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Abstract. With the widespread use of mobile devices and GPS, tra-
jectory data mining has become a very popular research field. However,
for many applications, a huge amount of trajectory data is collected,
which raises the problem of how to efficiently mine this data. To process
large batches of trajectory data, this paper proposes a distributed trajec-
tory clustering algorithm based on density peak clustering, named DTR-
DPC. The proposed method partitions the trajectory data into dense
and sparse areas during the trajectory partitioning and division stage,
and then applies different trajectory division methods for different areas.
Then, the algorithm replaces each dense area by a single abstract trajec-
tory to fit the distribution of trajectory points in dense areas, which can
reduce the amount of distance calculation. Finally, a novel density peak
clustering-based method (E-DPC) for Spark is applied, which requires
limited human intervention. Experimental results on several large tra-
jectory datasets show that thanks to the proposed approach, runtime
of trajectory clustering can be greatly decreased while obtaining a high
accuracy.

Keywords: Trajectory data · Distributed clustering · Spark · DPC ·
Dense areas

1 Introduction

With the massive use of personal mobile devices and vehicle-mounted positioning
devices, and the increasing demand for hidden information in trajectory data,
trajectory data mining has emerged as an important branch of data mining. Due
to several years of research, the trajectory mining process is now quite stable. It
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consists of various sub-tasks such as classic trajectory acquisition and abnormal
trajectory exploration.

Though trajectory data mining has many applications, most algorithms have
been designed to deal with a small volume of data, and are thus unsuitable for
applications where a large amount of data must be analyzed. In the data pre-
processing stage, to protect the locality of each trajectory, a sub-trajectory seg-
mentation strategy [1] and grid-based division [2] can be applied, but these tech-
niques increase the amount of calculations. In the trajectory distance calculation
stage, most studies directly calculate the distance between two sub-trajectories
[3]. If the traditional trajectory division strategy was used in the previous stage,
the amount of calculations will be further increased. Then, in the data min-
ing stage, the most widely used model is clustering, using techniques such as
k-means [4] and DBSCAN [5]. However, most clustering methods require human
intervention. For example, k-means requires setting the number of clusters, while
the Eps and MinPts parameters must be set for DBSCAN.

Considering these limitations of previous work, this paper proposes a novel
approach for distributed trajectory clustering based on density peak clustering
[6], named DTR-DPC (Distributed Trajectory-Density Peak Clustering). It is
implemented on the Spark distributed computing platform to support the anal-
ysis of large trajectory data sets. The proposed method is optimized for fast
calculations at all stages of the trajectory data mining process. In the trajec-
tory partitioning and division stage, we propose to partition the data into dense
and sparse areas, where sparse areas are divided into sub-trajectory segments,
and entire trajectories are kept for dense areas. In the sub-trajectory similarity
measurement stage, the proposed method replaces each dense area by a spe-
cial trajectory called ST to reduce unnecessary calculations. For the clustering
stage, a novel algorithm named E-DPC is applied, which requires limited human
intervention and performs calculations in a distributed manner. An experimental
evaluation was performed. Results show that thanks to the proposed approach,
runtime of trajectory clustering can be greatly decreased while obtaining a high
accuracy.

The rest of this paper is organized as follows. Section 2 surveys related
work. Section 3 defines the trajectory data mining problem. Section 4 presents
the propsed DTR-DPC approach. Then, Sect. 5 describes experimental results.
Finally, a conclusion is drawn in Sect. 6.

2 Related Work

This section first reviews state-of-the-art techniques for trajectory data mining.
Then it surveys related work on distributed trajectory clustering.

2.1 Trajectory Data Mining

Trajectory data mining models can be mainly grouped into three categories:
pattern mining, classification, and clustering.
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Pattern mining is a set of unsupervised techniques that are used for discov-
ering interesting movement patterns in a set of trajectories [7]. Algorithms have
been designed to extract several types of patterns such as gathering patterns [7],
sequential patterns [8], and periodic patterns [9]. A gathering pattern represents
the movements of groups of persons such as for celebrations, parades, protests
and traffic jams [10]. A sequential pattern is a subsequence of locations that fre-
quently appears in trajectories [8], while a periodic pattern is movements that
periodically appear over time, found in trajectory data containing time informa-
tion [9].

Classification consists of using supervised learning to predict the next loca-
tion for a trajectory. But because trajectories generally do not have reliable
labels, classification is rarely used. However, a classification based approach using
Support Vector Machine (SVM) was applied for vehicle trajectory analysis and
provided some good results [11].

