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Preface

This book is the proceedings volume of the Symposium Quantum Theory and
Symmetries-XI (QTS-XI) that was held in Montréal from July 1st to 5th, 2019.
The symposium consisted of nine sessions including a special session in honour
of Professor Decio Levi of the University Roma Tre and the sessions: Algebraic
Methods, Condensed Matter Physics, Cosmology and Gravitation, Integrability,
Non-perturbative QFT, Particle Physics, Quantum Computing and Quantum Infor-
mation Theory and String Theory/AdS-CFT. Each session was associated with one
or two plenary speakers followed by parallel sessions with speakers of invited and
contributed talks. For complete information, please visit the website: http://www.
crm.umontreal.ca/2019/QTS2019/index_e.php. Several of the plenary speakers and
many of the invited and contributing speakers have supplied a contribution to this
proceedings volume. It is intended for use by students, researchers and professors
in a wide range of fields from mathematical physics to more mainstream physics as
evinced by the topics of the various parallel sessions. It should allow the reader to
grasp the breadth and scope of the vast field of quantum theory and symmetries.

As these proceedings were being completed, our dear colleague, mentor and
friend Pavel Winternitz passed away. We wish to dedicate this volume to him in
recognition of his scientific legacy and as an expression of our gratitude.

Montréal, QC, Canada M. B. Paranjape

Montréal, QC, Canada Richard MacKenzie

Utica, NY, USA Zora Thomova

Montréal, QC, Canada Pavel Winternitz

Montréal, QC, Canada William Witczak-Krempa
June 2020
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Statement of Principles

Free Circulation of Scientists The principle of the Universality of Science is fun-
damental to scientific progress. This principle embodies the freedom of movement,
association, expression and communication for scientists, as well as equitable access
to data, information and research materials. In pursuing its objectives with respect
to the rights and responsibilities of scientists, the International Union of Pure and
Applied Physics (IUPAP) actively upholds this principle and, in so doing, opposes
any discrimination on the basis of such factors as ethnic origin, religion, citizenship,
language, political stance, gender or age. IUPAP should only sponsor conferences
and events at institutions and in countries that uphold this principle. If scientists
are excluded from attending IUPAP-sponsored international conferences by a host
institution or country on the basis of any of these factors, IUPAP should register its
concern at the highest level of that institution or country and should not sponsor any
future events in that country until such exclusions have been eliminated.

Harassment at Conferences It is the policy of the International Union of Pure and
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will enjoy a comfortable experience, and that they will treat each other with respect
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Part I
Special Session in Honour of Decio Levi:

Integrability: Continuous and Discrete,
Classical & Quantum



Spin Chains of Haldane–Shastry Type:
A Bird’s Eye View

Federico Finkel, Artemio González-López, and Miguel A. Rodríguez

Dedicated to our friend and colleague Decio Levi in his 70th
anniversary

Abstract We present a brief report on the main properties of Haldane–Shastry type
spin chains and their relation with Calogero–Sutherland spin dynamical models.
Recent work on the thermodynamics of these chains is also discussed.

Keywords Integrable systems · Spin chains · Statistical mechanics

1 Introduction

This is a short review of the construction and main properties of integrable spin
chains of Haldane–Shastry type stemming from their relation with many-body spin
Calogero–Sutherland models, briefly outlining the exact evaluation of their partition
function and studying their thermodynamics.

The Haldane–Shastry chain was introduced independently by Haldane [16] and
Shastry [24] in the late eighties in connection with the one-dimensional Hubbard
model. The explicit computation of its spectrum and its remarkable mathematical
properties attracted very quickly the attention of many researchers in condensed
matter physics. Its extension to other similar chains was carried out through
their relation with spin Calogero–Sutherland models, and many of its integrability
properties were also related to those of the latter models. The classification of
Calogero–Sutherland type models by Olshanetsky and Perelomov [21], and their
relation with the theory of homogeneous spaces and simple Lie algebras and their
root systems, was the clue to understanding their properties in a broader context.
The freezing trick, as introduced by Polychronakos in [23], makes it possible to
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explain the construction of these chains starting from a spin dynamical model based
on those studied by Olshanetsky and Perelomov and the evaluation of their partition
function. In this contribution we shall outline the main steps of this construction,
and conclude with some recent applications to the study of the thermodynamics of
these chains.

2 Calogero–Sutherland Models

The study of integrable systems, in the classical sense of the Liouville–Arnol’d
theory, has occupied the activity of many researchers working in different fields
of physics and mathematics. However, many-body systems satisfying the required
integrability properties are rarely found in physics. Thus the construction of one-
dimensional models of many particles by Calogero and Sutherland in the sixties
was a breakthrough, and represented a major contribution to this field, as shown by
their impressive number of applications of Calogero–Sutherland models in so many
areas of physics.1 We will introduce in this section a short account of these models,
thus paving the way for the construction of long-range integrable spin chains based
on them.

2.1 The Calogero Model

The Calogero model [5]

H = −
∑

i

∂2
xi
+ ω2

∑

i

x2
i +

∑

i �=j

a(a − 1)

(xi − xj )2 (1)

describes a system of N particles on the line with an inverse-square interaction
potential. In the previous formulas all sums are understood to run from 1 to N ,
x ≡ (x1, . . . , xN) and a > 1/2 is the system’s coupling constant. Its classical
version

H =
∑

i

p2
i + ω2

∑

i

x2
i +

a(a − 1)

(xi − xj )2

is integrable (in fact, superintegrable [26]), as can be shown by Moser using Lax pair
techniques [20]. In the quantum case, the ground state is given by the Jastrow-type
expression

1Bill Sutherland, Francesco Calogero, and Michel Gaudin were recently awarded the 2019 Dannie
Heineman Prize of the American Institute of Physics and the American Physical Society for their
seminal contributions to statistical mechanics and many-body physics.
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μ(x) = e−
1
2 ω
∑

i x
2
i

∏

i<j

|xi − xj |a, (2)

in the region x1 < x2 < · · · < xN . The spectrum can be algebraically computed,
with the result:

En = 2ω
∑

i

ni + E0, E0 = [1+ a(N − 1)]Nω,

where E0 is the ground state energy and the multiindex n = (n1, . . . , nN) satisfies
n1 � · · · � nN � 0. The ground state can be used as a gauge function, leading to
the gauged Hamiltonian

HG = μ(x)−1Hμ(x) = −
∑

i

∂2
xi
+ 2ω

∑

i

xi∂xi − 2a
∑

i<j

1

xi − xj

(
∂xi − ∂xj

)
.

This expression is crucial in the study of the dynamical spin models, where Dunkl
operators [8] discussed below also play an important role.

The above simple closed formula for the energy spectrum of the Calogero model
allows one to evaluate its partition function in closed form. Indeed,

Z(2ωT )=
∑

n1�···�nN�0

e−En/(2ωkBT )=qE0/(2ω)
∑

n1�···�nN�0

q
∑

i ni , q=e−1/(kBT ),

where T is the temperature and kB Boltzmann’s constant. If we define the indices ki
as

ki = ni − ni+1, i = 1, . . . , N − 1, kN = nN,
∑

i

ni =
∑

j

jkj ,

a straightforward computation yields

Z(2ωT ) = qE0/(2ω)
∑

k1�0,...,kN�0

q
∑

j jkj =
N∏

j=1

1

1− qj
. (3)

2.2 The Sutherland Model

The Sutherland model [25] describes a system of N particles on a circle, the
potential being now a trigonometric function with singularities at the collision
points:
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H = −
∑

i

∂2
xi
+ a(a − 1)

∑

i �=j

1

sin2(xi − xj )
. (4)

The ground state is again of Jastrow type,

μ(x) =
∏

i<j

| sin
(
xi − xj

)|a, E0 = 1

3
N(N2 − 1)a2,

and the gauged Hamiltonian, after the change of variables zj = e2ixj , j = 1, . . . , N ,
reads:

HG = μ−1Hμ = 4
∑

i

z2
i ∂

2
zi
+ 4

∑

i

zi∂zi − 4a(a − 1)
∑

i �=j

zizj

(zi − zj )2 .

As in the case of the Calogero model, the spectrum can be algebraically
computed, with the result:

En =
∑

i

(2ni + (N + 1− 2i)a)2,

where now ni ∈ R with n1 � · · · � nN and (in the center of mass frame)
∑

i ni = 0.
Removing the energy of the ground state, the dominant term of En when a →∞ is

En ∼
a→∞ 4a

∑

i

ni(N + 1− 2i) = 4a
∑

j

j (N − j)kj ,

where again ki = ni − ni+1 for i � N − 1 and kN = nN . It follows that

lim
a→∞Z(4aT ) =

N−1∏

j=1

1

1− qj (N−j)
. (5)

This expression is useful for the computation of the partition function of the
Haldane–Shastry spin chain [10].

3 Spin Dynamical Models

The one-dimensional systems we have described in the previous sections can be
extended to incorporate the spin of the particles (where spin must be understood
as internal degrees of freedom, not necessarily su(2) spin) while keeping their
integrability properties.
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To introduce the spin of the particle, we must consider wavefunctions which are
linear combinations of the product ϕ(x)|s〉 of a scalar function and a spin state |s〉,
where

|s〉 ≡ |s1, . . . , sN 〉 ∈ Σm ≡
N⊗
i=1

Cm,

and si ∈ {1, . . . , m} is the value of the spin of the i-th particle. In order to describe
the spin interaction, we introduce spin terms in the Hamiltonian through the spin
exchange operators Sij defined by

Sij |s1, . . . , si , . . . , sj , . . . , sN 〉 = |s1, . . . , sj , . . . , si , . . . , sN 〉 . (6)

For the sake of simplicity, in the rest of the section we shall restrict ourselves to the
Calogero spin dynamical model.

3.1 The AN−1 Spin Calogero Model

The spin dynamical Hamiltonian corresponding to the extension of the Calogero
model can be expressed as

Hε = −
∑

i

∂2
xi
+ a

∑

i �=j

1

(xi − xj )2
(a − εSij )+ ω2

∑

i

x2
i , ε = ±1. (7)

In order to compute its spectrum we introduce the coordinate permutation operators
Pij , which act on a scalar function as

Pijϕ(x1, . . . , xi, . . . , xj , . . . , xN) = ϕ(x1, . . . , xj , . . . , xi, . . . , xN).

We then introduce the scalar operator

HP = −
∑

i

∂2
xi
+ a

∑

i �=j

1

(xi − xj )2
(a − Pij )+ ω2

∑

i

x2
i ,

formally obtained by replacing εSij by Pij in the expression (7) for Hε . Using the
ground state wavefunction, the operator can be gauge-transformed into

HP
G = μ−1HPμ =−

∑

i

∂2
xi
+ 2ω

∑

i

xi∂xi − 2a
∑

i<j

1

xi − xj
(∂xi − ∂xj )

+ a
∑

i �=j

1

(xi − xj )2 (1− Pij )+ E0. (8)
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The operator HP
G can in turn be expressed in terms of the Dunkl operators

Ji = ∂xi + a
∑

i �=j

1

xi − xj
(1− Pij ) (9)

as

HP
G = −

∑

i

J 2
i + 2ω

∑

i

xi∂xi + E0. (10)

The operators (9), introduced by Dunkl [8] in connection with the theory of
orthogonal polynomials in several variables, are related to the reflection groups of
root systems (in this case, AN−1). These operators form a commuting family, i.e.,
[Ji, Jk] = 0. More importantly for the purposes of this work, they also have the key
property of leaving invariant certain polynomial modules [11].

The spectrum of the operator HP
G can be readily computed from the commuta-

tivity of the Dunkl operators Ji , taking advantage of the fact that their action on the
invariant modules can be easily triangularized. In this way one can show that the
spectrum of the operator HP is given by the expression

En = 2ω
∑

i

ni + E0,

where, by contrast with the scalar Calogero model, the numbers ni are arbitrary
nonnegative integers. If Λε is the total symmetrizer (if ε = 1) or skew-symmetrizer
(if ε = −1) in both coordinates and spins, the identity HεΛε = HPΛε clearly
holds. Thus the energies of the dynamical spin Hamiltonian Hε and the operator
HP coincide, although their degeneracies are different due to the spin degrees of
freedom.

Following the same steps as in the scalar case, it is not difficult to find the
partition function of the Hamiltonian Hε . The intrinsic spin degeneracy of an energy
level can be determined as the number of ways of assigning one of the m spin values
si to each of the components of the multiindex

n = (p1, . . . , p1︸ ︷︷ ︸
k1

, . . . , pr , . . . , pr︸ ︷︷ ︸
kr

), with p1 > · · · > pr � 0,
r∑

i=1

ki = N,

in such a way that in each constant sector pi, . . . , pi we have either a strictly
increasing (for ε = −1) or nondecreasing (for ε = 1) sequence of spin values.
Thus the intrinsic spin degeneracy of the energy En is given by

Dε(k;m) ≡
r∏

i=1

dε(ki;m) , with dε(ki;m) =
(
m+ δε1(ki − 1)

ki

)
.
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Calling k = (k1, . . . , kr ), the partition function of the Hamiltonian Zε can be
expressed as

Zε(2ωT ) = qE0/(2ω)
∑

k∈PN

∑

p1>···>pr�0

Dε(k;m) q
∑r

i=1 kipi ,

where PN denotes the set of partitions of the integer N taking order into account.
After a straightforward calculation the latter expression yields the closed formula
[10]

Zε(2ωT ) = qE0/(2ω)

1− qN

∑

k∈PN

Dε(k;m)

r−1∏

i=1

qKi

1− qKi
, (11)

where we have set

Ki ≡
i∑

j=1

ki .

Similar results are obtained for the Sutherland (trigonometric) model (4) with spin
degrees of freedom.

4 Spin Chains of Haldane–Shastry Type

By a spin chain we usually understand a one-dimensional lattice whose sites are
occupied by particles with internal degrees of freedom. In this work we shall deal
exclusively with spin chains with long-range interactions, involving all the sites.
Moreover, the chain sites must be chosen in a very specific way, which is critical for
ensuring the symmetry and solvability properties of the models.

For the sake of simplicity, in what follows we shall focus on the rational Calogero
model of AN−1 type and its associated spin chain introduced below, although the
methods applied can be used for any of the models we have previously discussed.
Let us then consider the two Hamiltonians we have previously studied, namely the
scalar one H in Eq. (1) and the spin dynamical Hamiltonian Hε in Eq. (7). Defining
the scalar potential

U(x) =
∑

i �=j

1

(xi − xj )2 +
∑

i

x2
i (12)
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and taking ω = a, we can write the Hamiltonian (7) as

Hε = −
∑

i

∂2
xi
+ a2U(x)− a

∑

i �=j

1

(xi − xj )2
+ 2ahε(x) = H + 2ahε(x)) (13)

with

hε(x) = ε
∑

i<j

1− εSij

(xi − xj )2 .

In the limit a →∞, the wavefunctions of the scalar Hamiltonian Hsc (1) are sharply
peaked around the minimum ξ of the potential U(x), which can be shown to be
unique. Thus in this limit the dynamical and spin degrees of freedom decouple, the
latter being governed by the Hamiltonian

Hε = hε(ξ) ≡
∑

i<j

1

(ξi − ξj )2 (1− εSij ) . (14)

The latter model, which is the rational analogue of the Haldane–Shastry spin chain,
is known in the literature as the Polychronakos–Frahm (PF) spin chain [13, 22]. We
shall prove in the next sections how this connection between the PF chain and the
spin Calogero model can be used to evaluate the partition function of the latter chain
in closed form.

4.1 The Chain Sites

In order to complete the construction of the spin chain (14), we still have to compute
the minimum of the potential U(x) in Eq. (12) which determines the position
of its sites. Since this minimum is clearly also a maximum of the ground state
wavefunction (2) of the scalar Calogero model (with ω = a), it is straightforward to
derive the following system of algebraic equations satisfied by the coordinates of ξ :

∑

j, j �=i

1

ξi − ξj
− ξi = 0, i = 1, . . . N.

As is well known by the results of Stieltjes, and later Calogero and collaborators
[1], the solution of this system (which is unique, up to ordering and an overall
translation) is the set of zeros of the Hermite polynomial of degree N .
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4.2 The Partition Function

The partition function of the spin chain (14) can be computed in a direct way
using the partition functions of the models (1) and (7), as first pointed out by
Polychronakos [23].

To this end, let ϕi(x) be an eigenfunction of the scalar Hamiltonian (1) with
energy Ei and |j 〉 an eigenfunction of the spin chain Hamiltonian Hε (14) with
energy Eε

j . Since ϕi(x) becomes sharply peaked at ξ as a → ∞, in this limit we
have

Hε(ϕi(x)|j〉) = H(ϕi(x)|j〉)+ 2ahε(x)(ϕi(x)|j〉) 
 Eiϕi(x)|j〉 + 2ahε(ξ)(ϕi(x)|j〉)
= Eiϕi(x)|j〉 + 2aϕi(x)Hε |j〉 =

(
Ei + 2a Eε

j

)
ϕi(x)|j〉 . (15)

Thus for a →∞ the wavefunction ϕi(x)|j 〉 is an approximate eigenfunction of Hε

with energy

Eε
ij 
 Ei + a Eε

j , (16)

and hence the energies of the PF chain (14) can in principle be expressed in terms
of those of the scalar and spin Calogero models through the formula

Eε
j = lim

a→∞
Eε

ij − Ei

2a
.

Unfortunately, however, we have no rule for determining what is the relation
between the indices i, j in the previous formula, i.e. what energies of the scalar and
spin Calogero models should be combined to obtain an energy of the PF spin chain.
Remarkably, this problem can be bypassed using the partition function. Indeed, from
Eq. (16) we can easily deduce the expression

Zε(T ) = lim
a→∞

Zε(2aT )

Z(2aT )
, (17)

which provides an efficient way for computing the partition function of the PF spin
chain (14). Indeed, using Eqs. (5)–(11) for the partition functions of the scalar and
spin Calogero models we readily arrive at the closed formula

Zε =
∑

k∈PN

Dε(k;m) q

r−1∑
i=1

Ki
N−r∏

i=1

(1− qK ′i ),

where K ′
i is defined by

{K ′
1, . . . , K

′
N−r } = {1, . . . , N} \ {K1, . . . , Kr = N} .
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The procedure outlined above can be applied to the Sutherland model (4) and its
spin version, which yields the original Haldane–Shastry (HS) spin chain [16, 24].
Likewise, from the hyperbolic Calogero–Sutherland model introduced by Inozemt-
sev [18] one obtains a hyperbolic counterpart of the HS chain usually known as the
Frahm–Inozemtsev (FI) chain [14]. The Hamiltonians of PF, HS, and FI chains can
be written in a unified way as

Hε =
∑

i<j

Jij (1− εSij ), (18)

where the couplings Jij are of the form Jij = Jg(ξi − ξj ) with appropriate choices
of the interaction potential g and the chain sites ξi . More precisely,

g(x) =

⎧
⎪⎪⎨

⎪⎪⎩

x−2 , for the PF chain
1
2 sin−2 x , for the HS chain
1
2 sinh−2 x , for the FI chain

(19)

and
⎧
⎪⎪⎨

⎪⎪⎩

ξi = i-th zero of the Hermite polynomial HN, for the PF chain

ξi = iπ
N

, for the HS chain

e2ξi = i-th zero of the Laguerre polynomial Lc−1
N for the FI chain

(20)

with c a positive parameter. In particular, we see that the chain sites of spin chains of
all of these chains coincide with the set of zeros of a family of classical orthogonal
polynomials.2

The partition function of all three chains of HS type (18) has been computed in
closed form [2, 3, 10], and can be written in the unified way

Zε =
∑

k∈PN

dε(k;m) q

r−1∑
i=1

E(Ki)
N−r∏

i=1

(1− qE(K ′i )), (21)

where the dispersion function E is defined by

E(i) =

⎧
⎪⎪⎨

⎪⎪⎩

J i, for the PF chain

J i(N − i), for the HS chain

J i(c + i − 1), for the FI chain .

(22)

2As is well known, the points cos(iπ/N) with i = 1, . . . , N − 1 are the roots of the Chebyshev
polynomial UN−1.
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5 Supersymmetric Spin Chains

In the spin models discussed so far the internal degrees of freedom were all
fermionic (if ε = −1) or bosonic (if ε = 1). Moreover, in either case the permuta-
tion operator Sij belongs to the enveloping algebra of the defining representation of
su(m), so these models are naturally regarded as being of su(m) type. We shall
introduce in this section a more general class of su(m|n) supersymmetric spin
models, in which the first m internal degrees of freedom are bosonic and the last n
fermionic. We shall mainly focus on the models of this type associated with the root
system AN−1, for which we shall briefly outline the computation of the spectrum
and the exact evaluation of the partition function [4].

5.1 The su(m|n) Supersymmetric Exchange Operator

As we did in the purely fermionic or bosonic cases, we shall start by constructing
the spin exchange operators appearing in the Hamiltonian. The possible values of
the spin now run from 1 to m + n, and the particle will be a boson (fermion) if
si ∈ {1, . . . , m} (si ∈ {m + 1, . . . , m + n}). The exchange operator is then defined
as

S
(m|n)
ij |s1, . . . , si , . . . , sj , . . . , sN 〉 = εij (s)|s1, . . . , sj , . . . , si , . . . , sN 〉,

where

εij (s) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, si , sj bosons

(−1)p, {si, sj } = {fermion, boson}, with p = number of
fermions in positions i + 1, . . . , j − 1

−1, si , sj fermions.

By analogy with the purely bosonic or fermionic case, the Hamiltonian is taken as

H(m|n)
0 =

∑

i<j

Jij (1− S
(m|n)
ij ) , (23)

where the coupling constants Jij = Jg(ξi − ξj ) and chain sites ξi are still defined
by Eqs. (19)–(20). As a matter of fact, it is easily checked that with this definition
H(m|0)

0 = H1 while H(0|m)
0 = H−1.
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5.2 Chemical Potential

As usual in the description of thermodynamic systems, we shall add a chemical
potential term to the Hamiltonian (23) to control the number of particles of different
species. More precisely, we define

Hμ = −
m+n−1∑

α=1

μα Nα,

where Nα is the number operator for the particle of type α ∈ {1, . . . , n+m} and μα

is its chemical potential. The complete Hamiltonian of the spin chain is then defined
as

H(m|n) = H(m|n)
0 +Hμ. (24)

The number operators Nα commute with the exchange operators, and hence with
the H(m|n)

0 and the Hamiltonian H(m|n). It follows that H(m|n)
0 and H(m|n) can be

diagonalized in each subspace Σ(N1, . . . , Nm+n) ⊂ Σ with well-defined numbers
Nα of particles of each species, and that in such a subspace the energies of H(m|n)
are obtained adding to each of the energies of H(m|n)

0 the term
∑m+n−1

α=1 μαNα .

5.3 Partition Function

The construction of the partition function follows the same steps outlined in previous
sections for the purely bosonic or fermionic cases. In other words, we first find
the (large a limit of the) partition functions of the corresponding scalar and spin
dynamical models, and then use Polychronakos’s freezing trick to compute the
partition function of the spin chain.

Consider, for definiteness, the rational (PF) case, in which the scalar and
dynamical spin Hamiltonians are, respectively, given by

Hsc = −
∑

i

∂2
xi
+ a2

∑

i

x2
i + 2a

∑

i<j

a − 1

(xi − xj )2 , (25)

H0 = −
∑

i

∂2
xi
+ a2

∑

i

x2
i + 2a

∑

i<j

a − S(m|n)

(xi − xj )2 . (26)

Defining

H = H0 + 2a

J
Hμ ,
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the operators H , Hsc, and H0 are related to the spin chain Hamiltonian (24) by the
expressions

H = Hsc + 2a

J
H(m|n)∣∣

ξi→xi
.

