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Preface

This book is the proceedings volume of the Symposium Quantum Theory and
Symmetries-XI (QTS-XI) that was held in Montréal from July 1st to 5th, 2019.
The symposium consisted of nine sessions including a special session in honour
of Professor Decio Levi of the University Roma Tre and the sessions: Algebraic
Methods, Condensed Matter Physics, Cosmology and Gravitation, Integrability,
Non-perturbative QFT, Particle Physics, Quantum Computing and Quantum Infor-
mation Theory and String Theory/AdS-CFT. Each session was associated with one
or two plenary speakers followed by parallel sessions with speakers of invited and
contributed talks. For complete information, please visit the website: http://www.
crm.umontreal.ca/2019/QTS2019/index_e.php. Several of the plenary speakers and
many of the invited and contributing speakers have supplied a contribution to this
proceedings volume. It is intended for use by students, researchers and professors
in a wide range of fields from mathematical physics to more mainstream physics as
evinced by the topics of the various parallel sessions. It should allow the reader to
grasp the breadth and scope of the vast field of quantum theory and symmetries.
As these proceedings were being completed, our dear colleague, mentor and
friend Pavel Winternitz passed away. We wish to dedicate this volume to him in
recognition of his scientific legacy and as an expression of our gratitude.

Montréal, QC, Canada M. B. Paranjape
Montréal, QC, Canada Richard MacKenzie
Utica, NY, USA Zora Thomova
Montréal, QC, Canada Pavel Winternitz
Montréal, QC, Canada William Witczak-Krempa

June 2020
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Spin Chains of Haldane—Shastry Type: )
A Bird’s Eye View et

Federico Finkel, Artemio Gonzalez-Lépez, and Miguel A. Rodriguez

Dedicated to our friend and colleague Decio Levi in his 70th
anniversary

Abstract We present a brief report on the main properties of Haldane—Shastry type
spin chains and their relation with Calogero—Sutherland spin dynamical models.
Recent work on the thermodynamics of these chains is also discussed.

Keywords Integrable systems - Spin chains - Statistical mechanics

1 Introduction

This is a short review of the construction and main properties of integrable spin
chains of Haldane—Shastry type stemming from their relation with many-body spin
Calogero—Sutherland models, briefly outlining the exact evaluation of their partition
function and studying their thermodynamics.

The Haldane—Shastry chain was introduced independently by Haldane [16] and
Shastry [24] in the late eighties in connection with the one-dimensional Hubbard
model. The explicit computation of its spectrum and its remarkable mathematical
properties attracted very quickly the attention of many researchers in condensed
matter physics. Its extension to other similar chains was carried out through
their relation with spin Calogero—Sutherland models, and many of its integrability
properties were also related to those of the latter models. The classification of
Calogero—Sutherland type models by Olshanetsky and Perelomov [21], and their
relation with the theory of homogeneous spaces and simple Lie algebras and their
root systems, was the clue to understanding their properties in a broader context.
The freezing trick, as introduced by Polychronakos in [23], makes it possible to

F. Finkel - A. Gonzélez-Loépez - M. A. Rodriguez (B<)
Depto. de Fisica Tedrica, Universidad Complutense de Madrid, Madrid, Spain
e-mail: ffinkel @ucm.es; artemio@ucm.es; rodrigue @ucm.es

© Springer Nature Switzerland AG 2021 3
M. B. Paranjape et al. (eds.), Quantum Theory and Symmetries, CRM Series in
Mathematical Physics, https://doi.org/10.1007/978-3-030-55777-5_1


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-55777-5_1&domain=pdf
mailto:ffinkel@ucm.es
mailto:artemio@ucm.es
mailto:rodrigue@ucm.es
https://doi.org/10.1007/978-3-030-55777-5_1

4 F. Finkel et al.

explain the construction of these chains starting from a spin dynamical model based
on those studied by Olshanetsky and Perelomov and the evaluation of their partition
function. In this contribution we shall outline the main steps of this construction,
and conclude with some recent applications to the study of the thermodynamics of
these chains.

2 Calogero-Sutherland Models

The study of integrable systems, in the classical sense of the Liouville-Arnol’d
theory, has occupied the activity of many researchers working in different fields
of physics and mathematics. However, many-body systems satisfying the required
integrability properties are rarely found in physics. Thus the construction of one-
dimensional models of many particles by Calogero and Sutherland in the sixties
was a breakthrough, and represented a major contribution to this field, as shown by
their impressive number of applications of Calogero—Sutherland models in so many
areas of physics.! We will introduce in this section a short account of these models,
thus paving the way for the construction of long-range integrable spin chains based
on them.

2.1 The Calogero Model

The Calogero model [5]
D
82 + o’ ala 1
- Y D a 0

describes a system of N particles on the line with an inverse-square interaction
potential. In the previous formulas all sums are understood to run from 1 to N,

= (x1,...,xn) and @ > 1/2 is the system’s coupling constant. Its classical
version

H = sz +w22 2 a(a_—xl))2

is integrable (in fact, superintegrable [26]), as can be shown by Moser using Lax pair
techniques [20]. In the quantum case, the ground state is given by the Jastrow-type
expression

IBill Sutherland, Francesco Calogero, and Michel Gaudin were recently awarded the 2019 Dannie
Heineman Prize of the American Institute of Physics and the American Physical Society for their
seminal contributions to statistical mechanics and many-body physics.
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1 - x2
p0) = e 2% [ T 1w — x;1% @)
i<j
in the region x; < x2 < --- < xy. The spectrum can be algebraically computed,

with the result:

En = ZwZni +Ey, Eo=[l+a(N—-1]No,

1

where Ej is the ground state energy and the multiindex n = (ny, ..., ny) satisfies
ny = --- 2 ny = 0. The ground state can be used as a gauge function, leading to
the gauged Hamiltonian

1

x,'—xj'

Hg =p®) "Hu(®) == 05 +20 ) xidy, —2a ) (9, — 0y;) .
i i

i<j

This expression is crucial in the study of the dynamical spin models, where Dunkl
operators [8] discussed below also play an important role.

The above simple closed formula for the energy spectrum of the Calogero model
allows one to evaluate its partition function in closed form. Indeed,

ZQoT)= Y e En/CokT)_gEo/Co) giini | g=e!/ksT)
nyz--zny 20 nyz--zny 20

where T is the temperature and kg Boltzmann’s constant. If we define the indices k;
as

kizni—ni+1,i=1,...,N—1, kNZI’lN, Zni=ijj,
i J
a straightforward computation yields

L 1
ZQwT) = qu/(Za)) Z qu ikj — l_[ . 3)
k130, kn >0 =1

2.2 The Sutherland Model

The Sutherland model [25] describes a system of N particles on a circle, the
potential being now a trigonometric function with singularities at the collision
points:
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Zaz—}—a(a—l)z et )

sin (xl

The ground state is again of Jastrow type,

1
- ., Eg=-N(N?-1)?,
) = [ Isin(s —x;)I", Eo= 3NN = Da
i<j
and the gauged Hamiltonian, after the change of variables z; = e2ivj j=1,...,N,

reads:

HG— IHM_422232+4ZZ1'8ZI 4a(a_1)z Sa
i

(zi _Z])z

As in the case of the Calogero model, the spectrum can be algebraically
computed, with the result:

En=) (2ni+ (N +1-2i)a)’,
i

where now n; € Rwithny > --- > ny and (in the center of mass frame) ) ; n; = 0.
Removing the energy of the ground state, the dominant term of Ey, when a — oo is

En ~_ 4aZni(N+1 —2i) =4aZj(N—j)kj,
i j
where again k; = n; —n;41 fori < N — 1 and ky = ny. It follows that

Jm Z(daT) = 1_[ 1_q/(1v R )

This expression is useful for the computation of the partition function of the
Haldane—Shastry spin chain [10].

3 Spin Dynamical Models

The one-dimensional systems we have described in the previous sections can be
extended to incorporate the spin of the particles (where spin must be understood
as internal degrees of freedom, not necessarily su(2) spin) while keeping their
integrability properties.
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To introduce the spin of the particle, we must consider wavefunctions which are
linear combinations of the product ¢ (x)|s) of a scalar function and a spin state |s),
where

N
Is) = Is1,...,sy) € T = QC™,
i=1

and s; € {1, ..., m} is the value of the spin of the i-th particle. In order to describe
the spin interaction, we introduce spin terms in the Hamiltonian through the spin
exchange operators S;; defined by

S,‘j|S1,...,S,’,...,Sj,...,SN>=|S1,...,Sj,...,S,',...,SN). (6)

For the sake of simplicity, in the rest of the section we shall restrict ourselves to the
Calogero spin dynamical model.

3.1 The An_1 Spin Calogero Model

The spin dynamical Hamiltonian corresponding to the extension of the Calogero
model can be expressed as

- o —i—az( )2(a €S+’ Yy xt e==l (7)

i

In order to compute its spectrum we introduce the coordinate permutation operators
P;j, which act on a scalar function as

Pijo(X1, .o Xiy ooy Xjy oo, XN) = QX1 ooy Xjy ooy Xiy oty XN).
We then introduce the scalar operator

_Za +az(l 2(a P,/)+w22xl,

i#]

formally obtained by replacing €S;; by P;; in the expression (7) for He. Using the
ground state wavefunction, the operator can be gauge-transformed into

HY = 'HP p=— Zaz+2w2x,ax 2aZx — O = 0y)
! Xj

i<j
+az

i#]

o _xj)z(l P;j) + Eo. )
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The operator Hg can in turn be expressed in terms of the Dunkl operators

1
Ji=3xi+aZXi_xj(1—Pij) ©
i#]
as
HE == "J}+20) xdy, + Eo. (10)

1 1

The operators (9), introduced by Dunkl [8] in connection with the theory of
orthogonal polynomials in several variables, are related to the reflection groups of
root systems (in this case, Ay—_1). These operators form a commuting family, i.e.,
[Ji, Jkx] = 0. More importantly for the purposes of this work, they also have the key
property of leaving invariant certain polynomial modules [11].

The spectrum of the operator HC’; can be readily computed from the commuta-
tivity of the Dunkl operators J;, taking advantage of the fact that their action on the
invariant modules can be easily triangularized. In this way one can show that the
spectrum of the operator H” is given by the expression

E, =2w2ni + Eo,

1

where, by contrast with the scalar Calogero model, the numbers n; are arbitrary
nonnegative integers. If A is the total symmetrizer (if € = 1) or skew-symmetrizer
(if € = —1) in both coordinates and spins, the identity Hc A, = H” A, clearly
holds. Thus the energies of the dynamical spin Hamiltonian H, and the operator
H? coincide, although their degeneracies are different due to the spin degrees of
freedom.

Following the same steps as in the scalar case, it is not difficult to find the
partition function of the Hamiltonian H,. The intrinsic spin degeneracy of an energy
level can be determined as the number of ways of assigning one of the m spin values
s; to each of the components of the multiindex

.
N=(Pl, .., PlyevsPrreees Pr)s with p; > --- > p, >0, Zki:N,
i=1

ki kr
in such a way that in each constant sector p;, ..., p; we have either a strictly
increasing (for ¢ = —1) or nondecreasing (for ¢ = 1) sequence of spin values.

Thus the intrinsic spin degeneracy of the energy Ej is given by

m + Se1 (ki — 1)>

.
D¢(k;m) = Hde(ki; m), with  de(kj;m) = < K
1=
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Calling k = (ky, ..., k), the partition function of the Hamiltonian Z, can be
expressed as

Qo) =g T 5 bmigTn,
kePy p1>->pr =0

where Py denotes the set of partitions of the integer N taking order into account.
After a straightforward calculation the latter expression yields the closed formula
[10]

gFo/ o) gk
Z:QwT) = Y Z Dg(k;m)l_[ﬁ, (1
77 kP =1
where we have set
K,' =

i
> ki
j=1

Similar results are obtained for the Sutherland (trigonometric) model (4) with spin
degrees of freedom.

4 Spin Chains of Haldane-Shastry Type

By a spin chain we usually understand a one-dimensional lattice whose sites are
occupied by particles with internal degrees of freedom. In this work we shall deal
exclusively with spin chains with long-range interactions, involving all the sites.
Moreover, the chain sites must be chosen in a very specific way, which is critical for
ensuring the symmetry and solvability properties of the models.

For the sake of simplicity, in what follows we shall focus on the rational Calogero
model of Ay_; type and its associated spin chain introduced below, although the
methods applied can be used for any of the models we have previously discussed.
Let us then consider the two Hamiltonians we have previously studied, namely the
scalar one H in Eq. (1) and the spin dynamical Hamiltonian H in Eq. (7). Defining
the scalar potential

1
U(x) :ZWJFZX’? (12)
itj i
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and taking @ = a, we can write the Hamiltonian (7) as

Zaz +afUX —ay ——

+2aho(x) = H 4+ 2ah.(x))  (13)

Py (x; — ])2
with
1 ESl'j
h =
e(x) =€ ; x —)Cj)2
J

In the limit @ — o0, the wavefunctions of the scalar Hamiltonian Hy (1) are sharply
peaked around the minimum & of the potential U (x), which can be shown to be
unique. Thus in this limit the dynamical and spin degrees of freedom decouple, the
latter being governed by the Hamiltonian

1
He=he(£>sz(& £ S (14)

i<j

The latter model, which is the rational analogue of the Haldane—Shastry spin chain,
is known in the literature as the Polychronakos—Frahm (PF) spin chain [13, 22]. We
shall prove in the next sections how this connection between the PF chain and the
spin Calogero model can be used to evaluate the partition function of the latter chain
in closed form.

4.1 The Chain Sites

In order to complete the construction of the spin chain (14), we still have to compute
the minimum of the potential U(x) in Eq.(12) which determines the position
of its sites. Since this minimum is clearly also a maximum of the ground state
wavefunction (2) of the scalar Calogero model (with w = a), it is straightforward to
derive the following system of algebraic equations satisfied by the coordinates of &:

1
> —&=0, i=1,...N.
jii ST

As is well known by the results of Stieltjes, and later Calogero and collaborators
[1], the solution of this system (which is unique, up to ordering and an overall
translation) is the set of zeros of the Hermite polynomial of degree N.
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4.2 The Partition Function

The partition function of the spin chain (14) can be computed in a direct way
using the partition functions of the models (1) and (7), as first pointed out by
Polychronakos [23].

To this end, let ¢;(x) be an eigenfunction of the scalar Hamiltonian (1) with
energy E; and |j) an eigenfunction of the spin chain Hamiltonian H,. (14) with
energy 5;. Since ¢; (x) becomes sharply peaked at & as a — o0, in this limit we
have

He(9i (X)1))) = H(pi (X)1))) + 2ahe X) (@i (X)]])) = Ei@i(X)]]) + 2ahe (§) (i (X)1)))

= Eigi(®01)) +2a9; 0Hel ) = (Ei +2a €5 ) ¢i 1)) (s)

Thus for a — oo the wavefunction ¢; (x)|j) is an approximate eigenfunction of H,
with energy

Ej; ~Ei +ats, (16)

and hence the energies of the PF chain (14) can in principle be expressed in terms
of those of the scalar and spin Calogero models through the formula

£5 = lim iy
! a— 00 a
Unfortunately, however, we have no rule for determining what is the relation
between the indices i, j in the previous formula, i.e. what energies of the scalar and
spin Calogero models should be combined to obtain an energy of the PF spin chain.
Remarkably, this problem can be bypassed using the partition function. Indeed, from
Eq. (16) we can easily deduce the expression

Z:(2
Z.(T) = lim ﬂ’
a—oo Z(2aT)

a7
which provides an efficient way for computing the partition function of the PF spin
chain (14). Indeed, using Eqgs. (5)—(11) for the partition functions of the scalar and
spin Calogero models we readily arrive at the closed formula

rilK,- N-—r
Ze= Y Dekimyg= []d—q"),
kePy i=1

where K/ is defined by

(K{,....K\y_}={1,....N})\{K\...., K, = N}.
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The procedure outlined above can be applied to the Sutherland model (4) and its
spin version, which yields the original Haldane—Shastry (HS) spin chain [16, 24].
Likewise, from the hyperbolic Calogero—Sutherland model introduced by Inozemt-
sev [18] one obtains a hyperbolic counterpart of the HS chain usually known as the
Frahm-Inozemtsev (FI) chain [14]. The Hamiltonians of PF, HS, and FI chains can
be written in a unified way as

He=_ Jij(1 —€Sip), (18)

i<j

where the couplings J;; are of the form J;; = Jg(& — &;) with appropriate choices
of the interaction potential g and the chain sites &;. More precisely,

x 2, for the PF chain
g(x) =11sin"2x, for the HS chain (19)
% sinh~2 x , for the FI chain
and
& = i-th zero of the Hermite polynomial Hy, for the PF chain
g =12, for the HS chain (20)

e%i = j-th zero of the Laguerre polynomial LR,_I for the FI chain

with ¢ a positive parameter. In particular, we see that the chain sites of spin chains of
all of these chains coincide with the set of zeros of a family of classical orthogonal
polynomials.”

The partition function of all three chains of HS type (18) has been computed in
closed form [2, 3, 10], and can be written in the unified way

r—1

Y EK) N ,
Ze= ) deemyg= [T —g"%D), 1)
kePy i=1

where the dispersion function £ is defined by
Ji, for the PF chain

EW) = Ji(N —i), for the HS chain (22)
Ji(c+1i—1), fortheFIchain.

2As is well known, the points cos(imr/N) withi =1, ..., N — 1 are the roots of the Chebyshev
polynomial Uy _.
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5 Supersymmetric Spin Chains

In the spin models discussed so far the internal degrees of freedom were all
fermionic (if € = —1) or bosonic (if € = 1). Moreover, in either case the permuta-
tion operator S;; belongs to the enveloping algebra of the defining representation of
su(m), so these models are naturally regarded as being of su(m) type. We shall
introduce in this section a more general class of su(m|n) supersymmetric spin
models, in which the first m internal degrees of freedom are bosonic and the last n
fermionic. We shall mainly focus on the models of this type associated with the root
system Ay_1, for which we shall briefly outline the computation of the spectrum
and the exact evaluation of the partition function [4].

5.1 The su(m|n) Supersymmetric Exchange Operator

As we did in the purely fermionic or bosonic cases, we shall start by constructing
the spin exchange operators appearing in the Hamiltonian. The possible values of
the spin now run from 1 to m + n, and the particle will be a boson (fermion) if

siefl,...,m}(s; € {m+1,...,m+ n}). The exchange operator is then defined
as
(m|n) ) ) — .. ) )
Sl.j [S1, 0oy Sis ooy Sjy e, SN) = €5(S)|S1, ooy Sjy vy Siy oo, SN),
where
L, si, sj bosons
€i(s) = (—=D?, {si,s;} = {fermion, boson}, with p = number of
/ fermions in positionsi + 1, ..., j — 1
-1, s;i, sj fermions.

By analogy with the purely bosonic or fermionic case, the Hamiltonian is taken as
He'" =" g - sy (23)
o = ij ij J
i<j

where the coupling constants J;; = Jg(§; — &;) and chain sites &; are still defined
by Egs. (19)—(20). As a matter of fact, it is easily checked that with this definition

1O = 34, while O™ = 1.
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5.2 Chemical Potential

As usual in the description of thermodynamic systems, we shall add a chemical
potential term to the Hamiltonian (23) to control the number of particles of different
species. More precisely, we define

m+n—1
Hy=— Z P Ne,
a=1
where N, is the number operator for the particle of type o € {1, ..., n+m} and 11y

is its chemical potential. The complete Hamiltonian of the spin chain is then defined
as

H(m‘ﬂ) — H(mm) + H/,L (24)

The number operators N, commute with the exchange operators, and hence with
the ’H(mln) and the Hamiltonian H ") It follows that Hém‘") and H"" can be
dlagonahzed in each subspace X' (Ny, ..., Ny4n) C X with well-defined numbers
N, of particles of each species, and that in such a subspace the energies of 7"

are obtained adding to each of the energies of ’H(mln) the term Zm+” ! HaNg.

5.3 Partition Function

The construction of the partition function follows the same steps outlined in previous
sections for the purely bosonic or fermionic cases. In other words, we first find
the (large a limit of the) partition functions of the corresponding scalar and spin
dynamical models, and then use Polychronakos’s freezing trick to compute the
partition function of the spin chain.

Consider, for definiteness, the rational (PF) case, in which the scalar and
dynamical spin Hamiltonians are, respectively, given by

_ZaiJrazzx +2a2(x1_x1)2, (25)

i<j

) 5 a — Somin)
Za +a Zx +2aZ = —x])z (26)
i<j

Defining

2a
H=H0+7HM,
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the operators H, Hy., and Hy are related to the spin chain Hamiltonian (24) by the
expressions

2a
H = Hsc + TH(mln)iflﬁxl
Reasoning as in the previous sections, we deduce that the partition function of the
spin chain (24) can be computed from the freezing trick formula

Z(T) = lim M,
a—>o00 Zs.(2aT/J)

where Z and Z, respectively, denote the partition functions of H and Hy. In
fact, the partition function of the scalar model Hy. has already been computed in
Sect. 2.2 (cf. Eq. (3)). As to the dynamical spin model, its partition function can be
obtained along the same lines as in the purely fermionic or bosonic cases, although
the computations are more involved due to the presence of the chemical potential
term. The final result is

r—1

2aT JEy/(2a) T KL 1
z (T) =4 > Twaq F 5% 27
kePy i=1 4

(cf.[12]), where

r

ki
TR =[]otk), otk = hy_jlg ", ....g " m)ej(g T mHr, L g,
j=0

i=1

Um+n = 0, and h and e, respectively, denote the complete homogeneous and
elementary symmetric polynomials (see, e.g., [19] for their precise definitions and
main properties). Taking the quotient of these partition functions we finally obtain
the partition function of the su(m|n) supersymmetric PF spin chain with a chemical
potential term. Remarkable, the partition function for all three chains of HS type
can be expressed in a unified way through the closed formula [12]

-1
> ek NI ,
=3 2aq- (1 —qg(Ki)) , (28)
kePy i=1

where the dispersion function £ is given by Eq. (22).
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6 Associated Vertex Models

The closed expression (28) for the partition function of the supersymmetric HS-type
chains (24) provides an efficient way of computing their energies and degeneracies,
but it is not appropriate for deriving the thermodynamics of these models. In this
section we shall relate the spin chains (24) to an inhomogeneous vertex model,
finding in this way an alternative expression for the partition function better suited
for studying its thermodynamic limit N — oo.

To this end, consider a (classical) vertex model with N + 1 vertices and N bonds
in which o; € {1,...,m + n} denotes the state of the i-th bond. We define the
energies of these models by the expression

N—-1

E™M(g) =" 8(0i.0141)EG), 0= (01.....0n).
i=1

where

5G. k) = 1, j >k, or j =k fermions, (29)
0, j <k, orj=kbosons.

The partition function of this vertex model is obtained as the value at x =y = 1 of
the generating function [17]

m n
Novip(@) gl
Vgixy= Y [[x« ]y a5, (30)
p=1

Ol,.., 0N a=1

where N (o) denotes the number of bonds of type « in the bond vector 0.

Remarkably, the generating function (30) can also be expressed in terms of
the so-called super-Schur polynomials associated to certain border strips [17, 19].
As a consequence of this relation, it can be shown that the partition function of
the supersymmetric spin chain (24) can be expressed in terms of the generating
function (30) as

m+n—1
v E™M (@)= Y paNa(o)
Z(T)=ZV (g g™, ... g Hmjg=Hmel g Hminy = Zq a=1
o

It follows that the chain’s spectrum can be generated by the formula

m—+n

N
E(@) =E"" (@) = ) taNa(0) = E™" (@) = ) " pto; (31)
a=1

i=1
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where o takes all valuesin {1, ..., m + n}N . As we shall next discuss, this formula
is much better suited for deriving the asymptotic behavior of the partition function
in the thermodynamic limit N — oo.

7 Thermodynamics

We shall only present here a brief overview of the application of the methods
outlined in the previous sections to the computation the free energy of a supersym-
metric spin chain of Haldane—Shastry type in the thermodynamic limit, referring the
interested reader to Refs. [9, 12] for details.

The starting point is to rewrite Eq. (31) for the energy as

N-1

1 1
E@)=)_ (5(@, oi+1)EW) — 5 (Hoi + Ma,-ﬂ)) = 5 oy + o). (32)
i=1

which clearly suggests expressing the partition function in terms of a collection
of suitable site-dependent transfer matrices. In fact, for the N — oo limit of the
partition function per site to be well defined we must first rescale the couplings so
that the average energy per particle tends to a finite nonzero limit. More precisely,
we set J = K /N for the PF chain and J = K/N? for the HS and FI chains (with
K independent of N), so that setting x; = i/N (withi =0, ..., N) we have

6 X, for the PF chain

l .

x = e(x;), with &(x)={x(1 —x), forthe HS chain
x(yn + x), for the FI chain

After this rescaling, using Eq. (32) we can express the partition function of the spin
chain (24) as

Z(T) = r(AQAD ... A=D1y (33)

where the (m + n) x (m + n) transfer matrices A® are defined by AD = A(e;)
with

AD = A(e(x),  with A(e)jx = PR 20 +m,

The latter formula for Z(7T') can be used to express the Helmholtz free energy per
particle

. logZ
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in terms of the largest eigenvalue3 A(x) of the transition matrix A(e(x)) as

1 1
f,T) = ——/ log A(x)dx. (34)
B Jo

We shall outline the derivation of this formula in the simplest nontrivial case m =
n = 1 in the next section.

7.1 Example: The su(1]|1) Case

Although the free energy per site of the chain (24) can in principle be computed
from Eq. (34) for arbitrary values of m and =, this is almost impossible in practice
unless m and n are small enough. We shall only present here a brief description of
the simplest case m = n = 1, in which Eq. (34) yields a simple explicit expression
for the free energy per site. In this case we have only one chemical potential 1| =
(for the bosonic degree of freedom), and the transfer matrix is simply

_ g " qfu/Z
A(g)_(qg_ﬂ/2 4 .

The matrices A = A(e(x;)) are easily diagonalized:

e
A0 — P,-D(i)Pi_l, D — ()(‘)’ 8)’ P = (q &i—7 1 u) ,
)

with &; = e(x;) and A; = g% 4 ¢~*"*. We can thus write
AQADAD . AN=D = O p pOp-tp,p@p-t... py_  DN-Dpot .

Let us take, as an example, the PF spin chain. In this case

. . 1 _1 10
1 1 —e)=K lim —(i+1—i)=0, P'P — .
N—>1moo(8’+1 £i) N N(l D=9, A (0 1)

Thus when N — oo we have

N—-1
AOAD 4@ AN o 4 p (TTi= % 0} pi
- 0 0 N-1°

3Since all the matrix elements of the matrix A(g) are positive, it follows from the Perron—Frobenius
theorem that its largest eigenvalue in module is positive and simple.
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and the partition function is given by

Z(T) =tr(AQADA@ ANy ~ | p1 AO P il;[f" Nl ~v ]_[ A,
0 0 i=1
where U > 0 does not depend on N. It follows that
- L log Z2(T) =~ ~ L NX: _ L Z log(e Pr  ePel))
NB N>1 NB P NB = ’

and letting N — oo we obtain the following explicit closed formula for the free
energy per site of the su(1|1) PF chain in the thermodynamic limit:

1
fuT) = _E/o log (e_ﬁ” e ) dr.

8 Conclusions

Spin chains, and in particular the class of long-range solvable models discussed
in this contribution, are a powerful theoretical laboratory for realizing in a simple
way the fundamental properties of many physical systems, particularly in condensed
matter physics. In this short review we have presented a discussion of their relation
with integrable many-body (spin) dynamical models, which is at the root of their
remarkable symmetry properties and their exact solvability. We have also briefly
outlined the recently developed method for deriving the thermodynamics of these
chains based on their connection with certain inhomogeneous classical vertex
model, illustrating it in some detail for the su(1|1) Polychronakos—Frahm chain.
Many interesting new developments which have emerged over the last years have
of necessity been omitted in this short overview. To name only a few recent ones,
we shall mention the remarkable entanglement and criticality properties of HS-type
chains, which stem from their close connection with two-dimensional conformal
field theories (see, e.g., [6, 12, 15]), or their relation with matrix product states in
quantum field theory [7].
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Features of Discrete Integrability )

Check for
updates

Claude M. Viallet

Abstract We describe some standard features of integrability for a class of
integrable partial difference equations: the quad equations. These features are
the existence of Lax pairs, higher dimensional consistency, singularity properties,
existence of symmetries, and low complexity (vanishing algebraic entropy). All
these features have pros and cons, and we give a glimpse of them.

Keywords Discrete integrability

1 Introduction

For ages we have been inclined to think of evolution equations as differential
equations, the discrete versions coming at a later stage, in particular when one is
constructing a numerical scheme for their resolution. What gained in the recent
years is the consideration of discrete equations per se. There are a number of reasons
for this change. One is the considerable increase of the computational power of our
machines, especially for the formal calculus. Another one is the advent of discrete
equations in diverse branches of theoretical physics and mathematics, from 2D
gravity [1-3] to statistical models on the lattice [4—7], not forgetting the fundamental
contribution of [8], which gave its letters of nobility to the study of self-maps of
spaces of finite dimension.

A special interest was taken in the integrable cases, their rich structure leading to
new developments. One basic question arising immediately: given a discrete system,
in the form of a recurrence relation, a discrete time evolution, or a lattice equation,
which are the discrete forms of ordinary and partial differential equations, how do
we characterise its integrability?
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Furthermore, if a discrete equation is obtained by discretisation of a continuous
one, we would like to preserve as much as possible of the structure of the original
equation, and integrability is a crucial one, since it conditions the fundamental
properties of the solutions.

To get more information on the subject, explore the proceedings of the “SIDE”
conferences, http://side-conferences.net/. It is worth recalling that the first meeting
of this series was organised by the Centre de Recherches Mathématiques in 1994
under the governance of Luc Vinet. The meeting was so successful that it gave
rise to a series under the acronym of SIDE, organised in Europe (x5), Japan (x2),
Australia, China, India, and back to La Belle Province twice (2008 and 2016).

We will avoid giving a precise definition of discrete integrability (see the
monograph [9]) but rather describe some of its features, in the specific case
of discrete partial difference equations (quad equations) on a two-dimensional
square lattice. These are Existence of a Lax pair, Higher dimensional consistency
(consistency around the cube, in short CAC), Symmetries, Singularities, Low
complexity (vanishing algebraic entropy). We will also comment on the respective
merits and limitations of these features.

We will examine one specific example of quad equation.

Warning: We will impose a restriction on the class of evolutions we consider:
there will always be a forward and backward evolution, both given by rational
transformations. One keyword in all parts of our analysis is then birationality.

2 What Is a Quad Equation?

It is a discrete equation on a 2-dimensional square lattice, that is to say a discrete
version of a partial differential equation in 1+1 dimension. The unknown function
u (sometimes called dependent variable) is located at the vertices of the lattice
(Fig. 1). The vertices of the lattice are labelled by their integer coordinates (n, m)
(independent variables). Different notations are commonly used to represent the
values of u at the vertices. We show here two standard ones:

Uy, 1 Uy 1 m U

g

U Uy U

On the left side, the indices have been shifted to the origin, and on the right side, the
indices do not appear but”“means a shift by 1 of the first index, i.e. &, m = Untim
and “means a shift of the second index, i.e. iy m = Un m+1-

The model is defined by the relation between the corners of the basic square cell,
and a solution is given when all the u, ,, are known.


http://side-conferences.net/
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Fig. 1 2D lattice

The conditions we consider are of the form:

Q = p1-up,0 u1,0 %0,1 U1,1 + P2 - 10,0 U1,0 U0,1 + P3 - 10,0 U1,0U1,1 + Pa - U0 U011 U1,
+ps - 10,0 Uo,1 U1,1 + Pe - 40,0 40,1 + P7 - U1,0 U0,1 + P8 - U0,1 UL,1 (D
+po - uo,0 U1,0 + P10 - 40,0 U1,1 + P11 - U1,0 U1,1 + P12 - Uo,1

+p13 - 10,0 + p14-u10+ p1s-ur1 + pie =0

Notice that the multilinear nature of the relation implies that, for all cells, any of the
four corner values can be rationally expressed in terms of the three others.

3 A Few Standard Features of Integrable Quad Equations

3.1 Discrete Lax Pairs

Lax pairs are a characteristic feature of integrable differential equations, and
they have been extremely important in the development of the subject. For 1 +
1 dimensional partial differential equations, they become rather zero curvature
equations, and these have a straightforward discrete form. A discrete Lax pair is
a pair of matrices L(u), M (u) such that

L - M~M-L, )

where I = L(u) (shift along the horizontal direction), M=M () (shift along
the vertical direction), and >~ means proportionality, is equivalent to the defining
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equation (1). Discrete quad equations have soliton type solutions, and Lax pairs can
be used to produce explicit solutions [10].

3.2 Consistency Around the Cube (CAC)

Consider the archetypal case of discrete potential KdV:
(& —i)(u—u)=p* —q° (3)

It is possible to embed the two-dimensional cell into a three-dimensional one:

where one imposes a similar relation to all faces (the same for opposite faces), and™
means shift in the third dimension. )

Consistency around the cube means that the value of i is independent of the
way it is calculated, as there are three ways to evaluate it from the initial condition
u, u, i, u. The major, and remarkable major output of this property is to ensure
the existence of a Lax pair [11, 12], which is accepted as a proof of integrability.
The interest of the higher dimensional consistency approach is that it also provides
us with a classification of a set of integrable quad equations [13, 14], referred to
as ABS list. There exists a simple rationally parametrised interpolating form [15]
whose integrability was discovered by algebraic entropy argument (see Sect. 3.6),
and confirmed by symmetry arguments [16] (see Sect. 3.4).

3.3 Lax Pair from the Consistency Around the Cube

The left face and the bottom face give, respectively,

>

2 2 ~ b 2 2 = o
—r uu —uu —r-—uu uu
:q +_ 5 IZZP — + (4)

u—i

S

u—u
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Projectivisation: writing it = F/G, u = I:"/G, n= ﬁ/é and

2.2 ~ 2 2 IS
o — F L= uq r:l—uu M= ur pA—i—uu
G 1 —u 1 —u

&=L, =M@
The consistency around the cube yields
L - M~M-L, 5)

where ~ means proportionality. Equation (5) is a discrete zero curvature condition.

By above argument, the “consistency around the cube” condition is considered
as a major integrability condition for quad equations, We will see in Sect. 4 that the
two notions are not equivalent. See also concluding remark.

3.4 Symmetries

The existence of continuous symmetries is a characteristic feature of integrability.
It is of course related to the existence of conserved quantities, but is more
easily tractable. There is an important literature on the subject, originally for the
differential case [17, 18], and now for the discrete case [19, 19-30].

What is a continuous symmetry of the quad equation u,iim+1 =
F(Un m+1, Un,m> Un+1,m)? It is a vector field over the space of solutions.

We restrict ourselves to the specific form (k > I, p > g € Z)

8l"n,m =G (un+k,mv Unt+k—1,m> -« Un+l,ms Unm+ps Un,m+p—15 -+« un,m—i—q) (6)

The figure shows the reach of the symmetry: it is a rectangle of size (k—I{+1) x (p—
q + 1). Since the symmetry acts on the space of solutions, it may be described in
terms of the values on the lines (n+k), m ... (m+I0),mand (n, m+p)...(n,m+q).
This is a local symmetry with a finite extension (Fig. 2).

The symmetry condition being a constraint between F and G, the symmetry
approach is then to look for models (determined by F) for which there are
symmetries (given by G). The method is constructive, with the input of Ansitze
for F and G, the idea being to ask for the existence of more than one symmetry.

Remarkably the symmetries split into two independent pieces, vertical and
horizontal (meaning p = g = 0 and k = [ = 0, respectively).

This means that Eqgs. (6) become ordinary differential-difference equations,
which turn out to be integrable themselves [16, 26, 27, 31, 32]!
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Fig. 2 A symmetry pattern

z

Fig. 3 A singularity pattern in two dimensions

3.5 Singularity Analysis

There is a deep link between integrability and singularity structure. This structure is
best illustrated in the case of maps, that is to say ordinary difference equations.

Figure 3 shows what a birational map in two dimensions can do. The curve ¥
is sent to a point P by the evolution. This means that the backward evolution is
not defined at P. The point P is then sent to the point Q, which is singular as the
backward evolution sends the whole curve X’ to Q.
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— =[P

2)

/\

Fig. 4 Desingularisation pattern in two dimensions

The best description of the geometry is obtained using simple tools of algebraic
geometry [33]. It is possible to remove the singularities by blowing up the point P
and Q. This amounts to adding curves to the space, replacing the points P and Q
by the lines Ep and E, respectively. After the blow-ups, the map sends the curve
2 onto the line Ep then to Ep and finally to the curve X’ birationally. The setting
described by Figs. 3, 4 is similar to the one we encounter for the QRT maps [34, 35].
This was the key to an important classification of the non-autonomous generalisation
of these maps yielding the discrete Painlevé equations [36]. See, for example, the
monograph [37].

Remark Two important facts (see, for example, [37, 38]) should be noticed:

— The curves X and X’ are algebraic

— The singularity of the forward (resp. backward) map at Q (resp. P) shows up
naturally when we use homogeneous (projective) coordinates, in relation with
the equation of X' (resp. X’). If one calculates the third iterate of the forward
map, the polynomial expression of the coordinates of the image all vanish. This
means that the equation of X' factors out from these coordinates. Once factored
out we get a perfectly well-defined image.

There is a whole class of maps in two dimensions (actually order 2 recurrences)
for which the singularities may be removed by blowing up a finite number of points,
and this has led to very important results on integrable maps, autonomous ones as
well as non-autonomous ones [34-37]. This was even considered to characterise
integrability [39], but was eventually shown not to be the case [40].

A similar singularity analysis can be performed for the quad equations.
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3.6 Complexity Analysis: Algebraic Entropy

Explicit calculations of the iterates of maps in the integrable case go much faster
than in the non-integrable case. The reason is that the degree of the iterates grows
slowly (polynomially) in the integrable case and rapidly (exponentially) in the non-
integrable case. This has led to the definition of the algebraic entropy from the
sequence of degrees {d,} of the iterates.

1
€ = lim — Log(d,) @)
n—-oon

— This limit always exists by the subadditivity of Log(d,), and is canonical, being
invariant by birational changes of coordinates.

— Vanishing of e is the hallmark of integrability.

— The entropy has remarkable arithmetic properties (conjectured to be the Log of
an algebraic integer).

Claim: The entropy is consubstantial with the singularity structure. Indeed going
back to Figs. 3, 4 it is easy to convince oneself that—in the case shown—there
will be a drop of the degree for the third iterate of the map. The equation of the
hypersurface X' will factor out from the rational expressions of the iterate [38, 41].

The entropy first defined for maps acting on finite dimensional spaces (ordinary
difference equations), has been further generalised to the infinite dimensional case,
allowing to consider semi-discrete equations [32] involving maps over functional
spaces and quad equations as well [42, 43].

3.7 What About Quad Equations?

The point is to define an evolution. Figure 5 shows how this can be done from a
staircase initial condition. The initial condition at time O of line (0) determines the
values on line (1) at time 1, line (2) at time 2, and so on.

The evolution after k steps is expressible as a rational fraction in terms of 2k + 1
initial values. Evaluating the degrees of these rational fractions gives a sequence of
degrees {d, }, providing in turn the value of the entropy.

We will not detail the calculation method here, but the asymptotic property which
the entropy measures can most of the time be extracted from a finite piece of the
sequence of degrees. This is a manifestation of the fact that a local property governs
the global behaviour.

Claim: The vanishing of the entropy is a good criterion of integrability for quad
equations as it is for maps.
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Fig. 5 Evolution on the square lattice

4 A Case Study

We will concentrate on one specific quad equation, taken from [44]. It does not
belong to the ABS list, as it is not symmetric. It does not verify the consistency
around the cube condition.

E=(uro+1)(uoo—1)— (ur,1 — 1) (o1 +1) =0 (®)

The variable u, ,, at site (n, m) is denoted ug o with uy ; standing for w4k 41 as
shown in Sect. 2.

4.1 Symmetries

Equation (E) possesses continuous symmetries. These symmetries split into vertical
and horizontal symmetries (H and V), as is usual for this type of quad equations.
Three points symmetries:

Hz: dquo0 = (ugo— Duio—u—1,0) 9)

1 1
V3: 0 = (ugo—1 N 1
3 71 10,0 (MO,O ) (MO,I + 10,0 uo,0 + 1o,—1 ) (o
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Five points symmetries:

Hs @ d,u0,0 = (g o— D (W] g— 1) (u2,0410,0)— W, o — D (uo,0 + u—2,0)), (11)

w2 —1 w2 —1 w2 —1
. 0,0 0,1 0,0
Vs @ Ogyu0,0 = 3 +
(uo,1 +uo,0)= \uo2 +uo,1 U0+ uo,—1

2 2 2
ui,—1 Uuno— 1 u -1
0.0 ( 0.0 + 0.1 ) . (12)

(0,0 + uo,—1)* \uo,1 +uoo  wo—1+uo,—2

Claims:

— The existence of these symmetries is a strong constraint on the equations, and it
may serve as an integrability criterion.

— All these equations (E and the successive symmetries H;, V;) are integrable, as
can be checked by direct calculation.

— A confirmation of the integrability comes from the calculation of the algebraic
entropy, which vanishes, as we will see later.

Notice that the form of the symmetries is local. Of course the symmetries are
verified modulo the ideal generated by the local quad relations (“on shell”).

4.2 A Lax Pair

Although it is not 3D consistent, equation (E) has a Lax pair.

I —! 2 -
Li,j=—[A ’ 2 =D } (13)

ui j41 — 1 -2 (=2 YW+
L _ (. . S
M j = [)L 1)\ (i1 +01) (s 1)} (14)

The equation is obtained by the discrete zero curvature condition
Liy1,j-Mij =~ M, j1- L, (15)

which we already wrote

~
<
12
=
~

(16)
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4.3 What About Singularities?

Singularities are known to play a fundamental r6le in the game. For quad equations,
singularities appear already at the level of the basic cell of the lattice. Suppose we
look at the elementary cell

The defining relation E gives a projective linear map ¢, : y —> Y, whose
inverse ¢! is projective linear. The composed map ¢ - ¢! comes with an overall
factor

Hx,2)=(0+x)(1+2) A7)

which is the locus of the singularities (remember the picture in two dimensions)
This quantity contains the information about the singularities, and it is the key of
the factorisations (and simplifications) appearing in the evolution. Labelling the
cells by their lower left corner, denote H, ,, the value of H calculated on the (n, m)
cell.

One may define

Qn,m = ng(Hn,mv Hn+2,m+l) (18)
then, remarkably
Hn,m - -Qn,m~~Qn—2,m—1 (19)

The values of u,, over the plane are polynomials (if we work in projective
coordinates) in the initial conditions. The infinitesimal relations defining the map
imply local relations! This is a constant feature of the birational evolutions we
consider (Fig. 6).

We also see here the effect of a specific feature of the model: it is asymmetric
(contrary to the members of the ABS list).
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Fig. 6 Localisation of the factors £2

4.4 What About Entropy?

The factors §2 contain all the information on

— How the successive iterates hit singularities (remember the picture in the plane,
but now we work in an infinite dimensional space of initial conditions)
— the sequence of degrees of the iterates and leading to the vanishing of the entropy.

The sequence of degrees for this specific model is obtained by direct calculation
{dy} =1,2,4,7,11, 16,22,29,37, 46, 56, 67,79,92,106, 121, ...  (20)

It can be fitted by the generating function

00 2
l—s+s
=Y dpsk=—"— 21
g(s) k§=0 kS 1 —s)? 2
that is to say
nn+1
dy=14 1000 22)

quadratic growth, vanishing entropy.

Remark the function g can be guessed from the first 5 iterations, and the further
terms of the sequence give a check. Moreover the result can be proved along the
lines of [41].
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5 Comments and Perspectives

We have given a glimpse of the subject, leaving aside some of the recent develop-
ments like, for example, the Lagrangian multiform approach [9, 45, 46], which is a
promising approach.

Our point was rather to give an idea of some of the features of integrability, with
their strength and their limitations, which we can summarise as follows:

— Lax pairs. pro: Lax pairs are a powerful instrument to produce solutions, as they
were in the continuous case; con: They are not always easy to find, and they may
have different forms (the size of the linear system is not known in advance, and
there may be different pairs of different sizes). In addition one should beware of
fakes [47, 48].

— 3D consistency. pro: provides a Lax pair, and allows a classification; con: not
equivalent to integrability.

— Singularity confinement. pro: constructive and allowing classification at least for
the order two equations; con: not necessary nor sufficient for integrability.

— Symmetries. pro: constructive and necessary; con: not always sufficient as one
needs a sufficiently large number of them.

— Algebraic entropy. pro: it is canonical (invariant by birational changes of
coordinates), and the vanishing of the entropy may serve as a characterisation of
integrability, as the sign of catastrophic drop of the complexity, con: destructive
rather than constructive, since it gives a yes/no answer to the question “is this
model integrable?”

We have alluded to the relation of the singularity structure with the measure of
complexity of the evolutions. What is still missing is a better understanding of its
relations with Lax pairs and Symmetries.

One hint may come from the following fact: when analysing the singularities, the
sequence of degrees of the iterates, as well as the symmetries, the most important
relations bear on local properties with a finite extension. This means that, even in
the discrete world, we may distinguish three scales—as we have in the continuous
world—infinitesimal, local, global. Infinitesimal would be the defining relation (one
cell), local would be any relation extending over more than one cell, and of course
global would be extending to infinity. What we see is that we can reach a conclusion
on a global property like integrability from local ones. The algebraic nature of
the models we consider is probably at the origin of this phenomenon. Since this
algebraic nature also conditions the singularity structure, we should look further
into relations of the singularities with symmetries and even Lax pairs.

We have work to do.

Acknowledgments The author would like to thank the organisers of the 11th symposium “Théorie
Quantique et Symétries” for the invitation at the Centre de Recherches Mathématiques, in
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This paper is dedicated to Prof. Decio Levi on the occasion of
his 70th birthday.

Abstract Motivated by geometry of submanifolds we develop an algebraic con-
struction of Darboux transformations using Clifford numbers and Spin groups.
Eigenvalues parameterizing solitons, usually computed as zeros of determinants,
are identified as zeros of the spinor norm. Reduction groups (loop groups) for Spin-
valued linear problems are identified with involutions in Clifford algebras.

Keywords Darboux matrix - Spin groups - Clifford algebras - Soliton surfaces

1 Introduction

This paper is a continuation of my long research on Darboux transformations, which
started more than 30 years ago and the interaction with Decio Levi has been crucial
in this context. My PhD thesis was focused on the following problems, all of which
stemmed from the cooperation between Antoni Sym (my supervisor) and Decio
Levi:

¢ Group interpretation of the spectral parameter [1-6].
* Darboux transformations (non-isospectral and non-canonical cases) [1, 7-9].
¢ Symmetric formulas for multi-soliton surfaces [10-12].

My several visits to Rome were very stimulating for this research. Recently, I
returned to these topics, see [13, 14] and the formula (24) in the present paper,
with many hopes for further progress in the near future. In the meantime I devoted
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a lot of time to structure preserving numerical methods (see, e.g., [15, 16]), which
is also close to Decio’s interests [17], but this subject evolved rather independently.

Spin-valued spectral problems seem to be quite natural in the geometric context
because Spin groups and Clifford algebras are very natural structures to deal with
orthogonal transformations, see the next section. Actually, even the standard su (2)-
valued Lax pairs for some well-known soliton equations (including sine-Gordon,
nonlinear Schrédinger and modKdV equations) can be rewritten in terms of the
group Spin(3) (which is isomorphic to SU(2), see, e.g., [18]). In particular, the
sine-Gordon equation ¢,,, = sin ¢ arises as compatibility conditions for the Lax
pair

i —3d.x
I¢. —ik

_ 1 [cosg sing \ _ 0201¢08¢ + 0302 sin ¢
"~ 4ix \sing —cospp ) 4)

1
v,=U0v, U=( >=)»0102+§¢,x6163,
ey

v, =U0v, V

’

where o} denote Pauli matrices (and we replaced io3 by o109, etc.). In order to
see the Lie algebra of a Spin group in the above formulas, one needs some basic
information on Clifford algebras and Spin groups, which will be provided in the
next section.

In the framework of Sym’s soliton surfaces approach su(2)-valued linear prob-
lems correspond to surfaces immersed in the Euclidean 3-space and other semi-
simple Lie algebras can be associated with surfaces in multi-dimensional (pseudo)-
Euclidean spaces [19]. Another natural possibility, followed in this paper, is to
extend this approach from SU (2) = Spin(3) on any Spin groups [20].

2 (Clifford Algebras, Spin Groups, and Isometries of R?>¢

Given linear space V and bilinear form ( -| -) (or, equivalently, the quadratic form
Q(v) := (v] v)) we define the Clifford product by the following condition:

vw 4+ wv = 2(v| w)l, (v,weV), 2)

where 1 is the unity (multiplicative identity) of the algebra. In other words, parallel
vectors commute and orthogonal vectors anti-commute. Hence, in particular,

voo= , 3)

i.e., vectors with Q(v) # 0 are invertible and the result is geometrically interpreted
as inversion with respect to the unit sphere.
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Clifford algebra (denoted by C(V, Q) or C(p, q), where (p, ¢) is the signature
of Q) is generated by V using linear operations and the Clifford product, see, e.g.,
[18, 21].