Clustering is the most commonly used method for trajectory data mining.
Most of the related clustering work fall in one of three categories: k-means-based
trajectory clustering [12], fuzzy-based trajectory clustering [13], and density-
based trajectory clustering [14,15]. Yeen and Lorita [12] proposed a k-means
and fuzzy c-means clustering-based algorithm, which iteratively recalculates the
centroids (means) of clusters in the trajectory dataset. Because k-means has the
disadvantage that the number of clusters must be preset, researchers have gradu-
ally changed toward using fuzzy and density-based clustering. Nadeem et al. [13]
first proposed an unsupervised fuzzy approach for motion trajectory clustering,
which performs hierarchical reconstruction only in the region affected by a new
instance, rather than updating all the hierarchies. Most recent trajectory clus-
tering studies have focused on density-based clustering using algorithms such as
DBSCAN [14] and density peak clustering (DPC) [15]. The biggest advantage
of this type of algorithms is their high accuracy, while the biggest disadvantage
is that they requires considerable human intervention.

2.2 Distributed Trajectory Clustering

An important limitation of most trajectory data mining algorithms is that they
cannot handle large-scale trajectory data. To address this limitation, several
parallel and distributed trajectory algorithms were proposed. Wang et al. [16]
designed a Spark in-memory computing algorithm using data partitioning to
implement parallelism for DPC and reduce local density calculations. Hu et al.
[17] proposed a method for the fast calculation of trajectory similarity based on
coarse-grained Dynamic Time Warping, implemented using the Hadoop MapRe-
duce model to handle massive dynamic trajectory data with time information.
Myamoto et al. [18] proposed a flight path generation method that uses a
dynamic distributed genetic algorithm. This method differs from others in that
the number of groups into which individuals are partitioned is not fixed, and
hierarchical clustering is done using a distributed genetic algorithm.

Some of the most recent studies [19,20] are based on density-based cluster-
ing. Chen et al. [19] and Wang et al. [20] have used the DBSCAN and DPC
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algorithms, respectively. The former is implemented using Hadoop MapReduce
for distributed computing, while the latter uses the Spark in-memory comput-
ing model. Compared with the former, the latter has higher computing effi-
ciency because of the advantages of DPC’s fast search strategy and Spark’s
memory-based operation. Though these algorithms are useful, efficiency can still
be improved. Hence, this paper proposes optimizations for each stage of the
trajectory data clustering process.

3 Problem Formulation

This section introduces preliminary definitions and then defines the studied prob-
lem of trajectory data clustering.

Definition 1. Trajectory (TR): A trajectory TRi is an ordered list of
coordinate trajectory points collected at different time, denoted as TRi =<
p1i , p

2
i , . . . p

j
i , . . . , p

ni
i >, where a superscript j is used to denote the j-th point

of TRi, and pj
i is a pair containing a location lji (longitude and latitude) and a

time tji .

Definition 2. Sub-trajectory (STR): A sub-trajectory STR of a trajectory
TRi is a list of consecutive and non-repeating points from that trajectory, denoted
as STRi =< pstart

STRi
, . . . , pj

STRi
, pk

STRi
, . . . , pend

STRi
>, where pstart

STRi
and pend

STRi
are

the start and end point of STRi, respectively.

Definition 3. Trajectory Distance (TRD): The trajectory distance (TRD)
between two sub-trajectories STRi and STRj according to a distance metric, is
denoted as TRDj

i = dist(STRi, STRj).

Definition 4. Trajectory Clustering (TRC): Given a trajectory distance
matrix TRD, which specifies the distance between each sub-trajectory pair, TRC
consists of dividing the sub-trajectories into clusters C = {C1, C2, . . . , CNC

}
based on the distance matrix TRD.

This study uses the Davies-Bouldin Index (DBI) [21] to evaluate TRC accu-
racy. The DBI is defined as

DBI =
1
k

k∑

i=1

max
j �=i

(
Ci + Cj

dist(Ci
c, C

j
c )

) (1)

where Ci and Cj are the average distance inside clusters Ci and Cj respec-
tively, Ci

c and Cj
c are the cluster centers of Ci and Cj , and k is the number of

clusters.
In general, a lower DBI indicates a more accurate clustering. We define the

distributed trajectory data clustering problem as follows:
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Definition 5. (Problem Definition): Let there be a set of trajectories
TR = {TR1, TR2, . . . , TRi, . . . , TRnT R

}, and assume that each TRi is divided
into a set of sub-trajectories {STR1, . . . , STRi, . . . STRnST R

}. Moverover, con-
sider the distance matrix TRD between each STRi and STRj. The problem is
to efficiently perform TRC using TRD to generate a clustering C having a low
DBI value.

