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Abstract The Askey–Wilson algebra and its relatives such as the Racah and
Bannai–Ito algebras were initially introduced in connection with the eponym
orthogonal polynomials. They have since proved ubiquitous. In particular they admit
presentations as commutants that are related through Howe duality. This paper
surveys these results.
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1 Introduction

The quadratic algebras of Askey–Wilson type such as the Askey–Wilson algebra
itself, the Racah and Bannai–Ito algebras and their specializations and contractions
encode the bispectral properties of orthogonal polynomials that arise in recoupling
coefficients such as the Clebsch–Gordan or Racah coefficients. It is therefore natural
that these algebras be encountered in centralizers of the diagonal action of an
algebra of interest g' such as sl(2), osp(1|2), or Uq(sl(2)), on n-fold tensor products
of representations of g'. Indeed, elements of these centralizers will be used as
labeling operators to define bases whose overlaps will be expressed in terms of the
corresponding orthogonal polynomials.

Often the algebra g' forms a reductive pair with another algebra g in which
case the Howe duality operates in certain modules. This leads to alternative
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characterizations of the quadratic algebras that are in correspondence: on the one
hand commutants in representations of the universal enveloping algebra U(g) and on
the other hand, realizations of the type mentioned above as centralizers in recoupling
problems for g'. This is the topic of this brief review which is organized as follows.
Section 2 presents the general framework. Section 3 describes as illustration the
dual commutant picture for the Racah algebra; this will involve the reductive pair
(o(6), su(1, 1)). Section 4 gives a summary of the different cases that have been
analyzed and Sect. 5 provides a short outlook.

2 General Framework

We shall say following [1] that two algebras g and g' have dual representations on
a Hilbert space H if (1) this space carries fully reducible representations of both g
and g', (2) the action of g and g' commute, (3) the representation ρ of the direct
sum g ⊕ g' defined by the actions of g and g' on H is multiplicity-free, and (4)
each irreducible representation of g occurring in the decomposition of ρ is paired
with a unique irreducible representation of g' and vice versa. This is the essence of
Howe duality which can be proved in a number of situations. We shall consider such
instances in this paper.

Consider now a setup with the representation of g' in H = V ⊗2n given by
σ̄⊗2n[Δ(2n−1)(g')] where σ̄ : g' → End V is a representation of g' on the vector
space V , Δ : g' → g' ⊗ g' is the coproduct, and Δ(n) is defined recursively by
Δ(n) = (Δ ⊗ 1⊗(n−1)) ◦ Δ(n−1), with Δ(0) = 1. This symmetric situation makes
it natural that there be an action of some other algebra g on the carrier space H
that commutes with the action of g'. Take the maximal Abelian subalgebra h of g
to be h � X⊕n with X one-dimensional. The pairing under Howe duality with the
representations of X⊕n implies that σ̄⊗2n[Δ(2n−1)(g')] = σ̄⊗2n[Δ⊗n ◦ Δ(n−1)(g')]
decomposes into representations of the form σ1 ⊗ σ2 ⊗ · · · ⊗ σn(Δ

(n−1)(g')) with
the σi’s being irreducible representations arising in the decomposition of σ̄⊗2. This
quotienting by h is a way of posing a generalized Racah problem for the recoupling
of the n representations σi of g'.

We indicated in the introduction that the quadratic algebras A of Askey–Wilson
type can be obtained as (subalgebras of) centralizers of diagonal actions in n-fold
tensor products of representations. The intermediate Casimir elements in σ1 ⊗ σ2 ⊗
· · · ⊗ σn manifestly centralize the action of g' on H mod h. They are taken to
generate the quadratic algebra of interest. This provides the first presentation of A
as a commutant. The dual one is identified as follows in the present context. We
know that g is the commutant of g' in H. Moreover from the application of Howe
duality, the generators of the representation σ1 ⊗ σ2 ⊗ · · · ⊗ σn of g' are known
to commute with those that represent the subalgebra h � X⊕n. The non-trivial
part of the centralizer of σ1 ⊗ σ2 ⊗ · · · ⊗ σn must therefore be obtained, in the
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given representation on H mod h, by those elements in the universal enveloping
algebra of g that commute with X⊕n. In other words, A can also be identified as the
commutant of h ⊂ g in U(g) as represented on H.

