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Abstract. Recently, with the rise in demand for reliable and economical
cloud services, there is a rise in the number of cloud providers competing
among each other. In such a competitive open market of multiple cloud
providers, providers aim to model the selling prices of their requested
resources in real-time to maximise their revenue. In this regard, there is
a pressing need for an efficient real-time pricing mechanism, that effec-
tively considers a change in the supply and demand of the resources
in a certain open cloud market. In this research, we propose a rein-
forcement learning-based real-time pricing mechanism for dynamically
modelling the prices of the requested resources. In specific, the proposed
real-time pricing mechanism in a reverse-auction based resource alloca-
tion paradigm, which utilises the supply/demand of the resources and
undisclosed preferences of the cloud users. Further, we compare the pro-
posed approach with two state-of-the-art resource allocation approaches
and the proposed approach outperforms the other two resource allocation
approaches.

Keywords: Open cloud markets · Resource allocation · Real-time
pricing

1 Introduction

In recent years, with a tremendous rise in several cloud consumers and cloud
providers, open cloud markets has become a very competitive and complex busi-
ness market. In such a competitive and complex market, each providers aim at
maximising their revenue. In this regard, providers aim to serve their resources
to the highest possible number of consumers and also selling their resources
with the maximum possible prices. On the other hand, consumers aim to satisfy
their resource requests with minimum possible price and also within the desired
deadline. Thus, there is a pressing need to design an efficient pricing mecha-
nism, that efficiently handles the conflicting objectives of the participants. In
this regard, to handle the above-mentioned conflicting objectives of the partici-
pants, we propose a learning-based dynamic pricing mechanism. In specific, we
propose an efficient learning-based real-time pricing mechanism, that models the
selling prices in real-time with least possible delay. Moreover, a dynamic pricing
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mechanism, which not only considers the supply/demand of the resources but
also the preferences of the consumers, while modelling the selling price. In this
regard, the proposed pricing mechanism consists of two main steps, which are,
(1) tracking the supply-demand resources in the market (i.e. tracking the avail-
ability and demand of resources) and (2) mechanism to analyse the undisclosed
preferences of the dynamically arriving consumers. Besides, an optimal pricing
mechanism must maintain the equilibrium and social welfare [8] in any auction
paradigm.

In the literature, Samimi et al. [7] and Zaman et al. [9] proposed efficient
combinatorial auction-based resource allocation approaches in cloud computing
environments and geo-distributed data centres, respectively. However, these two
approaches are consumer-centric, which maximise the utilities of consumer alone,
i.e., by selecting a provider with the minimum selling price. Meanwhile, Kong
et al. [3] and Li et al. [4] proposed two auction-based pricing mechanism for
cloud resource allocation and cloud workflow scheduling, respectively. However,
both of these pricing mechanisms were based on static mathematical model,
which could only adapt to static or gradually changing open cloud markets.
Besides, there exist certain behavioural interdependencies [6] among vendors
and consumers when modelling their bid values (i.e. resource prices). However,
analysing and incorporating these interdependencies is a challenging problem
that is not yet practically addressed. Therefore, there arises the need for real-
time pricing approaches, that can incorporate the behavioural interdependencies
among vendors and consumers. Secondly, buying and selling in such open mar-
kets takes place in an auction paradigm, therefore maintaining the equilibrium
in an auction paradigm is also a challenging problem. In specific, maintaining
the equilibrium in open cloud markets requires promoting two main character-
istics, which are competitiveness [8] and fairness [5]. In specific, the optimal
pricing policy needs to maintain competitiveness by dynamically modelling the
resource selling prices based on supply/demand in the market. Meanwhile, a
provider selection strategy needs to observe fairness and gives equal winning
opportunities to all the bidding vendors in the market. However, to the best
of our knowledge, none of the existing resource allocation approaches focus on
addressing these three challenges simultaneously.