4 A Distributed Density Peak Clustering Approach

To solve the defined problem, this section proposes a distributed trajectory den-
sity peak clustering algorithm for Spark, named DTR-DPC, which consists of
three steps, namely, trajectory partitioning and division, sub-trajectory similar-
ity calculation, enhanced density peak clustering. The proposed approach first
partitions trajectory points into several dense or sparse grid areas. Then, approx-
imate calculations are done in dense areas, while a traditional trajectory division
strategy is applied in sparse areas. This dramatically reduce the amount of cal-
culations. Secondly, the similarity between sub-trajectories is measured using
three different methods. Finally, an enhanced density peak clustering (E-DPC)
algorithm is called to cluster sub-trajectories. The two key advantages of E-
DPC is that it reduces the need for human intervention and that calculations
are distributed (using the Spark model).

An overview of the proposed approach is presented in Fig. 1.

Trajectories

Trajectory 
Partition and 

Division

Sub-trajectory 
Similarity 

Calculation

Output

Enhanced DPC 

On Spark

Fig. 1. Overview of the DTR-DPC approach

Phase 1 (trajectory partition and division): Data collection methods typi-
cally record a batch of trajectories TR containing many useless trajectory points
which are continuously recorded in a small range and have no practical signif-
icance. To deal with this issue, the proposed method divides the area where
trajectory points appear into several grid areas GA. The method assigns each
point pj

i to a different GA to form dense areas DA and sparse areas SA, for
which different sub-trajectory partitioning strategies are applied. After that,
trajectories are segmented into two different areas to form a sub-trajectory set
STR.
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Phase 2 (sub-trajectory similarity calculation): Then, using the trajectory
division result of Phase 1, the similarity matrix (SM) of all sub-trajectory pairs
is calculated using three different similarity measures, defined for various GA.
The distance between two sub-trajectories in DA is denoted as dist<da,da>, the
distance between two sub-trajectories in SA is denoted as dist<sa,sa>, while
dist<da,sa> refers to the distance between a trajectory in a DA and one in a
SA.

Phase 3 (enhanced density peak clustering): The SM matrix obtained in
Phase 2 is used by an adaptive method to calculate the distance and density
thresholds required by the DPC algorithm, to select some special points as center
points. Then, each remaining point is assigned to its nearest center point to form
a set of points called a cluster. Finally, the algorithm is optimized to run on Spark
to reduce the runtime.

4.1 Trajectory Partition and Division

This first phase is performed in three steps. Firstly, a trajectory coordinate
system (x, y) and grid area GA is built. Then, each point of the trajectory data
is assigned to different grid areas to form dense areas and sparse areas based
on a threshold ThNP indicating a minimum number of points per area. Finally,
different trajectory division strategies are applied for different area types to
obtain the sub-trajectory set.

The trajectory coordinates system (x, y) is mainly used to map trajectory
points to the two-dimensional coordinate axis. The X and Y axis values of a
point denotes longitude and latitude, respectively. Furthermore, x-axis and y-
axis scale values |xscale| and |yscale| are defined as:

|xscale| =
xmax − xmin

NE
(2)

|yscale| =
ymax − ymin

NE
(3)

where xmax and ymax represent the maximum longitude and latitude in all
pj

i , respectively, xmin and ymin represent the minimum longitude and latitude
in all pj

i , respectively, and NE is a number of equal parts, which needs to be set
by the user.

Then, the method set grid lines at each xscale and yscale increment on the X
and Y axis, respectively, to form GA, and each point pj

i is assigned to different
GA to form DA and SA, indicating that the number of points NP falling in an
area is greater or smaller than the ThNP threshold, respectively. An example of
DA and SA partition diagram is shown in Fig. 2.

After partitioning trajectories, the algorithm divides trajectories for dif-
ferent areas to protect the locality of each trajectory and reduce the run-
time. The algorithm scans all the trajectory segments of each entire trajec-
tory TRi, excluding all sub-trajectory segments that pass through DA, to save
all the sub-trajectory segments that only pass through SA. The result is a set
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Dense Area (DA)

Sparse Area (SA)

Fig. 2. A DA and SA partition diagram.

SATRi = {SATR1
i , . . . , SATRj

i , . . . , SATRn
i }, where SATRj

i represent the j-th
sub-trajectory in TRi, which only pass through SA.