There is an equivalent way of looking at this. The pairing of the representations of
g and g' through Howe duality manifests itself in the fact that the Casimir elements
of g and g' are affinely related. Let C be a Casimir element of g'. Consider for
example the intermediate Casimir element given by σ̄⊗4[((Δ ⊗ Δ) ◦ Δ)(C)] ⊗
1⊗(2n−4) corresponding to the embedding of g' in the first four factors of g'⊗2n.
There will be a subalgebra g1 of g that will be dually related to g' on the restriction of
H to V ⊗4 so that its Casimir element will be essentially the one of g'. Next, looking
at the intermediate Casimir element of g' associated with a different embedding,
for instance in the four last factors of g'⊗2n, there will be a dual pairing with a
different embedding in g of the same subalgebra g1 and again the two Casimir
elements will basically coincide. These observations lead to the conclusion that
the set of intermediate Casimir elements associated with the representation of g'
is algebraically identical to the set of Casimir elements of the subalgebras of g that
form dual pairs with g' when intermediate representations of the latter are taken. It
is not difficult to convince oneself that the set of invariants connected to the relevant
subalgebras of g consists in the commutant of the maximal Abelian subalgebra of g
as concluded differently before.

To summarize, in situations where Howe duality prevails with (g, g') the pair
of algebras that are dually represented on H and if the representation of g' is of
the form σ̄⊗2n[Δ(2n−1)(g')], the quadratic algebras A of Askey–Wilson type can be
viewed on one hand as the commutant of this action of g' on H and thus generated
by the intermediate Casimir elements of g', or on the other hand as the commutant
of h ⊂ g in the intervening representation of U(g). We shall present next an example
of how this can be concretely realized.

3 The Dual Presentations of the Racah Algebra

The Racah algebra R has three generators K1, K2, K3 that are subjected to the
relations [2]:

[K1,K2] = K3, [K2,K3] = K2
2 + {K1,K2} + dK2 + e1,

[K3,K1] = K1
2 + {K1,K2} + dK1 + e2,

(1)

where [A,B] = AB − BA, {A,B} = AB + BA and d, e1, e2 are central.
We shall explain how dual presentations of the algebra R as a commutant are

obtained in the fashion described in Sect. 2. The dual pair will be (o(6), su(1, 1))

and the representation space H will be that of the state space of six quantum har-
monic oscillators with annihilation and creation operators aμ, a†

ν , μ, ν = 1, . . . , 6
verifying [aμ, a†

ν ] = δμν . The corresponding Hamiltonian H = a
†
1a1 + · · · + a

†
6a6
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is manifestly invariant under the rotations in six dimensions. These are encoded in
the Lie algebra o(6), realized by the generators Lμν = a†

μaν − aμa†
ν and possessing

the Casimir element C = ∑
μ<ν Lμν

2.
The Lie algebra su(1, 1) has generators J0, J± that obey the following commuta-

tion relations: [J0, J±] = ±J±, [J+, J−] = −2J0, and its Casimir operator is given
by C = J0

2 − J+J− − J0. The six harmonic oscillators also provide a realization
of this algebra through the addition of six copies of the metaplectic representation
of su(1, 1), for which the generators are mapped to: J

(μ)
0 = 1

2 (a†
μaμ + 1

2 ),

J
(μ)
+ = 1

2 (a†
μ)2, J

(μ)
− = 1

2 (aμ)2, μ = 1, . . . , 6. Note that the operators
∑6

μ=1 J
(μ)•

are invariant under rotations. The space of state vectors H thus carries commuting
representations of o(6) and su(1, 1) and Howe duality takes place.

