The LF equations are a mathematical representation of a physical phenomenon.
Physical quantities are not just numerical values, they also have a dimension and
a unit measure associated with them. For instance, the diameter D of a gas pipe
has dimension ‘length’, and could have a unit measure of 1 cm and a value of 15.
Denoting the unit measure of length by l and the value of D by k, we can write
D = kl. We can scale D by changing the unit measure with a scaling factor kl ∈ R,
and generally kl > 0, such that l → kll. Using this new unit measure for D will
change the unit measure and the value (to k/kl), but not the dimension.

Based on the logic as laid out for dimensional analysis in for instance [5],
quantities can only be combined in limited ways. Quantities can be multiplied,
which multiplies the dimension in the same way. To add two quantities, they must
have the same dimension and the same unit measure. Other functional relations are
only possible if all arguments are dimensionless. For instance, if f (x) = sin (x),
then both f (x) and x must be dimensionless. Using these concepts recursively,
a function of multiple arguments can be made. An equation that satisfies these
properties is called ‘complete’ in [5]. A consequence is that the algebraic form of
the equation is unit independent. That is, if the unit measure of any dimension is
changed, the algebraic form of the equation remains the same. However, the value
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of the function might be changed, just like the value of some of the quantities is
changed. This can be seen as follows.

Since two (or more) terms can only be added if the terms have the same
dimension and unit measure, we can limit ourselves to functions consisting of only
one term. Furthermore, for dimensionless quantities, or for a dimensionless group
consisting of the power product of some quantities, the changes in unit measures
cancel out. Hence, we only need to consider the change in value of functions of
the form f (y1, . . . , yn) = y

a1
1 · · · yan

n . We can assume that all yi have a single
(primary) dimension. Scaling each yi by changing the unit measures of the primary
dimensions by a factor ki gives

f (y1, . . . , yn)→ f (k1y1, . . . , knyn) =
(
k
a1
1 · · · kann

) (
y
a1
1 · · · yan

n

)

= (
k
a1
1 · · · kann

)
f (y1, . . . , yn) (2)

such that f is scaled by a power product of the unit measure scaling factors.
An equation describing a physical model does not need to be complete for the

model to be valid. In fact, the commonly used form of the link equation for a
transmission line in an electrical network is not a complete equation. It contains
terms sin δk and cos δk , with δk the voltage angles difference of link k. Based on
the logic provided above, δi and δj should be dimensionless. However, they have
dimension ‘plane angle’. The link equation can be turned into a complete equation
by using δk/δ0 instead of δk, with a δ0 reference angle.

3.1 Per Unit System

The per unit system is commonly used in electricity networks, and extended in [2]
to the heat network. We consider a more general extension of the per unit system to
heat and gas networks. In the per unit system, a quantity x is scaled by a base value:

xp.u. = xa

xb
(3)

Here, xa is the unscaled or actual quantity, usually in S.I. units, xb is a chosen base
value with the same dimension as xa , and xp.u. is the scaled quantity. The scaled
quantity is dimensionless but is given p.u. as unit. Hence, the scaled quantity is also
called the per unit quantity or value.

There are two main differences between the per unit system and changing the unit
measures. The first is that the base value has a dimension, unlike the scaling factor
of the unit measure. Second, only the unit measure scaling factors of the primary
dimensions are chosen, whereas in the per unit system, the base value for derived
quantities might be chosen. The first point has no consequence for the argumentation
resulting in (2). However, the second point can lead to some difficulties. Since
derived quantities are combinations of other quantities, and applying the same
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logic that resulted in a complete equation, only a limited set of base values can
be specified. The base values for the other quantities then follow from dimensional
analysis. The set of base values that can be specified is not unique, neither are the
resulting base values of the other quantities. However, it is possible to find a set of
base values such that the equation remains a complete equation. For such a set of
base values, the argumentation resulting in (2) is still valid. We can now look at the
effect of the per unit system of the equation.

Suppose we have a (complete) equation of the form f
(
xa, pa

)
, with xa ∈ R

n all
the variables, and pa ∈ R

m all other quantities, dimensionless or not, appearing in
the algebraic form of f . We take a set of base values b1, . . . , bk, with k ≤ n + m,
and scale each x ∈ xa and p ∈ pa according to (3), with xb and pb power products
of the base values b1, · · · , bk . If the base values are chosen such that the equation
f remains a complete equation after scaling, the equation is scaled according to:

f
(
xa, pa

) = [
b
α1
1 · · · bαk

k

]
f
(
xp.u., pp.u.

)
(4)

Usually, only the variables are explicitly denoted as arguments for the function, such
that f

(
xa, pa

)
is written as f (xa) and f

(
xp.u., pp.u.

)
as fp.u.

(
xp.u.

)
. For the scaled

equation we then find

f (xa) =
[
b
α1
1 · · · bαk

k

]
f
(
xp.u., pp.u.

) := fbfp.u.
(
xp.u.

)
(5)

where fb =
[
b
α1
1 · · · bαk

k

]
is called the base value of the function f . That is, for a

suitable set of base values, the same expression of the LF equations can be used for
both the unscaled and per unit quantities, and all independent variables and all LF
equations can be scaled to similar orders of magnitude.

For an electricity network, the base values of the voltage amplitude and the power
are chosen. The base values of the other variable (current amplitude) and of the
parameters of the LF equations (admittance) are determined by the requirement that
the LF equations remain a complete equation, using dimensional analysis (e.g. [1]).

The per unit system is then easily extended to the gas and heat SCN, and to a
MES. We choose the base values for pressure and flow in the gas network, and for
pressure, mass flow, temperature, and power in the heat network. The base values of
the other variables and parameters are determined based on dimensional analysis.
For the couplings in a MES, we choose the base values of the power of every carrier
involved in the coupling, and again determine the base values of the other quantities
according to dimensional analysis.

The advantage of scaling derived quantities instead of scaling primary dimen-
sions becomes clear when considering transformers in an electrical network, or
compressors in a gas network. These components change the voltage or pressure
level, and their link equation has the general form f (x1, x2, r) = x1 − rx2 = 0,
with x1 and x2 the voltages or pressures, and r some ratio. Since x1 and x2 have
the same dimension, r must be dimensionless. Hence, changing the unit measures
will scale the values of x1 and x2 with the same factor, and will leave r unscaled.



718 A. S. Markensteijn et al.

In practice, x1 and x2 might be orders of magnitude apart when using the same unit
measure. In the per unit system, it is possible to use a different base value for x1 and
x2, such that both x1 ∼ 1 p.u. and x2 ∼ 1 p.u. Note that the scaled x1 and x2 now
have different unit measures, despite both of their units being denoted by p.u. Due
to the requirement for addition of dimensional quantities, r needs to scaled with
rb = (x1)b/(x2)b.

3.2 Matrix Scaling

Another option is to scale the independent variables and the equations only, using
scaling matrices [6]. Taking non-singular matrices Tx, TF ∈ R

n×n, the scaled
variables x̂ and scaled equations F̂ are given by:

x̂ = Txx (6)

F̂
(
x̂
) = TF F

(
T −1
x x̂

)
= TF F (x) (7)

Unlike the per unit scaling, scaling with matrices requires us to also choose the
scaling for the equations instead of only for the variables. However, per unit scaling
requires base values for all parameters in every equation. Furthermore, matrix
scaling is generally easier to implement than per unit scaling.

If we take Tx as a diagonal matrix with (Tx)ii = (xb)i , where (xb)i the base value
of xi ∈ x used in per unit scaling, it follows from (5) that TF is a diagonal matrix
with (TF )ii = (fb)i , where (fb)i the base value of fi ∈ F found in per unit scaling.
Therefore, in infinite precision, the per unit scaling and matrix scaling will result in
the same scaled system of equations F̂ and the same scaled variables x̂. Hence, the
per unit system and matrix scaling are said to be equivalent.

4 Newton-Raphson

We use the Newton-Raphson method (NR) to solve the system of non-linear LF
equations (1). The iteration scheme in multiple dimensions is given by [6]:

J
(

xk
)

sk = −F
(

xk
)
, with xk+1 = xk + sk (8)

J
(
xk
)

is the Jacobian matrix. We take ek = ||F (
xk
) ||2 as error of NR at iteration

k, with || · ||2 the 2-norm. For the stopping criterion we take ek ≤ τ for some
chosen tolerance τ . If the equations in F are several orders of magnitudes apart,
the smaller ones might be ignored during NR, or NR might not convergence to a
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solution since the larger ones will never reach the required tolerance. Therefore, we
scale all equations in F to be of same order of magnitude.

Since per unit scaling and matrix scaling are equivalent, we only consider matrix
scaling. The iteration scheme of NR is adjusted to:

Ĵ
(

x̂k
)

ŝk = −F̂
(

x̂k
)
, with x̂k+1 = x̂k + ŝk (9)

It is straightforward to show that Ĵ
(
x̂
) = TF J (x) T −1

x . Then, for the scaled step it

holds that ŝk = −TxJ (x)−1 F
(
xk
) = Txsk , meaning that scaling does not affect the

NR iterations. We take êk = ||F̂k||2 = ||TFF
(
T −1
x x̂

) ||2 as error of the scaled NR.

Since all f̂i ∈ TF F are roughly of the same order of magnitude, we take êk ≤ τ as
stopping criterion.

5 Numerical Results

The previous analysis only holds in infinite precision. In finite precision, an NR step
might be affected. In the per unit system, the scaled variables and parameters are
plugged into (1) to obtain the scaled system of equations, denoted by Fp.u.. With
matrix scaling, the unscaled variables and parameters are used in (1). Then, the
scaled system of equations is given by F̂ = TF F

(
T −1
x x̂

)
. Due to round-off errors,

generally Fp.u. �= F̂, even though Fp.u. and F̂ will be close. Similarly, Jp.u. �= Ĵ ,
such that ŝk �= skp.u. �= Txsk . We model a small MES to investigate the effect of finite
precision on NR for the two different scaling options.

We consider the small MES shown in Fig. 1, and use the LF model as described in
[4]. The resulting system of nonlinear equations is scaled using the per unit system
and using matrix scaling. The resulting scaled systems Fp.u. and F̂ are solved using
NR as described in Sect. 4, with a tolerance of τ = 10−6. For comparison, we
also solve the unscaled system using NR. Denoting the unscaled system by F, the
(unscaled) error at each NR iteration is given by ek = ||Fk (x) ||2. To compare
with the error of NR for the scaled systems, we calculate the scaled error of the
unscaled NR iteration by ẽk = ||TFFk (x) ||2. Note that ẽk is different from the error

êk = ||F̂k (
x̂
) ||2 = ||TFFk

(
T −1
x x̂

) ||2 of scaled NR, since scaled NR uses the scaled

update ŝk instead of sk .
Table 1 gives the errors for NR. We can see that the errors for the per unit scaling

and the matrix equals are unequal, but close, to each other and to the error of
unscaled NR. Hence, scaling affects NR in finite precision. In this example, this
effect does not result in a significant difference between the solutions to the LF
problem.
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heat network
electricity network
gas network

1h

2h

0h

2e0e

1e1g

0g

2g

0c

1c

Fig. 1 Network representation of a small MES. Each SCN consists of three nodes. The gas and
electricity networks have an external source connected at nodes 0g and 0e, the heat network has
no external sources. In each SCN, nodes 1 and 2 are sinks. The SCNs are coupled by a gas-boiler,
node 0c , and a combined heat and power plant (CHP), node 1c. The links show defined direction
of flow, the terminal links show actual direction of flow

Table 1 Errors of NR for each iteration k, using a tolerance of τ = 10−6. Here ẽk = ||TF Fk ||2,

êk = ||F̂k ||2 and ekp.u. = ||Fk
p.u.||2. The last column gives the relative difference between the errors

of scaled NR and unscaled NR

k ẽk êk ekp.u.
|ẽk−êk |
|ẽk |

|ẽk−ekp.u.|
|ẽk |

0 1.0310 × 106 1.0310 × 106 1.0310 × 106 0.0000 0.0000

1 1.3081 × 103 1.3081 × 103 1.3081 × 103 2.6421 × 10−14 1.0951 × 10−14

2 5.7417 × 10−1 5.7417 × 10−1 5.7417 × 10−1 1.5071 × 10−12 9.6527 × 10−13

3 7.0379 × 10−4 7.0379 × 10−4 7.0379 × 10−4 6.5244 × 10−10 7.7472 × 10−10

4 3.2883 × 10−9 3.2890 × 10−9 3.2886 × 10−9 1.8566 × 10−4 7.4581 × 10−5

5 6.6172 × 10−11 – – – –

6 Conclusion

We extended the per unit system used in electrical networks for scaling the load flow
(LF) equations to gas networks, heat networks, and multi-carrier energy networks
(MCNs). The per unit system scales the equations by scaling all variables and
parameters. The base values are determined by dimensional analysis, such that the
scaled system is also dimensionless. Another option is to use scaling matrices, which
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explicitly scales the equations. We showed that base values can be chosen such that
the per unit system is equivalent to using scaling matrices, in infinite precision.

Newton-Raphson’s method (NR) is used to solve the (scaled) system of nonlinear
LF equations. In infinite precision NR is unaffected by scaling. Using the LF
equations for a small MCN, we showed that both scaling methods lead to slightly
different NR steps, meaning that NR is affected by scaling in finite precision.
However, the difference in the solution found for the LF problem is small. Hence,
for this example, the per unit system and scaling matrices are equivalent in finite
precision.
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A Semismooth Newton Method
for Regularized Lq-quasinorm Sparse
Optimal Control Problems

Pedro Merino

Abstract A semismooth Newton method (refered as DC–SSN) is proposed for the
numerical solution of a class of nonconvex optimal control problems governed
by linear elliptic partial differential equations. The nonconvex term in the cost
functional arises from a Huber-type local regularization of the Lq -quasinorm (q ∈
(0, 1)), therefore it promotes sparsity on the solution. The DC–SSN method solves
the optimality system of the regularized problem resulting from the application of
difference-of-convex functions programming tools.

1 Introduction

Sparse optimal controls are attractive in many applications due their parsimony. For
instance, L1-norm penalized controls in the cost function is a common approach in
applications for promoting sparsity on the solutions, see [3]. On the other hand, Lq -
quasinorm (q ∈ (0, 1)) penalizer differs from L1-norm qualitatively in virtue of the
induced sparsity on the solution might involve discontinuities on the boundary of
its support as discussed in [2]. However, the fact that Lq -quasinorm is a non convex
nor differentiable function, makes its theoretical and numerical studies challenging.
Indeed, the lack of weak lower semincontinuity of the cost function does not allow
the use of well known techniques used for convex problems. Still, we are motivated
to use the Lq -quasinorm since it is a natural approximation for the Donoho’s
counting “norm”, referred as the L0-norm and interpreted as a penalization for the
cost of the volume of the control support, as an analogy to the discrete measure of a
vector in finite dimensions.

The theory involving this kind of problems is far from being complete. In
particular, in [1] the authors considered this type of penalizers and established
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a maximum principle, provided that the controls belong to the space H 1
0 (�). By

contrast, when the control space is L2(�), existence of solutions cannot be proven
using the direct method.

Although the question of the existence of solutions is not fully explained, several
aspects of the solutions have been estudied. For instance, an optimality system was
deduced in [2] for a regularized version of the optimal control problem with Lq -
quasinorms. Here, we consider this kind of regularized Lq -quasinorm penalized
optimal control problem which captures the nonconvexity and nondifferentiability
of the Lq terms. In this paper, we exploit the corresponding necessary optimality
conditions based on the DC-programming approach from [2], by proposing a
semismooth Newton method for computing numerical solutions of the nonconvex
optimal control problem.

2 The Optimal Control and Its Optimality Conditions

Consider Y , U and W reflexive Banach spaces, with U ↪→ L2(�). Let E : Y → U .
We assume that E is a linear and continuous operator. Moreover, we assume that for
every u, the equation Ey − u = 0 has a unique solution y = y(u) which depends
(afine) linearly on u. For instance, e can represent linear elliptic equations of second-
order with Y = W = H 1

0 (�) and U = L2(�). Let us denote by B, a linear and
continuous operator from U into L2(�). Also, let us consider two constants a and
b in R, such that a < 0 < b. For q ∈ (0, 1), and γ > 0 we consider the optimal
control problem:

(P )

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min
(y,u)∈Y×U

J (y, u) := 1

2
‖y − yd‖2

L2(�)
+ α

2
‖Bu‖2

L2(�)
+ β

∫

�

|u(x)|qq,γ dx

subject to:

Ey − u = 0, and u ∈ Uad := {u ∈ U : a ≤ u ≤ b}.
(P )

where | · |q,γ stands for the Huber-type local regularization of the absolute value
introduced in [2] (with q = 1/p) and given by

|t|q,γ :=

⎧
⎪⎨

⎪⎩

qγ
1−q
q |t| 1

q , if t ∈ [− 1
γ
, 1
γ
],

|t| − 1− q

γ
, otherwise.

Notice that, for a fixed q ∈ (0, 1), | · |q,γ → | · | uniformly as γ →∞.

Remark 1 Existence of solutions for problem (P ) when B = ∇ was proved in [1].
Indeed, compactness arguments can be used since controls are in U = H 1(�). The
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case U = L2(�) is more delicate. Although, under strong conditions the controls in
L2(�) can be approximated by controls in H 1(�), see [2]. The lack of compactness
in L2(�) and the absence of convexity make the direct method fail. In the following,
we will assume existence of a solution for problem (P ).

2.1 The Optimality System

Necessary optimality conditions for problem (P ) were derived in [2] by formulating
the reduced optimal control problem and then splitting the cost function in the
form of difference-of-convex functions (DC). This representation is obtained by
replacing the control-to-state operator S : U → Y , which is assumed (afine)
linear and continuous, and given by y = y(u) = Su + yf , with some yf ∈ Y .
Furthermore, the control constraints are included using the indicator function IUad .
Hence, problem (P ) is reformulated as the following optimization problem:

min
u

f (u) = G(u)−H(u), (1)

where G and H are defined by:

G : L2(�)→ R

G(u) := 1
2‖Su+ yf − yd‖2

L2(�)
+ α

2 ‖Bu‖2
L2(�)

+ βκγ ‖u‖L1(�) + IUad ,

H : L2(�)→ R

H(u) := β
(
κγ ‖u‖L1(�) −

∫
� |u(x)|qq,γ dx

) = β
∫
� κγ |u(x)| − |u(x)|qq,γ dx.

(2)

Here, a constant κγ := qqγ 1−q is chosen for inducing Gâteaux differentiability
of the function H , see [2]. Indeed, H is defined through the real function t �→
κγ |t| − |t|qq,γ , which is bounded by κγ and it is continuously differentiable. Let us
denote its first derivative by j . Then, j takes the form

j (t) =

⎧
⎪⎨

⎪⎩

[

κγ − q

(

|t| + q − 1

γ

)q−1
]

sign(t), if |t| > 1
γ
,

0, otherwise.

Using DC-programming theory, the solution ū of the minimization problem
is characterized by the inclusion ∂H(ū) ⊂ ∂G(ū). Applying this relation, the
following result can be proven.

Theorem 1 Let B∗ be the adjoint of B. Let ū be a solution of (P ), then there exist:
ȳ = Sū+ yf in Y , an adjoint state φ ∈ W∗, a sparsity multiplier ζ and function w̄,
both in L∞(�) and nonnegative multipliers λa and λb in U∗ such that the following
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optimality system is satisfied:

Sū+ yf − ȳ = 0, (3a)

S∗(ȳ − yd)− φ = 0, (3b)

φ + αB∗Bū+ β (κγ ζ − w̄)+ λb − λa = 0, (3c)

λa(ū− a) = λb(ū− b) = 0, (3d)

ζ(x)

⎧
⎨

⎩

= 1, if ū(x) > 0,
= −1, if ū(x) < 0,
∈ [−1, 1], if ū(x) = 0,

(3e)

w̄(x) = j (ū(x)), (3f)

for almost all x ∈ Ω.

Proof This system follows from the inclusion ∂H(ū) ⊂ ∂G(ū), which takes the
form H ′

G(ū, ·) ⊂ ∂G(ū) since H has Gâteaux derivative H ′
G(ū, ·) = (βw̄, ·)L2(�).

��
As in [3], we collect multipliers ζ , λa and λb into a single multiplier μ = κγ βζ+

λb−λa . Then, we define the superposition operator u �→ w by w(u)(x) = j (u(x)),
for almost all x ∈ �. In addition, for a positive constant c, we introduce

C(u, μ) = u−max(0, u+ c(μ− κγ β))−min(0, u+ c(μ+ κγ β))

+max(0, u− b + c(μ− κγ β))+min(0, u− a + c(μ+ κγ β)).

Hence, in view of the complementarity condition (3d) we reduce the problem of
finding (ȳ, φ, μ, ū, w) ∈ Y × W∗ × U∗ × U × L∞(�) satisfying the following
system:

Eȳ − ū = 0, (4a)

E∗φ − ȳ + yd = 0, (4b)

αB∗Bū+ φ + μ− βw = 0, (4c)

C(ū, μ) = 0, (4d)

w − j (ū) = 0. (4e)

Theorem 2 Let B = I and let F : Y ×W∗ × U∗ × U × L∞(�) → a function of
variables y, φ,μ, u,w defined by the left hand side of (4), and let us assume that
Y ↪→ Ls(�) for some s > 2, then we have that F : U → L2(�) is semismooth in
the sense of Definition 3.1 in [4].
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Proof Let us consider the first case C = I . By using the solution operator we can
replace y = Su + yf , φ = T u := S∗(Su + yf − yd) and μ = βw − φ − αu =
j (u)− T u− αu in (4d). Moreover, we can chose c = 1/α, thus the system (4) can
be witten as a function depending on u only:

F(u) = u− β

α

(
max(0, j (u)− 1

β
T u− κγ )−min(0, j (u)− 1

β
T u− κγ )

+max(0, j (u)− 1

β
T u− κγ − α

β
b)+min(0, j (u)− 1

β
T u− κγ − α

β
a)
)
.

(5)

Using similar arguments as in [3], we observe that the terms involved in F are
expressed as the composition of the operator u �→ j (u) − 1

β
T u (plus a constant

term) and the max (or min) function. Moreover, by our assumptions, T : U →
Ls(�) is an afine and continuous operator from U into Ls(�). Hence, it is Fréchet
differentiable. On the other hand, due to the fact that j : R → R is piecewise
continuously differentiable, it is also semismooth. Moreover, j is bounded by κγ ,
see [2]. Hence, it is not difficult to check Lipschitz continuity of j with associated
Lipschitz constant Lγ = 2γ κγ . Therefore, by applying Theorem 3.49 in [4], the
superposition operator u→ j (u(·)) defined from U to L∞(�) is semismooth from
U into L2(�). Then, we have that the mapping u �→ j (u(·)) − T

β
u is semismooth

from U into L2(�). Finally, it is well known that the composition with the max(0, ·)
function is also semismooth. ��
Remark 2 For the case B = ∇, it is clear that we cannot chose a suitable value of
the constant c as in the previous proof. We do not discuss the semismoothness of F
for this case in this paper, since it is rather technical. However, it can be proved that
it is semismooth.

3 The DC: Semismooth Newton Method

In order to solve system (4), whose right-hand side is denoted by F = F(z) with
z = (y, φ,μ, u,w), we apply the Semismooth Newton Method that we refer as
DC–SSN algorithm. The DC–SNN solves equation F(z) = 0 and it is based on the
iterative step:

zk+1 = zk + δzk , with F ′(zk)δzk = −F(zk)
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We introduce the active sets associated with the sparsity multiplier and the
constraints multipliers given by

AS = {x : u+ c(μ− κγ β) ≥ 0} ∪ {x : u+ c(μ+ κγ β) ≥ 0}, and (6)

AC = {x : u− b + c(μ− κγ β) ≥ 0} ∪ {x : u− a + c(μ+ κγ β) ≥ 0}, (7)

respectively. Then, the active set is given by:

A = AS ∪ AC.

Then, we can compute the generalized derivative F ′(z) and formulate the
Newton system F ′(y, φ,μ, u,w)[δy , δφ, δμ, δu, δw] = −F(yk, φk, μk, uk,wk),
which is given by

⎛

⎜
⎜
⎜
⎜
⎜
⎝

E 0 0 −I 0
−I E 0 0 0
0 I I αC∗C −βI

0 0 −cχA I − χA 0
0 0 0 −j ′(uk) I

⎞

⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎝

δy

δφ

δμ

δu

δw

⎞

⎟
⎟
⎟
⎟
⎟
⎠
= −

⎛

⎜
⎜
⎜
⎜
⎜
⎝

Eyk − uk

E∗φk − yk + yd

αC∗Cuk + φk + μk − βwk

C(uk, μk)

wk − j (uk)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(8)

In addition, by noticing that the function F can be written in the form F(z) = z −
S(z), we can incorporate a smoothing step as described in [4, Section 5.2.4]. Thus,
we propose the following algorithm:

DC–SNN Algorithm
1. Initialization: z0 = (y0, φ0, μ0, u0, w0).
2. Solve Newton system: Solve (8) for δ = δk .
3. Updating: ẑk+1 = zk + δk .
4. Smoothing: zk+1 = S(ẑk+1).
5. Repeat for k + 1 until convergence.

4 Numerical Examples

We show numerical evidence of the performance of the method DC–SSN by solving
two optimal control problems of the form (P ) numerically. For this purpose, we
approximate the differential operator using a standard finite-difference scheme.
Other methods of approximation might be also considered, e.g. FEM. The following
examples are tested in � = (0, 1)× (0, 1) with state space Y = H 1

0 (�)
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Table 1 Numerical convergence for Example 1 for increasing values of γ

γ Cost (×10−6) Residual ‖F(zk)‖ Null entries Iterations Time(s)

1000 52158.176 3.874e−12 3.9093e−10 1417 212 94.6

1200 52158.177 6.5569e−12 6.6158e−10 1409 198 89.5

1500 52158.180 4.4189e−15 4.8743e−12 1396 82 44.18

2000 52158.184 6.8007e−12 6.862e−10 1378 53 29.9

3000 52158.184 1.0683e−12 1.0788e−10 1376 173 80.7

5000 52158.187 9.4537e−15 4.9981e−12 1360 71 38.9

6000 52158.187 8.2468e−15 4.8575e−12 1360 84 44.8

7000 52158.187 3.2544e−11 3.2834e−09 1360 69 37.3

8000 52158.187 6.7549e−14 8.4028e−12 1360 90 47.0

9000 52158.187 7.4883e−15 4.9687e−12 1360 102 52.9

10,000 52158.187 8.1208e−11 8.1925e−09 1360 194 89.2

12,000 52158.187 1.0878e−14 5.1632e−12 1360 186 85.3

13,000 52158.187 2.0902e−11 2.1087e−09 1360 107 54.4

Example 1 For this example we chose operators E = −�, C = I . The state and
control spaces are Y = H 1

0 (�) and U = L2(�), with Uad = L2(�). Moreover,
we chose the parameters α = 1/4, β = 4e − 4, q = 2 and desired state yd =
e− cos(2πx1x2). The discretization mesh is of size 100 × 100, and the parameter c =
α−1. The admissible set is given by

Uad = {u ∈ L2(�) : 0 ≤ u ≤ 0.08}.

We observe the numerical convergence of the solutions corresponding to different
values of γ in Table 1. For higher values of γ we notice that the cost value of
the unregularized cost function remains steady. Figure 1 shows the optimal control
where: its sparse structure, the action of the upper constraint and the discontinuity
on its support are depicted.

Example 2 For this example we chose operators E = −�, B = ∇. The state
and control spaces Y = H 1

0 (�) and U = L2(�) with Uad = L2(�). Moreover,
we chose the parameters α = 1/4, β = 2−4, q = 1/2 and desired state yd =
e− cos(2πx1x2). No constraints have been considered for this example. We notice that
the optimal control does not present discontinuities since this contribute to the cost
of its gradient. Table 2 shows information for every iteration of the algorithm. See
also Fig. 2.
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Fig. 1 Computed optimal control for γ = 4000 in Experiment 1

Table 2 Iterative information of the algorithm for Example 2 with γ = 5000

Null elements Residual Cost (×10−6) ‖F(zk)‖
0 9.8006 0.052417 515148.6076

0 0.00051106 0.052416 2392.926

581 5.782e−05 0.052416 637.551

531 1.0405e−06 0.052416 86.12

481 9.3423e−07 0.052416 0.67903

449 4.3183e−07 0.052416 0.45016

434 1.4349e−07 0.052416 0.10871

434 9.2923e−11 0.052416 0.0016909

434 6.1521e−17 0.052416 8.5332e-10
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Fig. 2 Computed optimal control for γ = 5000 in Experiment 2
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Monotone and Second Order Consistent
Scheme for the Two Dimensional Pucci
Equation

Joseph Frédéric Bonnans, Guillaume Bonnet, and Jean-Marie Mirebeau

Abstract We introduce a new strategy for the design of second-order accurate dis-
cretizations of non-linear second order operators of Bellman type, which preserves
degenerate ellipticity. The approach relies on Selling’s formula, a tool from lattice
geometry, and is applied to the Pucci equation, discretized on a two dimensional
Cartesian grid. Numerical experiments illustrate the robustness and the accuracy of
the method.

1 Introduction

Degenerate Ellipticity (DE) is a property of a class of partial differential operators,
often non-linear and of order at most two. When satisfied, it implies a generalized
comparison principle, from which can be deduced the existence, uniqueness and
stability of a viscosity solution to the Partial Differential Equation (PDE), under
mild additional assumptions [CIL92]. Discrete degenerate ellipticity is the corre-
sponding property for numerical schemes, see Definition 2, which has similarly
strong implications and often turns the convergence analysis of solutions into a
simple verification [Obe06]. It is therefore appealing to design PDE discretizations
preserving the DE property, yet a strong limitation of the current approaches
[BS91, Obe08, FJ17] is their low consistency order, usually below one. Filtered
schemes [FO13] attempt to mitigate this issue by combining a DE scheme of low
consistency order with a non-DE scheme of high consistency order, but their use
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requires careful parameter tuning, and theoretical results are lacking regarding their
effective accuracy.

In this paper, we propose a new approach to develop second order accurate
DE schemes, which is the highest achievable consistency order [Obe06], on two
dimensional Cartesian grids. The operator must be given in Bellman form as follows

!u(x) = sup
α∈A

aα + bαu(x)− Tr(Dα∇2u(x)), (1)

where A is an abstract set of parameters, and the coefficients aα ∈ R, bα ≥ 0,
and symmetric positive definite matrix Dα may additionally depend on the position
x. A specific feature of our approach, that is tied to the structure of the addressed
problems, is that the parameter space A is not discretized. We apply this approach
to the two dimensional Pucci equation:

λmin(∇2u(x))+ μλmax(∇2u(x)) = f (x), (2)

with Dirichlet boundary conditions, where λmin and λmax denote the smallest and
largest eigenvalue of a symmetric matrix, and where μ > 0. This PDE admits the
following Bellman form, when μ ≤ 1, which we assume for simplicity:

max
θ∈[0,π] −Tr(D(θ, μ)∇2u(x)) = −f (x), where D(θ,μ) := Rθ

(
1 0
0 μ

)

RT
θ ,

(3)

and where Rθ :=
(

cos θ − sin θ

sin θ cos θ

)

denotes the rotation matrix of angle θ ∈ R.

Our approach also applies in the case μ ≥ 1, with only the slight modification
that the max in (3) is replaced with a min. Note that the optimization space in (3)
is A = [0, π], which is compact and one dimensional, thus easing the theoretical
study and the numerical implementation.

Motivation for this Study The Pucci equation interpolates between two fundamental
problems in analysis: the Poisson problem when μ = 1, and the (lower-)convex
envelope of the boundary conditions when μ = 0 and f = 0. It is also an excellent
representative of the class of Pucci extremal operators, a.k.a. operators which can
be written in the form (1), perhaps replacing the inf with a sup. This class also
encompasses the Monge–Ampère operator, known for its applications in optimal
transport and optics, to which similar techniques may be applied [BCM16].
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2 Discretization

We rely on a tool from algorithmic lattice geometry, known as Selling’s formula
Sect. 2.1, which is particularly adequate for discretizing degenerate elliptic PDEs
on Cartesian grids of dimension two [BOZ04] or three [Mir18, Mir19, FM14].
Throughout this section � ⊂ R

2 denotes a bounded domain, and h > 0 a grid
scale. Define

�h := hZ2 ∩�, �e
hu(x) :=

u(x + he)− 2u(x)+ u(x − he)

h2 , (4)

the discrete domain and the second order finite difference of a map u : �h∪∂�→ R

at x ∈ �h in the direction e ∈ Z
2. When x is adjacent to ∂� the latter formula

becomes

�e
hu(x) :=

2

h+ + h−

(u(x + h+e)− u(x)

h+
+ u(x − h−e)− u(x)

h−

)
, (5)

where h± > 0 is the least value such that x ± h±e ∈ �h ∪ ∂�. Note that (4, right)
is a second order consistent approximation of 〈e,∇2u(x)e〉, whereas (5) is only first
order consistent. Thus

Tr(eeT∇2u(x)) = 〈e,∇2u(x)e〉 = �e
hu(x)+ O(hr ), (6)

where r = 1 if x is adjacent to ∂�, and r = 2 otherwise.

2.1 Selling’s Formula

Selling’s decomposition of an element of the set S++2 of symmetric positive
definite 2 × 2 matrices, see Proposition 1, can be regarded as a variant of the
eigenvector/eigenvalue decomposition, but whose vectors have integer entries. We
rely on it to discretize non-divergence form linear (8) and non-linear (11) operators,
in a manner that achieves discrete degenerate ellipticity, see Definition 2.

Definition 1 A superbase of Z2 is a triplet (e0, e1, e2) ∈ (Z2)3 such that e0 + e1 +
e2 = 0 and | det(e1, e2)| = 1. It is D-obtuse, where D ∈ S++2 , iff 〈ei,Dej 〉 ≤ 0 for
all i �= j .

Proposition 1 (Selling [Sel74]) For each D ∈ S++2 there exists a D-obtuse
superbase (e0, e1, e2) of Z

2, which can be obtained from Selling’s algorithm.
Furthermore one has Selling’s formula

D =
∑

0≤i≤2

ρiviv
�
i with ρi := −〈ei−1,Dei+1〉 ≥ 0, vi := e⊥i ∈ Z

2, (7)
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where e⊥ := (−b, a)� if e = (a, b)� ∈ R
2. The set {(ρi ,±vi); 0 ≤ i ≤ 2, ρi > 0}

is uniquely determined. In (7), the indices i− 1 and i + 1 are understood modulo 3.

Based on this formula, one can consider the following finite differences operator:

�D
h u(x) :=

∑

0≤i≤2

ρi�
vi
h u(x). (8)

Using (6), (7), and (8) and the linearity of the trace operator on matrices, we obtain

Tr(D∇2u(x)) =
∑

0≤i≤2

ρi Tr(viv
T
i ∇2u(x)) = �h

Du(x)+ O(hr ),

where again r = 1 if x is adjacent to ∂�, and r = 2 otherwise.
We illustrate on Fig. 1 the relation between the anisotropy defined by a symmetric

positive definite matrix D ∈ S++2 , and the corresponding offsets ±v0,±v1,±v2 ∈
Z

2 in Selling’s formula. (The weights ρi are illustrated on Fig. 2.) For that purpose,
we rely on a parametrization D of the 2× 2 symmetric positive definite matrices of
unit trace, by the points (x, y) of the open unit ball:

D(x, y) := 1

2

(
1+ x y

y 1− x

)

, where x2 + y2 < 1. (9)

Fig. 1 (Left) Ellipsoid {v ∈ R
2; vT D(z)v = 1} for some points z of the unit disc, see (9).

Anisotropy degenerates as z moves toward the unit circle, shown blue. (Right) D(z)-obtuse
superbase, and opposites, for the same points z. This superbase is piecewise constant on an infinite
triangulation of the unit disk [Sch09], shown black
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Fig. 2 Coefficients of Selling’s decomposition (7) of the matrix D(θ,μ) for θ ∈ [0, π] and μ =
0.1, see (13). The vertical bars correspond to the angles 0 = θ0 < · · · < θN = π where the support
e0, e1, e2 ∈ Z

2 of the decomposition changes, see legend

This parametrization is closely related to the Pauli matrices in quantum mechanics.
A D(x, y)-obtuse superbase is known explicitly, depending on a suitable triangula-
tion of the unit disc, see Fig. 1right.

Definition 2 (Discrete Degenerate Ellipticity [Obe06]) A numerical scheme on a
finite set X is a map F : U → U , where U := R

X is the set of functions from X to
R, of the form:

Fu(x) := F(x, u(x), (u(x)− u(y))y∈X\{x}), (10)

for all u ∈ U , x ∈ X. It is Discrete Degenerate Elliptic (DDE) iff F is non-
decreasing w.r.t. the second argument u(x), and w.r.t. each u(x)−u(y), y ∈ X\{x}.
Notation the expression Fu(x) should only be regarded as a shorthand for the
accurate yet more verbose (10, right). In our application X := �h.

The numerical scheme −�D
h is DDE on �h, thanks to the non-negativity of the

weights (ρi)0≤i≤2, and to the finite differences expression (4, right) and (5), where
u is extended to ∂� with the provided Dirichlet boundary values. On this basis we
obtain a DDE discretization of nonlinear second order operators in Bellman form (1)

!hu(x) := sup
α∈A

aα + bαu(x)−�
Dα

h u(x), !hu(x) = !u(x)+ O(hr), (11)

where again r = 1 if x is adjacent to ∂�, and r = 2 otherwise, at least if A is
compact—which is the case for the Pucci operator. As shown in the next section,
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the supremum in (11, left) can be computed analytically in closed form, for the
Pucci PDE, so that the numerical scheme !h is explicit in terms of the unknown u.

Efficient Construction of the Jacobian Matrix of the Numerical Scheme We use a
Newton method to solve the discretized PDE, which requires assembling the sparse
Jacobian matrix of the numerical scheme (11). In order to describe this essential
step, let us rewrite the scheme in the following form (omitting the scale h for
readability)

max
α∈A F(α, x, u(x), (u(x)− u(y1(x)))

I
i=1) = 0. (12)

In comparison with (10), the expression (12) emphasizes (1) that F is defined as a
maximum over a parameter set A, and (2) that the active stencil y1(x), · · · , yI (x)
of a point x ∈ �h only involves a small number of neighbors. The Jacobian matrix
construction, at a given u : �h → R, involves the following steps:

1. Compute the maximizer α∗(x) in (12), for each x ∈ �h.
2. Differentiate the function F(α∗(x), x, δ, (ηi)

I
i=1) w.r.t. parameters δ and

η1, · · · , ηI , at the values u(x) and u(x)− u(yi(x)), 1 ≤ i ≤ I , respectively.
3. Fill the corresponding entries of the sparse Jacobian matrix. More precisely,

omitting the arguments of F for readability

Jx,x = ∂F
∂δ

+
∑

1≤i≤I

∂F
∂ηi

, Jx,yi(x) = − ∂F
∂ηi

, 1 ≤ i ≤ I.

A custom automatic differentiation toolbox, open source and developed by the
third author, makes these operations transparent. The above computations rely
on the envelope theorem [Car01], which states that the value function to an
optimization problem, here (12), over a compact set, here A, is differentiable w.r.t.
the parameters, here δ and (ηi)

I
i=1, whenever the problem solution, here α∗(x), is

single valued (which is a generic property). In addition the first order derivatives
have the expression used above, obtained by freezing the optimization parameter
α ∈ A to the optimal value α∗(x).

2.2 The Pucci Operator

The Bellman form of the Pucci operator (3) involves a family of matrices D(θ,μ),
parameterized by the inverse 0 < μ ≤ 1 of their condition number, and by an angle
0 ≤ θ ≤ π . As a starter, we rewrite those in the form (9)

D(θ,μ) = (1+ μ)D
(1− μ

1+ μ
n(2θ)

)
, (13)
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where n(ϕ) := (cosϕ, sin ϕ). Note that the argument of D in (9) describes a circle of
fixed radius 1−μ

1+μ
within the unit disc, see Fig. 1. Thus one can find 0 = θ0 < · · · <

θN = π , where N = N(μ), such that on each interval [θn, θn+1] the superbase
(en0 , e

n
1 , e

n
2 ) is D(θ,μ)-obtuse and the coefficients in (7) take the form

ρi(θ) = −〈eni−1,D(θ, μ)eni+1〉 = αn
i + βn

i cos(2θ)+ γ n
i sin(2θ), (14)

for suitable constants αn
i , β

n
i , γ

n
i ∈ R, 0 ≤ i ≤ 2, 0 ≤ n < N , see Fig. 2. One

finds that N(1/4) = 2, N(1/10) = 10, N(1/400) = 122, and one can show that
N(μ) ≤ Cμ−1| lnμ| for some constant C independent of μ. By linearity of (8) one
also has

�
D(θ,μ)
h u(x) = αn + βn cos(2θ)+ γ n sin(2θ) (15)

for all θ ∈ [θn, θn+1], whose coefficients αn, βn, γ n depend on ρ, h, u and x.
Therefore, evaluating the discretized Bellman operator (11) associated with the
Pucci equation (3) at a point x ∈ �h amounts to solving a small number N of
optimization problems, whose value is explicit. These optimization problems, and
their value, take the following generic form

max
ϕ∈[ϕ∗,ϕ∗]

α + β cosϕ + γ sin ϕ

=
{
α +√

β2 + γ 2 if arg(β + iγ ) ∈]ϕ∗, ϕ∗[,
α +max{β cosϕ∗ + γ sin ϕ∗, β cosϕ∗ + γ sin ϕ∗} else,

where arg(ω) denotes the argument of ω ∈ C, taken in [0, 2π[. In view of (15), we
choose ϕ∗ = 2θn, ϕ∗ = 2θn+1, α = αn, β = βn, and γ = γ n. Then, following (3),
we take the largest value among 0 ≤ n < N .

3 Numerical Experiments

We present numerical results for the Pucci equation, chosen to illustrate the
qualitative behavior of the solutions, and validate the scheme robustness and
accuracy on synthetic problems with known solutions. Some of the considered
domains are neither smooth nor convex, and the chosen synthetic solutions range
from smooth to singular.

The numerical scheme is implemented as described in the previous section, and
a Newton method is used to solve the resulting coupled systems of non-linear
equations. In practice, convergence to machine precision is achieved in a dozen
of iterations, without damping, from an arbitrary guess. An open source Python R©
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Fig. 3 Solution of the Pucci PDE with μ = 1/4 (left), μ = 1/400 (center, right: gradient norm)

Fig. 4 Numerical error as a function of grid size, for synthetic solutions to the Pucci equation

notebook reproducing (most of) the illustrations of this paper is available on the
third author’s webpage1.

We illustrate on Fig. 3 the transition of the Pucci equation from a strongly
elliptic Laplacian-like PDE to a combinatorial-type convex-envelope problem, as
the parameter μ takes values 1/4 and 1/400. The chosen domain is non-smooth and
non-simply connected: � := U \ U ′ where U := B(0, 1) ∪ (]0, 1[×] − 1, 1[) and
U ′ := kRθ(U) is its image under a scaling (k = 0.4) and a rotation (θ = π/3).
The boundary condition is 1 on ∂U , and 0 on ∂U ′, and the r.h.s is f ≡ 0. The
discretization grid size is 100 × 100, and the computation time is 1 s for μ = 1/4,
and 45 s for μ = 1/400. The time difference is attributable to the complexity of the
numerical scheme, which involves N = 2 pieces for in the first case and N = 122
in the latter, due to the larger condition number of the diffusion tensors D(θ,μ), see
Sect. 2.2. Nevertheless, the number N = N(μ) is independent of the grid scale, and
both schemes are second order consistent. In the case μ = 1/400, the PDE solution
is quite close to the convex envelope of the boundary conditions, whose gradient is
constant in some regions, and discontinuous across some lines, see Fig. 3right.

On Fig. 4, we reconstruct some known synthetic solutions from their image by
the Pucci operator, with parameter μ = 0.2, and their trace on the boundary. The
examples are taken from the literature [FJ17, FO13], and the reconstruction errors
are provided in the L1 and L∞ norm.

1Link : Github.com/Mirebeau/AdaptiveGridDiscretizations, see chapter 2.B.III.

http://Github.com/Mirebeau/AdaptiveGridDiscretizations
https://nbviewer.jupyter.org/github/Mirebeau/AdaptiveGridDiscretizations_showcase/blob/master/Notebooks_NonDiv/NonlinearMonotoneSecond2D.ipynb
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• (Smooth example [FJ17]) u(x) = (x2 + y2)2 on � = B(0, 1)∪]0, 1[2
• (C1 example [FO13]) u(x) = max{0, ‖x − x0‖2 − 0.2) on � =]0, 1[2.
• (Singular example [FO13]) u(x) = √

2− ‖x‖2 on � =]0, 1[2.

Empirically, the L1 numerical error behaves like O(h2), where h is the grid scale
(inverse of resolution in images). The L∞ error behaves like O(h2) in the smooth
and C1 examples, but decays more slowly for the singular solution. Note: we rotated
the Cartesian discretization grid by π/3 in these experiments, since otherwise the
perfect alignment of the domain boundary with the coordinate axes gives an unfair
advantage to grid based methods (like ours).

4 Conclusion

In this paper, we presented a new strategy for discretizing non-divergence form,
fully-nonlinear second order PDEs, and applied it to the Pucci equation. The steps
of this approach can be summarized as follows: (1) rewrite the problem in Bellman
form, as an extremum of linear equations, (2) discretize the second order linear
operators using monotone finite differences based on Selling’s decomposition of
positive definite matrices, (3) solve the pointwise optimization problems involved
in the numerical scheme definition, either explicitly (as could be done here), or
numerically.

This methodology yields finite difference schemes which are degenerate elliptic,
second order consistent, and use stencils of fixed size, in contrast with existing
approaches [Obe08] which cannot achieve all these desirable properties simultane-
ously. Numerical experiments confirm that the proposed scheme can extract smooth
PDE solutions with second order accuracy, and that it remains stable and convergent
for harder problems involving a singularity at a point or along a line. Future research
will be devoted to extending the results to other PDEs, such as the Monge–Ampère
equation and its variants.
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A Multi-Scale Flow Model for Studying
Blood Circulation in Vascular System

Ulin Nuha Abdul Qohar, Antonella Zanna Munthe-Kaas,
Jan Martin Nordbotten, and Erik Andreas Hanson

Abstract In this paper, we demonstrate a multi-scale model for studying blood
flow in the vascular structures of an organ. The model may be used for a tracer
concentration flow simulation replicating Dynamic Contrast-Enhanced Magnetic
Resonance Imaging (DCE–MRI) data. A 1D vascular graph model that represents
blood flow through a vascular vessel network is coupled with a single-phase
Darcy flow model for the capillary bed which is assumed as a porous media.
Numerical experiments show the blood circulation in the system closely related to
the structure and parameter of the vascular system, that gives qualitatively realistic
tracer concentration flow. This model is a starting point for further investigation
in development into clinical applications, using both real data and MRI analysis
software.

1 Introduction

In the recent decades, numerical models and computational approaches have been
developed intensively to study the blood circulation system [1–4]. The fundamental
purpose of developing a mathematical model is to replicate the blood circulatory
system in the human body. One of the main challenges for this model is the fact
that vascular systems are made of a massive number of vessels at various scales [4],
ranging from large arteries down to arterioles, and capillaries. These creates several
limitations for conducting simulations in full vascular systems. For instance, it needs
a huge computing resources and the model is not relevant for finer scale.

In the current work, a multi-scale model for blood circulation is proposed. This
model is coupling a 1D flow model and single-phase Darcy flow model. We describe
the flow in the vascular network (arteries and veins) using a 1D vascular graph model
[1]. In line with the previous work [5], a pressure drop model was introduced at
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vessel bifurcations which compensate the accuracy loss of the linearized model [6].
Darcy flow was used for the continuum representation of the micro-circulation in
the capillary bed. The tracer concentration flow was modelled based on the pressure
field from the flow model. The boundary condition for our model were defined in the
inlet and outlet pressure. This tracer concentration flow model presents a possibility
to generate a predicted digital MRI data that will improve the MRI analysis tools
with further investigation. It may also lead to a breakthrough in the development of
personalised medicine.

2 Materials and Methods

2.1 Flow Model

A system of equations was constructed based on vascular network structures for
both arteries and veins. Assuming laminar flow and non-slip conditions on the
vessel walls, each vessel i was described as a long cylindrical tube of length Li

with constant radius ri � Li . The pressure drop �Pi in a single vessel segment i
was computed using Hagen–Poiseuille’s law [1]

�Ph
i =

8μLiqi

πr4
i

, (1)

where index h stands for hydrodynamics, μ is the blood viscosity and qi is a
volumetric blood flow. At a junction node, the pressure drop was estimated based
on [6, 7],

�Pb
i =

ρq2
dat

2π2r4
dat

(

1+ q2
i r

4
dat

q2
datr

4
i

− 2qir2
dat

qdatr
2
i

cos (
3

4
θ(dat,i))

)

, (2)

where the upper index b stands for bifurcation and the index dat refer to the datum
vessel, i.e. the vessel from which the flow approaches the junction. Further, θ(dat,i)
is the angle between the datum vessel and vessel i. Hence, the total pressure drop
after a bifurcation node was computed as the sum of both Eqs. (1) and (2). The other
governing equation is the conservation of mass at a node,

∑
qin =∑

qout , with qin
representing the blood that flows into the node and qout is a flow out of the node.

The capillary bed was discretized with a uniform grid and described by Darcy’s
single-phase flow equation. Darcy’s law, which demonstrates the flow of a fluid in a
porous medium, states that a fluid flows from regions of higher pressure to regions
of lower pressure. Thus

v = −K
μ
∇P, (3)
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where v is the Darcy flux (volumetric flow rate per unit area, K is the permeability
tensor of the porous medium and μ is the viscosity [8]. In addition, we assume
conservation of mass (continuity equation),

∂('ρ)

∂t
+∇ · (ρv) = ρQ (4)

where ' is the porosity of the capillary bed and Q is the source term. In this model,
the source,Q is either describing the flow in or out a terminal node arteries or veins.
We assume blood to be an incompressible fluid, and by incorporating Darcy flow
into the continuity equation, we obtain

−∇ · (K
μ
∇P) = Q. (5)

To complete the system, both the vascular network and Darcy systems were
combined with the terminal nodes of the arterial and venal networks as point
sources/sinks. A mollifier function is introduced [9]

f (x) =
⎧
⎨

⎩

C exp
( −1

1−|x|2
)

if |x| < 1

0 if |x| ≥ 1
(6)

and used with a finite radius ε, f ε(x) = f (x
ε
) on the Darcy domain.

2.2 Tracer Concentration Flow

In this work, the contrast agent was simulated as a pulse of concentration in the
input vessles. The tracer concentration influx into a small distribution volume �β

was determined by the product of tracer concentration (cβ) and flux (uβ )

−
∫

∂�β

cβ(uβ · n)dA, (7)

with index β represents the numerical domain related (both vessel network and the
capillary bed). The tracer concentration, c(x, t) is the concentration in the blood.
But, the value observed by MRI scanning is tracer indicator, C(x, t). The relation
between them is C(x, t) = c(x, t)'(x, t), which is the total tracer concentration
over a tissue volume. Tracer indicator was defined as the total concentration over
model layers,

C(x, t) = Ccap(x, t)+ CVG(x, t), (8)
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where the index cap stands for the capillary bed and VG for vascular graph network.
A contrast agent was injected into the arterial root vessel as Arterial Input Function
(AIF). It was simulated using a gamma variate function [9].

2.3 Model Implementation

The flow model was constructed by four main components, i.e., vascular network,
Darcy model, coupling, and boundary condition. The vascular network, consisting
of segments and nodes, was governed by (1) and (2), and mass conservation. The
system of equation for both arterial and venous network was described by similar
equations that were altered accordingly for each network. The nonlinear system of
equation, AVGx = b was constructed where AVG has no more than four non-zeroes
entries per row.

The Darcy equations (5) in the capillary bed were solved using a two-point flux
approximation (TPFA). Applying this TPFA discretization procedure for all cells in
the domain, we obtain a system of equations ADx = b, where AD is a symmetric
matrix. Even if the TPFA method is not a consistent discretization for general grids,
it is consistent and convergent on the quadrilateral grids used in this study [10].

In our four roots terminal, the boundary conditions were constructed by assigning
constant pressure on the arterial and the venal root nodes (Dirichlet BC) and
conservation of mass for the whole system.

Pβ = Pext , (9)
∑

i∈Nroot

qi = 0, (10)

where β = {a, v} is a root node on the arterial or the venal structure, Pext =
{in, out} represents the constant pressure on two arterial roots (input) and two venal
roots (output), and Nroot are root segments, with qi > 0 for the artery, qi < 0 for
the vein.

Finally, the vascular networks and the Darcy domains were combined in a
(nonlinear) system of equations Ax = b, with unknown x consisting of the pressure
and the flow rate in the model,

(
AVG AVG−D

AD−VG AD

)(
xVG

xD

)

=
(

bVG

0

)

. (11)

The index VG refers to the vascular graph network, and index D stands for the
Darcy equation discretization. The additional matrices AVG−D and AD−VG are
the coupling equations for the vascular graph and Darcy system of equations. The
unknown solution xVG is the pressure at the nodes and flow rate in the corresponding
segment and xD is the pressure on the Darcy domain.
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Table 1 Frog tongue model parameters

Parameter Value Unit

Capillary model size (2D) 515 × 634 pixel

Real size on simulation 30.9 × 38.04 × 0.6 mm

Porosity of capillary bed (φ) 0.1 –

Permeability of the capillary bed (K) 3× 10−6 mm2

Resistance estimation for coupling 5× 10−4 kg mm−4 s−1

Viscosity of blood (μ) 3 · 10−6 kPa·s
Pressure inlet 10 kPa

Pressure outlet 4 kPa

Despite the nonlinearity in the governing equations, it can be solved efficiently
by using the Schur complement method. It was done by solving the linear system
blocks and subtituting it back into the system of equations. The nonlinear system
was solved using the solution of the linearized system as initial approximation for
the nonlinear solver using Trust-Region-Dogleg Algorithm in MATLAB.

It was assumed that the blood flow is stationary flow and the tracer is only
following the bloodstream which was generated by solving the flow model. The
tracer concentration flow was computed by solving the ordinary differential equation
of the tracer concentration change over time for the whole domain. It tracked the
tracer movement along the bloodstream.

In this work, blood flow was simulated in the 2D frog tongue anatomy from
classic biological textbook [11]. The image may be seen as a synthetic test case,
but with a vascular network resembling a real vascular system in an organ. It also
had small number of pixels that make it fast and easy to simulate, visualize, and
analyze the result compared to a 3D data. This data is a good starting point to test
and evaluate the model. The parameters for our simulations are defined in Table 1.

3 Result and Discussion

The flow model was defined to describe the pressure field in the whole domain.
Figure 1 shows the original vascular anatomy of the frog tongue and the computed
pressure field in the capillary bed. The network structure was based on an image
segmentation of these using the method in [12]. It was observed that the pressure
is higher around the top edges and lower in the middle and left bottom edge of the
domain. This result was related to the vascular structure having a small number of
arterial terminals in the central region and several venous terminals. For instance,
two vein terminals in the lower central region are located far away from arterial
terminals (see Fig. 1). In conclusion, the unbalanced pair of arterial and venous in
some region caused either a higher or lower pressure in those region compared to
the remaining part of domain. Based on the physiological knowledge, the vascular
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Fig. 1 Left: An anatomical frog tongue image from a classical textbook [11], with arterial (red)
and venal (blue) vascular network structures. The vascular networks in this paper are obtained by
segmentation of the anatomical network structures. Our capillary domain is the region inside the
tongue boundary. Right: the pressure distribution in the capillary bed spreads with a high pressure
at the top and decreases gradually to the lowest at the bottom.. The tracer concentration flow was
computed based on this pressure field

structure in a part of an organ should have a balanced pair of arteries and veins
therefore blood that flows from an arterial terminal will be absorbed by nearby
venous terminals. This structures ensure the whole tissue regions oxigenated.

The total pressure drop in the system was 6 kPa (see Table 1), the arterial network
being the major contributor (73.4% of total), the capillary bed 6.6%, and the vein
vascular network 19.95%. These values indicated the importance of the arterial
vascular structure to provide blood circulation through the whole organ, in line with
the measurements and simulations from the literature [13]. If there is an alteration
on the arterial vessel, its impact for blood circulation will be greater than for a
similar vein alteration. The pressure drop in the capillary domain was inversely
proportional to the permeability parameter (Table 1). Higher permeability allows
blood flow faster in the capillary hence would decrease the pressure drop.

The tracer concentration flow on Fig. 2 has a good replication of perfusion
MRI data. The tracer flows from the arterial roots into the capillary domain and
is evacuated by the venous network. The arterial vessels provide faster access for
blood to reach the whole domain. The area with a denser arterial terminal nodes got
higher contrast compared to the other regions. The tracer concentration dispersed
to nearby capillary domain afterwards. It observed that the middle-lower field was
unreachable by the tracer. It caused by the nonexistence of arterial terminal nodes
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Fig. 2 Tracer concentration indicator flow in the frog tongue. The indicator shows blood flow in
the vascular system in 13 s–134 s after bolus injection, with assumed delay 12 s. The tracer flow
replicate the perfusion MRI data in the phantom data

in that region. The venous network absorbed the tracer gradually from the capillary
bed in a balanced order. The tracer in the whole domain was evacuated slowly and
periodically. The big connected vein vessel is the key for balancing the circulation
in the venous system. This vessel may provide a bridge to maintain the flow in case
part of the network is damaged [5].

The real data comparison is necessary for validation of our model. The tracer
dispersed slowly from the capillary domain to the venous network. This condition
will only occur in the extravascular flow (i.e. blood leakage in the tissue). The
2D image has an unrealistic physiology structures causing un-expected spatial
artefacts that may obstruct the blood to spread. Thus the tracer concentration
stays too long in the organ. The geometry refinement is outside the scope of this
paper. The homogeneous permeability also contributes to this result as the real
physiological permeability is not isotropic. The further research will be required
to define anisotropic permeability to produce more realistic simulation result.
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4 Conclusion

We have presented a multi-scale flow model to simulate blood circulation in a
vascular system. In the numerical experiment, our model gives a realistic simulation
result for blood circulation. The pressure field has some abnormalities due to the
location of nodes, which comes from vessel segmentation input on the simulation.
The tracer concentration flows according to the pressure field in the model. The
unbalanced area of the arterial terminals in the capillary bed caused the tracers to
spread unevenly throughout the organ tissue. In contrast to that, the existence of
a big connected vessel in venous networks has a vital role in maintaining blood
circulation evenly in the left and right side of the frog tongue.

This model has a systematic mathematical structure. Although constructed by
a system of nonlinear equations, the flow model is solved in an efficient scheme
by utilizing the construction of its components. Furthermore, the simulation result
shows reliable physiology of the system and the simulation can be performed in
regular PC. The systematic structure of the flow model makes it easy to use and
develop further. Another application is to study the blood circulation in the local
vascular system (of an organ) based on vessel segmentation results and study the
blood circulation in the altered vascular network. The parameter input model has to
be adjusted to replicate more realistic DCE–MRI data for further works.
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The 8T-LE Partition Applied
to the Barycentric Division of a 3-D Cube

Miguel A. Padrón and Ángel Plaza

Abstract The barycentric partition of a 3D-cube into tetrahedra is carried out by
adding a new node to the body at the centroid point and then, new nodes are pro-
gressively added to the centroids of faces and edges. This procedure generates three
types of tetrahedra in every single step called, Sommerville tetrahedron number 3
(ST3), isosceles trirectangular tetrahedron and regular right-type tetrahedron. We
are interested in studying the number of similarity classes generated when the 8T-LE
partition is applied to these tetrahedra.

1 Introduction

The problem of subdviding meshes containing hexahedra, tetrahedra, pyramids and
prisms into a consistent set of tetrahedra, appears in many fields of engineering,
such as, Computer Graphics and CAD, Geometrical Modelling, Geometric and
Engineering Design and the Finite Element Methods [4].

One of the main applications is in Finite Element Method, when an unstructured
tetrahedral solver is used to tackle a problem on an hybrid mesh, in which non
tetrahedral elements must be subdivided into tetrahedra. This problem is also
a major concern in Compurter Graphics when a non tetrahedral mesh must be
subdivided into tetrahedra for example to use efficient algorithms for volume
rendering, iso-contouring and particle advection that exist for mesh topologies
including only tetrahedra [4].
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Without additional nodes, a hexahedron can be subdivided either into five or six
tetrahedra. By adding the hexahedron centroid as a data point, we can generate a
subdivision into 12 tetrahedra, all of them Sommerville tetrahedra number 3 (ST3)
similar to one another, where each face is still split by a single diagonal. From
here, we can progressively add face centroids, dividing a face into four triangles
to produce, 14, 16, 18, 20, 22 or 24 isosceles trirectangular tetrahedra [1]. Finally,
a further subdivision is carried out by adding new vertices on the cube’s edges to
obtain 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46 or 48 regular right-type tetrahedra [3].

In this work we prove that the iterative application of the 8T-LE partition to those
tetrahedra mentioned before, yields into a sequence of tetrahedra where the number
of similarity classes is bounded, hence the non-degeneracy of the tetrahedral meshes
follows, and the minimun angle condition is also satisfied. Although some tetrahedra
generated are obtuse type, for the Sommerville number three and regular right-type
tetrahedra, all the descendants are similar to the original one, saving many CPU time
and moreover, some superconvergence phenomena can be achived. For the isosceles
trirectangular tetrahedron we will prove that asymptotically, most of the tetrahedra
generated are isosceles right-type tetrahedra.

2 The Barycentric Partition of a 3D-Cube

The barycentric partition of a 3D-cube is achieved by adding a node at the centroid
of the cube, followed hierarchically, by new nodes to the centroids of the faces and
edges. Although it is logically possible to construct subdivisions following another
order, but we are unaware of any cases where this has been done [3].

Figure 1 shows the different steps until the complete division of the 3D-
cube is carried out. For the first case, each face of the 3D-cube is joined to the
center of the cube, resulting in 6 square pyramids and a Body Centered Cubic is
achieved (BCC). Each of these is then subdivided into two tetrahedra by adding
an arbitrary diagonal across the face (Face Divided), generating 12 Sommerville
tetrahedra number 3 (ST3) [3], and all of them similar to each other, see Fig. 1a.

(a) (b) (c)

Fig. 1 Different steps for the subdivison of a 3D-cube. (a) BCC and Face Divided (FD). (b) Face
Centered (FC). (c) Edge Divided (ED)
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A futher subdivision is carried out by adding progressively face centroids (Face
Centered) [1], splitting every single triangle into two sub-triangles generating up to
24 isosceles trirectangular tetrahedra congruent to one another, see Fig. 1b.

Finally, the complete barycentric partition of a 3D-cube is achieved by adding
progressively new edge centroids (Edge Divided), dividing each triangle into two
sub-triangles generating up to 48 regular right-type tetrahedra similar between them,
see Fig. 1c, and it is equivalent to the Freudenthal partition of a 3D-cube.

3 The 8T-LE Partition

The 8T-LE partition can be seen as the natural extension to 3D of the 4T-LE partition
introduced by Rivara [12]. This partition was introduced and developed by Plaza and
Carey [6], and it has also been widely studied [5, 8–11].

For this partition, the tetrahedra must be previously classified depending on, the
relative positions of their longest-edges of the triangular faces as type 1, type 2
and type 3 [6]. The 8T-LE partition applied to any tetrahedron t can be described
algorithmically as follows:

8T-LE partition
/* Input variables: t tetrahedron

Output variables: new sub-tetrahedra */
1.- Procedure classification

t is classified as type 1, 2 or 3
2.- Division of the skeleton

4T-LE partition is applied to the triangular faces
3.- Division of t

t is subdivided into 8 sub-tetrahedra according to
the division of the skeleton

/* Output: Division of t

Since there are three different similitary classes of tetrahedra in the barycentric
partition of the 3D-cube, we will study the 8T-LE of each one of these classes.

3.1 The 8T-LE Partition of the Sommerville Tetrahedron
Number 3 (ST3)

The tetrahedron chosen has as coordinates 0 = (0, 0, 0), A = (0.5, 0.5, 0.5),
B = (0, 1, 0) and C = (0, 1, 1), see Fig. 2. We just have to study two types of
sub-tetrahedra depicted in Fig. 2 (on the right hand side). For the first one, just
doing a π/2 clockwise rotation around the axis in blue colour, and then, two mirror
reflections through planes π3 ≡ y − 1 = 0 and π4 ≡ x = 0, respectively, it is
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Fig. 2 The 8T-LE partition of the ST3 tetrahedron through the skeleton. The sub-tetrahedra
generated have been depicted in pairs, where each one is similar to the other by a mirror reflection
through planes π1 ≡ y − 0.5 = 0 and π2 ≡ z− 0.5 = 0, respectively. The sub-tetrahedron on the
top with one of its vertices C, and the other sub-tetrahedron on the bottom left corner with one of
its vertices 0, are similar to the original one

proved that this sub-tetrahedron is similar to the original one. Finally, for the last
case, a mirror reflection through the plane π2 ≡ z − 0.5 = 0 and then a π/2
clockwise rotation around the axis in blue colour, it is proved that this tetrahedron
is also congruent to the original one.

Figure 2 shows that no new classes of similarity are generated when this partition
is applied to this tetrahedron.

3.2 The 8T-LE Partition of the Regular Right-Type
Tetrahedron

This tetrahedron is an ortho-simplex and also a path-tetrahedron [2, 7] and it has
been widely studied in [9] for the regular, scalene and isosceles cases. Regular
means, that the three mutually perpendicular edges (legs) are of the same length
a = b = c [7, 9].

Theorem 1 Two right-type tetrahedra t(a,b,c) and t ′(a′, b′, c′) are similar to each
other if and only if their extreme legs are in the same ratio as their central legs. That

is, either
b

b′
= a

a′
= c

c′
, or

b

b′
= a

c′
= c

a′
[9].

According to Theorem 1 and Fig. 3, the 8T-LE partition of a regular right-type
tetrahedron generates sub-tetrahedra similar to the original one.
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(1, 1, 0.5) is chosen to be studied, and relocated to the origin for a better visualization by a vector
translation v = (0.5, 0.5, 0.5)

3.3 The 8T-LE Partition of the Isosceles Trirectangular
Tetrahedron

This tetrahedron is an ortho-simplex but not a path-tetrahedron [2, 7]. Isosceles
means, that the three mutually perpendicular edges (legs) are as follows: a = b �=
c [7].

According to Fig. 4, four sub-tetrahedra are congruent to the original one, so at
this stage we are focussed on studying the quasi right-type sub-tetrahedra and the
new two sub-tetrahedra. Both quasi right-type tetrahedra and new tetrahedra are
similar to each other by a mirror reflection through the plane π5 ≡ y − z = 0.

The Quasi Right-Type Tetrhedron and the New Tetrahedron

The last step is to study these new types of sub-tetrahedra generated when the 8T-
LE partition was applied to the isosceles trirectangular tetrahedron. Figure 5 shows
the different types of sub-subtetrahedra generated. Both new sub-subtetrahedra
generated are also similar to one another by a mirror reflection through the plane
π7 ≡ x + z = 1/2

√
2. We leave to the reader to check that, they are of the same

types of tetrahedra which already appeared studying the isosceles trirectangular
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tetrahedron. The quasi right-type sub-subtetrahedron has vertices 0 = (0, 0, 0),

A =
(

1/2
√

2, 1/4, 0
)

, B =
(

1/2
√

2, 1/2, 1/2
√

2
)

and C =
(

1/2
√

2, 0, 1/2
√

2
)

,

after being relocated to the origin, see Fig. 6 (on the left hand side). For the new
tetrahedron, its new coordinates are depicted in Fig. 6 (on the right hand side).

The different classes of similiraty generated by the 8T-LE partition applied to the
new sub-subtetraedra are shown in Fig. 7. For this case, this partition only generates
4 different classes of similarity.

3.4 Classes of Similarity Generated

The classes of similarity are drawn in Fig. 8a as result of applying the 8T-LE parition
to those tetrahedra. Besides, in Fig. 8b we can see the evolution of each tetrahedron
class when n grows, for the case of isosceles trirectangular tetrahedron, which is the
most interesting.
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Fig. 6 The new position for the quasi right-type tetrahedron is achieved by four mirror relfection
through planes π8 ≡ z = 1/2

√
2, π9 ≡ y = 0, π10 ≡ x = 1/4 and π11 ≡ x − 1/

√
2y = 1/4.

Then a vector translation by v and a clockwise rotation around axis z is carried out. For the new
tetrahedron, a mirror reflection by plane π12 ≡ z = 1/4

√
2 followed by a vector translation and a

clockwise rotation around axis z is performed
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Fig. 8 Classes of similarity (left) and percentage of volume covered (right), generated by the 8T-
LE partition. (a) Similarity classes generated. (b) Evolution of number of tetrahedra of each class

The number of tetrahedra belonging to each class is given by the following
recurrence relations for n ≥ 1, with initial conditions t

(0)
01 = 12, t(0)02 = 24 and

t
(0)
03 = 48. Obviously, t(n)01 = t

(n)
03 = 8n.
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t01 = t03

{
t
(n)
01 = t

(n)
03 = 8n t02

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

t
(n)
02 = 2n(1+ 3n)

2
t
(n)
rt4 =

23n + 2n−1(1− 3n+1)

3

t
(n)
3 = 2n(3n − 1)

2
t
(n)
rt5 =

23n+1 + 2n(1− 3n+1)

3

t
(n)
4 = 2n(3n − 1)

2

4 Main Results

1. The number of similarity classes is finite and so the non-degeneracy is proved.
2. From the previous result follows that the minimum angle condition is satisfied.
3. Asymptotically, for the Face Centered case, most of the tetrahedra generated are

isosceles right-type.
4. For the Face Divided and Edge Divided cases, the domain is partitioned into a

congruent simplices by the 8T-LE partition. This is of great important in saving
CPU time and achieving super convergence phenomena.
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Point Forces and Their Alternatives
in Cell-Based Models for Skin
Contraction

Qiyao Peng and Fred Vermolen

Abstract We consider a cell-based approach in which the balance of momentum
is used to predict the impact of cellular forces on the surrounding tissue. To this
extent, the elasticity equation and Dirac Delta distributions are combined. In order to
avoid the singularity caused by Dirac Delta distribution, alternative approaches are
developed and a Gaussian distribution is used as a smoothed approach. Based on the
application that the pulling force is pointing inward the cell, the smoothed particle
approach is probed as well. In one dimension, it turns out that the aforementioned
three approaches are consistent. For two dimensions, we report a computational
consistence between the direct and smoothed particle approach.

1 Introduction

Wound healing is a spontaneous process of the skin to cure itself after an injury.
For severe traumas, due to a significant loss of soft tissue, dermal wounds may
lead to various pathological problems like contractures, which are known as
excessive and morbid contractions. Usually, contractures concur with disfunctioning
and disabilities of the patients. The contractions of the wound appear from the
third phase of wound healing, which usually starts from the second day and
will continue for 2–4 weeks after wounding [1]. Wound contractions take place
due to (myo)fibroblasts interacting with the environment, namely the extracellular
matrix(ECM) and the formation of (permanent) stresses and strain by collagen
distributions in and around the wound area. In other word, the contractions are
developed by the (myo)fibroblasts exerting pulling forces on the skin. In the end,
usually, the contractions will result in 5–10% reduction from the original volume of
the wound [1].
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According to Koppenol [2], the forces released by the (myo)fibroblasts can be
categorized as temporary forces and permanent forces. Only temporary forces will
be discussed in this paper, of which the formalization is described in Q Peng
[4]. In the model, the elasticity equation and Dirac Delta distributions are incor-
porated. However, Dirac Delta distributions cause a singular solution, that is, for
dimensionality exceeding one the solution is not in the same Hilbert space as the
basis functions for many naive finite-element strategies. In order to circumvent this
complication, the smoothed forces approach is developed, in which we use Gaussian
distributions to replace Dirac Delta distributions. Especially in our healing model,
the forces point towards the centre of the cell. Therefore, we use the gradient of
Gaussian distribution as an alternative.

The boundary value problems for all three methods are displayed in Sect. 2 for
both one and two dimensions. Section 3 shows the numerical results corresponding
to the approaches investigated before. In Sect. 4, conclusions are delivered.

2 Mathematical Models

To describe the contraction of the tissue we use the equation for conservation of
momentum over the computational domain �:

−∇ · σ = f . (1)

In the above equation, inertia has been neglected. We consider a linear, homoge-
neous, isotropic material; hence, Hooke’s Law is used here to define σ :

σ = E

1+ ν

{

ε + tr(ε)

[
ν

1− 2ν

]

I

}

, (2)

where E is the stiffness of the computational domain, ν is Poisson’s ratio and ε is
the infinitesimal strain tensor:

ε = 1

2

[
∇u+ (∇u)T

]
. (3)

The forces exerted by a cell are modelled by Dirac Delta distributions on the
midpoints of the segments of the boundary of the cell [4]:

f t =
Ni

S∑

j=1

P(x, t)n(x)δ(x − xi
j (t))��

i,j

N (4)

→
∫

∂�i
N

P (x, t)n(x)δ(x − xi
s (t))d�

i
N , as Ni

S →∞, (5)
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where Ni
S is the number of line segments of cell i, P(x, t) is the magnitude of

the pulling force exerted at point x and time t per length, n(x) is the unit inward
pointing normal vector (towards the cell centre) at position x, xi

j (t) is the midpoint

on line segment j of cell i at time t and ��
i,j
N is the length of line segment j . In

Eq. (5), xi
s(t) represents the mid point of a segment on the cell boundary of cell i at

time t . Possible boundary conditions could be Dirichlet (fixed boundary) or a mixed
boundary condition (spring force).

2.1 Elasticity Equation and Point Sources in One Dimension

Considering the force equilibrium in one dimension, the equations are expressed as

− dσ

dx
= f, Equation of Equlibirum, (6)

ε = du
dx

, Strain-Displacement Relation, (7)

σ = Eε, Constitutive Equation. (8)

To simplify the equation with E = 1 here, the equations above can be combined to
Laplacian equation in one dimension:

− d2u

dx2 = f. (9)

According to Eq. (4), for one dimension, assume there is a biological cell with size h

and centre position c in the computational domain 0 < c−h/2 < c < c+h/2 < L.
Combined with homogeneous Dirichlet boundary conditions, the boundary value
problem of the direct approach is given by

(BV Pδ)

⎧
⎪⎨

⎪⎩

−d2u

dx2 = −δ(x − (c+ h

2
))+ δ(x − (c − h

2
)), x ∈ (0, L),

u(0) = u(L) = 0,

(10)

where δ(x−x ′) is Dirac Delta distribution. Note that in one dimension, the solution
is piecewise linear and hence in H 1(�).

The Gaussian distribution is usually used as a replacement for Dirac Delta
distributions to obtain a smoother expression. Here, we denote

δε(x − x ′) = 1√
2πε2

exp

{

− (x − x ′)2

2ε2

}

,
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for the Gaussian distribution with mean x ′ and variance ε2. Therefore, the boundary
value problem of the smoothed approach is expressed as

(BV PS)

⎧
⎪⎨

⎪⎩

−d2uε

dx2
= −δε(x − (c + h

2
))+ δε(x − (c − h

2
)), x ∈ (0, L),

uε(0) = uε(L) = 0,
(11)

In (BV PS), since the right-hand side is smooth, we can rewrite it as

δε(x − (c − h

2
))− δε(x − (c + h

2
)) = h

dδε

dx
(x − c)

+ h3

48
(δ′′′ε (x − c + η1)+ δ′′′ε (x − c + η2)), ∃η1, η2 ∈ (−h

2
,
h

2
).

(12)

In other words, the right hand side of (BV PS) converges to right-hand side of
the smoothed particle approach:

(BV PSP )

⎧
⎪⎨

⎪⎩

−d2vε

dx2 = h
dδε

dx
(x − c), x ∈ (0, L),

vε(0) = vε(L) = 0,

(13)

as h → 0. This, in turn is combined with the boundary conditions to conclude that
the difference between uε and vε satisfies

− d2(uε − vε)

dx2
= h3

48
(δ′′′ε (x − c + η1)+ δ′′′ε (x − c + η2)), (14)

combined with the homogeneous boundary condition, and upon setting ε = √
h,

and with Poincaré’s Lemma, it follows that there exists K > 0 such that

‖uε − vε‖2 � Lh3

24K
‖δ′′′ε (x)‖,

and hence due to continuity, we have uε → vε as h → 0; see Q Peng [4]
for more details about the proof. In fact, we are aware that in electric dipole
moments, especially in three dimensional case of potential forum, there are similar
transformation occurring in potential expression of an electric dipole. A Taylor
expansion is applied to bridge the potential expression of two points charge
transferring to one point charge expressed with gradient; see Laud [3] for more
details.
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For the direct approach, the exact solution is the superposition of the Green’s
function in one dimension, which is known as

G(x, x ′) =

⎧
⎪⎪⎨

⎪⎪⎩

x ′(1− x

L
), x � x ′,

x(1− x ′

L
), x < x ′.

(15)

Since the forces are inward pointing to the centre of the cell, the solution to (BVPδ)

is

uδ(x) = −G(x, c+ h

2
)+G(x, c − h

2
). (16)

The solutions to (BV PS) and (BV PSP ), are, respectively, given by

uSε (x) =
xε√
2L

(∫ L−(c−h/2)√
2ε

− c−h/2√
2ε

erf(x ′)dx ′ −
∫ L−(c+h/2)√

2ε

− c+h/2√
2ε

erf(x ′)dx ′
)

− ε√
2

(∫ x−(c−h/2)√
2ε

− c−h/2√
2ε

erf(x ′)dx ′ −
∫ x−(c+h/2)√

2ε

− c+h/2√
2ε

erf(x ′)dx ′
)

,

(17)

and

uSPε (x) =
h

2

{

(
x

L
− 1) erf(

c√
2ε

)+ x

L
erf(

L− c√
2ε

)− erf(
x − c√

2ε
)

}

, (18)

where erf(x) is the error function defined as erf(x) = 2√
π

∫ x

0 exp(−t2)dt .

2.2 Elasticity Equation and Point Sources in Two Dimensions

For two dimensions, we start with analysing only one biological cell in the
computational domain. According to the model described in Eq. (4), the forces
released on the boundary of the cell are the superposition of point forces on the
midpoint of each line segment. For example, if we use a square shape to approximate
the biological cell, then the forces are depicted in Fig. 1. We only need to focus
on the midpoints of the facets if we are working with the direct approach. In the
meanwhile, if we work on the smoothed particle approach, we take the midpoint
of the entire biological cell, since the gradient is used, which does not require an
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Fig. 1 We consider a square
shaped biological cell, with
the centre position at (a, b).
The forces exerted on the
boundary are indicated by
arrows

explicit treatment of the corners. Therefore, in this circumstance, the forces can be
rewritten as

f t = P

{

−
[

1
0

]

�yδ(x − (a + �x

2
), y − b)+

[
1
0

]

�yδ(x − (a − �x

2
), y − b)

−
[

0
1

]

�xδ(x − a, y − (b + �y

2
))+

[
0
1

]

�xδ(x − a, y − (b − �y

2
))

}

≈ P

{[
1
0

]

�y

[

−δε(x − (a + �x

2
), y − b)+ δε(x − (a − �x

2
), y − b)

]

+
[

0
1

]

�x

[

−δε(x − a, y − (b + �y

2
))+ δε(x − a, y − (b − �y

2
))

]}

.

(19)

Thanks to the continuity of Gaussian distribution δε, there exists (ηx, ηy) ∈
(−�x/2,�x/2)× (−�y/2,�y/2) such that, Eq. (19) yields into

f t ≈ P

{[
1
0

]

�y�x
∂δε

∂x
(x − a + ηx, y − b)+

[
0
1

]

�y�x
∂δε

∂y
(x − a, y − b + ηy)

}

→ P�x�y∇δε(x − a, y − b), as �x,�y → 0.
(20)

The above procedure implies that as �x, �y → 0, the right-hand side of the
regularized Dirac Delta Distributions converges to P�x�y∇δε(x − a, y − b). In
future research we aim at rigorously establishing that this implies that the difference
between the solutions from both approaches tends to zero as �x, �y → 0; see
Q Peng [4] for more details.
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3 Numerical Results

In this section, results in both one dimension and two dimensions are presented.
Since the paper is meant to compare various modelling approaches, the results are
generic in the sense that the presentation and the analysis of the modelling is done
for a one-dimensional case with dimensionless parameters. Furthermore, the two-
dimensional simulations only serve as an illustration of how the various approaches
are related. Figure 2 shows the analytical solution of all three approaches from
Eq. (16), (17), and (18). The red and blue curves, which correspond to the direct
and the smoothed Delta approach, mostly overlap regardless the choices of ε. This
indicates that the solutions to (BV PS) and (BV PSP ) are consistent. As ε decreases,
the solutions to the smoothed approach and the smoothed particle approach converge
to the solution to the direct approach. In other words, Fig. 2 confirms the consistency
between all three approaches, as long as ε is efficiently small.

For two dimensions, only the results that apply Eq. (4) will be compared to the
smoothed particle approach. We consider only one big circular biological cell in the
computational domain, and the boundary of the biological cell is split into finite line
segments. Based on the special case of square (see Eq. (20)) and since the magnitude
relation between the direct approach and the smoothed particle approaches is still
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Fig. 3 Black curves show the deformed region of vicinity and the cell, and blue curve represents
the cell. (a) Direct approach. (b) Smoothed particle approach

Table 1 The percentage of area change of cell and vicinity region, and time cost of the direct
approach and the smoothed particle approach

Direct approach Smoothed particle approach

Cell area reduction ratio(%) 47.81624 43.38118

Vicinity area reduction ratio(%) 12.85195 12.88194

Time cost(s) 1.70716 1.83455

unclear, we will use the area of the biological cell as the magnitude ratio, although
we realise that the transition between the two approaches is only applicable in
the limit that the biological cell area tends to zero. Subsequently, we investigate
the new cell area after deformation, as well as a region near the cell. Further, the
computational time is compared, since in our wound healing model, there are a large
number of biological cells in the computational domain. In Fig. 3, the bandwidth
around the cell in the smoothed particle approach is wider than the direct approach,
which is mainly because of the continuity of the smoothed particle approach.
The numerical results are displayed in Table 1 to have a better insight into the
performance of the smoothed forces approach. It is notable that the computation
times, cell area reduction ratio and the vicinity area reduction are all more or less
the same. Therefore, taking the advantage of a smooth force into consideration,
the smoothed particle approach has the potential to be incorporated into the model
containing multiple biological cells.

4 Conclusion

In this paper, we developed two alternative methods using Gaussian distributions
to replace Dirac Delta distributions in the point forces. The first method is the
smoothed approach, in which the Dirac Delta distributions at the midpoint of
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boundary segments of the cell are replaced by Gaussian distributions directly. The
second alternative method is the smoothed particle approach, which takes into
account the gradient of the Gaussian distribution at the centre of the cell, and it
is based on the point forces exerted on the boundary of cells in wound healing.

In one dimension, we proved that the smoothed approach and the smoothed
particle approach converge to the direct approach, and the numerical results verified
consistency. In two dimensions, we are still in the process of working out the
exact ratio between the direct approach and the smoothed particle approach.
However, inspired by the square-shaped cell, we use the cell area to investigate the
discrepancy, which turns out to be negligible. Furthermore, the smoothed particle
approach costs nearly the same CPU as the direct approach, which offers the
possibility to adapt it into the general healing model.
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Empirically Driven Orthonormal Bases
for Functional Data Analysis

Hiba Nassar and Krzysztof Podgórski

Abstract In implementations of the functional data methods, the effect of the
initial choice of an orthonormal basis has not been properly studied. Typically,
several standard bases such as Fourier, wavelets, splines, etc. are considered to
transform observed functional data and a choice is made without any formal criteria
indicating which of the bases is preferable for the initial transformation of the
data. In an attempt to address this issue, we propose a strictly data-driven method
of orthonormal basis selection. The method uses B-splines and utilizes recently
introduced efficient orthornormal bases called the splinets. The algorithm learns
from the data in the machine learning style to efficiently place knots. The optimality
criterion is based on the average (per functional data point) mean square error and
is utilized both in the learning algorithms and in comparison studies. The latter
indicate efficiency that could be used to analyze responses to a complex physical
system.

1 Introduction

Functional data analysis (FDA) is the field in statistics that studies the analysis and
theory of data that are in the form of functions, images, and shapes, etc, see [3]. The
FD may come as a dynamical response from a physical system subject to stochastic
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excitation that can be written in a generic form as

H(y(n), . . . , y ′′, y ′, y, x; θ) = F(t), (1)

where F(t) is a realization of stochastic forcing of the system whose response is
given by H that involves some physical parameters given in θ . Often the response
from such a system is stochastic not only because of random excitation F but also
due to randomness in the parameter θ of the system. As a result, the responses yi(t)
from such a system can be conceptually treated as FD depending both on θi and
Fi(t). The goal is to obtain an efficient treatment of these functional observations in
order to infer about θ as well as about the functional structure of y.

FD are not observed as continuous objects, but rather as discrete data. High-
frequency sampling and mathematical efficiency allow these data to be seen as
samples of curves, surfaces or anything else varying over a continuum. The
fundamental step in FDA is to convert this discrete recorded data to a functional
form, which gives each function the possibility to be evaluated for all values of t .
To utilize the topology of such data for the dimension reduction one performs the
data conversion. One of the methods used is to represent a functional object as a
linear combination of coefficients and a number of suitable basis functions. For the
purpose, one of the standard bases such as trigonometric, wavelet, or polynomial is
typically chosen.

The efficiency is accomplished by using smoothing through regression or rough-
ness penalty for estimating the coefficients of the basis expansions. However, all
such analyses are preceded by the initial choice of a functional basis used to analyze
data, which is hardly objective and often driven by mathematical convenience. On
the other hand, it is both theoretically and practically observed that the choice of the
basis affects efficiency in retrieving the functional structure of a studied model. This
motivated us to investigate this problem more thoroughly.

In the spirit of the main data analysis paradigm, for a given FD set it may be
computationally effective to work with a data-driven basis. Consider, for example,
the classical smoothing problem, where for a given data we want to fit a smooth
function. Using the B-splines together with a regularization method, for example
the Lasso method, one may selectively choose a subspace of the spline space by
shrinking parameters to zero, see [4]. Such a basis can be chosen for each FD sample
but a choice valid for all samples is not obvious.

We acknowledge the value of splines in FDA but we proceed differently by
utilizing freedom in knots placement to algorithmically search for efficient knots
patterns and utilize them in the orthonormal basis construction. In the process,
we implement machine learning algorithms for the choice of basis reducing the
mean square error (MSE) uniformly for all samples and study its efficiency
against other choices of the basis. The optimality criterion is utilized, both in the
learning algorithms and in comparison studies. This criterion allows for comparison
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performances of different bases in a given problem. After efficiently learning from
the data about knot placements, we utilize the new construction of the orthonormal
spline bases, termed splinets and introduced in [9]. There, it is demonstrated that the
splinets are characterized by optimality properties that bring further benefits to our
approach.

2 FD and Their Representations

Discrete observations of a single function x(t), t ∈ [0, 1], at times tj result in

yj = x(tj )+ εj , j = 1, . . . , p

where εj is an error term in the data. To account on topological features assumed to
be present in x(t), the function is assumed to be smooth. One of the most common
ways of representing it efficiently is by using the basis function expansion, i.e. by
decomposing linearly the function x(t) in terms of a chosen basis system φk(t)

consisting of K ≤ ∞ basis functions

x(t) =
K∑

k=1

ckφk(t). (2)

The most commonly used basis functions φk(t) are Fourier, polynomial, splines and
wavelets. It is typically assumed that the observations xk(t) are random elements
of L2[0, 1]. In this Hilbert space, we use inner product 〈·, ·〉 for an integral of the
product of its two functional elements and which generates the norm ‖ · ‖. We call
L2-valued data functional observations. We use upper case and lower case letters in
the context of FD in a similar manner as in the classical statistical convention, i.e.
X is yet not observable random element, while x = x(·) stands for its particular
observed functional realization, i.e. a functional outcome of random experiment
carried out according to the probability model for X.

All random functions are assumed to be square integrable, i.e. E‖X‖2 < ∞. In
this context, one have to point to a classical result, the Karhunen–Loève expansion,
see [8], which shows that the basis associated with this expansion has the optimality
in the average mean square error sense, for more details see [6]:

X(t) =
∞∑

k=0

√
λkZk ek(t),

where λk is a square summable sequence of non-negative numbers, ek, k ∈ N0
is an orthonormal (non-random) basis in L2[0, 1] and Zk is a sequence of zero-
mean variance-one uncorrelated random variables. In the Gaussian case, Zk are
independent standard normal variables. The desired optimality of the basis (ek) is
mostly of theoretical value since except for Brownian motion (λk = (πk − π/2)−2,
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ek(t) = √
2 sin ((πk − π/2)t)) and Brownian bridge (λk = (πk)−2, ek(t) =√

2 sin (πkt)), the actual form of the optimal basis is not available. It is the central
problem of the FDA to find the approximation of ek for any specific problem. To do
this one has to decompose the original data using some basis of convenience.

The most popular decomposition of a function is by the Fourier basis

{√2 sin(2πnt); n ∈ N} ∪ {√2 cos(2πnt); n ∈ N} ∪ {1}.

Fourier functions form an orthogonal basis and have good computational properties.
A Fourier decomposition is especially useful for extremely stable functions where
there are no strong local features and the same curvature order everywhere.
However, they are improper for data where discontinuities in the function itself or in
low order derivatives are known or suspected [11, page 48]. In Fig. 1, the graphs in
the second column illustrate a 40-dimensional Fourier approximation of functional
signals.

Spline functions are a natural choice for approximating non-periodic FD. Splines
combine the fast computation of polynomials with substantially greater flexibility.
We explain some essential background of the B-splines, for more details we refer
the reader to standard texts such as [2, 12].

A spline is a smooth function consisting of polynomial pieces that have the same
degree, connected smoothly at points ξ0 < ξ1 < · · · < ξn+1, referred to as knots.
The splines are sensitive to the choice of the knots’ position, which is behind our
main idea of the basis selection since the choice of the knots can be data-driven.
Once the knots are set, The spline basis (B-splines) can be effectively evaluated
in a recursive way the Cox-de Boor formula [2]. The B-splines have interesting
properties that characterize them. Namely, all B-splines are positive, differentiable
up to a certain level (the spline order) and have minimal compact intervals for their
supports. But except for the case of order zero, the B-splines are not orthogonal.
Different orthogonalization methods appeared in the literature but we are using
our structured orthogonalization that creates basis systems for which we coined
the term splinet. The splinet is prioritized over other orthonormal spline systems
as it preserves locality and computational efficiencies of the original splines, see
Fig. 2 for two splinets used in Section 5. For a more detailed explanation, we refer
the reader to [9]. In Fig. 1, the graphs in the last column illustrate 40-dimensional,
third-order B-spline projection of functional signals.

3 Data Driven Choice of the Knots

The degree of a polynomial and the placement of knots defines the spline basis.
We propose machine learning style techniques for the placement of the knots. The
chosen knots are used to build splines basis functions φk(t) that are used in basis
function expansion to convert the data from discrete recorded data into a functional
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Fig. 2 Splinets for the data driven knots placement for two examples of Sect. 5

one. The method of adding knots is based on the mean square error effectiveness
of approximating the FD. The method is iterative and resembles the regression tree
building by which it was inspired, see [5, Chapter 9].

For any FD set X = {xi ∈ L2, i = 1, . . . n}, the set of best least square constant
predictors is a set of functions

x
(0)
i = 〈xi, 1〉1 =

∫
xi · 1.

The constant functions over the entire domain [0, 1] can be viewed as 0-order splines
with no internal knot points, and its one dimensional basis is given by the constant
function 1. We set the initial set of knots to an empty set, i.e. K(0) = ∅, the initial
basis B(0) = {1}, and the projection to the space spanned byB(0) is given by P(0)x =
〈x, 1〉1. The average mean square error (AMSE) per function of the approximations
of xi’s by the optimal constant functions is given by

AMSE(Y,B(0)) = 1

n

n∑

i=1

‖ xi − P(0)xi‖2 = 1

n

n∑

i=1

‖ xi − 〈xi, 1〉1‖2.

The method at the first step, s = 1, finds a knot ξ ∈ [0, 1] such that the optimal
approximation of x by a linear combination of the 0-order splines with the set of
knots K(1) = K(0) ∪ {ξ} yields the smallest AMSE between the FD xi . In other
words, denote by B(1)(ξ) the orthonormal basis of piecewise constant functions
over the intervals given by the knots in K(1)(ξ). The new knot ξnew is chosen as

ξnew = argmin
ξ∈(0,1]

AMSE(Y,B(s)(ξ)). (3)
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Then the new, enlarged by one function, basis B(1) = B(1)(ξnew) is uniquely defined
by the new set of knots K(1) = K(1)(ξnew). In the recurrent process, at the step s,
we start with a sequence of knots K(s−1) and search for a new knot ξnew using (3)
with K(s)(ξ) = K(s−1) ∪ {ξ} and the corresponding orthonormal basis of piecewise
constant functions B(s)(ξ).

The algorithm benefits from the locality and orthogonality piecewise constant
bases so that each new knot requires a removal only one base function (the constant
over interval that includes the new knot) and replaces it by two new functions that
remain orthonormal to all the other basis functions from the previous step. The
outcome of the zero-order spline decomposition of the FD is shown in Fig. 1, the
third column.

4 Application: Efficient Analysis of the Quarter Vehicle
Model

The model of a damped harmonic oscillator can be utilized in studies of the
durability of vehicle components in the vehicle response to the road profile, see
[7, 10] for further details on the model. The road profile roughness is often quantified
using the response of a quarter-vehicle model traveling at a constant velocity
through road profiles, see Fig. 3. Such a simplification of a physical vehicle cannot
be expected to predict loads exactly, but it will highlight the most important road
characteristics as far as durability is concerned.

It is desirable to have a model of load environment that is vehicle independent
and which may consist of many components, like driving habits, encountered road
roughness, hilliness, curve radius, cargo loading, and others. The force acting on the
sprung mass ms (total mass of the vehicle) that is randomly distributed around some
specific mean value is chosen as the response y(t) from the tire which then is used
to compute suitable indexes to classify the severity of road roughness.

Fig. 3 Quarter vehicle model and examples of its parameters
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In a linear simplification of the problem, the entire system has the following
components. The road elevation R(t) that, under constant speed v of the vehicle,
linearly drives two damped harmonic oscillators, one representing the tire and the
other the wheel suspension system

mt ü+ ct u̇+ ktu = Ft , msÿ + cs ẏ + ksy = Fs.

The parameters in the model can be set to mimic heavy vehicle dynamics
as, for example, developed in SCANIA, see Fig. 3. They have the following
physical interpretation: properties of the tire are described by kt , ct , which relate
to stiffness and damping of the tire, while properties of the suspension are given
by corresponding ks , cs . Modeling of true loads acting on components is difficult
since tires filter nonlinearly the road profile and the filter parameters depend on very
uncertain factors, e.g. tire’s pressure, wear, etc. One way to account for the later
and simplify the former is to assume that some of the parameters are random and
represent properties of the tire in a concrete vehicle on a given trip.

In further simplification, the condition of the trip can be modeled by a Brownian
bridge B filtered by a certain kernel r . Here the Brownian bridge model reflects
small roughness of the road at the beginning and at the end of a trip and an increase
of it when the vehicle enters tougher terrain in the middle of the trip. The smoothing
kernel r represents road specific properties so that R(t) = r ∗ dB(t) is the road
surface elevation at location t . In the literature, many models for the power spectral
density SR of road profiles have been proposed, see [1] for a review. Here, the kernel
r relates to SR through the Bochner theorem r ∗ r̃(t) = 2

∫
cos(ωt)SR(ω) dω.

Often one chooses the force acting on the sprung mass as the response y(t) which
then is used to compute suitable indexes to classify the severity of road roughness.
In the above simplification, this response is linearly driven by the road profile, as it
is also the displacement x(t) of the center of the wheel from the road. Their transfer
functions, i.e. the Fourier responses to Dirac’s delta, are explicit functions of the
transfer functions of the two harmonic oscillators

Ht(ω) = −mt ω
2 + i ω ct + kt , Hs(ω) = −ms ω

2 + i ω cs + ks.

To recap, the model is completely defined by the vehicle related parameters: the
speed of the vehicle v, the mass of the vehicle ms , the undamped angular frequencies
ωs and ωt , and the road related parameters, that describe SR . All these parameters
can be collectively described as θ . Some of these parameters can be considered as
random and each observed journey of a vehicle produces a response yi(t), t ∈ [0, 1],
with stochastic response driven by samples of Brownian bridge Bi and random
sample θi of the parameters, i = 1, . . . , n, where n is the number of trips.
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5 Simulation Studies

We illustrate, through simulations, how using a data-driven orthonormal basis can
improve efficiency in representing FD. The setting of Monte Carlo experiment
mimics, in a simplified manner, physical systems similar to the quarter vehicle
model. The data are not truly sampled from such a model since it would require
more extensive study not fitting the format of this note. Instead, we use FD obtained
by sampling parameters of the model to which we also inject samples of Brownian
bridge

yi(t) = F(t;Bi(·), θi), i = 1, . . . , n.

Ten samples of FD from two such models are presented in Fig. 1Left.
We performed orthogonal projections to the three ON bases: Fourier, piecewise

constant, and the splinets. In Fig. 1, we show approximations of the functions seen
in the left column that uses N = 30 basis functions. A Monte Carlo study of
the dependence of the average mean square error on the number basis elements
is shown in Fig. 4. Monte Carlo samples of size 10 were drawn from the two models
used in Fig. 1. For each of these sample approximations with the number of basis
elements used increasing from 4 to 50 were evaluated and their average mean square
error (AMSE) over all 10 elements of the data evaluated. This procedure has been
repeated independently 20 times resulting in 20 AMSE’s for each size of the Fourier
base used. Boxplots of these data for each model and each the Fourier base size are
presented in Fig. 4.

6 Conclusions

The proposed method of the data-driven orthonormal basis decomposition has
been tested in through numerical simulations. The Monte Carlo simulations
show clear advantages over the Fourier based method, in particular, when
smoothed splines are used. The accuracy is not only exhibited in smaller errors
but also in the reduced variability of the error. The improvement is greater,
as expected, for the data that shows some local detail. The obtained results
suggest that the method may have a great potential to improve the functional
analysis of the data coming from the physical systems with random excitation
and involving random parameters. This has to be confirmed by further model
specific studies.
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Uniqueness for a Second Order Gradient
Flow of Elastic Networks

Matteo Novaga and Paola Pozzi

Abstract In a previous work by the authors a second order gradient flow of the
p-elastic energy for a planar theta-network of three curves with fixed lengths
was considered and a weak solution of the flow was constructed by means of an
implicit variational scheme. Long-time existence of the evolution and convergence
to a critical point of the energy were shown. The purpose of this note is to prove
uniqueness of the weak solution when p = 2.

MSC(2010) 35K92, 53A04, 53C44

1 Introduction

In [1] we considered a second order gradient flow of the p-elastic energy for a planar
theta-network of three curves with fixed lengths. We constructed a weak solution of
the flow by means of an implicit variational scheme and showed long-time existence
of the evolution as well as convergence to a critical point of the energy. The purpose
of this short note is to show uniqueness of the long-time weak solution when p = 2.

For the sake of conciseness we refer to [1] for motivation and a list of relevant
references. Let us here briefly recall the setting and state our new contribution.

We consider a theta-network composed of three inextensible planar curves. Each
curve γi = γi(s) of fixed length Li > 0, i = 1, 2, 3, is parametrized by arc-length s

over the domain Īi = [0, Li]. Without loss of generality we may assume that

0 < L3 ≤ min{L2, L1}.

M. Novaga
Dipartimento di Matematica, Università di Pisa, Pisa, Italy
e-mail: matteo.novaga@unipi.it

P. Pozzi (�)
Fakultät für Mathematik, Universität Duisburg-Essen, Essen, Germany
e-mail: paola.pozzi@uni-due.de

© Springer Nature Switzerland AG 2021
F. J. Vermolen, C. Vuik (eds.), Numerical Mathematics and Advanced Applications
ENUMATH 2019, Lecture Notes in Computational Science and Engineering 139,
https://doi.org/10.1007/978-3-030-55874-1_77

785

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-55874-1_77&domain=pdf
mailto:matteo.novaga@unipi.it
mailto:paola.pozzi@uni-due.de
https://doi.org/10.1007/978-3-030-55874-1_77


786 M. Novaga and P. Pozzi

Since the network is a theta- network, the three curves satisfy the constraint

γ1(0) = γ2(0) = γ3(0), γ1(L1) = γ2(L2) = γ3(L3).

Let T i = T i(s) = γ ′i (s) = (cos θ i, sin θ i) denote the unit tangent of the curve γi

and let κ i = ∂sT
i be the curvature vector. Letting p ∈ (1,+∞), the p-elastic

energy of the network is defined as

Ep(Γ ) =
3∑

i=1

Ep(γi),

where

Ep(γi) := 1

p

∫

Ii

|κ i |pds = 1

p

∫

Ii

|∂sT i |pds =: Fp(T
i).

