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Abstract. The Regression Tsetlin Machine (RTM) addresses the lack
of interpretability impeding state-of-the-art nonlinear regression models.
It does this by using conjunctive clauses in propositional logic to cap-
ture the underlying non-linear frequent patterns in the data. These, in
turn, are combined into a continuous output through summation, akin
to a linear regression function, however, with non-linear components and
binary weights. However, the resolution of the RTM output is propor-
tional to the number of clauses employed. This means that computation
cost increases with resolution. To address this problem, we here introduce
integer weighted RTM clauses. Our integer weighted clause is a compact
representation of multiple clauses that capture the same sub-pattern—
w repeating clauses are turned into one, with an integer weight w. This
reduces computation cost w times, and increases interpretability through
a sparser representation. We introduce a novel learning scheme, based
on so-called stochastic searching on the line. We evaluate the potential
of the integer weighted RTM empirically using two artificial datasets.
The results show that the integer weighted RTM is able to acquire on
par or better accuracy using significantly less computational resources
compared to regular RTM and an RTM with real-valued weights.

Keywords: Tsetlin machines · Regression tsetlin machines · Weighted
tsetlin machines · Interpretable machine learning · Stochastic searching
on the line

1 Introduction

The recently introduced Regression Tsetlin Machine (RTM) [1,2] is a proposi-
tional logic based approach to interpretable non-linear regression, founded on
the Tsetlin Machine (TM) [3]. Being based on disjunctive normal form, like
Karnaugh maps, the TM can map an exponential number of input feature value
combinations to an appropriate output [4]. Recent research reports several dis-
tinct TM properties. The clauses that a TM produces have an interpretable
form (e.g., if X satisfies condition A and not condition B then Y = 1), sim-
ilar to the branches in a decision tree [5]. For small-scale pattern recognition
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problems, up to three orders of magnitude lower energy consumption and infer-
ence time has been reported, compared to neural networks alike [6]. Like neural
networks, the TM can be used in convolution, providing competitive memory
usage, computation speed, and accuracy on MNIST, F-MNIST and K-MNIST,
in comparison with simple 4-layer CNNs, K-Nereast Neighbors, SVMs, Random
Forests, Gradient Boosting, BinaryConnect, Logistic Circuits, and ResNet [7].
By introducing clause weights that allow one clause to represent multiple, it
has been demonstrated that the number of clauses can be reduced up to 50×,
without loss of accuracy, leading to more compact clause sets [4]. Finally, hyper-
parameter search can be simplified with multi-granular clauses, eliminating the
pattern specificity parameter [8].

Paper Contributions: In the RTM, regression resolution is proportional to the
number of conjunctive clauses employed. In other words, computation cost and
memory usage grows proportionally with resolution. Building upon the Weighted
TM (WTM) by Phoulady et al. [4], this paper introduces weights to the RTM
scheme. However, while the WTM uses real-valued weights for classification, we
instead propose a novel scheme based on integer weights, targeting regression. In
brief, we use the stochastic searching on the line approach pioneered by Oommen
in 1997 [9] to eliminate multiplication from the weight updating. In addition
to the computational benefits this entails, we also argue that integer weighted
clauses are more interpretable than real-valued ones because they can be seen
as multiple copies of the same clause. Finally, our scheme does not introduce
additional hyper-parameters, whereas the WTM relies on weight learning speed.

Paper Organization: The remainder of the paper is organized as follows. In
Sect. 2, the basics of RTMs are provided. Then, in Sect. 3, the SPL problem
and its solution are explained. The main contribution of this paper, the integer
weighting scheme for the RTM, is presented in detail in Sect. 4 and evaluated
empirically using two artificial datasets in Sect. 5. We conclude our work in
Sect. 6.

2 The Regression Tsetlin Machine (RTM)

The RTM performs regression based on formulas in propositional logic. In all
brevity, the input to an RTM is a vector X of o propositional variables xk,
X ∈ {0, 1}o. These are further augmented with their negated counterparts x̄k =
1 − xk to form a vector of literals: L = [x1, . . . , xo, x̄1, . . . , x̄o] = [l1, . . . , l2o]. In
contrast to a regular TM, the output of an RTM is real-valued, normalized to
the domain y ∈ [0, 1].
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Regression Function: The regression function of an RTM is simply a linear
summation of products, where the products are built from the literals:

y =
1
T

m∑

j=1

∏

k∈Ij

lk. (1)

Above, the index j refers to one particular product of literals, defined by the
subset Ij of literal indexes. If we e.g. have two propositional variables x1 and
x2, the literal index sets I1 = {1, 4} and I2 = {2, 3} define the function:
y = 1

T (x1x̄2 + x̄1x2). The user set parameter T decides the resolution of the
regression function. Notice that each product in the summation either evaluates
to 0 or 1. This means that a larger T requires more literal products to reach a
particular value y. Thus, increasing T makes the regression function increasingly
fine-grained. In the following, we will formulate and refer to the products as con-
junctive clauses, as is typical for the regular TM. The value cj of each product
is then a conjunction of literals:

cj =
∏

k∈Ij

lk =
∧

k∈Ij

lk. (2)

Finally, note that the number of conjunctive clauses m in the regression function
also is a user set parameter, which decides the expression power of the RTM.