Let eq,...,exy bean orthonormal basis in V. In other words, see (2), we have

e? =41, eje, = —ece; . @
Then, dimC(V, Q) = 2% and the Clifford algebra is spanned by 1 (scalars), ex
(vectors), e;e; (j < k) (bivectors) , multivectors, and eje; . .. ey (pseudoscalars).

Well-known examples: Pauli matrices (ex = ox, N = 3, p = 3, ¢ = 0) and
Dirac matrices (ex = yx, N =4, p=1,9 = 3).

The vector space V, generating the Clifford algebra C(p, q) (p + g = N), can
be identified with the pseudo-Euclidean space spanned by e, e; . .., ex. Reflection
with respect to the hyperplane orthogonal to an invertible n € V can be represented
as

/ 1 2(n| v)

vV = —nvn"" hence v =—-Q@n|v)—vn)n '=v- " 1p. (5)
(n|n)

Indeed, if v = v, + v; (Where v, is normal and v; is parallel to the hyperplane), then
v = v —v,. Thus: —n(v; + v )n = vnn~! —vnn~! = v

By the Cartan—Dieudonné theorem any isometry of V can be represented as a
composition of at most N, say k, reflections. Therefore, using (5), we have

v = (=D*ngng_y...n v rzl_1112_1 n,?l . (6)

Hence, it is natural to consider multiplicative groups in Clifford algebras:

e Lipschitz group I'(V, Q): products of invertible vectors,
* Pin group Pin(V, Q): products of unit vectors,
e Spin group  Spin(V, Q): products of even number of unit vectors

(often we omit Q, writing Spin(V'), etc.). Thus Eq. (6) can be rewritten as
Cp,q)DVav = vV=wvv ey, 7)
where ¥ € Pin(p, q), which is equivalent to an orthogonal transformation in V:
RPYD>Voyv —» vV=RveV (8)
where R € O(p, q). Obviously, —¥ and ¥ yield the same isometry R. Therefore,
we have double coverings, like Pin(N) — O(N) or Spin(N) — SO(N).

The Lie algebra spin(p, gq) of the Spin group Spin(p, ¢) is spanned by bivectors
eje, (1 < j <k < N).Notethat [e;,e, ejer] = 2(ex| e) eje, (m # j # k # m).
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One can define following automorphisms and anti-automorphisms in any Clifford
algebra (using also linearity, in the first two cases, or anti-linearity, in the third
case):

e grade involutione: «a(XY) =a(X)a(Y), a(v)=—v.
e reversion B: B(XY)=BY)B(X), B() =v.
 complex conjugation: XY = XY, v =v.

+ Clifford conjugation (complexified): X* := a(8(X)).

The reversion can be used to compute the so-called spinor norm:
N(X) = XB(X), €))

which is a real number for X € I'(V, Q).

3 Spin-Valued Linear Problems

We consider linear problems of the form:

Wu=Uu¥ .  Up=) ujeje, (10)
Jj<k

where e; are generators of a Clifford algebra, and u j; depend on x*, A and are
real for A € R. However, in the following, we suppress the dependence on x* and,
sometimes, on A). Then, ¥ is Spin-valued (provided that the initial condition is
Spin-valued).

Our original motivation came from studying isothermic surfaces (which, by def-
inition, admit conformal parameterization of curvature lines). Using isomorphisms

so4,1) = sp(l,1) = spin(4, 1) (11)

we transformed SO (4, 1)-valued Lax pair into the form (10). Clifford algebras are,
in general, a useful tool in dealing with isothermic surfaces [22].

We point out that Lie algebra su(2) is spanned by oy0, hence SU (2) = Spin (3)
and all SU (2)-valued linear problems, including (1), belong to the class (10).

The case of isothermic surfaces suggested further restrictions on the form of the
linear problem. We consider two vector spaces, V and W, equipped with quadratic
forms and orthogonal to each other, such that

e dimV =r and ey, ..., e, is an orthonormal basis in V,
e dimW =g and e, ..., e 1, is an orthonormal basis in W.

In this paper we focus on the following class of linear problems [23]:
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W, =U, ¥, U,=3e(a,+by), (n=1,....,m), (12)
where m < r (which impliese, € V for p=1,...,m), and
a, =a,(x',....x™eW, b,=b,x',....x™ eV, (b]e,)=0.
(13)

Therefore, U, = U#(xl, o x™A) € spin(V @ W) = so(V @ W), and, as a
consequence, ¥ = ¥ (x!, ..., x™, 1) € Spin(V @ W) (provided that ¥ belongs to
the Spin group at an initial point).

3.1 Geometric Interpretation: Soliton Surfaces Approach

The so-called Sym’s (or Sym-Tafel’s) formula:
F=vly, (14)

provides a geometric interpretation for integrable systems associated with a given
linear problem. Note that if ¥ € G (where G is a Lie group), then F' takes values in
the Lie algebra of G. One can easily verify:

Fou=%""0,,¥,  Fuw=v"Uimw+Ui. U)¥. (15)

Hence, fundamental forms of F (including g,, = (F,.| F,, )) are expressed in
terms of U, (explicit form of ¥ is not needed).

In the case of the linear problems (10) it is sufficient to consider the Sym-Tafel
formula evaluated at A = 0. Then, F is a submanifold in V A W. In order to
obtain interesting immersions in lower dimensional spaces we can use appropriately
chosen projection P, i.e., we consider r = P(F). In particular, we get

¢ Isothermic surfacesin R”. dimV =n,dimW =2,
W = RU!, ker P is any isotropic (null) vector in W.
« Orthogonal nets in R” such that ) ;_, h7 = const.
dimV =dim W = n, P is a projection on any e; € W.
* Guichard nets in R? (h} + 13 = h3). dimV =n,dimW =3,
W = R>! ker P is a light front (tangent space to the light cone) in W.

4 Darboux-Bicklund Transformations

Darboux transformation is a gauge-like transformation using the “Darboux
matrix” D:
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¥ = DY, v, =0,¥, U,=D,, D' +DU,D", (16)

provided that U 1 has the same dependence on dependent variables as U,.

Instead of caring about dependent variables one can try to describe the structure
of the Lax pair. The considered nonlinear system follows uniquely from compati-
bility conditions [8, 9, 13]. Then the Darboux transformation has to preserve this
structure.

The structure is characterized primarily by the dependence on A (e.g., divisor of
poles) [24, 25], reduction group (loop group) [26], and other invariants of Darboux
transformations, like linear and multilinear constraints on coefficients of the Laurent
expansion around poles [13].

Different methods of constructing the Darboux matrix need different form of A-
dependence of D (these forms are equivalent up to a A-dependent scalar factor).
In particular, one can assume D as polynomial in A (eigenvalues, corresponding to
solitons, are zeros of det D) [27, 28], sum of simple fractions (eigenvalues: poles of
D and D) [24, 26], or a “realization” (D = N + F(» — A)~'G) [29, 30].

The motivation for the case of Spin groups came from yet another approach [31].
Multiplying (16) by D?(1) we get

D,,D+DU,D=10,D*. (17)

It is crucial point that the right-hand side vanishes for Ay and A_ such that
D%(Ay) = 0. Then, we obtain a solution of the remaining equation: D(Ay) =
(pilp()»i)dilll(ki)_l, where di = const, (dj[)2 = 0 and ¢4 are two scalar
functions. Finally, D(}) is given as a linear combination of D(A4) and D(A_) with
coefficients linear in A [31], which yields one-soliton Darboux matrix.

This approach was extended on the multi-soliton case for 2 x 2 matrix problems
[32], and analogous generalization for Spin-valued linear problems is introduced
below.

4.1 The Darboux-Bdcklund Transformation in the Case of
Spin Groups

In this section we focus on the linear problem (12) and assume ¥ € Spin(V & W).
Using commutation relations (4) one can easily verify that

ﬂ(U/L) =-U,, eU, (M) =Uu(=Ne, U, @)= Uu()_‘) s (18)

where e = €, 1€,17...e-44. In a way analogous to the matrix case one can obtain
corresponding formulas for ¥':

NW)=wBW) =const, e¥O)=W"(-Ne, THR)=¥@®R). (19
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We derive the first formula, which is most difficult:

Ny =¥ B +¥BW,) = Up+BWUL))NW) =0, (20)

where one has to remember that N (¥) is a scalar, so it commutes with any elements.
The constraints (19) are obviously satisfied when we put D(A) in place of ¥ (}).
We point out that then constant in the first equation of (19) will depend on A and
zeros of N(D (L)) are eigenvalues used in the construction of soliton solutions.
The simplest case is the Darboux transformation which is a Clifford vector and
is linear in A. Then, the result can be obtained using (17), see [31]:

D=""FKP hh @1)

where hat denotes unit vectors and
p+in:=¥(k)(po+ ino)lllfl(i/c) , 22)

where pg € V and np € W are constant Clifford vectors such that p(z) = n% and
k € R. Transformations for soliton submanifolds (14) (evaluated at A = 0) read

F=F+-p'a, f=r+-p"'P®). (23)

x| =
x| =

The Darboux “matrix” (21), being a Clifford vector, produces ¥ which does not
belong to the Spin group. However, due to the invariance of the linear problem (12)
with respect to the transformation ¥ — Yw, we can take w € V & W and
then D¥w € Spin(V & W). Then formulas (23) have to be changed as well
(geometrically this is just a reflection).

This approach has many practical advantages. Calculations are much shorter
using Clifford numbers than matrix representations. It is enough to compare the
length and content of two papers, [31] and [33], which present in fact the same final
result.

Iterating twice the transformation (21) (with parameters 1 and k>, respectively)
and performing some algebraic calculations, we succeeded to obtain the following
symmetric form of the two-soliton Darboux transformation:

S(A) — (k} — k3)Dyoyi A D
D) = (A) = (k§ = k3)Djoj1 A Do ’ (24)
K
where A denotes the exterior (or wedge) product, Diojj(A) = Afj +k;p;
S(A) = K1K2(2)»2 + IC12 + K22)U — (2/(12/(22 + )»2(/(12 + Kzz))v , 25)

K% .= 4/(12/<22(c72 +?) — 4K1K2(K12 + K22)O'l) + (K12 — K22)2

and, finally, o := (p1| p2) and v := (| np).
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The full multi-soliton case is still under construction but basic results are already
obtained. In the general case, when D(A) € Pin(V @ W) is a polynomial in A, we
multiply (16) by the spinor norm N (D), defined by (9), and obtain:

D,, B(D) + DU,B(D) = U,N(D) (26)

Note that the special case D € V @ W reduces to (17), because then (D) = D and
N(D) = D?. In the general case the right-hand side of (26) vanishes if N(D()1)) =
0. This is a polynomial in A. Its roots, denoted by A, are constant by virtue of (20).
Similarly as in the case (17) we define

Ci =¥ DAY Ox) . 27)
Substituting it to (26) we obtain

CiB(Cr) =0, Ci.n B(C) =0. (28)

Following [34], we can solve this system:
Ci=Crdy, dy=consteV, d>=0, CpePin(VeW). (29)

Therefore, D(Ax) = Di ¥ ()di¥ ~' (Ak), where Dy € Pin(V @ W). It is natural to
conjecture that D()) can be uniquely (up to a normalization) defined by eigenvalues
Ak and null vectors dy and can be expressed in an algebraic way by elements
W(Ak)dkllf’l (Ar). Reduction groups will be expressed in terms of involutions in
the Clifford algebra.

5 Conclusions and Open Problems

Extending results of [31] we presented a method of construction of the Darboux
matrix for Spin-valued linear problems. The construction is fully done only in
the one-soliton case. The iteration of one-soliton transformations is not difficult,
and two-soliton Darboux matrix is shown. However, the multi-soliton case needs
further elaboration. Then, our approach should work also for multi-dimensional
Lobachevsky spaces [20, 35] and, possibly, for all problems described in [35, 36].
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Painlevé IV Transcendents Generated m)
from the Complex Oscillator e

David J. Ferniandez

Abstract Supersymmetry transformations are used to generate exactly solvable
potentials departing from the complex oscillator. The corresponding Hamiltonians
are shown to be ruled by polynomial Heisenberg algebras. A process for reducing
the degree of these algebras to 2 is used to connect such systems with the
Painlevé IV equation, thus leading to a simple algorithm for generating Painlevé
IV transcendents.

Keywords Painlevé transcendents - Complex oscillator - Supersymmetric
quantum mechanics

1 Introduction

The recent scientific advances make it important to study the links that could
exist between supersymmetric quantum mechanics (SUSY QM) and nonlinear
differential equations [1]. Indeed, there is a well known connection between SUSY
partners of the free particle and solutions of the KdV equation [2—4]. Similarly, it has
been shown that there is a link between systems ruled by second-degree polynomial
Heisenberg algebras and Painlevé IV (PIV) equation [5—12]. This connection helped
to design further an algorithm for generating solutions to the PIV equation, called
Painlevé IV transcendents in the literature [13, 14]. The simplest systems that can be
used to supply explicit expressions for PIV transcendents are the harmonic oscillator
and its SUSY partners [15, 16]. It would be important to know if the so-called
complex oscillator [17], which arises from making complex the oscillator frequency
and includes the harmonic oscillator as a limit, does the same. This subject is going
to be explored in this article. In order to do this, in Sect. 2 we will make a quick
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survey of supersymmetric quantum mechanics (SUSY QM) [1]. Then, in Sect. 3, we
will sketch the polynomial Heisenberg algebras (PHA), paying special attention to
the second-degree ones. In Sects. 4 and 5 we shall address the complex oscillator and
its SUSY partners, respectively. In Sect. 6 we will derive Painlevé IV transcendents
from these two examples. Our conclusions shall be presented in Sect. 7.

2 Supersymmetric Quantum Mechanics

The supersymmetry algebra with two generators introduced by Witten in 1981
[Hss, Qi1 =0, {inQj}:ainSSv I, j= 1,2,

when realized as follows

_0"+0 _0"-0 (0 0
Ql_Tv Q2_W1 Q_<B 0)7
+ (0 B B + _(B*B 0

is called supersymmetric quantum mechanics, where Hg is the supersymmetric
Hamiltonian and Q, Q> are the supercharges. There exist two Schrddinger
Hamiltonians H, H and a kth order differential operator B intertwining them:

HBT =B*H, H= 1d2+V() H= 1dz+\7()
- T T TV T e -

The two different products of B and B™ turn out to be given by
BYB=(H—e)---(H-e)  BB'=(H-e)---(H-e,

which implies that

H 0
Hss = (Hp —€1) -~ (Hp — €x), Hp:(o H)-

If H is a given initial Hamiltonian from which we wish to construct H , then k seed
solutions u;,i = 1, ..., k are required, such that

Hu; = €;ju;.
Thus, the new potential is given by

V)=V —[logWui, ..., unl",
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with W(uy,...,ur) being the Wronskiag of the k& seed solutions, while the
eigenfunctions (perhaps just formal) of H associated with E, and €; become,
respectively,

W(ul’ ceey Ug, Wn)

JnO(B-“/an( )
Wy, ..., ug)
J (xW(“l)""ui—lvui"l'l)""uk)
“ Wui, ..., ux) ’

where we have assumed that Hvr,, = E ;.

3 Polynomial Heisenberg Algebras

The polynomial Heisenberg algebras (PHA) are deformations of the Heisenberg-
Weyl algebra with three generators H, £T, and £~ such that [9]

[H, £*] = +£%,

[£7. LY = Qi (H+ 1) = Qi1 (H) = P,y (H),
m—+1

OnpiH)=Le =[H-&).
i=1

The energy spectra of systems ruled by PHA depend on how many extremal states
in the kernel of £~ become also physical eigenstates of H. If s of those extremal
states satisfy

L Ye =0, Hyg =&ve, i=1,...,5,

as well as the defining boundary conditions, then from the iterated action of £T
onto each one of them we can construct s infinite energy ladders for H. It could
happen that one of those infinite ladders (let us say the jth one) truncates after the
nth step, i.e., (L)~ Ve, #0, (LT)"Pg, = 0. In such a case it must happen that
=& +nforsomel efs+1,... k}

An important differential realization of the PHA arises if H is a 1-dim
Schrodinger Hamiltonian

1 d?
A="3a2 TV

while £F are (m + 1)th order differential ladder operators. In particular, the case
with m = 2 is worth of further study.
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3.1 Second-Degree PHA

By taking m = 2 we arrive at the second-degree PHA, for which
OsH)=H-ENH-E)H=-&), P(H) =3H+ 3 -25H+P +1-8,

where S = £1+&E+E3, P = £16+E1E3+E>E3, and L* are third-order differential
operators. Systems ruled by second-degree PHA could have up to 3 infinite energy
ladders starting from &1, &, &3.

It is important to look for the most general Schrodinger Hamiltonians ruled by
second-degree PHA. In order to find them, let us take L*E as

b_gty+ gL (_d L1 (& d
£r=LTL7, =27 o TIO), Ly =g 5 e+ h()

HLY =L Ha+ D, HLJ =LIH = [Hct1=ct

A straightforward calculation leads to

/ 2

f=x+gk), h=—x2+g3—g7—2xg+a,
2
X g g 1
V=— -4+ E— —,
> 2+2+xg+ 375

where the key function g satisfies the Painlevé IV equation:

2
3 b
¢ =045t 12 (x? —a) g+

262 g

witha =& +& —2& — 1, b = —2A%, A = & — &. The three extremal states
can be expressed in terms of g as follows

wgl0<(%—%—?—X>6Xp[f(%+§—§)dx], (1)
Ve, o (-5 +4-x)ex|[ (§+5+2)ax], @
Ve, X exp (—% — [gdx). 3)

We conclude that the most general Hamiltonians ruled by second-degree PHA have
potentials expressed in terms of Painlevé IV transcendents. Conversely, Eq. (3)
leads to
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g(x) = —x — {In[yg, (1)1},

thus Painlevé IV transcendents can be found by simply supplying the extremal states
of Hamiltonians ruled by second-degree PHA, having third-order differential ladder
operators.

4 Complex Oscillator
The complex oscillator potential is given by [17]

1 ' 3
V(x) = —’x?, w=¢"Y, _z <0 < —”
2 2 2

The general solution to the associated Schrodinger equation reads

(x. &) _o? F 1 e 1 2\ e F 3 ¢ 3 2
ulx,e) =e - — —, =, WX X - — —, = wx
YI\s " 2072 I\ " 2072
e [V2Y G VPR S P
=€ 111 4 2&)’2’ wx X117 4 2&)’2’ wXx y

where A = 2v I’ (% — %) /T (‘l‘ - ;—w) The square-integrable solutions of such

non-Hermitian Hamiltonian are given by
$n () = CuHy (Vox)e 397, E,(0) = (n + H)et?,
forﬂ:ei%, —% <60 < % and
$n(0) = DyHy(V—ox)e? ", E,(0) = (n + 1)ei=),

for /—w = ¢ (a%n), T <6< 37”, where C,, D, are normalization factors and
H,,(z) are the Hermite polynomials of complex argument z. Note that for § = +75
there are no square-integrable solutions for the stationary Schrodinger equation
since the complex oscillator potential reduces then to the repulsive oscillator. As the
eigenvalues lie in the first or in the fourth quadrant in the complex E-plane we can

take —% < 6 < 7 without loss of generality. Moreover, since E, (—=6) = [E, ()]

we can further restrict to 0 < 6 < 7.
Similarly, as for the standard oscillator, the analogues of the annihilation and

creation operators

a$=%<$%+wx),
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fulfill the following relations:
[H,a}) = t+wal, Hfa,.a}}=2H, la;, af]=

From them it is possible to determine algebraically the eigenfunctions of H [17]:

ol 1 wox?
$n () = T (af)" o). go(x) = (“%P)Te T
5 SUSY Partners of the Complex Oscillator
In order to perform a kth order SUSY transformation, k seed solutions uy, ..., uj
associated with complex factorization energies €1, ..., & are to be taken, so that k

new levels for H will be created [1]:
Sp(H)=lej En; j=1,--- ki n=0,1,2,---}.
The new potential reads
V=1a?x2 —[logWui, ..., u0)l".
Since the oscillation theorem is no longer valid, the factorization energies €1, . .., &
can be chosen essentially at any position on the complex E-plane.
The natural ladder operators for H are given by
£ =B*atB~.
They fulfill a PHA of degree 2k, since:
[H, L] = oL,  [£7,L1] = Py(H),

Qo1 () = (H——)ﬁ H—e—o)(f-e).

i=1

As an example, for k = 1 the simplest non-singular transformations can be
implemented by using the bound state seed solutions with n = 2j:

up () = Hpj(Vax)e 3%, j=0,1,2,--- @

The first-order SUSY partner potential now takes the form

2
Hyj_ [ Haj
V(x) 2w2x2+a) 8]w|:(2]—1) é;j?f}g?—%(—é;jé%?) :|
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Fig. 1 Real (left) and imaginary (right) parts of \7(x) for k = 1, j = 1 (black continuous line),
J = 2 (dashed line), and j = 3 (gray continuous line), with 6 =

Re [V ()]

-z
-

Fig. 2 Real (left) and imaginary (right) parts of \7(x) for k = 2, j = 1 (black continuous line),
J = 2 (dashed line), and j = 3 (gray continuous line), with 6 =

Plots for some of these potentials can be seen in Fig. 1.
On the other hand for k = 2, with u(x) as given in Eq. (4) and uy = a_uy, itis
obtained

\7(x) = %a)zxz - WWH + (%)2,
W=W (1, u2) o e=® {(2) — DHa;j (vVox)Haj2 (Vax) — 2j[Haj—1 (Va)I*}.

Plots of these potentials for j = 1, 2, 3 can be seen in Fig. 2.

6 PIV Transcendents

Let us remind that for k = 1 the natural ladder operators £* are of order 3, thus
the first-order SUSY partners of the complex oscillator are directly linked to the
PIV equation. On the other hand, for k > 1 this order is necessarily greater than 3,
but it can be reduced precisely to 3 by connecting all the seed solutions in the way
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uj(x) = (aajlj_lul(x), gj =6 —(j— Do, j=1,---,k. As a consequence,
LT = Py_1(H) I, where [T are third-order differential ladder operators fulfilling

[H,[F] = +ol*,

H —

= (7-3)

g1 — o) (H —&).

The roots of the polynomial /7]~ suggest the following 3 extremal states

2
+ wXx w
Ve, x B exp <_T> & = >
Ve, o B alui, S=¢e1+o,
Wi, ..., uk—1)
Ve, X ,
’ Wui, ..., ur)

=g =¢—(k-1o.

In order to generate the PIV transcendents, we have to scale the Hamiltonian H s
as well as the involved factorization energies, and introduce the variable z = ﬁx,

as follows:

I
gl

1 d? 1 2 1 d2
3ot + yoxt — S [In W (uy, - -
1 d2 2 d?
EE+%—@[IHW(M1,~-~,

s up)]

ug)].

The corresponding PIV transcendents are simply calculated through

8@ =~z — g In[ve, ()]

Some results are shown in Tables 1 and 2 for k = 1 and k = 2, respectively.

Table 1 PIV transcendents fork = 1, &

1

Ve, ar

& 5

w 2
67—4z23

g(Z) 2Z2—1

a -2

b —18

Table 2 PIV transcendents fork =2, €] =

u
w£3 W(uy.un)
& 3
w 2

825+67
8() i
a 0
b —18

— 5w
=32,

Bty
1

2

_ 27241
727

4
-2

u1(x) = ¢ (x)

2wy (x) = ¢o(x),

Btgg

+

Btatu,

7

2
4z(—4z*+47%+3)
82047446723

-5
-8
Uy =a,uj
+,+
BTa]uy
7
2
4443
4754823432
-6
-2
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7 Conclusions

In this article we have analyzed the link that exists between systems ruled by
second-degree PHA (which have third-order ladder operators) and the PIV equation.
Starting from the SUSY partners of the complex oscillator, an algorithm for
generating PIV transcendents has been implemented (see also [17]). The non-

Hermitian Hamiltonians giving place to these transcendents have two infinite energy

ladders: an infinite one starting from % and going outside the origin along 6-

direction, plus a finite ladder beginning from an arbitrary complex number &; and
pointing in the same direction. A deeper study about the classification of the PIV
transcendents generated from the SUSY partners of the complex oscillator seems to
be required.
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The Veronese Sequence of Analytic )
Solutions of the C P2 Sigma Model A
Equations Described via Krawtchouk
Polynomials
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Abstract The objective of this paper is to establish a new relationship between
the Veronese sequence of analytic solutions of the Euclidean C P%* sigma model in
two dimensions and the orthogonal Krawtchouk polynomials. We show that such
solutions of the CP?* model, defined on the Riemann sphere and having a finite
action, can be explicitly parametrized in terms of these polynomials. We apply the
obtained results to the analysis of surfaces associated with CP?* sigma models,
defined using the generalized Weierstrass formula for immersion. We show that
these surfaces are spheres immersed in the su(2s + 1) Lie algebra, and express
several other geometrical characteristics in terms of the Krawtchouk polynomials.
Finally, a new connection between the su(2) spin-s representation and the CP*
model is explored in detail. It is shown that for any given holomorphic vector
function in C>*+! written as a Veronese sequence, it is possible to derive a sequence
of analytic solutions of the CP?* model through algebraic recurrence relations
which turn out to be simpler than the analytic relations known in the literature.
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1 The CP? Sigma Model

The dynamical fields in the C P?* sigma models are maps from the Riemann sphere
S? to the complex projective space CP? ~ S¥6+D /(1)

S?oér=&"£it% > 2= (20,21, ..., 22) € C¥T1\ {0},

(where the value of the index s is either an integer or half-integer) which are
stationary points of the action functional [1]

1 .
A= [ 0,5 M
S2
and hence are solutions of the Euler-Lagrange (EL) equations
DyDuz+ (Dy2)" - (Duz)z =0, )

subjected to z'z = 1, where D,, are the covariant derivatives defined by

d

aé_ﬂ’ [,L=1,2

D,z =0,z — (ZTaﬂz)Z, I =

We require that the action (1) over the whole Riemann sphere S? be finite.

2 Projective Formalism

Equivalently, representing the z’s by their homogeneous representatives, i.e. maps
into C=+1\ {¢)

. f
(e pHE

Z

we may use (fields of) rank-1 Hermitian projectors

p_t®f
fir

This places the EL equations in the form of the conservation law (CL)

PP=pP, P =P 3)

3[dP, P1+d[aP, P] =0, 4)
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where the symbols d and 9 stand for the complex derivatives with respect to £, and

&_ given by
5 1/ 0 .0 5 1/ 0 Iy d
=-|\—=-i— =-|\—=+i—)-
2 \ 0¢! 082 )’ 2 \ 9¢! 0E2

Under the above assumptions every solution can be obtained from a holomorphic
(respectively, antiholomorphic) solution f : S* — CX+1\ {#},0f = 0, by
successive applications of the raising or lowering operator [1],

Jir1 = Pr(fi) == (g1 — P)ofy, fie1 = P_(fi) := (og1 — Po)d fr
®)
P =Ty, PPt =0, k=0,1,...,2s,

where P4 (fr) is a creation operator and P_(f;) is an annihilation operator. Thus
the sequence of solutions in the CP?* model consists of 2s + 1 vectors fj or 2s + 1

rank-1 Hermitian projectors Py. The action integral (1) in terms of the projectors Py
has a more compact form

apo = [ er or ) desae.. ®

In terms of the nonconstant projectors Py, the recurrence relations (5) become [2—4]

B (£ P) P (05 P)
Prxy = T+ (P) = 1r[(8+ Pr) P (95 Py)]’

(7

for tr[(0+Py) Pr(0+Pr)] # 0 and are equal to zero when t7[(0+ Px) P (0 Py)] =
0, where 94 and d_ stand for d and 9, respectively. Here Pi stands for one of the

projectors { Py, P1, ..., Px}. This set satisfies the orthogonality and completeness
relations
2s
PPy =68 Pj, 0=<k,j<2s, ZPj=H2s+1~ 3
j=0

3 Solutions of the C P2 Sigma Model

A particular holomorphic solution of the C P2 model equations (4) expressed in
terms of the f’s

<H25+1 - ";’jf Z‘) [aéfk - f;l_ (A an) o+ (4] o) 5fk):| =0, ©
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for 0 < k < 2s, can be written as the Veronese sequence [5]

172 172
ﬁ:(LGv a“”(?>gguwﬁ)e@”wm, for k = 0.

1
(10)
The Veronese sequence of analytic solutions of (9) can be obtained by acting with
the creation operators (5). Thus for k > 2 this procedure allows us to construct three
classes of solutions: holomorphic fj, antiholomorphic f>; and mixed solutions fk,
I <k<2s—1

Under the above assumptions we show that any Veronese sequence of solutions
Py of the EL equations (9) can be expressed explicitly in terms of the Krawtchouk
orthogonal polynomials.

Theorem 1 (The Main Result [6]) Let the CP% model be defined on the Riemann
sphere S* and have a finite action functional. Then the Veronese sequence of analytic
solutions fi of the CP?* model (9) takes the form

k .
(fk>j=((2s)! ( —&- ) (z.s)sin(k;pﬁsx 0<k j<2s

25 — k) \ 1+ &6 j
(11)
0 < _£<
Peivee —

where ( fi) j is the jth component of the vector fi € C> T\ {0} and K;(k; p,2s)are
Krawtchouk orthogonal polynomials defined in terms of the hypergeometric function

Kj(k) = Kj(k; p,2s) =2F1(=j, —k: =2s:1/p), 0=k =2s. 12)

Here j,k and 2s are parameters, while p is an argument in (12). We use the
convention

K;j@©;p,2s)=1, fork=0. (13)

The vectors fj can be used to construct the rank-1 Hermitian matrix projector Py
with an entry in the ith row and jth column given by

2 OF L (25 (2
(P)ij = ( . )%s'gi ( ;)(;) Ki (0K k), (14)

where, in what follows, we use the following abbreviated notation

K;(k) == Kj(k; p,2s), Kitk£1):=K;jk£1; p,2s). (15)
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The EL equations (9) with the idempotency condition P> = P; admit a larger class
of solutions [4] than the rank-1 Hermitian projector Py.

Proposition 1 (Higher-Rank Projectors) Let the linear combinations of the rank-
1 Hermitian projectors P; be

2s
P=>"nP, M=0 or =1 for all 1€{0,1,...,2s), (16)
=0

for which Py satisfy the EL equations (9). The higher-rank projector P can be
expressed in terms of the Krawtchouk polynomials

2s 1
o 2\ G i (PN \k. 0k
(P)ij —;x,(l)(l+€+g_)hss+ (J(}.)I@(DK,(!) (17)

which satisfy both the EL equations (9) and the idempotency condition P> = P. In
this case the projector P maps the C**1 space onto C¥, where k = lzio Al

Proof The proof is straightforward if we use (16) and the rank-1 Hermitian
projector Py in terms of the Krawtchouk polynomials (14).

4 The su(2) Spin-s Representation

A direct connection was established between the CP% model and the spin-s su(2)
representation [3, 7]. The spin matrix S° is defined as a linear combination of the
(2s+1) rank-1 Hermitian projectors P, i.e.

2s
S ) =Y k=P (59T =5, (18)
k=0
where the eigenvalues of the generator S are {—s, —s + 1,...,s — 1, s}. They are

either integer (for odd 2s + 1) or half-integer (for even 2s + 1) values. From Eq. (18)
we obtain that the spin matrix S? is given by the tridiagonal matrix with an entry in
the ith row and jth column [6]

(i = &ij <i) (i —s)—=8i-1, (§—+) Vies+1-10)

14 E.6- 1+ &6

_WM4<_£L_>Jﬁk—j+D, 0<i,j<2s (19)
X 1 =+ S+§,
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The generators S% and S* of the s1(2) Lie algebra satisfy the commutation relations
[$%, ST =£5%,  [ST,ST]1=25%, (20)

and they are identified with the following (25 + 1) x (2s + 1) matrices [8]
(0% = (s —D)éij, 21
0 )ij =25 —j +1jdij-1, 0<i,j=2s (22)

07)ij=+v@s—i+Didi_1,;. 23)

Hence the matrices S¢ and ST can be decomposed as a linear combination of the
matrices o and o, namely

AN | Eré —1 —527 =&\ (o
stl=— | 22 £ —1][o*]. (24)
e 4648 2%, —1 &2 o~

where (ST)" = §~ and (S7)" = ST. The eigenvalue problem for the spin matrix
S% is given by

S fi = (k — ) f, SUSTf)=(k£1—5)(STf),  for 0<k<2s.

Under these circumstances the following holds

Proposition 2 (Recurrence Relations Associated with the C P> Models) For the
Veronese sequence of analytic solutions f of the CP* model (9), the algebraic
recurrence relations for the vectors % fi and S* fi are given by [6]

—(1+&:8 ) fkr1 for 0<k=<2s—1,

St fi =
0 for k=2s,

(25)

1
S™fi = mk(k —1-29)fiu1 for 0<k<2s. (26)

In terms of the projectors Py, the recurrence relations (7) take the algebraic form

StP.S~ S™P.ST

Povi =M. (P) = ——*> _ p =M (P)=— %
et 1 +(Pr) (ST RS ) k1 (Pr) P

where tr(STP.S™) # 0.
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Proof The proof of the formulae (27) follows immediately from (3) and the
relations (25) and (26), i.e.

STRST  STR®AST i ® f
r(STPST) (SR @ ST fil - fin

= Pri1, (28)

since (ST f)' = fkTS ~. Similarly, it is easy to show that the following relation
holds

STPST P 29
(S Pest) (29)

Note that the relations (25) and (26) allow us to recursively construct the
Veronese sequence of analytic solutions f; from the holomorphic solution fy in
a simpler way than the ones obtained from the analytic recurrence relation (5).
Therefore, the matrices ST are the creation and annihilation operators for the vectors
fir and the projectors Px. The result given in the above proposition can be interpreted
as the matrix elements of the SU (2) irreducible representations, known as the
Wigner D function. It is known [9, 10] that these matrix elements can be expressed
in terms of the Krawtchouk polynomials.

5 Geometrical Aspects of Surfaces

The generalized Weierstrass formula for the immersion of 2D-surfaces associated
with the C P2 model (9) is given by [11]

= 1+ 2k
Xi(5, §-) = —i Pk+2;03,~ +i<m)h+lesu<2s+1> (30)

and the raising and lowering operators for X are [2]

(O£ X)Xk (05 X1)

Xi+1 = MM (Xy) = tr((aiXk)Xk(axxk)) '

where 9, and d_ stand for @ and 9, respectively. It follows from (27) that the
creation or annihilation operator for the immersion functions X, can be defined
algebraically by
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STP.S™
—s o th—5—/—=1I).
1r(STPeS) 25 + 1
S~ PST 4P 2 I
r(S—psH K Ty )

X1 = X — i (
X1 =Xp+i (
For the sake of uniformity, the inner product is defined by

1
(A.B)=—2ir(A-B),  A.Besus+1).

The first and second fundamental forms are

225k + 5 — k?)

Iy = tr(aPk ' 8Pk)d$+d§_ = (1 i %-+%-_)2 d$+d$—v
Il = —tr(dP - 3Py)d (M) d€2 + 2i[0 Py, d PyldEdé— 31)
tr(0P; - 0P;) +

= .= [0 Py, Px] 5
—r@P - 3PYd [ LT ) g2
tr(9F - 9F1)? <tr(8Pk-8Pk)) =

Proposition 3 (Non-intersecting Spheres) For any value of the Veronese sequence
of analytic solutions fi of the CP% model (9), all the 2D-surfaces Xy are non-
intersecting spheres with the radius

k2 4 2k(2s — 1) +5 — 1|12

1+ 2s

1/2
R = (Xi, Xp)'/? = <—%”’(Xk)2> = '

s

(32)
immersed in the Lie algebra su(2s + 1) ~ R¥6+D,

Proof Let us assume that [ > k are two different indices of the induced surfaces.
Subtracting (30) from the analogous expression for X;, we get

2(0 —k)

I =0. 33
2y 1 s (33)

-1
Pi—P+2) Pj—
j=k

Multiplying Eq. (33) by Py, P; or P;_; and solving the obtained system of equations,
we obtain that the 2D-surfaces X; and X; do not intersect if & # [ with the
exceptions of Xg and X in the CP I model since Xo and X coincide [7]. The
fundamental forms (31) imply that the Gaussian curvatures of the 2D-surfaces have
constant positive values

2

= —. 34
2sk + 5 — k? (34)

Ky
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The Kihler angles are given by

(1 ) ’dfk(m)(a/aé—)
tan | =6k(m) | = | ——FF—
2 dfi(m)(9/9&4)

, m e S?

and have constant positive values

s—k
e

The Euler—Poincaré characters of the 2D-surfaces X are the integer Ay = 2 for all
k such that 0 < k < 2s. This means that all 2D-surfaces associated with the C P2
model are non-intersecting spheres with radius Ry given by (32).

The technique for obtaining surfaces via projective structures and their links with
orthogonal polynomials, elaborated from the CP? models, can be extended to
different types of Grassmannian manifolds. An analysis of these manifolds can
provide us with much more diverse types of surfaces.
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Abstract In this short note we present a novel integrable fourth-order difference
equation. This equation is obtained as a stationary reduction from a known
integrable differential-difference equation. The novelty of the equation is inferred
from the number and shape of its invariants.

Keywords Difference equations - Integrability - Algebraic entropy

1 Introduction

The interest in discrete systems, that is, of systems whose independent degrees of
freedom take values in a discrete set, grew enormously during the past decades,
for reasons which span from very philosophical [23] to purely practical ones
[29]. Nowadays, discrete systems are studied from different points of view and
perspective, see [12, 24].

In this short note we will present a new integrable fourth-order difference
equation. An Nth-order difference equation is a functional equation for an unknown
sequence {x,},cz where the x,4x element is expressible in terms of the previous
Xnti, I = 0,1,..., N — 1. Such kind of functional equations are also called
recurrence relations. Without entering in the details, which will be given in Sect. 2,
we say that an Nth-order difference equation is integrable when its dynamics is
sufficiently regular and predictable.

The integrability of second-order difference equations is a well understood topic,
as it is known that most of the integrable second-order difference equations belong to
the QRT class [30, 31], even though there are some notable exceptions [11, 33, 44].

In higher dimension an analogous general framework does not exist, whereas
some approaches similar to the one of QRT [30, 31] have been pursued in the
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literature [7, 21, 22]. These approaches relied on searching for difference equations
admitting some extra structures allowing to claim integrability, i.e. invariants of
a fixed form and/or symplectic structures. Higher-order difference equations have
been produced in the literature with different methods, like periodic reductions of
partial difference equations [9, 35-38, 40].

In an upcoming paper [20] we propose a new approach to generate inte-
grable higher-order difference equations through stationary solutions of integrable
differential-difference equations. A differential-difference equation is a function
equation for an unknown sequence {x, (¢)},cz of functions a continuous variable,
depending on both shifts and derivatives. A well-known class of differential-
difference equations are the Volterra-like equations:

09Xy,
ot

= f (Xntks oo s Xns ooy Xpir) . k> K (1)

The stationary reduction of a differential-difference equation is obtained by letting
dx,/0t = 0 and it is clearly a difference equation, since we suppressed the
dependence on the continuous variable. To be more precise, in [20] we will present
the integrability properties of the stationary solutions for two classes fourth-order
Volterra-like equations, recently classified in [15, 16]. In this short note we present
an interesting example out of this general picture.

The plan of the paper is following: in Sect. 2 we introduce the formal definitions
of integrability we will be using throughout this note. In Sect. 3 we will present our
new example, and show its integrability in the sense of Sect. 2. Finally, in Sect. 4
we give some final comments and an outlook towards the general results.

2 Integrability of Difference Equations

Integrability both for continuous and discrete systems can be defined in several
different ways. In this note we will limit ourselves to two alternative definition,
out of all the possible ones.

Consider an autonomous Nth-order difference equation:

XN = Q (Xt N1, XndN—25 -+ -+ Xp) - 2
A function
I=1p N1, Xn4N=2,5--1%n) 3)
is called an invariant if:
I (XpgNs XnaN—1s ooy Xng1) = 1 (Cng N1, XngN=25 - -+, Xn) 4)

on the solutions of equation (2).
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If there exist N — 1 functionally independent invariants /;, / = 1,..., N — 1,
then it is possible to reduce the difference equation (2) to first-order one by solving
the relations:

Ij =«;j, (@)

where «; are the value of the invariants on a set of initial data. In such case we say
that the difference equation (2) is integrable.

This definition of integrability is very general. If some additional structures, like
Poisson or symplectic structures, are present, then the number of invariants needed
for integrability can be significantly lowered: this is the content of the discrete
Liouville-Poisson theorem [6, 28, 41].

In general to search for invariants is difficult procedure, see remark 1. For this
reason, several integrability indicators, that is, necessary conditions for integrabil-
ity, have been introduced. A well-known integrability indicator, which is also an
equivalent definition of integrability, is the algebraic entropy [5, 13, 42]. Algebraic
entropy is defined for bi-rational maps of the complex projective space CPV to
itself. Rational difference equations (2) which can uniquely solve with respect to
Xy, that is, which are fractionally linear in x,, are equivalent to such maps. To see
this first notice that computing the orbit of such an equation is equivalent to iterate
the complex map @ : C" — C" defined as follows:

D (XN-1y--5X%0) = (Q (XptN—T1s---+Xn) s XN—1s.--5X1). (6)

The condition of unique solvability with respect to xo of (2) ensures us that the
map @ has a rational inverse ¥. Then, introducing the homogeneous coordinates
[Xy—1:...,X0:T]by

)

Xn-1 Xo
(XN—1,~~-,X0)=( — |,

T T

we have that the map (6) can be lifted to a rational map ¢: CPY — CPV. Lifting
the inverse map ¥ to ¥ : CPY — CP" we conclude that the map we obtain is
actually a bi-rational map of the complex projective space CP" to itself.

Given a bi-rational map, we can take as measure of its complexity, in the sense
of Arnol’d [4], the growth of the number of intersections of the successive images
of a straight line with a generic hyperplane in complex projective space [42]. This
actually corresponds to compute the degrees of its iterates with respect to a generic
initial condition:

dy = degg®, keN. (®)
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Then we consider the following limit:

1
&= klgl;o Z log dj, ©)]
called the algebraic entropy. If the growth of the map ¢ is sub-exponential, then the
algebraic entropy (9) vanishes and we say the map ¢ is integrable in the sense of
the algebraic entropy [5, 13, 42]. As a particular case, when the growth of a map is
linear the map is believed to be linearizable [25].

Algebraic entropy is an invariant of bi-rational maps, meaning that its value is
unchanged up to bi-rational equivalence. Moreover, its value is determined by the
singularity structure of a map [5, 34, 43].

To compute the algebraic entropy from (9) we need to know the asymprotic
behaviour of the sequence d,. For the majority of applications such behaviour can
be inferred by using a generating function [27], that is, a function g = g (z) such
that:

g() =) d". (10)
n=0

A generating function is a predictive tool which can be used to test the successive
members of a finite sequence. It follows that the algebraic entropy is given by the
logarithm of the smallest pole of the generating function, see [17, 18].

Remark 1 Finding invariants is a hard task. Here we recall briefly a method for
finding invariants of bi-rational maps presented first in [13] and recently reprised in
[8]. If the ratio P/Q is an invariant of a map ¢, then the pullback of ¢ on P/Q is
invariant: ¢*(P/Q) = P/Q. This implies

¢*(P)=aP and ¢*(Q) =aQ Y

for some polynomial factor a. Using the fact that ¢ o ¢ = «k Id where « is a
polynomial one gets that a must contain some of the factors dividing «. Hence one
can search for invariants imposing the form of P, then searching for the appropriate
factors. We get an invariant when we obtain more than one solution for the same a.
By taking ratios of the solutions we obtain the invariants.

The problem with this method is that it is not bounded as we do not know a priori
the degree of P. However, in practice this method is quite useful for the explicit
computation of the invariants, since the conditions in (11) are linear, even though
their number can become huge as deg(P) grows.
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3 A Novel Example

Consider the following differential-difference equation:

Xn12%n (Xpg1 + 1)2 . Xn—2Xp (Xp—1 + 1)2

Xn41 Xn—1

12)

P _ e+ 1)
= -xl’l
at

+ (1 + 2x,) (xpg1 — xn—l)]-

Equation (12) has been found in [2] and it is related to the discrete Sawada—Kotera
equation found in [1, 39]. Equation (12) emerged again in [15] where the authors
classified the fourth-order Volterra-like equations (1) linear in x,17. Imposing
dx, /0t = 01n (12) we obtain its stationary reduction:

1)2 _ 41?2
Xp2Xn (X1 + 1) _xn 2Xp(Xp—1 + 1) — (1 4+ 25) (ot — Xn1)- (13)

Xn+1 Xn—1

Equation (13) is not resummable, in the sense of [3], to a second-order difference
equation, nor it is deflatable, in the sense of [26], to a third-order difference
equation.

In [19] it was heuristically shown that Eq. (12) has quadratic growth [10].
Since (13) is a reduction of (12) we have that it can have at most quadratic growth.
Computing the growth of degrees of equation (13) we obtain

1,5,15,35,67, 113,167, 229, 297, 375, 463, 561, 667,
785,911, 1047, 1193, 1349, 1511, 1681, 1859, 2051, (14)
2255, 2469, 2689, 2917, 3151, 3395, 3651, 3921, 4199.. ..

whose generating function is
5213 4+ 5212 4+ 152" 4+ 17210 4 292° 4 2528

+3277 42675 +272° +192* + 133 + 722 + 32+ 1
A=28@+DE@+DEA+ D2 —z+ D@2 +2z4+1D)°

g(2) = (15)

Since all the roots of the denominator of (15) lie on the unit circle we have, as
expected, that the algebraic entropy of equation (13) vanishes. Moreover, due to the
presence of the factor (1 — z)> we obtain that its growth is asymptotically quadratic
[14]. That is, Eq. (13) is integrable in the sense of algebraic entropy and it is not
expected to be linearizable, since its growth is quadratic.
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Applying the method presented in Remark 1 we find that the map (13) admits the
following functionally independent invariants:
XnXn—2 Xn—1Xn+1

L = + + Xp + Xp—1 + 2X5 X2 (16a)
Xn—1 Xn

+ 2xp1Xn41 + 2XpXn—1 F XpXp—1Xp—2 + XpXn_1Xn41

2 2
Xy X
L :< \ 2) + (n_H) Xy X g XX X (16b)

Xn—1 Xn

Xn

Xn 1 -1
- Z[xn_zan ( + + + xnxn_1>
Xn—1 XnXn—1 Xn

+ Xp—1Xn (Xn—1Xp—2 + XpXp41) :|

+4 I:xn—lxyzl_z + xnxy%_H + (e +xp—1) (1 — xn—2xn+l):|

X1 (Kn—1 + X1 — Xp—2) + Xp—2 (Xp +Xp—2 — xn+l)i|

Xn Xn—1

%

2 2
+6 (xn+1 + Xn—1Xn+1 + XnXp—2 + xn_z) + 8 (XnXp—1 — Xp—2Xn+1)

Iz = L, (16¢)
D3 1D32
where
N3 = X020 50| + XaXn 2% Xt X0 X (172)
+3x0x2 ,x2 | + 3x3xn_2x37] + 3x2x37]xn+1
+ 3x2x3_2xn_1 + 4x3xn_2x3_1 — x,fxn_zx,,_lxnﬂ
+ 2x2x37] +x2x2_ xpg1 + xgxn_2x371 — X2Xp—2 X2 Xnt

+ 4x,%x3_1x,,+1 — x,,x,,_gx,f_lx,,ﬂ + 3x,,x,3,_1x,%+1 + x3x5_2
X3 Xp—2Xn—1 F XX2 | X Xy 2X2 | — XXX 1 Xnt1
+ X2 Xt = XnXn—2Xn—1 X1 F Xn X Xng1 + X X2
+xaxn |+ 3xr21xr?z)71xr%+l X,y

D3 = Xux2_ 1 Xn—2 + 2XpXn_1Xn—2 + XnX2_| (17b)
— XpXpn—1Xn+1 + XnXn—2 — Xp—1Xn+1,

D32 = XnXn—1Xn—2 — X2 Xn—1Xnt1 — XaXn_1 (17¢)

— 2XpXp—1Xn41 + XnXn—2 — Xp—1Xn41.
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This proves that Eq. (13) is an integrable equation according to both definitions
stated in Sect. 2. Moreover, the number and shape of the invariants proves that
this equation is outside the known classifications given in [7, 22]. For instance,
the invariants are rational in the affine coordinate, differently from [22], where
the invariants are polynomials in affine coordinates. Furthermore, these invariants
are not ratios of biquadratic polynomials, therefore are outside the class considered
in [7].

From the invariants (16) it is possible to construct a dual map [32]. Differently
from the dual maps appearing in [7, 26, 32] this dual map are not integrable
according to the algebraic entropy test. We underline that dual maps with such
features already appeared in [22].

Remark 2 The invariant /7 is linear in x,+1 and x,,_>. This implies that 7,1} — [
is actually equivalent to Eq. (13). That is, Eq. (13) is resummable to an autonomous
third-order difference equation.

4 Final Remarks

In this short note we showed that the stationary reduction of equation (12), namely
Eq. (13), is integrable in the sense of algebraic entropy and in the sense of the
existence of invariants. The first properties follow from our previous work [19], yet
we showed that the quadratic growth is preserved.

In our upcoming paper [20] we will consider all the stationary reductions of
the fourth-order Volterra-like differential-difference equations classified in [15, 16].
The application of the algebraic entropy test will give rise to a vast “zoology” of
possibilities, consisting in periodic equations, explicitly linear equations, lineariz-
able equations (linear growth), and integrable equations (quadratic growth). We will
explain these growth properties using the following notions:

1. correspondence to idempotent maps,

2. explicit linearization,

3. resummation, in the sense of [3], to integrable second-order non-autonomous
difference equations,

4. deflation, in the sense of [26], to integrable third-order difference equations,

5. existence of three invariants.