In [1] we studied the L2-gradient flow of the energy

Fp(Γ ) :=
3∑

i=1

Fp(T
i),

when expressed in terms of the angles θ i corresponding to the tangent vectors T i .
This gave rise to a second order parabolic system.

The long-time existence result presented in [1] reads as follows: We let

H :=
{
θ = (θ1, θ2, θ3) ∈ W 1,p(0, L1)×W 1,p(0, L2)×W 1,p(0, L3) |

∫

I1

(cos θ1, sin θ1)ds =
∫

I2

(cos θ2, sin θ2)ds =
∫

I3

(cos θ3, sin θ3)ds
}

where note that the above constraint accounts for the fact that the theta-network
should maintain its topology along the flow.

Theorem 1 Let θ0 ∈ H and let T > 0. Assume that the lengths of the three curves
are such that

L3 < min{L1, L2}. (1)

Then, there exist functions θ = (θ1, θ2, θ3), with θj ∈ L∞(0, T ;W 1,p(Ij )) ∩
H 1(0, T ;L2(Ij )), and Lagrange multipliers λ1, λ2, μ1, μ2 ∈ L2(0, T ) such that
the following properties hold:
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(i) for any ϕ = (ϕ1, ϕ2, ϕ3) with ϕj ∈ L∞(0, T ;W 1,p(Ij )), j = 1, 2, 3,
there holds

0 =
3∑

j=1

∫ T

0

∫

Ij

∂t θ
j ϕj dsdt +

3∑

j=1

∫ T

0

∫

Ij

|θjs |p−2θ
j
s · ϕj

s dsdt

−
∫ T

0
(λ1 − μ1)

∫

I1

sin(θ1) ϕ1dsdt +
∫ T

0
(λ2 − μ2)

∫

I1

cos(θ1) ϕ1dsdt (2)

+
∫ T

0
λ1

∫

I2

sin(θ2) ϕ2dsdt −
∫ T

0
λ2

∫

I2

cos(θ2) ϕ2dsdt

−
∫ T

0
μ1

∫

I3

sin(θ3) ϕ3dsdt +
∫ T

0
μ2

∫

I3

cos(θ3) ϕ3dsdt ;

(ii) the maps |∂sθj |p−2∂sθ
j belong to L∞(0, T ;L p

p−1 (Ij )) ∩ L2(0, T ;H 1

(Ij )), j = 1, 2, 3, and satisfy

(|∂sθ1|p−2∂sθ
1)s = θ1

t − (λ1 − μ1) sin θ1 + (λ2 − μ2) cos θ1, (3)

(|∂sθ2|p−2∂sθ
2)s = θ2

t + λ1 sin θ2 − λ2 cos θ2, (4)

(|∂sθ3|p−2∂sθ
3)s = θ3

t − μ1 sin θ3 + μ2 cos θ3, (5)

θ
j
s (0, t) = θ

j
s (Lj , t) = 0, for j = 1, 2, 3 and for a.e. t ∈ (0, T ); (6)

(iii) for all t ∈ [0, T ], there holds

∫

I1

(cos θ1, sin θ1)ds =
∫

I2

(cos θ2, sin θ2)ds =
∫

I3

(cos θ3, sin θ3)ds. (7)

Notice that the time T > 0 can be chosen arbitrarily, and hence Theorem 1
provides a long-time existence result.

The behavior of the solutions as t → +∞, the possible relaxation of condition
(1), as well as the treatment of triods instead of theta-networks are discussed in
detail in [1].

Here we want to address the question of uniqueness of the above weak solution
when p = 2. Our goal is to show the following statement.

Theorem 2 Let the assumptions of Theorem 1 hold and let p = 2. Then the solution
(θ ,λ,μ) given in Theorem 1 is unique.

Before providing the proof let us recall some important facts about the Lagrange
multipliers and the solution given in Theorem 1. First of all by Novaga and Pozzi
[1, Lemma 3.5] we have that

sup
(0,T )

‖∂sθj‖Lp(Ij ) ≤ C, j = 1, 2, 3, (8)
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where the constant C depends on the energy of the initial data and the choice of p.
By Novaga and Pozzi [1, Proposition 3.9], we have also a uniform bound

|λ(t)| + |μ(t)| ≤ C (9)

for almost any t ∈ (0, T ), where λ(t) = (λ1(t), λ2(t)), μ(t) = (μ1(t), μ2(t)).
More precisely, the Lagrange multipliers solve the system

λ ·A2 + μ ·A3 = G3 −G2 (10)

−λ · (A2 + A1)+ μ ·A1 = G2 −G1 (11)

for a.e. time t ∈ (0, T ) where Ai , i = 1, 2, 3, are the matrices

Ai = Ai(t) =
( ∫

Ii
sin2 θ ids − ∫

Ii
sin θ i cos θ ids

− ∫
Ii

sin θ i cos θ ids
∫
Ii

cos2 θ ids

)

=: Ai(θ i), (12)

and Gi are the vectors

Gi = Gi(θ i) :=
∫

Ii

|∂sθ i |p(cos θ i, sin θ i)ds. (13)

As discussed in [1] condition (1) yields not only the solvability of the above system,
but also the bound

|λ(t)| + |μ(t)| ≤ C
(
|G3 −G2| + |G2 −G1|

)
(14)

which is crucial for the analysis. The above constants C appearing in (9) and (14)
depend on the initial data, initial energy, the length of the three curves, but not on
time (see [1, Lemma 2.5 and Proposition 3.9] for more details).

2 Proof of Uniqueness

Here we provide the proof of Theorem 2. Let the assumptions of Theorem 1 hold
and let p = 2. Moreover let θ = (θ1, θ2, θ3) and θ̂ = (θ̂1, θ̂2, θ̂3) with Lagrange
multipliers (λ1, λ2), (μ1, μ2) respectively (λ̂1, λ̂2), (μ̂1, μ̂2) be two solutions to
the same initial data θ0 ∈ H and satisfying (2). Taking the difference of the two
weak formulations tested with ϕ = (ϕ1, ϕ2, ϕ3), ϕj = (θj − θ̂ j )ηε , j = 1, 2, 3,
where ηε ∈ C∞([0, T ], [0, 1]) is such that ηε(t) = 1 for t ∈ [0, τ ], ηε(t) = 0 for
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t ∈ [τ + ε, T ], 0 < ε < T − τ , we obtain after sending ε → 0 the following
equation

0 =
3∑

j=1

∫ τ

0

∫

Ij

(∂t θ
j − ∂t θ̂

j ) (θj − θ̂ j )dsdt +
3∑

j=1

∫ τ

0

∫

Ij

|(θj
s − θ̂

j
s )|2 dsdt

+
{
−
∫ τ

0
(λ1 − μ1)

∫

I1

sin(θ1) (θ1 − θ̂1)dsdt

+
∫ τ

0
(λ2 − μ2)

∫

I1

cos(θ1) (θ1 − θ̂1)dsdt

−
(
−
∫ τ

0
(λ̂1 − μ̂1)

∫

I1

sin(θ̂1) (θ1 − θ̂1)dsdt

+
∫ τ

0
(λ̂2 − μ̂2)

∫

I1

cos(θ̂1) (θ1 − θ̂1)dsdt
)

+
∫ τ

0
λ1

∫

I2

sin(θ2) (θ2 − θ̂2)dsdt −
∫ τ

0
λ2

∫

I2

cos(θ2) (θ2 − θ̂2)dsdt

−
(∫ τ

0
λ̂1

∫

I2

sin(θ̂2) (θ2 − θ̂2)dsdt −
∫ τ

0
λ̂2

∫

I2

cos(θ̂2) (θ2 − θ̂2)dsdt

)

−
∫ τ

0
μ1

∫

I3

sin(θ3) (θ3 − θ̂3)dsdt +
∫ τ

0
μ2

∫

I3

cos(θ3) (θ3 − θ̂3)dsdt

−
(

−
∫ τ

0
μ̂1

∫

I3

sin(θ̂3) (θ3 − θ̂3)dsdt +
∫ τ

0
μ̂2

∫

I3

cos(θ̂3) (θ3 − θ̂3)dsdt

)}
.

This gives

3∑

j=1

1

2
‖(θj − θ̂ j )(τ )‖2

L2(Ij )
+

3∑

j=1

∫ τ

0
‖(θjs − θ̂

j
s )(t)‖2

L2(Ij )
dt (15)

=
3∑

j=1

1

2
‖(θj − θ̂ j )(0)‖2

L2(Ij )
− {. . .},

where the first term in the right-hand side vanishes since θ and θ̂ have the same
initial data. The terms in the bracket {. . .} are made up of differences that are
estimated in a similar way. We give here in a exemplary manner the treatment of
the term

J :=
∫ τ

0
λ1

∫

I2

sin(θ2) (θ2 − θ̂2)dsdt −
∫ τ

0
λ̂1

∫

I2

sin(θ̂2) (θ2 − θ̂2)dsdt.
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First of all notice that

|J | ≤
∣
∣
∣
∣

∫ τ

0
(λ1 − λ̂1)

∫

I2

sin(θ2) (θ2 − θ̂2)dsdt

∣
∣
∣
∣

+
∣
∣
∣
∣

∫ τ

0
λ̂1

∫

I2

(sin(θ̂2)− sin(θ2)) (θ2 − θ̂2)dsdt

∣
∣
∣
∣

≤ C

∫ τ

0
|λ1(t)− λ̂1(t)| ‖(θ2 − θ̂2)(t)‖L2(I2)

dt (16)

+C

∫ τ

0
‖(θ2 − θ̂2)(t)‖2

L2(I2)
dt

where we have used the mean value theorem and the bound (9) in the last inequality.
To estimate the difference in the Lagrange multipliers we recall that they fulfill

the system (10) and (11) for almost every time. Subtraction of the corresponding
equations yields

(λ− λ̂) · A2 + (μ− μ̂) · A3 = rhs1

−(λ− λ̂) · (A2 + A1)+ (μ− μ̂) · A1 = rhs2

where

rhs1 = G3 − Ĝ3 − (G2 − Ĝ2)+ λ̂(Â2 − A2)+ μ̂(Â3 − A3)

rhs2 = G2 − Ĝ2 − (G1 − Ĝ1)+ λ̂(A2 + A1 − Â2 − Â1)+ μ̂(Â1 − A1).

Similarly to (14) we obtain

|λ− λ̂| + |μ− μ̂| ≤ C(|rhs1| + |rhs2|).

Again we show exemplary the treatment of a few terms in the evaluation of |rhs1|+
|rhs2|, since all remaining ones are estimated in a similar way. We have using the
mean value theorem that

|G3 − Ĝ3| =
∣
∣
∣
∣

∫

I3

|∂sθ3|2(cos θ3, sin θ3)ds −
∫

I3

|∂s θ̂3|2(cos θ̂3, sin θ̂3)ds

∣
∣
∣
∣

≤
∣
∣
∣
∣

∫

I3

(|∂sθ3|2 − |∂s θ̂3|2)(cos θ3, sin θ3)ds

∣
∣
∣
∣

+
∣
∣
∣
∣

∫

I3

|∂s θ̂3|2(cos θ̂3 − cos θ3, sin θ̂3 − sin θ3)ds

∣
∣
∣
∣

≤ C‖(θ3
s − θ̂3

s )‖L2(I3)‖(θ3
s + θ̂3

s )‖L2(I3) + C‖θ̂3
s ‖2

L2(I3)
‖θ3 − θ̂3‖L∞(I3).
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Using (8) and embedding theory yields

|G3 − Ĝ3| ≤ C‖(θ3
s − θ̂3

s )‖L2(I3) + C‖(θ3 − θ̂3)‖L2(I3).

Next observe that by (9) and the mean value theorem we can compute

|λ̂(Â2 − A2)| ≤ C

∫

I2

|θ2 − θ̂2|ds ≤ C‖(θ2 − θ̂2)‖L2(I2).

With similar argument as depicted above we therefore infer that

|λ(t)− λ̂(t)| + |μ(t)− μ̂(t)| (17)

≤ C

3∑

j=1

(
‖(θjs − θ̂

j
s )(t)‖L2(Ij ) + ‖(θj − θ̂ j )(t)‖L2(Ij )

)

for almost every time t ∈ (0, T ). Using this estimate in (16) for the evaluation of
the term J we obtain by means of a ε-Young inequality

|J | ≤ ε

3∑

j=1

∫ τ

0
‖(θjs − θ̂

j
s )(t)‖2

L2(Ij )
dt + Cε

3∑

j=1

∫ τ

0
‖(θj − θ̂ j )(t)‖2

L2(Ij )
dt.

Going back to (15) and treating all remaining terms in the bracket {. . .} in an
analogous way we finally infer

3∑

j=1

1

2
‖(θj − θ̂ j )(τ )‖2

L2(Ij )
+

3∑

j=1

∫ τ

0
‖(θjs − θ̂

j
s )(t)‖2

L2(Ij )
dt

≤ ε

3∑

j=1

∫ τ

0
‖(θjs − θ̂

j
s )(t)‖2

L2(Ij )
dt + Cε

3∑

j=1

∫ τ

0
‖(θj − θ̂ j )(t)‖2

L2(Ij )
dt.

Choosing ε sufficiently small yields

3∑

j=1

‖(θj − θ̂ j )(τ )‖2
L2(Ij )

≤ C

3∑

j=1

∫ τ

0
‖(θj − θ̂ j )(t)‖2

L2(Ij )
dt

for any τ ∈ (0, T ). A Gronwall argument gives θ = θ̂ and hence by (17) also
equality of the Lagrange multipliers, as claimed.
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A Second Order Finite Element Method
with Mass Lumping for Wave Equations
in H(div)

Herbert Egger and Bogdan Radu

Abstract We consider the efficient numerical approximation of acoustic wave
propagation in time domain by a finite element method with mass lumping. In
the presence of internal damping, the problem can be reduced to a second order
formulation in time for the velocity field alone. For the spatial approximation we
consider H(div)-conforming finite elements of second order. In order to allow
for an efficient time integration, we propose a mass-lumping strategy based on
approximation of the L2-scalar product by inexact numerical integration which
leads to a block-diagonal mass matrix. A careful error analysis allows to show that
second order accuracy is not reduced by the quadrature errors which is illustrated
also by numerical tests.

1 Motivation

The propagation of acoustic sound in channels or ducts with a small extension in one
of the spatial directions is substantially damped by friction at the walls. Averaging
over the small direction then leads to systems with internal damping of the form

∂tu+ ∇p = −du (1)

∂tp + divu = 0 (2)

with appropriate initial and boundary conditions. The variables u and p here denote
the velocity and pressure fields, respectively, and for ease of notation, the equations
are written in dimensionless form. The right hand side in (1) models the drag forces
and d denotes the corresponding dimensionless damping or drag coefficient.

H. Egger · B. Radu (�)
TU Darmstadt, Darmstadt, Germany
e-mail: egger@mathematik.tu-darmstadt.de; bradu@mathematik.tu-darmstadt.de

© Springer Nature Switzerland AG 2021
F. J. Vermolen, C. Vuik (eds.), Numerical Mathematics and Advanced Applications
ENUMATH 2019, Lecture Notes in Computational Science and Engineering 139,
https://doi.org/10.1007/978-3-030-55874-1_78

793

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-55874-1_78&domain=pdf
mailto:egger@mathematik.tu-darmstadt.de
mailto:bradu@mathematik.tu-darmstadt.de
https://doi.org/10.1007/978-3-030-55874-1_78


794 H. Egger and B. Radu

In the absence of damping, i.e., when d = 0, the system (1)–(2) can be reduced
to the second order wave equation for the pressure

∂ttp −�p = 0 (3)

which results from differentiating (2) and eliminating u via equation (1). The
efficient discretization of (3) can be obtained in various ways, e.g., by finite
difference or finite element methods. The latter are more flexible concerning high-
order approximations and the treatment of non-trivial domains but suffer from
non-diagonal mass-matrices which hinder the efficient time-integration. This can be
overcome by mass-lumping; we refer to [2] for an overview about various methods
and to [4, 5] for some particular results concerning mass-lumping for finite element
approximations.

In the presence of damping, i.e., if d �= 0, the elimination of the velocity u

from (1)–(2) leads to an integro-differential equation for the pressure whose time-
integration is again non-trivial. Elimination of the pressure, on the other hand, again
leads to a second order differential equation

∂ttu+ d∂tu−∇divu = 0 (4)

but now for the vector valued velocity field u. The stable discretization of (4)
by finite elements requires the use of H(div)-conforming spaces and novel mass
lumping techniques are required for the efficient time integration. We refer to [2]
for corresponding results for H(curl)-conforming finite-elements required in the
context of electromagnetic wave propagation.

In a recent work [3], we considered the lowest-order discretization of the system
(1)–(2) by BDM1–P0 finite-elements with mass-lumping as suggested by Wheeler
and Yotov [6] in the context of porous medium flow. The resulting scheme is
convergent of first order and super-convergence for the projected pressure can
be utilized to obtain second-order convergence for the velocity by a non-local
post-processing strategy. In this paper, we choose finite elements with better
approximation properties which lead to second order approximations in the energy
norm

‖∂tu(t)− ∂tuh(t)‖L2 + ‖div(u(t)− uh(t))‖L2 ≤ C(u)h2 (5)

without the need for post-processing. A novel mass-lumping strategy is proposed
to allow for the efficient time integration and a careful analysis of the quadrature
error is presented in order to establish the order optimal convergence rates (5). We
here consider only approximations of second order on hybrid meshes in two space
dimensions. The basic arguments of our analysis however can be used to investigate
approximations of higher order and in three space dimensions.

The remainder of this note is organized as follows: In Sect. 2, we formally state
our model problem and basic assumptions and then introduce its finite element
approximation. In Sect. 3, we present some auxiliary estimates and then formulate
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and prove our main result in Sect. 4. Details about the numerical implementation
are given in Sect. 5 and for illustration, we present in Sect. 6 some preliminary
numerical tests.

2 Problem Statement and Finite Element Approximation

Throughout the presentation, we denote by � ⊆ R
2 a bounded polygonal Lipschitz

domain and by T > 0 a finite time horizon. We consider the system

∂ttu+ d∂tu−∇divu = 0, in � (6)

n · u = 0, on ∂�. (7)

The existence of a unique solution u for (6)–(7) with given initial values u(0) =
u0 and ∂tu(0) = u1 can be established by semigroup theory; see [3] for details.
Moreover, any classical solution of (6)–(7) satisfies the variational identity

(∂ttu(t), v) + (d∂tu(t), v) + (divu(t), div v) = 0, (8)

for all v ∈ H0(div,�) = {u ∈ L2(�)2 : divu ∈ L2(�) and n ·u = 0 on ∂�}. Here
and below, we use (·, ·) to denote the standard L2-scalar product.

Let Th = {K} be a quasi-uniform mesh of � comprised of triangles and
parallelograms and h be the mesh size. We consider local approximation spaces

V (K) =
{

RT1(K), if K is a triangle,
BDFM2(K), if K is a parallelogram,

(9)

with vector valued polynomial spaces RT1(K) and BDFM2(K) as defined in [1];
compare with Fig. 1. The global approximation spaces is then defined as

Vh = {vh ∈ H0(div,�) : vh|K ∈ V (K)}.

The scalar product on Vh will be approximated by (u, v) * (u, v)h :=∑
K(u, v)h,K

with local contributions obtained by numerical integration according to

(u, v)h,K = |K|
(
α(u(mK) · v(mK))+

∑

i
β (u(vK,i ) · v(vK,i ))

)
(10)

Here mK and vK,i represent the midpoint and vertices of the element K , respec-
tively, while α and β are the corresponding weights. On triangles, we choose α = 3

4
and β = 1

12 , while on parallelograms, we choose α = 2
3 and β = 1

12 . For the space
discretization of (8), we then consider the following inexact Galerkin scheme.
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Fig. 1 Degrees of freedom for RT1 (left) and BDFM2 (right) and quadrature points (red dots)

Problem 1 Let uh,0, uh,1 ∈ Vh be given. Find uh : [0, T ] → Vh such that

(∂ttuh(t), vh)h + (d∂tuh, vh)h + (divuh(t), div vh) = 0 (11)

for all vh ∈ Vh and all t ∈ [0, T ] and such that uh(0) = uh,0 and ∂tuh(0) = uh,1.

The following result ensures the well-posedness of Problem 1.

Lemma 1 The inexact scalar product (·, ·)h induces a norm on Vh and, as a
consequence, Problem 1 admits a unique solution.

Proof Choose any basis for Vh. Then the mass matrix associated with the inexact
scalar product (·, ·)h is symmetric and positive definite; this can be verified by
elementary computations on single elements. Existence of a unique solution then
follows from the Picard–Lindelöf theorem. ��

3 Auxiliary Results

In the following, we recall some well-known interpolation results and then derive
estimates for the quadrature error which will be required below. Let us start with
introducing a canonical interpolation operator which is defined locally by

(%hu)|K =
{
%RT

K u|K, if K is a triangle,

%BDFM
K u|K, if K is a parallelogram.

(12)

Here %RT
K and %BDFM

K denote the standard interpolation operators for the local
finite element spaces RT1(K) and BDFM2(K), respectively; see [1] for details. The
following assertions then follow from well-known results about the local operators.

Lemma 2 Let K ∈ Th and %h be defined as in (12). Then

‖u−%hu‖L2(K) ≤ Ch2‖u‖H 2(K),
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for all u ∈ H(div,�) ∩H 2(Th)
2 with constant C independent of h. Moreover

(div(u−%hu), div vh) = 0, ∀ vh ∈ Vh.

We will further require the following property of the spaces RT1(K) on triangles.

Lemma 3 Let K be a triangle. Then there exists a unique splitting

RT1(K) = P1(K)2 ⊕ B(K)

and dim(B(K)) = dim(div(B(K))). Therefore, ‖div(·)‖L2 defines a norm on B(K)

and ‖div vBh ‖L2(K) ≥ c‖∇vBh ‖L2(K) for any vBh ∈ B(K) with c independent of K .

These assertions can be verified by a elementary computations on the reference
element and a mapping argument. As a next step, we summarize some properties of
the numerical integration underlying the definition (10) of the inexact scalar product.

Lemma 4 The quadrature rule in (10) is exact for polynomials of degree k ≤ 2 on
triangles and for polynomials of degree k ≤ 3 on parallelograms.

The validity of these claims can again be verified by elementary computations on
reference elements. In the following, we will abbreviate the quadrature errors by

σK(u, v) := (u, v)h,K − (u, v)K and σh(u, v) =
∑

K∈Th
σK(u, v) (13)

Moreover, we denote by πk
K : L2(K) → Pk(K)2 the local L2-orthogonal

projections and we use πk
h : L2(�) → Pk(Th)

2 to denote the corresponding global
projection.

Lemma 5 Let u ∈ L2(�)2 with u|K ∈ H 1(K)2 for all K ∈ Th. Then

|σK(π1
hu, vh)| ≤

{
Ch2‖u‖H 1(K)‖div vh‖L2(K) if K is a triangle,
0, if K is a parallelogram,

for all vh ∈ Vh and all K ∈ Th with constant C independent of the element K .

Proof From Lemma 4, we deduce that |σK(π1
hu, vh)| = 0 on parallelograms. For

triangles, on the other hand, we can estimate the quadrature error by

|σK(π1
hu, vh)| = |σK(π1

hu− π0
hu, vh − π1

hvh)|
≤ ‖π1

hu− π0
hu‖L2(K)‖vh − π1

hvh‖L2(K) + ‖π1
hu− π0

hu‖h‖vh − π1
hvh‖h

≤ Ch3‖u‖H 1(K)‖∇2vh‖L2(K).
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By Lemma 3, we can split vh = v1
h ⊕ vBh on K and further estimate

‖∇2vh‖L2(K) = ‖∇2vBh ‖L2(K) ≤ C′h−1‖∇vBh ‖L2(K) ≤ C′′h−1‖divvBh ‖L2(K).

The linear independence of the splitting also yields ‖divvBh ‖L2(K) ≤ C‖divvh‖L2(K),
and a combination of the estimates already yields the bound for the triangles. ��

4 Convergence Analysis

For ease of notation, we will only consider the case d = 0 in the sequel. As usual,
we begin with splitting the error in interpolation and discrete error components by

u− uh = (u−%hu)+ (%hu− uh) =: −η + ψh.

The discrete error component can be estimated as follows.

Lemma 6 Let u and uh denote the solutions of (8) and (11) with initial values
linked by uh(0) = %hu(0) and ∂tuh(0) = %h∂tu(0). Then the discrete error
satisfies

‖∂t (%hu− uh)‖L∞(0,T ;L2(�)) + ‖div (%hu− uh)‖L∞(0,T ;L2(�)) ≤ C1(u, T )h2

with constant C1(u, T ) = C′1(u, T )+ C′′1 (u, T ) as defined in the proof below.

Proof The discrete error ψh = %hu− uh can be seen to satisfy the identity

(∂ttψh(t), vh)+ (divψh(t), div vh) =
(∂ttη(t), vh)+ (div η(t), div vh)+ σh(%h∂ttu(t), vh)

for all vh ∈ Vh and 0 ≤ t ≤ T . Moreover, ψh(0) = ∂tψh(0) = 0 by construction.
Choosing vh = ∂tψh(t) as a test function followed by integrating from 0 to t leads
to

1

2

(
‖∂tψh(t)‖2

h + ‖divψh(t)‖2
L2(�)

)
(14)

= t∫
0
(∂ttη(s), ∂tψh(s))+ (div η(s), div ∂tψh(s))+ σh(%h∂ttu(s), ∂tψh(s)) ds

=: (i)+ (ii)+ (iii).

Using Cauchy–Schwarz and Young’s inequalities, the first term can be estimated by

(i) ≤ C′1(u)2h4 + 1
4‖∂tψh‖2

L∞(0,t,L2(�))
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with constant C′1(u, t) = C‖∂ttu‖L1(0,t,H 2(�)), and by Lemma 2, we get (ii) = 0.
The remaining third term can finally be estimated by

(iii) = t∫
0
σh(%h∂ttu(s)− π1

h∂ttu(s), ∂tψh(s))+
t∫
0
σh(π

1
h∂ttu(s), ∂tψh(s))

=: (iv)+ (v).

The term (iv) can be bounded with the same arguments as (i). If K is a
parallelogram, then (v) ≡ 0 by Lemma 5. On triangles, we use integration-by-parts
in time, to get

(v) = σh(π
1
h∂ttu(t), ψh(t))−

t∫
0
σh(π

1
h∂tt tu(s), ψh(s)) ds

≤ C′′1 (u, t)2h4 + 1
2‖divψh‖2

L∞(0,t,L2(�))

with C′′1 (u, t) = C(‖∂ttu‖L∞(0,t,H 1(�)) + ‖∂tt tu‖L1(0,t,H 1(�))), where we used
Lemma 5 in the second step. Taking the supremum over t ∈ [0, T ] in (14) and
absorbing all the terms with the test function into the left side of (14) now yields the
assertion. ��
Theorem 1 Let the assumptions of Lemma 6 hold. Then

‖∂t (u− uh)‖L∞(0,T ;L2(�)) + ‖div(u− uh)‖L∞(0,T ;L2(�)) ≤ C(u, T )h2,

with constant C(u, T ) = C′1(u, T )+ C′′1 (u, T )+ C2(u, T ) as in the proof below.

Proof Using Lemma 2, we can estimate the interpolation error by

‖∂tη‖L∞(0,T ;L2(�)) + ‖div η‖L∞(0,T ;L2(�)) ≤ C2(u, T )h2,

with C1(u, t) = C(‖∂tu‖L∞(0,t;H 2(�) + ‖divu‖L∞(0,t;H 2(�)). The proof is com-
pleted by adding the bounds for the discrete error components provided by
Lemma 6. ��

5 Implementation and Mass Lumping

For completeness, we now briefly introduce appropriate basis functions for the
spaces RT1(K) and BDFM2(K) which together with the inexact scalar product
(·, ·)h lead to a block-diagonal mass matrix. Let {λi} denote the barycentric
coordinates of the element K and let∇⊥f = (∂yf,−∂xf )T . On triangles, we define

'B1 = λ2(λ1∇⊥λ3 − λ3∇⊥λ1) and 'B2 = λ3(λ1∇⊥λ2 − λ2∇⊥λ1)
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which are the two H(div)-bubble functions associated with the element midpoint;
see Fig. 1. The basis functions associated with the three vertices are given by

'1,1 = λ1∇⊥λ2 +'B1 − 2'B2, '1,2 = λ2∇⊥λ1 +'B1 +'B2,

'2,1 = λ2∇⊥λ3 − 2'B1 +'B2, '2,2 = λ3∇⊥λ2 +'B1 − 2'B2,

'3,1 = λ1∇⊥λ3 − 2'B1 +'B2, '3,2 = λ3∇⊥λ1 +'B1 +'B2.

For parallelograms, let ξij ∈ [0, 1] denote the local coordinate on the edge eij
pointing from vertex pi to pj . Following the construction in [7], we define by

φB1 = (λ1 + λ4)(λ2 + λ3)∇⊥ξ23 and φB1 = (λ1 + λ2)(λ3 + λ4)∇⊥ξ12

two H(div)-bubble functions associated with the midpoint of the element. For any
of the four vertices, we further define two basis functions by

φ1,1 = λ2∇⊥ξ23 + φB1, φ1,2 = λ3∇⊥ξ23 + φB1,

φ2,1 = λ3∇⊥ξ34 + φB2, φ2,2 = λ4∇⊥ξ34 + φB2,

φ3,1 = λ4∇⊥ξ41 − φB1, φ3,2 = λ1∇⊥ξ41 − φB1,

φ4,1 = λ1∇⊥ξ12 − φB2, φ4,2 = λ2∇⊥ξ12 − φB2.

Let us note that by construction, exactly two basis functions are associated to any of
the quadrature points. Moreover, the basis functions vanish on all quadrature points
except one. As a consequence, the local mass matrix corresponding to (·, ·)h,K
is block diagonal with 2 × 2 blocks. After assembling, the global mass-matrix
is block-diagonal with each block corresponding to one of the quadrature points.
The dimension of the individual blocks is determined by the number of degrees of
freedom associated with that quadrature point; we refer to [3, 6] for details.

6 Numerical Illustration

For illustrating our results, we consider a simple test problem in two space
dimensions, whose analytical solution is given by the plane wave

uex(x, y, t) = g(x − t)

(
1

0

)

with g(x) = 2 exp(−50(x + 1)2),

See Fig. 2, we consider problem (4) with d = 0 on the domain � = (0, 1)2

with boundary and initial conditions obtained from the exact solution. In Table 1,
we display the errors obtained by our second-order finite-element approximation
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Fig. 2 Snapshots of the first component of u at different time steps

Table 1 Discrete error of the
method

h |||π1
hu− uh||| eoc

2−3 0.270790 –

2−4 0.060266 2.17

2−5 0.016328 1.88

2−6 0.004343 1.91

2−7 0.001046 2.06

Time step was fixed at τ = 0.001

with mass-lumping on a sequence of quasi-uniform but non-nested meshes with
decreasing mesh size. As predicted by our theoretical results, we observe second
order convergence.

Due to the mass lumping, time integration could be performed efficiently by the
leapfrog scheme with time-step τ ≈ h. Since this method is second order accurate,
this choice does not influence the overall convergence behavior; see [2] for details.
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Model Order Reduction of Combustion
Processes with Complex Front Dynamics

Philipp Krah, Mario Sroka, and Julius Reiss

Abstract In this work we present a data driven method, used to improve mode-
based model order reduction of transport fields with sharp fronts. We assume that
the original flow field q(x, t) = f (φ(x, t)) can be reconstructed by a front shape
function f and a level set function φ. The level set function is used to generate a
local coordinate, which parametrizes the distance to the front. In this way, we are
able to embed the local 1D description of the front for complex 2D front dynamics
with merging or splitting fronts, while seeking a low rank description of φ. Here,
the freedom of choosing φ far away from the front can be used to find a low
rank description of φ which accelerates the convergence of ‖q − f (φn)‖, when
truncating φ after the nth mode. We demonstrate the ability of this new ansatz for a
2D propagating flame with a moving front.

1 Introduction

Nowadays combustion systems are studied by simulating the reactive Navier Stokes
equations with billions of degrees of freedom. The simulations are numerically
expensive, because computational resources scale with the number of degrees of
freedom. Therefore, model order reduction (MOR) techniques are desired to reduce
the number of relevant parameters, which describe the system. Unfortunately,
classical MOR techniques fail for these systems. We aim for an improvement in
this report.
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Our method follows a data driven approach, where a set of N snapshots,
{q(x, ti)}i=1,...N , gathered during a numerical simulation, is used to generate a
reduced order model (ROM). Here, most ROMs rely on separation of variables:

q(x, t) ≈
n∑

i=1

ai(t)ψi(x) (1)

in which the initial high fidelity field q(x, t) is represented by a set of basis
functionsψi and their amplitudes ai . Based on Eq. (1), Petrov Galerkin and Galerkin
methods (see for a review [1]) project the original dynamics on a n-dimensional
subspace spanned by the basis ψi . However, the approximation error of the produced
ROM crucially depends on the error made in Eq. (1). Unfortunately, in combustion
systems transport dominated phenomena like moving flame kernels with sharp
gradients or traveling shock waves critically slow down the convergence of Eq. (1).
For instance, this was numerically investigated by Huang et al. [2] for reactive flows
and is theoretically quantified with help of the Kolmogorov n-width [3, 4].

In order to handle transport dominated fields with sharp fronts, we propose a
nonlinear mapping of the solution manifold:

q(x, t) = f (φ) s. t. φ(x, t) =
n∑

i=1

ãi(t)ψ̃i (x) . (2)

Here, the function f : R → R is simply the wave profile and φ describes the shift
of the wave profile in time.

This approach shares similar features as [5–8], but overcomes some of the
problems associated with these methods. Namely, [5, 7] depends on the choice of the
shifts or their a priori knowledge and becomes cumbersome if the topology of the
moving object changes. The latter is also the main drawback of [8]. Furthermore,
[5, 8] are mainly applied in one spatial dimension. Although [6] does not suffer
from the aforementioned drawbacks, it lacks physical interpretation and provides
little insight of the underlying structure.

The report is organized as follows: In the first two sections we introduce the
basic idea for 1D and 2D advective systems and explain the benefits of our concept.
One possible realization is provided in Sect. 4, which is then applied to a real life
application in combustion—the reduction of burning hydrogen with complex front
dynamics including topological changes (Sect. 5). Finally, we come back to [5, 6, 8,
9] by comparing the concept (Sect. 6).
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2 Basic Idea: 1D Example—Advective Transport

To motivate the proposed method we first consider a one dimensional problem. A
field q(x, t) defined on V = [0, L] × [0, T ], with L, T > 0 is given by

q(x, t) = f (φ(x, t)), (3)

where f is a non-linear function and the auxiliary field φ(x, t) = x − �(t). This
describes an advective transport with trajectory path �(t) : [0, T ] → R, in the most
simple example �(t) = ct with transport speed c. The function f is assumed to
have a large gradient near φ = 0. In the examples we use

fλ(φ) = (tanh(φ/λ)+ 1)/2 , (4)

where λ > 0 adjusts the front width. Snapshots of the functions q and φ are
plotted for increasing time t in Fig. 1, left. The corresponding snapshot matrices
Xφ, Xq are defined as usual, Xα

i,j = α(xi, tj ). A common approach to find a small
representation of Xα is the truncated singular value decomposition (SVD)

Xα
n =

n∑

k=1

σkukvᵀk =̂
n∑

k=1

ak(t)ψk(x) , (5)

which approximates Xα in the sense that the residuum R = Xα −Xα
n is minimized.

We call the orthonormal basis {ψk(xi) = (uk)i}k=1,...,n spatial modes and {ak(ti ) =
(σkvk)i}k=1,...,n temporal coefficients. As known from the Eckart Young Theorem
[10], the approximation error

∥
∥Xα −Xα

n

∥
∥

2
1 is given by the singular value σn+1,

when truncating after the nth spatial mode. The acceptable residuum is typically
determined by the target application. A small number n is desired in model order
reduction as it governs the numerical cost of the reduced model.

In Fig. 1, right we see the decay of the truncated singular value decomposition
Eq. (5) of Xq and Xφ is fundamentally different, even though q is created from φ

and both share the same advective transport. The failure of the SVD or POD to
represent sharp transports is well known [3]. In contrast to our example, φ can be
represented by a linear combination of two functions {x, 1}. Here, transport of the
field φ is simply an amplitude change of the constant function. This fact is not new
and exploited by Reiss et al. [5] and Rim et al. [8]).

With this ansatz we aim for a generalization of the method to higher spatial
dimensions, by representing the movement of a front by an auxiliary field φ which
is of low rank and a nonlinear mapping f to recover the original field. Thereby a
locally one dimensional transport is implied. However, we abstain from a global

1Note that for simplicity we will also use ‖α − α̃‖2 for scalar functions α : V → R. which we
actually calculate as

∥
∥Xα −Xα̃

∥
∥

2.
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Fig. 1 Transported quantities q and φ and singular values of the associated snapshotmatrix Xq

and Xφ . Both functions share the same transport, since q = f (φ). However the transport of the
sharp front is not well presented by a linear ansatz, Eq. (5), and therefore the singular values decay
substantially slower as for the smooth field φ

transport map between snapshots, as this obstructs the application for topology
changes.

3 2D Example: Moving Disc

The setting is now illustrated for a two dimensional problem of a disc with radius
R = 0.15L, moving in a circle in a [0, L]2 domain. The translation of the disc is
parametrized by:

q(x, t) = f (φ(x, t)) and φ(x, t) = ‖x− x0(t)‖2 − R (6)

where x0(t) = L

(
0.5+ 1/4 cos(2πt)

0.5+ 1/4 sin(2πt)

)

, (7)

and f is again the step function defined in Eq. (4). We sample 60 snapshots in a time
interval [0, 1]. φ is the signed distance function shown in the left of Fig. 2, which
shall mimic the φ of the one dimensional example close to φ ≈ 0.

The original field q is again reconstructed applying the SVD to φ from which the
approximation q̃ = f (φn) is obtained. Figure 2 shows the comparison between the
reconstruction using f (φn) and the naive POD approach using qn for snapshot t =
1/4 with n = 10 modes. The results show not only a reduction in the overall error
but also that the basic structure of the moving disc is recovered. The latter is already
the case for a small number of modes. While the example shows that the concept
works well for 2D problems, we show that the choice of φ has a strong effect on the
possible reduction. By replacing φ with a paraboloid ϕ(x, t) = 1

2R (‖x− x0(t)‖2
2 −

R2) in Eq. (6), it is possible to obtain a much smaller error with less spatial modes. A
one dimensional profile of the two functions φ, ϕ is plotted in the left of Fig. 3. Note
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Fig. 2 Left: visualization of the signed distance function. Right: Reconstruction of q with n = 10
modes

Fig. 3 Left:Graphical visualization of the smoothed signed distance function φ defined in Eq. (6)
and the paraboloid ϕ(x, t) = 1

2R (‖x− x0(t)‖2
2 − R2) Left: A slice of φ and ϕ at t = 0 and

x = (x, y0), x ∈ [0, L]. Comparison of the different truncation errors for the signed distance
(center) and paraboloid (right)

that φ and ϕ have the same zero-level and their gradients are identical at the zero-
level for all times t . Therefore f (ϕ) ≈ q = f (φ) is a good approximation for small
widths λ. In contrast to φ, the total error ‖q − f (ϕn)‖2 is reduced to its minimum
with only three modes, because ϕ can be represented by {x2 + y2 +R2, x, y}. This
is shown in the second and third column of Fig. 3. From the ansatz q ≈ f (ϕ) we
can deduce two different errors contributing to the total error:

‖q − f (ϕn)‖ ≤ ‖q − f (ϕ)‖
︸ ︷︷ ︸

=�f

+ ∥
∥f ′(ϕ)R

∥
∥+ O

(∥∥
∥R2

∥
∥
∥
)
. (8)

The truncation error of the SVD is R = ϕ − ϕn and the approximation error of the
data is �f . Consequently, for vanishing approximation error, the truncation error
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∥
∥f ′(ϕ)R

∥
∥ ≤ ∥

∥f ′(ϕ)
∥
∥ σn+1 bounds the total error in the two norm. Therefore, the

total error scales with the decaying singular values of φ. This behaviour can be seen
in Fig. 3. While for φ the relative truncation error aligns with the total error (middle),
the error of ϕ in the right plot is dominated by the approximation error �f ≈ 10−3.

From this example, we see that the ansatz is a good candidate for a low rank
optimization of ϕ. In contrast to areas where f ′(ϕ) �= 0 and the field ϕ has to mimic
a signed distance to the front, it can be chosen to minimize the truncation error
far away from the zero level where f ′(φ) = 0. Additionally, in an optimization
procedure one could relax the assumption of constant front width by imposing
appropriate conditions on the slope of ϕ close to the zero level. However this does
not lie within the scope of this work.

4 Front Transport Reconstruction (FTR)

Now, we proceed to extent the idea to numerical data. Here, only the field q is known
and the auxiliary field φ and the front shape function f need to be determined. For
this, we assume that the front location can be calculated using threshold search of
the relevant variables.

As proof of our concept, we compute φ as a two dimensional signed distance
function, because it is easy to compute and can be directly interpreted as a local 1D
coordinate system. This is a special choice for φ which is likely to be sub-optimal
as was shown in the previous section. The zero-level curve C0 of φ is determined
by a threshold search with threshold qC0 . The discrete contour line C0 was sampled
at points where q had the value qC0 on any vertical or horizontal gridline of our
computational mesh. A linear interpolation of q between the grid points is used to
determine the crossing. The distance dC0(x) is calculated as the minimal distance to
all sections of this curve, assumed to be linear between two points. The sign of φ

is negative if q(x) < qC0 , and positive otherwise. With the described procedure we
determine the signed distance function φ(x, ti ) for every ti = i�t , i = 1, . . . , N .

At this point a value of φ and q is available at every grid point from which
the front shape function f is to be determined such that q = f (φ). This is
complicated by the fact that such relation is approximate and only discrete values
are available. From the computed signed distance function we choose all grid points

φ̂l = φ(xil , yjl , til ) with
∣
∣
∣φ̂l

∣
∣
∣ ≤ �φ on vertical, horizontal or diagonal lines which

cross C0 as support of the samples q̂l = q(xil , yjl , tkl ). The sample vectors (φ̂l, q̂l)

are then interpolated on a predefined support set φ1, . . . , φM which is used to
find the corresponding interpolated values f1, . . . , fM minimizing the difference
between q̂l and f (φ̂l).
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5 2D Example: Application to Combustion

In this section we show that the described procedure is capable of reconstructing
flow dynamics with inherent two dimensional transport including changing typol-
ogy, which is difficult for methods building on a mapping between snapshots to
remove transports.

The configuration of a flame kernel interacting with a vortex pair mimics
turbulence flame interaction. Our data set consists of 40 snapshots derived from
a 2D simulation of the reactive Navier Stokes equations. For our purpose we restrict
the reconstruction on the normalized mass fraction of hydrogenYH2

. The simulation
was tuned such that a vortex pair moves towards burning H2 and mixes unburned
(YH2

= 1) with burned gas (YH2
= 0), such that a small bubble of unburned gas

detaches into the burned area. The time evolution is visualized for some selected
snapshots in the left of Fig. 4. As seen from Fig. 4, the YH2

snapshots contain a
very interesting structure, in which the front changes along its contour line and even
the topology of the line changes—splitting from one curve at t/�t = 24 into two
curves t/�t = 29 and then back to a single curve at t/�t = 34.

Applying the described procedure with a threshold of qC0 = 0.14, we achieve
promising results when comparing our method with a POD approximation in
Fig. 4 using 10 modes. For this specific data the threshold qC0 was chosen to
be rather small, in order to resolve the tail of the incoming bubble. The overall
relative approximation error is decreased by a factor of three. More important,
our approximation preserves the physical structure of the data. The POD does not

Fig. 4 Comparison of qn (POD) and f (φn) (levelset method). Left: Direct comparison of the
snapshots t/�t = 21, 26, 31 with q plotted in the first row, the approximations f (φn), qn in the
second row and the difference between the data and its approximation in the last row. Please note
that the images in the lower rows contain only the fractions of the full snapshot that are relevant
for our comparison. Right: Relative error in the two norm
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respect the allowed physical range of 0 ≤ YH2
≤ 1 and shows staircasing, i.e.

replaces a front by several fractional fronts. No sensible physical description can be
expected from this structure. The new method, in contrast, has well defined fronts
and respects the physical range, since f is by construction restricted to the range of
the input data q .

6 Discussion and Conclusion

We presented a concept for modal decomposition of transported fronts. It builds on
representing the original field q by an auxiliary field φ and a non-linear function f

in such a way that the φ has a better low rank description than q . In a numerical
example, φ was taken as a signed distance function with the front as zero level and
f describing the front shape. It is evident, that this choice is in general not optimal,
since moving kinks in φ yield a slow decay of singular values.

This approach can be interpreted as embedding a local one dimensional coor-
dinate into a multidimensional domain, orthogonal to the front. A transport in this
direction is simply an additive term for φ. The time dependent shift to compensate
a transport in one dimension is a special case of this approach. This induces a
transport map, similar to [5, 8], with the important difference that there is a local
but no global one to one mapping, by which topology changes are permitted. A
different perspective is the comparison with neural networks, as used for model
order reduction in [6]. This linear combination to construct a low rank representation
φ with the application of a non linear function can be seen as a one layer network
with a special activation function f . A recent work uses level sets to handle
geometry changes in which shares some technical aspects with the current work
[7].

For full practical applicability, improvements are needed but near at hand. To
improve the approximation error f and φ should be minimized based on Eq. (8) and
a more general ansatz should be used to allow a changing front shape.
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Modelling of the Influence of Vegetative
Barrier on Particulate Matter
Concentration Using OpenFOAM

Hynek Řezníček

Abstract High concentration of atmospheric dust is a well known risk factor
to human health. Vegetative barriers are one of the most popular ways how to
substantially reduce the high pollution concentration. Correct modelling of air flow
inside the Atmospheric Boundary Layer (ABL) is essential to accurately predict
concentration of the passive scalar (dust). The question whether the CFD toolbox
OpenFOAM is capable of modelling of this type of problems is tested in the contri-
bution. The results obtained from OpenFOAM were compared simultaneously with
the experimental data and the CFD results of the program Atifes, developed at CTU
for ABL simulations. It is shown that the recommended setting of OpenFOAM’s
atmospheric library has several limitations. Special attention is paid to the different
wall functions used in both solvers and the differences are discussed.

1 Introduction

The pollution produced by industry has a negative effect on human health in
surrounding inhabited areas, see e.g. [8]. The vegetative barriers are one of the
common protective measures. For effective design and inhabitants protection we
need to understand how they decrease the dust concentration [5]. CFD modelling
helps to answer both cases. Because dust particles are abducted by the air flow as
a passive contaminant, the essential part is proper capture of the flow.

The Atifes software was developed for simulations in ABL [2, 11] and it was
successfully validated [10, 14] at CTU. Since the CFD community used the open-
source OpenFOAM software also for such kind of simulation, we were curious how
reliable the results are. Therefore the OpenFoam atmBoundaryLayer library was
employed and tested for two cases: Full-scale unperturbed ABL problem [7] and
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Flow in and around the forest canopy [3]. The results were compared to the results
obtained by Atifes and to the field test experiment.

The atmBoundaryLayer library in simpleFoam was employed for simulation of
the ABL with its implemented wall function analogous to [1]. The problem with the
wall functions in the ABL was discussed in more detailed [12] and [7].

Furthermore some limitations of OpenFoam’s atmBoundaryLayer library are
shown and some future recommendations for its modifications are given.

2 Mathematical Model

Fluid Flow is described by the incompressible Reynolds-averaged Navier-Stokes
(RANS) equations. The pressure p and the potential temperature θ are split into
background component in hydrostatic balance and fluctuations, p = p0 + p′ and
θ = θ0 + θ ′. The Boussinesq approximation is employed. The resulting set of
equations reads

∇ · u = 0, (1)

∂u

∂t
+ (u · ∇)u− ∇ · (νT∇u) = −∇

(
p′

ρ0

)

+ g + Su, (2)

∂θ ′

∂t
+∇ · (θ ′u) = ∇

(νT
Pr
∇θ ′

)
, (3)

vector u is averaged velocity, the constant ρ0 denotes the air density at the ground
level, νT represents the turbulent kinematic viscosity (laminar is neglected). Vector
g = (0, 0,−g θ ′

θ0
) denotes the gravity term, Su is the momentum sink due to the

vegetation and Pr is the constant Prandtl number which equals Pr = 0.75.

Turbulence is modelled by the standard k − ε model for the turbulent kinetic
energy (k) and its dissipation rate (ε). The standard equations

∂ρk

∂t
+ ∇ · (ρku)

︸ ︷︷ ︸
Convection

= ∇ ·
((

μL + μT

σk

)

∇k

)

︸ ︷︷ ︸
Diffusion

+ Pk︸︷︷︸
Production

− ρε
︸︷︷︸

Dissipation

+ ρSk︸︷︷︸
Sources

,

(4)

∂ρε

∂t
+ ∇ · (ρεu)

︸ ︷︷ ︸
Convection

= ∇ ·
((

μL + μT

σε

)

∇ε

)

︸ ︷︷ ︸
Diffusion

+ Cε1

ε

k
Pk

︸ ︷︷ ︸
Production

− Cε2ρ
ε2

k︸ ︷︷ ︸
Dissipation

+ ρSε︸︷︷︸
Sources

,

(5)
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are completed with source terms acting inside the vegetation (Sk and Sε on the
RHS). Model for these sources is described below. According to [6] turbulent model
constants were set: σk = 1.0, σε = 1.167, Cε1 = 1.44, Cε2 = 1.92 and Cμ = 0.09.

Effects of Vegetation on the flow field consist of two processes. The first one, a
sink of momentum inside the vegetation, is given in Eq. (2) by term Su, modelled as
Su = −CdLAD|u|u, where Cd = 0.3 represents the drag coefficient [14] and LAD

is a function describing the vertical profile of the leaf area density. The vegetation
is considered as a horizontally homogeneous block and LAD represents a foliage
surface area per unit volume [13].

The second process describes the influence of the vegetation on the turbulence.
The turbulent source terms can be modelled according to the given LAD profile as

Sk = CdLAD(βp|u|3 − βd |u|k), Sε = Cε4

ε

k
Sk, (6)

where the constants are chosen as βp = 1.0, βd = 5.1 and Cε4 = 0.9, according
to [6].

The model from [9] is adopted in the study. The additional terms describing the
vegetation were easily implemented in OpenFoam and they were the same in both
solvers.

3 Numerical Solvers

As mentioned earlier two different numerical solvers were employed and compared.
The numerical schemes are summarized in the Table 1. The recommended setting
for atmospherical calculations in OpenFoam from the source [1] was used.

Table 1 Comparison of numerical solvers

OpenFoam Atifes

SimpleFoam solver Artificial compressibility method

(pressure correction method). (solved in dual time).

LinearUpwind scheme for u FVM solver based on AUSM+up

(with grad-based explicit correction). with linear reconstruction.

LimitedLinear scheme for turbulent
quantities.

Venkatakrishnan limiter.

Viscous terms are solved by linear diffusion
scheme used on limited corrected gradient.

Viscous terms on dual (diamond type) mesh.

PCG solver (GAMG) for p and Fully implicit BDF2 in time, Jacobian Free

GaussSeidel smoothSolver for other quantities Newton-Krylov method for non-linear terms.

Standard relaxation factors. GMRES solver (with ILU Preconditioner).
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The atmBoundaryLayer library works fine with simpleFoam, therefore the
simpleFoam solver is employed, neutral stratification is assumed (same as in the
test cases) and Eq. (3) is omitted. The solver buoyantBoussinesqSimpleFoam for
the stratified flow was also tried but it doesn’t work well with the mentioned library.
When the boundary conditions were prescribed manually (via code-stream utility),
the computation was very slow and therefore omitted here. The implementation and
correction OpenFoam atmospheric library for stratified solver is left for future work.

3.1 Wall Functions

Different wall functions for the bottom boundary were used. In OpenFoam the stan-
dard wall function developed for the flat plate boundary layer is recommended [1]
for ABL calculations:

u+ = ln(Ez+)/κ, k+ = Cμ ln(z+)/κ, (7)

where the law of the wall for boundary layer variables was used (u = u∗u+, z+
= zu∗

ν
). u∗ is a friction velocity and a constant E is chosen as 9.8.

On the other hand in Atifes the wall function for ABL proposed in [7] is
implemented. The wall function is based on the assumption of equality between
the dissipation and production of turbulent kinetic energy k near the ground. The
additional turbulence production Pk,w reads as

u+ = ln

(
z+ + z0

z0

)

, Pk,w =
κC0.25

μ k0.5u2

ρ0 ln
(
z++z0

z0

)
(z+ + z0)

. (8)

4 Results

Results obtained by OpenFoam were compared to the results from Atifes software
on two test cases. In the first test, the full-scale unperturbed ABL problem tests
the capability of the solvers regarding conservation with respect to the prescribed
boundary layer velocity and turbulent profiles. The profiles are assumed to be
conserved along the whole ABL because the (planetary) boundary layer is already
developed (when entering the computational domain), see [12]. (Shortly written it
cannot grow around the planet). The second test case, Flow in and around the forest
canopy, tests the air flow field distribution near the edge and inside the vegetative
barrier. The flow results are compared to the measured data published in [3].

The Following Boundary Conditions (b.c.) were prescribed in both test cases:
At the Inlet the logarithmic wind profile with uref value for velocity and Dirichlet
b.c. for turbulent quantities and temperature were prescribed. Pressure was extrapo-
lated from the domain. On the Top boundary the homog. Neumann b.c. is set for all
quantities. For the Outlet pressure perturbation was set to p′ = 0 and for the other
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quantities the homog. Neumann b.c. was employed. On the Ground the no-slip b.c.
for velocity, the homog. Neumann b.c. for p′ and Dirichlet b.c. for Θ = Θ0 = 300 K
were utilized. Different wall functions (for turbulent quantities) were used.

The neutral ABL was assumed (Θ(z) = Θ0) and the roughness parameter was
set to z0 = 0.3. The reference velocity at 10 m height was set as uref = 5 m/s.
Minor differences applicable to individual cases are given below.

4.1 Full-Scale Unperturbed ABL

The ABL is assumed to be a fully developed and the simulation should keep the
same inlet profile through all the narrow domain. Therefore a fully developed flow
was prescribed on the inlet of the 5 km long domain (500 m high) and the evolution
of turbulent and flow quantities was observed along the domain. The roughness
parameter z0 = 1 and uref = 5 m/s were prescribed, same as in [7], also the velocity
on Top boundary was set to free-slip condition.

As can be seen in Fig. 1, Atifes preserves the velocity and k profile quite well,
only the small peak of turbulent kinetic energy near the ground is noticeable, but
this problem is well documented in the literature [4]. OpenFoam acts differently, the
mass flow is slightly displaced to the lower levels which can be caused by different
wall functions used for OpenFoam. The distribution of turbulent kinetic energy
displayed in Fig. 2 indicated the loss along the domain. It is the correct behaviour for
flow over a flat plate for which this kind of wall function was developed, however, it
is not appropriate for the simulation of an ABL. The lost of k in the ABL should be
compensated by the regeneration of k through the roughness of the surface. In order
to preserve the inlet profiles for long domains, the other kind of wall function has to
be used.

However in most cases the ground is not perfectly flat and the observed problem
is hidden in k generation by the rugged terrain, for example [1] used the OpenFoam
wall function successfully for simulations of air flow over a hilly terrain.

Fig. 1 Different horizontal velocity and turbulent kinetic energy (k) profiles at Outlet
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Fig. 2 Turb. kinetic energy drop across the domain for OpenFoam results

Fig. 3 2D computational domain with indicated points of measurement [14] and LAD profile [3]

4.2 Flow in and Around the Forest Canopy

Dupont et al. [3] measured the flow field in and around a sufficiently long
homogeneous forest composed from maritime pines. Average height of the trees
with a dense crown layer was h = 22 m. The situation is schematically sketched in
Fig. 3 where the vertical lines of the measurements are highlighted. The LAD profile
used in the simulations is taken from [3] and is plotted also in Fig. 3.

Both CFD solvers and their results were compared to measurements. The main
effects of the vegetative barrier are the deflection of air flow near the forest edge
and deceleration inside the forest. They are well captured by OpenFoam and Atifes,
see Fig. 4. However the detailed view on the results for the air flow inside the forest
reveal differences between the solvers.

The comparison for the 9 h-distance from the forest edge is plotted in Fig. 5 and
shows still very good agreement of both simulations with the experiment.

Sadly the same agreement is not achieved when the profile is plotted in the
cut far from the forest edge as can be seen in Fig. 6. The horizontal velocities
near the ground are underestimated with OpenFoam results. It is probably caused
by false prediction of recirculation zone which can be identified in a distance
of approximately 27 h from the forest edge, see Fig. 4. The measurements and
the Atifes results, both in very good agreement, do not indicate any presence of
recirculation zone.
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Fig. 4 Streamlines for horizontal velocity in the domain for Atifes (top) and OpenFoam (middle)
and the distribution of k for OpenFoam (bottom). The forest area is marked with green rectangle

Fig. 5 Comparison for normalized horizontal velocity and k profiles for 9-h distance from the
forest edge. The results were normalized by the reference velocity in 2 h height
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Fig. 6 Comparison for normalized horizontal velocity and k profiles far from the forest edge

5 Conclusions

OpenFoam with standard settings recommended for atmospheric boundary layer
was tested on two selected cases. Simulations of the fully developed ABL demon-
strate decrease of the turbulent kinetic energy along the domain in OpenFoam results
which is not valid for flow inside the ABL. The problem could be removed by the
implementation of an appropriate wall function to OpenFoam.

In the case of the Flow in and around the forest canopy good agreement is
obtained for the air flow closed to the forest edge. The significant differences are
obtained deeper in the forest. OpenFoam predicts a false recirculation zone and
underestimates the horizontal velocity near the ground.

To simply summarize text above, the simulation of ABL with vegetation by
OpenFoam can produce un-physical predictions and therefore caution is needed
when interpreting them.
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Logistic Regression for Prospectivity
Modeling

Samuel Kost, Oliver Rheinbach, and Helmut Schaeben

Abstract Regression models are often employed in prospectivity modeling for
the targeting of resources. Logistic regression has a well understood statistical
foundation and uses an explicit model from which knowledge can be gained about
the underlying phenomenon. In this paper, a model selection procedure based
on logistic regression enhanced with nonlinearities is proposed. The method is
designed to help the researcher in the model building process and can also be used as
preprocessing step for other machine learning algorithms such as neural networks.

1 Introduction

The objective of prospectivity modeling in geoscience is to predict locations for
which the estimated conditional probability of the occurrence of a target event,
e.g., a resource, is maximal; see [15] for an overview of current methods. Logistic
regression is a widely used tool in statistics for the classification of a two-class
dependent variable. It is a parametric method, i.e., an explicit model is used for the
classification. From the computed model, information about the underlying structure
of the problem can be gained. Logistic regression has been extensively studied, e.g.,
in [2].

In potential modeling events are typically rare. Here, logistic regression can
underestimate the probabilities of the rare events, e.g., [3]. As a remedy, under-
sampling [3] can be used, i.e., by taking a subset of the majority events.
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2 Logistic Regression

Logistic regression uses the logit function

logit(P (y|X)) = η = ln
P(y|X)

1− P(y|X) . (1)

Here, the matrix X ∈ R
n×m+1 contains n data points consisting of m covariables (or

predictor variables) each. The first column in X consist of ones and incorporates the
intercept. Similarly, the vector y ∈ {0, 1}n contains all target events with 1 indicating
the presence of the target. An experiment xi in X can be seen as a Bernoulli trial
with the conditional expectation E(y|xi ) = μ(ηi) with xi denoting the i-th row of
the data matrix X and ηi = βT xi being the linear predictor. In order to model the
relation of an experiment xi and the expected outcome μ(ηi), one uses the logistic
function, given as

μ(ηi) = exp(βT xi )

1+ exp(βT xi )
, (2)

where β ∈ R
m+1 is the vector of parameters for the intercept and the variables.

The logistic function is the inverse of the logit. The parameters are estimated by
maximizing the logarithm of the maximum likelihood function,

max
β

lnL(β) = max
β

n∑

i=1

(
yi ln(μ(βT xi ))+ (1− yi) ln(1− μ(βT xi ))

)
. (3)

The solution β̂ is called maximum likelihood estimate (MLE). Preferred methods
for the computation of the MLE are conjugate gradients (as in [9, 11]) and truncated
Newton methods using conjugate gradients (i.e., Newton-Krylov methods); see [6,
7].

Logistic regression assumes that there is little or no multicollinearity among
the covariables, i.e., that they are not correlated. Otherwise the parameters of the
associated covariables might grow to infinity [6]. As a remedy, one uses, e.g., L2-
regularization, also known as ridge regression,

max
β

n∑

i=1

(
yi ln(μ(βT xi )+ (1− yi) ln(1− μ(βT xi )

)− λ

2
||β||22 . (4)

This prevents the parameters from growing to infinity, and furthermore it is
equivalent to assuming a Gaussian prior for the parameters β [12].
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3 General Logistic Regression with Endogenous Sampling

Weighted Likelihood Function When dealing with rare events under-sampling can
be applied. This induces a class bias, affecting logistic regression. Since the goal
is to gain knowledge about the complete population, not the balanced sample,
corrections have to be applied, i.e., using a modified likelihood. Denoting μi =
μ(βT xi ), we use a weighted likelihood proposed by Manski and Lerman [10],

lnL(β) =
n∑

i=1

wi(yi lnμi + (1− yi) ln(1− μi)), (5)

where wi = τ
ȳ
yi + (1−τ )

(1−ȳ)
(1 − yi) and where τ and ȳ are the proportion of the

positive events in the population and in the sample, respectively. A L2-regularization
is added again for the reasons mentioned above. Formulated as a minimization
problem this results in

min
β

f (β) = − lnL(β)+ λ

2
||β||22. (6)

The MLE β̂ is determined using the truncated iteratively re-weighted least squares
(TR-IRLS) approach [6]. This is a truncated Newton method where the gradient and
the Hessian are obtained by differentiating the objective function (6) with respect to
β. The gradient written in matrix form is∇f (β) = −XTW(y−μ)+λβ, whereW =
diag(wi), and the Hessian is∇2f (β) = XTDX+λI, whereD = diag(wiμi(1−μi)).
After a reformulation of the Newton-Raphson update, the new iterate βk+1 can be
calculated as βk+1 = (XTDX + λI)−1XTDzk, where zk = Xβk + D−1(y − μ) is
the adjusted dependent variable. The weighted least squares subproblem (XTDX +
λI)βk+1 = XTDzk is solved using the linear conjugate gradient method. Typically,
the iteration is stopped early.

Conditional Independence Assumption Standard logistic regression models a linear
relationship of the covariables in the logit, implicitly assuming conditional indepen-
dence of the covariables given the target variable. If this assumption is fulfilled, the
logistic regression model yields the true conditional probability, hence it is optimal.
The same applies for a violation of the conditional independence assumption and an
inclusion of the proper interaction terms [13]. The linear predictor then reads

η = βT xi +
m̃∑

j=m+2

βjxk ⊗ · · · ⊗ xl, i = 1, . . . , n, k, l ∈ {2, . . . ,m+ 1}.
(7)

Note that this model is now nonlinear for the data points but still linear in the
parameters β. This notation describes the inclusion of every interaction term
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between covariables that are not conditional independent given the target variable.
Unfortunately, there is no easy way to prove conditional independence [14]. So
in general, one does not know which interaction terms need to be included.
Furthermore, the true model might also include other types of nonlinearities such
as quadratic terms, logarithms, etc. of covariables.

4 Algorithm

Let us assume an underlying ground truth which can be approximately described
by the variables collected and is not too complex. We start including only quadratic
terms, two-fold, three-fold interactions of covariables and interactions of quadratic
terms and covariables. The indices of the candidates are stored in the set I. Our
model selection process is then performed in two main steps. A coarse filtering of
variables where the majority of nonlinearities is discarded and a fine filtering that
performs a more careful selection of nonlinearities and covariables.

Coarse Filtering Starting with the large model including all nonlinearities in the
set I, we discard the majority of unimportant variables using the Wald test: We test
the null hypothesis that a parameter β̂i ,∀i = m + 2, . . . , m̃ is zero. Here, original
covariables are not considered. From basic statistics it follows that the parameter
of interest divided by its standard error yields a standard normal distribution with
mean zero and standard deviation of one, i.e.

W = β̂

ŜE(β̂)
∼ N (0, 1). (8)

The two-tailed p-value is then calculated as

p = P(|z| > W), (9)

where z is a random variable following the standard normal distribution. It is
calculated for every variable in the model.

The variable can be assumed to be significant if its p-value is smaller than a
threshold α, i.e. p < α. Otherwise it is excluded from the model. In order to use
the Wald test in our setting of rare events an adjustment for the covariance matrix
needs to be applied. As described in [16], if the parameters are heteroscedastic, i.e.
their variance is not equal, the calculation of the variance matrix is inefficient. This
is also the case when the model is misspecified. A correction is proposed for linear
models. In the case of generalized linear models, the authors in [4] describe the
corrected estimate for the variance, also called sandwich estimate,

V (β) = P−1MP−1, (10)
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where P = E(∇2f (β)) is the expectation of the Hessian and M = V(∇f (β)) is
the covariance of the gradient. The Wald test is known to have some shortcomings:
Every parameter will become significant if the sample sizes increases while the
current model maintains the same [8]. Furthermore, the authors in [1] reported that,
even when the coefficient was significant, the Wald test often failed to reject the null
hypothesis. Despite these shortcomings we use the Wald test for the coarse filtering,
because it is possible to reject several variables at once without computing the MLE
for every case. We furthermore apply an adaptive decrease of the threshold α in
every iteration until we reach an a priori defined minimal threshold.

Fine Filtering The fine selection of our procedure uses the Bayesian information
criterion (BIC) to decide whether a variable should be excluded from the model or
not. The BIC is defined as

BIC = −2 ln(L̂)+ ln(n)k, (11)

where k is the number of variables used to obtain the maximum value L̂ of the
likelihood function L. Let N be the variables that are detected not to be important
for the model. Furthermore, let BICj denote the BIC value of the current model
without variable j . We then calculate the difference between the BIC including
all current variables, BIC0, and BICj for all variables j , i.e. dj = BIC0 − BICj .

Since a smaller BIC value indicates a favorable model, all variables with dj > 0
are considered to be discarded. Discarding only one variable in every iteration is
time consuming; instead, we calculate the BIC values for three different models:
BIC1/8,BIC1/4,BIC1/2 where 1/q describes the fraction of the largest dj that are
discarded.

5 Computational Results

Our method is first tested on fabricated data where the true underlying model is
known; then it is applied to real world datasets and compared to weighted logistic
regression without nonlinearities and to a neural network. Neural networks can
be seen as a nested logistic regression model (when using the logistic function
as activation). Including the nonlinearities in our logistic regression model can
therefore be seen as an approximation of the hidden layer of a neural network.
This transforms the data to a higher dimension in which it might be separable by
a hyperplane. Transforming it back to the original dimension would then give a
nonlinear decision boundary.

Tests on Fabricated Data In the first experiment on fabricated data, the true model
can be recovered exactly by our procedure. In the second, the true model cannot
be recovered exactly. The dataset consist of 23 covariables taken from a normal
distribution. The true model consists of 17 covariables and 6 two-fold interactions
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Table 1 Datasets

Instances Covariables Class 0 Class 1 Rarity(%)

ds1.10 26,733 10 25,929 804 3

Ghana 6,091,636 30 6,055,475 36,161 0.6

Table 2 Results

Model selection WLR Neural network

AUC-PR F1 AUC-PR F1 AUC-PR F1

ds1.10 0.4656 0.3971 0.2889 0 0.4854 0.4046
Ghana 0.0864 0.0316 0.0574 0.0344 0.0919 0.1244

randomly taken from the 23 covariables. For the first setting the procedure was able
to detect the true model in every run.

In the second setting for the true model, we take again 17 covariables and
add 5 two-fold interactions, 3 three-fold interactions and 3 four-fold interactions.
The four-fold interactions are not in the set of nonlinearities, hence cannot be
found. However, the procedure finds all possible covariables and interactions and
recovers some other two-fold and three-fold interactions to approximate the four-
fold interactions. It is possible to rank the variables in the final model. This helps to
gain confidence about the variables that are present in the true underlying model.

Tests on Benchmark Datasets The ds1.10 is taken from [5], a compressed life
sciences dataset. Each row of the original ds1 dataset represents a chemistry or
biology experiment, and the output represents the reactivity of the compound
observed in the experiment. After performing a principal component analysis only
the top 10 principal components are used for ds1.10. The Ghana dataset was
provided by Beak Consultants GmbH, Freiberg. The dataset describes geochemical,
geological, geophysical and tectonic data from a survey area in Ghana. The target
variable is gold. All of the datasets are normalized with mean of zero and standard
deviation of one (Table 1).

The model selection procedure is conducted ten times on each dataset. The model
that gives the best F1 score is used for comparison with an artificial neural network
and the weighted logistic regression (WLR) using all given covariables. The neural
network structure consists of one hidden layer with twice as many hidden neurons as
covariables available for every dataset. Determining the optimal number of hidden
neurons is rather difficult, and we use the same setting as experts in the field of
prospectivity modeling. The activation function is the logistic function. The methods
are compared mainly in terms of area under the precision-recall curve (AUC-pr) and
the F1-score. We further give the TPR and PREC using a threshold of 0.5.

We use bootstrapping to test the methods. From the test set we created 1000 new
test sets through drawing with replacement. Table 2 shows the resulting mean of
AUCpr and the F1-scores. Table 3 shows the mean of TPR and PREC. Best result
in bold. The corresponding precision-recall curves are shown in Fig. 1.
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Table 3 Results

Model selection WLR Neural network

TPR PREC TPR PREC TPR PREC

ds1.10 0.2522 0.9412 0 0 0.2641 0.9003

Ghana 0.0864 0.4336 0.0288 0.0429 0.0947 0.1812

Fig. 1 Precision recall curves for all data sets. (a) ds1.10. (b) Ghana
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Discussion As reported in [5], the ds1.10 dataset triggered strange behavior in the
support vector machine used for training and logistic regression did not yield good
results either. The same can be seen here. Weighted logistic regression has a very
low F1-score and was not able to detect a single positive target event. For our model
selection the F1-score is also quite low and the resulting model did highly differ
every time. This indicates that the 10 covariables do not describe the target very
well. Taking the best model of the 10 runs did increase the prediction compared
to weighted logistic regression. Despite the bad overall performance, it did come
close to the neural network result. The Ghana dataset has very few positive targets.
That makes it very hard to predict the majority of positive events without having
too many false positive. Both the model selection and the neural network are not
capable of predicting many positive targets as can be seen in the low true positive
rate. However, the model selection procedure has a precision of about 43%. This is
an important feature for potential modeling, since the drilling at non-target areas is
very expensive.

6 Conclusions

We suggest a new combination of automated model selection making use of the
debatable Wald test only for the coarse selection and the Bayes’ information
criterion for a more careful selection. Introducing nonlinearities in the logit enables
the final model to give improved predictions. Companies working in the field
of prospectivity modeling, e.g., BEAK Consultants GmbH with their software
ADVANGEO, have a vital interest in finding appropriate covariables and possible
combinations of them. Additional knowledge can, e.g., help to find proper variables
to feed to an artificial neural network. Because of the sampling, different runs of
the model selection can result in different models. However, the test on artificial
data showed that the same true model is found every time if it can be described
by the variables in the starting set I. In the case of real world datasets this is
almost never the case hence one obtains different models in different runs. This
is not uncommon for model selection. Because we minimize the likelihood and the
number of variables, there can be several solutions which do not dominate another
in terms of Pareto optimality.

Our method gives prediction results that are comparable to the neural networks
used here, while, at the same time, the explicit model may increase the insight into
the problem.

Acknowledgments We would like to thank BEAK Consultants GmbH and GSD/GGSA for
providing the Ghana dataset.
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A Monge-Ampère Least-Squares Solver
for the Design of a Freeform Lens

Lotte B. Romijn, Jan H. M. ten Thije Boonkkamp, and Wilbert L. IJzerman

Abstract Designing freeform optical surfaces that control the redistribution of
light from a particular source distribution to a target irradiance poses challenging
problems in the field of illumination optics. There exists a wide variety of strategies
in academia and industry, and there is an interesting link with optimal transport
theory. Many freeform optical design problems can be formulated as a generalized
Monge-Ampère equation. In this paper, we consider the design of a single freeform
lens that converts the light from an ideal point source into a far-field target. We
derive the generalized Monge-Ampère equation and numerically solve it using
a generalized least-squares algorithm. The algorithm first computes the optical
map and subsequently constructs the optical surface. We show that the numerical
algorithm is capable of computing a lens surface that produces a projection of a
painting on a screen in the far field.

1 Introduction

The field of illumination optics has surged since the advent of LED light sources and
the use of plastic materials for the optical components of LED luminaires. Our aim
is to develop accurate methods to compute freeform (i.e., arbitrarily-shaped) optical
surfaces that transform the energy emitted by an LED light source to a desired light
intensity distribution in the near or far field. In this paper, we compute the shape
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of a lens surface for an LED light source, approximated as a point in space, and a
far-field intensity distribution.

Using inverse methods, rather than forward methods (e.g., ray tracing), the
location of the surface can be described by a function u that satisfies a generalized
Monge-Ampère equation, which is a fully nonlinear 2nd order elliptic PDE. The
derivation of this equation uses concepts in geometrical optics, optimal transport
theory, and energy conservation. Many optical systems can be cast in the framework
of optimal transport theory by associating a cost function to the transport of light
which can be derived using the principle of Fermat; i.e., the optical path taken by a
ray between two given points is stationary with respect to variations of the path.

In this paper, we present a numerical algorithm to solve the generalized Monge-
Ampère equation for a freeform lens. The original algorithm for the standard
Monge-Ampère equation was first presented in [2, 4, 5] for a parallel source beam.
The shape of the optical surface z = u(x) corresponds to the solution to the standard
Monge-Ampère equation det(D2u) = f (x, u,∇u) with D2u the Hessian matrix of
u and f a positive function. Subsequently, arbitrary orthogonal coordinate systems
were included by Beltman et al. [1]. Next, the method was extended to optical
systems with generalized Monge-Ampère equations, considering parallel incoming
and parallel outgoing beams by Yadav et al. [9, 10] and point sources by Romijn et
al. [6, 7]. Recently, the method has been further extended to polar stereographic
coordinates for the source domain in [7]. In all versions of our algorithm, first
the optical mapping m is computed in an iterative procedure, and subsequently the
surface u is computed from the mapping.

For an extensive overview of results on existence, uniqueness and regularity of
solutions, and of methods available to solve both standard and non-standard Monge-
Ampère equations, we refer to [7].

In this paper, in Sect. 2 we first present the optimal transport formulation of the
optical system and derive the corresponding generalized Monge-Ampère equation.
In Sect. 3, we present a broad outline of the numerical approach in [6, 7, 10]. We
present the performance of the algorithm on two test problems in Sect. 4.

2 Mathematical Formulation

We consider a point source, lens with refractive index n and far-field target. The
point source, located at the originO, see Fig. 1, emits beams of light radially outward
in the direction ŝ = êr . The first surface is spherical and the freeform lens surface L
is described by the parametric equationL : r(φ, θ) = u(φ, θ)êr , where u(φ, θ) > 0
is the radial parameter that describes the location of the lens surface and (φ, θ)

are spherical angular coordinates. The intensity of the source is given by f (φ, θ)

[lm/sr], and the required target intensity in the far field is denoted by g(ψ, χ)

[lm/sr], where (ψ, χ) represents a different set of spherical coordinates with the
lens surface as origin approximated as a point at O (far-field approximation).
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L : r̂(φ, θ) = u(φ, θ) êr

Point source with intensity f(φ, θ) [lm/sr]

Target with required
intensity g(ψ, χ) [lm/sr]

O
ŝ

t̂

n

n̂

O

S

O
P

P ′
Q

Q′O
P

Fig. 1 Schematic representations of the freeform lens (left) and stereographic projections for the
source domain and target domain (if O replaced by L) (right). (The point P is projected to P ′ and
the point Q to Q′)

The direction of the incident ray ŝ = êr is refracted by the second freeform
surface L in the direction t̂ . We transform coordinates on the source and target
domains from spherical to stereographic. We define

x(ŝ) =
(
x1

x2

)

= 1

1+ s3

(
s1

s2

)

, ŝ(x) = êr = 1

1+ |x|2

⎛

⎝
2x1

2x2

1− |x|2

⎞

⎠ , (1)

as the stereographic projection and corresponding inverse projection of the source
domain. The projection is drawn schematically in Fig. 1. The stereographic projec-
tion y(t̂) and inverse projection t̂(y) of the target domain are defined analogously.
Transforming to stereographic coordinates, we obtain bounded source and target
domains which are circular for a cone-shaped incoming beam. We define our source
domain X as the closed support of f̃ (x) = f (φ(x), θ(x)), and our target domain
Y as the closed support of g̃(y) = g(ψ(y), χ(y)). We refer to m : X → Y as the
optical map y = m(x) from the source set X to the target set Y.

Using Fermat’s principle (via Hamilton’s characteristic functions) it was shown
in [7] that the location of the lens surface can be described by the relation

u1(x)+ u2(y) = −log

(

n− 1+ 2|x − y|2
(1+ |x|2)(1+ |y|2)

)

= c(x, y), (2)
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where u1(x) = log(u(ŝ(x))) describes the shape of the optical surface, and u2(y) is
a measure for the optical path length. A unique solution can be found by assuming
that u1 and u2 are either c-convex or c-concave functions [8, p. 58]. The surfaces u1
and u2 are c-convex if

u1(x) = maxy∈Y(c(x, y)− u2(y)), ∀x ∈ X, (3a)

u2(y) = maxx∈X(c(x, y)− u1(x)), ∀y ∈ Y, (3b)

which we call the maximum solution. The surfaces u1 and u2 are c-concave if we
replace max by min, referred to as the minimum solution.

For a continuously differentiable function c ∈ C1(X×Y), the expression for the
optical map y = m(x) is implicitly given by the critical point of (3b) [8, p. 60], i.e.,

∇u1(x) = ∇xc(x,m(x)), (4)

where ∇xc is the gradient of c with respect to x, under the condition that the Jacobi
matrix C = Dxyc is invertible. A sufficient condition for a maximum/minimum
solution requires

D2u1(x)− Dxxc(x,m(x)) = P , (5)

to be positive/negative semi-definite (SPD/SND), respectively, where D2u1 is the
Hessian matrix of u1 and Dxxc is the Hessian matrix of c with respect x. Hence,
for a c-convex pair we require tr(P ) ≥ 0 and det(P ) ≥ 0. Differentiating (4) again
with respect to x we can derive the matrix equation

CDm(x) = P , (6)

where Dm(x) is the 2× 2 Jacobi matrix of m with respect to x.
By transferring the light from source to target we require that all light from the

source ends up at the target and energy is conserved, i.e.,

∫

A
f (φ, θ)dS(φ, θ) =

∫

t̂(A)

g(ψ, χ)dS(ψ, χ), (7)

for an arbitrary set A ⊂ S2 and image set t̂(A) ⊂ S2. Note that this image
set corresponds to the far-field approximation; for more details, see [7]. Changing
coordinates and substituting the mapping gives

∫

x(A)

f̃ (x)
4

(1+ |x|2)2 dx =
∫

x(A)

g̃(m(x))
4

(1+ |m(x)|2)2 det(Dm(x))dx,

(8)
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where we omit the absolute value sign of the determinant and restrict ourselves to a
positive Jacobian of the mapping.

Combining the matrix equation (6) with energy conservation (8), we arrive at the
generalized Monge-Ampère equation

det(Dm(x)) = f̃ (x)

g̃(m(x))

(1+ |m(x)|2)2

(1+ |x|2)2 = F(x,m(x)) = det(P )

det(C)
, (9a)

where we introduce F(x,m(x)) to denote the total right hand side. We define the
corresponding transport boundary condition to (9a) as

m(∂X) = ∂Y, (9b)

stating that all light from the boundary of the source X is mapped to the boundary
of the target Y [4, 5].

We consider two options for the coordinate system of the source domain
X: Cartesian stereographic coordinates x and polar stereographic coordinates
(ρ, θ). We maintain Cartesian stereographic coordinates for the target domain.
The derivation of the corresponding generalized Monge-Ampère equation in polar
stereographic coordinates is presented in [7].

3 Generalized Least-Squares Algorithm

In this section, we will give a broad overview of the numerical algorithm to compute
the mapping m in (9) and the surface u in (4).

The computation of m is an iterative procedure; in every iteration we minimize
several functionals. First, to solve (9a), or (6), for the interior domain we minimize

JI [m,P ] = 1

2

∫

X
|| CDm− P ||2 dx, (10)

under the constraint det(P ) = F(·,m)det(C(·,m)). The norm used is the Frobenius
norm. To impose the transport boundary condition in (9b) we minimize the
functional

JB[m, b] = 1

2

∮

∂X
|m− b|2ds, (11)

where | · | denotes the L2-norm and b : ∂X → Y. Last, we minimize a weighted
average of the functionals JI and JB as

J [m,P , b] = αJI [m,P ] + (1− α)JB [m, b], (12)

with 0 < α < 1 the weighting parameter.



838 L. B. Romijn et al.

We iterate starting from an initial guess m0 and cost function matrix C(·,m0):

bn+1 = argminb∈BJB[mn, b], (13a)

P n+1 = argminP∈P(mn)JI [mn,P ], (13b)

mn+1 = argminm∈MJ [m,P n+1, bn+1], (13c)

where the minimization steps are performed over the spaces B = {b ∈ C1(∂X)2|b ∈
∂Y}, P(m) = {P ∈ C1(X)2×2|PSPD, det(P ) = F(·,m)det(C(·,m))}, M =
C2(X)2 and thus we obtain a c-convex u1. After each iteration we update the matrix
C(·,mn).

The minimization steps (13a), (13b) and (13c) are described in detail in [6, 7].
The operations in (13a) and (13b) are point-wise minimization steps. In contrast,
the minimization step (13c) and the subsequent calculation of the lens surface can
not be performed point-wise. Using calculus of variations, we obtain two coupled
elliptic equations for the components m1 and m2 of m, which can be written as

∇ · (CTCDm) = ∇ · (CTP ), x ∈ X, (14a)

(1− α)m+ α(CTCDm)n̂ = (1− α)b + αC · Pn̂, x ∈ ∂X, (14b)

We discretize (14) using the finite volume method [7].
For the computation of the surface u = eu1 , we minimize the functional

I [u1] = 1
2

∫
X |∇u1−∇xc(·,m)|2dx, cf. (4). Using calculus of variations, we obtain

the Neumann problem

∇ ·∇u1 = ∇ ·∇xc(·,m), x ∈ X, (15a)

∇u1 · n̂ = ∇xc(·,m) · n̂, x ∈ ∂X. (15b)

This BVP has a unique solution up to an additive constant. We calculate the unique
solution u1 by prescribing the average value of u1 as a constraint.

4 Numerical Results

We apply the numerical algorithm to an example problem, using both Cartesian
and polar stereographic coordinates. We compute a freeform surface that transforms
the light of a point source into an image on a projection screen in the far field.
Preliminary experiments motivate the choice of α = 0.1 as weighting parameter
to obtain a mapping that adheres nicely to the boundary of the target domain. The
image on the screen in the far field is a self-portrait by Van Gogh [3]. The laptop
used for the calculations has an Intel Core i7-7700HQ CPU 2.80 GHz with 32.0 GB
of RAM. In Cartesian stereographic coordinates the source domain is given by the
square X = [−0.5, 0.5]2. In polar stereographic coordinates, the source domain is
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Fig. 2 The resulting Cartesian mapping (top left), polar mapping (top right), and a cartoon of the
ray-tracing procedure for the polar surface (bottom center)

given by the circle X = {(ρ, ζ ) ∈ R
2| 0 ≤ ρ < 0.5, 0 ≤ ζ < 2π}. The source has

a uniform light distribution f̃ (x) = 1. The refracted rays are projected on a screen
in the far field, parallel to the xy-plane at a distance d = 20 above the lens. The
required illumination L(ξ, η) [lm/m2], with (ξ, η) the local Cartesian coordinates
on the projection screen, is derived from the gray scale values of the portrait of Van
Gogh, see Fig. 3. The target distribution g̃(y) is a deformation of the illuminance
L(ξ, η); the conversion from L(ξ, η) to g̃(y) is explained in detail in [4, p. 78]. The
gray scale values of the picture prescribe the illuminance with black regions set to
5% of the maximum illuminance to avoid division by zero in (9a).

We discretize the source domain using a uniform 500 × 500 grid. The results
are shown in Fig. 2. We validated the resulting lens image by using quasi-Monte
Carlo ray tracing with 3000× 3000 rays. The resulting target illuminances L(ξ, η)

are plotted in Fig. 3. The total computation time of performing 500 iterations
to calculate m is 1655 (Cartesian) and 2452 (polar) seconds. The subsequent
computation time of u1 is 15.7 (Cartesian) and 19.3 (polar) seconds. The details of
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Fig. 3 The original (left) and Cartesian ray-traced (middle) and polar ray-traced (right) images

Van Gogh’s beard and hair are noticeable in the ray-traced images. Starting from a
square or circular source domain while using either Cartesian or polar stereographic
coordinates produces similar results with a high level of detail in the far field.
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Reduced Order Methods for
Parametrized Non-linear and Time
Dependent Optimal Flow Control
Problems, Towards Applications in
Biomedical and Environmental Sciences

Maria Strazzullo, Zakia Zainib, Francesco Ballarin, and Gianluigi Rozza

Abstract We introduce reduced order methods as an efficient strategy to solve
parametrized non-linear and time dependent optimal flow control problems gov-
erned by partial differential equations. Indeed, the optimal control problems require
a huge computational effort in order to be solved, most of all in physical and/or
geometrical parametrized settings. Reduced order methods are a reliable and
suitable approach, increasingly gaining popularity, to achieve rapid and accurate
optimal solutions in several fields, such as in biomedical and environmental
sciences. In this work, we employ a POD-Galerkin reduction approach over a
parametrized optimality system, derived from the Karush-Kuhn-Tucker conditions.
The methodology presented is tested on two boundary control problems, governed
respectively by (1) time dependent Stokes equations and (2) steady non-linear
Navier-Stokes equations.

1 Introduction

Parametrized optimal flow control problems (OFCP(μ)s) constrained to
parametrized partial differential equations (PDE(μ)s) are a very versatile
mathematical model which arises in several applications, see e.g. [6, 8, 11].
These problems are computationally expensive and challenging even in a simpler
non-parametrized context. The computational cost becomes unfeasible when
these problems involve time dependency [1, 14] or non-linearity [4, 5, 11],
in addition to physical and/or geometrical parametrized settings that describe
several configurations and phenomena. A suitable strategy to lower this expensive
computational effort is to employ reduced order methods (ROMs) in the context of

M. Strazzullo · Z. Zainib · F. Ballarin · G. Rozza (�)
SISSA mathLab, Mathematics Area, International School for Advanced Studies, Trieste, Italy
e-mail: maria.strazzullo@sissa.it; zakia.zainib@sissa.it; francesco.ballarin@sissa.it;
gianluigi.rozza@sissa.it; grozza@sissa.it

© Springer Nature Switzerland AG 2021
F. J. Vermolen, C. Vuik (eds.), Numerical Mathematics and Advanced Applications
ENUMATH 2019, Lecture Notes in Computational Science and Engineering 139,
https://doi.org/10.1007/978-3-030-55874-1_83

841

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-55874-1_83&domain=pdf
mailto:maria.strazzullo@sissa.it
mailto:zakia.zainib@sissa.it
mailto:francesco.ballarin@sissa.it
mailto:gianluigi.rozza@sissa.it
mailto:grozza@sissa.it
https://doi.org/10.1007/978-3-030-55874-1_83


842 M. Strazzullo et al.

OFCP(μ) s, which recast them in a cheap, yet reliable, low dimensional framework
[7, 12]. We exploit these techniques in order to solve boundary OFCP(μ) s
on a bifurcation geometry [13] which can be considered as (1) a riverbed in
environmental sciences and as (2) a bypass graft for cardiovascular applications.

In the first research field, reduced parametrized optimal control framework (see
e.g. [9, 10]) can be of utmost importance. It perfectly fits in forecasting and data
assimilated models and it could be exploited in order to prevent possibly dangerous
natural situations [15]. The presented test case is governed by time dependent Stokes
equations, which are an essential tool in marine sciences in order to reliably simulate
evolving natural phenomena.

Furthermore, discrepancies between computational modelling in cardiovascular
mechanics and reality usually ought to high computational cost and lack of optimal
quantification of boundary conditions, especially the outflow boundary conditions.
In this work, we present application of the aforementioned numerical framework
combining OFCP(μ) and reduced order methods in the bifurcation geometry. The
aim is to quantify the outflow conditions automatically while matching known
physiological data for different parameter-dependent scenarios [2, 17]. In this test
case, Navier-Stokes equations will model the fluid flow.

The work is outlined as follows: in Sect. 2, the problem formulation and the
methodology are summarized. Section 3 shows the numerical results for the two
boundary OFCP(μ) s, based on [8, 13]. Conclusions follow in Sect. 4.

2 Proper Orthogonal Decomposition for OFCP(μ)s

In this section, we briefly describe the problem and the adopted solution strategy
for time dependent non-linear boundary OFCP(μ) s: in the cases mentioned in
Sect. 1, the reader shall take the non-linear term and time-dependent terms to be
zero accordingly [16, 17]. The goal of OFCP(μ) s is to find a minimizing solution
for a quadratic cost functional J under a PDE(μ) constraint thanks to an external
variable denoted as control. In the next section, we will show numerical results
over a bifurcation geometry � with physical and/or geometrical parametrization
represented by μ ∈ D ⊂ R

d, d ∈ N. Thus, considering the space-time domain
Q = � × [0, T ] with a sufficiently regular spatial boundary ∂�,1 let us define
the Hilbert spaces S = V × P , Z = ZV × ZP and U for state and adjoint
velocity and pressure, and control variables denoted by s = (v, p) ∈ S, u ∈ U

and z = (w, q) ∈ Z, respectively. The stability and uniqueness of the optimal
solution will be guaranteed if S ≡ Z, which will be our assumption in this work.

1For the steady case, T = 0 and Q ≡ �.
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We introduce X = S × U such that x = (s,u) ∈ X. Then, the problem reads:
given μ ∈ D, find (x, z;μ) ∈ X × S s.t.:

⎧
⎪⎪⎨

⎪⎪⎩

A (x, y;μ)+ B (z, y;μ) +
E
(
v,w, yv;μ

)+ E
(
w, v, yv;μ

) = ∫ T

0 〈H (μ) , y〉 dt, ∀ y ∈ X,

B (x, κ;μ)+ E (v, v, κw;μ) =
∫ T

0 〈G (μ) , κ〉 dt, ∀ κ ∈ S,

(1)

where y = (
yv, yp, yu

)
and κ = (κw, κq ). The bilinear forms A : X × X → R

and H (μ) are related to the minimization cost functional J, while the bilinear
form B : X × Z → R represents the linear part of state-constraints and E is the
non-linear convection term, which will be zero for the time dependent linear case.
In order to solve the optimality system (1) we exploit Galerkin Finite Elements
(FE) snapshots-based Proper orthogonal decomposition (POD)–Galerkin (see [7]),
summarized in Table 1, where the number of time steps are denoted by Nt .

In order to guarantee the efficiency of the POD–Galerkin approach, we rely
on the affine assumption over the forms, i.e. every form can be written as a linear
combination of μ−dependent functions and μ−independent quantities. In this way,
the system resolution is divided into parameter independent (offline) and dependent
(online) phases (see Table 1 for details) such that the expensive calculations are
absorbed in the former stage and only online stage is repeated every time the
parameter μ changes. From the perspective of the problem stability, to ensure
uniqueness of pressure at the reduced order level, we enrich the state and adjoint
velocity space with supremizers and, to guarantee the fulfillment of Brezzi’s inf-sup
condition [3] at the reduced level, we use aggregated equivalent state and adjoint
spaces. Thus, dimension of the reduced problem reduces from N×Nt to 13N .

Table 1 Algorithm: POD–Galerkin for OFCP(μ)

Input: μ1 for lifting, N , n

Offline phase Output: Reduced order solution spaces

1. Compute snapshots δNδ×Nt
(μn) for 1 ≤ n ≤ |!|, δ = v, p,u,w, q and state and adjoint

supremizers. The global dimension of FE space discretization is N = 2Nv + 2Np +Nu

2. Solve eigenvalue problems Aδρδn = λδnρ
δ
n, n = 1, · · · , |�|, where A

δ is
correlation matrix of snapshots

3. If relative energy of eigenvalues is greater than 1− εtol, 0 < εtol � 1, keep corresponding

eigenvalue-eigenvector pairs (λn, ρn)

4. Construct orthonormal POD basis from the retained N eigenvectors and add the POD modes

of the supremizers to state and adjoint velocities

Input: Online parameter μ ∈ D
Online phase Output: Reduced order solution

1. Perform Galerkin projection to calculate reduced order coefficients such that δ ≈ XδδN
where, Xδ denotes reduced bases matrices containing all the time instances

2. Solve the reduced order version of the optimality system (1)
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3 Results

3.1 Linear Time Dependent OFCP(μ) Governed by Stokes
Equations

In this section, inspired by Negri et al. [8], Rozza et al. [13], we propose an OFCP(
μ) governed by a time dependent Stokes equation. First of all, let us introduce the
smooth domain �(μ2). The parameter stretches the length of the reference domain
shown in Fig. 1, which will be indicated with � from now on. We want to recover a
measurement vd (μ3) ∈ L2(0, T ; [L2(�)]2) over the one dimensional observation
domain �OBS controlling the Neumann flux over �C , with the inflow vin (μ) =
(10 (x2 − 1) (1− x2) , 0). The setting is suited for environmental applications: we
control the flow in order to avoid potentially dangerous situations in an hypothetical
real time monitoring plan on the domain, which can represent a riverbed. The space-
time domain is Q = � × [0, 1]. Let us consider the following function spaces:
V = L2(0, T ; [H 1

�D(�)]2) ∩ H 1(0, T ; [H 1
�D(�)∗]2), P = L2(0, T ;L2(�)) and

U = L2(0, T ; [L2(�)]2) for state and adjoint velocity, state and adjoint pressure
and for control, respectively. Then, we define X = (V × P) × U . For a given
μ ∈ D = [0.01, 1]×[1, 2]×[0.01, 1],we want to find the solution of time dependent
Stokes equations which minimizes:

J := 1

2

∫ T

0

∫

�OBS

(v(μ)−vd (μ3))
2dsdt+ α1

2

∫ T

0

∫

�C

u(μ)2dsdt+ α2

2

∫ T

0

∫

�C

|∇u(μ)t |2dsdt,
(2)

where α1 = 10−3, α2 = 10−4 and t is the unit tangent vector to �C and vd(μ3) =
[μ3(8(x3

2 −x2
2 −x2+1)+2(−x3

2 −x2
2 +x2+1)), 0]. The cost functional penalizes

not only the magnitude of the control, but also its rapid variations over the boundary.
The constrained minimization problem (2) is equivalent to the resolution of problem

Fig. 1 Physical domain
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(1) where the considered forms are defined by:

A(x, y) =
∫ T

0

∫

�OBS

v · yv dsdt + α1

∫ T

0

∫

�C

u · yu dsdt + α2

∫ T

0

∫

�C

∇ut · ∇yut dsdt,

B(x, z;μ) =
∫

Q

∂v

∂t
· w dxdt + μ1

∫

Q

∇v · ∇w dxdt −
∫

Q

p(∇ ·w(μ)) dxdt

−
∫

Q

q(∇ · (v(μ)) dxdt −
∫ T

0

∫

�C

u · w dsdt ,

〈H(μ), y〉 =
∫

�OBS

vd (μ3) · yv ds, 〈G(μ), q〉 = 0, ∀y ∈ X,

for every x, y ∈ X and κ ∈ S. We built the reduced space with N = 35 over a
training set of 70 snapshots of global dimension 131400, for Nt = 20. In time
dependent applications, ROMs are of great advantage: in Table 2 the speedup index
is shown with respect to N . The speedup represents how many ROM systems one
can solve in the time of a FE simulation. Nevertheless, we do not pay in accuracy as
Figs. 2 and 3 show: it represents the relative error between FE and ROM variables.
The relative error between FE and ROM J is presented in Table 2

Table 2 Speedup analysis
and relative error J

N Speedup Relative error J
15 66,338 10−7

20 47,579 10−8

25 34,335 10−8

30 22,477 10−9

35 17,420 10−10

Fig. 2 FE vs ROM mean
relative error over 50
parameters
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Fig. 3 FE (top) vs ROM (bottom) comparison of state velocity and state pressure, for t =
0.05, 0.5, 1 and μ = (0.5, 1.5, 1)

3.2 Non-linear Steady OFCP(μ) Governed by Navier-Stokes
Equations

In this section, we will demonstrate the numerical results for second test case with
optimal boundary control problem governed by non-linear incompressible steady
Navier-Stokes equations. We consider a bifurcation domain � as employed in
the previous example (see Fig. 4), which can be considered as an idealized model
of arterial bifurcation in cardiovascular problems [8, 13, 17]. Fluid shall enter
the domain from �in and shall leave through the outlets �c. In this example,
physical parameterization is considered for the inflow velocity given by vin (μ) =
10μ1 (x2 (2− x2) , 0) and the desired velocity, denoted by vd ∈ L2 (�) and
prescribed at the 1-D observation boundary �obs through the following expression:

vd (μ) =
(

10μ1
(
0.8

(
(x2 − 1)3 − (x2 − 1)2 − (x2 − 1)+ 1

)+ 0.2
(− (x2 − 1)3 − (x2 − 1)2 + x2

))

0

)

.
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Fig. 4 Domain (�)

The cost-functional J is defined as:

J (v,u;μ) = 1

2
‖v (μ)−vd (μ) ‖2

L2(�obs )
+ α

2
‖u (μ) ‖2

L2(�c)
+ 0.1α

2
‖∇u (μ) t‖2

L2(�c)
,

(3)

where t is the tangential vector to �c. The mathematical problem reads: Given
μ ∈ D = [0.5, 1.5], find (v (μ) , p (μ) ,u (μ)) that minimize J and satisfy the
Navier-Stokes equations with vin (μ) prescribed at the inlet �in, no-slip conditions
at the walls �w and u (μ) implemented at �c through Neumann conditions.

At the continuous level, we consider X (�) = H 1
�in∪�w

(�)×L2 (�)×L2 (�c),
where

H 1
�in∪�w

(�) =
[

v ∈
[
H 1 (�)

]2 : v|�in = vin and v|�w = 0

]

.

Thus,

A (x, y) =
∫

�

v (μ) · yvd�+ α

∫

�c

u (μ) · yud�c + α

10

∫

�c

(∇u (μ)) t · ∇ (
yu

)
td�c,

B (x, z) = η

∫

�

∇v (μ) · ∇wd�−
∫

�

p (μ) (∇ ·w) d�−
∫

�

q (∇ · v (μ)) d�

−
∫

�c

u (μ) ·wd�c,

E (v, v,w) =
∫

�

(v (μ) · ∇) v (μ) · wd� and 〈H (μ) , y〉 =
∫

�

vd (μ) · yvd�.

To construct the reduced order solution spaces, we consider a sample ! of 100
parameter values and solving the problem (1) through Galerkin Finite Element
method, we construct the snapshot matrices for the solution variables v, p,u,w, q .
For N = 10, eigenvalues energy of the state, control and adjoint variables is
demonstrated in Fig. 5. Evidently, N eigenvalues capture 99.9% of the Galerkin
FE discretized solution spaces and the reduced order spaces are thus built with
dimensions 13N + 1 = 131 (Fig. 6). The state velocity and control for μ =
0.7, 1.1, 1.4 are shown in Fig. 7. Furthermore, we report the accumulative relative
error for the solution variables and the relative error for J in Fig. 8. The former
decreases upto 10−8 along with the latter decreasing upto 10−14.
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Fig. 5 Eigenvalues of N = 10 POD modes

Fig. 6 Computational details of POD–Galerkin for Navier-Stokes constrained OFCP(μ)

Fig. 7 State velocity and control for μ1 = 0.7, 1.1, 1.4

4 Concluding Remarks

In this work, we propose ROMs as a suitable tool to solve a parametrized
boundary OFCP(μ)s for time dependent Stokes equations and steady Navier-Stokes
equations. The framework proposed is suited for several many query and real
time applications both in environmental marine sciences and bio-engineering. The
reduction of the KKT system is performed through a POD-Galerkin approach,
which leads to accurate surrogate solutions in a low dimensional space. This work
aims at showing how ROMs can have an effective impact in the management of
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Fig. 8 Relative error for
solution variables and J

parametrized simulations for social life and activities, such as coastal engineering
and cardiovascular problems. Indeed, the proposed framework deals with faster
solving of parametrized optimal solutions which can find several applications in
monitoring planning both in marine ecosystems and patient specific geometries.
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Mathematical Assessment of the Role
of Three Factors Entangled in the
Development of Glaucoma by Means
of the Ocular Mathematical Virtual
Simulator

Lorenzo Sala, Christophe Prud’homme, Giovanna Guidoboni,
Marcela Szopos, and Alon Harris

Abstract Glaucoma is a multifactorial neurodegenerative disease that involves
the optic nerve head and the death of the retinal ganglion cells. The main
challenge in medicine is to understand the origin of this degeneration. In this
paper we present a virtual clinical study employing the Ocular Mathematical
Virtual Simulator (OMVS), a mathematical model, which is able to disentangle the
hidden mechanisms and to investigate the causes of this ocular neurodegeneration.
In particular, we focus our attention on the influence that intraocular pressure,
intracranial pressure and arterial blood pressure set on the ocular hemodynamics.