The maximal Abelian algebra of o(6) is o(2) ⊕ o(2) ⊕ o(2) and is generated by
the set {L12, L34, L56}. The non-abelian part of its commutant in the representation
of U(o(6)) on H is generated by the two invariants

K1 = 1

8

(
L12

2 + L34
2 + L13

2 + L23
2 + L14

2 + L24
2), (2)

K2 = 1

8

(
L34

2 + L56
2 + L35

2 + L36
2 + L45

2 + L46
2). (3)

Define K3 by [K1,K2] = K3. Working out the commutation relations of K3 with
K1 and K2, it is found that they correspond to those (1) of the Racah algebra with
the central parameters given by d = − 1

8

(C + L12
2 + L34

2 + L56
2
)
,

e1 = − 1
64

(C − L12
2 − 4

)(
L34

2 − L56
2
)
, and e2 = − 1

64

(C − L56
2 − 4

)(
L2

34 − L2
12

)
.

For details see [3]. By abuse of notation we designate the abstract generators and
their realizations by the same letter.

Regarding the su(1, 1) picture, let J
(μ,ν,ρ,λ)• = J

(μ)• + J (ν)• + J
(ρ)• + J (λ)•

denote the addition of the four metaplectic representations labeled by the vari-
ables μ, ν, ρ, λ all assumed different. The corresponding Casimir operator is
C(μ,ν,ρ,λ) = (J

(μ,ν,ρ,λ)
0 )2 −J

(μ,ν,ρ,λ)
+ J

(μ,ν,ρ,λ)
− − J

(μ,ν,ρ,λ)
0 . Quite clearly, these

actions of su(1, 1) restricted to state vectors of four oscillators are paired with
commuting actions of the Lie algebra o(4) of rotations in the four dimensions
labeled by μ, ν, ρ, λ. It is hence not surprising to find, owing to Howe duality,
that C(1234) = −2K1 and C(3456) = −2K2, namely that the intermediate su(1, 1)

Casimir operators corresponding to the recouplings of the first four and last four
of the six metaplectic representations are equal (up to a factor) to the Casimir
elements of the two corresponding o(4) subalgebras of o(6) which together generate
as we observed the non-trivial part of the commutant of o(2) ⊕ o(2) ⊕ o(2) in
U(o(6)). This entails the description of the Racah algebra as the commutant in
U(su(1, 1)⊗3) of the action of su(1, 1) on H. Alternatively, picking the su(1, 1)

representations associated with those of o(2) ⊕ o(2) ⊕ o(2) under Howe duality
yields the sum of three irreducible representations of su(1, 1) belonging to the
discrete series; these are realized as dynamical algebras of three singular oscillators.
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Note that corresponding to the su(1, 1) representation J
(μ,ν)• = J

(μ)• + J (ν)• is the
Casimir C(μν) = − 1

4

(
Lμν

2 + 1
)
. With the dependence on the polar angles “rotated

out”, the total Casimir element C(123456) becomes the Hamiltonian of the generic
superintegrable system on the two-sphere; the constants of motion are the quotiented
intermediate Casimir elements and the symmetry algebra that they generate is hence
that of Racah.

4 More Dual Pictures: An Overview

The main algebras of Askey–Wilson type have been studied recently from the
commutant and Howe duality viewpoints. We summarize in the following the main
results and give in particular the dualities that are involved.

4.1 The Racah Family

The higher rank extension of the Racah algebra [4] defined as the algebra generated
by all the intermediate Casimir elements of σ1 ⊗ σ2 ⊗ · · · ⊗ σn(Δ

(n−1)(su(1, 1)))

can be described in the framework of the preceding section with the help of the dual
pair (o(2n), su(1, 1)) using in this case the module formed by the state vectors of
2n harmonic oscillators. It is then seen to be dually the commutant of o(2)⊕n in the
oscillator representation of U(o(2n)) [5].