Therefore, it becomes clear that the existing resource allocation approaches
exhibit two key limitations, such that 1) they are only suitable for static or
gradually changing environments, whereas, they fail to adapt to dynamically
changing environments; 2) they fail to consider the fairness in the open cloud
market. In order to address the above-mentioned challenges and limitations, we
propose a novel two-stage resource allocation approach that employs a reverse
auction paradigm in open cloud markets. The proposed approach works in two
stages as follows: 1) learning-based real-time pricing policy for consumers, and 2)
fairness-based provider selection strategy for consumers. Accordingly, the con-
tributions of this research are as follows:
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– First, a new learning-based real-time pricing approach is proposed which opti-
mises the true resource valuation of provider, based on the supply and demand
in the open cloud market.

– Second, fairness mechanism for provider selection policy is proposed, to aid
potential cloud users to select the best available cloud providers.

– Third, an open cloud market simulated environment is developed, that can
simulate the dynamic arrival and departure of cloud users with different
resource requests.

The rest of this paper is organised as follows. The problem formulation of
learning the resource allocation in open cloud markets is introduced in Sect. 2.
Section 3 presents the modelling of the cloud open market into a Markov process.
In Sect. 4 and 5, the proposed real-time pricing algorithm and cloud provider
selection strategy is discussed. Whereas, the experimental results are presented
for evaluating the proposed approach in Sect. 6. Finally, the paper is concluded
in Sect. 7.

2 Problem Formulation

This section presents the formulation of the proposed real-time reverse-auction
(RTRA) pricing approach in an open-cloud market. In this context, the proposed
approach is a two-stage process, as depicted in Fig. 1, which are, the real-time
pricing algorithm and the cloud provider selection policy. Usually, in a reverse-
auction paradigm for open cloud markets, there are three participants, which
are, the cloud auctioneer, the cloud consumers and the cloud providers. The
auctioneer conducts the auction by coordinating between the providers and the
users. Specifically, it accepts the cloud resource requests from all the dynamically
arriving users at one hand and their respective selling prices from all providers on
the other hand. Then, based on these values, auctioneer determines the resource
allocation rule and the payment rule. Further, this allocation and payment rule
is broadcast to all the participants in the reverse-auction. Besides, it is the
responsibility of the auctioneer to maintain the stability in the auction paradigm
by observing confidentiality and non-partisan in the open cloud markets.

In this regard, we consider an open cloud market with one auctioneer and
a set of n providers denoted as p1, . . . , pn. Furthermore, each provider is rep-
resented by an autonomous agent. In addition, each provider has g types of
resources, denoted as pr1, . . . , prg; where prk represents the quantity of resource
type k ∈ g. These resources are requested by m dynamically arriving consumers
denoted as c1, . . . , cm, each with resource request reqj , where j ∈ [1,m]. Further,
each resource request is denoted as req ≡ ({rbk}, dl), where rbk represents the
quantity of the requested resource of type k ∈ g, whereas, dl denotes a strict
deadline for serving each consumer’s request. By following a reverse-auction
paradigm, various cloud resources are dynamically allocated using the proposed
RTRA approach as follows. Firstly, upon receiving a set of resource requests,
a cloud auctioneer broadcasts these requests to all the available providers in
the market. Then, each available provider sets its optimal selling price (i.e. bid)
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using a real-time pricing policy and submits it to the auctioneer. Finally, the
auctioneer elicits a suitable provider to serve the lodged request by each con-
sumer, based on a provider selection strategy. Besides, it should be noted that
the proposed RTRA approach sustains with the assumption that multiple inde-
pendent provider can presumably participate in the proposed auction platform
to sell their resources through an unbiased auctioneer. As a result, each provider
is expected to agree to share its information to maximise its revenues in the
long term. Towards this end, we model the open cloud market into multi-agent
Markov decision process (MMDP). In this context, we structure the state space
of the proposed MMDP model based on the feature vector of the requesting
consumers stored in the transaction database. In the further section, we explain
the proposed preference labelling scheme along with three other key aspects of
the proposed MMDP model, i.e., states, actions, and rewards.