1 Introduction

One of the main challenges in medicine is to understand the main causes of diseases.
Due to the increasing complexity of the problems and elevated costs needed to
support scientific research, the trial-and-error technique is no longer optimal to
serve this purpose. Medicine is looking for new quantitative methods, which are
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able to detect abnormalities and identify underlying pathogenic mechanisms in a
non-invasive way.

The goal of our research project, called Eye2Brain, is to develop mathematical
and computational methods to study the eye and brain system, in order to aid
the interpretation of ocular measurements as biomarkers of the brain status. In
particular, driven by the needs in ophthalmology, we focus our attention on
glaucoma, an ocular neurodegenerative disease that involves the optic nerve head
and the death of the retinal ganglion cells [10]. Glaucoma, also called the silent
thief of vision, leads to an irreversible vision loss and is the second leading cause of
blindness worldwide [6].

One of the main questions arising from medicine is understanding the origin of
this degeneration. Currently, the only treatable risk factor is an elevated intraocular
pressure (IOP), however it is not the only one, since:

• many people with ocular hypertension do not develop glaucoma;
• many people with normal IOP develop glaucoma (normal tension glaucoma—

NTG);
• 25% of IOP-treated patients progress to blindness.

Thus, several studies have shown that glaucoma is a multifactorial disease: for
instance gender [12], myopia [4], faulty autoregulation [3], age [12], central corneal
thickness [5], ethnicity [12], cerebrospinal fluid (CSF) pressure [7], diabetes and
arterial blood pressure [22] may affect the natural behavior of the eye-brain system.

In this very compelling context, our goal is to employ a mathematical model
to disentangle the hidden mechanisms and to investigate the causes of this ocular
neurodegeneration beyond the IOP. Specifically, in the present contribution we
analyze the influence of three main factors: the intraocular pressure, the intracranial
pressure (ICP), and the arterial blood pressure. In particular this last aspect is very
important from a clinical viewpoint since it is still unclear if ocular blood flow
alterations are primary or secondary to cell death [21]. For what concerns the ICP,
we have focused for now our attention on the eye and this quantity is an input
parameter of our model, however we envision as next step to include also a CSF
description via a 0D model [19].

The major region of interest is the lamina cribrosa (Fig. 1), a sponge tissue,
which allows the retinal ganglion cells and the central retinal vessels to access
the eyeball protected environment. Its biomechanical response is mainly driven by
collagen beams that forms a network that gives strength to this tissue but at the
same time let the nerve fibers pass through it (Fig. 2). The lamina cribrosa has,
therefore, a crucial role in the connection between the eye and the brain—from a
neurological viewpoint—and between the eye and the cardiovascular system—from
a hemodynamical viewpoint.

The lamina cribrosa is thought to help maintain the balance between the IOP and
the ICP, which may influence the ocular blood flow [7]. Thus, this tissue is a critical
area in the development of glaucoma, however it is not accessible with standard
investigation methods, such as the Goldmann tonometer (to measure IOP), the visual
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Fig. 1 Lamina cribrosa anatomy and vascular supply. Courtesy of A.M. Cantagallo [8]

Fig. 2 Micro-structure of the lamina cribrosa. Courtesy of https://coggle.it

field test (to test the visual functions), and the Optic Coherence Tomography (to
analyze the structure of the optic nerve head and the retina).

2 The Ocular Mathematical Virtual Simulator

We have developed an Ocular Mathematical Virtual Simulator (OMVS) [15, 18],
which is able to:

• visualize and estimate in a non-invasive way ocular hemodynamics and biome-
chanics for tissues that are not easily accessible (e.g. lamina cribrosa);
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Fig. 3 OMVS framework. CRA= central retinal artery, CRV= central retinal vein,
CSF= cerebrospinal fluid, IOP= intraocular pressure, NPCA= nasal posterior ciliary artery,
OA= ophthalmic artery, OV= ophthalmic vein, TCPA= temporal posterior ciliary artery

• help isolate the effect of single risk factors and quantify their influence on the
multifactorial disease process.

This computational model can be used as a virtual laboratory [17] where to
perform virtual experiments. The OMVS (Fig. 3) describes (1) the retinal blood
circulation via a circuit-based (0D) model; (2) the hemodynamics and biomechanics
of the lamina cribrosa via a three-dimensional (3D) poroelastic model; (3) the
biomechanics of the retina, choroid, sclera and cornea via a 3D linear elastic model.
More details on this model can be found in [13].

The modeling choice of coupling the 0D blood circulation and the 3D zoom on
the lamina has two main motivations:

• combine ocular tissue that have available quantitative data—e.g. blood flow in
the central retinal artery (CRA)—and crucial ocular areas that are not accessible
with clinical images—e.g. lamina cribrosa perfusion;

• provide a multiscale systemic overview of the blood flow, while maintaining a
relatively accessible mathematical complexity and low computational costs.

As a consequence, this 3D-0D coupling is realized with an innovative operator
splitting method [16], which is based on a semi-discretization in time inspired by
the energy estimates at the continuous level; the algorithm is unconditionally stable
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with respect of the time-step without requiring sub-iterations between two sub-steps.
Moreover, the nonlinearities in the 3D and the 0D models are solved separately with
appropriate numerical methods.

For the space discretization of the 3D poroelastic system, we have employed a
Hybridizable Discontinuous Galerkin formulation with an integral condition on the
interface between the 3D domain and the circuit. This numerical method supports
the optimal approximation for the primal and flux variables and the direct solution
of this integral condition without any sub-iterations, computing the pressure and
the flux on the interface at the same time. Thus, we have obtained a natural spatial
coupling between the 3D and the 0D domain [1, 13]. The computational strategy to
solve this model includes (1) first order in time discretization, (2) static condensation
with integral conditions to get an efficient solution of the HDG system, and
(3) algebraic multigrid preconditioners and postprocessing of the primal variables
for higher accuracy. All these ingredients are embedded into an efficient parallel
computing environment (Feel++) [9].

3 Numerical Study

We present hereafter the results obtained using the web interface of the OMVS
[14]. This online tool allows the user to utilize the model without the need of an
expertise in mathematics or computer science and to visualize the results of a single
simulation or compare multiple outcomes.

3.1 Data

We summarize in Table 1 the virtual database with 4 subjects that we are going to
use as input in our simulations. The data that are used to generate the database are
derived from experimental values reported in literature, in particular we have for
the:

• systolic blood pressure (SP [mmHg]) a Gaussian distribution N (116, 23.2) [24];
• diastolic blood pressure (DP [mmHg]) a Gaussian distribution N (69, 13.8) [24];
• IOP ([mmHg]) a Gaussian distribution N (17, 6) [2];
• ICP ([mmHg]) a Gaussian distribution N (9.5, 2.2) [11].

The goal of this patient selection is to vary few parameters at a time in order to
understand the influence of each parameter variation and disentangle the different
effects. The variation of each parameter has been based on experimental results
summarized above; in particular to simulate high conditions we have selected the
mean value added to the standard deviation. An exception is made for IOP, for which
the high value is directly provided by the clinical literature [2].
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Table 1 Virtual patient database used for the OMVS simulations

Name Gender Age SP/DP IOP ICP Note

Tony Male 65 y 116/69 17 9.5 Baseline

John Male 47 y 116/69 26 9.5 High IOP

Tina Female 81 y 116/69 26 12.8 High IOP, ICP

Margaret Female 55 y 150.8/89.7 26 12.8 High IOP, ICP, SP/DP

SP/DP systolic/diastolic blood pressure [mmHg], IOP intraocular pressure [mmHg], ICP intracra-
nial pressure [mmHg]

3.2 Simulation Results

For this paper we focus our attention on central retinal artery (CRA) and central
retinal vein (CRV) blood flows predicted by the OMVS.

Figure 4 displays the comparison between the simulation of Tony’s and John’s
blood flows. In the top part of the figure we have the characteristics CRA blood flow
as provided also by other clinical instruments such as the Color Doppler Imaging
[23]. The differences in this case between the two subjects are relatively small. On
the other hand, CRV simulation results show that the virtual patient with high IOP
have a decrease up to 66% in the blood flow (green line vs red line in the bottom of
Fig. 4).

Blood flow in the central retinal vessels
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Fig. 4 OMVS simulation results: comparison Tony’s and John’s blood flows in central retinal
vessels
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Blood flow in the central retinal vessels
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Fig. 5 OMVS simulation results: comparison Tony’s and Tina’s blood flows in central retinal
vessels

Moreover, the OMVS predicts that this reduction is slightly less marked (64%)
if we compare our baseline subject (Tony) with patients that suffer from high ICP
(Tina) as pointed out by Fig. 5 (bottom, green line vs red line).

The most interesting simulation result, from the clinical viewpoint, is the one
presented in Fig. 6. In this virtual clinical case, the drop in CRV blood flow between
the healthy subject and the hypertensive patient with high IOP and ICP is 50% and
we highlight also how this difference lasts remarkably less in time (narrower drop)
than the previous two comparisons.

3.3 Discussion

The reduction in the CRV blood flow can be associated to collapsed veins due
to high IOP, which may lead to disrupted perfusion of the ocular tissues. Figs. 4
and 5 exhibit virtually this situation. Figure 6, however, conjectures that the effect
of collapsed veins, leading therefore to abnormal blood flow, is balanced by high
blood pressure, obtaining a situation closer to the baseline.

Note that, concerning the validation of our simulations, these theoretical predic-
tions on the relationship between intraocular pressure, blood pressure and ocular
perfusion have been confirmed by an independent population-based study including
nearly 10000 individuals [20].



858 L. Sala et al.

Blood flow in the central retinal vessels

0.001

0.0015

0.0005

0

–0.0005

–0.001

Bl
oo

d 
flo

w
 (c

m
^3

/s
)

1.8 2 2.2 2.4 2.6

time (s)

2.8 3 3.2

CRA baseline

CRV baseline
CRV high IOP, ICP, BP

CRA high IOP, ICP,BP

Fig. 6 OMVS simulation results: comparison Tony’s and Margaret’s blood flows in central retinal
vessels

4 Conclusions

The virtual experiment we have described above is an example how the OMVS
can be employed as a clinical tool to disentangle different factors that may affect
the physiological behavior of the ocular system. In the present contribution, we
focused on the simulations in the central retinal vessels, which are the result of
more complex mechanisms involving other tissues of the eye. For instance, the IOP
is acting directly on the intraocular segments of the CRA and CRV, but also on the
biomechanics of the lamina cribrosa, which influences in turn the perfusion of this
tissue that alters, in a feedback loop, the central vessels hemodynamics.

In conclusion, motivated by open questions in ophthalmology, we have devel-
oped a mathematical model that combines innovative numerical methods and high
performance computing in order to propose new complementary tools of data
analysis and visualization for clinical and experimental research. Moreover, this
multiscale model serves as a virtual laboratory in which it is possible to simulate the
behavior and the interactions between the hemodynamics and biomechanics within
the eye.
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Well-Balanced and Asymptotic
Preserving IMEX-Peer Methods

Moritz Schneider and Jens Lang

Abstract Peer methods are a comprehensive class of time integrators offering
numerous degrees of freedom in their coefficient matrices that can be used to ensure
advantageous properties, e.g. A-stability or super-convergence. In this paper, we
show that implicit-explicit (IMEX) Peer methods are well-balanced and asymptotic
preserving by construction without additional constraints on the coefficients. These
properties are relevant when solving (the space discretisation of) hyperbolic systems
of balance laws, for example. Numerical examples confirm the theoretical results
and illustrate the potential of IMEX-Peer methods.

1 Introduction

Implicit-explicit (IMEX) Peer methods are designed to efficiently solve large
systems of differential equations (ODEs)

u′ = F0(u)+ F1(u), u(0) = u0 ∈ R
m, m ≥ 1 (1)

that arise in the modelling of various dynamical processes in engineering, physics,
chemistry and other areas. Due to their special structure, IMEX-Peer methods
treat the non-stiff part F0 explicitly and the stiff contribution F1 implicitly, thus
combining the advantage of lower costs for explicit schemes with the favourable
stability of implicit solvers to enhance the overall computational efficiency.

Peer methods are two-step methods with s internal stages and belong to the class
of general linear methods that were introduced and described in detail by Butcher
[2]. A specific feature of Peer methods is that all stages in each time step have the
same order of consistency and, hence, order reduction is avoided.
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There is a wide range of literature concerning the different aspects of Peer
methods and we will only give a short overview. More details can be found in the
introductory chapters of [10, 11]. Peer methods were introduced by Schmitt and
Weiner in 2004 [9]. The construction of IMEX-Peer methods via extrapolation has
been applied by several authors [3, 7]. An alternative construction using partitioned
methods is given in [12, 16]. Since the coefficient matrices of Peer methods offer
many degrees of freedom, the construction of super-convergent schemes [10, 14, 15]
and the adaptation to variable step sizes [11, 13] is possible.

Throughout this paper, we consider s-stage Peer methods of the form

wn+1 = Pwn +�tQ̂F0(wn)+�tR̂F0(wn+1)+�tQF1(wn)+�tRF1(wn+1)

(2)

with Q̂ = Q + RS1 and R̂ = RS2 as given in [10]. Here, P,Q,R, S1 and S2 are
s×s coefficient matrices. The matrix R is taken to be lower triangular with constant
diagonal γ > 0 and S2 is strictly lower triangular. The approximations in each time
step are denoted by

wn =
[
wT

n,1, . . . , w
T
n,s

]T ∈ R
s·m, wn,i ≈ u(tn + ci�t), (3)

where tn = n�t, n ≥ 0 and the nodes c1, . . . , cs ∈ R, corresponding to the s

stages, are such that ci �= cj if i �= j and cs = 1. The application of Fi is meant

component-wise, i.e. Fi(wn) =
[
Fi(wn,1)

T , . . . , Fi(wn,s)
T
]T

, i = 0, 1. For the
sake of notation, we use for an s × s matrix M the same symbol for its Kronecker
product with the m×m identity matrix M⊗Im as a mapping from the space Rs·m to
itself. An extensive analysis of consistency and stability along with the construction
of super-convergent methods as well as the adaption to variable step sizes is given
in [10, 11].

In this paper, we show that our recently developed super-convergent IMEX-Peer
methods [10] possess two additional properties that are important when dealing with
hyperbolic balance and conservation laws: They are well-balanced and asymptotic
preserving. We restrict the analysis to the setting of constant step sizes. However,
the results hold true for Peer methods applied with variable step sizes as well.

For further investigation, we follow the approach of Boscarino and Pareschi [1]
and consider the hyperbolic system of balance laws

Ut + F(U)x = G(U), (4)

where U ∈ R
N and F,G : RN → R

N . Usually, F(U) gives the flux and G(U) is
the source.

The remainder is organised as follows. In Sect. 2, we show that IMEX-Peer
methods are well-balanced without additional constraints on the coefficients. The
same holds true for the asymptotic preservation property as analysed in Sect. 3.
Numerical experiments to illustrate the theoretical results are given in Sect. 4.
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2 Well-Balanced IMEX-Peer Methods

The steady-state U∗ of the hyperbolic system of balance laws (4) is characterized
by

U∗
t ≡ 0 ⇐⇒ F(U∗)x = G(U∗). (5)

Accordingly, a numerical scheme is called well-balanced, if it preserves the steady-
state solution U∗ as characterized in (5). Since Peer methods are time integrators,
we focus on the influence of time discretisation on the well-balanced property of the
numerical solution. Thus, we discretise (4) in space and obtain the system of ODEs

u′(t) = F0(u(t))+ F1(u(t)) (6)

with non-stiff (flux) function F0 and stiff source term F1. Analogously to (5), the
steady-state u∗ is now described by

u∗′(t) ≡ 0 ⇐⇒ F0(u
∗)+ F1(u

∗) = 0.

Assume that the numerical solution of (6) yields an approximation vn ≈ u(tn) ∈ R
m

satisfying

F0(vn)+ F1(vn) = 0.

Then, in some sense v′n = 0 holds and, in order to capture the steady-state, we claim

u(tn+1) ≈ vn+1 = vn.

This concept works well for one-step methods as discussed in [1]. Since we are
dealing with two-step methods, a small modification is needed to take into account
all values of the previous time step. This leads to the following definition of well-
balanced IMEX-Peer methods.

Definition 1 An s-stage IMEX-Peer method (2) is called well-balanced if

F0(wn)+ F1(wn) = 0 (7)

implies wn+1 = wn, where wn,1 = · · · = wn,s .

Now, we can prove the following theorem.

Theorem 1 IMEX-Peer methods of the form (2) with coefficient matrices that
satisfy the standard consistency conditions from [10]

Pe = e and S1 = (Is − S2)V0V
−1
1 ,
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where V0 = (c
j−1
i )i,j and V1 = ((ci − 1)j−1)i,j , are well-balanced in the sense of

Definition 1, given that (2) has a unique solution wn+1 for �t sufficiently small.

Proof By Definition 1, we have F0(wn) + F1(wn) = 0 with wn = e ⊗ wn,s and
Fi(wn) = e ⊗ Fi(wn,s), i = 0, 1, where e = (1, . . . , 1)T ∈ R

s . Under the
hypotheses of Theorem 1 stated above, we prove that (2) implies wn+1 = wn:

wn+1 = Pwn +�t(Q̂F0(wn)+QF1(wn))+�t(R̂F0(wn+1)+ RF1(wn+1))

= (P ⊗ Im)(e ⊗ wn,s)+�t((R(S1 + S2 − Is))⊗ Im)(e ⊗ F0(wn,s)).

Using R(S1+S2− Is) = R(Is −S2)(V0V
−1
1 − Is) and V0V

−1
1 e = V0e1 = e, where

e1 = (1, 0, . . . , 0)T ∈ R
s , the second term vanishes and we obtain wn+1 = wn. ��

In practice, we cannot expect (7) to hold for all stage values of wn but rather that
when the numerical solution converges to the steady-state, we will reach a point in
time when all stage values are sufficiently similar and the last stage of the time step
satisfies F0(wn,s) + F1(wn,s) = 0. Then, the numerical scheme should reproduce
the steady-state. It can be shown that if

F0(wn,s)+ F1(wn,s) = 0 and wn,i = wn,s +O(ε), i = 1, . . . , s − 1,

we obtain for continuous F0 and F1, analogously to the proof of Theorem 1,

wn+1 = wn +O(ε).

Hence, the well-balanced property is beneficial in practical applications even if the
strong condition (7) is not fulfilled exactly.

3 Asymptotic Preserving IMEX-Peer Methods

We investigate the behaviour of IMEX-Peer methods when the hyperbolic balance
laws (4) are scaled with a parameter ε > 0. This is discussed in detail by Chen,
Levermore and Liu [4] and has been adopted for IMEX Runge-Kutta methods by
Boscarino and Pareschi and for multistep methods by Dimarco and Pareschi [1, 5].

Scaling the space and time variables in (4) with a parameter ε > 0 leads to

Uε
t + F(Uε)x = 1

ε
G(Uε). (8)

We are interested in the performance of numerical schemes that solve (8) for ε → 0.
Taking the limit ε → 0 analytically yields the system of algebraic equations

G(U0) = 0. (9)
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Following the analysis in [1, 4], we assume that G(U) with U ∈ R
N is a dissipative

relaxation operator, i.e., there exists an M × N matrix C with rank(C) = M < N

and

CG(U) = 0 for all U ∈ R
N . (10)

We set u = CU ∈ R
M to be the vector of conservation quantities. Further, each

such u uniquely defines a local equilibrium value

U = E(u) (11)

that satisfies

0 = G(E(u)) = G(U) (12)

and u = CE(u) = CU.

Therefore, for every solution U0 of (9), we find a uniquely determined vector of
conserved quantities u0 such that U0 = E(u0). Going back to (8) and multiplying
with C, we obtain

CUε
t + CF(Uε)x = 1

ε
CG(Uε)

and, hence, for ε → 0, a system of M conservation laws

(CU0)t + (CF(U0))x = 0.

Using the equilibrium approximation U0 = E(u0) with CE(u0) = CU0 = u0 from
above, we have

(CE(u0))t + (CF(E(u0)))x = 0

and, finally, obtain the typical system of conservation laws

u0
t + f (u0)x = 0 (13)

with f (·) = CF(E(·)).
In the following, we verify that IMEX-Peer methods, as defined in (2) and (3),

capture the asymptotic behaviour described above. To this end, we write (8) in the
standard form for IMEX-Peer methods (1) and define

F0(U
ε) = −F(Uε)x and F1(U

ε) = 1

ε
G(Uε), (14)
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where we identify Uε, F (Uε)x and G(Uε) with the corresponding spatial discreti-
sations for the sake of enhanced readability. Applying an IMEX-Peer method (2) to
(8) and (14) gives

Uε
n+1 = PUε

n −�tQ̂F(Uε
n)x −�tR̂F (Uε

n+1)x +
�t

ε
QG(Uε

n)+
�t

ε
RG(Uε

n+1).

(15)

As in the continuous case, ε → 0 yields

QG(U0
n )+ RG(U0

n+1) = 0. (16)

At this point, we are faced with a typical problem occurring for multi-step methods:
We have to introduce an additional condition on the values of the previous time step
Uε

n . This is reasonable since the contribution of Uε
n via QG(Uε

n) depends on the
specific choice of G(·) and cannot be compensated by RG(Uε

n+1) independently of
G(·). Hence, we claim well-prepared initial values [1, 6].

Definition 2 The initial data Uε
n for (15) is said to be well-prepared if

Uε
n = E(uε

n)+O(ε).

This allows us to formulate the following.

Theorem 2 Assume the initial data is well-prepared. Then, in the limit ε → 0, an
IMEX-Peer method (2) applied to (8) becomes the explicit Peer method (F1 ≡ 0)
applied to the equilibrium system (13).

Proof Since the initial values are well-prepared, we obtain for the limit ε → 0

RG(U0
n+1) = 0 >⇒ G(U0

n+1) = 0

from (12) and (16) since R is regular. Analogously to the continuous case, we define

u0
n+1 = (Is ⊗ C)U0

n+1 =
[
(CU0

n+1,1)
T , . . . , (CU0

n+1,s )
T
]T

.

We set C • U = (Is ⊗ C)U for any U ∈ R
N ·s . As in the continuous case (11), the

local equilibrium values U0
n+1 are defined by u0

n+1 via

U0
n+1 = E(u0

n+1)

where G(E(u0
n+1)) = 0 and C • E(u0

n+1) = u0
n+1.

Multiplying (15) with C and using that for any M ∈ R
s×s

C • (M ⊗ IN)
[
UεT

n,1, . . . , U
εT
n,s

]T = (M ⊗ IM)

(

C •
[
UεT

n,1, . . . , U
εT
n,s

]T)

,
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as well as MUε
n = (M ⊗ IN)Uε

n , we find

C • Uε
n+1 = P(C • Uε

n)−�tQ̂
(
C • F(Uε

n)x
)−�tR̂

(
C • F(Uε

n+1)x
)

+ �t

ε
Q
(
C •G(Uε

n)
)+ �t

ε
R
(
C •G(Uε

n+1)
)
. (17)

We recall from (10) that C •G(U) = 0 for all U ∈ R
N ·s . Hence, (17) reduces to

C • Uε
n+1 = P(C • Uε

n)−�tQ̂
(
C • F(Uε

n)x
)−�tR̂

(
C • F(Uε

n+1)x
)
.

For ε → 0, we replace Uε
n by E(u0

n) and use C • E(u0
n) = u0

n to obtain

u0
n+1 = Pu0

n −�tQ̂(C • F(E(u0
n))x)−�tR̂(C • F(E(u0

n+1))x). (18)

Setting f (·) = C • F(E(·)), we observe that (18) coincides with the application of
IMEX-Peer method (2) to the system of conservation laws (13)

u0
t = −f (u0)x, (19)

where F0(u
0) = −f (u0)x and F1 ≡ 0, giving an explicit scheme. ��

We see that instead of solving (19) explicitly, we can equivalently apply an IMEX-
Peer method to the relaxed system (8), thus profiting from the stabilisation of the
implicit part.

4 Numerical Examples

We present two numerical examples to illustrate that IMEX-Peer methods are
well-balanced and asymptotic preserving. Since we focus on time integration, we
consider systems of ODEs where no spatial discretisation is necessary and apply
our recently developed super-convergent methods from [10].

Example 1 (Well-Balanced Property) We demonstrate the effect of the well-
balanced property using a system of ODEs of form (1) with non-stiff part
F0(u) = [u2,−u1]T and stiff contribution F1(u) = [0, 1 − u2]T as introduced
by Boscarino and Pareschi in [1]. The unique equilibrium point is u∗ = [1, 0]T .

In Fig. 1, the behaviour of the numerical approximation of the solution com-
ponents u1 and u2 for t ∈ [0, 15] is given using IMEX-Peer methods from [10].
Starting with u0 = [0, 1]T , we observe that the IMEX-Peer methods reach the
equilibrium after a short time even for a large step size �t = 1. Boscarino and
Pareschi demonstrate in [1] that this is usually not the case if the time integrator is
not well-balanced.
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Fig. 1 Numerical results for super-convergent and A-stable s-stage IMEX-Peer methods IMEX-
Peer2s, IMEX-Peer3s, and IMEX-Peer4s from [10]. (a) Results for the well-balanced test. All
methods capture the equilibrium after short time and for a large time step �t = 1. (b) Results
for the asymptotic preservation test. The super-convergent methods keep their order of s + 1 for
various choices of ε
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Example 2 (Asymptotic Preservation Property) To verify that our super-convergent
IMEX-Peer methods developed in [10] are asymptotic preserving, we consider a

stiff system of ODEs (1) where F0(u) = [−u2, u1]T and F1(u) = 1

ε
[0, sin u1−u2]T

with scaling parameter ε > 0, initial values u(0) = [π/2, 1]T and t ∈ [0, 5] as given
by Pareschi and Russo in [8].

Numerical results for �t = 0.2 · 2−i , i = 0, . . . , 4 and ε = 1, 10−5 are given
in Fig. 1. The error is computed using the scaled maximum error norm over all time
steps err = max0≤tn≤5 maxi=1,2 |Ui − ui |/(1 + |ui |), where U is the approximate
solution and u is a reference solution computed using the MATLAB routine ODE15S.

We observe that the orders of convergence of the super-convergent methods
IMEX-Peer2s, IMEX-Peer3s and IMEX-Peer4s with stage number s = 2, 3, 4 from
[10], derived using a least squares fit, are 2.9, 3.9, 5.2 for ε = 1 and 3.0, 4.0, 4.8 for
ε = 10−5. Hence, they match the theoretical orders s + 1 nicely.

We remark that the order of convergence is affected in an intermediate region
�t = O(ε), see [5, 8] for further details. Nevertheless, the order of convergence is
fully restored when �t leaves the regime O(ε), therefore, the drawback is negligible
[8].

In conclusion, we have shown that IMEX-Peer methods are well-balanced and
asymptotic preserving by construction and, hence, suitable for the preservation of
steady-states and the capture of asymptotic limits for space-time scaling.
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Approximation Schemes for Viscosity
Solutions of Fully Nonlinear Stochastic
Partial Differential Equations

Benjamin Seeger

Abstract We develop a method for constructing convergent approximation
schemes for viscosity solutions of fully nonlinear stochastic partial differential
equations. Our results apply to explicit finite difference schemes and Trotter-
Kato splitting formulas, and error estimates are found for schemes approximating
solutions of stochastic Hamilton-Jacobi equations.

1 Introduction

We develop a general program for constructing numerical schemes to approximate
pathwise viscosity solutions of the initial value problem

⎧
⎪⎪⎨

⎪⎪⎩

du = F(D2u,Du) dt +
m∑

i=1

Hi(Du) · dWi in R
d × (0, T ] and

u(·, 0) = u0 in R
d,

(1)

where T > 0, F ∈ C0,1(Sd × R
d )1 is degenerate elliptic, H ∈ C2(Rd ), W =

(W 1,W 2, . . . ,Wm) ∈ C([0, T ],Rm), and u0 ∈ BUC(Rd ).2

When W is continuously differentiable or of bounded variation, (1) falls within
the scope of the theory of viscosity solutions; see, for instance, [5]. However, a
general continuous path W may be nowhere differentiable and have unbounded
variation on every open interval, as is the case, for example, for Brownian paths

1
S
d is the space of symmetric d × d matrices.

2BUC(Rd ) is the space of bounded and uniformly continuous functions on R
d .
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with probability one. For such paths, the study of (1) requires the theory of pathwise
(or stochastic) viscosity solutions put forth by Lions and Souganidis [10–13].

In view of the robust stability properties of viscosity solutions, there is an
extensive literature on the construction of approximation schemes for fully nonlinear
equations, initiated by Crandall and Lions [6] and Souganidis [15, 16], who found
error estimates for convergent approximations of Hamilton-Jacobi equations, and
extended to second order equations by Barles and Souganidis [2] with a qualitative
proof of convergence. Rates of convergence in the second order case have also been
obtained in various cases, see for instance [1, 4, 8, 9, 17].

It turns out [14] that pathwise viscosity solutions are also quite amenable to
various approximation schemes, although the methods are more involved due to
the presence of the singular terms dWi , as we describe in what follows.

2 A Summary of the Main Results

We discuss first the general algorithm for the construction of schemes, and we
present some specific examples to illustrate its use.

2.1 The Scheme Operator

The central object to be constructed is the scheme operator, which, for h > 0, 0 ≤
s ≤ t ≤ T , and ζ ∈ C([0, T ];Rm), is a map Sh(t, s; ζ ) : BUC(Rd )→ BUC(Rd ).
Then, given a partition P := {0 = t0 < t1 < · · · , tN = T } of [0, T ] with mesh-size
|P| := maxn=0,1,...,N−1 (tn+1 − tn) and a path ζ ∈ C([0, T ];Rm), we define the
function ũh(·; ζ,P) by

{
ũh(·, 0; ζ,P) := u0 and, for n = 0, 1, . . . , N − 1 and t ∈ (tn, tn+1],
ũh(·, t; ζ,P) := Sh(t, tn; ζ )ũh(·, tn; ζ,P).

(2)

Piecewise smooth approximating paths {Wh}h>0 and partitions {Ph}h>0 satisfying

lim
h→0+

‖Wh −W‖∞ = 0 = lim
h→0+

|Ph| (3)

are then chosen in such a way that the function

uh(x, t) := ũh(x, t;Wh,Ph) (4)

is an approximation of the solution of (5) for small h > 0.
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2.2 The Main Examples

We focus here on finite difference schemes, while noting that the general conver-
gence results apply to other approximations, for example, Trotter-Kato splitting
formulas; see also [7].

To simplify the presentation, assume d = m = 1, ‖Du0‖∞ ≤ L, F and H

are both smooth with bounded derivatives, and F depends only on uxx , so that (1)
becomes

du = F(uxx) dt+H(ux) ·dW in R× (0, T ] and u(·, 0) = u0 in R, (5)

or, in the first order case, when F ≡ 0,

du = H(ux) · dW in R× (0, T ] and u(·, 0) = u0 in R. (6)

Below, the various specifications for Ph and Wh, while technical, are all made
in order to ensure that, for some fixed, sufficiently small λ > 0, the following
generalized CFL condition holds:

sup
h>0

sup
n=0,1,2,...,N−1

|Wh(tn+1)−Wh(tn)|
h

≤ λ. (7)

The reason for this is discussed further in Sect. 4.
The first scheme is defined, for some εh > 0, by

Sh(t, s; ζ )u(x) := u(x)+H

(
u(x + h)− u(x − h)

2h

)

(ζ(t) − ζ(s))

+
[

F

(
u(x + h)+ u(x − h)− 2u(x)

h2

)

+ εh

(
u(x + h)+ u(x − h)− 2u(x)

h2

)]

(t − s).

(8)

Theorem 1 Assume that, in addition to (3), Wh and Ph satisfy

|Ph| < h2

‖F ′‖∞
and εh := h

∥
∥H ′∥∥∞

∥
∥Ẇh

∥
∥∞

h→0−−−→ 0.

Then, as h → 0, the function uh defined by (4) using the scheme operator (8)
converges locally uniformly to the pathwise viscosity solution u of (5).
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For schemes approximating solutions of the pathwise Hamilton-Jacobi equation
(6), we are able to obtain explicit error estimates. We focus here on the particular
scheme defined, for some θ ∈ (0, 1], by

Sh(t, s; ζ )u(x) := u(x)+H

(
u(x + h)− u(x − h)

2h

)

(ζ(t) − ζ(s))

+ θ

2
(u(x + h)+ u(x − h)− 2u(x)) .

(9)

Assume that ω : [0,∞) → [0,∞) is the modulus of continuity of the fixed
continuous path W on [0, T ]. For h > 0, define ρh implicitly by

λ := (ρh)
1/2ω((ρh)

1/2)

h
<

θ

‖H ′‖∞
, (10)

and let the partition Ph and path Wh satisfy

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Ph := {nρh ∧ T }n∈N0, Mh := ?(ρh)−1/2@,
and, for k ∈ N0 and t ∈ [kMhρh, (k + 1)Mhρh),

Wh(t) := W(kMhρh)+
(
W((k + 1)Mhρh)−W(kMhρh)

Mhρh

)

(t − kMhρh) .

(11)

Theorem 2 There exists C > 0 depending only on L such that, if uh is constructed
using (4) and (9) with Ph and Wh as in (10) and (11), and u is the pathwise viscosity
solution of (6), then

sup
(x,t)∈Rd×[0,T ]

|uh(x, t)− u(x, t)| ≤ C(1+ T )ω((ρh)
1/2).

If W ∈ C0,α([0, T ]), then the CFL condition (10) becomes ρh = O(h2/(1+α)),
and the rate of convergence in Theorem 2 is O(hα/(1+α)).

When W is a Brownian motion, then the CFL condition (10) can be chosen
according to the Lévy modulus of continuity:

λ := (ρh)
3/4 |logρh|1/2

h
<

θ

‖H ′‖∞
. (12)

The proof of Theorem 2 can then be modified to show that, with probability one, for
a deterministic constant C > 0 depending only on L and λ,

lim sup
h→0

sup
(x,t)∈Rd×[0,T ]

|uh(x, t)− u(x, t)|
h1/3 |logh|1/3 ≤ C(1+ T ).
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The final example converges in distribution. Let λ, ρh, Wh, and Ph be given, for
some probability space (A,G,P), by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ := (ρh)
3/4

h
≤ θ

‖H ′‖∞
, Mh := ?(ρh)−1/2@,

Ph := {tn}Nn=0 = {nρh ∧ T }n∈N0
,

{ξn}∞n=1 : A→ {−1, 1} are independent and Rademacher,

Wh(0) = 0, and

Wh(t) := Wh(kMhρh)+ ξk√
Mhρh

(t − kMhρh)

for k ∈ N0, t ∈ [kMhρh, (k + 1)Mhρh).

(13)

Donsker’s invariance principle (see [3]) implies that, as h → 0, Wh converges in
distribution to a Brownian motion W in the space C([0,∞),R).

Theorem 3 If uh is constructed using (4) and (9) with Wh and Ph as in (13), and
u is the solution of (5), then, as h → 0, uh converges to u in distribution in the
topology of local uniform convergence.

3 The Convergence Proof: Monotonicity and Consistency

We next outline the proof of the general convergence result, which is based on a
generalization of the method of half-relaxed limits from the theory of viscosity
solutions, used by Barles and Souganidis [2] to prove the convergence of finite
difference approximations of second order equations.

We always impose the following monotonicity condition on the scheme:

{
if tn ≤ t ≤ tn+1, tn, tn+1 ∈ Ph, and u, v ∈ BUC(Rd ), then

u ≤ v ⇒ Sh(t, tn;Wh)u ≤ Sh(t, tn;Wh)v,
(14)

and also that the scheme operator commutes with constants, that is, for all u ∈
BUC(Rd ), h > 0, 0 ≤ s ≤ t <∞, ζ ∈ C([0, T ],Rm), and k ∈ R,

Sh(t, s; ζ ) (u+ k) = Sh(t, s; ζ )u+ k. (15)

In addition, the scheme operator must satisfy a consistency requirement (see (19)
below). We motivate such a condition by outlining the proof next, keeping the details
light.
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To that end, assume that, for some u ∈ BUC(Rd × [0, T ]), limh→0 uh = u

locally uniformly,3 and we attempt to show that u is a pathwise viscosity sub- and
super-solution of (1). Recall (see [10]) that u is said to be a sub- (super)- solution
of (1) if, whenever I ⊂ [0, T ] is an open interval; ' ∈ C(I ;C2(Rd)) is a local-in-
time, smooth-in-space solution of

d' =
m∑

i=1

Hi(D') · dWi in R
d × I ; (16)

ψ ∈ C1(I); and u(x, t) − '(x, t) − ψ(t) attains a strict maximum (minimum) at
(y, s) ∈ R

d × I , then

ψ ′(s) ≤ F(D2'(y, s),D'(y, s)).

We show that u is a sub-solution, and the argument for super-solutions is similar.
Let I , ', ψ , and (y, s) be as above, and, for h > 0, let 'h be the local-in-time,

smooth-in-space solution, constructed with the method of characteristics, of

'h,t =
m∑

i=1

Hi(D'h)Ẇ
i
h in R

d × I, 'h(·, s) = '(·, t0). (17)

Since Wh converges to W uniformly as h → 0, it follows that 'h converges in
C(I,C2(Rd)) to ' as h → 0, with I made smaller if necessary, independently of
h.

As a result, there exists {(yh, sh)}h>0 ⊂ R
d×I such that limh→0(yh, sh) = (y, s)

and

uh(x, t)−'h(x, t)− ψ(t)

attains a local maximum at (yh, sh).
The mesh-size |Ph| converges to 0 as h → 0, so, for sufficiently small h, there

exists n ∈ N depending on h such that

tn < sh ≤ tn+1 and tn, tn+1 ∈ I.

Then

uh(·, tn)−'h(·, tn)− ψ(tn) ≤ uh(yh, sh)−'h(yh, sh)− ψ(sh),

3In general, the existence of such a limit is not guaranteed a priori, and one must work with so-
called “half-relaxed” limits. To simplify the presentation, we avoid such details here.
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which leads to

uh(·, tn) ≤ uh(yh, sh)+'h(·, tn)−'h(yh, sh)+ ψ(tn)− ψ(sh). (18)

It is here that the monotonicity (14) of the scheme is used. Applying Sh(sh, tn;Wh)

to both sides of (18), using the fact that the scheme commutes with constants, and
plugging in x = yh, we arrive at

uh(yh, sh) ≤ uh(yh, sh)+Sh(sh, tn;Wh)'h(·, tn)(yh)−'h(yh, sh)+ψ(tn)−ψ(sh),

whence

ψ(sh)− ψ(tn)

sh − tn
≤ Sh(sh, tn;Wh)'h(·, tn)(yh)−'h(yh, sh)

sh − tn
.

As h → 0, the left-hand side converges to ψ ′(s). The right-hand side converges
to F(D2'(y, s),D'(y, s)) if we make the following consistency requirement:
whenever ' and 'h are as in respectively (16) and (17), we have

lim
s,t∈I, t−s→0

Sh(t, s;Wh)'h(·, s)−'h(·, s)
t − s

= F(D2',D'). (19)

4 On the Construction of the Scheme Operator

We discuss next the strategy for constructing scheme operators that satisfy the
assumptions of the previous section, and, in particular, the need for regularizing
the path W in general. We focus on Eq. (6) and consider the scheme operator given
by

Sh(t, s)u(x) := u(x)+H

(
u(x + h)− u(x − h)

2h

)

(W(t) −W(s))

+ εh

(
u(x + h)+ u(x − h)− 2u(x)

h2

)

(t − s),

(20)

which can be seen to be monotone for 0 ≤ t−s ≤ ρh as long as, for some θ ∈ (0, 1],

εh := θh2

2(t − s)
and λ := max|t−s|≤ρh

|W(t) −W(s)|
h

≤ λ0 := θ

‖H ′‖∞
. (21)
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For any s, t ∈ [0, T ] with |s − t| sufficiently small, spatially smooth solutions ' of
(6) have the expansion

'(x, t) = '(x, s)+H('x(x, s))(W(t)−W(s))

+H ′('x(x, s))
2'xx(x, s)(W(t) −W(s))2 +O(|W(t) −W(s)|3),

(22)

so that, if 0 ≤ t − s ≤ ρh, then, for some C > 0 depending only on H ,

sup
R

|Sh(t, s)'(·, s) −'(·, t)| ≤ C sup
r∈[s,t ]

∥
∥
∥D2'(·, r)

∥
∥
∥∞

(
|W(t)−W(s)|2 + h2

)

≤ C sup
r∈[s,t ]

∥
∥
∥D2'(·, r)

∥
∥
∥∞ (1+ λ2

0)h
2.

Then (19) is satisfied if

lim
h→0

h2

ρh
= 0. (23)

Both (21) and (23) can be achieved when W is continuously differentiable, or, more
generally, if W ∈ C0,α([0, T ]) with α > 1

2 , by setting

ρh :=
(

λh

[W ]α,T
)1/α

. (24)

However, this approach fails as soon as the quadratic variation path

〈W 〉T := lim|P|→0

N−1∑

n=0

|W(tn+1)−W(tn)|2

is non-zero, as (21) and (23) together imply that 〈W 〉T = 0. This rules out, for
instance, the case where W is the sample path of a Brownian motion, or, more
generally, any nontrivial semimartingale.

On the other hand, if {Wh}h>0 is a family of piecewise smooth paths converging
uniformly, as h → 0, to W , then 〈Wh〉T = 0 for each fixed h > 0, and therefore, Wh

and ρh can be chosen so that (21) and (23) hold for Wh rather than W . As described
in Sect. 2, such choices are related to the general CFL condition (7).
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Approximation Method with Stochastic
Local Iterated Function Systems

Anna Soós and Ildikó Somogyi

Abstract The methods of real data interpolation can be generalized with fractal
interpolation. These fractal interpolation functions can be constructed with the so-
called iterated function systems. Local iterated function systems are an important
generalization of the classical iterated function systems. In order to obtain new
approximation methods this methods can be combined with classical interpolation
methods. In this paper we focus on the study of the stochastic local fractal
interpolation function in the case of a random data set.

1 Introduction

Barnsley named a function f : I → R defined on the real closed interval I, a
fractal function, if the Hausdorff dimension of the graph is noninteger. Also in
[2] he introduced the notion of a fractal interpolation function (FIF). This is a
fractal function which is constrained to go through on a finite number of prescribed
points, so the (FIF) possess some interpolation properties. The methods of fractal
interpolation methods was applied successfully in signal processing, structural
mechanics, computer geometry and other fields of applied sciences. The advantage
of these methods is that they can be combined with the classical methods or real data
interpolation. Hutchinson and Rüschendorf [3] gave the stochastic version of the
fractal interpolation function. In the construction of the iterated function systems,
Wang and Yu [4] used a variable vertical scaling factor instead of a constant scaling
parameter, in this way they obtained fractal functions with more flexibility. Barnsley
in [1] introduced the notion of local iterated function systems which are an important
generalization of the global iterated function systems. In [5], the local Hermite
type fractal function was introduced. In this paper we focus on the study of local
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type Hermite fractal function corresponding to a set of data, where these data are
supposed to be random.

2 Local Iterated Function Systems and Local Fractal
Functions

Let (X, dX) be a complete metric spaces with metric dX and N = {1, 2, 3, . . .} the
set of positive integers.

Let n ∈ N and Nn = {1, 2, . . . , n}, and consider a family of nonempty subsets of
X, {Xi |i ∈ Nn}. Assume that there exists a continuous mapping fi : Xi → X, i ∈
Nn, for each Xi . Then Floc = {X, (Xi, fi)|i ∈ Nn} is called a local iterated function
system.
If each Xi = X then this definition gives us the usual definition of a global iterated
function system on a complete metric space.

A local IFS Floc is called contractive if there exists a metric d ′ equivalent to
dX with respect to which all functions f ∈ Floc are contractive, on their respective
domains.

Let the power set of X be 2X = {S|S ⊂ X}. On this set we consider a set-valued
operator using a local IFS:

Floc(S) = ∪n
i=1fi(S ∩Xi), (1)

where fi(S∩Xi) = {fi(x)|x ∈ S∩Xi}. A subset G ∈ 2X is called a local attractor
for the local IFS {X, (Xi, fi)|i ∈ Nn} if

G = Floc(G) = ∪n
i=1fi(G ∩Xi).

For example the empty set is a local attractor of the local IFS, and if G1 and G2 are
distinct local attractors than G1 ∩ G2 is also a local attractor. Hence, there exists
a largest local attractor for the IFS, and this will be the so-called local attractor of
the local IFS. In the case when X is compact and Xi, i ∈ Nn are also compact in
X, and the local IFS {X, (Xi, fi)|i ∈ Nn} is contractive, the local attractor may be
computed in the following way. Let L0 = X and

Ln = Floc(Ln−1) = ∪i∈Nnfi(Ln−1 ∩Xi), n ∈ N.

Then {Ln|n ∈ N0} is a decreasing nested sequence of compact sets. If each Ln is
nonempty, then by the Cantor intersection theorem,

L = ∩n∈N0Ln �= ∅,
we have that

L = lim
n→∞Ln,
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where the limit is taken with respect to the Hausdorff metric. This implies that

L = lim
n→∞Ln = lim

n→∞∪i∈Nnfi(Ln−1 ∩Xi) = ∪i∈Nnfi(L ∩Xi) = Floc(L).

It follows that, L = Gloc. Further, Barnsley introduces the local fractal functions as
the local attractors which are the graphs of bounded functions.

Let X be a nonempty connected set and {Xi |i ∈ Nn} are subsets of X which
are nonempty and connected. We will consider a family of bijective mappings, ui :
Xi → X, i ∈ Nn such that {ui(Xi), i ∈ Nn} is a kind of partition of X, X =
∪n
i=1ui(Xi) and ui(Xi) ∩ uj (Xj ) = ∅, ∀i �= j ∈ Nn.

Let (Y, dy) be also a complete metric space with the metric dy , then a function
f : X → Y is called bounded with respect to the metric dy , if there exists M > 0
such that ∀x1, x2 ∈ X, dY (f (x1), f (x2)) < M .

Then the space D(X, Y ) = {f : X → Y |f is bounded}, with the metric
d(f, g) = supx∈X dY (f (x), g(x)) is a complete metric space, (D(X, Y ), d). In
a similar way we can define D(Xi, Y ), for all i ∈ Nn and let be fi = f |Xi .
We will consider now a set of functions which are uniformly contractive in the
second variable vi : Xi → X, i ∈ Nn, and the Read-Bajactarević operator
B : D(X, Y ) → YX defined by

Bf (x) =
N∑

i=1

vi(u
−1
i (x), fi ◦ u−1

i (x))χui(Xi)(x),

where

χS(x) =
{

1, x ∈ S

0, x /∈ S.

Using the contraction properties on the second variable of the applications wi , it
follows that the operator B is also a contraction on the complete metric space
D(X, Y ) and therefore it has a unique fixed point f ∗ in D(X, Y ). This unique fixed
point will be called a local fractal function, generated by B.

2.1 Hermite Type Local Fractal Functions

Let be given the distinct real numbers x0 < x1 < .. < xN and the values
y
(0)
i , y

(1)
i , . . . , y

(ri)
i , i = 0, 1, . . . , N . Then there exists a unique polynomial H(x),

the Hermite polynomial, which satisfies the interpolation conditions

H(j)(xi) = y
(j)
i , j = 0, 1, . . . , ri , i = 0, 1, . . . , N
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and the degree of this polynomial does not exceed n =∑N
i=0(ri + 1).

This classical generalized Hermite interpolation polynomial is given by

H(x) =
N∑

i=0

ri∑

j=0

hi,j (x)y
(j)
i ,

where the polynomials hi,j ∈ Pn, n =
N∑

i=1
(ri + 1) are the fundamental Hermite

polynomials. These fundamental Hermite polynomials can be given in the following
way too:

hij (x) = lij (x)−
ri∑

ν=j+1

lνij (xi)hiν(x),

where

lij (x) = (x − xi)
j

j !
∏

s=0,s �=i

(
x − xs

xi − xs

)rs

are generalized Lagrange polynomials.
Let us consider a given set of interpolation data {(xn, yn) ∈ [a, b] × R, n =

0, 1, . . . , N}, where a < x0 < x1 < . . . < xN < b.
Further, let Yn be given by Yn = yn + εn, n = 0, 1, . . . , N , where εn is a

stochastic perturbation term with zero expectation, E(εn) = 0, and finite variance,
V ar(εn) < inf. Each Yn is a random variable and E(Yn) = yn Suppose that zn is an
observed value of Yn.

Let X = [a, b] and {Xi |i ∈ Nk}, Nk = {1, . . . , k}, k ∈ N be a family of
nonempty subsets of X such that Xi = [xi, xi+1]. On each subinterval Xi we
consider a set of data xi = xi0 < xi1 < . . . < xik = xi+1.
For each Xi there exists a contractive homeomorphism uin : Xi → Xin, where
Xin = [xin−1, xin], n = 1, 2, . . . , k, and uin(xi0) = xin−1, uin(xk) = xin. Let
vin : Xi × R → R be a mapping that is continuous and contractive in the second
variable.

Define ωi(x, y) = (uin(x), vin(x, y)) for all n = 1, 2, . . . , k, than we can give
the following local IFS {X; (Xi, ωi), i ∈ Nk}.

We will consider the affine IFS given by the following functions

uin(x) = ainx + bin

vin(x, y) = αiny + gin(x),

n = 1, 2, . . . , k, where αin is the vertical scaling factor of the transformation ωin

and gin(x) = l ◦ uin(x) − αinq(x), where q(x) is a real continuous function such
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that q(xi0) = zi , q(xik) = zi+1, for l we have the condition l(xin) = zin, n =
0, 1, . . . , k.

In order to have a differentiable fractal interpolation function we will use the
proposition given by Barnsley in [2].

If we have a set of interpolation data {(xin, zin), n = 0, 1, . . . , k}, with xi0 <

xi1 < . . . xik, the functions uin, vin defined before, for some integer p > 0, |αin| <
a
p
in, gin ∈ Cp[xi, xi+1], and the functions

vin,t (x, y) = αiny + g
(t)
in (x)

at
in

, zi0,t = g
(t)
i1 (xi0)

at
i1 − αi1

, zik,t = g
(t)
ik (xik)

at
ik − αik

, t = 1, 2, . . . , p

(2)

with the conditions vin−1,t (xik, zik,t ) = vin,t (xi0, zi0,t ), n = 2, 3, . . . , k and
t = 1, 2, . . . , p then {(uin(x), vin(x, y)), n = 1, 2, . . . , k} determines a fractal
interpolation function f ∈ Cp[xi, xi+1] and f t , t = 1, 2, . . . , p is the fractal
interpolation function determined by {(uin(x), vin,k(x, y)), n = 1, 2, . . . , k}.

To construct the Hermite type local fractal interpolation function we will use
the method introduced in [1]. We will consider a given equidistant set of data on
each intervals [xi, xi+1], i = 0, 1, . . . , N − 1, (xij , z

(μ)
ij ), j = 0, 1, . . . , k, μ =

0, 1, . . . , rij and a fixed vertical scaling parameter αi , such that |αi | < 1
ci
, ci =

max{rij , j = 0, 1, .., k}.
For the given set of equidistant data we will consider the following coefficients

in the functions ujμ
in

ain = xin − xin−1

xi0 − xik
= 1

k
, n = 1, 2 . . . , k, i = 0, 1, . . . , N.

For a fixed j and any μ = {0, 1, . . . , rij } we define the functions uin, v
jμ
in given

by uin(x) = x
k
+ bin and v

jμ
in (x, y) = αiy + g

jμ
in (x), where g

jμ
in (x) = hjμ ◦

uin(x)− αisjμ(x), where the functions sjμ are given in such a way that the fractal
functions satisfy the Hermite type interpolation conditions. Also in order to have a
differentiable fractal function, in the end-point of the intervals we have the following
conditions:

v
jμ

in−1,t (xik, z
jμ

ik,t ) = v
jμ

in,t (xi0, z
jμ

i0,t )

and using relation (2), we have

αiz
jμ

ik,t + g
jμ

in−1(xik)

at
in−1

= αiz
jμ

ik,t + g
jμ

in (xik)

at
in
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also from formula (2) we obtain

z
jμ

ik,t =
h
(t)
jμ(xik)− ktαis

(t)
jμ(xik)

1− ktαi

, y
jμ

i0,t =
h
(t)
jμ(xi0)− ktαis

(t)
jμ(xi0)

1− ktαi

and it follows that

h
(t)
jμ(xik)− ktαis

(t)
jμ(xik)

1− ktαi

− s
(t)
jμ(xik) =

h
(t)
jμ(xi0)− ktαis

(t)
jμ(xi0)

1− ktαi

− s
(t)
jμ(xi0),

this gives the following conditions for the functions sjμ

h
(t)
jμ(xik) = s

(t)
jμ(xik), h

(t)
jμ(xi0) = s

(t)
jμ(xi0), t = 0, 1, . . . , p.

This means that we can choose this functions to be Hermite type polynomials with
the nodes xik and xi0, and multiplicity order p

sjμ(t) =
p∑

t=0

h
(t)
jμ(xi0)h0,t (x)+

p∑

t=0

h
(t)
jμ(xik)hk,t (x),

where h0,t and hk,t are fundamental Hermite polynomials

h0,t (x) = u0(x)
(x − xi0)

t

t !
p−t∑

l=0

(x − xi0)
l

l!
(

1

u0(x)

)(l)

x=xi0

hk,t (x) = uk(x)
(x − xik)

t

t !
p−t∑

l=0

(x − xik)
l

l!
(

1

uk(x)

)(l)

x=xik

with u0(x) = (x − xik)
p+1 and uk(x) = (x − xi0)

p+1.
Then the iterated function system associated to h

(t)
jμ,αi

is given with the following
functions

uin(x) = 1

k
x + bin (3)

v
jμ
in,t (x, y) = ctiαiy + h

(t)
jμ(uin(x))− ctiαis

(t)
jμ(x),

hjμ,αi is the fractal function given with the functions sjμ.

Theorem 1 If we have a set of interpolation data {(xi, zi ), n = 1, . . . , N}, and
xi0 < xi1 < . . . xik , an equidistant set of data on each intervals [xi, xi+1], i =
0, 1, . . . , N , with a vertical scaling parameter αi , then for a fixed j and μ =
1, 2, . . . , p the fractal function hjμ,αi satisfies the following conditions:

h
(t)
jμ,αi

(xi) = hjμ,αi (xi), i = 1, 2, . . . , N.
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Proof Using relation (2), we have

h
(t)
jμ,αi

(xi) = h
(t)
jμ,αi

(xi0) = z0t
jμ =

(g
jμ

i1 )(t)(x0)

at
i1 − αi

= 1

at
i1 − αi

(h
(t)
jμ(uin(xi0))− αis

(t)
jμ(xi0))

= 1

1− ktαi

(h
(t)
jμ(xi0)− αic

t
i s

(t)
jμ(xi0)) =

= 1

1− ktαi

(h
(t)
jμ(xi0)− αik

th
(t)
jμ(xi0)) =

= h
(t)
jμ(xi0) = h

(t)
jμ(xi), i = 1, 2, . . . , N.

��
Let D = {f : X → R|f continuous, f (x0) = z0, f (xN) = zN }. We will
consider a metric on D

d(f, g) = ‖f − g‖∞ = max{|f (x)− g(x)|, x ∈ X},∀f, g ∈ D.

(D, d) is a complete metrixc space, than for a fixed j and any μ = 1, 2, . . . , p we
will define the Read-Bajraktarević operator on (D, d)

(Bf )(x) =
N∑

i=1

k∑

n=1

v
jμ
in (u−1

in (x), fi(u
−1
in (x)))χuin(Xi)(x),

where fi = f |Xi , uin(x) = x
ci
+ bin, v

jμ

in (x, y) = αiy + g
jμ

in (x), with

g
jμ
in (x) = hjμ ◦ uin(x)− αisjμ(x).

Theorem 2 Let X be a nonempty connected set and {Xi, i ∈ N} nonempty
connected subsets of X and uin : Xi −→ Xin, i = 0, 1, . . . , N, n = 0, 1, . . . , k
a family of contractive homeomorphisms, and αi the vertical scaling parameters
such that |αi | < 1

ci
and k

∑N
i=1

1
ci

< 1, then the RB operator is contractive on
the complete metric space (D, d) and the unique fixed point f ∗ is called a local
Hermite type fractal function.

Proof

‖Bf − Bg‖∞ = max
x∈X |(Bf )(x)− (Bg)(x)| =

= max
x∈X |

N∑

i=1

k∑

n=1

(v
jμ
in (u−1

in (x), fi ◦ u−1
in (x))−

− v
jμ
in (u−1

in (x), gi ◦ u−1
in (x)))χuin(Xi)(x)| =
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= max
x∈X |

N∑

i=1

k∑

n=1

αi(fi(u
−1
in (x))− gi(u

−1
in (x))) ≤

≤
N∑

i=1

|αi |
k∑

n=1

max
x∈X |fi(u

−1
in (x))− gi(u

−1
in (x)) ≤

≤ k

N∑

i=1

|αi |‖f − g‖∞ ≤ k

N∑

i=1

1

ci
‖f − g‖∞

Because k
N∑

i=1

1
ci

< 1, implies that B is a contraction on (D, d). ��

Now we replace yk by Yk , let

ΔY = {(xk, Yk), k := 0, 1, . . . , N}

Denote f ∗Y the fractal interpolation function for ΔY from theorem 2.
Yk is a random variable, so f ∗Y (x) is also a random variable for all x ∈ X. In the

following theorem we will give an approximation of f ∗ by f ∗Y (x).

Theorem 3 If

‖E(f ∗Y )− f ∗‖∞ <∞

then

‖E(f ∗Y )− f ∗‖∞ <
k

1− s
‖E(hjμ)Y − hj,μ‖∞ + ks

1− s
‖E(sjμ)Y − sj,μ‖∞ (4)

for s = max{|αi|, i = 1, . . . , N}.
Proof By construction for x ∈ Xi we have

E(f ∗Y (x)) = αi

k∑

n=1

E(f ∗Y (u
−1
in (x)))−

k∑

n=1

E(hjμ(x))− αi

k∑

n=1

E(sjμu
−1
in (x)).

Hence

|E(f ∗Y (x))− f ∗(x)| ≤ |αi ||E(f ∗Y (x))− f ∗(x)| + k|E(hjμ(x)Y )− hjμ(x)|+

+k|αi ||E(sjμ(u−1
in (x)))Y − sjμ(u

−1
in (x))|.
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Then

(1− s)|E(f ∗Y (x))− f ∗(x)| ≤ k|E(hjμ(x)Y )− hjμ(x)|−

+ks|E(sjμ(u−1
in (x)))Y − sjμ(u

−1
in (x))|.

Taking the ||.||∞ norm we have relation (4). ��
In signal analysis, statistical models are established by observed data, in this

case these data are supposed to be random. Further interpolation methods have been
used in the reconstruction of random signals from samples. In the case when we
have to model discrete sequences we can use iterated function systems and fractal
interpolation functions. This is the reason why in this paper we investigate some
statistical properties of local type fractal functions corresponding to a set of random
type data. An upper bound of the error between the original function and the Hermite
type local fractal function in the case of random variable data is deduced.
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Optimal Control on a Model for Cervical
Cancer

Tri Sri Noor Asih, Widodo, and Dwi Rizkiana Dewi

Abstract Cervical cancer is caused by the human Papillomavirus (HPV) that
attacks the cervix. Cervical cancer globally ranks third as the most frequent cancer
among women. In this research, a model of HPV infection in cervical cancer consists
of five sub categories of cells, namely susceptible cells, infected cells, pre-cancer
cells, cancer cells, and viruses. The study was conducted by forming a model
of HPV infection with the addition of treatment controls on pre-cancerous cells.
The aim is to minimize the number of pre-cancerous cells while minimizing cost.
The HPV infection model with control was solved using Pontryagin’s maximum
principle in order to obtain optimal control. Numerical simulations are performed
on the differential equations for the cell densities using the fourth order Runge-Kutta
method. The simulation results indicate that a smart administration of treatment can
be tailored such that the number of pre-cancer cells is minimized at minimal cost.
This configuration with a minimal number of pre-cancer cells is favourable since it
inhibits the development of cancer cells.

1 Introduction

Cervical cancer is abnormal cell growth that occurs in the cervix. Cervical cancer
globally ranks third as the most frequent cancer among women, with estimated
569,847 new cases and 311,365 deaths in 2018 [3]. The human Papillomavirus
(HPV) plays a pivotal role as a cause of cervical cancer [9]. This virus can be
transmitted through sexual relations. Several types are called high risk HPV such
as HPV types 16, 18, 45, and 56. The persistence of high risk HPV can cause cancer
of the cervix, vagina and anus. Changes from healthy cells into cancer cells take
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a long time so the rate of this change can be controlled to reduce the mortality
in cervical cancer cases. Cervical cancer can be controlled by applying medical
treatments in various ways including chemotherapy, surgery, and radiation. Cervical
cancer treatment results in healing in between 66.3–95.1% of the cases, if performed
at a pre-cancer stage. The treatment renders bad results when done at an advanced
stage [4].

Optimal control has been applied to control and inhibit numerous diseases in
several studies. Neilan et al. [7] provide a control function of the vaccination level
to Taylor vaccination schedules, to minimize the number of infected individuals, and
to minimize the vaccination cost on the basis of a SEIR epidemic model. Modelling
optimal control of cervical cancer has been carried out by [1, 6], who use optimal
vaccination strategies to suppress HPV infection effectively and to minimize the
cost of vaccination.

However, in developing countries, HPV vaccination is not common. In general,
patients who are seen by doctors are already in a pre-cancer stage. This research
will apply optimal control for HPV infection models in cervical cancer on the basis
of the implementation by Asih et al. [2]. Application of optimal control will be done
as a treatment in the pre-cancer stage. We build a new model by adding control in
the pre-cancer compartment, and we will solve the model equations numerically
by using Pontryagin’s maximum and the fourth order Runge-Kutta time integration
scheme.

2 Mathematical Model

We revise the model proposed by Asih et al. [2] by adding a control function to
the pre-cancer cell density. Let S, I , P , C and V , respectively, denote the density
of normal (constituent) cells, the density of infected cells, the density of pre-cancer
cells, the density of cancer cells and the density of free viral particles.

dS

dt
= rS(1− (S + I))− αSV

dI

dt
= αSV − aI − δI

dV

dt
= nI − cV

dP

dt
= δpI + bP − θ

P 2

1+ P 2 − u(t)P

dC

dt
= θ

P 2

1+ P 2 − kC

(1)
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where u(t), 0 ≤ u(t) ≤ 0.9, is a control function. The complete description of the
parameter values, as well as their biophysical meaning, is given in [2]. The objective
function is used to minimize the density of cancer cells and to minimize the cost of
treatment over time T days. The problem is stated as

min
u∈U

∫ T

0
AC(t)+ u2(t)dt.

where the set of control is given by

U = {u : [0, T ] → [0, 0.9]},
subject to (1) and the initial condition

S(0) = S0, I (0) = I0, V (0) = V0, P (0) = P0, C(0) = C0,

Further, the corresponding values at time T , that is S(T ), I (T ), V (T ), P (T ), C(T )

are free. The model variable A is a weight factor representing a balancing parameter,
which determines the relative importance of the two factors in the optimal control
problem [5].

3 The Optimum Control Problem

The optimal control problem is solved using Pontryagin’s Maximum Principle. First
we will define the Hamiltonian function, which is followed by the introduction
of the stationary condition. Subsequently, we define the state equation and adjoint
equation.

The Hamiltonian function of this problem can be stated as

H(t, x, uλ) = f (t, x, u)+
5∑

i=1

λi(t)gi(t, x, u),

with

f (t, x, u) = AC(t)+ u2(t)

g1(t, x, u) = rS(1− (S + I))− αSV

g2(t, x, u) = αSV − aI − δI

g3(t, x, u) = nI − cV

g4(t, x, u) = δpI + bP − θ
P 2

1+ P 2 − u(t)P

g5(t, x, u) = θ
P 2

1+ P 2 − kC.
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Hence we obtain

H = AC + λS{rS(1− (S + I))− αSV } + λI {αSV − aI − δI } + λV {nI − cV }

+ λP

{

δpI + bP − θ
P 2

1+ P 2 − uP

}

+ λC

{

θ
P 2

1+ P 2 − kC

}

,
(2)

where λS, λI , λV , λP , λC are the associated adjoints for the states S, I, V , P, C,
respectively.

For the stationary condition, the optimal condition is given by

∂H

∂u
|u∗ = 0.

Solving u∗ from (2) gives

u∗(t) = PλP

2
.

Furthermore, from taking the bound of u, we conclude that

u∗(t) = min

{

0.9,max

(

0,
pλP

2

)}

. (3)

The state equations are given by

dS

dt
= ∂H

∂λS
= rS(1 − (S + I))− αSV

dI

dt
= ∂H

∂λI
= αSV − aI − δI

dV

dt
= ∂H

∂λV
= nI − cV

dP

dt
= ∂H

∂λP
= δpI + bP − θ

P 2

1+ P 2 − uP

dC

dt
= ∂H

∂λC
= θ

P 2

1+ P 2
− kC

(4)

subject to the initial condition

S(0) = S0, I (0) = I0, V (0) = V0, P (0) = P0, C(0) = C0.
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The adjoint equations are given by

dλS

dt
= −∂H

∂S
= λS(αV + rS + r(S + I − 1))− λI (αV ))

dλI

dt
= −∂H

∂I
= λS(rS) = λI (a + δ)− λV (n)− λP (δp)

dλV

dt
= −∂H

∂V
= λS(αS)− λI (αS)+ λv(c)

dλP

dt
= −∂H

∂P

= −λP

(

b − u− 2θP

P 2 + 1
+ 2θP 3

(P 2 + 1)2

)

− λC

(
2θP

P 2 + 1
+ 2θP 3

(P 2 + 1)2

)

dλC

dt
= −∂H

∂C
= A+ kλC

(5)

subject to the transversal condition λi(T ) = 0.

4 Numerical Simulation

To illustrate the effect of optimum control, we perform some numerical simulations
by using the set of parameter values as in [2]. The state equations and adjoint
equations will be solved numerically by the use of the fourth order Runge-Kutta
method [8]. The state equations will be simulated using a forward time integration
method while the adjoint equations are solved using a backward time integration
method, since the state equations have initial conditions and the adjoint equations
have conditions at the end-time.

Since the optimum control function is only active in the pre-cancer compartment,
it makes sense that the sub population of normal cells, infected cells, and free virus
pathogens are not influenced by this control function. In Fig. 1, it can be seen that
the pre-cancer cell density significantly decreases, and starts to increase again after
35 days.
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Fig. 1 The optimum control function makes the pre cancer cell density decrease significantly until
about 35 days, by taking initial values for (S0, I0, V0, P0, C0) = (0.92, 0.055, 8.9, 0.75, 0.75)
and A = 0.1

For the cancer cells, the obtained pattern is analogous, as one can see in Fig. 2.
Without the application of control, the number of pre-cancer and cancer cells would
increase and stabilize at the point of equilibrium. However, using control, the
numbers of pre-cancer and cancer cells decrease and stabilize after approximately
35 days. This stabilization is followed by an increase.

This means that the treatment shows its effectiveness in reducing the number of
pre-cancer and cancer cells until the 35th day. After that period, the effectiveness of
the treatment will decrease so that the number of pre-cancer cells and cancer cells
will increase again. In other words, the simulation results indicate that the therapy
needs to be repeated periodically every 35 days.
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Fig. 2 Optimum control results into a significant decrease of the cancer cells

5 Conclusion

From the numerical simulations we can conclude that giving control in the pre-
cancer compartment will imply a decrease of the number of pre-cancer and cancer
cells. In our result the effectiveness of control is in the range of 35 days. Hence after
35 days the next treatment needs to be applied again. In other words, the current
parameter setting indicates that the treatment can be given periodically with a period
of 35 days. Though the result heavily depends on the parameter values and on the
initial condition, we think that this model has some potential to predict optimal
treatments against cervical cancer. Model calibration on the basis of medical data
will be necessary in order to run more realistic simulations.
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Nitsche’s Master-Slave Method
for Elastic Contact Problems

Tom Gustafsson, Rolf Stenberg, and Juha Videman

Abstract We survey the Nitsche’s master-slave finite element method for elastic
contact problems analysed in Gustafsson et al. (SIAM J Sci Comput 42:B425–B446,
2020). The main steps of the error analysis are recalled and numerical benchmark
computations are presented.

1 Introduction

In a recent paper [2], we studied Nitsche’s method applied to contact problems
between two elastic bodies. We considered three formulations, two of which take
the different material properties of the bodies into account. In the third method,
which will be detailed in this paper, the body with a higher shear modulus is chosen
as the master body and the slave one is mortared to it through Nitsche’s method.
We have the same error estimates for all three formulations but the master-slave
approach appears to be the most straight-forward to implement.

Previously, the a priori estimates had been given under the assumption that the
solution is in Hs , with s > 3/2, see e.g. [1], and the a posteriori estimates were
derived using a saturation assumption. In [2], we were able to improve the error
analysis and avoid the saturation assumption. The key idea was to interpret Nitsche’s
method as a stabilised mixed method.

The plan of this paper is the following. In the next section we recall the elastic
contact problem. In Sect. 3 we present the Nitsche’s formulation, the stabilised
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method and show their equivalence. Then we summarise our error estimates and
in the final section give some numerical results supplementing those of [2].

2 The Elastic Contact Problem

By Ωi ⊂ R
d , i = 1, 2, d = 2, 3, we denote two elastic bodies in contact,

with the common boundary Γ = ∂Ω1 ∩ ∂Ω2. The parts of ∂Ωi on which Dirichlet
and Neumann boundary conditions are imposed are denoted by ΓD,i and ΓN,i ,
respectively. We let ui : Ωi → R

d be the displacement of the body Ωi and denote
the strain tensors by ε(ui ) = 1

2 (∇ui + (∇ui )
T ). The materials will be assumed to

be isotropic and homogeneous, i.e., σ i (ui ) = 2μi ε(ui ) + λi tr ε(ui )I , where μi

and λi are the Lamé parameters. We will exclude the possibility that the materials
are nearly incompressible and hence it holds λi � μi . We assume thar μ1 ≥ μ2
and call the body Ω1 the master and Ω2 the slave. The outward unit normals to the
boundaries are denoted by ni and we define n = n1 = −n2. Moreover, t denotes
unit tangent vector satisfying n · t = 0 (Fig. 1).

The traction vector σ i (ui )ni is decomposed into its normal and tangential parts,
viz.

σ i (ui )ni = σ i,n(ui )+ σ i,t (ui ). (2.1)

For the scalar normal tractions we use the sign convention

σ1,n(u1) = σ 1,n(u1) · n1, and σ2,n(u2) = −σ 2,n(u2) · n2, (2.2)

and note that on Γ these tractions are either both zero or continuous and compres-
sive, i.e. it holds that

σ1,n(u1) = σ2,n(u2), σi,n(ui ) ≤ 0, i = 1, 2. (2.3)

Fig. 1 Notation for the
elastic contact problem



Nitsche’s Master-Slave Method 901

The physical non-penetration constraint on Γ reads as u1 · n1 + u2 · n2 ≤ 0,
which, defining un = −(u1 · n1 + u2 · n2), can be written as

�un� ≥ 0, (2.4)

where �·� denotes the jump over Γ .
The Nitsche’s method is derived from the problem in displacement variables: find

u = (u1,u2), satisfying the equilibrium equations for the two bodies

− div σ i (ui ) = f i in Ωi. (2.5)

The boundary conditions are

ui = 0 on ΓD,i, σ i (ui )ni = 0 on ΓN,i . (2.6)

Next, we turn to the common boundary. Here we assume that the tangential tractions
vanish

σ i,t (ui ) = 0 on Γ, (2.7)

and that the normal stresses are continuous

σ i,t (ui ) = 0, σ1,n(u1)− σ2,n(u2) = 0 on Γ. (2.8)

The contact conditions are the non-penetration

�un� ≥ 0 on Γ, (2.9)

and the non-positivity of the normal stresses, and the compatibility condition

σi,n(ui ) ≤ 0, �un� σi,n(ui ) = 0 on Γ. (2.10)

By the contact boundary ΓC we mean the subset of Γ wherein there is compression,
i.e. σi,n(ui ) < 0. On the complement Γ \ ΓC , the normal tractions vanish. Note,
however, that the contact boundary is a priori unknown as it depends on the solution.

The stabilised method is based on the formulation in which the normal traction
is an independent unknown. Equations (2.8) and (2.10) are then replaced by

λ+ σ1,n(u1) = 0, λ+ σ2,n(u2) = 0 on Γ, (2.11)

and

λ ≥ 0, �un� λ = 0 on Γ. (2.12)
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3 The Finite Element Methods

The continuous displacements are in V = V 1 × V 2, with

V i = {wi ∈ [H 1(Ωi)]d : wi |ΓD,i = 0}.

By Ci
h we denote the simplicial mesh on Ωi which induces a facet mesh Gi

h on Γ .
The finite element solution is sought in V h = V 1,h × V 2,h, with

V i,h = {vi,h ∈ V i : vi,h|K ∈ [Pp(K)]d ∀K ∈ Ci
h}.

First, we recall the Nitsche’s master-slave method. To this end, we define the
mesh function h2 on Γ by h2|E = hE for E ∈ G2

h. The method reads as follows:
find uh ∈ V h such that

2∑

i=1

(σ i (ui,h), ε(vi,h))Ωi +〈σ2,n(u2,h), �vh,n�
〉
Γc(uh)

+ 〈
σ2,n(v2,h), �uh,n�

〉
Γc(uh)

+γ
〈μ2

h2
�uh,n� , �vh,n�

〉
Γc(uh)

=
2∑

i=1

(f i , vi,h)Ωi ∀vh ∈ V h, (3.1)

where γ > C−1
I , with CI > 0 denoting the constant in the discrete trace inquality

CIhE‖σ2,n(u2,h)‖2
0,E ≤ μ2‖σ 2(u2,h)‖2

0,K , E = K ∩ Γ, (3.2)

and

Γc(uh) = {x ∈ Γ : σ2,n(u2,h)+ γ
μ2

h2
�uh,n� < 0}. (3.3)

The nonlinearity of the problem stems from this dependence of the contact boundary
on the solution.

To define the stabilised method we need some additional notation. The normal
traction λ is in the space H− 1

2 (Γ ), dual to the trace space H
1
2 (Γ ), with the norm

‖ · ‖− 1
2 ,Γ

defined by duality. Defining

B(w, ξ; v, η) =
2∑

i=1

(σ i (wi ), ε(vi ))Ωi −
〈
�vn� , ξ

〉− 〈
�wn� , η

〉
, (3.4)

and

Λ = {ξ ∈ H− 1
2 (Γ ) : 〈w, ξ〉 ≥ 0 ∀w ∈ H

1
2 (Γ ), w ≥ 0 a.e. on Γ }, (3.5)
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the mixed formulation of the problem is: find (u, λ) ∈ V ×Λ such that

B(u, λ; v, η − λ) ≤
2∑

i=1

(f i , vi )Ωi ∀(v, η) ∈ V ×Λ. (3.6)

The traction is approximated on the mesh G12
h obtained as the intersection of G1

h and
G2
h:

Qh = {ηh ∈ H− 1
2 (Γ ) : ηh|E ∈ Pp(E) ∀E ∈ G12

h }. (3.7)

(Note that since the approximation is discontinuous across element boundaries
this is possible, even though the elements are general polygonals polyhedrons.)
Moreover, we introduce a subset of Λ, denoted by Λh, as the positive part of Qh,
i.e.

Λh = {ηh ∈ Qh : ηh ≥ 0}. (3.8)

The stabilised bilinear form Bh is defined through

Bh(wh, ξh; vh, ηh) = B(wh, ξh; vh, ηh)− αSh(wh, ξh; vh, ηh), (3.9)

where α > 0 is a stabilisation parameter and

Sh(wh, ξh; vh, ηh) =
〈 h2

μ2
(ξh + σ2,n(w2,h)), ηh + σ2,n(v2,h)

〉
Γ
. (3.10)

The stabilised method is: find (uh, λh) ∈ V h ×Λh such that

Bh(uh, λh; vh, ηh − λh) ≤
2∑

i=1

(f i , vi )Ωi ∀(vh, ηh) ∈ V h ×Λh. (3.11)

Note that

Sh(uh, λh; vh, ηh) =
〈 h2

μ2
(λh + σ2,n(u2,h)), ηh + σ2,n(v2,h)

〉
Γ
, (3.12)

and hence the stabilised term amounts to a symmetric term including the residual
λh + σ2,n.

Now, by testing with (0, ηh) in (3.11), one can infer that

λh =
(− σ2,n(u2,h)− μ2

αh2
�uh,n�

)
+. (3.13)
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Substituting this into the first equation obtained by testing with (vh, 0) in (3.11) we
get the Nitsche’s method (3.1) with γ = α−1.

4 Error Estimates

The error estimate will be derived in the norm

|||(w, ξ)|||2 =
2∑

i=1

(
μi‖w‖2

1,Ωi
+ 1

μi

‖ξ‖2
− 1

2 ,Γ

)
. (4.1)

The stability of the continuous problem is given in the following theorem.

Theorem 1 For every (w, ξ) ∈ V ×Q there exists v ∈ V such that

B(w, ξ; v,−ξ) � |||(w, ξ)|||2 and ‖v‖V � |||(w, ξ)|||. (4.2)

The idea with stabilisation is that it yields a method which is always stable in a
mesh-dependent norm for the Lagrange multiplier. Defining

|||(wh, ξh)|||2h =
2∑

i=1

μi‖w‖2
1,Ωi

+ μ−1
2

∑

E∈G2
h

hE‖ξh‖2
0,E, (4.3)

we directly obtain the estimate.

Theorem 2 Suppose that 0 < α < CI . Then, for every (wh, ξh) ∈ V h ×Qh, there
exists vh ∈ V h such that

Bh(wh, ξh; vh,−ξh) � |||(wh, ξh)|||2h and ‖vh‖V � |||(wh, ξh)|||h. (4.4)

In view of Theorem 2, the classical Verfürth trick yields the stability estimate in the
correct norms.

The error analysis then follows in a standard way, except for the additional term

(
μ−1

2

∑

E∈G2
h

hE‖ηh + σ2,n(v2,h)‖2
0,E

)1/2
, (4.5)

where (vh, ηh) are the interpolants of (u, λ). However, by a posteriori error analysis
techniques this term can be bounded by

|||(u− vh, λ− ηh)||| + HOT, (4.6)
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where HOT stands for a higher order oscillation term. We thus arrive at the following
quasi-optimality estimate of the method.

Theorem 3 For 0 < α < CI it holds that

|||(u− uh, λ− λh)||| � inf
(vh,ηh)∈V h×Λh

(|||(u− vh, λ− ηh)||| +
√
〈�un� , ηh〉

)

+HOT. (4.7)

For the a posteriori error analysis, we define the local estimators

η2
K = h2

K

μi

‖div σ i (ui,h)+ f i‖2
0,K , K ∈ Ci

h, (4.8)

η2
E,Ω = hE

μi

∥
∥�σ i (ui,h)n�

∥
∥2

0,E , E ∈ E i
h, (4.9)

η2
E,Γ = hE

μi

‖σ i,t (ui,h)‖2
0,E +

μi

hE

‖(�uh,n�)−‖2
0,E, E ∈ Gi

h, (4.10)

η2
E,ΓN

= hE

μi

∥
∥σ i (ui,h)n

∥
∥2

0,E , E ∈ N i
h, (4.11)

ζ 2
E,Γ = hE

μ2

∥
∥λh + σ2,n(u2,h)

∥
∥2

0,E , E ∈ G2
h, (4.12)

with i = 1, 2. The corresponding global estimator η is then defined as

η2 =
2∑

i=1

{ ∑

K∈Ci
h

η2
K+

∑

E∈E i
h

η2
E,Ω+

∑

E∈Gi
h

η2
E,Γ +

∑

E∈N i
h

η2
E,ΓN

}
+

∑

E∈G2
h

ζ 2
E,Γ . (4.13)

In addition, we need an estimator S defined only globally as

S2 = 〈
(�uh,n�)+, λh

〉
Γ
. (4.14)

Theorem 4 (A Posteriori Error Estimate) It holds that

η � |||(u− uh, λ− λh)||| � η + S. (4.15)
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5 Numerical Experiments

We investigate the performance of the master-slave method by solving adaptively
the problem (3.1) using P2 elements and the following geometry:

Ω1 = [0.5, 1] × [0.25, 0.75], Ω2 = [1, 1.6] × [0, 1]. (5.1)

The boundary conditions are defined on

ΓD,1 = {(x, y) ∈ ∂Ω1 : x = 0.5}, ΓN,1 = ∂Ω1 \ (ΓD,1 ∪ Γ ), (5.2)

ΓD,2 = {(x, y) ∈ ∂Ω2 : x = 1.6}, ΓN,2 = ∂Ω2 \ (ΓD,2 ∪ Γ ), (5.3)

while the material parameters are E1 = 1, E2 = 0.1 and ν1 = ν2 = 0.3. The
loading is

f 1 = (0,− 1
20 ), f 2 = (0, 0), (5.4)

which causes the left block to bend downwards. The active contact boundary Γc

is sought by alternately evaluating the inequality condition in (3.3) and solving the
linearised problem with α = 10−2.

The final meshes and the respective approximation of the contact force is given
in Fig. 2a and b where we use the notation {{σn(uh)}} for the mean normal stress over
the contact boundary. The resulting global a posteriori error estimator is given as a
function of the number of degrees-of-freedom in Fig. 2c. We observe, in particular,
that the asymptotic rate of convergence for the total error estimator is improved from
O(N−0.43) to O(N−1.02) where the latter corresponds to the rate of convergence one
expects from P2 elements and a completely smooth solution.



Nitsche’s Master-Slave Method 907

(c)

Fig. 2 The numerical example, the resulting meshes and global error estimators. (a) P2 after
3 uniform refinements. (b) P2 after 10 adaptive refinements. (c) The global a posteriori error
estimator η + S as a function of the number of degrees-of-freedom N
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The Fixed-Stress Splitting Scheme
for Biot’s Equations as a Modified
Richardson Iteration: Implications
for Optimal Convergence

Erlend Storvik, Jakub Wiktor Both, Jan Martin Nordbotten, and Florin
Adrian Radu

Abstract The fixed-stress splitting scheme is a popular method for iteratively
solving the Biot equations. The method successively solves the flow and mechanics
subproblems while adding a stabilizing term to the flow equation, which includes a
parameter that can be chosen freely. However, the convergence properties of the
scheme depend significantly on this parameter and choosing it carelessly might
lead to a very slow, or even diverging, method. In this paper, we present a way
to exploit the matrix structure arising from discretizing the equations in the regime
of impermeable porous media in order to obtain a priori knowledge of the optimal
choice of this tuning/stabilization parameter.

1 Introduction

Due to many applications of societal consequence, ranging from life sciences to
environmental engineering, simulation of flow in deformable porous media is of
great interest. A choice of a model is the quasi-static Biot equations, which couples
balance of linear momentum, and volume balance. In the most basic model, allowing
only small deformations and fully saturated media, the equations become linear.
However, the coupled problem has a complex structure, and it is not trivial to solve
the full problem monolithically. On the other hand, there are many efficient solvers
available for both porous media flow and elasticity. Therefore, splitting solvers are
a popular alternative, where one, often using readily available software, solves the
subproblems iteratively.

In order to ensure that such splitting solvers converge, a stabilizing term is added
to one or both of the equations. Choosing this term is important for the convergence
properties of the scheme. Particularly, in problems with high coupling strength,
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the number of iterations to achieve convergence varies significantly for different
stabilizations. In the fixed-stress splitting scheme, the original idea was to choose
the stabilization term in order to preserve the volumetric stress over the iterations,
see [1], by adding a scaled increment of pressures to the flow equation. Convergence
was proved mathematically in [2] and later, using a different approach, in [3]. In [4],
a range in which the optimal stabilization term resides was provided theoretically,
and verified numerically. Additionally, a numerical scheme to find the parameter
was proposed.

In this work, we continue the discussion on the optimal choice of the stabi-
lization parameter of the fixed-stress splitting scheme. Particularly, for the case of
impermeable porous media, where the coupling strength is known to be high [5].
Moreover, we expect it to be relevant for the more general low-permeable case. To
do so, we examine the matrix structure of the linear problem that arises when we
apply the fixed-stress splitting scheme for an idealistically impermeable problem
and realize this as a modified Richardson iteration. Using theory for the Richardson
iteration, we find the optimal stabilization parameter and discuss how to compute it.
To summarize, the contributions are:

• A proof that the fixed-stress splitting scheme can be posed as a modified
Richardson iteration, with a link between the optimal constant for the modified
Richardson iteration and the stabilization parameter in the fixed-stress splitting
scheme.

• A discussion on how to compute this stabilization parameter.

It is also worth noticing that the fixed-stress splitting scheme can be derived
using a generalized gradient flow approach, [6], and can be combined with a wide
range of discretizations, including space-time finite elements [7]. Moreover, it can
be seen as a smoother for multigrid methods [8]. In [9], the authors derived a relation
between the fixed-stress splitting scheme and the modified Richardson iteration,
and applied it as a preconditioner for Krylov subspace methods for solving the
monolithic problem.

2 The Quasi-Static Linear Biot Equations

The quasi-static linear Biot equations are a coupling of linear momentum balance
and mass balance (see [10]):

−∇ · σ = f , (1)

∂tm

ρ
+ ∇ · q = Sf , (2)

where σ is the stress tensor of the medium, m is the fluid mass, ρ is the fluid density,
q is the Darcy flux, and f and Sf are the body forces and sources/sinks, respectively.



Optimal Fixed-Stress Splitting 911

Now, the St. Venant-Kirchhoff stress tensor for the effective stress and Darcy’s law
is applied:

σ = 2με (u)+ λ∇ · uI − αpI, (3)

q = −κ (∇p − gρ) , (4)

where u is the displacement, ε (u) = 1
2

(∇u+∇u�) is the (linear) strain tensor,
μ, λ are the Lamé parameters, α is the Biot-Willis constant, p is the fluid pressure,
g is the gravitational vector and κ is the permeability. The volumetric change
is asserted to be proportional to the change in pore pressure and mechanical
displacement; ∂tm

ρ
= ∂

∂t

( p
M
+ α∇ · u), where M is a compressibility constant.

Finally, we define initial conditions u(t = 0) = u0 and p(t = 0) = p0,
and boundary conditions u|�N,u = uD , σ · n|�N,u = σN , p|�D,p = pD and
q · n|�N,p = qN , where ∂� = �D,u ∪ �N,u = �D,p ∪ �N,p , for a Lipschitz
domain, � ⊂ R

d , d being the spatial dimension.

3 The Discretized Biot Equations in Matrix Form

Discretizing the Biot equations by e.g., conforming finite elements and implicit
Euler in a two-field formulation (u, p) (making the substitutions (3) and (4) in (1)
and (2)), the resulting linear system in each time step can be written as follows

(
A −B�
B C

)(
uh

ph

)

=
(

f
g

)

, (5)

where A is the linear elasticity matrix, B is the coupling matrix, C is the single-phase
flow matrix, f and g correspond to the body forces and sources/sinks, respectively,
and uh and ph are the coefficient vectors for the discretized displacement and
pressure, respectively. For the rest of this paper, we consider an inf-sup stable finite
element pair (Vh,Qh). Furthermore, for impermeable porous media, the submatrix
C reduces to 1

M
M, where M is the mass matrix.

4 The Fixed-Stress Splitting Scheme as a Modified
Richardson Iteration

As mentioned in the introduction, the fixed-stress splitting scheme adds a scaled
incremental pressure to the flow equation while eliminating its dependence on the
displacement. For impermeable media, κ = 0, this results in the following linear
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system

(
A −B�

0
(
L+ 1

M

)
M

)(
�ui

h

�pi
h

)

=
(

f
g

)

−
(

A −B�
B 1

M
M

)(
ui−1
h

pi−1
h

)

, (6)

where L is the stabilization parameter, i ≥ 1 is the iteration index, �ui
h = ui

h−ui−1
h

and �pi
h = pi

h − pi−1
h .

Remark 1 (Optimality of Alternative Splitting) Notice that for impermeable media,
κ = 0, and particular discretizations, e.g., (P1, P0), the undrained split [11], will
converge in one iteration. Nevertheless, our experience is that the optimized fixed-
stress splitting proposed here is superior for slight perturbations of the permeability.

In the original formulation of the fixed-stress splitting scheme [1] the constant

L = α2

Kdr
was chosen, where Kdr = 2μ

d
+ λ, is the physical drained bulk

modulus. Later, in [2], convergence was proved for L ≥ α2

2Kdr
. In [4], an

interval containing the optimal stabilization parameter, including both of the two
aforementioned parameters, was provided through mathematical proofs, and then
verified numerically. We now show that the optimal parameter for impermeable
media is a value in this domain that is possible to compute a priori. For this, we
need the mathematical bulk modulus.

Definition 1 The mathematical bulk modulus, K�
dr ≥ Kdr , is defined as the largest

constant such that

2μ ‖ε (uh)‖2 + λ‖∇ · uh‖2 ≥ K�
dr‖∇ · uh‖2 for all uh ∈ Vh. (7)

It is easily seen that the physical drained bulk modulus satisfies inequality (7), but
generally the bound is not sharp.

Furthermore, by assuming that we have an inf-sup stable discretization we are
able to define the following parameter, β, that is important in finding the optimal L.

Lemma 1 Assume that the pair (Vh,Qh) is inf-sup stable. There exists β > 0 such
that for any ph ∈ Qh there exists a uh ∈ Vh satisfying 〈∇ · uh, qh〉 = 〈ph, qh〉 for
all qh ∈ Qh and

2μ ‖ε(uh)‖2 + λ ‖∇ · uh‖2 ≤ β ‖ph‖2 . (8)

A proof of this lemma can be found in [4].

Theorem 1 For impermeable media, κ = 0, the fixed-stress splitting scheme (6)
can be interpreted as the modified Richardson iteration

pi
h = pi−1

h + ω
(

M−1g̃−M−1Spi−1
h

)
(9)
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where ω =
(
L+ 1

M

)−1
, g̃ = g − A−1B f, and S = 1

M
M + BA−1B� is the Schur

complement. For the error eip := pi
h − ph it holds for all i ≥ 1

〈
M eip, eip

〉
≤
∥
∥
∥I− ωM−1/2SM−1/2

∥
∥
∥

2

2

〈
M ei−1

p , ei−1
p

〉
. (10)

From that, the optimal choice of ω is

ωopt = 2

λmax

(
M− 1

2 SM− 1
2

)
+ λmin

(
M− 1

2 SM− 1
2

) (11)

with the identifications

λmax

(
M− 1

2 SM− 1
2

)
= 1

M
+ α2

K�
dr

and λmin

(
M− 1

2 SM− 1
2

)
= 1

M
+ α2

β
,

where α is the Biot-Willis coupling constant, M is a compressibility coefficient, K�
dr

is the mathematical bulk modulus and β is the constant from Lemma 1.

Proof From (6) we have that

�pi
h =

((

L+ 1

M

)

M
)−1 (

g− Bui−1
h − 1

M
Mpi−1

h

)

(12)

and

ui−1
h = A−1f+ A−1B�pi−1

h . (13)

From the update of pressures in the fixed-stress splitting scheme we get the modified
Richardson iteration (9)

pi
h = pi−1

h +�pi
h = pi−1

h +
(

L+ 1

M

)−1 (
M−1g̃−M−1Spi−1

h

)
.

To find the optimal choice of the parameter ω in (9) we modify the equation

slightly by making the substitution pi
h = M− 1

2 p̃i
h and multiply from the left by M

1
2

to get

p̃i
h = p̃i−1

h +
(

L+ 1

M

)−1 (
M− 1

2 g̃−M− 1
2 SM− 1

2 p̃i−1
h

)
,

where M− 1
2 SM− 1

2 is symmetric. By the standard theory for the modified Richard-
son iteration [12], we conclude the optimal tuning parameter (9) and corresponding
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rate (10). Now, to make the identification λmax

(
M− 1

2 S M− 1
2

)
= α2

K�
dr

+ 1

M
we

consider Rayleigh quotients,

λmax

(
M− 1

2 SM− 1
2

)
= sup

p�=0

p�M− 1
2 SM− 1

2 p
p�p

= 1

M
+ sup

p�=0, Au=Bp

u�Au
p�Mp

= 1

M
+ sup

0 �=ph∈Qh

2μ ‖ε (uh)‖2 + λ ‖∇ · uh‖2

‖ph‖2
,

where uh ∈ V h solves

2μ 〈ε (uh) , ε (vh)〉 + λ 〈∇ · uh,∇ · vh〉 = α 〈ph,∇ · vh〉 for all vh ∈ V h,

for given ph ∈ Qh. Testing with vh = uh we have

2μ ‖ε (uh)‖2 + λ ‖∇ · uh‖2 = α 〈ph,∇ · uh〉 ≤ α ‖ph‖ ‖∇ · uh‖
≤ α√

K�
dr

‖ph‖
√

2μ ‖ε (uh)‖2 + λ ‖∇ · uh‖2

by the Cauchy-Schwarz inequality and the definition of K�
dr . This implies that

λmax

(
M− 1

2 SM− 1
2

)
= 1

M
+ α2

K�
dr

.

For the identification λmin

(
M− 1

2 SM− 1
2

)
= 1

M
+ α2

β
, recognize that

λmin

(
M− 1

2 SM− 1
2

)
= 1

M
+λmin

(
M− 1

2 B�A−1BM− 1
2

)
, and consider the algebraic

form of Lemma 1,

∃β ∀ph ∃uh : u�h A uh ≤ βp�h M ph and
1

α
B�uh = M ph. (14)

Moreover, recognize that for inf-sup stable discretizations B�A−1B is invertible.

Let ũh be the minimizer of

{

u�h A uh : 1

α
B�uh = M ph

}

. Finding the saddle point

using the Lagrangian

L (uh,�) = u�h A uh +��
(

1

α
B�uh −M ph

)
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we get the solutions � = 2α2
(
B�A−1B

)−1
Mph and ũh = 1

2α
A−1B� =

αB−�Mph. Hence, the minimizer satisfies

ũ�h Aũh = α2p�h M
(

B�A−1B
)−1

Mph.

From (14) we get, with uh depending on ph as above,

β = supph �=0
ũ�h Aũh

p�h M ph

= α2 supph �=0
p�h M

(
B�A−1B

)−1
Mph

p�h M ph

= α2 supph �=0
p�h M

1
2
(
B�A−1B

)−1
M

1
2 ph

p�h ph

= α2λmin

(
M− 1

2 B�A−1BM− 1
2

)−1
.

��
As a result of Theorem 1 we get the optimal stabilization parameter Lopt =
α2

2

(
1

K�
dr
+ 1

β

)
, which includes information on the boundary conditions.

4.1 Computing the Optimal Stabilization Parameter

There are two main options now for finding the optimal stabilization parameter. One
could estimate K�

dr by Kdr and find β by some table search of inf-sup constants, but
our experience is that this generally is not good enough. Therefore, we suggest to

approximate the eigenvalues λmax

(
M− 1

2 SM− 1
2

)
and λmin

(
M− 1

2 SM− 1
2

)
using the

power iteration [12] or some other cheap inexact scheme for finding maximal and
minimal eigenvalues. Notice that this is possible to do without explicitly computing
S. Also, the computation of K�

dr is relatively cheap while the computation of β

is not—it involves applying the fixed-stress splitting scheme with a non-optimal
stabilization parameter. We suggest using coarse approximations of both to define an
approximation of Lopt. This approximation can be expected to still yield relatively
good performance of the fixed-stress splitting scheme.

5 Numerical Examples

We test Theorem 1 numerically including the optimality of the proposed stabiliza-
tion parameter. For this, we consider a unit square test case with source terms that
enforce parabolic displacement and pressure profiles and zero Dirichlet boundary
conditions everywhere, but at the top boundary for the momentum balance equation



916 E. Storvik, et al.

where zero Neumann conditions are considered, see Fig. 1b or [4] for a more
thorough explanation. We choose the parameters from Table 1. The choice of the
extreme values M = ∞ and κ = 0 mimics the limit scenario of incompressibility
and impermeability. In this regime, the coupling strength of the Biot equations as
defined by Kim et al. [5] is infinite, and we consider the test a suitable stress test.

For fixed physical parameters, we test the performance of the fixed-stress
splitting scheme employing different tuning parameters. For the inf-sup stable P2-
P1 discretization, the average number of iterations is presented in Fig. 1a. Notice
especially that the proposed optimal stabilization parameter truly is optimal.
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(a) (b)

Fig. 1 Average number of iterations per time step for different stabilization parameters, L = α2

D ,
using parameters from Table 1. The dashed lines highlight the location of the tuning parameter,
Lopt, computed using fine tolerances in the power iteration. (a) Numerical results. (b) Displacement
(|uh|)

Table 1 Table of coefficients

Name Symbol Value

Lamé parameters μ, λ 41.667 · 109, 27.778 · 109

Permeability and compressibility κ , 1
M

0, 0

Temporal parameters t0, τ , T 0, 0.1, 1

Biot-Willis coefficient α 1

Relative error tolerance εr 10−6

Inverse of mesh size diameter 1/h 16, 32, 64, 128
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6 Conclusions

In this work, we derived mathematically a way to a priori determine the optimal
stabilization parameter for the fixed-stress splitting scheme using the theory for the
modified Richardson iteration. This optimal parameter involves the computations
of maximal eigenvalues for rather large matrices. However, they do not need to be
computed to high accuracy. Through a numerical experiment, we showed that the
proposed stabilization parameter is optimal for this problem.

References

1. A. Settari and F. M. Mourits. A Coupled Reservoir and Geomechanical Simulation System.
Soc Petrol Eng J, 3:219–226, 1998.
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Modeling and Simulation of Bed
Dynamics in Oxyfuel Fluidized Bed
Boilers

M. Beneš, P. Eichler, J. Klinkovský, M. Kolář, J. Solovský, P. Strachota,
and A. Žák

Abstract This contribution focuses on CFD modeling of the dynamics of the
bubbling fluidized bed under conditions specific for oxyfuel combustion. A custom
OpenFOAM solver is developed based on the Multiphase Particle-In-Cell frame-
work for handling the fluid-particle and inter-particle interactions. Features of this
Euler-Lagrange approach are discussed, and some of the solver design details
are given. Some simulation results of a laboratory-scale combustion device or its
combustion chamber are demonstrated, showing the capabilities of the solver. The
current limitations and plans for further development are also included.

1 Introduction

Oxyfuel combustion [14] is a promising technology allowing efficient CO2 capture
and storage [6], leading to environment friendly energy production. In addition,
when biomass is used as the primary fuel, negative carbon footprint can be achieved.
Currently, this technology is not ready for large-scale industrial application in power
plants. Intense research and development is under way in the area of design, tuning,
control, and mathematical modeling of both laboratory and pilot devices.

This paper presents the state of the development of a complex CFD algorithm
for simulating oxyfuel combustion conditions in modern fluidized bed boilers [2].
Oxyfuel combustion employs an oxidizing atmosphere consisting of pure oxygen
mixed with recirculating flue gases, so that nitrogen is largely eliminated from the
gas, whereas CO2 becomes its prominent component. In the combustion chamber,
fuel particles and an additional granular material such as limestone take part in
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multiphase flow, combustion, heat transfer and other processes [13] while being
maintained in the fluidized state by a sufficiently strong gas flow.

An analysis of several models and software packages applied to the multiphase-
flow problem without combustion has been performed in our previous paper [3].
Based on these findings, the OpenFOAM CFD toolbox was chosen as the basis for
the numerical solver. OpenFOAM provides a library of numerical solvers for various
coupled physical phenomena. Its object-oriented design opens wide possibilities for
combining and extending its features in order to obtain a solver suited to our specific
scenario.

The developed algorithm builds upon the coalChemistryFoam solver, which
readily employs the Eulerian finite volume approach for gas flow simulation
together with Lagrangian tracking of discrete parcels of particles. In addition, the
framework for chemical reactions in combustion and heat transfer is already present
there with the possibility to incorporate additional phenomena (devolatilization,
biomass particle disintegration). The effort to simulate multiphase flow in both cir-
culating and bubbling fluidized bed (CFB, BFB) [3] required heavy modifications.
The most important of them is the transition to the Multiphase Particle-in-Cell (MP-
PIC) method [1, 7, 9, 10] described in Sect. 2. The resulting solver has been named
kotelFoam, kotel being the Czech term for boiler.