Reasoning as in the previous sections, we deduce that the partition function of the
spin chain (24) can be computed from the freezing trick formula

Z(T ) = lim
a→∞

Z(2aT /J )

Zsc(2aT /J )
,

where Z and Zsc, respectively, denote the partition functions of H and Hsc. In
fact, the partition function of the scalar model Hsc has already been computed in
Sect. 2.2 (cf. Eq. (3)). As to the dynamical spin model, its partition function can be
obtained along the same lines as in the purely fermionic or bosonic cases, although
the computations are more involved due to the presence of the chemical potential
term. The final result is

Z
(

2aT
J

)
= qJE0/(2a)

∑

k∈PN

Σ(k) q
J

r−1∑
i=1

Ki
r∏

i=1

1

1− qJKi
, (27)

(cf. [12]), where

Σ(k) =
r∏

i=1

σ(ki), σ (ki) =
ki∑

j=0

hki−j

(
q−μ1 , . . . , q−μm

)
ej
(
q−μm+1 , . . . , q−μm+n

)
,

μm+n = 0, and h and e, respectively, denote the complete homogeneous and
elementary symmetric polynomials (see, e.g., [19] for their precise definitions and
main properties). Taking the quotient of these partition functions we finally obtain
the partition function of the su(m|n) supersymmetric PF spin chain with a chemical
potential term. Remarkable, the partition function for all three chains of HS type
can be expressed in a unified way through the closed formula [12]

Z =
∑

k∈PN

Σ(k) q

r−1∑
i=1

E(Ki)
N−r∏

i=1

(
1− qE(K ′i )

)
, (28)

where the dispersion function E is given by Eq. (22).
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6 Associated Vertex Models

The closed expression (28) for the partition function of the supersymmetric HS-type
chains (24) provides an efficient way of computing their energies and degeneracies,
but it is not appropriate for deriving the thermodynamics of these models. In this
section we shall relate the spin chains (24) to an inhomogeneous vertex model,
finding in this way an alternative expression for the partition function better suited
for studying its thermodynamic limit N →∞.

To this end, consider a (classical) vertex model with N + 1 vertices and N bonds
in which σi ∈ {1, . . . , m + n} denotes the state of the i-th bond. We define the
energies of these models by the expression

E(m|n)(σ ) =
N−1∑

i=1

δ(σi, σi+1)E(i), σ ≡ (σ1, . . . , σN) ,

where

δ(j, k) =
{

1, j > k, or j = k fermions,

0, j < k, or j = k bosons.
(29)

The partition function of this vertex model is obtained as the value at x = y = 1 of
the generating function [17]

ZV(q; x, y) =
∑

σ1,...,σN

m∏

α=1

xNα(σ )
α

n∏

β=1

y
Nm+β(σ )

β qE(m|n)(σ ), (30)

where Nα(σ ) denotes the number of bonds of type α in the bond vector σ .
Remarkably, the generating function (30) can also be expressed in terms of

the so-called super-Schur polynomials associated to certain border strips [17, 19].
As a consequence of this relation, it can be shown that the partition function of
the supersymmetric spin chain (24) can be expressed in terms of the generating
function (30) as

Z(T ) = ZV (q; q−μ1 , . . . , q−μm |q−μm+1 , . . . , q−μm+n ) =
∑

σ

q
E(m|n)(σ )−

m+n−1∑
α=1

μαNα(σ )

.

It follows that the chain’s spectrum can be generated by the formula

E(σ ) =E(m|n)(σ )−
m+n∑

α=1

μαNα(σ ) = E(m|n)(σ )−
N∑

i=1

μσi
, (31)
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where σ takes all values in {1, . . . , m+ n}N . As we shall next discuss, this formula
is much better suited for deriving the asymptotic behavior of the partition function
in the thermodynamic limit N →∞.

7 Thermodynamics

We shall only present here a brief overview of the application of the methods
outlined in the previous sections to the computation the free energy of a supersym-
metric spin chain of Haldane–Shastry type in the thermodynamic limit, referring the
interested reader to Refs. [9, 12] for details.

The starting point is to rewrite Eq. (31) for the energy as

E(σ ) =
N−1∑

i=1

(
δ(σi, σi+1)E(i)− 1

2
(μσi

+ μσi+1)

)
− 1

2
(μσ1 + μσN

), (32)

which clearly suggests expressing the partition function in terms of a collection
of suitable site-dependent transfer matrices. In fact, for the N → ∞ limit of the
partition function per site to be well defined we must first rescale the couplings so
that the average energy per particle tends to a finite nonzero limit. More precisely,
we set J = K/N for the PF chain and J = K/N2 for the HS and FI chains (with
K independent of N ), so that setting xi = i/N (with i = 0, . . . , N ) we have

E(i)
K

= ε(xi) , with ε(x) =

⎧
⎪⎪⎨

⎪⎪⎩

x, for the PF chain

x(1− x), for the HS chain

x(γn + x), for the FI chain

After this rescaling, using Eq. (32) we can express the partition function of the spin
chain (24) as

Z(T ) = tr(A(0)A(1) · · ·A(N−1)), (33)

where the (m + n) × (m + n) transfer matrices A(i) are defined by A(i) = A(εi)

with

A(i) = A
(
ε(xi)

)
, with A(ε)jk = qδ(j,k)ε− 1

2 (μj+μk).

The latter formula for Z(T ) can be used to express the Helmholtz free energy per
particle

f (μ, T ) = − lim
N→∞

logZ
Nβ

.
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in terms of the largest eigenvalue3 λ(x) of the transition matrix A(ε(x)) as

f (μ, T ) = − 1

β

∫ 1

0
log λ(x) dx . (34)

We shall outline the derivation of this formula in the simplest nontrivial case m =
n = 1 in the next section.

7.1 Example: The su(1|1) Case

Although the free energy per site of the chain (24) can in principle be computed
from Eq. (34) for arbitrary values of m and n, this is almost impossible in practice
unless m and n are small enough. We shall only present here a brief description of
the simplest case m = n = 1, in which Eq. (34) yields a simple explicit expression
for the free energy per site. In this case we have only one chemical potential μ1 ≡ μ

(for the bosonic degree of freedom), and the transfer matrix is simply

A(ε) =
(

q−μ q−μ/2

qε−μ/2 qε

)
.

The matrices A(i) = A(ε(xi)) are easily diagonalized:

A(i) = PiD
(i)P−1

i , D(i) =
(
λi 0
0 0

)
, Pi =

(
q−εi−μ

2 1
1 −q−

μ
2

)
,

with εi ≡ ε(xi) and λi = qεi + q−μ. We can thus write

A(0)A(1)A(2) · · ·A(N−1) = A(0)P1D
(1)P−1

1 P2D
(2)P−1

2 · · ·PN−1D
(N−1)P−1

N−1 .

Let us take, as an example, the PF spin chain. In this case

lim
N→∞(εi+1 − εi) = K lim

N→∞
1

N
(i + 1− i) = 0, P−1

i Pi+1 →
N→∞

(
1 0
0 1

)
.

Thus when N →∞ we have

A(0)A(1)A(2) · · ·A(N−1) 
 A(0)P1

(∏N−1
i=1 λi 0

0 0

)
P−1
N−1,

3Since all the matrix elements of the matrix A(ε) are positive, it follows from the Perron–Frobenius
theorem that its largest eigenvalue in module is positive and simple.
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and the partition function is given by

Z(T ) = tr(A(0)A(1)A(2) · · ·A(N−1)) 
 tr

⎡

⎣P−1
N−1A

(0)P1

⎛

⎝
N−1∏
i=1

λi 0

0 0

⎞

⎠

⎤

⎦ 
 U

N−1∏

i=1

λi,

where U > 0 does not depend on N . It follows that

− 1

Nβ
logZ(T ) 


N�1
− 1

Nβ

N−1∑

i=1

log λi = − 1

Nβ

N−1∑

i=1

log
(
e−βμ + e−βε(xi )

)
,

and letting N → ∞ we obtain the following explicit closed formula for the free
energy per site of the su(1|1) PF chain in the thermodynamic limit:

f (μ, T ) = − 1

β

∫ 1

0
log
(

e−βμ + e−βε(x)
)

dx.

8 Conclusions

Spin chains, and in particular the class of long-range solvable models discussed
in this contribution, are a powerful theoretical laboratory for realizing in a simple
way the fundamental properties of many physical systems, particularly in condensed
matter physics. In this short review we have presented a discussion of their relation
with integrable many-body (spin) dynamical models, which is at the root of their
remarkable symmetry properties and their exact solvability. We have also briefly
outlined the recently developed method for deriving the thermodynamics of these
chains based on their connection with certain inhomogeneous classical vertex
model, illustrating it in some detail for the su(1|1) Polychronakos–Frahm chain.
Many interesting new developments which have emerged over the last years have
of necessity been omitted in this short overview. To name only a few recent ones,
we shall mention the remarkable entanglement and criticality properties of HS-type
chains, which stem from their close connection with two-dimensional conformal
field theories (see, e.g., [6, 12, 15]), or their relation with matrix product states in
quantum field theory [7].
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Features of Discrete Integrability

Claude M. Viallet

Abstract We describe some standard features of integrability for a class of
integrable partial difference equations: the quad equations. These features are
the existence of Lax pairs, higher dimensional consistency, singularity properties,
existence of symmetries, and low complexity (vanishing algebraic entropy). All
these features have pros and cons, and we give a glimpse of them.

Keywords Discrete integrability

1 Introduction

For ages we have been inclined to think of evolution equations as differential
equations, the discrete versions coming at a later stage, in particular when one is
constructing a numerical scheme for their resolution. What gained in the recent
years is the consideration of discrete equations per se. There are a number of reasons
for this change. One is the considerable increase of the computational power of our
machines, especially for the formal calculus. Another one is the advent of discrete
equations in diverse branches of theoretical physics and mathematics, from 2D
gravity [1–3] to statistical models on the lattice [4–7], not forgetting the fundamental
contribution of [8], which gave its letters of nobility to the study of self-maps of
spaces of finite dimension.

A special interest was taken in the integrable cases, their rich structure leading to
new developments. One basic question arising immediately: given a discrete system,
in the form of a recurrence relation, a discrete time evolution, or a lattice equation,
which are the discrete forms of ordinary and partial differential equations, how do
we characterise its integrability?
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Furthermore, if a discrete equation is obtained by discretisation of a continuous
one, we would like to preserve as much as possible of the structure of the original
equation, and integrability is a crucial one, since it conditions the fundamental
properties of the solutions.

To get more information on the subject, explore the proceedings of the “SIDE”
conferences, http://side-conferences.net/. It is worth recalling that the first meeting
of this series was organised by the Centre de Recherches Mathématiques in 1994
under the governance of Luc Vinet. The meeting was so successful that it gave
rise to a series under the acronym of SIDE, organised in Europe (x5), Japan (x2),
Australia, China, India, and back to La Belle Province twice (2008 and 2016).

We will avoid giving a precise definition of discrete integrability (see the
monograph [9]) but rather describe some of its features, in the specific case
of discrete partial difference equations (quad equations) on a two-dimensional
square lattice. These are Existence of a Lax pair, Higher dimensional consistency
(consistency around the cube, in short CAC), Symmetries, Singularities, Low
complexity (vanishing algebraic entropy). We will also comment on the respective
merits and limitations of these features.

We will examine one specific example of quad equation.
Warning: We will impose a restriction on the class of evolutions we consider:

there will always be a forward and backward evolution, both given by rational
transformations. One keyword in all parts of our analysis is then birationality.

2 What Is a Quad Equation?

It is a discrete equation on a 2-dimensional square lattice, that is to say a discrete
version of a partial differential equation in 1+1 dimension. The unknown function
u (sometimes called dependent variable) is located at the vertices of the lattice
(Fig. 1). The vertices of the lattice are labelled by their integer coordinates (n,m)

(independent variables). Different notations are commonly used to represent the
values of u at the vertices. We show here two standard ones:

u1,0

u0,1

u0,0

u1,1

û

ũ

u

ˆ̃u

On the left side, the indices have been shifted to the origin, and on the right side, the
indices do not appear but ˆmeans a shift by 1 of the first index, i.e. ûn,m = un+1,m
and˜means a shift of the second index, i.e. ũn,m = un,m+1.

The model is defined by the relation between the corners of the basic square cell,
and a solution is given when all the un,m are known.

http://side-conferences.net/
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Fig. 1 2D lattice

The conditions we consider are of the form:

Q = p1 · u0,0 u1,0 u0,1 u1,1 + p2 · u0,0 u1,0 u0,1 + p3 · u0,0 u1,0u1,1 + p4 · u1,0 u0,1 u1,1

+p5 · u0,0 u0,1 u1,1 + p6 · u0,0 u0,1 + p7 · u1,0 u0,1 + p8 · u0,1 u1,1 (1)

+p9 · u0,0 u1,0 + p10 · u0,0 u1,1 + p11 · u1,0 u1,1 + p12 · u0,1

+p13 · u0,0 + p14 · u1,0 + p15 · u1,1 + p16 = 0

Notice that the multilinear nature of the relation implies that, for all cells, any of the
four corner values can be rationally expressed in terms of the three others.

3 A Few Standard Features of Integrable Quad Equations

3.1 Discrete Lax Pairs

Lax pairs are a characteristic feature of integrable differential equations, and
they have been extremely important in the development of the subject. For 1 +
1 dimensional partial differential equations, they become rather zero curvature
equations, and these have a straightforward discrete form. A discrete Lax pair is
a pair of matrices L(u),M(u) such that

L̂ ·M 
 M̃ · L, (2)

where L̂ = L(û) (shift along the horizontal direction), M̃ = M(ũ) (shift along
the vertical direction), and 
 means proportionality, is equivalent to the defining
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equation (1). Discrete quad equations have soliton type solutions, and Lax pairs can
be used to produce explicit solutions [10].

3.2 Consistency Around the Cube (CAC)

Consider the archetypal case of discrete potential KdV:

(û− ũ)(u− ˆ̃u) = p2 − q2 (3)

It is possible to embed the two-dimensional cell into a three-dimensional one:

p

q

r

u û

¯̃u ˆ̄̃u

ũ

ū ˆ̄u

ˆ̃u

where one imposes a similar relation to all faces (the same for opposite faces), and¯
means shift in the third dimension.

Consistency around the cube means that the value of ˆ̄̃u is independent of the
way it is calculated, as there are three ways to evaluate it from the initial condition
u, û, ū, ũ. The major, and remarkable major output of this property is to ensure
the existence of a Lax pair [11, 12], which is accepted as a proof of integrability.
The interest of the higher dimensional consistency approach is that it also provides
us with a classification of a set of integrable quad equations [13, 14], referred to
as ABS list. There exists a simple rationally parametrised interpolating form [15]
whose integrability was discovered by algebraic entropy argument (see Sect. 3.6),
and confirmed by symmetry arguments [16] (see Sect. 3.4).

3.3 Lax Pair from the Consistency Around the Cube

The left face and the bottom face give, respectively,

¯̃u = q2 − r2 + ũu− ū u

ũ− ū
, ˆ̄u = p2 − r2 − ū u+ uû

û− ū
(4)



Features of Discrete Integrability 25

Projectivisation: writing ū = F/G, ˜̄u = F̃ /G̃, ˆ̄u = F̂ /Ĝ and

Φ =
(
F

G

)
L =

(
u q2 − r2 + u ũ

1 −ũ

)
M =

(
u r2 − p2 + u û

1 −û

)

Φ̃ = L ·Φ, Φ̂ = M ·Φ

The consistency around the cube yields

L̂ ·M 
 M̃ · L, (5)

where 
 means proportionality. Equation (5) is a discrete zero curvature condition.
By above argument, the “consistency around the cube” condition is considered

as a major integrability condition for quad equations, We will see in Sect. 4 that the
two notions are not equivalent. See also concluding remark.

3.4 Symmetries

The existence of continuous symmetries is a characteristic feature of integrability.
It is of course related to the existence of conserved quantities, but is more
easily tractable. There is an important literature on the subject, originally for the
differential case [17, 18], and now for the discrete case [19, 19–30].

What is a continuous symmetry of the quad equation un+1,m+1 =
F(un,m+1, un,m, un+1,m)? It is a vector field over the space of solutions.

We restrict ourselves to the specific form (k > l, p > q ∈ Z)

∂un,m = G(un+k,m, un+k−1,m, . . . , un+l,m, un,m+p, un,m+p−1, . . . , un,m+q) (6)

The figure shows the reach of the symmetry: it is a rectangle of size (k−l+1)×(p−
q + 1). Since the symmetry acts on the space of solutions, it may be described in
terms of the values on the lines (n+k),m . . . (n+l),m and (n,m+p) . . . (n,m+q).
This is a local symmetry with a finite extension (Fig. 2).

The symmetry condition being a constraint between F and G, the symmetry
approach is then to look for models (determined by F ) for which there are
symmetries (given by G). The method is constructive, with the input of Ansätze
for F and G, the idea being to ask for the existence of more than one symmetry.

Remarkably the symmetries split into two independent pieces, vertical and
horizontal (meaning p = q = 0 and k = l = 0, respectively).

This means that Eqs. (6) become ordinary differential-difference equations,
which turn out to be integrable themselves [16, 26, 27, 31, 32]!
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Fig. 2 A symmetry pattern

Σ Σ’

Q
P

Fig. 3 A singularity pattern in two dimensions

3.5 Singularity Analysis

There is a deep link between integrability and singularity structure. This structure is
best illustrated in the case of maps, that is to say ordinary difference equations.

Figure 3 shows what a birational map in two dimensions can do. The curve Σ

is sent to a point P by the evolution. This means that the backward evolution is
not defined at P . The point P is then sent to the point Q, which is singular as the
backward evolution sends the whole curve Σ ′ to Q.
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Σ Σ’

E EQP

Fig. 4 Desingularisation pattern in two dimensions

The best description of the geometry is obtained using simple tools of algebraic
geometry [33]. It is possible to remove the singularities by blowing up the point P
and Q. This amounts to adding curves to the space, replacing the points P and Q

by the lines EP and EQ, respectively. After the blow-ups, the map sends the curve
Σ onto the line EP then to EQ and finally to the curve Σ ′ birationally. The setting
described by Figs. 3, 4 is similar to the one we encounter for the QRT maps [34, 35].
This was the key to an important classification of the non-autonomous generalisation
of these maps yielding the discrete Painlevé equations [36]. See, for example, the
monograph [37].

Remark Two important facts (see, for example, [37, 38]) should be noticed:

– The curves Σ and Σ ′ are algebraic
– The singularity of the forward (resp. backward) map at Q (resp. P ) shows up

naturally when we use homogeneous (projective) coordinates, in relation with
the equation of Σ (resp. Σ ′). If one calculates the third iterate of the forward
map, the polynomial expression of the coordinates of the image all vanish. This
means that the equation of Σ factors out from these coordinates. Once factored
out we get a perfectly well-defined image.

There is a whole class of maps in two dimensions (actually order 2 recurrences)
for which the singularities may be removed by blowing up a finite number of points,
and this has led to very important results on integrable maps, autonomous ones as
well as non-autonomous ones [34–37]. This was even considered to characterise
integrability [39], but was eventually shown not to be the case [40].

A similar singularity analysis can be performed for the quad equations.
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3.6 Complexity Analysis: Algebraic Entropy

Explicit calculations of the iterates of maps in the integrable case go much faster
than in the non-integrable case. The reason is that the degree of the iterates grows
slowly (polynomially) in the integrable case and rapidly (exponentially) in the non-
integrable case. This has led to the definition of the algebraic entropy from the
sequence of degrees {dn} of the iterates.

ε = lim
n→∞

1

n
Log(dn) (7)

– This limit always exists by the subadditivity of Log(dn), and is canonical, being
invariant by birational changes of coordinates.

– Vanishing of ε is the hallmark of integrability.
– The entropy has remarkable arithmetic properties (conjectured to be the Log of

an algebraic integer).

Claim: The entropy is consubstantial with the singularity structure. Indeed going
back to Figs. 3, 4 it is easy to convince oneself that—in the case shown—there
will be a drop of the degree for the third iterate of the map. The equation of the
hypersurface Σ will factor out from the rational expressions of the iterate [38, 41].

The entropy first defined for maps acting on finite dimensional spaces (ordinary
difference equations), has been further generalised to the infinite dimensional case,
allowing to consider semi-discrete equations [32] involving maps over functional
spaces and quad equations as well [42, 43].

3.7 What About Quad Equations?

The point is to define an evolution. Figure 5 shows how this can be done from a
staircase initial condition. The initial condition at time 0 of line (0) determines the
values on line (1) at time 1, line (2) at time 2, and so on.

The evolution after k steps is expressible as a rational fraction in terms of 2k+ 1
initial values. Evaluating the degrees of these rational fractions gives a sequence of
degrees {dn}, providing in turn the value of the entropy.

We will not detail the calculation method here, but the asymptotic property which
the entropy measures can most of the time be extracted from a finite piece of the
sequence of degrees. This is a manifestation of the fact that a local property governs
the global behaviour.

Claim: The vanishing of the entropy is a good criterion of integrability for quad
equations as it is for maps.
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0 1 2 3 4

Fig. 5 Evolution on the square lattice

4 A Case Study

We will concentrate on one specific quad equation, taken from [44]. It does not
belong to the ABS list, as it is not symmetric. It does not verify the consistency
around the cube condition.

E = (u1,0 + 1
) (

u0,0 − 1
)− (u1,1 − 1

) (
u0,1 + 1

) = 0 (8)

The variable un,m at site (n,m) is denoted u0,0 with uk,l standing for un+k,m+l as
shown in Sect. 2.

4.1 Symmetries

Equation (E) possesses continuous symmetries. These symmetries split into vertical
and horizontal symmetries (H and V ), as is usual for this type of quad equations.

Three points symmetries:

H3 : ∂t1u0,0 = (u2
0,0 − 1)(u1,0 − u−1,0) (9)

V3 : ∂τ1u0,0 = (u2
0,0 − 1)

(
1

u0,1 + u0,0
− 1

u0,0 + u0,−1

)
(10)
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Five points symmetries:

H5 : ∂t2u0,0 = (u2
0,0−1)((u2

1,0−1)(u2,0+u0,0)−(u2−1,0 − 1)(u0,0 + u−2,0)), (11)

V5 : ∂τ2u0,0 =
u2

0,0 − 1

(u0,1 + u0,0)2

(
u2

0,1 − 1

u0,2 + u0,1
+ u2

0,0 − 1

u0,0 + u0,−1

)

− u2
0,0 − 1

(u0,0 + u0,−1)2

(
u2

0,0 − 1

u0,1 + u0,0
+ u2

0,−1 − 1

u0,−1 + u0,−2

)
. (12)

Claims:

– The existence of these symmetries is a strong constraint on the equations, and it
may serve as an integrability criterion.

– All these equations (E and the successive symmetries Hi, Vj ) are integrable, as
can be checked by direct calculation.

– A confirmation of the integrability comes from the calculation of the algebraic
entropy, which vanishes, as we will see later.

Notice that the form of the symmetries is local. Of course the symmetries are
verified modulo the ideal generated by the local quad relations (“on shell”).

4.2 A Lax Pair

Although it is not 3D consistent, equation (E) has a Lax pair.

Li,j = 1

ui,j+1 − 1

[
λ− λ−1 2 (u2

i,j+1 − 1)

−2
(
λ− λ−1

)
(ui,j+1 + 1)

]
(13)

Mi,j =
[
λ− λ−1 − (ui+1,j + 1

) (
ui,j − 1

)

1 0

]
(14)

The equation is obtained by the discrete zero curvature condition

Li+1,j ·Mi,j 
 Mi,j+1 · Li, (15)

which we already wrote

L̂ ·M 
 M̃ · L (16)
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4.3 What About Singularities?