Genuinely new integrable fourth-order difference equations belong to the last
class. With these new examples we aim to broaden our knowledge of higher-order
integrable difference equations and give the foundation for a new algorithmic search
method based on hierarchies of differential-difference equations.

Acknowledgments We thank Dr. D. T. Tran for the helpful discussions during the preparation of
this paper.
GG is supported through Prof. N. Joshi’s Australian Laureate Fellowship #FL120100094.
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Dedicated to Prof. Decio Levi on the occasion of his 70th
birthday

Abstract The basis elements spanning the Sato Grassmannian element corre-
sponding to the KP t-function that serves as generating function for rationally
weighted Hurwitz numbers are shown to be Meijer G-functions. Using their Mellin-
Barnes integral representation the t-function, evaluated at the trace invariants of an
externally coupled matrix, is expressed as a matrix integral. Using the Mellin-Barnes
integral transform of an infinite product of I" functions, a similar matrix integral
representation is given for the KP r-function that serves as generating function for
quantum weighted Hurwitz numbers.

Keywords Hurwitz numbers - t-functions

1 Hurwitz Numbers: Classical and Weighted

The fact that KP and 2D-Toda t-functions of hypergeometric type serve as gener-
ating functions for weighted Hurwitz numbers was shown in [3—6], generalizing the
case of simple (single and double) Hurwitz numbers [8, 9]. Sections 1.1 and 1.2
below, and Sect. 2 give a brief review of this theory, together with two illustrative
examples: rational and quantum weighted Hurwitz numbers. In Sect. 3, it is shown
how evaluation of such t-functions at the trace invariants of a finite matrix may be
expressed either as a Wronskian determinant or as a matrix integral. The content of
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Sects. 3.2-3.4 are largely drawn from [2, 7], in which further details and proofs of
the main results may be found.

1.1 Geometric Meaning of Classical Hurwitz Numbers

The Hurwitz number H (/L(l), e, ,u(k)) is the number of inequivalent branched N-
sheeted covers I — P! of the Riemann sphere, with k branch points (Q1q, ..., Ok),
whose ramification profiles are given by k partitions (uV, ..., u®) of N,
normalized by dividing by the order | aut(I")| of its automorphism group. The Euler
characteristic y and genus g of the covering curve are given by the Riemann—
Hurwitz formula:

l
Xx=2-2g=2N—-d, d:=)» *u?), (1

where £*(u) := |u| — €(n) = N — £(w) is the colength of the partition.
The Frobenius—Schur formula gives H (u®, ... ™) in terms of Sy characters:

Hu®, . ®) = Z s 2()‘)1_[)(/\(# )) | =N, )

MM=N
71 . ..
where h(A) = (det — +j),) is the product of the hook lengths of the partition

A=A =2 - = Ao > 0), X)L(/,L(j)) is the irreducible character of
representation A evaluated on the conjugacy class 1/, and

2t = ]‘[z’“’*( Ymi (u9))! 3)

is the order Qf the stabilizer of any element of cyc() (and m; (u/)) = # parts of
partition 1) equal to i)

1.2 Weighted Hurwitz Numbers [3-6]

Define the weight generating function G(z), or its dual é(z), as an infinite (or finite)
product or sum (formal or convergent).
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o0 o
G(z) = 1_[(1 +zc) =1+ Zgjzj
i=1 Jj=1
o o0
G =[Ja-zen™"=14> 72 )
i=1 j=1
The weight for a branched covering with ramification profiles (", ..., u®) is

defined to be:

1 w (1) x(,, (k)
(1) k)yy . Gy e u®)
We (', ..., u") = 0 E E i St

oeS; 1<i| <<y

k * (Y k
- (=D Xi=1 &+
We D, u®y = T E—

* (1) * (k)
3 LM w5

ig(1) i (k)
oSk 1<) <<k

Weighted double Hurwitz numbers Hg; (n,v), H é (u, v) for n-sheeted branched
coverings of the Riemann sphere having a pair of unweighted branch points
(Qo, O0), With ramification profiles of type (u,v), and k additional weighted
branch points (Qi, ..., Qr) with ramification profiles (D, ..., n®) are
defined as:

d
/
Houv) => " > W, ... u®H@D, . u® u ),
k=1 )
E e (u®)=d

d
/ ~
Hi(uw.v) =>" Y Wa™. ... HW®O, . u® ),
k=1 )
Yo (w=d

where Y’ denotes the sum over all partitions other than the cycle type of the identity
element (1)". If O is not a branch point; i.e. v = (1)", we have a weighted single
Hurwitz number

HE (1) := HE (1, (™). (6)

Two cases of particular interest are: rational weight generating functions:

M, +c2)

Gc, (z) =
T M (0 = dwo)

(7

and quantum weight generating function (quantum exponential):
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G =H,:=001—",—1=oo . 8
(z) = Hy(2) L[)( q'z2) ’;(q;q)n (8)

where
@ Dni=0—g)d—g»---(1—q") )

for some parameter g, with |g| < 1.
The corresponding rationally weighted (single) Hurwitz numbers are

HE (uv) =) > Wa o, n®0® 00
1<k WD (D0,
k+I<d

e wOrl e 0)=a
@O =p =N

x H(pW, .., u® v® Oy,

where the rational weight factor is

Weea, ..., n®50® 0 ®)

— (—1)2’;=1 iy —g
- k!

s, (1) w0, Ky 0% (1) £* )
2: LWy )db(V )”'db(v ).
Ao (1) Ag (k) o' (1) o/ (1)
o€Sy l=ay<-<aq <M
o'esy 1=by-=by=L

The quantum weighted (single) Hurwitz numbers are

d
Hi =" > W uOHED, w1,
k=1 )L(l),...)l.(k), \/L(i)\:N
YE_ eru@)=d
(10)
where the quantum weight factor is

k

a0,y = EDTE S
q s ey : : LR
k! oes; j=1 (1 — qZ,-Zle (€ (>>)

2 Hypergeometric t-Functions as Generating Functions
for Weighted Hurwitz Numbers [3-6]

To construct a KP 7-function of hypergeometric type that serves as generating
function for weighted Hurwitz numbers for a given weight generating function G,
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choose a small parameter 8 and define coefficients r(G *#) that are of content product
form:
G, G, . .
nOP = T1 r%P = T] 6w -0p). (1n
(ij)er e
where
(G.B)
G ‘
P =GB = 57 (12)
01
with
p(G,ﬂ)
(G B) j _.T° (/3) "
=5 ]_[G(tﬁ) 0 ==y
i=1 Pi—1
J—1 G
/3) N If10>)) :
(=B =e -, j=1,2,... (13)
IH G(—lﬂ)

We then have [4, 6]:

Theorem 1 (Hypergeometric Toda t-Functions Associated with Weight Gener-
ating Function G(z)) The double Schur function series

@A, s) == Z ﬁ‘)‘lric’ﬁ)Sx(t)SA(S) (14)

A

defines a 2D-Toda t-function (at lattice value n = 0).

We now use the Frobenius character formula

55.(t) = Z M’ 53.(8) = Z M (15)

Z Z
plpl=I21 . v.[vl=[a] !
to change the basis of Schur functions to power sum symmetric functions

L(w) L(v)

pu® =[] P ®. p;® = jtj. pus) =[] puls). pjts) =js;.  (16)

i=1 i=1

Theorem 2 (Hypergeometric Toda t-Functions as Generating Function for
weighted Double Hurwitz Numbers [4, 6]) The t-function t(C-P)(t, s) can equiv-
alently be expressed as a double infinite series in the bases of power sum symmetric
functions as follows
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@t ) =" Y BHFHHE (1, v)pu®)pus). (17)

d=0 WV
ll=Iv]

It is thus a generating function for the numbers Hg(,u, V) of weighted n-fold

branched coverings of the sphere, with a pair of specified branch points having
ramification profiles (i, v) and genus given by the Riemann—Hurwitz formula

k
2-2g =L+ L) —d, d=Y u"). (18)

i=1

Corollary 1 (Hypergeometric KP t-Functions as Generating Functions for
Weighted Single Hurwitz Numbers) Ser: s= " tg:=(87',0,0,...).
Then the series

t @At B g) =P ) = o) P
A

=YY BHEGpu (D)

d=0 1

is a K P t-function which is a generating function for weighted single numbers
Hg (w) for |u|-fold branched coverings of the sphere, with a branch point having
ramification profile (1) at Q¢ and genus given by the Riemann—Hurwitz formula.

2-2g=|pl+lp) —d. (19)

3 Wronskian and Matrix Integral Representation
of t@P (X])

In [2, 7] new matrix integral representations were derived for the tr-functions
that serve as generating functions for rationally and quantum weighted Hurwitz
numbers. The main result is that, using Laurent series and Mellin-Barnes integral
representations of the adapted bases for the respective elements of the infinite
Grassmannian corresponding to these cases, the t-functions may be expressed as
Wronskian determinants or as matrix integrals.
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3.1 Adapted Basis, Recursion Operators, Quantum Spectral
Curve

Henceforth, we always set:
=Bt :=(71,0,0,...) (20)
and
@B () .= P (¢, B 1) (1)

is a KP t-function of hypergeometric type.
For k € Z, define

) ——E——f pOP (@) L
I¢ =€ ¢k

2wixk-1

00 p«m j
L (—) , (22)
j=0
where
p P& = Z PGPl (23)
i=—00

Then {¢x (1/z)}ren+ is a basis for the element w(@A) of the Sato Grassmannian that
determines the KP t-function 7(G-#) (t) [1].

3.2 Quantum and Classical Spectral Curve

Theorem 3 (Quantum Spectral Curve and Eigenvalue Equations [1]) The func-
tions ¢r(x) satisfy

Ly (x) := (xG(BD) — D) ¢ (x) = (k — D (x), (24)

R
where D := x 7 is the Euler operator.

The classical spectral curve is

y = G(Bxy). (25)
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Rational Weighting Case

For G(z) = Ge.a(z), denote ¢ (x) =: ¢l£c,d,ﬂ) (x). Then

L M
1 ¢ c,
c[To+ 50 ""ﬁ)+<D+k—1)]"[(D—1—ﬁ )6 =0, @6
_ m=1
where
{ = —KedX, Ked = (— I)MHHI L g ;’ 27)
1 m

Mellin-Barnes Integral Representation: Meijer G-Functions [2, 7]

It may be shown that ¢>(c 4% has the Mellin-Barnes integral representation:

1—-L ... 1L
(c,d,B) (c.d,p) ~1,L Ber? ’ Bet
¢ =gy
k L,M+1 1—k,1+5+11,--~,1+ 1

ds.

C,E“*d'ﬂ)/ ra—k—s[k,r ( ﬁ) —Ke,ax)’
Ck

j M
2mi Hm:lr(s_ﬁ%m>
+

1 1
Bo_(c, d) I—k+gh L=k + g0
T )k L 1 ﬁlﬂ 1 /3‘1L Keax | (29)
k=g Lk gy
where
IT/L M ()
o iz (29)

=B Tl T

The contour Cy is chosen so that the poles at 1 — k,2 — k, - - - are to the right and
the poles at {—i — ﬂ%j}jzl,,..L,ieNJr to the left. (See Fig. 1.)

Quantum Case Expressed as Mellin-Barnes Integrals [7]

(Hy.B)

The following is an integral representation of ¢, (x), valid for all x € C,

Hyp) _ L

2 2mi

/ Ap, k(s)x*ds, (30)
Cr
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A
Ll
. . L] . +
Bey Bey , 3 I
o
11 k42 N | Nt1
- - r ‘1 \

—_ 1 =
Be, Bey

1
2

Res= N +

Fig. 1 The contours of integration for the function ¢,(cc’d’ﬂ )inthe case L > M + 1

where

= cortra - T (cpm 20
A (@) = (=B KT (1 —k z)m]‘[_o(< e = = R

The contour Cy is defined as starting at +oco immediately above the real axis,
proceeding to the left above the axis, winding around the poles at the integers
s = —k,—k + 1.... in a counterclockwise sense and continuing below the axis
back to +oo0.

3.3 Determinantal Representation of %P (t)
If 7(©-A)(t) is evaluated at the trace invariants of diagonal X € Mat"*"
1 ,
t =[X]. &=-uX,
1
X :=diag(xq, ..., x), (32)

it is expressible as the ratio of n x n determinants

l_[?:l xl{1—1 det (¢z (xj))lgi,j,fn
[Tz o-i A0

@A ([x]) = , (33)



86 J. Harnad

where

AW = ] @i—xj)=det! )iz (34)

I<i<j<n

is the Vandermonde determinant.

Eulerian Wronskian Representation

It follows from the recursion relations

BMD+k—1Dppy =¢r-1, k€L, (35)
that
n det (D' (x))),_;
(G.B) _ n—1 1<i,j,=<n
TP (X)) = v (l} i ) e , (36)
where
1
137"("_1)
n = . (37)
s [Tiz p—i

3.4 Matrix Integral Representation of T'%P) ([X)) [2, 7]
Wronskian Representation: Rational Case

For rational weight generating functions G = G g, and any n € N¥, let

PP (e”) Z/ AL (5)e ds,

n

.d,
C,(,c ﬂ)l“(l —n—ys) ]_[lel r (s + —ﬁlc ) (—kc.a)’
AL gy = !
n : — . .
i [ [y T (S - ,ng)
Define the diagonal matrix ¥ = diag(yy, ... yn)

X=¢, Y=InX), x=e%, i=1,...,n. (38)
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Then 7(“4-#) ([ X]) becomes a ratio of Wronskian determinants

1<i,j,<n

: det (@)= )
£ Gead ([X]) = y» (]‘[x?l) A

i=1
Matrix Integral Representation of t(C-F) ([X]): Rational Case

It follows [2] that

_ BT T Adnw)

GeaB) ([ x
’ (XD (T, iNAG)

dﬂ(c,d,ﬁ,n) (X)s

where

Zd#(c,d,ﬁ,n)(x) Z/ d/‘«(c,d,ﬁ,n)(M)etrYM
MeNorZZ"

and

dpie.d.py(M) = (A det(ASP (M)duo(U) [ | dai
j=1

is a conjugation invariant measure on the space of normal matrices
M=UzZU" e Norp", U eU(m), Z=diag(i,..., %)

with eigenvalues ¢; € C supported on the contour C,,.

Wronskian Representation: Quantum Case

For quantum weight generating functions G = Hy, and any n € N7, let

qb,qu’ﬁ) (e’ = f AL (5)e¥s s,
Cn
(0.¢]
Afgn(@) = AT —n-2)[] <(—ﬂq’”)‘z
m=0
Define the diagonal matrix Y = diag(y1, ... y»)

X=¢, Y=InX), xi=e€%, i=1,...,n,

r-ptq=m
r'Gz—p-g=™

87

(39)

(40)

(41)

(42)

).

(43)
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Then 72 ([ X]) becomes a ratio of Wronskian determinants

1<i,j,<n

" ) det (@7~ e
(44

(Hg.B) ([X]) = (Hxinl e

i=1

Matrix Integral Representation of t(G-B([X]): Quantum Case

It similarly follows [7] that

B BI=D ([T, x 1) AdIn(x))

(Hy) ([ x
(XD (T AR

24y, (In(X)), (45)

where  Zgy,,,, (X) = f diig.ny(M)e™™,

MeNorp "
n

and  dpuigny(M) = (A@¢)*det(Ap, (M)
is a conjugation invariant measure on the space of normal matrices
M =UZU" eNotp", UeU®), Z=dag{, ..., &) (46)
with eigenvalues ¢; € C supported on the contour C,,.
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Constant Curvature Holomorphic )
Solutions of the Supersymmetric G (2, 4) et
Sigma Model

Véronique Hussin, Marie Lafrance, and Ismet Yurdusen

Abstract We explore the constant curvature holomorphic solutions of the super-
symmetric Grassmannian sigma model G(M, N) using in particular the gauge
invariance of the model. Supersymmetric invariant solutions are constructed by
generalizing a known result for CPY~!. We show that other such solutions also
exist. Considering the simplest case of G(2, N) model, we give necessary and
sufficient conditions for getting the constant curvature holomorphic solutions. Since,
all the constant curvature holomorphic solutions of the non-supersymmetric G (2, 4)
sigma model are known, we treat this example in detail.

Keywords Supersymmetric - Grassmannian sigma model - Gauge invariance

PACS numbers: 12.60.Jv, 02.10.Ud, 02.10.Yn

1 Introduction

For a long time searching for exact solutions of integrable models has been a lively
subject of great interest to the mathematics and physics communities. In particular,
the integrable non-supersymmetric (non-susy) CPV~! sigma model has found
many applications in physics [1-4]. The solutions of this model have also been used
to construct solutions of more general Grassmannian sigma models [5]. Another
extension of these models is to consider the supersymmetric (susy) generalizations.
The main motivation to study susy models is to include fermions into the theory
[6]. Although, there exist many ways of including fermions into the Grassmannian
models, the most interesting is the one which renders supersymmetry.
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For the non-susy case, a general approach for constructing holomorphic maps of
2-sphere S? of constant curvature into G (M, N) has been realized in [7, 8] and the
cases G(2,4) and G(2, 5) have been treated in detail [9, 10].

The natural question is to extend those results to susy G(M, N) o-models for
M > 1. In the susy case, some results have already been known when M = 1, i.e.
the CPV~! 5-model [5, 6, 11, 12]. In particular, all the susy invariant solutions
with constant curvature holomorphic (CCH) solutions of this model have been
thoroughly discussed.

In a recent article [13], the present authors, together with W. J. Zakrzewski,
introduced a general method for characterizing the constant curvature surfaces for
the holomorphic solutions of the susy Grassmannian sigma models. The main tool
there was to use the gauge invariance of these models and to our knowledge this
was the first time in literature that this invariance is explicitly and effectively used
in such a context. In this paper, first we give some criteria for having CCH solutions
of the susy Grassmannian G (M, N) o-model by the help of gauge invariance and
then apply this method on a specific example, namely the G(2,4) sigma model
thoroughly. The problem splits into four cases and we separately investigate all of
them. Whenever possible we give the canonical form of such constant curvature
surfaces. Among these four types of solutions with different curvatures, only two of
them produce the susy invariant solutions as the unique ones.

The structure of this paper is as follows; in Sect.2, we discuss the necessary
and sufficient conditions to get the CCH solutions of the general susy G(M, N) o-
model. In Sect.3 we give a detailed analysis of the susy G(2, 4) o-model. Taking
into account the susy gauge invariance we present all the CCH solutions of this
model. Finally, we end the article by giving some comments in Sect. 4.

2 CCH Solutions of the Susy G(M, N) c-Model

For the susy G(M, N) o-model [5], a general bosonic superfield has the following
expansion @ (x4, 1) = @o(x+) +i04 Py (x1)+i6_DPr(x1) —6046_D3(x1), where
@ and @3 are N x M bosonic complex matrices and @1 and @, are N x M fermionic
complex matrices. This bosonic superfield must satisfy @T® = I,,. The energy
action functional of the model is given by S(@) = [ [ dxydx_d0,d6_L(P),

where L(®) = 2Tr <|b+q§|2 — |D_Q>|2> and the supercovariant derivatives are

defined by D2 A = 0+ A — A(®T0.L®), with 04+ = —idg, + 6+0+ and 0+ = ., .
Using the principle of least action, it is found that the superfield @ satisfies the
Euler-Lagrange equations lv)+lv)_¢> + ®|D_®@|*> = 0. As in the non-susy case,
holomorphic solutions of the susy G(M, N) o-model are trivial solutions of the
model [5, 13]. It has been shown that they take the form @ = WL, where W is
an N x M matrix depending only on the coordinates (x4, 6+), while L is a non-
singular M x M matrix that depends on the coordinates (x4, 6+). It means that the
holomorphic superfield W takes the explicit form
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Wxy,04) = Z(xy) +i04nAlxy), ey

where 7 is a fermionic constant and Z(x4) and A(x4) are usual N x M matrices
that depend on x..

We now assume, as for the special case M = 1, that the susy Gaussian curvature
of the surface corresponding to the susy holomorphic solution W is given by the
formula

1
i=--0,0_Ing, )
g

where the susy expression of the metric is § = 04+0— In (det(WTW)) .

Thus asking for a CCH solution is equivalent to assuming that ¥ = « where « is
a purely bosonic constant (a strictly positive real number) and must be the curvature
associated with the non-susy G(M, N) solution Z involved in W = (1).

Let us write explicitly the condition (2) using the expression of W in (1) and
taking into account that kK = «. In order to simplify the calculations, we take 7| =
Oynand T = G_nT. Notice that since 7| and 7> are both product of two fermionic
quantities, we have le = 0 and T22 = 0. Moreover, they are bosonic and hence
commute with all the other quantities.

We thus easily get

det (WHW) = (det Mo) det (T + Ty Mg My +iTaMg ' My = T M M3 )
= (detMy) 1 +iTh X1 +iTr X2 — T1T2X3), 3
with My = 727, M| = ZTA, M, = ATZ and M; = ATA. The expressions of
X1, X2 and X3 remain to be explicitly computed.
The metric § = 0+0_ In (det(WTW)) takes the form
g=gt+oso_In(1+iNX1+iThX, —T1T2X3), 4)

with g = 04 0_ In(det My). Using the Taylor expansion of the logarithmic function
In(l14+x)=x— % + O(x3), we get

g=g+040-[iTi X1 +ihXo — T2 (X3 — X1X2)]. )
By a similar procedure we can express the quantity d;0_ In g as

8+8, lng = 8+8, lng + lT] 8+8, Y] + lT2 8+3, Y2
—T1 12040 (Y3 —Y1Y2), (6)
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with
_ kK 242 _k 242
Y| = 5(1 +x[)%040-X1, Yo = 5(1 + [x[7)704+0-X7,
K
Y=+ 1x1%)%949- (X3 — X1 X2) . (7)

Upon inserting these relations into (2) we get the following constraints

040-Ing+xkg =0, ®)
40— (Y1 +«X1) =0, 0+0- (Y2 +kX2) =0, )
0+0— (Y3 = Y1 Y2) + k(X3 — X1 X2)) =0. (10)

Notice that the two expressions in (9) are complex conjugate to each other and
hence we have only one independent condition, say the one involving Y7 and Xj.
These are necessary and sufficient conditions for the susy holomorphic solutions to
have a constant Gaussian curvature and will be the fundamental equations for our
analysis.

2.1 Susy Invariant Solutions

Here we give a sufficient condition for obtaining CCH solutions. This result
generalizes what we already proved in the case M = 1 [11]. We assume that the
susy holomorphic solution is given by

W(xy, 04) = Z(x4) + 04004+ Z(x4), (11)

ie. A(xy) = 04 Z(xy) in (1), where Z is a CCH solution of the non-susy model.
Using the MacFarlane parametrization [14], we can rewrite (11) as

Iy
W = . 12

Then we prove that W = (12) is a CCH solution of the susy G(M, N) model.
Remember here that, det (ZTZ) = det (]IM + KTK) = (1 + |x|2)r, for some
positive integer r and thus k = x = %

3 CCH Solutions of the Susy G (2, 4) 0-Model

The non-susy CCH solutions are given in [9] as
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10 1 0
01 0 1
Z| = , Z teR
: x4+ 0 2 xicosZr «/Ex+cost <
00 V2xy sint 0
1 0 1 0
0 1 0 1
Z3 = , Za= 13
3 \/gx_%_ /8/3x4 4 2)@3r «/gx_%_ (13)
0 /1/3xy V3x2 2xy

Since all the CCH solutions of the non-susy G(2,4) o-model are known, we
use them to construct the CCH solutions of the corresponding susy model and
investigate the constraints for them to satisfy (9) and (10).

The corresponding superfield takes the form

Wr ('x+) = Zr('x-'r) + 19+'7Ar('x+)a r= 17 2’ 39 47 (14)

where the different Z, are given by (13). Using the gauge invariance of the susy
model [13], we have

0 0
0 0 0
Ar = = . 15
OO =1 8 Brater) (ﬁ(m) (13)

B21(x4) Bra(xy)

Since the solutions Z, (x4 ) are all real functions of x;, we assume that it is also
the case for A,(xy). For each holomorphic solution W, (xy) given in (14), the
conditions (9) and (10) have to be satisfied.

3.1 The Case of Z;

This is the simplest solution of the non-susy G(2,4) model with det ZIZ1 =
(1 + |x|2), ie.r = 1 or k = 2. It is easy to see that the condition (9) is trivially
satisfied for Wy given in (14). Hence we are left with the condition (10). It reads as

x4 (83 B22) + 2(84 B22) > + 193 Bozl* + 197 B12l + 193 B211* = 0. (16)

Since f11 does not appear in this equation, it will remain arbitrary. Equation (16)
implies that

BP=0, 2P =0, 31Bn=0, x+(2Pn)+20+Bn) =0, (17)
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which further fix the matrix A;. We thus get susy CCH solutions of the form

10 0 0
01 0 0
Wi = +i0 , (18)
x4+ 0 7 Bri(xy) bixy +bo
00 cixy +co  do

where b1, by, c1, co and dy are arbitrary constants. Notice that when by = b} =
co = c1 = dp = 0, we get in particular the susy invariant solution. It is clear that we
have more solutions than the susy invariant one in this case.

3.2 The Case of Z;

We have a family of non-susy solutions, labeled by the parameter ¢:

I 2 cos2r ~/2x4 cost
Zz(x+,t):(K22(t)>, Kz(x+,t):(j§x+smt*/_x6 ) (19)

Since det Z;Zz = det (]I2 + K;IQ) = (1 + lez)z, the associated curvature is k =
1. In [9], the parameter ¢ can take any real values but due to the properties of the
trigonometric functions, using a residual gauge invariance, we have been able to
show that ¢ € [0, 7 [.

Considering now the corresponding susy holomorphic solution

W2(x+79+»f) = ZZ(XJr,t) +i9+17A2(X+,t), (20)

where Ay (x4, t) takes the form (15), the conditions (9) and (10) have to be satisfied
in order to get a family of CCH solutions.
Introducing W, given in (20) into (9), we get two different cases:

1. The first case corresponds to cos2t # 0. Condition (9) implies B11(xy,t) =
x4 (V2008 112 (x4, 1) — /2sintBo1 (x4, 1) + x4 8in 2t Bz (x4, 1)). So we have
only one condition (10) to resolve three unknown functions. Interestingly,
starting with a polynomial form in x4 of the unknown functions we get a pattern.
Indeed, we find that

Br2(x4, 1) = o+ c1x + F(xy), Bor (x4, 1) = (co + F(xy)) tant + ajxy,
cost

Pro(xy 1) = ﬁ(al —citant), Q1)

where ap, cop and ¢ are constants, solve our problem. Thus the matrix 8(x, r)
takes the form
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(co+ F(x4)) <2x+ cos 2t ﬁ005t> ta (—«ﬁx_zF sic’r 0 )
T A 1

(x4, 0)= . 1
Blx V2cost V2sint 0 X4 \—fzcost
V2x2 cos3 ¢t X
—|—c1< P (22)
2

The susy invariant solution is obtained when a; = ¢; = 0. Again the case Z;
gives other solutions to our problem than the susy invariant ones.
2. The second case corresponds to cos 2t = O or t = 7 (the case t = 37” is gauge

equivalent) so that K»(x4, ) = < 0 x4
X4+ 0

assume that the matrix 8(xy) is also symmetric, i.e. B21(x+) = B12(x4). These

quantities will remain arbitrary since the condition (10) depends only on 811 and

B2> and the susy invariant solutions will be obtained when 811 = B2 = 0. The

condition (10) may be written as follows, taking in particular x4 = x_ = x:

). Since Ko (x4, %) is symmetric, we

(1432 (46% = DB+ (B)?) + (1 +xDX(B)* + (B)?) )
—8x(1 +x%)(x* = 2)(B1181; + BaBhy) +4x*(1 + x2)2(/311/3{’1 + B22B5))
A1 —4x® + 1) (BT + B) — 4x(L+ ) (BB + BrB) =0. (23)
Let us first mention the invariance of this equation with respect to the exchange
B11 < Boo. After some trials we first get a solution choosing 822 (x) = xB11(x).

Condition (23) thus becomes very simple (1 +x2)3 (,Bi’1 (x)? = 0, which implies
that

B11(x) = ag + drx , B2 (x) = x(ap + dax) . (24)

Using this observation, we assume that 811 (x) and S22 (x) are real polynomial
in x. We can easily show that they must be at most of degree 2. If we take
Bri(x) = arx+ajx+ay, Bn(x) = drx?+d;x +dp and identify the coefficients
of different powers of x in (23), we get three independent equations for the
parameters a; and d;,

ag—al+a+di—di+d3 =0, apar+dodr =0,
apa; —ajar +di(dy —dp) =0. 25)

Let us first assume that ag # 0, we then get

dod> dod>
B11(x) = ag + (d2 — do)x — sz, B (x) =do+ <a0 + a_o) x + dyx?,
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where ag, dop and d; remain arbitrary real parameters. Clearly the solution (24) is

obtained when dy = 0.
Now, consider ap = 0. We then get different subcases (¢ = £1)

B11(x) = axx? + edpx

Ba2(x) = dax? — earx,

Bi1(x) = axx? + edpx
P22 (x) = €arx +dp.

- d2¢0,d0=0:>{

- d0¢0,d2=0=>{

3.3 The Case of Z3

In this case we have det Z§Z3 = (1 + |x|2)3, ie.r = 3and k = % With the
solution W3 as in (14), the condition (9) becomes a third degree polynomial in x_.
Equating the coefficients of different powers of x_ to zero we obtain the following

equations:

2x3 (V281 + 585 ) — x3 (387, + 8v281, + 65283 + 408}, )

F6xs (3,6;1 +2V2B15 + 6v28), + 10/522) — 36611 — 72/2p2 =0,

3% (=Bl +8v2B(y — 428}, +6x1B5, + 4B}, )

_xy (4,3;1 +24v2B15 — V2B, + 48ﬂ22> 286811 + 16828y =0,

xi (Bl) = 29254 By + 8V, — 2V2B], + 2448, + 168}, )
—10B], + 12V/2B12 — 4v2B5, + 1282 =0,
=381} +4v2x 4 Bl + 8V2B], + 2x1 By, + 485, =0,
whose solution gives the final form of 811 and S2; as

Bues) = T Bl(xs) + —= B (x1)
11+_ﬁ12+ ﬁ21+s

2 3V2
Boa(xy) = —{ﬁlz(m + —fﬁm(m.
Xt

Introducing (30) and (31) into the condition (10) we obtain

<\(1 +31x1%) Bt — x1 (1 + |x12)a B |

= flyp) +gkxo),
|x|4(1+|x|2)2 ) fx+ gx

(26)

27

(28)
(29)

(30)

€1V

(32)
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for arbitrary functions f and g of given variables. Requiring it to be satisfied when
x4+ = 0 and x_ = 0 separately we obtain By (x4+) = y1x4, where y; is an arbitrary

4lx*yf .
T2 which

constant. Upon introducing it into (32) we get f(xy) + g(x-) =
immediately implies that y; = 0 and hence 81 = 0.

The necessary and sufficient conditions (9) and (10) are thus satisfied and finally
the CCH solution W3 is given by the form

W3 = Z3 +i047/30B2(x4)04 Z3. (33)

Hence in this case we have obtained the susy invariant solution as the unique CCH
solution.

3.4 The Case of Z4

In this case we have det ZZZ4 = (l + |x|2)4, ie.r = 4and k = % Again the
condition (9) becomes a third degree polynomial in x_ after introducing the solution
W4 given in (14). Similarly as what we did with W3, we equate the coefficients of
different powers of x_ to zero and now get

Bri(xy) =3x2 B(xy),  Palxy) = —Bra(xy) +2v3x f(xy).  (34)

In order to solve the last condition (10) we introduce (34) into it and find that
B21(x4+) = B12(x4). Finally, the CCH solution Wy is given as

1
Wa =Z4 + i9+§'7ﬂ22(x+)3+z4. (35)

Thus, in the case of Z4 once more we have obtained the susy invariant solution as
the unique CCH solution.

4 Conclusions and Final Comments

In this article we give some criteria for having CCH solutions of the susy Grassman-
nian G(M, N) o-model. With the help of the susy gauge invariance of the model we
first show that the susy holomorphic solution given in (11) (i.e., generalization of
non-susy holomorphic solution) leads to a constant curvature surface. This kind of a
solution is called a susy invariant one, in analogy with the discussion given in [11].
Then we restrict ourselves to the susy G(2, N) o-model and give the necessary and
sufficient conditions to get such solutions. The case of G (2, 4) is studied in detail
taking into account the classification of non-susy solutions [9].
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How to Deal with Nonlocality and m)
Pseudodifferential Operators. An e
Example: The Salpeter Equation

A. Lattanzi

Dedicated to Prof. Decio Levi on the occasion of his 70th
birthday

Abstract The spinless (1+1)D free-particle Salpeter equation, a relativistic version
of the Schrodinger equation, is presented focusing the attention on its nonlocality
and its consequences on the structure of the solution.

Keywords Salpeter equation - Nonlocality - Operator method - Evolution
operators

1 The Spinless Salpeter Equation: An Introduction

The spinless time-dependent Salpeter equation is a relativistic version of the time-
dependent Schrodinger equation [1-9]. It is obtained by replacing the classical
energy—momentum relation with the relevant relativistic relation, possibly including
also some potential interactions. Contrary to the Schrodinger equation as well as to
the other wave equations in relativistic quantum mechanics, i.e. the Klein—Gordon
and the Dirac equations, the Salpeter equation has been the object of few analyses.
This is definitely because of the mathematical complexity due to the presence of a
pseudodifferential operator that implies a nonlocality increasing the difficulties to
work in the coordinate space [10, 11].

Recent literature is revealing a greater interest in the Salpeter equation [12—
29]. The reasons are mainly two: on the one hand, there are the advantages with
respect to the Klein—-Gordon and Dirac equations and on the other hand, there
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is the fact that making suitable simplifications and approximations it stems from
the Bethe—Salpeter equation [6], which is the most orthodox tool for discussing
the relativistic two-body problem in quantum field theory [9]. Firstly proposed by
Nambu [1] without derivation, the equation was then derived by Bethe and Salpeter
[2] using Feynman-graphs and by Gell-Mann and Low [3] on the basis of the
rigorous quantum field theory considerations. After some initial difficulties, the
Bethe—Salpeter equation has been the object of intense theoretical studies [7, 9, 19—
22]. As a general quantum field theoretical tool, the Bethe—Salpeter equation finds
applications in several areas of quantum field theory, as, for instance, in connection
with electron—positron pairs and excitons (i.e. bound states of electron—hole pairs).

A more detailed discussion on the approximations needed for obtaining the
spinless Salpeter equation from the Bethe—Salpeter equation can be found in [12, 13]
and a summary is delineated here. By eliminating the dependence on time-like
variables through the assumption of static or instantaneous interactions, the Bethe—
Salpeter equation [2] reduces to the Salpeter equation [4]. Neglecting furthermore
all spin degrees of freedom and restricting it only to positive-energy solutions, one
obtains the spinless Salpeter equation [6].

The spinless Salpeter equation is frequently employed in the phenomenological
description of hadrons. Moreover, the agreement of the predictions of the spinless
Salpeter equation with the experimental spectrum of mesonic atoms is as good as
those of the Klein—Gordon equation.

In (14-1)D, the spinless Salpeter equation incorporates the relativistic expression
for the energy of the particle, which in the presence of a potential V (x, ¢) is

E =\/m%c* + p2c2 + V(x,1), @))

where m and p denote, respectively, the rest mass and the momentum of the particle,
while c is the speed of light in vacuum and x denotes the position.
In accord with the standard quantization rules

E — iho;, F— 7, p — —ihV,

the relativistic (1 + 1)D Hamiltonian reads

. / 02
H = m26‘4 — Czhzm + V(x, t), (2)

whose main and most remarkable feature is the presence of the square-root operator.
In this work, we consider the free-particle Salpeter equation (V (x, t) = 0):

/ 2
iAd Y(x, 1) =, /m2c* — c2h2aa? Y(x, 1), Y(x, 0) = Yo (x). 3)



The Salpeter Equation: Nonlocality and Pseudodifferential Operators 103

The case of a linear potential for the Salpeter equation and related approximating
equations can be found in [23, 25-29] and in references therein.

After a very short introduction in where the spinless Salpeter equation has been
introduced in a physical and mathematical framework, Sect.2 is devoted to the
definition of its solutions in the coordinate and in the momentum space, respectively.
It has been considered also the fundamental solution in its closed-analytical form.
In Sect. 3, the attention has been focused on the nonlocality of the Hamiltonian of
the spinless Salpeter equation and the consequent effects on its solution. It has been
presented an application of the theory of evolution operator to define a recursive
solution for the spinless Salpeter equation which allows to highlight the nonlocal
nature via recursive series. The result shows the presence of a space-memory, or in
other words the presence of a regular repeating spot-like structure in the light-cone
which tends to fade as time elapses. Finally a comment on another way to deal with
nonlocality has been presented exploiting the series expansion of the Hamiltonian
in the spinless Salpeter equation. This second approach is based on the so-called
Pearcey equation, a new equation introduced in [25-29] for describing what happen
between the two theories: the classical quantum mechanics ruled by the Schrédinger
equation and the relativistic quantum mechanics.

The square-modulus of the solutions in the Pearcey equation, and in particular of
its fundamental solution, illustrates the space-memory hinted in the recursive series.

2 Solutions of the Salpeter Equation

The nonlocal nature of (3) makes it difficult to deal with directly in the coordinate
space. It is then usually approached in the momentum space

ihd U (p, 1) = /m2c* +c2p Y(p.1), ¥ (p,0) = Yo(p), 4)

whose solution is
~ _ it 2.4 2,2 ~
Y(p.1) = e AV (p). (5)

Here v/ (p, t) means the momentum wave function solution of the Salpeter equation.
By Fourier transform it is possible to define v (x, #):

1 +00 ipx it
o = = T e IVMHE Ly dp. (6)

The same solution can be obtained considering the convolution of an initial
condition with the fundamental solution S(x,?) of the Salpeter equation that
corresponds to a §-function input, i.e. Yo(x) = §(x):
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Yo(x)dx'. (7

+00 e2s Ki (””T‘ 2?2 — (x —x’)z)
w(x,r)=/

0o Th 2?2 — (x — x/)?

In the above equation, K is the modified Bessel function of the second kind of first
order, also known as the McDonald function [30].

3 A Recursive Solution: Nonlocality via Laplace Transform

The Hamiltonian (2) for V(x,t) = 0 is a nonlocal operator whose natural scale
is inversely proportional to the mass and it is given by the (reduced) Compton
wavelength Ac = % The Compton wavelength represents the cutoff between the
quantum and the quantum field theory: below its value, the concept of single particle
is no more applicable. This justifies the normalization used to define the following
dimensionless variables:

X ct p
= —, = — d :—)\, s 8
& T Py an K 7 Cc (8)

which allows not only to simplify the analysis but also to bridge formally quantum
mechanics and optics [25-29]. Accordingly, in dimensionless variables (8) the
initial value problem (3) writes as

iy, 1) = 1—3§2 Y&, 1), v, 0 =), )]
and its formal solution is then

s 1T [TRWE-E7 )
o) JE-E) =12

To illustrate the nonlocal nature of the Hamiltonian operator in (9) and in
particular to emphasize its influence on the evolution of an initial input from a
mathematical point of view, it is interesting to deal with the initial value problem
using another mathematical approach based on the Laplace transform method
[31-35]. This technique is an effective alternative method that allows us to treat
fractional operators as the Hamiltonian of the Salpeter equation revealing its
nonlocal nature via recursive series.

To this end, a key notion is the following Laplace-like identity [30]

Yo(§"dg'. (10)

1 o
\/A?_I_l 2\/0 e ! J()(f)d[. (11)
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In fact, once the parameter A in Eq. (11) gains the status of operator

A Jo) FOodt, (12)

T T = /0

where f(x) is a given x-dependent differentiable function and Jy is the Bessel
function of the first kind of first order [30], it is possible to apply the theory of the
evolution operator shown in [31, 32] and define the operator A to obtain a recursive
series solution highlighting the nonlocal nature embedded in the Hamiltonian of the
spinless Salpeter equation.

The formal structure of Eq. (12) is extremely attractive since it can be applied to
the initial value problem (9) after rearranged it as:

i%ws, n=(1- aa—;)ﬁw(s, 7). (13)
L

982
Moreover, by definition

V(. 1) = =¥, 1), (14)

d’g‘z

the initial value problem (13) can be written as

B 3% -
e n=(1-55)E 0. (15)
Assummg = % ¥ is immediately defined
V(& 1) =/0 JoW ¥ (€ —iy, )dy  ¥(£,0) = o), (16)

where Jp is a modified Bessel function of the first kind [30]. Then the solution
of (16) reads

yEn=3 ). an

n=0

The initial condition ¥ (€, 0) is the zero-order term, whereas the nth-term ¥, (§) can
be defined in recursive way

82

+00
n® = (1-72) f T V-1 = iy)dy. (18)
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This solution expressed as a recursive series is a proof that the causality (and the
light-cone structure) is not violated by the nonlocality of the Hamiltonian. Each
solution term, ¥,, is determined by recursion on the values assumed previously
by v¥,—1, till the evolution of the equation has been completely described. Mathe-
matically, the recursive solution (16) allows to find approximations when the exact
solution is not yet known and it is a common procedure to use it to evaluate the
evolution equations with memory terms. In fact the properties of memory and
causality induce a description by means of recursive equations and read-out maps
involving input state and output variables.

In this work, the term “memory” referred to the kernel of the convolution risks
to be too exotic since the convoluted variable is &, i.e. the dimensionless variable
related with the space. The recursive solution of the Salpeter equation given by (18)
allows an interesting comparison with the numerical solution and the solution
defined via closed-analytical expression.

Here below, it is considered an example of the application of the previous
procedure where the initial condition is the Bessel function of the second kind of
first order:

K <1>K1(\/1+E2)
Vo )=\ | —F—— 19)
v /1 + 52

Replacing the above initial condition in Eq. (10) the solution is given by

1+ir> K[V +it)2 +£2]

T V(1 +it)2 &2

which expresses the free-evolution of the McDonald initial condition under the
spinless Salpeter equation.

The choice of this initial condition is rooted on the fact that it generates a closed-
analytical expression for the solution, so it means that the recursive series defined in
Eq. (16) can be summed. Let us consider Eq. (18) to define the terms of the series.
The first term reads:

vK@E ) = ( (20)

32 “+00
n©=(1-35) [ D0nE—mds
— @
=(1- 3_2) /+OOJ0(y)K1 LA E i),
952/ Jo 71+ (& —iy)?

The convolution in Eq. (21) can be solved applying formula 3.914.1 in [36].
Consequently, one has

_ ko148 @ -DEI +52)]
(1+£%) VI + 823

1
Y1) = —[ (22)
T
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Fig. 1 Comparison between the first and the second order terms at T = 1 in the series expansion
of the closed-analytical expression (1,5, V2,5, respectively) and the recursive series (Y1 g, Y2, r,
respectively)

and then, by recursive relation (18) the second term is

1 [a — 3K/ 1+E) | B SEDKIG/TH 52>]
T (1+£2)? VA + 823 '

It is possible to check the correctness of the result obtained for the first and the
second order considering the series expansion of the solution in Eq. (20) with respect
to t. Each term of the series expansion should correspond to the corresponding
order-term in the recursive series. In Fig. 1, a direct comparison between the first
order and the second order of both the series has been illustrated. A visual effect of
the space-memory can be appreciated considering the fundamental solution of the
Pearcey equation where the point-like structure is repeating within the light-cone on
aregular lattice with descending intensity. [25-29]:

Y2 (§) = (23)

192 1 9%

;3 =1 0) = 24)
laqﬁ(é‘»f)—( —58—52—§@>¢(E,f), #(&.0) = ¢o(8),

a quasi-relativistic evolution equation ruled by a Hamiltonian which is the fourth
order series expansion of the Hamiltonian of the spinless Salpeter equation. In
fact the squared modulus of the fundamental solution (see Fig.2) presents a spot-
like structure spreading always inside the light-cone structure reproducing a lattice
embedding a sort of space-memory of the initial input which is fading as time
elapses.
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2010) for constructing a canonical form for symmetry operators of arbitrary order
for the Schrodinger eigenvalue equation H¥Y = (A; + V)¥ = EV¥ on any 2D
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the method. Details will be provided elsewhere. As examples we revisit the
Tremblay and Winternitz derivation of the Painlevé VI potential for a third order
superintegrable flat space system that separates in polar coordinates and, as new
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1 Introduction

In the paper [1] the authors constructed a canonical form for symmetry operators
of any order in 2D and used it to give the first proof of the superintegrability
of the quantum Tremblay, Turbiner, and Winternitz (TTW) system [2] in polar
coordinates, for all rational values of the parameter k. In the original method
the various potentials were given and the problem was the construction of higher
order symmetry operators that would verify superintegrability. The method was
highly algebraic and required the solution of systems of difference equations on
a lattice. Here, we consider an arbitrary space admitting a separation in some
orthogonal coordinate system (hence admitting a 2nd order symmetry operator), and
search for all potentials V for which the Schrédinger equation admits an additional
independent symmetry operator of order higher than 2. Now the problem reduces to
solving a system of partial differential equations.

We give a brief introduction to the method and then specialize it to third order
superintegrable systems where we treat a few examples. We revisit the Tremblay and
Winternitz derivation of the Painlevé VI potential for a third order superintegrable
flat space system that separates in polar coordinates [3], and we show among
other new results that the Painlevé VI potential also appears for a third order
superintegrable system on the 2-sphere that separates in spherical coordinates, as
well as a third order superintegrable system on the 2-hyperboloid that separates in
spherical coordinates.

2 The Canonical Form for a Symmetry Operator

We consider a Schrodinger equation on a 2D real or complex Riemannian manifold
with Laplace—Beltrami operator A; and potential V:

hZ
HY = <—7A2 4 V) W= EW (1)

that also admits an orthogonal separation of variables. If {u1, us} is the orthogonal
separable coordinate system, the corresponding Schrédinger operator can always be
put in the form

2

h
H = —?Az + V(ui, uz)

1 h? h?
= | —=8% — —3 +vi(u)) + vaun) 2
fiuD) + fa(u2) 2 2
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and, due to the separability, there is the second-order symmetry operator

J2(u2) h* Fitur) W
= < s~ ——3 - v __a .
2 f1(u1)+f2(u2)< 2 ul+v](ul)> fl(ul)—i—fz(uz)( 7 O Fr2(u2)

Le., [H, L>] = 0. We look for a partial differential symmetry operator of arbitrary
order L(H, L», uy, up) that satisfies

[H,L]=0. (3)

We require that the symmetry operator takes the standard form

L= (A, w20, = B 1, ),
J.k

—CH g, u2)du + DGy, ) ) HI LK, )

This can always be done. Note that if the formal operator L contained partial
derivatives in u; and u» of orders > 2, we could rearrange terms to achieve the
unique standard form (4).

Details of the derivation can be found in [1].

Note that condition (4) makes sense, at least formally, for infinite order differen-
tial equations. Indeed, one can consider H, L, as parameters in these equations.
Then once L is expanded as a power series in these parameters, the terms are
reordered so that the powers of the parameters are on the right, before they are
replaced by explicit differential operators. Of course (4) is defined rigorously for
finite order symmetry operators.

In this view we can write

L(H, Ly, uy,uz) = A(uy, u2)0y,u, — B(u1, u2)0y, — C(uy, u2)dy, + D(uy, uz),

)
and consider L as an at most second-order differential operator in uy, uo that is
analytic in the parameters H, L,. Then the above system of equations can be written
in the more compact form

O A+05,A—20,B—23,C=0, (6)

hZ

7(33] B+3;, B)—23,, A vy—h?*dy, D— Avy+Q0u, A fa+Afy) H—20,A Ly =0,

K2 @)

7(831C+832C)—28u1Av1 — 1?8y, D— AV + (20, A fi+Af)H+28,, ALy =0,
(®)
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hZ
_EwiD+%DHJ%ﬁm+Q%CW+BM+C% ©)
— (284, B f1 4+ 20,,C fo + Bf{ + Cf3)H + (=284, B + 28,,C) L, = 0.

We can view (6) as an equation for A, B, C and (7), (8) as the defining equations
for 9,,D, 0,,D. Then [ is L with the terms in H and L, interpreted as (4) and
considered as partial differential operators.

We can simplify this system by noting that there are two functions
F(uy,up, H, Ly), G(uy, up, H, Ly) such that (6) is satisfied by

1 1
A=F.  B= 0,F+8,G.  C=30,F 6. (10)

Then the integrability condition for (7), (8) is (with the shorthand aqu = Fj,
8uj Oy ' = Fjy, etc., for F and G),

1 . .
— G — thFzzzz +2Fn(s — foH + L) + 3R, — fLbH) + F(v) — fyH) =

1 /)
"2Giiin — thFllll +2Fn(vi — fiH — Ly) +3F (v — f{H) + F(v{ — f{'H), (11)

and Eq. (9) becomes

1 1
Zflemz —2F)p(vi — fiH) — Fi(vy — fLH) + thGllll

—2G11(vi — fiH — Ly) — G1(v] — f{H)

1
= _Zh2F1222 +2F12(v2 — foH) (12)

, 1
+ v — f{H) + thGzzzz —2Gn(va — frH + L) — Ga(vy — fLH).