Tsetlin Automata Teams: The composition of each clause is decided by a
team of Tsetlin Automata (TAs) [10]. There are 2× o number of TAs per clause
j. Each represents a particular literal k and decides whether to include or exclude
that literal in the clause. The decision depends on the current state of the TA,
denoted aj,k ∈ {1, . . . , 2N}. States from 1 to N produce an exclude action and
states from N + 1 to 2N produce an include action. Accordingly, the set of
indexes Ij can be defined as Ij = {k|aj,k > N, 1 ≤ k ≤ 2o}. The states of all of
the TAs are organized as an m × 2o matrix A: A = (aj,k) ∈ {1, . . . , 2N}m×2o

where m is the number of clauses.

Learning Procedure: Learning in RTM is done through an online reinforce-
ment scheme that updates the state matrix A by processing one training example
(X̂i, ŷi) at a time, as detailed below.

The RTM employs two kinds of feedback, Type I and Type II, further defined
below. Type I feedback triggers TA state changes that eventually make a clause
output 1 for the given training example X̂i. Conversely, Type II feedback triggers
state changes that eventually make the clause output 0. Thus, overall, regression
error can be systematically reduced by carefully distributing Type I and Type
II feedback:

Feedback =

{
Type I, if y < ŷi,

Type II, if y > ŷi.
(3)
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In effect, the number of clauses that evaluates to 1 is increased when the pre-
dicted output is less than the target output (y < ŷi) by providing Type I feed-
back. Type II feedback, on the other hand, is applied to decrease the number of
clauses that evaluates to 1 when the predicted output is higher than the target
output (y > ŷi).

Activation Probability: Feedback is handed out stochastically to regulate
learning. The feedback probability pj is proportional to the absolute error of the
prediction, | y − ŷi |. Clauses activated for feedback are the stored in the matrix
P = (pj) ∈ {0, 1}m.

Type I Feedback: Type I feedback subdivides into Type Ia and Type Ib.
Type Ia reinforces include actions of TAs whose corresponding literal value is
1, however, only when the clause output is 1. The probability of kth TA of
the jth clause receives Type Ia feedback rj,k is s−1

s , where s (s ≥ 1) is a user
set parameter. Type Ib combats over-fitting by reinforcing exclude actions of
TAs when the corresponding literal is 0 or when the clause output is 0. The
probability of kth TA of the jth clause receives Type Ib feedback qj,k is 1

s .
Using the complete set of conditions, the TAs selected for Type Ia

feedback are singled out by the indexes IIa = {(j, k)|lk = 1 ∧ cj = 1
∧pj = 1 ∧ rj,k = 1} . Similarly, TAs selected for Type Ib are IIb = {(j, k)|
(lk = 0 ∨ cj = 0) ∧ pj = 1 ∧ qj,k = 1} .

Once the TAs have been targeted for Type Ia and Type Ib feedback, their
states are updated. Available updating operators are ⊕ and �, where ⊕ adds 1
to the current state while � subtracts 1. Thus, before a new learning iterations
starts, the states in the matrix A are updated as follows: A ← (

A ⊕ IIa
) � IIb.

Type II Feedback: Type II feedback eventually changes the output of a clause
from 1 to 0, for a specific input X̂i. This is achieved simply by including one or
more of the literals that take the value 0 for X̂i. The indexes of TAs selected
for Type II can thus be singled out as III = {(j, k)|lk = 0 ∧ cj = 1 ∧ pj = 1}.
Accordingly, the states of the TAs are updated as follows: A ← A ⊕ III.

3 Stochastic Searching on the Line

Stochastic searching on the line, also referred to as stochastic point location
(SPL) was pioneered by Oommen in 1997 [9]. SPL is a fundamental optimization
problem where one tries to locate an unknown unique point within a given
interval. The only available information for the Learning Mechanism (LM) is the
possibly faulty feedback provided by the attached environment (E). According
to the feedback, LM moves right or left from its current location in a discretized
solution space.

The task at hand is to determine the optimal value λ∗ of a variable λ, assum-
ing that the environment is informative. That is, that it provides the correct
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direction of λ∗ with probability p > 0.5. In SPL, λ is assume to be any number
in the interval [0, 1]. The SPL scheme of Oommen discretizes the solution space
by subdividing the unit interval into N steps, {0, 1/N, 2/N, ..., (N − 1)/N, 1}.
Hence, N defines the resolution of the learning scheme.