Singularities are known to play a fundamental rôle in the game. For quad equations,
singularities appear already at the level of the basic cell of the lattice. Suppose we
look at the elementary cell

x

z

y

Y

The defining relation E gives a projective linear map ϕxz : y −→ Y , whose
inverse ϕ−1 is projective linear. The composed map ϕ · ϕ−1 comes with an overall
factor

H(x, z) = (1+ x) (1+ z) (17)

which is the locus of the singularities (remember the picture in two dimensions)
This quantity contains the information about the singularities, and it is the key of
the factorisations (and simplifications) appearing in the evolution. Labelling the
cells by their lower left corner, denote Hn,m the value of H calculated on the (n,m)

cell.
One may define

Ωn,m = gcd(Hn,m,Hn+2,m+1) (18)

then, remarkably

Hn,m = Ωn,m.Ωn−2,m−1 (19)

The values of un,m over the plane are polynomials (if we work in projective
coordinates) in the initial conditions. The infinitesimal relations defining the map
imply local relations! This is a constant feature of the birational evolutions we
consider (Fig. 6).

We also see here the effect of a specific feature of the model: it is asymmetric
(contrary to the members of the ABS list).
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Fig. 6 Localisation of the factors Ω

4.4 What About Entropy?

The factors Ω contain all the information on

– How the successive iterates hit singularities (remember the picture in the plane,
but now we work in an infinite dimensional space of initial conditions)

– the sequence of degrees of the iterates and leading to the vanishing of the entropy.

The sequence of degrees for this specific model is obtained by direct calculation

{dn} = 1, 2, 4, 7, 11, 16, 22, 29, 37, 46, 56, 67, 79, 92, 106, 121, . . . (20)

It can be fitted by the generating function

g(s) =
∞∑

k=0

dk s
k = 1− s + s2

(1− s)3 (21)

that is to say

dn = 1+ n(n+ 1)

2
(22)

quadratic growth, vanishing entropy.

Remark the function g can be guessed from the first 5 iterations, and the further
terms of the sequence give a check. Moreover the result can be proved along the
lines of [41].
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5 Comments and Perspectives

We have given a glimpse of the subject, leaving aside some of the recent develop-
ments like, for example, the Lagrangian multiform approach [9, 45, 46], which is a
promising approach.

Our point was rather to give an idea of some of the features of integrability, with
their strength and their limitations, which we can summarise as follows:

– Lax pairs. pro: Lax pairs are a powerful instrument to produce solutions, as they
were in the continuous case; con: They are not always easy to find, and they may
have different forms (the size of the linear system is not known in advance, and
there may be different pairs of different sizes). In addition one should beware of
fakes [47, 48].

– 3D consistency. pro: provides a Lax pair, and allows a classification; con: not
equivalent to integrability.

– Singularity confinement. pro: constructive and allowing classification at least for
the order two equations; con: not necessary nor sufficient for integrability.

– Symmetries. pro: constructive and necessary; con: not always sufficient as one
needs a sufficiently large number of them.

– Algebraic entropy. pro: it is canonical (invariant by birational changes of
coordinates), and the vanishing of the entropy may serve as a characterisation of
integrability, as the sign of catastrophic drop of the complexity, con: destructive
rather than constructive, since it gives a yes/no answer to the question “is this
model integrable?”

We have alluded to the relation of the singularity structure with the measure of
complexity of the evolutions. What is still missing is a better understanding of its
relations with Lax pairs and Symmetries.

One hint may come from the following fact: when analysing the singularities, the
sequence of degrees of the iterates, as well as the symmetries, the most important
relations bear on local properties with a finite extension. This means that, even in
the discrete world, we may distinguish three scales—as we have in the continuous
world—infinitesimal, local, global. Infinitesimal would be the defining relation (one
cell), local would be any relation extending over more than one cell, and of course
global would be extending to infinity. What we see is that we can reach a conclusion
on a global property like integrability from local ones. The algebraic nature of
the models we consider is probably at the origin of this phenomenon. Since this
algebraic nature also conditions the singularity structure, we should look further
into relations of the singularities with symmetries and even Lax pairs.

We have work to do.
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his 70th birthday.

Abstract Motivated by geometry of submanifolds we develop an algebraic con-
struction of Darboux transformations using Clifford numbers and Spin groups.
Eigenvalues parameterizing solitons, usually computed as zeros of determinants,
are identified as zeros of the spinor norm. Reduction groups (loop groups) for Spin-
valued linear problems are identified with involutions in Clifford algebras.
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University of Bialystok, Faculty of Physics, Białystok, Poland
e-mail: j.cieslinski@uwb.edu.pl

© Springer Nature Switzerland AG 2021
M. B. Paranjape et al. (eds.), Quantum Theory and Symmetries, CRM Series in
Mathematical Physics, https://doi.org/10.1007/978-3-030-55777-5_3

37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-55777-5_3&domain=pdf
mailto:j.cieslinski@uwb.edu.pl
https://doi.org/10.1007/978-3-030-55777-5_3


38 J. L. Cieśliński

a lot of time to structure preserving numerical methods (see, e.g., [15, 16]), which
is also close to Decio’s interests [17], but this subject evolved rather independently.

Spin-valued spectral problems seem to be quite natural in the geometric context
because Spin groups and Clifford algebras are very natural structures to deal with
orthogonal transformations, see the next section. Actually, even the standard su(2)-
valued Lax pairs for some well-known soliton equations (including sine-Gordon,
nonlinear Schrödinger and modKdV equations) can be rewritten in terms of the
group Spin(3) (which is isomorphic to SU(2), see, e.g., [18]). In particular, the
sine-Gordon equation φ,xy = sinφ arises as compatibility conditions for the Lax
pair

Ψ,x = UΨ , U =
(

iλ − 1
2φ,x

1
2φ,x −iλ

)
= λ σ1σ2 + 1

2
φ,x σ1σ3 ,

Ψ,t = UΨ , V = 1

4iλ

(
cosφ sinφ

sinφ − cosφ

)
= σ2σ1 cosφ + σ3σ2 sinφ

4λ
,

(1)

where σk denote Pauli matrices (and we replaced iσ3 by σ1σ2, etc.). In order to
see the Lie algebra of a Spin group in the above formulas, one needs some basic
information on Clifford algebras and Spin groups, which will be provided in the
next section.

In the framework of Sym’s soliton surfaces approach su(2)-valued linear prob-
lems correspond to surfaces immersed in the Euclidean 3-space and other semi-
simple Lie algebras can be associated with surfaces in multi-dimensional (pseudo)-
Euclidean spaces [19]. Another natural possibility, followed in this paper, is to
extend this approach from SU(2) ∼= Spin(3) on any Spin groups [20].

2 Clifford Algebras, Spin Groups, and Isometries of Rp,q

Given linear space V and bilinear form 〈 · | ·〉 (or, equivalently, the quadratic form
Q(v) := 〈v | v〉) we define the Clifford product by the following condition:

vw + wv = 2〈v | w〉1 , (v,w ∈ V ) , (2)

where 1 is the unity (multiplicative identity) of the algebra. In other words, parallel
vectors commute and orthogonal vectors anti-commute. Hence, in particular,

v−1 = v

〈v | v〉 , (3)

i.e., vectors with Q(v) �= 0 are invertible and the result is geometrically interpreted
as inversion with respect to the unit sphere.
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Clifford algebra (denoted by C(V ,Q) or C(p, q), where (p, q) is the signature
of Q) is generated by V using linear operations and the Clifford product, see, e.g.,
[18, 21].

Let e1, . . . , eN be an orthonormal basis in V . In other words, see (2), we have

e2
j = ±1 , ej ek = −ekej . (4)

Then, dim C(V ,Q) = 2N and the Clifford algebra is spanned by 1 (scalars), ek
(vectors), ej ek (j < k) (bivectors) , multivectors, and e1e2 . . . eN (pseudoscalars).

Well-known examples: Pauli matrices (ek = σk , N = 3, p = 3, q = 0) and
Dirac matrices (ek = γk , N = 4, p = 1, q = 3).

The vector space V , generating the Clifford algebra C(p, q) (p + q = N ), can
be identified with the pseudo-Euclidean space spanned by e1, e2 . . . , eN . Reflection
with respect to the hyperplane orthogonal to an invertible n ∈ V can be represented
as

v′ = −nvn−1 , hence v′ = −(2〈n | v〉 − vn)n−1 = v − 2〈n | v〉
〈n | n〉 n . (5)

Indeed, if v = vn+vt (where vn is normal and vt is parallel to the hyperplane), then
v′ = vt − vn. Thus: −n(vt + vn)n

−1 = vtnn
−1 − vnnn

−1 = v′.
By the Cartan–Dieudonné theorem any isometry of V can be represented as a

composition of at most N , say k, reflections. Therefore, using (5), we have

v′ = (−1)knknk−1 . . . n1 v n−1
1 n−1

2 . . . n−1
k . (6)

Hence, it is natural to consider multiplicative groups in Clifford algebras:

• Lipschitz group Γ (V,Q): products of invertible vectors,
• Pin group Pin(V ,Q): products of unit vectors,
• Spin group Spin(V ,Q): products of even number of unit vectors

(often we omit Q, writing Spin(V ), etc.). Thus Eq. (6) can be rewritten as

C(p, q) ⊃ V � v �→ v′ = Ψ v Ψ−1 ∈ V, (7)

where Ψ ∈ Pin(p, q), which is equivalent to an orthogonal transformation in V :

R
p,q ⊃ V � v �→ v′ = R v ∈ V (8)

where R ∈ O(p, q). Obviously, −Ψ and Ψ yield the same isometry R. Therefore,
we have double coverings, like Pin(N)→ O(N) or Spin(N)→ SO(N).

The Lie algebra spin(p, q) of the Spin group Spin(p, q) is spanned by bivectors
ej ek (1 ≤ j < k ≤ N ). Note that [emek, ej ek] = 2〈ek | ek〉 ej em (m �= j �= k �= m).
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One can define following automorphisms and anti-automorphisms in any Clifford
algebra (using also linearity, in the first two cases, or anti-linearity, in the third
case):

• grade involution ααα: ααα(XY) = ααα(X)ααα(Y ), ααα(v) = −v.
• reversion βββ: βββ(XY) = βββ(Y )βββ(X) , βββ(v) = v.
• complex conjugation: XY = X̄Ȳ , v̄ = v.
• Clifford conjugation (complexified): X∗ := ααα(βββ(X̄)).

The reversion can be used to compute the so-called spinor norm:

N(X) = Xβ(X) , (9)

which is a real number for X ∈ Γ (V,Q).

3 Spin-Valued Linear Problems

We consider linear problems of the form:

Ψ,μ= UμΨ , Uμ =
∑

j<k

ujkej ek , (10)

where ej are generators of a Clifford algebra, and ujk depend on xμ, λ and are
real for λ ∈ R. However, in the following, we suppress the dependence on xμ and,
sometimes, on λ). Then, Ψ is Spin-valued (provided that the initial condition is
Spin-valued).

Our original motivation came from studying isothermic surfaces (which, by def-
inition, admit conformal parameterization of curvature lines). Using isomorphisms

so(4, 1) ∼= sp(1, 1) ∼= spin(4, 1) (11)

we transformed SO(4, 1)-valued Lax pair into the form (10). Clifford algebras are,
in general, a useful tool in dealing with isothermic surfaces [22].

We point out that Lie algebra su(2) is spanned by σkσj , hence SU(2) ∼= Spin (3)
and all SU(2)-valued linear problems, including (1), belong to the class (10).

The case of isothermic surfaces suggested further restrictions on the form of the
linear problem. We consider two vector spaces, V and W , equipped with quadratic
forms and orthogonal to each other, such that

• dimV = r and e1, . . . , er is an orthonormal basis in V ,
• dimW = q and er+1, . . . , er+q is an orthonormal basis in W .

In this paper we focus on the following class of linear problems [23]:
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Ψ,μ= UμΨ , Uμ = 1
2 eμ(λaμ + bμ) , (μ = 1, . . . , m), (12)

where m � r (which implies eμ ∈ V for μ = 1, . . . , m), and

aμ = aμ(x
1, . . . , xm) ∈ W, bμ = bμ(x

1, . . . , xm) ∈ V, 〈bν | eν〉 = 0.
(13)

Therefore, Uμ = Uμ(x
1, . . . , xm, λ) ∈ spin(V ⊕ W) ∼= so(V ⊕ W), and, as a

consequence, Ψ = Ψ (x1, . . . , xm, λ) ∈ Spin(V ⊕W) (provided that Ψ belongs to
the Spin group at an initial point).

3.1 Geometric Interpretation: Soliton Surfaces Approach

The so-called Sym’s (or Sym-Tafel’s) formula:

F := Ψ−1Ψ,λ (14)

provides a geometric interpretation for integrable systems associated with a given
linear problem. Note that if Ψ ∈ G (where G is a Lie group), then F takes values in
the Lie algebra of G. One can easily verify:

F,μ= Ψ−1Uμ,λ Ψ , F,μν = Ψ−1 (Uμ,λν +[Uμ,λ , Uν]
)
Ψ . (15)

Hence, fundamental forms of F (including gμν ≡ 〈F,μ| F,μ 〉) are expressed in
terms of Uμ (explicit form of Ψ is not needed).

In the case of the linear problems (10) it is sufficient to consider the Sym-Tafel
formula evaluated at λ = 0. Then, F is a submanifold in V ∧ W . In order to
obtain interesting immersions in lower dimensional spaces we can use appropriately
chosen projection P , i.e., we consider rrr = P(F). In particular, we get

• Isothermic surfaces in R
n. dimV = n, dimW = 2,

W ∼= R
1,1, kerP is any isotropic (null) vector in W .

• Orthogonal nets in R
n such that

∑n
k=1 h2

k = const.
dimV = dimW = n, P is a projection on any ek ∈ W .

• Guichard nets in R3 (h2
1 + h2

2 = h2
3). dimV = n, dimW = 3,

W ∼= R
2,1, kerP is a light front (tangent space to the light cone) in W .

4 Darboux-Bäcklund Transformations

Darboux transformation is a gauge-like transformation using the “Darboux
matrix” D:
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Ψ̃ = DΨ, Ψ̃ ,μ= ŨμΨ̃ , Ũμ = D,μ D−1 +DUμD
−1 , (16)

provided that Ũμ has the same dependence on dependent variables as Uμ.
Instead of caring about dependent variables one can try to describe the structure

of the Lax pair. The considered nonlinear system follows uniquely from compati-
bility conditions [8, 9, 13]. Then the Darboux transformation has to preserve this
structure.

The structure is characterized primarily by the dependence on λ (e.g., divisor of
poles) [24, 25], reduction group (loop group) [26], and other invariants of Darboux
transformations, like linear and multilinear constraints on coefficients of the Laurent
expansion around poles [13].

Different methods of constructing the Darboux matrix need different form of λ-
dependence of D (these forms are equivalent up to a λ-dependent scalar factor).
In particular, one can assume D as polynomial in λ (eigenvalues, corresponding to
solitons, are zeros of detD) [27, 28], sum of simple fractions (eigenvalues: poles of
D and D−1) [24, 26], or a “realization” (D = N + F(λ− A)−1G) [29, 30].

The motivation for the case of Spin groups came from yet another approach [31].
Multiplying (16) by D2(λ) we get

D,μ D +DUμD = ŨμD
2 . (17)

It is crucial point that the right-hand side vanishes for λ+ and λ− such that
D2(λ±) = 0. Then, we obtain a solution of the remaining equation: D(λ±) =
ϕ±Ψ (λ±)d±Ψ (λ±)−1, where d± = const, (d±)2 = 0 and ϕ± are two scalar
functions. Finally, D(λ) is given as a linear combination of D(λ+) and D(λ−) with
coefficients linear in λ [31], which yields one-soliton Darboux matrix.

This approach was extended on the multi-soliton case for 2× 2 matrix problems
[32], and analogous generalization for Spin-valued linear problems is introduced
below.

4.1 The Darboux-Bäcklund Transformation in the Case of
Spin Groups

In this section we focus on the linear problem (12) and assume Ψ ∈ Spin(V ⊕W).
Using commutation relations (4) one can easily verify that

βββ(Uμ) = −Uμ , eUμ(λ) = Uμ(−λ)e , U,μ (λ) = Uμ(λ̄) , (18)

where e = er+1er+2 . . . er+q . In a way analogous to the matrix case one can obtain
corresponding formulas for Ψ :

N(Ψ ) ≡ Ψβββ(Ψ ) = const , eΨ (λ) = Ψ (−λ)e , Ψ (λ) = Ψ (λ̄) . (19)
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We derive the first formula, which is most difficult:

(N(Ψ )),μ= Ψ,μ βββ(Ψ )+ Ψβββ(Ψ,μ ) = (Uμ + βββ(Uμ))N(Ψ ) = 0 , (20)

where one has to remember that N(Ψ ) is a scalar, so it commutes with any elements.
The constraints (19) are obviously satisfied when we put D(λ) in place of Ψ (λ).

We point out that then constant in the first equation of (19) will depend on λ and
zeros of N(D(λ)) are eigenvalues used in the construction of soliton solutions.

The simplest case is the Darboux transformation which is a Clifford vector and
is linear in λ. Then, the result can be obtained using (17), see [31]:

D = λn+ κp√
p2

= λn̂+ κp̂ , (21)

where hat denotes unit vectors and

p + in := Ψ (iκ)(p0 + in0)Ψ
−1(iκ) , (22)

where p0 ∈ V and n0 ∈ W are constant Clifford vectors such that p2
0 = n2

0 and
κ ∈ R. Transformations for soliton submanifolds (14) (evaluated at λ = 0) read

F̃ = F + 1

κ
p̂−1n̂ , r̃ = r+ 1

κ
p̂−1P(n̂) . (23)

The Darboux “matrix” (21), being a Clifford vector, produces Ψ̃ which does not
belong to the Spin group. However, due to the invariance of the linear problem (12)
with respect to the transformation Ψ → Ψw, we can take w ∈ V ⊕ W and
then DΨw ∈ Spin(V ⊕ W). Then formulas (23) have to be changed as well
(geometrically this is just a reflection).

This approach has many practical advantages. Calculations are much shorter
using Clifford numbers than matrix representations. It is enough to compare the
length and content of two papers, [31] and [33], which present in fact the same final
result.

Iterating twice the transformation (21) (with parameters κ1 and κ2, respectively)
and performing some algebraic calculations, we succeeded to obtain the following
symmetric form of the two-soliton Darboux transformation:

D[2](λ) = S(λ)− (κ2
1 − κ2

2 )D[0]1 ∧D[0]2
K

, (24)

where ∧ denotes the exterior (or wedge) product, D[0]j (λ) = λn̂j + κj p̂j

S(λ) = κ1κ2(2λ2 + κ2
1 + κ2

2 )σ − (2κ2
1κ

2
2 + λ2(κ2

1 + κ2
2 ))ν ,

K2 := 4κ2
1κ

2
2 (σ

2 + ν2)− 4κ1κ2(κ
2
1 + κ2

2 )σν + (κ2
1 − κ2

2 )
2

(25)

and, finally, σ := 〈p̂1 | p̂2〉 and ν := 〈n̂1 | n̂2〉.
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The full multi-soliton case is still under construction but basic results are already
obtained. In the general case, when D(λ) ∈ Pin(V ⊕W) is a polynomial in λ, we
multiply (16) by the spinor norm N(D), defined by (9), and obtain:

D,μ βββ(D)+DUμβββ(D) = ŨμN(D) (26)

Note that the special case D ∈ V ⊕W reduces to (17), because then βββ(D) = D and
N(D) = D2. In the general case the right-hand side of (26) vanishes if N(D(λ)) =
0. This is a polynomial in λ. Its roots, denoted by λk , are constant by virtue of (20).
Similarly as in the case (17) we define

Ck := Ψ−1(λk)D(λk)Ψ (λk) . (27)

Substituting it to (26) we obtain

Ckβββ(Ck) = 0 , Ck,μ βββ(Ck) = 0 . (28)

Following [34], we can solve this system:

Ck = Ĉkdk , dk = const ∈ V , d2
k = 0 , Ĉk ∈ Pin(V ⊕W) . (29)

Therefore, D(λk) = D̂k Ψ (λk)dkΨ
−1(λk), where D̂k ∈ Pin(V ⊕W). It is natural to

conjecture that D(λ) can be uniquely (up to a normalization) defined by eigenvalues
λk and null vectors dk and can be expressed in an algebraic way by elements
Ψ (λk)dkΨ

−1(λk). Reduction groups will be expressed in terms of involutions in
the Clifford algebra.

5 Conclusions and Open Problems

Extending results of [31] we presented a method of construction of the Darboux
matrix for Spin-valued linear problems. The construction is fully done only in
the one-soliton case. The iteration of one-soliton transformations is not difficult,
and two-soliton Darboux matrix is shown. However, the multi-soliton case needs
further elaboration. Then, our approach should work also for multi-dimensional
Lobachevsky spaces [20, 35] and, possibly, for all problems described in [35, 36].
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Painlevé IV Transcendents Generated
from the Complex Oscillator

David J. Fernández

Abstract Supersymmetry transformations are used to generate exactly solvable
potentials departing from the complex oscillator. The corresponding Hamiltonians
are shown to be ruled by polynomial Heisenberg algebras. A process for reducing
the degree of these algebras to 2 is used to connect such systems with the
Painlevé IV equation, thus leading to a simple algorithm for generating Painlevé
IV transcendents.

Keywords Painlevé transcendents · Complex oscillator · Supersymmetric
quantum mechanics

1 Introduction

The recent scientific advances make it important to study the links that could
exist between supersymmetric quantum mechanics (SUSY QM) and nonlinear
differential equations [1]. Indeed, there is a well known connection between SUSY
partners of the free particle and solutions of the KdV equation [2–4]. Similarly, it has
been shown that there is a link between systems ruled by second-degree polynomial
Heisenberg algebras and Painlevé IV (PIV) equation [5–12]. This connection helped
to design further an algorithm for generating solutions to the PIV equation, called
Painlevé IV transcendents in the literature [13, 14]. The simplest systems that can be
used to supply explicit expressions for PIV transcendents are the harmonic oscillator
and its SUSY partners [15, 16]. It would be important to know if the so-called
complex oscillator [17], which arises from making complex the oscillator frequency
and includes the harmonic oscillator as a limit, does the same. This subject is going
to be explored in this article. In order to do this, in Sect. 2 we will make a quick
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survey of supersymmetric quantum mechanics (SUSY QM) [1]. Then, in Sect. 3, we
will sketch the polynomial Heisenberg algebras (PHA), paying special attention to
the second-degree ones. In Sects. 4 and 5 we shall address the complex oscillator and
its SUSY partners, respectively. In Sect. 6 we will derive Painlevé IV transcendents
from these two examples. Our conclusions shall be presented in Sect. 7.

2 Supersymmetric Quantum Mechanics

The supersymmetry algebra with two generators introduced by Witten in 1981

[Hss,Qi] = 0, {Qi,Qj } = δijHss, i, j = 1, 2,

when realized as follows

Q1 = Q+ +Q√
2

, Q2 = Q+ −Q

i
√

2
, Q =

(
0 0
B 0

)
,

Q+ =
(

0 B+
0 0

)
, Hss = {Q,Q+} =

(
B+B 0

0 BB+
)
,

is called supersymmetric quantum mechanics, where Hss is the supersymmetric
Hamiltonian and Q1, Q2 are the supercharges. There exist two Schrödinger
Hamiltonians H , H̃ and a kth order differential operator B+ intertwining them:

H̃B+ = B+H, H = −1

2

d2

dx2
+ V (x), H̃ = −1

2

d2

dx2
+ Ṽ (x).