The case n = 2 is special and of particular interest since it pertains to the
Clebsch–Gordan problem for su(1, 1), that is, the recoupling of the two irreducible
representations σ1 and σ2. There are no intermediate Casimirs here; the relevant
operators associated with the direct product basis and the recoupled one are
respectively M1 = σ1(J0) − σ2(J0) and the total Casimir M2 = (σ1 ⊗ σ2)Δ(C).
These are seen to obey the commutation relations of the Hahn algebra [6]:

[M1,M2] = M3, [M2,M3] = −2{M1,M2} + δ1,

[M3,M1] = −2M1
2 − 4M2 + δ2,

(4)

where δ1 = 4(σ1(J0) + σ2(J0))(σ1(C) − σ2(C)) and δ2 = 2(σ1(J0) + σ2(J0))
2 +

(σ1(C) + σ2(C)) are central. The name of the algebra comes from the fact that
the 3j -coefficients involve dual Hahn polynomials. In the setup with four harmonic
oscillators, with H carrying the product of four metaplectic representations, Howe
duality will imply that the total Casimir element C(1234) of su(1, 1) coincides with
the Casimir of o(4)—this is the same computation as the one described above.
It is easily seen that σ1(J0) − σ2(J0) is derived from 1

2 (N1 + N2 − N3 − N4)

under the quotient by o(2) ⊕ o(2) with Ni = a
†
i ai , i = 1, . . . , 4. It can in fact
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be checked directly, again abusing notation, that M1 = 1
2 (N1 + N2 − N3 − N4)

and M2 = − 1
4

(
L12

2 + L34
2 + L13

2 + L23
2 + L14

2 + L24
2
)

satisfy the relations
given in Eq. (4) with δ1 = − 1

2 (N1 + N2 + N3 + N4 + 2)(L12
2 − L34

2) and
δ2 = 1

2 (N1 + N2 + N3 + N4 + 2)2 − (L12
2 + L34

2 + 2), in correspondence with
the preceding expressions for δ1 and δ2 in the realization J (1234)• of su(1, 1). From
the expressions of these last M1 and M2, we can claim that the Hahn algebra is the
commutant of o(2) ⊕ o(2) in U(u(4)) represented on H. Let us stress that it is the
universal enveloping algebra of u(4) that intervenes here.

4.2 The Bannai–Ito Ensemble

The Bannai–Ito algebra [7] takes its name after the Bannai–Ito polynomials that
enter in the Racah coefficients of the Lie superalgebra osp(1|2). This algebra has
three generators Ki, i = 1, . . . , 3 that satisfy the relations

{Ki,Kj } = Kk + ωk, i �= j �= k ∈ {1, 2, 3} (5)

with ωi central and {X, Y } = XY + YX. The relevant reductive pair in this
case is (o(6), osp(1|2)) and the representation space H is that of Dirac spinors in
six dimensions with the Clifford algebra generated by the elements γμ verifying
{γμ, γν} = −2δμν, μ, ν = 1, . . . , 6. That the pair (o(6), osp(1|2)) is dually
represented on H is seen as follows: The spinorial representation of o(6) with
generators

Jμν = −iLμν + Σμν, Lμν = xμ∂ν − xν∂μ, Σμν = i

2
γμγν (6)

leaves invariant the following operators:

J− = −i
∑

1≤μ≤6

γμ∂μ, J+ = −i
∑

1≤μ≤6

γμxμ, J0 =
∑

1≤μ≤6

xμ∂μ, (7)

which in turn realize the commutation relations of the Lie superalgebra osp(1|2):
[J0, J±] = ±J±, {J+, J−} = −2J0 with J0 even and J± odd. Howe duality
thus takes place. As a matter of fact, for any subset A ⊂ {1, . . . , 6} of car-
dinality |A| the operators JA− = −i