The current guess, λ(n), is updated according to the feedback from the envi-
ronment as follows:

λ(n + 1) =

⎧
⎪⎨

⎪⎩

λ(n) + 1/N, if E(n) = 1 and 0 � λ(n) < 1 ,

λ(n) − 1/N, if E(n) = 0 and 0 < λ(n) � 1 ,

λ(n), Otherwise .

(4)

The feedback E(n) = 1 is the environment suggestion to increase the value
of λ and E(n) = 0 is the environment suggestion to decrease the value of λ.
Asymptotically, the learning mechanics is able to find a value arbitrarily close
to λ∗ when N → 8 and n → 8.

4 Regression Tsetlin Machine with Weighted Clauses

We now introduce clauses with integer weights to provide a more compact rep-
resentation of the regression function. The regression function for the integer
weighted RTM attaches a weight wj to each clause output cj , j = 1, ...,m.
Consequently, the regression output can be computed according to Eq. 5:

y =
1
T

m∑

j=1

wj

∏

k∈Ij

lk. (5)

Weight Learning: Our approach to learning the weight of each clause is similar
to SPL. However, the solution space of each weight is [0, 8], while the resolution
of the learning scheme is N = 1. The weight attached to a clause is updated when
the clause receives Type Ia feedback or Type II feedback. The weight updating
procedure is summarized in Algorithm 1. Here, wj(n) is the weight of clause j
at the nth training round.

Algorithm 1: Round n updating of clause weights
Initialization (round 0): wj(0) ← 0, j = 1, . . . , m
Initialization (round n): y is calculated according to Eq. 5.
for j = 1, ...,m do
if y(n) < ŷi(n) ∧ cj(n) = 1 ∧ pj(n) = 1 then

wj(n + 1) ← wj(n) + N
else if y(n) > ŷi(n) ∧ cj(n) = 1 ∧ pj(n) = 1 ∧ wj(n) > 0 then

wj(n + 1) ← wj(n) − N
else

wj(n + 1) ← wj(n)
end if

end for
Return wj(n + 1), j = 1, . . . ,m
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Note that since weights in this study can take any value higher than or equal
to 0, an unwanted clause can be turned off by setting its weight to 0. Further,
sub-patterns that have a large impact on the calculation of y can be represented
with a correspondingly larger weight.

5 Empirical Evaluation

In this section, we study the behavior of the RTM with integer weighting (RTM-
IW) using two artificial datasets similar to the datasets presented in [1], in
comparison with a standard RTM and a real-value weighted RTM (RTM-RW).
We use Mean Absolute Error (MAE) to measure performance.

Artificial Datasets: Dataset I contains 3-bit feature input. The output, in
turn, is 100 times larger than the decimal value of the binary input (e.g., the
input [0, 1, 0] produces the output 200). The training set consists of 8000 samples
while the testing set consists of 2000 samples, both without noise. Dataset II
contains the same data as Dataset I, except that the output of the training
data is perturbed to introduce noise. Each input feature has been generated
independently with equal probability of taking either the value 0 or 1, producing
a uniform distribution of bit values.

Results and Discussion: The pattern distribution of the artificial data was
analyzed in the original RTM study. As discussed, there are eight unique sub-
patterns. The RTM is able to capture the complete set of sub-patterns utilizing
no more than three types of clauses, i.e., (1 ✳ ✳), (✳ 1 ✳), (✳ ✳ 1)1. However,
to produce the correct output, some clauses must be duplicated multiple times,
depending on the input pattern. For instance, each dataset requires seven clauses
to represent the three different patterns it contains, namely, (4 × (1 ✳ ✳), 2 ×
(✳ 1 ✳), 1 × (✳ ✳ 1))2. So, with e.g. the input [1, 0, 1], four clauses which
represent the pattern (1 ✳ ✳) and one clause which represents the pattern (✳
✳ 1) activate to correctly output 500 (after normalization).

Notably, it turns out that the RTM-IW requires even fewer clauses to capture
the sub-patterns in the above data, as outlined in Table 1. Instead of having
multiple clauses to represent one sub-pattern, RTM-IW utilizes merely one clause
with the correct weight to do the same job. The advantage of the proposed
integer weighting scheme is thus apparent. It learns the correct weight of each
clause, so that it achieves an MAE of zero. Further, it is possible to ignore
redundant clauses simply by giving them the weight zero. For the present dataset,
for instance, decreasing m while keeping the same resolution, T = 7, does not
impede accuracy. The RTM-RW on the other hand struggles to find the correct
weights, and fails to minimize MAE. Here, the real valued weights were updated
1 Here, ✳ means an input feature that can take an arbitrary value, either 0 or 1.
2 In this expression, “four clauses to represent the pattern (1 ✳ ✳)” is written as “4
× (1 ✳ ✳)”.
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Table 1. Behavior comparison of different RTM schemes on Dataset III.