The two different products of B and B+ turn out to be given by

B+B = (H̃ − ε1) · · · (H̃ − εk), BB+ = (H − ε1) · · · (H − εk),

which implies that

Hss = (Hp − ε1) · · · (Hp − εk), Hp =
(
H̃ 0
0 H

)
.

If H is a given initial Hamiltonian from which we wish to construct H̃ , then k seed
solutions ui, i = 1, . . . , k are required, such that

Hui = εiui .

Thus, the new potential is given by

Ṽ (x) = V (x)− [logW(u1, . . . , uk)]′′,
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with W(u1, . . . , uk) being the Wronskian of the k seed solutions, while the
eigenfunctions (perhaps just formal) of H̃ associated with En and εi become,
respectively,

ψ̃n ∝ B+ψn ∝ W(u1, . . . , uk, ψn)

W(u1, . . . , uk)
,

ψ̃εi ∝
W(u1, . . . , ui−1, ui+1, . . . , uk)

W(u1, . . . , uk)
,

where we have assumed that Hψn = Enψn.

3 Polynomial Heisenberg Algebras

The polynomial Heisenberg algebras (PHA) are deformations of the Heisenberg-
Weyl algebra with three generators H, L+, and L− such that [9]

[H,L±] = ±L±,
[L−,L+] ≡ Qm+1(H+ 1)−Qm+1(H) = Pm(H),

Qm+1(H) ≡ L+L− =
m+1∏

i=1

(H− Ei ) .

The energy spectra of systems ruled by PHA depend on how many extremal states
in the kernel of L− become also physical eigenstates of H. If s of those extremal
states satisfy

L−ψEi
= 0, HψEi

= EiψEi
, i = 1, . . . , s,

as well as the defining boundary conditions, then from the iterated action of L+
onto each one of them we can construct s infinite energy ladders for H. It could
happen that one of those infinite ladders (let us say the j th one) truncates after the
nth step, i.e., (L+)n−1ψEj

�= 0, (L+)nψEj
= 0. In such a case it must happen that

E� = Ej + n for some � ∈ {s + 1, . . . , k}.
An important differential realization of the PHA arises if H is a 1-dim

Schrödinger Hamiltonian

H = −1

2

d2

dx2 + V(x),

while L± are (m + 1)th order differential ladder operators. In particular, the case
with m = 2 is worth of further study.
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3.1 Second-Degree PHA

By taking m = 2 we arrive at the second-degree PHA, for which

Q3(H) = (H− E1) (H− E2) (H− E3) , P2(H) = 3H2 + (3− 2S)H+ P + 1−S,

where S = E1+E2+E3, P = E1E2+E1E3+E2E3, and L± are third-order differential
operators. Systems ruled by second-degree PHA could have up to 3 infinite energy
ladders starting from E1, E2, E3.

It is important to look for the most general Schrödinger Hamiltonians ruled by
second-degree PHA. In order to find them, let us take L± as

L+ = L+1 L+2 , L+1 =
1√
2

(
− d

dx
+ f (x)

)
, L+2 =

1

2

(
d2

dx2
+ g(x)

d

dx
+ h(x)

)
,

HL+1 = L+1 (Ha + 1), HaL
+
2 = L+2 H ⇒ [H,L+] = L+.

A straightforward calculation leads to

f = x + g(x), h = −x2 + g′

2
− g2

2
− 2xg + a,

V = x2

2
− g′

2
+ g2

2
+ xg + E3 − 1

2
,

where the key function g satisfies the Painlevé IV equation:

g′′ = g′2

2g
+ 3

2
g3 + 4xg2 + 2

(
x2 − a

)
g + b

g
,

with a = E1 + E2 − 2E3 − 1, b = −2Δ2, Δ = E1 − E2. The three extremal states
can be expressed in terms of g as follows

ψE1 ∝
(

g′
2g − g

2 − Δ
g
− x

)
exp

[∫ ( g′
2g + g

2 − Δ
g

)
dx
]
, (1)

ψE2 ∝
(

g′
2g − g

2 + Δ
g
− x

)
exp

[∫ ( g′
2g + g

2 + Δ
g

)
dx
]
, (2)

ψE3 ∝ exp
(
− x2

2 −
∫
g dx

)
. (3)

We conclude that the most general Hamiltonians ruled by second-degree PHA have
potentials expressed in terms of Painlevé IV transcendents. Conversely, Eq. (3)
leads to
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g(x) = −x − {ln[ψE3(x)]}′,

thus Painlevé IV transcendents can be found by simply supplying the extremal states
of Hamiltonians ruled by second-degree PHA, having third-order differential ladder
operators.

4 Complex Oscillator

The complex oscillator potential is given by [17]

V (x) = 1

2
ω2x2, ω = eiθ , −π

2
≤ θ <

3π

2
.

The general solution to the associated Schrödinger equation reads

u(x, ε) = e−
ωx2

2

[
1F1

(
1

4
− ε

2ω
,

1

2
;ωx2

)
+ λ x 1F1

(
3

4
− ε

2ω
,

3

2
;ωx2

)]

= e
ωx2

2

[
1F1

(
1

4
+ ε

2ω
,

1

2
;−ωx2

)
+ λ x 1F1

(
3

4
+ ε

2ω
,

3

2
;−ωx2

)]
,

where λ = 2 ν Γ
(

3
4 − ε

2ω

)
/Γ

(
1
4 − ε

2ω

)
. The square-integrable solutions of such

non-Hermitian Hamiltonian are given by

φn(x) = CnHn(
√
ωx)e− 1

2 ωx2
, En(θ) = (n+ 1

2 )e
iθ ,

for
√
ω = ei

θ
2 , −π

2 < θ < π
2 and

φn(x) = DnHn(
√−ωx)e

1
2 ωx2

, En(θ) = (n+ 1
2 )e

i(θ−π),

for
√−ω = ei(

θ−π
2 ), π

2 < θ < 3π
2 , where Cn, Dn are normalization factors and

Hn(z) are the Hermite polynomials of complex argument z. Note that for θ = ±π
2

there are no square-integrable solutions for the stationary Schrödinger equation
since the complex oscillator potential reduces then to the repulsive oscillator. As the
eigenvalues lie in the first or in the fourth quadrant in the complex E-plane we can
take−π

2 < θ < π
2 without loss of generality. Moreover, since En (−θ) = [En (θ)]∗

we can further restrict to 0 ≤ θ < π
2 .

Similarly, as for the standard oscillator, the analogues of the annihilation and
creation operators

a±ω = 1√
2

(
∓ d

dx + ωx
)
,
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fulfill the following relations:

[H, a±ω ] = ±ωa±ω , {a−ω , a+ω } = 2H, [a−ω , a+ω ] = ω.

From them it is possible to determine algebraically the eigenfunctions of H [17]:

φn (x) = C̃n√
n!
(
a+ω
)n

φ0 (x) , φ0(x) =
( cos θ

π

) 1
4 e− ωx2

2 .

5 SUSY Partners of the Complex Oscillator

In order to perform a kth order SUSY transformation, k seed solutions u1, . . . , uk

associated with complex factorization energies ε1, . . . , εk are to be taken, so that k
new levels for H̃ will be created [1]:

Sp(H̃ ) = {εj , En; j = 1, · · · , k; n = 0, 1, 2, · · · } .

The new potential reads

Ṽ = 1
2ω

2x2 − [logW(u1, . . . , uk)]′′.

Since the oscillation theorem is no longer valid, the factorization energies ε1, . . . , εk
can be chosen essentially at any position on the complex E-plane.

The natural ladder operators for H̃ are given by

L± = B+a±ω B−.

They fulfill a PHA of degree 2k, since:

[H̃ ,L±] = ±ωL±, [L−,L+] = P2k(H̃ ),

Q2k+1(H̃ ) =
(
H̃ − ω

2

) k∏

i=1

(
H̃ − εi − ω

) (
H̃ − εi

)
.

As an example, for k = 1 the simplest non-singular transformations can be
implemented by using the bound state seed solutions with n = 2j :

u1 (x) = H2j (
√
ωx)e− 1

2 ωx2
, j = 0, 1, 2, · · · (4)

The first-order SUSY partner potential now takes the form

Ṽ (x) = 1
2ω

2x2+ω−8jω

[
(2j−1)

H2j−2(
√
ωx)

H2j (
√
ωx)

−2j

(
H2j−1(

√
ωx)

H2j (
√
ωx)

)2]
.
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4

Plots for some of these potentials can be seen in Fig. 1.
On the other hand for k = 2, with u1(x) as given in Eq. (4) and u2 = a−ω u1, it is

obtained

Ṽ (x) = 1
2ω

2x2 − W ′′
W
+
(

W ′
W

)2
,

W≡W(u1, u2) ∝ e−ωx2 {
(2j − 1)H2j (

√
ωx)H2j−2(

√
ωx)− 2j [H2j−1(

√
ωx)]2} .

Plots of these potentials for j = 1, 2, 3 can be seen in Fig. 2.

6 PIV Transcendents

Let us remind that for k = 1 the natural ladder operators L± are of order 3, thus
the first-order SUSY partners of the complex oscillator are directly linked to the
PIV equation. On the other hand, for k > 1 this order is necessarily greater than 3,
but it can be reduced precisely to 3 by connecting all the seed solutions in the way
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uj (x) = (a−ω )j−1u1(x), εj = ε1 − (j − 1)ω, j = 1, · · · , k. As a consequence,
L+ = Pk−1(H̃ ) l+, where l± are third-order differential ladder operators fulfilling

[H̃ , l±] = ±ω l±, l+l− =
(
H̃ − ω

2

) (
H̃ − ε1 − ω

) (
H̃ − εk

)
.

The roots of the polynomial l+l− suggest the following 3 extremal states

ψE1 ∝ B+k exp

(
−ωx2

2

)
, E1 = ω

2
,

ψE2 ∝ B+k a+ω u1, E2 = ε1 + ω,

ψE3 ∝
W(u1, . . . , uk−1)

W(u1, . . . , uk)
, E3 = εk = ε1 − (k − 1)ω.

In order to generate the PIV transcendents, we have to scale the Hamiltonian H̃ ,
as well as the involved factorization energies, and introduce the variable z = √ωx,
as follows:

H̃ = H̃
ω
= − 1

2ω
d2

dx2 + 1
2ωx2 − 1

ω
d2

dx2 [lnW (u1, · · · , uk)]

= − 1
2

d2

dz2 + z2

2 − d2

dz2 [lnW (u1, · · · , uk)] .

The corresponding PIV transcendents are simply calculated through

g(z) = −z− d
dz ln

[
ψE3

(
z√
ω

)]
.

Some results are shown in Tables 1 and 2 for k = 1 and k = 2, respectively.

Table 1 PIV transcendents for k = 1, ε1 = 5ω
2 , u1(x) = φ2(x)

ψE3
1
u1

B+φ0 B+a+ω u1
E3
ω

5
2

1
2

7
2

g(z) 6z−4z3

2z2−1
− 2z2+1

z−2z3
4z
(−4z4+4z2+3

)

8z6−4z4+6z2−3

a −2 4 −5

b −18 −2 −8

Table 2 PIV transcendents for k = 2, ε1 = 5ω
2 , u1(x) = φ2(x), u2 = a−ω u1

ψE3
u1

W(u1,u2)
B+φ0 B+a+ω u1

E3
ω

3
2

1
2

7
2

g(z) 8z5+6z
1−4z4

4z
2z2+1

− 4z4+3
4z5+8z3+3z

a 0 3 −6

b −18 −8 −2
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7 Conclusions

In this article we have analyzed the link that exists between systems ruled by
second-degree PHA (which have third-order ladder operators) and the PIV equation.
Starting from the SUSY partners of the complex oscillator, an algorithm for
generating PIV transcendents has been implemented (see also [17]). The non-
Hermitian Hamiltonians giving place to these transcendents have two infinite energy
ladders: an infinite one starting from ω

2 and going outside the origin along θ -
direction, plus a finite ladder beginning from an arbitrary complex number εk and
pointing in the same direction. A deeper study about the classification of the PIV
transcendents generated from the SUSY partners of the complex oscillator seems to
be required.

References

1. D.J. Fernández, in Integrability, Supersymmetry and Coherent States, ed. by S. Kuru, et al.
CRM Series in Mathematical Physics, (Springer, Cham, 2019), pp. 37–68

2. V.B. Matveev, M.A. Salle, Darboux Transformations and Solitons (Springer, Berlin, 1991)
3. B.K. Bagchi, Supersymmetry in Quantum and Classical Mechanics (Chapman & Hall, Boca

Raton, 2001)
4. C.V. Sukumar, in AIP Conf. Proc., vol. 744, 166 (2004)
5. A.P. Veselov, A.B. Shabat, Funct. Anal. Appl. 27, 81 (1993)
6. S.Y. Dubov, V.M. Eleonsky, N.E. Kulagin, Chaos 4, 47 (1994)
7. V.E. Adler, Physica D 73, 335 (1994)
8. A. Andrianov, F. Cannata, M. Ioffe, D. Nishnianidze, Phys. Lett. A 266, 341 (2000)
9. J.M. Carballo, D.J. Fernández, J. Negro, L.M. Nieto, J. Phys. A 37, 10349 (2004)

10. J. Mateo, J. Negro, J. Phys. A Math. Theor. 41, 045204 (2008)
11. D. Bermudez, D.J. Fernández, SIGMA 7, 025 (2011)
12. C. Rogers, A.P. Bassom, P.A. Clarkson, J. Math. Ann. App. 462, 1225 (2018)
13. D. Levi, P. Winternitz, Painlevé Transcendents, NATO ASI B278 (Plenum Press, New York,

1992)
14. A.P. Bassom, P.A. Clarkson, A.C. Hicks, Stud. Appl. Math. 95, 1 (1995)
15. D.J. Fernández, V. Hussin, J. Phys. A 32, 3603 (1999)
16. I. Marquette, J. Math. Phys. 50, 095202 (2009)
17. D.J. Fernández, J.C. González, Ann. Phys. 359, 213 (2015)



The Veronese Sequence of Analytic
Solutions of the CP 2s Sigma Model
Equations Described via Krawtchouk
Polynomials

Nicolas Crampé and Alfred Michel Grundland

In honour of Decio Levi (University of Roma Tre)

Abstract The objective of this paper is to establish a new relationship between
the Veronese sequence of analytic solutions of the Euclidean CP 2s sigma model in
two dimensions and the orthogonal Krawtchouk polynomials. We show that such
solutions of the CP 2s model, defined on the Riemann sphere and having a finite
action, can be explicitly parametrized in terms of these polynomials. We apply the
obtained results to the analysis of surfaces associated with CP 2s sigma models,
defined using the generalized Weierstrass formula for immersion. We show that
these surfaces are spheres immersed in the su(2s + 1) Lie algebra, and express
several other geometrical characteristics in terms of the Krawtchouk polynomials.
Finally, a new connection between the su(2) spin-s representation and the CP 2s

model is explored in detail. It is shown that for any given holomorphic vector
function in C

2s+1 written as a Veronese sequence, it is possible to derive a sequence
of analytic solutions of the CP 2s model through algebraic recurrence relations
which turn out to be simpler than the analytic relations known in the literature.
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1 The CP 2s Sigma Model

The dynamical fields in the CP 2s sigma models are maps from the Riemann sphere
S

2 to the complex projective space CP 2s 
 S
4s(s+1)/U(1)

S
2 � ξ± = ξ1 ± iξ2 �→ z = (z0, z1, . . . , z2s) ∈ C

2s+1 \ {∅},

(where the value of the index s is either an integer or half-integer) which are
stationary points of the action functional [1]

A = 1

4

∫∫

S2
(Dμz)

† · (Dμz)dξ+dξ−, (1)

and hence are solutions of the Euler–Lagrange (EL) equations

DμDμz+ (Dμz)
† · (Dμz)z = 0, (2)

subjected to z†z = 1, where Dμ are the covariant derivatives defined by

Dμz = ∂μz− (z†∂μz)z, ∂μ = ∂

∂ξμ
, μ = 1, 2.

We require that the action (1) over the whole Riemann sphere S
2 be finite.

2 Projective Formalism

Equivalently, representing the z’s by their homogeneous representatives, i.e. maps
into C

2s+1 \ {∅}

z = f

(f † · f )1/2 ,

we may use (fields of) rank-1 Hermitian projectors

P = f ⊗ f †

f † · f , P 2 = P, P † = P. (3)

This places the EL equations in the form of the conservation law (CL)

∂[∂̄P , P ] + ∂̄[∂P, P ] = 0, (4)
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where the symbols ∂ and ∂̄ stand for the complex derivatives with respect to ξ+ and
ξ− given by

∂ = 1

2

(
∂

∂ξ1
− i

∂

∂ξ2

)
, ∂̄ = 1

2

(
∂

∂ξ1
+ i

∂

∂ξ2

)
.

Under the above assumptions every solution can be obtained from a holomorphic
(respectively, antiholomorphic) solution f : S

2 → C
2s+1 \ {∅}, ∂̄f = 0, by

successive applications of the raising or lowering operator [1],

fk+1 = P+(fk) := (I2s+1 − Pk)∂fk, fk−1 = P−(fk) := (I2s+1 − Pk)∂̄fk,

(5)
P 0± = I2s+1, P 2s+1± fk = 0, k = 0, 1, . . . , 2s,

where P+(fk) is a creation operator and P−(fk) is an annihilation operator. Thus
the sequence of solutions in the CP 2s model consists of 2s + 1 vectors fk or 2s + 1
rank-1 Hermitian projectors Pk . The action integral (1) in terms of the projectors Pk

has a more compact form

A(Pk) =
∫∫

S2
tr
(
∂Pk · ∂̄Pk

)
dξ+dξ−. (6)

In terms of the nonconstant projectors Pk , the recurrence relations (5) become [2–4]

Pk±1 = Π±(Pk) := (∂±Pk)Pk(∂∓Pk)

tr[(∂±Pk)Pk(∂∓Pk)] , (7)

for tr[(∂±Pk)Pk(∂∓Pk)] �= 0 and are equal to zero when tr[(∂±Pk)Pk(∂∓Pk)] =
0, where ∂+ and ∂− stand for ∂ and ∂̄ , respectively. Here Pk stands for one of the
projectors {P0, P1, . . . , P2s}. This set satisfies the orthogonality and completeness
relations

PjPk = δjkPj , 0 ≤ k, j ≤ 2s,
2s∑

j=0

Pj = I2s+1. (8)

3 Solutions of the CP 2s Sigma Model

A particular holomorphic solution of the CP 2s model equations (4) expressed in
terms of the f’s

(
I2s+1 − fk ⊗ f

†
k

f
†
k · fk

)[
∂∂̄fk − 1

f
†
k · fk

((
f

†
k · ∂̄fk

)
∂fk +

(
f

†
k · ∂fk

)
∂̄fk

)]
= 0, (9)
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for 0 ≤ k ≤ 2s, can be written as the Veronese sequence [5]

f0 =
(

1,

(
2s

1

)1/2

ξ+, . . . ,
(

2s

r

)1/2

ξ r+, . . . , ξ2s+

)
∈ C

2s+1\{∅}, for k = 0.

(10)
The Veronese sequence of analytic solutions of (9) can be obtained by acting with
the creation operators (5). Thus for k > 2 this procedure allows us to construct three
classes of solutions: holomorphic f0, antiholomorphic f2s and mixed solutions fk ,
1 ≤ k ≤ 2s − 1.

Under the above assumptions we show that any Veronese sequence of solutions
Pk of the EL equations (9) can be expressed explicitly in terms of the Krawtchouk
orthogonal polynomials.

Theorem 1 (The Main Result [6]) Let the CP 2s model be defined on the Riemann
sphere S2 and have a finite action functional. Then the Veronese sequence of analytic
solutions fk of the CP 2s model (9) takes the form

(fk)j = (2s)!
(2s − k)!

( −ξ−
1+ ξ+ξ−

)k
√(

2s

j

)
ξ
j
+Kj(k;p, 2s), 0 ≤ k, j ≤ 2s

(11)

0 < p = ξ+ξ−
1+ ξ+ξ−

< 1,

where (fk)j is the j th component of the vector fk ∈ C
2s+1\{∅} andKj(k;p, 2s) are

Krawtchouk orthogonal polynomials defined in terms of the hypergeometric function

Kj(k) = Kj(k;p, 2s) =2F1(−j,−k;−2s; 1/p), 0 ≤ k ≤ 2s. (12)

Here j ,k and 2s are parameters, while p is an argument in (12). We use the
convention

Kj(0;p, 2s) = 1, for k = 0. (13)

The vectors fk can be used to construct the rank-1 Hermitian matrix projector Pk

with an entry in the ith row and j th column given by

(Pk)ij =
(

2s

k

)
(ξ+ξ−)k

(1+ ξ+ξ−)2s
ξ i+ξ

j
−

√(
2s

i

)(
2s

j

)
Ki(k)Kj (k), (14)

where, in what follows, we use the following abbreviated notation

Kj(k) := Kj(k;p, 2s), Kj (k ± 1) := Kj(k ± 1;p, 2s). (15)
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The EL equations (9) with the idempotency condition P 2
k = Pk admit a larger class

of solutions [4] than the rank-1 Hermitian projector Pk .

Proposition 1 (Higher-Rank Projectors) Let the linear combinations of the rank-
1 Hermitian projectors Pl be

P =
2s∑

l=0

λlPl, λl = 0 or λl = 1 for all l ∈ {0, 1, . . . , 2s}, (16)

for which Pl satisfy the EL equations (9). The higher-rank projector P can be
expressed in terms of the Krawtchouk polynomials

(P )ij =
2s∑

l=0

λl

(
2s

l

)
(ξ+ξ−)l

(1+ ξ+ξ−)2s ξ
i−ξ

j
+

√(
2s

i

)(
2s

j

)
Ki(l)Kj (l) (17)

which satisfy both the EL equations (9) and the idempotency condition P 2 = P . In
this case the projector P maps the C2s+1 space onto C

k , where k =∑2s
l=0 λl .

Proof The proof is straightforward if we use (16) and the rank-1 Hermitian
projector Pk in terms of the Krawtchouk polynomials (14).

4 The su(2) Spin-s Representation

A direct connection was established between the CP 2s model and the spin-s su(2)
representation [3, 7]. The spin matrix Sz is defined as a linear combination of the
(2s+1) rank-1 Hermitian projectors Pk , i.e.

Sz(ξ+, ξ−) =
2s∑

k=0

(k − s)Pk, (Sz)† = Sz, (18)

where the eigenvalues of the generator Sz are {−s,−s + 1, . . . , s − 1, s}. They are
either integer (for odd 2s+1) or half-integer (for even 2s+1) values. From Eq. (18)
we obtain that the spin matrix Sz is given by the tridiagonal matrix with an entry in
the ith row and j th column [6]

(Sz)ij = δij

(
1− ξ+ξ−
1+ ξ+ξ−

)
(i − s)− δi−1,j

(
ξ+

1+ ξ+ξ−

)√
i(2s + 1− i)

− δi,j−1

(
ξ−

1+ ξ+ξ−

)√
j (2s − j + 1), 0 ≤ i, j ≤ 2s. (19)
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The generators Sz and S± of the su(2) Lie algebra satisfy the commutation relations

[Sz, S±] = ±S±, [S+, S−] = 2Sz, (20)

and they are identified with the following (2s + 1)× (2s + 1) matrices [8]

(σ z)ij = (s − i)δij , (21)

(σ+)ij =
√
(2s − j + 1)jδi,j−1, 0 ≤ i, j ≤ 2s (22)

(σ−)ij =
√
(2s − i + 1)iδi−1,j . (23)

Hence the matrices Sz and S± can be decomposed as a linear combination of the
matrices σz and σ±, namely

⎛

⎝
Sz

S+
S−

⎞

⎠ = 1

1+ ξ+ξ−

⎛

⎝
ξ+ξ− − 1 −ξ− −ξ+

2ξ− ξ2− −1
2ξ+ −1 ξ2+

⎞

⎠

⎛

⎝
σz

σ+
σ−

⎞

⎠ , (24)

where (S+)† = S− and (S−)† = S+. The eigenvalue problem for the spin matrix
Sz is given by

Szfk = (k − s)fk, Sz(S±fk) = (k ± 1− s)(S±fk), for 0 ≤ k ≤ 2s.