We remark that any solution of (11), (12) with A, B, C not identically O corresponds
to a symmetry operator that does not commute with Ly, hence is algebraically
independent of the symmetries H, L,.

3 Third Order Superintegrability

To illustrate how Egs. (11) and (12) can be used to find potentials for superintegrable
systems, we provide detailed derivations of the determining equations for third order
superintegrability. First we note that the most general third order operator must be
of the form (4) with
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A=Ay, B=By) +Bx, yH+ B, yL,
Cc=C,y)+Ccf(x,y)H+Ctx, y)L,

D =D"x,y) + D (x, y)H + D*(x, y)L,

or, in view of (10),

F(x,

) =Fx,y), G, y) =G,y +GT(x, y)H+ G x, L. (13)

Substituting (13) into (11), (12) and noting that the coefficients of independent
powers of H and L in these expressions must vanish, we obtain nine equations (the
first three from (11) and the next six from (12)):

0=

0=

—6) F) + 605 FY — dvy F{| + 4va Yy — 21%GY, 1, — 21%GY,s
+2F%) —2F0],

F{y + F3y,

—h2GH , — h2GH o 43 F) —3f3F) + 21 FY —2f2FY — FOf) + FO ],
VO FY + ) FS) + 0] GY — 5G9 + 2F vy + 2Fv1 + 201Gy — 20269,
_%h2G(1)111 + %thgzzz’

v GE — vy GE +201GE - 269, - 20,GE, - 2GY,,

GT) +Ghy,

~fF) = f{F} +0{GT = f{GY —viGY + £,G3 — 2F[y fo — 2F ] fi
+20,GH — 2169 - 20,6 + 2,69, - ih%ﬁ“ + ithgzz,
—fiGt + 6L +2/GL —2f6L —26H — 268,

i1+ g6l 2680 —2£GH.

4 Some Examples (Mostly New)

We are particularly interested in potentials with nonlinear defining equations. First,
we show that we get the result of Tremblay and Winternitz [3] that the quantum
system separating in polar coordinates in 2D Euclidean space admits potentials
that are expressed in terms of the sixth Painlevé transcendent or in terms of the
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Weierstrass elliptic function. To do this we must put the system in the canonical
form (2). The separable polar coordinates are (x,y) = (rcos(), r sin(8)). For
the canonical form we use the coordinates {up, us}, where r = exp(u1), 8 = us.
Thus, fi1(u1) = exp(2uy) and f>(u2) = 0. We know that these extreme potentials
can appear only if the potential depends on the angular variable alone, so we set
v1(u1) = 0. Since we want only systems that satisfy nonlinear equations alone,
whenever an explicit linear equation for the potential appears, we require that it
vanish identically. We have the freedom to replace the angular variable u» by us + ¢
for some real constant ¢ to simplify the expressions, Also we can rescale the answer.
‘We obtain a solution

FO
GO

—4h% exp(—uy)sin(us), G = —8exp(—u1) cos(ua) + asus + as,

~Uj(up) exp(—uy) + Us(uz), G =as,

subject to the conditions

d d*U.
0=ay 22 12422 (14)
duy duj
d*U, dvy dvy dU;
0=h"—=44dag—vy —4—=—=, 15
dl,fz1 + a4du2 v2 duy duy a5
d d*U
0 = 8v3 o8 (2) + 42 sin(uz) — — — Uy, (16)
duy duj
dvy dUy  ,d°vy . ,d*v;
O=————h sin(up) — 4h cos(u 17
dus du du3 (w2) du? (®2) 1n

d
2 sin(ua) (5h2 + 4v2)dﬂ +2u) (6h2 cos(ua) + 8vy cos(uz) — U1> :
uz

There are basically two cases to consider:

1. a4 =0.

Then condition (14) says that U is linear in u3. Thus condition (15) is a
linear equation for v, (#7) which must vanish. Then condition (16) can be solved
for Uj(y) and the result substituted into condition (17) to obtain an equation for
v2(u2). After some manipulation we obtain an equation characterizing Painlevé
VI, in agreement with [3, Eq. (4.27)]:

o f . d*w a>w , aw dw
h sin(uz) — + 4cos(u2)—3 -6 sin(uz) —- — 4cos(ur)—
duj du; duj duy

(18)
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125inn ™Y Y cosunw Y. _ 48, sintu) — pi costu)

— 12sin(up) — ——= — 4 cos(u _— = sin(up) — Ba cos(u)) —=

2 duy du% 2 du% ! 2 2 2 du%
dw\?* . aw _ dw

— 16cos(uz)| — ) +8sin(ur) W———8(B;1 cos(uz) + B2 sin(uz))— =0
duy dus duy

Here vy (u3) = d‘g—;g‘z).

2. as #0.

Solving condition (14) for v2(u7) and substituting the result and (14) into (15)
we obtain the equation that characterizes the Weierstrass g-function (in fact it is
a translated and rescaled version):

+12—=vy, — 8a;—= = 0. (19)
2

Thus v2(u2) = g (huz; g2, g3) + 2a1/3, where g» and g3 are arbitrary constants.
As shown in [3] this solution is subject to the compatibility conditions (16)
and (17), which leads to a complicated nonlinear differential equation for v (u2).

With this verification out of the way, we consider the analogous system on
the 2-sphere, separable in spherical coordinates. Here s; = sin(6) cos(¢p), s2 =
sin(0) sin(¢), s3 = cos(f) with s% + s% + s32 = 1. This system is in canonical form
with coordinates u;, up where

sin(0) = (cosh(u1)™", ¢ = uz, fi(ur) = (cosh(u))™2, fr(uz) =0.  (20)

As before we look for solutions such that vy («;) = 0 and v, satisfies a nonlinear
equation only.

The computation is very similar to that for the Euclidean space example. We
obtain the solution

FO = —44? cosh(uy) sin(uy), G =38 sinh(u1) cos(uy) + aqur + az,

G° = sinh(u1) Uy (u2) + Us(u2), G = as,

subject to the conditions (14)—(17), exactly the same as for Euclidean space.
Thus the system on the 2-sphere also admits Painlevé VI and special Weierstrass
potentials for third order superintegrability. It is clear from these results that these
systems in Euclidean space can be obtained as Bocher contractions, [4, chapter 15],
of the corresponding systems on the 2-sphere.

Next we consider spherical coordinates on the hyperboloid sl2 - s% — s32 =1,

s1 = cosh(x), sp = sinh(x) cos(¢), s3 = sinh(x) sin(¢).
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For the canonical form we find
u ) _
tanh (31) =exp(x), ua =¢, fi(ur) = (sinh(u1)) "%, fa(uz) =0,

and we look for solutions such that v{(x1) = 0 and v, (u2) satisfies only a nonlinear
equation. We obtain the solution

F* = —4h? sinh(u;) sin(uz), G* = 8 cosh(u) cos(uz) + asus + as,
G° = cosh(uy) Uy(u2) + Us(u2), G = as,

subject to the conditions (14)—(17), again exactly the same as for flat space. Thus the
system on the 2-hyperboloid admits Painlevé VI and special Weierstrass potentials
for third order superintegrability.

For our next example we consider horocyclic coordinates {u1,uz} on the

hyperboloid 512 - s% — s% =1, e.g. [4, section 7.7]:
1 u+1 1 u —1 u
sp==|u + 2 5=~ (up + -2 Ry 1)
2 uj 2 uj uj

These coordinates are separable and the canonical system is defined by f1(u1) =
1/u%, f2(u2) = 0. We look for systems such that vi(#1) = 0, in analogy with our
first three examples.

‘We obtain the solution

1 u?(agus + a agud  aogu?
FO=—Eash2u1, Gt = i 822 2 86142— 922+a1obt2,
U2
G’ = JUiw) + Ua(w), G =ay,
subject to the conditions
duvy d2U1
O=ag—— +2——, (22)
duy du3
1 vy dvy dv,y dUy
0= —h’ag——= — dag—vy + 4———, 23
2 a8 dug a8du2 v2 duy duo (23)
dv d*U
0 = (2a10 — 2asuz — asu3) —— — 4(ag + aguz)vy +4U; + 4=, (24)
duy duj
dv dv dv
2402 2 2 2 2
0= 4u2d—u2 + 16usv; + 8agquv2 + 16agv; — Sal()%vz 25)
d3v2 dvy dUp

+h2ag——r — 160U + 8—= —=.
§ du3 2ot duy duy
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There are again two basic cases here:

1. ag =0.
Then conditions (22) and (23) say that U; is a constant: Uj(up) = d;.
Then condition (24) can be solved for Us(uy) and the result substituted into
condition (25) to obtain an equation for vy (u3):

dw\? d*w dw
N s -3 3ay0)— +4d; | —
a9(du2> +<( aguz + 3aio) ) + 1) dits

2
d*w
+ (—agW + 2dyuy — 2d3) 5
duj
w1 d4w W
+hag 3 S 1 (—aguz + ao) — =0, where v (u2) = iz)
du; 4 du} dis
(26)
2. ag #0.

Here we can solve (22) for vy (u7) and substitute the result into (23) to obtain the
equation

—12v3—= +g—= =0. Q27)

Solutions of (27) are further subject to the requirement that a solution Uj (u3)
of Egs. (24) and (25) exists. Setting vp(u2) = w(uz) + q1/12 in (27) leads to

R 1wl —o (28)

and it follows that vy (u2) = g (Auz; g2, g3)+¢q /12, where g5 and g3 are arbitrary
constants.

Acknowledgments We thank Pavel Winternitz for helpful discussions and Adrian Escobar for
pointing out the relevance of the paper [1] to classification of third order superintegrable systems.
W.M. was partially supported by a grant from the Simons Foundation (# 412351 to Willard Miller,
Jr.). M. was supported by the Australian Research Council Discovery Grant DP160101376 and
Future Fellowship FT180100099.



120 B. K. Berntson et al.

References

1. E.G. Kalnins, J.M. Kress, W.Jr. Miller, Superintegrability and higher order integrals for quantum
systems. J. Phys. A Math. Theor. 43, 265205 (2010)

2. F. Tremblay, V.A. Turbiner, P. Winternitz, An infinite family of solvable and integrable quantum
systems on a plane. J. Phys. A Math. Theor. 42, 242001 (2009)

3. F. Tremblay, P. Winternitz, Third order superintegrable systems separating in polar coordinates.
J. Phys. A43, 175206 (2010)

4. E.G. Kalnins, J.M. Kress, W.Jr. Miller, Separation of Variables and Superintegrability: The
Symmetry of Solvable Systems (Institute of Physics, London, 2018), ISBN: 978-0-7503-1314-8,
http://iopscience.iop.org/book/978-0-7503-1314-8, e-book


http://iopscience.iop.org/book/978-0-7503-1314-8

Ladder Operators and Rational m)
Extensions s

David Gomez-Ullate, Yves Grandati, Zoé MclIntyre, and Robert Milson

Abstract This note presents the classification of ladder operators corresponding
to the class of rational extensions of the harmonic oscillator. We show that it is
natural to endow the class of rational extensions and the corresponding intertwining
operators with the structure of a category REXT. The combinatorial data for this
interpretation is realized as a functor MDD — REXT, where M refers to the set
of Maya diagrams appropriately endowed with categorical structure. Our formalism
allows us to easily reproduce and extend earlier results on ladder operators.

Keywords Rational extensions - Ladder operators - Maya diagrams

1 Introduction

Supersymmetric quantum mechanics (SUSYQM) has proven to be a key technique
in the construction of exactly solvable potentials and in the understanding of shape-
invariance. The supersymmetric partners of the harmonic oscillators are known
as rational extensions because the corresponding potentials have the form of a
harmonic oscillator plus a rational term that vanishes at infinity.
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There has been some recent interest in rational extensions possessing ladder
operators, which may be thought of as higher order analogues of the classical
creation and annihilation operators. There are applications of such ladder operators
to superintegrable systems [9, 10], rational solutions of Painlevé equations [11], and
coherent states [7].

In this note we classify the ladder operators corresponding to the class of rational
extensions of the harmonic oscillator. Rational extensions are naturally associated
with combinatorial objects called Maya diagrams. We show that any two rational
extensions are related by an intertwining relation. It therefore makes sense to endow
both Maya diagrams and rational extensions with the structure of a category, and
to interpret the relation Maya diagram + rational extension as a functor between
these categories. This approach allows us to classify ladder operators and syzygies
of ladder operators, and thereby to generalize the results of [9, 10].

2 Maya Diagrams

A Maya diagram is a set of integers M C Z containing a finite number of positive
integers, and excluding a finite number of negative integers. We visualize a Maya
diagram as a horizontally extended sequence of [@] and [] symbols, with the filled
symbol @] in position m indicating membership m € M. The defining assumption
now manifests as the condition that a Maya diagram begins with an infinite filled [®]
segment and terminates with an infinite empty [ segment.

A Maya diagram may also be regarded as a strictly decreasing sequence of

integers m| > mp > ---, subject to the constraint that m;y; = m; — 1 for i
sufficiently large. It follows that there exists a unique integer o, called the index of
M, such that m; = —i + o for i sufficiently large.

Let M denote the set of all Maya diagrams. The flip at position k € Z is the
involution f : M — M defined by

M e M. (1)

; _MH{MU{k}, if k¢ M,
k-

M\ {k}, if keM.
In the first case, we say that the flip acts on M by a state-deleting transformation
(d — [@), and in the second case, by a state-adding transformation (@ — [J).
Let Z, denote the set of subsets of Z having cardinality p, and Z = » Zp the

set of all finite subsets of Z. For K € Z, consisting of distinct k1, ..., k, € Z we
define the multi-flip fx : M — M by

JkM) = (fiy o0 fi, (M), M e M. 2)

Since flips commute, the action of fx does not depend upon the order of k1, ..., k).
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It is useful to regard M as a complete graph whose edges are multi-flips. For
Maya diagrams M, M, € M, the symmetric difference

My © My = (M \ My) U (Mz\ My)
is precisely the edge that connects M1 and M»>. More precisely, if
K=M 6 M,=M,S M,

then fx (M) = M and fx (M>) = M.

Multi-flips can also be used to define a bijection Z2 — M given by K
fx (Mgp), where My := Z_ denotes the trivial Maya diagram. We refer to K € Z as
the index set of the Maya diagram fg (Mp).

The additive group Z acts on M, because for M € M and n € Z, the set

M+n={m+n:me M}
is also a Maya diagram. Moreover, we have
OM+n = OM + 1. 3)

We will refer to an equivalence class of Maya diagrams related by translations as
an unlabelled Maya diagram, and denote the set of all unlabelled Maya diagrams by
M /Z. One can visualize the passage from an unlabelled to a labelled Maya diagram
as choosing the placement of the origin.

For B € Z,, where p = 2g + 1 is odd, we define the Maya diagram

E(B) = (—00,bo) U[b1,b2) U -+ Ul[brg—1, bag), “4)

where by < by < -+ < by, is an increasing enumeration of B and where [m, n) =
{j € Z: m < j < n}. Every Maya diagram has a unique representation of the form
EZ(B) for some B € Zj,41. We will call the corresponding g > 0 the genus of
M = E(B) and refer to (bo, ..., bag) as the block coordinates of M. The block
coordinates may also be characterized as the unique set B € Z such that fp(M) =
M+ 1.

After removal of the initial infinite [0] segment and the trailing infinite [J segment,
a Maya diagram consists of alternating empty [J and filled @ segments of variable
length. The genus g counts the number of such pairs. The even block coordinates by;
indicate the starting positions of the empty segments, and the odd block coordinates
br;+1 indicate the starting positions of the filled segments.
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3 Rational Extensions

Forn € Z, set

x2
() = e" 2 H,(x) ifn>0
n = 2 .
e?H , 1(x) ifn<O

where
ar 2

Hyx) = (=1)'e" 7™ n=0.12....
X

are the Hermite polynomials, and
Hy (x) = (=0)" Hy(ix)
are the conjugate Hermite polynomials. We then have
— () + 22 (¥) = @n+ Dy (x), n €L

For n > 0, the above solutions correspond to the bound states of the quantum
harmonic oscillator. The solutions for n < 0 do not satisfy the boundary conditions
at 200 and therefore represent virtual states.

For M € M withindexsetK € Zp,lets; > --- > s, >0andt; > -+ > 1, >0
be the uniquely specified lists of natural numbers such that

K={-1-s1,....—1=s:,14,....11}, p=gq-+r.

We will refer to (s1, ..., s, | &y, ..., t1) as the Frobenius symbol of M. It is easy to
check that the index of M is givenby o =g —r.
Let us now define

2
Hy (x) = ™2 Wrlyg, .., e, 1, o)

where k; < --- < kp is an increasing enumeration of K, where oy € Z is the
index, and Wr is the usual Wronskian determinant. The polynomial nature of Hys (x)
becomes evident in the following pseudo-Wronskian [4] realization:

Hs1 Hr1+1 cee Hs1+r+q—1

I:Is, [:ISH-I I:Is,<+r+q—l
Hy = H, Ht/q gl |- (6)

q Iq

Y
H, H, ... H'™Y
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A suitably normalized pseudo-Wronskian is a translation invariant of the under-
lying Maya diagram. The following result was proved in [4]. Set

i (=D Hpy )
M= .
[Tic;26; —so[lic;2G — 1)
Then for M € M and n € Z we have
Hy = Hypn. 3
The potential
2 d?
Uy(x)=x"— 2d7 log Wr[yr,, ..., I/Ikp],
)

H \?> 2H!
2 M M
xX° 4+ < Hyy ) Hy oM

is known as a rational extension [3] of the harmonic oscillator. The corresponding
Hamiltonian operators

Ty =——=+Uum (10)
are exactly solvable with

Tylm il = Qk+ Dy i,

where

kaze#ka(M) ¢ — +1 ifkeM
’ Hy ’ —1 ifk¢M

Note that, as a consequence of (3) and (8), T)y is translation covariant:
Tvi4n =Ty +2n, nelZ. (11

Let (bo, b1, . .., bag) be the block coordinates of M. By the Krein—Adler theorem
[1, 3, 8], the polynomial Hys has no real zeros if and only if by; — baj 1 is even
forall j = 1,...,g, ie., if all the finite [® segments of M have even size. For
such Maya diagrams, the potential Uy, is non-singular and hence T corresponds
to a self-adjoint operator. The bound states of the operator correspond to the empty
boxes of M, i.e.,to k ¢ M. It is precisely for such M € M and k ¢ M that the
eigenfunction vy x is square-integrable. For such M and k, the polynomial part of
Ym i is known as an exceptional Hermite polynomial [3].
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4 Categorical Structure

In this section, we define MID, a category whose objects are Maya diagrams and
whose arrows are multi-flips, and REXT, another category whose objects are
rational extensions and whose arrows are intertwining operators (definition given
below). We then exhibit a functor MID — REXT that we use to classify ladder
operators.

In order to define composition of arrows, it will first be necessary to generalize
the notion of a multi-flip. A multi-set is a generalized set object that allows for
multiple instances of each of its elements. Let Z denote the set of integer multi-
sets of cardlnallty p and Z= U Z the set of ﬁmte integer multi-sets. We express

a multi-set K € Z as
= (k' k) (12)

where ki, ..., k; € Z are distinct, and where p; > 0 indicate the multiplicity of
element k;. The cardinality is then given by p = pi + - -+ + py. The notion of a
multi-flip extends naturally from sets to multi-sets. Indeed, for K € Z we re-use (2)
to define the multi-flip fx : M — M.

We say that K is an even multi-set if all of its elements have an even multiplicity.
Since flips are involutions, fx is the identity transformation if and only if K is
even. If K is an even multi-set, then it has the unique decomposition K = K1 U K
where K1 has the same elements as K but with the multiplicities divided by 2. More
generally, every multi-set K € Zhasa unique decomposition of the form

K=KoUK UK, KoeZ, K €2, (13)

where K| is the set of integers that occur in K with an odd multiplicity. Again, since
flips are involutions, we have fx = fk,.

The objects of MID are labelled Maya diagrams M, and the arrows are pairs
M,K) €¢ M x Z. The source of (M, K) is M, and the target is fx(M).
Composition of morphisms is given by the union of multi-sets:

(M2, K2) o (M1, K1) = (My, K1 U K>3),

where Mj € M, K1, Ky € Z, My = fx,(M)).
For differential operators A, T1, T, we say that A intertwines 77, T3 if

AT, = T, A.
The objects of REXT are the rational extensions Ty, M € M, and the arrows

are monic differential operators that intertwine two rational extensions. Observe
that if A intertwines 77, T», then so does A o p(T}), where p(x) is an arbitrary
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polynomial. Given T1, T, we say that A is a primitive intertwiner if it does not
include a nontrivial right factor p(77).
For a Maya diagram M € M and aset K € Z,,, we define the operator

Wrl¥miys s UMk, V]
Wil ags - UMk, ]

Ay klyl =

By construction, A x is a monic differential operator of order p. These intertwin-
ing operators have their origin in SUSYQM (supersymmetric quantum mechanics),
and obey the intertwining relation

Ak Tu, = T, Ak, Mo = fx(My), M, Mye M, K e Z.

It is possible to show that Ajs g is a primitive intertwiner between 7j, and
Ty, (m)- Moreover, it is possible to show [2, Proof of Theorem 3.10] that every
arrow in REXT has the form Ay x o p(Ty), where Ay g is primitive (i.e., K is a
set), and p(x) is a polynomial. We also note that these intertwiners are translation
invariant:

AMink+n =AMk, n €. (14)

In order to describe the composition of intertwiners, we need to extend the above
definition to include multi-sets. For K € Z, let Ky € Z and K| € Z be as per (13).
For M € M, we now define

Auk =Amkyo [ | @k+1—Ty). (15)
keK,

In other words, if K € Z contains elements of higher multiplicity, then Az g is no

longer primitive. The arrows of REXT are the operators Ay x, M e M, K € Z.
Composition of arrows is just the usual composition of differential operators.

'I;heorem 1 The correspondence M +— Ty, M € Mand (M, K)— Ay k, K €
Z is a covariant functor MID — REXT.

Proof 1t suffices to observe that for M| € M, K{, K; € Z we have

AMz,KzoAMl,Kl ZAMl,KIUsz M2=fK1(M1)-

5 Ladder Operators

We define a ladder operator to be an intertwiner A such that

ATy = (Tu + M)A
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for some M € M and constant A. Since Ty, = Ty + 2n, Theorem 1 implies that
for every rational extension Ty, M € M, and n € Z, there exists a ladder operator
Ap k., where K = (M 4+ n) & M. By (14) no generality is lost if we index such
ladder operators in terms of unlabelled Maya diagrams [M] € M/Z.

A recent result provides a characterization of translational multi-flips [5] in terms
of cyclic Maya diagrams. This characterization makes it possible to establish the
order of a ladder operator [6].

Theorem 2 Let M € Mandn = 1,2, .... Then,

n—1

(M+m oM =n+2) g, (16)
i=0

where g; is the genus of the Maya diagram

Mi={meZ:mn+ieM}, i=0,1,...,n—1.

Proof Let B; € Z441 be the block coordinates of M;, and set

n—1 n—1
B = U(nBi+i)= U{nb+i: b € B;}.
i=0 i=0

Since B; is the unique set such that f (M;) = M; 4+ 1, it follows that B is the
unique set such that fp(M) = M + n. Therefore B = (M +n) © M.

Fix a Maya diagram M € M. An immediate consequence of Theorem 2 is the
existence of a primitive ladder operator that intertwines Tjs and Ty; + 2n for every
n € Z. The ladder operator in question is L, := Ay g, where K = (M +n) © M.
The order of L, is given by (16). If n > 0, then both L, and L intertwine Ty, and
Ty + 2n; it follows that there must be a syzygy of the form

L’11 =Lyop(Tu),

where the roots of the polynomial p are determined by (15).
The action of ladder operators on states is that of a lowering or raising operator
according to

LulYmil = Cuni¥mi—n, k¢EM,

where Cyy .k is]zero if Y x—, 1 not a bound state, i.e., if kK —n € M. Otherwise,
Cp .k 18 a rational number whose explicit form can be derived on the basis of (7).
As a particular example, suppose that the index set of M consists of positive integers
0<ky <--- <kp,thatn > 0, and that k ¢ M. In this case,

Tlieataam @i —2)) x (k—n+1),2" ifk—n¢M

CMank =
0 otherwise.
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6 Examples

The articles [9, 10] considered a particular class of ladder operators corresponding
to Maya diagrams obtained by a single state-adding transformation. Fix some n =
1,2,...,and let Mn be the Maya diagram with index set {—n}, i.e., let Mn =7_\
{—n}. We set

My=M,+n=27_U{l,....,n—1},
and observe that M,, has index set {1, ..., n — 1}. Hence,

Ln=Ag, (—ni..n—1p
is an nth order ladder operator that intertwines 7,; and T, . Ordering the flips in
ascending order, we obtain the following factorization into first-order intertwiners:

L,=Ay A o Ae A

e (n=1) 7 AN, 2y AN (1) M {n)

each flip corresponds to a state-deleting transformation.
Let us also observe that M, is a genus 1 Maya diagram. It follows that
L= AA;I,l,{—n,—n—&-l,O}

is a third-order ladder operator that intertwines Mn and M,, + 1.
The composition LY is represented by the multi-set

n—1
Ut=n+jo—n+j+1j)={=n1....on=1JU{(=n+ D% ..., (=D (0%},
j=0

where the superscripts indicate repetition (and not a square). The syzygy between
L, and L is therefore

0
L"=L, ]_[ Q2j+1—"Ty).
j=—n+l1
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Abstract Lacking in the mathematical physics literature is a detailed treatment of
tachyonic representations of the Poincaré group along lines similar to that for its real
mass, positive and negative energy representations. Such representations Wigner
did not consider in any detail in his 1939 paper on the unitary representations
of the inhomogeneous Lorentz group (Wigner, Ann Math 40:149-204, 1939),
and Bargmann and Wigner in their paper on the group theoretical classification
of relativistic wave equations did not consider them either because “they are
...unlikely to have a simple physical interpretation” (Bargmann and Wigner, Proc
Nat Acad Sci (USA) 34(5):211-223, 1948). We are making a detailed study of
tachyonic representations of the Poincaré group in four space-time dimensions
and we describe some of our results here. In particular, we relate tachyonic
representations of the Poincaré group to representations of the anti-de Sitter group,
in a way analogous to the way in which positive energy, real mass representations
of the Poincaré group are related to unitary principal series representations of the de
Sitter group via group contraction and deformation.
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1 Introduction

The connection between the unitary representation theory of the universal covering
groups of the de Sitter group, SO (1, 4), and the Poincaré group is well understood
and much of it even in explicit detail. Unfortunately, the same cannot be said
for the connection between the unitary representations of the anti-de Sitter group,
SO (2, 3), and the Poincaré group, even though SO (2, 3) is more interesting from
the point of view of physical applications.
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For SOq(1, 4), its representations are described in terms of various realizations
or parallelizations [1]. The spherical, flat, and hyperbolic parallelizations are as
follows. Let KAN be the Iwasawa decomposition of SOg(1,4), and let M be
the centralizer of A in K, then the “compact picture” [2] of its representations
(spherical parallelization) is given by vector-valued fields over K/M = §3, with
$3 being the three sphere. The Bruhat decomposition SOg(1, 4) =’ NMAN leads
to the non-compact picture (or flat parallelization) which describes representations
in terms of vector-valued functions on N = R3. (By =’ we mean isomorphic to
a dense open subset of SOg(1, 4).) Finally the Hannabuss decomposition, which is
SOo(1,4) =" HAN, where H is SO(1, 3), gives the hyperbolic picture (hyperbolic
parallelization) describing SOq(1, 4) representations on SOg(1,3)/M = T3, the
two-sheeted momentum hyperboloid. Now unitary representations of the inhomo-
geneous Euclidean group in four dimensions, the inhomogeneous Galilean group,
and the Poincaré group have realizations in terms of vector-valued fields on S3,
R3, and T3, respectively, and the relationship via contraction and deformation of
these representations to representations of SOg(1, 4), at least for the case of unitary
principal series representations of SOg(1, 4), is very well understood. We would like
to obtain an analogous description of this situation for SOg(2, 3) and it is to this goal
that the current article contributes. Compared to SOg(1, 4) the situation with respect
to SOg(2, 3) is much more complicated: instead of $3 we now have S! x $2: there
are more Bruhat-like decompositions, so there are more non-compact pictures; and
finally there are two analogs of the Hannabuss decomposition [1].

2 SOy(2,3), Sp(2, R), the Poincaré Group and Their Lie
Algebras

Let o = diag(l, 1, —1, —1, —1), where the right-hand side of this equation
denotes a diagonal matrix with diagonal entries as shown inside the parentheses.
SO (2, 3) is the component connected to identity of the group

S0(2,3) = {geSLG.R) [ghog’ = PBol

(" denotes transpose of a matrix.) Denote by so0(2,3) the Lie algebra of
SO0(2,3). A realization of s0(2,3) is provided by the set of all matrices

(a@i,j) (=1 < i,j < 3) such that g;; = 0 (-1 < 1 < 3),
a,j = —aj; (I <i < j < 3),a0; = ajo(1 < j < 3),
a1,j = aj1 (1 < j < 3)anda_19 = —ao,—1.Let E; ; be the matrix
such that the (i, j) component is equal to 1 and the other components are all equal
t00.LetL_1 9 = —E 10+ Eo-1,Lij=E;;—E;j; (1 <1i,j <3,i#)),
Lo =FEio+Eo; (1 <i <3),L;=E 1+E_1;(1 <i<3).TheL,
(a,b=-1,0,1,2,3), viewed abstractly, are a basis for so(2, 3). The commutation

relations of the L, 5, are
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[La,bs Lb,c] = _ebLa,c (1)

withe_| = eyg = —€] = —ep = —e3 = 1.
Denote the Lie algebra of the Poincaré group by p. A basis for p is given by
the Lo; and L; ; (G, j = 1, 2, 3) of so(1, 3), the Lie algebra of the Lorentz

group, together with a Lorentz vector operator P, (u = 0, 1, 2, 3), the components
of which mutually commute. (By “Lorentz vector operator” we mean that the P,
satisfy the same commutation relations with the generators L, ,, of so(1, 3) as the
Ly, (u=01273))

We let U(p) be the universal enveloping algebra of p. Since U/(p) is an integral
domain, it has no zero divisors. Hence it has a skew field (or “Lie field”) of fractions
which we denote by ©(p). Similarly we denote the universal enveloping algebra of
g = s0(2, 3) by U(g). For the same reason as for U/ (p), it also has a skew field of
fractions, i.e. Lie field, which we denote by D (g).

We introduce the following elements of

Ug) : L = L%,z + L%,3 + L%,l’ Q= L(23,1 + L%,z + L<2),3 - L

2
Q4 = (L12L3 0+ LosLio+LaiLao)”,

Dy=-L% (+L% | +L% ,+L% ;+Qzand

; 2
1
D, = Z EfijkL—l,iLj,k
ijk=1
+ Z (Ez,k{ Loy oLjx+L- lkLOj}>
ijktm=1

1
X <€i£m {EL—l,OLZ,m + L—I,ZLO,m}> .

The center Z(g) of U(g) is generated by Dy and D4. The center Z(p) of U (p)

is generated by the following set of elements: P2 = P2 P2 — P2 P3
3
andW = > (Pu P'L, , L*H* — %Pp P° L, , L”’”) where we use Einstein
nvp=0
summation convention with metric tensor .
Now to the symplectic group, Sp(2, R), which is defined as

0 I

Sp(2,R) = {g € GL(4, R) | gTJg =J} where J= ( .
—12

) € GL4, R).

The Lie algebra of Sp(2, R) is given by

sp(2, R) = {X € End®*) | JX + XTJ = 0}.
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We have the short exact sequence
Zo — Sp(2, R) — SO (2, 3). 2)

An explicit isomorphism ¢ of the respective Lie algebras is given by

-1
w(L_l,o)=%[£ ; } o(L1o) = ["2302]

¢(L13)=%[0 _(”]so(Lz,s):%[o ‘”3]

op 0 o3 0

1| 0o 1| 0 o3 1|12 0
_ =3 _ > L_ =5
p@L-11) 2[ pL_12) =3 o3 0 yo(Lo13) = 5 0-L|°
—01 0

p@Lo1) = %[ 0 ] w(Loz)—z[_g3(i:| p(Lo3) = |:]? %}

where [, = <(1)(1)) , 01 = (?é) , 00 = (? _01), and 03 = ((1) _01).The

linear span of the four matrices in the top two rows of the above equation is ¢, the
Lie algebra of the maximal compact subgroup K of Sp(2, R). With 6 the Cartan
involution on sp(2, R) specified by 6(X) = —X Tfor X e sp(2, R), we have that
sp(2, R) = €@ p where p is the real linear span of the six matrices in the bottom
two rows of the above equation.

A maximal parabolic subgroup P = M AN of Sp(2, R) is: (¢, yp, y1, Y2 € R)

_ [ (03)¢ 0 _f(ab )
M_{m_< 0 (O‘3)€€T1)‘6_(Cd)€SL(2’R)’66{0’1}}’

tr00 0 1 0 00
0t 0 O 0 1 00
A= 1) = ,N: ) =
“O=1001 0 n(®) Yo+y2 y 10
00 0 ¢! yi yo—x»201

Then P = M AN is a maximal proper parabolic subgroup of Sp(2, R).

3 Algebraic Results

We define commutative algebraic extensions of ©(p) and D(g) as [3-6]:
5(]3) = {a +bY ) a, b e @(p)} , where Y commutes with all elements of © (p)

and satisfies the equation Y2 = P2;33(g) = {a+b)7+c172+d173 a, b, c,de
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D(g) ] where ¥ commutes with all elements of ®(g) and satisfies the equation
74+ D, 72+ D, = 0with D, = (D, + 31)andD, = (Ds + D2 + F1).
(I is the identity in ©(g).) Now define a mapping 7, (A € R) from g to D (p) by

~ ~ i A
6@ = Ly - n@o0 = 35[Q . Bl + P 3)

The A~ !ty (INJ,L w) allgi ) (Ij,w) satiify the commutation relations of the generators
of Sp(2, R). The 7, (L_1,,) and 73 (L, ) are a basis for an isomorphic copy g, of
g, which differs from g by a scaling factor A in the L_; , directions, and hence
generate Sp(2, R),. We henceforth consider for simplicity the case A = 1 and let
D)= 1(Y ) = Y,then t = 15— can be extended to a homomorphism of ”D(g) into
@(p) in an obvious way, which turns out to be surjective because of Theorem 2.
Denote this extension also by 7. Elements of ©(g) are denoted with a tilde to keep
them distinct from elements of ().

Theorem 1 Let g be the deformation of p having basis elements L; j € g and
L, € ’D(p) defined by Egqs. (3). Then (for A = 1) the following holds:

W 9
+—I] , Dy = [Y2+

D2=—Y2—[ﬁ : )

l] w
41y2
Now we view the second set of equations in Egs. (3) as algebraic equations in 5‘5()3)
and solve them for the P,,.

Theorem 2 Solutions P,, to Egs. (3) (A = 1) are given by:
P, =D "A L, ©)

with A, = =D 8+ 5 [(Qa+4) 6 — 3Lp — L L = Quel, L7 | Y=
[(@+ 4 =15) o8 —Lp ~ Ly o] v2 i (8~ 1) ¥* and D = Qu +
1Qy — D)+ 21 +i (Qz + %) Y — (Q2 —D, - %) Y2 4 2iY3 . Furthermore Y2
satisfies the equation

Y¥4+DyY?+D) = 0. (6)

The proof of this theorem involves straightforward, tedious calculation. First one
shows that Pp = D! AOVL—I,v satisfies Egs. (3), and then use P; = [LO,- , Po ]

to easily show the same is true for other components. For more details on the proofs
of both theorems see Ref. [5].
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Now we introduce a * structure on 35(}3) which in view of Egs. (3) and Theorem
2 induces a * structure on D (g) via the homomorphism t,. Let " be the adjoint
associated with this * structure, then we have

Theorem 3 IfI’jL,U = —IA:,M, , Ejl,u = —IA:4,M and ifIN’T = ? then ﬁﬂ =
(ﬁ_lxﬂi_l,p> and also Pf, = (ﬁ_lxi"pi_l,p)' = Eil’pz"'”(ﬁT)_l =
_1~)u- Furthermore [ﬁﬂ , IN’U ] = 0.

A proof of this theorem can be found in [5].

Although a representation of g always gives rise to a representation of the
enveloping algebra U/(g), it does not necessarily give a representation of the skew
field. We have instead the following [5, 6]:

Theorem 4 Let (dm, H) be an infinitesimally unitarizable representation of g on

an Hilbert space H, and let Y be a self-adjoint operator on H which satisfies Y* +

dm (D)2 +dr (D) = 0. Then, ifboth dx (D)~ and dx (D)™ exist on a suitable,

dense domain in H, there exists a skew symmetric representation dT of p on H
~ ~ 3 o ~

defined by: dw(L; j) = dn(L; ), dT(Py) = drD)~ dm (Y Ag L_i,), and

=0
d7 (P;) = [d7 (L), dT (Pp)](i = 1,2,3). "

Note that it is necessary for both of the operators dx (]3)_l and dm (lf\)‘)*_1 to exist
on the suitable dense domain in # postulated in this theorem for the existence of
mutually commuting translation operators d7 (P,,) on the representation space # of
the representation (dr, H).

4 Representations

Let x, € C be a complex character of A, i.e. x,(a(t)) = ¢’/ with v € C and
let (@), V(©:€)) be the representation 7% ® x of M where x, € {1,/0\3} (e=0,1)
and 77 is a unitary representation of SL(2, R) on the complex vector space V (*-€).
Consider 79 ® x, : MA — V@€ and extend this to a representation from P to
V(@€ by requiring that it act trivially on N.

Definition 1 Let G = Sp(2, R) and consider the space
HOE = Ind§ (779 @ x, ® 1y) = {f :G—> V@) | feC™0G) >

f(gman) = 79 (m)xy(a) f(g) forg e G,me M,a € A,n € N}.

For f € Ind§(7"9 ® x, ® 1y) and g € G we define a representation 7 (*¢") of
G on H@V) by 1™V (g) f(g') = f(gg) with g’ € G.
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Let H be the lift-up of SOg(1, 3) specified by the exact sequence in Eq.(2) and
concretely determined by the Lie algebra homomorphism ¢ given in Sect. 1. Then,
according to Sekiguchi, we have Sp(2, R) = HAN as a C* isomorphism of HAN
onto a dense open subset of G = Sp(2, R). Furthermore, the Cartan decomposition
H = VM where V = H/M gives us the isomorphism Sp(2, R) = VM AN again
onto a dense open subset of Sp(2, R). From this it follows that any f in H@Y) is
essentially uniquely specified by its values on V = H/M. Thus the representation
space H(%¢") can equivalently be viewed essentially as the space of C* functions
on V with values in V@€, 1 do not state the required asymptotic conditions on
f € H@Y), They are determined in a way analogous to that described in Ref. [7]
for SU(2, 2) and in Ref. [8] for S0¢(2, 4) = SU(2, 2)/Z,.)

Now we come to a description of tachyonic representations of the Poincaré
group. Consider the double cover H x T* of the Poincaré group, SOg(1, 3) x T*.
The translation subgroup T4 = {e®"Pu la, € R*}. T# is an additive vector group
and so every unitary irreducible representation (UIR) of 7* is one-dimensional and
of the form [15, 16]

Xp ! T = C, a— xpla) =exp{ip-a)},

where p,a € R* and p - a is the SOq(1, 3) invariant scalar product of the two
vectors p and a. It follows that we can characterize the equivalence classes of the
UIR’s of T* by elements p of the vector space dual T4 to T*. The coadjoint action
of SOy(1,3) on T* is given by p — A~ p. Let O, be the orbit in 7% of a point
po € 74 under the action of H and let M po be the isotropy subgroup (stabilizer
subgroup) of the point pgy. Clearly M, is a closed subgroup of H and so Op, =
H/Mp,. Let y : O, — H be a smooth cross-section such that for any point
p € Op, we have y (p) po = p. For tachyonic representations of H x T4 it suffices
to consider pg of the form py = (0,0, 0, ) where u € R. For such py we have
Mp, = Mand O,y = H/M = {p € T4 | p-p = —|u|*> < 0}). We use the
same representation 77 (%¢) of M on the space V(€ as for Sp(2, R), and we extend
it to a representation of the semidirect product B = M x T# by requiring 7> ®
Xpom,a) = 79 (m) Xpo(a) where (m,a) € B withm € M and a € T4. The
representation of H x T*# induced from 7(©€ ® x,, is defined as follows:

Definition 2 Let py = (0,0, 0, ) where u € R and let

H<"’6~P0>::1nd{;’”4(71(“) ®X,,0):{f CHXT* > V@9 | fe C®HXTY >
f(gmp) = n(”’e)(m)xpo(a)f(g) for g € H % T*meM,ac T4}.

4
For f € Indg'XT (9 ® Xpo) and g € H X T# we define the representation
7@EP0) of H x T* on H@€P0) by 7@€V (g) f(g') = f(gg) with g’ € H x T*.
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As in the Sp(2, R) case any f € H(®€P0 is uniquely specified by its values on
V=H/M.

From Definitions 1 and 2 it is clear that tachyonic representations of H x T4
are associated, in the sense of Sect. 3, with the representations 7 (©¢") of Sp(2, R)
and that these representations should go over into tachyonic representations of
H x T* in the contraction limit, where by contraction limit we mean in the (global)
sense of Ref. [9]. In fact, the method given in Ref. [9] for the contraction limit
of the principal series unitary representations of a non-compact semisimple Lie
group G into its associated Cartan motion group K x V for (G, K) a non-compact
Riemannian symmetric pair should carry over to the case considered here and this
should provide an example of their contraction process for a non-compact semi-
Riemannian symmetric pair not of rank one, namely, (Sp(2, R), H).

For the action of the two Casimir operators D, and D4 in the representation
(@€Y we obtain the following: (v = ip, p real and I is the identity)

9 1
7@ (D) = — (02 +o(0+1)+ Z) I, 7@ (Dy) = <,02 + Z) o(o+DI.

Substitution of these values into Eqs. (4) and solving for Y?(= P?) and W gives the
following possibilities for the action of P?> and W in this representation

ﬁ,(a,e,v)(lﬂ) — ,02 , ﬁ-(U.,G,V)(W) = p2o’(o’ +1)

or

J'N[(U’E’V)(P2) =+ l 2 _ l ]’%(G,S,U)(W) — )02 4 l o+ l 2 — l
2 2’ 4 2 2]

Since the P, are skew symmetric translation generators, this result implies, for
the first possibly, that representations of H x T* obtained out of Theorem 4
are tachyonic. A study of the unitary representations of SL(2, R) shows that we
also obtain imaginary mass with the second possibility for the case of Sp(2, R)
representations induced from discrete series unitary representations of SL(2, R). We
leave it to the reader to show that the hypotheses of Theorems 3 and 4 hold true for at
least some of these representations, so that we get skew symmetric representations
of p (cf. Refs. [5, 6] where some special cases are worked out).

Finally, we conclude with a few remarks about possible physical relevance
of such tachyonic representations of the Poincaré group. Some of the tachyonic
representations described in the previous paragraph occur as contractions of his
case 4 representations in Ehrman’s classification of the unitary representations of
the universal covering group of SO (2, 3) [10, 11]. They include contractions of
principal series representations of SO(2,3) to representations of the Poincaré
group [10]. In addition to calling attention to recent radical proposals for their
possible use in dark matter [12], we think it should also be possible to use
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such tachyonic representations for describing constituents in the construction of
elementary particles like the muon [13]. In fact, since tachyons cannot exist as
physically observable particles, it provides a method of confinement similar to
the kinematical confinement of Flato and Fronsdal in their description of massless
particles as tensor products of Di’s and Rac’s [14].
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A Confined Quasi-Maximally )
Superintegrable NV -dimensional System, e
Classical and Quantum, in a Space

with Variable Curvature

Orlando Ragnisco

Abstract In the present paper I will briefly summarize some recent results about the
solvability of the classical and quantum version of a (hyper-)spherically symmetric
N-dimensional system living on a curved manifold characterized by a conformally
flat metric. The system appears as a generalization of the so-called Taub-NUT
system. We call it Quasi-Maximally Superintegrable (QMS) since it is endowed with
2N — 2 constants of the motion (with 2N — 1 it would have been Maximally Super-
integrable (MS)) functionally independent and Poisson commuting in the Classical
case, algebraically independent and commuting as operators in the Quantum case.
The eigenvalues and eigenfunctions of the quantum system are explicitly given,
while for the classical version we provide the analytic solution of the radial equation
of motion. A few comments about the connection between exact solvability and
superintegrability are made in the final part of the paper.

Keywords Hamiltonian systems - Superintegrability - Exact solvability

1 The Classical Model: General Features

We consider the two-parameter family of N-dimensional (ND) classical Hamilto-
nian systems (a degenerate case of the Perlick’s II system, introduced by V. Perlick
in the seminal paper [1], where a highly nontrivial extension of Bertrand theorem
[2] to curved spacetimes was proven), given by
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H=T(q,P)+U(Q)=<1—— - 5 T ey
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where £ and k are positive real numbers, q, p € R" are conjugate coordinates and
momenta with canonical Poisson bracket {g;, p;} = §;; and

N N

1

q2: E qzz’ p2= E 17,27 |Q|=(q2)2
i=1 i=1

To have a positive definite Hamiltonian, the position variables have to be
restricted to the (punctured) open ball (0 < |q| < &).

The Hamiltonian A can also be written in terms of hyperspherical coordinates
r, 6}, (and canonical momenta p,, o, ), (j =1,..., N —1) defined by

J—1

q.j:rcoseil_[sinek, 1<j<N, qN:rl_[sinek 2)
k=1
so that
1
2 2 —2r2
r=]|q|, = p-+r “L-,
lal.  p*=p; ;Pe ]_[ e

Thus, for a given value of L, the Hamiltonian (1) becomes a 1D radial system:

2
P L—) ‘ 3)

2 2r2 E—r

H(r. pr) = T pr) +UC) = ( _ E)g (

where r € (0, &).

1.1 Metrics and Scalar Curvature

The classical Hamiltonian (we introduce an explicit dependence upon & in the
notation):

2

_ L (p 12
He = Te(r, pr) + Ue (r) = fg()( +22>+Ug(r) “)

describes a particle (with unit mass) on an ND hyperspherically symmetric space
under the action of the central potential Us (r) = skTr with k, £ > 0.

In radial coordinates the ND hyperspherically symmetric metrics reads:

dsy = fE(Ndr? +r’dy_)) (5)
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where d23, | = 27;1] d9/2 ]_[,](;{ sin®(6x), which is the metrics of the unit

hypersphere $V =1,

_ 3
In (5) fg(.r) =Jeor > 0. -
The metrics is singular in the limits » — 0 and r — &, and the scalar curvature
turns out to be:

(N =4 f20) + fe(QFL ) + 22D £ ()
fE)

R () =~V = 1) :

ie.:

(N —2)(4r? 4+ 3£2) — 46r(2N —3)
4E%r( —r)

RgN’(r)=(N—1) O<r<g&. (6

1.2 Solution of the Radial Equation of Motion

We do not provide the complete solution (time evolution and trajectory) to the
dynamics of the classical system but focus our attention on the time behavior of
the radial variable. Indeed, starting from the expression of the radial Hamiltonian,
introducing the rescaled variable p = g and taking into account that consequently
Pp = Epr, we readily see that the radial equation of motion can be written as the
following first order ordinary quadratic differential equation (on the energy surface

H=E):

(P)? = —p*(e + 13 + p(—k + & +21%) — %) (7)

where ¢ = é—f,lz = Ig—j,/( = g—’;
Denoting by p4 the (real and positive) roots of the above quadratic polynomial
with p, > p_, p4 < 1, and by a the negative quantity —(e + (), (7) can be cast in

the form:

p = £lal(ps — p)(p — p-). ®)
By setting (Euler substitution):

(p+ — p-)

a — —p_) =|a s
lal(p+ — p)(p — p-) = laly [+ 52

the differential equation (8) can be integrated for the variable y, whence the
following expression for the variable p can be finally obtained:

p(t) = p_sin®(wt + a) + py cos*(wt + @)
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:—p+;p_cos(2(a)t+ot))+—p+;p_ )

with 2w = |a| > , and « an arbitrary phase.

So, we have a simple harmonic motion with frequency given by |a| 5. We notice
that both the frequency and the amplitude are (algebraic) functions of the constants
of motion & and /2, as well as of the coupling constant k.

Remark 1 One could ask about the possibility of manufacturing superintegrable
examples leading to a radial time evolution such that (#)? be given by a higher
degree polynomial. The simplest, and possibly most interesting case, would be a
third degree polynomial, entailing its solvability in terms of Weierstrass P function.
Work is in progress in that direction.

2 The Quantum Model

Hereafter, we will use the standard definitions for the quantum position ¢ and
momentum P operators:

. . R N oA .
qi (@ =qi, piy(q)=—in g [Gi. pjl =irs,  i.j=1,....N,
1
together with the conventions
0 9 , 02 52 N
V = e, T ], A=V = —+4+---+ , qv= qi—.
<3q1 36]N> g1 g 2 "

i=1

Note that the operator |q| is defined as |q| ¥ (q) = |q] ¥ (q).