Fig. 1. The proposed architecture of real-time resource allocation

3 Modelling Cloud Open Markets

In this section, we model the resource allocation problem in a multi-agent Markov
decision process (MMDP). In this regard, the open cloud market is the Markov
environment, wherein m dynamically arriving consumers change the state of the
environment with their resource requests req. In turn, n autonomous agents on
behalf of each provider optimises the selling price for each resource request req
from consumers. In this context, the action space is defined as A ≡ {A1, . . . An},
wherein, Ai represents the action space for pi, i ∈ n. Further, based on the pricing
policy πi : si �→ Ai of pi, the action acti ∈ Ai is determined. After executing the
action acti (after resource allocation), the state s is transferred to the next state
si+1; which is based on the transition function τ ∗ s × A1 × · · · × An �→ Ω(s),
where Ω(s) represents the set of probability distributions and s represents the
shared state. Finally, at the end of each episode, all the agents, which took part
in the auction, receive rewards based on the outcome of the auction (win or loss),
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such that, reward ri : si × Ai × ... × An �→ Ri, where R is the resultant reward.
In this regard, each agent (i.e. provider) models their selling price based on the
demand-supply of the resources in the market. In further subsections, we explain
the three key aspects of the proposed MMDP model; i.e., states, actions, and
rewards.

3.1 State

In the proposed MMDP model, each state s represents the status of all the
agents (i.e. providers) in the market. In this context, the existence of multiple
consumers within each episode leads to multiple resource allocation transactions
within each single episode. Therefore, the state s is represented by concatenating
all the transactional states within an episode, that is denoted as s ≡ [H,F ]. In
this state representation, H represents the vector of concatenated transactional
states, and F represents the feature vector of each consumer. In this regard, each
transactional state is represented by a vector η which is represented based on
the categories of providers and consumers. Specifically, η is represented as ηpi

≡
[revpi

, rbcj , avg winpi
], where, revpi

, rbci , and avg winpi
denote the revenue,

requested resources, and average winning rate of the provider pi, respectively. In
this regard, at the end of each episode, all the transactional state vectors η are
concatenated together, which is represented as concatenated transactional state
vector H. Whereas, feature vector represents the information of the requesting
consumers stored in the transaction database.

3.2 Action

Initially, each provider independently sets a base price for each bundle of the
requested resources. This base price is denoted as base pricei

j by the provider
pi for the requested bundle of resources from consumer cj , where i ∈ [1, n] and
j ∈ [1,m]. In this context, different providers optimise their base prices based
on a set of exclusive adjustment multipliers for each resource request. In this
regard, these adjustment multipliers represent the optimised action values act,
which are obtained based on a proposed RL-based algorithm. Specifically, based
on the learnt adjustment multipliers (i.e. action values), the optimal selling price
for each provider sp is computed using Eq. 1.

bid = sp(i) = base pricei
j × (1 + acti) (1)

In this context, the action space for n different providers is denoted as A ≡
{A1, . . . An}, where Ai represents the action space for provider pi, where i ∈ n.
Further, based on provider pi’s pricing policy πi : si �→ Ai, the action value
acti ∈ Ai is determined. Finally after executing the chosen actions (allocating
the resources), the proposed MMDP model transfers to the next state si+1. This
state change occurs based on the transition function τ ∗s×A1×· · ·×An �→ Ω(s),
where Ω(s) represents a set of probability distributions. Finally, at the end of
each episode, all the bidding providers receive rewards based on their chosen
actions, such that; ri : si × Ai × · · · × An �→ R.
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3.3 Reward

In open cloud markets, several providers are competing amongst each other to
maximise their profits (rewards). In this context, the profit of each provider is
maximised by winning the highest possible number of auctions, while simulta-
neously minimising its loss and non-participation rates. Therefore, in this work,
the reward function is formulated to represent the win, the loss and the non-
participation of each provider. In this regard, we chose to model the reward func-
tion r for each provider pi as ri ≡ (α × wini, β × lossi, γ × non participationi),
wherein, wini, lossi and non participationi denote the number of times provider
pi won, lost and did not participate in the auctions within a single episode. In
this context, α, β and γ represent the impact of each of these outcomes, which
are set independently by each provider. Finally, the episodic reward of each
provider is computed via cumulatively adding all the rewards that were earned
within each episode. In this regard, to reduce the complexity of updating the
reward values after each auction; these reward values are updated only at the
end of each episode. Finally, the proposed MMDP model transfers to the next
state.