All sub-trajectories that only pass through one dense area DAi, are replaced
by an abstract trajectory DATRi, which is represented as:

DATRi =< DAleftlower

i ,DAcenter
i ,DA

rightupper

i > (4)

where DAleftlower

i , DA
rightupper

i , DAcenter
i represents the left lower corner

point, right upper corner point, and the center point of DAi’s center area, respec-
tively.

For each sub-trajectory SATRj
i , based on the MDA trajectory division strat-

egy [1], the algorithm adds corner angles to obtain a better sub-trajectory divi-
sion. A corner angle θ is defined as:

θ =

⎧
⎨

⎩

π − α, α ≤ π

2
,

α − π, α >
π

2
,

(5)

A schematic diagram of this trajectory division approach is shown in Fig. 3,
where α is calculated as:

α = arccos((a2 + b2 − c2)/2ab). (6)

Calculations made using the MDA strategy produce a trajectory division
result SASTRk =< pstart

SASTRk
, . . . , pj

SASTRk
, . . . , pend

SASTRk
> of SATRj

i . Hence
the sub-trajectory set STR can be rewritten as:

{DATR1, . . . , DATRi, . . . , DATRnDA
, SASTR1, . . . , SASTRj , . . . , SASTRnSA

}
(7)
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Corner

Fig. 3. The schematic diagram of trajectory division

where nDA refers to the number of abstract sub-trajectories representing tra-
jectories passing through DA and nSA is the number of sub-trajectories obtained
by dividing SATR.

4.2 Sub-trajectory Similarity Calculation

A sub-trajectory similarity measure is then applied to calculate the distance
between each pair of trajectories. Because the proposed method handles two
types of sub-trajectories (DATR and SASTR), three types of distance are used:
dist<i,j>

<da,da> between DATRi and DATRj , disti,j<da,sa> between DATRi and
SASTRj , and dist<i,j>

<sa,sa> between SASTRi and SASTRj .
For instance, two sub-trajectories DATRi and DATRj are shown in Fig. 4(a),

and the distance dist<i,j>
<da,da> between two such sub-trajectories is calculated as:

dist<i,j>
<da,da> = βdist1 + γdist2, β + γ = 1, (8)

where β and γ are distance weights, dist1 is the distance between DAcenter
i and

DAcenter
j , and dist2 represents the average distance between the remaining two

points DArightupper and DAleftlower .
For example, two sub-trajectories SASTRi and SASTRj are depicted in

Fig. 4(b). The distance dist<i,j>
<sa,sa> between two such sub-trajectories is calcu-

lated using the MDA strategy [1], which is defined as :

dist<i,j>
<sa,sa> = ω⊥ · dist⊥(SASTRi, SASTRj)+

ω‖ · dist‖(SASTRi, SASTRj) + ωθ · distθ(SASTRi, SASTRj)
(9)

where ω⊥, ω‖ and ωθ are the weights of three distance types. Those
are dist⊥(SASTRi, SASTRj), dist‖(SASTRi, SASTRj) and distθ(SASTRi,
SASTRj) of the MDA strategy [1], which are called vertical distance, parallel
distance and angular distance.

Two sub-trajectories DATRi and DASTRj are shown in Fig. 4(c). The dis-
tance dist<i,j>

<da,sa> between two such sub-trajectories is also calculated using the

MDA strategy [1], which treats DAleftlower

i as pstart
SASTRj

, and treats DA
rightupper

i

as pend
SASTRj

.
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(a) Distance be-
tween two sub-
trajectories SASTRi

and SASTRj .

(b) Distance be-
tween two sub-
trajectories SASTRi

and SASTRj .

(c) Distance between
two sub-trajectories
DATRi and SASTRj .

Fig. 4. The three distance types.

4.3 Enhanced Density Peak Clustering

To improve the efficiency of clustering trajectory data and reduce the impact
of artificially set parameters on the DPC algorithm, this paper proposes an
enhanced DPC algorithm, called E-DPC. It uses the Log-Normal distribution to
adaptively select a density threshold thdensity and a distance threshold thdistance.
The Log-Normal distribution is used instead of other distributions because its
shape is narrow and upward, which means that we may choose more cluster
centers to offset side-effects of data reduction in dense areas.