∑
μ∈A γμ∂μ, JA+ = −i

∑
μ∈A γμxμ, and

JA
0 = |A|

2 + ∑
μ∈A xμ∂μ realize osp(1|2). The Casimir element of osp(1|2) is given

by C = 1
2 ([J−, J+] − 1)S with S the grade involution obeying S2 = 1, [S, J0] = 0,

{S, J±} = 0. In the realizations at hand, SA = i|A|/2 ∏
μ∈A γμ with |A| even.
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It can be checked that the operators

K1 = M1 + 3
2Σ12Σ34, K2 = M2 + 3

2Σ34Σ56, K3 = M3 + 3
2Σ12Σ56,

M1 = (L12γ1γ2 + L13γ1γ3 + L14γ1γ4 + L23γ2γ3 + L24γ2γ4 + L34γ3γ4)Σ12Σ34,

M2 = (L34γ3γ4 + L35γ3γ5 + L36γ3γ6 + L45γ4γ5 + L46γ4γ6 + L56γ5γ6)Σ34Σ56,

M3 = (L12γ1γ2 + L15γ1γ5 + L16γ1γ6 + L25γ2γ5 + L26γ2γ6 + L56γ5γ6)Σ12Σ56

realize the relations (5) of the Bannai-Ito algebra upon taking the fol-
lowing: ωij = 2ΓkΓ123 + 2ΓiΓj , where Γ1 = J12, Γ2 = J34, Γ3 = J56, and
Γ123 = ( 5

2 − i
∑

1≤μ<ν≤6 LμνΣμν

)
Σ12Σ34Σ56. That these arise from dual pictures

is explained as follows (see [8] for details). On the one hand, K1,K2,K3 are
observed to belong to the commutant in U(o(6)) of the o(2) ⊕ o(2) ⊕ o(2)

subalgebra of o(6) spanned by {J12, J34, J56}. On the other hand, considering the
Casimir elements CA of osp(1|2) associated with the realization by the operators
{JA

0 , JA± , SA}, we find that C(1234) = K1, C(3456) = K2, and C(1256) = K3.
This confirms that the Bannai–Ito algebra can be dually presented either as the
commutant of o(2)⊕o(2)⊕o(2) in the spinorial representation of U(o(6)) or as the
centralizer of the action of osp(1|2) on H. These considerations can be extended to
higher dimensions [8] so as to obtain analogously dual commutant pictures for the
Bannai–Ito algebras of higher ranks [9].

4.3 The Askey–Wilson Class

The Askey–Wilson algebra can be presented as follows:

[KA,KB ]q
q2 − q−2

+ KC = γ

q + q−1
,

[KB,KC]q
q2 − q−2

+ KA = α

q + q−1
,

[KC,KA]q
q2 − q−2 + KB = β

q + q−1 ,

(8)

with [A,B]q = qAB − q−1BA and α, β, γ central.
The Uq(su(1, 1)) algebra has three generators, J± and J0, obeying

[J0 , J±] = ±J± and J−J+ − q2J+J− = q2J0 [2J0]q with [x]q = qx−q−x

q−q−1 .
Its coproduct is defined by Δ(J0) = J0 ⊗ 1 + 1 ⊗ J0, Δ(J±) =
J± ⊗ q2J0 + 1 ⊗ J±. The Casimir operator C of Uq(su(1, 1)) is given by

C = J+J−q−2J0+1 − q

(1−q2)2

(
q2J0−1 + q−2J0+1

) + 1+q2

(1−q2)2 .
The q-deformation oq1/2(N) of o(N) is defined as the algebra with generators

Li,i+1 (i = 1, . . . , N − 1) obeying the relations
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Li−1,i L2
i,i+1 − (q1/2 + q−1/2)Li,i+1 Li−1,i Li,i+1 + L2

i,i+1 Li−1,i = −Li−1,i ,

Li,i+1 L2
i−1,i − (q1/2 + q−1/2)Li−1,i Li,i+1 Li−1,i + L2

i−1,i Li,i+1 = −Li,i+1,

[Li,i+1, Lj,j+1] = 0 for |i − j | > 1.