4 Real-Time Pricing

In this section, we discuss the proposed reinforcement learning-based real-time
pricing algorithm. As mentioned before the proposed algorithm aims at learn-
ing the supply/demand of the resources as well as the consumers’ preferences
in the open cloud markets. In any competitive open markets, providers have
a limited volume of resources, and they make profit only serving the resources
to the consumers. Therefore, to maximise their profit, providers would have to
offer their resources wisely at the right time, and importantly at the right price.
In this regard, the provider is expected to carefully decide whether to bid for
any particular request from the consumer by evaluating their undisclosed pref-
erences. Considering this dynamism of open cloud markets, there is a need for a
learning-based real-time pricing approach. In addition, given the presumed real-
time scenario, with no available training data sets, supervised learning becomes
infeasible. Therefore, the proposed real-time pricing algorithm adopts a reinforce-
ment learning scheme [2] in order to handle the presumed real-time scenario. As
a result, the proposed real-time pricing algorithm enables the bidding providers
to dynamically optimise their bid values. Specifically, the proposed algorithm
optimises the bid values based on the dynamically changing supply/demand in
an open market, and the characteristics of the requesting consumers. In doing
so, the proposed algorithm takes three inputs, which are (i) the characteristics
of consumers in the form of feature vector (F ), (ii) the concatenated categorical
state H, and (iii) the cumulative rewards of all providers. Then, the proposed
algorithm provides the adjustment multipliers for all the providers as output.
Meanwhile, the initial state (s0) is determined by a predefined distribution. Fur-
ther, as depicted in Algorithm 1, each provider aims to select and leverage a
certain adjustment multiplier (action), to maximise its total expected future
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revenues. These future revenues are discounted by the factor γ each time-step.
In this regard, the future reward at time-step t for provider i is denoted as
Ri =

∑Te

t=0 γtrt
i , where Te is the time-step at which the bidding process ends. In

addition, the Q function for provider i is denoted by Eq. 2.

Qπ
i (s, a) = Eπ,τ [

T∑

t=0

γtrt
i |s0 = s, a] (2)

where π = {π1, . . . , πn} is the set of joint-policies of all the CB − agent and
a = [a1, . . . , an] denotes the list of bid-multipliers (actions) of all the CB−agent.
Further, the next state s′ and the next action a′ are computed using Bellman
equation as shown in Eq. 3:

Qπ
i (s, a) = Er,s′ [r(s, a) + γEa′ ∼π[Qπ

i (s
′
, s

′
)]. (3)

On the other hand, the mapping function μi maps each shared state s[H,F ]
of provider pi to the selected action acti, based on Eq. 4. This mapping function
μ is the actor in the actor-critic architecture.

ai = μ(s) = μi([H,F ]) (4)

Further, we get Eq. 5 from Eqs. 3 and 4. As shown in Eq. 5, μ = {μ1, . . . , μn}
are the joint deterministic policies of all the providers.

Qμ
i (s, a1, . . . , an) = Er,s′ [r(s, a1, . . . , an) + γQμ

i (s′, μ1(s′, . . . , μn(s′))] (5)

In this regard, the goal of the proposed algorithm becomes to learn an opti-
mal policy for each provider to attain the Nash equilibrium [1]. In addition,
in such stochastic environments, each provider learns to behave optimally by
learning an optimal policy (μi), which is also based on the optimal policies of
the other co-existing providers. Further, in the proposed algorithm, the equi-
librium of all providers are achieved by gradually reducing the loss function
LOSS(θQ

i ) of the critic Qμ
i with the parameter θQ

i as denoted in Eqs. 6 and 7.
In specific, in Eqs. 6 and 7, μ′ = {μ

′
1, . . . , μ

′
n} represents the set of target actors;

each of these actors has a delayed parameter θμ′
i . Meanwhile, Qμ′

i represents the
target critic, which also has a set of delayed parameters θQ′

i for each actor, and
(s, acti, . . . , actn, ri, s

′) represents the transition tuple that is pushed into the
replay memory D. In this regard, each provider’s policy μi, with parameters θμ

i ,
is learned based on Eq. 8, as demonstrated in Algorithm 1.