In this paper, we present kotelFoam with features limited to the simulation of
multiphase flow of the oxygen/flue gas mixture and limestone particles. Additional
phenomena available in the original coalChemistryFoam are disabled. Further
details on the performed steps are laid out in Sect. 3 and the solver properties
together with some simple results are discussed in Sect. 4. Preliminary application
in the complex geometry of a laboratory-scale BFB boiler is shown in Sect. 5.

2 MP-PIC Multiphase Flow Model

In a bubbling fluidized bed, the granular material occupies a significant fraction
of the lower part of the combustion chamber. In this situation, particle collisions
strongly account for the dynamics of the solid phase and cannot be neglected. In
addition, it must be ensured that the particle volume fraction at close packing never
exceeds a maximum value known as the packing limit [1, 7]. Finally, the fact that
the domain volume is partly occupied by the particles influences the gas flow. The
above phenomena were not treated in coalChemistryFoam at all. However, it is
possible to handle them in an efficient way by means of the MP-PIC method, which
is described below.

The MP-PIC method treats the fluid phase as continuum within the Eulerian
reference frame and the solid phase as particle parcels within the Lagrangian
reference frame. The dynamics of the fluid and solid phase is modeled using a
fixed Eulerian grid and Lagrangian parcels, respectively. The inter-phase interaction
is arranged using interpolation operators [9]. The interaction between particles is
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carried out on the Eulerian grid using the averaged quantities without the need to
calculate the individual collisions.

The description of the solid phase is based on determination of particle distri-
bution function φ(x,mp, vp, t), where x is the position of the particle, mp is the
mass of the particle, vp is the particle velocity, and t is the time coordinate. The
time evolution of the particle distribution function is governed by the Liouville
equation [9, 10], which is dependent on the particle acceleration given by Andrews
and O’Rourke [1]

dvp

dt
= Dp

(
vf − vp

)− 1

ρp
∇p + g− 1

αpρp
∇τ . (1)

In the equation above, Dp is the drag coefficient given (in our case) by the
Gidaspow–Ergun–Wen&Yu model [4, 5], vf is the fluid velocity, ρp is the particle
density, p is the fluid pressure, g is the gravitational acceleration, αp is the particle
volume fraction, and τ is the inter-particle stress. The particle volume fraction is
given by integrating over particle mass and velocity as

αp =
∫

φ
mp

ρp
dmp dvp , (2)

and the inter-particle stress τ is given by the modified Harris and Crighton model
[9]

τ = Ppα
β
p

max
[
(αCP − αp) , ε(1− αp)

] , (3)

where αCP is the particle volume fraction at close packing and Pp, β, and ε are
constants.

Instead of directly solving the Liouville equation, the MP-PIC method relies
on tracking of particles clustered into computational parcels using Lagrangian
equations of motion and applying formula (1).

The dynamics of the fluid phase is governed by the mass and momentum balance
equations which are written as

∂(αf ρf )

∂t
+∇ · (αf ρf vf ) = 0, (4)

∂(αf ρf vf )

∂t
+∇ · (αf ρf vf ⊗ vf ) = −∇p +∇ · (αfTf )+ αf ρf g+ F , (5)

where αf is the fluid volume fraction, ρf is the fluid density, vf is the fluid velocity,
Tf is the fluid stress tensor, and F is the interphase momentum transfer function.
The interphase momentum transfer is given by integrating over particle mass and
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velocity coordinates as

F =
∫

φmp

[

Dp

(
vf − vp

)− 1

ρp
∇p

]

dmp dvp . (6)

The fluid is treated as a Newtonian fluid with stress tensor

Tf = μf

(

∇vf +
(∇vf

)T − 2

3
∇ · vf I

)

, (7)

where μf is the fluid viscosity, and the ideal gas equation of state is used to relate
its pressure and density.

3 Solver Details

In the following, we discuss some important details on the kotelFoam solver
implementation and setup within the OpenFOAM framework.

• As a derivative of coalChemistryFoam, the solver is ready for heat trans-
fer computations within each phase and between phases. However, as far as
multiphase flow alone is concerned, it is also possible to run isothermal flow
simulations only. Energy balance equations are therefore not discussed in this
paper.

• Currently, MP-PIC is implemented for limestone particles by means of
basicThermoMPPICCloud. In contrast to that, fuel particles rely on the
original coalCloud which is derived from kinematicCloud and does not
implement the phenomena described at the beginning of Sect. 2. However, fuel
particles are sparse in comparison to limestone and their collisions are currently
neglected.

• Changes in the governing equations for the gas phase were made according to
(4) and (5) so that αf is taken into account. Calculation of αf also allows to
use any of the drag models available in the Eulerian multiphase solvers (e.g.
twoPhaseEulerFoam).

• Gas phase turbulence models have been amended to include the effect of αf .
• Restrictions for the time step are computed separately based on both vf , vp and

the more restrictive bound is chosen. Including vp in the computation turned out
to be vital for the stability of the simulation.

• Sutherland’s law for gas viscosity has been correctly implemented for the indi-
vidual chemical components to allow for changes in the chemical composition
of the gas mixture (due to combustion in oxyfuel conditions). The respective
coefficients were taken from [12].
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4 Solver Properties and Computational Results

The development of kotelFoam is a work in progress. Here we present our current
knowledge and experience that testifies to both the benefits and issues of the solver.

kotelFoam is used for simulations in a reference domain representing a 2 m
tall cylindrical combustion chamber. The inlet is located at its bottom base with a
diameter of 102 mm. The chamber is widened in its upper part and the outlet at
the top has a diameter of 154 mm. The same geometry was used in our previous
experiments in [3] and represents a real experimental device described in [8].

The composition of gas used in the simulations is either that of air [3] or 25% of
O2 and 75% of CO2, which closely resembles the real gas mixture during oxyfuel
combustion. A constant temperature T = 1000 K is prescribed. The properties of
solid particles are the same as in [3] so that direct comparison with the results
therein is possible. Gas turbulence is modeled by the k − ε RAS model.

In the first test scenario, we verify the MP-PIC approach of kotelFoam against
twoPhaseEulerFoam and coalChamistryFoam solvers under circulating
fluidization conditions where the particle volume fraction is low. Mass inflow rates
of solids and air are 0.15 kg s−1 and 0.07275 kg s−1, respectively. The resulting
comparison at time t = 5 s is shown in Fig. 1 by means of the particle volume
fraction. At this time, the flow pattern is de facto steady as the particle inflow and
outflow are equal. The results indicate that for this situation, all solvers perform
equally well with a particularly tight agreement between the two Lagrangian
models.
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Fig. 1 Cross section-averaged particle volume fraction along the vertical axis of the combustion
chamber during circulating fluidization. Comparison of results obtained by different solvers
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Fig. 2 Evolution of the particle volume fraction in the lower part of the combustion chamber
under the bubbling regime conditions. Slices through the center of the 3D domain (details in [3])
are displayed

Next, we focus on simulation of the bubbling regime. In Fig. 2, we present such
behavior in the combustion chamber. As in [3], the mass inflow rates of oxyfuel
gas mixture and solid particles are 0.02912 kg s−1 and 0.15 kg s−1, respectively.
Since the fluid velocity decreases in the widening part of the chamber, the drag force
fades there. Hence, the particles are no more carried up to the outlet, remain inside
the chamber, and form a bed in its narrower part. After the initial 10 s of solids
injection, a bed with the total mass of 1.5 kg is obtained. The result demonstrates
the formation of bubbles from below and also testifies that the solver is able to work
with particle volume fractions common in the bubbling regime.

Other tests in the simple domain revealed the following observations and
issues:

• Lagrangian models (naturally) precisely satisfy the conservation of particle mass.
On the other hand, twoPhaseEulerFoam with some turbulence models for
solid phase (e.g. the phasePressure model) yield completely nonphysical
results with the particle volume fraction far exceeding the packing limit and solid
mass going to infinity.

• Results and stability of the solver relies on the settings of some submodels. In
particular, the explicit or implicit packing models yield qualitatively different
fluidization patterns and the implicit model appears to be more computationally
stable.
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• The parallel implementation of MP-PIC gives results dependent on domain
decomposition and numerical stability issues arise in some cases with parallel
computations.

5 Flow in Complex Geometry of the Experimental BFB
Boiler

Figure 3 demonstrates a preliminary simulation of gas flow though the whole duct
system of the experimental BFB boiler operating at the laboratory of the Czech
Technical University in Prague. The main features that need to be simulated are
the cyclone for solid particle separation and the recirculation system that uses
forced recirculation to inject flue gas back to the combustion chamber. Inspired by
Svenning [11], the model of the recirculation fan is based on the addition of external
forcing term to the momentum equation in the volume where the fan rotor is located.
The axial fx and tangential fθ force is computed using formulae given in [11]. The

exhaust

cyclone

flue gas

recirculation

duct

recirculation fan

primary air / oxygen duct

combustion

chamber

primary air

flow

streamlines

flue gas

recirculation

streamlines

fan operation

detail

Fig. 3 Schematic drawing of the duct system of the experimental BFB boiler. Arrows indicate
the direction of flow during operation. Streamlines demonstrate the results of the kotelFoam
simulation. The direction of flow is correct
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Fig. 4 Visualization of the fluid flow through the fan disk in a large surrounding domain. Gas
velocity magnitude is represented by the gray scale as well as the arrow size

inputs to these formulae are the total thrust T and total torque Q. The detail of fluid
flow through the fan disk in a large surrounding domain is illustrated in Fig. 4.

6 Conclusion and Further Work

The presented kotelFoam solver combines features from several parts of Open-
FOAM together with other custom improvements to be able to simulate the bubbling
fluidized bed in the combustion chamber and gas/particle flows in the accompanying
piping systems of fluidized bed boilers. Modifications are aimed at both air and
oxyfuel regimes of operation. In the current state, kotelFoam is already capable
of handling situations untractable by the solvers readily available in OpenFOAM.
However, further research is needed to tackle the numerical stability issues in
the parallel implementation of the MP-PIC method. Then, the other important
phenomena occurring in the reactor, such as disintegration of non-spherical fuel
particles, devolatilization, combustion, and heat transfer are to be added, again
combining the available features of coalChemistryFoam and custom code.
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Monotonicity Considerations for
Stabilized DG Cut Cell Schemes for the
Unsteady Advection Equation

Florian Streitbürger, Christian Engwer, Sandra May, and Andreas Nüßing

Abstract For solving unsteady hyperbolic conservation laws on cut cell meshes,
the so called small cell problem is a big issue: one would like to use a time step that
is chosen with respect to the background mesh and use the same time step on the
potentially arbitrarily small cut cells as well. For explicit time stepping schemes
this leads to instabilities. In a recent preprint [arXiv:1906.05642], we propose
penalty terms for stabilizing a DG space discretization to overcome this issue for the
unsteady linear advection equation. The usage of the proposed stabilization terms
results in stable schemes of first and second order in one and two space dimensions.
In one dimension, for piecewise constant data in space and explicit Euler in time,
the stabilized scheme can even be shown to be monotone. In this contribution, we
will examine the conditions for monotonicity in more detail.

1 A Stabilized DG Cut Cell Scheme for the Unsteady
Advection Equation

We consider the time dependent linear advection problem on a cut cell mesh. In
[1], we propose new stabilization terms for a cut cell discontinuous Galerkin (DG)
discretization in two dimensions with piecewise linear polynomials. In the following
we will refer to this as Domain-of-Dependence stabilization, abbreviated by DoD
stabilization.
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While the usage of finite element schemes on embedded boundary or cut cell
meshes has become increasingly popular for elliptic and parabolic problems in
recent years, only very little work has been done for hyperbolic problems. The
general challenge is that cut cells can have various shapes and may in particular
become arbitrarily small. Special schemes have been developed to guarantee
stability. Perhaps the most prominent approach for elliptic and parabolic problems
is the ghost penalty stabilization [2], which regains coercivity, independent of the
cut size.

For hyperbolic conservation laws the problems caused by cut cells are partially
of different nature. One major challenge is that standard explicit schemes are not
stable on the arbitrarily small cut cells when the time step is chosen according to the
cell size of the background mesh. This is what is often called the small cell problem.
Adapting the time step size to the cut size is infeasible, as there is no lower bound on
the cut size. An additional complication is the fact that there is typically no concept
of coercivity that could serve as a guideline for constructing stabilization terms.

In [1], we consider the small cell problem for the unsteady linear advection
equation. We propose a stabilization of the spatial discretization, which uses a
standard DG scheme with upwind flux, that makes explicit time stepping stable
again. Our penalty terms are designed to restore the correct domains of dependence
of the cut cells and their outflow neighbors (therefore the name DoD stabilization),
similar to the idea behind the h-box scheme [4] but realized in a DG setting using
penalty terms. In one dimension, we can prove L1-stability, monotonicity, and TVD
(total variation diminishing) stability for the stabilized scheme of first order using
explicit Euler in time. For the second-order scheme, we can show a TVDM (TVD
in the means) result if a suitable limiter is used.

In this contribution, we will focus on the monotonicity properties in one
dimension for the first-order scheme and examine them in more detail. In particular,
we will show that a straight-forward adaption of the ghost penalty approach [2] to
the unsteady transport problem, as proposed in [3] for the steady problem, cannot
ensure monotonicity. Further, we will examine the parameter that we use in our new
DoD stabilization in more detail than done in [1].

2 Problem Setup for Piecewise Constant Polynomials

For the purpose of a theoretical analysis with focus on monotonicity, we will
consider piecewise constant polynomials in 1D. We use the interval I = [0, 1]
and assume the velocity β > 0 to be constant. The time dependent linear advection
equation reads

ut (x, t)+ βux(x, t) = 0 in I × (0, T ), (1)
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k − 2 k − 1 k1 k2 k + 1

xcut

α h (1 − α )hh

t n

t n +1

xk − 5
2

xk + 3
2

Fig. 1 Domains of dependence for the solution at time tn+1 for the considered model problem for
a time step with length �t = λ

β
h with λ = 1

3 and β = 1

with initial data u(x, 0) = u0(x) and periodic boundary conditions. We discretize
the interval I in N equidistant cells Ij = [xj− 1

2
, xj+ 1

2
] with cell length h. Then,

we split one cell, the cell k, into a pair of two cut cells using the volume fraction
α ∈ (0, 1

2 ], see Fig. 1: The first cut cell, which we call k1, has length αh, the second
cut cell, which we call k2, has length (1 − α)h. Therefore, cell k1 corresponds to a
small cut cell, which induces instabilities, if α � 1

2 .
We define the function space

V 0
h (I) :=

{
vh ∈ L2(I) vh|Ij ∈ P0, j = 1, . . . , N

}
, (2)

with P0 being the function space of constant polynomials. The semidiscrete scheme,
which uses the standard DG scheme with an upwind flux in space and is not yet
discretized in time, is given by: Find uh ∈ V 0

h (I) such that

∫

I

dtuh(t) wh dx + a
upw
h (uh(t), wh) = 0, ∀wh ∈ V 0

h (I), (3)

with the bilinear form defined as

a
upw
h (uh,wh) =

N∑

j=1

βuh(x
−
j+ 1

2
) �wh�j+ 1

2
+ βuh(x

−
cut) �wh�cut ,

and the jump being given by

�wh�j+ 1
2
= wh(x

−
j+ 1

2
)−wh(x

+
j+ 1

2
), x±

j+ 1
2
= lim

ε→0+
x
j+ 1

2
± ε.

We use explicit Euler in time. Then, (3) results in the global system

Mun+1 = Bun. (4)
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Here, un = [un
1, . . . , u

n
N ]T is the vector of the piecewise constant solution at time

tn and M is the global mass matrix. Note that M is a diagonal matrix with positive
diagonal entries. Finally, the global system matrix B is given by B = M − �tA
with Aun corresponding to the discretization of the bilinear form a

upw
h at time tn.

For a standard equidistant mesh, the scheme (4) is stable for 0 < λ < 1 with the
CFL number λ being given by

λ = β�t

h
. (5)

Our goal is to make the scheme stable for the mesh containing the cut cell pair for
0 < λ < 1

2 , independent of α. The reduced CFL condition is due to the fact that we
will only stabilize cut cell k1, and not the bigger cut cell k2.

To illustrate one interpretation of the small cell problem that we need to
overcome, we refer to Fig. 1. There, we determine the exact solution at time tn+1,
based on piecewise constant data at time tn, by tracing back characteristics. For
standard cells j , such as k−1, the domain of dependence of un+1

j only includes cells
j and j − 1. For the outflow neighbor of the small cut cell k1, the cell k2, however,
un+1
k2

depends on un
k−1, un

k1
, and un

k2
. The issue is that standard DG schemes such as

(3) only provide information from direct neighbors. We will see that the proposed
stabilization that ensures monotonicity will also fix this problem. We will return to
this specific interpretation of the small cell problem in Sect. 4, when discussing the
proper choice of the penalty parameter in the stabilization.

3 Monotonicity Considerations for Two Different
Stabilization Terms

In the following, we will examine the monotonicity properties of different stabiliza-
tions. A monotone scheme guarantees in particular that minj u

0
j ≤ un ≤ maxj u

0
j

for all times tn. We will use the following definition of a monotone scheme.

Definition 1 A method un+1
j = H(un

j−iL
, un

j−iL+1, . . . , u
n
j+iR

) is called monotone,
if for all j there holds for every l with −iL ≤ l ≤ iR

∂H

∂uj+l

(uj−iL , . . . , uj+iR ) ≥ 0. (6)

For the linear scheme (4) this implies that all coefficients of B need to be non-
negative. This is due to the fact that M is a diagonal matrix with strictly positive
entries. On an equidistant mesh, the scheme (4) is monotone for 0 < λ < 1.
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We will compare the entries of the matrix B for three different cases: the
unstabilized case, a stabilization in the spirit of the ghost penalty method [2], and
the DoD stabilization [1] that we propose.

3.1 Unstabilized Case

In this case, the matrix B is given by

B =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

h−τ 0 ··· ··· 0 τ
τ h−τ 0 0

0
. . .

. . .
...

... τ αh− τ

τ (1− α)h− τ
...

...
. . .

. . . 0

0 ··· ··· 0 τ h−τ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

with τ := β�t > 0. We therefore focus on the diagonal entries. On standard cells,
and on cell k2, the entries h − τ and (1 − α)h − τ are positive due to the CFL
condition β�t = λh if the reduced CFL condition 0 < λ < 1

2 is used. On the small
cut cell k1, the entry αh− τ is clearly negative for α < λ, which is the case that we
are interested in.

3.2 Ghost Penalty Stabilization

We first consider the option of using the ghost penalty method for stabilization,
an approach that is, e.g., used in [3] for stabilizing the steady advection equation.
Adapting the stabilization to our model mesh (compare Fig. 1) changes the formu-
lation of (3) to: Find uh ∈ V 0

h (I) such that

∫

I

dtuh(t) wh dx + a
upw
h (uh(t), wh)+ JGP

h (uh,wh) = 0, ∀wh ∈ V 0
h (I), (7)

with

JGP
h = βη1 �uh�k− 1

2
�wh�k− 1

2
+ βη2 �uh�cut �wh�cut . (8)
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As a result, the matrix B in (4) is modified in the following way

BGP =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

h−τ 0 ··· ··· 0 τ
τ h−τ 0 0

0
. ..

. ..
.. .

.

.

.

τ h− τ(1 + η1) τη1

.

.

. 0 τ(1+η1) αh− τ − τη1 − τη2 τη2

0 τ(1+η2) (1 − α)h− τ(1+ η2)

.

.

.

.

.

.
. . .

. .. 0

0 ··· ··· 0 τ h−τ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Our goal is to determine the parameters η1 and η2 such that every entry of BGP
is non-negative. The two entries on the first superdiagonal prescribe the restriction

η1 ≥ 0 and η2 ≥ 0. (9)

Next, we consider the entry BGP(k1, k1).This results in the condition

αh − τ − τη1 − τη2
!≥ 0.

Since αh− τ is negative for α < λ, we need to choose η1 or η2 to be negative. This
is a contradiction to (9). Therefore, it is not possible to create a monotone scheme
using this setup.

3.3 Domain-of-Dependence Stabilization

We now consider the DoD stabilization, which we introduced in [1]. The resulting
scheme is of the same form as (7), but instead of adding JGP

h we use the term

JDoD
h (uh,wh) := βη �uh�k− 1

2
�wh�cut . (10)
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One big difference between (8) and (10) is that the locations of the jump terms were
moved. As a result, the position of the stabilization terms in the matrix B changed:

BDoD =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

h−τ 0 ··· ··· 0 τ
τ h−τ 0 0

0
. ..

. . .
...

... τ (1−η) αh− τ (1− η) 0

τη τ(1−η) (1− α)h− τ
...

...
.. .

.. . 0

0 ··· ··· 0 τ h−τ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

In [1], we examined the monotonicity conditions of the stabilized scheme for the
theta-scheme in time and a fixed value of η. Here, we will focus on using explicit
Euler in time and vary η instead. Requiring that all entries become non-negative
results in the following three inequalities:

I αh − τ (1− η) ≥ 0,

II τη ≥ 0,

III τ (1− η) ≥ 0.

Short calculations show that this implies the following restrictions on η

η
II≥ 0, 1− α

λ

I≤ η
III≤ 1, i.e., we need to choose η ∈

[
1− α

λ
, 1
]

and should not stabilize for α > λ. In other words, for α � λ < 1
2 , the resulting

scheme using explicit Euler in time is monotone for η ∈ [
1− α

λ
, 1
]
, despite the CFL

condition on the cut cell k1 being violated. Next, we will discuss how to best choose
η within the prescribed range.

4 Choice of η in DoD Stabilization

We denote the discrete solution on cell j at time tn by un
j . Resolving the system

Mun+1 = BDoDu
n for the update on the two cut cells under the condition α < λ <

1
2 , we get

un+1
k1

= un
k1
− λ

α
(1− η)

(
un
k1
− un

k−1

)
,

un+1
k2

= un
k2
− λ

1− α

(
un
k2
− un

k1

)
− λ

1− α
η
(
un
k1
− un

k−1

)
.
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For monotonicity, we need to choose η ∈ [
1− α

λ
, 1
]
. We will now examine the two

extreme choices, η = 1− α
λ

and η = 1, in more detail.
For η = 1− α

λ
, the two update formulae have the following form:

un+1
k1

= un
k−1 and un+1

k2
=
(

1− λ

1− α

)

un
k2
+ α

1− α
un
k1
+ λ− α

1− α
un
k−1.

We observe, comparing with Fig. 1, that the new update formulae now use the
correct domains of dependence. In particular, un+1

k1
now coincides with un

k−1

and un+1
k2

now includes information from un
k−1, which is the neighbor of its

inflow neighbor. Actually, the resulting updates correspond to exactly advecting a
piecewise constant solution at time tn to time tn+1 and to then averaging. Therefore,
thanks to the stabilization, we have implicitly restored the correct domains of
dependence. In that sense, the new stabilization has a certain similarity to the h-
box method [4].

For the choice η = 1 the update formulae reduce to:

un+1
k1

= un
k1

and un+1
k2

= un
k2
− λ

1− α

(
un
k2
− un

k−1

)
.

We observe that in this case the smaller cut cell k1 will not be updated. Instead, it
just keeps its old value. In addition, the update of the solution on cell k2 does not
include information of its inflow neighbor k1. Therefore choosing η = 1 can be
interpreted as skipping the small cut cell and let the information flow directly from
its inflow neighbor into its outflow neighbor.

Remark 1 In [1], we propose to use η = 1− α
2λ ∈

[
1− α

λ
, 1
]
. One reason is that this

produces more accurate results for piecewise linear polynomials than η = 1− α
λ

, as
the latter one is too restrictive in terms of slope limiting.

5 Numerical Results

We will now compare the different choices of η for the DoD stabilization numeri-
cally. We consider the grid described in Fig. 1 and place cell k such that x

k− 1
2
= 0.5.

We use discontinuous initial data

u0(x) =
{

1 0.1 ≤ x ≤ 0.5,

0 otherwise,
(11)

with the discontinuity being placed right in front of the small cut cell k1. We set
β = 1, α = 0.001, λ = 0.4, and h = 0.1, and use V 0

h (I) as well as periodic
boundary conditions. We test four different values for η: the extreme cases η = 1
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Fig. 2 Results after one time step for the DoD stabilization for different values of η

and η = 1 − α
λ

as well as η = 1 − α
2λ and a value, η = 1 − 2α

λ
, that violates the

monotonicity considerations.
In Fig. 2 we show the different solutions after one time step. For η = 1 we

observe that the solution on cell k1 has not been updated, while the updates on the
other cells are correct. Obviously, cell k1 has simply been skipped. The solution
for η = 1 − α

λ
corresponds to exactly advecting the initial data and to then apply

averaging. If we choose η = 1− α
2λ , we observe that u1

k1
lies between u1

k−1 and u1
k2

.

Finally, for η = 1− 2α
λ

, which is not included in the suggested interval, we observe
a strong overshoot on the small cut cell. This cannot happen for a monotone scheme.
Therefore, the numerical results confirm our theoretical considerations above.
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Global Random Walk Solutions for Flow
and Transport in Porous Media

Nicolae Suciu

Abstract This article presents a new approach to solve the equations of flow
in heterogeneous porous media by using random walks on regular lattices. The
hydraulic head is represented by computational particles which are spread globally
from the lattice sites according to random walk rules, with jump probabilities
determined by the hydraulic conductivity. The latter is modeled as a realization of a
random function generated as a superposition of periodic random modes. One- and
two-dimensional numerical solutions are validated by comparisons with analytical
manufactured solutions. Further, an ensemble of divergence-free velocity fields
computed with the new approach is used to conduct Monte Carlo simulations of
diffusion in random fields. The transport equation is solved by a global random walk
algorithm which moves computational particles representing the concentration of
the solute on the same lattice as that used to solve the flow equations. The integrated
flow and transport solution is validated by a good agreement between the statistical
estimations of the first two spatial moments of the solute plume and the predictions
of the stochastic theory of transport in groundwater.

1 Introduction

Global random walk (GRW) algorithms, which are unconditionally stable and free
of numerical diffusion, solve parabolic partial differential equations by moving
computational particles on regular lattices according to random walk rules [7]. The
GRW approach, intensively used in Monte Carlo simulations of diffusion in random
velocity fields [4], is based on the relationship between the ensemble of trajectories
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of the diffusion process governed by the Itô equation and the probability density of
the process which verifies a Fokker–Planck equation. The strength of the approach
is that instead of sequentially generating random walk trajectories one counts the
number of particles at lattice sites, updated according to the binomial distributions
which describe the number of jumps to neighboring lattice sites. Since the total
number of particles is arbitrarily large, one obtains in this way highly accurate
numerical approximations of the probability density, which, in case of transport
simulations, is the normalized concentration of the solute that is transported by
advection and diffusion.

The second order differential operator of the Fokker–Planck equation coincides
with the diffusion operator in the mass balance equation with closure given by Fick’s
law only if the diffusion coefficient is constant. Otherwise, in order to rewrite the
diffusion equation as a Fokker–Planck equation, the drift coefficients have to be
augmented by the spatial derivatives of the diffusion coefficients (e.g., [5, Sect.
4.2.1]). The same procedure can be used to write the pressure equation for flow in
porous media based on Darcy’s law (e.g., [2]) as a Fokker Planck equation. Further,
numerical solutions of the flow problem can be obtained by solving the problem
formulated for the equivalent Fokker–Planck equation by GRW methods.

In case of highly variable coefficients, the particles may jump over several lattice
sites, the variability of the coefficients is smoothed, and the GRW solutions are
affected by overshooting errors [6]. Such errors are avoided by using biased-GRW
algorithms, where the particles are only allowed to jump to neighboring sites and
the advective displacements are accounted for by biased jump probabilities that are
larger in the direction of the drift [5, Sect. 3.3.3]. A different remedy, appropriate for
GRW solutions of the flow problem, consists of approximating directly the second
order operator in diffusion form, with flux terms estimated at the middle of the
lattice intervals by using staggered grids [5, Sect. 3.3.4.1].

We consider a two-dimensional domain, (x, y) ∈ � = [0, Lx] × [0, Ly] and the
pressure equation for flow in saturated porous media with constant porosity,

S
∂h

∂t
−
[

∂

∂x

(

K
∂h

∂x

)

+ ∂

∂y

(

K
∂h

∂y

)]

= f, (1)

where h(t, x, y) is the hydraulic head, K(x, y) is an isotropic hydraulic conductiv-
ity, S is the specific storage, and f (x, y) is a source/sink term. For an arbitrary
initial condition (IC) and time independent boundary conditions (BC), the non-
steady solution of Eq. (1) approaches a stationary hydraulic head h(x, y). With
f = 0 and

h(0, y) = H, h(Lx, y) = 0, ∀y ∈ [0, Ly], (2)

∂h

∂y
(x, 0) = ∂h

∂y
(x,Ly) = 0, ∀x ∈ [0, Lx ], (3)
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the gradient of the hydraulic head h(x, y) determines the components of the
divergence-free velocity field according to Darcy’s law

Vx = −K
∂h

∂x
, Vy = −K

∂h

∂y
. (4)

The GRW solutions presented in the following are tested against analytical
manufactured solutions [3] obtained from data files and codes given in the Git
repository https://github.com/PMFlow/FlowBenchmark. The isotropic hydraulic
conductivity is a space random function with mean 〈K〉 = 15 m/day. The random
fields lnK are normally distributed, with Gaussian correlations of fixed correlation
length λ = 1 m and increasing variances σ 2 = 0.1, 1, 2, with realizations
generated as sums of a finite number N = 100 of cosine random modes [5,
Appendix C.3.1.2].

2 One-Dimensional GRW Algorithms

The three different GRW approaches discussed in Sect. 1 are tested in the following
by solving the one-dimensional (1D) version of Eq. (1), with S = 1/a = 1 m−1,
written as an advection-diffusion equation,

1

a

∂h

∂t
+ ∂

∂x

(
∂K

∂x
h

)

= ∂2

∂x2 (Kh)+ f, (5)

in the interval (0, L), L = 200λ. The source f and the BCs h(0) and h(L) are
determined by the manufactured solution h̃(x) = 3 + sin(x) (see Git repository,
/FlowBenchmark/Manufactured_Solutions/Matlab/Gauss 1D/). The precision of the
numerical solution h(x) is quantified by the discrete L2 norm ε = ‖h− h̃‖L2 .

GRW algorithms approximate the hydraulic head by the distribution n(i, k) at
lattice sites i and times k of a system of N random walkers, h(i�x, k�t) ≈
n(i, k)a/N . The unbiased GRW moves groups of particles on the lattice according
to

n(j, k) = δn(j + vj , j, k)+ δn(j + vj − d, j, k)+ δn(j + vj + d, j, k), (6)

n(i, k + 1) = δn(i, i, k)+
∑

j �=i

δn(i, j, k)+ ?Nf�t@, (7)

where ?·@ is the floor function, vj = ?Vj�t/�x + 0.5@, Vj = a ∂K
∂x

(j�x), and d is
the size of the diffusive jumps. The time step �t and the space step �x are related
by

K(j�x) = rj
(d�x)2

2a�t
, (8)

https://github.com/PMFlow/FlowBenchmark
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where rj , 0 ≤ rj ≤ 1, is a variable jump probability. The number of particles
undergoing diffusion jumps, δn(j+vj∓d, j, k), and the number of particles waiting
at j + vj over the k time step, δn(j + vj , j, k), are binomial random variables with
mean values given by [5, Sect. 3.2.2]

δn(j + vj , j, k) = (1− rj )n(j, k), δn(j + vj ∓ d, j, k) = 1

2
rj n(j, k).

In the biased GRW algorithm d = 1 and Eq. (6) is replaced by

n(j, k) = δn(j, j, k)+ δn(j − 1, j, k)+ δn(j + 1, j, k).

The quantities δn verify in the mean

δn(j, j, k) = (1− rj )n(j, k), δn(j ∓ 1, j, k) = 1

2
(rj ∓ vj )n(j, k),

where vj = Vjδt/δx. The biased jump probabilities are given by (rj ∓ vj ) with rj
defined by (8) and, in addition to rj ≤ 1, one imposes the constraint | vj |≤ rj [5,
Sect. 3.3.3].

Alternatively, a GRW solution of the 1D version of the pressure equation (1),

1

a

∂h

∂t
− ∂

∂x

(

K
∂h

∂x

)

= f,

can be obtained as steady-state limit of the staggered finite difference scheme

1

a�t
[h(i, k + 1)− h(i, k)] =

1

�x2
{[K(i + 1/2)(h(i + 1, k)− h(i, k))] − [K(i − 1/2)(h(i, k)− h(i − 1, k))]} + f.

With jump probabilities defined by r(i ∓ 1/2) = K(i ∓ 1/2)a�t/�x2, r ≤ 1/2,
the staggered scheme becomes

n(i, k + 1) = [1− r(i − 1/2)− r(i + 1/2)]n(i, k)

+r(i − 1/2)n(i − 1, k)+ r(i + 1/2)n(i + 1, k)+ ?Nf�t@. (9)

The contributions to lattice sites i from neighboring sites summed up in (9) are
obtained with the GRW algorithm which moves particles from sites j to neighboring
sites i = j ∓ 1 according to

n(j, k) = δn(j, j, k)+ δn(j − 1, j, k)+ δn(j + 1, j, k). (10)



Global Random Walk Solutions for Flow and Transport in Porous Media 943

For consistency with the staggered scheme (9), the quantities δn in (11) have to
satisfy in the mean [5, Sect. 3.3.4.1],

δn(j, j, k) = [1− r(j − 1/2)− r(j + 1/2)] n(j, k), δn(j ∓ 1, j, k) = r(j ∓ 1/2)n(j, k).
(11)

The three GRW algorithms from above approximate the binomial random
variables δn by rounding of the unaveraged relations for the mean, e.g., (11),
summing up the reminders of multiplication by r and of the floor function ?Nf�t@,
and allocating one particle to the lattice site where the sum reaches the unity.
By giving up the particle indivisibility, one obtains deterministic GRW algorithms
which represent the solution n by real numbers and use the unaveraged relations for
δn.

Since the unbiased GRW algorithm is prone to large overshooting errors, due to
the high variability of the coefficients ∂K

∂x
and K , it is not appropriate to solve the

flow problem. For instance, to solve the test problem for σ 2 = 0.1 with errors ε ∼
10−1, an extremely small step �x = 10−5 is needed and one time iteration takes
about 8 min. Efficient solutions can be obtained with the biased GRW algorithm
(Method 1) and the GRW on staggered grids in both the random (Method 2) and
the deterministic implementation (Method 3). The stationary regime of the GRW
simulations, indicated by constant total number of particles and L2 error (see Fig. 1),
is reached after T = 2 · 107 time iterations. The comparison shown in Table 1
indicates that the deterministic implementation of the GRW on staggered grids is
the most efficient approach to solve flow problems for heterogeneous porous media.

0 0.5 1 1.5 2
t 107

6.0075

6.008

6.0085

6.009

6.0095

6.01

6.0105

6.011 1013

0 0.5 1 1.5 2
t 107

0.036

0.038

0.04

0.042

0.044

Fig. 1 Convergence of the 1D GRW solution for IC given by h0(x) = h̃(x), with f and K

specified by 〈K〉 = 15 m/day, N = 100, and σ 2 = 0.1

Table 1 Comparison of 1D
GRW methods

Method 1 Method 2 Method 3

ε 4.31e−02 1.60e−02 1.60e−02

CPU (min) 37.12 14.03 6.48
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3 Two-Dimensional GRW Solutions of the Flow Problem

The 2D GRW algorithm on staggered grids is defined similarly to (9–11) as follows:

n(i, j, k + 1) = [1− r(i − 1/2, j)− r(i + 1/2, j)− r(i, j − 1/2)

−r(i, j + 1/2)]n(i, j, k)

+ r(i − 1/2, j)n(i − 1, j, k)+ r(i + 1/2, j)n(i + 1, j, k)

+ r(i, j − 1/2)n(i, j − 1, k)+ r(i, j + 1/2)n(i, j + 1, k)

+ ?Nf�t@, (12)

n(l,m, k) = δn(l,m|l,m, k) + δn(l − 1,m|l,m, k)+ δn(l + 1,m|l,m, k)

+ δn(l,m− 1|l, m, k)+ δn(l,m+ 1|l,m, k), (13)

δn(l,m|l,m, k) =
[1− r(l − 1/2,m)− r(l + 1/2,m)− r(l,m− 1/2)− r(l,m+ 1/2)]n(l,m, k)

δn(l ∓ 1,m|l,m, k) = r(l ∓ 1/2,m)n(l,m, k)

δn(l,m∓ 1|l,m, k) = r(l,m∓ 1/2)n(l,m, k). (14)

Equation (1), with source term f , BC, and IC determined by the manufactured
solution h̃(x, y) = 1+ sin(2x + y), domain dimensions Lx = 20λ, Ly = 10λ, and
�x = �y = 10−1, is solved by the deterministic GRW on staggered grids. The L2

errors with respect to the manufactured solution are shown in Table 2.
The convergence of the 2D GRW solutions is investigated for the homogeneous

problem (f = 0, and IC given by the constant slope h0(0, y) = 1, h0(L, y) = 0),
for increasing σ 2, by successively halving the step size five times from �x = �y =
10−1 to �x = �y = 3.125 · 10−3. Using the errors with respect to the solution on
the finest grid, εk = ‖h(k) − h(6)‖L2 , the estimated order of convergence (EOC) is
computed according to EOC = log (εk/εk+1) / log(2), k = 1, . . . , 4. The results
presented in Table 3 indicate the convergence of order 2 for all the three values of
σ 2.

Table 2 Errors of 2D GRW
solutions for increasing σ 2 σ 2 = 0.1 σ 2 = 1 σ 2 = 2

ε 3.12e−02 4.08e−02 1.35e−01

T 2e06 1e07 2e07

CPU (min) 11.26 55.49 111.54
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Table 3 Computational order of convergence of the 2D GRW algorithm

σ 2 ε1 EOC ε2 EOC ε3 EOC ε4 EOC ε5

0.1 2.78e−03 1.9979 6.96e−04 2.0167 1.72e−04 2.0687 4.10e−05 2.3219 8.20e−06

1 2.63e−03 1.9902 6.62e−04 2.0131 1.64e−04 2.0685 3.91e−05 2.3219 7.82e−06

2 2.67e−03 1.9839 6.75e−04 2.0150 1.67e−04 2.0654 3.99e−05 2.3219 7.98e−06

4 Statistical Inferences

A Monte Carlo ensemble of solutions is obtained by solving the 2D homogeneous
problem (1–4) with f = 0 and H = 1, for 100 realizations of the random K-field
with fixed σ 2 = 0.1. A realization of the hydraulic head is shown in Fig. 2. The
components of the velocity field computed according to Darcy’s law (4) are shown
in Fig. 3.

The Monte Carlo estimates presented in Table 4 are close to the first-order the-
oretical predictions of the stochastic theories of flow and transport in groundwater
[1], e.g. variances of the order σ 2

h ∼ (σλH/Lx)
2 ∼ 10−4 for the hydraulic head,

σ 2
Vx

= 3
8σ

2 = 3.75 · 10−2, and σ 2
Vy

= 1
8σ

2 = 1.25 · 10−2, for longitudinal and
transverse velocity components, respectively.

5 Validation of the Flow and Transport GRW Solutions

The numerical setup from Sect. 4 corresponds to a possible scenario of contaminant
transport in groundwater systems with low heterogeneity [4]. With a typical value
of the local dispersion coefficient D0 = 0.01 m2/day, Monte Carlo simulations of
advection-diffusion are carried out using the ensemble of 100 velocity fields, on
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Fig. 2 Fluctuations of h(x, y) about the mean (left) and the corresponding contour lines (right)
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Fig. 3 Longitudinal velocity components of mean 〈Vx〉 = 1 m/day and transverse components of
mean 〈Vy 〉 = 0 m/day represented as function of x for fixed values of y

Table 4 Monte Carlo estimates of mean values and variances of the hydraulic head and of the
velocity components

h Vx Vy

Mean 5.00e−01± 1.74e−01 9.98e−01± 1.91e−02 −7.32e−04± 1.24e−02

Variance 3.27e−04± 6.27e−05 3.68e−02± 5.50e−03 1.30e−02± 1.90e−03
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Fig. 4 Mean velocity components of the center of mass of the solute plume (left) and effective
dispersion coefficients (right) compared with first-order approximations (dotted lines)

the same lattice as that used in Sect. 4 to solve the flow problem. The transport
problem is solved with the 2D generalization of the unbiased GRW algorithm (6–
7) [5, Appendix A.3.2]. The Monte Carlo estimates of the velocity of the plume’s
center of mass and of the effective dispersion coefficients presented in Fig. 4 are in
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good agreement with the first-order results obtained from simulations using a linear
approximation of the velocity field [5, Appendix C.3.2.2].

References

1. Dagan, G.: Flow and Transport in Porous Formations. Springer, Berlin (1989) https://doi.org/
10.1007/978-3-642-75015-1

2. Radu, F.A., Suciu, N., Hoffmann, J., Vogel, A., Kolditz, O., Park, C-H., Attinger, S.: Accuracy of
numerical simulations of contaminant transport in heterogeneous aquifers: a comparative study.
Adv. Water Resour. 34, 47–61 (2011) http://dx.doi.org/10.1016/j.advwatres.2010.09.012

3. Roache, P.J.: Code verification by the method of manufactured solutions. J. Fluids Eng. 124
(1):4–10 (2002) http://dx.doi.org/10.1115/1.1436090

4. Suciu, N.: Diffusion in random velocity fields with applications to contaminant transport in
groundwater. Adv. Water Resour. 69 (2014) 114-133. http://dx.doi.org/10.1016/j.advwatres.
2014.04.002

5. Suciu, N.: Diffusion in Random Fields. Applications to Transport in Groundwater. Birkhäuser,
Cham (2019) https://doi.org/10.1007/978-3-030-15081-5
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On Finite Element Approximation
of Aeroelastic Problems
with Consideration of
Laminar-Turbulence Transition

Petr Sváček

Abstract This paper focus on a finite element approximation of aeroelastic prob-
lems. The turbulent flow interacting with flexibly supported airfoil is considered.
The flow is described by unsteady Reynolds averaged Navier–Stokes equations,
where the main attention is paid to the simulation of turbulent flow with the
transition. The motion of the computational domain is addressed and the coupled
aeroelastic problem is discretized. Numerical results are shown.

1 Introduction

In last decades new computational methods become available for numerical simula-
tions of fluid-structure interaction problems. However, the numerical approximation
of such problems is still computationally very expensive. This is even worse for the
problems where the turbulent character of the flow needs to be considered. The
use of DNS or LES simulations is very limited particularly to low-Reynolds cases
and consequently the turbulent flow models based on Reynolds averaged Navier–
Stokes (RANS) equations are being used in technical practice in combination
with a suitable turbulence model. Recently also several transition models become
available, but the proper choice of the turbulence/transition model depends an
additional knowledge about the addressed situation. The transition models are
usually used for steady problems. Its application for unsteady flows on time
dependent domain is rather rare, see e.g. [1] or [2].

This paper focus on application of a transition turbulence model in the context of
aeroelastic simulations. Compared to the previous works here is the use of stabilized
finite element method for approximation of so-called ALE conservative form of
turbulence/transition equations. Compared to the previous works the method is
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additionally applied to a different benchmark problem of flutter type of aeroelastic
instability, see [3].

This paper focus on simulation of an aeroelastic benchmark problem, where
Menter’s γ − Reθt model of transition to turbulence is used. The flow model is
coupled to the motion of a flexibly supported airfoil model, where the geometrical
nonlinearities (see [4]) are taken into an account. The numerical results are shown.

2 Mathematical Description

The motion of a flexibly supported airfoil immersed in a flowing fluid is described
in terms of its vertical displacement h (downwards positive) and rotation by angle
α (clockwise positive), see Fig. 1. The non-linear equations of motion (see [5]) are
given by

mḧ+ Sα α̈ cosα − Sαα̇
2 sin α + khh = −L(t), (1)

Sαḧ cosα + Iαα̈ + kαα = M(t).

where m denotes the mass of the airfoil, Sα is its static moment around the elastic
axis (EA), Iα is its inertia moment around EA, kh and kα denotes the bending
and torsional stiffness constants, respectively. The aerodynamical lift force L(t)

and aerodynamical torsional moment M(t) are evaluated with the aid of the mean
(kinematic) pressure p and the mean flow velocity u = (u1, u2) as

L = −l

∫

�Wt

σ2j nj dS, M = l

∫

�Wt

σij nj r
ort
i dS, (2)

h

α EA
L(t)

M(t) Γ

ΓO
Γ

Ωt

Wt

D

Fig. 1 The flexibly supported airfoil model and a sketch of the computational domain with
boundary parts
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where l denotes the depth of the airfoil section of the airfoil, and rort
1 = −(x2−xEA

2 ),
rort

2 = x1 − xEA
1 , and (xEA

1 , xEA
2 ) is the position of EA at time t . Further, σij is the

stress tensor with components σij = ρ(−pδij + νeff Sij ), by Sij the components
of the symmetric gradient of the velocity are denoted, i.e. S(u) = 1

2 (∇u + ∇T u).
The effective viscosity νeff is given as sum of the kinematic viscosity ν and the
turbulent kinematic viscosity νT .

The mean velocityu and the mean pressure p are modelled in �t by the Reynolds
Averaged Navier–Stokes equations, see [6]. In order to treat the time-dependent
domain �t the RANS equations are written in the conservative ALE form (see e.g.
[7]) as

1

J
DAt (Ju)

Dt
+∇·((u− wD)⊗ u)−∇·(2νeff S(u)

)+∇p = 0, ∇·u = 0, (3)

where At is assumed to be a smooth ALE mapping of a reference configuration
�

ref

0 onto the current configuration �t at any t ∈ (0, T ), J = J(x, t) denotes its
Jacobian, DA/Dt is the ALE derivative (i.e. the time derivative with respect to the
reference configuration �

ref

0 ) and wD denotes the domain velocity (i.e. the velocity
of a point of the reference configuration).

The system (3) is equipped with an initial condition and boundary conditions
prescribed on the mutually disjoint parts of the boundary ∂� = �D ∪ �O ∪ �Wt :

(a) u = uD on �D, (b) u = wD on �Wt , (4)

c) −νeff(∇u+∇T u)n+ (p − pref)n+ 1
2 (u · n)−u = 0 on �O,

where pref denotes a reference pressure and α− = min(0, α) denotes the negative
part of the number α ∈ R.

For modelling of the turbulent-laminar flow transition the Menter’s SST k − ω

turbulence model, see [8]. The transition from laminar to turbulence regimes is
modelled with the aid of the Menter’s γ − Reθt model, see [9]. The turbulent
viscosity νT is modelled by νT = k

ω
, where k and ω are the turbulent kinetic energy

and the turbulent specific dissipation rate, respectively. The governing system of
equations (written in the ALE conservative form) for k and ω reads

1

J
DA(Jk)

Dt
+ ∇ · ((u− wD)k) = γeffPk − β∗ωkγeff +∇ · (εk∇k),

(5)
1

J
DA(Jω)

Dt
+∇ · ((u− wD)ω) = Pω − βω2 +∇ · (εω∇ω)+ CD,

where the viscosity coefficients are given by εk = ν + σkνT , εω = ν + σωνT , and
the source terms Pk , Pω and CD are defined by

Pk = νT S(u) : S(u), Pω = αωω

k
Pk, CD = σD

ω
(∇k · ∇ω)+.
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The closure coefficients β, β∗, σk , σω, αω, σD are chosen, e.g., according to [10]
or [11]. The production and the destruction terms are decreased using the effective
intermittency γeff = max(γ, γsep), which is taken as the maximum of the modelled
intermittency γ and the intermittency γsep modelled by an algebraic model. For the
destruction term of (5) the limited value of the intermittency is used, i.e. γ

eff
=

max(min(γeff, 1), 0.1). The intermittency γ is modelled by

1

J
DA(Jγ )

Dt
+∇ · ((u− wD)γ ) = Pγ − Eγ +∇ · (εγ∇γ ), (6)

where εγ = (ν + νT /σf ), σf = 1. Further Pγ = P
γ,1 − c

e1γPγ,1 and Eγ =
c
e2γEγ,1 − E

γ,1 are the transition source and destruction terms, respectively. These

terms are evaluated with a transported unknown Reθt governed by

1

J
DA(JReθt )

Dt
+∇ · ((u− wD)Reθt ) = Pθt + ∇ · (εRe

θt
∇Reθt ), (7)

where εRe
θt
= 2νeff and the source term is given by Pθt = cθt

ρ
t∞

(
Reθt − Reθt

)
(1−

Fθt ). The production and destruction terms of Eq. (6) are given as

P
γ,1 = c

a1FlengthS
√
γFonset , E

γ,1 = c
a2�γFturb,

where ca1 = 2, ca2 = 0.06, cθt = 0.03, t∞ = 500ν/U2 is the time scale, U is the
local magnitude of the velocity, S and � are the strain rate and vorticity magnitudes.
The transition onset is modelled by a function Fonset , function Fθt is a blending
function, see [12]. In order to enclose the model, the empirical correlations are
used for the length of the transition Flength , the transition onset momentum thickness
Reynolds number Reθt and for the critical transition Reynolds number Reθc , see
[12], see also [1].

The turbulence model (5)—(7) is equipped with the Dirichlet boundary condi-
tions for all quantities at the inlet �D , the Neumann/Newton boundary condition for
all quantities at the outlet �O , the Dirichlet boundary conditions for k and ω and the
homogenous Neumann boundary condition for γ and Reθt at �Wt .

3 Numerical Approximation

The Reynolds averaged Navier–Stokes equation are numerically approximated with
the aid of the fully stabilized finite element method using the Taylor-Hood finite
element pair for velocity/pressure approximations in the same way as described in
[1]. The turbulence model equations are weakly formulated, time discretized and
the finite element method is applied. For the sake of brevity the finite element
discretization procedure used for approximation of Eqs. (5)–(7) is described here
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for an equation of the same type for an unknown scalar variable φ. To this end we
consider the following equation for the variable φ in the domain �t

1

J
DA(Jφ)

Dt
+ ∇ · ((u− wD)φ) = P+

φ φ − P−
φ φ + ∇ · (εφ∇φ), (8)

where εφ = εφ(φ) is a diffusion coefficient and P+
φ = P+

φ (φ) and P−
φ = P−

φ (φ)

are production and destruction terms. The Eq. (8) is equipped by the boundary
conditions prescribed on ∂� = �D′ ∪ �N

(a) φ = φD on �D′ , (b) εφ
∂φ

∂n
= 1

2
((u− wD) · n)−φ, on �N, (9)

where �D′ either equals �D for φ being γ and Reθt or it is �D ∪ �Wt for φ being k

or ω. Boundary condition (9b) is the homogenous Neumann boundary condition if
either u−wD = 0 (e.g. on �Wt ) or if u · n > 0 (typically on �O with no backward
inflow).

In what follows let us consider the ALE mapping At to be already known (as
well as the domain �t and the domain velocitywD) and sufficiently smooth at every
time instant t ∈ I = (0, T ). For the purpose of time discretization an equidistant
partition tj = j�t of the time interval I with the constant time step �t > 0 is
considered and we denote the approximations φj ≈ φ(·, tj ) for j = 0, 1, . . . . We
assume that the approximation φj ≈ φ( , tj ) are already known for all j ≤ n as well
as the approximations of the flow velocity un+1 ≈ u(tn+1) and the discretization is
described only at a fixed (but arbitrary) time instant tn+1.

Let us denote by V = H 1(�tn+1) the trial space (a subspace of Sobolev space)
and by X ⊂ V the space of the test functions from V being zero on �D is denoted.
Although the test functions ψ ∈ X are defined at the time instant tn+1 on �tn+1 , we
shall extend them to be defined for x ∈ �t at any time t using the one-to-one ALE
mapping At with the assumption, that these functions are time independent on the
reference domain �

ref

0 , i.e. the extension of the test function ψext for any x ∈ �t at
any time t ∈ (0, T ) is defined by

ψext (x, t) = ψ(Atn+1(A
−1
t (x))). (10)

Using the extension of the test function ψ ∈ X (formally we use the same notation
ψ = ψext ) the weak form of the time derivative term can be written as

∫

�t

1

J
DA(Jφ)

Dt
ψdx = d

dt

(∫

�t

φψdx

)

. (11)

Problem (8) is multiplied by a test function ψ ∈ X, integrated over �t , Green’s
theorem is applied and boundary conditions (9) are used. The time derivative—
see the right hand side of equation (11)—is approximated at t = tn+1 by the
second order backward difference formula. The spaces V and X are approximated
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using the finite element subspaces Vh and Xh = Vh ∩ X constructed over an
admissible triangulation T� of the domain �, respectively. In order to treat the
dominating convection the SUPG stabilization method is used and the nonlinear
terms are linearized. The non-linear cross-wind diffusion term is used to prevent the
nonphysical negative values, see [13].

The stabilized discrete formulation reads: Find φ = φn+1
h ∈ V

h
such that it

satisfies approximately the Dirichlet boundary condition and for all test function
ψh ∈ Xh holds

B(φ;φ,ψh)+ BS(φ;φn+1
h , ψh) = L(φ;ψh)+ LS(φ;ψh),

where the (Galerkin) terms B(·, ·) and L(·) are given by

B(φ;φ,ψ) = (
εφ∇φ,∇ψ

)
�
+
(

3φ

2�t
+ P−

φ φ + 1

2
(∇ · wD)φ,ψ

)

�

+ c(φ,ψ)

c(φ,ψ) =
∫

�

(
1

2
(w · ∇φ)ψ − 1

2
(w · ∇ψ)φ

)

dx +
∫

�O

1

2
(w · n)+ψφ.

L(φ;ψ) =
( 4

2�t
φn,ψ

)

�tn

−
( 1

2�t
φn−1, ψ

)

�tn−1

+
(

P+
φ φ,ψ

)

�

. (12)

where w = u − wD denotes the convective velocity. The linearization of the

nonlinear terms εφ = εφ(φ) and P±
φ = P±

φ (φ) was used. The stabilization terms
based on the triangulation T� read

BS(φ;φ,ψ) =
∑

K∈T�

δ
K

( 3φ

2�t
+ w · ∇φ + P−

φ φ +∇ · (εφ ∇φ
)
,w · ∇ψ

)

K

LS(') =
∑

K∈T�

δK

(4φ̂n − φ̂n−1

2�t
+ P+

φ φ,w · ∇ψ
)

K

where the stabilizing parameter δ
K

is computed from the local element length, the
local viscosity coefficient, and the local magnitude of the convective velocity u −
wD , see [14] or [15].

4 Numerical Results

The described numerical method was realized within the in-house code (see [16])
was applied on solution of an aeroelastic problem. The far field velocity U∞ was
considered in the range 0− 30 m/s and the following data were used: the kinematic
viscosity ν = 1.5 × 10−5, the air density ρ = 1.225 kg m−3, and the reference
length was equal to the airfoil chord c = 0.254 m. The depth of the considered



On Finite Element Approximation of Aeroelastic Problems with Transition Effects 955

-4
-3
-2
-1
 0
 1
 2
 3
 4
 5

 0  0.2  0.4  0.6  0.8  1  1.2

�
 [d

eg
]

t [s]

U = 5
U = 10
U = 15
U = 20

-8

-6

-4

-2

 0

 2

 4

 6

 8

 0  0.2  0.4  0.6  0.8  1  1.2

h 
[m

m
]

t [s]

U = 5
U = 10
U = 15
U = 20

Fig. 2 The aeroelastic response for far field velocities in {5, 10, 15, 20} m/s
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Fig. 3 The aeroelastic response for far field velocities in {22, 24, 26, 28} m/s

section was l = 1m. The corresponding mass was m = 4.72 kg, the static moment
Sα with respect to the elastic axis EA (at 40% of the airfoil from the leading edge)
was Sα = 1.498× 10−1 kg m and the inertia moment was Iα = 2.95× 10−2 kg m2.
The bending and the torsional stiffnesses was kh = 14741.1 and kα = 121.3N
m/rad, respectively. The inlet turbulence intensity was chosen to be 2% and the inlet
specific dissipation was chosen as ω = 10 s−1.

The results in terms of the aeroelastic responses in terms of h, α are shown in
Figs. 2 and 3. Figure 2 shows that the vibrations of the airfoil are well damped for
the far field velocities up to 20 m/s. With further increase of the far field the damping
becomes smaller and for 28 m/s the undamped vibrations appear. This is in a good
agreement with the critical velocity Ucrit determined by the Theodorsen analysis
Ucrit = 27.8 m/s. The comparisons in terms of V−f (velocity-frequency)and V−g

(velocity-damping) diagrams are shown in Fig. 4. Very good agreement in frequency
is observed for each considered inflow velocity, whereas the damping coefficients
agrees well just for lower velocities. In the near-critical range of velocities the
damping coefficient determined from the simulations does not agree well with the
damping coefficient determined by the Theodorsen theory. However, the determined
value of the critical velocity corresponds well to the critical velocity found by the
Theodorsen analysis, see Fig. 4.
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Fig. 4 The comparison of the aeroelastic response computed by the linearized approach and by
the transition model

5 Conclusion

In this paper the application of a turbulence transition model for solution of aeroe-
lastic problems was described. The described method was tested on a benchmark
aeroelastic problem and it was shown that the use of the model provides reliable
results even when used for unsteady aeroelastic problems and small displacements
(e.g. aeroelastically stable region). The use of transition model predicts the aero-
dynamical quantities as drag/lift coefficients more precisely compared to standard
turbulence models as k−ω. On the other hand the application of the transition model
for post-flutter simulations seems still questionable and the results can be aeroelastic
results can be significantly influenced by possible appearance of a separation region.
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Second-Order Time Accuracy
for Coupled Lumped and Distributed
Fluid Flow Problems via Operator
Splitting: A Numerical Investigation

Lucia Carichino, Giovanna Guidoboni, and Marcela Szopos

Abstract We develop a new second-order accurate operator splitting approach
for the time discretization of coupled systems of partial and ordinary differential
equations for fluid flows problems. The scheme is tested on a benchmark test case
with an analytical solution; some of its main features, such as unconditional stability
and second-order accuracy, are verified.

1 Introduction

Multiscale coupling of systems of partial and ordinary differential equations
(PDEs and ODEs) is of interest when modeling fluid flow in complex hydraulic
networks. To ensure physical consistency and well-posedness of the coupled
problem, interface conditions enforcing continuity of mass and balance of forces are
imposed [3, 6], which should also be preserved at the discrete level when solving
the problem numerically. To this end, different monolithic and partitioned strategies
have been proposed, where the PDE and ODE systems are solved simultaneously or
in separate substeps, respectively, as reviewed in [7]. The main challenge of using
splitting schemes arise from the fact that they often require sub-iterations between
substeps in order to achieve convergence of the overall algorithm. However, the
convergence of such sub-iterations might become an issue, especially in the case of
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nonlinear problems. We developed in [1] a new technique based on operator splitting
for the time discretization of PDE/ODE multiscale problems, that allows to solve
separately and sequentially the Stokes problem and the ODEs without the need of
sub-iterations. The scheme yielded, at most, first-order accuracy in time, since (i)
the scheme included only two substeps and (ii) a first-order Backward Euler scheme
was used in each substep. In the present contribution, we extend this approach to a
novel second-order algorithm in time, and numerically investigate its stability and
accuracy.

2 The Coupled PDE/ODE Problem Arising in Fluid Flow
Modeling

To study the flow of a viscous fluid through a complex hydraulic network, we
consider the case of a domain � ⊂ R

d , d = 2, 3, where the fluid flow is described
by the non-stationary Stokes equations. The domain � is connected via a resistor to
a lumped circuit ϒ , see Fig. 1. We assume that the boundary of �, denoted by ∂�,
is the union of three portions, namely ∂� = � ∪ 0 ∪ S, where different types of
boundary or interface conditions are imposed: Dirichlet boundary conditions on �,
Neumann boundary conditions on 0, and Stokes-circuit coupling conditions on S.
For a given T > 0, the fully coupled problem consists in finding

• the d-dimensional velocity vector field v(x, t) and the scalar pressure field
p(x, t), for (x, t) ∈ �× (0, T );

• the pressure P(t) at the node of the circuit sitting on S, and the flow rate Q(t)

through S, for t ∈ (0, T );
• the l-dimensional vector of state variables y(t), that describes the dynamics in

the lumped hydraulic circuit ϒ , for t ∈ (0, T ),

Ω

S

P

Q

R π

C

Fig. 1 Schematic representation of the coupling between a Stokes region � and a circuit ϒ
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that satisfy the following equations

ρ
∂v

∂t
= −∇p + μ�v + ρf and ∇ · v = 0 in �× (0, T ), (1)

dy

dt
= A(y, t)y + s(y, t)+ b(Q,P ) in (0, T ), (2)

where ρ and μ represent the fluid density and dynamic viscosity, respectively, f is
a d-dimensional vector-valued function representing the given body forces per unit
of mass, A is a l× l tensor (possibly non-linear) that embodies topology and physics
of the connections among the circuit nodes, s and b are l-dimensional vector-
valued functions, with s accounting for sources and sinks within the circuit, and
b accounting for the Stokes-circuit connection. Here, we focus on lumped circuits
possibly involving resistive, capacitive and inductive elements, also known as RCL
circuits. As a consequence of the hydraulic analog of Kirchoff laws of currents and
voltages, electrical state variables y would be pressure, pressure difference, volume,
volumetric flow rate or linear momentum flux. The resistive connection between �

and ϒ , in addition to the capacitive connection to the ground at the circuit side of
the resistor, allows us to adopt pressures as state variables at both ends.

System (1) and (2) is equipped with the initial conditions

v(x, 0) = v0(x) in �, and y(t = 0) = y0, (3)

and the following boundary and interface conditions

v = 0 on � × (0, T ), (4)
(
− pI + μ∇v

)
n0 = −pn0 on 0 × (0, T ), (5)

(
− pI + μ∇v

)
nS = −PnS on S × (0, T ), (6)

Q(t) =
∫

S

v(x, t) · nS(x)dS for t ∈ (0, T ), (7)

where I is the d × d identity tensor, n0 is the outward unit normal vector to 0,
p = p(t) is a given function of time, and nS is the outward unit normal vector to S.

Remark 1 According to the complexity of the hydraulic network under considera-
tion, the geometrical architecture of the coupled problem used in this study can be
expanded to account for several distributed domains coupled with several lumped
circuits, with possible multiple connections among them, as described in [1].
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3 A Second Order Operator Splitting Algorithm

In this section, we introduce a novel second-order algorithm for the semi-
discretization in time of the coupled problem described in Sect. 2. We adopt a
Strang’s symmetrized splitting approach [4, Sec. 30.3] to design an algorithm that
allows us to solve sequentially, in separate substeps, the PDE system associated with
the Stokes region and the ODE system associated with the lumped hydraulic circuit.
The main rationale for our splitting scheme is that we aim to preserve at the discrete
level the physical energy balance derived at the continuous level, as in [1], for
the case of resistive Stokes-circuit connections. As a result, unconditional stability
with respect to the time step choice is obtained without the need of sub-iterations
between PDE and ODE substeps.

Let �t denote a fixed global time step, let tn = n�t and let ϕn = ϕ(tn) for any
general expression ϕ. Let v0 = v0 and y0 = y0. Then, the algorithm proceeds as
follows: for any n ≥ 0 solve

Step 1 Given the initial conditions v(x, tn) = vn(x) in � and y(tn) = yn, find
v(x, t) and y(t) such that

ρ
∂v

∂t
= 0 in �× (tn, tn+

1
2 ), (8)

dy

dt
= A(y, t) y + s(y, t) in (tn, tn+

1
2 ), (9)

and set vn+ 1
2 = v(x, tn+ 1

2 ) and yn+ 1
2 = y(tn+ 1

2 ).

Step 2 Given the initial conditions v(x, 0) = vn+ 1
2 (x) in � and y(0) = yn+ 1

2 ,
find v(x, t) and y(t) such that

∇ · v = 0 in �× (0,�t), (10)

ρ
∂v

∂t
= −∇p + μ�v + ρf (tn+

1
2 ) in �× (0,�t), (11)

dy

dt
= b(Q,P ) in (0,�t), (12)

v = 0 on � × (0,�t), (13)
(
− pI + μ∇v

)
n0 = −p(tn+

1
2 )n0 on 0 × (0,�t), (14)

(
− plI + μ∇v

)
nS = −PnS on S × (0,�t), (15)

∫

S

v(x, t) · nS(x) dS = Q(t) in (0,�t), (16)

and set v̂n+
1
2 = v(x,�t), pn+1 = p(x,�t) and ŷn+ 1

2 = y(�t).
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Step 3 Given the initial conditions v(x, tn+ 1
2 ) = v̂

n+ 1
2 (x) in � and y(tn+ 1

2 ) =
ŷ
n+ 1

2 , find v(x, t) and y(t) such that

ρ
∂v

∂t
= 0 in �× (tn+

1
2 , tn+1), (17)

dy

dt
= A(y, t) y + s(y, t) in (tn+

1
2 , tn+1), (18)

and set vn+1 = v(x, tn+1) and yn+1 = y(tn+1).

Note that Eqs. (8) and (17) imply that the velocity vector v is actually not updated

in Steps 1 and 3, and therefore vn+ 1
2 = vn and vn+1 = v̂

n+ 1
2 .

In the construction of the above splitting scheme, special care was taken in
selecting the order in which the PDE and ODE systems are resolved. The ODE
system, except the coupling term b, is solved twice, see Eq. (9) in Step 1 and
Eq. (18) in Step 3, whereas the PDE system implicitly coupled to a subset of the
ODE system is solved only once, see Eqs. (10)–(16) in Step 2. This choice allows
us to save computational time, solving the PDE system only once, and to have more
freedom in the discretization of the ODE system. Note that each Step is defined on a
discrete time interval, but the differential operators have yet to be fully discretized in
time and space. To preserve the second-order accuracy of the overall algorithm, it is
necessary to discretize each substep with (at least) second-order accurate schemes.
We implemented a second-order BDF2 scheme for the time-discretization of Steps 1
and 3. The BDF2 algorithm can be written for a general initial value problem

dϕ

dt
+ A(ϕ, t) = f (t), ϕ(0) = ϕ0 (19)

under the form: given ϕ0 = ϕ0 and ϕ1, then for n ≥ 1, find ϕn+1 by solving

3
2ϕ

n+1 − 2ϕn + 1
2ϕ

n−1

�t
+ A(ϕn+1, tn+1) = f n+1. (20)

Note that, due to the structure of the splitting and of the BDF2 algorithm, a starting
step is necessary to compute ϕ1 from ϕ0. In order to obtain this value, we use one
iteration of the following θ -scheme: given ϕ0 = ϕ0, for n ≥ 1, find ϕn+1 by solving

ϕn+1 − ϕn

�t
+ θA(ϕn+1, tn+1)+ (1− θ)A(ϕn, tn) = θf n+1 + (1− θ)f n, (21)

where θ = 2/3, which is “almost” second-order accurate, see [4, Chap.2]. The
value of θ is chosen to preserve the matrix of the linear system solved in (20) and
(21).

In Step 2, solved on the discrete time interval (0,�t), we evaluate the perfor-
mance of two different strategies:
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Strategy I: we compute one global time step �t using the θ -scheme (21);
Strategy II: we use a time-step smaller than �t , performing at least one iteration

of the BDF2 scheme (20).

Since Step 2 consists in solving the Stokes problem implicitly coupled with a
subset of the ODE system, it clearly appears that Strategy II is more computational
expensive, but it is designed in order to achieve higher accuracy, as discussed later
in Sect. 4.

4 Numerical Results

We illustrate the performances of the novel splitting algorithm proposed in Eqs. (8)–
(18), by studying the test case represented in Fig. 2, for which detailed description
and analytical solution are reported in [1]. In particular, the two-dimensional (d = 2)
Stokes region �, defined as the rectangle (0, L) × (−H/2,H/2), with H,L > 0
given, is connected to the lumped circuit ϒ , described by the vector of state variables
y = [π,ω]T whose dimension is l = 2.

The global time step �t is determined by the number of intervals in each time
period Nτ , according to the formula �t = τ/Nτ , where τ is the period of the
exact solution [1]. Moreover, each substep of the algorithm is discretized with a
different time step, denoted �t1, �t2, and �t3 respectively. In order to check that
the computed numerical solution is periodic of period τ , we introduce the index k

to denote the k-th period of the simulation, for k ≥ 1. Then, tn is in the k-th period
of the simulation if n ∈ Ik = {(k− 1)Nτ + 1, (k− 1)Nτ + 2, . . . , kNτ }. We use the
following criterion for k ≥ 2:

max

⎧
⎨

⎩
max
n∈Ik

∥
∥vn − vn−Nτ

∥
∥2
L2(�)

∥
∥vn−Nτ

∥
∥2
L2(�)

, max
n∈Ik

∥
∥pn − pn−Nτ

∥
∥2
L2(�)

∥
∥pn−Nτ

∥
∥2
L2(�)

, max
n∈Ik

∥
∥yn − yn−Nτ

∥
∥2

∥
∥yn−Nτ

∥
∥2

⎫
⎬

⎭
< ε,

(22)

to identify the numerical quantities to be compared with the exact solution over one
time period. The results reported have been obtained for ε = 10−6.

p

Γ

Γ

S

P

Q

R
C

Ra
C a

R b

p

Fig. 2 The Stokes region � is connected to the lumped circuit ϒ via a resistive element R
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Fig. 3 Plot of the energy norm errors [1] in logarithmic scale as a function of the global time step
�t = 0.01, 0.005, 0.0025 for the numerical example considered

The spatial discretization of the Stokes problem is handled via a triangular uni-
form mesh of 4000 elements for � and an inf-sup stable finite element pair, namely
(Taylor-Hood) P2/P1 elements. The computational framework relies on the finite
element library Freefem [2]. The comparison between numerical approximations
and exact solutions is performed over the first time period that satisfies Eq. (22),
for three different global time steps �t = 0.01, 0.005, 0.0025. Results are obtained
with the following time discretization of Steps 1, 2 and 3.

Strategy I: �t1 = �t3 = �t/5 and �t2 = �t;
Strategy II: �t1 = �t2 = �t3 = �t/5.

First, we perform a standard time refinement study, shown in Fig. 3, comparing
Strategy I and II to assess if the expected second-order convergence in time is
achieved. The rates predicted for velocity v and unknowns in the circuit y by the
theory for a second-order operator splitting technique are obtained in Strategy II.
In contrast, Strategy I, even if less computational expensive, displays an order of
convergence less than 3/2. This demonstrates the importance of using a scheme
that is (at least) second-order accurate in each substep of the second-order overall
splitting scheme. As expected, the approximation of the pressure does not achieve
second order in both strategies, due to the lack of time derivative of p and of post-
processing steps, see also [4, Sec.31.4]. Note that for a given value of �t , the results
for v and y obtained with Strategy I are less accurate than the ones of Strategy II.

Figure 4 displays a comparison between the exact solution and numerical
approximations of P and Q at the Stokes-circuit interface S (upper panel), and of
π and ω in the circuit (lower panel), all obtained with Strategy II. The numerical
results and exact solution almost superimpose for π and ω, even for �t = 0.01.
The approximation of the interface quantities, P and Q, improves as �t decreases,
capturing periodicity and peaks. Figure 4 also shows that the numerical solution is
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Fig. 4 Comparison between the exact solution and the corresponding numerical approximation
for interface quantities and circuit unknowns, for the time steps �t considered, over one time
period

not affected by spurious oscillations or instabilities, even for the largest time step.
These findings confirm that the choice of the time step affects the accuracy of the
computed solution but not the stability of the numerical scheme, thereby supporting
the unconditional stability properties of the algorithm.

5 Conclusions and Outlook

We have presented a numerical investigation of a new splitting approach for the
time discretization of a coupled Stokes/ODEs system. Our results suggest that
the proposed algorithm is unconditional stable without the need of sub-iterations
between substeps, and it is second-order accurate in time, provided that a stable
and (at least) second-order accurate time-discretization scheme is used in each
substep. In particular, we compared two strategies based on the BDF2 and θ -
schemes, for θ = 2/3, and found that the BDF2 method should be preferred in order
to obtain optimal convergence behavior in time, despite the extra computational
cost. The modular structure of the method allows us to maintain some flexibility
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in choosing the numerical method for the solution of each sub-problem; therefore,
as an alternative, a different θ -scheme, with θ = 1/2, could be implemented. We
are also currently exploring the possibility of using the second-order (modified) θ -
scheme [5] in some of the substeps.
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A CSCM Approximation of Steady MHD
Flow and Heat Transfer Between Parallel
Plates with Hydrodynamic Slip and
Convective Boundary Conditions

Münevver Tezer-Sezgin and Önder Türk

Abstract The steady magnetohydrodynamic (MHD) flow and heat transfer
between parallel plates is considered in which the electrically conducting fluid
has temperature dependent properties such as viscosity, thermal and electrical
conductivity. The fluid is driven by a constant pressure gradient, and a uniform
external transverse magnetic field is applied perpendicular to the plates. The effects
of viscous and Joule dissipations are considered in the energy equation, and the
fluid is assumed to be slipping in the vicinity of the plates. The effects of the
magnetic field, the hydrodynamic slip, and convective thermal boundary conditions
on the flow and heat transfer are investigated as well as the temperature dependent
parameters. The Chebyshev spectral collocation method which is easy to implement
is presented for the approximation of the solutions to the governing equations. The
velocity and the temperature of the fluid are obtained with a cheap computational
expense.

1 Introduction

The magnetohydrodynamic flow and heat transfer of a viscous, electrically con-
ducting, incompressible fluid between parallel plates has important industrial
applications. Among them are MHD generators and accelerators, fluidization,
centrifugal separation of matter from fluid, purification of crude oil, nuclear reactors,
and blood flow in capillaries.

Alpher [1] considered thermally developed MHD flow between parallel plates by
adopting small temperature differences and constant viscosity parameter. Numerical
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solutions using finite difference method for the steady MHD heat transfer between
parallel plates are given in [5] by Attia and Kotb, and in [3] by Attia considering
time-dependent viscosity. Attia extended the analysis in the former to the unsteady
MHD flow and heat transfer in [2] for capturing more accurate behavior of the flow
and heat transfer. A hybrid solution technique (generalized integral transform) has
been used by Lima et al. [8] for the MHD flow and heat transfer of a Newtonian
fluid in parallel-plates channels. In their work, both the stationary plates and moving
upper plate cases, and the inflow/outflow through plates are considered with the
assumption of variable viscosity. The effect of variable properties on the unsteady
Couette flow with heat transfer under a magnetic field is given in [4] by taking into
account two components of the velocity field, but the variation is in one dimension.

The MHD flow in an insulating duct has been considered with the extension of
velocity boundary condition to the hydrodynamic slip at the interface between the
fluid and the solid wall in the work of Smolentsev [12]. In the works of Sweet et
al. [13] and Maikap [9], the MHD flow of a viscous fluid between moving parallel
plates and plates with smooth expansion are given, respectively. In these papers,
the homotopy analysis and finite difference methods have been used, respectively.
Ibáñez obtained analytical solutions to the equations govern the steady flow of
an incompressible electrically conducting fluid through a channel with permeable
plates that are accompanied by hydrodynamic slip conditions and thermal boundary
conditions of the third kind [7].

In this work, we present a numerical solution of steady MHD flow and heat
transfer between parallel plates using the Chebyshev spectral collocation method
(CSCM). The electrically conducting fluid has temperature dependent viscosity,
thermal and electrical conductivity and the hydrodynamic slip conditions are
imposed on the velocity of the fluid, and convective boundary conditions are taken
for the temperature. In the physical model, the Joule effect, that is, the generation
of heat by the passage of electricity through a resistance, is taken into account in
the energy equation. Also viscous dissipation is considered in the energy equation,
thus, the viscosity of the fluid will take energy from the motion of the fluid (kinetic
energy) and transform it into internal energy of the fluid, increasing the heat of
the fluid. The CSCM allows one to be able to use considerably small number of
clustered Chebyshev–Gauss–Lobatto points near the boundaries and to approximate
higher order derivatives of the solution by using Chebyshev differentiation matrices.
The velocity and temperature of the fluid are simulated for several values of
Hartmann number, Prandtl number, viscosity, thermal conductivity, and electric
conductivity parameters, slip lengths, and Biot numbers, for depicting the influences
on the flow and temperature.
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2 Basic Equations for the Unsteady MHD Flow and Heat
Transfer Between Parallel Plates

The fluid is assumed to flow between two infinitely parallel plates located hori-
zontally at y = −1 and y = 1. A constant pressure gradient is applied in the
x-direction. A uniform magnetic field of intensity B0 is applied in the y-direction.
The induced magnetic field is neglected due to the assumption of small magnetic
Reynolds number. The governing equations in non-dimensional form are [3]

P + f1(T )
d2u

dy2 +
df1(T )

dy

du

dy
− f3(T )Ha2u = 0,

1

Pr
f2(T )

d2T

dy2 +
1

Pr

df2(T )

dy

dT

dy
+ Ecf1(T )

(
du

dy

)2

+ f3(T )Ec Ha2 u2 = 0,

(1)

where−1 ≤ y ≤ 1. In these equations, u and T denote the velocity and temperature
of the fluid, respectively. f1(T ) = e−aT represents the exponentially varying
viscosity of the fluid, a being the viscosity parameter. f2(T ) = 1+bT and f3(T ) =
1 + cT are the temperature dependent thermal and electric conductivity functions,
respectively, where b and c are the respective thermal and electric conductivity
parameters. The third and the fourth terms in the energy equation are due to the
viscous and Joule dissipations, respectively. The heat is exchanged by convection
between the lower and upper plates when they are kept at constant temperatures T1
and T2, respectively, with T1 < T2.

The following dimensionless variables are employed in the above equations

P = −dp

dx
, P r = μ0cp

k0
, Ha = B0h

√
σ0/μ0, Ec = μ2

0

h2cpρ2(T2 − T1)
.

(2)

Here, p is the pressure, ρ is the density of the fluid, and cp is the specific heat
at constant pressure. μ0, k0 and σ0 are the viscosity, thermal conductivity and the
electrical conductivity of the fluid at a reference temperature, e.g. at T = T1,
respectively. Pr , Ha, and Ec are the Prandtl, Hartmann, and Eckert numbers,
respectively.

The conventional boundary condition is the no-slip condition between the fluid
and a solid where the fluid velocity is taken as the same as of the boundaries.
However, the boundary condition which corresponds to momentum transfer during
the flow can vary from stick (no-slip) to slip, saving energy in response to physical
chemical properties of the solid surface. The velocity of the fluid is completely
zero on a solid boundary only if thermodynamic equilibrium is ensured near the
boundary. For small scale systems, on the other hand, the collisions between the
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fluid and the solid surface is not high enough to have this equilibrium. Thus,
tangential velocity slip is allowed. The slip velocity is assumed to be proportional to
the tangential viscous stress [10]. Moreover, the thermal boundary condition of the
third kind at each wall, referred as convective heat transfer condition, is considered
in the present study. In this type of boundary condition, the heat flux to or from the
surface is assumed to be related to the surface and fluid temperature difference.

Under these assumptions, the equations in System (1) are accompanied with the
following Robin’s type boundary conditions

u+ α1
du

dy
= 0 on y = 1, u− α2

du

dy
= 0 on y = −1,

Bi2(T − 1)+ dT

dy
= 0 on y = 1, −Bi1T + dT

dy
= 0 on y = −1.

(3)

In the above equations, Bij , j = 1 (lower) and j = 2 (upper), is the Biot number
reflecting the ratio of the convective heat transfer resistance β1, β2 of the plates
to conduction resistance of the fluid as Bij = hβj /k0. α1 and α2 are the (non-
dimensional) slip lengths of the upper and lower plates, respectively.

3 Application of the CSCM to MHD and Heat Transfer
Equations

The discretization of the governing equations (1) is mainly based on requiring
the residual to be zero at the extreme points of the Chebyshev polynomials.
The interpolating polynomials are differentiated analytically, and a differentiation
matrix, known as Chebyshev differentiation matrix, is constructed for derivative
approximations. The higher order derivatives are obtained by multiplying these
differentiation matrices [6, 11, 14]. The collocation points are the Chebyshev–
Gauss–Lobatto points defined as xj = cos(jπ/N), j = 0, 1, . . . , N , N being

a positive integer. The first and second order differentiation matrices D
(1)
N and

D
(2)
N , respectively, are constructed on these points, and the discretized equations are

obtained by substituting the approximations uN and TN to u and T , respectively, to
the equations (1). These equations are written in matrix-vector form as follows

[
D(f1N)D

(2)
N − aD(f1N)D(D

(1)
N TN)D

(1)
N −Ha2D(f3N)

]
uN = −PN,

[
1

Pr
D(f2N)D

(2)
N + b

Pr
D(D

(1)
N TN)D

(1)
N

]

TN = −EcD(D(f1N)D
(1)
N uN)D

(1)
N uN

−EcHa2D(f3N)D(uN)uN,

(4)
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where D(ϕ) denotes the diagonal matrix with the entries of a vector ϕ on its
diagonal. fiN , i = 1, 2, 3, denotes the vector computed as fiN(xj ) = fi(xj ), for
j = 1, . . . , N + 1. Similarly, PN is the vector whose all entries are (the constant)
P . Each equation given in (4) is of order N + 1.

System (4) is composed of two coupled and nonlinear equations, where the
nonlinearity is inherited from System (1). In order to solve the resulting equations
in (4), an iterative method is introduced which reduces the equations into a set
of linear algebraic equations in each iteration. The algebraic equations are solved
by imposing the corresponding boundary conditions. The iterative procedure starts
with a given initial estimate for the temperature. This allows the solution of the first
equation in (4). The second equation is solved next, with the use of newly obtained
values. These steps are repeated until the convergence criteria ‖uN

k−uN
k−1‖∞ ≤ ε

and ‖TNk − TN
k−1‖∞ ≤ ε are met for a given tolerance ε, where the superscript k

denotes the iteration level.

4 Numerical Results

The velocity and the temperature behaviors of the fluid for the MHD flow between
parallel plates are presented for several values of the problem parameters as a, b, c,
α1, α2, Bi1, Bi2, and Ha. In the computations, N = 12 is set for all values of these
parameters, and the convergence tolerance is taken as ε = 10−8.

In the first test problem, u = T = 0 is specified at the lower plate, whereas u = 0
and T = 1 is taken at the upper plate, and the values Pr = 1, Ec = 0.2, and Ha = 3
are set in the simulations as in [3] in order to validate the present computational
method. The results are tabulated in terms of the center line temperature values in
Table 1 for b = 0 and −0.5 ≤ a, c ≤ 0.5. An accuracy of 10−3 is obtained when
compared with the results of [3].

The rest of this section is devoted to the illustration of the numerical results
obtained from the approximation of equations (1) accompanied with the most
general boundary conditions (3).

The variations of u and T with various values of c and Ha are investigated and
simulated in Figs. 1, 2, and 3, respectively, for a = −0.5, a = 0, and a = 0.5, when
b = 0 is taken. As the electric conductivity parameter c increases, the velocity

Table 1 Variation of the temperature at y = 0, Ha = 3, and b = 0

a = −0.5 a = −0.1 a = 0.0 a = 0.1 a = 0.5

c = −0.5 0.7190 0.7520 0.7606 0.7692 0.8043

c = −0.1 0.6842 0.7023 0.7066 0.7107 0.7259

c = 0.0 0.6774 0.6934 0.6971 0.7007 0.7138

c = 0.1 0.6712 0.6855 0.6887 0.6919 0.7032

c = 0.5 0.6506 0.6602 0.6624 0.6644 0.6716
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magnitude decreases for all values of viscosity parameter a, and the symmetry of
the velocity with respect to y is lost when Ha is increased as the magnetic damping
force on u is increased. The increase in Ha, that is, when the external magnetic field
is stronger, the flow is flattened (velocity drops) for all values of a and c. The drop in
the fluid temperature for increasing values of c and Ha is not that much pronounced
as it is seen in u. For Ha ≥ 5, the temperature settles down taking the same profile
for all c values. It is also observed that the influences of both the viscosity parameter
and the electric conductivity parameter are weakened when Ha is increasing.

Figure 4 puts forward the variation of T with various values of Bi2, a, b, c and
Pr values for Ha = 1, Ec = 1, Bi1 = 10, and α1 = α2 = 0.01. As the Biot
number for the upper plate increases, the temperature of the fluid is increased for
fixed a, b, c, Ha, Ec, Bi1 values, and when α1 = α2. This increase is weakened
when Pr is increased.

Variation of u with increasing α1 = α2 and Ha values, for Ec = 1, Pr = 1,
Bi1 = Bi2 = 100, b = 0, c = 0.5 is illustrated in Fig. 5. The velocity magnitude
increases as the slip length is increased for all values of Ha (see, e.g., [7]). However,
the increase in Ha weakens the slip effect on u.

5 Conclusion

This study, exploits the efficiency of CSCM for solving the steady MHD flow and
heat transfer between parallel plates with temperature dependent viscosity, thermal
and electrical conductivity. The hydrodynamic slip conditions are imposed on the
velocity of the fluid, and the convective boundary conditions are considered for the
temperature. The numerical results revealed the fact that as the electric conductivity
increases, velocity magnitude decreases for all values of the viscosity parameter.
Increase in the viscosity parameter increases the temperature and velocity magni-
tude. The velocity magnitude also increases with an increase in the slip lengths.
Moreover, an increase in Ha weakens the effect of a, c, and the slip effect. As Biot
number for the upper plate is increased, the temperature rises.
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Towards Scalable Automatic Exploration
of Bifurcation Diagrams for Large-Scale
Applications

Jonas Thies, Michiel Wouters, Rebekka-Sarah Hennig, and Wim Vanroose

Abstract The Trilinos library LOCA (http://www.cs.sandia.gov/LOCA/) allows
computing branches of steady states of large-scale dynamical systems like (dis-
cretized) nonlinear PDEs. The core algorithms typically are (pseudo-)arclength
continuation, Newton–Krylov methods and (sparse) eigenvalue solvers. While
LOCA includes some basic techniques for computing bifurcation points and
switching branches, the exploration of a complete bifurcation diagram still takes
a lot of programming effort and manual interference.

On the other hand, recent developments in algorithms for fully automatic
exploration are condensed in PyNCT (https://pypi.org/project/PyNCT/). The scope
of this algorithmically versatile software is, however, limited to relatively small (e.g.
2D) problems because it relies on linear algebra from Python libraries like NumPy.
Furthermore, PyNCT currently does not support problems with a non-Hermitian
Jacobian matrix, which rules out interesting applications in chemistry and fluid
dynamics.

In this paper we aim to combine the best of both worlds: a high-level implemen-
tation of algorithms in PyNCT with parallel models and linear algebra implemented
in Trilinos. PyNCT is extended to non-symmetric systems and its complete backend
is replaced by the PHIST library (https://bitbucket.org/essex/phist), which allows us
to use the same underlying HPC libraries as LOCA does.

We then apply the new code to a reaction-diffusion model to demonstrate its
potential of enabling fully automatic bifurcation analysis on parallel computers.

J. Thies (�) · R.-S. Hennig
German Aerospace Center, Cologne, Germany
e-mail: Jonas.Thies@DLR.de; Rebekka-Sarah.Hennig@DLR.de

M. Wouters · W. Vanroose
University of Antwerp, Antwerp, Belgium
e-mail: Michiel.Wouters2@uantwerpen.be; wim.vanroose@uantwerpen.be

© Springer Nature Switzerland AG 2021
F. J. Vermolen, C. Vuik (eds.), Numerical Mathematics and Advanced Applications
ENUMATH 2019, Lecture Notes in Computational Science and Engineering 139,
https://doi.org/10.1007/978-3-030-55874-1_97

981

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-55874-1_97&domain=pdf
http://www.cs.sandia.gov/LOCA/
https://pypi.org/project/PyNCT/
https://bitbucket.org/essex/phist
mailto:Jonas.Thies@DLR.de
mailto:Rebekka-Sarah.Hennig@DLR.de
mailto:Michiel.Wouters2@uantwerpen.be
mailto:wim.vanroose@uantwerpen.be
https://doi.org/10.1007/978-3-030-55874-1_97


982 J. Thies et al.

1 Introduction

Numerical bifurcation analysis is a key technology in understanding the properties
of dynamical systems. The methodology comprises techniques for constructing a
qualitative map from model parameters to model behavior. It has a wide range of
applications, e.g. in biology [5], fluid dynamics [2], and superconductivity [13].
The basic technique investigated here is the automatic computation of landscapes
of steady states under a single varying parameter. If the dynamical system is
described by a (system of) partial differential equation(s) (PDEs), one typically
performs a spatial discretization and then directly computes its steady state solutions
rather than using time integration. A standard technique here is pseudo-arclength
continuation [8], combined with a Newton–Krylov method for solving the arising
nonlinear system of algebraic equations. By following connected branches of steady
states, the approach achieves convergence even to linearly unstable solutions, which
cannot be found using time stepping methods.

The building blocks for an efficient implementation of the approach are data
structures for sparse matrices and dense (blocks of) vectors, iterative methods for
solving large linear systems (typically Krylov subspace methods), preconditioning
and/or deflation to accelerate their convergence, and sparse eigenvalue solvers.
Eigenvalues of the Jacobian indicate whether a calculated solution is linear stable or
not, and eigenvectors are useful for e.g. switching to another branch of solutions [8].
In particular in three space dimensions, the algebraic linear and eigenvalue problems
that need to be solved can easily become too large to fit in the main memory
(RAM) of a single computer. Moreover, computing a complete bifurcation diagram
requires hundreds of systems to be solved, so that time-to-solution is key. Modern
computers offer plenty of parallelism like executing a single instruction on multiple
data (SIMD), symmetric multi-processing (SMP) on multi- or manycore CPUs, and
accelerator hardware like graphics processing units (GPUs). As memory limitations
may force us to use a cluster of multiple such nodes, the additional layer of
distributed memory must be adequately addressed when implementing an algorithm.

As both HPC hardware and programming models are developing rapidly today,
it becomes almost impossible for algorithm developers to provide their methods
in stable, portable and maintainable software libraries, and even the large HPC
software initiatives Trilinos [7] and PETSc [1] are facing difficulties to keep up
with the rapid pace of the hardware development. In this paper we therefore take
an existing abstraction layer for high performance sparse linear and eigenvalue
computations (PHIST [11]) and develop a simple and easy-to-use Python frontend
providing the functionality required to implement a continuation method. This
Python layer is then used to painlessly update the PyNCT package to run on arbitrary
distributed memory HPC systems.
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2 Overview of Available Software

PyNCT is a Python toolbox for the automatic exploration of bifurcation diagrams
based on the sparse linear algebra framework of NumPy and SciPy. It was originally
developed to trace single solution branches in auxin transport models [3–5], a
biology application. Recently, the PyNCT package has been extended with algo-
rithms that allow for automatic exploration of bifurcation diagrams of Hermitian
nonlinear problems [12]. Starting from an (approximate) initial solution, a landscape
consisting of interconnected solution curves is generated. In [13], the efficiency of
PyNCT is shown by automatically generating an interconnected solution landscape
for a superconductor model (the extreme type-II Ginzburg-Landau equation). The
generated landscape consists of 43 different solution curves, connected through a
total of 60 branch points. Automatic exploration is handled through two main steps:
searching branch points and calculating tangent directions to curves emanating
from these. PyNCT includes various algorithms for these steps, including ones
for constructing tangent directions in branch points of multiplicity 2 (double zero
eigenvalues of the Jacobian) [13], which typically appear in nonlinear problems
with a 2-dimensional symmetry. The algorithms in PyNCT also work on nonlinear
problems with continuous symmetries. These symmetries induce null vectors in the
system’s Jacobian, when evaluated in a solution. Without proper adjustments, these
symmetry-induced null vectors would lead to failures during automatic exploration,
e.g. when detecting bifurcation points. Though bifurcation points and directions
to new curves are calculated without direct user interference, internal parameters
(e.g. tolerances) still need to be provided. The extension of the algorithms to non-
Hermitian problems is also still in progress. An initial result, where PyNCT is
applied to a non-Hermitian reaction-diffusion model, is discussed in Sect. 3.

LOCA is part of the open source high performance computing (HPC) framework
Trilinos. It is written in C++ and in a modular way, exploiting algorithms and
data structures from various other Trilinos libraries for solving the arising linear
systems of equations and eigenvalue problems. LOCA provides algorithms for
tracking down certain bifurcations along a branch, but there is no automatic
exploration technology, and the provider of the model must take care of storing
and postprocessing the solutions, as well as switching to new branches. On the
other hand, the modular design of Trilinos allows using LOCA with a wide range of
solvers and preconditioners, and with (hybrid) parallel backends such as Epetra and
Tpetra.

3 Example: A Turing Problem

In this section we apply the PyNCT package to an example of a non-Hermitian
nonlinear problem, derived from a coupled PDE. We generate a part of the example’s
solution landscape, demonstrating a successful extension of PyNCT to this type of
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problems. The example we consider is the Barrio–Varea–Aragon–Maini (BVAM)
model, a Turing system that has applications in imitating the pattern formation on
various fish species’ skin [9]. The BVAM model is described by the following set of
PDE’s:

∂U

∂t
=Dδ∇2U + αU(1 − r1V

2)+ V (1− r2U),

∂V

∂t
=δ∇2V + V (β + αr1UV )+ U(γ + r2V ).

(1)

We consider a square domain � = [0, 30] × [0, 30] and periodic boundary
conditions. The functions U = U(x, t) and V = V (x, t) are two concentrations of
chemicals, D, α, β, γ , δ, r1 and r2 are physical parameters. A detailed description
of these parameters is given in [10].

The steady state equation is derived from (1) by setting the time derivatives of
U and V equal to zero. We choose a uniform discretization of � with 322 points
(n = 32), and denote u, v ∈ R

n2
, respectively the discrete variants of U and V .

Denoting A the discretization of the Laplacian ∇2, we have a nonlinear function F
that can be analyzed by PyNCT:

F : Rn2 ×R
n2 → R

n2 × R
n2 : (u, v) →

(
DδAu+ αu(1− r1v

2)+ v(1− r2u)

δAv + v(β + αr1uv)+ u(γ + r2v)

)

.

(2)

The analysis requires the Jacobian of F, given by the linear operator

F′(u, v) :Rn2 ×R
n2 → R

n2 × R
n2 :

(x, y)→
(
DδAx + (α − αr1v

2 − r2v)x + (−2αr1uv + 1− r2u)y

δAy + (αr1v
2 + γ + r2v)x + (β + 2αr1uv + ur2)y

)

.

(3)

The function (2) is invariant under both discrete and continuous (transla-
tional) symmetries. Both sorts induce challenges when performing continuation, as
described in Sect. 2.

PyNCT uses a Newton–Krylov (GMRES) algorithm to find solutions of
F(u, v) = 0. Eigenpairs (used to identify, search and analyze branch points) are
approximated by Ritz pairs. A preconditioner is used to speed up these processes:

P : Rn2 × R
n2 : w → B−1w,with B =

(
DδA+ αI 0

0 δA+ βI

)

. (4)

Systems with B are solved by a sparse direct solver. Note that solutions (zeros of
(2)), branch and turning points are the same for the preconditioned and unprecon-
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ditioned problems. In this section, we use the NumPy/SciPy backend of PyNCT
because the eigensolver requires mixing of real and complex data types, which is
not supported by PHIST.

3.1 Partial Bifurcation Diagram of the BVAMModel

We perform a numerical continuation of the nonlinear function (2) with PyNCT,
choosing r2 as the continuation parameter. The other parameters are kept fixed, their
values are given in Table 1.

We start the continuation from an initial solution at r2 = 0, given by Fig. 1.
Subsequent solutions are generated automatically by PyNCT. We restrict ourselves
to a maximum of 4 solution curves and 200 points per curve. This yields the partial
bifurcation diagram of Fig. 2. Representative solutions of each curve are provided
in Fig. 3.

Starting from the solution on curve A at r2 = 0, PyNCT locates two branch
points: at r2 = 0.1164 and r2 = 0.4302. The point at r2 = 0.1164 has multiplicity 2.
Two solution curves emerge from it: curves B and C. Note that these curves contain
solutions with a reduced symmetry, which is predicted by the equivariant branching
lemma [6]. The branch point at r2 = 0.4302 is of multiplicity 1, and leads to curve
D.

Both curves B, C and D contain further branch points, at respectively r2 =
0.3062, r2 = 0.2888 and r2 = 0.4375. These points would lead to other solution
curves, which were not generated due to the chosen restrictions (maximal 4 curves).
It is possible for curves A, B, C and D to have more branch points as well, again not
found due to restricting ourselves to 200 points per curve.

Table 1 Values of parameters in (2) used for generating the bifurcation diagram of Fig. 2

D α β γ δ r1

0.516 0.899 −0.91 −0.899 2 3.5

Fig. 1 Initial solution of the nonlinear function (2), used to generate the partial bifurcation
diagram of Fig. 2
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Fig. 2 Part of a connected solution landscape for the BVAM model on a square domain of length
30. Blue dots indicate branch points. Representative solutions for the curves are given in Fig. 3

Fig. 3 Representative solutions for the different curves of Fig. 2

Though the generated bifurcation diagram is only partial, it acts as a proof of
concept: branch points of a non-Hermitian nonlinear problem can be found and
analysed by PyNCT, indicating the possibility of the automatic exploration of an
interconnected solution landscape.
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4 Comparison with LOCA

In order to assess the potential of our parallelization approach for PyNCT, we
compute a single branch of steady state solutions for the 2D Turing model. This
process involves Newton’s method, GMRES, and a multigrid preconditioner, and
can be carried out easily using either LOCA or PyNCT with the PHIST/Epetra
backend. The two libraries use a slightly different set of solver parameters,
and algorithmic details such as step size control and GMRES orthogonalization
scheme differ. The direct comparison therefore only gives a first impression, but
is nevertheless insightful. The preconditioner consists of a multigrid sweep on the
matrix B in (4), implemented using the Trilinos package ML (this was also used
in [10]).

Figure 4 (left) shows the total number of preconditioned GMRES iterations
performed by the two packages in order to compute 10 steady states on a solution
branch ranging from r2 = 0 to r2 = 1, on a 1282 grid. Despite the fact that LOCA
uses an adaptive tolerance for the GMRES algorithm, the number of iterations is
relatively similar, so that we can assume that a rough comparison of timing results
makes sense. This comparison is shown in Fig. 4 (right) for a larger problem (on
a 10242 grid). Here we see that both implementations yield similar scalability,
but also that the LOCA implementation is about twice as fast. Recall that both
implementations use the same implementation for their linear algebra operations
(the Trilinos package Epetra), so the difference must lie in the number and type of
operations performed.

The timing and profiling features of PHIST make it relatively easy to get more
insight. Figure 5 shows run time profiles of the most important basic operations for
1 and 16 processes, respectively, for the 1282 problem. The PyNCT implementation
requires about 15×more inner products, which shows that it has not been developed
with parallel computing in mind (algorithmically the difference is a modified
Gram-Schmidt process in the GMRES solver in PyNCT). This reduces the strong
scaling performance. The substantially larger contribution of ‘other’ functions in
the PyNCT runs is explained mostly by overhead for calling relatively small C
functions via the Python ctypes module. This leads to a constant latency for
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Fig. 4 Rough comparison between PyNCT and LOCA when computing a branch of 10 solutions
of the BVAM model on a 1 0242 grid. Left: total number of GMRES iterations. Right: total runtime
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Fig. 5 Basic performance profile when computing a branch of 10 solutions on a 1282 grid

otherwise perfectly scalable functions such as vector additions, further reducing
strong scalability.

5 Conclusion

The paper proposes two improvements to the PyNCT software for automatic
bifurcation analysis: extension to non-Hermitian problems, and parallelization by
introducing a backend layer. The first point is mathematically non-trivial, and by
no means treated exhaustively in this paper. However, the fact that the code is
written in Python allowed us to relatively quickly arrive at a working ‘proof of
concept’, demonstrated by computing branch points of a Turing-type reaction-
diffusion model. A major challenge (consuming more than 90% of the time in our
experiments) is the solution of sparse eigenvalue problems. Here, we hope to use
the Jacobi–Davidson method available in PHIST in the future to significantly reduce
this number by recycling subspaces and preconditioning, as was also done in [10].

Second, we investigated a possibility for quickly parallelizing a Python code
which relies heavily on sparse linear algebra. By introducing a thin layer of wrapper
objects, we can now switch between a pure Python implementation (which can e.g.
be installed completely using PIP) and any HPC implementation supported by the
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PHIST library. The approach leads to reasonable parallel performance, but it also
becomes clear that algorithmic decisions (like the orthogonalization scheme used
by GMRES) should be re-evaluated. It is possible to extend our wrapper layer
with higher level functions for orthogonalization, which may e.g. call the PHIST
implementation if available. By further integration of PHIST, one could make
complete solvers for linear or eigenvalue problems available, which are designed
for good performance with the underlying data structures.