Under these circumstances the following holds

Proposition 2 (Recurrence Relations Associated with the CP 2s Models) For the
Veronese sequence of analytic solutions fk of the CP 2s model (9), the algebraic
recurrence relations for the vectors Szfk and S±fk are given by [6]

S+fk =
{
−(1+ ξ+ξ−)fk+1 for 0 ≤ k ≤ 2s − 1,

0 for k = 2s,
(25)

S−fk = 1

1+ ξ+ξ−
k(k − 1− 2s)fk−1 for 0 ≤ k ≤ 2s. (26)

In terms of the projectors Pk , the recurrence relations (7) take the algebraic form

Pk+1 = Π+(Pk) := S+PkS
−

tr(S+PkS−)
, Pk−1 = Π−(Pk) := S−PkS

+

tr(S−PkS+)
,

(27)
where tr(S+PkS

−) �= 0.
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Proof The proof of the formulae (27) follows immediately from (3) and the
relations (25) and (26), i.e.

S+PkS
−

tr(S+PkS−)
= S+fk ⊗ f

†
k S

−

tr(S+fk ⊗ f
†
k S

−)
∼ fk+1 ⊗ f

†
k+1

f
†
k+1 · fk+1

= Pk+1, (28)

since (S+fk)
† = f

†
k S

−. Similarly, it is easy to show that the following relation
holds

S−PkS
+

tr(S−PkS+)
= Pk−1. (29)

Note that the relations (25) and (26) allow us to recursively construct the
Veronese sequence of analytic solutions fk from the holomorphic solution f0 in
a simpler way than the ones obtained from the analytic recurrence relation (5).
Therefore, the matrices S± are the creation and annihilation operators for the vectors
fk and the projectors Pk . The result given in the above proposition can be interpreted
as the matrix elements of the SU(2) irreducible representations, known as the
Wigner D function. It is known [9, 10] that these matrix elements can be expressed
in terms of the Krawtchouk polynomials.

5 Geometrical Aspects of Surfaces

The generalized Weierstrass formula for the immersion of 2D-surfaces associated
with the CP 2s model (9) is given by [11]

Xk(ξ+, ξ−) = −i

⎛

⎝Pk + 2
k−1∑

j=0

Pj

⎞

⎠+ i

(
1+ 2k

1+ 2s

)
I2s+1 ∈ su(2s + 1) (30)

and the raising and lowering operators for Xk are [2]

Xk±1 = Π±(Xk) = (∂±Xk)Xk(∂∓Xk)

tr((∂±Xk)Xk(∂∓Xk))
,

where ∂+ and ∂− stand for ∂ and ∂̄ , respectively. It follows from (27) that the
creation or annihilation operator for the immersion functions Xk can be defined
algebraically by
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Xk+1 = Xk − i

(
S+PkS

−

tr(S+PkS−)
+ Pk − 2

2s + 1
I

)
,

Xk−1 = Xk + i

(
S−PkS

+

tr(S−PkS+)
+ Pk − 2

2s + 1
I

)
.

For the sake of uniformity, the inner product is defined by

(A,B) = −1

2
tr(A · B), A,B ∈ su(2s + 1).

The first and second fundamental forms are

Ik = tr(∂Pk · ∂̄Pk)dξ+dξ− = 2(2sk + s − k2)

(1+ ξ+ξ−)2 dξ+dξ−,

I Ik = −tr(∂Pk · ∂̄Pk)∂

( [∂Pk, Pk]
tr(∂Pk · ∂̄Pk)

)
dξ2+ + 2i[∂̄Pk, ∂Pk]dξ+dξ− (31)

− tr(∂Pk · ∂̄Pk)∂̄

( [∂̄Pk, Pk]
tr(∂Pk · ∂̄Pk)

)
dξ2−.

Proposition 3 (Non-intersecting Spheres) For any value of the Veronese sequence
of analytic solutions fk of the CP 2s model (9), all the 2D-surfaces Xk are non-
intersecting spheres with the radius

Rk = (Xk,Xk)
1/2 =

(
−1

2
tr(Xk)

2
)1/2

=
∣∣∣∣
−2k2 + 2k(2s − 1)+ s − 1

1+ 2s

∣∣∣∣
1/2

,

(32)
immersed in the Lie algebra su(2s + 1) 
 R

4s(s+1).

Proof Let us assume that l > k are two different indices of the induced surfaces.
Subtracting (30) from the analogous expression for Xl , we get

Pl − Pk + 2
l−1∑

j=k

Pj − 2(l − k)

2s + 1
I2s+1 = 0. (33)

Multiplying Eq. (33) by Pk , Pl or Pl−1 and solving the obtained system of equations,
we obtain that the 2D-surfaces Xk and Xl do not intersect if k �= l with the
exceptions of X0 and X1 in the CP 1 model since X0 and X1 coincide [7]. The
fundamental forms (31) imply that the Gaussian curvatures of the 2D-surfaces have
constant positive values

Kk = 2

2sk + s − k2 . (34)
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The Kähler angles are given by

tan

(
1

2
θk(m)

)
=
∣∣∣∣
dfk(m)(∂/∂ξ−)
dfk(m)(∂/∂ξ+)

∣∣∣∣, m ∈ S
2

and have constant positive values

cos θk = s − k

2sk + s − k2 .

The Euler–Poincaré characters of the 2D-surfaces Xk are the integer Δk = 2 for all
k such that 0 ≤ k ≤ 2s. This means that all 2D-surfaces associated with the CP 2s

model are non-intersecting spheres with radius Rk given by (32).

The technique for obtaining surfaces via projective structures and their links with
orthogonal polynomials, elaborated from the CP 2s models, can be extended to
different types of Grassmannian manifolds. An analysis of these manifolds can
provide us with much more diverse types of surfaces.
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A Novel Integrable Fourth-Order
Difference Equation Admitting Three
Invariants

Giorgio Gubbiotti

Abstract In this short note we present a novel integrable fourth-order difference
equation. This equation is obtained as a stationary reduction from a known
integrable differential-difference equation. The novelty of the equation is inferred
from the number and shape of its invariants.

Keywords Difference equations · Integrability · Algebraic entropy

1 Introduction

The interest in discrete systems, that is, of systems whose independent degrees of
freedom take values in a discrete set, grew enormously during the past decades,
for reasons which span from very philosophical [23] to purely practical ones
[29]. Nowadays, discrete systems are studied from different points of view and
perspective, see [12, 24].

In this short note we will present a new integrable fourth-order difference
equation. An N th-order difference equation is a functional equation for an unknown
sequence {xn}n∈Z where the xn+N element is expressible in terms of the previous
xn+i , i = 0, 1, . . . , N − 1. Such kind of functional equations are also called
recurrence relations. Without entering in the details, which will be given in Sect. 2,
we say that an N th-order difference equation is integrable when its dynamics is
sufficiently regular and predictable.

The integrability of second-order difference equations is a well understood topic,
as it is known that most of the integrable second-order difference equations belong to
the QRT class [30, 31], even though there are some notable exceptions [11, 33, 44].

In higher dimension an analogous general framework does not exist, whereas
some approaches similar to the one of QRT [30, 31] have been pursued in the
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literature [7, 21, 22]. These approaches relied on searching for difference equations
admitting some extra structures allowing to claim integrability, i.e. invariants of
a fixed form and/or symplectic structures. Higher-order difference equations have
been produced in the literature with different methods, like periodic reductions of
partial difference equations [9, 35–38, 40].

In an upcoming paper [20] we propose a new approach to generate inte-
grable higher-order difference equations through stationary solutions of integrable
differential-difference equations. A differential-difference equation is a function
equation for an unknown sequence {xn (t)}n∈Z of functions a continuous variable,
depending on both shifts and derivatives. A well-known class of differential-
difference equations are the Volterra-like equations:

∂xn

∂t
= f

(
xn+k, . . . , xn, . . . , xn−k′

)
, k > k′. (1)

The stationary reduction of a differential-difference equation is obtained by letting
∂xn/∂t ≡ 0 and it is clearly a difference equation, since we suppressed the
dependence on the continuous variable. To be more precise, in [20] we will present
the integrability properties of the stationary solutions for two classes fourth-order
Volterra-like equations, recently classified in [15, 16]. In this short note we present
an interesting example out of this general picture.

The plan of the paper is following: in Sect. 2 we introduce the formal definitions
of integrability we will be using throughout this note. In Sect. 3 we will present our
new example, and show its integrability in the sense of Sect. 2. Finally, in Sect. 4
we give some final comments and an outlook towards the general results.

2 Integrability of Difference Equations

Integrability both for continuous and discrete systems can be defined in several
different ways. In this note we will limit ourselves to two alternative definition,
out of all the possible ones.

Consider an autonomous N th-order difference equation:

xn+N = Q(xn+N−1, xn+N−2, . . . , xn) . (2)

A function

I = I (xn+N−1, xn+N−2, . . . , xn) (3)

is called an invariant if:

I (xn+N, xn+N−1, . . . , xn+1) = I (xn+N−1, xn+N−2, . . . , xn) (4)

on the solutions of equation (2).
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If there exist N − 1 functionally independent invariants Il , l = 1, . . . , N − 1,
then it is possible to reduce the difference equation (2) to first-order one by solving
the relations:

Ij = κj , (5)

where κj are the value of the invariants on a set of initial data. In such case we say
that the difference equation (2) is integrable.

This definition of integrability is very general. If some additional structures, like
Poisson or symplectic structures, are present, then the number of invariants needed
for integrability can be significantly lowered: this is the content of the discrete
Liouville–Poisson theorem [6, 28, 41].

In general to search for invariants is difficult procedure, see remark 1. For this
reason, several integrability indicators, that is, necessary conditions for integrabil-
ity, have been introduced. A well-known integrability indicator, which is also an
equivalent definition of integrability, is the algebraic entropy [5, 13, 42]. Algebraic
entropy is defined for bi-rational maps of the complex projective space CP

N to
itself. Rational difference equations (2) which can uniquely solve with respect to
xn, that is, which are fractionally linear in xn, are equivalent to such maps. To see
this first notice that computing the orbit of such an equation is equivalent to iterate
the complex map Φ : Cn → C

n defined as follows:

Φ (xN−1, . . . , x0) = (Q (xn+N−1, . . . , xn) , xN−1, . . . , x1) . (6)

The condition of unique solvability with respect to x0 of (2) ensures us that the
map Φ has a rational inverse Ψ . Then, introducing the homogeneous coordinates
[XN−1 : . . . , X0 : T ] by

(xN−1, . . . , x0) =
(
XN−1

T
, . . . ,

X0

T

)
, (7)

we have that the map (6) can be lifted to a rational map ϕ : CPN → CP
N . Lifting

the inverse map Ψ to ψ : CPN → CP
N we conclude that the map we obtain is

actually a bi-rational map of the complex projective space CP
N to itself.

Given a bi-rational map, we can take as measure of its complexity, in the sense
of Arnol’d [4], the growth of the number of intersections of the successive images
of a straight line with a generic hyperplane in complex projective space [42]. This
actually corresponds to compute the degrees of its iterates with respect to a generic
initial condition:

dk = degϕk, k ∈ N. (8)
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Then we consider the following limit:

ε = lim
k→∞

1

k
log dk, (9)

called the algebraic entropy. If the growth of the map ϕ is sub-exponential, then the
algebraic entropy (9) vanishes and we say the map ϕ is integrable in the sense of
the algebraic entropy [5, 13, 42]. As a particular case, when the growth of a map is
linear the map is believed to be linearizable [25].

Algebraic entropy is an invariant of bi-rational maps, meaning that its value is
unchanged up to bi-rational equivalence. Moreover, its value is determined by the
singularity structure of a map [5, 34, 43].

To compute the algebraic entropy from (9) we need to know the asymptotic
behaviour of the sequence dn. For the majority of applications such behaviour can
be inferred by using a generating function [27], that is, a function g = g (z) such
that:

g (z) =
∞∑

n=0

dkz
k. (10)

A generating function is a predictive tool which can be used to test the successive
members of a finite sequence. It follows that the algebraic entropy is given by the
logarithm of the smallest pole of the generating function, see [17, 18].

Remark 1 Finding invariants is a hard task. Here we recall briefly a method for
finding invariants of bi-rational maps presented first in [13] and recently reprised in
[8]. If the ratio P/Q is an invariant of a map ϕ, then the pullback of ϕ on P/Q is
invariant: ϕ∗(P/Q) = P/Q. This implies

ϕ∗(P ) = aP and ϕ∗(Q) = aQ (11)

for some polynomial factor a. Using the fact that ψ ◦ ϕ = κ Id where κ is a
polynomial one gets that a must contain some of the factors dividing κ . Hence one
can search for invariants imposing the form of P , then searching for the appropriate
factors. We get an invariant when we obtain more than one solution for the same a.
By taking ratios of the solutions we obtain the invariants.

The problem with this method is that it is not bounded as we do not know a priori
the degree of P . However, in practice this method is quite useful for the explicit
computation of the invariants, since the conditions in (11) are linear, even though
their number can become huge as deg(P ) grows.
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3 A Novel Example

Consider the following differential-difference equation:

∂xn

∂t
= (xn + 1)

[
xn+2xn(xn+1 + 1)2

xn+1
− xn−2xn(xn−1 + 1)2

xn−1

+ (1+ 2xn)(xn+1 − xn−1)

]
.

(12)

Equation (12) has been found in [2] and it is related to the discrete Sawada–Kotera
equation found in [1, 39]. Equation (12) emerged again in [15] where the authors
classified the fourth-order Volterra-like equations (1) linear in xn±2. Imposing
∂xn/∂t ≡ 0 in (12) we obtain its stationary reduction:

xn+2xn(xn+1 + 1)2

xn+1
− xn−2xn(xn−1 + 1)2

xn−1
= −(1+ 2xn)(xn+1 − xn−1). (13)

Equation (13) is not resummable, in the sense of [3], to a second-order difference
equation, nor it is deflatable, in the sense of [26], to a third-order difference
equation.

In [19] it was heuristically shown that Eq. (12) has quadratic growth [10].
Since (13) is a reduction of (12) we have that it can have at most quadratic growth.
Computing the growth of degrees of equation (13) we obtain

1, 5, 15, 35, 67, 113, 167, 229, 297, 375, 463, 561, 667,

785, 911, 1047, 1193, 1349, 1511, 1681, 1859, 2051,

2255, 2469, 2689, 2917, 3151, 3395, 3651, 3921, 4199 . . .

(14)

whose generating function is

g (z) =

⎡

⎣
5z13 + 5z12 + 15z11 + 17z10 + 29z9 + 25z8

+32z7 + 26z6 + 27z5 + 19z4 + 13z3 + 7z2 + 3z+ 1

⎤

⎦

(1− z)3(z+ 1)(z2 + 1)(z4 + 1)(z2 − z+ 1)(z2 + z+ 1)
. (15)

Since all the roots of the denominator of (15) lie on the unit circle we have, as
expected, that the algebraic entropy of equation (13) vanishes. Moreover, due to the
presence of the factor (1− z)3 we obtain that its growth is asymptotically quadratic
[14]. That is, Eq. (13) is integrable in the sense of algebraic entropy and it is not
expected to be linearizable, since its growth is quadratic.
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Applying the method presented in Remark 1 we find that the map (13) admits the
following functionally independent invariants:

I1 = xnxn−2

xn−1
+ xn−1xn+1

xn
+ xn + xn−1 + 2xnxn−2

+ 2xn−1xn+1 + 2xnxn−1 + xnxn−1xn−2 + xnxn−1xn+1

(16a)

I2 =
(
xn−2

xn−1

)2

+
(
xn+1

xn

)2

+ x2
n−1x

2
n−2 + x2

nx
2
n+1 + x2

nx
2
n−1

− 2

[
xn−2xn+1

(
xn

xn−1
+ 1

xnxn−1
+ xn−1

xn
+ xnxn−1

)

+ xn−1xn (xn−1xn−2 + xnxn+1)

]

+ 4
[
xn−1x

2
n−2 + xnx

2
n+1 + (xn + xn−1) (1− xn−2xn+1)

]

+ 4

[
xn+1 (xn−1 + xn+1 − xn−2)

xn
+ xn−2 (xn + xn−2 − xn+1)

xn−1

]

+ 6
(
x2
n+1 + xn−1xn+1 + xnxn−2 + x2

n−2

)
+ 8 (xnxn−1 − xn−2xn+1)

(16b)

I3 = N3

D3,1D3,2
, (16c)

where

N3 = x3
nx

2
n−2x

3
n−1 + x3

nxn−2x
3
n−1xn+1 + x3

nx
3
n−1x

2
n+1

+ 3x3
nx

2
n−2x

2
n−1 + 3x3

nxn−2x
3
n−1 + 3x3

nx
3
n−1xn+1

+ 3x3
nx

2
n−2xn−1 + 4x3

nxn−2x
2
n−1 − x3

nxn−2xn−1xn+1

(17a)

+ 2x3
nx

3
n−1 + x3

nx
2
n−1xn+1 + x2

nxn−2x
3
n−1 − x2

nxn−2x
2
n−1xn+1

+ 4x2
nx

3
n−1xn+1 − xnxn−2x

3
n−1xn+1 + 3xnx

3
n−1x

2
n+1 + x3

nx
2
n−2

+ x3
nxn−2xn−1 + x3

nx
2
n−1 + xn

2xn−2x
2
n−1 − x2

nxn−2xn−1xn+1

+ x2
nx

2
n−1xn+1 − xnxn−2xn−1

2xn+1 + xnx
3
n−1xn+1 + x3

n−1x
2
n+1

+ x2
nx

2
n−1 + 3x2

nx
3
n−1x

2
n+1 + x2

nx
3
n−1,

D3,1 = xnx
2
n−1xn−2 + 2xnxn−1xn−2 + xnx

2
n−1

− xnxn−1xn+1 + xnxn−2 − xn−1xn+1,

(17b)

D3,2 = xnxn−1xn−2 − x2
nxn−1xn+1 − x2

nxn−1

− 2xnxn−1xn+1 + xnxn−2 − xn−1xn+1.

(17c)
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This proves that Eq. (13) is an integrable equation according to both definitions
stated in Sect. 2. Moreover, the number and shape of the invariants proves that
this equation is outside the known classifications given in [7, 22]. For instance,
the invariants are rational in the affine coordinate, differently from [22], where
the invariants are polynomials in affine coordinates. Furthermore, these invariants
are not ratios of biquadratic polynomials, therefore are outside the class considered
in [7].

From the invariants (16) it is possible to construct a dual map [32]. Differently
from the dual maps appearing in [7, 26, 32] this dual map are not integrable
according to the algebraic entropy test. We underline that dual maps with such
features already appeared in [22].

Remark 2 The invariant I1 is linear in xn+1 and xn−2. This implies that TnI1 − I1
is actually equivalent to Eq. (13). That is, Eq. (13) is resummable to an autonomous
third-order difference equation.

4 Final Remarks

In this short note we showed that the stationary reduction of equation (12), namely
Eq. (13), is integrable in the sense of algebraic entropy and in the sense of the
existence of invariants. The first properties follow from our previous work [19], yet
we showed that the quadratic growth is preserved.

In our upcoming paper [20] we will consider all the stationary reductions of
the fourth-order Volterra-like differential-difference equations classified in [15, 16].
The application of the algebraic entropy test will give rise to a vast “zoology” of
possibilities, consisting in periodic equations, explicitly linear equations, lineariz-
able equations (linear growth), and integrable equations (quadratic growth). We will
explain these growth properties using the following notions:

1. correspondence to idempotent maps,
2. explicit linearization,
3. resummation, in the sense of [3], to integrable second-order non-autonomous

difference equations,
4. deflation, in the sense of [26], to integrable third-order difference equations,
5. existence of three invariants.

Genuinely new integrable fourth-order difference equations belong to the last
class. With these new examples we aim to broaden our knowledge of higher-order
integrable difference equations and give the foundation for a new algorithmic search
method based on hierarchies of differential-difference equations.
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Weighted Hurwitz Numbers,
τ-Functions, and Matrix Integrals

J. Harnad

Dedicated to Prof. Decio Levi on the occasion of his 70th
birthday

Abstract The basis elements spanning the Sato Grassmannian element corre-
sponding to the KP τ -function that serves as generating function for rationally
weighted Hurwitz numbers are shown to be Meijer G-functions. Using their Mellin-
Barnes integral representation the τ -function, evaluated at the trace invariants of an
externally coupled matrix, is expressed as a matrix integral. Using the Mellin-Barnes
integral transform of an infinite product of Γ functions, a similar matrix integral
representation is given for the KP τ -function that serves as generating function for
quantum weighted Hurwitz numbers.

Keywords Hurwitz numbers · τ -functions

1 Hurwitz Numbers: Classical and Weighted

The fact that KP and 2D-Toda τ -functions of hypergeometric type serve as gener-
ating functions for weighted Hurwitz numbers was shown in [3–6], generalizing the
case of simple (single and double) Hurwitz numbers [8, 9]. Sections 1.1 and 1.2
below, and Sect. 2 give a brief review of this theory, together with two illustrative
examples: rational and quantum weighted Hurwitz numbers. In Sect. 3, it is shown
how evaluation of such τ -functions at the trace invariants of a finite matrix may be
expressed either as a Wronskian determinant or as a matrix integral. The content of
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Sects. 3.2–3.4 are largely drawn from [2, 7], in which further details and proofs of
the main results may be found.

1.1 Geometric Meaning of Classical Hurwitz Numbers

The Hurwitz number H(μ(1), . . . , μ(k)) is the number of inequivalent branched N -
sheeted covers Γ → P1 of the Riemann sphere, with k branch points (Q1, . . . ,Qk),
whose ramification profiles are given by k partitions (μ(1), . . . , μ(k)) of N ,
normalized by dividing by the order | aut(Γ )| of its automorphism group. The Euler
characteristic χ and genus g of the covering curve are given by the Riemann–
Hurwitz formula:

χ = 2− 2g = 2N − d, d :=
l∑

i=1

�∗(μ(i)), (1)

where �∗(μ) := |μ| − �(μ) = N − �(μ) is the colength of the partition.
The Frobenius–Schur formula gives H(μ(1), . . . μ(k)) in terms of SN characters:

H(μ(1), . . . μ(k)) =
∑

λ,|λ|=N

hk−2(λ)

k∏

j=1

χλ(μ
(i))

zμ(j)

, |μ(i)| = N, (2)

where h(λ) =
(

det 1
(λi−i+j)!