LOSS(θQ
i ) = (y − γQi(s, act1, . . . , actn))2 (6)

y = ri + γQ
′
i(s

′
, act

′
1, . . . , act

′
n)|act

′
0=[μ

′
0([Z

′ ,F ′
1 ]),...,μ

′
0([Z

′ ,F ′
u])]

(7)

∇θµ
i J ≈

∑

w

∇θµ
i
μi([Z,Fw])∇actqiw

Qi(s, act1, . . . , actn) (8)

Finally, the optimal bid values are utilised by the proposed provider selection
algorithm, which is discussed in the next section.
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Algorithm 1. Real-Time Pricing Algorithm
1: Initialise: Qi(s, act1, . . . , actn|θQ

i ), replay memory D

2: Initialise: actor μi, target actor μ
′
i

3: Initialise: target network Q
′

with θQ
′

i ← θQ
i ,

4: θµ
′

i ← θµ
i for each provider i.

5: for episode = 1 to E do
6: Initialise: s0
7: for t = 1 to T do
8: for arriving CU within T do
9: Get ai using Equation 4

10: compute Υ ∈ [0, 1]
11: Get rti , where i ∈ N and F

12: ri =
∑n

i=1

∑T
t=1 rti rewards within T

13: Push (s, acti, ri, s
′
) into D // s’ is the next state

14: s
′ ← S

15: for provider i = 1 to n do
16: Sample mini batch (s,acti,. . . ,actn,ri,s

′
) from D

17: Update critic and actor using Equation 6 and 8
18: Update target network: θ

′ ← τθ + (1 − τ)θ

5 Cloud Provider Selection Strategy

In this subsection, we discuss the proposed provider selection strategy for every
resource requests from consumers. The proposed strategy handles the primitive
drop in bidder drop problem in the auction [5] by employing a priority-based
fairness mechanism. Firstly, in order to remove the bidder drop problem in the
proposed resource approach, we include a priority-based fairness mechanism. In
this regard, on receiving the bids from all the participating providers in the auc-
tion, auctioneer attaches the priority label (pr) to every bid from the providers.
In specific, on receiving the request reqj = (rbj , dlj) from consumer cj and all
the corresponding bids bidj

i = (rbj , spi) from all the provider, where i ∈ n and
j ∈ n, priority label pri is computed using Eq. 9 as follows.

pr = 1 − (loss/O) (9)

wherein, loss is the number of times consumers lost in the last O auctions,
such that provider with pr ∈ [0, 1], pr = 1 has highest priority and pr = 0
has the lowest priority. Secondly, auctioneer computes the normalised values of
priority label pr and optimised selling price sp (bid values) based on the based
on the simple additive weighting (SAW) technique [10] using Eq. 10 as follows:

S =

{
Cmax−C

Cmax−Cmin , if Cmax − Cmin 	= 0.

1, if Cmax − Cmin = 0.
(10)
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wherein, where C denotes value of either sp or pr. Then, finally, bid score (bid-
score) is calculated using Eq. 11, and provider’s bid with minimum bid − score
is the winner.

bid − score = Spr × Wpr + Ssp × Wsp (11)

wherein, Spr and Ssp denote the scaled values of priority label and selling
price respectively. Whereas, Wsp and Wsp denote the preference weight of pri-
ority label and selling price respectively. These weight preferences are decided
independently by each consumer. In this regard, the winning provider serves the
requesting consumer. In this regard, auctioneer attempts to select one provider
for each resource request req with maximum bid − score and consumer pay the
corresponding sp.