In summary, the paper demonstrates that we can combine the advantages of
the Python package PyNCT (rapid prototyping) and the HPC libraries Trilinos
and PHIST (performance and scalability) to shorten the time-to-market for new
algorithmic developments and enable the fully automatic exploration of bifurcation
diagrams on HPC systems.
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Generalized Monge–Ampère Equations
for Freeform Optical System Design

J. H. M. ten Thije Boonkkamp, L. B. Romijn, and W. L. IJzerman

Abstract We present the derivation of the generalized Monge–Ampère equation
for two optical systems, viz. a freeform lens with parallel incident and refracted
light rays, which transforms a source emittance into a desired target illuminance,
and a freeform reflector converting the intensity of a point source into a far-field
distribution. The derivations are based on Hamilton’s characteristic functions. We
outline a least-squares solution method and apply it to a test problem from laser
beam shaping.

1 Introduction

The standard problem in freeform illumination optics is to design optical systems
that convert a given source light distribution into a desired target distribution.
Inverse methods are very useful simulation methods to compute one or two
freeform optical surfaces in an optical system and are an alternative to classical
ray tracing. A freeform optical surface is either a lens or reflector surface of
arbitrary shape, without any symmetries, as opposed to for example a rotationally
symmetric surface. The underlying mathematical model is based on the principles
of geometrical optics, expressed in terms of the optical map connecting source and
target domains, and the energy conservation law. Combining the optical map with
the energy balance, we can derive a fully nonlinear elliptic PDE determining the
shape of an optical surface.

Alternatively, the optical design problem can be cast in the framework of optimal
transport, which concerns the minimization of a cost functional, i.e., the integral
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of a cost function weighted with the source distribution, under the constraint of
energy conservation. For some basic systems, the cost function is quadratic and the
optical map is the gradient of a potential function. The governing PDE reduces to
the standard Monge–Ampère equation. However, in this contribution, we focus on
systems for which the cost function is no longer quadratic, and consequently the
governing PDE becomes a generalized Monge–Ampère equation.

The emphasis in this paper is on the derivation of the generalized Monge–
Ampère equation for two optical systems, viz., a freeform lens with parallel
incident a refracted rays, and a freeform reflector in combination with a point
source. The derivations are based on Hamilton’s characteristic functions and are
detailed in Sect. 2. In Sect. 3 we briefly outline a least-squares method to compute
the freeform surface(s). Next, in Sect. 4 we demonstrate the performance of our
mathematical/numerical model for a test problem from laser beam shaping.

2 Mathematical Formulation

The derivations in this section are a concise reformulation of the mathematical
models in [2] for the freeform lens and in [3] for the freeform reflector. In the
following, S and T denote the source and target domain, respectively, and the map
m : S→ T is referred to as the optical map.

Freeform Lens, Parallel in and Out Consider a planar light source, e.g., a
collimated beam, located in the plane z = 0, a target plane z = L and a lens with
two freeform surfaces in between; see Fig. 1. The first lens surface (L1) is defined
by the relation z = u1(x) with x ∈ S and the second one (L2) by L−z = u2(y) for
y ∈ T. The index of refraction of the lens is n. The source emits a parallel beam of
light in the positive z-direction. Light rays hit L1, are refracted, hit L2, are refracted
again, creating a parallel beam of light, also in the positive z-direction.

Fig. 1 Freeform lens (left) and freeform reflector (right)
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To derive a relation for the optical map, we employ Hamilton’s point char-
acteristic function V [1, p. 94–100]. In the following, q and p denote the
(two-dimensional) position and direction vectors, respectively, of a ray intersecting
a plane. The vector p is the projection on the plane of the unit direction vector of
the ray, multiplied by n. The subscripts s and t refer to source and target plane,
respectively. Consider a typical ray connecting a point on S, for which qs = x and
ps = 0, with a point on the target plane, characterized by q t = y and pt = 0.
The characteristic function V is the optical path length between both points and is
defined by

V (qs, q t) = u1(x)+nd+u2(y), d2 = |x−y|2+(L−(u1(x)+u2(y)))
2, (1)

where d is the distance between both lens surfaces, measured along the refracted
ray. Since ps = −∂V/∂qs = 0 and pt = ∂V/∂qt = 0, the characteristic function
V (qs, q t) = V = const. In the derivation that follows, it is convenient to introduce
the variable c = c(x, y) = u1(x) + u2(y). Combining both relations in (1), we
arrive at the following quadratic equation for c:

(V − c)2 − n2(L− c)2 = n2|x − y|2. (2)

Completing the square we find

(
c − L+ β

n2 − 1

)2 =
( n

n2 − 1

)2(
β2 − (n2 − 1)|x − y|2), (3)

with β = V−L the reduced optical path length. This equation has two real solutions
since β2− (n2− 1)|x− y|2 = (

nβ− (n2− 1)d
)2

> 0. Comparing the two possible
solutions with the first relation in (1), we conclude that the we have to choose the
negative root of equation (3). This way we find the relations

u1(x)+ u2(y) = c(x, y), (4a)

c(x, y) = L− β

n2 − 1
− n

n2 − 1

√
β2 − (n2 − 1)|x − y|2. (4b)

We refer to c(x, y) as the cost function. From (4) we will derive shortly a relation
for the optical map y = m(x).

Single Reflector, Point Source, Far Field Out Consider a point source located in
the origin Os emitting rays radially upward and a freeform reflector R given by the
parametrization r(φ, θ) = u(φ, θ)êr , with φ (0 ≤ φ ≤ π) and θ (0 ≤ θ < 2π)

the polar and azimuthal angle, respectively, and êr the radial basis vector of the
spherical coordinate system; see Fig. 1. All unit vectors are denoted by a hat (ˆ).
The variable u = u(φ, θ) denotes the radial distance between source and reflector
surface. An emitted ray has direction vector ŝ = êr , is intercepted by R and reflects
off in the direction t̂ . Since ŝ = (s1, s2, s3)

T, t̂ = (t1, t2, t3)
T ∈ S2, it is convenient
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to describe source and target domain in terms of stereographic coordinates x and y,
respectively. Our choice is

x(ŝ) = 1

1+ s3

(
s1

s2

)

, y(ŝ) = 1

1− t3

(
t1

t2

)

. (5)

The coordinates x and y are the projections from the south pole (0, 0,−1) and
the north pole (0, 0, 1), respectively, suitable to represent the upward incident and
downward reflected rays.

Analogous to the derivation of (4), we use Hamilton’s angular characteristic T

[1, p. 104–107]. Consider a typical light ray connecting the source with a point on
the target screen z = −L(< 0). The angular characteristic is defined by

T (ps,pt) = V (qs, q t)+ qs ·ps − q t ·pt, (6a)

V (qs, q t) = u(ŝ)+ d, d2 = |q − u(ŝ)ps|2 + (L+ u(ŝ)s3)
2, (6b)

where, with a slight abuse of notation, u(ŝ) = u(φ, θ), and where d denotes the
distance between P, the intersection point of the incident ray and R, and Q, the
intersection point of the reflected ray and the target screen. The following relations
hold: qs = 0,ps = (s1, s2)

T and pt = (t1, t2)
T. For q t we use the short hand

notation q t = q . Since qs = ∂T /∂ps = 0, we have T = T (pt) = T (t1, t2). To
evaluate T (t1, t2), we need the relations pt = (q − u(ŝ)ps)/d and t3 = −(L +
u(ŝ)s3)/d . Substituting these in (6), we obtain

T (t1, t2) = u(ŝ)+ d − q t ·pt

= u(ŝ)+ d − 1

d
q · (q − u(ŝ)ps)

= u(ŝ)+ 1

d

(|q − u(ŝ)ps|2 − q · (q − u(ŝ)ps)+ (L+ u(ŝ)s3)
2)

= u(ŝ)+ 1

d

(− u(ŝ)ps · (q − u(ŝ)ps)− dt3(L+ u(ŝ)s3)
)

= u(ŝ)− u(ŝ)
(
ps ·pt + s3t3

)− Lt3

= (1− ŝ · t̂)u(ŝ)− Lt3.

(7)

Subsequently, rearranging terms we find

T (t1, t2)+ Lt3 = (1− ŝ · t̂)u(ŝ), (8)

where the left hand side solely depends on t̂ . Furthermore, ∂(T (t1, t2)+Lt3)/∂L =
0 implying that T (t1, t2) + Lt3 is independent of L, as anticipated. Taking the
logarithm of (8) we find ũ1(ŝ)+ ũ2(t̂) = − log(1− ŝ · t̂), where ũ1(ŝ) = log(u(ŝ))
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and ũ2 = − log(T (t1, t2)+Lt3). Finally, transforming to stereographic coordinates
x and y, defined in (5), and introducing the variables u1(x) = ũ1(ŝ)− log(1+|x|2)
and u2(y) = ũ2(t̂)− log( 1

2 (1+ |y|2)), we obtain

u1(x)+ u2(y) = c(x, y), (9a)

c(x, y) = − log
(
1− 2x · y + |x|2|y|2), (9b)

from which we can determine a relation for the optical map; cf. (4). Note that the
variable u1 = u1(x) defines the location of the reflector surface, whereas u2 =
u2(y) is an auxiliary variable representing T (t1, t2).

Optical Map Equations (4a) and (9a) have many possible solutions for u1(x) and
u2(y). Assuming S and T are closed and bounded sets, we can prove that one
possible solution reads

u1(x) = max
y∈T

(
c(x, y)− u2(y)

)
, u2(y) = max

x∈S
(
c(x, y)− u1(x)

)
, (10)

referred to as the c-convex solution. This solution necessarily requires that x be a
stationary point of c(x, y)− u1(x), i.e.,

∇xc(x, y)− ∇u1(x) = 0, (11)

where ∇xc denotes the gradient of c w.r.t. the variable x. From the implicit function
theorem, we conclude that this relation implicitly defines the optical map y = m(x),
provided the matrix C = Dxyc = (

cxi,yj
)

is regular for all x and y, which is
true for the optical systems above [2, 3]. Next, substituting y = m(x) in (11)
and subsequently differentiating w.r.t. x, we obtain for the Jacobi matrix Dm the
equation

C(x,m(x))Dm(x) = P (x), P (x) = D2u1(x)−Dxxc(x,m(x)), (12)

where Dxxc and D2u1 denote the Hessian matrices of c (w.r.t. x) and u1, respec-
tively. A sufficient condition for the existence of the c-convex solution (10) is that
P (x) be symmetric positive definite (SPD). Alternatively, we could introduce the
c-concave solution, replacing the maximum in (10) by minimum. Note that we do
not explicitly compute the optical map m, instead we determine m from Eq. (12)
combined with energy conservation, to be discussed next.

Energy Balance For the freeform lens, assume the source has emittance
E(x) (lm/m2) and the required target illuminance is G(y) (lm/m2). The energy
balance then reads

∫

A
E(x) dA(x) =

∫

m(A)

G(y) dA(y), (13)
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for arbitrary A ⊂ S and image set m(A) ⊂ T. Substituting the optical map y =
m(x), the energy constraint becomes

E(x) = G(m(x)) det
(
Dm(x)

)
, (14)

restricting ourselves to the case det
(
Dm(x)

)
> 0.

Next, for the freeform reflector, assume the source has intensity I (φ, θ) (lm/sr)
and the desired far-field intensity is G(ψ, χ) (lm/sr), with (ψ, χ) another set of
angular spherical coordinates. Let r = u(ŝ)êr + Rt̂ denote the position vector
of a point on a reflected ray in the far field, i.e., R - u(ŝ), corresponding to an
intersection point Q with the target screen z = −L with L - u(ŝ). Let r̂ = r/|r|.
Applying the far-field approximation, i.e., r̂ = t̂ , the energy balance reads

∫

A
I (φ, θ) dS(φ, θ) =

∫

t̂(A)

G(ψ, χ) dS(ψ, χ), (15)

for any set A ⊂ S2 and image set t̂(A) ⊂ S2. Introducing the stereographic
coordinates x and y and subsequently substituting the optical map y = m(x),
assuming once more that det

(
Dm(x)) > 0, we obtain the energy constraint

I (φ, θ)
4

(1 + |x|2)2
= G(ψ, χ)

4

(1+ |m(x)|2)2
det

(
Dm(x)

)
, (16)

where the angular coordinates (φ, θ) and (ψ, χ) still have to be converted to x and
y = m(x), respectively.

Both Eqs. (14) and (16) are of the generic form det
(
Dm(x)

) = F(x,m(x)).
Combining this equation with (12), we obtain the fully nonlinear elliptic PDE

det
(
C(x,m(x))

)
F(x,m(x)) = det

(
D2u1(x)− Dxxc(x,m(x))

)
, (17a)

which is a generalized Monge–Ampère equation. The corresponding boundary
condition reads

m(∂S) = ∂T, (17b)

referred to as the transport boundary condition and is a consequence of the relation
m(S) = T, stating that all light from the source reaches the target.

Connection with Optimal Transport In [4] the reflector problem is related to an
optimal transport problem. More specifically, for a convex reflector R it is shown
that the ray trace map γ : ŝ �→ t̂ (law of reflection) minimizes the transportation
cost

μ �→
∫

S2
c̃(ŝ,μ(ŝ)) I (φ, θ) dS(φ, θ),
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among all plans μ, i.e., measure preserving maps μ : S2 → S2. The function
c̃(ŝ, t̂) = − log(1− ŝ · t̂) is the cost function. Therefore, we refer to c = c(x, y) as
the cost function, regardless of its arguments.

3 Least-Squares Algorithm

We outline a least-squares method to compute the freeform optical surfaces; for a
detailed account see, e.g. [2, 5]. Our method is inspired by the least-squares method
of Caboussat el al. [6]. The method proceeds in two stages, first we compute the
optical map, and subsequently, we compute the shape of the freeform surface(s).

We compute the optical map m from Eq. (12) in a least-squares sense, where
the matrix P (x) is SPD and satisfies the constraint det(C(x,m(x)))F (x,m(x)) =
det(P (x)); cf. (17a). Therefore, we minimize the functional

JI[m,P ] = 1
2

∫

S
‖CDm− P ‖2 dx. (18)

The norm used is the Frobenius norm. Moreover, to impose the transport boundary
condition (17b) we minimize the functional

JB[m, b] = 1
2

∫

∂S

∣
∣m− b

∣
∣2
2 ds, (19)

where b : ∂S → ∂T. To close the numerical model, we combine the functional JI
for the interior domain and JB for the boundary in a weighted average as

J [m,P , b] = αJI[m,P ] + (1− α)JB[m, b] (20)

with 0 < α < 1. Starting from an initial guess m0 we perform the iteration

bk+1 = argminb∈BJB[mk, b], (21a)

P k+1 = argminP∈P(mk)JI[mk,P ], (21b)

mk+1 = argminm∈MJ [m,P k+1, bk+1]. (21c)

The separate minimization steps are over the following spaces

B = {b ∈ C1(∂S)2
∣
∣b(x) ∈ ∂T}, (22a)

P(m) = {P ∈ C1(S)2×2
∣
∣P SPD, det(P ) = det(C(·,m))F (·,m)}, (22b)

M = C2(S)2. (22c)
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The minimization procedure for JI reduces to a scalar constrained minimization
problem for each grid point separately. On the other hand, applying calculus of
variations, the minimization problem for J leads to a (coupled) elliptic PDE for the
components of m. For space discretisation we employ the finite volume method.

Upon convergence of (21), we compute u1 from (11), also in a least-squares
sense. Therefore, we minimize the functional

I [u1] = 1
2

∫

S

∣
∣∇xc(·,m)−∇u1

∣
∣2 dx. (23)

Applying calculus of variations leads to a Neumann problem for u1, for which
we use central differences. Finally, we solve all linear systems using QR-
decomposition.

4 Numerical Example

As an example we compute a freeform lens that generates a circular top-hat target
illuminance from a Gaussian source emittance. The source and target domains are
given by S = T = [−1, 1] × [−1, 1]. The source has emittance E(x) = Ae−10|x|2

and the target plane receives the illuminance I (y) given by I (y) = 1/π if
|y| ≤ 1, otherwise I (y) = 0. The constant A is chosen to enforce global energy
conservation, i.e., relation (13) should hold for the entire source domainA = S. The
numerically computed lens is shown in Fig. 2. Clearly, the lens surface z = u1(x)

closest to the source is convex. To validate the result we have traced 107 rays
through the lens to compute the target irradiance; a selected ray set is shown. The

Fig. 2 Computed double freeform lens (left) and target illuminance (right). Parameter values are:
n = 1.5, L = 15 and β = 2π
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resulting illuminance is also shown in Fig. 2. We conclude that the computed target
illuminance is in good approximation a circular top-hat.
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A Direct Projection to Low-Order Level
for p-Multigrid Methods in Isogeometric
Analysis

Roel Tielen, Matthias Möller, and Kees Vuik

Abstract Isogeometric Analysis (IgA) can be considered as the natural extension
of the Finite Element Method (FEM) to high-order B-spline basis functions. The
development of efficient solvers for discretizations arising in IgA is a challenging
task, as most (standard) iterative solvers have a detoriating performance for increas-
ing values of the approximation orderp of the basis functions. Recently, p-multigrid
methods have been developed as an alternative solution strategy. With p-multigrid
methods, a multigrid hierarchy is constructed based on the approximation order p
instead of the mesh width h (i.e. h-multigrid). The coarse grid correction is then
obtained at level p = 1, where B-spline basis functions coincide with standard
Lagrangian P1 basis functions, enabling the use of well known solution strategies
developed for the Finite Element Method to solve the residual equation. Different
projection schemes can be adopted to go from the high-order level to level p = 1. In
this paper, we compare a direct projection to level p = 1 with a projection between
each level 1 ≤ k ≤ p in terms of iteration numbers and CPU times. Numerical
results, including a spectral analysis, show that a direct projection leads to the most
efficient method for both single patch and multipatch geometries.

1 Introduction

Isogeometric Analysis (IgA) [1] can be considered as a natural extension of the
Finite Element Method (FEM) to high-order B-spline basis functions. The use
of these basis functions enables a highly accurate representation of the geometry.
Furthermore, the higher continuity of the basis functions leads to a higher accuracy
per degree of freedom compared to FEM [2]. Solving linear systems of equations for
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discretizations arising in IgA remains, however, a challenging task. The condition
number of the system matrices increase exponentially with the approximation order
p of the basis functions [3]. Therefore, (standard) iterative methods detoriate for
higher values of p which has led to the development of efficient solvers for IgA
[4, 5].

Multigrid methods [6, 7] are considered among the most efficient solution
techniques for elliptic problems. Within h-multigrid methods, a hierarchy is con-
structed based on different mesh widths h. At the coarsest level, a correction is
obtained by solving the residual equation, which is used to update the fine grid
solution. At each level of the multigrid hierarchy, a basic iteration scheme is
applied, also known as the smoother. The combination of coarse grid correction and
smoothing leads to a highly efficient iterative solver, where the CPU time needed for
convergence grows linearly with the number of degrees of freedom. In the context
of Isogeometric Analysis, h-multigrid methods have been developed with enhanced
smoothers to obtained convergence rates independent of both the mesh width h and
approximation order p [8, 9].

As an alternative solution strategy, p-multigrid methods can be adopted. In
contrast to h-multigrid methods, a multigrid hierarchy is constructed based on
different values of p. As a result, the residual equation is solved at level p =
1, where B-spline basis functions coincide with Lagrangian P1 basis functions,
allowing the use of established solution techniques for standard FEM. Equiped
with a smoother that is based on an Incomplete LU factorization [10], the resulting
p-multigrid method shows convergence rates independent of both h and p [11].
Compared to h-multigrid methods, the coarse grid correction is obtained at p = 1.
As a result, the overall assembly costs are lower for higher values of p due to a
significant reduction of the number of non zero entries. For a detailed comparison
with h-multigrid methods, the authors refer to [11].

In recent papers by the authors, a p-multigrid hierarchy has been constructed for
all levels k, where 1 ≤ k ≤ p. However, the scheme could be adopted in which the
residual at level p is directly projected to the coarse level (p = 1). In this paper,
we compare both schemes in terms of spectral properties, iteration numbers and
CPU times for both a single patch and multipatch geometry. This paper is organized
as follows: Sect. 2 describes the considered model problem and IgA discretization.
The p-multigrid method, together with the different projection schemes studied in
this paper, are described in detail in Sect. 3. Numerical results for the considered
benchmark problems, including a spectral analysis, iteration numbers and CPU
times are presented in Sect. 4. Finally, conclusions are drawn in Sect. 5.

2 Model Problem and IgA Discretization

As a model problem, we consider the convection-diffusion-reaction (CDR) equation
on a connected, Lipschitz domain � ⊂ R

2. Defining V = H 1
0 (�) as the Sobolev

space H 1(�) with functions that vanish on ∂�, the variational form of the CDR-
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equation becomes: Find u ∈ V such that

a(u, v) = (f, v) ∀v ∈ V, (1)

where

a(u, v) =
∫

�

(D∇u) · ∇v + (v · ∇u)v + Ruv d� and (f, v) =
∫

�

f v d�. (2)

Here, D denotes the diffusion tensor, v a divergence-free velocity field and R a
reaction term. Furthermore, we have f ∈ L2(�) and u = 0 on the boundary ∂�.
The physical domain � is then parameterized by a geometry map

F : �̂ → �, F(ξ ) = x. (3)

The geometry map F describes an invertible mapping connecting the parameter
domain �̂ = (0, 1)2 with the physical domain �. In case � cannot be described by
a single geometry map, the domain is divided into a collection of non-overlapping
subdomains �(d), where 1 ≤ d ≤ D. A family of geometry maps F(d) is then
defined to parameterize each subdomain separately and we refer to � as a multipatch
domain consisting of D patches.

In this paper, the tensor product of univariate B-spline functions of order p is
used for the spatial discretization. Univariate B-spline basis functions are defined
on the one-dimensional parameter domain �̂ = (0, 1) and are uniquely determined
by a knot vector 3 = {ξ1, ξ2, . . . , ξN+p, ξN+p+1}, consisting of a sequence of non-
decreasing knots ξi ∈ �̂ with, in this paper, constant knot span size or mesh width h.
Here, N denotes the number of basis functions of order p defined by this knot vector.
B-spline basis functions are defined recursively by the Cox de Boor formula [12].
The resulting B-spline basis functions φi

h,p are non-zero on the interval [ξi , ξi+p+1)

and possess the partition of unity property. In this paper, an open knot vector is
considered, implying that the first and last knots are repeated p + 1 times. As
a consequence, the basis functions considered are globally Cp−1 continuous and
interpolatory only at the two end points; see also Fig. 1.
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Fig. 1 Univariate linear (left) and quadratic (right) B-spline basis functions based on the knot
vectors 31 = {0, 0, 1

3 ,
2
3 , 1, 1} and 32 = {0, 0, 0, 1

3 ,
2
3 , 1, 1, 1}, respectively
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The solution u of Eq. (1) is then approximated by a linear combination of
bivariate B-spline basis functions:

u(ξ ) ≈ uh,p(ξ ) =
Ndof∑

i=1

ci'i
h,p(ξ ), (4)

where 'i
h,p(ξ ) = φ

i1
h,p(ξ1)φ

i2
h,p(ξ2) and Ndof denotes the number of bivariate B-

spline functions, where Ndof = N2. Defining Vh,p as the span of all bivariate B-
spline basis functions, the Galerkin formulation of (1) becomes: Find uh,p ∈ Vh,p

such that

a(uh,p, vh,p) = (f, vh,p) ∀vh,p ∈ Vh,p. (5)

Equation (5) can be written as a linear system resulting from this discretization with
B-spline basis functions of approximation order p and mesh width h. For a more
detailed description of the spatial discretization in IgA, the authors refer to [1].

3 p-Multigrid Method

To solve Eq. (5) efficiently, a p-multigrid method is adopted. Starting from Vh,1,
a sequence of spaces Vh,1, . . . ,Vh,p is obtained by applying refinement in p.
As Cp−1 continuous basis functions are considered on all levels of the multigrid
hierarchy, these spaces are not nested.

Starting from an initial guess u(0)
h,p, a single step of the two-grid correction scheme

for the p-multigrid method consists of the following steps [13]:

u(0)
h,p = u(0)

h,p + Sh,p

(
fh,p − Ah,pu(0)

h,p

)
, (6)

rh,p−1 = Ip−1
p

(
fh,p − Ah,pu(0)

h,p

)
. (7)

eh,p−1 =
(
Ah,p−1

)−1 rh,p−1, (8)

u(0)
h,p = u(0)

h,p + Ip
p−1

(
eh,p−1

)
, (9)

u(1)
h,p = u(0)

h,p + Sh,p

(
fh,p − Ah,pu(0)

h,p

)
, (10)

Here, Sh,p denotes a single smoothing step applied to the high-order problem, while

Ip−1
p and Ip

p−1 denote the restriction and prolongation operator, respectively. The
coarse grid operator Ah,p−1 is obtained by rediscretizing equation (1).

Recursive application of this scheme on Eq. (8) until level p = 1 is reached,
results in a V-cycle. As the coarsest problem in p-multigrid can become large
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Fig. 2 Illustration of both an indirect (left) and direct (right) projection scheme within p-multigrid

for small values of h, a single V-cycle of a standard h-multigrid method (with
canonical prolongation, weighted restriction and a single smoothing step) is adopted
to approximately solve the coarse grid problem in our p-multigrid scheme.

In this paper, we also consider a direct projection from the high-order level to
level p = 1. Both considered multigrid schemes, referred to as an indirect and
direct projection scheme, are shown in Fig. 2.

The operators to project between different p-levels are based on an L2 projection
and have been used extensively in the literature [14–16]. The prolongation and
restriction operator are defined, respectively, as follows:

Ip

p−1(vp−1) = (Mp)
−1Pp

p−1 vp−1 Ip−1
p (vp) = (Mp−1)

−1Pp−1
p vp, (11)

with the mass matrix Mp and transfer matrix Pp

p−1 given by:

(Mp)(i,j) :=
∫

�

'i
h,p'

j

h,p d�, (Pp

p−1)(i,j) :=
∫

�

'i
h,p'

j

h,p−1 d�. (12)

The choice of the prolongation and restriction operator leads to a non-symmetric
multigrid method. Choosing the prolongation and restriction operator as the trans-
pose of eachother would restore symmetry. Numerical experiments, not presented
in this paper, show, however, that this leads to a less robust p-multigrid method. To
prevent the explicit solution of a linear system of equations for each projection step,
the consistent mass matrix Mp in both transfer operators is replaced by its lumped

counterpart ML
p by applying row-sum lumping, i.e. (ML

p)(i,i) =
∑Ndof

j=1(Mp)(i,j).
Note that in IgA the mass matrix can easily be lumped due to the non-negativity
of the B-spline basis functions. It was shown in [11] that the use of a lumped mass
matrix in Eq. (13) hardly influences the convergence behaviour or accuracy of the
resulting p-multigrid methods. Note that, alternatively, the mass matrix could be
inverted efficiently by exploiting the tensor product structure, see [18].

Since the use of standard smoothers (i.e. Gauss–Seidel) within p-multigrid
leads to convergence rates which detoriate for higher values of p [13], we adopt



1006 R. Tielen et al.

a smoother based on an ILUT factorization. This factorization is determined
completely by a tolerance τ and fillfactor m, which are chosen such that the number
of nonzeros is approximately the same as for the orignal operator Ah,p. We applied
this smoother successfully within p-multigrid methods to solve linear systems
arising in IgA [11].

4 Numerical Results

To assess the quality of both projection schemes, two benchmarks are considered.
For the first benchmark, the model problem (1) is considered with coefficients:

D =
[

1.2 −0.7
−0.4 0.9

]

, v =
[

0.4
−0.2

]

, R = 0.3. (13)

Here, � is chosen to be the unit square, i.e. � = [0, 1]2, described by a single
patch. The second benchmark is Poisson’s equation (D is the identity matrix) on
an L-shaped domain (� = {[−1, 1] × [−1, 1]}\{[0, 1] × [0, 1]}), consisting of 4
patches. The resulting linear systems are then solved with the proposed p-multigrid
methods. At level p = 1, coarsening in h is applied until h = 2−3, corresponding
to 81 degrees of freedom.

To investigate the interplay between smoothing and the coarse grid correction,
the error reduction factors when applying a single smoothing step (only on the finest
level) or coarse grid correction (without smoothing) have been determined for both
projection schemes. This analysis has been performed before in literature, in the
context of h-multigrid methods [17]. Figure 3 (left) denotes the error reduction
factors of the generalized eigenvectors vj (j = 1, . . . Ndof) of the operator Ah,p

for p = 4 and h = 2−5. For both a direct and indirect projection, the smoother
and coarse grid correction are complementary to eachother, where the smoother is
effective for the high-frequency components and the coarse grid correction for the
low frequency components. Remarkably, the coarse grid correction with a direct
projection is not only more efficient in terms of less computational work, but also
leads to lower reduction factors. Note that, no smoothing is applied here on the
coarser levels.

To further analyze the performance of both projection schemes, the asymptotic
convergence rate of the resulting p-multigrid methods has been determined. For any
multigrid method, the asymptotic convergence rate is given by the spectral radius
ρ of the iteration matrix describing the effect of a single V-cycle. The spectra of
the iteration matrices for both projection schemes are shown in Fig. 3 (right). For
comparison, a circle with radius 0.025 has been added to the plot. Visually, both
spectra are almost identical, which is also confirmed by the obtained spectral radia:
ρ1 = 0.02032 and ρ2 = 0.02035 for a direct and indirect projection, respectively,
implying an equally efficient p-multigrid method for both configurations.
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Fig. 3 Error reduction in vj (left) and the spectrum of the iteration matrix (right) for the first
benchmark obtained with both projection schemes

(
p = 4, h = 2−5

)

Table 1 Number of iterations needed to achieve convergence for both benchmarks when applying
a direct or indirect projection for different values of h and p

p = 2 p = 3 p = 4 p = 5

Direct Indirect Direct Indirect Direct Indirect Direct Indirect

(a) CDR-equation on the unit square

h = 2−5 5 5 4 4 3 3 3 3

h = 2−6 5 5 4 4 4 3 4 4

h = 2−7 5 5 4 4 4 4 4 4

h = 2−8 5 5 4 4 4 4 4 4

(b) Poisson’s equation on an L-shaped domain

h = 2−5 6 6 6 5 5 5 5 4

h = 2−6 7 7 6 5 5 5 5 4

h = 2−7 7 7 6 6 6 5 6 4

h = 2−8 8 8 6 6 7 6 6 5

Table 1 shows the number of iterations needed to achieve convergence for both
benchmarks, respectively. For all numerical experiments, the initial guess u(0)

h,p is
chosen randomly, where each entry is sampled from a uniform distribution on the
interval [−1, 1]. The p-multigrid iteration is considered converged when the initial
residual has decreased with a factor of 108. Note that for both projection schemes
and benchmarks, the number of iterations is robust in both the mesh width h and the
approximation order p and similar for all configurations. For the first benchmark,
with p = 4 and h = 2−5, the same number of iterations is needed, as expected
from our spectral analysis. Note that for the multipatch geometry, more iterations
are required to achieve convergence. This behaviour for p-multigrid methods has
been observed and analyzed in literature by the authors, see [19].
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Table 2 CPU timings (secs) for the first benchmark for different values of h and p

p = 2 p = 3 p = 4 p = 5

Direct Indirect Direct Indirect Direct Indirect Direct Indirect

(a) Set-up times

h = 2−5 0.2 0.2 0.3 0.4 0.5 0.9 0.9 1.8

h = 2−6 0.6 0.6 1.1 1.6 2.1 3.6 3.7 7.5

h = 2−7 2.5 2.5 4.6 6.4 8.5 14.9 16.7 35.2

h = 2−8 10.0 9.9 18.7 26.2 36.1 65.7 66.4 142.9

(b) Solving times

h = 2−5 0.004 0.004 0.004 0.005 0.004 0.007 0.005 0.01

h = 2−6 0.01 0.01 0.01 0.02 0.02 0.03 0.02 0.05

h = 2−7 0.04 0.04 0.05 0.07 0.07 0.1 0.1 0.2

h = 2−8 0.2 0.2 0.2 0.3 0.3 0.5 0.4 0.8

To compare the computational costs of both approaches, CPU timings have
been determined for the first benchmark. A serial implementation in the C++
library G+Smo is considered on an Intel(R) Core(TM) i7-8650 CPU (1.90GHz).
Table 2 shows the measured set-up and solver times (in seconds). Although for both
projection schemes, the set-up and solver time scales linearly with the number of
degrees of freedom, the CPU times obtained with a direct projection scheme are
significantly lower. Furthermore, the relative difference increases for higher values
of p, as the number of levels in the p-multigrid hierarchy grows when adopting an
indirect projection scheme: for p = 5 a reduction of the set-up and solving times of
around 50% is achieved.

5 Conclusions

Recently, the use of p-multigrid methods has become more popular in solving
linear systems of equations arising in Isogeometric Analysis. In this paper, various
schemes to set up the p-multigrid hierarchy have been compared. In particular, a
direct projection to level p = 1 has been compared with constructing a hierarchy
for each order 1 ≤ k ≤ p. Numerical results, presented for the CDR-equation on
the unit square and Poisson’s equation on an L-shaped multipatch domain, show
that in terms of iteration numbers both projection schemes lead to (almost) identical
results. This is also confirmed by the performed spectral analysis. However, CPU
timings show that a direct projection scheme leads to the most efficient solution
strategy, reducing the set-up and solving times up to a factor of 2 for higher values
of p.
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The Concept of Prehandling as Direct
Preconditioning for Poisson-Like
Problems

Dustin Ruda, Stefan Turek, Peter Zajac, and Dirk Ribbrock

Abstract To benefit from current trends in HPC hardware, such as increasing
availability of low precision hardware, we present the concept of prehandling as
a direct way of preconditioning and the hierarchical finite element method which
is exceptionally well-suited to apply prehandling to Poisson-like problems, at least
in 1D and 2D. Such problems are known to cause ill-conditioned stiffness matrices
and therefore high computational errors due to round-off. We show by means of
numerical results that by prehandling via the hierarchical finite element method the
condition number can be significantly reduced (while advantageous properties are
preserved) which enables us to obtain sufficiently accurate solutions to Poisson-
like problems even if lower computing precision (i.e. single or half precision
format) is used.

1 Motivation

When PDEs are solved numerically by the finite element method, the resulting
error u − ũh can be subdivided into two different types of errors by means of the
identity u − ũh = (u− uh) + (uh − ũh), whereby u, uh and ũh denote the exact
solution, the exact solution to the discrete problem and the actual numerical solution
respectively. On the one hand, one obtains the discretization error u−uh depending
on the smoothness of the exact solution u and the choice of the finite element space.
If (bi)linear shape functions are used (P1 or Q1), the discretization error satisfies
‖u− uh‖ = O

(
h2
)

with respect to the L2-norm. On the other hand, roundoff errors
cause the computational error uh − ũh depending on the data error, that is at least
equal to the machine accuracy (TOL), amplified by the condition number of the
stiffness matrix κ(A). To be more precise, it follows from perturbation theory of
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linear systems that we have ‖uh − ũh‖ ≈ κ(A) · TOL which holds true sharply. It
is known that in the case of Poisson’s equation the condition number of the related
stiffness matrix satisfies κ(A) = O

(
h−2

)
.

Consequently, we face a dilemma: The finer the grid the lower the discretization
error the higher the computational error. Indeed, if the grid width falls below a
certain value, the total error increases because the computational error becomes
dominant as shown in Fig. 1. This value is roughly reached at the intersection
of the discretization and the computational error at h ≈ √

κ(A) · TOL, yielding
h ≈ 4

√
TOL if we substitute the condition number by its approximate value

h−2. Thus, in order to make sensible use of lower, i.e. single or even half
precision (accelerator) hardware, it is indispensable to utilise sophisticated methods
to decrease the condition number. Our approach, the method of prehandling, is
presented in the following sections.
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quad precision
double precision
single precision

Fig. 1 L2-error when solving Poisson’s equation with FEM as a function of the refinement level,
i.e. h = 2−level, in 1D using single-, double- and quad precision
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2 The Concept of Prehandling

By ‘prehandling’ we denote a method of directly manipulating linear systems of
equations inspired by but different from conventional preconditioning. The central
idea consists in transforming the original linear system, given as Ax = b, into
an equivalent form Ãx̃ = b̃, Bx̃ = x with more advantageous properties. The
difference between preconditioning and prehandling can be easily shown by the
example of the Richardson iteration. The preconditioned version is

xI+1 = xI − C−1
(
AxI − b

)
, (1)

whereas by applying prehandling one obtains

xI+1 = xI −
(
C−1AxI − C−1b

)
= xI −

(
ÃxI − b̃

)
. (2)

Thus, prehandling can be seen as an explicit form of preconditioning. Assuming
exact arithmetic and using the exact application of C−1, both methods yield the
same iteration vectors xI for all I . However, the methods (1) and (2) can yield
significantly different results when finite precision arithmetic is applied, especially
if the matrix A is ill-conditioned.

As mentioned in Sect. 1, finite element stiffness matrices arising from Poisson’s
equation are highly ill-conditioned. Yet, an advantageous property is their sparse
structure. Via prehandling we intend to reduce the condition number while pre-
serving the sparsity of the matrix. A lower condition number is desirable because
it enables us to obtain relevant solutions using fast lower precision hardware and
reduces the number of iterations when solving the linear system. To sum up, the
three central requirements for the prehandled system are:

1. Strong decrease of the condition number, κ(Ã)� κ(A).
2. The matrix Ã is only moderately less sparse than A.
3. There is an efficient transformation (in O(n logn) operations for n unknowns)

to Ã, b̃ and the solution to the original system x (via x = Bx̃).

A common method is approximating the inverse of A by a matrix C ≈ A−1

and computing Ã = CA. For this purpose, one can use e.g. matrix splitting
(C = D−1, (D + L)−1), incomplete LU-Decomposition (ILU) or the Sparse
Approximate Inverse (SPAI) but the requirements 1 and 2 are not satisfied by any of
these methods.

A promising technique to meet the demands (at least in 1D and 2D) is the
hierarchical finite element method presented in the following section.
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3 The Hierarchical Finite Element Method

The hierarchical finite element method (also referred to as hierarchical basis
multigrid method, abbr.: HFEM) has been known since the 1980s and was developed
and analysed by H. Yserentant et al. in [1], amongst others. The main idea and
aspects of the realisation as well as the properties that make this method a proper
choice for prehandling are shortly outlined.

3.1 Idea and Realisation

In order to apply this method, a nested sequence of refinements of an initial
triangulation is required. The general idea is the usage of a hierarchical instead
of a nodal basis. This means that basis functions of coarser grids are reused in the
course of the refinement. Figure 2 shows nodal compared to hierarchical bases in
one dimension. This concept can be straightforwardly applied to higher dimensions,
too.

It seems more complicated to assemble the stiffness matrix with respect to a
hierarchical basis since many basis functions have a greater support, but it is in fact
not necessary to compute the matrix itself in the first place if the stiffness matrix
with respect to a nodal basis is known. Instead, we can transform the nodal basis
representation to a hierarchical basis representation via a matrix S. It is computed
as the product S = SjSj−1 · · · S1, whereby each factor is associated with one step
of refinement. More precisely, multiplying by Sk yields the values of level k − 1
basis functions at the new nodes of level k if the values on the coarser grid are
known. In other words, the matrix Sk corresponds to the prolongation regarding
multigrid methods. The matrices Sk are concretely computed as follows: They are
identity matrices with additional entries in the rows that belong to the newly added
nodes of level k. When using a triangular mesh with linear basis functions (P1) and

Fig. 2 Nodal bases (left) and hierarchical bases (right) in the one-dimensional case assuming
homogeneous Dirichlet boundary conditions. Note that for the hierarchical bases only the newly
added basis functions of the respective meshes are depicted. Source: [2]
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uniform refinement (subdividing each triangle into four congruent triangles), each
newly added node of level k with index i has two neighbouring nodes on level k−1,
which are denoted by n1(i), n2(i), and the ith row of Sk is adjusted according to

Sk(i, n1(i)) = Sk(i, n2(i)) = 1

2
. (3)

When using a rectangular 2D mesh with bilinear basis functions (Q1), however,
uniform refinement generates two different types of new nodes, namely midpoints
of edges with two and midpoints of faces with four neighbouring nodes nj (i). In
this case one needs to apply

Sk(i, nj (i)) =
{

1
2 , j = 1, 2 , if xi is midpoint of edge
1
4 , j = 1, . . . , 4 , if xi is midpoint of face

(4)

to achieve a correct interpolation.
Due to this construction, S is a very sparse block unit lower triangular matrix.

If by Âû = b̂ we denote the system with respect to the nodal basis, we obtain
the representation with respect to the hierarchical basis Au = b by means of the
transformation

A = STÂS , b = STb̂ , û = Su . (5)

3.2 Properties

The remarkable property about the hierarchical finite element method is that the
condition number of the emerging matrix is significantly lower in comparison to
standard finite elements. It was shown in [1] that the spectral condition number of
the matrix with respect to the hierarchical basis satisfies

κ(A) = O
((

log
1

h

)2
)

(6)

in the one- and two-dimensional case which is a strong improvement compared to
O
(
h−2

)
. Furthermore, the matrix A is obviously denser than Â, but the number

of nonzero entries per row is low enough to be referred to as sparse and due to
the sparse structure of the matrix S, the transformation can be realised efficiently.
Numerical results that show the reduction of the condition number and the sparsity
of the transformed matrix (approx. 16 nonzero entries per row—if an orthogonal
mesh is used—compared to 9 without prehandling) are given in Sect. 4, Table 1.

In conclusion, the hierarchical finite element method, if used according to
the concept of prehandling, satisfies the required properties, at least in one and
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two dimensions. In the three-dimensional case, though, the same improvement
of the condition number cannot be achieved. Instead, it is shown in [3] that

κ(A) = O
(

1
h

log 1
h

)
respectively O

(
1
h

)
if further prehandling is used.

3.3 Additional Prehandling via Partial Cholesky
Decomposition

If Poisson’s equation with a discontinuous coefficient $

− ∇ · ($∇u) = f in � , (7)

whereby $(x, y)= 1 in a subdomain �1⊂� and $(x, y)=$ - 1 in � \�1, is
considered, the condition number of the stiffness matrix with respect to a nodal
basis additionally depends on the ratio max($)

min($) (denoted by �$) in the form of

κ(Â) = O
(
�$ · h−2

)
. Especially in this case but also in the case of standard

Poisson’s equation ($ = 1) there is a powerful way for further prehandling using a
partial Cholesky decomposition presented in [1, 2].

By A0 we denote the part of the matrix A (which is assumed to be represented
with respect to a hierarchical basis) that corresponds to the coarse grid and the rest
of it by Ã and compute the following Cholesky decomposition

(
A0 0
0 diag(Ã)

)

= LLT . (8)

Consequently, we get the additionally prehandled matrix and right hand side as
L−1AL−T respectively L−1b. Note that the solution needs to be transformed to
the nodal basis representation by multiplication with SL−T.

It shows in our numerical test on an orthogonal 2D mesh (see Sect. 4, Table 2)
that the condition number of L−1AL−T is now virtually independent of �$. The
only condition is that the coefficient $ is constant within the interior of the elements
of the coarse grid.

Since the matrix A0 is very small compared to A, the computational cost of the
Cholesky decomposition (8) is low. On the other hand, the further prehandling only
works to the disadvantage of the sparsity, but if the coarse grid is not chosen too
fine, this effect is not excessive (approx. 16–25 nonzero entries per row if the coarse
grid width is greater or equal to h0 = 1/8) as one can see in Sect. 4, Tables 1 and 2.
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4 Numerical Results

In order to validate the presented methods, they were practically applied to the
Poisson-like equation (7) in the unit square � = [0, 1]2 with f = 1 and

$(x, y) =
⎧
⎨

⎩
$ , if (x, y) ∈

[
1
4 ,

3
4

]2

1 , else
. (9)

Two different widths h of the fine grid and three widths h0 of the coarse grid in
each case were chosen and the density measured as the average number of nonzero
entries per row (NNZ/Row) and the spectral condition number of the respective matrix
(cond) as well as the number of CG-iterations (NOI) necessary to reach a relative
residual less than 10−6 were determined for the hierarchical method with and
without the additional Cholesky prehandling and the plain finite element method for
comparison. Q1 finite elements on a grid consisting of squares were used. Table 1
shows the results in the case $ = 1 (which yields the standard Poisson’s equation)
and Table 2 in the case $ = 106.

One can observe a vast decrease of the condition number and thus the number
of iterations when the matrix is transformed to a hierarchical basis representation
when Poisson’s equation is considered. The method of further prehandling by a
partial Cholesky decomposition turns out to be very robust with respect to $ in
sharp contrast the other listed methods as Table 2 shows.

Table 1 Results for Poisson’s equation ($ = 1)

HFEM HFEM + Chol. FEM

h h0
NNZ
Row Cond NOI NNZ

Row Cond NOI NNZ
Row Cond NOI

1/64 1/4 15.61 23.39 27 16.20 20.92 23 8.81 829.86 63
1/8 15.38 27.51 27 25.25 15.21 20
1/16 14.51 82.96 32 100.12 9.62 14

1/128 1/4 16.68 31.57 32 16.99 28.76 27 8.91 3319.93 127
1/8 16.56 33.30 33 21.79 22.08 24
1/16 16.11 92.21 37 65.40 15.44 19

Table 2 Results for the Poisson-like equation ($ = 106)

HFEM HFEM + Chol. FEM

h h0
NNZ
Row Cond NOI NNZ

Row Cond NOI NNZ
Row Cond NOI

1/64 1/4 16.03 1.57 · 107 623 16.20 22.48 21 8.81 7.05 · 108 2331
1/8 15.61 2.01 · 107 693 25.26 15.52 21
1/16 14.61 6.86 · 107 783 100.66 9.67 17

1/128 1/4 17.31 2.23 · 107 892 16.99 30.64 25 8.91 2.82 · 109 8431
1/8 16.98 2.44 · 107 1042 21.77 22.48 25
1/16 16.34 7.61 · 107 1110 65.53 15.52 21
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Fig. 3 L2-error when solving Poisson’s equation with prehandling by HFEM as a function of the
refinement level, i.e. h = 2−level, in 1D using single, double and quad precision. Compare to Fig. 1
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Fig. 4 L2-error with FEM (left) and prehandling by HFEM (right) as a function of the refinement
level in 2D using half, single, and double precision

Furthermore, it was tested if the application of the hierarchical method actually
enables us to lower the error when using single or even half precision floating-
point format. The course of the L2-error depicted in the Figs. 3 (1D) and 4 (2D)
show that by prehandling via the hierarchical method one achieves more accurate
approximations in single and double precision in the 1D case and in half and single
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precision in the 2D case compared to the finite element method. For more detailed
and further numerical results, such as P1 finite elements and rectangular domains
(where the hierarchical method has basically identical effects), we refer to [4].

5 Summary and Conclusion

By the concept of prehandling together with the hierarchical finite element method
the requirements of a lower condition number, preservation of sparsity and an
efficient transformation are successfully met in the case of Poisson’s equation in 1D
and 2D as numerical results confirm. This allows us to use low precision hardware
without losing too much accuracy. In the context of technical applications where
an error of 1% is often satisfactory, even the usage of half precision might be
appropriate. Additionally on the plus side, the expense of the iterative solution to
the linear system is reduced if the hierarchical method is applied. By implementing
further prehandling via a partial Cholesky decomposition, we can also deal with
the case of the Poisson-like equation with a jumping coefficient. A central task for
future research is to extend this method to apply prehandling in 3D, too.

Acknowledgments The results presented in Figs. 1, 3, and 4 have been created using the FEM
software package FEAT3.1
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Modal Analysis of Elastic Vibrations
of Incompressible Materials Based
on a Variational Multiscale Finite
Element Method

Ramon Codina and Önder Türk

Abstract In this study, we extend the standard modal analysis technique that
is used to approximate vibration problems of elastic materials to incompressible
elasticity. The second order time derivative of the displacements in the inertia term
is utilized, and the problem is transformed into an eigenvalue problem in which
the eigenfunctions are precisely the amplitudes, and the eigenvalues are the squares
of the frequencies. The finite element formulation that is based on the variational
multiscale concept preserves the linearity of the eigenproblem, and accommodates
arbitrary interpolations. Several eigenvalues and eigenfunctions are computed, and
then the time approximation to the continuous solution is obtained taking a few
modes of the whole set, those with higher energy. We present an example of the
vibration of a linear incompressible elastic material showing how our approach is
able to approximate the problem. It is shown how the energy of the modes associated
to higher frequencies rapidly decreases, allowing one to get good approximate
solution with only a few modes.

1 Introduction

Modal analysis is a widely used technique to approximate vibration problems of
elastic materials. Starting from the transient equations of elasticity, with a second
order time derivative of the displacements in the inertia term, the key idea is to
assume a harmonic behavior for the displacement, each mode being of the form
u(x)eiωt , where u(x) is the vector field of displacement amplitudes associated
to the frequency ω. Substituting this expression into the equilibrium equations
(without forcing terms if free vibrations are considered) leads to an eigenvalue
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problem (EVP) in which the eigenfunctions are precisely the amplitudes u(x),
and the eigenvalues are the squares of the frequencies, ω2. The elasticity operator
is symmetric and positive definite, thus, a complete set of eigenfunctions and
associated positive eigenvalues exist, and the exact solution can be expressed as
a series of modes.

While this approach offers no difficulty when applied to compressible materials,
and has been applied to different structural models, incompressible media pose
the difficulty associated to the need of introducing the pressure (or mean stress)
as a variable and to interpolate it in an adequate manner. In particular, when
the problem is approximated using a finite element method (FEM), the standard
Galerkin formulation requires the use of interpolations for the displacement and the
pressure that satisfy the classical inf-sup condition, see, e.g., [1, 2, 4, 5]. This is true
for both the classical boundary value problem found in stationary incompressible
elasticity, the so called Stokes problem, and for the EVP encountered in modal
analysis, as described above.

The alternative to use interpolations satisfying the inf-sup condition is to resort
to stabilized finite element formulations. However, particular care is needed when
dealing with the EVP. The well known Galerkin least squares approach, for example,
a widely used stabilization technique, yields a quadratic EVP even if the continuous
one is linear. We have proposed a FEM for the Stokes EVP that preserves the
linearity of the continuous problem in [6]. It is based on the variational multiscale
(VMS) concept, which assumes that the unknown can be split into a finite element
component and a subgrid scale that needs to be modeled. The key point is to
consider that this subgrid scale is orthogonal, in the L2-sense, to the finite element
component. This yields an EVP that is linear, and that can be solved using arbitrary
interpolations for the velocity and the pressure.

In this work, we extend this procedure to the modal analysis of incompressible
elastic materials, using displacements and pressures as variables. We show that each
mode of the modal analysis (amplitude and frequency) can be obtained from an
EVP that can be split into the finite element scale and the subgrid scale. The latter
needs to be approximated, and we show that this approximation should depend on
the frequency of the mode being considered. Since this frequency is unknown, an
iterative procedure must be devised. The result is a problem for the finite element
component of the displacement amplitude and the pressure which allows for any
spatial interpolation.

Several eigenvalues and eigenfunctions of the Stokes EVP need to be computed
to perform the modal analysis. The time approximation to the continuous solution is
obtained taking a few modes of the whole set, those with higher energy. We present
an example of the vibration of a linear incompressible elastic material showing how
our approach is able to approximate the solution to the problem. We show that the
energy of the modes associated to higher frequencies rapidly decreases, and thus a
reasonable approximate solution can be obtained with only a few modes.
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2 The Problem Definition

Let us consider the problem in a domain � with boundary ∂�, and time t > 0 as
follows

ρ∂2
t tu− μ�u+ ∇p = 0 in �, t > 0, (1)

∇ · u = 0 in �, t > 0, (2)

u = 0 on ∂�, t > 0, (3)

u = u0 in �, t = 0, (4)

∂tu = v0 in �, t = 0. (5)

In these equations, � and ∇ are the Laplacian and gradient operators, respectively,
u(x, t) is the displacement, p(x, t) is the pressure, ρ is the mass density, μ is the
shear modulus (the second Lamé constant), u0(x) is the initial displacement, and
v0(x) is the initial velocity.

If we assume that u and p can be decomposed in modes of the form

u(x, t) = eiωtφ(x), p(x, t) = eiωtψ(x),

these will be the solutions of the EVP

−μ�φ +∇ψ = ρ ω2φ, (6)

∇ · φ = 0, (7)

accompanied with the boundary condition φ|∂� = 0.
It is known that there is a complete set of eigenfunctions and corresponding

eigenvalues

{φ1(x), . . . ,φn(x), . . . }, {ψ1(x), . . . , ψn(x), . . . }, 0 < ω2
1 ≤ ω2

2 ≤ . . . ω2
n ≤ . . . ,

which are eigenpairs (non-trivial solutions) of (6)–(7). The displacement eigenfunc-
tions can be taken to be L2(�)- and H 1(�)-orthogonal such that

(φi ,φj ) = δij , μ(∇φi ,∇φj ) = ρ ω2
i δij , (8)

where δij is the Kronecker delta function.
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3 Stabilized Finite Element Approximation
of the Eigenproblem

If a VMS finite element method is used to approximate problem (1)–(5) with
orthogonal subscales, the resulting matrix form of this problem is given as

ρMÜ + μKU +GP = 0, t > 0, (9)

GTU − SP = 0, t > 0, (10)

U = U0 at t = 0, (11)

U̇ = V0 at t = 0, (12)

where U : R −→ R
Nu and P : R −→ R

Np are the arrays of nodal unknowns
of displacement and pressure, respectively, Nu and Np being the respective total
number of degrees of freedom for the displacement and pressure. M , K , G and
S are matrices of the appropriate size, the latter signifying the stabilization (the
definitions of these matrices, and further details can be found in [6]).

Then, the discrete form of (6)–(7) can be written as

μK'+G1 = ρ ω̂2M', (13)

GT'− S1 = 0. (14)

Since rank(M) = Nu, the discrete eigenvectors and eigenvalues can be written in
the form

{'1, . . . ,'Nu }, {11, . . . , 1Nu}, 0 ≤ ω̂2
1 ≤ · · · ≤ ω̂2

Nu
.

Let us note here that the pressure eigenfunctions are associated to the displacement
ones. A generalized EVP with a positive definite matrix in the right-hand side
multiplying both displacements and pressures would have Nu + Np eigenvalues
[3].

4 Modal Analysis of the Approximate Problem

We consider an approximate solution to the stabilized formulation of the problem
(9)–(12) of the form

[
Ua(t)

Pa(t)

]

=
N∑

j=1

Zj(t)

[
'j

1j

]

, (15)
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with N ≤ Nu being the number of modes to be included in the expansion. Let

3 =
[
'1

11
. . .

'N

1N

]

∈ R
(Nu+Np)×N, Z(t) =

⎡

⎢
⎣

Z1(t)
...

ZN(t)

⎤

⎥
⎦ ∈ R

N, (16)

which allows us to write

[
Ua(t)

Pa(t)

]

= 3Z(t). (17)

Substituting this into (9)–(10), and projecting on the space generated by 3 we get

3T

[
ρM 0

0 0

]

3Z̈(t)+3T

[
μK G

GT −S

]

3Z(t) = 0. (18)

In expanded form, we have

'T
i

N∑

j=1

ρM'j Z̈j +'T
i

N∑

j=1

(
μK'j +G1j

)
Zj = 0, i = 1, . . . , N, (19)

1T
i

N∑

j=1

(
GT 'j − S1j

)
Zj = 0, i = 1, . . . , N. (20)

The discrete counterpart of the L2-orthogonality in (8) is

'T
i M'j = miδij , (21)

therefore, from (13) we get

'T
i

(
μK'j +G1j

) = ρω̂2
i miδij . (22)

From (14) we have that (20) is automatically satisfied, whereas form (19) we obtain

Z̈i + ω̂2
i Zi = 0, i = 1, . . . , N. (23)

It is important to remark that the equations obtained are the same as for the non-
incompressible case and as the Galerkin approximation to the incompressible case.
For the Galerkin case (S = 0), we would have 'T

i G1j = 0, but in fact, what we
need is (22), which also holds in the stabilized case. Also note that the form (15) has
to be assumed in the method we have employed, however, one could use different
expressions of Z for the displacement and pressure in the Galerkin case (see (20)).
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Now, inserting the solution of (23) into (15) we have

[
Ua(t)

Pa(t)

]

=
N∑

j=1

(Aje
iω̂j t + Bje

−iω̂j t )

[
'j

1j

]

, (24)

where Aj , Bj , j = 1, . . . , N , are the coefficients to be determined from the initial
conditions projected onto the subspace generated by the modes.

5 A Numerical Test

We consider a classical incompressible linear elasticity problem, namely, a simply
supported rectangular cantilever beam. A clamped beam is undergoing a sudden
deflection caused by an initial load, and then allowed to vibrate harmonically by
removing the constraint that provokes this deformation. The width and length of the
beam are discretized using 5 and 50 triangular elements, respectively, with quadratic
interpolations for all the unknowns. ρ and μ are taken as unity in the simulations.
The initial configuration of the model is depicted in Fig. 1.

The displacement field plots of the first eight eigenfunctions are presented in
Fig. 2. The figure also includes the ordinal number of the eigenvalue associated to
the eigenmode, and the L2-norm of the corresponding term (referred as energy for
brevity) in the expansion (24), at the top of each graph. Since this is a pure bending
problem, the bending modes are expected to have high energy that is decreasing
with an increasing cardinality. This can readily be observed from Fig. 2; the first
few bending modes have higher energies compared to the rest of them. All the
compression modes (the second, fourth, and seventh) presented have zero (to the
machine’s precision) energies, in other words, their contribution is insignificant
compared to the other terms. It is interesting, from a structural mechanics point of
view, that all modes are either bending or compression, and there exist no coupled
modes.

In order to measure the contribution of the modes, the variation of the total energy
loss of the first i modes defined as TELi = (1−∑i

j=1 Ej/
∑N

j=1 Ej)100%, where
Ej refers to the energy of the j -th term in the modal expansion, with respect to

Fig. 1 The initial setting where the displacements are magnified 100 times
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Fig. 2 Plot of the first eight eigenfunctions
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the first 50 modes is depicted in Fig. 3. In coherence with the previous results, the
compression modes do not contribute to the energy loss and the first three, and the
first six modes account for more than, respectively, 90% and 95% of the total energy.

Figure 4 shows the time variations of the displacement at the lower right tip of
the beam, evaluated using three different schemes: a direct solution using a central
finite difference (FD) time integration scheme, the modal solution using 6 modes,
and a reference solution obtained by including 100 modes. All three solutions agree
reasonably well over cycles of period observed to be 40.

Finally, a quantification of the L2-norm of the error, normalized using the
reference solution mentioned above, at the lower right tip of the beam calculated
over a periodic cycle with respect to the number of modes is provided in Fig. 5.

Fig. 3 The total energy loss of the first i modes
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Fig. 4 Transient behavior of the displacement at the lower right tip of the beam
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Fig. 5 The L2-norm of the error at the lower right tip over the time interval [0, 40]

6 Conclusion

A stabilized FEM based on orthogonal subgrid scales that allows any spatial
interpolation is extended to the modal analysis of incompressible elastic materials. It
is shown that each mode of the modal analysis can be obtained from an EVP that can
be split into the finite element scale and the subgrid scale. The time approximation
to the continuous solution can be obtained taking a few modes of the whole set,
those with higher energy. The energy of the modes associated to higher frequencies
rapidly decreases, allowing one to get good approximate solution with only a few
modes.
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A Learning-Based Formulation
of Parametric Curve Fitting
for Bioimage Analysis

Soham Mandal and Virginie Uhlmann

Abstract Parametric curve models are convenient to describe and quantitatively
characterize the contour of objects in bioimages. Unfortunately, designing algo-
rithms to fit smoothly such models onto image data classically requires significant
domain expertise. Here, we propose a convolutional neural network-based approach
to predict a continuous parametric representation of the outline of biological objects.
We successfully apply our method on the Kaggle 2018 Data Science Bowl dataset
composed of a varied collection of images of cell nuclei. This work is a first
step towards user-friendly bioimage analysis tools that extract continuously-defined
representations of objects.

1 Introduction

Parametric curve models have been extensively used in the past in the context of
active contours for image segmentation [1]. In its classical formulation, a parametric
active contour algorithm requires the definition of a curve model, which is then
initialized in the image and evolves to capture the boundaries of an object of interest
by minimizing a handcrafted cost functional referred to as the energy [2]. In practice,
designing an energy implies formalizing visual intuition in mathematical terms and
requires expert domain knowledge [3], limiting the usability of parametric active
contour methods. The energy most often consists in a combination of multiple terms,
which must be weighted properly and are difficult to robustly optimize at once.
In the context of bioimage segmentation, more efficient, robust, and generalizable
learning-based methods such as convolutional neural networks [4] and random
forests [5] are nowadays preferred over parametric active contours. Being able
to model the outline of objects in a (possibly already segmented) image with
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parametric curves however remains of interest. The crux of bioimage analysis
indeed consists of extracting quantitative measurements to describe, model and
understand living phenomena [6]. Continuously-defined parametric curve models
offer a convenient representation to extract morphological descriptors without
discretization artefacts. Discrete segmentation masks are in fact often continuously
interpolated prior to quantitative analysis [7]. Devising the best set of (discrete)
contour points to interpolate is, however, not trivial, as mask boundaries are
likely to be noisy. It thus appears that parametric curve fitting, as historically
considered in active contour methods, deserves to be considered and modernized
as a tool to retrieve optimal continuously-defined representations from discrete sets
of connected pixels. In this work, we present a first attempt in this direction: we rely
on a convolutional neural network (CNN) to predict the best parametric curve fit
onto an object contour. In that way, we trade the energy design step, which requires
domain-expert knowledge, for a data-driven approach. Our network is trained with
a loss designed to penalise the discrepancy between a discrete ground truth mask
and a sampled version of the predicted continuous contour. From this, it learns
to generate the continuous representation that most accurately approximates the
discrete contour of an object.

Using neural networks to predict a set of interpolation points and retrieve
a continuous model of the contour of objects in images has recently attracted
attention. Most relevant to our work are those of [8] and [9]. In [8], a joint structure
composed of a CNN and an autoencoder is proposed to smoothly model the surface
between vertebral bodies and posterior elements in the vertebra. The surface model
is a thin-plate spline, whose control points are predicted using a shape model of
vertebral bodies. While yielding very promising results, this approach heavily relies
on the structural specificity of the vertebra and therefore has limited application
in bioimages featuring other objects. The more general problem of predicting the
locations of the set of control point of a parametric spline curve that best represents
an object’s contour is explored in [9]. The task is formulated as deducing the values
of a variable length sequence of coefficients. The proposed solution consists of the
combination of a CNN and a recurrent neural network. The loss is defined from a
set of ideal, ground truth control point locations. Such a construction assumes that
a unique set of control points yields the best parametric curve representation of an
object contour. Since the parametrization of a continuously-defined contour is not
unique, several control point sets can generate the same curve. The considered loss
thus imposes artificial restrictions on the contour representation. Here, we alleviate
this by adopting a curve-based (instead of control-points-based) loss.

In Sect. 2, we recall the formulation of a parametric curve model built using
spline interpolation, present the architecture of our network, and discuss the design
of the loss, which is central to our work. Section 3 is devoted to experiments: we
tested our network on the Kaggle 2018 Data Science Bowl dataset [10], which
contains images of cell nuclei acquired under a variety of conditions, and that vary in
the cell type, magnification, and imaging modality. Finally, in Sect. 4, we conclude
with a brief discussion and explore future directions.
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2 Description of the Method

2.1 Parametric Curve Model

Our parametric curve model is constructed relying on uniform spline interpolation
as in [2]. In the 2D plane, a closed parametric spline curve r(t), t ∈ R is expressed
by two coordinate functions x1(t) and x2(t) as

r(t) =
[
x1(t)

x2(t)

]

=
M−1∑

k=0

c[k]ϕper(t − k). (1)

The coefficients {c[k]}k=0,...,M−1 ∈ R
2 are the control points and, in our use-case,

correspond to coordinates in the image space. The number of control points, M

relate to the flexibility of the curve, as smaller number of control points yield more
rigid contours. In our case, the function ϕper(t) = ∑∞

n=−∞ β3(t − nM) is the M-
periodized version of the cubic B-spline generator [11]. We rely on cubic B-splines
for their good approximation properties of smooth curves [12]. Our method would
however equivalently work with other interpolation kernels ϕ : R → R, such as
exponential splines [13].

2.2 Neural Network Architecture

Using a neural network, we aim at robustly determining how control points should
be distributed along the boundary of objects in a variety of bioimages. CNN are
the tools of choice when it comes to understanding spatial information from image
content as they explicitly connect neurons that are spatially near in consecutive
layers [14]. In particular, CNN already achieve state-of-the-art performance in
several image analysis tasks such as image classification, image segmentation, and
bounding box detection.

We adopt the architecture depicted in Fig. 1. This construction, consisting of
blocks of convolutional layers followed by pooling and ending with a dense
fully connected layer, is typical of a classical CNN [15]. For a two-dimensional
parametric spline curve composed of M control points, the final layer of our
architecture is composed of 2M nodes, where each subsequent pair of nodes
corresponds to the image coordinates of a control point. The network architecture,
as well as hyperparameters such as learning rate and batch size, could be adapted
and optimized for specific biological objects.

Our training pipeline is illustrated in Fig. 2. The input image goes through the
CNN, which predicts the locations of the M control points {c[k]}k=0,...,M−1 of a
spline model of the form (1), where the value of M and the spline generator ϕ have
been chosen prior to training. The loss is then calculated between the discrete ground
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Fig. 1 CNN Architecture. CONV: 3 × 3 leaky ReLU convolutional layer; POOL: 2 × 2 max-
pooling layer; FC: fully connected layer; M : number of control points. The number of feature
maps is indicated under each block

Fig. 2 Training Pipeline. The input image goes through a CNN, which predicts the M control
points {c[k]}k=0,...,M−1 of the parametric curve model (1). The loss reflects the discrepancy
between the ground truth (pixel-based) contour and the discretization of the predicted (continuous)
one

truth contour, extracted from the ground truth segmentation mask, and a sampled
version of the predicted continuously-defined parametric curve. The network is
updated accordingly for a given number of epochs using the ADAM optimizer [16].

2.3 Loss Function

Objects in a segmented image are usually represented by a segmentation mask.
To train our network, we extract the collections of pixels composing the contour
of a ground truth segmentation mask using Satoshi and Abe’s algorithm [17] as
implemented in OpenCV 3.4.2 [18]. The continuous curve predicted by the network
must faithfully capture the ground truth contour. When sampling the predicted
continuous curve, one should then retrieve the points located on the object contour
(that is, the ground truth contour). We therefore define our loss as a Wasserstein (or
Earth mover’s) distance [19] over ordered point sets.

We consider A, the set of N connected pixels composing the ground truth
contour. By uniformly sampling N values on (1), we then retrieve B, an equally-
sized set of points describing the predicted contour. Inspired by the work of [20] on



A Learning-Based Formulation of Parametric Curve Fitting for Bioimage Analysis 1035

image annotation, we train our network with the loss

L(A,B) = min
j∈[0,...,N−1]

N−1∑

i=0

∥
∥ai − b(j+i) mod N

∥
∥ , (2)

which corresponds to the minimum distance between A and all circular permutation
of the elements in B. Classically, the Wasserstein distance is defined over unordered
point clouds. Its calculation thus results in high computational complexity, and is in
practice achieved relying on approximations. In our case, we can make use of the
fact that successive points on the contour are inherently ordered, which dramatically
reduces the complexity of the problem. Moreover, we can always ensure that A and
B in (2) are equally-sized thanks to the continuously-defined nature of the predicted
contour.

3 Experimental Results

In order to test the validity of our method, we consider the Kaggle 2018 Data
Science Bowl dataset (also referred to as BBBC038v1) available from the Broad
Bioimage Benchmark Collection [10]. It is composed of a diverse collection of
images of cell nuclei, which aims at reflecting the type of images collected by
research biologists at universities, biotechs, and hospitals. Nuclei in images vary
in four different ways: the organism they are derived from, including but not limited
to humans, mice, and flies; the way they have been treated and imaged, in terms of
types of staining, magnification, and illumination; the context in which they appear,
including cultured mono-layers, tissues, and embryos; and their physiological state,
such as cell division, genotoxic stress, and differentiation. The dataset faithfully
reflects the variability of object appearance and image types in bioimages and
is designed to challenge the generalization capabilities of a method across these
variations. We relied on the pre-defined stage1_train set, composed of 670 images,
to train our network and perform cross-validation. We saved the stage1_test set,
which consists of 65 images, to assess the performance of the network after training.
Images are generally composed of more than one nucleus, but ground truth binary
masks of each individual nucleus instance are provided for both sets. As we
focus on continuously modelling the contour of a single object at once, we tile
images according to bounding boxes around each individual nucleus. This step can
be performed relying on a separate neural network trained for object detection,
such as [21]. Ultimately, our final cross-validation and test sets are composed of
respectively 29,461 and 4152 tiles of isolated nuclei.

We divide the cross-validation set into 10 random partitions and follow a tenfold
cross-validation strategy. In each fold, we pick 9 partitions of the cross-validation set
for training and use the remaining partition as validation set to monitor performance.
We ensure that each sample in the cross-validation set is used for training in 9
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independent folds and for validation in the remaining one. We train the network
for 100 epochs, keeping the learning rate at 0.0001. We record the evolution of the
loss in training and validation to ensure convergence and monitor for overfitting.
For each fold, we compute the median Dice score over the whole test set. The Dice
score [22] is defined as Dice(A,B) = 2|A∩B|

|A|+|B| , where A is the original ground truth
mask and B the mask derived from the predicted contour. We obtain a median Dice
score of 0.9562± 0.0014 over the ten folds, and provide visual illustration of high,
intermediate, and low Dice score results in Fig. 3.

Finally, in order to challenge the learning abilities of our rather shallow network
architecture, we carry out a data ablation experiment. We keep the stage1_test set
untouched and randomly ablate a fraction of the stage1_train set before training
and carrying out tenfold cross-validation. The depth of a network affects its ability
to learn an appropriate data representation, but also dictates the amount of free
parameters (weights) to be set. As we designed ours to offer a good trade-off
between simplicity and performance, we here investigate the effect of training set
size on prediction quality. In boxplots shown in Fig. 4, we report the distribution of
median Dice scores across folds on the full BBBC038v1 stage1_train set, as well
as on ablated versions of it. No statistically significant decrease in performance
is observed when ablating up to 90% of the stage1_train set. Prediction accuracy
is clearly affected when training only on 10% of the data, but the median Dice
nevertheless remains around 0.948. We provide source code to reproduce these
experiments at gitlab.ebi.ac.uk/smandal/cpnet.

Fig. 3 Predicted continuously-defined contours. We report examples of (a) low quality (0.93), (b)
intermediate quality (0.95), and (c) high quality (0.97) results from the BBBC038v1 stage1_test
set after training on the BBBC038v1 stage1_train set

gitlab.ebi.ac.uk/smandal/cpnet
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Fig. 4 Data ablation study. Distribution of median Dice score across folds on the stage1_test set,
when training on truncated versions of the stage1_train set

4 Discussion

In this work, we propose a CNN-based pipeline to predict a continuous contour
representation for objects in bioimages. The output of the network is a collection of
discrete points that fully determine a continuously-defined parametric spline curve.
Our method successfully learns and predicts continuous models of nuclei contours
in images from the Kaggle 2018 Data Science Bowl dataset, which realistically
reflects variations in the visual appearance of objects in bioimages. Here, the number
of control points M and the basis function ϕ in (1) were determined prior to training
and kept fixed. A natural future direction for this work aims at integrating these
variables in the network and learning them from the nature of the objects to be
represented. An additional worthy avenue would be to explore the generalization
capabilities of the network on datasets featuring more complex biological object
shapes.

Acknowledgments The authors are grateful to Dr. James Klatzow and Dr. Julien Fageot for
valuable discussions and helpful comments on the manuscript. This work is supported by EMBL
core funding.
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Adaptive Time Stepping Methods Within
a Data Assimilation Framework Applied
to Non-isothermal Flow Dynamics

Ferdinand Evert Uilhoorn

Abstract This contribution discusses the performance of time stepping schemes
within a data assimilation framework, applied to the method of lines solutions of
the non-isothermal compressible gas flow equations. We consider important classes
of schemes, namely an embedded explicit Runge–Kutta (ERK) scheme, a diagonally
implicit Runge–Kutta (DIRK) scheme, a fully implicit Runge–Kutta (IRK) scheme
and a Rosenbrock–Krylov (ROK) scheme. For the numerical illustration, we
estimated the flow transients in a subsea pipeline system. Errors from numerical
discretization, missing and variability of physical parameters and inaccuracy of
initial and boundary conditions are assumed non-Gaussian. Efficiency, robustness
and estimation accuracy were evaluated. Results showed that the DIRK scheme is
a good compromise between efficiency and robustness. Spurious oscillations were
filtered out by the sequential Monte–Carlo algorithm.

1 Introduction

Numerical modeling of flow transients plays an important role in real-time control
of pipeline systems. Data assimilation combines measurements with numerical
models, i.e.,

πt = f (πt−1)+ vt−1, (1)

ζt = h(πt )+ nt , (2)
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where πt ∈ R
nπ is the state at time t , ζt ∈ R

nζ is the measurement, vt ∈ R
nv is a

random forcing that represents uncertainties in model parameters, missing physics
and discretization errors and nt ∈ R

nn is the measurement noise. The mappings
f : R

nπ × R
nv �→ R

nπ and h : R
nζ × R

nn �→ R
nζ represent the discretized

flow and measurement model, respectively. In general data assimilation aims better
prediction and understanding of the fundamental physics.

Unlike the Kalman filter and its variants, sequential Monte–Carlo (SMC)
methods or particle filters (PFs) are not constrained by linearity or Gaussianity and
characterized by attractive convergence properties. From the law of large numbers
[1]

I (f ) ≈ 1

Np

Np∑

i=1

ft

(
π

(i)
0:t
)

a.s.−→
N→+∞

∫
ft (π0:t ) P (dπ0:t |ζ1:t ) , (3)

where a.s. refers to almost sure convergence and ft is a function of interest. This
property makes the use of ensemble-based data assimilation methods attractive. It
enables us to approximate the posterior distribution p(π0:t |ζ1:t ) and the filtering
density p(πt |ζ1:t ) with ζ1:t = {ζ1, ζ2, . . . , ζt }. It starts with sampling Np random
draws, also called ensemble members, or particles πi

0 from the initial model
probability density function (pdf) p(π0). Next, we solve the numerical model from
t − 1 to t and sample all model states, i.e., π(i)

t ∼ p(πt |π(i)
t−1) ∀i. For the gas flow

equations, the method of lines paradigm is used. Thus, for each model state, we
solve the ordinary differential equations added with a stochastic term that represents
the unknown external and internal terms. This requires an efficient and robust time
integration scheme, which is the subject of investigation in this work. Finally, when

measurements become available, the weights ω
(i)
t = p(ζt |π(i)

t )/
∑Np

i=1p(ζt |π(i)
t )

are computed for each particle where p(ζt |π(i)
t ) is the pdf of the measurements.

Subsequently, a resampling step selects particles with high weights that are kept for
the posterior pdf.

For the time stepping, we concentrate on important classes of schemes, that
is, an embedded explicit Runge–Kutta (ERK) scheme [2] a diagonally Runge–
Kutta scheme (DIRK) [3], a fully implicit Runge–Kutta scheme (IRK) [4] and a
Rosenbrock–Krylov (ROK) method [5]. We impose non-Gaussian noise because
it can be argued that stochastic forcing, discretization errors and missing physics
follow a Gaussian distribution. The statistics describing these errors are in general
predefined, as here, but in practise most often a priori unknown [6]. For the test
problem, we consider a real subsea pipeline system.
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2 Unsteady Gas Flow Equations

The governing equations describing the unsteady gas flow dynamics are derived
from the conservation principles of mass, momentum and energy and read

∂p

∂t
= a2

s

cpT

(

1+ T

z

(
∂z

∂T

)

p

)(
q

A
+ ṁzRT

pA2 w

)

−
[
ṁzRT

pA
− a2

s ṁ

pA

·
(

1− p

z

(
∂z

∂p

)

T

)]
∂p

∂x
− a2

s ṁ

T A

(

1+ T

z

(
∂z

∂T

)

p

)
∂T

∂x
− a2

s

A

∂ṁ

∂x
, (4)

∂T

∂t
= a2

s

cpp

(

1− p

z

(
∂z

∂p

)

T

)(
q

A
+w

ṁzRT

pA2

)

− ṁzRT

pA

∂T

∂x

− a2
s

cp

(

1+ T

z

(
∂z

∂T

)

p

)[
ṁzR

pA

(

1+ T

z

(
∂z

∂T

)

p

)
∂T

∂x
− ṁT Rz

p2A

·
(

1− p

z

(
∂z

∂p

)

T

)
∂p

∂x
+ zT R

pA

∂ṁ

∂x

]

, (5)

∂ṁ

∂t
= − ṁ

T

(

1+ T

z

(
∂z

∂T

)

p

)
∂T

∂t
+ ṁ

p

(

1− p

z

(
∂z

∂p

)

T

)
∂p

∂t
− ṁ2zR

pA

·
(

1+ T

z

(
∂z

∂T

)

p

)
∂T

∂x
+
(
ṁ2T Rz

p2A

(

1− p

z

(
∂z

∂p

)

T

)

− A

)
∂p

∂x

− ṁzT R

pA

∂ṁ

∂x
− w − pAg sin (θ)

zT R
, (6)

within the domain {(x, t) : 0 � x � L, 0 � t � tf } with length L and final
time tf . Other variables and parameters are pressure p, temperature T , mass flux
ṁ, frictional force w, cross-sectional area A, gravitational acceleration g, angle of
inclination θ , heat transfer q and compressibility factor z. The isentropic wave speed
as = (∂p/∂ρ)

1/2
s is defined as

(
∂p

∂ρ

)

s

=
⎡

⎣ρ

p

⎛

⎝1− p

z

(
∂z

∂p

)

T

− p

ρcpT

(

1+ T

z

(
∂z

∂T

)

p

)2
⎞

⎠

⎤

⎦

−1

, (7)
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with density ρ. The frictional force is computed from w = 1
8fρv |v| πd . Here the

friction factor f is defined as

1√
f
= −2 log

(
ε

3.7d
+ 2.51

Re
√
f

)

, (8)

with roughness ε, diameter d and Reynolds number Re. The heat transfer between
the gas and it surroundings is calculated from q = −πdU (T − Ts) with U as the
total heat transfer coefficient and Ts as the surrounding temperature. Equations (4)–
(6) are completed with initial conditions p(x, 0) = p0(x) and T (x, 0) = T0(x) and
boundary conditions p(0, t) = p0, T (0, t) = T0 and ṁ(L, t) = φ(t). The function
φ(t) represents the end-use gas demand measured at the outlet node whereas p0 and
T0 are known at the inlet node of the system.

2.1 Numerical Discretization

The method of lines is used to solve the system of PDEs (4)–(6). These set of
equations can be rewritten in the compact form ut + Fux + S = 0 with matrix
F and source term S. The spatial domain [0, L] was uniformly discretized by nx
points xi = i�x, i = 1, . . . , nx . The system of ordinary differential equations
yields

du(t)

d t
= −F(u)Bu(t)− S(u(t)) = f (u(t)), u(t0) = u0, t ∈ [t0, tf ], (9)

with state vector u(t) =
[
p1(t), · · · , pnx (t), T1(t), · · · , Tnx (t), ṁ1(t), · · · , ṁnx (t)

]�

and B = ∑n
j=1 Ij ⊗ B(j) defining the computational stencil. In the analysis, we

use a central difference scheme of order two (CD2) and four (CD4) whereas the
weighting coefficients in sub-matrix B(j) are defined as [7]

1

2�x

⎡

⎣
−3 4 −1
−1 0 1
1 −4 3

⎤

⎦ ,
1

24�x

⎡

⎢
⎢
⎢
⎢
⎢
⎣

−50 96 −72 32 −6
−6 −20 36 −12 2
2 −16 0 16 −2
−2 12 −36 20 6
6 −32 72 −96 50

⎤

⎥
⎥
⎥
⎥
⎥
⎦
, (10)

respectively. The structure of the Jacobian J = ∂uf (t, u) is defined by the
discretization scheme. If we considering for example 101 and 1001 spatial nodes
only 4.9% and 0.5% of the entries, respectively, are nonzeros. Thus, we are handling
sparse Jacobians. For our test problem, the eigenvalues λ of J are complex with
negative real parts. Using the CD4 scheme, the ratio max |Re(λj )|/min |Re(λj )|
for a grid size of 101 and 1001 are 8.4 · 10−3 and 0.8, respectively. If we compute
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max |Re(λj )|·(tf −t0), the corresponding values are 2.6 and 7.8·103 for the interval
[0, 24 h]. These values suggest that a nonstiff solver is preferred. On the other hand,
stiffness based on eigenvalues can be a too liberal condition [8]. As mentioned in
[4], more pragmatic is to consider the system as stiff in case implicit schemes are
more efficient than explicit schemes. Therefore, we examine both type of solvers.

Runge–Kutta Schemes

The general s-stage Runge–Kutta scheme is of the form

ki = f (tn + ci�t, un +�t

s∑

j=1

aij kj ), i = 1, . . . , s, (11)

un+1 = un +�t

s∑

i=1

biki, (12)

and characterized by the coefficients aij , bi and ci [2]. For explicit Runge–Kutta
methods, aij = 0 for i � j and require only a right-hand-side function evaluation
per stage but the Courant number sets �t and as a results lowers the efficiency.
Embedded Runge–Kutta methods provide an efficient way to estimate the local error
for step size control. A successful nonstiff scheme is the RK method of order (5)4
[9]. If aij = 0 for i < j and at least one aii �= 0 we obtain a DIRK method. If
on the other hand, aii = γ for i = 1, . . . , s we obtain a single diagonally implicit
Runge–Kutta schemes (SDIRK) scheme. A system of nonlinear equations at each
stage is solved for ki . It increases the computation time but improves stability and
allows for larger time steps.

For stiff problems, reliable and robust solvers are the fully implicit L stable
3-stage RK method of fifth order [4] and the second-order DIRK method [3].
The latter scheme contains an explicit stage. To integrate Eq. (9) from t = tn to
tn+1 = tn + �tn, it starts with the trapezial rule from tn to tn+γ = tn + γ�tn,
un+γ = un + γ�tn/2

(
f (t, un)+ f (t, un+γ )

)
, followed by the second-order

backward-differentiation formula from tn+γ to tn+1 to advance the solution in the
following manner:

un+1 = 1

γ (2− γ )
un+γ − (1− γ )2

γ (2− γ )
un + 1− γ

2− γ
�tnf (t, un+1). (13)

It is L-stable and First-Same-As-Last.
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Rosenbrock Methods

To accelerate the linear algebra, Krylov techniques have shown to be very efficient
for large stiff ODE systems. An s-stage Rosenbrock method for system reads

(I −�tnγ J )ki = f

⎛

⎝un + tn

i−1∑

j=1

αij kj

⎞

⎠+ tnJ

i−1∑

j=1

γij kj , i = 1, . . . , s. (14)

For the Jacobian a low rank approximation QQ�J is used. Herein Q is an
orthogonal basis of the Krylov-subspace, i.e., K = {ri , J ri, . . . ,Kκri} where ri is
the residual. The matrix Q can be computed using Arnoldi’s algorithm. The routine
we use is the linearly implicit Runge–Kutta method of order four described in [5].

3 Numerical Experiments

The test problem represents the subsea pipeline from the UK to Belgium [10] with
L = 235 km and d = 1.016 m. The physical properties were computed from
the Helmholtz free energy equation of state [11]. At the inlet node the pressure
is 125 bar and the temperature is 17 ◦C. The demand function φ(t) is based on
real data with a time span of 24 h. We take a sampling interval of 10 min. The
estimation accuracy is calculated in terms of the root mean square error (rmse).
The integration schemes were evaluated with an absolute tolerance atol = 10−6

and relative tolerance rtol = 10−3. The number of grid points nx = 101 and the
sample size Np = 20. The modeling errors are represented by the product of random
variables that follow a Gaussian and Gamma distribution, whereas the measurement
noise is assumed Gaussian. We assume that the noise statistics are known. In each
simulation while using a different time stepping solver, we used the same random
seeds. Inverse crime [12] is avoided by generating the synthetic data from the fine
grid reference solutions.

We noticed that if the forward problem is solved without random perturbations,
the ERK scheme showed for both CD2 and CD4 spurious oscillations in the solution
domain for the mass flux (see Fig. 1). Not illustrated here but minor oscillations were
detected for the ROK method. For the DIRK and IRK schemes such oscillations
were not observed. If we set the absolute tolerance to 10−6 this issue was resolved.
The rmse values are shown in Table 1 and clearly indicate a significant improvement
if we tighten the tolerance.

In the next step, we examine the integration schemes within the data assimilation
framework. From Table 2 we conclude that the difference in estimation accuracy
between the integration schemes is small. It seems that the spurious oscillations
that were observed before were filtered out. The posterior pdf and estimates for
the mass flux are shown in Fig. 2. The accuracy improves if we use the finite
difference scheme of order four but with an average increase of approximately 30%
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Fig. 1 Spurious oscillations for a single noise-free integration using ERK with CD2 (a) and CD4
(b). atol = 10−6, rtol = 10−3 and nx = 101

Table 1 Results for the noise-free forward problem using ERK scheme

atol = 10−6, rtol = 10−3 atol = 10−6, rtol = 10−6

CD2 rmsep (Pa) 34.2 4.75

rmseT (K) 1.95 · 10−4 1.78 · 10−4

rmseṁ (kg s−1) 0.123 2.98 · 10−4

CD4 rmsep (Pa) 44.6 6.25 · 10−2

rmseT (K) 1.11 · 10−4 2.04 · 10−6

rmseṁ (kg s−1) 0.255 2.46 · 10−4

Table 2 Results within PF framework

telaps/s
a rmsep rmseT rmseṁ

ERK CD2 14 8.09 · 103 0.372 1.13

CD4 23 8.02 · 103 0.297 1.17

DIRK CD2 18 8.08 · 103 0.370 1.16

CD4 27 8.01 · 103 0.297 1.05

IRK CD2 125 8.09 · 103 0.370 1.16

CD4 157 8.05 · 103 0.297 1.06

ROK CD2 17 8.16 · 103 0.367 1.15

CD4 26 8.03 · 103 0.297 1.04
a

Mean elapsed time for one model realization and time span

in computation time. In terms of efficiency, the ERK scheme is superior, followed by
the DIRK and ROK methods. If we set rtol = 10−6 and repeat the experiments, we
did not observe significant improvements in accuracy. In fact, we are oversolving
the problem, which only leads to higher computation times. Keeping in mind the
oscillating behaviour of the ERK and ROK schemes, the DIRK method seems to be
a good compromise between efficiency and robustness.
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Fig. 2 Evolution of posterior pdf p(πt |ζt ) (a) and estimates (b) using ERK and CD4 with atol =
10−6, rtol = 10−3

4 Conclusion

In this work, we discussed the performance of different classes of integration
schemes within the framework of data assimilation. For the numerical experiments
we used an offshore pipeline. Results indicate that the ERK is most efficient, but
suffered from spurious oscillations in case the tolerance was set too loose. On the
other hand, for the parameter set we used these oscillations were filtered out by
algorithm. The DIRK scheme showed to be a good compromise between efficiency
and robustness. The benefits from tightening the tolerance is small and oversolves
the problem at higher computation cost.
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Matrix Oriented Reduction
of Space-Time Petrov-Galerkin
Variational Problems

Julian Henning, Davide Palitta, Valeria Simoncini, and Karsten Urban

Abstract Variational formulations of time-dependent PDEs in space and time yield
(d + 1)-dimensional problems to be solved numerically. This increases the number
of unknowns as well as the storage amount. On the other hand, this approach enables
adaptivity in space and time as well as model reduction w.r.t. both type of variables.
In this paper, we show that matrix oriented techniques can significantly reduce the
computational timings for solving the arising linear systems outperforming both
time-stepping schemes and other solvers.

1 Introduction

Time-stepping schemes based upon variational semi-discretizations are the standard
approach for the numerical solution of time-dependent partial differential equations
(PDEs). Using a variational formulation in space and a subsequent discretization e.g.
in terms of finite elements, one is left with an evolution problem in time. Standard
finite difference techniques then yield a time-marching scheme, where a spatial
problem needs to be solved in each time step.

Even though theoretical investigations on space-time variational formulations of
PDEs have been around for a long time, [11], it was seen prohibitive to treat the
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time as an additional variable for numerical simulations. In fact, if � ⊂ R
d denotes

the spatial domain, adding the time t ∈ (0, T ) =: I as an additional unknown results
in a PDE on �I := I ×� in dimension d+1, which is costly both w.r.t. the amount
of storage and the required computation time.

Also due to the increasing computing power the point of view has changed over
the past years. In fact, being able to simulate problems for d up to three until
about 20 years ago, adding another dimension seemed to be impossible. Nowadays,
where we face high-dimensional problems (e.g. from quantum physics or finance)
with d - 100, adding another dimension seems almost negligible. Another aspect
to use space-time variational problems arose from model reduction of parameterized
time-dependent PDEs. In fact treating both time and space as variables allows one
to perform model reduction for space and time, [16]. The time-stepping model
reduction approach yields a time-marching scheme for a reduced spatial dimension
but with the same number of time steps, [8].

In this paper, we address the question of how to efficiently solve the linear
systems arising from a (full) Petrov-Galerkin discretization of space-time variational
formulations of time-dependent PDEs. It turns out that the involved coefficient
matrices, combining space and time discretizations, have a tensorproduct structure,
which allows us to use more efficient matrix equations solvers than what can be
done with the usual vector representation.

This paper is organized as follows: In Sect. 2 we review space-time variational
formulations of some PDEs and describe corresponding Petrov-Galerkin discretiza-
tions as well as the arising linear systems in Sect. 3; Sect. 4 is devoted to the
description of the numerical schemes and Sect. 5 to numerical experiments, in
particular the comparison with time-stepping schemes.

2 Space-Time Variational Formulation of PDEs

The Heat Equation Let A : X → X′ be an elliptic operator on X := H 1
0 (�)

associated to a coercive bilinear form a : X×X → R, and f ∈ L2(I ;X′). We look
for u ∈ U := H 1

(0)(I ;X′) ∩ L2(I ;X) such that1 ut + Au = f , u(0) = 0, where
homogeneous initial conditions are chosen only for convenience. The variational
formulation then reads

find u ∈ U : b(u, v) = 〈f, v〉 for all v ∈ V, (1)

where V := L2(I ;X), b(u, v) := ∫ T

0

∫
�
ut(t, x) v(t, x) dx dt+∫ T

0 a(u(t), v(t)) dt

and 〈f, v〉 := ∫ T

0

∫
�
f (t, x) v(t, x) dx dt . The well-posedness is ensured by Nečas’

conditions, namely boundedness, injectivity and inf-sup condition of b(·, ·), [6].

1H 1
(0)(I ;X′) := {w : I → X′ : w ∈ H 1(I ;X′), w(0) = 0}, recall that H 1(I ;X′) ↪→ C(Ī ;X′).
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The Wave Equation Next, we consider an equation of wave type. Here, for H :=
L2(�), we view the operator A as a mapping A : Dom(A) := {φ ∈ H : Aφ ∈
H } → H , or A : H → Dom(A)′. For f ∈ L2(I ;H), we seek u ∈ L2(I ;H) such
that utt + Au = f , u(0) = 0, ut (0) = 0, where we choose homogeneous initial
conditions again only for convenience. In this case, it is not so obvious how to setup
a well-posed variational form. It turns out that a very-weak setting is appropriate.
We formulate the problem as in (1) by using U := L2(I ;H) as trial and V := {v ∈
L2(I ;H) : vtt + Av ∈ L2(I ;H), v(T ) = vt (T ) = 0} as test space. Then, one
can show that (1) is well-posed for b(u, v) := (u, vtt + Av)L2(I ;H) and 〈f, v〉 :=
(f, v)L2(I ;H) for fixed T <∞.

3 Petrov-Galerkin Discretizations

In order to determine a numerical approximation to the solution of a variational
problem (1), one chooses finite-dimensional trial and test spaces, Uδ ⊂ U , Vδ ⊂ V ,
respectively. For convenience, we assume that their dimension is equal, i.e., Nδ :=
dimUδ = dimVδ . The Petrov-Galerkin method then reads

find uδ ∈ Uδ : b(uδ, vδ) = 〈f, vδ〉 for all vδ ∈ Vδ. (2)

As opposed to the coercive case, the well-posedness of (2) is not inherited from that
of (1). In fact, the spaces Uδ and Vδ need to be appropriately chosen in the sense that
the discrete inf-sup (or LBB—Ladyshenskaja-Babuška-Brezzi) condition holds, i.e.,
there exists an β > 0 such that βδ := infuδ∈Uδ supvδ∈Vδ

b(uδ,vδ)‖uδ‖U ‖vδ‖V ≥ β > 0, where
the crucial point is that β �= βδ . The size of β is also crucial for the error analysis,
since it holds that ‖u− uδ‖U ≤ 1

β
infwδ∈Uδ ‖u− wδ‖U , [17].

The Heat Equation Starting with the temporal discretization, choose some integer
Nt > 1 and set �t := T/Nt resulting in a temporal triangulation Ttime

�t ≡
{tk−1 ≡ (k − 1)�t < t ≤ k �t ≡ tk, 1 ≤ k ≤ Nt } in time. Denote by
S�t = span{σ 1, . . . , σNt } piecewise linear finite elements on I , where σk is the
(interpolatory) hat-function with the nodes tk−1, tk and tk+1 (resp. truncated for k ∈
{0, Nt }) and Q�t = span{τ 1, . . . , τNt } piecewise constant finite elements, where
τ k := χIk , the characteristic function on the temporal element Ik := (tk−1, tk). For
the spatial discretization, we choose any conformal Xh = span{φ1, . . . , φNh} ⊂ X,
e.g. piecewise linear finite elements. Then, we set Uδ := S�t⊗Xh, Vδ = Q�t⊗Xh,
δ = (�t, h). It can be shown that this yields LBB. Moreover, for A = −� and
choosing the energy norm on X as well as a slightly modified norm on U , one can
even prove that β = 1, [16]. Finally, we remark that this specific discretization
coincides with the Crank–Nicolson (CN) scheme if a trapezoidal approximation of
the right-hand side temporal integration is used. Hence, we can later compare space-
time Petrov-Galerkin numerical schemes with a CN time-stepping scheme.
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Finally, we detail the linear system of equations BT
δ uδ = fδ , where

[Bδ](k,i),(�,j) = (σ̇ k, τ �)L2(I ) (φi, φj )L2(�) + (σ k, τ �)L2(I ) a(φi, φj ), (3)

[fδ](�,j) = (f, τ � ⊗ φj )L2(I ;H), (4)

which means that we get a tensorproduct structure for the stiffness matrix Bδ =
D�t ⊗Mh + C�t ⊗ Ah, where the matrices are defined in an obvious manner. The
right-hand side is not yet in a tensorproduct structure. However, we can achieve that
by determining an approximation

f (t, x) ≈
P∑

p=1

ϑp(t)fp(x) =: f P (t, x), (5)

e.g. by the Empirical Interpolation Method (EIM), [2]. By choosing P suffi-
ciently large, we can achieve any desired accuracy. Then, we get [f P

δ ](�,j) =
∑P

p=1(ϑp, τ
�)L2(I ) (fp, φj )L2(�), i.e., f P

δ =∑P
p=1 hp ⊗ gp.

The Wave Equation Constructing a stable pair of trial and test spaces for the
wave equation is again a nontrivial task. Following an idea from [4], we first
define the test space and construct the trial space in a second step in order to
guarantee LBB, which, however, deteriorates with increasing T . Doing so, we set
R�t := span{$1, . . . , $Nt } ⊂ H 2

T (I) := {ρ ∈ H 2(I) : ρ(T ) = ρ̇(T ) = 0},
e.g. piecewise quadratic splines on Ttime

�t . For space, we choose any conformal
Zh = span{ψ1, . . . , ψNh } ⊂ H 2(�) ∩ H 1

0 (�), e.g. piecewise quadratic finite
elements. Then, we define Vδ := R�t ⊗ Zh, a tensor product space. The trial space
Uδ is constructed by applying the adjoint PDE operator to each test basis function,

i.e. vk,i := d2

dt2 $
k(t)ψi(x)+A($k(t)ψi(x)) = $̈k(t)ψi(x)+$k(t)Aψi(x). We detail

the arising linear system of equations starting with the stiffness matrix

[Bδ](k,i),(�,j ) = b(vk,i , $
�⊗ψj) = ($̈k⊗ψi + $k⊗Aψi, $̈

�⊗ψj + $�⊗Aψj)L2(I ;H)

= ($̈k, $̈�)L2(I ) (ψi, ψj )L2(�) + ($̈k, $�)L2(I ) (ψi, Aψj )L2(�)

+ ($k, $̈�)L2(I ) (Aψi, ψj )L2(�) + ($k, $�)L2(I ) (Aψi,Aψj )L2(�),

so that Bδ = Q�t ⊗Mh + (D�t + DT
�t ) ⊗ Ah +M�t ⊗Qh, again with obvious

definitions of the matrices. For the right-hand side, we perform again an EIM-type
approximation f P (t, x). Then, [f P

δ ](�,j) =
∑P

p=1(ϑp ⊗ fp, $
� ⊗ ψj )L2(I ;H) =

∑P
p=1(ϑp, $

�)L2(I ) (fp,ψj )L2(�), so that the right-hand side has the same structure
as in the first example. Due to the asymptotic behavior of the inf-sup-constant, we
expect stability problems as �t → 0, i.e., Nt →∞.
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4 Efficient Numerical Methods for Tensorproduct Systems

In both cases described above (and in fact also in space-time variational formula-
tions of other PDEs), we obtain a (regular) linear system of the form

Bδuδ = fδ with Bδ =
PB∑

p=1

Dp ⊗Ap, fδ =
Pf∑

�=1

h� ⊗ q�, (6)

where all involved matrices are sparse and (at least some of) the Aq are s.p.d.
Recall that (Dp ⊗ Ap)x = vec(ApXDT

p ), where vec stacks the columns of a
given matrix one after the other, and x = vec(X). We can thus rewrite the system

Bδuδ = fδ in (6) as the linear matrix equation
∑PB

p=1 ApUδD
T
p = ∑Pf

�=1 q�h
T
� ,

with uδ = vec(Uδ). Matrix equations are receiving significant attention in the
PDE context, due to the possibility of maintaining the structural properties of the
discretized problem, while limiting memory consumptions; see [14]. Under certain
hypotheses, a large variety of discretization methodologies such as finite differences,
isogeometric analysis, spectral (element) methods, certain finite element methods
as well as various parametric numerical schemes rely on tensor product spaces;
see, e.g., [1, 5, 9, 10]. More recently, all-at-once time discretizations have shown
an additional setting where tensor product approximations naturally arise; see, e.g.,
[12] and references therein. Among the various computational strategies discussed
in the literature [14], here we focus on projection methods that reduce the original
equation to a similar one, but of much smaller dimension.

Discretized Heat Equation The problem Bδuδ = fδ stemming from (3,4) yields
the following generalized Sylvester equation

MhUδD�t + AhUδC�t = Fδ, with Fδ := [g1, . . . , gP ][h1, . . . , hP ]T .
(7)

The spatial stiffness and mass matrices Ah and Mh typically have significantly larger
dimensions Nh than the time discretization matrices D�t , N�t , i.e., Nt � Nh.
We therefore use a reduction method only for the space variables by projecting
the problem onto an appropriate space. A matrix Galerkin orthogonality condition
is then applied to obtain the solution: given Vm ∈ R

Nh×km , km � Nh, with
orthonormal columns, we consider the approximation space range(Vm) and seek
Ym ∈ R

km×Nt such that Uδ,m := VmYm ≈ Uδ and the residual Rm := Fδ −
(MhUδ,mD�t + AhUδ,mC�t) satisfies the Galerkin condition Rm ⊥ range(Vm).
Imposing this orthogonality yields that V T

m Rm = 0 is equivalent to V T
m F δVm −

(V T
mMhVm)YmD�t − (V T

mAhVm)YmC�t = 0. The resulting problem is again
a generalized Sylvester equation, but of much smaller size, therefore Schur-
decomposition oriented methods can cheaply be used, [14, sec.4.2], see [14] for a
discussion on projection methods as well as their matrix and convergence properties.
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For selecting Vm, let F = F1F
T
2 with F1 having full column rank. Given

the properties of Ah, Mh, we propose to employ the rational Krylov subspace
RKm := range([F1, (Ah − σ2Mh)

−1MhF1, (Ah − σ3Mh)
−1MhF1, . . . , (Ah −

σmMh)
−1MhF1]), where the shifts σs can be determined adaptively while the space

is being generated; see [14] for a description and references. The obtained spaces are
nested, RKm ⊆ RKm+1, therefore the space can be expanded if the approximation
is not sufficiently good. To include a residual-based stopping criterion, the residual
norm can be computed in a cheap manner, see, e.g., [7, 12] for the technical details.