We will apply the so-called direct Schrodinger quantization prescription, and
will take the hyperspherical coordinates (2) together with the usual definition of the
linear momentum operators, namely

3
—,  j=1,...,N—1, (10)

a
5 — _inl 5 — ik
pr 1 Py, 1 06,

or’

so that the quantum radial Hamiltonian H, reads

ALY SR LY (LI +—i2 + K (11)
=—\1-=)= r = =
r 2 %_ g ’A‘N_lpr pr r2 g_r

where L2 is the square of the total quantum angular momentum operator, i.e.
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N-1 (-t 1

L2 = o (sin0)N 717 py
jzl ]}j[l sin2 Qk (SinGj)N_l_J p9]( j) P@,

After reordering terms, we arrive at the following Schrodinger equation

2 20N 2
(-1): <_h_33 _RWN=D, L_> v, 0)

E)E 2 2r 2r2
k
—i—E—lI/(r,O):ElI/(r,O), (12)
—r
with @ := (01, ..., 6y_1). By taking into account that the hyperspherical harmonics

Y (@) are such that
L2Y(0) = CnyY (@) =M+ N —-2)Y(@®), [=0,1,2...

where [ is the angular momentum quantum number, the Eq. (12) admits a complete
set of factorized solutions of the form

Y(r,0) =2(r)Y(0), (13)
and, moreover,
Com¥ =cn¥W, m=2,....N (14)
where ¢, are the eigenvalues of the “Casimir” operators C‘(m) m=2,...,N):
Com= Y @pj—dqip)*.  Cuy=L% (15)

N—-m<i<j<N

We notice that, being a hyperspherically symmetric system, our system is quasi-
maximally superintegrable, since it possesses further N — 1 commuting operators,
having the same expression as the “Casimir” operators (15), up to a reshuffling of
the summations. Technically, together with the right Casimirs , we have the lef't
Casimirs, defined as follows (im =0, ..., N — 2):

Covem = Y Gpj—qjp)*.  Cay=L" (16)

m<i<j<N

As C(yy and C(y) coincide, we have 2N — 3 commuting operators. So, the set

H,C (m)» ¢ (m) consists of 2N — 2 independent commuting operators, related to the
(N — 1) quantum numbers of the angular observables, namely:

ck <>, k=2,...,N—1, cy < L.
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Hence it follows
Y(o) = Yf[ilv,l,.‘,cz(el’ 923 cre QN—I) = Yll]\/,z,..,ll (917 921 cce 9N—1)7 (17)

Accordingly, the radial Schrédinger equation associated with # reads

2 2 _ _
(g_r)r<_h (d_+N 1d I(+N 2)>>¢(r)

@ dr2 rdr r2
+ X o =Eam, (18)
E—r

withk, & > 0and 0 <r < &.
So we can formulate the following Proposition:

Proposition 1 The solution of the spectral problem associated with the radial
Schrodinger equation exists, and has the explicit closed form given by:

[N]

11+ ! $KE
AV R (r) P( [I+3E 214N -2) <z_r - 1)

r
D, =Cn l— - - n
1(r) =c ,1(5)( E) £ :

g, = ot 1+ (1homga(i2 Y22 4 143
=— n — n _— — |-
n,l 8%’2 hz 2 hz

In the formula for @, ;(r), ¢, ;(§) are normalization factors and 79,5"’*“’ )(x) are the
Jacobi orthogonal polynomials with parameters o« = /1 + Shk—f and § =2[+N 2.

The Jacobi orthogonal polynomials are defined for o, 8 > —1, meaning N +
2] > 1,1e. N > 1. Moreover, the eigenfunctions @, ;(r) are square integrable in

re(0,%).

Finally, the (unnormalized) eigenfunctions of the confined Hamiltonian read:

Wy iy gty (12 0) XY (01,62, O )P (1) (19)

and they are orthogonal with respect to the measure

rN—l

du(r, 0) = " sinV72(0)) sin¥ 3 (6y) . .. sin(On_2)dr doy dbs ... dON_1 ,
r —r

with
01,...,0n—2 €[0,m), Ov-1 €10,27), r €(0,8).

In particular, the Jacobi orthogonal polynomials yield a §,,,, at fixedl = I’ (forl # I’
the orthogonality comes from the §;arising from the hyperspherical harmonics).
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Note that the eigenfunctions @, ;(r) are identically zero at r = & for each [ > 0.
At the origin the situation is different since they are zero for [ # 0 and approach a
constant value for / = 0.

Remark 2 We point out that the spectrum cannot be written in terms of a single
combination of the quantum numbers n and /, so it is not fully degenerate. This is a
clear indication that the system is not maximally superintegrable. However, Quasi-
Maximal Superintegrability (QMS) is ensured due to the hyperspherical symmetry
inside the punctured (open) hyperball Bé\’::{xj > 0] Z?jzl xlz. < &2},

3 Concluding Remarks and Future Perspectives

In the paper we have presented an example of a dynamically confined system, i.e.
a system whose eigenfunctions are square integrable and whose energy spectrum
is discrete by virtue of the functional form of the metrics and of the potential, not
because of external boundary conditions. In this sense, it is much similar to the
harmonic oscillator or to the Sutherland model. An interesting feature is that the
system is exactly solvable, its eigenfunctions being expressed in terms of polyno-
mials (up to an algebraic pre-factor), though not being maximally superintegrable,
but just quasi-maximally superintegrable. Actually, the radial system does not seem
to be amenable neither to an intrinsic Kepler nor to an intrinsic oscillator. Although
a deeper investigation on this delicate point is certainly needed, at the present stage
we do not expect extra dynamical symmetries of Laplace-Runge-Lenz or Demkov—
Fradkin type [3-6]. Of course, we do not claim that exact solvability and maximal
superintegrability are unrelated notions [7, 8]: we just claim that on this topic there
is still something that has to be better understood.

Notes and Comments 1 want to mention that most of the results described in this
paper have been obtained in collaboration with my former student Danilo Latini,
who got his Ph.D.a couple of years ago. Unfortunately at the moment he has not got
any position whatsoever.
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Conditional Discretization of a m)
Generalized Reaction-Diffusion Equation %=

Decio Levi, Miguel A. Rodriguez, and Zora Thomova

Abstract A PDE modeling a reaction—diffusion physical system is discretized
using its conditional symmetries. Discretization is carried out using two specific
conditional symmetries. Explicit solutions of the difference equation are constructed
when the symmetry is projective.

Keywords Symmetry - Integrable systems - Difference equations - Conditional
symmetry - Invariant discretization

1 Introduction

Partial differential equations (PDE) modeling interesting models in Physics are
generically hard to solve and exact solutions are rare and difficult to obtain. The Lie
symmetries of these equations provide, in many cases, explicit solutions, or at least
hints on how to find those solutions. This is a well-known topic, see, for example,
the following monographs dedicated to it [1, 3, 15, 16].

A particularly useful application of this method is the reduction of the order
of the equation or of the number of variables. The invariants of the vector field
corresponding to the infinitesimal symmetry provide a new set of coordinates and
the PDE, written in this new system, can be usually solved and solutions of the
original equation can be obtained. The well-known example is the construction of
the fundamental solution of the heat equation [2].
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However, some reductions cannot be obtained by just studying the Lie point
symmetries of the equation, as was shown in [5] for the Boussinesq equation.
Additional reductions and new solutions can be obtained by considering conditional
symmetries [2], as done in [11]. Many articles are dedicated to this class of
symmetries, for example [17]. To find conditional symmetries of the given PDE, one
adds a condition (first order PDE) to the equation. The prolongation of the vector
field of the conditional symmetry annihilates the equation when the condition and
its differential consequences are simultaneously satisfied.

Given a PDE with a group of symmetries, the equation can be written in terms of
the invariants of these symmetries. We have recently shown [13] that this is also the
case for conditional symmetries when the characteristic equation and its differential
consequences are satisfied.

In a recent work [14] we have extended these ideas to the discrete case, using
the notion of invariant discretization. This concept has been introduced in [12] for
Lie point symmetries and applied in a great number of particular examples proving
its usefulness in the computation of approximate solutions and, for instance, in the
study of the behavior of the solutions in a neighborhood of a singularity. In the
case of conditional symmetries, the discrete equation can be written in terms of the
discrete invariants of the vector fields and the discretized characteristic equation.

In this work we apply these techniques to a particular equation used in reaction—
diffusion models and related to the Hodgkin—Huxley model of action potentials in
neurons [4]:

Uz =uxx—|—k(x)u2(1 —u). (D)
For particular values of k(x) the conditional symmetries of this equation have been
computed in [6-8].
We will study the Eq. (1) with k(x) = x%

2
u
u; =uxx+2;(1—u), u=u(x,t), 2

whose conditional symmetries (cases Ql and Qz were given in [7, 8]) are

5 3 3 )

Q1 =0+ —(u— Doy — —ulw—1)79,, 3)
X X

~ 21

02 =0 + —— 0, @)

Q3 =0, — wam 5)

Q4 :ax - Maw (6)

X
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We will discuss two of the conditional symmetries, Ql (3), corresponding to the
case when the coefficient of 9; in the vector field is equal to 1, and Q4 (6), when the
same coefficient is equal to 0.

2 Case Ql

Let us discuss here the symmetry reduction and discretization provided by the vector
field Q1.

2.1 Symmetry Reduced Equations and Solutions

The symmetry variables, that is, the invariants of the vector field, are

—1 -3
ad G R L 18, v =00 %)

u u —

for u # 0 and u # 1 Then (2) reduces to the ODE
VVyy — 21)3 =0,

whose solution is

c1

vV = ,
y+a

where c; and ¢ are two integration constants. Then from (7) a solution of (2),
different from the trivial constant u = 1, is

X (3x2 + 187 + cz)

, 1) = .
u(x, 1) x(x2 4+ 18t + ) — c1

2.2 Construction of the Discretized Equation

To be able to construct the conditionally invariant discretization of (2) we need at
first to construct the invariant lattice.
The relevant necessary invariants in the point nm are

Xnm 2 Unm — 3
Iy = Xpm — v D =x,—
Unm nm —
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We look for a lattice invariant under the vector field Ql. Details on construction of
invariant lattices can be found in [9, 10, 14]. Introducing the distances and angles of
the discrete net

Xn+1,m = Xnm + hf,m’ Xn—1,m = Xnm + O}),Cma
and of the fields
Up+1,m =Unm + thDxu»
Un,m+1 =Unm + o, Dyt + kDyu,

nm

we get, after some nontrivial calculations, that A7, satisfies the polynomial equation

(1) W — D) Dyt + (1 = 1) Dt + u — 3) ()
o[22 = 1t = 1) Dot + 25 Gt = 3t = D] B,
— h(tym — 1)? = 0.

This expression will provide £, in terms of x, # and the differences of u in each
point. This a cubic equation for £;,, and we cannot get explicit expressions for the
point distances simple enough to achieve a complete solution of the problem.

This is a problem we have not found in previous works and it is due to the fact that
the vector field is not projective, that is, the coefficients of the partial derivatives with
respect to x (or ¢, the independent variables) depend on the dependent variable u.

3 Case Q4

3.1 Symmetry Reduced Equations and Solutions

The symmetry variables corresponding to the vector field 04 (6) are

x(u—1)
V= —,

u

y=t, v=uv(y) 3)
and then (2) reduces to the ODE
vy =0,

whose solution is v = ¢ where c is a constant. Then, from (8) a family of solutions
for (2) different from the trivial constant u = 1 is
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X

)

u =

X —C

Invariants and Reconstruction of the Equation The invariants of the vector field
Q4 are easily computed

X X

Li=t, h=x-—-, Ii=—u, (10)
u u
X 1 X 2 2x 4
14 = glx = Is = e ol = gl 1D

The condition (the characteristic equation) of the conditional symmetry Q4 is
given by

u u?
C=ux+—-w—-1)=—Us+1 (12)
x x

and its x derivative (differential consequence) is

2u — 1 u(u—1)
Cy = uxx + Uy — o) .
X X

Equation (2) is obtained in terms of the invariants, the condition, and the differential
consequences of the condition:

2 u? x 2u —1
ut—um+—2u2(u—1)=—<13——2Cx+—2c>=0
X X u u

as it can be done for any conditional symmetry [13].

3.2 Construction of the Discretized Equation

Lattice Construction Due to the form of Q4 (6) the lattice will be orthogonal and
constant in both directions x and 7. From (6) and the results on the construction of
invariant lattices (see [9, 10, 14] for details) we get that with no loss of generality
we can choose

WO =k o =0, K =h ol =0,

where k and & are constants, the lattice spacing in the ¢ and x directions. Then [9]
the discrete derivatives are

>
S
DN

m

k-
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Conditional Discretization of the Generalized Reaction—Diffusion Eq.(2)
Using the prolongation of the discrete vector field [9] we get the following

invariants:

Ly =tuns Do = X — 22
nm
Iy = XnmDru ’ L= Xnm Dxtt — Unm
Unm Unm + kDru) Unm Unm + hDyu)
_ 2Upm Dyu — 2Xpm (Dxtt)? — hXpm Dyt Dyxtt + iy (Xpm + 20) Dyt

5 =
Upm (Unm + hDxu) (unm + 2hDyu + thxxunm)

whose continuous limits are the corresponding continuous invariants (10), (11). The
discrete characteristic equation of the discrete conditional symmetry is given by

2 Unm ((Xpm ~+ httm) Dxvt + tpm (Wpm — 1))

u
c="meg, 1) = ,
Xnm Xnm (Upm + hDyxu)

with continuous limit the characteristic (12) of Q4, and with x-difference:

1
_xnm(xnm + h) (pm + hDyu) (unm +2hDyu + thxxu)

DiC

(21 X (Dyu)* + B Cnm + Thitm) (Dyu)?

+ Rt (Tt — 3)Xm — 2Rt (D)’

+ 12, (Qugm — DXpm — h Bty — 2)) Dy

+ (*Xm (Dxt0)® + h* X i + B+ 3Rty ) (Dyu)?

+ hunm(xrzlm — hzunm + hxpm Qupm + 1)) Dyu

Ul (2 = B W — 1) + 20 %)) Daxtt — 13, (g — 1)).

The discretized equation (2) is written in terms of the discrete invariants and the
discrete condition and its differences as:

2 ity — 1
”"—m<13+“”+0—x"7’"z>xc> =0,

Xnm nm Uim

with Eq. (2) as its continuous limit. Explicitly this equation is

Un+2,m :kun,)n+lu2+1,mx3m (Xnm + 2h) (13)

x [u,%m(xnm + 1) (Kt 1 (hit 1 (- — 3Xm) 4 x2, — h?)
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2 2
+h un-l-l,mxnm) — Un.m+1Un+1,mUnmXnm (Xpm + h)

x ((}ﬂ + k) Xy — hk) — Dkt i1t Conm + B
~1
X (M 1,m — Xym — h) + k”n,m+luﬁ+1,mx3m (hitpg1,m + Xnm + h):| .

The existence of this conditional symmetry allows, as in the continuous case,
to simplify the equation—reducing the number of variables in the continuous case
and reducing the number of indices in the discrete case. In this case we can assume
that u,,, depends only on the first index (that is, u, +1 = unm). The difference
equation (13) becomes

Un Z[(xn72 +h) (xy21—2 —hQ@Bxp—2 —MWuy—1 — h2> ui_z
— a2 (20 = )ttt 2 = 20 + Wt = 1) = a2}
—1
23 (G + D)+ xp2)ul ] X2 (o2 + 200y . (14)

Equation (2) has the exact conditionally invariant solution (9) depending only on
x. It turns out that in this case, the discrete function and lattice:
Xn

Un = s Xntl =Xpth (15)
X, —C

are an exact solution of the difference equation (14) for any constant ¢ and any step
h. The proof is obtained by a direct substitution of (15) into (14). This implies that
the discrete scheme is exact. We present in Fig. 1 two plots of these expressions
(the continuous and discrete solutions) for ¢ = —9 and ¢ = m, respectively, to
graphically describe this situation. In the second plot, the discrete solution fits the
continuous one in spite of the singularity.

10 | u(x)
0.8+ u(x) .
0.7 5
0.6
0.5
3 4 5 6

04 X
0.3 -5
0.2

T

5 10 15 20 25 30

Fig. 1 Solutions of Egs. (2) and (14), for ¢ = —9 (left) and ¢ = = (right). The solid curves
correspond to the continuous exact solution, the dots to the discrete exact solution
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4 Conclusions

In this contribution we have applied our recent work on conditional symmetries of
continuous and discrete equations to a reaction—diffusion equation. We have shown
how to carry out the necessary computations for one conditional symmetry and the
difficulties which appear when the symmetry is not projective. In the solved case
we have also shown that the exact solution of the continuous equation becomes an
exact solution of the difference equation.
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Discrete Curve Flows in m)
Two-Dimensional Cayley—Klein et
Geometries

Joseph Benson and Francis Valiquette

Abstract Using the method of equivariant moving frames, we study geometric
flows of discrete curves in the nine Cayley—Klein planes. We show that, under a
certain arc-length preserving flow, the curvature invariant «, evolves according to
the differential-difference equation 85‘;’ =1+ GK’% 1) (Knt1 — kn—1), where the

value of € € {—1, 0, 1} is linked to the geometry of the Cayley—Klein plane.

Keywords Discrete curve flows - Cayley—Klein geometry

1 Introduction

Invariant submanifold flows, particularly curve and surface flows, arise in a wide
range of applications, including geometric optics, computer vision, visual tracking
and control, and much more. Given a geometric submanifold flow, one of the typical
problems consists of determining the induced evolution on the geometric invariants
of the submanifold. For many geometric flows, this leads to completely integrable
evolution equations.

A similar phenomenon occurs in discrete geometry. For example, discrete
geometric curve flows in the Euclidean plane have been considered in [1-3], and
it was shown that the curvature evolves, under a certain arc-length preserving
flow, according to the differential-difference mKdV equation, which is completely
integrable. In this paper, we extend some of the work done in [1-3] by considering
discrete geometric curve flows in all nine 2-dimensional Cayley—Klein geometries,
[4]. Using the method of equivariant moving frames, our computations are per-
formed symbolically, which allows us to tackle the nine geometries simultaneously.
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Our computations will closely follow the exposition found in [1]. In this paper, we
will not be able to recall and explain all the results used from [1], and therefore
recommend that the reader reviews [1] for a more detailed exposition.

The main result of this note is that the curvature invariant of a discrete curve
in 2-dimensional Cayley—Klein geometries evolves, under a certain arc-length
preserving flow, according to the integrable differential-difference equation [5],

0Ky,
ot

= (1 + ekl ) (Knt1 — Kn—1),

where the value of € € {—1,0, 1} is related to the geometry of the Cayley—Klein
plane.

2 Cayley-Klein Planes

Let €1, €, € {—1,0, 1}, and consider the 3-dimensional Cayley—Klein Lie algebra
50¢,,¢,(3) spanned by three vectors Py, P, Ji2, with nonzero commutators

[Ji2, P1] = P, [J12, 2] = —e2 Py, [P, P2] = e J12.

Exponentiating so0¢, ¢, (3) yields the special orthogonal Cayley—Klein group
SO, ¢, (3) with 1-parameter subgroups

H = {D e e R}, Hy = {2 : ¢ e R}, Hpp = {72 1 ¢ € R).

Definition 1 The two-dimensional Cayley—Klein planes are defined as the homo-
geneous spaces

S[2€1],€2 1= 80¢,,6,(3)/Hi2.

The nine geometries that one obtains appear in Table 1.

Table 1 Two-dimensional Cayley—Klein geometries

Measure of lengths

Measure of angles Elliptic €; =1 Parabolic €1 = 0 Hyperbolic €; = —1
Elliptice; = 1 Elliptic geometry Euclidean geometry | Hyperbolic geometry
Oscillating Expanding
Newton—-Hooke Newton-Hooke
Parabolic e = 0 spacetime Galilean spacetime spacetime

Anti-de Sitter
Hyperbolic e = —1 | spacetime Minkowski spacetime | de Sitter spacetime
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Definition 2 For €; € {—1, 0, 1}, the generalized imaginary number i, is a formal
symbol satisfying the equation
.2

ic, = —€.

2

Using generalized imaginary numbers, a point in Sj_ ,

the complex number

may be represented by

z=x+i,y € C,.

The induced action of the Cayley—Klein group SO, ,(3) on the point z € C,, is

then given by
7= 2% here @ BeC., wih adt+apB=1, ()
o — €182

and 7 = x —i,, y denotes the complex conjugate of z. Geometrically, (1) corresponds
to the isometry group of the metric

. dzdz
8= ¥am?

Computing the infinitesimal generators of the group action (1), and using the
isomorphism C,, =~ R2, we obtain

d a 2 2. 0 ad
Vi2 = —€y— +x_—, vi=[l+e1(x" —ey)]— + 2e1xy—,
dx ay ox ady
V2 =2€1e0xy— +[1 —€1(x” —e2y?)] —. 2)
ax ay

3 Moving Frames

Consider a discrete curve z, = X, + i, yu € Ce,, where n € Z. The Cayley—Klein
group acts on the curve via the product action

az, + B

Zn=Xy+ieVn=— —.
a—e€1Bzy

To define a moving frame, we consider the second order discrete jet space

2 =7 % (Ciz
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with local coordinates (n, z,—1, Zn, Zn+1), Where the fiber (C?E consists of three
2

neighboring points on the curve. We refer to J12! as a discrete jet space since the
points (z,—1, Zn, Zn+1) are sufficient to provide finite difference approximations of
the order 2 jet of a differentiable curve. A moving frame is then an equivariant
map p: J? — SO¢, ¢, (3) from the discrete jet space into the Cayley—Klein group.
Choosing the cross-section

K ={zn =0, yor1 =0} cJ?,
a moving frame is obtained by requiring that p,, - (z,—1, Zn, Zn+1) € K, which yields

the normalization equations Z,, = Y,4+1 = 0. Solving the normalization equations
for the group parameters, we obtain the moving frame

ﬂ = _\( l + |Zn|26iezgznv o = V 1 + |Zn|2ei€297

where ¢l2? = Ce,(0) + ic, Se, () is the generalized complex exponential function
with

I
cos(ﬁx) c=0 ﬁsm(\/gx) e>0
Ce,(0) = 1 e=0, Se, (0) = X e=0,
/ 1
cosh(y/—€x) € <0 sinh(y/—€x) € <0
v —€

denoting the generalized cosine and sine functions, and where the angle 6 is
determined by the equation

A A
T.,00) = — AN+ AW
Axp§ — €2Ayn
Se, (0) _ ,
where T, () = denotes the generalized tangent function, and
27T o 0) s &

Axp = Xp41 — Xn, & =Re(l 4+ €124Zn+1),
Ayn = Yn+1 = Yn» n=2Jm( + €12,Zn+1)-

Given a moving frame, there is a systematic procedure, known as invariantization,
for constructing invariant functions. For example, the invariantization of a coordi-
nate function zj is the invariant ¢, (zx) = pp - zk. Invariantizing x,1 and z,,—1, we
obtain the invariants
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|Az,|
11+ €120Zn1]’
AZp Az 1 (1 + €1Znzn+1) (1 + €120Zn-1)
|Aza |11 + €120Zn+111 + €120Zn—11?

Ky =t (xp11) =

I, + iEZJn =1(2p—1) = — , 3)

where I, J, are the real and imaginary parts of ¢,(z,—1), respectively. The
invariantization map ¢, extends to one-forms [1]. For example, the invariantization
of dzy = dxi + ic,dyy is the invariant one-form

AZy (1 + €122Z0) (1 + €1Znzn1) (1 + €12,7k) 2 d 2k
|AZu |1 + €12nZn+1111 + €120Zk|*

k k . k
w, =W, +ie,0, = ,dz) =

s

k

s 0,’1‘ are the real and imaginary parts of ¢, (dzx), respectively.

where w

4 Recurrence Relations

We now compute the recurrence relations for the exterior derivative and the shift
map. These formulas encapsulate the fact that the invariantization map does not,
in general, commute with the exterior derivative and the shift map. The general
recurrence formulas can be found in [1]. Below, we specialize these formulas to our
problem.

4.1 Exterior Derivative

Let w1, io, and w12 be a basis of Maurer—Cartan forms dual to the infinitesimal
generators (2). Then the recurrence relations for the exterior derivative are

dlta (x)] = of + 1+ €1t (x0)* — €26, () *Iv1
+ 2e1€20, (XKt (Vi) V2 — €2tn (Vi) V12,

dltn (y1)] = 0 +2€100 (1) tn (i) V11 —€1 (1 (51)* = €2t (31)* T2+ (K1) V12,
4
where vi = p*uy, vo = p*u2, vi2 = p*u12 denote the pull-back of the Maurer—
Cartan forms via the moving frame. The recurrence relations for the phantom
invariants ¢, (x,) = t,(yn) = ty(yn4+1) = 0 yield the normalized Maurer—Cartan
forms
n n U}Zl - O-r'11+l

v = —o,, v = ——— —e1K,0, .

V] = —w
Ky
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Substituting these expressions into the recurrence relations for the normalized
invariants I, = t,(xp—1), Ju = tu(Yn—1), Kn = tn(xy41) introduced in (3), we
obtain

_ e,
dly = o' — o + Z (o — ol + €1 [(e27 — 1DV + €2Jn(Kn — 210)0} ],

Ky
n—1 n In n n+1 n 2 2 n
din =0y — oy + 3 (o) — oy )+ e[ = 2L ho) + Iy — 207 — InKy)oy ],
n

dKy = ot — o' — e K20

4.2 Shift Map

Let

an, by

- — i| , apdy +€1bnzn =1,
—e1b, a,

mn:pn+1pn_1:|:

denote the Maurer—Cartan invariant matrix, which is an element of the Cayley—Klein
group SO, ¢, (3). Using the recurrence relations

. by
Ly + 162Jn+1 = ty41(2p) =My - 1y(zp) =m, - 0= E_»
n

0 =tyy1(ns1) =My - 13 (Zng1) = an Ky + by,

we find that
i62¢7n K2 *i62¢n
ay = e—, by = L, &)
V1+eK? V1+eK?
where
Jnt1
Te,Qpn) = .
]n+l

We also obtain the syzygy

Ky = v Inz+1 + 62‘1112+1'
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For the invariant one-forms, we have the recurrence relation

In+1 +iez-]n+1 n+1

S[@,) 1 = tar1(dzns1) = My - 1y (d2pg1) = _m o

’

so that

(wlr11+l + ieza,ﬁ”rl) _ w,’:_H

1 .
— 1+ 1K) (Iyg1 — iey Jngp1)Sl)']
n

1+ K2

[(1n+1S(wZ) +€2J,4+18(0)) + iy (— Iy 1S(@))) + 1n+1S(U,'f))]~

n

Similarly, for the backward shift,

N tigo N = =m,_y - ST o)
1+e K2 B
= ————— LUy + iy J)S [
an]
1+€1Kr%71 -1, n -1, n . -1, n -1, n
= _Kil[(lns (wy) — €JInS™ (0,)) +ie, (JnS™ (wy) + InS™ (0, )):|
n—

5 Invariant Linearization Operators

Definition 3 The invariant linearization of an invariant I, is the invariant differ-
ence operator A;, satistying the equality

w-u()
n

To compute the invariant linearization of I,,, compute its differential using the
recurrence relations (4) for the exterior derivative. The result is a linear combination
of the invariant one-forms wﬁ, a,’f. Then, use the recurrence relation for the shift map
to express wk, ok in terms of @, 0" and their shifts. We note that these computations
can be done symbolically, without requiring the coordinate expressions for the
invariant I, and the one-forms ¥, oX.

For the normalized invariants I, = t,(x,—1), Jn = ta(Yn—1), and K, = t;;(xp+1),

the components of the invariant linearization operators are
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(U +eaki Dl erJndni1 (1 +61K3)S

Ste(@l—1H -1+

I Kn—l K}% '
e+ eK* ), erJ
y 1 —1 n
‘AI,, = Kn—ln ST +eaed (Ky —21,) — K,
el +61K,%)S
K2 ’
(1+e K2 )HJ Iyt (1 K?
poo SRt gy, - Ut Ri)g
n K1 K
, A+ek2 D, 1 5 5
A :_Tjs +K—’;—]l+61(1n —eJ; — I,Ky)
I 1,1 (1 K2
+ n n+l( ';61 n)S,
Kn
I+1(1 +61K2)
% = _"K—n”S — (A +e K>,

2
A% =_€2Jn+1(1+61Kn)S'
n Kﬂ

(6)

6 Geometric Flows

In the Euclidean plane, where €; = 0 and €, = 1, the authors of [1-3] define a
discrete curve to be parametrized by arc-length if K, = |Az,| = 1 foralln € Z.
We extend the notion of arc-length parametrized discrete curves to the remaining
Cayley—Klein planes as follows.

Definition 4 A discrete curve z,, is said to be parametrized by arc-length if

K,=K
is constant for all n € Z.
In light of the Maurer—Cartan invariants (5), we notice that when €; = —1, we
cannot set K = 1. This explains why the value of the constant in Definition 4

remains unspecified. From now on, we restrict our considerations to arc-length
parametrized discrete curves. For such curves, we introduce the discrete curvature
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where T, = %‘, Ty = % Using the syzygy K = 1,12 + eanz, we have that

1 21 ~ J 2
-z = —GZK}; and Jn = = = - 2Kn . (7)
K ex;+1 K ey + 1

~
n=

For an arc-length parametrized curve, the invariant linearization operators (6) can
be expressed in term of the quantities (7):

A =1+ e]KQ)[ezfnfnJrlS -1- Trzs_l] +2€e10K% 77,
Al = +eakDel = TS — T+ LS~ + 261K 7,(1 — I),
A =0 +eakH[ - L,7,S - 1,87 - 261 K* 1, T,
A =+ akD) [Tl S+ I — 1 = L,S™ )+ 261 I,(I, — 1),
Ay =0 +eaKkH[—TS—1],
Ay =1 +ea k)] — e8]
Computing the differential of the curvature, we obtain

€2+ 1

dicy = en dly — dTy).

Therefore, the components of the invariant linearization operator for «,, are

1 K2 2 1 2
PR CICY R )(_ oS5 — et #5) 261Ky,
n 2K €2k + 1
1 K2 2 1 € K2 -1
Z _ ( + €1 )(€2Kn + ) _Sfl +2+ 2’124_—18 — 261K.
. 2K €Ky T 1

Next, let T,, and N,, be vectors in Ciez defined by the pairings
(a);ll’Tn>: 17 (G:7Tn>=07 (wZ,Nn> =0’ <U:,Nn) =1

We now investigate the induced evolution equation of the curvature x,, when the
curve z, evolves according to the geometric flow

0z,
at

= o, Ty + BNy, ®)

where «;,, and B, are functions of the curvature «, and its shifts.
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Theorem 1 Let I, be an invariant. Under the geometric curve flow (8), the
invariant I, evolves according to the differential-difference equation

ol, o
37"”<[m}>

where Aj, is the invariant linearization of I,.

To preserve the fact that our curves are parametrized by arc-length, we consider
flows that are arc-length preserving. Thus, we require that

K,
at

= A, (@) + A (Br) = 0.
This leads to the finite difference equation

4 1@ + €2Jnt1Bat1 = 0. 9

If e # 0, then

1 ~
Bn = ——= oy +ap_1), (10)
Ez]n

where o, is arbitrary. If €; = 0, Eq. (9) reduces to

1
Opt] = —~—«
! Iy "
whose solution is
" 1
Otn:(_]) Tk N_’Osn QQ, (11)
Tyt
where
n—1
l_[ fr n>ng
k=ng
i ([, no, n) = 1 n=ng -
no—1 |
1_[ — n<no
i Jk

In this case, we note that B, is arbitrary. We observe that both constraints (10)
and (11) are satisfied when the components of the flow are
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2K 2Kk,

“STraks P Tk

For such an arc-length preserving flow, the evolution of curvature is governed by the
completely integrable differential-difference equation

0K 2K 2K«
" <—) A (—) = (1 + k2 ) K1 — Kno1).

ot ““\ 1+ e K2 1+¢ K2

References

1. J. Benson, F. Valiquette, Invariant discrete flows. Stud. Appl. Math. 143, 81-119 (2019)

2. A.l. Bobenko, Geometry II: discrete differential geometry. Lecture Notes, TU Berlin (2015),
page.math.tu-berlin.de/bdbenko/Lehre/Skripte/DDG_Lectures.pdf

3. T. Hoffmann, N. Kutz, Discrete curves in CP! and the Toda lattice. Stud. Appl. Math. 113,
31-55 (2004)

4. ILM. Yaglom, A Simple Non-Euclidean Geometry and Its Physical Basis (Springer, New York,
1979)

5. R. Yamilov, Symmetries as integrability criteria for differential difference equations. J. Phys. A
Math. Gen. 39, R541-623 (2006)



Zernike System Stems from Free Motion m)
on the 3-Sphere e

Kurt Bernardo Wolf, Natig M. Atakishiyev, George S. Pogosyan,
and Alexander Yakhno

Abstract Systems that stem from projection of free motion on a manifold are the
best candidates to exhibit remarkable symmetry properties. This is the case of free
motion on the 3-sphere which, properly projected on the 2-dimensional manifold of
a disk, yields the Zernike system. This exhibits separability in a variety of coordinate
systems, polynomial solutions, and interbasis expansion coefficients that are special
Clebsch—Gordan coefficients and Hahn orthogonal polynomials.

Keywords Spherical geometry - Zernike system - Separation of variables -

Clebsch—Gordan coefficients

1 Introduction: The so(4) Algebra

The Lie algebras of the orthogonal groups have a basis of generators K; ; = — K ;,
whose commutation relations are

[Kij, Kiel =08 xKi¢+0ioeKjr~+0kiKej+ 8¢ Kk, (D
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and whose range of indices, i, j, k, € € {1,2,... N} determines the Lie algebra
SO(N) of dimension 3 N(N—1).

We shall work in particular with the 4-dimensional orthogonal algebra so(4),
which has six generators. This is the only orthogonal algebra that splits into a direct
sum of two algebras:

s0(4) = so(3)"" @ so(3)?. )
To prove this, it is sufficient to build the generators

I =K+ Kia), P = 3Kk — Kia), 3)

1

fori, j, k € {1, 2, 3} cyclic. These two sets mutually commute,
e R N e e e R e B 4)

On the other hand, as all orthogonal algebras, it contains a Gel’fand—Zetlin or
canonical chain of subalgebras,

so(4) D so(3) D so(2), 5

whose generators K; ; have their skew-symmetric pairs of indices restricted to
i, j < 4,3 or2, respectively. We are very familiar with the SO(3) representation
theory, eigenvectors, and spectra ~ £¢({ 4 1), so we have reason to expect that
the Clebsch—-Gordan coefficients Cf%?;,m(l);j(z),m(z) = (O, mV; jO m®e, m) will
appear when we introduce specific realizations of the so(4) Lie algebra generators.

The Zernike system can be presented as a quantum mechanical problem, with a
Schrédinger equation and non-standard Hamiltonian

Z(x, ) W(r)=—E;¥(r), Z(x,y):=V>—(-V)>)=2r.V, (6)

on a space of functions ¥ (r) on the closed unit disk D := {(x, y) [x2 + y2 < 1},
that are finite on its boundary, [¥ (r)|r=1] < 00 [1, 2]. The spectrum of E; in (6)
is then found to be J(J + 2), for J € {0, 1, ...} =: Z(‘)". We recognize this as the
spectrum of a S0(4) Casimir invariant that is the Laplace—Beltrami operator on a
3-sphere. These are of course not coincidences, as we shall now detail, but bring in
the Zernike system as one of the fundamental proto-systems of quantum mechanics
such as the harmonic oscillator and the Bohr atom.

In our research into the classical [3] and quantum [4] Zernike systems, the
interbasis coefficients [5, 6] between two solutions sets with different separation
coordinates were found to be a special type of Clebsch—Gordan coefficient. The
reason for this appearance was laid out in Ref. [7], from which this proceedings
contribution is a concentrate.
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In Sect.2 we present the well-known Lie algebra realization of the orthogonal
groups on spheres. We are using the algebra so(4) and the 3-sphere as its
homogeneous space, so in Sect. 3 we introduce two coordinate systems, where the
Laplace—Beltrami operator appears in different differential forms. The eigenfunc-
tions there already relate through Clebsch—Gordan coefficients, and continue to do
so when the 3-sphere is projected on a two-sphere in Sect. 4, resulting in a restricted
set of Clebsch—Gordan’s as interbasis coefficients between solutions of the Zernike
system in the two coordinate systems, shown in Sect. 5. In the concluding Sect. 6
we add some remarks on the significance of free motions on conics that project to
remarkable physical systems.

2 Realization of SO(4) on the 3-Sphere

Lie algebras, when exponentiated to the group, can act faithfully and transitively,
on any of its homogeneous coset spaces. Corresponding to cosets by the group
identity {1}, the action is on the group itself, a manifold of dimension %N (N-1).
One may have spaces of cosets by SO(2), SO(3), etc. up to cosets by SO(N —1) [8].
The last is a privileged space because SO(N)/SO(N—1) = SV1is the (N—1)-
dimensional manifold of a sphere. In this space one can realize the generators as
K;j = si0j —s5;0; (0j :== 9/3s}), that generate rotations of SNfl; the s; are the
Cartesian coordinates restricted to the sphere by ZIN=1 s? = 1. Thus we realize

S0(4) as the generators of rotations of the 3-dimensional manifold of s,

While the Lie algebra s0(3) has one well-known invariant J? := Z? =1 K 12 ;
with eigenvalues j(j + 1) where j € Zt, the Lie algebra so(4) has two second-
degree invariant Casimir operators. The first is the sum of all squares, i.e., the

Laplace—Beltrami operator on the 3-sphere, A7), = Z? =1 Kl% j with spectrum

J(J+2),J € Z(J{ on S%; the second invariant, Z?,j,k:l &i,j.kKi jKi.4 = 0 vanishes
in the coset space of the sphere. This implies that

3
J(|>2 — 41_1 (Kj,k + Ki,4)2 — J(2)2 = j(l) — j(Z) =j, (7
ijk=1
AP, =2JM2 4 272 spectrum J(J + 2)

J=2jeZf. (8
402 = 4J>2 spectrum 4 j(j + 1) = /&% ®
Finally, in (5) the so(3) Casimir invariant % Z? j=1 K ,2 ] has the spectrum £(£ + 1),

e Zg , with the range of the branching rule 0 < £ < J.
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3 Two Coordinate Systems for s’

To parametrize the s? sphere embedded in an ambient 4-space (s, $2, §3, $4) € R4,
there exist six distinct orthogonal coordinates, listed in Refs. [9, 10] as spherical,
cylindrical, sphero-elliptic, oblate and prolate elliptic, and ellipsoidal. Whereas
in Ref. [7] three coordinate systems were considered, in the present report we
shall consider only the cylindrical and the spherical systems. These are tailored,
respectively, for the split and the canonical subalgebra chains (3) and (5),

System I: cylindrical System II: spherical
so0(4) D so(2) @ so(2)? s0(4) D so(3) D so(2)
§1 = COs Y cos @1, s1 = sin x sin 6 cos ¢,
S = €Os y sin ¢, s = sin x sinf sin ¢, )
§3 = sin y cos ¢z, §3 = sin x cos 6,
sS4 = siny sin¢o, S4 = COS X
0<V<%7T, 0<6,x <m,
0 < ¢1, 92 < 2m, 0< ¢ <2m.

In these two coordinate systems, the s0(4) Laplace-Beltrami operator A(),
of spectrum J(J+2), is realized as two corresponding forms of second-order
differential operators [11-13],

& 0? 3 1 9? 1 9
Aly = —5 + (coty —tany)—
0y2

+——+——, 10
dy  cos’y a7 sin’y d¢3 (10)

AGTT — o2 + 2cot 9 + ! ” +coe8 +— L& (11)
LB _3X2 XZ)X sin2X 392 960 sinZ 0 a¢2 ’

These determine the eigen-spaces J € ZJr of solutions, @Ijml mz(y, b1, ¢2) and

@IJ‘ em (x, 0, @), where their further speciﬁcatlon by labels, m1, m, and £, m is done

by the realization of the following Lie algebra generators,

Ki2®/ =im P! K, ox =imy®!

Jomy,my T J,myi,my° J,my,my J,my,my’

3 2 H
Zl JJj= lK ®J”Zm - _E(£+ DQD]”Z m’ K 2¢]€m = 1Wl@JI,[Z,m'

(12)

The differential operators (10) and (11), having implemented (12), lead to

Poschl-Teller quantum mechanical Schodinger equations in the angle y with

their quadratic spectrum, and parameters determined by m 1, my and £, m. These
potentials have hypergeometric polynomial and/or trigonometric solutions:
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: (mal, Im1 )
DY (Ve 1, $2) = (cos )™ (sin y)lm2! P%ZQZIIHMD(COS 27)

x ei(m1¢1+mz¢2) — eiml¢1 =l (y,¢2), (13)

= J.my,ma

®Y . (x.0.9) = (sin x)* Ci}(cos x)

x P (cos0)el™® = ™0 EY, (x,6).  (14)

Here P/, Cﬁ, and Pn(“”3 ) are the associated Legendre, Gegenbauer, and Jacobi
polynomials. In (13), m, my are restricted by J — |m1| — |ma| = even. We thus

expect that the overlaps of the two solution sets (with ¢1 = ¢ and m = m ),

J
) b)) = > Wy DY, (x.0.4). (15)

L=|m|

once properly normalized, are Clebsch—Gordan coefficients; but not generic ones,
because the two coupled angular momenta are equal,

wym o~ (16)

1 1 ! 1 .
Jomy,ma 31 3 (Imyl+imaD): 37,5 (myl—im2)

4 Projection on the 2-Sphere s?

In both the I and II coordinate systems, (13) and (14), the solutions factorize into
a phase of one coordinate, and functions = , , of the two remaining angles on a
2-sphere S2.Itis indeed serendipitous that this reduction to the 2-sphere reveals the
Zernike system written in (6), and contained in the formulation of free motion on
the three-sphere [7].

Consider a change of coordinates (s1, 52, 53, 54) — (&1, &2, &3, @),

s1 =&cosp, s =4§&sing, s3==6, s4=2E6, (17)

that maps the 3-sphere ZL] s? = 1 on the 2-sphere Z?=1 g2 =1landg € S! on
the circle; over this angle we shall integrate over. In these coordinates, the Laplace—
Beltrami operator on S3, Af;g contains the rwo-dimensional A(LZL in the (53, 54)
subspace, plus derivatives in &3 and ¢,

1 9 1 82

. 18
£ 08 | 8209 (%)

3
0
A= aB-Y b+
i=1 !
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The functions & ., in (13) and (14) of angles in the 2-sphere S? can be isolated
through integrating, respectively, over the circles of ¢; and of ¢; this will also set to
zero the corresponding labels m and m in those equations.

We perform this integration for the solutions in the coordinate System I of
cylindrical coordinates (13), without regard for normalization at this stage,

1 T
lI/ri,m(-xv y) = g d(bl ¢},ml’m2(yv ¢1’ ¢2)
-7

= T ) pmO(1 222y ). (19)

The index ranges are: n = J € Zg is the principal quantum number, we have now
fixed m; = 0 so we write m := —my; and we have the radial quantum number
n, = %(n—|m\) € Zg. For ¢ = %ﬂ—¢2 and the ranges y|g/2 and ¢|* , the

Cartesian coordinates on the disk (x, y) € D and positive half-sphere Si_ are
x =& =sinysing;, y=§& =sinycos¢y, & =cosy =>0. (20)

These are polar coordinates with radius sin y < 1 and angle ¢, over a circle.
The integration for the System II solutions in polar coordinates on the sphere (14)
yields

1 T
W, (X, Y) = _2nf dp @5, . (x,6.9)
—TT

— (- xdbmemti () Pm(%) @b
—X

Here the principal quantum number is also n = m14+my = J € ZE)", while we can
set £ := mj. The coordinates on the disk and half-sphere for the ranges |7 and
0|5, are

x=& =cosy, y=§& =sinyxcosf, & =sinysing > 0. 22)

This coordinate system can be visualized as polar coordinates on a sphere, projected
on a plane that contains its poles.

We identify this construction to pertain the Zernike system because the defining
Hamiltonian, the first quadratic invariant of the Lie algebra so(4), is the Casimir
operator that serves also to classify hyper-spherical harmonics and generate free
evolution for ideal quantum systems given in (18), surprisingly contains the Zernike
system Hamiltonian (6). For functions @, . (@, 8, ¢) such as (13) and (14) with a

factor exp(in¢), the Laplace—Beltrami operator on S is
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2 2
A Dy = P LA @500 = (20, -2 o, (23)
LB SV, LB 53 8%_3 %_32 8(02 SV, UL ) 532 SV, s

and yields the Zernike Hamiltonian 7 (x, ¥) in (6), as the integration over ¢ restricts
@ = 0, and thus leaves only two labels for the original Zernike solutions lIJ,L (X)),
and for the solutions lI’,In’ L (x, y) found in [4], as well as all separated solutions in
other coordinate systems, including the solutions that separate in elliptic coordinates

on the sphere [14, 15].

5 Interbasis Expansion Coefficients

The interbasis expansion coefficients are the analogues of (15) and (16), for the
reduced indices,

n

WGy =Y W (x, ), (24)

m1=0

where my = n — m and, up to phases w, the coefficients are a more special subset
of Clebsch—Gordan coefficients, and where m € {—n, —n+2, ..., n},

(25)

mi,m m ,0
Wi =wC
27 27 22

A property of these special Clebsch—Gordan coefficients is that they are special
hypergeometric be Saalschutzian 3 F,(---|1) terminating series, known as Hahn
polynomials Q,(x; a, a, b) in the Askey scheme [6],

le,o . n! / 2m1+1
1 Lype bpy Ly ™
SM,—5M; 51, 5M (%(m1—m2—m))‘(%(n+m))' mo! (n+m1+1)!

—n, %(ml —my—m)+1

B (n")? [ 2my+1
= <%(n_m))'<%(n+m))| ma! (n+m1+1)!

x sz(%(n+m); —n—1, —n—l»n) 27

withmy =n — mj.
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6 Concluding Remarks

We have here abstracted some of the results in Ref. [7] to exhibit the Zernike system
as a projection of the evidently highly symmetrical system of free motion on a conic.
In the case of the 3-sphere as homogeneous space for S0(4), we have the benefit of
additional Lie-theoretical properties, such as Schrodinger equations with potentials
of Poschl-Teller type.

The algebra so(4) and its special property of splitting (3) also serves for
finite and discrete image analysis, between Cartesian- and polar-pixellated arrays
[16]. In polar pixellation, the normal modes factorize and the radial functions are
also Clebsch—Gordan coefficients, although of the more general type (16) rather
than (25). Under various guises, the so(4) is an algebra that may contain other
physical or optical systems in their various realizations.

In this report we have used the Schrodinger representation of the Zernike
“wavefunctions” ¥, ,, (x, y) and ¥,/ . (x,y) in their separated bases. It is then
natural to label kets |n, m); and |m1, m2);; as a short and equally good realization
for the states of the system, and useful for computations. Following common
Dirac notation, we could bind the two realizations through stating ¥, , (x,y) =
(x, y|n, m); and @I/,}{l’mz(x, y) = (x, y|my, ma);;, provided a proper definition exists
for a Dirac basis {|x, y)},,yep over a finite disk. This subject has been addressed in a
recent paper by Celeghini et al. [17], through the construction of a Hilbert space on
a closed subset of the R? plane. We have been accustomed to use Hilbert spaces
and Gel'fand triplets for functions over the whole plane R?; the Zernike model
necessitates also function-theoretic analyses. Finally, we are aware that similar
constructions and projections can also be done with planes and hyperbolas—not
only spheres, and that a Lie algebra can project out a superintegrable Higgs algebra
[18, 19].
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Algebraic and Non-perturbative Methods



W-Algebras via Lax Type Operators )

Check for
updates

Daniele Valeri

Abstract W-algebras are certain algebraic structures associated to a finite-
dimensional Lie algebra g and a nilpotent element f via Hamiltonian reduction. In
this note we give a review of a recent approach to the study of (classical affine and
quantum finite) W-algebras based on the notion of Lax type operators.

For a finite-dimensional representation of g a Lax type operator for W-algebras is
constructed using the theory of generalized quasideterminants. This operator carries
several pieces of information about the structure and properties of the W-algebras
and shows the deep connection of the theory of W-algebras with Yangians and
integrable Hamiltonian hierarchies of Lax type equations.

Keywords )V-algebras - Lax type operators - Generalized quasideterminants -
Integrable Hamiltonian hierarchies - (Twisted) Yangians

1 Introduction

The first quantum affine W-algebra, the so-called Zamolodchikov Wj3-algebra
[50], appeared in the physics literature in the study of 2-dimensional Conformal
Field Theory. Further generalizations of this algebra were provided soon after
[25, 40]. Physicists thought of these algebras as “non-linear” infinite dimensional
Lie algebras extending the Virasoro Lie algebra. In [27] the affine W-algebras
Wi (g, f) (k is called the level), for a principal nilpotent element f € g, were
described as vertex algebras obtained via a quantization of the Drinfeld—Sokolov
Hamiltonian reduction, which was used in [24] to construct classical affine W-
algebras. In particular, for sly one gets the Virasoro vertex algebra, and for sl3 the
Zamolodchikov’s W3 algebra. The construction was finally generalized to arbitrary
nilpotent element f in [36-38]. In these papers, affine W-algebras were applied to

D. Valeri ()
School of Mathematics and Statistics, University of Glasgow, Glasgow, UK
e-mail: daniele.valeri @glasgow.ac.uk

© Springer Nature Switzerland AG 2021 181
M. B. Paranjape et al. (eds.), Quantum Theory and Symmetries, CRM Series in
Mathematical Physics, https://doi.org/10.1007/978-3-030-55777-5_17


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-55777-5_17&domain=pdf
mailto:daniele.valeri@glasgow.ac.uk
https://doi.org/10.1007/978-3-030-55777-5_17

182 D. Valeri

representation theory of superconformal algebras. Quantum affine W-algebras may
be also considered as an affinization of quantum finite W -algebras [46] which are a
natural quantization of Slodowy slices [34].