6 Experimental Setup and Results

This section presents the results of the performed experiments, that are con-
ducted in order to evaluate the proposed real-time reverse-auction (RTRA) pric-
ing approach in an open cloud market. The open cloud environment is imple-
mented in SimPy python library, wherein, each cloud provider is initialised with
quantities of four types of resources; namely, computer processing speed, mem-
ory, storage, and bandwidth (BW). We compare the proposed RTRA approach
with two other notable bidding-based resource allocation approaches, which are
as follows: (1) the combinatorial double auction resource allocation approach
(CDARA) [7]; and (2) the indicator-based combinatorial auction-based approach
(ICAA) [3]. The CDARA has fixed selling price strategy and no fairness based
provider selection strategy, whereas, ICAA the indicator-based combinatorial
has a static mathematical model to model the price and also with no fairness
baaed provider selection strategy. Finally, We run the three resource allocation
approaches for 120 episodes, each episode of length 1500 s, wherein 25 con-
sumers arrive dynamically in each episode and 12 cloud providers.

The performance of the provider is evaluated based on two parameters,
which are: (1) average revenue; (2) average unavailability of resources with
the provider; and (3) active participation of the provider computed as a ratio
of never-won provider to total-provider in the auction denoted as fairness, as
depicted in Table 1. Firstly, from Table 1, it is clear that the average revenue
RTRA is approximately 55% higher as compared to the other two approaches.
Moreover, in the RTRA, unavailability of the provider is decreased by 1/3rd

of that observed in CDARA. In addition, RTRA increases the participation of
the provider through the proposed priority-based allocation which is reflected
through the fairness values in Table 1. Therefore, the proposed RTRA approach
is capable of maximising the performance of the provider in the open cloud
markets.

Similarly, the performance of consumers is evaluated based on three param-
eters, which are, (1) the ratio of resource price paid and maximum offered
price by all the providers (PMB), (2) waiting time (avg wait time) of the
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Table 1. Performance of cloud providers

Performance CDARA ICAA RTRA*

Average revenue 25000 23000 40000

Average unavailability 64% 42% 28%

Fairness 48% 53% 65%

served consumers, and (3) scalability (σ) of the serving providers. Firstly from
Table 2, the consumer in the cloud market with RTRA approach pays marginally
lesser prices as compared to the maximum offered prices among all the other
bids. Secondly, the cloud market with RTRA approach has lesser waiting time
as compared to the other two approaches. Finally, RTRA allocates the con-
sumers request to more scalable providers, where, scalability(sigma) is defined
as σ = 1 − (requested resource/available resource). Therefore, the proposed
RTRA approach is capable of maximising the performance of the CU in the
open cloud markets.

Table 2. Performance cloud user

Utilities CDARA ICAA RTRA*

PMB 0.86 0.92 0.76

avg wait time 24 22 12

σ 0.4 0.6 1.2

Finally, the overall performance of the open cloud market is evaluated based
on three parameters, which are; (1) the participation rate of providers in the auc-
tion (availability); (2) the non-participation rate of providers in auction (unavail-
ability); and (3) the lost rate of provider in the auction. As shown in Fig. 2,
providers in the proposed RTRA approach has a higher participation rate, lower
non-participation rate and also lower lost rate, as compared to the other two
approaches. This proves the capability of the RTRA approach to serve higher
numbers of consumer as compared to the other two approaches. In conclusion,
the proposed RTRA approach outperforms the other two approaches by serv-
ing the highest number of consumer while enabling higher participation in the
auctions.
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(a) CDARA (b) ICAA

(c) RTRA

Fig. 2. The availability, unavailability and loss of providers in auction, based on the
number of buyers handled

7 Conclusion

This paper proposes a learning-based real-time pricing approach for resource
allocation in dynamic and complex open cloud markets. The proposed approach
models the selling price of the requested resources in real-time, based on the
proposed pricing approach, which considers the supply/demand of the resources
in the market and the characteristics of the cloud users. As a result, the proposed
approach enables both the cloud providers and cloud consumers to maximise
their performances at the same time. The experimental results demonstrate the
efficiency and fairness of the proposed resource allocation approach and its ability
to maximise the overall performance of all the participants in an open cloud
market. The future work is set to develop a mechanism that enables multiple
preferences of the consumers in the provider selection strategy.
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