Discretized Wave Problem The problem Bδuδ = fδ now takes the matrix form

MhUδQ
T
�t + AhUδ(D�t +DT

�t)+QhUδM�t = Fδ. (8)

This three-term equation cannot be solved directly as before, therefore we opt for
using preconditioned GMRES on the vectorized equation. The preconditioner is
given by the functional P : U → MhUQT

�t + QhUM�t , corresponding to the
discretized forth order operators, and exploits the matrix structure. Hence, at the
kth GMRES iteration we solve the generalized Sylvester equation MhWQT

�t +
QhWM�t = Vk where Vk is such that vk = vec(Vk) is the previous basis vector.
Since in this one-dimensional problem dimensions are limited, this matrix equation
is solved by explicitly diagonalizing the pairs (Qh,Mh) and (Q�t ,M�t) [14].

5 Numerical Experiments

In this section we show that the numerical solution of the linear system Bδuδ = fδ
can largely benefit from the exploitation of its Kronecker sum structure (6). The
performance of the all-at-once methods is compared in terms of both computational
time and memory requirements. For the heat equation, we also document the
performances of CN in terms of computational time. We are not aware of any variant
of CN that is able to exploit the low-rank structure of the underlying problem and
we thus employ the classical CN scheme. Such implementation leads to running
times that significantly increase with Nt and a storage demand that is always equal
to Nt · Nh as the full Uδ is allocated.

The tolerance of the final relative residual norm is set to 10−8 and in the following
tables we also report the number of iterations needed to achieve such accuracy and
the numerical rank of the computed solution. All results were obtained by running
Matlab R2017b on a standard node of the Linux cluster Mechthild hosted at the MPI
in Magdeburg, Germany.2

Example 5.1 (The Heat Equation) We consider the equation on the cube � =
(−1, 1)3 with homogeneous Dirichlet boundary conditions and the time interval

2See https://www.mpi-magdeburg.mpg.de/cluster/mechthild for further details.

https://www.mpi-magdeburg.mpg.de/cluster/mechthild
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Table 1 Results for Example 5.1: different values of Nh and Nt . Memory allocations for RKSM
and LR-FGMRES+RKSM are given by μmem ·(Nh+Nt ). For CN we report only the computational
timings

RKSM LR-FGMRES+RKSM CN

Nh Nt Its μmem rank(Uδ) Time (s) Its μmem rank(Uδ) Time (s) Direct Iterative

41,300 300 13 14 9 25.96 4 74 10 82.89 123.43 59.10

500 13 14 9 30.46 4 75 11 83.93 143.71 78.01

700 13 14 9 28.17 4 86 11 89.99 153.38 93.03

347,361 300 14 15 9 820.17 4 78 9 2319.67 14,705.10 792.42

500 14 15 9 828.34 4 80 9 2384.39 15,215.47 1041.47

700 14 15 7 826.93 4 97 9 2327.76 15,917.52 1212.57

I := (0, 10) with initial conditions u(0, x, y, z) ≡ 0. The right-hand side is
f (t, x, y, z) := 10 sin(t)t cos(π2 x) cos(π2 y) cos(π2 z) and its discretized version
is thus low rank. For discretization in space, linear finite elements were chosen,
leading to the discretized generalized Sylvester equation in (7). We compare the
performance of the Galerkin method based upon rational Krylov spaces described
in Sect. 4 (denoted RKSM) with that of a low-rank version of preconditioned
GMRES (denoted LR-FGMRES-RKSM). See, e.g., [15] for further insights about
low-rank Krylov routines applied to linear matrix equations. The LR-FGMRES-
RKSM preconditioner is chosen as a fixed (five) number of iterations of the rational
Krylov Galerkin method.3 The results are displayed in Table 1. Due to the 3D nature
(in space) of the problem, the CN method with a direct linear solver4 leads to an
excessive workload compared with the all-at-once approaches for all considered
values of Nh and Nt , with the computational time growing with the number of
time steps Nt . The performance of the other methods is independent of the time
discretization, and it only depends on the spatial component of the overall discrete
operator. In fact, spatial mesh independence seems to also be achieved. The CN
method is more competitive in terms of computational time when equipped with an
iterative linear solver.5

Example 5.2 (The Wave Equation) We consider the wave problem with A = −�

on � = (0, 1) with homogeneous Dirichlet boundary conditions and I := (0, 1).
Setting f (t, x) := sin(2πx) + 4π2t2 sin(2πx) yields the analytical solution
u(t, x) = t2 sin(2πx). We choose cubic B-Splines for the discretization in space
and time. The discretized problem thus leads to the matrix equation in (8). In Fig. 1
we report some our preliminary results. Note, that the discretization above does not
yield an equivalent time-stepping scheme with which we could do comparisons.

3Since the preconditioner is a non-linear operator, a flexible variant of GMRES is used.
4The LU factors of the CN coefficient matrix are computed once and for all at the beginning of the
procedure.
5We employ GMRES preconditioned with ILU (zero fill-in). The same solver is used for the RKSM
basis construction.
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Fig. 1 Example 5.2. Left: Results for different values of Nh and Nt . Right: Relative residual norm
history for some values of Nh and Nt

The table on the left shows that the performances of our preconditioned scheme
are quite good for small values of Nh and Nt . Indeed, in this case, the preconditioner
manages to drastically reduce the number of iterations needed to converge so that
GMRES+LYAP6 turns out to be faster than the Matlab solver backslash applied
to the solution of the linear system Bδuδ = fδ , in spite of the 1D nature (in
space) of the problem. However, the effectiveness of the adopted preconditioner
worsens by increasing the number of degrees of freedom. This is due to a dramatic
increment in the condition number of the coefficient matrices (see the discussion at
the end of Sect. 3) that causes an abrupt very slow decrement (almost stagnation)
in the GMRES residual at the level that seems to be related to the conditioning
of the involved matrices, see Fig. 1 (right). As it is, the problem associated with
handling this ill-conditioning in the algebraic equation is crucial for the overall
solver performance, and will be the topic of future works. Alternatively, one may
try to directly address the solution of the multiterm matrix equation (8) as it is done
in [13] for certain stochastic PDEs.
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A Variational Formulation for
LTI-Systems and Model Reduction

Moritz Feuerle and Karsten Urban

Abstract We consider a variational formulation of Linear Time-Invariant (LTI)-
systems and derive a model reduction in dimension and time inspired by space-time
variational reduced basis (RB) methods for parabolic problems. A residual-type RB
error estimator is derived whose effectivity is investigated numerically.

1 Introduction

Model order reduction (MOR) of (linear) systems is a huge field of research with
an enormous amount of literature. On the other hand, the reduced basis (RB)
method has become a widely spread technique for reducing parameterized partial
differential equations. We refer e.g. to [2], where both model reduction techniques
are reviewed. In this paper, we consider a variational formulation of Linear Time-
Invariant (LTI) systems that allows us to introduce an RB-type residual error
estimator inspired by space-time RB methods for parabolic problems, [6, 7]. This,
in turn, yields a reduction not only of the dimension of the LTI system but also w.r.t.
the temporal discretization, i.e., the number of time steps.

The paper is organized as follows: In Sect. 2, we introduce a variational
formulation of LTI systems and show its well-posedness, Sect. 3 is devoted to
Petrov-Galerkin discretizations which are used as a detailed solution for the
Reduced Basis Method (RBM) in Sect. 4. We present some numerical results in
Sect. 5 and end by conclusions as well as an outlook in Sect. 6.
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2 Variational Formulation for LTI-Systems

We consider LTI systems on some time interval I := (0, T ), T > 0. Given integers
m,n, p ∈ N, matrices A ∈ R

n×n (which is assumed to be s.p.d. for simplicity),
B ∈ R

n×p , C ∈ R
m×n, D ∈ R

m×p , a control u : I → R
p and an initial state

x0 ∈ R
n, determine the state x : I → R

n and output y : I → R
m s.t.

ẋ(t)+ Ax(t) = Bu(t), y(t) = Cx(t)+Du(t), t ∈ I, x(0) = x0. (1)

W.l.o.g. we restrict ourselves to the homogeneous case, i.e., x0 = 0, but note, that
the inhomogeneous case can easily be incorporated.

A Variational Formulation We multiply the first equation in (1) with a test
function z : I → R

n and integrate over I , i.e.,

∫ T

0
(ẋ(t), z(t)) dt +

∫ T

0
(Ax(t), z(t)) dt =

∫ T

0
(Bu(t), z(t)) dt, (2)

where (·, ·) denotes the Euclidean scalar product with induced norm ‖ · ‖ in R
d ,

d ∈ {m,n, p}. Obviously, (2) makes sense for z ∈ Z := L2(I,R
n) ≡ L2(I)

n,
‖z‖Z := ‖z‖L2(I )n . The desired state function x : I → R

n is then sought in the
Sobolev-Bochner Hilbert space X := H 1

(0)(I )
n := {x ∈ H 1(I)n : x(0) = 0}. As in

[6, 7] we consider a slightly stronger norm than the usual graph norm, namely

|||x|||2X,Std := ‖ẋ‖2
L2(I )n

+ ‖x‖2
L2(I )n

+ ‖x(T )‖2, (3)

with the corresponding inner product (x, v)X,Std := (ẋ, v̇)L2(I )n + (x, v)L2(I )n +
(x(T ), v(T )) for x, v ∈ X, which is well-defined recalling that X ↪→
C([0, T ],Rn). Then, setting U := L2(I)

p as parameter space, we obtain the
following variational formulation of (1):

for u ∈ U find x = x(u) ∈ X : b(x, z) = f (z; u) := (Bu, z)L2(I )n ∀ z ∈ Z,

(4)

where the parameter-independent bilinear form reads b(x, z) := (ẋ + Ax, z)L2(I )n .
We stress the fact that f (·; u) is linear in u (for x0 �= 0 affine-linear).

Well-Posedness In order to prove well-posedness of (4), we need to satisfy Nečas’
conditions, namely boundedness, injectivity and inf-sup condition of b(·, ·). Since
the verification is very similar to space-time variational formulation of parabolic
initial value problems, we refer to it, [5–7]. In particular, the inf-sup constant can be
detailed in similar way, see [6, Prop. 1] and [5, Thm. 5.1].
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Proposition 2.1 Let A ∈ R
n×n be s.p.d. with constants αA > 0 and γA <∞, such

that αA‖φ‖ ≤ ‖Aφ‖ ≤ γA‖φ‖ for all φ ∈ R
n. Then,

inf
x∈X sup

z∈Z
b(x, z)

|||x|||X,Std ‖z‖Z
≥ βStd := min{1, αA min{1, γ−2

A }}√
2 max{1, (αA)

−1} > 0. (5)

In order to (quantitatively) improve the inf-sup-bound in (5), we consider an
energy norm, namely (φ,ψ)A := (φ,Aψ), ‖φ‖2

A := (φ, φ)A for an s.p.d. matrix
A ∈ R

n×n, φ,ψ ∈ R
n and (with a slight double use of notation) (z,w)A :=∫ T

0 (z(t), w(t))A dt as well as ‖z‖2
A := (z, z)A for w, z ∈ L2(I)

n. Then, we set

|||x|||2X := ‖ẋ‖2
A−1 + ‖x‖2

A + ‖x(T )‖2, |||z|||Z := ‖z‖A,

and following the reasoning in [7, Prop. 2.6], we can easily show that

inf
x∈X sup

z∈Z
b(x, z)

|||z|||Z |||x|||X
= sup

x∈X
sup
z∈Z

b(x, z)

|||z|||Z |||x|||X
= 1 ≡ βEn. (6)

3 Petrov-Galerkin (Detailed) Discretizations

In order to compute an approximation to the solution of (4), we use a standard
Petrov-Galerkin approach. To this end, one constructs finite-dimensional trial and
test spaces XN ⊂ X ,ZN ⊂ Z with dim(XN) = dim(ZN) = N. For stability, these
spaces need to satisfy a discrete inf-sup (LBB) condition, i.e.,

βN := inf
xN∈XN

sup
zN∈ZN

b(xN, zN)

|||xN|||X |||zN|||Z
≥ βEn

LB > 0, (7)

where the lower-boundβEn
LB for the inf-sup-constant is independent ofN as N→∞.

Then, the discrete version of (4) is a Petrov-Galerkin scheme of the form

for u ∈ U find xN(u) ∈ XN : b(xN(u), zN) = (Bu, zN)L2(I )n ∀zN ∈ ZN, (8)

where u ∈ U is possibly suitably discretized (see below). As usual, we define the
primal residual rpr(·; u) ∈ Z′ as

rpr(z; u) := f (z; u)L2(I )
n − b(xN(u), z) = b(x(u)− xN(u), z), z ∈ Z, (9)

and its norm by Rpr(u) := |||rpr(·; u)|||Z′ . Since Z = L2(I)
n is a Hilbert (pivot)

space, we can identify Z = Z′, which significantly reduces the complexity in
computing this dual norm (we do not need to determine Riesz representations).
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Then, the following error-residual relation is straightforward and well-known (recall
βEn ≡ 1)

|||x(u)− xN(u)|||X ≤ Rpr(u) = ‖Bu− ẋN(u)− AxN(u)‖A−1 =: �pr(u). (10)

A Time-Marching Discretization We start by introducing a Petrov-Galerkin
discretization arising from a (finite element) discretization in time, which leads
to a Crank-Nicolson (CN) time-marching scheme. To this end, we choose some
integer K > 1 and set �t := T/K resulting in a temporal triangulation Ttime

�t ≡
{tk−1 ≡ (k − 1)�t < t ≤ k �t ≡ tk, 1 ≤ k ≤ K} in time. Denote by
S�t = span{σ 1, . . . , σK } piecewise linear finite elements on I , where σk is the
(interpolatory) hat-function with the nodes tk−1, tk and tk+1 (resp. truncated for
k ∈ {0,K}) and Q�t = span{τ 1, . . . , τK } piecewise constant finite elements, where
τ k := χIk , the characteristic function on the temporal element Ik := (tk−1, tk).
Then, we set XN

CN := S�t ⊗ R
n, ZN

CN := Q�t ⊗ R
n, i.e., the detailed dimension is

N := Kn. Within that framework, the detailed approximation amounts computing
xNCN ∈ XN

CN represented as1 xNCN(t; u) ≡ xNCN(t; u)(t) =
∑K

k=1 x
k
CNσ

k(t), x(tk) ≈
xk

CN ∈ R
n, k = 1, . . . ,K, t ∈ I , and xNCN := (xk

CN)k=1,...,K ∈ R
K×n ∼= R

Kn =
R
N. Setting %�t := ([%�t ]k,�)k,�=0,...,K , %̌�t := ([%�t ]k,�)k=0,...,K−1,�=1,...,K ,

%̂�t := ([%�t ]k,�)k=1,...,K,�=0,...,K and %̄�t := ([%�t ]k,�)k,�=1,...,K for % ∈
{K,L,M,N,O},

[K�t ]k,� := (σ̇ k, σ̇ �)L2(I ), [L�t ]k,� := (σ k, σ �)L2(I ), [M�t ]k,� := (σ k, τ �)L2(I )

[N�t ]k,� := (σ̇ k, τ �)L2(I ) [O�t ]k,� := (σ̇ k, σ �)L2(I ), (11)

and recalling [M�t ]k,� = �t
2 (δk,�+ δk+1,�) and [N�t ]k,� = δk,�− δk+1,�, we obtain

b(xNCN, τ
�eμ)L2(I )n =

[[Id + �t
2 A]x�

CN − [Id − �t
2 A]x�−1

CN

]
μ

.

Discretization of the Control Without any discretization, we can in general not
evaluate the term (Bu, zN)L2(I )

n exactly. As a first attempt, it seems reasonable
(as done in the literature of LTIs) to use the same temporal discretization, i.e.,
UN := S�t ⊗ R

p and interpolate the control onto the temporal nodes Ttime
�t , i.e.,

uN(t) :=∑K
k=0 u

k σ k(t), u�t = (uk)k=0,...,K ∈ R
(K+1)×p, where we note that the

initial value u(0) does not need to vanish, which is the reason, why the above sum
starts from k = 0.

Crank-Nicolson Scheme We finally obtain the following iteration: x0 := x0 and

[
Id − �t

2 A
]
x�

CN =
[
Id + �t

2 A
]
x�−1

CN + �t
2 B(u� + u�−1), � = 1, 2, . . . ,K.

(12)

1We often omit the dependency on the control for simplicity.
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In particular, the reduction to homogeneous initial conditions has no effect to
the temporal iteration. These considerations also show the well-posedness of the
discrete problem (8). Note, that (12) yields an iteration so that one does not need
to solve the potentially large linear system as for the second discretization in (15)
below. Of course, (12) can also be written as a linear system (BN

CN)
T xNCN(u

N) =
fN

CN(u
N), where [BN

CN](k,ν),(�,μ) = [Ň�t ]k,� [Id]ν,μ + [M̌�t ]k,� [A]ν,μ, which

means that BN
CN = Ň�t ⊗ Id + M̌�t ⊗ A, which is non-symmetric.

Standard Error Estimate An error estimate is derived by using well-known tech-
niques from studying iterations. Denoting by x(t; uN) the solution of (1), we have

‖x(t�; uN)−xNCN(t
�; uN)‖≤ 2�t

�−1∑

k=0

γ k
E

αk+1
I

‖rpr(t�−k; xNCN, u
N)‖ =: �Std(uN),

(13)

where αI := 1 + �t
2 αA, γE := 1+ �t

2 γA with αA, γA given in Proposition 2.1 and
the residual rpr(t; xN, uN) := BuN(t)− ẋN(t)− AxN(t).

Supremizers and a Linear System Alternatively, given some choice for XN, we
choose the test space in such a way that the inf-sup-constant βN in (7) is maximized.
This is typically done by using so called supremizers, [4], which reads here

zxN = A−1ẋN + xN. (14)

Let 3N := {ξN1 , . . . , ξNN }, XN = span(3N), then we set �N := {θN1 , . . . , θNN },
θNi := zξi and ZN

sup := span(�N). We obtain a linear system for (8)

BN
supx

N
sup(u) = fN

sup(u), (15)

where the (symmetric) stiffness matrix has the entries [BN
sup]i,j = b(ξNi , θNj ) =

(ξ̇Ni +AξNi , A−1ξ̇Nj +ξNj )L2(I )
n = (AθNi , θNj )L2(I )

n , i, j = 1, . . . ,N, and the right-

hand side reads (fN
sup(u))i := (Bu,A−1ξ̇Ni + ξNi )L2(I )n , i, j = 1, . . . ,N. For the

specific choice of the CN-trial functions ξNi = σk ⊗ eν , i = (k, ν), k = 1, . . . ,K ,
ν = 1, . . . , n, N = Kn, we obtain BN

sup = (K̄�t ⊗ A−1)+ (L̄�t ⊗ A)+ ((Ō�t +
ŌT

�t )⊗ Id).

RB-Type Residual Error Estimate This Pertov-Galerkin formulation allows us to
use a result in [7, Prop. 2.9] to derive an ‘RB-type residual’ error estimator to be
described now. For the trial space XN we will consider as in [7] a discrete norm
|||·|||X,�t . To define it, we set x̄Nk := 1

�t

∫
I k x

N(s) ds and x̄N(t) :=∑K
k=1 x̄

N
k τ k(t),

t ∈ I . Then, we set |||xN|||2X,�t := ‖ẋN‖2
A−1 + ‖x̄N‖2

A + ‖xN(T )‖2. With these
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settings, it was proven in [7, Prop. 2.9] that

βN
sup := inf

xN∈XN
sup

zN∈ZN
sup

b(xN, zN)

|||zN|||Z |||xN|||X,�t

= 1.

Let us stress that βN
sup is independent of the control (parameter) u and of T , �t .

Thus, for any approximation xN(u) ∈ XN (e.g., the RB approximation below), we
get

|||xNsup(u)− xN(u)|||X,�t ≤ �
pr
N(u) := ‖Bu− ẋN (u)− AxN(u)‖A−1 . (16)

We may use a discretized control uN or any u allowing to compute fN
sup(u), e.g.

fN
sup(u

N) = [(Ô�t ⊗ (A−1B))+ (L̂�t ⊗ B)]u�t for ξNi = σk ⊗ eν as above.

4 Reduced Basis Method (RBM)

Now, we employ the RBM to the above introduced variational formulation of an
LTI. As mentioned already earlier, we view the control u as a parameter, i.e., (1) is
seen as a parametric linear system. Doing so, we can reduce both the dimension n

of the LTI system and the number K of time steps by reducing N := Kn to some
N � N.

RBM for Petrov-Galerkin Problems The starting point is the detailed discretiza-
tion (8) of (4). Within a multi-query context, one would need to solve (8) for many
different controls u ∈ U and in a realtime scenario, a good approximation to xN(u)

would be needed extremely fast. This is precisely the situation one is facing within
parameterized partial differential equations, where the RBM has proven to be a very
useful tool for model reduction (at least in the elliptic and parabolic case).

We thus interpret (4) as a semi-discretized parabolic problem and follow [6, 7] to
construct a RBM for the arising non-symmetric space-time-like problem. In order to
do so, one looks for subspaces XN ⊂ XN and ZN ⊂ ZN of dimension dim(XN) =
dim(ZN) = N � N = Kn and some BN ∈ R

N×p such that

find xN ≡ xN(u) ∈ XN : b(xN, zN ) = fN(zN ; u) := (BNu, zN)L2(I )
n ∀ zN ∈ ZN

(17)

and in such a way that xN can be computed online efficient, i.e., with a complexity
independent of N. Let us assume that we have (possibly orthonormal) bases
{ξ(i) : i = 1, . . . , N} and {z(j) : j = 1, . . . , N} for XN and ZN , respectively,
at hand. Then, (17) amounts solving a linear system BT

NxN(u) = fN(u) of
dimension N , where fN(u) (and hence the coefficient vector xN(u)) depend on
the control u and we obtain a parameter-dependent solution xN(u). Moreover,
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[BN ]i,j = b(ξ(i), z(j)) and [fN(u)]j = (BNu, z(j))L2(I )n . Of course, the reduced
system depends on the choice of the detailed Petrov-Galerkin detailed discretization.
Let PN : XN → XN and QN : ZN → ZN denote projections onto the reduced
spaces and let PN , QN : RN → R

N denote the matrix representations w.r.t. the
above bases, we get BT

N,disc = QN(BN
disc)

TP T
N and fN,disc(u) = QNf

N
disc(u) for

disc ∈ {sup,CN}. Given some RB basis functions ξ(1), . . . , ξ (N) in XN
CN determined

as ξ(i) := xNCN(u
(i)) by (12) (the selection of the ‘snapshots’ u(i) will be detailed

below) and the supremizers z(1), . . . , z(N) by (14), the system matrix of the reduced
problem reads BN,sup = (�N)TBN

sup�
N (recall (11)), where �N := (ξ

(i)
�t )i=1,...,N .

Note, that BN,sup is symmetric and independent of the parameter, i.e., the control.
We can thus pre-compute and store a LU- or QR-decomposition, which reduces the
online amount of work to solve the linear system to O(N2). The right-hand side is
parameter-dependent and reads f N,sup(u

N) = (�N)T fN
sup(u

N) for some uN ∈ UN.

Reduced Basis Generation We use a greedy procedure to compute a Reduced
Basis, indicated in Algorithm 1 and which is based upon some error estimator
�

pr
N . After execution of this scheme, we obtain a reduced space XN ≡ XN

N :=
span{xNCN(u

(1)), . . . , xNCN(u
(N))} as well as a reduced test space ZN ≡ ZN

N,sup :=
span{zN(u(1)), . . . , zN(u(N))} and also a reduced control space UN . The general
procedure is indicated by Algorithm 1, which is based upon the choice of a training
parameter space Utrain ⊂ UN. Note, that the state snapshots are computed by using
the CN-time marching scheme (12) and the reduced system is then generated by the
supremizers in (14), see line 2 in Algorithm 1.

Computation of the RB Error Bound We can further detail the residual-based
error estimate from (16) applied to the reduced problem, i.e.,

|||xNsup(u)− xN,sup(u)|||X,�t ≤ �
pr
N(u) := ‖Bu− ẋN,sup(u)− AxN,sup(u)‖A−1 .

(18)

First, we have �pr(u)2 = ‖Bu‖2
A−1−2fN,sup(u)

T xN(u)+xN(u)TBN,supxN(u) for
xN ≡ xN,sup. Obviously, the last two terms can easily and efficiently be evaluated.

Algorithm 1 (Primal) Greedy algorithm with CN-snapshots and RB-supremizers

1: Choose Utrain ⊂ UN, tol, η(1) := u(1); set N := 1
2: Compute ξ (N) := xNCN(η

(N)), z(N) := zN(η(N)) / detailed solution (12) and supremizer (14)
3: set XN := span{ξ (1), . . . , ξ (N)}, ZN := span{z(1), . . . , z(N)}, orthonormalize bases
4: set UN := span{η(1), . . . , η(N)}, orthonormalize
5: for u ∈ Utrain do
6: Compute xN (u) ∈ XN / RB approximation with N d.o.f.
7: Compute �

pr
N(u) / primal error estimator, e.g., (16)

8: end for
9: Set η(N+1) := arg maxu∈Utrain

�
pr
N(u) / worst parameter

10: if �pr
N(η(N+1)) > tol set N := N + 1, goto 2 else break end if
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Hence, we consider the first part, namely ‖Bu‖A−1 = ‖A−1/2Bu‖L2(I )
n . At this

point, it is now crucial how a reduced discretization of the control u is or can be
chosen:

• If the control comes from temporal measurements, it will most likely be in form
of a detailed control, i.e., uN. Then, ‖Bu‖2

A−1 = uT
�t

(
L�t ⊗ BT A−1B

)
u�t ,

which is not fully online efficient since the computational amount depends on
K .

• If the control can be reduced a priori, e.g., in a multi-query context (think of
optimal control), then one would have some uN with N degrees of freedom so
that ‖BuN‖A−1 can be computed in O(N2) operations independent of N = nK .

5 Numerical Experiments

We report on some results of our numerical experiments for a standard example,
where A arises from a Finite Element discretization of a 1d heat equation with
Neumann boundary conditions on the left end and homogeneous Dirichlet boundary
conditions on the right end as well as homogeneous initial conditions. The control
matrix is B := nκ(−1, 0, . . . , 0)T ∈ R

n×1, m = 1 and κ > 0 is the conductivity.
On the left-hand side of Fig. 1, we see the Greedy error sequence, i.e., the decay of
�

pr
N over a training set of controls as N →∞. We observe a rate of about 10−0.1N .

On the right-hand side, we increase the number K of time steps and observe that
we can basically reach any desired accuracy. Moreover, we compare the exact error
with the error estimator �

pr
N and obtain decreasing effectivities for increasing K .

We stress that we measure the error in a quite strong norm |||·|||X,�t , which is much
stronger than what is usually used in model order reduction, namely ‖ · ‖L2(I )n .

1

     -1/10    

Fig. 1 Greedy error sequence (left), test error and error estimator for increasing K (right): relative
error vs. N
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6 Summary and Outlook

We have introduced a space-time-type RB model reduction for LTI systems which
allows to reduce both the state dimension n and the number of time steps K . We
obtain exponential decay w.r.t. the reduced dimension N and reasonable effectiv-
ities, in a quite strong norm, however. The next step is to extend this framework
to the output using adjoint techniques. At that stage, quantitative comparisons with
well-established techniques like balanced truncation, will be performed. This should
result in a clear picture together with other comparisons of model order reduction
and POD-Greedy [1] as well as POD-Greedy versus space-time RBM, see [3].
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Numerical Solution of Traffic Flow
Models

Lukáš Vacek and Václav Kučera

Abstract We describe the simulation of traffic flows on networks. On individual
roads we use standard macroscopic traffic models. The discontinuous Galerkin
method in space and a multistep method in time is used for the numerical solution.
We introduce limiters to keep the density in an admissible interval as well as prevent
spurious oscillations in the numerical solution. To simulate traffic on networks, one
should construct suitable numerical fluxes at junctions.

1 Macroscopic Traffic Flow Models

We consider traffic flow on networks, described by macroscopic models, cf. [1, 2].
Here the traffic flow is described by three fundamental quantities—traffic flow
Q(x, t) which determines the number of cars per second at the position x at time t ;
traffic density ρ(x, t) determines the number of cars per meter at x and t; and the
mean traffic flow velocity V = Q/ρ.

Greenshields described a relation between traffic density and traffic flow in
[3]. He realised that traffic flow is a function depending only on traffic density in
homogeneous traffic (traffic with no changes in time and space). This implies that
even mean traffic flow velocity depends only on traffic density. The relationship
between the traffic density and the mean traffic flow velocity or traffic flow is
described by the fundamental diagram, cf. [3].

Since the number of cars is conserved, the basic governing equation is a first
order hyperbolic partial differential equation, cf. [2]:

∂

∂t
ρ(x, t)+ ∂

∂x
(ρ(x, t)V (x, t)) = 0. (1)
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Equation (1) must be supplemented by the initial condition

ρ(x, 0) = ρ0(x) and V (x, 0) = V0(x), x ∈ R

and the inflow boundary condition. We have only one equation for two unknowns.
Thus, we need an equation for V (x, t). One possibility is the Lighthill-Whitham-
Richards model (abbreviated LWR) where we use the equilibrium velocity Ve(ρ).
There are many different proposals for the equilibrium velocity derived from the

real traffic data, e.g. Greenshields model takes Ve(ρ) = vmax

(
1− ρ

ρmax

)
, where

vmax is the maximal velocity and ρmax is the maximal density. Thus we get the
following nonlinear first order hyperbolic equation for ρ:

ρt + (ρVe(ρ))x = 0, x ∈ R, t > 0. (2)

Junctions
Following [4], we study a complex network represented by a directed graph. The
graph is a finite collection of directed edges, connected together at vertices. Each
vertex has a finite set of incoming and outgoing edges. It is sufficient to study our
problem only at one vertex and on its adjacent edges.

On each road (edge) we consider the LWR model, while at junctions (vertices)
we consider a Riemann solver. At each vertex J , there is a traffic-distribution matrix
A describing the distribution of traffic among outgoing roads. Let J be a fixed vertex
with n incoming and m outgoing edges. Then

A =
⎡

⎢
⎣

αn+1,1 · · · αn+1,n
...

...
...

αn+m,1 · · · αn+m,n

⎤

⎥
⎦ , (3)

where for all i ∈ {1, . . . , n}, j ∈ {n + 1, . . . , n + m}: αj,i ∈ [0, 1] and for all
i ∈ {1, . . . , n}: ∑n+m

j=n+1 αj,i = 1. The ith column of A describes how traffic from
an incoming road Ii distributes to outgoing roads at the junction J . We denote the
endpoints of road Ii as ai , bi , one of which coincides with J .

Let ρ = (ρ1, . . . , ρn+m)T be a weak solution at the junction J such that
each x → ρi(x, t) has bounded variation. Then ρ satisfies the Rankine-Hugoniot
condition, which represents the conservation of cars at the junction:

n∑

i=1

Qe(ρi(bi−, t)) =
n+m∑

j=n+1

Qe(ρj (aj+, t))

for almost every t > 0 at the junction J , where ρj (aj+, t) := lim(x→aj+) ρj (x, t)

and ρi(bi−, t) := lim(x→bi−) ρi(x, t), cf. [4, Lemma 5.1.9, p. 98].
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Finally, ρ = (ρ1, . . . , ρn+m)
T is called an admissible weak solution of (2) related

to the matrix A at the junction J if the following properties hold:

1. ρ is a weak solution at the junction J such that ρi(·, t) is of bounded variation
for every t ≥ 0, i.e. the Rankine-Hugoniot condition holds.

2. Qe(ρj (aj+, ·)) =∑n
i=1 αj,iQe(ρi(bi−, ·)), ∀j = n+ 1, . . . , n+m.

3.
∑n

i=1 Qe(ρi(bi−, ·)) is a maximum subject to (1) and (2).

2 Discontinuous Galerkin Method

As an appropriate method for the numerical solution of (2), we choose the
discontinuous Galerkin (DG) method, which is essentially a combination of finite
volume and finite element techniques, cf. [5]. We consider a 1D domain Ω = (a, b).
Let Th be a partition of Ω into a finite number of closed intervals (elements)
[aK, bK ]. We denote the set of all boundary points of all elements by Fh. Let
p ≥ 0 be an integer. We seek the numerical solution in the space of discontinuous
piecewise polynomial functions

Sh = {v; v|K ∈ Pp(K), ∀K ∈ Th},

where Pp(K) denotes the space of all polynomials on K of degree at most p.
For each inner point x ∈ Fh there exist two neighbours K

(L)
x , K

(R)
x ∈ Th such

that x = K
(L)
x ∩ K

(R)
x . For a function v ∈ Sh we use the notation: v(L)(x) =

limy→x− v(y), v(R)(x) = limy→x+ v(y) and [v]x = v(L)(x)− v(R)(x).
We formulate the DG method for the general first order hyperbolic problem

ut + f (u)x = g, x ∈ Ω, t ∈ (0, T ),

u = uD, x ∈ FD
h , t ∈ (0, T ),

u(x, 0) = u0(x), x ∈ Ω,

where g, uD and u0 are given functions and u is our unknown. The Dirichlet
boundary condition is prescribed only on the inlet FD

h ⊆ {a, b}, respecting the
direction of information propagation (characteristics).

The DG formulation then reads, cf. [5]: Find uh : [0, T ] → Sh such that

∫

Ω

(uh)tϕ dx −
∑

K∈Th

∫

K

f (uh)ϕ
′ dx +

∑

x∈Fh

H(u
(L)
h , u

(R)
h ) [ϕ]x =

∫

Ω

gϕ dx,

for all ϕ ∈ Sh. In boundary terms on Fh we use the approximation f (uh) ≈
H(u

(L)
h , u

(R)
h ), where H is a numerical flux. We use the Lax-Friedrichs flux, cf. [5]:

We define α = max
u∈(u(L)

h ,u
(R)
h )

∣
∣f ′(u)

∣
∣. In practice, we approximate the maximum
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by calculating
∣
∣f ′(u)

∣
∣ at the points u

(L)
h , u(R)

h and 1
2 (u

(L)
h + u

(R)
h ) and we take the

maximal value. Then we calculate the numerical flux as

H(u
(L)
h , u

(R)
h ) = 1

2 (f (u
(L)
h )+ f (u

(R)
h )− α(u

(R)
h − u

(L)
h )).

3 Implementation

For time discretization of the DG method we use Adams–Bashforth methods, which
are explicit linear multistep methods for ODEs. As a basis for Sh, we use Legendre
polynomials and we use Gauss–Legendre quadrature to evaluate integrals over
elements. The implementation is in the C++ language.

Because we calculate physical quantities (density and velocity), we know that the
result must be in some interval, e.g. [0, ρmax]. Thus, we use limiters in each time step
to obtain the solution in the admissible interval. It is important to not change the total
number of cars. For a piecewise linear approximation of ρ in LWR models, we find
each element K for which there exists x ∈ [aK, bK ] such that ρ(x) /∈ [ρmin, ρmax].
If the average density on element K is in admissible interval, we decrease the
slope of our solution so that the modified density lies in [ρmin, ρmax]. If the average
density on element K is not in the admissible interval [ρmin, ρmax] we decrease the
time step. Following [6], we also apply limiting to treat spurious oscillations near
discontinuities and sharp gradients in the numerical solution.

Numerical Fluxes at Junctions
Since we wish to model traffic on networks, the numerical fluxes at junctions must
be specified. The basic requirement is that the number of cars at the junctions must
be conserved. Moreover, we wish to prescribe the traffic distribution according to the
traffic-distribution matrix (3). The number of cars which inflow or outflow through
the junction is given by the traffic flow Qe. More precisely, the traffic flow from
incoming road Ii , i = 1, . . . , n, at time t is given by Qe (ρi(bi−, t)). Due to the
traffic-distribution matrix, we know the ratio of the traffic flow distribution between
the outgoing roads. Thus, the traffic flow to the outgoing road Ij , j = n + 1, . . . ,
n+m, at time t is given by Qe

(
ρj (aj+, t)

) =∑n
i=1 αj,iQe (ρi(bi−, t)). Since the

traffic flow at the boundary of an element is represented by the numerical flux, we
take the numerical flux Hj(t) at the left point of the outgoing road Ij , i.e. point at
the junction, at time t as

Hj(t) :=
n∑

i=1

αj,iH (ρhi(bi−, t), ρhj (aj+, t)),

for j = n + 1, . . . , n + m, where ρhi is the DG solution on the ith road. The
numerical flux Hj(t) approximates the traffic flow Qe

(
ρj (aj+, t)

)
. Similarly, we
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take the numerical flux Hi(t) at time t at the right point of the incoming road Ii , i.e.
at the junction point, as

Hi(t) :=
n+m∑

j=n+1

αj,iH (ρhi(bi−, t), ρhj (aj+, t)),

where i = 1, . . . , n. Then Hi(t) approximates the traffic flow Qe (ρi(bi−, t)).
It can be shown, that our choice of numerical fluxes conserves the number of

cars at junctions. However, this choice does not distribute the traffic according
to the traffic-distribution matrix (3) exactly, only approximately. We interpret this
phenomenon as follows and compare to the boundary conditions from [4, 7].

A method how to obtain an admissible solution satisfying properties (1)–(3) is
described in [4] or [7]. As an example, we take a junction with one incoming and two
outgoing roads. In [4, 7], maximum possible fluxes are used. If there is a traffic jam
in one of the outgoing roads, the maximum possible flow through the junction is 0.
On the other hand, the cars in our approach can still go into the second outgoing road
according to the traffic-distribution coefficients. So our choice of numerical fluxes
corresponds to modelling turning lanes, which allow the cars to separate before the
junction according to their preferred turning direction. In our case the junction is
not blocked due to a traffic jam on one of the outgoing roads. Since the macroscopic
models are aimed for long (multi-lane) roads with huge number of cars, our model
makes sense in this situation. The original approach from [4, 7] is aimed for one-lane
roads, where splitting of the traffic according to preference is not possible.

Another difference is that we can use all varieties of traffic lights. The model of
[4, 7] can use only the full green lights. Our approach gives us an opportunity to
change the lights for each direction separately.

An artefact of our model is that we do not satisfy the traffic-distribution
coefficients exactly. This corresponds to the real situation where some cars decide
to use another road instead of staying in the traffic jam. The problem is when there
is no traffic jam. Since we do not control the traffic-distribution exactly, we do not
satisfy it exactly. For this reason we interpret the matrix A as a traffic-probability
matrix. Now the element αj,i is the probability that the cars want to go from the
incoming road Ii to outgoing road Ij .

4 Numerical Results

In this section we present our program and numerical results. We show the result
of calculation on a bottleneck and on a simple network. As we mention above,
we use the combination of Adams–Bashforth and DG methods. This compares
to the approach in [7] where the authors use the Runge-Kutta method for time
discretization. Piecewise linear approximations of solutions with two Gaussian
quadrature points in each element were used.
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Fig. 1 Test road with a bottleneck in Sector 3 (red)

Bottleneck
First we demonstrate results for a single road with a bottleneck, cf. Fig. 1. In sector 1
and 4 we have maximal velocity vmax,1 = 1.3 and maximal density ρmax,1 = 2,
which corresponds to two lanes. The length of the first sector is L1 = 2 and
the length of the fourth sector is L4 = 1. Sector 2 is a short sector with length
L2 = 0.5 and with decreased maximal velocity vmax,2 = 1 and maximal density
ρmax,2 = 2. Sector 3 is the bottleneck, where the maximal density is ρmax,3 = 1,
which corresponds to one lane. The maximal velocity is vmax,3 = 0.8 and the length
of this sector is L3 = 2.

The cars go from left to right. The boundary condition on the left is ρ (0, t) =
1

20 sin
(

2πt
7 − π

2

)
+ 0.18 to simulate time-varying traffic. The initial condition is

an empty road. We use Greenshields model. The time-step size is τ = 10−4 in the
Euler method and the length of each element is h = 1

150 .
In Fig. 2 we can observe the emergence of a traffic jam between Sector 2 and

Sector 3. The traffic jam spreads backwards to Sector 1 and becomes longer or
shorter depending on the boundary influx. Because ρ(x, t) < ρmax,i for all x, t and
all sectors, the cars in the traffic jams are still moving.

Simple Network
Now we demonstrate how our program computes traffic on networks. Thus, we
define the simple network from Fig. 3. This network is closed, so we can show the
conservation of the number of cars. We have three roads and two junctions. The
length of all roads is 1. At the first junction we have one incoming road and two
outgoing roads. At the second junction we have the opposite situation. We use a
different distribution of cars at the first junction: 3

4 go from the first road to the
second and 1

4 from the first road to the third. This corresponds to the distribution
matrices A1 = [0.75, 0.25]T and A1 = [1, 1]. The initial conditions on each road
is depicted in Fig. 4a. On the first road there is a piecewise linear ‘bump’ in density,
while the second and third roads have a constant density of 0.4. The total number of
cars in the whole network is 1. We use Greenshields model on all roads. We use the
Euler method with the step size τ = 10−4 and the number of elements is N = 100
on each road.

We can see the results in Fig. 4. Road 1 distributes the traffic density between
the other roads. We have too many cars at the second junction, where we have two
incoming roads. Thus, we create a traffic jam on Road 2 and Road 3. We can observe
the transporting and the distribution of the jump from the first road through the
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Fig. 3 Test network with
Road 1 (red), Road 2 (green)
and Road 3 (blue)

junction on Fig. 4d and e. The result converges to the stationary solution. The traffic
density in Fig. 4f is close to a stationary solution. The amount of cars is conserved.

Our program can compute traffic on bigger networks and we are not limited by
the number of incoming or outgoing roads at junctions. We can have time-dependent
traffic lights at junctions. However, this contribution is too short for demonstrating
these results.

5 Conclusion

We have demonstrated the numerical solution of macroscopic traffic flow models
using the discontinuous Galerkin method. For the approximation in time we choose
explicit multistep methods. For traffic networks, we construct special numerical
fluxes at the junctions. The use of DG methods on networks is not standard. We
compare our approach with the paper [7] by Čanić, Piccoli, Qiu and Ren, where
Runge-Kutta methods are used along with a different choice of numerical fluxes at
junctions.
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Numerical Approximation
of Fluid-Structure Interaction Problem
in a Closing Channel Near the Stability
Boundary

Jan Valášek, Petr Sváček, and Jaromír Horáček

Abstract This contribution deals with the numerical simulation of a fluid-structure
interaction problem. The elastic body is modelled with the aid of a linear elasticity
model. The fluid flow is described by the incompressible Navier-Stokes equations
in the arbitrary Lagrangian-Eulerian formulation. The coupling conditions are
specified and the coupled problem is formulated. The fluid-structure interaction
problem is discretized by the finite element method solver applied both to the elastic
part as well as to the fluid flow approximation. For the fluid flow approximation
the residual based stabilization is used. Special attention is paid to the penalization
boundary condition used at the inlet. It allows to relax an exact value of the inlet
velocity on the boundary during channel closing phase nearly to complete channel
closure. Numerical results for flow-induced vibrations near the stability boundary
are presented and the critical velocity of flutter instability is determined.

1 Introduction

The fluid-structure interaction (FSI) problem appears in many technical applications
like airfoil stability or biomechanical applications as hemodynamics or vocal folds
vibrations, see e.g. [2, 4]. In technical applications the main interest is usually paid
to investigation of aeroelastic/hydrodynamic stability of the system. The stability of
FSI system is lost usually if the inlet flow velocity exceeds a critical value which
is called the flutter velocity, see [2]. The appearance of instability is usually an
undesired phenomenon endangering the structure integrity, however it can be also
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a desired process as in the case of vocal folds vibrations, see [8]. For investigation
of aeroelastic stability region usually a simplified linearized theory is used, see [2].
On the other hand such a simplification can not be used for large displacement as
gust response or vibrations of control valve. In such a case the solution of full FSI
problem should be used.

Such a full FSI problem can be mathematically modelled by a linear elasticity
model for the motion of the structure and the fluid flow problem can be modelled
by the incompressible Navier-Stokes equations. The arbitrary Lagrangian-Eulerian
(ALE) method utilized for the purpose of incorporating the influence of the fluid
domain changes due to structure motion. Here, the special attention is paid to the
boundary conditions (BC) of fluid problem. At the outlet so called a directional do-
nothing BC is used due to stability reasons, see [1], while at the inlet the recently
proposed penalization BC is prescribed, see [9]. In this case the inlet velocity is
weakly enforced with the help of the penalization parameter. The behaviour of FSI
system with this condition is very similar to the behaviour for classical Dirichlet BC
in terms of aeroelastic stability, but it differs significantly during the channel closing
phase. In that case the unphysically high velocities (the case with Dirichlet BC) is
relaxed to reasonable values in dependence of chosen penalization parameter, see
e.g. [10]. The aim of this contribution is to study the dependence of flutter velocity
on the penalization parameter.

The numerical approximation of both FSI subproblems is based on the finite
element method (FEM) with advanced stabilization technique employed, and the
strongly coupled partitioned scheme is implemented, see e.g. [4]. Finally the
numerical results of flow-induced vibrations are presented and the flutter velocity
is determined.

2 Mathematical Model

For the sake of simplicity let us consider the two-dimensional FSI problem,
composed of the elastic body and fluid flow represented by domains �s and �f ,

respectively, see Fig. 1. For the description of elastic body motion the Lagrangian
coordinates with notation of coordinates Xi are used, i.e. the computational domain
�s does not depend on time and it holds �s := �s

ref. On the other hand, we

distinguish the reference fluid domain �
f

ref (the domain occupied by fluid at the
time instant t = 0) with the reference interface �Wref = �W0 and the deformed fluid

domain �
f
t with the interface �Wt at any time instant t . In order to describe the fluid

flow on the time dependent domain the ALE method is used, see e.g. [6]. In ALE
framework the coordinates are denoted as xi .
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Fig. 1 Scheme of FSI problem configuration. The domain �s denoted the elastic body and �f

is the fluid domain. The FSI domain is shown in reference state on the left and in arbitrary time t

undergoing a deformation on the right. The following boundaries are considered: inlet �f

In, outlet

�
f

Out, walls �
f

Dir, �
s
Dir, boundary of symmetry �

f

Sym and interface �Wt

2.1 Elastic Body

The motion of the elastic body is described by the partial differential equations

ρs ∂2ui

∂t2 − ∂τ s
ij

∂Xj

= f s
i , in �s × (0,T) (1)

where ρs is the structure density, u(X, t) = (u1, u2) denotes the unknown displace-
ment, the vector of volume forces is fs = (f1, f2) and τ s

ij are the components of the
Cauchy stress tensor. These components are expressed with the aid of the Hooke’s
law further assuming isotropic body and small displacements as

τ s
ij = λs

∂uk

∂Xk

δij + 2μsesij (u), (2)

where δij denotes the Kronecker’s delta, esij (u) = 1
2

(
∂uj
∂Xi

+ ∂ui
∂Xj

)

is the small strain

tensor and λs, μs are the Lame’s constants, see e.g. [7]. The elastic problem (1) is
equipped with the zero initial conditions and the following boundary conditions are
considered

a) u(X, t) = uDir(X, t) for X ∈ �s
Dir, (3)

b) τ s
ij (X, t) nsj (X) = qs

i (X, t), for X ∈ �s
Wref

,

where the boundaries �Wref and �s
Dir are disjoint parts of the boundary ∂�s and

ns(X) = (nsj ) is the outward unit normal to ∂�s .
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2.2 Fluid Flow

The motion of the viscous incompressible fluid in a time dependent domain �
f
t is

modelled by the Navier-Stokes equations written in the ALE form, see [4],

DAv
Dt

+ ((v− wD) · ∇)v− νf�v+∇p = 0, div v = 0 in �
f
t , (4)

where v(x, t) denotes the fluid velocity, p is the kinematic pressure and νf is the
kinematic fluid viscosity.

To the set of Eqs. (4), a zero initial condition and the following boundary
conditions are added

a) v(x, t) = wD(x, t) for x ∈ �
f

Dir ∪ �Wt,

b)
∂v1

∂x2
(x, t) = 0, v2(x, t) = 0 for x ∈ �

f

Sym,

(5)

c) p(x, t)nf − νf
∂v
∂nf

(x, t) = −1

2
v(v · nf )− for x ∈ �

f

Out,

d) p(x, t)nf − νf
∂v
∂nf

(x, t) = −1

2
v(v · nf )− + 1

ε
(v− vDir) for x ∈ �

f

In,

where nf denotes the outward unit normal nf = (n
f
j ) to the boundary ∂�f ,

further α+, α− denote the positive and the negative part of real number α ∈ R

and ε > 0 is a penalization coefficient. Condition (5b) prescribes symmetry of flow
along boundary �

f
Sym (y = const., see Fig. 1), condition (5c) is the directional do-

nothing boundary condition, which increases the stability of the scheme, particularly
in the case of strong vortices passing the outlet, see [1]. Finally, condition (5d)
is the penalization boundary condition, prescribing inlet velocity with the help
of suitable chosen penalization coefficient ε, see [9]. Contrary to the classical
Dirichlet boundary condition, the inlet velocity during simulation varies, especially
it decreases during the channel closing phase, see [10].

2.3 Coupling Conditions

The fluid and structure models are coupled by conditions prescribed at the common
interface. The elastic subproblem is closed by Neumann boundary condition
prescribing the action of aerodynamic forces qs in the form of Eq. (3b), where the
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vector qs is given as

qs
i =

2∑

j=1

ρf

(

pδij − νf
(
∂vi

∂xj
+ ∂vj

∂xi

))

n
f
j (x). (6)

The Dirichlet boundary condition in the form of Eq. (5a) is provided to the fluid flow
subproblem.

3 Numerical Method

For the numerical approximation of subproblems (1) and (4) the FEM is used. The
time discretization is performed by the finite difference method with the uniform
time step �t , T

N
of a given time interval [0,T]. The n-th time step is denoted as

tn = n�t .

3.1 Elastic Structure

In order to get the weak formulation of Eq. (1) is multiplied by a test functionψ ∈ V,
where V = {f ∈ H1(�s)|f = 0 on �s

Dir} and H1(�s) being the vector Sobolev space.
The integration over the whole domain �s and the application of the Green theorem
together with boundary conditions (3b) provides us

(

ρs ∂
2u
∂t2 ,ψ

)

�s

+ (
λs(div u) I+ 2μses (u), es (ψ)

)
�s =

(
fs ,ψ

)
�s+

(
qs,ψ

)
�Wref

,

(7)

where the brackets (·, ·)D denotes the dot product in the Lebesque spaces L2(D) or
L2(D) and I denotes the identity matrix. The weak solution of Eq. (1) at any time
t ∈ (0, T ) is a function u ∈ H1(�s) that satisfies boundary condition (3a) and
Eq. (7) for all ψ ∈ V.

Let us seek an approximate solution uh in a finite element space Vh ⊂ V with the
finite dimension Nh. Then function uh can be expressed as a linear combination of
basis functionsψ1, . . . ,ψNh

of space Vh and time dependent coefficients αj (t), i.e.

uh(x, t) =∑Nh

j=1 αj (t)ψj (x). Using this formula and replacing ψ successively by
ψ i , i ∈ {1, . . . , Nh} in Eq. (7) we get the system of ordinary differential equations
(ODEs) of second order for the unknown coefficients αj (t)

Mα̈ + Cα̇ + Kα = b(t), (8)
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where M, K and C denote the mass matrix, the stiffness matrix and the additionally
added damping matrix, respectively. Vector b(t) denotes the load vector. The model
of Rayleigh proportional damping is applied, i.e. the matrix C is chosen as C =
ε1M+ ε2K, where ε1, ε2 are suitably chosen parameters. The solution of the system
of ODEs (8) is approximated over time by the use of the Newmark method, see [3].

3.2 Fluid Flow

In the case of fluid flow the time discretization is performed first. The ALE
derivative at tn+1 is approximated by the backward difference formula of second
order (BDF2)

DAv
Dt

(tn+1) ≈ 3vn+1 − 4vn + vn−1

2�t
, (9)

where vi ≈ v(·, ti ) and for a fixed time instant tn+1 we denote vi (x) =
vi (Ati (A

−1
tn+1

(x)) for i ∈ {n − 1, n} and x ∈ �
f
tn+1

. In further text we will omit

top time index n+1 everywhere possible, e.g. we lay �f := �
f
tn+1

.
In order to formulate problem (4) weakly we start with the definition of function

spaces involved. The function space for velocity test functions X = X × X2 is
defined as follows X = {f ∈ H 1(�f )| f = 0 on �

f

Dir ∪ �
f

Wtn+1
} and X2 = {f ∈

X| f = 0 on �
f

Sym} and M = L2(�f ). The weak form of fluid flow problem reads:

Find a couple (v, p) ∈ H1(�f ) ×M such that v approximately satisfies boundary
condition (5a) and

a(v, p;ϕ, q) + c(v, v;ϕ)+ 1

ε
(v,ϕ)

�
f

In
= 1

2�t

(
4vn − vn−1,ϕ

)

�f
+ 1

ε
(vDir,ϕ)�f

In

(10)

is fulfilled for any test functions (ϕ, q) ∈ X ×M , where the forms are defined for
any (v, p) ∈ H1(�f )×M and (ϕ, q) ∈ X ×M by

a(v, p;ϕ, q) =
(

3v
2�t

,ϕ

)

�f

+ νf (∇v,∇ϕ)�f − (p, divϕ)�f + (q, div v)�f ,

c(v∗, v;ϕ) = 1

2
(((v∗ − 2wn+1

D ) · ∇)v,ϕ)�f − 1

2
((v∗ · ∇)ϕ, v)�f (11)

+ 1

2
((v∗ · n)+v,ϕ)

�
f
In∪�f

Out
.

The form a(·, ·; ·, ·) is a part of the standard weak formulation of Stokes problem.
The trilinear form c(·, ·; ·) represents the convection in the skew-symmetric form
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with the directional do-nothing boundary condition taken into account, see [1]. The
penalization boundary condition (5d) introduces additional terms 1

ε
(v,ϕ)

�
f
In

and
1
ε
(vDir,ϕ)�f

In
, see [10].

Finite Element Approximation

The previously derived weak formulation (11) is discretized by the FEM. In order
to avoid possible numerical instabilities of the FE solution connected with high
(local) Reynolds numbers or due to the possible incompatibility of the velocity
and the pressure FE spaces the stabilizations—streamline-upwind/Petrov-Galerkin
(SUPG), pressure-stabilization/Petrov-Galerkin (PSPG) and ‘div-div’ stabilization,
are applied, see [4]. This approach provides a robust and accurate numerical method,
which is consistent with the original problem.

The nonlinear system of Eqs. (11) is solved using a Picard iteration method.
The inf-sup stable minielement Pbub

1 /P1 is implemented, see [5]. The FSI strong
coupling procedure is realized, i.e. in the inner iteration cycle in every time step the
convergence of aerodynamic forces is checked, see [10].

4 Numerical Results

The FSI model geometry and also material parameters have been taken from our
previously published study [10]. The time step is kept constantly equal to �t =
4 · 10−5 s in order to well capture the motion related to the lowest eigenfrequencies
of the structure. Further, the sensitivity of the flutter instability boundary in the
dependence of penalization parameter ε is studied. The parameter ε is changed in
range [10−6, 10−2] and for each fixed value of ε the inlet velocity vDir is gradually
increased until the unstable vibrations appears.

Figure 2 presents the flow-induced vibrations of structure monitored in point S
from the top of the elastic body. The three cases of inlet velocities vA = 1.90 m/s
(case A), vB = 1.85 m/s (case B) and vC = 1.80 m/s (case C) enforced by
penalization parameter ε = 1

2000 are considered. For inlet velocity vA an exponential
increase of vibration amplitude is observed. In the case B with inlet velocity
1.85 m/s the vibrations remain damped, while for smaller inlet velocity equal
1.80 m/s the vibrations are damped practically up to zero. The case B indicates that
the velocity vB is very close to the flutter velocity, i.e. the critical velocity is set
approximately 1.87 m/s.

In the end the dependence of critical flutter velocity on the penalization parameter
is summarized in Fig. 3 over the whole investigated ε range. The influence of
penalization parameter is proven to be negligible for values ε < 1

104 , while for

ε > 1
104 the influence is quickly increasing. For values ε > 1

500 the flutter velocity
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Fig. 2 The time development of u1 (top) and u2 (bottom) for point S is shown for three different
inlet velocities: vA, vB and vC considering the penalization approach given by Eq. (5d) with
parameter ε = 1

2000

Fig. 3 Dependence of critical flutter velocity for half-channel configuration on the penalization
parameter ε. The simulation with classical Dirichlet boundary condition is displayed as ε = 10−10
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is raised by more than 50%. This can be explained by substantially decreasing the
average flow rate connected with an increased penalization parameter, see [10].

5 Conclusion

The mathematical model of the FSI problem including the penalization boundary
condition is described and it is numerically approximated by the (stabilized)
FEM. The penalization boundary condition prescribed at the channel inlet is
interesting due to possibility to mitigate unphysically high velocities at channel
constriction during channel closing phase when an incompressible fluid model is
used. Nevertheless the additional (penalization) parameter needs to be tuned.

This paper studied the influence of the penalization parameter ε on the critical
velocity of flutter instability. The approximate critical flutter airflow velocity for
wide range of ε was determined showing negligible influence for ε < 1

104 . For
higher values of ε the flutter velocity grows steeply.
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Approximation Properties of Discrete
Boundary Value Problems for Elliptic
Pseudo-Differential Equations

Oksana Tarasova and Vladimir Vasilyev

Abstract We study some discrete boundary value problems which are treated
as digital approximation for starting boundary value problem for elliptic pseudo-
differential equation. Starting from existence and uniqueness theorem we give a
comparison between discrete and continuous solutions for certain boundary value
problems.

1 Introduction

We study a discrete variant of the following boundary value problem

{
(Au)(x) = f (x), x ∈ D,

(Bu)|∂D = g
(1)

where A,B are simplest elliptic pseudo-differential operators [1–3] with symbols
A(ξ), B(ξ), acting in Sobolev–Slobodetskii spaces Hs(D), D ⊂ Rm is a certain
bounded domain, f, g are given functions.

Discrete variants of similar problems for differential operators were studied
earlier (see, for example [4] with difference schemes, or [5] with difference
potentials), but we would like to develop an approach for more general pseudo-
differential operators and related equations. This approach is based on a concept
of periodic factorization for an elliptic symbols and it is a discrete analogue of
corresponding continuous methods [1].

Some first studies in this direction were done in [6–15].
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2 Digital Operators and Discrete Boundary Value Problems

Here we will describe our approach to studying discrete equations and boundary
value problems.

Given function ud of a discrete variable x̃ ∈ hZm, h > 0, we define its discrete
Fourier transform by the series

(Fdud)(ξ) ≡ ũd(ξ) =
∑

x̃∈Zm

eix̃·ξud(x̃), ξ ∈ h̄Tm,

where Tm = [−π, π]m, h̄ = h−1, and partial sums are taken over cubes

QN = {x̃ ∈ hZm : x̃ = (x̃1, · · · , x̃m), max
1≤k≤m

|x̃k| ≤ N}.

We will remind here some definitions of functional spaces [12] and will consider
discrete analogue S(hZm) of the Schwartz space S(Rm). Let us denote ζ 2 =
h−2

m∑

k=1
(e−ih·ξk − 1)2.

The space Hs(hZm) is a closure of the space S(hZm) with respect to the norm

||ud ||s =
⎛

⎜
⎝

∫

h̄Tm

(1+ |ζ 2|)s |ũd(ξ)|2dξ
⎞

⎟
⎠

1/2

. (2)

Fourier image of the space Hs(hZm) will be denoted by H̃ s(h̄Tm).
One can define some discrete operators for such functions ud .
If Ãd(ξ) is a periodic function in Rm with the basic cube of periods h̄Tm then

we consider it as a symbol. We will introduce a digital pseudo-differential operator
in the following way.

Definition 1 A digital pseudo-differential operator Ad in a discrete domain Dd is
called the operator [12]

(Adud)(x̃) =
∑

ỹ∈hZm

∫

h̄Tm

Ãd(ξ)e
i(x̃−ỹ)·ξ ũd(ξ)dξ, x̃ ∈ Dd,

We consider a class of symbols [12] satisfying the following condition

c1(1+ |ζ 2|)α/2 ≤ |Ad(ξ)| ≤ c2(1+ |ζ 2|)α/2, α ∈ R, (3)

and universal positive constants c1, c2.
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Let D ⊂ Rm be a domain. We will study the equation

(Adud)(x̃) = vd(x̃), x̃ ∈ Dd, (4)

in the discrete domain Dd ≡ D ∩ hZm and will seek a solution ud ∈ Hs(Dd),
vd ∈ Hs−α

0 (Dd) [12, 15].
In this paper we will discuss the case D ≡ Rm+.
Let Ãd(ξ) be a periodic symbol. Let us denote Π± half-strips in the complex

plane C

Π± = {z ∈ C : z = s + iτ, s ∈ [−π, π],±τ > 0}.

Definition 2 Periodic factorization of an elliptic symbol Ad(ξ) ∈ Eα is called its
representation in the form

Ad(ξ) = Ad,+(ξ)Ad,−(ξ),

where the factors Ad,±(ξ) admit an analytical continuation into half-strips h̄Π± on
the last variable ξm for almost all fixed ξ ′ ∈ h̄Tm−1 and satisfy the estimates

|A±1
d,+(ξ)| ≤ c1(1+ |ζ̂ 2|)±æ

2 , |A±1
d,−(ξ)| ≤ c2(1+ |ζ̂ 2|)± α−æ

2 ,

with constants c1, c2 non-depending on h,

ζ̂ 2 ≡ h̄2

(
m−1∑

k=1

(e−ihξk − 1)2 + (e−ih(ξm+iτ ) − 1)2

)

, ξm + iτ ∈ h̄Π±.

The number æ ∈ R is called an index of periodic factorization.

We consider the following discrete boundary value problem

{
(Adud)(x̃) = vd(x̃), x̃ ∈ Rm+
(Bdud)|x̃m=0 = gd(x̃

′), x̃ ′ ∈ Rm−1, (5)

such that the discrete boundary value problem (5) will have good approximation
properties for initial boundary value problem.

3 Solvability and Comparison

This section is devoted to the following questions:

1. to establish solvability for our discrete boundary value problem;
2. to give a comparison between discrete and continuous solutions.
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3.1 Solvability

To describe solvability for the boundary value problem (5) we introduce the
following notations.

(H
per

ξ ′ ũd)(ξ
′, ξm) = h

2πi
p.v.

h̄π∫

−h̄π

cot
h(ξm − ηm)

2
ũd(ξ

′, ηm)dηm,

where

p.v.

h̄π∫

−h̄π

cot
h(ξm − ηm)

2
ũd (ξ

′, ηm)dηm

= lim
ε→0+

⎛

⎜
⎝

ξm−ε∫

−h̄π

+
h̄π∫

ξm+ε

⎞

⎟
⎠ cot

h(ξm − ηm)

2
ũd(ξ

′, ηm)dηm

This operator generates two projectors

P
per

ξ ′ = 1

2
(I +H

per

ξ ′ ), Q
per

ξ ′ = 1

2
(I −H

per

ξ ′ ),

which permit to formulate and solve the following problem.
The following theorem was proved in the paper [7].

Theorem 1 Let æ−s = n+δ, n ∈ N, |δ| < 1/2. Then a general solution of Eq. (4)
in Fourier images has the following form

ũd(ξ) = Ã−1
d,+(ξ)Xn(ξ)P

per

ξ ′ (X−1
n (ξ)Ã−1

d,−(ξ)�̃vd(ξ))+ Ã−1
d,+(ξ)

n−1∑

k=0

c̃k(ξ
′)ζ̂ k

m,

where Xn(ξ) is an arbitrary polynomial of order n of variables ζ̂k = h̄(e−ihξk −
1), k = 1, · · · ,m, satisfying the condition (2), ck(ξ ′), j = 0, 1, · · · , n − 1, are
arbitrary functions from Hsk(hTm−1), sk = s − æ + k − 1/2, �vd is an arbitrary
continuation of vd . from Hs−α(Dd) into Hs−α(hZm)

The a priori estimate

||ud ||s ≤ a(||f ||+s−α +
n−1∑

k=0

[ck]sk )
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holds, where [·]sk denotes a norm in the space Hsk(hTm−1), and the constant a does
not depend on h.

We will apply Theorem 1 for the simple case n = 1, because we consider only
one boundary condition. Then we have

ũd(ξ) = h̃d(ξ)+ Ã−1
d,+(ξ)c̃0(ξ

′), (6)

where we denote

h̃d(ξ) = Ã−1
d,+(ξ)X1(ξ)P

per

ξ ′ (X−1
1 (ξ)Ã−1

d,−(ξ)�̃vd(ξ)) (7)

The construction of a general solution for starting boundary value problem is
very similar and exact, it was obtained in [1]. For our case it has the following form

ũ(ξ) = h̃(ξ)+ Ã−1+ (ξ)C̃0(ξ
′), (8)

h̃(ξ) = Ã−1+ (ξ)Y1(ξ)Pξ ′(Y
−1
1 (ξ)Ã−1− (ξ)�̃f (ξ)), (9)

where Pξ ′ = 1/2(I + Hξ ′), and Hξ ′ is the classical Hilbert transform on the last
variable ξm

(Hξ ′u(ξ
′, ξm) = 1

πi
p.v.

+∞∫

−∞

u(ξ ′, τ )dτ
ξm − τ

,

Y1(ξ) is an arbitrary polynomial of variables ξ1, · · · , ξm satisfying the condition
|Y1(ξ)| ∼ 1+ |ξ |, Ã±(ξ) are factors of factorization for the symbol Ã(ξ).

The formulas (8), (9) are valid under assumptions that the symbols A(ξ) satisfies
the condition

c1(1+ |ξ |)α ≤ |Ã(ξ)| ≤ c2(1+ |ξ |)α, (10)

and index factorization of the symbol A(ξ) equals æ.
There are arbitrary functions c̃0, C̃0 in the formulas (6), (8). To determine, for

example, the function c̃0 we use the boundary condition from (5). We act by the
operator B on the solution ud and then we take the restriction on the discrete half-
plane ξ̃m = 0. According to properties of the discrete Fourier transform we have

+h̄π∫

−h̄π

B̃d (ξ
′, ξm)ũd(ξ

′, ξm)dξm =
+h̄π∫

−h̄π

B̃d (ξ
′, ξm)h̃d(ξ

′, ξm)dξm + c̃0(ξ
′)bd(ξ ′),
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where

bd(ξ
′) =

+h̄π∫

−h̄π

B̃d (ξ
′, ξm)A−1

d,+(ξ
′, ξm)dξm

Here we use the condition inf
ξ ′∈h̄Tm−1

|bd(ξ ′| > 0; it is a discrete analogue of

Shapiro–Lopatinskii condition [1]. Since the left hand side is g̃d (ξ
′) we have the

following relation

c̃0(ξ
′) = b−1

d (ξ ′)
(
g̃d (ξ

′)− t̃d (ξ
′)
)
, (11)

where

t̃d (ξ
′) =

+h̄π∫

−h̄π

B̃d (ξ
′, ξm)h̃d (ξ

′, ξm)dξm.

By substitution of (11) into (6), we obtain a unique solution for the discrete
boundary value problem (5):

ũd(ξ) = h̃d (ξ)+ Ã−1
d,+(ξ)b

−1
d (ξ ′)

(
g̃d(ξ

′)− t̃d (ξ
′)
)
, (12)

3.2 A Comparison

According to Vishik–Eskin theory [1] we have a continuous analogue of the
formula (12), namely

ũ(ξ) = h̃(ξ)+ Ã−1+ (ξ)b−1(ξ ′)
(
g̃(ξ ′)− t̃ (ξ ′)

)
(13)

under the condition inf
ξ ′∈Rm−1

|b(ξ ′| > 0. Now we would like to compare two

formulas (12) and (13). To simplify our considerations we put f ≡ 0. Then the
functions h, hd, t, td are zero.

To obtain a good approximation we choose certain elements for the discrete
solution in a particular way.

First, let us denote by qh the following operator of restriction and periodization;
this operator acts in Fourier images. Given function ũ the notation qhũ means that
we take a restriction of ũ on h̄Tm and periodically continue it into whole Rm. The
symbol Ãd(ξ) of the discrete operator Ad is the following. We take the factorization

Ã(ξ) = Ã+(ξ) · Ã−(ξ)
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and introduce the periodic symbol by the formula

Ãd(ξ) ≡ (qhÃ+)(ξ) · (qhÃ−)(ξ),

so we have immediately the needed periodic factorization.
Secondly, we define the symbol B̃d (ξ) of the boundary operator Bd by

B̃d (ξ) ≡ (qhB̃)(ξ).

Third, we choose gd = F−1
d (qhg̃), where

(F−1
d ũd)(x̃) = 1

(2π)m

∫

h̄Tm

eix̃·ξ ũd (ξ)dξ, x̃ ∈ hZm.

Lemma 1 Let the boundary symbol B̃(ξ) satisfy the condition (10) with order β.
Then the following estimate

|b̃d(ξ ′)− b̃(ξ ′)| ≤ chæ−1−β

holds.

Proof We give corresponding estimates:

|b(ξ ′)− bd(ξ
′)| =

∣
∣
∣
∣
∣
∣
∣

+∞∫

−∞
B̃(ξ ′, ξm)Ã−1+ (ξ ′, ξm)dξm −

h̄π∫

−h̄π

B̃(ξ ′, ξm)Ã−1
d,+(ξ

′, ξm)dξm

∣
∣
∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣
∣

⎛

⎜
⎝

−h̄π∫

−∞
+

+∞∫

h̄π

⎞

⎟
⎠ B̃(ξ ′, ξm)Ã−1+ (ξ ′, ξm)dξm

∣
∣
∣
∣
∣
∣
∣
.

Two integrals have the same estimate and we consider the second one.

+∞∫

h̄π

|B̃(ξ ′, ξm)A−1+ (ξ ′, ξm)|dξm ≤ c5

+∞∫

h̄π

(1+ |ξ ′| + |ξm|)β−ædξm =

c5

æ− 1− β
(1+ |ξ ′| + h̄π)1−æ ≤ chæ−1−β.
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Theorem 2 Let f ≡ 0, vd ≡ 0, g ∈ Hs−β−1/2(Rm−1), gd ∈ Hs−β−1/2(hZm−1),

s − β > 1/2, æ > 1+ β, and

inf
ξ ′∈Rm−1

|b(ξ ′)| > 0, inf
ξ ′∈Tm−1,h>0

|bd(ξ ′)| > 0.

Then boundary value problems (1) and (5) have unique solutions in spaces
Hs(Rm+) and Hs(hZm+) respectively.

If g ∈ L1(Rm−1) then we have the estimate

|ũd(ξ)− ũ(ξ)| ≤ chæ−1−β, ξ ∈ h̄Tm.

Proof The existence and uniqueness for the problems was proved in [1] for
continuous case and in [8] for discrete case, and here we have described the
construction for solving discrete boundary value problem. Therefore we need to
prove the estimate. We have

ũ(ξ)− ũd(ξ) = b−1(ξ ′)g̃(ξ ′)A−1+ (ξ ′, ξm)− b−1
d (ξ ′)g̃d(ξ ′)A−1

d,+(ξ
′, ξm) =

(b−1(ξ ′)− b−1
d (ξ ′))g̃d(ξ ′)A−1

d,+(ξ
′, ξm), ξ ∈ h̄Tm,

and using Lemma 1 and boundedness of g̃ we complete the estimate.
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Mathematical and Numerical Models
of Atherosclerotic Plaque Progression
in Carotid Arteries

Silvia Pozzi and Christian Vergara

Abstract We propose a mathematical model for the description of plaque progres-
sion in carotid arteries. This is based on the coupling of a fluid-structure interaction
problem, arising between blood and vessel wall, and differential problems for the
cellular evolution. A numerical model is also proposed. This is based on the splitting
of the coupled problem based on a suitable strategy to manage the multiscale-in-time
nature of the problem. We present some preliminary numerical results both in ideal
and real scenarios.

1 Introduction

Atherosclerosis consists in the formation of plaques at bifurcation sites. Carotid
arteries are one of the preferential sites of atherosclerotic plaque formation. The
main complications related to plaque formation are the partial or total occlusion of
the internal carotids with consequent cerebral ischemia possibly leading to stroke,
the rupture of the plaque with consequent embolization of fragments in the brain
vessels, and the formation of a thrombus whose detachment leads to embolism.

The mechanism of plaque formation can be briefly summarized as follows. In
regions where the viscous forces exerted by the fluid on the arterial wall (wall
shear stresses, WSS) are low and oscillating, the permeability of the internal
vessel layer (intima) to low-density lipoprotein (LDL) increases [10]. Once in the
intima, LDL can oxidize, leading to a pathological inflammation. To remove this,
macrophages are recruited. Due to the ingestion of large amounts of oxidized LDL,
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Fig. 1 Left: Schematic view of plaque formation and progression. (a) Carotid with blood
recirculation; (b) LDL (in yellow) penetrates in the vessel wall; (c) oxidized LDL (in purple);
(d–f) macrophages (in green) accumulate. Right: fluid and structure computational domains

macrophages differentiate into foam cells, which are responsible for the growth of
a sub-endothelial plaque. If this inflammatory process persists for a sufficient time,
the plaque can emerge in the lumen. In Fig. 1, left, these steps are schematically
reported.

The prediction of the formation and evolution of the plaque in carotids is of
utmost importance. For this reason, in recent years some studies have focused on the
mathematical description of plaque progression [1, 5, 17]. The main characteristics
that a mathematical model should account for are:

(i) A detailed description of blood dynamics, which plays a crucial role in plaque
progression;

(ii) A description of the mutual dependence between macro and micro spatial
scales;

(iii) The coupling between models describing events that occur with different
characteristic times, that is seconds (blood dynamics) and years (plaque
progression).

Regarding point (i), some works consider blood dynamics in rigid walls [1, 2, 5],
whereas more recent studies include fluid-structure interaction (FSI) to better
describe blood dynamics and include a growth tensor in the vessel wall dynamics to
account for the plaque development [15, 16] (point (ii), micro-to-macro scales feed-
back). Another choice consists in using a plaque growth law [1, 2, 5, 17]. Regarding
the macro-to-micro scales feedback in point (ii), most of the studies derive a relation
between WSS and variation of permeability of cellular quantities [1, 5, 15]. A wide
class of works considers a macroscopic description of cellular events by means
of suitable partial differential equations (PDEs) for LDL, macrophages and foam
cells evolution [1, 2, 5, 15, 16], whereas other works consider for them a cellular
description [17]. Regarding point (iii), we point out that no specific techniques have
been considered so far to manage the different temporal scales. We also notice
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that most of the works consider ideal geometries for the numerical experiments
[1, 2, 5, 16], whereas in [15] an application to real geometries of mice is considered.

Starting from the studies cited above, in this work we propose a mathematical
model for plaque progression in carotids, based on an FSI model, PDEs for LDL,
macrophages and foam cells evolution, spatial feedbacks between macro and micro
scales based on WSS and a growth law. At the numerical level, we propose a new
strategy to deal with the multiscale-in-time nature of the problem. The model is
applied to 3D cases, both in ideal and real geometries.

2 Mathematical Models

The mathematical model for plaque progression is based on two groups of differen-
tial problems and on their coupling. In the first group, we consider the “short time
scale” model, that is the FSI problem, in the unknowns fluid velocity and pressure
(u, p) and structure displacement d , which occurs with a characteristic time of
1 s (the heartbeat). In the second group, we have the “long time scales” models,
interacting with one another, that is two time dependent diffusion-reaction (DR)
problems for LDL and macrophages concentrations (cLDL and cmacr ) [1, 15] and
one ordinary differential equation (ODE) for the foam cells concentration cFC [5].

The coupling between these two groups of models is provided by the time-
averaged WSS (TAWSS), which influences the LDL and macrophages perme-
abilities [1] (macro-to-micro feedback) and by cFC , which determines the plaque
growth dG [17] (micro-to-macro feedback). In Fig. 2 we report a diagram of the
mathematical model. Notice that the fluid and structure domains �f and �s depend
on the plaque growth dG.

Fig. 2 Diagram of the mathematical model of plaque progression
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Referring to Fig. 1, right, we detail in what follows the equations of the
submodels.

– FSI problem:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ρf (∂tu+ u · ∇u)−∇ · T f (u, p) = 0 in �f (d, dG),

∇ · u = 0 in �f (d, dG),

u = ∂td on 0(d, dG),

T f (u, p)n = T s (d)n on 0(d, dG),

ρs∂tt d̂ −∇ · T̂ s = 0 in �̂s(dG),

(1)

together with initial and boundary conditions and where ρf and ρs are the fluid
and structure densities, T f = μ(∇u + (∇u)T )n − pI is the fluid Cauchy
stress tensor, μ the fluid viscosity, T̂ s is the wall first Piola-Kirkhhoff tensor
representing an hyperelastic material, n is the unit normal vector, and ̂ denotes
quantities in the Lagrangian framework;

– Time-averaged wall shear stress:

TAWSS = 1

T

∫ T

0
μ

2∑

j=1

√((∇u+ (∇u)T )n · τ j

)2
dt = g1(u), (2)

with τ j the tangential unit vectors;
– Cellular differential problems:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂tcLDL −∇ · (DLDL∇cLDL)+ roxcLDL = 0 in �s(dG),

ζLDLcLDL −DLDL∇cLDL · n = −ζLDLcLDL,f on 0(d, dG),

ζLDL = ζ
ref
LDL

ln(2)
ln

(

1+ 2TAWSSref

T AWSS + T AWSSref

)

;

(3)
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂tcmacr − ∇ · (Dmacr∇cmacr)+ (roxcLDL) cmacr = 0 in �s(dG),

ζmacrcmacr −Dmacr∇cmacr · n = −ζmacrcmacr,f on 0(d, dG),

ζmacr = ζ
ref
macr

ln(2)
ln

(

1+ 31/30TAWSSref

T AWSS + 1/30TAWSSref

)

,

Dmacr = Ddis
macr +

(
D

healthy
macr −Ddis

macr

)
e−cFC ;

(4)

∂tcFC = roxcLDLcmacr in �s(dG),

(5)
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where D are the diffusion tensors, rox the oxidation rate, ζ the permeabilities,
index ref means reference, index dis means diseased. Notice that both diffusion-
reaction problems are equipped by a Robin condition at the interface 0 to account
for the equilibrium with the fluid concentrations, which are here supposed to be
known constants (cLDL,f , cmacr,f ) ;

– Growth function

dG = κcFCn = g2(cFC) on 0(dG), (6)

that is a growth of the interface that occurs in the normal direction and where κ

is a parameter regulating the growth rate [17]. The growth dg is then extended in
the whole �s(dg) by means of an harmonic extension.

3 Numerical Methods

For the numerical solution of the coupled problem (1)–(2)–(3)–(4)–(5)–(6), we
propose a way to treat its multiscale-in-time nature, that in fact decouples the
subproblems (FSI, LDL, macrophages, foam cells) which could be solved by means
of separate/pre-existing codes. This strategy is summarized in Fig. 3.

The blue region, characterized by a time discretization parameter �t , is devoted
to the discretized-in-time long time scale problems (3)–(4)–(5), which are solved
for K time instants at the current block m in the domain �s,m−1 obtained at the
previous block.

Fig. 3 Schematic representation of the numerical treatment of the multiscale-in-time coupled
problem
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After K time steps we update the structure domain by means of (6), obtaining
�s,m and then we solve for J heartbeats the discretized-in-time FSI problem (1) in
this domain and in the corresponding fluid domain, with a discretization parameter
�τ << �t (yellow region). After J heartbeats, we compute TAWSS by means
of (2) and we update accordingly the permeabilities ζLDL and ζmacr . Then the new
block m+ 1 starts. These steps are detailed in Algorithm 1.

Algorithm 1 Numerical solution of the plaque progression coupled problem
Let m be the block index, j the heartbeat index, n the short scales time step index, k the long scale
time step index.

for m = 1 : M
for k = 1 : K

Solve the discretized-in-time cellular problems at block m, time instant k:
ckLDL,m = DRk(T AWSSm−1;�s,m−1),

ckmacr,m = DRk(T AWSSm−1, c
k
LDL,m, ck−1

FC,m;�s,m−1),

ckFC,m = ODEk(ckLDL,m, ckmacr,m,�s,m−1);
end for
Update the structure domain:

dG,m = g2(cFC,m), �s,m = �s,m−1 + dG,m;
for j = 1 : J

for n = 1 : N
Solve the discretized-in-time FSI problem at heartbeat j , time instant n:(

u
j,n
m , p

j,n
m , d

j,n
m

)
= FS

(
�

j,n−1
f,m−1, �̂s,m−1

)
;

end for
end for
Compute the TAWSS:

TAWSSm = g1 (um) .

end for

We discuss in what follows the numerical strategies used for the solution of both
the cellular and FSI subproblems.

Regarding cellular problems, we consider BDF1 for time discretization and
P1 Finite Elements for space discretization; linearization of the subproblems is
performed by an explicit treatment of cFC in the evolution of macrophages, whereas
the other non-linearities are solved by the sequential solution of the 3 subproblems,
see Algorithm 1.

For the numerical solution of the FSI problem we consider a first order time
discretization for fluid, structure and kinematic conditions, with a semi-implicit
treatment of the fluid convective term. The fluid geometry problem is determined
by means of an harmonic extension of the interface displacement in an Arbitrary
Lagrangian-Eulerian formulation [6, 9], whereas the geometric coupling is treated
explicitly, a strategy which is known to be stable and accurate in hemodynamics,
see e.g. [7, 11, 12, 14]. The resulting FSI problem is solved monolithically by
means of P2-P1 Finite Elements, with an inexact Newton method given by a block
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approximation of the Jacobian, leading to the split solution of fluid velocity, pressure
and vessel wall unknowns, see [3, 4]. This method has been shown to be highly
scalable in the hemodynamic regime.

All the strategies have been implemented in the Finite Elements library LifeV
(www.lifev.org).

4 Numerical Results

We present in what follow some 3D preliminary numerical results. In all the experi-
ments we considered the linear Hooke law for the structure constitutive relation with
Young modulus E = 3 · 105 Pa and Poisson ratio ν = 0.49. We used the following
values for the other physical parameters: ρf = 1.0 g/cm3, ρs = 1.1 g/cm3, μ =
0.035 P, DLDL = 1.2 · 10−7 cm2/s, rox = 0.5 · 10−2 s−1, cLDL,f = 1.9 ·
10−3 g/cm3, ζ

ref

LDL = 1.7 · 10−11 cm/s, cmacr,f = 5 · 10−5 g/cm3, ζ
ref
macr = 1.1 ·

10−12 cm/s [1], Ddis
macr = 5.0 · 10−9 cm2/s, Dhealthy

macr = 1.0 · 10−9 cm2/s [16].
Moreover, we set �t = 3 h, �τ = 10−3 s, J = 3, N = 800, K = 750
(corresponding to about 3 months). The value of TAWSSref = 2.1 Pa has been
estimated by the Poiseuille solution.

At the inlet, we prescribed a physiological representative flow rate taken from
[8], whereas at the outlet sections we considered absorbing boundary conditions
[13].

In the first experiment, we consider as initial configuration an ideal vessel given
by a cylinder of radius 0.5 cm and length 6.5 cm, where a 60% eccentric stenosis of
length 1.8 cm has been included 2.5 cm far from the inlet. This leads to recirculation
regions downstream the stenosis, leading to low values of TAWSS that should
induce the mechanism of LDL, macrophages and foam cells accumulation.

From the results reported in Fig. 4, we observe in fact that, in correspondence
of regions of low TAWSS given by the stagnation of blood flow, a growth of
about 0.2 mm occurs after block 2, that is after 6 months. These results, although
qualitative, show that our methodology is stable from the numerical point of view
and that it is able to produce significant plaque growth values which are in the
expected ranges.

In the second experiment, we apply the proposed method to a real carotid
reconstructed from MRI data. In this case, we start from a healthy geometric
condition and we expect that possibly stagnation regions at the bifurcation may
lead to plaque growth. This is confirmed by the results reported in Fig. 5, where
TAWSS is very low in correspondence of recirculation regions and, accordingly,
plaque growth occurs. These results highlight the ability of our method to be applied
to real scenarios, allowing to obtain significant results from the quantitative point of
view (0.1 mm in 6 months).

These results are preliminary and are the first step towards a concrete application
of our method. Of course validation of the method is mandatory. To this aim,

www.lifev.org
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Fig. 5 Top: Streamlines of blood velocity (left), TAWSS (middle), plaque growth (right), block 1.
Bottom: Plaque growth on a section at the bifurcation at the starting time instant (left), after block
1 (middle) and after block 2 (right)

comparisons of the results with clinical analysis of patients before and after the
plaque progression shall be considered.
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Equilibrium Path Analysis Including
Bifurcations with an Arc-Length Method
Avoiding A Priori Perturbations

H. M. Verhelst, M. Möller, J. H. Den Besten, F. J. Vermolen,
and M. L. Kaminski

Abstract Wrinkling or pattern formation of thin (floating) membranes is a phe-
nomenon governed by buckling instabilities of the membrane. For (post-) buckling
analysis, arc-length or continuation methods are often used with a priori applied
perturbations in order to avoid passing bifurcation points when traversing the
equilibrium paths. The shape and magnitude of the perturbations, however, should
not affect the post-buckling response and hence should be chosen with care. In
this paper, our primary focus is to develop a robust arc-length method that is
able to traverse equilibrium paths and post-bifurcation branches without the need
for a priori applied perturbations. We do this by combining existing methods
for continuation, solution methods for complex roots in the constraint equation,
as well as methods for bifurcation point indication and branch switching. The
method has been benchmarked on the post-buckling behaviour of a column, using
geometrically non-linear isogeometric Kirchhoff-Love shell element formulations.
Excellent results have been obtained in comparison to the reference results, from
both bifurcation point and equilibrium path perspective.
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1 Introduction

Linear buckling analysis of (maritime) structures is widely used in engineering to
estimate the loads for which instabilities or even collapse will occur. Post-buckling
analysis is often considered to assess the load carrying capacity after instability or
collapse. For (floating) thin membranes-like offshore solar platforms [14], (post-)
buckling analysis involves the wrinkling phenomenon when loads on the membrane
exceed critical values [3, 8, 15, 18–20].

When modelling instabilities like wrinkling, a priori perturbations of some shape
and magnitude are often applied to initiate post-buckling without passing bifurcation
points. Perturbations are required since bifurcation points introduce singularities in
the system matrix, meaning that commonly used solution procedures are not able
to provide the post-buckling response. However, as previously reported by Taylor et
al. [18], the magnitude of the initial perturbations might influence the final solution.

Hence, in this paper our primary focus is to develop a numerical procedure—
based on a combination of the conventional and extended arc-length method [5, 6],
solution methods for complex roots [12, 24], as well as methods for bifurcation
point indication and branch switching [9] (Sect. 2). The performance of the proposed
method is illustrated using a benchmark problem (Sect. 3) and conclusions are
drawn to complete the work (Sect. 4).

2 The Arc-Length Method

The arc-length method, also known as a path-following algorithm or a continuation
method, is a method to advance through a solution space w(u, λ) of the system

G(u, λ) = N(u)− λP = 0, (1)

where N(u) is a vector function in terms of solution vector u and P is a constant
vector multiplied by scaling λ. Both N and P can follow from a finite element
discretization of a system of partial differential equations based on the finite solution
vector u ∈ R

n. The function G can thus be used to find the solution u for a
particular scaling λ (i.e. “load control”) or vice-versa (i.e. “displacement control”).
Alternatively, one can use the function G and a constraint equation f (w) to find the
combination w = (u, λ) that satisfies G(w) = 0 and f (w) = 0. This principle is
used in the arc-length method [4, 16], which will be used to obtain the solution of
Eq. (1) in the case that the solution is not known to be unique.
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2.1 Conventional and Extended Arc-Length Method

The constraint equation f (w) is often imposed on the solution increment �w =
(δuk, δλk) and can take different forms, e.g. using Riks’ method [16] or Crisfield’s
method [4]. The latter imposes:

f (w) = δu�k δuk +12δλ2
kP�P = �l2. (2)

Here, �l is the arc-length or the radius of the constraint equation, 1 is a scaling
factor to incorporate the dimensionality of the system in the factor λ. The constraint
equation of Crisfield was used because this method always finds a solution, despite
the curvature of the equilibrium path. The disadvantage, however, is that two
solutions are found per iteration, and hence, that a particular solution needs to be
selected. Note that the square root of the constraint equation,

√
f (w), is a proper

norm.
Crisfield [4] originally used 1 = 0, referred to as a spherical constraint, but

the elliptical constraint is used to maintain displacement and load steps in the same
order of magnitude for different refinements:

12 = u�0 u0/λ
2
0P�P. (3)

Here, λ0 and u0 correspond to the solutions on a previous equilibrium point (i.e. a
converged point). In the origin w0 = (u0, λ0) = (0, 0), a slightly different procedure
is used [12]. As a consequence of the constraint equation, the system matrix, if
banded, loses its banded nature hence affecting convergence behaviour of nonlinear
solvers [21]. Therefore, the system of equations is solved in a segregated way. To
this extent, Eq. (1) is considered in terms of the unknown increments δλk and δuk at
iteration k, such that

Kδuk = G(u, δλk) = N(u)− δλkP. (4)

Where the splitting of the incremental displacement δuk in terms of a standard load-
controlled Newton-Raphson method δūk and a component from the increment δλk
being δûk is used:

δuk = βδūk + δλkδûk. (5)

The line-search parameter β is relevant when dealing with complex roots (see
Sect. 2.2) and is equal to 1.0 otherwise. Then, for iteration k,

Kδūk = G(wk), (6)

Kδûk = P. (7)
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where K is the Jacobian of the system to be solved and has to be computed once.
A disadvantage is that no solutions can be found on limit points, since the Jacobian
is singular there [6]. At each iteration, the load and displacement increments are
updated using

�wk = (�uk,�λk) = (δuk−1, δλk−1)+ (δuk, δλk) (8)

Using the constraint equation from Eq. (2) and using the fact that the iterative
increment δuk is depending on the unknown δλk , the constraint equation can be
written as a polynomial in δλk:

aδλ2
k + bδλk + c = 0, (9)

With,

a = δû�k δûk +12P�P = a0,

b = 2
(
δû�k �u+�λ12P�P

)
+ 2βδû�k δūk = b0 + βb1,

c = β2δū�k δūk + 2βδū�k �u+�u��u+�λ212P�P −�l2

= c0 + βc1 + β2c2.

(10)

where �u = (�u,�λ) (indices omitted) denotes the increment in the previous load
step. Since ut and ū are known from Eqs. (6) and (7), the only unknown in Eq. (9)
is the load increment δλ. Therefore, Eq. (9) is a scalar quadratic equation that is
easily solved for δλk and has two solutions. The choice of the solution is based on
the ‘angle’ between the arc-length increment �w of the previous load step and the
current �wk . Since this term is minimised for the increment δλk , it is sufficient to
look at the following roots [17]:

�r = δλr

(
�u�δûk +12�λ

)
r = 1, 2. (11)

The root δλr for which �r is largest is the selected root. In the original work of
Crisfield [4] a different method was proposed, where the increment�uk is computed
for both values of �λr and the largest inner-product is taken. Both methods were
implemented and no major changes in the robustness of the methods were observed.
By comparing the current increment with the previous load increment, both methods
are robust as long as no sharp snap-back behaviour is present with respect to the
chosen arc-length �l.

In the first iteration of a new load step, the vector δuk−1 and the scalar δλk−1
are equal to zero. Hence, the trivial solution is found for Eq. (9). Therefore, the
following method is used to initialize the method in a new load step. Note that by
Eqs. (6) and (7) δûk is non-zero and ū is zero since the residual in the first iteration
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G(w0) is zero. Therefore, the load increment in the first iteration is defined as [5, 12]:

�λ0 =

⎧
⎪⎨

⎪⎩

�l/

√
2δû�k δûk, if (u0, λ0) = (0, 0)

�l/

√
δû�k δûk + 12P�P otherwise.

(12)

Its sign is determined by the previous load increment �w [7]:

sign(�λ0) = sign(�u�δûk +�λ12P�P). (13)

2.2 Solution Methods for Complex Roots

In the case of complex roots for Eq. (9), i.e. when b2 − 4ac < 0, the numerical
procedure as discussed in the previous section fails [2]. Complex roots occur when
the equilibrium path is strongly curved in the region that is covered by one step. As
a solution to complex roots, the arc-length can simply be bisected until real roots
are found [1] or by utilising a pseudo line-search technique [12, 24]. The methods
in the latter works are slightly different in the choice of the line-search parameter as
will be detailed later.

As complex roots occur when b2 − 4ac < 0 in Eq. (9), a line-search parameter
β̃ �= 1 exists such that b2−4ac ≥ 0 is satisfied. Substitution of the coefficients from
Eq. (10) in this condition provides a quadratic equation in terms of the unknown
line-search parameter β̃:

asβ̃
2 + bsβ̃ + cs ≥ 0,

with [17]:

as = b2
1 − 4a0c2, bs = 2b0b1 − 4a0c1 and cs = b2

0 − 4a0c0,

and which can be solved for the equality. When the parameter β̃ is obtained, Eq. (9)
can again be solved to find the roots for δλk . Selection of β̃ can be done using
0 < β̃ ≤ β̃max, where β̃max = min(1, β̃2), since the solutions β̃1,2 (β̃1 < β̃2) are
of opposite sign and if β̃ is between those roots (i.e. if ascs > 0), the constraint
equation is satisfied. If β̃ is close to zero, the iterative method becomes inefficient
and it is recommended to cut the arc-length [17, 24].
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2.3 Methods for Bifurcation Point Indication and Branch
Switching

When applying the arc-length method on buckling analysis, singular points indicate
a transition between stability and instability. The singular points can be charac-
terised as either limit points or bifurcation points. The tangential stiffness matrix
K is singular, i.e. the determinant of this matrix is equal to zero. Additionally, the
first eigenvector φ1 of the tangential stiffness matrix on a singular point represents
the buckling mode shape in case of a bifurcation point. Limit points and bifurcation
points are distinguished by considering the inner product φ�1 P. If this product is
non-zero, a limit point is found [22].

When passing a singular point, the determinant of this matrix becomes negative,
or equivalently, the product of the diagonal entries of the diagonal matrix D of the
LDL� Cholesky decomposition changes sign. Unless a bifurcation point is exactly
passed—which rarely occurs in practice—the matrix K is symmetric positive-
definite. In this case, the LDL� decomposition can be used to factorise and solve
Eqs. (6) and (7) and bifurcation points can be pinpointed by considering the sign
of the lowest values of the diagonal matrix D. These determine the sign of the
determinant of K and thus the stability of the system [21].

The bifurcation points are approached using the extended arc-length [23],
which provides the solution w and the first eigenvector φ1 of corresponding to
the bifurcation point. This method converges quadratically since it is based on a
Newton-Raphson method for solving the equilibrium equations G(u, λ) = 0, the
singularity condition K(u, λ)φ1 = 0 and a constraint equation to prevent the trivial
solution φ1 = 0 to be found [21–23].

When a bifurcation point wP = (uP , λP ) is found within a specified tolerance of
the extended arc-length method, the eigenvector φ1 is known from this method and
the method can switch to the bifurcation branch by applying perturbation using the
buckling mode shape, i.e. using φ1. Branch switching is simply done by perturbing
the displacements uP at the bifurcation point by the normalized eigenvector φ̄1
multiplied by a factor τ . This factor can be chosen arbitrarily small [21].

3 Benchmark Problem

The geometrically linear isogeometric Kirchhoff-Love shell [11] formulation in the
open-source Geometry+Simulation Modules (G+Smo1) [10] are used to model a
thin shell. The benchmark is a column, i.e. a beam fixed at one side and loaded
in-plane at the other side [13]. The column has length 1 [m], thickness 0.01 [m]
and Young’s modulus of 75 [MPa]. In both models, 32 elements of order 2 over

1The source of G+Smo can be found on github.com/gismo.

github.com/gismo
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Fig. 1 Deformation of a column subject to a vertical end load. (a) Horizontal (u) and vertical
(w) displacement (bottom and top axis, resp.) of the end-point versus the applied load. The inset
represents the undeformed (dashed) and deformed (solid) configuration. (b) Convergence of the
present arc-length method to the buckling load, for different knot vector spacings �ξ and B-spline
orders p

the length and one element of order 2 in other directions are used. The eigenvector
perturbation factor τ is 10−3.

The results obtained with the arc-length method (Fig. 1a) show excellent
agreement with the reference results [13] for both bifurcation point prediction
and post-buckling behaviour. Furthermore, Fig. 1b shows the convergence of
the extended iterations to the buckling point for both models with respect to
P̄ = 4λPrefL

2/π2EI , where Pref is the applied reference load. Convergence of the
first order to the analytical solution is observed irrespective of the B-spline order.
Hence the speed of convergence is not depending on the spline order p, but the
magnitude of the error is.

4 Conclusions

In this paper, an arc-length method that does not require a priori perturbations
was presented. The procedure is based on the Crisfield arc-length method with
extensions for complex roots in the constraint equation for more robustness, and is
able to find bifurcation branches without the need for a priori applied perturbations.
For benchmarking, the model was applied on buckling and post-buckling analysis
of a column with a compressive end load, modelled using isogeometric Kirchhoff-
Love shell elements. The benchmark results show that the present method is able



1116 H. M. Verhelst et al.

to provide accurate results in both path following as well as bifurcation point
prediction. In future work, we will apply the present model on modelling wrinkles
in thin (supported) sheets subject to large strains for validation and verification with
previous studies [3, 8, 15, 18–20].

Acknowledgments The authors are grateful to Delft University of Technology for its support.
Additionally, the authors are grateful to the community of the Geometry and Simulation Modules
(G+Smo) for laying the basis of the developed code.
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Some Mathematical Properties
of Morphoelasticity

Ginger Egberts, Daan Smits, Fred Vermolen, and Paul van Zuijlen

Abstract We consider a morphoelastic framework that models permanent defor-
mations. The text treats a stability assessment in one dimension and a preservation
of symmetry in multiple dimensions. Next, we treat the influence of uncertainty in
some of the field variables onto the predicted behaviour of tissue.

1 Introduction

Growth phenomena are well-studied topic in (medical) biology. Examples are tumor
growth, organ development, embryonic growth or the evolution of skin. Organ
development is a very interesting research or futuristic scientific development in
which one tries to cultivate human and mammalian organs as an alternative to
the need of donors for organ transplantation. In many cases, organs from donors
will undergo repellence as a result of the immune system of the host. Therefore
development of organs on the basis of the DNA from the host is of scientific
interest. Further interest comes from modern meat industry in which meat is to
be development outside the animal, such that slaughtering animals is no longer
necessary. Of course, these topics are still visionary, however, in the future, these
topics are expected to gain further research interest, including breakthroughs, and
even will be implemented at a certain stage.
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Mathematical models for growth exist in different levels of complexity, such as
growth models that are based on curvature or on surface processes on the boundary
of the growing object. Examples are particle growth and phase transitions in grains
or the closure of a shallow scrub wound, in which the epidermis (upper skin)
grows over the wounded area as a result of localised migration and proliferation
of keratinocytes (cells in the epidermis). Other growth processes take place as a
result of processes that are happening all over the body of the growing object. In
biological applications, one may think of embryonic growth or tumor growth. In
all these cases, in-body growth induces mechanical stresses and strains in the body.
In large skin wounds, such as serious burn injuries, where skin contraction takes
place, the skin may undergo changes such that permanent deformations remain.
To deal with these mechanical processes, one composes a balance of momentum
and one uses a constitutive law that couples the stresses and strains in the body. If
one uses classical elasticity with Hooks’s Law, then the deformations will always
vanish as the forces are released. Hence growth and/or permanent deformations
cannot be predicted with classical mechanical balances only. For this reason, one
incorporates growth through morphoelasticity, which was described very clearly by
Hall [1] and introduced earlier by Rodriguez et al. [2]. Here, one uses the following
principle: the total deformation is decomposed into a deformation as a result of
growth and a deformation as a result of mechanical forces. In a mathematical
context, one considers the following three coordinate systems: X, Xe(t), and x(t),
which, respectively, represent the initial coordinate system, the equilibrium at time
t that results due to growth or shrinkage, and the current coordinate system that
results due to growth or shrinkage and mechanical deformation. The deformation
gradient tensor is factorised into F = A Z: Z a deformation gradient tensor due
to (permanent) growth or shrinkage; and A a deformation gradient tensor due to
(current) mechanical forces.

Another complication that is often encountered in biological systems is the fact
that many of the biological variables change from individual to individual. Even
changes within the same individual over time and location are not uncommon.
These variations, both microscopic (local) and from individual to individual make
the biological system suffer from a large degree of uncertainty and therefore many
of the biological simulation frameworks should be designed such that they allow the
estimation of likelihood that certain scenarios (such as metastasis of tumors or skin
contraction after wounding) take place.

As far as we know, the morphoelastic system has not yet been analysed
mathematically, and therefore we give some preliminary results for stability and
symmetry of the strain tensor. Furthermore, we will show how to quantify the impact
of uncertainty in the input parameters on the dynamics of tissue.
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2 The Model for Morphoelasticity

Hall [1] derived a set of PDEs that integrate growth/shrinkage with mechanical
forces in a two-field formalism for the displacement velocity and the effective Eule-
rian strain between the current equilibrium configuration and current configuration,
based on the deformation gradient tensor A. Let D(.)

Dt
denote the material time

derivative of a quantify, then we consider the following differential equations for
the displacement velocity v and the effective Eulerian strain ε in an open Lipschitz
domain �(t):

ρ

(
Dv
Dt

+ v(∇ · v)
)

− ∇ · σ = f,

Dε

Dt
+ ε skw(L)− skw(L) ε + (tr(ε)− 1)sym(L) = −G.