m T Pattern Ij Īj No. of clauses
required

wj Training
MAE

Testing
MAE

RTM 7 7 (1 ✳ ✳) {1} { } 4 – 0 0

(✳ 1 ✳) {2} { } 2 –

(✳ ✳ 1) {3} { } 1 –

RTM-IW 3 7 (1 ✳ ✳) {1} { } 1 4 0 0

(✳ 1 ✳) {2} { } 1 2

(✳ ✳ 1) {3} { } 1 1

RTM-RW 3 7 (1 ✳ ✳) {1} { } 1 3.987 1.857 1.799

(✳ 1 ✳) {2} { } 1 2.027

(✳ ✳ 1) {3} { } 1 0.971
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Fig. 1. The training error variation per training epoch for different RTM schemes.

with a learning rate of α = 0.01, determined using a binary hyper-parameter
search.

Figure 1 casts further light on learning behaviour by reporting training error
per epoch for the three different RTM schemes with m = 70 and T = 100000. As
seen, both RTM and RTM-IW obtain relatively low MAE after just one training
epoch, eventually reaching MAE zero (training MAE at end of training are given
in the legend of each graph). RTM-RW, on the other hand, starts off with a much
higher MAE, which is drastically decreasing over a few epochs, however, fails to
reach MAE 0 after becoming asymptotically stable.

We also studied the effect of T on performance with noise free data by varying
T , while fixing the number of clauses m. For instance, RTM was able to reach
a training MAE of 1.9 and a testing error of 2.1 with m = T = 300 [1]. For the
same dataset, RTM-IW can reach a training error of 0.19 and a testing error of
1.87 with m = 200 and T = 2000. Further, for m = 200 and T = 20 000, training
error drops to 0.027 and testing error drops to 0.027. Finally, by increasing T to
200 000 training error falls to 0.0003 while testing error stabilises at 0.0002.
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Table 2. Training and testing MAE after 200 training epochs by various methods with
different m and T .

Model RTM RTM-RW RTM-IW

MAE Training Testing Training Testing Training Testing

Dataset I II I II I II I II I II I II

m 7 0.000 7.400 0.000 5.000 2.230 7.702 2.217 5.955 1.172 8.019 1.171 6.236

20 14.600 13.800 14.200 14.500 1.023 7.863 1.036 6.007 0.487 9.844 0.493 8.499

70 0.000 6.600 0.000 4.200 0.292 7.365 0.295 5.735 0.189 7.602 0.189 5.532

300 1.900 5.800 2.100 3.300 0.104 5.800 0.106 2.226 0.078 5.685 0.078 2.234

700 1.000 5.900 1.000 3.400 0.013 5.551 0.013 1.968 0.044 5.532 0.044 2.149

2000 1.000 5.600 1.200 1.900 0.012 5.731 0.012 2.520 0.003 5.373 0.003 1.280

5000 0.900 5.500 1.000 2.700 0.010 5.635 0.010 2.252 0.001 5.412 0.001 1.501

To further compare the performance of RTM-IW with RTM and RTM-RW,
each approach was evaluated using a wide rage of m and T settings. Represen-
tative training and testing MAE for both datasets are summarized in Table 2.
Here, the number of clauses used with each dataset is also given. The T for the
original RTM is equal to the number of clauses, while for the RTM with weights
T is simply 100 times that number.

As seen, the training and testing MAE reach zero when the RTM operates
with noise free data when m = 7. However, MAE approaches zero with RTM-IW
and RTM-RW when increasing number of clauses m.

For noisy data, the minimum training MAE achieved by RTM is 5.500,
obtained with m = 5000 clauses. The RTM-IW, on the other hand, obtains a
lower MAE of 5.373 with less than half of the clauses (m = 2000). The accuracy
of RTM-IW in comparison with RTM-RW is less clear, with quite similar MAE
for noisy data. The average testing MAE across both the datasets, however,
reveals that the average MAE of RTM-IW is lower than that of the RTM-RW
(2.101 vs 2.168).

6 Conclusion

In this paper, we presented a new weighting scheme for the Regression Tsetlin
Machine (RTM), RTM with Integer Weights (RTM-IW). The weights attached to
the clauses helps the RTM represent sub-patterns in a more compact way. Since
the weights are integer, interpretability is improved through a more compact
representation of the clause set. We also presented a new weight learning scheme
based on stochastic searching on the line, integrated with the Type I and Type
II feedback of the RTM. The RTM-IW obtains on par or better accuracy with
fewer number of clauses compared to RTM without weights. It also performs
competitively in comparison with an alternative RTM with real-valued weights.
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