)−1
is the product of the hook lengths of the partition

λ = (λ1 � · · · � λ�(λ > 0), χλ(μ
(j)) is the irreducible character of

representation λ evaluated on the conjugacy class μ(j), and

zμ(j) :=
∏

i

imi(μ
(j))(mi(μ

(j)))! (3)

is the order of the stabilizer of any element of cyc(μ(j)) (and mi(μ
(j)) = # parts of

partition μ(j) equal to i)

1.2 Weighted Hurwitz Numbers [3–6]

Define the weight generating functionG(z), or its dual G̃(z), as an infinite (or finite)
product or sum (formal or convergent).
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G(z) =
∞∏

i=1

(1+ zci) = 1+
∞∑

j=1

gj z
j

G̃(z) =
∞∏

i=1

(1− zci)
−1 = 1+

∞∑

j=1

g̃j z
j . (4)

The weight for a branched covering with ramification profiles (μ(1), . . . , μ(k)) is
defined to be:

WG(μ(1), . . . , μ(k)) := 1

k!
∑

σ∈Sk

∑

1�i1<···<ik

c
�∗(μ(1))
iσ (1)

· · · c�∗(μ(k))
iσ (k)

W̃G̃(μ(1), . . . , μ(k)) := (−1)
∑k

i=1 �∗(μ(i))+k

k!
∑

σ∈Sk

∑

1�i1�···�ik

c
�∗(μ(1))
iσ (1)

· · · c�∗(μ(k))
iσ (k)

. (5)

Weighted double Hurwitz numbers Hd
G(μ, ν), Hd

G̃
(μ, ν) for n-sheeted branched

coverings of the Riemann sphere having a pair of unweighted branch points
(Q0,Q∞), with ramification profiles of type (μ, ν), and k additional weighted
branch points (Q1, . . . ,Qk) with ramification profiles (μ(1), . . . , μ(k)) are
defined as:

Hd
G(μ, ν) :=

d∑

k=1

∑′

μ(1),...μ(k)

∑k
i=1 �∗(μ(i))=d

WG(μ(1), . . . , μ(k))H(μ(1), . . . , μ(k), μ, ν),

Hd

G̃
(μ, ν) :=

d∑

k=1

∑′

μ(1),...μ(k)

∑k
i=1 �∗(μ(i))=d

W̃G̃(μ(1), . . . , μ(k))H(μ(1), . . . , μ(k), μ, ν),

where
∑′ denotes the sum over all partitions other than the cycle type of the identity

element (1)n. If Q∞ is not a branch point; i.e. ν = (1)n, we have a weighted single
Hurwitz number

Hd
G(μ) := Hd

G(μ, (1)n). (6)

Two cases of particular interest are: rational weight generating functions:

Gc,d(z) :=
∏L

l=1(1+ clz)∏M
m=1(1− dmz)

(7)

and quantum weight generating function (quantum exponential):
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G̃(z) = Hq(z) :=
∞∏

i=0

(1− qiz)−1 =
∞∑

n=0

zn

(q; q)n , (8)

where

(q; q)n := (1− q)(1− q2) · · · (1− qn) (9)

for some parameter q, with |q| < 1.
The corresponding rationally weighted (single) Hurwitz numbers are

Hd
Gc,d

(μ, ν) :=
∑

1�k,l
k+l�d

∑

μ(1),...μ(k),ν(1),...ν(l),∑k
i=1 �∗(μ(i))+∑l

j=1 �∗(ν(j))=d

|μ(i)|=|ν(j)|=N

WGc,d(μ
(1), . . . , μ(k); ν(1), . . . , ν(l))

×H(μ(1), . . . , μ(k), ν(1), . . . , ν(l), μ),

where the rational weight factor is

WGc,d(μ
(1), . . . , μ(k); ν(1), . . . , ν(l))

:= (−1)
∑l

j=1 �∗(ν(j))−l

k!l!
∑

σ∈Sk
σ ′∈Sl

∑

1≤a1<···<ak≤M

1≤b1···≤bk≤L

c�
∗(μ(1))

aσ(1)
· · · c�∗(μ(k))

aσ(k)
d
�∗(ν(1))
bσ ′(1) · · · d�∗(ν(l))

bσ ′(l) .

The quantum weighted (single) Hurwitz numbers are

Hd
Hq

(μ) :=
d∑

k=1

∑

μ(1),...μ(k), |μ(i)|=N∑k
i=1 �∗(μ(i))=d

W̃Hq (μ
(1), . . . , μ(k))H(μ(1), . . . , μk), μ),

(10)
where the quantum weight factor is

W̃Hq (μ
(1), . . . , μ(k)) := (−1)d−k

k!
∑

σ∈Sk

k∏

j=1

1

(1− q
∑j

i=1 �∗(μ(σ(i))
)
.

2 Hypergeometric τ-Functions as Generating Functions
for Weighted Hurwitz Numbers [3–6]

To construct a KP τ -function of hypergeometric type that serves as generating
function for weighted Hurwitz numbers for a given weight generating function G,
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choose a small parameter β and define coefficients r
(G,β)
λ that are of content product

form:

r
(G,β)
λ :=

∏

(ij)∈λ
r
(G,β)
j−i =

∏

(ij)∈λ
G((j − i)β), (11)

where

r
(G,β)
j := G(jβ) = ρ

(G,β)
j

βρ
(G,β)
j−1

, (12)

with

ρ
(G,β)
j := βj

j∏

i=1

G(iβ) =: eT G
j (β)

, ρ0 = 1,= ρ
(G,β)
j

βρ
(G,β)
j−1

,

ρ
(G,β)
−j ( := β−j

j−1∏

i=1

1

G(−iβ)
=: eT G−j (β), j = 1, 2, . . . (13)

We then have [4, 6]:

Theorem 1 (Hypergeometric Toda τ-Functions Associated with Weight Gener-
ating Function G(z)) The double Schur function series

τ (G,β)(t, s) :=
∑

λ

β |λ|r(G,β)
λ sλ(t)sλ(s) (14)

defines a 2D-Toda τ -function (at lattice value n = 0).

We now use the Frobenius character formula

sλ(t) =
∑

μ,|μ|=|λ|

χλ(μ)pμ(t)
zμ

, sλ(s) =
∑

ν,|ν|=|λ|

χλ(ν)pν(s)
zν

(15)

to change the basis of Schur functions to power sum symmetric functions

pμ(t) :=
�(μ)∏

i=1

pμi
(t), pj (t) = j tj , pν(s) :=

�(ν)∏

i=1

pνi (s), pj (s) = jsj . (16)

Theorem 2 (Hypergeometric Toda τ-Functions as Generating Function for
weighted Double Hurwitz Numbers [4, 6]) The τ -function τ (G,β)(t, s) can equiv-
alently be expressed as a double infinite series in the bases of power sum symmetric
functions as follows
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τ (G,β)(t, s) =
∞∑

d=0

∑

μ,ν,
|μ|=|ν|

β |μ|+dHd
G(μ, ν)pμ(t)pν(s). (17)

It is thus a generating function for the numbers Hd
G(μ, ν) of weighted n-fold

branched coverings of the sphere, with a pair of specified branch points having
ramification profiles (μ, ν) and genus given by the Riemann–Hurwitz formula

2− 2g = �(μ)+ �(ν)− d, d =
k∑

i=1

�∗(μ(i)). (18)

Corollary 1 (Hypergeometric KP τ-Functions as Generating Functions for
Weighted Single Hurwitz Numbers) Set: s = β−1t0 := (β−1, 0, 0, . . . ).
Then the series

τ (G,β)(t, β−1t0) := τ (G,β)(t) =
∑

λ

(h(λ))−1r
(G,β)
λ sλ(t)

=
∞∑

d=0

∑

μ

βdHd
G(μ)pμ(t)

is a KP τ -function which is a generating function for weighted single numbers
Hd

G(μ) for |μ|-fold branched coverings of the sphere, with a branch point having
ramification profile (μ) at Q0 and genus given by the Riemann–Hurwitz formula.

2− 2g = |μ| + �(μ)− d. (19)

3 Wronskian and Matrix Integral Representation
of τ(G,β)([X])

In [2, 7] new matrix integral representations were derived for the τ -functions
that serve as generating functions for rationally and quantum weighted Hurwitz
numbers. The main result is that, using Laurent series and Mellin-Barnes integral
representations of the adapted bases for the respective elements of the infinite
Grassmannian corresponding to these cases, the τ -functions may be expressed as
Wronskian determinants or as matrix integrals.
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3.1 Adapted Basis, Recursion Operators, Quantum Spectral
Curve

Henceforth, we always set:

s = β−1t0 := (β−1, 0, 0, . . . ) (20)

and

τ (G,β)(t) := τ (G,β)(t, β−1t0) (21)

is a KP τ -function of hypergeometric type.
For k ∈ Z, define

φk(x) := β

2πixk−1

∮

|ζ |=ε

ρ(G,β)(ζ )eβ
−1xζ dζ

ζ k
,

= βx1−k
∞∑

j=0

ρ
(G,β)
j−k

j !
(
x

β

)j

, (22)

where

ρ(G,β)(ζ ) :=
k−1∑

i=−∞
ρ
(G,β)
−i−1 ζ

i . (23)

Then {φk(1/z)}k∈N+ is a basis for the element w(G,β) of the Sato Grassmannian that
determines the KP τ -function τ (G,β)(t) [1].

3.2 Quantum and Classical Spectral Curve

Theorem 3 (Quantum Spectral Curve and Eigenvalue Equations [1]) The func-
tions φk(x) satisfy

Lφk(x) := (xG(βD)−D) φk(x) = (k − 1)φk(x), (24)

where D := x d
dx

is the Euler operator.

The classical spectral curve is

y = G(βxy). (25)
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Rational Weighting Case

For G(z) = Gc,d(z), denote φk(x) =: φ(c,d,β)
k (x). Then

ζ

L∏

l=1

(D + 1

βcl
)φ

(c,d,β)
k + (D + k − 1)

M∏

m=1

(D − 1− 1

βdm
)φ

(c,d,β)
k = 0, (26)

where

ζ := −κc,dx, κc,d := (−1)M
∏L

l=1 βcl∏M
m=1 βdm

. (27)

Mellin-Barnes Integral Representation: Meijer G-Functions [2, 7]

It may be shown that φ(c,d,β)
k has the Mellin-Barnes integral representation:

φ
(c,d,β)
k = C

(c,d,β)
k G

1,L
L,M+1

(
1− 1

βc1
, · · · , 1− 1

βcL

1− k, 1+ 1
βd1

, · · · , 1+ 1
βdM

∣∣∣∣− κc,dx

)

= C
(c,d,β)
k

2πi

∫

Ck

Γ (1− k − s)
∏L

�=1 Γ
(
s + 1

βc�

) (−κc,dx
)s

∏M
m=1 Γ

(
s − 1

βdm

) ds.

∼ βρ−k(c,d)
(κx)k−1 LFM

(
1− k + 1

βc1
, · · · , 1− k + 1

βcL

1− k − 1
βd1

, · · · , 1− k − 1
βdM

∣∣∣∣κc,dx

)
(28)

where

C
(c,d,β)
k :=

∏M
j=1 Γ (− 1

βdj
)

(−β)k−1
∏L

�=1 Γ ( 1
βc�

)
. (29)

The contour Ck is chosen so that the poles at 1 − k, 2 − k, · · · are to the right and
the poles at {−i − 1

βcj
}j=1,···L, i∈N+ to the left. (See Fig. 1.)

Quantum Case Expressed as Mellin-Barnes Integrals [7]

The following is an integral representation of φ
(Hq,β)

k (x), valid for all x ∈ C,

φ
(Hq,β)

k = 1

2πi

∫

Ck

AHq,k(s)x
sds, (30)
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−k+1 −k+2 ··· ··· N N+1

− 1
βc�

− 1
βc�

− 1······

− 1
βc�

− 1
βc�

− 1······

R
e
s
=

N
+

1 2

R
e
s
=

N
+

1 2

Ck

Fig. 1 The contours of integration for the function φ
(c,d,β)
k in the case L > M + 1

where

AHq,k(z) := (−β)1−kΓ (1− k − z)

∞∏

m=0

(
(−βqm)−z Γ (−β−1q−m)

Γ (z− β−1q−m)

)
. (31)

The contour Ck is defined as starting at +∞ immediately above the real axis,
proceeding to the left above the axis, winding around the poles at the integers
s = −k,−k + 1. . . . in a counterclockwise sense and continuing below the axis
back to +∞.

3.3 Determinantal Representation of τ (G,β)(t)

If τ (G,β)(t) is evaluated at the trace invariants of diagonal X ∈ Matn×n

t = [X], ti = 1

i
trXi,

X := diag(x1, . . . , xn), (32)

it is expressible as the ratio of n× n determinants

τ (G,β)
([
X
]) =

∏n
i=1 xn−1

i∏n
i=1 ρ−i

det
(
φi(xj )

)
1≤i,j,≤n

Δ(x)
, (33)
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where

Δ(x) =
∏

1≤i<j≤n

(xi − xj ) = det(xn−j
i )1≤i,j,≤n (34)

is the Vandermonde determinant.

Eulerian Wronskian Representation

It follows from the recursion relations

β(D + k − 1)φk = φk−1, k ∈ Z, (35)

that

τ (G,β)
([
X
]) = γn

(
n∏

i=1

xn−1
i

)
det
(
Di−1φn(xj )

)
1≤i,j,≤n

Δ(x)
, (36)

where

γn := β
1
2 n(n−1)

∏n
i=1 ρ−i

. (37)

3.4 Matrix Integral Representation of τ (G,β)([X]) [2, 7]

Wronskian Representation: Rational Case

For rational weight generating functions G = Gc,d, and any n ∈ N+, let

φ(c,d,β)
n (ey) =

∫

Cn

A(c,d,β)
n (s)eysds,

A(c,d,β)
n (s) :=

C
(c,d,β)
n Γ (1− n− s)

∏L
l=1 Γ

(
s + 1

βcl

)
(−κc,d)

s

2πi
∏M

m=1 Γ
(
s − 1

βdm

) .

Define the diagonal matrix Y = diag(y1, . . . yn)

X = eY , Y = ln(X), xi = eyi , i = 1, . . . , n. (38)
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Then τ (Gc,d,β)
([
X
])

becomes a ratio of Wronskian determinants

τ (Gc,d,β)
([
X
]) = γn

(
n∏

i=1

xn−1
i

) det
(
(φ

(c,d,β)
n )(i−1)(eyj )

)

1≤i,j,≤n

Δ(ey)
. (39)

Matrix Integral Representation of τ(G,β)([X]): Rational Case

It follows [2] that

τ (Gc,d,β)(
[
X
]
) = β

1
2 n(n−1)(

∏n
i=1 xn−1

i )Δ(ln(x))

(
∏n

i=1 i!)Δ(x)
Zdμ(c,d,β,n) (X), (40)

where

Zdμ(c,d,β,n) (X) =
∫

M∈Norn×n
Cn

dμ(c,d,β,n)(M)etrYM (41)

and

dμ(c,d,β,n)(M) := (Δ(ζ )2det(A(c,d,β)
n (M))dμ0(U)

n∏

j=1

dζi

is a conjugation invariant measure on the space of normal matrices

M = UZU† ∈ Norn×n
Cn

, U ∈ U(n), Z = diag(ζ1, . . . , ζn) (42)

with eigenvalues ζi ∈ C supported on the contour Cn.

Wronskian Representation: Quantum Case

For quantum weight generating functions G = Hq , and any n ∈ N+, let

φ
(Hq,β)
n (ey) =

∫

Cn

A(c,d,β)
n (s)eysds,

AHq,n(z) := (−β)1−nΓ (1− n− z)

∞∏

m=0

(
(−βqm)−z Γ (−β−1q−m)

Γ (z− β−1q−m)

)
.

Define the diagonal matrix Y = diag(y1, . . . yn)

X = eY , Y = ln(X), xi = eyi , i = 1, . . . , n, (43)
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Then τ (Hq,β)
([
X
])

becomes a ratio of Wronskian determinants

τ (Hq,β)
([
X
]) = γn

(
n∏

i=1

xn−1
i

) det
(
(φ

(c,d,β)
n )(i−1)(eyj )

)

1≤i,j,≤n

Δ(ey)
. (44)

Matrix Integral Representation of τ(G,β)([X]): Quantum Case

It similarly follows [7] that

τ (Hq,β)(
[
X
]
) = β

1
2 n(n−1)(

∏n
i=1 xn−1

i )Δ(ln(x))

(
∏n

i=1 i!)Δ(x)
Zdμq (ln(X)), (45)

where Zdμ(q,n)
(X) =

∫

M∈Norn×n
Cn

dμ(q,n)(M)etrYM,

and dμ(q,n)(M) := (Δ(ζ )2det(AHq,n(M))

is a conjugation invariant measure on the space of normal matrices

M = UZU† ∈ Norn×n
Cn

, U ∈ U(n), Z = diag(ζ1, . . . , ζn) (46)

with eigenvalues ζi ∈ C supported on the contour Cn.
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Constant Curvature Holomorphic
Solutions of the Supersymmetric G(2, 4)
Sigma Model

Véronique Hussin, Marie Lafrance, and İsmet Yurduşen

Abstract We explore the constant curvature holomorphic solutions of the super-
symmetric Grassmannian sigma model G(M,N) using in particular the gauge
invariance of the model. Supersymmetric invariant solutions are constructed by
generalizing a known result for CPN−1. We show that other such solutions also
exist. Considering the simplest case of G(2, N) model, we give necessary and
sufficient conditions for getting the constant curvature holomorphic solutions. Since,
all the constant curvature holomorphic solutions of the non-supersymmetric G(2, 4)
sigma model are known, we treat this example in detail.

Keywords Supersymmetric · Grassmannian sigma model · Gauge invariance

PACS numbers: 12.60.Jv, 02.10.Ud, 02.10.Yn

1 Introduction

For a long time searching for exact solutions of integrable models has been a lively
subject of great interest to the mathematics and physics communities. In particular,
the integrable non-supersymmetric (non-susy) CPN−1 sigma model has found
many applications in physics [1–4]. The solutions of this model have also been used
to construct solutions of more general Grassmannian sigma models [5]. Another
extension of these models is to consider the supersymmetric (susy) generalizations.
The main motivation to study susy models is to include fermions into the theory
[6]. Although, there exist many ways of including fermions into the Grassmannian
models, the most interesting is the one which renders supersymmetry.
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For the non-susy case, a general approach for constructing holomorphic maps of
2-sphere S2 of constant curvature into G(M,N) has been realized in [7, 8] and the
cases G(2, 4) and G(2, 5) have been treated in detail [9, 10].

The natural question is to extend those results to susy G(M,N) σ -models for
M > 1. In the susy case, some results have already been known when M = 1, i.e.
the CPN−1 σ -model [5, 6, 11, 12]. In particular, all the susy invariant solutions
with constant curvature holomorphic (CCH) solutions of this model have been
thoroughly discussed.

In a recent article [13], the present authors, together with W. J. Zakrzewski,
introduced a general method for characterizing the constant curvature surfaces for
the holomorphic solutions of the susy Grassmannian sigma models. The main tool
there was to use the gauge invariance of these models and to our knowledge this
was the first time in literature that this invariance is explicitly and effectively used
in such a context. In this paper, first we give some criteria for having CCH solutions
of the susy Grassmannian G(M,N) σ -model by the help of gauge invariance and
then apply this method on a specific example, namely the G(2, 4) sigma model
thoroughly. The problem splits into four cases and we separately investigate all of
them. Whenever possible we give the canonical form of such constant curvature
surfaces. Among these four types of solutions with different curvatures, only two of
them produce the susy invariant solutions as the unique ones.

The structure of this paper is as follows; in Sect. 2, we discuss the necessary
and sufficient conditions to get the CCH solutions of the general susy G(M,N) σ -
model. In Sect. 3 we give a detailed analysis of the susy G(2, 4) σ -model. Taking
into account the susy gauge invariance we present all the CCH solutions of this
model. Finally, we end the article by giving some comments in Sect. 4.

2 CCH Solutions of the Susy G(M,N) σ-Model

For the susy G(M,N) σ -model [5], a general bosonic superfield has the following
expansion Φ(x±, θ±) = Φ0(x±)+ iθ+Φ1(x±)+ iθ−Φ2(x±)−θ+θ−Φ3(x±), where
Φ0 and Φ3 are N×M bosonic complex matrices and Φ1 and Φ2 are N×M fermionic
complex matrices. This bosonic superfield must satisfy Φ†Φ = IM. The energy
action functional of the model is given by S(Φ) = ∫ ∫

S2 dx+dx−dθ+dθ−L(Φ),

where L(Φ) = 2 T r
(
|Ď+Φ|2 − |Ď−Φ|2

)
and the supercovariant derivatives are

defined by Ď±Λ̃ = ∂̌±Λ̃ − Λ̃(Φ†∂̌±Φ), with ∂̌± = −i∂θ± + θ±∂± and ∂± ≡ ∂x± .
Using the principle of least action, it is found that the superfield Φ satisfies the
Euler–Lagrange equations Ď+Ď−Φ + Φ|Ď−Φ|2 = 0 . As in the non-susy case,
holomorphic solutions of the susy G(M,N) σ -model are trivial solutions of the
model [5, 13]. It has been shown that they take the form Φ = WL, where W is
an N × M matrix depending only on the coordinates (x+, θ+), while L is a non-
singular M ×M matrix that depends on the coordinates (x±, θ±). It means that the
holomorphic superfield W takes the explicit form
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W(x+, θ+) = Z(x+)+ iθ+ηA(x+) , (1)

where η is a fermionic constant and Z(x+) and A(x+) are usual N ×M matrices
that depend on x+.

We now assume, as for the special case M = 1, that the susy Gaussian curvature
of the surface corresponding to the susy holomorphic solution W is given by the
formula

κ̃ = −1

g̃
∂+∂− ln g̃, (2)

where the susy expression of the metric is g̃ = ∂+∂− ln
(
det
(
W †W

))
.

Thus asking for a CCH solution is equivalent to assuming that κ̃ = κ where κ is
a purely bosonic constant (a strictly positive real number) and must be the curvature
associated with the non-susy G(M,N) solution Z involved in W = (1).

Let us write explicitly the condition (2) using the expression of W in (1) and
taking into account that κ̃ = κ . In order to simplify the calculations, we take T1 =
θ+η and T2 = θ−η†. Notice that since T1 and T2 are both product of two fermionic
quantities, we have T 2

1 = 0 and T 2
2 = 0. Moreover, they are bosonic and hence

commute with all the other quantities.
We thus easily get

det
(
W †W

)
= (detM0) det

(
IM + iT1M

−1
0 M1 + iT2M

−1
0 M2 − T1T2M

−1
0 M3

)

= (detM0) (1+ iT1X1 + iT2X2 − T1T2X3) , (3)

with M0 = Z†Z,M1 = Z†A,M2 = A†Z and M3 = A†A. The expressions of
X1, X2 and X3 remain to be explicitly computed.

The metric g̃ = ∂+∂− ln
(
det
(
W †W

))
takes the form

g̃ = g + ∂+∂− ln (1+ iT1X1 + iT2X2 − T1T2X3) , (4)

with g = ∂+∂− ln(detM0). Using the Taylor expansion of the logarithmic function

ln (1+ x) = x − x2

2 +O(x3), we get

g̃ = g + ∂+∂− [iT1X1 + iT2X2 − T1T2 (X3 −X1X2)] . (5)

By a similar procedure we can express the quantity ∂+∂− ln g̃ as

∂+∂− ln g̃ = ∂+∂− ln g + iT1 ∂+∂− Y1 + iT2 ∂+∂− Y2

−T1 T2 ∂+∂−
(
Y3 − Y1Y2

)
, (6)
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with

Y1 ≡ κ

2
(1+ |x|2)2∂+∂−X1 , Y2 ≡ κ

2
(1+ |x|2)2∂+∂−X2 ,

Y3 ≡ κ

2
(1+ |x|2)2∂+∂−

(
X3 −X1 X2

)
. (7)

Upon inserting these relations into (2) we get the following constraints

∂+∂− ln g + κg = 0 , (8)

∂+∂− (Y1 + κX1) = 0 , ∂+∂− (Y2 + κX2) = 0 , (9)

∂+∂− ((Y3 − Y1 Y2)+ κ(X3 −X1 X2)) = 0 . (10)

Notice that the two expressions in (9) are complex conjugate to each other and
hence we have only one independent condition, say the one involving Y1 and X1.
These are necessary and sufficient conditions for the susy holomorphic solutions to
have a constant Gaussian curvature and will be the fundamental equations for our
analysis.