(1)

Here σ , L, G, f, respectively, denote the stress tensor, deformation gradient velocity
tensor, growth tensor and body force that are given by

L = ∇v, G = αε, α ∈ R,

σ = μ1sym(L)+ μ2tr(sym(L))I+ E

1+ ν

(

ε + ν

1− 2ν
tr(ε)I

)

.
(2)

Here E, μ1, μ2, ν, respectively, represent the Youngs modulus (stiffness), kinematic
and dynamic viscosity and Poisson ratio. Further, sym(L) and skw(L), respectively,
denote the symmetric and skew-symmetric part of the tensor L. Equations (1) are
solved for v and ε, and need boundary conditions for v and initial conditions for
both v and ε. The displacement is postprocessed by integration of v over t .

3 Symmetry and Stability

3.1 Symmetry of the Strain Tensor

First, we demonstrate that if the strain tensor ε is initially symmetric then it remains
symmetric at all later times.

Theorem 1 Let the second equation in Eq. (1) hold on open Lipschitz domain �

for t > 0, suppose that ε is symmetric on t = 0, then ε remains symmetric for t > 0.
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Proof Taking the transpose of the second equation in Eq. (1), gives

Dε

Dt
+ ε skw(L)− skw(L) ε + (tr(ε)− 1)sym(L) = −αε,

DεT

Dt
+ εT skw(L)− skw(L) εT + (tr(ε)− 1)sym(L) = −αεT .

(3)

Note that we used sym(L)T = sym(L) and skw(L)T = −skw(L), subtraction gives

D

Dt
(ε − εT )+ (ε − εT ) skw(L)− skw(L) (ε − εT ) = −α(ε − εT ). (4)

From the above equation, it is clear that (ε−εT ) = 0 represents an equilibrium, and
hence symmetry of ε represents an equilibrium, by which we conclude that initial
symmetry implies no changes of symmetry for later times. ��
The actual stability of this symmetry is another question worth investigating. We
postpone this matter to future studies. Symmetry of the strain tensor warrants
symmetry of the stress tensor, see Eq. (2), which implies zero torque and hence
there is no spin.

3.2 Linear Stability of 1D Morphoelasticity

Next we consider the one-dimensional counterpart of Eqs. (1), which after process-
ing the material time derivative, is given by

ρ

(
∂v

∂t
+ 2v

∂v

∂x

)

− μ
∂2v

∂x2 − E
∂ε

∂x
= f,

∂ε

∂t
+ v

∂ε

∂x
+ (ε − 1)

∂v

∂x
= −G.

(5)

The domain is given by �(t) = (0, 1) where we use v(t, 0) = v(t, 1) = 0 as
boundary conditions, which implies that the domain is fixed and that deformations
can only form locally. We analyse stability of constant states in the above one-
dimensional problem. To this extent, we analyse perturbations around the equilibria
v = 0 and ε = ε0 ∈ R for the case that f = 0 and G = 0. Linearisation of the
above equations around these equilibria, gives

ρ
∂ṽ

∂t
− μ

∂2ṽ

∂x2
− E

∂ε̃

∂x
= 0,

∂ε̃

∂t
+ (ε0 − 1)

∂ṽ

∂x
= 0, (6)



Some Mathematical Properties of Morphoelasticity 1123

where ṽ and ε̃ are perturbations around v = 0 and ε = ε0. We write the perturbations
in terms of a complex Fourier series, that is, we set

ṽ(t, x) =
∞∑

j=−∞
cvj (t)e

2iπjx, ε̃(t, x) = ε0 +
∞∑

j=−∞
cεj (t)e

2iπjx, (7)

where we are to find coefficients cvj and cεj , and where i represents the imaginary
unit number. The use of Fourier Series for stability assessment was also described
in, among others, [3]. Substitution into Eqs. (6), gives

ρ

∞∑

j=−∞
ċvj (t)e

2iπjx + μ

∞∑

j=∞
(2πj)2cvj (t)e

2iπjx − iE

∞∑

j=−∞
(2πj)cεj (t)e

2iπjx = 0,

∞∑

j=−∞
ċεj (t)e

2iπjx + i(ε0 − 1)
∞∑

j=∞
(2πj)cvj (t)e

2iπjx = 0.

(8)

Orthonormality over � = (0, 1), implies after multiplication by e−2iπkx and
integration over � that

ċvk (t)+
(2πk)2μ

ρ
cvk (t)− i

2πkE

ρ
cεk(t) = 0,

ċεk(t)+ i 2πk(ε0 − 1)cvk(t) = 0.

(9)

The above equations are in the form y ′+Ay=0, then A=
(

(2πk)2μ
ρ

−i 2πkE
ρ

i(ε0 − 1)2πk 0

)

.

This matrix has the following eigenvalues

λ± = (2πk)2μ

2ρ
± 1

2

√

(
(2πk)2μ

ρ
)2 + 4

(2πk)2E

ρ
(ε0 − 1).

This implies that linear stability is obtained for ε0 ≤ 1, else a saddle point problem

is obtained if λ± ∈ R. The eigenvalues are real-valued as long as μ ≥
√
ρE(1−ε0)

π
(k = 1). The constant case k = 0 implies λ± = 0, which reflects the trivial case
in which there is no dynamics. This also implies that ε0 = 0 is a stable equilibrium
state. Next to this, integration of Eqs. (6) over �, gives

ρ
d

dt

∫ 1

0
ṽdx =

[

μ
∂ṽ

∂x
+ Eε̃

]1

0
,

d

dt

∫ 1

0
ε̃dx + (ε0 − 1)

[
ṽ
]1

0 = 0 >⇒ d

dt

∫ 1

0
ε̃dx = 0 >⇒

∫ 1

0
ε̃dx = ε0.

(10)
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Note that the boundary conditions v(0, t) = v(1, t) = 0 have been used in the
second relation of the above equations. The solution ε̃ to Eq. (6) converges towards
ε0 under conservation of ε̃ such that ε0 =

∫ 1
0 ε̃(0, x)dx. We summarise these results

in Theorem 2, where we remark that one easily generalises the observations to a
generic fixed domain � ⊂ R:

Theorem 2 Let (v, ε) satisfy Eqs. (5), under the boundary conditions that v = 0
on the boundaries of open, connected domain � ⊂ R, then

1. The equilibria (v, ε) = (0, ε0), ε0 ∈ R, are linearly stable if and only if ε0 < 1;
2. Given ε0 < 1, then the eigenvalues are real-valued if and only if μ ≥√

ρE(1−ε0)
π

|�| (k = 1), where |�| denotes the size (measure) of �;
3. Convergence takes place through ε0|�| =

∫
� ε̃(0, x)dx;

If ε0 < 1 and if μ <
√
ρE(1−ε0)

π
|�| then convergence from perturbations around

ε0 will occur in a nonmonotonic way over time due to the fact that the eigenvalues
of the linearised dynamical system are not real-valued. Furthermore, if G = αε for
α > 0, then the only stable equilibrium is (v, ε) = (0, 0).

4 Computer Simulations

First the numerical method and typical results are briefly explained. This is followed
by results from a stochastic stiffness.

4.1 The Numerical Method and Typical Results

The solution to the model equations (1) and (2) is approximated by the finite-
element method using linear triangles. Time integration is done by backward Euler
in which a monolithic approach is used with Picard inner iterations. In cases that the
triangles become ill-shaped, remeshing is applied. In three dimensions, the same
is done for linear tetrahedra and bricks. A more detailed treatment is beyond the
scope of the current paper, and can be found in [4]. We consider the example of
a contracting wound. The results have been shown in Fig. 1, in which the left
plot displays the area of a wound that first contracts due to cellular (fibroblast)
forces, and subsequently retracts due to the release of cellular forces. In the case
of viscoelasticity, it can be seen that the retraction proceeds until the boundaries
coincide with the initial boundaries. It can also be seen that morphoelasticity
predicts a permanent deformation in the sense that the area of the inflicted region
does not converge to the initial configuration. The plot on the right shows how the
maximum displacement and the dynamic equilibrium (due to deformation gradient
tensor Z) evolves.
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Fig. 1 Left: the relative wound area over time using the viscoelastic approach and morphoelastic
approach; Right: the morphoelastic approach with the wound area, equilibrium and maximum
displacement as a function of time

4.2 Quantification of Uncertainty

Since tissues contain unpredictable spatial microscopic variations, we assume that
E, ρ, forcing f and α are random field variables over X consisting of lognormally
distributed perturbations around their means. The fields of the aforementioned
parameters are obtained through the following truncated Karhunen-Loève expansion
over the spatial variable X

û(X) =
n∑

j=1

Ẑj

√
2

n
sin((2j − 1)

π

2L
X), where Ẑj ∼ N(0, 1).

Here Ẑj defines a set of iid stochastic variables that follow the standard normal
distribution. The stochastic field variable û(X) is used to evaluate the field variables
E, ρ, f and α. We explain the regeneration procedure for Ê(X):

log(Ê(X)) = μE + σEû(X) >⇒ Ê(X) = exp(μ+ σ û(X)),

where μE and σ 2
E are the mean (expected value) and variance of Ê. The mean

and variance are related to the arithmetic sample mean M and arithmetic sample
standard deviation S by

μE = ln(
M2

√
1+ S2

M2

), and σE =
√

ln(1+ S2

M2 ). (11)

Figure 2 shows histograms and an estimated cumulative probability distribution for
the minimal reduction of area and the final reduction of area after having computed
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Fig. 2 Results from 1000 samples with ME = 31 N/(g cm)1/2, SE = 11, Mμ = 102 (N day)/cm,
Sμ = 1, Mρ = 1.02 g/cm, Sρ = 0.2, Mf = 4 N/cm, Sf = 2, Mα = 0.05 (−), Sα = 0.02, (a)
histogram of the maximum wound contraction, that is the minimal wound area; (b) histogram of
the final contraction, that is the final wound area; (c) cumulated probability density for the minimal
wound area; (d) cumulated probability density for the final wound area

1000 samples. From Fig. 2 the likelihood that the contraction is worse than a certain
threshold can be estimated. For instance, from Fig. 2d, the likelihood that the final
wound area is smaller than 80% of its original value is about 0.28 (28%).

5 Conclusions

We have shown that morphoelasticity in combination with linear Hooke’s Law
implies that if the Eulerian effective strain tensor is initially symmetric, then it
remains symmetric at all later times. Further, a stability analysis for the one-
dimensional case revealed that all Eulerian effective strains smaller than one
in combination with zero displacement velocity, represent linearly stable states.
Further a condition for monotonicity of convergence over time has been derived.
Next to these issues, a Karhunen-Loève expansion has been used for several
variables involved to estimate the likelihood that contraction exceed a certain
threshold. The model is subject to further uncertainty quantification.
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Approximating Eigenvectors
with Fixed-Point Arithmetic: A Step
Towards Secure Spectral Clustering

Lisa Steverink, Thijs Veugen, and Martin B. van Gijzen

Abstract We investigate the adaptation of the spectral clustering algorithm to the
privacy preserving domain. Spectral clustering is a data mining technique that
divides points according to a measure of connectivity in a data graph. When the
matrix data are privacy sensitive, cryptographic techniques can be applied to protect
the data. A pivotal part of spectral clustering is the partial eigendecomposition of the
graph Laplacian. The Lanczos algorithm is used to approximate the eigenvectors of
the Laplacian. Many cryptographic techniques are designed to work with positive
integers, whereas the numerical algorithms are generally applied in the real domain.
To overcome this problem, the Lanczos algorithm is adapted to be performed with
fixed-point arithmetic. Square roots are eliminated and floating-point computations
are transformed to fixed-point computations. The effects of these adaptations on
the accuracy and stability of the algorithm are investigated using standard datasets.
The performance of the original and the adapted algorithm is similar when few
eigenvectors are needed. For a large number of eigenvectors loss of orthogonality
affects the results.

1 Introduction

Computing eigenvectors of matrices has many important applications. One example
is principal component analysis, a technique that is used to study large data sets such
as those encountered in bioinformatics, data mining, chemical research, psychology,
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and in marketing. Another example is the characterisation of DNA sequences
[17] in bioinformatics. Large graphs have become an important data source for
applications from social networks, mobile and web applications to biomedical
research, providing great value in both business and scientific research. Particularly,
spectral analysis of graphs gives important results pertinent to community detection,
PageRank, and spectral clustering.

Especially when the matrix data are sensitive, security measures should be taken
to overcome undesired leakage of data during the computation of eigenvectors. The
data could be commercially sensitive, but also privacy sensitive, as is often the
case with medical data. As data may be collected from different sources, and data
processing is increasingly performed in the cloud or by external parties which are
not allowed to learn the contents, techniques like data perturbation, homomorphic
encryption [10], or secret sharing [1], are frequently used. Unfortunately, such
cryptographic techniques are designed to work with integers, whereas the numerical
algorithms that are used to compute eigenvectors are designed to work with
real numbers. This means that these floating-point based algorithms have to be
transformed to fixed-point based algorithms. This has a great influence on the
accuracy and stability of the existing, often iterative, approaches.

In this paper, we investigate the effect of approximating eigenvectors with fixed-
point arithmetic, and focus on the accuracy and stability of the adjusted numerical
algorithms. Although we do not design the complete cryptographic protocols for
computing eigenvectors in the encrypted domain, we pay attention to avoid complex
operations on encrypted (or secret-shared) numbers, such as square roots and integer
divisions [4, 15]. We perform spectral clustering, and compare the results of our
adapted numerical algorithms in ZN to the original algorithms in R on three
datasets.

The paper is organized as follows. First, related work and preliminaries will be
discussed. Then we present the adapted Lanczos algorithm that works on positive
integers. Subsequently, the accuracy analysis of secure spectral clustering that
makes use of both the original and adapted algorithm, is given. We end with the
conclusions.

This paper is based on the research described in [14], which contains many
additional algorithmic details and experimental results.

1.1 Related Work

Power methods are known in cryptography for computing square roots or dividing
integers [5]. Although they can also be used to find eigenvectors, there is not much
previous work done on the numerical analysis of finding eigenvectors in the integer
domain. Nikolaenko et al. presented a privacy preserving way of factorising a
matrix for recommendation purposes [8], by combining homomorphic encryption
and garbled circuits. Erkin et al. designed a secure method for performing k-
means clustering [2] by means of additively homomorphic encryption, but this
does not require computing eigenvectors. Sharma and Chen [12, 13] recently
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showed how spectral analysis could be securely done in the cloud, using additively
homomorphic encryption and differential privacy. The focus of all related work is
on the computational complexity, while we focus on accuracy, with complexity in
mind.

1.2 Preliminaries

Spectral Clustering

The spectral clustering algorithm is able to find k, not necessarily convex clusters
of similar points by mapping the data points to a k-dimensional space in which
the similar points form convex sets. These convex sets can be clustered with a k-
means algorithm. In spectral clustering, the dataset is represented as a graph G

with weighted edges [16]. We aim to maximize the weights within the clusters,
while the weights between clusters are low. A Laplacian matrix L is defined, which
contains information about the connected components of G. The first k eigenvectors
of Laplacian L approach indicator vectors of the connected components of G, and
form convex clusters. Therefore, we are interested in finding the k eigenvectors
of L that correspond to the k smallest eigenvalues. The complexity of computing
the entire eigendecomposition of L ∈ R

n×n is O(n3). Moreover, if the data set
needs to be clustered into k clusters, only k eigenvectors are required. Therefore,
we use numerical algorithms to approximate the k smallest eigenvalues and their
corresponding eigenvectors.

The Lanczos Algorithm in R

The Lanczos algorithm is used to reduce the Laplacian matrix L to a tridiagonal
matrix T (the Ritz matrix) of which the eigenvalues (the Ritz values) approximate
the eigenvalues of L. The Lanczos algorithm is shown in Algorithm 1 [3]. The inner
product is indicated by a · between two vectors.

Algorithm 1: The Lanczos algorithm

1 Set v0 = 0 and β1 = 1.
2 Generate a random vector v1 ∈ (0, 1)n ⊂ R

n.
3 for j = 1, 2, . . . , m− 1 do
4 αj ← (Lvj · vj )/(vj · vj )
5 rj ← Lvj − αj vj − βj vj−1
6 βj+1 ← ‖rj‖2
7 vj+1 ← rj /βj+1

8 end
9 αm ← (Lvm · vm)/(vm · vm)
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After m iterations, Algorithm 1 yields Ritz matrix T :

T =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

α1 β2 0
β2 α2 β3

. . .
. . .

. . .

βm−1 αm−1 βm

0 βm αm

⎞

⎟
⎟
⎟
⎟
⎟
⎠

. (1)

In exact arithmetic, the vectors v1, . . . vm form an orthonormal basis for the so-
called Krylov subspace Km(L, v1) of dimension m, which is defined as

Km(L, v1) = span{v1, Lv1, · · · , Lm−1v1}.

The eigenvalues of T are increasingly better estimates of the eigenvalues of L as its
size grows. The extremal Ritz values are the first to converge in the spectrum of T .

Computing in the Integer Domain

Cryptographic techniques are designed to work on positive integers. Therefore, we
translate the Lanczos algorithm to ZN , which is the set {0, 1, . . . , N − 1} with
modular arithmetic. Because of security requirements, N is an odd 2048-bit number.
The domain ZN forms the message space of messages that can be encrypted.
Modular arithmetic is used on ZN . Integer division is defined as follows:

Definition 1 Let a, b ∈ Z. The integer division a ÷ b is defined as the integer q

such that a = qb + r with remainder r ∈ Z, where 0 ≤ r < b.

Fixed-point arithmetic is used to represent fractions as signed integers [4]. By
multiplying fractions with 10d , a signed integer is obtained, where d is the scaling
parameter that determines the number of decimals that will be stored. Scaling
fractions with 10d has implications for the operations in the integer domain. To
preserve the scaling parameter 10d when dividing two numbers, the numerator is
first multiplied by 10d . We assume that each integer division on numbers in fixed-
point arithmetic has this implicit additional multiplication. Moreover, we define the
fixed-point arithmetic multiplication operations as follows:

Definition 2 Let a and b be fixed-point integers. The fixed-point integer multipli-
cation ∗ is defined as

a ∗ b = ab10−d.

Indeed, multiplying a10−d and b10−d gives ab10−2d = (a ∗ b)10−d , so a ∗ b is
the scaled version of the product. The operator ∗ is also used to denote fixed-point
matrix multiplications. Finally, 〈vj , vj 〉 denotes the inner product or a matrix-vector
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product that makes use of the fixed-point integer multiplication. The following
map ψ can encode signed integers (with absolute value less than N/2) as positive
integers (less than N):

ψ : {−(N − 1)/2, . . . , 0, . . . , (N − 1)/2} −→ ZN, (2)

x �−→ x mod N. (3)

Informally stated, the upper half of the domain ZN is used to represent the negative
integers of maximum bit length 2047. Using these definitions, we adapt the Lanczos
algorithm to the integer domain. All computations in this algorithm are performed
modulo N . In the algorithm, “mod N” will be omitted.

2 Lanczos Algorithm on Integers

The standard Lanczos algorithm in Algorithm 1 incorporates a normalization of the
Lanczos vectors (see line 7). However, the square root operation (within line 6) is
expensive in a finite field [7]. Therefore, we propose to perform an unnormalized
version of the Lanczos algorithm [9] in the integer domain. Due to this lack of
normalization, the entries of vj tend to grow as the algorithm progresses. Thus,
there is a danger of overflow of message space ZN . The unnormalized Lanczos
algorithm in ZN is given in Algorithm 2. The entries of starting vector v1 are chosen
randomly from (0, 1) and scaled by 10d to integers. The Laplacian matrix L contains
integer values and is unscaled. Note that this alternative Lanczos algorithm yields
an unsymmetric matrix T , because the βj from Algorithm 1 are now constants:

T =

⎛

⎜
⎜
⎜
⎝

α1 γ2 0
10d α2 γ3

10d α3 γ4

0
. . .

. . .
. . .

⎞

⎟
⎟
⎟
⎠

. (4)

The above algorithm computes basis vectors v1 · · · vm for the Krylov subspace,
and a matrix Tm whose eigenvalues (called Ritzvalues) converge to the eigenvalues
of L. Additionally, [14] explains how to use this information to compute the Ritz
values and corresponding Ritz vectors (approximating the eigenvectors) in the
integer domain.
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Algorithm 2: Unnormalized fixed-point Lanczos algorithm in ZN

1 v0 ← 0 and β1 ← 0
2 γ1 ← 0
3 Generate a random vector v1 ∈ {1, . . . , 10d }n
4 for j = 1, 2, . . . , m− 1 do
5 Lj ← 〈L, vj 〉
6 αj ← 〈vj , Lj 〉 ÷ 〈vj , vj 〉
7 βj+1 ← 1
8 vj+1 ← Lj − αj ∗ vj − γj ∗ vj−1
9 γj+1 ← βj+1〈vj+1, vj+1〉 ÷ 〈vj , vj 〉

10 end
11 Lm ← 〈L, vm〉
12 αm ← 〈vm,Lm〉 ÷ 〈vm, vm〉

3 Accuracy Analysis

In order to investigate the influence of adapting the Lanczos algorithm to the
integer domain, the performance of the algorithm in R and ZN is compared. The
performance is measured by computing the accuracy of the Ritz values and Ritz
vectors, the clustering accuracy and a measure of compactness. The value of N

is chosen to comprise 2048 bits. Therefore, we say that overflow occurs when a
number becomes larger than 2047 bits, since we need one bit to represent negative
numbers. The algorithms were implemented in Python 3.6 and tested on three real
datasets. Three datasets from the UCI Machine Learning Repository were used to
assess the spectral clustering algorithm in ZN : the Wisconsin Breast Cancer Dataset,
the Yeast5 Dataset and the Yeast10 Dataset [6]. These datasets were chosen for their
variety in size and number of clusters. Moreover, a suitable Laplacian could be
constructed in the integer domain for these datasets. The Wisconsin Breast Cancer
Dataset has size 699 × 9 and should be clustered into two clusters. The Yeast5
Dataset has size 384× 17 and contains five clusters. Finally, the Yeast10 Dataset is
a 1484× 8 dataset in which ten clusters can be distinguished. Below, we only give
the numerical results for the Wisconsin Breast Cancer Dataset. We refer to [14] for
a complete description of the numerical results for the other two data sets.

The accuracy of the Ritz value θi to eigenvalue λi of L is assessed with the
absolute error:

|θi − λi |. (5)

The accuracy of the corresponding Ritz vector ũi to an eigenvector ui of L is
measured with the absolute cosine of the angle α between the vectors:

| cos(α)| = |ũi · ui |
‖ũi‖ · ‖ui‖ . (6)
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The silhouette value is a measure of the compactness and separation of clusters
[11]. The distance of the data point to other data points in the same cluster is
compared to the distance to data points in other clusters. Formally, the silhouette
value of data point i is defined as

s(i) = b(i)− a(i)

max{a(i), b(i)}, (7)

where a(i) is the average distance from point i to other points in the same cluster,
and b(i) is the minimum average distance from point i to points in a different cluster.
The squared Euclidean distance is used in the computation of the silhouette value.
From the above definition it follows that

−1 ≤ s(i) ≤ 1 (8)

for each data point i. A positive silhouette value indicates that the data point is
clustered well. From a negative silhouette value we conclude that a data point has
been misclassified.

3.1 Wisconsin Breast Cancer Dataset

A scaling parameter d = 6 is required to obtain sufficient accuracy in ZN . Table 1
shows the relative accuracy of the first two Ritz values. Both in R and in ZN the
eigenvalues are approximated well. The accuracy is higher in R. Furthermore, the
cosine of the angle between the Ritz vectors and the exact eigenvectors is shown.
The values show that the eigenvectors are approximated with high accuracy. Table 2
shows the cluster quality. Both in R and in ZN , the first two eigenvectors are
approximated well enough to form the correct convex clusters. The maximum entry
bit length is 51 in matrix T and 76 in matrix V .

Table 1 The absolute error of the two smallest Ritz values (λ1 = 2.92700358 and λ2 =
9.03710093e4) and the accuracy of the corresponding Ritz vectors for the Wisconsin Breast
Cancer dataset. Parameters: d = 6, m = 6

i |θi − λi | R |θi − λi | ZN | cos α| R | cos α| ZN

1 1.3157e−11 1.1549e−4 1.00000000 1.00000000

2 1.5449e−6 2.9566e−5 1.00000000 1.00000000

Table 2 Cluster quality of
the Wisconsin Breast Cancer
dataset. Parameters: k = 2,
d = 6, m = 6

Lanczos R Lanczos ZN

Cluster accuracy 95.85% 95.85%

Silhouette value 0.9118 0.9118
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4 Conclusions

We conclude that a few of the smallest eigenvalues of the Laplacian could be
approximated well in the integer domain. The accuracy of the algorithm in R and
ZN is similar, and the eigenvectors that correspond to the computed eigenvalues
are approximated with high accuracy. For a small number of clusters, a good
performance of the spectral clustering algorithm is achieved. As a higher number of
clusters requires more iterations of the Lanczos algorithm, the loss of orthogonality
may affect the accuracy of the spectral clustering algorithm in both domains, see
[14].
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Modelling Turbulent Combustion
Coupled with Conjugate Heat Transfer
in OpenFOAM

Mohamed el Abbassi, Domenico Lahaye, and Kees Vuik

Abstract This paper verifies a mathematical model that is developed for the
open source CFD-toolbox OpenFOAM, which couples turbulent combustion with
conjugate heat transfer. This feature already exists in well-known commercial
codes. It permits the prediction of the flame’s characteristics, its emissions, and
the consequent heat transfer between fluids and solids via radiation, convection, and
conduction. The verification is based on a simplified 2D axisymmetric cylindrical
reactor. In the first step, the combustion part of the solver is compared against
experimental data for an open turbulent flame. This shows good agreement when
using the full GRI 3.0 reaction mechanism. Afterwards, the flame is confined
by a cylindrical wall and simultaneously conjugate heat transfer is activated
and analysed. It is shown that the combustion and conjugate heat transfer are
successfully coupled.

1 Introduction

Industrial furnaces such as kilns are pyroprocessing devices in which a heat source
is generated via fuel combustion. In order to make a numerical prediction of the
temperature distribution along a solid (e.g. the material bed, furnace walls, or
heat exchanger), one must model the coupled effects of the occurring physical
phenomena. The heat released by the turbulent flame may be transferred to the
solid through all heat transfer modes: thermal radiation, conduction, and convection.
Thermal radiation is transmitted to the solid directly from the flame, or indirectly
from the hot exhaust and other solids. Conduction occurs within solids and through
contact with other solid particles, while convective heat may be exchanged via any
contact between gas and solids. In return, the fluctuating heat transfer affects the
turbulent flow and flame characteristics. Controlling the flame enables achieving
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the desired heat distribution with minimum emissions. Coupling combustion and
heat transfer is essential to find optimal solutions to these conflicting interests,
particularly in view of increasing environmental concerns (which view reducing the
furnace emissions and fuel consumption as urgent), along with the growing demand
for an increase in furnace production rate.

Incorporating the heat transfer between fluids and solids into one mathematical
problem may be referred as conjugate heat transfer (CHT). CHT is implemented
in many popular CFD codes. Before this project, there were no publications
on coupling turbulent combustion and CHT with the open source CFD-toolbox
OpenFOAM. OpenFOAM sets a structured object-oriented framework and includes
numerous applications to solve different kinds of CFD-related problems.

An implementation was recently proposed and developed for OpenFOAM
by Tonkomo LLC [1, 2], that combines the turbulent-non-premixed-combustion
solver reactingFoam with the CHT-solver chtMultiRegionFoam. This provides new
opportunities for modelling furnaces or any other combustion and heat transfer
related problem. In our work, the capabilities of the new solver are investigated by
testing it on the 2D axisymmetric case of the open turbulent flame from the Sandia
laboratory, by means of RANS simulation.

Our presented work is structured as follows. First the governing equations of
the problem are highlighted. We describe the physical models of OpenFOAM that
are needed to solve them and how the regions are coupled for energy transport.
Afterwards, the cases and their boundary conditions are presented, followed by a
discussion of the results.

2 Governing Equations and Numerical Models

In the fluid domain, the Favre-averaged transport equations of mass, momentum,
sensible enthalpy and chemical species [3] are respectively described by

∂(ρ̄)

∂t
+∇ · (ρ̄ũ) = 0, (1)

∂(ρ̄ũ)

∂t
+∇ · (ρ̄ũũ) = −∇p̄+∇ · μ∇ũ −∇ · ρ̄ũ"u", (2)

∂(ρ̄Ỹα)

∂t
+∇ · (ρ̄ũỸα) = ∇ · ρ̄�∇Ỹα −∇ · ρ̄Ỹα"u"+ R̃α, (3)

∂(ρ̄h̃)

∂t
+∇ · (ρ̄ũh̃) = D

Dt
p̄+∇ · λ

cp
∇h̃ −∇ · ρ̄h̃"u" + Q̃c + Q̃r , (4)

where ρ is the density, u the velocity, p the pressure, μ the laminar dynamic
viscosity, Yα the species mass fraction of species α, � the species diffusion
coefficient, R the reaction rate of species α, h the specific sensible enthalpy, λ the
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thermal conductivity and cp the specific heat capacity at constant pressure. The heat
source terms Qc and Qr are due to combustion and thermal radiation, respectively.
The over-bar and tilde notations stand for the average values, while the double
quotation marks denote the fluctuating components due to turbulence. Note that
several source terms (such as body forces and viscous heating) are neglected.

For solid regions, only the energy transfer needs to be solved and therefore the
equation of enthalpy for solids, which is the following heat equation, has to be added
to the list of transport Eqs. (1)–(4):

∂(ρ̄h)

∂t
= ∇ · (λ∇T ). (5)

To couple the thermal energy transport between the fluid and solid domains, two
important conditions are required at the interface of the domains to ensure continuity
of both the temperature and heat flux:

Tf,int = Ts,int (6)

and

λf
∂Tf

∂y

∣
∣
∣
∣
int,y=+0

= λs
∂Ts

∂y

∣
∣
∣
∣
int,y=−0

, (7)

where the subscripts f , s and int respectively stand for fluid, solid and interface. y
is the local coordinate normal to the solid. Unclosed terms appear in the transport
equations of the fluid domain due to Favre averaging. These will be treated in this
section, followed by the elaboration of the heat transfer at the interface.

2.1 Turbulence

The unknown Reynolds stresses (last term of Eq. (2)) are solved by employing the
Boussinesq hypothesis that is based on the assumption that in turbulent flows, the
relation between the Reynolds stress and viscosity is similar to that of the stress
tensor in laminar flows, but with increased (turbulent) viscosity:

−∇ · ρ̄ũi"uj " = μt

(
∂ui

∂xj
+ ∂uj

∂xi

)

− 2

3

(

ρk + μt
∂uk

∂xk

)

δij , (8)

where μt is the turbulent viscosity and k the turbulent kinetic energy. The Reynolds
stresses are closed with the Realizable k-ε turbulence model, which is widely known
for its superior capability over the Standard and RNG k-ε models in predicting the
mean of the more complex flow features. The model solves two additional transport
equations: one for the turbulent kinetic energy k, and the other for its dissipation
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rate ε

∂(ρ̄k)

∂t
+∇ · (ρ̄ũk) = ∇ ·

[(

μ+ μt

θk

)

∇k

]

+ μt

(
∂ui

∂xj

)2

− ρ̄ε, (9)

∂(ρ̄ε)

∂t
+∇ · (ρ̄ũε) = ∇ ·

[(

μ+ μt

θε

)

∇ε

]

+ ρ̄c1Sε − ρ̄c2
ε2

k +√
νε

, (10)

where θk ,θε and c2 are constants. S is the modulus of the mean strain rate tensor,
defined as S = √

2Sij Sij and c1 is a function of k, ε and S. Again, note that the
effect of buoyancy and other source terms are neglected. With k and ε, the turbulent
viscosity can be determined by the following relation:

μt = ρ̄cμ
k2

ε
, (11)

where in the Realizable k-ε model, cμ is a function of k, ε, the mean strain rate and
the mean rotation rate. This is one of the major differences compared to the other
k-ε models where cμ is a constant.

The turbulent scalar fluxes ρ̄φ̃"u" for the scalar chemical species and scalar
sensible enthalpy (both denoted as φ) are closed with the Gradient diffusion
assumption

− ρ̄φ̃"u" = ∇ · (�t φ̃), (12)

where �t is the turbulent diffusivity determined by (assuming Lewis number = 1)
the turbulent viscosity μt and turbulent Prandtl number Prt :

�t = μt

P rt
. (13)

2.2 Combustion

The mean chemical source term R̃α is closed with the Partially Stirred Reactor
(PaSR) model. The model developed at Chalmers university allows for the detailed
Arrhenius chemical kinetics to be incorporated in turbulent reacting flows. It
assumes that each cell is divided into a non-reacting part and a reaction zone that is
treated as a perfectly stirred reactor. The fraction is proportional to the ratio of the
chemical reaction time tc to the total conversion time tc + tmix :

γ = tc

tc + tmix

. (14)
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The turbulence mixing time tmix characterizes the exchange process between the
reacting and non-reacting mixture, and is determined via the k-ε model as

tmix = cmix

√
μeff

ρ̄ε
, (15)

where cmix is a constant and μeff is the sum of the laminar and turbulent viscosity.
Then the mean source term is calculated as R̃α = γRα , where Rα is the laminar
reaction rate of species α and is computed as the sum of the Arrhenius reaction
rates over the NR reactions that the species participate in:

Rα =
NR∑

r=1

R̂α,r , (16)

where R̂α,r is the Arrhenius rate of creation/destruction of species α in reaction r.
For a reversible reaction, the Arrhenius rate is given by

R̂α,r = ψf,r

NR∏

r=1

[Cβ,r]η′�,r − ψb,r

NR∏

r=1

[Cβ,r ]η′′m,r , (17)

where Cβ,r is the concentration of species β in reaction r, η′�,r is the rate exponent
for reactant � in reaction r, η′′m,r is the stoichiometric coefficient for product m

in reaction r, and ψf,r and ψb,r are respectively the forward and backward rate
constants given by the Arrhenius expressions.

The chemical time scale can be determined with the following relation:

1

tc
= max

(−∂Rα

∂Yα

1

ρ̄

)

. (18)

2.3 Energy

The thermal conductivity λ in the averaged transport of the specific sensible
enthalpy (Eq. (4)) is replaced by the effective conductivity λeff , which incorporates
the unknown turbulent scalar flux. From Eqs. (12) and (13), λeff is defined by the
Standard and Realizable k-ε models as

λeff = μ

Pr
+ μt

P rt
, (19)



1142 M. el Abbassi et al.

where the turbulent Prandtl number, from experimental data, has an average value
of 0.85. The heat release due to combustion Q̃c follows from the calculations of R̃α

Q̃c = −
N∑

α=1

�ho
f,αR̃α, (20)

where �ho
f,α is the formation enthalpy of species α, and N is the total number of

species.

2.4 Thermal Radiation

To obtain the mean radiation source term Q̃r for the enthalpy transport equation, we
employ the P1 approximation in accordance with the previous work, which solves
the following partial differential equation for a non-scattering medium

−∇ ·
(

1

3κ
∇G

)

= κ(4σT 4 −G), (21)

where the radiation source term appears on the LHS of the equation. G is the total
incident radiation, κ is the absorption coefficient of the medium and σ is the Stefan–
Boltzmann constant. The P1 approximation is subject to the following boundary
condition of the third kind

− 1

3κ
n · ∇G = − κw

2(2− κw)
(4σT 4

w −Gw). (22)

The absorption coefficients of the gas mixture (κ) is determined using a built-in
gray gas model, whereas the wall has a constant value κw of 0.6. Adding radiation
to the problem alters the interface condition (Eq. (7)) to

λeff
∂Tf

∂y

∣
∣
∣
∣
int,y=+0

+ qr,in − qr,out = λs
∂Ts

∂y

∣
∣
∣
∣
int,y=−0

, (23)

where qr,in is the incident radiative heat flux absorbed by the solid and qr,out is the
reflected and emitted radiative heat flux leaving the solid.
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Table 1 Boundary and initial conditions for Sandia Flame D. zG stands for the Neumann
boundary condition zeroGradient. The axial-velocities are expressed in m/s, and the temperatures
in K. Species are denoted in mass fractions

Variable Fuel jet Pilot jet Co-flow Gas-wall interface Outer wall surface Side wall surfaces

Uaxial (m/s) 49.6 11.4 0.9 0 – –

T (K) 294 1880 291 Coupled 291 zG

YCH4 0.1561 0 0 zG – –

YO2 0.1966 0.054 0.23 zG – –

YN2 0.6473 0.742 0.77 zG – –

YH2O 0 0.0942 0 zG – –

YCO2 0 0.1098 0 zG – –

3 Numerical Set-Up

3.1 Test Cases

The solver is tested on two methane-air combustion cases. In the first case, the
implementation of combustion in the new solver is validated with experimental
data from a turbulent piloted diffusion flame from the Sandia National Laboratories
(Sandia Flame D). The burner dimensions can be found here [4].

For the second case, CHT is incorporated and the Sandia Flame D is confined
by a cylindrical wall made of refractory material, with inner and outer diameters of
respectively 300 and 360 mm. The axial length of the calculation domain (excluding
fuel and pilot channels) is 600 mm. The boundary conditions of the two cases can
be found in Table 1. The wall has the following thermal properties: a density of
2800 kg m−3, a thermal conductivity (λs) of 2.1 W m−1 K−1, a specific heat capacity
(cp) of 860 J kg−1 K−1 and a radiative emissivity (κs) of 0.6 m−1.

The computational domains of cases 1 to 2 consist of respectively 38,000 and
43,000 quadrilateral cells.

4 Results and Discussion

4.1 Case 1

In Fig. 1 the temperature along the axis of symmetry is plotted. It shows that
the multiRegionReactingFoam’s prediction is identical to that of reactingFoam, as
would be expected when CHT is switched of. Both solvers over-predict the ignition
delay, temperature rise and peak temperature with the 2-step reaction mechanism.
When using the full GRI reaction mechanism, these features are better captured and
show good agreement.



1144 M. el Abbassi et al.

Fig. 1 Temperature progression along the centre line (Case 1)

4.2 Case 2

Now that a wall is introduced around the Sandia Flame D, it absorbs some of the
energy, as can be seen in Fig. 2. Figure 3 shows a decomposition of the heat transfer
to the wall in which the wall is being heated only due to thermal radiation. The wall
is not heated via convection due to the fact that the hot gas heated by the flame
leaves the domain before coming into contact with the wall. In fact, the convective
heat transfer part plays a cooling role by transferring some of the wall’s heat to the
cold adjacent air, hence the negative contribution.

Fig. 2 Contour plot of the temperature (Case 2)
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Fig. 3 Heat flux along the inner wall surface (Case 2). q_t, q_r and q_c are respectively the total,
radiative and convective heat fluxes

5 Conclusions

This work has shown that OpenFOAM’s standard solvers reactingFoam and cht-
MultiRegionFoam are successfully implemented in the new solver multiRegionRe-
actingFoam. This enables the modelling of combustion with conjugate heat transfer.
The results of the new solver, with conjugate heat transfer turned off, are identical to
reactingFoam and good agreement is shown with experiments when using the full
GRI mechanism. Also the flame-wall interaction is shown when enabling conjugate
heat transfer. This still requires to be validated.

Acknowledgments The authors would like to thank Eric Daymo from Tonkomo LLC for
developing the solver multiRegionReactingFoam and for his collaboration on debugging the solver
in order to make it more robust.
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Higher Order Regularity Shifts
for the p-Poisson Problem

Anna Kh. Balci, Lars Diening, and Markus Weimar

Abstract We discuss new local regularity estimates related to the p-Poisson
equation −div(A(∇u)) = −divF for p > 2. In the planar case d = 2 we are
able to transfer local interior Besov and Triebel-Lizorkin regularity up to first order
derivatives from the forcing term F to the flux A(∇u) = |∇u|p−2 ∇u. In case of
higher dimensions or systems we have a smallness restriction on the corresponding
smoothness parameter. Apart from that, our results hold for all reasonable parameter
constellations related to weak solutions u ∈ W 1,p(�) including quasi-Banach cases
with applications to adaptive finite element analysis.

1 Introduction

In this paper, for 1 < p < ∞ and F ∈ Lp′(�) with 1/p + 1/p′ = 1, we consider
weak solutions u ∈ W 1,p(�) to the p-Poisson equation

−div(A(∇u)) = −divF in �, (1)

where � ⊂ R
d is a domain in dimension d ≥ 2 and

A(Q) := |Q|p−2 Q.

In fact, in what follows we focus on scalar solutions in the super-linear case p ≥ 2
with special attention to planar domains. Equations of this type play a role in many
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applications such as, e.g., in non-Newtonian fluid theory, non-Newtonian filtering,
turbulent flows of gas in porous media, rheology, or radiation of heat.

By now, it is fairly well-known that the performance of numerical solvers for
operator equations like (1) is intimately related to the maximal smoothness of
the true solution u in certain scales of (quasi-) Banach spaces of functions or
distributions which generalize the scale of Sobolev Hilbert spaces Hs ; see, e.g.,
[6, 8, 10, 13]. For the general theory of such Besov and Triebel-Lizorkin type
function spaces we refer to [20–22]. However, let us stress the fact that these
scales include several classical function spaces such as, e.g., Hölder-Zygmund,
Bessel-potential, or Sobolev-Slobodeckij spaces, as special cases [19]. Therefore, an
extensive regularity analysis of the p-Poisson equation in these scales is of interest
in its own right.

Although the non-linear case p �= 2 is much harder than the ordinary Poisson
problem, in the last decades several regularity results for solutions to (1) have been
derived [2, 4, 5, 7, 9, 11, 12, 14–18, 24]. Anyhow, these papers do not contain shift
theorems in general Besov or Triebel-Lizorkin spaces of higher order. The following
results partially fill this gap. The presentation is based on [3].

2 Main Results

Before we can state our results we have to introduce some notation: For balls B ⊂
�, we denote by Bs

$,q(B) and Fs
$,q(B), the Besov space, resp. Triebel-Lizorkin

space, of functions or distributions on B with differentiability s > 0, integrabil-
ity 0 < $ ≤ ∞, and fine index 0 < q ≤ ∞ (with $ < ∞ for the F-scale). We use
‖·‖Bs

$,q (B) to denote the corresponding (quasi-) norm and |·|Bs
$,q (B) for the (quasi-)

semi norm describing the part of the s-order derivatives. Likewise we do for the
F-scale. As usual, we let (x)+ := max{0, x} for x ∈ R. Moreover,

〈g〉M :=
∫

M

g(x) dx, g ∈ L1
loc(R

d ),

defines the mean value of g over M ⊂ R
d , where

∫
M

. . . dx := |M|−1 ∫
M

. . . dx
denotes the average integral with |M| being the volume of M . We write f � g if
there exists a constant such that f ≤ c g. Finally, we use f ∼ g if f � g and
g � f .

Our main result is the following local regularity transfer from F to A(∇u), stated
here for d = 2 (for an extension to higher dimensions see Sect. 3 below):

Theorem 1 (Regularity Shift) Given 2 ≤ p < ∞, a domain � ⊂ R
2 in d = 2,

and F ∈ Lp′(�) let u ∈ W 1,p(�) be a (scalar) weak solution to (1). Further, let
s > 0 and $, q ∈ (0,∞] be such that

d

(
1

$
− 1

p′

)

+
< s < 1. (2)



Higher Order Regularity Shifts for the p-Poisson Problem 1149

Then for any ball B with 2B ⊂ � there holds

|A(∇u)|Bs
$,q (B)d � |F |Bs

$,q (2B)d +
(∫

2B
|A(∇u)− 〈A(∇u)〉2B |p′ dx

)1/p′

. (3)

If additionally $ <∞ and

d

(
1

q
− 1

p′

)

+
< s < 1,

then the same estimate (3) holds true when Bs
$,q is replaced by Fs

$,q .

Note that condition (2) ensures the compact embedding Bs
$,q(B) ↪→↪→ Lp′(B)

which particularly allows to characterize these spaces of smoothness s < 1 in terms
of lowest order local oscillations

oscBwf (x, t) := inf
c∈R

(∫

Bt (x)∩B
|f − c|w dx

)1/w
,

∼
(∫

Bt (x)∩B
∣
∣f − 〈f 〉Bt (x)∩B

∣
∣w dx

)1/w
, 1 ≤ w ≤ p′, t > 0, x ∈ B,

where Bt (x) :=
{
y ∈ R

d |y − x| < t
}
. Indeed, under these conditions we have

Bs
$,q(B) =

{
g ∈ Lmax{$,p′}(B) ‖g‖ := ∥

∥g L$(B)
∥
∥+ |g|Bs

$,q (B) < ∞
}

in the sense of equivalent (quasi-) norms with

|g|Bs
$,q (B) :=

(∫ 1

0

[
t−s

∥
∥
∥oscBwg(·, t) L$(B)

∥
∥
∥
]q dt

t

)1/q

(appropriately modified if q = ∞); see, e.g., [21, Thm. 5.2.1]. Similar results
remain true in the F-scale, as well as for vector-valued spaces.

For our proof of Theorem 1 we combine these characterizations with the sub-
sequent fundamental oscillation decay estimate for A(∇u) which is of independent
interest. For details we refer to [3, Sect. 3 and 4].

Theorem 2 (Oscillation Decay) Let the assumptions of Theorem 1 be satisfied.
Then for all β ∈ (0, 1) there exists some θ0 ∈ (0, 1) and c = c(β, θ0) > 0 such that
for all balls B ⊂ � there holds

(∫

θ0B

∣
∣A(∇u)− 〈A(∇u)〉θ0B

∣
∣p

′
dx

) 1
p′

≤ θ
β

0

(∫

B

|A(∇u)− 〈A(∇u)〉B |p′ dx

) 1
p′ + c

(∫

B

|F − 〈F 〉B |p′ dx

) 1
p′
.



1150 A. Kh. Balci et al.

3 Further Results on Oscillations and Open Questions

In this section, we collect several oscillation decay estimates which are of interest
in their own.

First of all we can iterate the bound from Theorem 2 in order to obtain an
oscillation decay for arbitrary reduction factors θ ∈ (0, 1) by means of standard
estimates. The price to pay is an additional constant factor.

Corollary 1 Let u, p, F , and β be as in Theorem 2. Then for all θ ∈ (0, 1) and all
balls Bt (x) ⊂ � there holds

osc�p′A(∇u)(x, θt) � θβ osc�p′A(∇u)(x, t)+ θβ
∫ 1

θ

λ−β osc�p′F(x, λt)
dλ

λ
.

The proof of Theorem 2 above relies (at least partially) on a local comparison
of u to some p-harmonic function h (which satisfies certain boundary conditions).
That is, h ∈ W

1,p
loc (�) solves

−divA(∇h) = 0 (4)

in the distributional sense. Regularity studies for such functions date back at least
for 50 years. Our contribution to this topic is the following almost linear osc1-decay
for A(∇h); cf. [3, Thm. 2.2]. The basic idea of its proof can be traced back to
the seminal paper of Uhlenbeck [23] that splits the analysis into two regimes: In
the so-called non-degenerate case, ∇h (locally) is close to a constant such that the
problem behaves like a linear equation with constant coefficients. In contrast, in the
remaining degenerate regime, we have to deal with a fully non-linear problem.

Theorem 3 (Decay for p-Harmonic Functions I) Given 2 ≤ p < ∞, let h : �→
R be p-harmonic on � ⊂ R

d with d = 2. Then for all β ∈ (0, 1) there exists cβ > 0
such that for all balls Bt (x) ⊂ � and every θ ∈ (0, 1) there holds

osc1A(∇h)(x, θt) ≤ cβ θβ osc1A(∇h)(x, t).

It is clear that Theorem 3 is optimal in the sense that oscillations can never decay
faster than linear. However, the limiting case β = 1 of linear decay is excluded by
our method of proof. Therefore, we raise the question:

Question 1 Does Theorem 3 also hold with β = 1?

Further, it can be shown easily that the result of Theorem 3 does not extend to
the case 1 < p < 2. In this regime, the natural object to look at is ∇h rather than
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A(∇h). Indeed, using duality in the sense of differential forms, we can show the
following analogue of Theorem 3, see [3, Thm. 2.3].

Theorem 4 (Decay for p-Harmonic Functions II) Given 1 < p ≤ 2, let h : �→
R be p-harmonic with on � ⊂ R

d with d = 2. Then for all β ∈ (0, 1) there exists
cβ > 0 such that for all balls Bt (x) ⊂ � and every θ ∈ (0, 1) there holds

osc1∇h(x, θt) ≤ cβ θβ osc1∇h(x, t).

Again this assertion does not extend to the super-linear regime p > 2 and it
remains open what happens if β = 1. However, it seems that a unified statement,
for the full parameter range 1 < p < ∞, might be possible in terms of the related
vector field V (∇h), where

V (Q) := |Q| p−2
2 Q.

Indeed, there are good reasons to conjecture that the following question has an
affirmative answer.

Question 2 For d, n ∈ N and 1 < p < ∞ let h : � → R
n be a p-harmonic

function on � ⊂ R
d . Is it true that V (∇h) ∈ C1(�) and that there holds a

linear decay estimate,

osc2V (∇h)(x, θt) � θ osc2V (∇h)(x, t), θ ∈ (0, 1],

on all balls Bt(x) ⊂ �?

Let us mention that from V (∇h) ∈ C1 it follows that ∇h ∈ C1 for p ≤ 2.

Moreover, for p ≥ 2 it implies A(∇h) ∈ C1 and ∇h ∈ C
1

p−1 , i.e., h ∈ Cp′ in
the sense of Hölder spaces. Thus the conjecture is stronger than the well-known
p′-conjecture; see [1].

Finally, note that our Theorems 1–4 can be generalized to higher dimensions
and/or vectorial solutions to (1). However, in this setting we have to restrict
ourselves to s, β ∈ (0, β0), where β0 ≤ 1 is some unknown small number. The
reason is that our method of proof is based on decay estimates for p-harmonic
functions which are worse in this general situation.
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4 Regularity of Vector Field Deformations

The local regularity transfer in Theorem 1 tells us that the mapping F �→ A(∇u)

maintains integrability and smoothness (up to first order) such that we can formally
cancel the divergence operator in (1). So, in order to formulate regularity statements
for the solution u, given F , it remains to analyze how these properties behave under
the vector field deformation A(∇u) �→ ∇u.

To this end, for α > 0 and n ∈ N, let us define the transformation

Tα : Rn → R
n, Q �→ Tα(Q) := |Q|α Q

|Q| (5)

with Tα(0) := 0. Then, under composition, {Tα α > 0} forms a group with T1 being
the identity and (Tα)

−1 = T 1
α

. So, for α, β > 0 we have Tαβ(Q) = Tα(Tβ(Q)) and

thus

∇u = T 2
p
(V (∇u)) = T 1

p−1
(A(∇u)) and V (∇u) = Tp′

2
(A(∇u)).

Since 2
p
, 1
p−1 ,

p′
2 ∈ (0, 1] if p ≥ 2, we are especially interested in the mapping

properties of Tα for small α and vector-valued functions. The following result
extends the local assertion [3, Prop. 4.4] to a global one.

Theorem 5 If d, n ∈ N, α ∈ (0, 1], and � ⊂ R
d is a bounded Lipschitz domain or

� = R
d itself, the following statements for Tα from (5) hold true:

(1) For 0 < r ≤ ∞ we have Tα : Lr(�)n → L
r
α (�)n with

∥
∥
∥Tα(G) L

r
α (�)n

∥
∥
∥ ∼ ∥

∥G Lr(�)n
∥
∥α .

(2) If 0 < $, q ≤ ∞ and d
( 1
$
− 1

)
+ < s < 1, then Tα : Bs

$,q(�)n → Bαs
$
α
,
q
α

(�)n

with
∥
∥
∥Tα(G) Bαs

$
α
,
q
α

(�)n
∥
∥
∥ �

∥
∥
∥G Bs

$,q(�)n
∥
∥
∥
α

.

(3) For 0 < $ < ∞, 0 < q ≤ ∞, and d
( 1

min{$,q} − 1
)
+ < s < 1 there holds

Tα : Fs
$,q(�)n → Fαs

$
α
,
q
α

(�)n with

∥
∥
∥Tα(G) Fαs

$
α ,

q
α

(�)n
∥
∥
∥ �

∥
∥
∥G Fs

$,q(�)n
∥
∥
∥
α

.
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Proof Assertion (1) directly follows from the definition of the (quasi-) norm of
G : � → R

n in vector-valued Lebesgue spaces,

∥
∥G Lr(�)n

∥
∥ :=

n∑

j=1

∥
∥Gj Lr(�)

∥
∥ ∼ ∥

∥|G| ∣∣Lr(�)
∥
∥ , 0 < r ≤ ∞,

and the fact that |Tα(Q)| = |Q|α for all α > 0.
The proof of the remaining assertions is based on the characterization of Besov-

and Triebel-Lizorkin spaces under consideration in terms of first-order ball means

(
d

1,�
t,v G

)
(x) :=

(

t−d

∫

h∈V 1(x,t)

∣
∣
∣
(
�1

hG
)
(x)

∣
∣
∣
v

dh

)1/v
, x ∈ �, t > 0, 0 < v ≤ ∞,

(correspondingly modified if v = ∞), where �1
hG denotes the first-order difference

of G with stepsize h ∈ R
d and V 1(x, t) := {h ∈ Bt (0) x + τh ∈ � for τ ∈ [0, 1]};

cf. [22, Sect. 1.11.9]. To this end, note that for α ∈ (0, 1] there exists cα,n > 0 such
that |Tα(P ) − Tα(Q)| ≤ cα,n |P −Q|α for all P,Q ∈ R

n, see [3, Formula (4.10)].
This allows to pointwise bound the first-order differences of Tα(G),

∣
∣
∣
(
�1

hTα(G)
)
(x)

∣
∣
∣ �

∣
∣
∣
(
�1

hG
)
(x)

∣
∣
∣
α

, h ∈ R
d, x ∈ �h := {x ∈ � | x + h ∈ �},

as well as the corresponding ball means with v := 1/α ≥ 1

(
d

1,�
t,1/αTα(G)

)
(x) �

(
d

1,�
t,1 G

)
(x)α, x ∈ �, t > 0.

Let us consider the case of Besov spaces with q < ∞ on domains. In this
situation, the characterization of interest is given by Triebel [22, Thm. 1.118(ii)],
where we set r := v and M := 1. Then the condition d

( 1
$/α

− 1
r

)
+ < αs needed for

Bαs
$
α
,
q
α

(�)n is equivalent to our assumption d
( 1
$
− 1

)
+ < s. Moreover, s < 1 = M

implies αs < M . So, for the (quasi-) semi norm we obtain

|Tα(G)|Bαs
$
α ,

q
α
(�)n =

(∫ 1

0

[
t−α s

∥
∥
∥d1,�

t,1/αTα(G) L$/α(�)

∥
∥
∥
]q/α dt

t

)α/q

�
(∫ 1

0

[
t−α s

∥
∥
∥d1,�

t,1 G L$(�)

∥
∥
∥
α]q/α dt

t

)α/q

= ( |G|Bs
$,q (�)n

)α
.

In addition, for the lower order part of the (quasi-) norm, we have to bound∥
∥
∥Tα(G) L$/α(�)n

∥
∥
∥ in terms of

∥
∥G L$(�)n

∥
∥α, where we set w := max{w, 1}

for w > 0. This can be done by combining Assertion (1) with Hölder’s inequality.
If q = ∞ or if we deal with Triebel-Lizorkin spaces on domains, the proof is

based on exactly the same arguments as before. In contrast, for spaces on � = R
d ,
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some care is needed as the lower order term has to be replaced by

∥
∥
∥Tα(G) L$/α(�)n

∥
∥
∥
∗ := ∥

∥Tα(G) L$/α(�)n
∥
∥+

∥
∥
∥Tα(G) L$/α(�)n

∥
∥
∥

which needs to be controlled by
∥
∥G L$(�)n

∥
∥∗ to the power α. If $/α = 1, i.e.,

0 < $ < α ≤ 1, this additionally requires the estimate

∥
∥
∥G Lα(Rd)n

∥
∥
∥ �

∥
∥
∥G L$(Rd)n

∥
∥
∥

1−� ∥
∥
∥G L1(Rd )n

∥
∥
∥
�

�
∥
∥
∥G L$(Rd)n

∥
∥
∥+

∥
∥
∥G L1(Rd)n

∥
∥
∥ =

∥
∥
∥G L$(Rd )n

∥
∥
∥
∗
,

for which we used the log-convexity of Lebesgue (quasi-) norms together with
Young’s inequality with suitable parameters. ��
Corollary 2 Under the assumptions of Theorem 1 there holds

∥
∥
∥
∥∇u B

s
p−1
$(p−1),q(p−1)(B)d

∥
∥
∥
∥ �

∥
∥
∥F Bs

$,q(2B)d
∥
∥
∥

1
p−1

and similarly for B replaced by F.
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A Low-Rank Approach for Nonlinear
Parameter-Dependent Fluid-Structure
Interaction Problems

Peter Benner, Thomas Richter, and Roman Weinhandl

Abstract Parameter-dependent discretizations of linear fluid-structure interaction
problems can be approached with low-rank methods. When discretizing with
respect to a set of parameters, the resulting equations can be translated to a
matrix equation since all operators involved are linear. If nonlinear fluid-structure
interaction problems are considered, a direct translation to a matrix equation is not
possible. We present a method that splits the parameter set into disjoint subsets and,
on each subset, computes an approximation of the problem related to the upper
median parameter by means of the Newton iteration. This approximation is then
used as initial guess for one Newton step on a subset of problems.

1 Introduction

Fluid-structure interaction (FSI) problems depend on parameters such as the solid
shear modulus, the fluid density and the fluid viscosity. Parameter-dependent FSI
discretizations allow to observe the reaction of an FSI model to a change of such
parameters. A parameter-dependent discretization of a linear FSI problem yields
many linear systems to be approximated. These equations can be translated to one
single matrix equation. The solution, a matrix, can be approximated by a low-rank
method as discussed in [5]. But as soon as nonlinear FSI problems are considered,
such a translation is not possible anymore.
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The proposed method extends the low-rank framework of [5] to nonlinear
problems. It splits the parameter set into disjoint subsets. On each of these subsets,
the Newton approximation for the problem related to the upper median parameter is
computed to approximate the Jacobian matrix for all problems related to the subset.
This allows to formulate a Newton step as a matrix equation. The Newton update,
a matrix, can be approximated by a low-rank method and the global approximation
to the parameter-dependent nonlinear FSI problem is achieved by stacking the
approximations on the disjoint subsets column-wise.

2 The Nonlinear Problem

Let d ∈ {2, 3}, �, F, S be open subsets of Rd with F̄ ∪ S̄ = �̄, F ∩ S = ∅. We use
the stationary Navier-Stokes equations [4, Section 2.4.5.3] to model the fluid part
in F and the stationary Navier-Lamé equations [4, Problem 2.23] for the solid part
in S. The interface is �int = ∂F ∩ ∂S, the boundary part where Neumann outflow
conditions hold �out

f ⊂ ∂F \ ∂S and the boundary part where Dirichlet conditions

hold �D
f = ∂F \ (�out

f ∪ �int). The weak formulation of the coupled nonlinear FSI
problem with a vanishing right hand side f reads

〈∇ · v, ξ〉F = 0,

μs〈∇u+∇uT ,∇ϕ〉S + λs〈tr(∇u)I,∇ϕ〉S
+ρs〈(v · ∇)v, ϕ〉F + νf ρf 〈∇v +∇vT ,∇ϕ〉F − 〈p,∇ · ϕ〉F = 0 and

〈∇u,∇ψ〉F = 0.

(1)

With vin ∈ H 1(�)d , an extension of the Dirichlet data on �D
f , the trial function

v ∈ vin +H 1
0 (�,�D

f ∪ �int)
d is the velocity, u ∈ H 1

0 (�)d the deformation and p ∈
L2(F ) the pressure. The test functions are ξ ∈ L2(F ) (divergence equation), ϕ ∈
H 1

0 (�, ∂�\�out
f )d (momentum equation) and ψ ∈ H 1

0 (F )d (deformation equation).

The L2 scalar product on F and S is denoted by 〈·, ·〉F and 〈·, ·〉S , respectively.
The parameters involved are the kinematic fluid viscosity νf ∈ R, the fluid density
ρf ∈ R, the solid shear modulus μs ∈ R and the first Lamé parameter λs ∈ R.

3 Discretization and Linearization

Assume we are interested in discretizing the nonlinear FSI problem described in (1)
parameter-dependently with respect to m1 ∈ N shear moduli given by the set

Sμ := {μi1
s }i1∈{1,...,m1} ⊂ R

+, with μ1
s < . . . < μm1

s .
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Consider a finite element discretization on �h, a matching mesh of the domain
�, with a total number of N ∈ N degrees of freedom. Let A0 ∈ R

N×N be a
discretization matrix of all linear operators involved in (1) with fixed parameters
νf , ρf , μs and λs . Let A1 ∈ R

N×N be the discretization matrix of the operator

〈∇u+∇uT ,∇ϕ〉S . (2)

The nonlinear part in (1), the convection term, requires a linearization technique.

3.1 Linearization with Newton Iteration

For a linearization by means of the Newton iteration, we need the Jacobian matrix
of the operator 〈(v · ∇)v, ϕ〉F . In our finite element space, every unknown xh =
(ph, vh, uh)

T ∈ R
N consists of a pressure ph, a velocity vh and a deformation

uh. The discrete test space also has dimension N and every unknown there can be
written as (ξh, φh,ψh)

T ∈ R
N . The Jacobian matrix of 〈(v · ∇)v, ϕh〉F in our finite

element space, evaluated at xh, is

J〈(v·∇)v,ϕh〉F (xh) =
⎛

⎜
⎝

0 0 0
0 ∂〈(v·∇)v,ϕh〉F

∂v
∣
∣
v=vh

0

0 0 0

⎞

⎟
⎠ =: Aconv(xh) ∈ R

N×N .

Let bD ∈ R
N be the right hand side vector that depends on the desired Dirichlet

boundary conditions of the nonlinear FSI problem. Consider the FSI problem related
to a fixed shear modulus μi1

s ∈ Sμ for some i1 ∈ {1, . . . ,m1} first.

If we start with an initial guess x
i1
0 ∈ R

N , for instance x
i1
0 = bD , at Newton step

j ∈ N, the equation

(
A0 + (μi1

s − μs)A1 + ρf Aconv(x
i1
j−1)

)
s = −g(x

i1
j−1, μ

i1
s ) (3)

is to be solved for s ∈ R
N . The approximation at linearization step j then is

x
i1
j = x

i1
j−1 + s.

g(x
i1
j−1, μ

i1
s ) evaluates all operators in (1) at the pressure, velocity and deformation

of the approximation of the previous linearization step x
i1
j−1 and the shear modulus

μ
i1
s .
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4 Newton Iteration and Low-Rank Methods

In order to approximate a set of problems at one time, Eq. (3) has to be translated
to a matrix equation. For this, first of all, we split the parameter set Sμ into disjoint
subsets.

If we perform a Newton step for a set of problems at one time, the same Jacobian
matrix is used for the whole set. Therefore, the solutions to these different problems
should not differ too much from each other. The method suggested in this paper
splits the given parameter set into K ∈ N disjoint subsets, each of them containing
adjacent parameters.

Sμ =
K

·
⋃

k=1

Ik .

By m̃k , we denote the index of the upper median parameter of the set Ik . After
the parameter set is split into the subsets {Ik}k∈{1,...,K}, we compute the Newton

approximation x
m̃k
εN of the problem related to the upper median parameter μm̃k

s for

all k ∈ {1, . . . ,K} up to some given accuracy εN > 0. xm̃k
εN is then used as initial

guess for one Newton step.

4.1 The Matrix Equation

With D1,k := diag(Ik) − μsI
|Ik |×|Ik | and vIk

:= (μ
i1
s )i1∈Ik

∈ R
|Ik |, the matrix

equation that is to be solved for Sk ∈ R
N×|Ik | on every subset Ik is

A0Sk + A1SkD1,k + ρf Aconv(x
m̃k
εN )Sk =−g(x

m̃k
εN , 0)⊗ (1, . . . , 1)− A1x

m̃k
εN ⊗ vTIk︸ ︷︷ ︸

=:Bk

.

(4)

I |Ik |×|Ik | denotes the identity matrix of size |Ik| × |Ik|. In (4), the initial guess for
the Newton step is

Xk
initial := xm̃k

εN
⊗ (1, . . . , 1).

The approximation at the next linearization step is

Xk := Xk
initial + Sk . (5)
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The global approximation for the whole parameter-dependent problem then is

X̃ := [X1| · · · |XK ].

Remark 1 The initial guess for the Newton step (4), Xk
initial, has rank 1 and the

operator (2) is linear. This is why the rank of the right hand side matrix Bk in (4) is
not bigger than 2.

Remark 2 If multiple Newton steps like (4) were performed, two main difficulties
would come up. At step 2, the approximation of the previous linearization step
would be given by Xk from (5).

The Right Hand Side Xk is not a matrix of low rank and g(·, ·) would have to be
evaluated for all columns of Xk separately in a second Newton step. Thus, the right
hand side matrix Bk would not have low-rank structure either.

The Jacobian Matrix Since all columns of the initial guess Xk
initial coincide, the

Jacobian matrix in (4) is correct for all equations related to the parameter set Ik .
But the columns of Xk differ from each other. A second Newton step would then
become what is, in the literature, often called an inexact Newton step [4, Remark
5.7].

4.2 Low-Rank Methods

Let k ∈ {1, . . . ,K},

Ãconv := Aconv(x
m̃k
εN

) and bg := g(xm̃k
εN

, 0).

Consider only the column related to the parameter index i1 ∈ Ik in (4):

(
A0 + (μi1

s − μs)A1 + ρf Ãconv
)

︸ ︷︷ ︸
=:A(μ

i1
s )

si1 = −bg − μi1
s A1x

m̃k
εN︸ ︷︷ ︸

=:b(μi1
s )

, with si1 ∈ R
N .

Assume that x
m̃k
εN is fixed and A(μ

i1
s ) is invertible for all μ

i1
s ∈ Ik . A(μ

i1
s ) and

b(μ
i1
s ) depend linearly on μ

i1
s . A(·) and b(·) are analytic matrix- and vector-valued

functions, respectively. Due to [2, Theorem 2.4], the singular value decay of the
matrix Sk in (4) is exponential. Algorithm 1 exploits this fact and approximates Sk
in (4) by a low-rank matrix.
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5 Numerical Results

A 3d jetty flow in a channel with the geometric configuration

� := (0, 12)× (0, 4)× (0, 4), S := (2, 3)× (0, 2)× (0, 4) and F := � \ S̄

is considered. The left Dirichlet inflow is given by the velocity profile

v =
⎛

⎝
v1

v2

v3

⎞

⎠ =
⎛

⎝

1
10y(4− y)z(4− z)

0
0

⎞

⎠ ∈ R
3 at x = 0.

At x = 12, the do nothing boundary condition holds. At z = 0, deformation and
velocity in normal direction is prohibited. Everywhere else on ∂�, the velocity and
the deformation vanish. For the Navier-Stokes equations, stabilized Stokes elements
[4, Lemma 4.47] are used.

Algorithm 1 Low-rank Method for One-parameter Nonlinear FSI
Require: Accuracy εN > 0 for Newton method, ranks Rk ∈ N for k ∈ {1, . . . , K}
Ensure: The rank-

K∑

k=1
Rk approximation X̂ of the parameter-dependent FSI discretization

Split the parameter set Sμ into the subsets
K

·⋃
k=1

Ik .

for k = 1, . . . , K do
Compute the Newton approximation of the upper median parameter problem related to a
shear modulus of μm̃k

s with accuracy εN � x
m̃k
εN .

Use x
m̃k
εN ⊗ (1, . . . , 1) ∈ R

N×|Ik | as initial guess for one Newton step on Ik . Find a rank-
(Rk − 1) approximation Ŝk that approximates Sk ∈ R

N×|Ik | from (4) by a low-rank method
from [5].
Build the sum

X̂k = xm̃k
εN
⊗ (1, . . . , 1)+ Ŝk .

end for
X̂ := [X̂1| . . . |X̂K ]

5.1 Parameters

The nonlinear FSI problem (1) is discretized with Q1 elements (compare [4, Section
4.2.1]) with respect to

1500 shear moduli μi1
s ∈ Sμ ⊂ [20,000, 60,000].
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The fixed first Lamé parameter is λs = 200,000. With these parameters, solid
configurations with Poisson ratios between 0.38462 and 0.45455 are covered. The
fluid density is ρf = 12.5 and the kinematic fluid viscosity is νf = 0.04.

5.2 Comparison ChebyshevT with Standard Newton

A server operating CentOS 7 with 2 AMD EPYC 7501 and 512GB RAM,
MATLAB R© 2017b in combination with the htucker MATLAB toolbox [3] and the
finite element toolkit GASCOIGNE [1] was used to compare Algorithm 1 with
1500 Newton iterations applied consecutively. The parameter set Sμ was split into
K = 15 subsets.

Preconditioner and Eigenvalue Estimation

After the Newton approximations xm̃k
εN are available for all k ∈ {1, . . . , 15}, the LU

decomposition of the mean-based preconditioner Pk
T [5, Section 3.2] of A(μ

i1
s ) is

computed separately on every subset Ik . To estimate the parameters d and c for the
ChebyshevT method [5, Algorithm 3], the eigenvalues of the matrices

(P k
T )
−1A

(
max
i1∈Ik

(μi1
s )
)

and (P k
T )
−1A

(
min
i1∈Ik

(μi1
s )
)

are taken into consideration. For all K = 15 subsets, they were estimated to d = 1
and c = 0.1 for a small number of N = 945 degrees of freedom within 28.3 s
(computation time for the Newton approximations included). Every approximation
is related to a certain shear modulus. Therefore, all problems differ by the Poisson
ratio of the solid. The y-axis in Fig. 1, on the other hand, corresponds to the relative
residual norm

‖g(xi1 , μ
i1
s )‖2

‖g(bD,μ
i1
s )‖2

of the approximation xi1 for i1 ∈ {1, . . . ,m1}. Algorithm 1 was applied with εN =
10−4 and Rk = 10 ∀k ∈ {1, . . . , 15} to a problem with N = 255,255. Therefore,
the global approximation rank is R = 150. In comparison to this, standard Newton
iterations were applied to the 1500 separate problems consecutively where for every
Newton iteration, the last approximation served as initial guess for the next Newton
iteration.

The approximations obtained by the Standard Newton iterations within 238 h
(1507 Newton steps) provided, as visualized in Fig. 1, relative residuals with
norms smaller than 10−12 each. Algorithm 1 took 519 min (35 Newton steps) to
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Fig. 1 Comparison of the approximations provided by Algorithm 1 and 1500 standard Newton
iterations applied consecutively

compute the low-rank approximation. In addition to the 28.3 s for the eigenvalue
estimation, the 20 Newton steps to compute x

m̃k
εN for all k ∈ {1, . . . , 15} took, in

total, 195.65 min and the 15 Newton steps for the matrix equations (4) took, in
total, 323.3 min.

6 Conclusions

Low-rank methods can be used to compute approximations to parameter-dependent
nonlinear FSI discretizations, in particular, if each of the subsets, the parameter set
is split into, does contain problems that do not differ too much from each other. The
Newton step on the subset uses the same Jacobian matrix and the same initial guess
for the whole subset. It has to provide acceptable convergence within one single step
not only for the upper median problem.

Whether the results can be improved by choosing the subsets Ik or the approx-
imation ranks on these subsets adaptively, is still open. Moreover, how these
low-rank methods can be applied to fully nonlinear FSI problems that use, in
addition to the Navier-Stokes equations on the fluid, for instance, the St. Venant
Kirchhoff model equations [4, Definition 2.18] on the solid is an open problem.
Then, the right hand side in (4) would have to be approximated.
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Simulating Two-Dimensional Viscoelastic
Fluid Flows by Means of the “Tensor
Diffusion” Approach

Patrick Westervoß and Stefan Turek

Abstract In this work, the novel “Tensor Diffusion” approach for simulating
viscoelastic fluids is proposed, which is based on the idea, that the extra-stress
tensor in the momentum equation of the flow model is replaced by a product
of the strain-rate tensor and a tensor-valued viscosity. At least for simple flows,
this approach offers the possibility to reduce the full nonlinear viscoelastic model
to a generalized “Tensor Stokes” problem, avoiding the need of considering a
separate stress tensor in the solution process. Besides fully developed channel flows,
the “Tensor Diffusion” approach is evaluated as well in the context of general
two-dimensional flow configurations, which are simulated by a suitable four-field
formulation of the viscoelastic model respecting the “Tensor Diffusion”.

1 Introduction

Numerical simulations of viscoelastic fluids are still a challenging task, espe-
cially due to the involved constitutive equations describing the complex material
behaviour of the flow. From a numerical point of view, constitutive equations of
differential type are quite straightforward to apply in combination with the Stokes
equations, but being applicable only for a limited range of flow configurations [1–3].

An alternative modelling approach in numerical flow simulations is offered by
considering integral constitutive equations, which are often of the so-called time-
separable Rivlin-Sawyers (or Kaye-BKZ) type [4, 5], where the stress tensor is
written as an infinite integral of the form

σ (t) =
∫ t

−∞
M

(
t − t ′

) [
φ1 (I1, I2)Bt ′ (t)+ φ2 (I1, I2)B−1

t ′ (t)
]
dt ′ (1a)
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In the above stress integral, φ1, φ2 are empirical functions to model nonlinear effects
depending on the two non-trivial invariants I1, I2 of the Finger tensor B. One of the
most suitable approaches to handle integral material models in combination with
the Stokes equations is the so-called “Deformation Fields Method” (DFM, [6–8]). A
central object in this scheme is the Finger tensor, which is evolved in time depending
on the velocity field u according to the differential equation

∂

∂s
Bt ′ (s)+ (u (s) · ∇)Bt ′ (s)−∇u (s)� · Bt ′ (s)− Bt ′ (s) · ∇u (s) = 0 (1b)

in s ∈ [
t ′, t

]
for fixed t ′, where Bt ′

(
t ′
) = I.

However both, the differential as well as integral material model, give rise to
numerical challenges due to the complex rheology of the considered viscoelastic
fluids. On the one hand, in the differential case, the well-known “High Weissenberg
Number Problem” (HWNP, [1, 2]) together with the need of considering multiple
modes [3] has to be taken into account. On the other hand, for integral constitutive
equations, a suitable numerical treatment of the resulting integro-differential set of
equations needs to be derived resp. requires further improvement [6–8].

Therefore, in this work, the novel “Tensor Diffusion” approach is introduced,
offering the possibility to remove the complex rheology of the fluid from the set
of equations and to establish a straightforward numerical treatment of viscoelastic
fluids.

2 The “Tensor Diffusion” Approach

As outlined above, many difficulties and challenges in simulating viscoelastic fluids
arise from the complex rheology of the fluid characterized by both, differential and
integral constitutive equations. Consequently, avoiding the need of considering such
an equation at all would probably improve the general numerical treatment of such
fluids. Thus, the underlying assumption of the novel “Tensor Diffusion” approach is
the existence of a decomposition of the extra-stress tensor according to

σ = μ ·D (u) (2)

where μ ∈ R
2×2 in two-dimensional settings. Inserting the stress decomposition (2)

into the stationary Stokes equations gives the so-called “Tensor Stokes” problem

− 1

2
∇ ·

(
μ ·D (u)+ D (u) · μ�

)
+∇p = 0, ∇ · u = 0 (3)

Note, that a symmetrized version of the “Tensor Stokes” problem is considered here,
since the “Tensor Diffusion”μ is in general not symmetric as shown in Sect. 3.1 (for
details, see [9, 10]).
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Assuming, that the so-called “Tensor Diffusion” μ—corresponding to an actual
viscoelastic flow problem—is known or given, the “nonlinear” velocity and pressure
solution, originally resulting from the (direct steady) nonlinear differential or
integral viscoelastic model, can be computed by simply solving the “Tensor Stokes”
problem (3) in (u, p). Thus, the constitutive equation or the complex rheology of
such fluids is removed from the system and the corresponding stresses are computed
in post-processing fashion based on the velocity solution calculated from Eq. (3).
Furthermore, a robust, efficient, accurate and stable numerical scheme can be used
for solving the “Tensor Stokes” problem (3), since typical solution techniques for
(generalized) Stokes problems, i.e. problems in (u, p) only, are applicable in this
context.

Obviously, the “Tensor Stokes” problem represents an extension of classical
generalized Stokes equations involving a shear-rate dependent scalar viscosity (c.f.
[11]), since besides the corresponding “shear thinning” effect, in principle the full
viscoelastic material behaviour is covered by the tensor-valued viscosity μ (see
Sect. 3). Thus, one of the main potential benefits of the novel “Tensor Diffusion”
approach is the possibility to express the complex rheology by means of a “Tensor
Diffusion” μ instead of solving a nonlinear constitutive equation. In the following
section, the validity of this concept will be shown for Poiseuille-like flows, followed
by an evaluation for complex flow configurations like the “Flow around cylinder”-
benchmark in Sect. 4.

3 Proof of Concept

In the following, the validity of the underlying assumption, that a stress decom-
position according to Eq. (2) exists, is investigated by checking the ability of the
“Tensor Diffusion” approach to reproduce viscoelastic flow characteristics usually
resulting from differential or integral material models. Therefore, steady-state two-
dimensional fully developed channel flows for viscoelastic fluids are considered,
where the same velocity profile is obtained at any cutline over the channel height, i.e.
in y-direction. Thus, the velocity field consists only of a y-dependent contribution in
x-direction, i.e. the channel length. Similarly, the components of stress and Finger
tensors depend on y only, but not on x.

3.1 Fully Developed Channel Flows for UCM

Considering the differential steady-state version of the Upper-Convected Maxwell
model (UCM, [4]) in the above setting, the corresponding unknowns can be given
analytically, especially leading to a parabolic velocity profile. Furthermore, the
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corresponding (symmetric) strain-rate as well as stress tensors read

σ =
(
σ11 σ12

σ12 σ22

)

=
(

2ηp!u2
y ηpuy

ηpuy 0

)

, D (u) = 1

2

(
2ux vx + uy

vx + uy 2vy

)

= 1

2

(
0 uy

uy 0

)

(4)

Consequently it is realized, that indeed a matrix- or tensor-valued quantity reading

μ = 2ηp

(
1 2!uy

0 1

)

(5)

can be derived even analytically, relating σ and D according to Eq. (2).
In principle, the same can be done in case of the steady-state integral version

of UCM, where only one single Finger tensor needs to be considered due to
the stationary velocity field. However, inserting the analytical expressions for the
components of the Finger tensor—derived for fully developed channel flows—into
the single-mode “stationary” stress integral for UCM (c.f. [4]) yields

σ =
∫ ∞

0

ηp

!2 exp
(
− s

!

)
(B (s)− I) ds

=
[

2
∫ ∞

0

ηp

!2 exp
(
− s

!

)(
s s2uy

0 s

)

ds

] [
1

2

(
0 uy

uy 0

)]

= μ · D (u) (6)

with the same “Tensor Diffusion” μ as calculated from the differential version. Par-
ticularly, a stress decomposition according to Eq. (2) can be derived for differential
as well as integral viscoelastic models.

3.2 Poiseuille-Like Flow for the Wagner Model

In the following, a nonlinear integral model is considered, in detail the Wagner
model [12], which—for two-dimensional stationary flow configurations—results in
a stress integral of the form

σ =
∫ ∞

0

ηp

!2 exp
(
− s

!

) [
f exp

(
−n1

√
I − 2

)
+ . . .

(1− f ) exp
(
−n2

√
I − 2

)]
B (s) ds (7)

including the single non-trivial invariant I of the Finger tensor B. For fully
developed channel flows, the stress integral can be converted into

σ = μ · D (u)+ ν (8)
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where μ, ν ∈ R
2×2 and

μ11 = 2ηp

[

f
(

1+ n1!

√
u2
y

)−2
+ (1− f )

(
1+ n2!

√
u2
y

)−2
]

(9a)

μ12 = 4ηp!uy

[

f
(

1+ n1!

√
u2
y

)−3
+ (1− f )

(
1+ n2!

√
u2
y

)−3
]

(9b)

ν = ηp

!

[

f
(

1+ n1!

√
u2
y

)−1
+ (1− f )

(
1+ n2!

√
u2
y

)−1
]

(9c)

besides μ22 = μ11 and μ21 = 0 as well as ν11 = ν22 = ν and ν12 = ν21 = 0.
Consequently, a “generalized” stress decomposition compared to UCM in Eq. (6)
is derived. However, by introducing the modified pressure P = p − ν, a similar
version of the “Tensor Stokes” problem in Eq. (3) is obtained, but now replacing the
original pressure p by the modified pressure P , since the operator ∇ · ν occurring
in the “Tensor Stokes” problem can be considered as ∇ν and thus be absorbed into
the pressure gradient.

In the following, a modified Poiseuille flow is considered in Finite Element
simulations, where the velocity on the inflow edge is set to take a parabolic profile.
At the same time, the “Tensor Diffusion” corresponding to a fully developed
channel flow is prescribed globally, which is why the flow should evolve to its fully
developed nonlinear shape away from the inflow.

Obviously, the flow profiles obtained from the Wagner model for the material
parameters given in [12] recover the shear-thinning effect regarding the velocity
profile as depicted in Fig. 1, which is a typical material behaviour of viscoelastic
fluids. Furthermore, this velocity profile, resulting from two-dimensional simu-
lations, matches the solution of the one-dimensional version of the full integral
model derived for fully developed channel flows [10]. This indicates, that especially
for nonlinear integral models, viscoelastic flow characteristics in fully developed
channel flows are reproduced by simply solving a generalized Stokes-like problem

(a)

0.0 0.2 0.4 0.6 0.8 1.0
−1.0

−0.5

0.0

0.5

1.0

y

Wagner
UCM

(b)

Fig. 1 Channel flow for Wagner model, ! = 1.0, f = 0.57, n1 = 0.31, n2 = 0.106. (a) x-
velocity from 2D. (b) x-velocity at xmid
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of the form (3) in the unknowns (u, p), where the complex rheology arising from
the stress integral is completely hidden in the “Tensor Diffusion”.

In principle, the same procedure can be done also for other nonlinear viscoelastic
constitutive equations like the Giesekus model [13] in the differential or the
PSM model [14] in the integral case. However, for none of these two cases, the
“Tensor Diffusion” μ can be given in closed form, since it can be derived only
“semi analytically” or numerically. But nevertheless, similar results for comparing
solutions of one- and two-dimensional simulations can also be obtained for other
viscoelastic models than Wagner, further outlining the basic validity of the proposed
“Tensor Diffusion” approach [9, 10].

4 Complex Flow Configurations

So far, the proposed “Tensor Diffusion” approach is analyzed only in the context
of fully developed channel flows, for which it is possible to derive and verify
the validity of this novel approach. When more general two-dimensional flow
configurations shall be investigated in terms of this novel approach, an explicit
derivation of the corresponding tensor-valued viscosity μ is not (yet?) possible.

Instead, a straightforward implementation for determining the “Tensor Diffu-
sion” numerically is obtained by complementing the original differential steady-
state viscoelastic model by an additional algebraic equation regarding μ and
inserting symmetrized version of the stress decomposition (2) into the momentum
equation of the flow model. Consequently, to evaluate the applicability of the
“Tensor Diffusion” approach in the context of general two-dimensional flow
configurations, the well-known “Flow around cylinder” benchmark [1, 2, 15] is
simulated by means of the four-field formulation of the above “Tensor Stokes”
problem reading

− 2ηs∇ ·D (u)− 1

2
∇ ·

(
μ · D (u)+ D (u) · μ�

)
+ ∇p = 0 (10a)

∇ · u = 0 (10b)

(u · ∇) σ − ∇u� · σ − σ · ∇u+ f
(
!, ηp, σ

) = 2
ηp

!
D (u) (10c)

μ · D (u)− σ = 0 (10d)

which is discretized within the Finite Element framework presented in [2], where
the “Tensor Diffusion” is approximated by elementwise constant polynomials [10].

Within the typical benchmark configuration of a present solvent contribution of
ηs = 0.59, the drag coefficients CD (T), which are computed based on the total
stress tensor T, are analyzed for evaluating the quality of the simulation results for
several Weissenberg numbers We = !Umean/R. Therefore, the drag coefficients
calculated from the “Tensor Diffusion” are compared to reference results as well as
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Table 1 Oldroyd-B model
[4, 16]

We CD (Tσ ) CD

(
Tμ

)
Ref. [1]

0.1 130.342 130.348 130.36

0.2 126.605 126.624 126.62

0.3 123.172 123.212 123.19

0.4 120.553 120.549 120.59

0.5 118.747 118.751 118.83

Table 2 Giesekus model,
α = 0.1 [13]

We CD (Tσ ) CD

(
Tμ

)
Ref. [15]

0.1 125.567 125.572 125.58

0.5 103.717 103.733 103.73

1.0 95.536 95.568 95.55

5.0 85.210 85.243 –

10.0 83.047 83.068 –

Table 3 UCM (α = 0.0) or
Giesekus model

We α CD (Tσ ) CD

(
Tμ

)

0.1 0.0 127.373 127.403

0.5 0.0 96.046 98.054

0.1 0.1 115.377 115.508

0.5 0.1 60.804 61.992

results based on the original approach validated in [2]. In the following, Tσ denotes
the total stress tensor arising from the original viscoelastic model and Tμ the one
corresponding to the “Tensor Stokes” problem, where in principle σ is replaced by
the symmetrized stress-decomposition to obtain Tμ from Tσ .

A summary of the drag coefficients resulting from the above configuration is
given in Tables 1 and 2, which illustrates, that the drag coefficients obtained from the
four-field formulation (10) of the “Tensor Stokes” problem show a good agreement
to the results computed by means of the original method as well as the reference
results [1, 15] for both, the Oldroyd-B and Giesekus model. For the latter, reference
results apparently are available only up to We = 1.0, which is why the “Tensor
Stokes” results for higher Weissenberg numbers are evaluated by a comparison with
the original approach only.

The more challenging configuration is represented by considering the “no
solvent” case in the above setting, where ηs = 0 in Eq. (10a). Unfortunately, no
reference results are available for this flow configuration, which is why the “Tensor
Stokes” results are again compared only against the results of the original approach.
When analyzing the calculated drag coefficients given in Table 3, again the “Tensor
Stokes” results show a good agreement to the results of the original problem—
especially for lower We for both, the UCM as well as Giesekus model. Besides, for
the Giesekus model it was not possible to reach significantly larger Weissenberg
numbers as in case of UCM, which again illustrates the complexity of this flow
configuration.

Additionally, recall that μ is approximated in Q0 only, which is of lower order
than the corresponding approximation of σ in Q2. Naturally, results obtained from
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the original problem are expected to be of higher accuracy anyway. But nevertheless,
applying the “Tensor Diffusion” approach gives simulation results of a similar
quality as the original approach, even for this complex flow configuration.

5 Conclusion

In this work, the novel “Tensor Diffusion” approach is introduced, where in
principle the extra-stress tensor in the momentum equation of the viscoelastic model
is replaced by a product of the so-called “Tensor Diffusion” and the strain-rate
tensor.

The underlying assumption, that such a stress decomposition exists in general, is
verified in a first step for fully developed channel flows, where the full viscoelastic
model can be reduced to a so-called “Tensor Stokes” problem. Consequently,
the nonlinear viscoelastic solution might be simply computed from a generalized
Stokes-like problem including a tensor-valued viscosity.

Furthermore, the applicability suitable of the “Tensor Diffusion” approach is
evaluated within the two-dimensional “Flow around cylinder” benchmark. Here,
the drag coefficients resulting from the original viscoelastic model as well as
reference results are reproduced quite well by means of a four-field formulation
of the “Tensor Stokes” problem. But nevertheless, as a main goal of future work,
the full viscoelastic flow model shall be reduced to a pure “Tensor Stokes” problem.
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Dynamic and Weighted Stabilizations
of the L-scheme Applied to a Phase-Field
Model for Fracture Propagation

Christian Engwer, Iuliu Sorin Pop, and Thomas Wick

Abstract We consider a phase-field fracture propagation model, which consists of
two (nonlinear) coupled partial differential equations. The first equation describes
the displacement evolution, and the second is a smoothed indicator variable,
describing the crack position. We propose an iterative scheme, the so-called L-
scheme, with a dynamic update of the stabilization parameters during the iterations.
Our algorithmic improvements are substantiated with two numerical tests. The
dynamic adjustments of the stabilization parameters lead to a significant reduction
of iteration numbers in comparison to constant stabilization values.

1 Introduction

This work is an extension of [3] in which an L-type iterative scheme (see [5, 8])
with stabilizing parameters for solving phase-field fracture problems was proposed.
In [3], the stabilization parameters were chosen as constants throughout an entire
computation. With these choices, the convergence of the scheme has been proven
rigorously. The resulting approach performs well in the sense that an unlimited
number of iterations compared to a truncated scheme yields the same numerical
solution. The results were validated by investigating the load-displacements curves.
Moreover, the robustness of the scheme w.r.t. spatial mesh refinement was shown.
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Nonetheless, the iteration numbers (for an unlimited number of iterations) remained
high.

In this work, we propose and compare two extensions of the aforementioned
scheme. First, we update the L scheme parameters dynamically. Second, we use an
adaptive weight depending on the fracture location inside the domain. For the latter
idea, we use the phase-field variable to weight L locally.

The outline of this work is as follows: In Sect. 2 the model is stated whereas
Sect. 3 presents the dynamic choice of the stabilization parameters. In Sect. 4, we
present two numerical tests to study the performance of the proposed scheme.

2 The Phase-Field Fracture Model

We consider an elliptic problem stemming from the crack propagation model
proposed in [3]. � ⊂ R

d is a d-dimensional, polygonal and bounded domain.
We use the spaces W 1,∞(�), containing functions having essentially bounded
weak derivatives in any direction, and H 1

0 (�) containing functions vanishing at the
boundary of � (in the sense of traces) and having square integrable weak derivatives.
(·, ·) stands for the L2(�) inner product. For the ease of writing we use the notations
V := (H 1

0 (�))d and W := W 1,∞(�). The vector-valued displacements are denoted
by u. For modeling fracture propagation in �, a phase field variable ϕ is used. This
approximates the characteristic function of the intact region of �. Written in weak
form, we solve the following problems iteratively

• Problem 1i : Given (ui−1, ϕi−1) ∈ V ×W, find ui ∈ V s.t. for all v ∈ V

au(u
i, v) := Lu(u

i − ui−1, v)+
(
g(ϕi−1)σ+(ui ), e(v)

)
+
(
σ−(ui ), e(v)

)
= 0. (1)

• Problem 2i : Given (ϕi−1, ui , ϕ̄) ∈ W × V ×W, find ϕi ∈ W s.t. for all ψ ∈ W

aϕ(ϕ
i, ψ) := Lϕ(ϕ

i − ϕi−1, ψ)+Gcε(∇ϕi ,∇ψ)− Gc

ε
(1− ϕi, ψ)

+ (1− κ)(ϕiσ+(ui ) : e(ui), ψ)+ (3+ γ [ϕi − ϕ̄]+, ψ) = 0. (2)

In case of convergence, the first terms in the above are vanishing, and the limit
pair (u, ϕ) ∈ V × W solves a time discrete counterpart of the model in [3], if
ϕ̄ is interpreted as the phase field at the previous time step. In this context, with
3 ∈ L2(�) and γ > 0, the last term in (2) is the augmented Lagrangian penalization
proposed in [9] for the irreversibility constraint of the fracture propagation.

Furthermore, in the above, ε is a (small) phase-field regularization parameter,
Gc > 0 is the critical elastic energy restitution rate, and 0 < κ � 1 is a
regularization parameter used to avoid the degeneracy of the elastic energy. The
latter is similar to replacing the fracture with a softer material. Next, g(ϕ) :=
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(1 − κ)ϕ2 + κ is the degradation function, and e := 1
2 (∇u + ∇uT ) is the strain

tensor.
The stress tensor in the above is split into a tensile and compressive part,

σ+ := 2μse+ + λs [tr(e)]+I, σ− := 2μs(e− e+)+ λs
(
tr(e)− [tr(e)]+)I,

where [·]+ stands for the positive cut of the argument. Further, e+ = P�+PT , with
P being the matrix containing the unit eigenvectors corresponding to the eigenvalues
of the strain tensor e. In particular, for d = 2 one has P = [v1, v2] and

�+ := �+(u) :=
([λ1(u)]+ 0

0 [λ2(u)]+
)

.

3 The L-scheme with Dynamic Updates of the Stabilization
Parameters

The iteration (1)–(2) is essentially the scheme proposed in [3], in which the
stabilization parameters Lu and Lϕ are taken constant. To improve the convergence
behaviour of the scheme, we propose a dynamic update of these parameters.

Dynamic Update at Each Iteration/Constant in Space The iteration discussed
in [3] uses constant parameters Lu and Lϕ . With this choice, the convergence has
been proved rigorously. However, the number of iterations can remain high. High
iteration numbers for phase-field fracture problems were also reported in [4, 10]. To
improve the efficiency, we suggest in this work to update Lu and Lϕ at each iteration
i:

Li = a(i)Li−1, where Li := Lu,i = Lϕ,i .

Inspired by numerical continuation methods in e.g. [1], one would naturally choose
a large L0 and a(i) := a < 1 to obtain a decreasing sequence L0 > L1 > L2 > . . .,
updated until a lower bound L− is reached. However, this seems not to be a good
choice in phase-field fracture since the system does not have a unique solution.
Consequently, with increasing i the iterations would oscillate in approaching one
or another solution, and the algorithm convergence deteriorates. For this reason,
we propose the other way around: the closer the iteration is to some solution, the
larger the stabilization parameters is chosen, so that the iterations remain close to
this solution. We choose a(i) := a > 1, yielding L0 < L1 < L2 < . . . up to a
maximal L∗.

On the Specific Choice of the Parameters A possible choice for a is a(i) := 5i

(i = 0, 1, 2, . . .), while L0 := 10−10. This heuristic choice and may be improved by
using the solution within the iteration procedure, or a-posteriori error estimates for
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the iteration error. Moreover, a(i) := 5i is motivated as follows. Higher values
greater than 5 would emphasize too much the stabilization. On the other hand,
too low values, do not lead to any significant enhancement of the convergence
behaviour. We substantiate these claims by also using a(i) = 10i and a(i) = 20i in
our computations.

Dynamic Update Using the Iteration An extension of the strategy is to adapt the
L-scheme parameters in space by using the phase-field variable ϕn,i−1. We still take
Li = aLi−1, but now a := a(i, ϕn,i−1). Away from the fracture, we have ϕ ≈ 1
and essentially only the elasticity component (2) is being solved. On the other hand,
the stabilization is important in the fracture region, for which we take

Li = a(i, ϕi−1)Li−1, with a(i, ϕi−1) := (1− ϕi−1)a.

Recalling that the fracture is characterised by ϕ ≈ 0, it becomes clear that the
stabilization parameters are acting mainly in the fracture region. Finally, to improve
further the convergence behaviour of the scheme we adapt 3 at each iteration. In
this case we take 3i = 3i−1 + γ [ϕi−1 − ϕ̄]+.

Algorithm 1 Dynamic variant of the L-scheme for a phase-field fracture

Choose γ > 0, a > 1, as well as 30 and L0. Set i = 0.
repeat

Let i = i + 1;
Solve the two problems, namely

Solve the nonlinear elasticity problem in (1)
Solve the nonlinear phase-field problem in (2)

Update Li = aLi−1

Update 3i = 3i−1 + γ [ϕi − ϕ̄]+
until

max{‖au(ui , v)‖, ‖aϕ(ϕi , ψ)‖/v ∈ V,ψ ∈ W } ≤ TOL,

The Final Algorithm The algorithm is based on the iterative procedure for phase-
field fracture originally proposed in [9]. Therein, the inequality constraint is realized
by an augmented Lagrangian iteration. Within this loop we update the L scheme
parameters too. The resulting is sketched in Algorithm 1, in which TOL = 10−6 is
taken, and L = Lu = Lϕ .

Remark 1 For the solution of both nonlinear subproblems (1) and (2), we use a
monotonicity-based Newton method (details see e.g., in [10]) with the tolerance
10−8. Inside Newton’s method, we solve the linear systems with a direct solver.
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4 Numerical Tests

We consider two test examples. Details for the first test van be found in [7]. The
setup of the second test can be found for instance in [6]. Both examples were already
computed in [3] and the results therein are compared to the ones obtained here. The
scheme is implemented in a code based on the deal.II library [2].

Single Edge Notched Shear Test The configuration is shown in Fig. 1 and a
final simulation result in Fig. 2 (left). Specifically, we use μs = 80.77 kN/mm2,
λs = 121.15 kN/mm2, and Gc = 2.7 N/mm. The crack growth is driven by a
non-homogeneous Dirichlet condition for the displacement field on �top, the top

5mm
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5mm5mm

u

slit

20

1

2.75

2

2

1

6

4

4

u

8

Fig. 1 Examples 1 and 2. The following conditions are prescribed: on the left and right boundaries,
uy = 0 mm and traction-free in x-direction. On the bottom part, ux = uy = 0 mm. On �top, uy =
0 mm and ux is as stated in (3). Finally, the lower part of the slit is fixed in y-direction, i.e., uy =
0 mm. Right: Asymmetric notched three point bending test. The three holes have each a diameter
of 0.5. All units are in mm

Fig. 2 Examples 1 and 2. Numerical solutions on the finest meshes and at the end time. The cracks
are displayed in dark blue color
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boundary of B. We increase the displacement on �top over time, namely we apply
non-homogeneous Dirichlet conditions:

ux = t ū, ū = 1 mm/s, (3)

where t denotes the current loading time. Furthermore, we set κ = 10−10 [mm] and
ε = 2h [mm]. We evaluate the surface load vector on the �top as

τ = (Fx, Fy) :=
∫

�top

σ (u)ν ds, (4)

with normal vector ν, and we are particularly interested in the shear force Fx . Three
different meshes with 1024 (Ref. 4), 4096 (Ref. 5) and 16,384 (Ref. 6) elements are
observed in order to show the robustness of the proposed schemes. The results are
shown in Fig. 6.

Our findings are summarized in Figs. 3 and 4. The numerical solutions for all
four different strategies for choosing L are practically identical, only the number
of iterations being different. Here, L = 0 and L = 1e − 2 denote tests in
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Fig. 3 Example 1. Comparison of dynamic L updates, the weighted version, and constant L.
Left: number of iterations. Right: load-displacement curves
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which L = Lu = Lϕ are taken constant throughout the entire computation.
The newly proposed dynamic versions are denoted by L dynamic and L dyn.
weighted. We observe a significant reduction in the computational cost when
using the dynamic L-schemes. The maximum number of iterations is 21 for both
the weighted version and the spatially-constant L-scheme. This number is reduced
to 12 iterations using a = 20 while the accuracy only slightly changes.

Asymmetrically Notched Three Point Bending Test The configuration is shown
in Fig. 1 (right). The initial mesh is 3, 4 and 5 times uniformly refined, yielding
3904, 15,616 and 62,464 mesh elements with the minimal mesh size parameter
h3 = 0.135, h4 = 0.066 and h5 = 0.033. As material parameters, we use μs

= 8 kN/mm2, λs = 12 kN/mm2, and Gc = 1× 10−3 kN/mm. Furthermore, we set
k = 10−10h[mm] and ε = 2h.

Figure 5 presents the number of iterations and the load-displacement curves.
The number of iterations is decreasing from 500 (in the figures cut to 100) for the
classical L-scheme, to a maximum of 25 when using the dynamic updates. The
choice of weighting does not seem to have a significant influence on the number
of iterations though. The crack starts growing a bit later when using the dynamic
updates, which can be inferred from the right plot in Fig. 5. Thus, the stabilization
parameters have a slight influence on the physical solution. This can be explained in
the following way. In regions where ϕ = 0 the solution component u is not uniquely
defined. This leads to a sub-optimal convergence behaviour of the L-scheme. With
the dynamic L-scheme we regain uniqueness, but at the cost of a slightly modified
physical problem.

Remark 2 Noteworthy, the number of iterations for the dynamic L-scheme is robust
with respect to the mesh refinement, as shown in Fig. 6. This is in line with the
analysis in [3, 5, 8], where it is proved that the convergence rate does not depend on
the spatial discretization.
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and L = 1e−2 are taken from [3]. Right: The load-displacement curves; a slight difference can be
observed in the results, indicating that the dynamic updates lead to a slight delay in the prediction
of the starting time for the fracture growth
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Fig. 6 Examples 1 and 2 for the dynamic L scheme using a = 5; three different mesh levels are
used in order to verify the robustness of the proposed scheme. The results indicate that the mesh
size does not influence the number of the iterations
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Adaptive Numerical Simulation of a
Phase-Field Fracture Model in Mixed
Form Tested on an L-shaped Specimen
with High Poisson Ratios

Katrin Mang, Mirjam Walloth, Thomas Wick, and Winnifried Wollner

Abstract This work presents a new adaptive approach for the numerical simulation
of a phase-field model for fractures in nearly incompressible solids. In order to
cope with locking effects, we use a recently proposed mixed form where we have a
hydro-static pressure as additional unknown besides the displacement field and the
phase-field variable. To fulfill the fracture irreversibility constraint, we consider a
formulation as a variational inequality in the phase-field variable. For adaptive mesh
refinement, we use a recently developed residual-type a posteriori error estimator for
the phase-field variational inequality which is efficient and reliable, and robust with
respect to the phase-field regularization parameter. The proposed model and the
adaptive error-based refinement strategy are demonstrated by means of numerical
tests derived from the L-shaped panel test, originally developed for concrete. Here,
the Poisson’s ratio is changed from the standard setting towards the incompressible
limit ν → 0.5.