W-algebras are at the cross roads of representation theory and mathematical
physics and play important roles (just to cite some of them) in applications to
integrable systems [15, 24], to Gromov—Witten theory and singularity theory [3, 44],
the geometric Langlands program [28, 31-33], four-dimensional gauge theories
[1, 8, 48].

In this note we survey the recent approach to (quantum finite and classical affine)
W -algebras based on the notion of Lax type operators [18-21]. For a review of the
approach to (classical) W-algebras via generators and relations we refer to [13].

Throughout the paper the base field I is a field of characteristic zero.

2 What Is a W-Algebra?

W-algebras are a rich family of algebraic structures associated to a pair (g, f)
consisting of a finite-dimensional reductive Lie algebra g and a nilpotent element
f € g. They are obtained via Hamiltonian reduction in different categories: Poisson
algebras, associative algebras and (Poisson), vertex algebras. We should think of
them as algebraic structures underlying some physical theories with “extended
symmetries.”

2.1 Fundamental Physical Theories and Corresponding
Fundamental Algebraic Structures

In Classical Mechanics the phase space, describing the possible configurations of
a physical system, is a Poisson manifold. The physical observables are the smooth
functions on the manifold, and they thus form a Poisson algebra (PA).

By quantizing this theory we go to Quantum Mechanics. The observables
become noncommutative objects, elements of an associative algebra (AA). Hence,
the Poisson bracket is replaced by the usual commutator and the phase space is
described as a representation of this associative algebra.

Going from a finite to an infinite number of degrees of freedom, we pass
from Classical and Quantum Mechanics to Classical and Quantum Field Theory,
respectively. The algebraic structure corresponding to an arbitrary Quantum Field
Theory is still to be understood, but in the special case of chiral quantum fields of
a 2-dimensional Conformal Field Theory (CFT) the adequate algebraic structure is
a vertex algebra (VA) [6], and its quasi-classical limit is known as Poisson vertex
algebra (PVA) [14].



W-Algebras via Lax Type Operators 183

Hence, the algebraic counterparts of the four fundamental frameworks of physi-
cal theories can be put in the following diagram:

quantization

PVA «— VA

A Clllmlt K,

affiniz. | | Zhu Zhu| % affiniz.

PA «——— AA

quantization (1)

The straight arrows in the above diagram correspond to canonical functors and have
the following meaning. Given a filtered AA (respectively, VA), its associated graded
algebra is a PA (respectively, PVA) called its classical limit. Moreover, starting
from a positive energy VA (respectively, PVA) we can construct an AA (resp. PA)
governing its representation theory, known as its Zhu algebra [51]. The processes of
going from a classical theory to a quantum theory (“quantization”) or from finitely
many to infinitely many degrees of freedom (“‘affinization”) are not functorial and
they are thus represented with dotted arrows.

(Poisson) Vertex Algebras

PVAs provide a convenient framework to study Hamiltonian partial differential
equations. Recall from [4] that a PVA is a differential algebra, i.e. a unital
commutative associative algebra with a derivation 9, endowed with a A-bracket,
i.e. a bilinear (over F) map {- -} : V x V — V[A], satisfying the following axioms
(a,b,c e V):

(i) sesquilinearity: {0a; b} = —A{a, b}, {a,0b} = (A + 0){ayb};
(i1) skewsymmetry: {b,a} = —{a_,_yb};
(iii) Jacobi identity: {a; {b,c}} — {bylarcl} = {arblrypch
(iv) (left) Leibniz rule: {aybc} = {arb}c + {a)c}b.
Applying skewsymmetry to the left Leibniz rule we get
(v) right Leibniz rule: {ab,c} = {ayt+sc}—b + {bytac}—a.

In (ii) and (iv) we use the following notation: if {a,b} = ZneZ+ AMa, € V[A],
then {a,+3b}—c = ZHGL ay(A + 3)"'c € V[A] and {a_,_yb} = ZneZ+(—A -
9)"a;,, € V[A] (if there is no arrow, we move d to the left).

We denote by [ : V — V/dV the canonical quotient map of vector spaces.
Recall that, if V is a PVA, then V/9V carries a well-defined Lie algebra structure
given by {[ f, [g} = [{f.8}|r=0, and we have a representation of the Lie algebra
V/dVonV givenby {[ f, g} = { f2.8}I1=0. A Hamiltonian equation on V associated
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to a Hamiltonian functional [h € V/dV is the evolution equation

Z—I:z{fh,u}, uey. ()

The minimal requirement for integrability is to have an infinite collection of linearly
independent integrals of motion in involution:

Jho= [h, [hi, [ho, ... st {[hp, [hy} =0 forall m,n € Zsg.
In this case, we have the integrable hierarchy of Hamiltonian equations

du
E:{fhn,u} , HEZZO.

Example 1 The Virasoro-Magri PVA on the algebra of differential polynomials
V = Clu, u’,u”, ...]is defined by letting

(o} = Qr+ u + 13,

and extending it to a A-bracket for the whole V using sesquilinearity and Leibniz

rules. Let [h = [ % Then the corresponding Hamiltonian equation (2) is the
famous KdV equation:

"

d
o + 3uu’.

dt

Using the Lenard—Magri scheme of integrability [42] it can be shown that it belongs
to an integrable hierarchy.

Vertex Algebras

VAs were introduced in [6]. Following [14], we provide here a ‘“Poisson-like”
definition using A-brackets. A VA is a (not necessarily commutative nor associative)
unital algebra V with a derivation 0 endowed with a A-bracket [-}-] : V XV —>
V[A] satisfying sesquilinearity, skewsymmetry, Jacobi identity, and, moreover
(a,b,c eV):

1. quasicommutativity: ab — ba = fi)a [axbld;

2. quasiassociativity: (ab)c — a(be) = (lx=p@) [y bucldp + (lr=ab) [y lancldp;
3. noncommutative Wick formula: [aybc] = [a)b]c + bla,c] + fo)‘[[akb]ﬂc]du.
We refer to [14] for explanations about the notation. As before, we denote by

[ : V — V/3V the canonical quotient map of vector spaces. If V is a VA, then
V/dV carries a well-defined Lie algebra structure given by [ [ f, [g] = [[f1g]lr=0.
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and we have a representation of the Lie algebra V/0V on V given by [ f el =
[frg]lr=0- A quantum integrable system consists in a collection of infinitely many
linearly independent elements [h,, € V/dV, m € Zx, in involution.

Example 2 A VA is commutative if [a)b] = 0, for every a,b € V. It follows
immediately from the definition that the category of commutative VAs is the same
as the category of differential algebras.

Remark 1 The (not necessarily commutative nor associative) product in a VA
corresponds to the normally ordered product of quantum fields in a CFT, while
the A-bracket encodes the singular part of their operator product expansion (OPE).
We give a naive explanation of the latter sentence in a particular case. Consider the
VA A-bracket of a Virasoro element u (recall Example 1 for its PVA analogue)

[usu] = (2% + 9)u + %,\3 ,
where ¢ € C is called the central charge. Replace, in the above relation, u by a
quantum field, say 7'(w), d by d,, and A by 9, acting on the rational function ﬁ
Then we get

1 0T 2T 2
[T (w), T (w)]- = (w) (w) c/

Z—w z—w)?  (z—w)?*’

which is the singular part of the OPE of the stress-energy tensor in CFT.

2.2 A Toy Model

The simplest example when all four objects in diagram (1) can be constructed is
obtained starting with a finite-dimensional Lie algebra g, with Lie bracket [-, -],
and with a non-degenerate invariant symmetric bilinear form (- | -).

The universal enveloping algebra of g, usually denoted by U (g), is an associative
algebra, and its classical limit is the symmetric algebra S(g), with the Kirillov—
Kostant Poisson bracket.

Furthermore, we have also a Lie conformal algebra Curg = (F[0] ® g) & FK,
with the following A-bracket:

[a,b] = [a,b]l + (albD)KA , [a)K]=0, for a,beg. 3)

The universal enveloping vertex algebra of Curg is the so-called universal affine
vertex algebra V (g), and its classical limit is the algebra of differential polynomials
V(g) = S[d]g), with the PVA A-bracket defined by (3). We refer to [14] for
the definition of the latter structures and the construction of the corresponding Zhu
maps. Thus, we get the following basic example of diagram (1):
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quantization

Ve e V(@

affiniz. Zhu Zhu affiniz.

S (Q) cl.limit U (g)

7

quantization 4)

2.3 Hamiltonian Reduction

All the four algebraic structures in diagram (1) admit a Hamiltonian reduction.
We review here only the case for associative algebras. Recall that the Hamiltonian
reduction of a unital associative algebra A by a pair (B, I), where B C Ais a
unital associative subalgebra and I C B is a two sided ideal, is the following unital
associative algebra:

W=W(@A,B I =(A/A1)"" (5)

where ad B denotes the usual adjoint action given by the commutator in an

associative algebra (note that B acts on A/AI both by left and right multiplication).

It is not hard to show that the obvious associative product on W is well defined.
Now, let {e, 2x, f} C g be an sl,-triple, and let

d

a=@P g;. 6)
j=—d
jeiz

be the ad x-eigenspace decomposition. We can perform the Hamiltonian reduction

of A = U(g) as follows. Let B = U(g.() and I C B be the two sided ideal
generated by the set

{m—(flm)|m € g=1}. (7)

Applying the Hamiltonian reduction (5) with the above data we get the so-called
quantum finite W -algebra (it first appeared in [46])

Wi, )= (U@/U@im = (Fim) [ m € g1 ®.
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The Hamiltonian reduction (5) still makes sense if we replace associative
algebras with PVAs (respectively, PAs), and we can perform it with A = V(g),
B = V(g.o) and I C B the differential algebra ideal generated by the set (7)
(respectively, A = S(g), B = S(g-¢), and I C B the ideal generated by the set (7)).
As aresult we get the so-called classical affine W -algebra Waff(g, f) (respectively,
classical finite W -algebra Waff(g, 1)), see [17] for further details.

Unfortunately, a similar construction of a Hamiltonian reduction for vertex
algebras is not known, and the quantum affine W-algebra Waff(g, f) is constructed
using a cohomological approach [27, 36].

2.4 From the Toy Model to W-Algebras

Let g be a finite-dimensional reductive Lie algebra, and let f € g be a nilpotent
element. By the Jacobson—-Morozov Theorem it can be embedded in an sl,-triple
{e,2x, f} C g. Applying the machinery described in Sect.2.3 we thus obtain a
Hamiltonian reduction of the whole diagram (4):

V(g) cl.limit V(g)
HR ¢ HRpy
Zhu Waff(g,f) cl.limit Waff<g,f)
Zhu Zhu
S(9) U9
HR ¢ HRpy
Wﬁn (g,f) cl.limit Wﬁn (g,f)

®)

It is a convention to use the calligraphic W to denote objects appearing in the
“classical” column of diagram (8) and the block letter W to denote objects appearing
in the “quantum” column of the same diagram. Also the upper label “fin” (resp.
“aff”) is used to denote objects appearing in the “finite” (resp. “affine”) row of
diagram (8), corresponding to physical theories with a finite (resp. infinite) number
of degrees of freedom.

Hence, as we can see from diagram (8), W-algebras provide a very rich family
of examples which appear in all the four fundamental aspects in diagram (1). Each
of these classes of algebras was introduced and studied separately, with different
applications in mind. The relations between them became fully clear later, see [14,
17, 34] for further details.
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Classical Finite W-Algebras

The classical finite W-algebra Wﬁn (g, f) is a PA, which can be viewed as the
algebra of functions on the so-called Slodowy slice S(g, f), introduced by Slodowy
while studying the singularities associated to the coadjoint nilpotent orbits of g [49].

Finite W-Algebras

The first appearance of the finite W-algebras Wﬁn(g, f) was in a paper of Kostant
[39]. He constructed the finite W-algebra for principal nilpotent f € g (in which
case it is commutative), and proved that it is isomorphic to the center of the universal
enveloping algebra U(g). The construction was then extended in [41] for even
nilpotent element f € g. The general definition of finite W-algebras wiin (g, 1),
for an arbitrary nilpotent element f € g, appeared later in a paper by Premet [46].
Finite W-algebras have deep connection with geometry and representation theory
of simple finite-dimensional Lie algebras, with the theory of primitive ideals, and
the Yangians, see [9, 43, 46, 47].

Classical Affine W-Algebras

The classical affine W-algebras Waff(g, f) were introduced, for principal nilpotent
element f, in the seminal paper of Drinfeld and Sokolov [24]. They were introduced
as Poisson algebras of functions on an infinite dimensional Poisson manifold, and
they were used to study KdV-type integrable bi-Hamiltonian hierarchies of PDE’s,
nowadays known as Drinfeld—Sokolov hierarchies. Later, there have been several
papers aimed at the construction of generalized Drinfeld—Sokolov hierarchies [10,
12, 23, 26, 29, 30]. In [15], the classical W-algebras Waff(g, f) were described as
PVA, and the theory of generalized Drinfeld—Sokolov hierarchies was formalized in
a more rigorous and complete way [16, 18, 20].

Quantum Affine W-Algebras

They have been extensively discussed in the Introduction. A review of the subject
up to the early 1990s may be found in the collection of a large number of reprints
on W-algebras [7]. Recently, it has been shown that they are at the base of an
unexpected connections of vertex algebras with the geometric invariants called the
Higgs branches in the four-dimensional N = 2 superconformal field theories [2, 5].
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3 Linear Algebra Intermezzo

3.1 SetUp

Let g be a finite-dimensional reductive Lie algebra, let { f, 2x, e} C g be an sl,-
triple and let (6) be the corresponding ad x-eigenspace decomposition. In Sects. 4
and 5 we will use the projection map Toltg > gl = Gakfégk with kernel
g>% = 69k>%gk'

Let ¢ : ¢ — End V be a faithful representation of g on an N-dimensional vector
space V. Throughout the paper we shall often use the following convention: we
denote by lowercase Latin letters elements of the Lie algebra g, and by the same
uppercase letters the corresponding (via ¢) elements of End V. For example, FF =
¢(f) is a nilpotent endomorphism of V. Moreover, X = ¢(x) is a semisimple
endomorphism of V with half-integer eigenvalues. The corresponding X -eigenspace
decomposition of V is

V= @ VIk]. )

1
kesZ

Note that % is the largest X -eigenvalue in V.
Recall that the trace form on g associated to the representation V is, by definition,

(alb) =try(AB), a,beg, (10)

and we assume that it is non-degenerate. Let {u;};c; be a basis of g compatible
with the ad x-eigenspace decomposition (6), i.e. I = Ll where {u;};cy, is a basis
of g,. We also denote / <1 = U< ! I.. Moreover, we shall also need, in Sect. 5, that
{uitier contains a basis {u;}ier, of g/ ={a € g | [a, f]1 = 0}, the centralizer of
fin g. Let {u'};ics be the basis of g dual to {u;};c; with respect to the form (10),
ie. (ujlu)) = d;,j. According to our convention, we denote by U; = ¢(u;) and
U' = ¢(u'),i € I, the corresponding endomorphisms of V.
In Sects. 4 and 5 we will consider the following important element:

U=) uU' eg®EndV. (11)
iel

Here and further we are omitting the tensor product sign.
Furthermore, the following endomorphism of V, which we will call the shift
matrix, will play an important role in Sect. 4

D=-) U'U eEndV. (12)

l'Elzl
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Finally, we denote by 2y € End V ® End V the permutation map:
v Q) =vy ®u; forall vi,v,eV. (13)
Using Sweedler’s notation we write 2y = .Qg/ ® (2(} to denote, as usual, a sum of
monomials in End V ® End V. Suppose that V has a non-degenerate bilinear form
(-1-): VxV — F, which is symmetric or skewsymmetric:
(v1|v2) = €(va|v1), vi, v €V, wheree € {£1}. (14)
Then, we denote by
2l =@ eey, (15)

where AT is the adjoint of A € End V with respect to (14).

3.2 The “Identity” Notation

Let U C V be a subspace of V, and assume that there is “natural” splitting V =
U & U’. We shall denote, with an abuse of notation, by 1y both the identity map

U —> U, the inclusion map U < V, and the projection map V — U with kernel
U’. The correct meaning of 1y should be clear from the context.

3.3 Generalized Quasideterminants

Let R be a unital associative algebra and let V be a finite-dimensional vector space
with direct sum decompositions V. = U @ U’ = W @ W’. Assume that A €
R ®End(V) and 1wyA~'1y € R ® Hom(U, W) are invertible. The (generalized)
quasideterminant of A with respect to U and W, cf. [18, 35], is defined as

|Alyw == (AwA '1y)~! € R®Hom(W, U). (16)
Remark 2 Provided that both A and 1y Aly- are invertible, it is possible to

write the generalized quasideterminant (16) in the more explicit form [Aly.w =
lyAly — Ly Aly (Ly Aly) " 1y Aly.
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4 Quantum Finite W-Algebras and (Twisted) Yangians

4.1 Lax Type Operators for Quantum Finite W-Algebras

We introduce some important End V-valued polynomials in z, and Laurent series in
z~ !, with coefficients in U (g). The first one is (cf. (11))

A@@)=zlv +U=zly + Y uU" € U(g)lz] ® End(V). (17)

iel

(As in Sect. 3, we are dropping the tensor product sign.) Another important operator
is (keeping the same notation as in [19])

AP(@) =2ly +Ftn_U =zly+F+ > wiU' €eU@IIQEndV. (18)

iel
<

Bl—

Now we introduce the Lax operator L(z). Consider the generalized quasideter-
minant (cf. (16))

1 —1
]lVI%]) ’
(19)

L@ =14°@ + Dlygyviy = (Ly-g)(elv + F+74U + D)

where 1, _ d and ]lv[% ) are defined in Sect. 3.2 (using the obvious splittings of
V given by the grading (9)), A”(z) is defined in Eq.(18) and D is the “shift
matrix” (12).

Let us denote by 1 the image of 1 € U(g) in the quotient U(g)/U(g){m -
(flm) |m € g>1}. The Lax operator L(z) is defined as the image of Z(z) in this
quotient:

L) =Lg v :=L@]1. (20)

The first main result in [21] can be summarized as follows.
Theorem 1

(a) The operator AP(z) + D is invertible in U(g)((z™")) ® EndV, and the
operator ILV[_%](AP(z)+D)_l ]lv[%] is invertible in U (g)((z~")) ®@Hom (V[ —
%], V[%]) Hence, the quasideterminant defining Z(z) (cf- (19)) exists and lies
in U(g)((z™")) ® Hom (V[ — 4], V[4]).

(b) The entries of the coefficients of the operator L(z) defined in (20) lie in the
W-algebra W (g, f):

L) :=zly + F ta U+ DIV[%]’V[_%]I
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d d
EWQJM@1D®&M<W—EvaD'

Remark 3 For g = gly and V = FV the standard representation, Eq. (19) may be
used to find a generating set (in the sense of PBW Theorem) for the quantum finite
W-algebra, see [22] for more details.

4.2 The Generalized Yangian Identity

Let o, 8,y € F. Let R be a unital associative algebra, and let V be an N-
dimensional vector space. For § # 0, we also assume, as in Sect. 3.1, that V is
endowed with a non-degenerate bilinear form (- | -) : V x V — F which we assume
to be symmetric or skewsymmetric, and we let € = 41 and —1, respectively. Again,
when denoting an element of R ® End(V) or of R ® End(V) ® End(V), we omit
the tensor product sign on the first factor, i.e. we treat elements of R as scalars.

The generalized (o, B, y)-Yangian identity for A(z) € R((z~")) @ End(V) is the
following identity, holding in R[[z~!, w™!]][z, w] ® End(V) ® End(V):

Z—w+a2y)(AQ) @ 1y)z +w+y — 1)1y ® Aw))

; 2y
=1y ® AN +w+y — BRIAR) ® 1y)(z — w + af2y).

Recall that 2y and .Qq, are defined by Eqs. (13) and (15), respectively.

Remark 4 In the special case « = 1, B = y = 0, Eq.(21) coincides with the
so-called RTT presentation of the Yangian of gl(V), cf. [19, 45]. Moreover, in the
special case ¢« = B = % y = 0, Eq.(21) coincides with the so-called RSRS
presentation of the extended twisted Yangian of g = so(V) or sp(V), depending
on whether ¢ = +1 or —1, cf. [45]. Hence, if A(z) € R((z"')) ® EndV
satisfies the generalized (% % 0) -Yangian identity we automatically have an algebra
homomorphism from the extended twisted Yangian X (g) to the algebra R. If,
moreover, A(z) satisfies the symmetry condition (required in the definition of
twisted Yangian in [45])

A(z) — A(=2)

Ty _ — _
A'(—z) —€A(z) = iz

then we have an algebra homomorphism from the twisted Yangian Y (g) to the
algebra R.
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4.3 Quantum Finite W-Algebras and (Extended) Twisted
Yangians

Let g be one of the classical Lie algebras gly, sly, soy or spy, and let V = FN
be its standard representation (endowed, in the cases of soy and sp,, with a non-
degenerate symmetric or skewsymmetric bilinear form, respectively). Then, the
operator A(z) defined in Eq. (17) satisfies the generalized Yangian identity (21),
where «, §, y are given by the following table:

g a By
glyorsly 1 0 0O

S0, OF 5Py %

(S]]
(ST}

Note that V[4] = V[—%]. Fix and isomorphism x : V[4] —> V[—%]. Then,
xoL(z) € W(g, f)((z_l)) ®End(V[—%]). By an abuse of notation, we still denote
this operator by L(z). We also let n = dim V[—%].

The second main result in [21] states that, for classical Lie algebras, the Lax
operator defined in (20) also satisfies a generalized Yangian identity.

Theorem 2 The operator L(z) € W(g, f)((z~) ® End(V[—%]) defined by (19)
and (20) (cf. Theorem 1) satisfies the generalized Yangian identity (21) with the
values of o, B, v as in the following table:

g a By
glyorsly 1 0 0
S0y OF 5Py % % e=fin

By Theorem 2 and Remark 4 we have an algebra homomorphism from the
extended twisted Yangian X (g) (g depends on the pair (g, f)) to the quantum
finite W-algebra W (g, f). A stronger result has been obtained for g = gly by
Brundan and Kleshchev in [9] where quantum finite W-algebras were constructed
as truncated shifted Yangians (which are subquotients of the Yangian for gl ).

5 Classical Affine W-Algebras and Integrable Hierarchies
of Lax Type Equations

5.1 Lax Type Operators for Classical Affine W-Algebras

For classical affine W-algebras the discussion is similar to the one in Sect.4 but
in a different setting: we need to substitute polynomials and Laurent series with
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differential operators and pseudodifferential operators, respectively (see [20] for a
review of their basic properties).
Consider the differential operators

A@) =01y +U =081y + Y w;U' €V(g)[d] ® End(V)

iel
and

A”(8)=BHV+F+JT§%U=8]LV+F+ § uiU' € V(g0 ®End V.
i€1<l
=2

Recall from [15] that in the classical affine case we have W(g, f) C V(gf 1 )

and that there exists a differential algebra isomorphism w : V(gh) = W(g, f).
Consider the generalized quasideterminant (cf. (16))

~1
— P _ -1
L@ = A" @lyg, vy = (Ly_g (01 + F+730) yg)) . @2)

The following result has been proved in [20].
Theorem 3 L(3) € W(g. £)((3~")) ® Hom (V[ — 4], V[4]) and

o -1
L@ = (Ly_g) 01y + F+ Y wadU) ' 1yq)) (23)
ielf

The above theorem consists of two statements. First, it claims that L(9) is well
defined, i.e. both inverses in formula (22) can be carried out in the algebra of
pseudodifferential operators with coefficients in V(g_ 1 ), and that the coefficients
of L(d) lie in the W-algebra W(g, f). Then, it gives a formula, Eq. (23), for L(d)
in terms of the generators w(u;), i € Iy, of the VW-algebra W(g, f).

5.2 Integrable Hierarchies of Lax Type Equation

Let g be one of the classical Lie algebras gly, sly, soy or spy, and let V = FN
be its standard representation (endowed, in the cases of soy and sp,, with a non-
degenerate symmetric or skewsymmetric bilinear form, respectively). Then, we can
use the operator L(d) in (23) to get explicit formulas for the A-brackets among
the generators of (g, f) and construct integrable hierarchies of Hamiltonian
equations, see [20].
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Theorem 4
(1) L(0) satisfies the generalized Adler type identity
(L@ L) =a(ly @ Lw+A+3)(z—w—ir—3) !

X (L*(A —2) ® 1y)S2y
—a2y (L@ ® (z—w—2r—3)""'Lw))
—B(ly @ L(w+ A+ )2}z +w+3) "' (L) ®1y)
+AL (-2 @1YL) @ +w+) " (1y ® L(w))
+y(Lv ® (Lw+2r+3) — Lw)))(r+ )"
x ((L*(r = 2) = L(2)) ® 1y), 24)

for the following values of a, B, y € F:

g a By
gly 1 0 0

1
5[N 1 0 N

o

S0y OF 5PN % 3

In Eq. (24) L* denotes the formal adjoint of pseudodifferential operators, and
Qv and .Q;L, are defined by Egs. (13) and (15), respectively.

(2) For B(d) a K-th root of L(d) (i.e., L(d) = B(d)X for K > 1) define the
elements h, p € W(g, f),n € Z>0, by (r=1®tr)

—K
hyp = — Res, tr(B"(2)) forn >0, hg=0.
n

Then, all the elements f hy, B are Hamiltonian functionals in involution and we
have the corresponding integrable hierarchy of Lax type Hamiltonian equations

dL(w)
dtn‘g

= {[hn,5, L(w)} = [@(B")1 — B(B")* )4, LI(w), n € Zxg.
(25)

(In the RHS of (25) we are taking the symbol of the commutator of matrix
pseudodifferential operators.)

Remark 5 For B = 0 solutions to the integrable hierarchy (25) can be obtained by
reductions of solutions to the multicomponent KP hierarchy, see [11].
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Color Algebraic Extension of )
Supersymmetric Quantum Mechanics ez

Naruhiko Aizawa, Kosuke Amakawa, and Shunya Doi

Abstract In the recent paper, Bruce and Duplij introduced a Z%-graded version of
supersymmetric quantum mechanics (SQM). It is an extension of Lie superalgebraic
nature of N = 1 SQM to a Z%-graded color superalgebra. We present three
extensions of the result of Bruce and Duplij. Namely, Zg-graded SQM with higher
values of NV, Z%—graded version of superconformal mechanics, and Z%-graded SQM.
All these were done by realizations of color superalgebra in terms of ordinary Lie
superalgebra.

Keywords Z%-graded Lie algebras - Supersymmetric quantum mechanics -
Superconformal mechanics

1 Introduction

Supersymmetric and superconformal quantum mechanics have been discussed in
surprisingly wide variety of problems in physics. Even in some of modern problems
such as curved extra dimension or M-theory they play fundamental and important
roles, see, for instance [1, 2] and references therein. It is, therefore, natural that
there exist many considerations on possible extensions of supersymmetric quantum
mechanics. Supersymmetric quantum mechanics (SQM) is a quantum mechanical
realization of the super-Poincaré algebra in (0 4 1)-dimensional spacetime. Thus
many extensions of SQM discuss possible replacement of Lie superalgebraic nature
of super-Poincaré algebra with more general setting (also in connection with the
no-go theorem of Coleman and Mandula).

One of the most recent works in this direction is due to Bruce [3] where Z;-
grading of the super-Poincaré algebra in (3 4+ 1) dimensional Minkowski space
are replaced with Zj-grading. Z; denotes a direct product of n copies of the
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abelian group Z, and Lie algebras with this kind of grading are referred to as color
(super)algebras in the literatures. Soon after this work, Bruce and Duplij presented
a model of Z%-graded SQM based on the reduction of the Z%-graded super-Poincaré
algebra of [3] to (0 + 1)-dimension [4] (references for other works on extension of
SQM are found in [4], too). We call the model discussed in [4] Bruce—Duplij model.

In the present work, we interpret the Bruce—Duplij model from more general
perspective. Namely, we provide a realization of Z%—graded color superalgebra by
ordinary Lie superalgebra. Then it can be seen that Bruce—Duplij model is a special
case of this realization. Moreover, the realization allows us further generalizations
of SQM. The Bruce-Duplij model may be regarded as a Z%—graded version of N =
1 SQM. By using the realization, one may easily construct models of Z%-graded
version of SQM with higher values of A. It is also possible to include conformal
invariance, since one may apply the realization to many models of superconformal
mechanics (SCM).

We remark that color superalgebras attract some physical interests in connection
with symmetries of non-relativistic Dirac equation (Lévy-Leblond equation) and
parastatistics [5, 6]. The present work, as well as [4], provides a new example of
deep connection of such algebras and physics.

This paper is organized as follows: In the next section, we give a definition of
Z4-graded color superalgebra and an algebraic basis of the Bruce-Duplij model. In
Sect. 3, it is shown that if a matrix Lie superalgebra satisfies a certain condition, then
one may obtain a Z%-graded color superalgebra with the same structure constants.
This result is used to extend the result in [4] to extended supersymmetry and
conformal supersymmetry. We also show in Sect. 4 that it is possible to construct
Zg-graded SQM from the ordinary SQM as we did for Z%-graded case.

2 Z’Z’-Graded Color Superalgebra and Zg-Graded SQM

We start with the definition of Z7-graded color superalgebra. Let g be a vector space
over C or R which is a direct sum of 2" subspaces labelled by an element of the
group 75 :

g= @gor (1)

n
acZy

Regarding an element « = (a1, @2, ..., o) of Z’; as an n dimensional vector, we
define an inner product of two elements of Z; by

@ B=) api )
i=1
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Definition 1 If g admits a bilinear form [, || : g x g — g satisfying the following
three relations, then g is called a Z7-graded color superalgebra:

L. [8q: 98] < Gastps

2. [Xa, Xg] = —(=D*P [Xg, Xa],

3. [Xa, [Xg, Xy [I(=D*? + cyclic perm. = 0,

where X4 € g, and the third relation is called the graded Jacobi identity.

It is easily recognized that the bilinear form [Xy, Xg] is realized by commutator
and anticommutator:

[Xa, Xp] = XaXpg — (—D*BXgX,. (3)

The n = 1 case (Z; grading) corresponds to the ordinary Lie superalgebras. The first
non-trivial example is the Z%—graded color superalgebra consisting of four sectors
labelled by (0, 0), (0, 1), (1, 0), (1, 1).

The Zg—graded version of SQM considered in [4] (Bruce—Duplij model) is a
realization of Z%-graded super-Poincaré algebra (Z%-SPA) in the Z%-graded Hilbert
space LZ(R) ®RCH. Z%—SPA is spanned by Hop, Qo1, Q10, Z11 with the indicated Z%
grading and their non-vanishing relations are given by

{Qo1, Qo1} = {Q10, Q10} = Hoo, [Qo1, Q0] = iZ1. 4)

Hyy is a diagonal matrix operator interpreted as a quantum mechanical Hamiltonian.
Qo1 and Q9 play the role of supercharges, however, they have different degree. As
a consequence, they close by commutator (instead of anticommutator) into Z11, the
central element of the algebra.

3 Extensions of Bruce-Duplij Model

3.1 From Superalgebra to Zg-Graded Color Superalgebra

As is seen from (4), in the Z%-graded SQM of [4], each subspaces of degree (0, 1)
and (1, 0) has only one supercharge. So one may say thatitis a Z%—version of N =1
SQM. We would like to have quantum mechanical models which have more than one
supercharges in each subspace. We also want models of Z%—graded version of SCM.
These will be done by using the theorem shown below which relates an ordinary
superalgebra to its Z%—graded version [7].

Let s be an ordinary Lie superalgebra (Z,-graded Lie algebra) spanned by the
elements T with a € Z; = {0, 1}. The defining relations may be written as
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(1. i =ik, it th =ikl (T T =T (5)

where the summation over the repeated indices is understood.

Suppose that we have a representation of s in which odd (degree 1) elements
are represented by block-antidiagonal Hermitian matrix of dimensions 2m X 2m.
Suppose further that there exists a Hermitian block-diagonal matrix I" of the same
dimension which satisfies the relations

(r,1'y=0, I?=T,, (©6)

where Tl.l denotes the matrix representation of s (slight abuse of notation) and Iy,
denotes the 2m x 2m identity matrix. It then follows that [, Tio] =0.
Now we define a set of Hermitian matrices:

7?1 21[2 ® Tia’ 7;_11 = oy ®l'aTiaF. (7)

With these setting we have the followings:

Theorem 1 Let § be the complex vector space spanned by the matrices (7). By the
assignment of the Z%-degree

deg(T)) = (0,0), deg(7;") = (0,1), deg(7,)=(1,0), deg(7%) = (1, D),

8
§ forms a Z3-graded color superalgebra with the defining relations: Y
(T2, TP =i T (7. T} = i Ty
(7. 71 = in; T (T2, 771 = i T2
(T T =TT =7 1T T1= 577
(7. 71 =gk, T, 170, T = —hi; T
110, T = h T ©)

If there exist models of SQM or SCM satisfying the condition of Theorem 1,
then one may obtain their Z%-graded version immediately. As we see below, such
models of SQM and SCM indeed exist.

3.2 N Extension of 72-Graded SQM

In order to have a model of A -extended version of Bruce-Duplij model, let us
see that the model of N-extended SQM by Akulov and Kudinov [8] satisfies the
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condition of Theorem 1. The model is formulated by using matrix representations
of the Clifford algebra. For a given positive integer n we introduce the N' = 2n
Hermitian block-antidiagonal matrices subject to the relations:

ynysy =281, v =y, (10)

where I, J run from 1 to A/. We mainly work on an alternative choice of the basis
of y-matrices:

yai:%(ma_l:l:iyz[,), a=12,...,n. (11)
In this basis the relation (10) reads as follows:
v =0, oy ) =dwh. (12)
We also consider n Hermitian block-diagonal matrices given by a product of y;’s:
IL,=i%y...yv2a, a=12,...,n. (13)
It is then immediate to verify that
7 =T, ([, [5]1=0 (14)
and
v Tul=0 (k> a), T =0 k<a. 15)

The A\ supercharges of Akulov—Kudinov model are defined by the matrices
and I, as follows:

1
of = ﬁyj(p +iWm e, ML ), 0 = (0D (16)

The superpotentials W(gn) are defined recursively. For instance, forn = 1 W is
chosen to be W) = wq(x) and forn = 2

W = wo(x) + Dwi(x),  wix) = w (17
wo(x)

and so on. It is seen from (15) that I3, anticommutes with all the supercharges:
Q7. I} =0, Va. (18)

Thus one may apply Theorem 1 to Akulov—Kudinov model.
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Proposition 1 Let H be Hamiltonian of Akulov—Kudinov model: {Q}, 0, =

SapH and A = <19 1(;") The complex vector space spanned by the matrix
n

differential operators

Qr=hL®Q;, O;=iQfA, H=L®H H="HA (19)
forms a Z%-gmded superalgebra having the following non-vanishing relations:
Q1. Q) =195, ) =bwH, 197, Of I =iduH. (20)
The assignment of Z%-degree is

deg(H) = (0,0), deg(QF) =(0,1), deg(QF) =(1,0), deg(H)=(1,1).
(21)

Thus (19) gives a N -extended version of Bruce-Duplij model. The Bruce-Duplij
model is recovered from (19) by setting n = 1 (N = 2) and the identification

I B |
— = — . 22
ﬁ(Qa + Q) Q1o ﬁ(Qa +9,) (22)

More detailed analysis of N = 2 case is found in [7].

Qo1 =

3.3 72-Graded SCM

Now we consider Z%-graded version of SCM by using Theorem 1. Many models of
SCM have been obtained so far (see, for instance, [2]). Some of the models, e.g. the
ones in [9, 10], satisfy the condition (6) so that we may have models of Z%-graded
SCM of N =2, 4, 8 and so on.

As an example, we here present ' = 1 model with osp(1]2) symmetry:

1 B X

V2 V2
= 2+’32 L+ D=t o k=51 (23)
- 2 p xz 2 2x263’ - 4 xvp 2a - 2 29

where o; is Pauli matrices and 8 € R is a coupling constant. Conformal subalgebra
so(1,2) is given by ( H, D, K ). For this realization of osp(1]|2) one may
immediately see that I" = o3 commute with Q and S. Thus Theorem 1 gives us
the following operators which is a model of Z%-graded SCM:
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win-(10) o) ()
av o8 o)

o8 %). ()

(L1 7;[=<H(273 H(;H)’ 23Z(Doa3 D(;B)’ KZ(K(; Kg3>'
One may analyze this model in a standard way of conformal mechanics. Namely,
one consider eigenvalue problem of R = H + K, instead of H, by creation—

annihilation operator. Details of the analysis are presented in [7].

4 Z3-Graded SQM

Encouraged by the results obtained so far, we try to build a model of Z%—graded
version of SQM. Our strategy is similar to Z% case, i.e., find a realization of Zg-
graded super-Poincaré algebra by ordinary N' = 1 SUSY algebra which is defined
by the supercharge Q and Hamiltonian H satisfying the relations:

{0. 0} =2H, [H, Q0] =0. (24)

The ZS-SPA obtained from the result in [3] by dimensional reduction has the
following elements:

Q1 (0,0, @ (0,1,0), Q3 (1,0,0), Q4 (1,1, 1),

(25)
H (0,0,0), Zup,
and the non-vanishing relations (cf. [11]):
(Qu, Qu} =2H, [Qi, Qj1=2i2Z;, {Qi, Qu} =224, (26)

where a, b take a value from 1,2, 3,4 and i, j are restricted to 1,2, 3. The Zg-
degrees of H and Q, are indicated in (25) and deg(Z,) = deg(Q,) + deg(Qp).

In order to realize (25) in terms of (24) we introduce a complex representation of
the Clifford algebra CI(4) :

VI=01Q01, »=01Q0, y3=01Q03 Yi=0QI. 27

It is then straightforward to verify the following:
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Proposition 2 Let I' be an Hermitian operator anticommuting with Q. We assume
further that T'? is the identity operator. Then

91=LholkeQ, D =io1 @y ® 0T,
D3=io1 @y 0T, =iz @ »ys® Q (28)

realizes the Z;-SPA (25).

For completeness, we give the formula of the Hamiltonian and the central
elements:

H=[®H,
Zn=01®y QHT, Zi3=01Q s HT,
Zi4=i03 @ 24 ® H, Zpn=—ib®yys®H,

Zu=—ia®@y2ya®@HI, Zu=i@nyya@HI.  (29)

By (28) any model of (24) may be converted to the corresponding Z%—graded
version if the operator I" exists. Such I" would exist in many cases. The simplest
example is a single particle moving in one-dimensional space. In this case, Q
consists of o1, 02 and differential operator, so that one may take I" = o3.

In the present work, we showed that Bruce—Duplij model of Z%—graded SQM
is easily extended to higher values of A and to superconformal setting. It was also
shown that ' = 1 SQM is possible to generalize Zg—graded SQM. These were done
by finding a realization of a color superalgebra by an ordinary Lie superalgebra.
Therefore, we expect that it is possible to obtain models of Z7-graded SQM and
SCM in a similar and a systematic way. If it is the case, then color superalgebras
would be a quite natural object in analysis of physical problems.
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The Racah Algebra and sl )

Check for
updates

Hendrik De Bie, Luc Vinet, and Wouter van de Vijver

Abstract We conjecture the existence of an embedding of the Racah algebra into
the universal enveloping algebra of sl,,. Evidence of this conjecture is offered by
realizing both algebras using differential operators and giving an embedding in this
realization.

Keywords Racah algebra - Embedding - Lie algebra s,

1 Introduction

The Racah algebra synthesizes the properties of the Racah polynomials [8, 13],
which are the most complicated univariate discrete orthogonal polynomials in the
Askey scheme [11].

Multivariate Racah polynomials were introduced by Tratnik in [12]. These
polynomials also have a solid algebraic underpinning, as was recently established
in [3] using the higher rank Racah algebra. This higher rank Racah algebra was
initially introduced in [9, 10] in the context of superintegrability and later in [4]
as a subalgebra of intermediate Casimir elements in the n-fold tensor product of
su(l, 1).

Although the initial motivation to introduce the (higher rank) Racah algebra was
to establish a connection with the multivariate Racah polynomials, the algebra has
now become an independent object of study. In particular its relation with other
algebraic structures is part of ongoing investigations. We refer the reader to [1] for
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connections with Brauer and Temperley-Lieb algebras, and to [6] for connections
with Howe duality.
The present paper aims to provide evidence for the following conjecture:

Conjecture 1 There exists an embedding of the higher rank Racah algebra into the
universal enveloping algebra of the Lie algebra sl,,.

Indeed, we construct this embedding for a differential operator realization of
R, (recently introduced in [5]) in the enveloping algebra of a differential operator
realization of sl,. Note that the embedding in the rank one case was already
constructed in [7].

2 Definition of the Higher Rank Racah Algebra

The algebra su(l1, 1) is generated by three elements Ay and A with following
relations:

[A_, A ] =2A,, [Ap, Ax] = £AL.

Its universal enveloping algebra U (su(l, 1)) contains the Casimir element of
su(l, 1):

Ci=A}—Ag— A A_.
We define the following elements of U/ (su(1, 1))®" for 1 < k < n:
Aok = 196"V @ Ag @ 19070,

Aq = 1®%&=1 RAL® 190=h)

For any non-empty subset K C [n] := {1, ..., n} we define similarly
Aok = Z Aok, Atk = Z Ay k.
keK keK

The three operators Ag x and A+ g generate an algebra isomorphic to su(1, 1). Its
Casimir is given by

CK = A%,K —A()’K —A+)[(A,’K.

These operators generate the higher rank Racah algebra.

Definition 1 The higher rank Racah algebra R, is the subalgebra of I/ (su(1, 1))®"
generated by the set of operators

{CalAC{l,...,n}and A # 0}.
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A full account of R,, is presented in [4]. We mention one fact here: the operators
C4 are not linearly independent. By formula (17) in [4] we have

Ca= ), Cj—(AI-2)) Ci.
{i.jicA icA

Hence, if one wants to present realizations of R, it suffices to give expressions for
the operators C;; and C;. In Sect. 4 we will present the higher rank Racah algebra
as given in [5] this way.

3 Realizing sl, in n — 1 Variables

Let sl,, (R) be the algebra of n x n matrices whose trace equals zero and with the
commutator as Lie bracket. Let E;; be the matrix whose entries are equal to 0 except
for the entry on the ith row and jth column which equals 1. Then the Lie algebra
sl, (R) is generated by the set

{Eijll <i,j <nandi# jRU{E; — Ey|l <i <n-—1}.
Letu;,i € {l...n— 1} bereal variables. We introduce the differential operators:
Tij := —u;o i#jandi,j <n
Tin := —0; i<n
Tyj = ujfE j<n
7~"d = —udﬂd—]]:] d<n,

where the operator E is defined as

n—1

E = Zuiai — k.
i=1

Using again the commutator as Lie bracket we denote by ©,, the Lie algebra spanned
by all the Ty and T; ;. The real number k is a deformation parameter that leaves the
algebra relations invariant. One observes that sl,,(R) and ®,, are isomorphic. The
isomorphism o is given by

o(Eij) =Tj;
0(Eqqd — Epn) = Ty.

Note that this isomorphism does not extend to their universal enveloping algebras.
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3.1 Some Operators in U(D,)

We introduce a number of operators we need later on. Observe that the operator E
is in the universal enveloping algebra U/ (D) but not in ©, because D, lacks the
identity:

We will also express u pd, in function of the generators:

updy = —Sap(Ty +B) = Y Tuj, (1)
JjEB\a

where we introduced a new symbol standing for:
0, ife ¢ B
daB = .
1, ifa € B.

It is then easy to check the following Lemma.

Lemma 1 The following holds

[upE, 8y] = —updy — 845

[ua, 0p] = —baa.

4 Realization of R, in n — 2 Variables

In [5] an explicit differential operator realization of R,, was given in Theorem 5. We
repeat this theorem here.

Theorem 1 The space 1'1,?_2 of all polynomials of degree k in n — 2 variables
carries a realization of the rank n — 2 Racah algebra 'R,,. This realization is given
explicitly by

Ci=vivi—1), ieln]
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and, fori, j € {3,...,n},

n—2 n—2 n—2
Cpp=— (k —1- Zwaw> (—k — By + Zu(8w> + 21y (k - Zwaw>
=1

=1 =1

n—2
— 2 (—k — By + Zugaw> + 1+ ) (v + vy — 1)

=1
s -2 \? n—2
Cii=—|1-> w (k—l—Zugaw> (Buys — B,
=1 =1
j-2 n—2 j-2
+2u [ 1= u (k—Zug8W> —2v | 1= ue | (B — By )
=1 =1 =1

+ (i +vp)r+v;—1)

n—2

2
-2
C2j — ZW (1 —k — 3,41 + Zwaue) (8141'—2 - a”jfl)
=1 t=1

j—=2 n—2 j—2
+2v; | D u (k + Oy — Zugaw) 20 [ Y e | (Buyy — Buy)
=1

=1 (=1

++vj)w+v;—1

2
i—2
61‘} == Z e (auifz - aui—l) (aujfz - 8Mj—l)
t=j—1
i—2 i—2
+ 2v; Uy (8L,,._2 — 3ui_l) —2v; Uy (814]—2 — 8uj_l)
t=j—1 t=j—1

+ i +v) +v; =1,

where we assume i > j and with u,_1 = 0 whenever it appears.

We want to express these operators as elements in U (D,_1).
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4.1 The Differential Embedding

To show that each generator of R, is in U(®D,_1), we will express each ch generator
in function of 0, IE upoy, and u BE Let us start with the operator C12 We can
express this operator as follows:

Cro=—(-E—1) (<01 +E) +2v; (-E) - 20, (=01 + )
+ (v +v) v+ —1).

As ) = —Tj,—; and E are in UDy—1) sois 61\,2
Consider the first term of the operator Cy;:

— (1= uj2))* (1 = E) (9j-2 = 9j-1)
(1 —ug- 2])2 (82— 81-,1)[@
(1 —uj-2) (852 = 8j-1) (1 —ujj-2)) + 1) E
\ )

(1= ugj21) (9j—2 = 3j—1) (1 — ugj—2) E+ (1 — uj—2)) E.

In line 3 we used Lemma 1. Let

LY = (1= upj—2)) (3j—2 — 8j-1)
Ly = (1~ ujj—) E.

Both ng ) and ]L;j ) can be expressed in function of the generators of U(D,-1),
because of expression (1). The operator C; can be expressed as follows:

Cr; = LY'LY — @u; — DLY — 20/ LY + (1 + v (w1 + v — D).

This means that C"T] isalsoinU(D,_1). .
Consider the first term of the operator C3;:

ufja) (1 — 0+ fE) (8j-2—9j-1)
= —ufj_y (92— 8;-1) (~01 + E)
= —uij21 (052 = 0j-1) ugj—2 — 1) (—01 + E)

= —upj-2 (8j-2 = dj-1) uj-2 (—31 + I~E) +upja (=0 + fE) :
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In line 3 we used Lemma 1. Let
LY = ugj) (9j-2 — 9j-1)
3 T U[j-21\9)-2 J—1
]Lij) = Upj-2) (—81 + IE) .

Both ]ng ) and L‘(‘j ) can be expressed in function of the generators of U (®,_1), again
because of expression (1). The operator C>; can be expressed as follows:

Caj = —LYLY — @v; — DLY + 20y + (w2 + vj) (w2 + v; — 1).

This means that Cf‘\z/] is also inU(®,_1). .
Consider the first term of the operator C;;:

— Uiy @2 — 9i1) (3j—2 — 9j-1)
= —upj—1,i-2) ((Bi—2 — i) upj—1,i—21 — 1) (3j—2 — 3j—1)
= —upj_1,i—2) (02 — 0i—1) ugj—1,i—21 (0j—2 — dj—1)
+ugj-ri-2 (32— j-1).-
In line 2 we used Lemma 1. Let
LS = ugjorio2) (92 — 8-1)

Lg” = ugj-1i-2 (9j-2 = 9j-1) -

Both Lgij ) and }ng ) can be expressed in function of the generators of U (9, _1). The
operator C;; can be expressed as follows:

Cij = —LYLY — vy — DL 4+ 20, LY 4 (v +v)) (v +vj — D).

This means that CF‘,VJ is also in U (®,_1).This proves Conjecture 1 for this differential
realization.

5 Conclusions

In this paper we have considered the higher rank Racah algebra in one of its
differential operator realizations, obtained in the recent paper [5]. We have shown
that this realization can be embedded in the enveloping algebra of a differential
operator realization of sl,, verifying Conjecture 1 in this realization.
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This embedding gives us a good idea of what should be the abstract embedding
of R, in U(sl,_1). Achieving the abstract construct remains, however, nontrivial.
The differential embedding simplifies the problem since, e.g. all central elements Ci
become scalars and it is not immediate therefore how to lift the differential case to
the abstract one. An alternative construction might be better suited for that purpose
and we believe that the route taken in [2] for the case of the Heisenberg algebra is
promising in this respect.
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On Reducible Verma Modules over m)
Jacobi Algebra e

V. K. Dobrev

Abstract With this paper we start the study of reducible representations of the
Jacobi algebra with the ultimate goal of constructing differential operators invariant
w.r.t. the Jacobi algebra. In this first paper we show examples of the low level
singular vectors of Verma modules over the Jacobi algebra. According to our
methodology these will produce the invariant differential operators.