2.1 Susy Invariant Solutions

Here we give a sufficient condition for obtaining CCH solutions. This result
generalizes what we already proved in the case M = 1 [11]. We assume that the
susy holomorphic solution is given by

W(x+, θ+) = Z(x+)+ iθ+η∂+Z(x+), (11)

i.e. A(x+) = ∂+Z(x+) in (1), where Z is a CCH solution of the non-susy model.
Using the MacFarlane parametrization [14], we can rewrite (11) as

W =
(

IM

K + iθ+η∂+K

)
. (12)

Then we prove that W = (12) is a CCH solution of the susy G(M,N) model.
Remember here that, det

(
Z†Z

) = det
(
IM +K†K

) = (
1+ |x|2)r , for some

positive integer r and thus κ̃ = κ = 2
r
.

3 CCH Solutions of the Susy G(2, 4) σ-Model

The non-susy CCH solutions are given in [9] as
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Z1 =

⎛

⎜⎜⎝

1 0
0 1
x+ 0
0 0

⎞

⎟⎟⎠ , Z2 =

⎛

⎜⎜⎝

1 0
0 1

x2+ cos 2t
√

2x+ cos t√
2x+ sin t 0

⎞

⎟⎟⎠ , t ∈ R

Z3 =

⎛

⎜⎜⎝

1 0
0 1√
3x2+

√
8/3x+

0
√

1/3x+

⎞

⎟⎟⎠ , Z4 =

⎛

⎜⎜⎝

1 0
0 1

2x3+
√

3x2+√
3x2+ 2x+

⎞

⎟⎟⎠ . (13)

Since all the CCH solutions of the non-susy G(2, 4) σ -model are known, we
use them to construct the CCH solutions of the corresponding susy model and
investigate the constraints for them to satisfy (9) and (10).

The corresponding superfield takes the form

Wr(x+) = Zr(x+)+ iθ+ηAr(x+), r = 1, 2, 3, 4, (14)

where the different Zr are given by (13). Using the gauge invariance of the susy
model [13], we have

Ar(x+) =

⎛

⎜⎜⎝

0 0
0 0

β11(x+) β12(x+)
β21(x+) β22(x+)

⎞

⎟⎟⎠ =
(

0
β(x+)

)
. (15)

Since the solutions Zr(x+) are all real functions of x+, we assume that it is also
the case for Ar(x+). For each holomorphic solution Wr(x+) given in (14), the
conditions (9) and (10) have to be satisfied.

3.1 The Case of Z1

This is the simplest solution of the non-susy G(2, 4) model with detZ†
1Z1 =(

1+ |x|2), i.e. r = 1 or κ = 2. It is easy to see that the condition (9) is trivially
satisfied for W1 given in (14). Hence we are left with the condition (10). It reads as

|x+(∂2+β22)+ 2(∂+β22)|2 + |∂2+β22|2 + |∂2+β12|2 + |∂2+β21|2 = 0. (16)

Since β11 does not appear in this equation, it will remain arbitrary. Equation (16)
implies that

∂2+β12 = 0, ∂2+β21 = 0, ∂2+β22 = 0, x+(∂2+β22)+ 2(∂+β22) = 0, (17)
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which further fix the matrix A1. We thus get susy CCH solutions of the form

W1 =

⎛

⎜⎜⎝

1 0
0 1
x+ 0
0 0

⎞

⎟⎟⎠+ iθ+η

⎛

⎜⎜⎝

0 0
0 0

β11(x+) b1x+ + b0

c1x+ + c0 d0

⎞

⎟⎟⎠ , (18)

where b1, b0, c1, c0 and d0 are arbitrary constants. Notice that when b0 = b1 =
c0 = c1 = d0 = 0, we get in particular the susy invariant solution. It is clear that we
have more solutions than the susy invariant one in this case.

3.2 The Case of Z2

We have a family of non-susy solutions, labeled by the parameter t :

Z2(x+, t) =
(

I2

K2(t)

)
, K2(x+, t) =

(
x2+ cos 2t

√
2x+ cos t√

2x+ sin t 0

)
. (19)

Since detZ†
2Z2 = det

(
I2 +K

†
2K2

)
= (1+ |x|2)2, the associated curvature is κ =

1. In [9], the parameter t can take any real values but due to the properties of the
trigonometric functions, using a residual gauge invariance, we have been able to
show that t ∈ [0, π [.

Considering now the corresponding susy holomorphic solution

W2(x+, θ+, t) = Z2(x+, t)+ iθ+ηA2(x+, t), (20)

where A2(x+, t) takes the form (15), the conditions (9) and (10) have to be satisfied
in order to get a family of CCH solutions.

Introducing W2 given in (20) into (9), we get two different cases:

1. The first case corresponds to cos 2t �= 0. Condition (9) implies β11(x+, t) =
x+
(√

2 cos tβ12(x+, t) −
√

2 sin tβ21(x+, t) + x+ sin 2tβ22(x+, t)
)
. So we have

only one condition (10) to resolve three unknown functions. Interestingly,
starting with a polynomial form in x+ of the unknown functions we get a pattern.
Indeed, we find that

β12(x+, t) = c0 + c1x+ + F(x+) , β21(x+, t) =
(
c0 + F(x+)

)
tan t + a1x+,

β22(x+, t) = cos t√
2

(
a1 − c1 tan t

)
, (21)

where a1, c0 and c1 are constants, solve our problem. Thus the matrix β(x+, t)
takes the form
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β(x+, t)= (c0 + F(x+))√
2 cos t

(
2x+ cos 2t

√
2 cos t√

2 sin t 0

)
+ a1

(−√2x2+ sin3 t 0
x+ 1√

2
cos t

)

+ c1

(√
2x2+ cos3 t x+

0 − 1√
2

sin t

)
. (22)

The susy invariant solution is obtained when a1 = c1 = 0. Again the case Z2
gives other solutions to our problem than the susy invariant ones.

2. The second case corresponds to cos 2t = 0 or t = π
4 (the case t = 3π

4 is gauge

equivalent) so that K2(x+, π
4 ) =

(
0 x+
x+ 0

)
. Since K2(x+, π

4 ) is symmetric, we

assume that the matrix β(x+) is also symmetric, i.e. β21(x+) = β12(x+). These
quantities will remain arbitrary since the condition (10) depends only on β11 and
β22 and the susy invariant solutions will be obtained when β11 = β22 = 0. The
condition (10) may be written as follows, taking in particular x+ = x− = x:

(1+ x2)2
(

4(x2 − 1)
(
(β ′11)

2 + (β ′22)
2)+ (1+ x2)2((β ′′11)

2 + (β ′′22)
2))

−8x(1+ x2)(x2 − 2)
(
β11β

′
11 + β22β

′
22

)+ 4x2(1+ x2)2(β11β
′′
11 + β22β

′′
22

)

+4(1− 4x2 + x4)(β2
11 + β2

22)− 4x(1+ x2)3(β ′11β
′′
11 + β ′22β

′′
22

) = 0 . (23)

Let us first mention the invariance of this equation with respect to the exchange
β11 ↔ β22. After some trials we first get a solution choosing β22(x) = xβ11(x).
Condition (23) thus becomes very simple (1+x2)5(β ′′11(x))

2 = 0, which implies
that

β11(x) = a0 + d2x , β22(x) = x(a0 + d2x) . (24)

Using this observation, we assume that β11(x) and β22(x) are real polynomial
in x. We can easily show that they must be at most of degree 2. If we take
β11(x) = a2x

2+a1x+a0, β22(x) = d2x
2+d1x+d0 and identify the coefficients

of different powers of x in (23), we get three independent equations for the
parameters ai and di ,

a2
0 − a2

1 + a2
2 + d2

0 − d2
1 + d2

2 = 0 , a0a2 + d0d2 = 0 ,

a0a1 − a1a2 + d1(d0 − d2) = 0 . (25)

Let us first assume that a0 �= 0, we then get

β11(x) = a0 + (d2 − d0)x − d0d2

a0
x2, β22(x) = d0 +

(
a0 + d0d2

a0

)
x + d2x

2,
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where a0, d0 and d2 remain arbitrary real parameters. Clearly the solution (24) is
obtained when d0 = 0.

Now, consider a0 = 0. We then get different subcases (ε = ±1)

– d2 �= 0, d0 = 0  ⇒
{
β11(x) = a2x

2 + εd2x ,

β22(x) = d2x
2 − εa2x ,

– d0 �= 0, d2 = 0  ⇒
{
β11(x) = a2x

2 + εd0x ,

β22(x) = εa2x + d0 .

3.3 The Case of Z3

In this case we have detZ†
3Z3 =

(
1+ |x|2)3, i.e. r = 3 and κ = 2

3 . With the
solution W3 as in (14), the condition (9) becomes a third degree polynomial in x−.
Equating the coefficients of different powers of x− to zero we obtain the following
equations:

2x3+
(√

2β ′′12 + 5β ′′22

)
− x2+

(
3β ′′11 + 8

√
2β ′12 + 6

√
2β ′′21 + 40β ′22

)

+6x+
(

3β ′11 + 2
√

2β12 + 6
√

2β ′21 + 10β22

)
− 36β11 − 72

√
2β21 = 0 , (26)

x2+
(
−β ′′11 + 8

√
2β ′12 − 4

√
2β ′′21 + 6x+β ′′22 + 4β ′22

)

−x+
(

4β ′11 + 24
√

2β12 − 8
√

2β ′21 + 48β22

)
+ 28β11 + 16

√
2β21 = 0 , (27)

x+
(
β ′′11 − 2

√
2x+β ′′12 + 8

√
2β ′12 − 2

√
2β ′′21 + 2x+β ′′22 + 16β ′22

)

−10β ′11 + 12
√

2β12 − 4
√

2β ′21 + 12β22 = 0 , (28)

−3β ′′11 + 4
√

2x+β ′′12 + 8
√

2β ′12 + 2x+β ′′22 + 4β ′22 = 0 , (29)

whose solution gives the final form of β11 and β22 as

β11(x+) = 3x+√
2
β12(x+)+ 1√

2
β21(x+), (30)

β22(x+) =
√

2

4
β12(x+)+ 3

√
2

4x+
β21(x+). (31)

Introducing (30) and (31) into the condition (10) we obtain

(∣∣(1+ 3|x|2)β21 − x+
(
1+ |x|2)∂+β21

∣∣2

|x|4(1+ |x|2)2
)
= f (x+)+ g(x−) , (32)
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for arbitrary functions f and g of given variables. Requiring it to be satisfied when
x+ = 0 and x− = 0 separately we obtain β21(x+) = γ1x+, where γ1 is an arbitrary

constant. Upon introducing it into (32) we get f (x+) + g(x−) = 4|x|2γ 2
1

(1+|x|2)2 , which
immediately implies that γ1 = 0 and hence β21 = 0.

The necessary and sufficient conditions (9) and (10) are thus satisfied and finally
the CCH solution W3 is given by the form

W3 = Z3 + iθ+
√

3ηβ22(x+)∂+Z3. (33)

Hence in this case we have obtained the susy invariant solution as the unique CCH
solution.

3.4 The Case of Z4

In this case we have detZ†
4Z4 =

(
1+ |x|2)4, i.e. r = 4 and κ = 1

2 . Again the
condition (9) becomes a third degree polynomial in x− after introducing the solution
W4 given in (14). Similarly as what we did with W3, we equate the coefficients of
different powers of x− to zero and now get

β11(x+) = 3x2+β22(x+), β21(x+) = −β12(x+)+ 2
√

3x+β22(x+). (34)

In order to solve the last condition (10) we introduce (34) into it and find that
β21(x+) = β12(x+). Finally, the CCH solution W4 is given as

W4 = Z4 + iθ+
1

2
ηβ22(x+)∂+Z4. (35)

Thus, in the case of Z4 once more we have obtained the susy invariant solution as
the unique CCH solution.

4 Conclusions and Final Comments

In this article we give some criteria for having CCH solutions of the susy Grassman-
nian G(M,N) σ -model. With the help of the susy gauge invariance of the model we
first show that the susy holomorphic solution given in (11) (i.e., generalization of
non-susy holomorphic solution) leads to a constant curvature surface. This kind of a
solution is called a susy invariant one, in analogy with the discussion given in [11].
Then we restrict ourselves to the susy G(2, N) σ -model and give the necessary and
sufficient conditions to get such solutions. The case of G(2, 4) is studied in detail
taking into account the classification of non-susy solutions [9].
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How to Deal with Nonlocality and
Pseudodifferential Operators. An
Example: The Salpeter Equation

A. Lattanzi

Dedicated to Prof. Decio Levi on the occasion of his 70th
birthday

Abstract The spinless (1+1)D free-particle Salpeter equation, a relativistic version
of the Schrödinger equation, is presented focusing the attention on its nonlocality
and its consequences on the structure of the solution.

Keywords Salpeter equation · Nonlocality · Operator method · Evolution
operators

1 The Spinless Salpeter Equation: An Introduction

The spinless time-dependent Salpeter equation is a relativistic version of the time-
dependent Schrödinger equation [1–9]. It is obtained by replacing the classical
energy–momentum relation with the relevant relativistic relation, possibly including
also some potential interactions. Contrary to the Schrödinger equation as well as to
the other wave equations in relativistic quantum mechanics, i.e. the Klein–Gordon
and the Dirac equations, the Salpeter equation has been the object of few analyses.
This is definitely because of the mathematical complexity due to the presence of a
pseudodifferential operator that implies a nonlocality increasing the difficulties to
work in the coordinate space [10, 11].

Recent literature is revealing a greater interest in the Salpeter equation [12–
29]. The reasons are mainly two: on the one hand, there are the advantages with
respect to the Klein–Gordon and Dirac equations and on the other hand, there
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is the fact that making suitable simplifications and approximations it stems from
the Bethe–Salpeter equation [6], which is the most orthodox tool for discussing
the relativistic two-body problem in quantum field theory [9]. Firstly proposed by
Nambu [1] without derivation, the equation was then derived by Bethe and Salpeter
[2] using Feynman-graphs and by Gell-Mann and Low [3] on the basis of the
rigorous quantum field theory considerations. After some initial difficulties, the
Bethe–Salpeter equation has been the object of intense theoretical studies [7, 9, 19–
22]. As a general quantum field theoretical tool, the Bethe–Salpeter equation finds
applications in several areas of quantum field theory, as, for instance, in connection
with electron–positron pairs and excitons (i.e. bound states of electron–hole pairs).

A more detailed discussion on the approximations needed for obtaining the
spinless Salpeter equation from the Bethe–Salpeter equation can be found in [12, 13]
and a summary is delineated here. By eliminating the dependence on time-like
variables through the assumption of static or instantaneous interactions, the Bethe–
Salpeter equation [2] reduces to the Salpeter equation [4]. Neglecting furthermore
all spin degrees of freedom and restricting it only to positive-energy solutions, one
obtains the spinless Salpeter equation [6].

The spinless Salpeter equation is frequently employed in the phenomenological
description of hadrons. Moreover, the agreement of the predictions of the spinless
Salpeter equation with the experimental spectrum of mesonic atoms is as good as
those of the Klein–Gordon equation.

In (1+1)D, the spinless Salpeter equation incorporates the relativistic expression
for the energy of the particle, which in the presence of a potential V (x, t) is

E =
√
m2c4 + p2c2 + V (x, t), (1)

where m and p denote, respectively, the rest mass and the momentum of the particle,
while c is the speed of light in vacuum and x denotes the position.

In accord with the standard quantization rules

E → ih̄∂t , "r → "r, "p →−ih̄∇,

the relativistic (1+ 1)D Hamiltonian reads

Ĥ =
√

m2c4 − c2h̄2 ∂2

∂x2 + V (x, t), (2)

whose main and most remarkable feature is the presence of the square-root operator.
In this work, we consider the free-particle Salpeter equation (V (x, t) = 0):

ih̄∂t ψ(x, t) =
√

m2c4 − c2h̄2 ∂2

∂x2 ψ(x, t), ψ(x, 0) = ψ0(x). (3)



The Salpeter Equation: Nonlocality and Pseudodifferential Operators 103

The case of a linear potential for the Salpeter equation and related approximating
equations can be found in [23, 25–29] and in references therein.

After a very short introduction in where the spinless Salpeter equation has been
introduced in a physical and mathematical framework, Sect. 2 is devoted to the
definition of its solutions in the coordinate and in the momentum space, respectively.
It has been considered also the fundamental solution in its closed-analytical form.
In Sect. 3, the attention has been focused on the nonlocality of the Hamiltonian of
the spinless Salpeter equation and the consequent effects on its solution. It has been
presented an application of the theory of evolution operator to define a recursive
solution for the spinless Salpeter equation which allows to highlight the nonlocal
nature via recursive series. The result shows the presence of a space-memory, or in
other words the presence of a regular repeating spot-like structure in the light-cone
which tends to fade as time elapses. Finally a comment on another way to deal with
nonlocality has been presented exploiting the series expansion of the Hamiltonian
in the spinless Salpeter equation. This second approach is based on the so-called
Pearcey equation, a new equation introduced in [25–29] for describing what happen
between the two theories: the classical quantum mechanics ruled by the Schrödinger
equation and the relativistic quantum mechanics.

The square-modulus of the solutions in the Pearcey equation, and in particular of
its fundamental solution, illustrates the space-memory hinted in the recursive series.

2 Solutions of the Salpeter Equation

The nonlocal nature of (3) makes it difficult to deal with directly in the coordinate
space. It is then usually approached in the momentum space

ih̄∂t ψ̃(p, t) =
√
m2c4 + c2p2 ψ̃(p, t), ψ̃(p, 0) = ψ̃0(p), (4)

whose solution is

ψ̃(p, t) = e
− it

h̄

√
m2c4+c2p2

ψ̃0(p). (5)

Here ψ̃(p, t) means the momentum wave function solution of the Salpeter equation.
By Fourier transform it is possible to define ψ(x, t):

ψ(x, t) = 1√
2πh̄

∫ +∞

−∞
e

ipx
h̄ e

− it
h̄

√
m2c4+c2p2

ψ̃0(p) dp. (6)

The same solution can be obtained considering the convolution of an initial
condition with the fundamental solution S(x, t) of the Salpeter equation that
corresponds to a δ-function input, i.e. ψ0(x) = δ(x):
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ψ(x, t) =
∫ +∞

−∞
mc2t

πh̄

K1

(
imc
h̄

√
c2t2 − (x − x′)2

)

√
c2t2 − (x − x′)2

ψ0(x
′)dx′. (7)

In the above equation, K1 is the modified Bessel function of the second kind of first
order, also known as the McDonald function [30].

3 A Recursive Solution: Nonlocality via Laplace Transform

The Hamiltonian (2) for V (x, t) = 0 is a nonlocal operator whose natural scale
is inversely proportional to the mass and it is given by the (reduced) Compton
wavelength λC = h̄

mc
. The Compton wavelength represents the cutoff between the

quantum and the quantum field theory: below its value, the concept of single particle
is no more applicable. This justifies the normalization used to define the following
dimensionless variables:

ξ = x

λC

, τ = ct

λC

and κ = p

h̄
λC, (8)

which allows not only to simplify the analysis but also to bridge formally quantum
mechanics and optics [25–29]. Accordingly, in dimensionless variables (8) the
initial value problem (3) writes as

i∂τψ(ξ, τ ) =
√

1− ∂2
ξ ψ(ξ, τ ), ψ(ξ, 0) = ψ0(ξ), (9)

and its formal solution is then

ψ(ξ, τ ) = iτ

π

∫ +∞

−∞
K1(

√
(ξ − ξ ′)2 − τ 2)√

(ξ − ξ ′)2 − τ 2
ψ0(ξ

′)dξ ′. (10)

To illustrate the nonlocal nature of the Hamiltonian operator in (9) and in
particular to emphasize its influence on the evolution of an initial input from a
mathematical point of view, it is interesting to deal with the initial value problem
using another mathematical approach based on the Laplace transform method
[31–35]. This technique is an effective alternative method that allows us to treat
fractional operators as the Hamiltonian of the Salpeter equation revealing its
nonlocal nature via recursive series.

To this end, a key notion is the following Laplace-like identity [30]

1√
A2 + 1

=
∫ ∞

0
e−tAJ0(t)dt. (11)
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In fact, once the parameter A in Eq. (11) gains the status of operator

1√
Â2 + 1

f (x) =
∫ ∞

0
e−tÂJ0(t)f (x)dt, (12)

where f (x) is a given x-dependent differentiable function and J0 is the Bessel
function of the first kind of first order [30], it is possible to apply the theory of the
evolution operator shown in [31, 32] and define the operator Â to obtain a recursive
series solution highlighting the nonlocal nature embedded in the Hamiltonian of the
spinless Salpeter equation.

The formal structure of Eq. (12) is extremely attractive since it can be applied to
the initial value problem (9) after rearranged it as:

i
∂

∂τ
ψ(ξ, τ ) =

(
1− ∂2

∂ξ2

) 1
√(

1− ∂2

∂ξ2

)ψ(ξ, τ ). (13)

Moreover, by definition

ψ̄(ξ, τ ) = 1√
1− ∂2

∂ξ2

ψ(ξ, τ ), (14)

the initial value problem (13) can be written as

i
∂

∂τ
ψ(ξ, τ ) =

(
1− ∂2

∂ξ2

)
ψ̄(ξ, τ ). (15)

Assuming Â = i ∂
∂ξ

, ψ̄ is immediately defined

ψ̄(ξ, τ ) =
∫ ∞

0
J0(y)ψ(ξ − iy, τ )dy ψ(ξ, 0) = ψ0(ξ), (16)

where J0 is a modified Bessel function of the first kind [30]. Then the solution
of (16) reads

ψ(ξ, τ ) =
∞∑

n=0

(iτ )n

n! ψn(ξ). (17)

The initial condition ψ(ξ, 0) is the zero-order term, whereas the nth-term ψn(ξ) can
be defined in recursive way

ψn(ξ) =
(

1− ∂2

∂ξ2

) ∫ +∞

0
J0(y)ψn−1(ξ − iy)dy. (18)
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This solution expressed as a recursive series is a proof that the causality (and the
light-cone structure) is not violated by the nonlocality of the Hamiltonian. Each
solution term, ψn, is determined by recursion on the values assumed previously
by ψn−1, till the evolution of the equation has been completely described. Mathe-
matically, the recursive solution (16) allows to find approximations when the exact
solution is not yet known and it is a common procedure to use it to evaluate the
evolution equations with memory terms. In fact the properties of memory and
causality induce a description by means of recursive equations and read-out maps
involving input state and output variables.

In this work, the term “memory” referred to the kernel of the convolution risks
to be too exotic since the convoluted variable is ξ , i.e. the dimensionless variable
related with the space. The recursive solution of the Salpeter equation given by (18)
allows an interesting comparison with the numerical solution and the solution
defined via closed-analytical expression.

Here below, it is considered an example of the application of the previous
procedure where the initial condition is the Bessel function of the second kind of
first order:

ψK
0 (ξ) =

(
1

π

)
K1(

√
1+ ξ2)√

1+ ξ2
. (19)

Replacing the above initial condition in Eq. (10) the solution is given by

ψK(ξ, τ ) =
(

1+ iτ

π

)
K1[

√
(1+ iτ )2 + ξ2 ]√

(1+ iτ )2 + ξ2
, (20)

which expresses the free-evolution of the McDonald initial condition under the
spinless Salpeter equation.

The choice of this initial condition is rooted on the fact that it generates a closed-
analytical expression for the solution, so it means that the recursive series defined in
Eq. (16) can be summed. Let us consider Eq. (18) to define the terms of the series.
The first term reads:

ψ1(ξ) =
(

1− ∂2

∂ξ2

) ∫ +∞

0
J0(y)ψ0(ξ − iy)dy

=
(

1− ∂2

∂ξ2

) ∫ +∞

0
J0(y)

K1
√

1+ (ξ − iy)2

π
√

1+ (ξ − iy)2
dy.