We shall use the notation L±
ik = [L±

ij , L±
jk]q±1/4 for any i < j < k, and by definition

L±
i,i+1 = Li,i+1.

The reductive pair (oq1/2(6), Uq(su(1, 1)) is the one which is of relevance for
the Askey–Wilson algebra. Let us indicate how oq1/2(2n) and Uq(su(1, 1)) are
dually represented on the standard state space H of 2n independent q-oscillators
described by operators {A±

i , A0
i } such that [A0

i , A
±
i ] = ±A±

i , [A−
i , A+

i ] = qA0
i ,

A−
i A+

i − qA+
i A−

i = 1, i = 1, . . . , 2n. The algebra Uq(su(1, 1)) is represented on
H by using the coproduct to embed it in the tensor product of 2n copies of the
q-deformation of the metaplectic representation, this gives

J
(2n)
0 = Δ(2n−1)

(
1
2

(
A0

i + 1
2

) )
= 1

2

2n∑

i=1

(

A0
i + 1

2

)

,

J
(2n)
± = Δ(2n−1)

(
1

[2]q1/2
(A±

i )2

)

= 1

[2]q1/2

2n∑

i=1

(

(A±
i )2

2n∏

j=i+1

q
A0

j + 1
2

)

.

(9)

The algebra oq1/2(2n) can also be realized in terms of 2n q-oscillators. The 2n − 1
generators take the form

Li,i+1 = q− 1
2 (A0

i + 1
2 )

(
q

1
4 A+

i A−
i+1 − q− 1

4 A−
i A+

i+1

)
, i = 1, . . . , 2n − 1.

It can be checked that [J (2n)
0 , Li,i+1] = [J (2n)

± , Li,i+1] = 0, i = 1, . . . , 2n − 1, in
other words, that Uq(su(1, 1)) and oq1/2(2n) have commuting actions on the Hilbert
space H of 2n q-oscillators. This sets the stage for Howe duality. In order to connect
with the Askey–Wilson algebra we take n = 3. The expressions of the operators KA

and KB acting on H that realize the relations (8) (together with the specific central
elements) are rather involved and we shall refer the reader to [10] for the formulas.
We shall only stress that these operators can be obtained in a dual way: They are
affinely related to the generators of the commutant of oq1/2(2)⊕3 in oq1/2(6) as well
as to the intermediate Uq(su(1, 1)) Casimir elements C(1234) = Δ(3)(C)⊗1⊗1 and
C(3456) = 1⊗1⊗Δ(3)(C) of the q-metaplectic representation (see (9)). This can be
extended to higher ranks by letting n be arbitrary [11]. For n = 2 we are looking at
the Clebsch–Gordan problem for Uq(su(1, 1)). The q-Hahn algebra that arises has
two dual realizations [12]: one as the commutant of oq1/2(2)⊕2 in Uq(u(4)) and the
other in terms of the following two Uq(su(1, 1)) operators, (Δ(J0)⊗1⊗1)−(1⊗1⊗
Δ(J0)) and Δ(2)(C) (the full Casimir element) in the q-metaplectic representation.
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5 Conclusion

This paper has offered a summary of how the quadratic algebras of Racah, Hahn,
Bannai–Ito, Askey–Wilson, and q-Hahn types can be given dual descriptions as
commutant of Lie algebras, superalgebras, and quantum algebras. The connection
between these dual pictures is rooted in Howe dualities whose various expressions
have been stressed. The attentive reader will have noticed that the Clebsch–Gordan
problem for osp(1|2) has not been mentioned; this is because it has not been
analyzed yet. We plan on adding this missing piece to complete the picture.
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