Keywords Jacobi algebra - Verma modules - Singular vectors

1 Introduction

The role of nonrelativistic symmetries in theoretical physics was always important.
Currently one of the most popular fields in theoretical physics—string theory,
pretending to be a universal theory—encompasses together relativistic quantum
field theory, classical gravity, and certainly, nonrelativistic quantum mechanics, in
such a way that it is not even necessary to separate these components.

Since the cornerstone of quantum mechanics is the Schrodinger equation then
it is not a surprise that the Schrodinger group—the group that is the maximal
group of symmetry of the Schrddinger equation—was the first to play a prominent
role in theoretical physics. The latter is natural since originally the Schrddinger
group, actually the Schrodinger algebra, was introduced in [1, 2] as a nonrelativistic
limit of the vector-field realization of the conformal algebra. For a review on these
developments we refer to [3].

Another interesting nonrelativistic example is the Jacobi algebra [4, 5] which is
the semi-direct sum of the Heisenberg algebra and the sp(n) algebra. Actually the
lowest case of the Jacobi algebra coincides with the lowest case of the Schrédinger
algebra which makes it interesting to apply to the Jacobi algebra the methods we
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applied to the Schrodinger algebra. This is a project we start in the present short
paper. Actually here we give as examples the low level singular vectors of Verma
modules over the Jacobi algebra.

2 Preliminaries

The Jacobi algebra is the semi-direct sum G, = H, » spn,R)c [4, 5]. The
Heisenberg algebra #,, is generated by the boson creation (respectively, annihila-
tion) operators ai+ (@ )i, j=1,...,n, which verify the canonical commutation
relations

[ai_, (1;_] = Sij’ la;” a]_] = [al.+, a+] = 0. (1

i £

H,, is an ideal in G,,, i.e., [H,, Gn] = H,, determined by the commutation relations
(following the notation of [6]):

[ar. Kij] = la . K;;1=0. (2a)

+

la; , K51 = %51'1((1;-“ + 384, [Kij-ai'] = %‘Sikaj_ + 3845, (2b)

(K. e = dona [, K] = Joua;. 2o

K lj; 0 are the generators of the S, = sp(n, R)¢ algebra:

(K Kyl =K, Kgl=0,  2[K;

K] =Ko+ Kjdki,  (3a)

2K, Kl = K8 + K[y owi + K81 + K[jok (3b)

2[Ki-}_’ Kl(c)l] = _Ki_lta/l - K;csli’ 2[K0

0. K] = K% — KL5j. GO

In order to implement our approach we introduce a triangular decomposition
of G, :
using the triangular decomposition S, = S,” ® K, & S, , where:
Gu = Hy ®Sy 5)
HE = ls{a:i=1,...,n},
St=1ls{K} :1<i<j<ne@ls{K} :1<i<j<n)

: 1§i§j§n}®l.s.{Ki0j 1 <j<i<n}
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Note that the subalgebra K, is abelian and is a Cartan subalgebra of &,,.

Furthermore, not only Sni, but also Qi are its eigenspaces:

(K, GE1 = GE. (6)

Thus, K, playsfor G, the role that Cartan subalgebras are playing for semi-simple
Lie algebras.

3 Case G

Note that the algebra G; is isomorphic to the (1+1)-dimensional Schrodinger
algebra (without central extension). The representations of the latter are well known,
cf. [3, 7-9]. Thus, we study the first new case of the G,, series, namely, G,.

For simplicity, we introduce the following notations for the basis of S :

St b=kt i=12% =k, df =k, (7a)
ST b =K;,i=12 ¢ =K,, d =K% (7b)
K: h=K), i=1.2. (7c)

Next, using (2) and (3) we give the eigenvalues of the basis of GT w.r.t. K :

12 B by et dT el a) 2 (1,0, 5, 5.5.0) (8)
D (b by, et dtafal) 2 0,1,5,-5.0,9),
(e.g., [hl,bf] = b;r, [h2,dt] = —%dﬂ etc). Naturally, the eigenvalues of

the basis of G~ w.rt. K are obtained from (8) by multiplying every eigenvalue

by (—1).
Next we introduce the following grading of the basis of g; :

(bf. by, et dt af a)) (281,285, 81 + 82,81 — 82,81, 82). ©)

The grading of the S; part of the basis follows from the root system of S,
while the grading of the ’H; part of the basis is determined by consistency with
commutation relations (2). It is consistent also with formulae (8).

Naturally, the grading of the basis of G~ w.r.t. are obtained from (9) by
multiplying every grading by (—1).
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4 Verma Modules and Singular Vectors

4.1 Definitions

We shall introduce Verma modules over the Jacobi algebra analogously to the case
of semi-simple algebras. Thus, we define a lowest weight Verma module V4 over
Gy as the lowest weight module over G, with lowest weight A € K} and lowest
weight vector vg € V4, induced from the one-dimensional representation Vo =
Cuvg of U(B,), (where B, =K, &G, is aBorel subalgebra of G,), such that:

Xv = 0, VXegG, (10)
Hvgy = AH)vy, VHEeK,.

Pursuing the analogy with the semi-simple case and following our approach
we are interested in the cases when the Verma modules are reducible. Namely,
we are interested in the cases when a Verma module V4 contains an invariant
submodule which is also a Verma module V4', where A’ # A, and holds the
analog of

Xvyy =0, VXegG, (11a)
Hvy, = A'(H)vy, YHEK,. (11b)

Since V4’ is an invariant submodule then there should be a mapping such that
v, is mapped to a singular vector v, € V# fulfilling exactly (11). Thus, as in

the semi-simple case there should be a polynomial P of G elements which
is eigenvector of KC,: [H,P] = A'(H)P, (VH € K,), and then we would have:
vy, = Puy.

4.2 Case G

We shall consider several examples of reducible Verma modules with different
weights.
Weight 28

As first example we try to find a singular vector of weight A’ ~ 28, . There are six
possible terms in U (G,) with this weight, thus, we try:

P = (1)1191+ + vctdt + U3b;(d+)2 + V4(afr)2 +vsafayd"

+v6(a)*(d)?)vo, (12)
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where v; are numerical coefficients which may be fixed when we impose (11a)
on (12). (Note that (11b) is fulfilled by every term of (12).)
After we impose (11a) on (12) we find the solution:

A(H) =3, vz = —2u,
vi = —ve(A(H2) — A(H1))2A(H) —2A(H)) — 1),
vy = 2v6(2A(Hy) — 2A(H1) — 1),
vg = v6(A(H2) — ACHD)(A(H2) — A(HY) = 7),
vs = —v6(2A(Hz) — 2A(H)) — ). (13)

Thus, the singular vector is:

VP = v((A(H) — H(A(H) — 2)((@))? —2b]) +
+ 2(A(Hy) — )2t —afa)dt +
+ (@H? =263 dH? )vo,  AH) = 3. (14)

Weight 25,

As next example we try to find a singular vector of weight A’ ~ 28, . The possible
singular vector is:

22 = (piby + paay)? o (15)
Imposing (11a) on (15) we obtain:

A(Hy) = 1. w1 = —2ua, (16)
Thus, the singular vector is:

v = pa((ad)? — 265 vy, A(Hr) = 1. (17

Weight 81 + 8>

Next we try a singular vector of weight A’ ~ §; + 8. The possible singular
vector is:

it = (kict +robldt +k3afaf + /<4(a£r)2dJr )vo. (18)
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Imposing (11a) on (18) we obtain:

A(Hy) = 3 — A(H), k1 =G —4h(1)ky,
Ky =24, k3= (2h(1) — 3k (19)

Thus, the singular vector is:

V2 = ey (3 = 20(1))@2cT —afad) + ((@)? = 265)d™ Yuo. (20)

Weight §; — &,

Next we try a singular vector of weight A’ ~ §; — 8, . The only possible singular
vector is:

V1792 = adtuy. (1)

)

Imposing (11a) on (21) we obtain that vfl ~"* is a singular vector iff:

A(Hy) = A(Hy). (22)

Weight §;

Next we try a singular vector of weight A’ ~ §; . The possible singular vector is:
vfl = (A1a1+ + kga;'d+ )vo. 23)
Imposing (11a) on (23) we obtain:
A=A =0. (24)

Thus, there is no singular vector of weight 8y .

Weight §,

Finally, we try a singular vector of weight A’ ~ 8. The only possible singular
vector is:

5 = ,ua;'vo. 25)

Us

Imposing (11a) on (25) we obtain:

1 =0. (26)

Thus, there is no singular vector of weight §; .
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Weight 35,

The only possible singular vector is:

w2 = ubfai v+ viad) v 27)

Imposing (11a) on (27) we obtain:
uw=v=0. (28)
Thus, there is no singular vector of weight 34, .
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Howe Duality and Algebras of the )
Askey—Wilson Type: An Overview e

Julien Gaboriaud, Luc Vinet, and Stéphane Vinet

Abstract The Askey—Wilson algebra and its relatives such as the Racah and
Bannai—Ito algebras were initially introduced in connection with the eponym
orthogonal polynomials. They have since proved ubiquitous. In particular they admit
presentations as commutants that are related through Howe duality. This paper
surveys these results.

Keywords Howe duality - Racah - Bannai—Ito and Askey—Wilson algebras -
Commutants - Reductive dual pairs

1 Introduction

The quadratic algebras of Askey—Wilson type such as the Askey—Wilson algebra
itself, the Racah and Bannai-Ito algebras and their specializations and contractions
encode the bispectral properties of orthogonal polynomials that arise in recoupling
coefficients such as the Clebsch—Gordan or Racah coefficients. It is therefore natural
that these algebras be encountered in centralizers of the diagonal action of an
algebra of interest g' such as 5l(2), 0sp(1/2), or U, (s[(2)), on n-fold tensor products
of representations of g'. Indeed, elements of these centralizers will be used as
labeling operators to define bases whose overlaps will be expressed in terms of the
corresponding orthogonal polynomials.

Often the algebra g' forms a reductive pair with another algebra g in which
case the Howe duality operates in certain modules. This leads to alternative
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characterizations of the quadratic algebras that are in correspondence: on the one
hand commutants in representations of the universal enveloping algebra U (g) and on
the other hand, realizations of the type mentioned above as centralizers in recoupling
problems for g'. This is the topic of this brief review which is organized as follows.
Section 2 presents the general framework. Section 3 describes as illustration the
dual commutant picture for the Racah algebra; this will involve the reductive pair
(0(6), su(1, 1)). Section 4 gives a summary of the different cases that have been
analyzed and Sect. 5 provides a short outlook.

2 General Framework

We shall say following [1] that two algebras g and g' have dual representations on
a Hilbert space H if (1) this space carries fully reducible representations of both g
and g', (2) the action of g and g' commute, (3) the representation p of the direct
sum g @ g' defined by the actions of g and g' on H is multiplicity-free, and (4)
each irreducible representation of g occurring in the decomposition of p is paired
with a unique irreducible representation of g' and vice versa. This is the essence of
Howe duality which can be proved in a number of situations. We shall consider such
instances in this paper.

Consider now a setup with the representation of g' in H = V®" given by
5821 AC=D(g")] where & : g’ — End V is a representation of g' on the vector
space V, A : g — g ® g is the coproduct, and A™ is defined recursively by
AW = (A @ 120Dy o AC=D with A©® = 1. This symmetric situation makes
it natural that there be an action of some other algebra g on the carrier space H
that commutes with the action of g'. Take the maximal Abelian subalgebra h of g
to be h >~ X®" with X one-dimensional. The pairing under Howe duality with the
representations of X®" implies that 582" [A"=D(g")] = 521[A®" o A= D(g")]
decomposes into representations of the form o] ® 02 ® - - - ® 0,(A"~D(g") with
the 0;’s being irreducible representations arising in the decomposition of &®2. This
quotienting by b is a way of posing a generalized Racah problem for the recoupling
of the n representations o; of g'.

We indicated in the introduction that the quadratic algebras 4 of Askey—Wilson
type can be obtained as (subalgebras of) centralizers of diagonal actions in n-fold
tensor products of representations. The intermediate Casimir elements in o1 @ 02 ®
.-+ ® o, manifestly centralize the action of g' on H mod h. They are taken to
generate the quadratic algebra of interest. This provides the first presentation of .4
as a commutant. The dual one is identified as follows in the present context. We
know that g is the commutant of g' in H. Moreover from the application of Howe
duality, the generators of the representation oy ® 02 ® - -- ® o, of g' are known
to commute with those that represent the subalgebra h ~ X®". The non-trivial
part of the centralizer of 01 ® 02 ® --- ® o, must therefore be obtained, in the
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given representation on 4 mod f, by those elements in the universal enveloping
algebra of g that commute with X% In other words, .4 can also be identified as the
commutant of h C g in U/ (g) as represented on H.

There is an equivalent way of looking at this. The pairing of the representations of
g and g' through Howe duality manifests itself in the fact that the Casimir elements
of g and g' are affinely related. Let C be a Casimir element of g'. Consider for
example the intermediate Casimir element given by (A @ A) o AO)] ®
19@n=4 corresponding to the embedding of g' in the first four factors of g'®?".
There will be a subalgebra g; of g that will be dually related to g' on the restriction of
H to V®4 so that its Casimir element will be essentially the one of g'. Next, looking
at the intermediate Casimir element of g' associated with a different embedding,
for instance in the four last factors of g'®?", there will be a dual pairing with a
different embedding in g of the same subalgebra g; and again the two Casimir
elements will basically coincide. These observations lead to the conclusion that
the set of intermediate Casimir elements associated with the representation of g’
is algebraically identical to the set of Casimir elements of the subalgebras of g that
form dual pairs with g' when intermediate representations of the latter are taken. It
is not difficult to convince oneself that the set of invariants connected to the relevant
subalgebras of g consists in the commutant of the maximal Abelian subalgebra of g
as concluded differently before.

To summarize, in situations where Howe duality prevails with (g, g') the pair
of algebras that are dually represented on H and if the representation of g' is of
the form 6 ®2*[ A"~ (g")], the quadratic algebras A of Askey—Wilson type can be
viewed on one hand as the commutant of this action of g' on / and thus generated
by the intermediate Casimir elements of g', or on the other hand as the commutant
of hh C g in the intervening representation of 2/ (g). We shall present next an example
of how this can be concretely realized.

3 The Dual Presentations of the Racah Algebra

The Racah algebra R has three generators K, K2, K3 that are subjected to the
relations [2]:

[Ky, K7] = K3, [K2, K31 = K22 4+ (K1, K2} +dK) + ey, .
(K3, K11 = Ki> + (K1, K2} +dK; + e,

where [A, Bl = AB — BA, {A, B} = AB + BA and d, ey, e, are central.

We shall explain how dual presentations of the algebra R as a commutant are
obtained in the fashion described in Sect. 2. The dual pair will be (0(6), su(l1, 1))
and the representation space H will be that of the state space of six quantum har-
monic oscillators with annihilation and creation operators a,,, a‘f, w,v=1,...,6

verifying [a,, ai] = . The corresponding Hamiltonian H = a;fal + -4 aga(g
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is manifestly invariant under the rotations in six dimensions. These are encoded in
the Lie algebra 0(6), realized by the generators L, = aZav — auai and possessing
the Casimir element C =}, _, L2

The Lie algebra su(1, 1) has generators Jy, J4 that obey the following commuta-
tion relations: [Jo, J+] = +£J4, [J4+, J-] = —2Jp, and its Casimir operator is given
by C = Jo?> — J.J_ — Jo. The six harmonic oscillators also provide a realization
of this algebra through the addition of six copies of the metaplectic representation

of su(l, 1), for which the generators are mapped to: Jé“ ) = %(a;au + %),

Jj_“) = %(a}l)z, JW = %(a,t)z, w = 1,...,6. Note that the operators Zzzl Jw
are invariant under rotations. The space of state vectors H thus carries commuting
representations of 0(6) and su(1, 1) and Howe duality takes place.

The maximal Abelian algebra of 0(6) is 0(2) @ 0(2) @ 0(2) and is generated by
the set {L12, L34, Lse}. The non-abelian part of its commutant in the representation
of U(0(6)) on H is generated by the two invariants

1

Ky = §(L122+L342+L132+L232+L142+L242)’ )
1

Ky = g(L342 + Lse” + Las* + L3> + Lus” + Lag”). )

Define K3 by [K1, K2] = K3. Working out the commutation relations of K3 with
K1 and K>, it is found that they correspond to those (1) of the Racah algebra with
the central parameters given by d = —%(C + L1p® + Ly + L562),

e = —&(C — L122 — 4)(L342 — L562), and ep = —é(c - L562 — 4) (L%4 — L%z).
For details see [3]. By abuse of notation we designate the abstract generators and
their realizations by the same letter.

Regarding the su(1, 1) picture, let JO“P* = ¥ 4 g0 4 g0 4 g»
denote the addition of the four metaplectic representations labeled by the vari-
ables w, v, p, A all assumed different. The corresponding Casimir operator is
Ccvoh) — (JO(“*”*/"*A))2 _Ji“’”’p’“JE"’V’p’M — JO(“’”’p’M. Quite clearly, these
actions of su(l, 1) restricted to state vectors of four oscillators are paired with
commuting actions of the Lie algebra 0(4) of rotations in the four dimensions
labeled by w, v, p, A. It is hence not surprising to find, owing to Howe duality,
that C123% = _2K; and CBP% = —2K,, namely that the intermediate su(1, 1)
Casimir operators corresponding to the recouplings of the first four and last four
of the six metaplectic representations are equal (up to a factor) to the Casimir
elements of the two corresponding 0(4) subalgebras of 0(6) which together generate
as we observed the non-trivial part of the commutant of 0(2) & 0(2) & 0(2) in
U(0(6)). This entails the description of the Racah algebra as the commutant in
U(su(l, D®3) of the action of su(l, 1) on H. Alternatively, picking the su(l, 1)
representations associated with those of 0(2) @ 0(2) & 0(2) under Howe duality
yields the sum of three irreducible representations of su(l, 1) belonging to the
discrete series; these are realized as dynamical algebras of three singular oscillators.
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Note that corresponding to the su(1, 1) representation J“" = J$ + J® is the
Casimir C**") = —1(L,,,? + 1). With the dependence on the polar angles “rotated
out”, the total Casimir element C 123439 becomes the Hamiltonian of the generic
superintegrable system on the two-sphere; the constants of motion are the quotiented
intermediate Casimir elements and the symmetry algebra that they generate is hence
that of Racah.

4 More Dual Pictures: An Overview

The main algebras of Askey—Wilson type have been studied recently from the
commutant and Howe duality viewpoints. We summarize in the following the main
results and give in particular the dualities that are involved.

4.1 The Racah Family

The higher rank extension of the Racah algebra [4] defined as the algebra generated
by all the intermediate Casimir elements of 01 ® 03 ® - - - ® 0, (A"~ D(su(l, 1)))
can be described in the framework of the preceding section with the help of the dual
pair (0(2n), su(1, 1)) using in this case the module formed by the state vectors of
2n harmonic oscillators. It is then seen to be dually the commutant of 0(2)®" in the
oscillator representation of U (0(2n)) [5].

The case n = 2 is special and of particular interest since it pertains to the
Clebsch—Gordan problem for su(1, 1), that is, the recoupling of the two irreducible
representations o1 and o3. There are no intermediate Casimirs here; the relevant
operators associated with the direct product basis and the recoupled one are
respectively M1 = o1(Jo) — 02(Jp) and the total Casimir M> = (0] ® 02)A(C).
These are seen to obey the commutation relations of the Hahn algebra [6]:

My, M2] = M3, (M3, M3] = —2{M;, M2} + 41, @
(M3, M1] = —2M\* — 4M; + &,

where 81 = 4(01(Jo) + 02(J0))(01(C) — 02(C)) and & = 2(01(Jo) + 02(Jp))* +
(01(C) + 02(C)) are central. The name of the algebra comes from the fact that
the 3 j-coefficients involve dual Hahn polynomials. In the setup with four harmonic
oscillators, with H carrying the product of four metaplectic representations, Howe
duality will imply that the total Casimir element C123% of su(1, 1) coincides with
the Casimir of o(4)—this is the same computation as the one described above.
It is easily seen that o1(Jy) — 02(Jop) is derived from %(Nl + Ny — N3 — Ny)
under the quotient by 0(2) & o0(2) with N; = aiTa,-, i = 1,...,4. It can in fact
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be checked directly, again abusing notation, that M| = %(N 1+ N> — N3 — Ny)
and M = —%(lez + L3>+ L3>+ Lo + L1y + L242) satisfy the relations
given in Eq.(4) with §; = —3(Ny + Na + N3 + N4 + 2)(L12> — L34?) and
S = %(Nl + Ny + N3+ Ny +2)2— (L122 + L342 + 2), in correspondence with
the preceding expressions for §; and 65 in the realization J{!?*% of su(1, 1). From
the expressions of these last M| and M>, we can claim that the Hahn algebra is the
commutant of 0(2) @ 0(2) in U (u(4)) represented on H. Let us stress that it is the
universal enveloping algebra of u(4) that intervenes here.

4.2 The Bannai-Ito Ensemble

The Bannai—Ito algebra [7] takes its name after the Bannai—Ito polynomials that
enter in the Racah coefficients of the Lie superalgebra osp(1|2). This algebra has
three generators K;, i = 1, ..., 3 that satisfy the relations

{Ki, Kj} = Ki + ox, i#j#kel{l, 2,3} ®)

with w; central and {X,Y} = XY + Y X. The relevant reductive pair in this
case is (0(6), osp(1|2)) and the representation space H is that of Dirac spinors in
six dimensions with the Clifford algebra generated by the elements y,, verifying
(Y-} = =284y, m,v = 1,...,6. That the pair (0(6), 0sp(1|2)) is dually
represented on H is seen as follows: The spinorial representation of o(6) with
generators

i

Juy = —iLyy + Xy, Ly = xp0y — X9y, T = 2

Yulv (6)

leaves invariant the following operators:

Jo=—=i Y Yudy, Je=—i ) Vuxu Jo=Y Xudy, 7)

1<u<6 1<u<6 1<u<6

which in turn realize the commutation relations of the Lie superalgebra osp(1]2):

[Jo, J+] = x£Jy, {Jy,J-} = —2Jp with Jy even and Ji odd. Howe duality
thus takes place. As a matter of fact, for any subset A C {1,...,6} of car-
dinality |A| the operators J4 = —i > pea Yudpus JA = —i > jea YuXu, and

Jé* = % +> peA X0, realize 0sp(1]2). The Casimir element of 0sp(1]2) is given
by C = %([J_, J+]1—1)S with S the grade involution obeying $2=1, [S, Jo] =0,
{S, J+} = 0. In the realizations at hand, $4 = il41/2 nueA vy with |A| even.
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It can be checked that the operators
Ky =M + 35125, K> = M) + 3 234 Zs6, K3 = M3 + 3 212 s,

My = (Luyiya+ Lisyiys + Luayiys + Lozyays + Loayaya + Laayzya) 212 X34,
My = (L3ay3ys + Lasysys + Laey3ve + Lasyays + Lasyays + LseYsve) X34 Xse,
M3 = (L12y1y2 + Lisy1ys + LisY1ve + Lasyays + Lasv2ve + Lssysve) X12 256

realize the relations (5) of the Bannai-Ito algebra upon taking the fol-
lowing: w;j = 2@ 23 + 2171, where I = Jip, 1> = J3s, I3 =Js6, and
Iy = (% —1 Zl§u<v§6 Ly, E,w)212234 XY'56. That these arise from dual pictures
is explained as follows (see [8] for details). On the one hand, K, K>, K3 are
observed to belong to the commutant in U/ (0(6)) of the 0(2) & 0(2) & 0(2)
subalgebra of 0(6) spanned by {J12, J34, Js6}. On the other hand, considering the
Casimir elements C4 of osp(1]2) associated with the realization by the operators
(I, J£, SA}, we find that C12Y = K, @9 = K,, and C129 = Kj.
This confirms that the Bannai-Ito algebra can be dually presented either as the
commutant of 0(2) @ 0(2) & 0(2) in the spinorial representation of I/ (0(6)) or as the
centralizer of the action of 0sp(1]2) on H. These considerations can be extended to
higher dimensions [8] so as to obtain analogously dual commutant pictures for the
Bannai-Ito algebras of higher ranks [9].

4.3 The Askey—Wilson Class

The Askey—Wilson algebra can be presented as follows:

[KB, Kc] o
s tKa= -1
[Ka, K]y Y q-—q q+q
———> +tKc=—. ®)
q-—q q9+q [Kc, Kalq B
2 — tKp= 10
q-—4q q +

with [A, B], = ¢qAB — ¢ 'BA and @, B, y central.
The U,(su(l,1)) algebra has three generators, J+ and Jp, obeying

X

[Jo,Jel==+Jx and J_Jy—q?JiJ_=q*>0[2Jp], with [x], = q;_—;jl _

Its coproduct is defined by A(Jy) = Jo® 1 + 1 ® Jo, A(Jy) =

Ji ® ¢* + 1 ® Ji. The Casimir operator C of U, (su(l, 1)) is given by
_ _ _ 1+4>

C = Ty d g 20! — s (P! g ) 4

The g-deformation o g\ (N) of o(N) is defined as the algebra with generators
Lii+1(=1,..., N —1)obeying the relations
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Li_1,; L%i+1 — (@ +q V)Liig1 Lic1 i Lijr + L,-z,,-H Li1;=—Li_1;,
Liit1 Liz,l,,- — (@ +q YLy Lijs1 Licy + L,-z,l,i Liiy1=—Lji+1,

[Liit1,Ljj+1]1=0 for |i—j|>1

We shall use the notation Llj,i =[LE
Ll:tl_;,_] L1,1+1~

The reductive pair (04172 (6), Uy (su(1, 1)) is the one which is of relevance for
the Askey—Wilson algebra. Let us indicate how 041/2 (2n) and U, (su(l1, 1)) are
dually represented on the standard state space H of 2n independent g-oscillators
described by operators {A,.i, A?} such that [A?, Al.i] = :I:Al.i, [A;, A:r] = qA?,
Ai_AlT" — qA?'Al.— =1, i =1,...,2n. The algebra U, (su(1, 1)) is represented on
‘H by using the coproduct to embed it in the tensor product of 2n copies of the
g-deformation of the metaplectic representation, this gives

e jk] +1/4 forany i < j < k, and by definition

2n

mn 1 1
(2n) 2n—1) (1 (40 1 0
Jo = Al )<§<Ai+‘>)_—2 (Ai+_;>’

i=1

1 1
J(Zn) A(Zn 1) A:l: 2 — ( 2 ] >
([Z]ql/z( i) ) [2]q1/2 12: ) l—[ 4

Jj=i+1

€))

The algebra o0,1/2(2n) can also be realized in terms of 2n g-oscillators. The 2n — 1
generators take the form

Li,i+1=q’%(A?+%)(q%A,~+A,-‘ —qTiAT A,+1) i=1,....2n—1.

It can be checked that [J\™", Li ;1] = [/, Lij11 =0, i =1,...,2n — 1,in
other words, that U, (su(1, 1)) and o ql2 (2n) have commuting actions on the Hilbert
space H of 2n g-oscillators. This sets the stage for Howe duality. In order to connect
with the Askey—Wilson algebra we take n = 3. The expressions of the operators K 4
and Kp acting on H that realize the relations (8) (together with the specific central
elements) are rather involved and we shall refer the reader to [10] for the formulas.
We shall only stress that these operators can be obtained in a dual way: They are
affinely related to the generators of the commutant of o g\ (2)®3 in 0,1/2(6) as well

as to the intermediate Uy (su(1, 1)) Casimir elements C (1234 — A0 (C )®1®1 and
CBH) = 1019 A0 (C) of the g-metaplectic representation (see (9)). This can be
extended to higher ranks by letting n be arbitrary [11]. For n = 2 we are looking at
the Clebsch—Gordan problem for Uy (su(l1, 1)). The g-Hahn algebra that arises has
two dual realizations [12]: one as the commutant of o g\ (2)®2 in U, (u(4)) and the
other in terms of the following two U (su(1, 1)) operators, (A(Jp)®1®1)—(101®
A(Jp)) and AP (C) (the full Casimir element) in the q-metaplectic representation.
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5 Conclusion

This paper has offered a summary of how the quadratic algebras of Racah, Hahn,
Bannai-Ito, Askey—Wilson, and g-Hahn types can be given dual descriptions as
commutant of Lie algebras, superalgebras, and quantum algebras. The connection
between these dual pictures is rooted in Howe dualities whose various expressions
have been stressed. The attentive reader will have noticed that the Clebsch—Gordan
problem for osp(1|2) has not been mentioned; this is because it has not been
analyzed yet. We plan on adding this missing piece to complete the picture.
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Second-Order Supersymmetric Partners )
of the Trigonometric Rosen—Morse Qe
Potential

Rosa Reyes, D. J. Fernandez, and H. Gasperin

Abstract The second-order supersymmetric partners of the trigonometric Rosen—
Morse potential are studied. The stationary Schrodinger equation for this potential
is solved in such a way that the general solution supplies straightforwardly the
eigenstates of the Hamiltonian while the non-physical solutions turn out to be conve-
niently expressed for characterizing its global properties. This allows to implement
in a simple and systematic way the second-order supersymmetry transformations.

Keywords Supersymmetric quantum mechanics - Trigonometric Rosen—-Morse
potential

1 Introduction

The trigonometric Rosen—Morse (TRM) potentials belong to the exactly solvable
class of potentials, i.e., there exist explicit analytic expressions for their energy
eigenstates and eigenvalues [1, 2]. These potentials are interesting in physics mainly
for two reasons: the first one is their possible use for describing the quark-gluon
interaction in quantum chromodynamics [3]; the second one is their intrinsic
properties, making them ideal as a toy model for studying nonlinear algebras and
supersymmetric quantum mechanics (SUSY QM) [4-6]. For example, they have a
relatively simple dependence of the x-coordinate in a finite domain. In addition,
they have an infinite discrete energy spectrum, with a nonlinear dependence of the
energy levels on the index labeling them, making these potentials a clear case study
for nonlinear algebras.

On the other hand, SUSY QM is a powerful tool for generating, from an exactly
solvable initial Hamiltonian, new families of exactly solvable Hamiltonians whose
spectra are quite similar to the initial one [7-11]. In this work we will apply the
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second-order SUSY QM to the TRM potential for generating new families of exactly
solvable potentials. Through these transformations we can design the spectra for the
new potentials in several different ways, as we will exhibit in this article.

This work consists of three parts, the first one contains a brief review of the
second-order SUSY QM, while the second will address the TRM potential and
the solution to the corresponding Schrodinger equation. In the third part we will
show results of the second-order SUSY transformation when applied to the TRM
potential. At the end we will highlight the main results of this paper.

2 Supersymmetric Quantum Mechanics

The basic idea of SUSY QM is to deal with an intertwining relation which involves
the operators H; (i = 0, 2) and B" as follows:

H,B" = BH,. (1)
We suppose that H; (i = 0, 2) are two one-dimensional Schrodinger Hamiltonians

1 d2

Hi=—~—
! 2 dx2

+Vikx), =02,

where, for simplicity, we are working in dimensionless coordinates and BT is the
second-order differential intertwining operator

s = (L e

=—-|-——nkx)— x) |,
2 a2 " e Y

with 7(x), y (x) being two real unknown functions. If we plug the expressions for

BT and H; (i = 0,2) into the intertwining relationship (1) we arrive to a coupled

system of equations which, after some work, leads to

, no o’
=Vo-r,  y=t+L-2+d @)
" 2 2
n; —%+n2n’+%—2Von2+dn2+C=0, 3)

where d, ¢ are two real integration constants. It is important to note that in these
expressions we have four unknown functions Vy, V2, 1, y, but only three equations
to determine them, thus we need some extra information to deal with the problem.
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Suppose now that Vp(x) is given, then we can determine V(x) and y (x) once
the solution 7(x) to the nonlinear differential equation (3) is obtained (see Eq. (2)).
This is done by using the ansatz

n' = —n*+28n+ 28,

with 8, & being two functions of x to be determined. This ansarz transforms Eq. (3)
into the following set of equations:

£2 =, €=13d+8), B +B>=2(Vo—e).

The first two equations produce the solutions &1 » = +4/c and €] = (d + JE) /2.
The third one is a first-order nonlinear differential equation known as Riccati
equation, which can be transformed into a linear equation through the change
Bi = uy, /ug;, leading to

— %u& + Vouoi = €juop;, i=1,2. 4)
This is the initial stationary Schrodinger equation with potential Vg for the two
factorization energies €1, €. The functions ug;, i = 1,2 are named seed solutions
in the literature; depending on whether they are square integrable or not, they are
called physical or non-physical solutions of the initial Hamiltonial Hyp.

The second-order transformations can be classified according to the sign of the
constant ¢ involved in the factorization energies €1 3. Thus, three different cases
appear: the real case for ¢ > 0, the complex case for ¢ < 0, and the confluent case
for ¢ = 0 [10-12]. In all three cases the new potential is given by

Va(x) = Vo(x) — [In (W (uor, uo2))1" - &)

The function W (11, ugz) denotes the Wronskian of the two seed solutions u¢; and
ug2 in the real and complex cases, while for the confluent case it is given by

W (uot, up2) = wo +[ [uo1 (»)1* dy, (6)
Xo

where ug; is a seed solution satisfying Eq. (4), ugy fulfills (Hy — €1)uox = uo1,
and wy is an integration constant that can be adjusted to avoid that W (uo1, ugp) will
have a zero in the x-domain. For the real case ug; and ugy must be taken as real
solutions to Eq. (4), for the complex case uo; and up are complex conjugate seed
solutions of (4) such that ugy, = ”31~ For further details on the conditions that the
seed solutions must fulfill in each case, see for example [10—12].
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On the other hand, the eigenfunctions vy, (x) of the initial Hamiltonian Hy are
related with those of the new Hamiltonian H> (Y2, (x)) as follows:

B o, (x)
\/(En —€1)(E, —e) ’

Yo (x) =

Moreover, there exist solutions to the stationary Schrodinger equation for H> with
factorization energies €1, €, which are given by:

up2 (x) oo (x) o uop (x)
W (o1, ug2)’ . W (uor, up2)”

Y2e, (X)

The kind of modifications that can done in the spectrum of the resultant Hamiltonian
H,, as compared with the initial one, depends on the factorization energies chosen,
as well as on the square-integrability of 2, and 2, .

3 Trigonometric Rosen—Morse Potential

In this section we describe briefly the trigonometric Rosen—Morse potentials. They

form a biparametric family of one-dimensional potentials in a finite domain, which

in the dimensionless coordinate x are given by

a(a+1
Vo(x) = % cscz(x) — bcot(x), a>0, belR, x € (0, m),

(7

with a, b being the parameters of the potential. Since these potentials are time

independent, it is required just to solve the corresponding stationary Schrodinger

equation

1d> a@+1D
2 dx? 2

csc?(x) — bcot(x)) U (x) = EY(x). (8)

One way to solve this equation is to transform it into the hypergeometric equation.
After doing this, the general solution to the Schrédinger equation (8) is

Y (x) = AYL(x) + BYyr(x), A,BeC, ©)
where
VL (x) = k(a, v, wye LT =0Tl ginatl oy, Fy (v+a, a+1+i7“; v—i—%‘; ezi")

+o(a, v, wel sH0—v=alx gin=a(x)
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x2 Fi <l—v—a, —a—%ﬂ—v—%;ez”), (10)

_ 2b — / /E2 2
= F——, v=1—-vVvE+~VE*+b*
V E+~+/ E2+b2

_ rQa+)r(1—v—i%) _/i2a+]l TQa+)r (v—1+ik)
k@ v, ) = ey P@vw =06 Farmhran
and
Yr(x) = Yr(m —x). (11)

In this expression, in order to obtain ¥z (x), in addition of making the reflection of
¥ (x) with respect to /2 we have to change as well in ¥ (m — x) the parameter
b by —b. Note that {1 (x), ¥r(x)} is a set of two linearly independent solutions
of Eq. (8) vanishing to the left (x = 0) and to the right (x = ), respectively.
These expressions make easy to study the behavior of the solutions, particularly the
non-physical ones. If the condition of square-integrability is imposed, we obtain the
energy spectrum of the TRM Hamiltonian, whose energy levels are given by

1 ) b?
E,=-n+a+1)> - ——— neN, 12
n 2( ) Totat ) (12)
with bound state solutions
N
Yn(x) = Cre [t =inlx sin 1 (x)
x 2 F) (—n, a+1- P 2a +2;2ie ™ sin(x)) , (13)

where C,, is a normalization constant. We have now all the information required to
implement the second-order SUSY transformations for the TRM potentials.

4 SUSY Partners of the Trigonometric Rosen-Morse
Potential

Once the general solution (9) to the stationary Schrddinger equation (8) has
been constructed, we can study the second-order SUSY transformations that lead
to a final non-singular real potential by exploring all possible combinations of
factorization energies and associated seed solutions for the real, complex, and
confluent cases [10—12]. Some examples of the resulting potentials for the different
kinds of transformations are now discussed.
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The real case has been partially analyzed in the past, for factorization energies
coinciding with two consecutive energy levels of the initial Hamiltonian [13]. To
illustrate this example, let us take as seed solutions the two bound states associated
with the factorization energies €; = E, and €; = E1, which leads to the following
potential:

Valx) = w csc2(x) — beot(x) + 4[(a + 3)% + b2

(a+2)2+b%+[(a+2)(a+3) —b*cos(2x) — (2a + 5)b sin(2x)
{(a+3)2+ b2+ [(a +2)(a+3) — b*]cos(2x) — (2a + 5)bsin(2x)}2
(14)

where b = b/(a+1). Up to our knowledge, the explicit expression for this potential
is new.

Note that in this work we extend these results, by using general seed solutions (9)
whose factorization energies are not in the spectrum of the TRM potential. For doing
this, we need to choose carefully such seed solutions, since their behavior depends
on the two constants A, B involved in the linear combination (9), which will be
taken real in order to guarantee that the seed solutions will be real. Moreover, if
A, B have the same sign, then the number of zeros of the seed solution will be even,
otherwise it will be odd. This information is enough for selecting appropriately the
seed solutions, in order to implement non-singular transformations [10].

In Fig. 1 we can see several examples of how the new potential changes as the
spectrum of the TRM potential is modified by a second-order transformation in
the real case. In the left side we observe the potentials resulting from erasing two
consecutive energy levels (dotted and dashed curves) of Vy(x) (continuous curve).
Let us note that the dashed curve in the graph corresponds to a potential given by
Eqg. (14). On the right side of Fig. I it is seen the potentials resulting from adding
two levels in the same energy gap (dotted and dashed curves).

For the complex and confluent cases there exist some restrictions on the behavior
of the seed solutions at the edges of the x-domain (see for example [10-12]). As
the solutions (10) and (11) satisfy precisely such requirements, we can use them
directly to implement the corresponding transformations.

For two complex conjugate seed solutions, and factorization energies, the
implemented SUSY transformations generate isospectral potentials. Some examples
are shown in Fig. 2.

On the other hand, the confluent case generates Hamiltonians which can be
whether or not isospectral to the initial one. This depends on the wgp-parameter of
Eq. (6), as well as of the factorization energy chosen. Due to the difficulty involved
in evaluating the integral for general factorization energies, in this work we show
only examples with a factorization energy coinciding with one of the energy levels
of the initial Hamiltonian. In Fig.3 we can see examples of the new potentials
resulting from applying the confluent second-order SUSY transformation to the
TRM potentials for the two factorization energies €] = Eg, Es3.
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Fig. 1 TRM potential with @ = 2, b = 50 (continuous curve) and its second-order SUSY partners
in the real case (dashed and dotted curves). Left: potentials resulting from a transformation with

€1 = Ey = =375, € = E; = —70.125 (dashed curve), and with € = E5 = 12.4688, ¢, =
E4 = —1.0102 (dotted curve). Right: potentials appearing from a transformation with € = —40,
€y = —60 (dashed curve), and with €; = —2, ¢ = —10 (dotted curve)

200 |{}

—200

-200 l/ !

—400 ¢ —400 -

Fig. 2 Second-order SUSY partners (dashed and dotted curves) of the TRM potential with a = 2,
b = 50 (continuous curve) for two complex conjugate factorization energies €; = €. Left: for
€1 = E; +0.5i (E; = —70.125) and for €] = E| + 20i (dashed and dotted curves, respectively).
Right: for €; = 0.5 and €; = 20i (dashed and dotted curves, respectively)
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Fig. 3 Confluent second-order SUSY partner potentials (dashed and dotted curves) of the TRM
potential with a = 2, b = 50 (continuous curve). Left: for ¢; = Eg = —134.389, wy = 0.1
(dashed curve), and for €] = Ey, wg = 0.5 (dotted curve). Right: for ) = E» = —37.5, wyp = 0.5
(dashed curve), and for €] = E;, wy = 0.1 (dotted curve)

5 Conclusions

In this work we have expressed in an appropriate way the general solution to the
stationary Schrodinger equation for the TRM potential. The main advantage of this
construction is the possibility of characterizing simply its global properties, namely,
the number of zeros and the behavior at the edges of the domain of the potential. This
allows us to implement in a systematic way the second-order SUSY transformations
once the seed solutions have been conveniently chosen.

We have reproduced the results reported in [13], but we have gone beyond by
completing the study for the real case, also we have developed in full the complex
case, and we have partially studied the confluent case, by considering only the
situation when the factorization energy becomes one of the energy levels of Hy
in the last case.

Acknowledgment Rosa Reyes acknowledges the Conacyt scholarship No. 280723.
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A Noncommutative Geometric Approach )
to the Batalin—Vilkovisky Construction et

Roberta A. Iseppi

Abstract In this paper we argue why noncommutative geometry offers a natural
geometrical framework to describe the Batalin—Vilkovisky construction for gauge
theories over algebraic spaces. A key role is played by the notion of BV-spectral
triple, which encodes all the elements of a BV-extended theory within a purely
noncommutative geometrical object. An interesting aspect of this approach is that it
provides all physical properties, like being a ghost field or anti-ghost field, with
a geometrical interpretation. We present our results for the case of U(2)-matrix
models. However, indications are given on how to perform the construction in the
general setting of U (n)-theories.

Keywords Noncommutative geometry - Batalin—Vilkovisky construction - Finite
spectral triple - Gauge theory - Matrix models

1 Introduction: Why Noncommative Geometry

Since its early days, noncommutative geometry [9] has shown a reciprocal and
valuable interconnection with several areas of mathematics, such as motivic and
foliation theory, operator algebras, and KK-theory. However, maybe even more
remarkably, noncommutative geometry revealed a deep relation to quantum field
theory and gauge theory in particular. A confirmation of that can be found in a
series of the celebrated results, which began with the pioneering papers by Connes
[8, 10], had a breakthrough in [3, 4, 11], and finally arrived to the key result obtained
by Chamseddine, Connes, and Marcolli [5] of deriving the full Standard Model of
particles, with neutrino mixing and minimally coupled to gravity, from a purely
noncommutative geometrical object. Furthermore, recently new approaches have
been suggested to go beyond the Standard Model, using the framework provided by
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noncommutative geometry as starting point to search for a new spectral model of
gravity coupled with matter [6, 7, 13].

Therefore, as confirmed by the quoted monumental results, it is natural to
investigate whether noncommutative geometry could provide a new mathematical
description of other constructions developed in the context of gauge theories. In
this article we focus in particular on the Batalin—Vilkovisky approach to the BRST
construction. After a concise recall of the needed notions from the noncommutative
geometric world (cf. Sect.2), we will briefly outline the algebraic approach to the
Batalin—Vilkovisky construction for gauge theories with an affine configuration
space (cf. Sect. 3). Then, Sect. 4 is devoted to present our main result: focusing on
a U(2)-matrix model, we present how all the elements playing a role in the BV
construction can be successfully encoded in a purely noncommutative geometrical
object, the so-called BV-spectral triple. Finally, in Sect.5 we explain how the
problem can be approached and solved in the general context of finite spectral triples
on the algebra M, (C).

2 Finite Spectral Triples and Induced Gauge Theories

Without any doubt, the notion of spectral triple plays a central role in contemporary
noncommutative geometry. In its full generality, a spectral triple can be viewed as
a noncommutative version of the classical concept of Riemannian spin manifold.
However, conversely to what happens in the classical setting, a spectral triple
presents a very rich and interesting structure also when the underline topological
space is 0-dimensional, and hence the corresponding spectral triple is finite dimen-
sional. Even more, it is precisely a finite spectral triple that, in the description of
the full Standard Model as induced by an almost commutative spectral triple [5],
encodes the particle content of the theory. Therefore, we briefly recall the needed
notions in this finite dimensional context, where also our construction will take place
(cf. [9, 12]).

Definition 1 A spectral triple (A, H, D) consists of an involutive unital algebra A,
faithfully represented as operators on a Hilbert space H, together with a self-adjoint
operator D on H, with a compact resolvent, such that the commutators [D, a] are
bounded operators for each a € A. A spectral triple (A, H, D) is finite if the Hilbert
space # and hence the algebra A are finite dimensional.

Given a spectral triple (A, #, D), its structure can be further enriched via the
introduction of a real structure, determining a real spectral triple (A, H, D, J).

Definition 2 A real structure of odd KO-dimension n (mod 8) on a spectral triple
(A, H, D) is an anti-linear isometry J : H — H that satisfies

J>=¢ and JD=¢€DJ.
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The constants € and €’ depend on the odd KO-dimension n (mod 8) as follows:

nl 3 5 7

el 1-1-1 1

€l-1 1-1 1
Moreover, we require for all a, b € A that:

— the action of A satisfies the commutation rule: [a, Jb*J _1] =0
— the operator D fulfills the first-order condition: [[D, a], Jb*J '] = 0.

Next to its purely geometrical nature, a spectral triple is also strongly related to
gauge theory: indeed, each spectral triple (A, #, D) naturally induces a gauge theory,
whose gauge-invariant action is given by the so-called spectral action.

Definition 3 For a finite spectral triple (A, H, D) and a suitable real-valued function
[, the spectral action Sy is given by

SolD + M1 := Tr(f(D + M))

with domain the set of self-adjoint operators of the form M = ) ja iID, bj], for
aj, bj e A.

Definition 4 Let X, be a vector space over R, Sy be a functional on Xy, S : Xo — R,
and G be a group acting on X, through an action F : G x X9 — X,. Then the pair
(Xo, So) 1s a gauge theory with gauge group G if it holds that

So(F (g, ®)) = So(e), Vo € Xo, Vg €G.

Concerning the terminology, X, is the configuration space, an element ¢ in X, is
a gauge field, the functional Sy is the action, and G is known as the gauge group.

Proposition 1 Each finite spectral triple (A, H, D) naturally induces a gauge theory
(Xo, So), where the configuration space is the space of inner fluctuation

Xo:={¢ =) aj[D.b;]:¢*=¢. aj.b; € A}.
j

for x the involution on A, and the action functional S is the spectral action
SolD + @] :=Tr(f(D + ¢)),

with f a polynomial in one real variable and Tr the classical matrix trace. Finally,
the unitary elements in A determine the gauge group G

Q:=U(A)={ueA:uu*=u*u=l},
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which acts on X, as follows:

g x Xo— Xp
(u, @) +— upu*+u[D,u*).

The proof of the above classical Proposition is a straightforward checking. We
remark that a similar construction can be performed also in the infinite dimensional
case. To conclude the section, we recall that there is another notion of action
for spectral triples, which will play a key role in our construction: the so-called
fermionic action.

Definition 5 For a finite spectral triple (A, H, D) (finite real spectral triple
(A, H, D, J)) the fermionic action on H; C H is given by

(Jo, D(p)); for o € Hy.

1
(‘pv D(p> (Sferm[(p] = E

1
Sferm [90] = 5

3 The BV Construction in the Algebraic Context

The Batalin—Vilkovisky (BV) formalism (cf. [1, 2]) can be viewed as the end point
of a long path, which had its motivation in the problem of defining the path integral
(cf.[16]) for gauge theories and its origin in the introduction of the concept of ghost
field by Faddeev and Popov in 1967 [14]. As suggested by the name, the ghost fields
are non-existing particles, whose function is to compensate the presence of local
symmetries and hence the appearance of divergences in the path integral. Moreover,
next to the ghost fields, the BV formalism requires also the introduction of all the
corresponding anti-fields/anti-ghost fields.

Definition 6 A field/ghost field ¢ is a graded variable characterized by two integers:
deg(p) € Z and €(p) €{0,1}, with deg(p) =€(p) (modZ/2).

deg(p) is the ghost degree, while € () is the parity, which distinguishes between the
bosonic case, where €(¢) = 0 and ¢ behaves as a real variable, and the fermionic
case, where €(p) = 1 and ¢ behaves as a Grassmannian variable:

oYy =—vp, and  ¢*=0, if el@)=e@)=1
The anti-field/anti-ghost field ¢* corresponding to a field/ghost field ¢ satisfies
deg(p®) = —deg(p) — 1, and  €(p") =e(p)+1, (modZ/2).

Then, given an initial gauge theory (Xo, So), the BV construction associates with
that a new pair (X, S), where the extended configuration space X and the extended
action § are given by:
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X = XoU{ ghost & anti-ghost fields } S=8p+ terms in ghost/anti-ghosts.

However, conditions need to be imposed on how we perform this extension, on the
number and type of ghost and anti-ghost fields we have to introduce and on the
properties satisfied by the extended action § (cf. [15, 17]).

Definition 7 Let the pair (X, So) be a gauge theory. Then an extended theory
associated with (Xo, Sp) is a pair (X, S) where X = @;cz[X] is a super graded vector
space suitable to be decomposed as

X=FeoFill, with  [X1° = X (1)
for F = @;>0F" a graded locally free Ox,-module with homogeneous components

of finite rank, and § e [0%]° is a regular function on X, with S|x, = So, S # So and
such that it solves the classical master equation, i.e.,

{5,8) =0,

where {—, —} denotes the graded Poisson structure on the algebra Oy3.