To apply DPC, the algorithm then selects some special trajectories as cen-
ter points. Remaining sub-trajectories are then assigned to their nearest center
points to form clusters. This assignment of a trajectory is done by considering
the local density ρi and the minimum distances from any other trajectory with
higher density δi. The greater the ρi and δi are, the more likely a sub-trajectory
is to be a center point. However, a drawback of this traditional approach is that
the thresholds of ρi and δi need to be set by hand.

To address this issue, the proposed aproach performs Log-Normal distribu-
tion fitting on all the calculated ρ and δ sets, and takes the upper quantile of the
Log-Normal distribution as the local density threshold thdensity and distance
threshold thdistance. The Log-Normal distribution is shown in Fig. 5, and ρ’s
Log-Normal distribution is:

f(ρ;μ;σ) =
1√

2πρσ
e− (ln ρ−μ)

2σ2 (10)

5 Experimental Evaluation

This section reports results of experiments comparing the proposed TDR-DPC
approach with two distributed trajectory clustering algorithms from the litera-
ture, namely DBSCAN [19] and DPC [16]. A Spark platform was used, having
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Fig. 5. The Log-Normal distribution of local density ρ

one master and five slaves, where each node is equipped with 8 GB of memory,
a 500 GB hard disk and a Core i7@2.3 GHz CPU. The software settings are:
Hadoop 2.7.7, Spark 2.4.4 and Python 2.7.11. The three compared algorithms
were applied to two large-scale trajectory datasets. The first dataset (Gowalla)
was obtained from a location-based social networking website where users share
their locations by checking-in. It contains 6,442,890 check-ins with GPS informa-
tion. The second dataset (GeoLife) consists of three years of trajectory data for
182 participants of the Geo-Life project. Both datasets are too big to be mined
on a typical desktop computer.

An experiment was done to evaluate the influence of NE on the proposed
method, and compare its performance to other methods. The parameter ThNP

was set to 1500, the distance weights β and γ were set to 0.6 and 0.4, respectively,
and the distance weights ω⊥, ω‖ and ωθ were set to 0.33. Then, the following
algorithms were ran on each dataset: DBSCAN, DPC, DTR-STR(NE = 200),
DTR-STR(NE = 400) and DTR-STR(NE = 800). The DBI clustering accuracy
and runtimes were recorded for each algorithm. This experimental design can
not only verify the quality of the algorithm but also verify the impact of the
partition size NE on the algorithm. Results in terms of clustering accuracy and
runtimes are shown in Table 1 and Fig. 6.

Table 1. Clustering accuracy comparison (DBI)

Dataset DBSCAN DPC DTR-DPC (NE = 200) DTR-DPC (NE = 400) DTR-DPC (NE = 800)

Gowalla 0.752 0.683 0.712 0.695 0.689

GeoLife 0.779 0.724 0.751 0.746 0.737

It can be observed in Table 1 that all DTR-DPC algorithms are slightly
more accurate than the DPC algorithm, but both are less accurate than
DBSCAN. These results are obtained because the DTR-DPC algorithm deletes
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Fig. 6. Runtime comparison (s)

and abstracts numerous trajectory points. This has only a slight effect on clus-
tering results because many points of a dense area are repeated stay points of
the same trajectory, which has little effects on trajectory data mining. Moreover,
it can also be observed that the larger the partition size NE of GA, the closer
the accuracy is to that of the DPC algorithm. The reason is that the larger the
NE is, the fewer points are deleted, and the greater the similarity is with the
original data. In Fig. 6, the runtime of DTR-DPC is much less than those of the
other two algorithms, and the larger the NE is, the longer the runtime, which
was expected. In summary, NE is a value that needs to be reasonably set. If NE
is set to a larger value, it may be faster but the accuracy may decrease. In future
work, we will consider designing a methodology to automatically set NE. The
experimental results reported in this paper have demonstrated that the proposed
algorithm considerably reduces the runtime while preserving accuracy.

6 Conclusion

This paper proposed a distributed trajectory clustering approach based on den-
sity peak clustering on Spark, named DTR-DPC, which preprocesses data using
a concept of dense and sparse areas, to reduce the number of invalid trajectories
and calculations. Several different sub-trajectory distance measures are defined
to compare sub-trajectories. Then, an enhanced E-DPC clustering algorithm is
run on Spark to make large-scale trajectory data processing possible. Extensive
experiments demonstrated that DTR-DPC guarantees almost constant cluster-
ing accuracy, while greatly reducing the runtime, and can perform large-scale
trajectory data mining. In the future work, we will focus on finding the rela-
tionship between the number of equal parts NE and the size of the dataset to
obtain maximum efficiency.
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