1 Introduction

Crack propagation is one of the major research topics in mechanical, energy,
and environmental engineering. A well-established variational approach for Grif-
fith’s [5] quasi-static brittle fracture was introduced by Francfort and Marigo [3].
Miehe et al. [10] introduced the name ‘phase-field modeling’ for this variational
approach. If the observed solid is assumed to be nearly incompressible, the classical
phase-field fracture model fails due to volume-locking. In this work, we combine
the mixed problem formulation, recently proposed by the authors in [7], with the
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adaptive numerical solution based on a residual-type error estimator for the arising
phase-field variational inequality [6, 11]. This allows to simulate crack propagation
on adaptive refined meshes in nearly incompressible materials by using the phase-
field method.

2 A Phase-Field Model for Nearly Incompressible Solids

2.1 Notation and Spaces

We emanate from a two-dimensional, open and smooth domain � ⊂ R
2. Let I

be a loading interval [0, T ], where T > 0 is the end time value. A displacement
function u : (� × I) → R

2 is defined on the domain �. On a subset �D ⊂ ∂� of
the boundary, we enforce Dirichlet boundary conditions. For the phase-field variable
ϕ : (�×I)→ [0, 1]with ϕ = 0 in the crack and ϕ = 1 in the unbroken material, we
have homogeneous Neumann values ∇ϕ · n = 0 on the whole boundary, where n is
the unit outward normal to the boundary. The physics of the underlying problem ask
to enforce crack irreversibility, i.e., that ϕ is monotone non-increasing with respect
to t ∈ I .

By (a, b) := ∫
� a · b dx for vectors a, b, the L2 scalar-product is denoted. The

Frobenius scalar product of two matrices of the same dimension is defined as A :
B := ∑

i

∑
j aij bij and therewith the L2-scalar product is given by (A,B) :=∫

� A : B dx.
For a weak problem formulation, we consider a subdivision 0 = t0 < . . . <

tN = T of the interval I . In each time step, we define approximations (un, ϕn) ≈
(u(tn), ϕ(tn)) and hence the irreversibility condition is approximated by ϕn ≤ ϕn−1

for all n = 1, . . . , N . To simplify the notation, we omit the superscript (·)n and set
u := un and ϕ := ϕn, whenever it is clear from the context. The phase-field space
is W := H 1(�) with a feasible set K := {ψ ∈ W | ψ ≤ ϕn−1 ≤ 1}. Further, we
define the function spaces V := (H 1

0 (�))2 := {w ∈ (H 1(�))2 | w = 0 a.e. on �D},
U := L2(�), and X := {! ∈ W∗ | ! ≥ 0}, where W∗ is the dual space of W .
Further, let uD ∈ (H 1(�))2 ∩ C0(�D) be a continuation of the Dirichlet-data. For
the classical phase-field fracture model, we refer to Miehe et al. [10]. In the next
section, the mixed form of the phase-field fracture model is formulated.

2.2 Mixed Phase-Field Fracture Model

The stress tensor σ(u) is given by σ(u) := 2μElin(u)+λtr(Elin(u))I with the Lamé
coefficients μ, λ > 0. The linearized strain tensor therein is defined as Elin(u) :=
1
2 (∇u + ∇uT ). By I, the two-dimensional identity matrix is denoted. For a mixed
formulation of the problem, we define
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p := λ∇ · u,

with p ∈ U , such that the pure elasticity equation reads as follows:
Find u ∈ V and p ∈ U such that

2μ(Elin(u),Elin(w))+ (∇ ·w,p) = 0 ∀w ∈ V,

(∇ · u, q)− 1/λ(p, q) = 0 ∀q ∈ U .

Following [9], we consider the tensile (σ+(u, p)) and compressive (σ−(u, p))
parts of the stress tensor. For this reason, the positive part of the pressure p+ ∈
L2(�) has to be defined as p+ := max{p, 0}, and E+

lin(u) is given as the projection
of Elin(u) onto positive semidefinite matrices. Now, we can split the stress tensor
σ(u, p) as:

σ+(u, p) := 2μE+
lin(u)+ p+I,

σ−(u, p) := 2μ(Elin(u)− E+
lin(u))+ (p − p+)I.

In the following, the critical energy release rate is denoted by Gc and a
degradation function is defined as g(ϕ) := (1−κ)ϕ2+κ, with a small regularization
parameter κ > 0. Next, we can formulate the mixed phase-field problem in
incremental form [7]:

Problem 1 (Mixed Phase-Field Formulation) Given the initial data ϕn−1 ∈ K,
find u := un ∈ {uD + V}, p := pn ∈ U and ϕ := ϕn ∈ K for loading steps
n = 1, 2, . . . , N such that

g(ϕn−1)(σ+(u, p),Elin(w))+ (σ−(u, p),Elin(w)) = 0 ∀ w ∈ V,

(∇ · u, q)− 1/λ(p, q) = 0 ∀ q ∈ U,

(1− κ)(ϕσ+(u, p) : Elin(u), ψ − ϕ)+Gc(−1/ε(1− ϕ),ψ− ϕ)

+Gcε(∇ϕ,∇(ψ − ϕ)) ≥ 0 ∀ ψ ∈ K ⊂W,

where ε > 0 describes the bandwidth of the transition zone between broken and
unbroken material. This weak formulation in Problem 1 can be reformulated to a
complementarity system by introducing a Lagrange multiplier ! ∈ X , see [6, 7].

The numerical treatment of the phase-field system in a monolithic fashion
including the discretization as well as the adaptive refinement strategy are discussed
in the following.
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2.3 Numerical Treatment and Programming Code

Based on the complementarity formulation of Problem 1, with the help of a
Lagrange multiplier, the crack irreversibility constraint is enforced, see [7, Section
4.1]. For the discretization in space, we employ a Galerkin finite element method
in each loading step. To this end, the domain � is partitioned into quadrilaterals.
To fulfill a discrete inf-sup condition, Taylor-Hood elements with biquadratic shape
functions (Q2) for the displacement field u and bilinear shape functions (Q1) for
the pressure variable p as well as for the phase-field variable are used. For further
details on the stable mixed form of the classical phase-field fracture model as well
as the handling of the crack irreversibility condition and the numerical solving steps,
we refer to [7].

The overall implementation is done in DOpElib [2, 4] using the finite element
library deal.II [1].

2.4 Adaptive Refinement

A residual-type a posteriori error estimator η for the classical phase-field fracture
model, presented and tested in [6], provides a robust upper bound. Here, robust
means that the unknown constant in the bound does not depend on ε such that the
quality of the estimator is independent of ε. The mesh adaptation is realized using
extracted local error indicators from the a posteriori error estimator in [6, Section
3.2] on the given meshes over all loading steps.

In the following, Mn denotes the mesh in the incremental step n and Inh is the
corresponding nodal interpolation operator on the mesh Mn. The searched discrete
quantities are denoted by an index (·)h, i.e., the displacement un

h, the phase-field
variable ϕn

h , the pressure pn
h , and the Lagrange multiplier !n

h. The adaptive solution
strategy is given in the following.

Algorithm Given a partition in time t0 < . . . < tN , and an initial mesh Mn = M

for all n = 0, . . . , N .

1. Set ϕ0
h = I 0

hϕ
0 and solve the discrete complementarity system to obtain the

discrete solutions un
h, ϕ

n
h, p

n
h,!

n
h for all n = 1, . . . , N .

2. Evaluate the error estimator in order to obtain ηn for each incremental step.
3. Stop, if

∑N
n=1(η

n)2 and ‖Inh ϕn−1 − ϕn−1‖ are small enough for all n =
1, . . . , N .

4. For each n = 1, . . . N , mark elements in Mn based on ηn according to an
optimization strategy, as implemented in deal.II [1].

5. Refine the meshes according to the marking and satisfaction of the constraints
on hanging nodes.

6. Repeat from step 1.



L-shaped Specimen with High Poisson Ratios 1189

3 Numerical Results

In this section, the mixed phase-field model formulation is applied to simulate crack
propagation in an L-shaped specimen with the help of adaptive refined meshes. First,
the setup of the L-shaped panel test and the corresponding material and numerical
parameters are given. Afterwards, the load-displacement curves and the crack paths
are discussed for three different Poisson ratios from the standard setting towards the
incompressible limit ν → 0.5.

3.1 Configuration of the L-shaped Panel Test

The L-shaped panel test was originally developed by Winkler [12] to test the
crack pattern of concrete experimentally and numerically. Concrete is compressible
with a Poisson ratio of ν = 0.18. To simulate fracture propagation in nearly
incompressible materials, within this work, the Poisson’s ratio is increased towards
an incompressible solid.

In Fig. 1, the test geometry of the L-shaped panel test is declared. In the right
corner �uy on a small stripe of 30 mm at the boundary, a special displacement
condition is defined as a loading-dependent non-homogeneous Dirichlet condition:

uy = t ·mm/s, for t ∈ I := [0; 0.4 s],

500mm
Γtopy

500mm

250mm
Γmeasured

x

250mm

Γu y
30mm

Fig. 1 Geometry and boundary conditions of the L-shaped panel test
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where t denotes the total time and T = 0.4 s is the end time which corresponds to a
displacement of 0.4mm. The time interval I is divided into steps of the loading size
δt .

Remark 1 To avoid developing unphysical cracks in the singularity on the boundary
�uy , the domain where the phase-field inequality is solved, is constrained to the
subset given by x <= 400 mm similar to [8]. For x > 400 mm we assume ϕ = 1.

In Table 1, the required material and numerical parameters for the L-shaped panel
test are listed. Keep in mind, that the given values for μ and λ fit to the original
material concrete and are changed for other values of ν in the following numerical
tests, as listed in Table 2. Further, the discretization parameter h in Table 1 changes
within the refinement steps, so h is the starting mesh parameter on the coarsest mesh
before adaptive refining.

In Table 3, the minimal and maximal number of degrees of freedom are given
for three different test cases ν = 0.18, ν = 0.40 and ν = 0.49. The adaptive
computations are based on a three times uniform refined mesh and three adaptive
refinement steps. For comparison, also the load-displacement curves for tests,
executed on a four times uniform refined mesh, are added in Fig. 2. The load-
displacement curves in Fig. 2 indicate that the higher the Poisson ratio, the higher

Table 1 Standard settings of
the material and numerical
parameters for the L-shaped
panel test

Parameter Description Value

μ Lamé coefficient 10.95 kN/mm2

λ Lamé coefficient 6.16 kN/mm2

ν Poisson’s ratio 0.18

Gc Critical energy rate 8.9 × 10−5 kN/mm

h Discretization parameter 7.289 mm

ε Bandwidth 14.0 mm

δt Incremental size 10−4 s

I End time 0.4 s

κ Regularization parameter 10−10

Table 2 Tests with different
Poisson’s ratios

ν μ λ

0.18 10.95 · 103 6.18 · 103

0.40 10.95 · 103 42.36 · 103

0.49 10.95 · 103 51.89 · 104

Table 3 The minimal and
maximal number of degrees
of freedom (DoF) per
incremental step on adaptive
meshes

ν min. #DoF max. #DoF

0.18 Uniform 213,445

0.18 53,925 125,599

0.40 Uniform 213,445

0.40 53,925 121,709

0.49 Uniform 213,445

0.49 53,925 91,574
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0 0.1 0.2 0.3 0.4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Displacement u [mm]

Lo
ad
F y

[N
]

ν = 0.18 uniform
ν = 0.18 adaptive
ν = 0.40 uniform
ν = 0.40 adaptive
ν = 0.49 uniform
ν = 0.49 adaptive

Fig. 2 Load-displacement curves for the L-shaped panel test with different Poisson ratios and
adaptively refined meshes versus uniform refinement. Weighted loading measured on the lower
left boundary �measured labeled in Fig. 1

is the maximal loading value before the crack starts propagating. Further, the path
of the load-displacement curves for ν = 0.18, in particular for the adaptive test run
in Fig. 2, coincide with the numerical and experimental results in concrete [12]. In
general, the adaptive computations exhibit a faster crack growth as it is expected
in brittle materials, and may call for additional adaptive refinement of the time
discretization for which models and indicators still need to be developed. As a
second quantity of interest, in Fig. 3, the crack path can be observed in certain
incremental steps on adaptive refined meshes, exemplary for ν = 0.40. The
refinement strategy based on the error indicators steers the resolution of the crack
area, especially of the crack tip as visualized in Fig. 4.
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Fig. 3 Poisson’s ratio ν = 0.40. Snapshots of the phase-field function after three adaptive
refinement steps in the incremental steps 0.2082, 0.209, 0.2099, 0.2136, 0.2323 and 0.2997s on
the current adaptive mesh

Fig. 4 Poisson’s ratio ν = 0.40. Enhanced extract of the phase-field function in the crack tip after
three adaptive refinement steps in the incremental steps 0.2099, 0.2176 and 0.2997s

4 Conclusion

We have combined and extended [7] and [6] to adaptive refinement based on robust
residual-type a posteriori error estimators for phase-field model for fractures in
nearly incompressible materials. The method is demonstrated on a numerical test
for the L-shaped panel test. Therefore, we proposed three test cases in Sect. 3 with
different Poisson ratios ν approximating the incompressible limit ν = 0.5. The
load-displacement curves of the three tests show a correlation between an increasing
Poisson ratio and a stronger loading force. In view of mesh adaptivity, we observed
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very convincing findings: the mesh refinement is localized in the area of the (a
priori unknown) fracture path and allows to resolve the crack tip region. Further,
our adaptive refined meshes allow for a faster crack growth compared to uniformly
refined meshes.
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Convergence Rates for Matrix P-Greedy
Variants

Dominik Wittwar and Bernard Haasdonk

Abstract When using kernel interpolation techniques for constructing a surrogate
model from given data, the choice of interpolation points is crucial for the quality
of the surrogate. When dealing with vector-valued target functions which are
approximated by matrix-valued kernel models, the selection problem is further
complicated as not only the choice of points but also the directions in which the
data is projected must be determined.

We thus propose variants of Matrix P-greedy algorithms that enable us to
iteratively select suitable sets of point-direction pairs with which the approxima-
tion space is enriched. We show that the selected pairs result in quasi-optimal
convergence rates. Experimentally, we investigate the approximation quality of the
different variants.

1 Introduction

Kernel methods are useful tools for constructing surrogate models using scattered
data [9]. One important task for constructing these surrogates is to determine where
a target function should be sampled to obtain sparse surrogates with high accuracy.
As it was recently shown for scalar-valued kernels, the data sites determined
by the P-greedy algorithm result in quasi-optimal decay rates [8]. When dealing
with vector-valued target functions an approximation approach based on matrix-
valued kernels is beneficial as correlations in the target function components can
be incorporated in contrast to an approach using scalar-valued kernels for each
individual target function component.

In Sect. 2 we give a short introduction to matrix-valued kernels. We extend
the scalar P-greedy procedure to the matrix-valued case in Sect. 3 and continue
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in Sect. 4 by showing that the proposed variants result in approximations which
maintain the same quasi-optimal convergence rates. We conclude with a numerical
example highlighting the different benefits of the variants.

2 Approximation with Matrix-Valued Kernels

We give a short overview on matrix-valued kernels. For a more extensive introduc-
tion to this topic we refer to [1, 5, 6]. A positive definite matrix-valued kernel is a
bivariate function K : �×� ⊂ R

d ×R
d → R

m×m such that K(x, y) = K(y, x)T

for any x, y ∈ � and for all pairwise distinct point sets X = {x1, . . . , xn} ⊂ �,
n ∈ N the block matrix A ∈ R

mn×mn given by blocks

Aij := K(X,X)ij := K(xi, xj ) ∈ R
m×m (1)

is positive semi-semidefinite. In particular K(x, x) is symmetric and positive semi-
definite for all x ∈ �. Each such kernel corresponds to a Hilbert space H of vector-
valued functions f : � → R

m, the so called Reproducing Kernel Hilbert space
(RKHS), which can be uniquely characterised by the following properties

K(·, x)α ∈ H and 〈f,K(·, x)α)〉H = f (x)T α, for all f ∈ H, x ∈ �,α ∈ R
m.

(2)

Any subspace N(X) := span{K(·, x)α|x ∈ X,α ∈ R
m} consisting of the span of

columns of the evaluation of the kernel at finite point sets X ⊂ � is then again
a RKHS and its corresponding kernel KN(X) can be evaluated using K and the
orthogonal projection %N(X) : H→ N(X), i.e.

KN(X)(x, y)α = (%N(X)K(·, y)α)(x), for all x, y ∈ �,α ∈ R
m. (3)

With the gram matrix A = K(X,X) this can alternatively be expressed as

KN(X)(x, y) = K(x,X)A−1K(X, y), (4)

where K(x,X) ∈ R
m×nm is a concatenation of the matrices K(x, x̂), x̂ ∈ X.

In a similar fashion we can express the best approximation of f in N(X), which
coincides with the interpolant of f on X, by

%N(X)f (x) = K(x,X)A−1f (X). (5)

Furthermore, the reproducing property (2) leads to a bound on the pointwise error
between any f ∈ H and its best approximation in N(X) in terms of the Power-
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function matrix PN(X)(x) = K(x, x)−KN(X)(x, x) via

(
f (x)−%N(X)f (x)

)T
α ≤

(
αT PN(X)(x)α

)1/2 ‖f ‖H for all x ∈ �,α ∈ R
m.

Depending on the choice of α this leads to bounds in the different p-norms:

‖f (x)−%N(X)f (x)‖1 ≤ trace(PN(X)(x))
1/2‖f ‖H, (6)

‖f (x)−%N(X)f (x)‖∞ ≤ (max diag(PN(X)))
1/2‖f ‖H, (7)

‖f (x)−%N(X)f (x)‖2 ≤ (λmax(PN(X)(x)))
1/2‖f ‖H. (8)

In the scalar case, i.e. m = 1 all these bounds are equivalent and P1/2
N(X) is equal to

the so called Power-function.

Remark 1 Instead of all columns of K(·, x) one may also only consider certain
directions K(·, x)α. This leads to subspaces of the form

N = span{K(·, xi)αi |(xi, αi) ∈ �×R
m}

for a finite set of tuples {(xi, αi)}ni=1. In this case similar results for (3)–(8) hold,
where the blocks of A given in (1) are replaced by

Aij = αT
i K(xi, xj )αj .

3 Matrix P-greedy Algorithms

In this section we want to address how the interpolation points X can be chosen. To
this end we employ P -greedy algorithms which have been shown to result in quasi-
optimal approximation rates for the approximation of scalar-valued functions [8].
The basic principle of the P-greedy algorithm using matrix-valued kernels (Matrix
P-greedy) is outlined in Algorithm 1.

Algorithm 1 Matrix P-greedy Algorithm
Require: finite sampling of the input domain �N ⊂ �, kernel K : � × � → R

m×m, initial
approximation space N, error indicator function E, tolerance ε > 0, space extension routine
“extend”
while max

x∈�N

E(PN(x)) ≥ ε do

x∗ = arg max
x∈�N

E(PN(x))

N = extend(N,K(·, x∗))
end while
return N
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For the error indicator functionE : Rm×m → R we propose, based on the bounds
given in (6)–(8), the following three variants

E1(B) := 1

m
trace(B), E∞(B) := max diag(B), E2(B) := λmax(B). (9)

For the extension routine we select

extendfull(N,K(·, x)) := N+ colspan(K(·, x)),
extendeig(N,K(·, x)) := N+ span(K(·, x)αmax),

extenddiag(N,K(·, x)) := N+ span(K(·, x)emax),

where αmax denotes an eigenvector to the largest eigenvalue and emax the standard
basis vector to the largest diagonal value of PN(x), respectively.

As the name suggests extendfull extends the approximation space by an m

dimensional subspace, which leads to a rapid increase in the dimension of the
approximation space for large m. However, all components of the target function
data f (X) are incorporated into the approximation, see (5). In contrast, extendeig
and extenddiag increase the dimension only by 1. Therefore, when approximating
a target function with a space constructed by extendeig or extenddiag, this might
require a larger number of individual target function evaluations compared to a
space construction by extendfull. This happens as only projections of the target
function data f (xi)

T αi are used in the construction of the approximant. We will
consider all possible combinations and denote the combined routine as greedyp,type
with p ∈ {1, 2,∞} and type ∈ {full, eig, diag}.

4 Convergence Rates for k-Dimensional Greedy Space
Extensions

The different P-greedy variants described in Sect. 3 can be interpreted as weak
greedy algorithms [2] which enrich the approximation space with a subspace of
dimension k ≥ 1 in the following sense: Assume that H is a Hilbert space and
let F ⊂ H be a compact set. Starting with an initial space V0 the weak greedy
with constant 0 < γ ≤ 1 and subspace increment dimension k iteratively selects a
sequence (Wn)n∈N of k-dimensional subspaces in the following way:

1. Select Wn ⊂ span{F}, dim(Wn) = k such that

max
f∈Wn

‖f −%Vn−1f ‖H ≥ γ max
f∈F

‖f −%Vn−1f ‖H
.
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2. Extend the space Vn := Vn−1 +Wn.

Building on the results provided in [3] for the case of k = 1, the approximation
quality of the best approximation in Vn with dimension N = n · k can be related to
the Kolmogorov N-width dN(F) given by

dN(F) = inf
N

sup
f∈F

‖f −%Nf ‖H

where the infimum is taken over all N-dimensional subspaces N ⊂ H.

Theorem 1 Let (Wn)n∈N be the sequence of subspace increments and (Vn)n∈N0 be
the sequence of spaces chosen by a weak greedy algorithm with constant γ . Let

σn := max
f∈F

‖f −%Vnf ‖H

and dN(F) be the Kolmogorov N-width for the set F then it holds with C0, c0, α > 0

1. If dN(F) ≤ C0N
−α then σn ≤ C1N

−α with C1 := 27α+1kαγ−2C0
2. If dN(F) ≤ C0e

−c0N
α

then σn ≤ √
2C0γ

−1e−c1N
α

with c1 = 2−1−4αk−αc0.

Proof Let

g1
n := arg max

f∈Wn

‖gi
n −%Vn−1g

i
n‖H

and g2
n, . . . , g

k
n such that g1

n, . . . , g
k
n form a Basis of Wn. Let now {ĝi

n|n ∈ N, i =
1, . . . , k} denote the orthonormal system generated by applying the Gram-Schmidt
orthonormalization to {g1

1, g
2
1, . . . , g

k
1, g

1
2 , . . . }. Using the results provided in [3] it

is sufficient to show that the infinite lower-triangular matrix A given by

A := (aij )
∞
i,j=0, ai,j = 〈g1

i , ĝ
1
j 〉H

meets the following conditions

1. The diagonal elements satisfy γ σn−1 ≤ |ann| ≤ σn−1.

2. For every M ≥ n, one has
M∑

j=n

a2
Mj ≤ σ 2

n−1.

By construction of ĝ1
n we have

ĝ1
n =

(
g1
n −%Vn−1g

1
n

)
/

∥
∥
∥g1

n −%Vn−1g
1
n

∥
∥
∥

and therefore

ann = 〈g1
n, ĝ

1
n〉H =

∥
∥
∥g1

n −%Vn−1g
1
n

∥
∥
∥ .
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Hence the first condition is satisfied by definition of σn and choice of g1
n:

γ σn−1 = γ max
f∈F

‖f −%Vn−1f ‖H ≤ ‖g1
n −%Vn−1g

1
n‖H ≤ max

f∈F
‖f −%Vn−1f ‖H = σn−1.

Since the sequence of spaces is nested, i.e. Vn ⊂ Vn+1 we have

M∑

j=n

a2
Mj =

M∑

j=n

〈g1
M, ĝ1

j 〉2H ≤
M∑

j=n

m∑

i=1

〈g1
M, ĝi

j 〉2H

=
∥
∥
∥g1

M −%Vn−1g
1
M

∥
∥
∥

2 ≤ max
f∈F

‖f −%Vn−1f ‖H = σ 2
n−1.

this concludes the proof. ��
To apply the results of Theorem 1 we now only have to verify that the Matrix P-

greedy algorithm with the indicator functions given in (9) and the different extension
routines is indeed a weak greedy with k-dimensional increments. To this end let
(Vn)n∈N denote the nested sequence of spaces selected by the Matrix P-greedy
algorithm. We first note that in our case we have F = {K(·, x)α|x ∈ �,α ∈
R

m, ‖α‖ = 1} and, therefore, by applying (3)

σn = max
f∈H

‖f −%Vnf ‖ = max
(x,α)∈�×Rm,‖α‖=1

‖K(·, x)α −KVn(·, x)α‖

= max
(x,α)∈�×Rm,‖α‖=1

(αT (K(x, x)−KVn(x, x))α)
1/2

= max
x∈�(λmax(PVn(x)))

1/2.

We immediately conclude, that greedy2,full and greedy2,eig lead to a strong, i.e. γ =
1 greedy. For the remaining combinations we make use of the following inequality
chain for symmetric positive definite matrices B ∈ R

m×m

max diag(B) ≤ λmax(B) ≤ trace(B) ≤ mmax diag(B) ≤ mλmax(B),

which leads to γ ≥ m−2 in the remaining cases. Please note that the routine
extend1,eig is equivalent to the POD-greedy algorithm used in the context of reduced
basis approximation for which similar rates have been obtained [4].

Note that similar to [7] bounds on the Kolmogorov N-width can be obtained for
matrix-valued kernels.
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5 Numerical Experiment

For a test case we consider the domain � = [−1, 1] and the kernel K : �× � →
R

10×10 given by

K(x, y) = e−4‖x−y‖2
A1 + e−10‖x−y‖2

A2

for two random, symmetric positive definite matrices A1, A2 ∈ R
10×10. As a target

function f ∈ H we consider

f (x) =
10∑

i=1

K(x, xi)αi ,

where we chose 10 randomly selected points x1, . . . , x10 ∈ � and coefficient
vectors α1, . . . , α10 ∈ R

10. For a first test, we run the Matrix P-greedy for the
different indicator functions and the full extension routine for 30 iterations. The
decay of the maximum indicator function values are depicted in Fig. 1. As can be
seen, the maximum values decay at a similar rate. However, using E2 results in
a higher computational effort, as in every iteration multiple eigenvalue problems
have to be solved which further necessitates the entire Power-function matrix P to
be evaluated. In contrast E1 and E∞ only rely on the diagonal values of P and no
eigenvalue problems have to be solved.

0 10 20 30
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101

# of  iterations

In
di

ca
to

rv
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ue

Indicator function value decay

trace
eig

diag

Fig. 1 Decay of the maximum indicator function value with respect to the number of iterations of
the Matrix P-greedy
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in the Euclidean norm

full eig diag

Fig. 2 Error decay rates with respect to the approximation space dimension (left) and number of
function evaluations (right)

We thus decide on using E1 for investigating the performance of the dif-
ferent extension routines. We compute sequences of interpolants (sn1,full)1≤n≤30,
(sn1,eig)1≤n≤300 and (sn1,diag)1≤n≤300 as well as the sequences of errors in the squared
native space norm

�n
1,type = ‖f − sn1,type‖2

H, type ∈ {full, eig, diag}.

Recall that for the full extension routine the approximation space dimension is
increased by 10 in every iteration. Hence the sequences for the other extension
routines have 300 = 30 · 10 elements to result in the same target dimension
N = k · n. The error decay rates with respect to the approximation space dimension
and the number of target function evaluations necessary for the construction of the
interpolant are depicted in Fig. 2. As we can see the quality of the interpolant
is almost identical for all extension methods, However, extendeig and extenddiag
require 239 and 246 unique function evaluation, respectively in contrast to extendfull
which only requires 30. Thus, extendfull seems to be the preferred choice, if the
target function is expensive to evaluate.
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Efficient Solvers for Time-Periodic
Parabolic Optimal Control Problems
Using Two-Sided Bounds of Cost
Functionals

Monika Wolfmayr

Abstract This article is devoted to presenting efficient solvers for time-periodic
parabolic optimization problems. The solvers are based on deriving two-sided
bounds for the cost functional. Here, we especially employ the time-periodic nature
of the problem discussed in order to obtain fully computable and guaranteed upper
and lower bounds for the cost functional. We present the multiharmonic finite
element method as a proper approach for deriving a discretized solution of the time-
periodic problem. The multiharmonic finite element functions can be used as initial
guess for the arbitrary functions in the upper and lower bounds, which then can be
minimized and maximized, respectively, in order to obtain an approximate solution
of any desired accuracy. Finally, new numerical results are presented in order to
show the efficiency of the method discussed also in practice.

1 Introduction

This article is devoted to the presentation of efficient solvers which are based on the
time-periodic setting of the parabolic optimal control problem. For that, two-sided
bounds for the cost functional are derived, which are guaranteed, fully computable
and sharp. The two-sided bounds provide a new formulation of the optimization
problem, since the minimization and maximization of the upper and lower bounds,
respectively, or alternatively the direct minimization of their difference lead to the
optimal value of the optimal control problem. The a posteriori estimates are of
functional type. Functional a posteriori error estimates for parabolic problems were
first presented in [12] and [3]. Later first a posteriori estimates of functional type for
elliptic optimal control problems were derived in [2], for time-periodic problems
in [7] and for time-periodic optimal controls after that in [8]. A new technique for
deriving lower bounds for cost functionals was discussed in [13] by generalizing
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ideas from [10]. This article presents now upper as well as lower bounds which
are called majorants and minorants for the cost functional and shows how efficient
solvers can be build up in a functional setting for time-periodic parabolic problems.
Further details as well as the discussion on a second optimal control problem can be
found in [14].

The article is divided into the following parts: In Sect. 2, the optimal control
problem as well as some Hilbert spaces are introduced in order to establish a proper
functional setting for the problem discussed. The two-sided bounds are presented in
Sect. 3. The discussion of the multiharmonic finite element method for the time-
periodic problem is subject matter of Sect. 4, where also a short review on the
preconditioned minimal residual method can be found. Finally, in Sects. 5 and 6,
numerical results and conclusions are presented, respectively.

2 Time-Periodic Parabolic Optimal Control Problem

The time-periodic problem discussed in this article is formulated in a functional
space setting. For that let us introduce the following Hilbert spaces first: H 1,0(Q) :=
{u ∈ L2(Q) : ∇u ∈ [L2(Q)]d},H 0,1(Q) := {u ∈ L2(Q) : ∂tu ∈
L2(Q)},H 1,1(Q) := {u ∈ L2(Q) : ∇u ∈ [L2(Q)]d, ∂tu ∈ L2(Q)}, where
the d + 1-dimensional space-time domain Q is defined by Q := � × (0, T ) for
d = {1, 2, 3} with � ⊂ R

d and the given time interval (0, T ). The boundary of �
is defined by � := ∂�, on which homogeneous Dirichlet boundary conditions are
prescribed. The lateral surface of Q is denoted by 0 := �× (0, T ). The model cost
functional in this article is given by

J(y, u) := 1

2
‖y − yd‖2

L2(Q)
+ λ

2
‖u‖2

L2(Q)
(1)

being minimized with respect to (w.r.t.) (y, u) subject to the PDE-constraints

∂ty(x, t) −�y(x, t) = u(x, t) (x, t) ∈ Q, (2)

y(x, t) = 0 (x, t) ∈ 0, (3)

y(x, 0) = y(x, T ) x ∈ �. (4)

Here, y denotes the state and u the control function, and the target function yd ∈
L2(Q) is a given, not necessarily time-periodic desired state. The cost parameter in
the cost functional has been denoted by λ > 0.

The boundary and time-periodic conditions are included in the Hilbert spaces as
follows: H 1,0

0 (Q) := {u ∈ H 1,0(Q) : u = 0 on 0},H 0,1
per (Q) := {u ∈ H 0,1(Q) :

u(0) = u(T ) in �}. We also introduce the following space for the flux functions:
H(div,Q) := {τ ∈ [L2(Q)]d : ∇ · τ (·, t) ∈ L2(�) for a.e. t ∈ (0, T )}, and the
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space H
1, 1

2
per (Q) := {u ∈ H 1,0(Q) : ∥∥∂1/2

t u
∥
∥
L2(Q)

< ∞}, with the norm defined in

Fourier space as
∥
∥∂1/2

t u
∥
∥2
L2(Q)

:= T
2

∑∞
k=1 kω‖uk‖2

L2(�)
. We use the Fourier series

representation with frequency ω = 2π/T and time-period T in the following form:

y(x, t) := yc
0(x)+

∞∑

k=1

(
yc
k(x) cos(kωt)+ ys

k(x) sin(kωt)
)
, (5)

where the Fourier coefficients yc
0 and yk := (yc

k, y
s
k)

T , k ∈ N, with κ̃(kωt) =
cos(kωt) or κ̃(kωt) = sin(kωt) depending if κ = c or κ = s, are given by

yc
0(x) :=

1

T

∫ T

0
y(x, t) dt, yκ

k (x) :=
2

T

∫ T

0
y(x, t)κ̃(kωt) dt.

3 Two-Sided Bounds for the Optimal Control Problem

In this section, we present the upper and lower bounds for the cost functional, which
are guaranteed, fully computable and sharp. Direct minimization and maximization
can be applied on the majorants and minorants as an efficient strategy leading to the
exact solution of the optimal control problem.

3.1 Guaranteed Upper Bound for the Cost Functional

The upper bound for the cost functional (1) is derived by first obtaining an estimate

for the approximation error in the H
1, 1

2
per (Q)-seminorm |y|2

1, 1
2
:= ‖∇y‖2

L2(Q)
+

‖∂1/2
t y‖2

L2(Q)
for problem (2)–(4) as shown in [7] and [8]. It is given by

|y(v)− η|1, 1
2
≤ 1

μ1

(
CF ‖R1(η, τ , v)‖L2(Q) + ‖R2(η, τ )‖L2(Q)

)
, (6)

with μ1 = 1/
√

2, Friedrichs’ constant CF > 0 and the arbitrary functions η ∈
H

1,1
0,per(Q), τ ∈ H(div,Q) and v ∈ L2(Q). The residual functions are defined as

R1(η, τ , v) := ∂tη−∇ ·τ−v and R2(η, τ ) := τ−∇η. The function τ represents an
image of the flux. Using estimate (6) as well as Cauchy-Schwarz’ and Friedrichs’
inequalities, we can derive the following fully computable, guaranteed and sharp
estimate:

J(y(v), v) ≤ J⊕(α, β; η, τ , v) ∀v ∈ L2(Q) ∀α, β > 0 (7)
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with α, β coming from applying Young’s inequality, where the majorant is given by

J⊕(α, β; η, τ , v) := 1+ α

2
‖η − yd‖2

L2(Q)
+ (1+ α)(1 + β)C2

F

2αμ1
2 ‖R2(η, τ )‖2

L2(Q)

+ (1+ α)(1 + β)C4
F

2αβμ1
2 ‖R1(η, τ , v)‖2

L2(Q)
+ λ

2
‖v‖2

L2(Q)
.

(8)

The majorant is sharp:

inf
η∈H 1,1

0,per(Q),τ∈H(div,Q),

v∈L2(Q),α,β>0

J⊕(α, β; η, τ , v) = J(y(u), u). (9)

3.2 Guaranteed Lower Bound for the Cost Functional

The guaranteed and fully computable minorant for the cost functional is obtained
by estimating approximation errors in a similar way as for the majorant for arbitrary
functions and applying Cauchy-Schwarz’ and Friedrichs’ inequalities leading to the
estimate

J(y(u), u) ≥ J7(η, ζ, τ ,ρ) (10)

for all η, ζ ∈ H
1,1
0,per(Q) and τ ,ρ ∈ H(div,Q) with the supremum being attained

for the exact solution of the optimal control problem

sup
η,ζ∈H 1,1

0,per(Q),τ,ρ∈H(div,Q)

J7(η, ζ, τ ,ρ) = J(y(u), u). (11)

The function ρ represents an image of the flux for the adjoint function p(x, t),
which is the solution of the adjoint equation −∂tp − �p = y − yd appearing in
the optimality equations of the optimal control problem discussed. The arbitrary
function ζ ∈ H

1,1
0,per(Q) is an image of the adjoint and can in practice be chosen as
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its approximation. Here, the minorant J7 is defined as

J7(η, ζ , τ ,ρ) := 1

2
‖η − yd‖2

L2(Q)
−
∫

Q

(
∇η · ∇ζ + ∂tη ζ + λ−1ζ 2

)
dx dt

− C2
F

μ1
2λ

(
CF ‖R3(ζ,ρ, η)‖L2(Q) + ‖R4(ζ,ρ)‖L2(Q)

)2 + 1

2λ
‖ζ‖2

L2(Q)

− 1

μ1
(CF ‖R1(η, τ ,−λ−1ζ )‖L2(Q) + ‖R2(η, τ )‖L2(Q))

× (
CF ‖R3(ζ,ρ, η)‖L2(Q) + ‖R4(ζ,ρ)‖L2(Q)

)
. (12)

The new residual functions are defined as R3(ζ,ρ, η) := η−yd+∂tζ+∇ ·ρ and
R4(ζ,ρ) := ρ − ∇ζ . They reflect naturally the adjoint equation of the optimality
system of the optimal control problem.

4 Multiharmonic Finite Element Discretization and the
Preconditioned Minimal Residual Method

Since the optimal control problem is time-periodic, the multiharmonic finite element
method is a natural approach for its discretization as well as an initial guess for
the functional a posteriori estimates. The idea of the multiharmonic finite element
method is to expand the functions into Fourier series in time, truncate the Fourier
series and to approximate the Fourier coefficients by the finite element method for
instance similar as discussed in [1]. We note also that it is enough that the functions
as for instance the given desired state are taken from L2(Q) in order to expand
them into Fourier series with Fourier coefficients from L2(�). Moreover, the cost
functional (1) can be written w.r.t. the Fourier modes as follows

J(y, u) = TJ0(y
c
0, u

c
0)+

T

2

∞∑

k=1

Jk(yk,uk), (13)

where J0(y
c
0, u

c
0) := 1

2‖yc
0 − yc

d0‖2
L2(�)

+ λ
2 ‖uc

0‖2
L2(�)

and Jk(yk,uk) :=
1
2‖yk − ydk‖2

L2(�)
+ λ

2‖uk‖2
L2(�)

. After choosing the truncation index N ∈ N

the Fourier coefficients yk := (yc
k, y

s
k)

T ,∈ H 1
0 (�) × H 1

0 (�) (see also (5)) are
approximated by finite element functions ykh := (yc

kh, y
s
kh)

T ∈ Vh × Vh with
the conforming finite element space Vh := span{φ1, . . . , φn}, where piecewise
linear and continuous elements are used as basis {φi(x) : i = 1, 2, . . . , nh},
n := nh = dimVh = O(h−d), the discretization parameter h, and the regular
triangulation Th. Altogether the multiharmonic finite element functions can be
denoted by yNh(x, t) := yc

0h(x)+
∑N

k=1(y
c
kh(x) cos(kωt)+ys

kh(x) sin(kωt)). The
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choice of the truncation index N depends on the smoothness of the given data w.r.t.
time. The two-sided bounds presented in this paper provide the framework for a
more detailed analysis on the choice of N and also for the discussion of an adaptive
method in time. However, this is not subject matter of this work, but is discussed in
more detail in [14] as well as in a successive paper. Similar to (13) the majorant and
minorant can be represented w.r.t. the Fourier modes given for the majorant by

J⊕
0 := 1+ α0

2
‖yc

0h − yd
c
0‖2

L2(�)
+ 1

2λ
‖pc

0h‖2
L2(�)

+ (1+ α0)(1+ β0)C
2
F

2α0μ1
2

‖R2
c
0‖2

L2(�)
+ (1+ α0)(1+ β0)C

4
F

2α0β0μ1
2

‖R1
c
0‖2

L2(�)
,

(14)

where R1
c
0 := ∇ · τ c

0h − λ−1pc
0h, R2

c
0 := τ c

0h −∇yc
0h, and

J⊕
k := 1+ αk

2
‖ykh − yd k‖2

L2(�)
+ 1

2λ
‖pkh‖2

L2(�)

+ (1+ αk)(1+ βk)C
2
F

2αkμ1
2 ‖R2k‖2

L2(�)
+ (1+ αk)(1+ βk)C

4
F

2αkβkμ1
2 ‖R1k‖2

L2(�)
,

(15)

where R1k := (R1
c
k,R1

s
k)

T := (−kω ys
kh +∇ · τ c

kh − λ−1pc
kh, kω yc

kh +∇ · τ s
kh −

λ−1ps
kh)

T and R2k := (R2
c
k,R2

s
k)

T := (τ c
kh − ∇yc

kh, τ
s
kh − ∇ys

kh)
T . Then the

overall majorant can be written as

J⊕(αN+1,βN ; yNh, pNh, τNh) := T J⊕
0 + T

2

N∑

k=1

J⊕
k +

1+ αN+1

2
EN,

(16)

where we have introduced αN+1 := (α0, . . . , αN+1)
T and βN := (β0, . . . , βN)T ,

and the truncation’s remainder termEN := T
2

∑∞
k=N+1

(
‖yc

dk
‖2
L2(�)

+ ‖ys
dk
‖2
L2(�)

)

can always be computed for any accuracy because the desired state is known.
Analogously as (16) for the majorant, we can formulate the minorant w.r.t. the
Fourier modes as

J7(yNh, pNh, τNh,ρNh) := T J7
0 +

T

2

N∑

k=1

J7
k +

EN

2
(17)

again with introducing residual functions corresponding to the Fourier modes. The
flux functions τ c

0h, ρc
0h and τ kh, ρkh, for all k = 1, . . . , N , are reconstructed

by lowest-order Raviart-Thomas elements mapping L2-functions to H(div,�) (as
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presented in [11]) yielding the overall flux functions τNh, ρNh. Minimizing the
majorant w.r.t. positive parameters αk , βk leads to optimized parameters αN+1, βN .

In order to compute the approximate solution which serves as a first guess for the
majorants and minorants, we use a robust preconditioned minimal residual method
on the discretized problem, which is a system of linear equations with a saddle
point structure. The structure comes from the saddle point nature of the optimality
equations. Proper fast solvers for the linear systems are discussed in more detail in
[4, 6, 9] as well as in [14].

5 Numerical Results

In this section, we present new numerical results for the optimal control problem
(1)–(4). The computations have been performed in C++ on a laptop with Intel(R)
Core(TM) i5-6267U CPU @ 2.90 GHz processor and 16 GB 2133 MHz LPDDR3
memory. We chose the 2-dimensional computational domain � = (0, 1)2. This
leads to the Friedrichs constant CF = 1/(

√
2π). The frequency is chosen as ω = 1

and T = 2π/ω is the corresponding time period. The multiharmonic finite element
approximations are used for η, ζ and τ ,ρ and RT 0-extensions (lowest-order stan-
dard Raviart-Thomas) are used for the fluxes leading to averaged fluxes being from
H(div,�). A preconditioned minimal residual method was used with 8 iteration
steps in all computations using an algebraic multilevel preconditioner with 4 inner
iterations as discussed in [5, 6]. All computational times tsec in seconds include
the CPU times for computing the majorants and minorants, which are significantly
smaller compared to the initialization and applying the preconditioned minimal
residual method. In this numerical example, we have chosen a desired state, which
is non-periodic in time however from L2(Q), given by yd(x, t) = et (−0.2(1 +
t) cos(t) + ((−2 + 4π4t)0.2 + t) sin(t)) sin(x1π) sin(x2π), for which the exact
solution is known being the state function y(x, t) = et t sin(t) sin(x1π) sin(x2π).
The cost parameter is chosen as λ = 0.1. The efficiency indices are defined

as I
J⊕0
eff := J⊕

0 /J0, I
J7

0
eff := J7

0 /J0, I
J⊕k
eff := J⊕

k /Jk , I
J7k
eff := J7

k /Jk ,

I
J,0
eff := J⊕

0 /J7
0 and I

J,k
eff := J⊕

k /J7
k . Tables 1 and 2 show the numerical results

for the Fourier modes k = 0 and k = 1 computed on meshes of different sizes

Table 1 Minorant J7
0 , majorant J⊕

0 and their efficiency indices computed on meshes of different
sizes

mesh t sec J7
0 I

J70
eff J⊕

0 I
J⊕0
eff I

J,0
eff

16× 16 0.02 8.89e+06 0.89 9.92e+05 1.00 1.12

32× 32 0.06 8.97e+06 0.90 9.98e+06 1.00 1.11

64× 64 0.26 8.98e+06 0.90 9.99e+06 1.00 1.11

128× 128 1.04 8.99e+06 0.90 9.99e+06 1.00 1.11

256× 256 4.10 8.99e+06 0.90 9.99e+06 1.00 1.11
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Table 2 Minorant J7
1 , majorant J⊕

1 and their efficiency indices computed on meshes of different
sizes

mesh t sec J7
1 I

J71
eff J⊕

1 I
J⊕1
eff I

J,1
eff

16× 16 0.02 2.40e+07 0.92 2.62e+07 1.01 1.09

32× 32 0.06 2.65e+07 0.90 2.95e+07 1.00 1.11

64× 64 0.27 2.66e+07 0.90 2.95e+07 1.00 1.11

128× 128 1.07 2.66e+07 0.90 2.95e+07 1.00 1.11

256× 256 4.25 2.66e+07 0.90 2.95e+07 1.00 1.11

Table 3 Overall minorant and majorant, the respective minorants and majorants corresponding to
the Fourier modes, and their efficiency indices computed on a mesh of size 256 × 256

Fourier mode t sec J7 I
J7
eff J⊕ I

J⊕
eff I

J
eff

k = 2 4.18 8.51e+06 0.90 9.43e+06 1.00 1.11

k = 3 4.10 2.24e+06 0.90 2.47e+06 1.00 1.11

k = 4 4.08 7.61e+05 0.91 8.37e+05 1.00 1.10

k = 5 4.25 3.21e+05 0.91 3.51e+05 1.00 1.09

k = 6 4.16 1.58e+05 0.92 1.71e+05 1.00 1.09

k = 7 4.16 8.63e+04 0.92 9.32e+04 1.00 1.08

k = 8 4.13 5.11e+04 0.93 5.49e+04 1.00 1.07

Overall (N = 8) − 1.79e+08 0.90 1.98e+08 1.00 1.11

ranging between 16 × 16 and 256 × 256. Table 3 presents the numerical results
computed on the 256×256 mesh for different Fourier modes (from k = 2 to k = 8)
and the overall minorant and majorant for the full cost functional. The truncation’s
reminder term for a truncation index N = 8 for the given desired state of this
example is given by E8 = 786,901.

6 Conclusions

The derived two-sided bounds are guaranteed, fully computable and sharp. They
provide an alternative way to be used as subject of direct minimization (or
maximization) in order to obtain the solution of the optimization problem. The
cost functional discussed in this article is standard and is used in many real life
applications. The minimization is w.r.t. a state and control function and the target is
a given desired state. A more detailed discussion including theorems and proofs for
the model problem of this article including the presentation of additional numerical
tests can be found in [14]. Moreover, [14] discusses another cost functional, where
the target is a given desired gradient.
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Finite Element Approximation
of a System Coupling Curve Evolution
with Prescribed Normal Contact to a
Fixed Boundary to Reaction-Diffusion
on the Curve

Vanessa Styles and James Van Yperen

Abstract We consider a finite element approximation for a system consisting of the
evolution of a curve evolving by forced curve shortening flow coupled to a reaction-
diffusion equation on the evolving curve. The curve evolves inside a given domain
� ⊂ R

2 and meets ∂� orthogonally. We present numerical experiments and show
the experimental order of convergence of the approximation.

1 Introduction

We consider a curve �(t) evolving by forced curve shortening flow inside a given
bounded domain � ⊂ R

2, with the forcing being a function of the solution,
w : �(t) → R, of a reaction-diffusion equation that holds on �(t), such that

v = κ + f (w) on �(t), t ∈ (0, T ], (1)

∂•t w = wss + κ v w + g(v,w) on �(t), t ∈ (0, T ], (2)

subject to the initial data �(0) = �0 and w(·, 0) = w0 on �0.
Here v and κ respectively denote the normal velocity and mean curvature of �(t),

corresponding to the choice n of a unit normal, s is the arclength parameter on �(t)

and ∂•t w := wt + v ∂w
∂n denotes the material derivative of w. In addition we impose

that the curve meets the boundary ∂� orthogonally. To this end we assume that ∂�
is given by a smooth function F such that

∂� = {p ∈ R
2 : F(p) = 0} and |∇F(p)| = 1 ∀ p ∈ ∂�.
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Coupling the parametrisation of (1) and (2) that is presented in [1] for the setting
in which �(t) is a closed curve, with the formulation of (1) presented in [5] for
the setting in which �(t) meets the boundary ∂� orthogonally, yields the following
system:

αxt + (1− α)(xt · n)n = xρρ
|xρ |2 + f (w)n, (ρ, t) ∈ I× (0, T ) (3)

wt − (xt · τ ) wρ

|xρ | −
1

|xρ |
(

wρ

|xρ |
)

ρ

− κ v w = g(v,w), (ρ, t) ∈ I× (0, T ) (4)

x(ρ, 0) = x0(ρ), w(ρ, 0) = w0(ρ) ρ ∈ I (5)

w(ρ, t) = wb, (ρ, t) ∈ {0, 1} × [0, T ] (6)

F(x(ρ, t)) = 0, (ρ, t) ∈ {0, 1} × [0, T ] (7)

(xρ(ρ, t) · ∇⊥F(x(ρ, t)) = 0, (ρ, t) ∈ {0, 1} × [0, T ]. (8)

Here α ∈ (0, 1], I := (0, 1), x(·, t) : [0, 1] → R
2, w(ρ, t) := w(x(ρ, t), t),

(ρ, t) ∈ [0, 1]×[0, T ], and the unit tangent and unit normal to �(t) are respectively
given by τ = xs = xρ

|xρ | and n = τ⊥ where (·)⊥ denotes counter-clockwise rotation

by π
2 .

The formulation of curve shortening flow in the form of (3) for a closed curve in
R

2 was presented and analysed in [8], where the DeTurck trick is used in coupling
the motion of the curve to the harmonic map heat flow, with the parameter α ∈ (0, 1]
being such that 1/α corresponds to the diffusion coefficient in the harmonic map
heat flow. Setting α ∈ (0, 1] introduces a tangential part in the velocity which,
at the numerical level, gives rise to a good distribution of the mesh points along
the curve. Setting α = 1 one recovers the formulation introduced and analysed
in [4], while formally setting α = 0 yields the approach introduced in [3]. In
[6] the authors derive finite element approximations of a simplified version of
the parametric coupled system (3)–(8), and two related models. In particular, the
evolution law for the parametric system derived in [6], can be obtained from (3) by
setting α = 1, F(x, y) = |x| − 1, and considering a slightly different formulation
of the reaction-diffusion equation (4). In [1] the authors prove optimal error bounds
for a fully discrete finite element approximation of the coupled system (3)–(5) for
the case where �(t) is a closed curve in R

2. While in [9] optimal error bounds
are presented for a semi-discrete finite element approximation of an alternative
formulation, which is introduced and analysed in [7], of the coupled system (3)–(5),
for the case where �(t) is a closed curve in R

2. Setting α = 1 and f (w) = 0 in (3)
and coupling the resulting equation to (7) and (8) gives rise to the model presented
and analysed in [5], in which optimal order error bounds for a semi-discrete finite
element approximation of curve shortening flow with a prescribed normal contact to
a fixed boundary are presented. In [2] the authors propose parametric finite element
approximations of combined second and fourth order geometric evolution equations
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for curves that are connected via triple or quadruple junctions or that intersect
external boundaries.

2 Weak Formulation and Finite Element Approximation

For a weak formulation of (3) we multiply it by |xρ |2ξ , where ξ ∈ [H 1(I)]2 is a test
function, integrate in space, use integration by parts and (8) to obtain ∀ ξ ∈ [H 1(I)]2

(
|xρ |2 [α xt + (1− α)(xt · n) n ] , ξ

)
+ (

xρ, ξρ
)

= [
(xρ · ∇F(x))(ξ · ∇F(x))

]1
0 +

(
|xρ |2f (w) n, ξ

)
, (9)

where (·, ·) denotes the standard L2(I) inner product. For a weak formulation of (4)
we multiply it by |xρ | η, where η ∈ H 1

0 (I) is a time-independent test function,
integrate in space, use integration by parts and note that τ ρ = κ n |xρ | to obtain
∀ η ∈ H 1

0 (I)

d

dt

(|xρ |w, η
)+ (

ψ w, ηρ
)+

(
wρ

|xρ | , ηρ
)

= (|xρ | g(v,w), η
)
. (10)

Here ψ is the tangential velocity of �(t), such that the normal and tangential
velocities of �(t) are given by v = xt · n and ψ = xt · τ . We now introduce a
finite element approximation of (9) and (10). We first let 0 = t0 < t1 < · · · <

tN−1 < tN = T be a partition of [0, T ] with �tn := tn− tn−1. Next we partition the
interval I such that I = ∪J

j=1σj , where σj = (ρj−1, ρj ), with hj = ρj − ρj−1. We
set

V h := {χ ∈ C(I) : χ|σj is affine, j = 1, . . . , J } ⊂ H 1(I)

V h
0 := {χ ∈ V h : χ(ρj ) = 0, for j ∈ {0, J }}

and denote the standard Lagrange interpolation operator by Ih : C(I) → V h, where
(Ihη)(ρj ) = η(ρj ), for j = 0, . . . , J . We define the discrete inner product (η1, η2)

h

by

(η1, η2)
h :=

J∑

j=1

∫

σj

Ihj (η1 η2) dρ,

where Ihj = Ih|σj is the local interpolation operator. Our finite element approximation

of (9) and (10) then takes the form:
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Given (Xn−1,Wn−1 − wb) ∈ [V h]2 × V h
0 , find (Xn,Wn − wb) ∈ [V h]2 × V h

0
such that for all (ξh, ηh) ∈ [V h]2 × V h

0 we have

(
|Xn−1

ρ |2
[
αDtXn + (1− α)(DtXn ·Nn−1)Nn−1

]
, ξh

)h +
(

Xn
ρ, ξ

h
ρ

)

=
[
(Xn

ρ · ∇F(Xn))(ξh · ∇F(Xn))
]1

0
+
(
|Xn−1

ρ |2f (Wn−1)Nn−1, ξh
)h

(11)

Dt

[(
|Xn

ρ |Wn, ηh
)h]+

(
Wn

ρ

|Xn
ρ |

, ηhρ

)

+
(
1n Wn, ηhρ

)h

=
(
|Xn

ρ | g(V n,Wn−1), ηh
)h

(12)

with the additional boundary constraint

F(Xn
0) = F(Xn

J ) = 0. (13)

Here and in what follows we set Dt(a
n) := (an − an−1)/�tn and on σj , j =

1, . . . , J , we set Tn = Xn
ρ

|Xn
ρ | , Nn = (Tn)⊥, 1n = DtXn · Tn and V n = DtXn ·Nn.

Remark 1 In [5], rather than use the nonlinear scheme presented above to approx-
imate (3), (7) and (8), the authors present a linear scheme in which (7) is not
necessarily satisfied but is instead approximated through the relation 0 = d

dt
F (x) =

xt · ∇F(x).

3 Numerical Results

3.1 Solution of the Discrete System (11) and (13)

We solve the resulting system of nonlinear algebraic equations arising at each time
level from the approximation (11) and (13), with ξh = χj , j = 1, . . . , J − 1,
ξh = ∇⊥F(Xn)χ0 and ξh = ∇⊥F(Xn)χJ , using the following Newton scheme,
where for ease of presentation we set α = 1 and f (w) = 0:

Given Xn,i−1, with Xn,0 = Xn−1, we set Xn,i := Xn,i−1 + δi such that for
j = 1, . . . , J − 1, δi solves

1

2

(
qn−1
j + qn−1

j−1

) δij

�tn
−
(
δij−1 − 2δij + δij+1

)

= −1

2

(
qn−1
j + qn−1

j−1

)
Dt(X

n,i−1
j )+

(
Xn,i−1

j−1 − 2Xn,i−1
j + Xn,i−1

j+1

)
, (14a)
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1

2
qn−1

0

[(
δi0
�tn

· ∇⊥F(Xn,i−1
0 )

)

+
(
Dt(X

n,i−1
0 ) ·D2⊥F(Xn,i−1

0 ) δi0

)
]

(14b)

−
(
(δi1 − δi0) · ∇⊥F(Xn,i−1

0 )
)
−
(
(Xn,i−1

1 − Xn,i−1
0 ) ·D2⊥F(Xn,i−1

0 ) δi0

)

= −1

2
qn−1

0

(
Dt(X

n,i−1
0 ) · ∇⊥F(Xn,i−1

0 )
)
+
(
(Xn,i−1

1 − Xn,i−1
0 ) · ∇⊥F(Xn,i−1

0 )
)
,

1

2
qn−1
J−1

[(
δiJ
�tn

· ∇⊥F(Xn,i−1
J )

)

+
(
Dt(X

n,i−1
J ) ·D2⊥F(Xn,i−1

J ) δiJ

)
]

(14c)

−
(
(δiJ−1 − δiJ ) · ∇⊥F(Xn,i−1

J )
)
−
(
(Xn,i−1

J−1 − Xn,i−1
J ) ·D2⊥F(Xn,i−1

J ) δiJ

)

= −1

2
qn−1
J−1

(
Dt(X

n,i−1
J ) · ∇⊥F(Xn,i−1

J )
)
+
(
(Xn,i−1

J−1 − Xn,i−1
J ) · ∇⊥F(Xn,i−1

J )
)
,

(
∇F(Xn,i−1

0 ) · δi0
)
= −F(Xn,i−1

0 ) and
(
∇F(Xn,i−1

J ) · δiJ
)
= −F(Xn,i−1

J ), (14d)

where qn−1
j = |Xn−1

j+1 − Xn−1
j |2, D2⊥ =

(
−∂2

xy −∂2
yy

∂2
xx ∂2

xy

)

, and in an abuse of

notation we have redefined Dt from the previous section such that Dt(X
n,i−1
j ) :=

(Xn,i−1
j −Xn−1

j )/�tn. We adopt the stopping criteria max
j=0,J

|F(Xn,i
j )| ≤ τ for some

predetermined tolerance, τ .

3.2 Experimental Order of Convergence of (11) and (13)

We investigate the experimental order of convergence of (11) and (13) by monitoring
the following errors:

E1 := sup
n=0,...,N

‖Ih(xn
ρ)− Xn

ρ‖2
[L2(I)]2, E2 :=

N∑

n=1

�tn‖Dt(I
h(xn)− Xn)‖2

[L2(I)]2 .

In addition we show how the choice of α affects the size of the errors. In all examples
we use a uniform mesh size hJ = 1 and a uniform time step size �t = h2.

Example 1 In the first example we set T = 0.4 and � := R × R>0, such that ∂�
is given by F(x, y) = y. Taking �(0) to be a semi circle with radius 1, the explicit
solution is given by

x(ρ, t) = √
1− 2t (cos(πρ), sin(πρ))T .

In the left-hand plot in Fig. 1 we display: X0 in black, Xn at tn = 0.08k, k =
1, . . . , 5, in blue, and ∂� in red, while in Table 1 we display the values of Ei ,
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Fig. 1 Xn at tn = 0, 0.08, 0.16, 0.24, 0.32, 0.4 for the shrinking semi-circle (left), and tn =
0, 0.1, 0.2, 0.3, 0.4, 0.5 for the rotating diameter (right)

Table 1 Errors and eocs for the shrinking semi circle with α = 1 (left) and α = 0.5 (right)

J N E1 × 103 eoc1 E2 × 104 eoc2

10 40 4.672 – 20.16 –

20 160 0.3997 3.55 1.859 3.44

40 640 0.02726 3.87 0.1298 3.84

80 2560 0.001742 3.97 0.008347 3.96

J N E1 × 103 eoc1 E2 × 104 eoc2

10 40 1.589 – 8.884 –

20 160 0.1389 3.52 0.8302 3.42

40 640 0.009514 3.87 0.05798 3.84

80 2560 0.0006087 3.97 0.003729 3.96

i = 1, 2, for α = 1 (left) and α = 0.5 (right). For both values of α we see eocs close
to four, however we note that the errors for α = 0.5 are significantly smaller than
those for α = 1.

Example 2 In the second example we set T = 0.5 and � to be the unit disc with
centre (0, 0), such that ∂� is given by F(x, y) = 1

2

(
x2 + y2 − 1

)
. In contrast to the

previous example this example has been constructed so that |∇F(p)| = 1 is only

satisfied on ∂�. By setting f (ρ, t) = 4(ρ− 1
2 )

(1−2t )2+1
the explicit solution is given by

x(ρ, t) = 2(ρ − 1
2 )√

(1− 2t)2 + 1
(1− 2t, 1)T ,

such that �(t) is a rotating straight line that spans the diameter of �. In the right-
hand plot of Fig. 1 we display: X0 in black, Xn at tn = 0.1k, k = 1, . . . , 5, in blue,
and ∂� in red, while Table 2 displays the errors Ei , i = 1, 2, for α = 1 (left) and
α = 0.5 (right). As in Example 1, both values of α exhibit eocs close to four, with
the errors obtained using α = 0.5 being smaller than those obtain using α = 1.
However the difference in the errors for the two values of α in this example is much
smaller than the difference in the errors for the two values of α in Example 1, we
believe that this is due to the fact that in this example x is a linear function.
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Table 2 Errors and eocs for the rotating diameter with α = 1 (left) and α = 0.5 (right)

J N E1 × 104 eoc1 E2 × 105 eoc2

10 50 1.440 – 3.040 –

20 200 0.09198 3.97 0.1925 3.98

40 800 0.005780 3.99 0.01207 4.00

80 3200 0.0003617 4.00 0.0007552 4.00

J N E1 × 104 eoc1 E2 × 105 eoc2

10 50 1.181 – 2.710 –

20 200 0.07459 3.98 0.1716 3.98

40 800 0.004674 4.00 0.01076 4.00

80 3200 0.0002923 4.00 0.0006727 4.00

Table 3 Errors and eocs for the rotating diameter for scheme proposed in [5]

J N E1 × 104 eoc1 E2 × 105 eoc2 E3 × 103 eoc3

10 50 43.83 76.20 5.771

20 200 3.175 3.79 5.442 3.81 1.563 0.94

40 800 0.2076 3.93 0.3542 3.94 0.3989 0.99

80 3200 0.01317 3.98 0.02243 3.98 0.1003 1.00

To demonstrate Remark 1 in Sect. 2, we include Table 3 in which we display
errors obtained using the scheme in [5]. In particular we display Ei , i = 1, 2, 3,
with

E3 := sup
n=0,...,N

sup
j=0,J

|F(Xn
j )|.

Comparing the errors in Tables 2 and 3 we see that the magnitude of the errors
for the Newton scheme, (14a)–(14d), are significantly smaller than the errors for the
linear scheme in [5].

3.3 Experimental Order of Convergence of the Coupled
Scheme (11)–(13)

We conclude our numerical results by investigating the experimental order of
convergence of the coupled scheme (11)–(13). In addition to monitoring the errors
Ei , i = 1, 2, we also monitor

E4 := sup
n=0,...,N

‖Ih(wn)−Wn‖2
L2(I)

, E5 :=
n∑

n=1

�tn‖Ih(wn
ρ)−Wn

ρ ‖2
L2(I)

.

We adopt the same set-up as in Example 2, with T = 0.5 and � being the unit disc
with centre (0, 0), such that ∂� is given by F(x, y) = 1

2

(
x2 + y2 − 1

)
. Setting
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Table 4 Errors and eocs for the parabola defined on the rotating diameter with α = 0.5

J N E1 × 104 eoc1 E2 × 105 eoc2 E4 × 106 eoc4 E5 × 106 eoc5

10 50 1.205 – 3.756 – 1.207 – 3.073 –

20 200 0.07643 3.98 0.2453 3.94 0.07829 3.95 0.2010 3.93

40 800 0.004795 3.99 0.01551 3.98 0.004937 3.99 0.01271 3.98

80 3200 0.0003000 4.00 0.0009721 4.00 0.0003093 4.00 0.0007967 4.00

Fig. 2 Xn at tn = 0, 0.1, 0.2, 0.3, 0.4, 0.5 for the rotating diameter (left) and Wn at tn =
0, 0.1, 0.2, 0.3, 0.4, 0.5 for the shrinking parabola (right)

f (ρ, t) = 4
(
ρ2−w(ρ,t)

1−t
− 1

2

)

(1−2t )2+1
and g = t−1

2 − w(ρ,t)
1−t

, the explicit solution is given by

x = 2(ρ − 1
2 )√

(1− 2t)2 + 1
(1− 2t, 1)T and w = (1− t)ρ(ρ − 1),

such that w describes a shrinking parabola and, as in Example 2, �(t) is a rotating
straight line that spans the diameter of �. In the left-hand plot of Fig. 2 we display:
X0 in black, Xn, at tn = 0.1k, k = 1, . . . , 5, in blue, and ∂� in red, while in the
right-hand plot we display: W 0 in black and Wn, at tn = 0.1k, k = 1, . . . , 5 in blue.
In Table 4 we present the experimental order of convergence for the errors obtained
using α = 0.5, we do not present the errors for α = 1 since they are very similar to
those obtained using α = 0.5. For all the four errors we see eocs close to four.

Remark 2 In the three examples presented above if we take �t = Ch we observe
eocs close to two rather than the eocs close to four that we observe above for �t =
Ch2. Similar convergence behaviour was observed in [1].
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The Newmark Method and a Space–Time
FEM for the Second–Order Wave
Equation

Marco Zank

Abstract For the second–order wave equation, we compare the Newmark Galerkin
method with a stabilised space–time finite element method for tensor–product
space–time discretisations with piecewise multilinear, continuous ansatz and test
functions leading to an unconditionally stable Galerkin–Petrov scheme, which
satisfies a space–time error estimate. We show that both methods require to solve a
linear system with the same system matrix. In particular, the stabilised space–time
finite element method can be solved sequentially in time as the Newmark Galerkin
method. However, the treatment of the right–hand side of the wave equation is
different, where the Newmark Galerkin method requires more regularity.

1 Introduction

In this work, we compare a stabilised space–time finite element method, analysed
in [3, 5, 6], and the Newmark Galerkin method for the model problem of the
homogeneous Dirichlet problem for the second–order wave equation,

∂ttu(x, t)−�xu(x, t) = f (x, t) for (x, t) ∈ Q = �× (0, T ),

u(x, t) = 0 for (x, t) ∈ 0 = ∂�× [0, T ],
u(x, 0) = u0(x) for x ∈ �,

∂tu(x, 0) = v0(x) for x ∈ �,

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(1)

where � = (0, L) is an interval for d = 1, or � is polygonal for d = 2, or � is
polyhedral for d = 3, T > 0 is a terminal time, u0 ∈ H 1

0 (�), v0 ∈ L2(�) are given
initial conditions and f ∈ L1(0, T ;L2(�)) is a given right–hand side. To derive a
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space–time variational formulation, we define the space–time Sobolev spaces by

H
1,1
0;0, (Q) := L2(0, T ;H 1

0 (�)) ∩H 1
0,(0, T ;L2(�)) ⊂ H 1(Q),

H
1,1
0; ,0(Q) := L2(0, T ;H 1

0 (�)) ∩H 1
,0(0, T ;L2(�)) ⊂ H 1(Q),

H
1,1
0; (Q) := L2(0, T ;H 1

0 (�)) ∩H 1(0, T ;L2(�)) ⊂ H 1(Q),

where v ∈ H 1
0,(0, T ;L2(�)) satisfies ‖v(·, 0)‖L2(�) = 0 and w ∈

H 1
,0(0, T ;L2(�)) fulfils ‖w(·, T )‖L2(�) = 0, see [5] for more details. In addition,

we introduce the bounded bilinear form a(·, ·) : H 1(Q)×H 1(Q)→ R by

a(u,w) := −〈∂tu, ∂tw〉L2(Q) + 〈∇xu,∇xw〉L2(Q), u ∈ H 1(Q), w ∈ H 1(Q).

Due to [1, Chapter IV, Section 3], the wave equation (1) admits a unique solution
u ∈ H

1,1
0; (Q) with u(·, 0) = u0 in L2(�), fulfilling

∀w ∈ H
1,1
0; ,0(Q) : a(u,w) = 〈f,w〉L2(Q) + 〈v0, w(·, 0)〉L2(�).

To treat the initial condition u0 in discretisations, we consider the splitting u =
û+U0 with U0 ∈ H

1,1
0; (Q) ∩ C([0, T ];H 1

0 (�)), see [1, Chapter IV, Theorem 4.2],
satisfying

U0(·, 0) = u0 in H 1
0 (�) and ∀w ∈ H

1,1
0; ,0(Q) : a(U0, w) = 0, (2)

and with û ∈ H
1,1
0;0, (Q), satisfying

∀w ∈ H
1,1
0; ,0(Q) : a(û, w) = 〈f,w〉L2(Q)+〈v0, w(·, 0)〉L2(�)−a(U0, w). (3)

Note that the variational formulations (2) and (3) are uniquely solvable, satisfying
corresponding stability estimates, see [1, 4–6] for details.

2 Stabilised Space–Time Finite Element Method

In this section, we recall the stabilised space–time finite element method with
piecewise multilinear, continuous functions for the wave equation (1) as analysed
in [3, 5, 6], where we state also the resulting linear system.

For a tensor–product ansatz, we consider admissible decompositions

Q = �× [0, T ] =
Nx⋃

i=1

ωi ×
Nt⋃

�=1

[t�−1, t�]
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with N := Nx · Nt space–time elements, where the time intervals (t�−1, t�) with
mesh size ht,� are defined via the decomposition

0 = t0 < t1 < t2 < · · · < tNt−1 < tNt = T (4)

of the time interval (0, T ). For the spatial domain �, we consider a shape–regular
sequence (Tν)ν∈N of admissible decompositions Tν := {ωi ⊂ R

d : i = 1, . . . , Nx}
of � into finite elements ωi ⊂ R

d with mesh size hx,i . The spatial elements ωi

are intervals for d = 1, triangles or quadrilaterals for d = 2, and tetrahedra or
hexahedra for d = 3. Next, we introduce the finite element space

Q1
h(Q) := Vhx,0(�)⊗ S1

ht
(0, T )

of piecewise multilinear, continuous functions, i.e.

Vhx,0(�) = span{ψj }Mx

j=1 ⊂ H 1
0 (�), S1

ht
(0, T ) = span{ϕ�}Nt

�=0 ⊂ H 1(0, T ).

In fact, Vhx,0(�) is either the space S1
hx
(�)∩H 1

0 (�) of piecewise linear, continuous
functions on intervals (d = 1), triangles (d = 2), and tetrahedra (d = 3),
or Vhx,0(�) is the space Q1

hx
(�) ∩ H 1

0 (�) of piecewise linear/bilinear/trilinear,
continuous functions on intervals (d = 1), quadrilaterals (d = 2), and hexahedra
(d = 3). Additionally, Mhx ∈ R

Mx×Mx and Ahx ∈ R
Mx×Mx denote mass and

stiffness matrices defined via

Mhx [i, j ] = 〈ψj ,ψi〉L2(�), Ahx [i, j ] = 〈∇xψj ,∇xψi〉L2(�), i, j = 1, . . . ,Mx.

(5)

Moreover, the L2 projection Qhx : L2(�) → Vhx,0(�) on the piecewise linear,
continuous functions is given for functions u ∈ L2(�) as the solution of the
variational formulation to find Qhxu ∈ Vhx,0(�) such that

∀vhx ∈ Vhx,0(�) : 〈Qhxu, vhx 〉L2(�) = 〈u, vhx 〉L2(�). (6)

Analogously, Q1
hx
: H 1

0 (�)→ Vhx,0(�) is the H 1
0 projection defined by

∀vhx ∈ Vhx,0(�) : 〈∇xQ
1
hx
u,∇xvhx 〉L2(�) = 〈∇xu,∇xvhx 〉L2(�) (7)

for given u ∈ H 1
0 (�). With these notations, we define the perturbed bilinear form

ah(uh,wh) := −〈∂t uh, ∂twh〉L2(Q) +
d∑

m=1

〈∂xmuh,Q
0
ht
∂xmwh〉L2(Q), uh,wh ∈ Q1

h(Q),
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where Q0
ht

denotes the L2 projection on the space of piecewise constant functions
with respect to the time mesh (4). To approximate the solution of the problem (3),
we consider the variational formulation to find ũh ∈ Q1

h(Q) ∩H
1,1
0;0, (Q) such that

ah(̃uh,wh) = 〈f,wh〉L2(Q) + 〈v0, wh(·, 0)〉L2(�) − ah(IhtQ
1
hx
U0, wh) (8)

for all wh ∈ Q1
h(Q) ∩H

1,1
0; ,0(Q), where U0 is replaced by IhtQ

1
hx
U0 ∈ Q1

h(Q), i.e.

Iht
Q1

hx
U0(x, t) =

Nt∑

�=0

Mx∑

j=1

(A−1
hx

U�
0)[j ]ψj (x)ϕ�(t), U�

0[i] := 〈∇xU0(·, t�),∇xψi〉L2(Ω)

which is the interpolant with respect to the temporal and the H 1
0 projection with

respect to the spatial variables, see (7). The discrete variational formulation (8)
admits a unique solution ũh ∈ Q1

h(Q) ∩ H
1,1
0;0, (Q) without any CFL condition,

see [3, 5, 6]. Note that a CFL condition is required when the perturbed bilinear form
ah(·, ·) on the left–hand side in (8) is replaced by a(·, ·), see [4, 5].

Next, we rewrite the variational formulation (8) to state the corresponding linear
system. The unique solution ũh ∈ Q1

h(Q) ∩ H
1,1
0;0, (Q) of the discrete variational

formulation (8) admits the representation ũh(x, t) = ∑Nt

�=1

∑Mx

j=1 ũ
�
jψj (x)ϕ�(t).

So, we define the function uh ∈ Q1
h(Q) ∩H

1,1
0;0, (Q) by

uh(x, t) :=
Nt∑

�=1

Mx∑

j=1

u�
jψj (x)ϕ�(t) :=

Nt∑

�=1

Mx∑

j=1

{
ũ�
j + (A−1

hx
U�

0)[j ]
}
ψj (x)ϕ�(t),

satisfying the to (8) equivalent discrete variational formulation

ah(uh,wh) = 〈f,wh〉L2(Q) + 〈v0, wh(·, 0)〉L2(�) −
Mx∑

j=1

(A−1
hx

u0)[j ] ah(ψjϕ0, wh)

(9)

for all wh ∈ Q1
h(Q) ∩ H

1,1
0; ,0(Q) with U0

0 =: u0 ∈ R
Mx . Then, the approximate

solution u ≈ uh := ũh + IhtQ
1
hx
U0 ∈ Q1

h(Q) of the wave equation (1) is given by

uh(x, t) = ϕ0(t) · (Q1
hx
u0)(x)+ uh(x, t) =

Nt∑

�=0

Mx∑

j=1

u�
jψj (x)ϕ�(t) (10)

with u0
j := (A−1

hx
u0)[j ] for j = 1, . . . ,Mx, and u�

j := u�
j for j = 1, . . . ,Mx,

� = 1, . . . , Nt . For � = 0, . . . , Nt , set U� =
(
u�

1, u
�
2, . . . , u

�
Mx

)� ∈ R
Mx . Hence,
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we obtain that

AhxU
0 = u0 (11)

with u0[j ] = U0
0[j ] = 〈∇xU0(·, 0),∇xψj 〉L2(Ω) = 〈∇xu0,∇xψj 〉L2(Ω), j =

1, . . . ,Mx. So, the discrete variational formulation (9) is equivalent to solving the
global linear system

(−Aht ⊗Mhx + M̃ht ⊗Ahx

)
(U1, U 2, . . . , UNt )� = (F̂

0
, F̂

1
, . . . , F̂

Nt−1
)�

(12)

with the spatial mass and stiffness matrices (5), the temporal matrices

Aht =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−1
ht,1

1
ht,1

+ 1
ht,2

−1
ht,2−1

ht,2

1
ht,2

+ 1
ht,3

−1
ht,3

. . .
. . .

. . .
−1

ht,Nt−1

1
ht,Nt−1

+ 1
ht,Nt

−1
ht,Nt

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∈ R
Nt×Nt ,

M̃ht =
1

4

⎛

⎜
⎜
⎜
⎜
⎜
⎝

ht,1

ht,1 + ht,2 ht,2

ht,2 ht,2 + ht,3 ht,3
. . .

. . .
. . .

ht,Nt−1 ht,Nt−1 + ht,Nt ht,Nt

⎞

⎟
⎟
⎟
⎟
⎟
⎠
∈ R

Nt×Nt

and the vectors of the right–hand side, k = 0, . . . , Nt − 1, i = 1, . . . ,Mx ,

F̂
k[i] := 〈f,ψiϕk〉L2(Q) + ϕk(0)〈v0, ψi〉L2(�) −

Mx∑

j=1

(A−1
hx

u0)[j ] ah(ψjϕ0, ψiϕk).

After some calculations, we obtain that the linear system (11) and the global linear
system (12) are equivalent to sequentially solving the linear systems

AhxU
0 = u0, (13)

(
1

ht,1
Mhx +

ht,1

4
Ahx

)

U1 = f 0 + v0 +
(

1

ht,1
Mhx −

ht,1

4
Ahx

)

U0, (14)

(
1

ht,�

Mhx +
ht,�

4
Ahx

)

U� = f �−1 +
((

1

ht,�−1
+ 1

ht,�

)

Mhx −
ht,�−1 + ht,�

4
Ahx

)

U�−1

−
(

1

ht,�−1
Mhx +

ht,�−1

4
Ahx

)

U�−2 (15)
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for � = 2, . . . , Nt , where the vectors u0, v0, f
� ∈ R

Mx are given by, i =
1, . . . ,Mx , � = 0, . . . , Nt − 1,

u0[i] = 〈∇xu0,∇xψi〉L2(Ω), v0[i] := 〈v0, ψi〉L2(�), f �[i] := 〈f,ψiϕ�〉L2(Q).

The main results for the proposed space–time method, which leads to solve the
linear systems (13)–(15), are the unconditional stability, i.e. no CFL condition is
needed, and the space–time error estimate with hx = maxhx,i , ht = maxht,�,
which are summarised in the following theorem. The proof is analogous to the
proofs in [3, 5] with some additional difficulties due to the handling of u0. Since
this is far behind the scope of this work, details will be discussed elsewhere.

Theorem 1 Let the solution u of (1) and � be sufficiently regular. Then, for the
approximation uh ≈ u, given in (10), we have the space–time estimates

‖uh‖L2(Q) ≤ C(f, u0, v0, T ,�) and ‖u− uh‖L2(Q) ≤ C̃(u, T ,�) · (h2
x + h2

t ).

3 Newmark Galerkin Method

In this section, we recall the Newmark Galerkin method for the wave equation (1)
with a right–hand side f ∈ C([0, T ];L2(�)), where we state also the resulting
linear systems. With the notations of Sect. 2, we introduce the approximations

Uhx,�(x) :=
Mx∑

i=1

U�
i ψi(x) ≈ u(x, t�) and Ûhx ,�(x) :=

Mx∑

i=1

Û �
i ψi(x) ≈ ∂tu(x, t�)

for x ∈ � and � ∈ {0, . . . , Nt }, where U�
i , Û

�
i ∈ R are the unknown coefficients of

Uhx,�, Ûhx,� ∈ Vhx,0(�) ⊂ H 1
0 (�). Furthermore, for (x, t) ∈ Q, we set

uh(x, t) :=
Nt∑

�=0

Mx∑

i=1

U�
i ψi(x)ϕ�(t) =

Nt∑

�=0

Uhx,�(x)ϕ�(t) ≈ u(x, t),

ûh(x, t) :=
Nt∑

�=0

Mx∑

i=1

Û �
i ψi(x)ϕ�(t) =

Nt∑

�=0

Ûhx,�(x)ϕ�(t) ≈ ∂tu(x, t),

i.e. uh, ûh ∈ Q1
h(Q). For the wave equation (1), a conforming discretisation in

space with Vhx,0(�) ⊂ H 1
0 (�) in combination with the Newmark method, see

[2, (8.6-4), (8.6-5), (8.6-6), page 205], leads to the so–called Newmark Galerkin
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method to find the functions Uhx,�, Ûhx,� ∈ Vhx,0(�) ⊂ H 1
0 (�) for � ∈ {0, . . . , Nt }

such that

Uhx,0 = Q1
hx
u0, Ûhx,0 = Qhx v0 (16)

and for � = 1, . . . , Nt ,

∀vhx ∈ Vhx,0(�) : 1

h2
t,�

〈Uhx,� − Uhx,�−1 − ht,�Ûhx,�−1, vhx 〉L2(�)

+1

4
〈∇xUhx,� +∇xUhx,�−1,∇xvhx 〉L2(�) =

1

4
〈f (·, t�)+ f (·, t�−1), vhx 〉L2(�),

(17)

∀v̂hx ∈ Vhx,0(�) : 1

ht,�

〈Ûhx ,� − Ûhx,�−1, v̂hx 〉L2(�)

+1

2
〈∇xUhx,� +∇xUhx,�−1,∇x v̂hx 〉L2(�) =

1

2
〈f (·, t�)+ f (·, t�−1), v̂hx 〉L2(�),

(18)

where the projections Qhx , Q1
hx

are defined in (6) and (7). The Newmark Galerkin
method (16)–(18) is equivalent to the linear systems

AhxU
0 = u0, Mhx Û

0 = v0, (19)

and for all � = 1, . . . , Nt ,

(

Mhx +
h2
t,�

4
Ahx

)

U� =
(

Mhx −
h2
t,�

4
Ahx

)

U�−1

+ht,�Mhx Û
�−1 + h2

t,�

4

(
F� + F�−1

)
, (20)

Mhx Û
� = Mhx Û

�−1 − ht,�

2
Ahx

(
U� + U�−1

)
+ ht,�

2

(
F � + F�−1

)
, (21)

where Mhx ,Ahx ∈ R
Mx×Mx are the mass and stiffness matrices (5) and the vectors

u0, v0, F
� ∈ R

Mx are defined by

u0[i] := 〈∇xu0,∇xψi〉L2(Ω), v0[i] := 〈v0, ψi〉L2(�), F �[i] := 〈f (·, t�), ψi〉L2(�)
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for i = 1, . . . ,Mx , � = 0, . . . , Nt . Solving the linear systems (20) and (21) is
equivalent to solving

(
1

ht,�

Mhx +
ht,�

4
Ahx

)

U� −
(

1

ht,�

Mhx −
ht,�

4
Ahx

)

U�−1 −Mhx Û
�−1

= ht,�

4

(
F� + F�−1

)
, (22)

Mhx Û
� −Mhx Û

�−1 = −ht,�

2
Ahx

(
U� + U�−1

)
+ ht,�

2

(
F � + F �−1

)
(23)

for � = 1, . . . , Nt .

The difference of (22) for � and �− 1 is given by

ht,�

4

(
F� + F�−1

)
− ht,�−1

4

(
F�−1 + F�−2

)

=
(

1

ht,�

Mhx +
ht,�

4
Ahx

)

U� +
(

−
(

1

ht,�

+ 1

ht,�−1

)

Mhx +
ht,� − ht,�−1

4
Ahx

)

U�−1

+
(

1

ht,�−1
Mhx −

ht,�−1

4
Ahx

)

U�−2 −Mhx Û
�−1 +Mhx Û

�−2

︸ ︷︷ ︸
= ht,�−1

2 Ahx

(
U�−1+U�−2

)− ht,�−1
2

(
F�−1+F �−2

)

=
(

1

ht,�

Mhx +
ht,�

4
Ahx

)

U� +
(

−
(

1

ht,�

+ 1

ht,�−1

)

Mhx +
ht,� + ht,�−1

4
Ahx

)

U�−1

+
(

1

ht,�−1
Mhx +

ht,�−1

4
Ahx

)

U�−2 − ht,�−1

2

(
F�−1 + F�−2

)
(24)

for � = 2, . . . , Nt , where (23) is used for �− 1.
Hence, with (19), � = 1 in (22) and (24), the Newmark Galerkin method (16)–

(18) is equivalent to the linear systems

AhxU
0 = u0, (25)

(
1

ht,1
Mhx +

ht,1

4
Ahx

)

U1 = ht,1

4

(
F 1 + F 0

)
+ v0 +

(
1

ht,1
Mhx −

ht,1

4
Ahx

)

U0, (26)

(
1

ht,�

Mhx +
ht,�

4
Ahx

)

U� = ht,�

4

(
F � + F�−1

)
+ ht,�−1

4

(
F �−1 + F�−2

)

+
((

1

ht,�

+ 1

ht,�−1

)

Mhx −
ht,� + ht,�−1

4
Ahx

)

U�−1

−
(

1

ht,�−1
Mhx +

ht,�−1

4
Ahx

)

U�−2 (27)

for � = 2, . . . , Nt .
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4 Comparison and Conclusions

In this section, we compare the stabilised space–time finite element method of
Sect. 2 and the Newmark Galerkin method of Sect. 3. So, the Eqs. (13)–(15) and
the Eqs. (25)–(27) show that the stabilised space–time finite element method in (9)
differs from the Newmark Galerkin method (16)–(18) only in the treatment of
the right–hand side f . For the stabilised space–time finite element method in (9),
right–hand sides in L1(0, T ;L2(�)) are allowed, whereas in the Newmark Galerkin
method (16)–(18), point evaluations f (·, t�) occur, i.e. the right–hand side f must
be continuous with respect to time. Note that in general, it is not possible to use a
numerical integration formula for approximating the right–hand side parts in (14)
and (15) to recover the Eqs. (26) and (27). On the other hand, for a constant
right–hand side f , both methods are the same on the algebraic level. Hence, the
space–time error estimate of Theorem 1 holds true also for the Newmark Galerkin
method (16)–(18) and the stabilised space–time finite element method in (9) fulfils,
as the Newmark Galerkin method, a conservation of total energy. In addition, the
global linear system (12) can be solved sequentially in time as a two–step method.
However, replacing ah(IhtQ

1
hx
U0, wh) in (8) with a different approximation of

a(U0, wh) may lead to a stabilised space–time finite element method, where the
right–hand sides of the resulting linear systems differ from the Newmark Galerkin
method also in the Eqs. (25)–(27).
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A Mixed Dimensional Model
for the Interaction of a Well
with a Poroelastic Material

Daniele Cerroni, Florin Radu, and Paolo Zunino

Abstract We develop a mathematical model for the interaction of the mechanics
of a three-dimensional permeable reservoir or aquifer with the flow through wells.
We apply a model reduction technique that represents the wells as one-dimensional
channels with arbitrary configuration in the space and we introduce proper coupling
conditions to account for the interaction of the wells with the bulk region. The
resulting problem consists of coupled partial differential equations defined on
manifolds with heterogeneous dimensionality. To highlight the potential of this
modeling approach in the description of realistic scenarios, we combine it with a
suitable discretization method and we discuss the results of preliminary simulations
on an idealized test case containing two wells.

1 Introduction

In the late 70s Paceman proposed a mathematical method to account for a well in a
reservoir simulation based on equally spaced grids [6–8]. Since then, improvement
about well models has been scattered and rather scarce. We believe there is a genuine
need of advanced well/reservoir interaction models that are general enough to be
applied in the context of modern multiscale and multiphysics reservoir simulations,
see for example [2].

With the objective to develop advanced computational models for the interaction
of reservoirs with wells, we look for an approach that is appealing for industrial
applications, involving realistic geological models and real configurations of mul-
tiple wells. To mitigate the difficulties of generating the reservoir model including
wells and the corresponding computational cost of simulations, we propose to a use
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mathematical model based on 3D description of the reservoir and a 1D description
of the well, following the embedded multiscale model reduction strategy, originally
proposed in [4] and lately refined in [1, 5]. In particular, we address here the case of
a porous material that can deform under the action of pore pressure. More precisely,
we consider the interaction of the flow through a well with a poroelastic medium [3].

After presenting the model, we discretize the equations using the finite element
method. The approach proposed here facilitates this task, because it does not require
conformity between the computational mesh of the reservoir and the one of the
wells. We use the computational method to perform numerical simulations that
illustrate the interaction between two neighboring wells with a poroelastic slab that
deforms under the action of its weight. Interesting effects as reversal of the flow in
the wells and inversion of the pressure drop between the well and the bulk appear.

2 The Mathematical Model

2.1 Three-Dimensional Model of a Well in a Deformable
Material

The domain of interest is denoted as � and composed by two parts, �w and �p =
� \ �w. We assume that �w is the well and �p the surrounding reservoir. More
precisely, let �w be a cylinder swept by a circle of radius ρ along a curve. Let
λ(s) = [ξ(s), ν(s), ζ(s)], s ∈ (0, S) be a C2-regular curve in the three-dimensional
space. Let ! = {λ(s), s ∈ (0, S)} be the centerline of the cylinder. For simplicity,
let us assume that ‖λ′(s)‖ = 1 such that the arc-length and the coordinate s coincide.
Let T ,N ,B be the Frenet frame related to the curve. Let D = {[r cos θ, r sin θ ] :
[0, ρ) × [0, 2π)} be a parametrization of the cross section. Let us also define the
boundary of the cross section as ∂D = {[ρ sin θ, ρ cos θ ] : [0, 2π)}. Then, the
cylinder �w can be defined as follows

�w = {λ(s)+ r cos θN(s)+ r sin θB(s), r ∈ [0, ρ), s ∈ (0, S), θ ∈ [0, 2π)} ,

and the lateral boundary of it, denoted with � is,

� = {λ(s)+ ρ cos θN(s)+ ρ sin θB(s), s ∈ (0, S), θ ∈ [0, 2π)} .

We notice that �w has top and bottom boundaries, which are ∂�w\� = {λ(0)+D}∪
{λ(S)+D}. To model wells, without loss of generality, we assume that {λ(0)+D}
is the injection section of the well and for this reason it belongs to the external
boundary, namely ∂�p. The other end point is the well tip, {λ(S) +D} and it may
be embedded into the reservoir.

We assume that the surrounding reservoir is described as an isotropic deformable
porous medium filled with an isothermal single-phase fluid while we model the



A Mixed Dimensional Model for the Interaction of a Well with a Poroelastic Material 1237

well by means of pressure-driven flow. More precisely, we assume that in the well,
the pressure gradient is the main driving force for the flow motion. Concerning
the reservoir deformable model, we assume that the material is subject to small
deformations so that we can identify the initial spatial configuration with the current
configuration of the system. This hypothesis implies that the variation of the material
properties such as porosity and fluid density are small and can be evaluated as
constants whenever required. In this framework the pressure and the displacement
in the domain � is described by the following system of equations (namely the Biot
model for small deformation):

−∇ · σ(up)+ α∇pp = f in �p , (1)

∂t

(pp

M
+ α∇ · up

)
−∇ ·Kp∇pp = 0 in �p , (2)

∂tpw −∇ ·Kw∇pw = 0 in �w , (3)

where up is the solid matrix displacement vector, pp and pw are the variations
of pore pressure from the hydrostatic load in �p and �w, respectively. We denote
with f the gravity load, namely (ρs − ρf )g with ρs , ρf and g being the rock,
the liquid density and the gravity force, respectively. The symbol ∂t denotes the
standard partial derivative with respect to time in the Eulerian framework while α,
M , Kw and Kp are the Biot number the Biot modulus, the well and the reservoir
permeability tensor, respectively. We also assume the linear elasticity behavior so
that the stress tensor σ , appearing in (1), is defined by σ(up) := 2με(up)+λ∇ ·up,
where μ and λ are the Lamé coefficients and ε(up) is the symmetric gradient of
the displacement, defined as ε(up) := 1

2 (∇up + ∇ut
p). For further details on

poromechanics, the interested reader is referred to e.g. [3]. Concerning the well
model, we assume that the borehole is much more permeable to the fluid than the
surrounding material. Such assumption implies that the dynamic of the pressure
field in the well is faster than the evolution of the bulk pressure field, so that the
term ∂tpw can be neglected in the governing equation of the well. Finally, it is
assumed that the interface � is permeable, namely it is crossed by a normal flux
proportional to K�

(
pp − pw

)
. The coefficient K� ≥ 0 denotes the permeability

of the borehole lateral surface. For a well-posed problem we must also define
appropriate boundary and initial conditions. For the boundary conditions we have
prescribed that the pressure is fixed to values pw,0, pw,1 at the endpoints of the
well. For the reservoir, we split the external boundary of �p into complementary
parts precisely 0N ∪ 0D = ∂�p \ � for the pressure and 0Nd ∪ 0Dd = ∂�p \ �
for the displacement. On 0N we set Neuman boundary conditions for the bulk
pressure. On 0D we set Dirichlet type condition, for a given bulk pressure value
pp,1. On 0Nd we set free normal stress conditions for the bulk displacement while
on 0Dd we set vanishing Dirichlet type condition for the bulk displacement. Finally,
concerning the initial condition, the following constraints are considered at t = 0:
up = 0 , pp = 0 , pw = 0 for any x ∈ �(t = 0). As a result of
these assumptions, we describe the interaction between the well and the reservoir
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by means of the following prototype problem,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∇ · σ(up)+ α∇pp = f in �p,

∂t

(pp

M
+ α∇ · up

)
− ∇ ·Kp∇pp = 0 in �p,

−∇ ·Kw∇pw = 0 in �w,

Kp∇pp · np = K�

(
pp − pw

)
on �,

Kw∇pw · nw = K�

(
pw − pp

)
on �,

∇pp · np = 0 on 0N,

pp = pp,1 on 0D,

σ · np = 0 on 0Nd
,

up = 0 on 0Dd
,

pw = pw,0 on {λ(0)+D},
pw = pw,1 on {λ(S)+D} .

(4a)

(4b)

(4c)

(4d)

(4e)

(4f)

(4g)

(4h)

(4i)

(4j)

(4k)

Modeling a narrow borehole in three dimensions requires the resolution of the
geometry, which in many real applications can be difficult to handle in the context
of a reservoir model. Therefore we apply a topological model reduction, namely we
go from a 3D-3D to a 3D-1D formulation following the approach proposed in [1].

2.2 Topological Model Reduction and Weak Formulation

The model reduction approach that we adopt is based on the following fundamental
assumption. The diameter of the well is small compared to the diameter of the
reservoir implying that the radius of the borehole R = ρ/L is such that 0 < R � 1.
As a consequence we also assume that the functionpw, together with the coefficients
of the problem, have a uniform profile on each cross sectionD, namely in cylindrical
coordinates uw(r, s, θ) = U(s). The permeability tensor in the borehole is isotropic,
namely Kw = kwI and it is uniform on each cross section of the hole, that is
kw(r, s, θ) = kw(s). The same restriction is enforced on the parameterK� = κI on
�, precisely κ(θ, s) = κ(s). Since the derivation of the reduced model is based on
averaging we denote with w, w the following mean values respectively,

w(s) = (πR2)−1
∫

D
wdσ , w(s) = (2πR)−1

∫

∂D
wdγ ,

and dω = r dθ dr ds, dσ = r dθ dr, dγ = R dθ represent volume, surface and
curvilinear measures. We apply the averaging technique to Eq. (4c). Following the
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derivation in [1], to which we refer for details. From (4c) and (4e) we obtain the
following averaged equation for the flow in the well

− πR2∂s(kw∂spw)+ 2πRκ(pw − pp) = 0 on ! . (5)

Then, we introduce Pw , the one-dimensional approximation of the pressure in the
well. As a results the weak form of Eq. (5) reads

πR2(kw∂sPw, ∂sQw)! + 2πR(κPw,Qw)! = 2πR(κ(pp −W),Qw)! ∀Qw ∈ H 1
0 (!)

(6)

where W = 1 − s denotes a suitable linear lifting of the Dirichlet boundary
conditions of Pw on !. For the reservoir model we first extend the domain �p

to �. The coupling condition (4d) is enforced weakly after integrating by parts the
term ∇ ·Kp∇pp in Eq. (4b). Namely the weak formulation of the pressure problem
in � reads

1

M
(∂tpp, qp)� + α(∇ · ∂tu, qp)� + (kp∇pp,∇qp)� + (κpp, qp)� = (κpw, qp)� .

(7)

Recalling that the fluctuations of pp and pw on the cross section of � are small, see
[1] for details, the last two terms of the previous equation become 2πR(κpp, qp)!
and 2πR(κPw, qp)!. The problem of finding the displacement and the pressures
up, pp, Pw in � has been transformed into solving a 3D problem for up, pp in �

and a 1D problem for Pw in !. The weak formulation of the reduced 3D-1D model
reads: for each t ∈ (0, T ], find (up, pp, Pw) such that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2με(up), ε(vp))� − α(pp,∇ · vp)� + α(pp, v · np)� = (f , v)� v ∈ H 1
0Dd

(�)

1

M
(∂tpp, qp)� + α(∇ · ∂tu, qp)� + (kp∇pp,∇qp)�

+ 2πR(κpp, qp)! = 2πR(κPw, qp)! , ∀qp ∈ H 1
0D

(�)

πR2(kw∂sPw, ∂sQw)!

+ 2πR(κPw,Qw)! = 2πR(κ(pp −W),Qw)!, ∀Qw ∈ H 1
0 (!) .

3 Numerical Experiments

We consider a cubic domain characterized by an edge of 1 km containing two
vertical wells, with a radius of 1 m. A sketch of the domain is shown on the left part
of Fig. 1 while on the right part the material properties are reported. The top surface
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Young Modulus E 1010 Pa

Rock density ρ s 2.2 103 kg/m3

Water density ρ l 103 kg/m3

Rock permeability K p 10− 15 m2

Well permeability K w 10− 12 m2

Borehole permeability K Γ 10− 15 m2

Water viscosity μl 10− 3 Pa s

Dimension L 103 m
Radius R 1 m

Pin p w 1 0 MPa
Pout p w 2 0.2 MPa

Fig. 1 Test 2: The geometry anld the boundary condition labels are shown on the left. The physical
properties used in the simulation are reported on the right

of the basin is considered to be at the reference pressure (pp = 0) while the bottom
surface is fixed (up = 0). Homogeneous Neuman conditions are considered in the
remaining boundaries of the domain. Concerning the well problem, the boundary
values of the pressure are fixed namely pin = 0 and pout = 0.2 MPa. Under this set
up, we let the domain evolve towards a geostatic configuration namely the domain
is subject to compaction due to its weight, and we investigate the evolution of the
pressure and the displacement field for a temporal window T * 1day using a time
step �t * 1/10day.

In Fig. 2 we show the pressure field together with the fluid flow vector field at
t1 = �t and t3 = T in the deformed domain. The pressure field in the bulk is
mainly affected by two factors, the initial compaction and the interaction with the
wells. The first factor is driven by the time derivative of the displacement field and it
results in a time decreasing pressure field. Due to the imposed value of the pressure
pin and pout , the wells act as source for the bulk pressure. The action of such source
results in a logarithmic type singularity that produces a radially decreasing pressure
field in the bulk. As shown in Fig. 2 reporting the pressure at times t1 and t3, the
combination of these effects leads to a pressure field that increases with the depth
in the first stages and decreases with the distance from the well as the steady state is
reached.

In Fig. 3 the pressure field in the central slice of the bulk at t1 and t3 is shown. The
contour lines of pp put into evidence how the wells affect the pressure field in the
bulk. More precisely, in Fig. 4 the pressure Pw in one well is compared at t1 = �t ,
t2 = T/2 and t3 = T with the pressure pp in the bulk. The difference of the two
functions identifies regions where the net flow outgoing the well is positive (namely
when Pw > pp) or negative (when pp > Pw). In the same plot we also report the
pressure obtained in the uncoupled case (label nc), corresponding to k� = 0. We
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Fig. 2 The pressure field in the deformed domain at the initial (t1) and the final time (t3) is
reported. Lines mark the direction of the flow in the porous medium. Deformations are amplified
by a factor of 100 in order to be clearly visible

Fig. 3 The pressure field in the central slice of the domain at different at the initial (t1) and the
final time (t3) is shown. Thick lines mark the contour of the bulk pressure, pp

notice that in the first stages (curve t1) the mechanical compaction dominates the
bulk pressure variation. For this reason, we observe that also the pressure in the well
increases at the bottom of the well, leading to flow reversal in the well. Moreover,
in this region the scenario pp > Pw takes place and the well partially acts as a sink
removing fluid from the porous system. As the displacement becomes stationary and
pp reaches an equilibrium (curve t2 , t3) the flow in the well recovers the expected
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Fig. 4 The pressure field in the well is plotted at different times. The dashed line marks the
pressure field obtained without taking into account the pressure coupling terms

unidirectional orientation and the pressure Pw slightly overcomes pp , such that the
fluid leaks form the well into the bulk.

In conclusion, the model confirms that the temporal dynamics of the well is faster
than dynamics of the basin. Because of this effect, the variation of bulk pressure
induced by mechanical compaction could lead to large and complex spatial and
temporal patterns in the well pressure field.
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