Note The condition in (1) enforces the prescription of the BV formalism of
introducing all anti-fields/anti-ghost fields corresponding to the fields/ghost fields
in X. In particular, 7 describes the fields/ghost fields in the extended theory while
F*[1] denotes the shifted dual module of the anti-fields/anti-ghost fields:

Fll=@ie[FN] wih [P =[P

Moreover, the Poisson structure on Oy is completely determined by requiring that,
on the generators of X, it satisfies the following conditions:

{Bi. 8} =0, (B B} =i and {6787} =0

for p; € 7 and Bf € [J-‘*[l]]_"_l, p € Z3o, while its value on any other possible
combination of fields/ghost fields/anti-fields and anti-ghost fields is equal to zero.

4 BV-Spectral Triple: The Notion and the Relevance

In this section we present how the BV construction for gauge theories on affine
spaces can be encoded in the framework of noncommutative geometry. For simplic-
ity, we focus on a U(2)-gauge theory, induced by the finite spectral triple

(My(C), C?, D),
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where D is a self-adjoint 2 x 2-matrix. By applying Proposition 1, we have that the
above spectral triple induces a gauge theory (Xo, So) with

Xo={M e M C): M* =M}, SoM]=Tr(f(M)) and G=U(Q),

where f a polynomial in Oy,. By fixing as basis for X the one given by the Pauli
matrices together with the identity matrix {0}, 02, 03, 04 = Id}, we have the following
identifications:

,
Xo > Af = (M, My, M3, Ma)g S =Y (M} + M3 + M3)* gk (My),
k=0

where M,,a =1, ..., 4 are real variables and g; (M) are suitable polynomials only in
My. Given the gauge theory (Xo, Sp) just described, one can verify (cf. [17]) that the
corresponding minimally BV-extended theory has an extended configuration space
whose decomposition as Z-graded vector space is:

X = (E")30(Cl, -, CH 2@ (M}, ..., M})_1®Xo®(C1, -, C3)1 ®(E)a.
and an extended action

§=So+ZeijkMi*MjCk-l-ZC?(M,’E-l-GijijCk). 2)
i,j,k i,j,k

for €;; a totally antisymmetric tensor in the indices i, j, k € {1, 2, 3}, with ;3 = 1.

After having determined this BV-extended pair (X, 5), a natural question arises:
indeed, because the pair (Xy, So) came as the gauge theory naturally induced by
a finite spectral triple, one might wonder if also the corresponding BV-extended
theory can be encoded in a new BV-spectral triple. In other words, we want to
determine a real spectral triple (Agv, Hpv, Dpv, Jpv) such that its fermionic action
Serm coincides with the BV action Sgy := S — So of the model. As we explain in
the theorem below, this goal can be reached. However, before constructing all the
elements entering the BV-spectral triple, we remark that the reason why we have to
introduce a real structure and to consider the fermionic action, instead of the spectral
action, is the presence of Grassmannian variables both in X and §S.

We define the following data:

* Apy = My (C);

* Mgy = [MrO)],, ®[M:O)]. & [Ma(T)],.
The inner product structure is the Hilbert—Schmidt inner product on each
summand. Moreover, by H vy, s, we identify the following subspace:

Hpv,r=1i-u®)@i-su2) du(l)

, 3)
~{[M, ..., M4],[Cy,...,C3,01,[0,...,0,iE]}
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where, for now, M,, C;, and E are all treated as real variables;
* the self-adjoint linear operator Dgy acting on Hgy is given by

ORT
Dgy =| RSO
T 0O

where the linear operators R, S, T are defined by
R:Hce — Hu; S:He — He; T :Hy — Hu,
¢c = [B.ecl, ¢c = la, ¢cl, ¢c = la, ¢cl+.

Here, o and B denote Hermitian, traceless 2 x 2-matrices and we stress that, while
R and § are defined as a commutator, 7 is an odd derivation, given in terms the
anti-commutator. Alternatively, if we write o and g in terms of the Pauli matrices
as follows:

o« = }[(=CHo1 + (=CHor + (—C)as]
B = I[(=M}P)o1 + (—M)os + (—MP)o3],

for C} and M} real variables, R, S, and T can be expressed as the following 4 x 4-
matrices:

0 -|-i/l4§k —iM; 0 0 -l-ngk —iC; 0
R: —iM; 0 +iM]O _|—-ics 0 +iCfoO
T +iMp—iMy 0 Of° Tl +icy —icy 0 0
0 0 0 0 0 0 0 0
0 0 0cCY
To— 0 0 0C;
0 0 0 C;‘
ci C; C; 0
* Jgv :Hpv — Hpv, With Jev(p) =i -¢*, for ¢ € Hpy. Note that (ng)2 =1d.

We remark that the operator Dgy neither commutes nor anti-commutes with Jgy.
Indeed, if we decompose Dgy as

0RO 00T
DszD1+D2 Wlth D]= R>‘< SO ) D2= 000
000 T0O

we find that

JgvDy = —DyJgy, JpvDy = +DyJpy.
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Hence, we are constructing a real spectral triple of mixed KO-dimension.

Theorem 1 The data (Agv, Hgv, Dsv, Jav) define a real spectral triple (with
mixed KO-dim.), whose fermionic action coincides with the BV action in (2):

1 .
Spv = E(JBV(‘P), Dgvo), with ¢ € Hpy, s.

where M,, E and C; have to be treated as real variables while M} and C; behave as
Grassmannian variables.

Note It can be checked that the algebra Agy is the largest unital algebra that
complete the triple (Hpy, Dpy, Jpv) defined above to a real spectral triple.

Because the theorem is proved by directly checking all the requirements
appearing in the definition of a spectral triple (cf. [18]), we prefer not to present the
details but to conclude with few remarks on how the physical properties of the BV-
extended theory get translated in the noncommutative geometrical language. Indeed,
we have that, while the anti-fields/anti-ghost fields M; and C} appear as entries of the
operator Dgy, the fields/ghost fields M,, C;, and E determine the elements in Hpy ;.
Moreover, the new phenomena of a spectral triple of mixed-KO dim. accounts for
the presence of bosonic and fermionic fields both X and S.

5 Conclusions and Outlooks

The construction presented in the above section can be applied also to the more
general case of U(n)-gauge theories, naturally induced by finite spectral triples on
the algebra M, (C). What made the above construction possible was the fact that the
extended action § was precisely linear in the anti-fields/anti-ghost fields: indeed,
this property allows to rewrite the BV action as a fermionic action, having all the
anti-fields/anti-ghost fields as entries of the operator Dgy. However, this linearity
condition holds also for U (n)-theories, with n > 2. Even though in principle a BV
action obtained by applying the algebraic BV construction could contain higher
other terms in anti-fields/anti-ghost fields, the fact that for this class of models the
algebra of gauge transformation is closed under commutations on the critical locus
Xerir € Xo of the action functional S, ensures the appearance of only linear terms
in the anti-fields/anti-ghost fields. Hence the structure found for this U(2)-model
perfectly replicates for the whole class of U (n)-theories.
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A New Method for Constructing )
Squeezed States for the Isotropic 2D S
Harmonic Oscillator

James Moran and Véronique Hussin

Abstract We introduce a new method for constructing squeezed states for the 2D
isotropic harmonic oscillator. Based on the construction SU (2) coherent states, we
define a new set of ladder operators for the 2D system as a linear combination of the
x and y ladder operators and construct the SU (2) coherent states. The new ladder
operators are used for generalizing the squeezing operator to 2D and the SU(2)
coherent states play the role of the Fock states in the expansion of the 2D squeezed
states. We discuss some properties of the 2D squeezed states.

Keywords Coherent states - Squeezed states - Harmonic oscillator - SU (2)
coherent states - 2D coherent states - 2D squeezed states - Uncertainty principle

1 Introduction

Degeneracy in the spectrum of the Hamiltonian is one of the first problems we
encounter when trying to define a new type of coherent states for the 2D oscillator.
As a continuation of the work in [1] we produce a non-degenerate number basis
(SU (2) coherent states) for the 2D isotropic harmonic oscillator with accompanying
generalized creation and annihilation operators. The squeezed states for the 2D
isotropic harmonic oscillator are then defined in terms of the SU (2) coherent states
and generalized ladder operators.
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Work on degeneracy in coherent state theory has been done, Klauder described
coherent states of the hydrogen atom [2] which preserved many of the usual
properties required by coherent state analysis [3]. Fox and Choi proposed the
Gaussian Klauder states [4], an alternative method for producing coherent states
for more general systems with degenerate spectra. An analysis of the connection
between the two definitions was studied in [5].

In the first part of the paper we address the degeneracy in the energy spectrum
by constructing non-degenerate states, the SU(2) coherent states, and we define
a generalized ladder operator formed from a linear combination of the 1D ladder
operators with complex coefficients.

In the last part of the paper we use a generalized squeezing operator and Fock
space expansion to define squeezed states for the 2D system. In both cases we use
the same definitions as for the 1D squeezed states, but replacing the Fock states with
the SU(2) coherent states and the 1D ladder operators with the new generalized
ladder operators. We discuss the spatial probability distributions of the 2D squeezed
states, as well as their dispersions.

2 Squeezed States of the 1D Harmonic Oscillator

Squeezed states, or squeezed coherent states, are a generalization of the standard

coherent states first studied by Schrodinger [6], and then formalized in the context of

quantum optics by Glauber and Sudarshan [7, 8]. In terms of the displacement and
. 7 Leat? _Eg2 .

squeezing operators D () = el/’“f_‘/’“, S¢) = e2Ea’ —§a%) respectively, where

a,a’ are the annihilation and creation operators, squeezed states are expressed as

[V, &) = DW)S(§)10), 6]

¥, & € C. Writing § = re'?, in terms of Fock states, {|n)}, the squeezed states are
given by

n

IR N W WS L
S e AL (2)

2

1 1 _|Z‘ tanh r Re(emE

where =— ¢ 2¢ 2 ,
) NGy) ~/coshr

eigenvalue equation

®). The states in Eq. (2) are solutions to the

(a+ya)lz,y)=zlz,v). 3)

Equivalence between definitions (1) and (2) is understood through the following
relationships between the parameters [9]:
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z=1v — e tanhr,
, 0
y = —e'” tanhr.

The term “squeezing” is used because the squeezed states saturate the Robertson—
Schrddinger uncertainty relation [10] but with unequal dispersions in position and
momentum (unlike the standard coherent states which saturate the Heisenberg
uncertainty principle with equal dispersions). The squeezed states have the follow-
ing dispersions:

(AX)jy 5 = (Y. 6| X7 — (X )2|1ﬂ,5):%+sinh2r+Re(ei0)coshrsinhr;

(AP)%,/,@ = (Y, &| P2 — (P)? |y, &) = % + sinh? r — Re(e'?) cosh r sinh 7,
)

where (AOA)lzw) = (1/r|0)2 — (OA)2 [vr) is the variance of the operator O in the
state |1//) The position and momentum operators are expressed in the usual way
X = (a +a), P = Lzl_(a — a'). When the squeezing is purely real & = r,

the dlsperswns become (AX)lzw £ = %e (AP)W g = %62’, in this case the

squeezed states saturate the Heisenberg uncertainty relation (AX)Izw s>(AP)‘2¢§>
1

P}

Like the standard coherent states, the squeezed states are also non-orthogonal
and they admit a resolution of the identity [11], therefore they represent an over-
complete basis for the Hilbert space of the 1D harmonic oscillator.

3 The 2D Oscillator

For a 2D isotropic oscillator we have the quantum Hamiltonian

4 1 d? 1d2+12+12
T T 2dx2 242 27

(6)
where we have set 7 = 1 and the mass m = 1 and the frequency v = 1. We
solve the time independent Schrodinger equation H |¥) = E |¥) and obtain the
usual energy eigenstates (or Fock states) labeled by |¥) = |n, m) with eigenvalue
E,m=n+m+landn,me 7=0. These states may all be generated by the action
of the raising and lowering operators in the following way [12]:

a;|n,m)=ﬁ|n—1,m), a;"|n,m)=\/n+l|n+l,m);

(7
ay_ln,m)=\/ﬁ|n,m—1), ajln,m):«/m—i—lln,m—i—l)
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The states |n, m) in configuration space have the following wavefunction:

1 1 _ﬁ
(x, yln,m) = ¥, ()Y (y) = \/W T H (x) Hp (), (®)

1 2
(i> ’ e~ 7 H, (x) is the wavefunction of the 1D oscillator

where ¥, (x) = «/W -
and H,(x) are the Hermite polynomials. For the physwal position and momentum
operators, X \lf(a +a; ), P = } (a; —a; ), respectively in the i direction,

the states |n, m) have the following dispersions:

~ 1

(AX)f 0y = (AP, ) = =5 +n 9)
~ ~ 1

Ay = (AP = 5 + . (10)

They satisfy the Heisenberg uncertainty relation (A)A( ) n,m) (Aﬁ Vnm) = é +n
which grows linearly in n in the x direction. Similarly for the Y quadratures, we
obtain (AY)|,, m) (AP Vn,m) = 2 + m.

In what follows we will construct two new ladder operators as linear combina-
tions of the operators in (7) and proceed to define a single indexed Fock state for the
2D system which yields the SU (2) coherent states. The new ladder operators and
SU (2) coherent states are used to extend the definitions of the 1D squeezed states
in Sect. 2 to the 2D oscillator.

4 SU(2) Coherent States

We use the ladder operators presented in Sect. 3 to construct a single set of creation
and annihilation operators for the 2D oscillator. Introducing a set of states {|v)}, and
defining a new set of ladder operators through their action on the set,

A W =Liv=D, AT wy=Vv+1v+1), @wp)=1, v=012,...
(1)
These states have a linear increasing spectrum E, = v + 1. We may build the states
by hand starting with the only non-degenerate state, the ground state, |0) = |0, 0)
and we take simple linear combinations of the 1D ladder operators

A+ﬂ_aa I, +1; ®,311
A;’ﬁ =aa; I, + 1, ®,3ay_; (12)

(A5 A gl = (0 + 1B ® Ty =1L
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Table 1 Construction of the

. . [v) | In,m)
states |v)q g using the relation
| ! 10) | 10,0)
Aap Ve = 1) | «l1,00+ 810, 1)
«/v+1|v+1)a,ﬂ )

@’ (2,0) + V2|1, 1) + %10, 2)
vy | = e g () e, m)

fora, p € C, I, ® I, = I, ® I, = I and normalization condition ja|* + |B)* =
Constructing the states {|v)} starting with the ground state gives us Table 1.
The states, |v), in Table 1 depend on «, 8 and may be expressed as

V=Y o"B /(Z) n,v—n). (13)
n=0

The states |v), g are precisely the SU(2) coherent states in the Schwinger boson
representation [3]. This makes sense from our construction, the degeneracy present
in the spectrum E, ;, is an SU(2) degeneracy, and so we created states which
averaged out the degenerate contributions to a given v. These states have the
following orthogonality relations:

(ilys V)ap = (7 +8B) 80,0, (14)

which reduces to a more familiar relation when y =« and § = 8
(o, g 1V)a,p = Spevs (15)

using the normalization condition ) + | ,8|2 = 1. The probability densities,
1{x, ¥[V)q,p 2, of the quantum SU (2) coherent states form ellipses when viewed
as density plots, this mimics the classical 2D oscillator spatial distribution. This has
been studied extensively by Chen [13] (Fig. 1).

The SU (2) coherent states have the followmg varlances for the phys1cal position
and momentum operators X f(a +a; ), P f (@ —gq ) respectively,

in the i direction:

2 D \2 1 2.

(AX)lv)a,,s = (APX)IU)a,ﬂ =5 + lof7v; (16)
2 p \2 1 2

(AN, 5 = (AP, , = 5 T 1BV a7

The results are essentially the same as those in (9) and (10), but they are tuned by
the continuous parameters ¢, 8 introduced in (12).
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10

Fig. 1 Density plots of | (x, y[v), g 2 for o =
both at v = 40

5 2D Squeezed States

By analogy with the 1D case we define a 2D displacement and 2D squeezing
operators

D) = ¥ Aas= Ve, (18)

and
S(E):exp( [EAY "~ EAL, ]) (19)

respectively. The generalized squeezed state is obtained through the action of the
two operators on the 2D vacuum

¥, E)g,p = DW)S(E)0)q,p - (20)

Using the expansion of the 1D squeezed states, we replace the basis |n) — [v), g
and use capital lettered parameters (to indicate they are 2D states) to get the
following:

1 |Z| tdnhR R 1()Z2 F Z Z
Z. Ty 5= o5 Re(02%) < ) H (—)lv) ,
*p «/coshR g IVAY, b J2r «p

(21
with Z = ¥ — Wel®tanh R, " = —e'© tanh R. In Fig.2 we see the effect of
increasing the strength of the squeezing, on the leftmost plot the squeezing is
relatively small, R = 0.1 and the probability density is converging to a single
maximum. This is in agreement with the limit R — 0 which would produce a
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-5 i -z [ 2 4 [} - F 2 [ H [ [

Fig. 2 Density plots of | (x, y|Z, £), 4 fora = Ll g=1,Z=1,R=0.1,6 = 0 (lef)

and o = JT§ B = % Z =1,R =10, ® = 0 (right) both with 20 terms kept in the expansion of
Eq.(21)

Gaussian distribution with single maximum [1]. On the other hand, the rightmost
plot, R = 10, reveals a separation of the probability density onto two distinct
maxima. It is important to note that the graphs are not properly normalized as a
truncated sum (20 terms) was used in the computation.

Restricting to the case of the 2D squeezed vacuum, ¥ = 0, the squeezing
operator admits an su (1, 1) decomposition [14] yielding

1

ei@ 2 2 42
|5), g = ———ex {—tanhR(ozzaJr + B*at” +aBatal) i 0,0)
*p +/cosh R P ! P ’ pas 4

2
(22)
in terms of the 1D ladder operators. Equation (22) does not factorize, |&) #
)y ® |§y)y; the bilinear 1D terms in the expansion of Aot /32 have induced a
coupling between the x and y modes of the oscillator. This represents a non-
trivial generalization of the squeezed states to 2D, a two-mode-like squeezing was
generated as a result of the construction, but the 2D squeezed states themselves
retain most of the definitions of their 1D counterparts.
To calculate the dispersions in x and y we use the Baker—Campbell-Hausdorff
identity eABe™ = B + [A, B] + %[A, [A, B]] + ... [15] to compute Bogoliubov
transformations, for example, the x ladder operators are transformed as

ST(E)a;S(E) = (|/3|2 + l? cosh R)a, + aB(cosh R — Day
) 23)
+ €' sinh R(aza;" + aﬁa;r);

SY(E)alS(2) = (1B + | cosh R)a; + a@B(cosh R — Day
(24)

+ 7' sinh R(@%a; + apay).
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Using these transformations we can compute the dispersions in x

N 1 _
(AX)‘ZEM 5= 5 + ) sinh® R + Re(e'® @?) sinh R cosh R;

2 (25)
(AP, s=5 T loe|? sinh® R — Re(e'® a?) sinh R cosh R,
and similarly for y
A 1 i€ .
(AY)leM b =3 + 181 sinh® R + Re(¢'® B2) sinh R cosh R;
' (26)

~ 1 .
(A Py)lzgw =5+ B1? sinh® R — Re(e'® B%) sinh R cosh R.

These results also hold for the generalized squeezed states [¥, &), g because the
action of the displacement operator has no effect on the variances. The results
resemble those in Eq. (5) but are modified by «, 8. We see in the limit R — 0
we saturate the Heisenberg uncertainty relation in both x and y.

6 Conclusion

In this paper we have described a method for constructing squeezed states for the
2D isotropic oscillator which relies on using the minimal set of definitions used to
describe the squeezed states of the 1D oscillator. Unlike the coherent states defined
in a similar manner in [1], the generalized squeezed states did not factorize into the
product of squeezed states on x and y independently. A coupling was induced which
took the form of a two-mode like squeezing creating an entanglement between the
two modes.

We found the dispersions for the 2D squeezed states and saw that they resemble
the dispersions in the 1D case but modified by the parameters «, 8 introduced during
the construction of the SU(2) coherent states. As well we saw a separation of
the spatial probability densities into two distinct maxima for larger values of the
squeezing R.

Finally, perhaps this method can be used to construct squeezed states for more
general degenerate and higher dimensional systems and oscillators. The approach
presented in this paper will require modification on a case by case basis because in
general a multidimensional system will admit a more complex degenerate structure,
which would significantly modify the generalized ladder operators as well as the
non-degenerate basis {|v)}. If a system possesses non-algebraic degeneracies, such
as the 2D particle in a box (e.g., 12 + 7% = 5% 4+ 5%), a new method for counting
states contributing to a degenerate subgroup |v) would be required.
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Electron in Bilayer Graphene with )
Magnetic Fields Associated with Solvable
Potentials

Daniel O. Campa, Juan D. Garcia, and David J. Fernandez

Abstract The behavior of an electron in bilayer graphene with applied magnetic
fields orthogonal to the surface is studied. By using second-order supersymmetric
quantum mechanics some analytic solutions are found, which are expressed in
terms of the eigenfunctions of two intertwined Schrodinger Hamiltonians. The
case of a constant homogeneous magnetic field which leads to a pair of shifted
harmonic oscillator potentials is discussed. A variant of this example produces
inhomogeneous magnetic fields whose exact solutions for the electron motion in
bilayer graphene are straightforwardly identified.

Keywords Bilayer graphene - SUSY QM - Solvable potentials

1 Introduction

Graphene is one of the so-called Dirac materials in the literature, which nowadays
are of great interest in physics. In particular, the analysis of its electronic properties
has become an extensive field of study. Here, we will focus in the electron motion
in bilayer graphene. The effective Hamiltonian describing the electron behavior in
either monolayer or bilayer graphene is well known [1-3]. For low energy electrons
in the monolayer a tight-binding model leads to a massless Dirac equation, where
the Fermi velocity replaces the speed of light. Nevertheless, to find exact analytic
solutions to this equation is not always simple. The first-order supersymmetric
quantum mechanics (SUSY QM) has proven useful for addressing this task [4-6].
However, for bilayer graphene a similar model does not end up with a massless
Dirac equation, but with slightly more complicated equations involving second-
order derivatives. This suggests to use now the second-order SUSY QM, where
the intertwining operators are of second order. Thus, in this paper we will use
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the second-order SUSY QM to study the electron motion in bilayer graphene, by
looking for exact solutions to the auxiliary Schrodinger problems.

2 Bilayer Graphene: A Brief Overview

2.1 Effective Hamiltonian

In the study of the electron motion in bilayer graphene, it is usual to work in the
framework of the tight-binding model [1], in which the effective Hamiltonian is
given by

1 0 =?
M=o ((n"‘)2 0 ) ’ @

where m = px — ipy, with p; being the momentum operator in j-direction,
Jj = x, y. Some important physical quantities are the effective mass of the electron
m* = |l‘l|/2UF2 ~ 0.054m,, with m, being the free mass electron, the Fermi
velocity vy = v/3a/2h ~ ¢/300 where ¢ is the speed of light [2]. Several structure
parameters of the graphene lattice appear as well in the Hamiltonian, e.g., the lattice
constant a = 2.46 A and the hopping parameter 1, = 0.381¢eV. In Fig. 1 it is shown
the lattice structure of bilayer graphene. Each layer is divided into two sublattices
A and B, with the two layers placed in positions such that the sublattices A are
aligned to each other. This configuration is the most natural in graphene, and it is
called Bernal staking. It can be noticed that the hopping parameters are labeled like
yi; however, it is usual in the literature to denote 3y = t for the in-plane hopping

Ay

Fig. 1 Lattice structure of bilayer graphene. It is shown also the lattice constant a and the hopping
parameters y;, i =0, 1,3,4
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parameter and y; = ¢, for the hopping from an atom in the sublattice A1 to an atom
in the sublattice A2.

2.2 Effective Hamiltonian with an Applied Magnetic Field

Let us suppose now that a magnetic field B orthogonal to the graphene surfaces
is applied, which points along z-direction. For simplicity, we suppose that B just
changes along a certain given direction on the surface. Working in the Landau gauge
we can write A(x) A(x)y, B(x) = B(x)z, with B(x) = dA(x)/dx. According
with the minimal coupling rule, a term proportional to A(x) must be added to the
operator v [4]. Thus, we get the new operator [T = p, —ipy — i(e/c)A(x), while
the effective Hamiltonian which takes into account the magnetic field effects looks

like
1 0 I’
= ((17*)2 0 ) ' @

The next step is to determine the eigenvectors and eigenvalues of H, which is a
non-trivial but sometimes solvable problem.

2.3 Stationary States of H

The eigenvalue equation for H can be written as
HY(x,y) = EW¥(x,y). 3)

Due to the gauge chosen, this equation is invariant under translations along y-
direction, i.e., in this direction the motion is of free particle type. Thus, it is natural
to propose ¥ (x, y) as follows:

etky 2
=5 (1)

where k is the wavenumber in y-direction and 1/+/2 is a normalization factor. Since
pj = —ihd;, j = x, Yy, after plugging equation (4) into (3) the next coupled system
of equations is obtained:

Loy @ = —ey @, Liy® = —ey . 5)
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Note that ¢ = 2m*E /h? and L, is the second-order differential operator

d2

Ly, = d2

d
+n(x ) P y (x). (6)
Let us remark that n(x) is given by
nx) =2 <k + iA(x)) , ™)
ch

thus it is directly related with B(x) as follows:

®)

For the time being, the form of the function y (x) is not relevant here. We will see
later on that it can be expressed in terms of 7 (x).

The coupled system of Eqs. (5) and the form of the operator L, in Eq. (6) suggest
to use the second-order SUSY QM to address the problem.

3 Second-Order SUSY QM

Let us consider two Schrodinger Hamiltonians

2

Hj=-—>

+ Vi), j=0,2. 9)

They are called second-order SUSY partners if there exists a second-order operator
L, intertwining them

HyL, = L, Hy, (10)

with L, being given by Eq. (6). Equation (10) produces a set of relations among
n(x), y(x), Vo(x), Vo(x), which after some work leads to

Va(x) = Vox) + 27/ (), (11)
2 /
y) =" ;x) 1 ;x) — Vo) + 12, (12)

Vo(x) =

'@ @) n2x) e+e  [e—e)
W AP TWT Tt +<2n<x)>’ (13
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where n'(x) = dn(x)/dx and so on. The factorization energies ¢; and €; are in
general complex [7]. However, in this paper we will work just with real values,
specifically with two consecutive eigenvalues of Hp, i.e., €3 = E;O), € = E;(iz 1
Although the spectra of H> and Hy are almost the same, Hp has two extra energy
levels at €1 and €. Moreover, there are some relations between the eigenfunctions
of Hy and H,, which can be derived from the next equations

to@ 2 0) 2 (0) 2
LaLyp? = (B — EP)(EY — Ej) )2, (14)

T 0 0 0) 0 0) 0
LiLoy\? = (E = EQ)(EL - ES) ), (15)

where 1//,51) and E,gl) are the corresponding eigenfunctions and eigenvalues of Hj,
I = 0, 2, respectively. Another important fact is that the two eigenfunctions w;o),
1//}921 of Hy, which are also in the kernel of L,, szj(p) x) = Lzl/f/('(jr)l = 0, are
required to determine the intertwining transformation of Eq. (10). In particular, the

0 through the relation

function n(x) can be determined from 1&;0), 1//](. 11

W vi2)

— O o (16)
W vt

nx) = —

with W(f, g) = fg — f'g being the Wronskian of f and g.

Now we can solve our original problem posed in the system of Eqgs. (5). First of
all, according to (15) the eigenvalues ¢ and thus the energy levels E for electrons
(positive energies) are given by

h? 0 0 0 0
Eg——\/(E,(,)—E; )) (E,P—E;.jl). (17)

T 2m*

The index of E is denoted 7 rather that n, since the ordering of the energy levels
of H is non-standard although the orderings of the eigenvalues of the auxiliary
Hamiltonians H; are standard. In addition, the ground state zero energy has always
double degeneracy, due to the choice of the factorization energies as two consecutive
energy levels of Hy. According with Eq. (4), the eigenvectors ¥ (x, y) can be written
as

, 0
ky o .
elky <1p,50)(x)> forn=j,j+1,

(2)
eiky Y (X) P
(¢;§0)(x)) forn#j,j+1.

Yi(x,y) = (18)

S
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4 Solvable Cases
4.1 Case with j=0

Let us consider now a constant magnetic field B = (0,0, Bp). In the Landau gauge
the corresponding vector potential becomes A = (0, x By, 0). Equation (7) implies
that n(x) = 2k + wx, where @ = 2eBy/ch. By using Egs. (11)-(13) the SUSY
partner potentials become

Vo = 2 (v 4 2) ¢ 19

()(x) = Z(x Z) E, ( )
w? 26\ 3

Vo(x) = T(x + ;) + Ea). (20)

It is seen that these potentials are two shifted harmonic oscillators differing from
each other by a constant. In the language of SUSY QM it is said that they are shape
invariant potentials, in the sense that one of them can be obtained from the other
by changing just some parameters and, perhaps, displacing the energy by a global

quantity, see Fig. 2.
The energy levels of Vy(x) and V> (x) are

EP =0, EV =0, EQ =E® =nw, n=2,3,4,..., Q1)

ie., Sp(Hy) = {E(()O), E ](0), Sp(H>)}. The factorization energies were taken in this
casease€] = E %0) and e = E(()O). The eigenfunctions of Hy and H> can be expressed
in terms of Hermite polynomials

— Volx) V(x)
""" V,(x)
eB(x)/ch /

-10 -5 5

Fig. 2 Second-order SUSY partner potentials Vo(x), Va(x) as functions of x and the constant
magnetic field (scaled) inducing them
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e

____________________ . _j____________________
____________________ 5 _j____________________
____________________ . _j____________________
____________________ ) _?____________________
2 1 1 > -

Fig. 3 The eigenvalues Ej as functions of k for the constant magnetic field
U0 =2, = e Hu), m=0,1,2,..., 22)

where 7 = /w/2(x — 2k /w). Thus, the eigenvectors ¥y (x, y) looks like

etky (0()) forn =0, 1,
Yn o (X)

o (Y O forn=23.4, ..
2\ ()
Finally, the eigenvalues of H take the form
K
Er,:2 *\/n(n—l),n=0,1,2,3,... 24)
m
Note once again that £ = E7 = 0, i.e., the ground state energy is double

degenerate. Moreover, the previous eigenvalues do not depend of the wavenumber
k, as it is shown in Fig. 3.

4.2 Case with j#0

In this case we take the Vj(x) of Eq. (19) as the initial potential, whose eigenvalues
and eigenfunctions are given in Eqgs. (21) and (22). The factorization energies are

taken as €] = E;(jzl and €) = E;O) with j > 0, and the function n(x) is calculated
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from Eq. (16). The previous choice implies that the new SUSY partner potentials
V2 (x) and Vj(x) are no longer shape invariant, i.e., the new potential V2 (x) obtained
from Eq. (11) is not just a shifted and/or displaced harmonic oscillator potential (see
Fig.4). Moreover, the new magnetic field B(x) generated through this technique is
obtained from Eq. (8), and now it is not homogeneous as in the case with j = 0 (see
Fig.5). The eigenvalues E5 of H can be written as

E; = (25)

In order that they have a standard ordering, the index 7 as a function of n should be
expressed as

~ j — f =0,...,7j
n —= '] n orn .] (26)
n—(G+1) forn=j+1,j+2,...

We can see that our system has now (j + 1) double degenerate energy levels. The
eigenfunctions %(12) (x) of V>(x) are obtained by using Eq. (5). Due to the double
degeneracy of {Ep, ..., E7} the eigenvectors of H turn out to be given by Eq. (18).

Plots of the SUSY partner potentials Vy(x), \72 (x), and the V;(x) of the previous
section are shown in Fig. 4 for ® = k = 1 and j = 3. The generated magnetic field,
as compared with the constant case of the previous section, is drawn in Fig. 5.

V(x)

Fig. 4 Second-order SUSY partner potentials Vo(x), \72 (x) and V;(x) as functions of x for w =
k=1landj=3
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-0.6+

Fig. 5 Magnetic fields B (x) and B(x) = By as functionsof x foro =k =1and j =3

5 Conclusions

The second-order SUSY QM is the natural technique to solve the electron motion
in bilayer graphene with applied magnetic fields. When a constant magnetic field is
chosen, with the factorization energies being taken as the first two energy levels of
Vo(x), a shape invariant SUSY partner potential V;(x) is obtained, and the effective
Hamiltonian has a minimal number of eigenvalues with double degeneracy (just the
ground state). In this case Vp(x) and V,(x) are simple shifted harmonic oscillators
and the associated magnetic field is constant. On the other hand, if the factorization
energies are taken as two consecutive energy levels of Vy(x), without including
E(()O), the new SUSY partner potential ‘72(x) is no longer shape invariant (it leaves
to be just a shifted harmonic oscillator), the number of eigenvalues (j + 1) with
double degeneracy grows up, and the associated magnetic field B(x) is not constant
anymore.
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Twist Knot Invariants and Volume m)
Conjecture oo

P. Ramadevi and Zodinmawia

Abstract Chern—Simons theory provides a natural framework to construct a variety
of knot invariants. The calculation of colored HOMFLY-PT polynomials of knots
using SU(N) Chern-Simons theory requires the knowledge of 6j-symbols for
the quantum group U,(sly) which are not known for arbitrary representation.
Interestingly, our conjectured formula for superpolynomials (categorification of
colored HOMFLY-PT polynomials) of twist knots led to deducing closed form
expression for these symbols for a class of multiplicity-free U, (sly) representation.
Using the twist knot superpolynomials, we compute the classical and quantum
super-A-polynomials and test the categorified version of the quantum volume
conjecture.

Keywords Chern—Simons theory - Knot invariants - Colored HOMFLY-PT

polynomials - Quantum 6j-symbols - Superpolynomials - Volume conjectures -
Super-A-polynomials

1 Introduction

The pioneering work of Witten [1] showed that Chern—Simons theory on a three-
sphere S° naturally describes knots and their invariants. The Chern—Simons action
CS(S5%) based on SU(N) gauge group is

2
CS(S3)=I</ Tr(A/\dA+§A/\A/\A>, (1)
53
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where k is the coupling constant and A (gauge field) are the su(n) Lie algebra-valued
one forms: A = Za u Ajt4dx with 1 denoting the generators of the gauge group.

For a knot K in $3, the corresponding Wilson loop operator (W L Q) is obtained by
taking the holonomy of the gauge fields along the knot. More precisely, if T are
the generators in a representation R € SU(N), then the operator colored by R is

given by
WgrIK] = Trg exp(% A).
K

The expectation value of WLO, (Wg[K]), are the knot invariants. In fact, the
(Wg—[K]) is proportional to the Jones polynomial, J(K; g), for gauge group
SU(2) and HOMFLY-PT polynomial, P(K; a, q), for SU(N) gauge group. The
polynomial variables are related to coupling constant and rank of the group as
follows: a = ¢V and ¢ = exp{[27i/(k + N)]} [1]. For higher dimensional
representation R, (Wg[K]) define the colored Jones Jr(K; g) (R € SU(2)) and
the colored HOMFLY-PT Pr(K;a,q) (R € SU(N)) polynomials. Collectively,
the knot invariants obtained from Chern—Simons theory are referred to as quantum
invariants of knots. In this note we focus on the colored HOMFLY-PT polynomials.

An intriguing property about quantum invariants of knots is the integrality
structure. We observe that the Jones polynomial for any knot has a Laurent series
expansion J(K;q) =), ciq', where {c;}’s are integers. Other quantum invariants
are also polynomials with integer coefficients. The quest to give a topological
answer to such an integrality property of Jones polynomials led Khovanov to
discover knot homology [2]. Particularly, Khovanov constructed a bigraded chain
complex (naturally associated with a planar diagram of a knot K) whose homol-
ogy HSIZ(K ) is invariant under the Reidemeister moves. Hence 7—[512(1( ) is an
1nvar1ant of the knot. More importantly, the Euler characteristics of thls bigraded
homology are the Jones polynomial: J(K; g) = Zi’ j( 1)! q/ dlm’;'-Lf"lj2 (K). Clearly,

dim’;’-lis’lj2 (K) must necessarily be an integer which provides a topological meaning
to the integers appearing in the Jones polynomial. Furthermore, a new, two-variable
invariant polynomial called Khovanov polynomial, K4 (K ; g, t), can be constructed
by taking the graded Poincaré polynomial,

Kh(K:q.1) =y t'q/dimH?(K). )
ij

Note that Jones polynomial is the 1 = —1 limit of Khovanov polynomial. In this
sense, Khovanov polynomial is the lift, or categorification, of the Jones polynomial.

The categorification of Jones polynomial by Khovanov led to the study of
homology theory for other quantum invariants. For the case of colored HOMFLY-PT
polynomial, a triply graded colored HOMFLY homology, (H%OMFLY(K )i, j.k» Was
proposed in refs. [3—7] such that the graded Euler characteristic gives the colored
HOMFLY polynomial:



Twist Knot Invariants and Volume Conjecture 277

Pr(Kia.q) = Y dlq! (=DFdim(HEOMY (K)) . 3)
ik i,j.k
(’HI;OMFLY(K )i, jk also has the physical realization as spaces of BPS states [8]. All
the information about (’H];OMFLY(K )i, jk can be encoded in its graded Poincaré
polynomial Pr(K; a, g, t) which are called superpolynomial.

Quantum knot invariants have deep connections to the three-dimensional geom-
etry in which they are embedded. The first of this relation is the volume conjecture
proposed by Kashaev [9] and later reinterpreted by Murakami [10]. This conjecture
relates the large color behavior of Jones polynomial to the hyperbolic volume of the
complement of the knot in § 3 (S 3\K ):

.27
lim —Ilog
n—oo n

h(Kig =) = Vol(s)\K) .

Here and afterward we use n to denote the (n — 1)-th rank symmetric representation
n—1

The volume conjecture is further generalized by incorporating another knot
invariant, known as the classical A-polynomial A(K; x, y), which encodes the
SL(2, C) character variety of the fundamental group of the knot complement (S3 /K
). More precisely, the generalized volume conjecture [11] states that in the double
scaling limitn — oo, i — 0, g =¢e" > 1, x = ¢" = "" = fixed,
the colored Jones polynomial has the asymptotic behavior

lim J,,(K;q:eﬁ)zexp<%50+...),

n—00,h—0

where Sp(x) =Vol(S3\K)+iCS(S3\K)+/ C;—xlogy. €))
1

The integral over x is done along A(K;x,y) = 0. Differentiating the above
equation, the conjecture states that

d
logy = —x— | i 1 K;g=e¢"
08y xdx n—>og,1}i—>0h Oan( 4 e) ’ ©)
M —x

gives the zero locus of the classical A-polynomial of the knot K.
One can quantize the classical A-polynomial by promoting the variables (x, y)
to operators (X, ) such that

(K q) =q"1(K:q), YJu(K;q) = Jur1(K; q). (6)

The quantum A-polynomial Z(K ;

18 9, q) is a polynomial in the operators (X, ¥)
and the variable ¢. In fact, A(K; X, y; g

£1
y; q) is defined as:
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AK; %, 9 9)n(K; q) =0, 7

which is also equivalent to the g-difference equation anzo am (X, ¢)Jnym(K; q) of
minimal order. We expect to recover the classical A-polynomial from the quantum
A-polynomial by taking the classical limit ¢ = 1:

AK; %, 959 =1) = A(K; x, ). (8)

The above assertion is known as the quantum volume conjecture [11], or, the AJ
conjecture [12, 13].

The generalized volume conjecture and the quantum volume conjecture (AJ con-
jecture) were further categorified for superpolynomials in [14, 15] by including the
two-parameters (a, t). In this categorified version, one defines the classical super-A-
polynomial, AS"P*"(K; x, y; a, t), to be an (a, t) deformation of A(K; x, y) which
can be obtained by substituting P, (K; a, g, t) for J,(K; q) in (5). Likewise, the
quantum super-A-polynomial, ASUP“(K 1 X, v, a,q,t),is also an (a, t) deformation
of A\(K; X, y; q). Basically x, y are defined as

XPu(K;a,q.1) =q"Pu(K;a,q,1), YPu(K;a,q.1) =Ppt1(K;a,q,1),
and the corresponding quantum super-A-polynomial obeys
AWK £, 95a,q,0)Pa(K;a,q,1) =0, ©)
The categorified version of the quantum volume conjecture states that
ASPN(K R, §ra, g = 1,1) = AP(K; x, y; a, 1), (10)

This note is organized as follows. In Sect.2, we briefly review how to use
the correspondence between Chern—Simons theory and Wess—Zumino—Novikov—
Witten (WZNW) model given in [1] to calculate knot invariants. This method
explicitly requires the knowledge of the quantum 6j-symbols or the quantum
group Uy (sly) to write colored HOMFL-PT polynomials. In Sect. 3, we focus on
a class of knots called twist knots K. Particularly, motivated by the structure of
colored Jones polynomials J,, (K, ¢) for the twist knots, we conjectured the colored
superpolynomials for the twist knots. Comparing P,(K,; a, q) with the formal
Chern—Simons knot invariant, we obtained a closed form algebraic expression for
the Uy (sly) quantum 6j-symbols for a class of multiplicity-free representation.
Using our conjectured superpolynomials, we find the classical super-A-polynomial
and the quantum super-A-polynomials for the 5, twist knot in Sect. 4 and test the
categorified quantum volume conjecture.
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2 Chern-Simons Theory and Knot Invariants

In order to calculate (Wg[K]) for a given knot, we slice the three-sphere S3
containing the knot (redrawn in an appropriate way) into pieces as shown in Fig. 1.
Each three-ball has one or more S? boundaries with punctures. Arborescent knots
are those knots in $3 obtained from gluing three-balls with four punctured S2
boundaries. Other knots which cannot be viewed by gluing three-balls with four
punctured S? boundaries are called non-arborescent knots. We will confine to
invariants of arborescent knots carrying symmetric representation of SU (N) group.

Chern—Simons functional integral on three-balls with one or more four punctured
boundaries is denoted by states in the space of four-point conformal blocks of
SU (N)r WZNW conformal field theory [1]. As evident from the knot 1075, diagram
shown in Fig. 1, we require states corresponding to the fundamental building blocks
in Fig. 2. The braid word B in v, are made up of concatenation of the four types
of braiding between two adjacent strands shown in Fig. 3. Then, using the Chern—
Simons and WZNW correspondence, the basis states of the braiding generators are
the four-point conformal blocks (see Fig. 4):

b®1¢/(R1, R, R, Ra)) = 2 (R, Ra)I¢ (R, R1, R, Ra)) ., (1)
571y (R1. R, R, Rs)) = A (Ra, R3) 15 (R1, Ra, Ro. R4)) (12)
b 160 (Ri, R, Rs, Ra)) = 2 (Rs, Ra)ldn(R1, R, R, R3)) . (13)

Here b; means braiding between i-th and the (i 4+ 1)-th strands and the braiding
eigenvalues in the vertical framing are

Fig. 1 Knot 1015, from
gluing three-balls

=
NI

p1
p2

Wl W
3
]\

Ds
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52 boundary
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Fig. 2 Building blocks
CRr,+Cr,—Cp +1
+ + CRUTTRY TR
WORLR) =€ a) (q z ) : (14)
where et(,iR)l R, = 41 and Cg is the quadratic Casimir for representation R. Note

that the internal representation has to satisfy the fusion rules. That is, € (R ®
R)N(R3® Ry) and s € (R> ® R3) N (R ® R4). Since the two bases spanned the
same Hilbert space, they are linearly related to each other by the fusion matrix ay;

¢4 (R1, Ra, Rs, Ra)) = a,s[g; ﬁj} 135 (R, Ra, R, Ra)).

For SU(N); WZNW model, the properties of the fusion matrix are same as the
quantum Racah coefficients (proportional to the 6j symbols of the quantum groups
U, (sly)). Using these four-point conformal block basis, braiding eigenvalues and
fusion matrices, the states denoting the fundamental building blocks in Fig. 2 are

vi = \/dr,dr,|d0(R1. R1, R, Rz))(l), U] = \/dedR2|¢A50(R1, Ry, Ry, él))(l) ;

n= Y {Blei(R. Re R RN [ar(Re. Ro R )
[E(R1®R2)N(R3QRy4)
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Fig. 3 Types of braiding
p(+H) (=) J
W {

Right — handed crossing

iR ints

Left — handed crossing

YY1

6¢(Ry, Ra, R, Ry) és(R1, Ro, R3, Ry)

Fig. 4 Two bases for four-point conformal blocks

2—r _ B .
Ur :Z(\/CZ) ‘¢1(R1,R1,Rz,Rz))(l)...|¢I(Rr,Rr,R1,R1))() , 15)

t

where 7 € (R ® R)) N....N (R ® R,) and dp is the quantum dimension of a
representation R. The superscripts outside the four-point conformal blocks denote
the boundaries as indicated in Fig. 1. The 0 in ¢ and ¢o represents the singlet
representation. Substituting the building blocks states for each three-ball, we can
write (Wg[10152]). Basically, gluing the three-balls along oppositely oriented S>
boundaries involves inner product of four-point conformal bases with its dual four-
point conformal blocks. The final invariant can be written in terms of braiding
eigenvalues and the U, (sly) Racah coefficients [16]. In order to write the explicit
polynomial form in variables a = qN , ¢, we require the U, (s[y) Racah coefficients
which is not known for general SU (N) representations. We will now review our
work on superpolynomials for twist knots leading us to conjecture some U, (s[y)
Racah coefficients.
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3 Twist Knots

The colored Jones polynomial of twist knots K, with 2p half-twists [17] has a
multi-sum expression. We observed that the summand consists of the polynomial
of the trefoil K1 = 37 for p > 0 (K_1 = 44 for p < 0) as the main body and a
twisting factor. With this structure in mind, the superpolynomials for trefoil 3y and
figure-eight 41 [14, 15] can be seen in a more succinct form:

atq™'; @)k

o0
P.(Ki:a,q,t) = (—t —n+1 (= l—n; —af’ n—l;
(Ki;a,q,1) = (—1) l;)q @ (@' q),(—at’q" "1 q),

= (07" ¢ Hu = (07" Y Fasla, g0, (16)

k=0 k=0
o0 X o0
Pu(K_1:a.q.0) =Y (—at®) "¢ " IPH, , =3 " Guila.q.t), (A7)
k=0 k=0

where we use the g-Pochhammer symbol (z; ¢)x = ]_[];;(1)(1 — zq7). We expect
the superpolynomial for twist knots K, for |p| > 1 involving the above summand
multiplied by twisting factors:

o0
Pu(Kpso0;a,q,t) = (=)~ Z Fus,(a, g, t)xTwisting Factor, (18)
S|p|=--28120

o0
Pn(Kp<o;a,q,1) = Z Gn.s,(a, q, 1) x Twisting Factor. (19)
S|p| = 25120

The form of the twisting factor can be conjectured from the colored superpolyno-
mials of 5, = K5 and 6; = K_; calculated in refs. [4, 18] up to n = 3. From this
data we could guess the form of the twisting factor for |p| = 2 and generalize to
arbitrary | p|. We have checked our conjectured superpolynomials (See eqns.(2.18,
2.19) in ref. [19]) with known results in the literature.

In order to study asymptotic expansion of superpolynomials, it is important to
reduce the multi-summation to minimum number of summation. We succeeded in
converting the multi-summation into a double summation using Bailey identities
(see appendix A in ref. [19]):

ook —1
_ —atq ", q _ _
Pa(K p=0; a, ¢, 1) = (—1) ”*‘ZZq"(.i)"(q‘ " n(—at’q"" s g
et (4 D

2 20—1
x (=) (ar?)P g pH1/20E=D 1-at”qg™ [k} . (0
(@?q"~" e L],
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where g-binomial is given by |:Zi| = %. Pu(Kp<0;a,q,t) has the
q

same expression as P, (K ,~0; a, g, t) but without the factor (=)L, Following
the methodology in section 2, the Chern—Simons field theory invariant (Wg[K 1),
in terms of braiding eigenvalues and U, (sly) Racah coefficients, for twist knots K,
turns out to be

itk = et A0 R) o [ 1] 5 )

where 5,5’ € R ® R. Comparing the superpolynomials at t+ = —1 with the
above invariant, we obtained U, (sly) Racah coefficients for SU(N) symmetric
representations up to rank n = 3 [16]. Comparing with the formula of the U, (s1>)
6j-symbols obtained by Kirillov and Reshetikhin [20], we conjectured a closed
form expression for the U, (sly) quantum Racah coefficients [21] for the following

two types:
Ry Ry | . R Ry
“ |:R3 R4] o [R’; R4} ,

where Ri, Ry, R3, R4 are symmetric representations with single row in the Young
diagram.

4 Volume Conjectures and Super-A-Polynomial

We consider the asymptotic form of our conjectured formula of superpolyno-
mials (20) for knot 5, and perform saddle point analysis to obtain classical
super-A-polynomials ASYP®T(K ,_»; x, y; a, t). We introduce two variables z =
e w = " and take the limits: ¢ = ¢ — 1, a = fixed, t = fixed, x =
q" = fixed, in (20) and convert the two summation to integrals over z and w. Then
using the categorified volume conjecture, we have
PaK o 4,9, ey fdzdw eE(W(K,Do L) +Om) e(%flogy‘il+..‘)’
2D
where the integral on RHS in Eq. (21) is over the zero locus of the clas