(21)

The convolution in Eq. (21) can be solved applying formula 3.914.1 in [36].
Consequently, one has

ψ1(ξ) = 1

π

[
− K0(

√
1+ ξ2)

(1+ ξ2)
+ (ξ2 − 1)K1(

√
1+ ξ2)√

(1+ ξ2)3

]
(22)
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Fig. 1 Comparison between the first and the second order terms at τ = 1 in the series expansion
of the closed-analytical expression (ψ1,S , ψ2,S , respectively) and the recursive series (ψ1,R, ψ2,R ,
respectively)

and then, by recursive relation (18) the second term is

ψ2(ξ) = 1

π

[ (1− 3ξ2)K0(
√

1+ ξ2)

(1+ ξ2)2 + (3− 5ξ2)K1(
√

1+ ξ2)√
(1+ ξ2)5

]
. (23)

It is possible to check the correctness of the result obtained for the first and the
second order considering the series expansion of the solution in Eq. (20) with respect
to τ . Each term of the series expansion should correspond to the corresponding
order-term in the recursive series. In Fig. 1, a direct comparison between the first
order and the second order of both the series has been illustrated. A visual effect of
the space-memory can be appreciated considering the fundamental solution of the
Pearcey equation where the point-like structure is repeating within the light-cone on
a regular lattice with descending intensity. [25–29]:

i
∂

∂τ
φ(ξ, τ ) =

(
1− 1

2

∂2

∂ξ2
− 1

8

∂4

∂ξ4

)
φ(ξ, τ ), φ(ξ, 0) = φ0(ξ), (24)

a quasi-relativistic evolution equation ruled by a Hamiltonian which is the fourth
order series expansion of the Hamiltonian of the spinless Salpeter equation. In
fact the squared modulus of the fundamental solution (see Fig. 2) presents a spot-
like structure spreading always inside the light-cone structure reproducing a lattice
embedding a sort of space-memory of the initial input which is fading as time
elapses.
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A New Approach to Analysis of 2D
Higher Order Quantum Superintegrable
Systems
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Abstract We revise a method by Kalnins et al. (J Phys A Math Theor 43:265205,
2010) for constructing a canonical form for symmetry operators of arbitrary order
for the Schrödinger eigenvalue equation HΨ ≡ (Δ2 + V )Ψ = EΨ on any 2D
Riemannian manifold, real or complex, that admits a separation of variables in
some orthogonal coordinate system. Most of this paper is devoted to describing
the method. Details will be provided elsewhere. As examples we revisit the
Tremblay and Winternitz derivation of the Painlevé VI potential for a third order
superintegrable flat space system that separates in polar coordinates and, as new
results, we show that the Painlevé VI potential also appears for a third order
superintegrable system on the 2-sphere that separates in spherical coordinates, as
well as a third order superintegrable system on the 2-hyperboloid that separates in
spherical coordinates and one that separates in horocyclic coordinates. The purpose
of this project is to develop tools for analysis and classification of higher order
superintegrable systems on any 2D Riemannian space, not just Euclidean space.
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1 Introduction

In the paper [1] the authors constructed a canonical form for symmetry operators
of any order in 2D and used it to give the first proof of the superintegrability
of the quantum Tremblay, Turbiner, and Winternitz (TTW) system [2] in polar
coordinates, for all rational values of the parameter k. In the original method
the various potentials were given and the problem was the construction of higher
order symmetry operators that would verify superintegrability. The method was
highly algebraic and required the solution of systems of difference equations on
a lattice. Here, we consider an arbitrary space admitting a separation in some
orthogonal coordinate system (hence admitting a 2nd order symmetry operator), and
search for all potentials V for which the Schrödinger equation admits an additional
independent symmetry operator of order higher than 2. Now the problem reduces to
solving a system of partial differential equations.

We give a brief introduction to the method and then specialize it to third order
superintegrable systems where we treat a few examples. We revisit the Tremblay and
Winternitz derivation of the Painlevé VI potential for a third order superintegrable
flat space system that separates in polar coordinates [3], and we show among
other new results that the Painlevé VI potential also appears for a third order
superintegrable system on the 2-sphere that separates in spherical coordinates, as
well as a third order superintegrable system on the 2-hyperboloid that separates in
spherical coordinates.

2 The Canonical Form for a Symmetry Operator

We consider a Schrödinger equation on a 2D real or complex Riemannian manifold
with Laplace–Beltrami operator Δ2 and potential V :

HΨ ≡
(
− h̄2

2
Δ2 + V

)
Ψ = EΨ (1)

that also admits an orthogonal separation of variables. If {u1, u2} is the orthogonal
separable coordinate system, the corresponding Schrödinger operator can always be
put in the form

H = − h̄2

2
Δ2 + V (u1, u2)

= 1

f1(u1)+ f2(u2)

(
− h̄2

2
∂2
u1
− h̄2

2
∂2
u2
+ v1(u1)+ v2(u2)

)
(2)
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and, due to the separability, there is the second-order symmetry operator

L2= f2(u2)

f1(u1)+f2(u2)

(
− h̄2

2
∂2
u1
+ v1(u1)

)
− f1(u1)

f1(u1)+ f2(u2)

(
− h̄2

2
∂2
u2
+v2(u2)

)
,

i.e., [H,L2] = 0. We look for a partial differential symmetry operator of arbitrary
order L̃(H,L2, u1, u2) that satisfies

[H, L̃] = 0. (3)

We require that the symmetry operator takes the standard form

L̃ =
∑

j,k

(
Aj,k(u1, u2)∂u1u2 − Bj,k(u1, u2)∂u1

−Cj,k(u1, u2)∂u2 +Dj,k(u1, u2)
)
HjLk

2. (4)

This can always be done. Note that if the formal operator L̃ contained partial
derivatives in u1 and u2 of orders � 2, we could rearrange terms to achieve the
unique standard form (4).

Details of the derivation can be found in [1].
Note that condition (4) makes sense, at least formally, for infinite order differen-

tial equations. Indeed, one can consider H,L2 as parameters in these equations.
Then once L̃ is expanded as a power series in these parameters, the terms are
reordered so that the powers of the parameters are on the right, before they are
replaced by explicit differential operators. Of course (4) is defined rigorously for
finite order symmetry operators.

In this view we can write

L̃(H,L2, u1, u2) = A(u1, u2)∂u1u2 − B(u1, u2)∂u1 − C(u1, u2)∂u2 +D(u1, u2),

(5)

and consider L̃ as an at most second-order differential operator in u1, u2 that is
analytic in the parameters H,L2. Then the above system of equations can be written
in the more compact form

∂2
u1
A+ ∂2

u2
A− 2∂u2B − 2∂u1C = 0, (6)

h̄2

2
(∂2

u1
B+∂2

u2
B)−2∂u2Av2−h̄2∂u1D−Av′2+(2∂u2Af2+Af ′2)H−2∂u2AL2 = 0,

(7)
h̄2

2
(∂2

u1
C+∂2

u2
C)−2∂u1Av1−h̄2∂u2D−Av′1+(2∂u1Af1+Af ′1)H+2∂u1AL2 = 0,

(8)
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− h̄2

2
(∂2

u1
D + ∂2

u2
D)+ 2∂u1B v1 + 2∂u2C v2 + Bv′1 + Cv′2 (9)

− (2∂u1B f1 + 2∂u2C f2 + Bf ′1 + Cf ′2)H + (−2∂u1B + 2∂u2C)L2 = 0.

We can view (6) as an equation for A,B,C and (7), (8) as the defining equations
for ∂u1D, ∂u2D. Then L̃ is L̂ with the terms in H and L2 interpreted as (4) and
considered as partial differential operators.

We can simplify this system by noting that there are two functions
F(u1, u2,H,L2), G(u1, u2,H,L2) such that (6) is satisfied by

A = F, B = 1

2
∂u2F + ∂u1G, C = 1

2
∂u1F − ∂u2G. (10)

Then the integrability condition for (7), (8) is (with the shorthand ∂uj
F = Fj ,

∂uj
∂u�

F = Fj�, etc., for F and G),

− h̄2G1222 − 1

4
h̄2F2222 + 2F22(v2 − f2H + L2)+ 3F2(v

′
2 − f ′2H)+ F(v′′2 − f ′′2 H) =

h̄2G1112 − 1

4
h̄2F1111 + 2F11(v1 − f1H − L2)+ 3F1(v

′
1 − f ′1H)+ F(v′′1 − f ′′1 H), (11)

and Eq. (9) becomes

1

4
h̄2F1112 − 2F12(v1 − f1H)− F1(v

′
2 − f ′2H)+ 1

4
h̄2G1111

− 2G11(v1 − f1H − L2)−G1(v
′
1 − f ′1H)

= −1

4
h̄2F1222 + 2F12(v2 − f2H) (12)

+ F2(v
′
1 − f ′1H)+ 1

4
h̄2G2222 − 2G22(v2 − f2H + L2)−G2(v

′
2 − f ′2H).

We remark that any solution of (11), (12) with A,B,C not identically 0 corresponds
to a symmetry operator that does not commute with L2, hence is algebraically
independent of the symmetries H,L2.

3 Third Order Superintegrability

To illustrate how Eqs. (11) and (12) can be used to find potentials for superintegrable
systems, we provide detailed derivations of the determining equations for third order
superintegrability. First we note that the most general third order operator must be
of the form (4) with
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A = A0(x, y), B = B0(x, y)+ BH(x, y)H + BL(x, y)L,

C = C0(x, y)+ CH(x, y)H + CL(x, y)L,

D = D0(x, y)+DH(x, y)H +DL(x, y)L,

or, in view of (10),

F(x, y) = F 0(x, y), G(x, y) = G0(x, y)+GH(x, y)H +GL(x, y)L. (13)

Substituting (13) into (11), (12) and noting that the coefficients of independent
powers of H and L in these expressions must vanish, we obtain nine equations (the
first three from (11) and the next six from (12)):

0 = −6v′1F 0
1 + 6v′2F 0

2 − 4v1F
0
11 + 4v2F

0
22 − 2h̄2G0

1112 − 2h̄2G0
1222

+2F 0v′′2 − 2F 0v′′1 ,

0 = F 0
11 + F 0

22,

0 = −h̄2GH
1112 − h̄2GH

1222 + 3f ′1F 0
1 − 3f ′2F 0

2 + 2f1F
0
11 − 2f2F

0
22 − F 0f ′′2 + F 0f ′′1 ,

0 = v′2F 0
1 + v′1F 0

2 + v′1G0
1 − v′2G0

2 + 2F 0
12v2 + 2F 0

12v1 + 2v1G
0
11 − 2v2G

0
22

−1

4
h̄2G0

1111 +
1

4
h̄2G0

2222,

0 = v′1GL
1 − v′2GL

2 + 2v1G
L
11 − 2G0

11 − 2v2G
L
22 − 2G0

22,

0 = GL
11 +GL

22,

0 = −f ′2F 0
1 − f ′1F 0

2 + v′1GH
1 − f ′1G0

1 − v′2GH
2 + f ′2G0

2 − 2F 0
12f2 − 2F 0

12f1

+2v1G
H
11 − 2f1G

0
11 − 2v2G

H
22 + 2f2G

0
22 −

1

4
h̄2GH

1111 +
1

4
h̄2GH

2222,

0 = −f ′1GL
1 + f ′2GL

2 + 2f2G
L
22 − 2f1G

L
11 − 2GH

11 − 2GH
22,

0 = −f ′1GH
1 + f ′2GH

2 + 2f2G
H
22 − 2f1G

H
11.

4 Some Examples (Mostly New)

We are particularly interested in potentials with nonlinear defining equations. First,
we show that we get the result of Tremblay and Winternitz [3] that the quantum
system separating in polar coordinates in 2D Euclidean space admits potentials
that are expressed in terms of the sixth Painlevé transcendent or in terms of the
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Weierstrass elliptic function. To do this we must put the system in the canonical
form (2). The separable polar coordinates are (x, y) = (r cos(θ), r sin(θ)). For
the canonical form we use the coordinates {u1, u2}, where r = exp(u1), θ = u2.
Thus, f1(u1) = exp(2u1) and f2(u2) = 0. We know that these extreme potentials
can appear only if the potential depends on the angular variable alone, so we set
v1(u1) = 0. Since we want only systems that satisfy nonlinear equations alone,
whenever an explicit linear equation for the potential appears, we require that it
vanish identically. We have the freedom to replace the angular variable u2 by u2+ c

for some real constant c to simplify the expressions, Also we can rescale the answer.
We obtain a solution

F 0 = −4h̄2 exp(−u1) sin(u2), GL = −8 exp(−u1) cos(u2)+ a4u2 + a3,

G0 = −U1(u2) exp(−u1)+ U2(u2), GH = a5,

subject to the conditions

0 = a4
dv2

du2
+ 2

d2U2

du2
2

, (14)

0 = h̄2 d
4U2

du4
2

+ 4a4
dv2

du2
v2 − 4

dv2

du2

dU2

du2
, (15)

0 = 8v2 cos(u2)+ 4
dv2

du2
sin(u2)− d2U1

du2
2

− U1, (16)

0 = dv2

du2

dU1

du2
− h̄2 d

3v2

du3
2

sin(u2)− 4h̄2 d
2v2

du2
2

cos(u2) (17)

+2 sin(u2)(5h̄
2 + 4v2)

dv2

du2
+ 2v2

(
6h̄2 cos(u2)+ 8v2 cos(u2)− U1

)
.

There are basically two cases to consider:

1. a4 = 0.

Then condition (14) says that U2 is linear in u2. Thus condition (15) is a
linear equation for v2(u2) which must vanish. Then condition (16) can be solved
for U1(y) and the result substituted into condition (17) to obtain an equation for
v2(u2). After some manipulation we obtain an equation characterizing Painlevé
VI, in agreement with [3, Eq. (4.27)]:

h̄2

(
sin(u2)

d4W

du4
2

+ 4 cos(u2)
d3W

du3
2

− 6 sin(u2)
d2W

du2
2

− 4 cos(u2)
dW

du2

)

(18)
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− 12 sin(u2)
dW

du2

d2W

du2
2

− 4 cos(u2)W
d2W

du2
2

− 4(β1 sin(u2)− β2 cos(u2))
d2W

du2
2

− 16 cos(u2)

(
dW

du2

)2

+8 sin(u2)W
dW

du2
−8(β1 cos(u2)+ β2 sin(u2))

dW

du2
= 0

Here v2(u2) = dW(u2)
du2

.
2. a4 �= 0.

Solving condition (14) for v2(u2) and substituting the result and (14) into (15)
we obtain the equation that characterizes the Weierstrass ℘-function (in fact it is
a translated and rescaled version):

h̄2 d
3v2

du3
2

+ 12
dv2

du2
v2 − 8a1

dv2

du2
= 0. (19)

Thus v2(u2) = ℘(h̄u2; g2, g3)+ 2a1/3, where g2 and g3 are arbitrary constants.
As shown in [3] this solution is subject to the compatibility conditions (16)
and (17), which leads to a complicated nonlinear differential equation for v2(u2).

With this verification out of the way, we consider the analogous system on
the 2-sphere, separable in spherical coordinates. Here s1 = sin(θ) cos(φ), s2 =
sin(θ) sin(φ), s3 = cos(θ) with s2

1 + s2
2 + s2

3 = 1. This system is in canonical form
with coordinates u1, u2 where

sin(θ) = (cosh(u1))
−1, φ = u2, f1(u1) = (cosh(u1))

−2, f2(u2) = 0. (20)

As before we look for solutions such that v1(u1) = 0 and v2 satisfies a nonlinear
equation only.

The computation is very similar to that for the Euclidean space example. We
obtain the solution

F 0 = −4h̄2 cosh(u1) sin(u2), GL = 8 sinh(u1) cos(u2)+ a4u2 + a3,

G0 = sinh(u1) U1(u2)+ U2(u2), GH = a5,

subject to the conditions (14)–(17), exactly the same as for Euclidean space.
Thus the system on the 2-sphere also admits Painlevé VI and special Weierstrass
potentials for third order superintegrability. It is clear from these results that these
systems in Euclidean space can be obtained as Bôcher contractions, [4, chapter 15],
of the corresponding systems on the 2-sphere.

Next we consider spherical coordinates on the hyperboloid s2
1 − s2

2 − s2
3 = 1,

s1 = cosh(x), s2 = sinh(x) cos(φ), s3 = sinh(x) sin(φ).
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For the canonical form we find

tanh

(
u1

2

)
= exp(x), u2 = φ, f1(u1) = (sinh(u1))

−2, f2(u2) = 0,

and we look for solutions such that v1(u1) = 0 and v2(u2) satisfies only a nonlinear
equation. We obtain the solution

F 0 = −4h̄2 sinh(u1) sin(u2), GL = 8 cosh(u1) cos(u2)+ a4u2 + a3,

G0 = cosh(u1) U1(u2)+ U2(u2), GH = a5,

subject to the conditions (14)–(17), again exactly the same as for flat space. Thus the
system on the 2-hyperboloid admits Painlevé VI and special Weierstrass potentials
for third order superintegrability.

For our next example we consider horocyclic coordinates {u1, u2} on the
hyperboloid s2

1 − s2
2 − s2

3 = 1, e.g. [4, section 7.7]:

s1 = 1

2

(
u1 + u2

2 + 1

u1

)
, s2 = 1

2

(
u1 + u2

2 − 1

u1

)
, s3 = u2

u1
. (21)

These coordinates are separable and the canonical system is defined by f1(u1) =
1/u2

1, f2(u2) = 0. We look for systems such that v1(u1) = 0, in analogy with our
first three examples.

We obtain the solution

F 0 = −1

2
a8h̄

2u1, GL = u2
1(a8u2 + a9)

2
− a8u

3
2

6
− a9u

2
2

2
+ a10u2,

G0 = u2
1

2
U1(u2)+ U2(u2), GH = a7,

subject to the conditions

0 = a8
dv2

du2
+ 2

d2U1

du2
2

, (22)

0 = 1

2
h̄2a8

d3v2

du3
2

− 4a8
dv2

du2
v2 + 4

dv2

du2

dU1

du2
, (23)

0 = (2a10 − 2a9u2 − a8u
2
2)

dv2

du2
− 4(a9 + a8u2)v2 + 4U1 + 4

d2U2

du2
2

, (24)

0 = 4u2
2
dv2

du2
+ 16u2v

2
2 + 8a9u2

dv2

du2
v2 + 16a9v

2
2 − 8a10

dv2

du2
v2 (25)

+h̄2a8
d3v2

du3
2

− 16v2U1 + 8
dv2

du2

dU2

du2
.
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There are again two basic cases here:

1. a8 = 0.
Then conditions (22) and (23) say that U1 is a constant: U1(u2) = d1.
Then condition (24) can be solved for U2(u2) and the result substituted into
condition (25) to obtain an equation for v2(u2):

− 4a9

(
dW

du2

)2

+
(
(−3a9u2 + 3a10)

d2W

du2
2

+ 4d1

)
dW

du2

+ (−a9W + 2d1u2 − 2d3)
d2W

du2
2

+ h̄2a9
d3W

du3
2

− 1

4
h̄2(−a9u2 + a10)

d4W

du4
2

= 0, where v2(u2) = dW(u2)

du2
.

(26)

2. a8 �= 0.
Here we can solve (22) for v2(u2) and substitute the result into (23) to obtain the
equation

h̄2 d
3v2

du3
2

− 12v2
dv2

du2
+ q

dv2

du2
= 0. (27)

Solutions of (27) are further subject to the requirement that a solution U2(u2)

of Eqs. (24) and (25) exists. Setting v2(u2) = w(u2)+ q1/12 in (27) leads to

h̄2 d
3w

du3
2

− 12w
dw

du2
= 0 (28)

and it follows that v2(u2) = ℘(h̄u2; g2, g3)+q/12, where g2 and g3 are arbitrary
constants.
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Ladder Operators and Rational
Extensions

David Gómez-Ullate, Yves Grandati, Zoé McIntyre, and Robert Milson

Abstract This note presents the classification of ladder operators corresponding
to the class of rational extensions of the harmonic oscillator. We show that it is
natural to endow the class of rational extensions and the corresponding intertwining
operators with the structure of a category REXT. The combinatorial data for this
interpretation is realized as a functor MD → REXT, where MD refers to the set
of Maya diagrams appropriately endowed with categorical structure. Our formalism
allows us to easily reproduce and extend earlier results on ladder operators.

Keywords Rational extensions · Ladder operators · Maya diagrams

1 Introduction

Supersymmetric quantum mechanics (SUSYQM) has proven to be a key technique
in the construction of exactly solvable potentials and in the understanding of shape-
invariance. The supersymmetric partners of the harmonic oscillators are known
as rational extensions because the corresponding potentials have the form of a
harmonic oscillator plus a rational term that vanishes at infinity.
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There has been some recent interest in rational extensions possessing ladder
operators, which may be thought of as higher order analogues of the classical
creation and annihilation operators. There are applications of such ladder operators
to superintegrable systems [9, 10], rational solutions of Painlevé equations [11], and
coherent states [7].

In this note we classify the ladder operators corresponding to the class of rational
extensions of the harmonic oscillator. Rational extensions are naturally associated
with combinatorial objects called Maya diagrams. We show that any two rational
extensions are related by an intertwining relation. It therefore makes sense to endow
both Maya diagrams and rational extensions with the structure of a category, and
to interpret the relation Maya diagram �→ rational extension as a functor between
these categories. This approach allows us to classify ladder operators and syzygies
of ladder operators, and thereby to generalize the results of [9, 10].

2 Maya Diagrams

A Maya diagram is a set of integers M ⊂ Z containing a finite number of positive
integers, and excluding a finite number of negative integers. We visualize a Maya
diagram as a horizontally extended sequence of •� and � symbols, with the filled
symbol •� in position m indicating membership m ∈ M . The defining assumption
now manifests as the condition that a Maya diagram begins with an infinite filled •�
segment and terminates with an infinite empty � segment.

A Maya diagram may also be regarded as a strictly decreasing sequence of
integers m1 > m2 > · · · , subject to the constraint that mi+1 = mi − 1 for i

sufficiently large. It follows that there exists a unique integer σ , called the index of
M , such that mi = −i + σ for i sufficiently large.

Let M denote the set of all Maya diagrams. The flip at position k ∈ Z is the
involution fk :M→M defined by

fk : M �→
{
M ∪ {k}, if k /∈ M,

M \ {k}, if k ∈ M.
M ∈M. (1)

In the first case, we say that the flip acts on M by a state-deleting transformation
(�→ •�), and in the second case, by a state-adding transformation (•�→ �).

Let Zp denote the set of subsets of Z having cardinality p, and Z = ⋃p Zp the
set of all finite subsets of Z. For K ∈ Zp consisting of distinct k1, . . . , kp ∈ Z we
define the multi-flip fK :M→M by

fK(M) = (fk1 ◦ · · · ◦ fkp )(M), M ∈M. (2)

Since flips commute, the action of fK does not depend upon the order of k1, . . . , kp.
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It is useful to regard M as a complete graph whose edges are multi-flips. For
Maya diagrams M1,M2 ∈M, the symmetric difference

M1 %M2 = (M1 \M2) ∪ (M2 \M1)

is precisely the edge that connects M1 and M2. More precisely, if

K = M1 %M2 = M2 %M1,

then fK(M1) = M2 and fK(M2) = M1.
Multi-flips can also be used to define a bijection Z → M given by K �→

fK(M∅), where M∅ := Z− denotes the trivial Maya diagram. We refer to K ∈ Z as
the index set of the Maya diagram fK(M∅).

The additive group Z acts on M, because for M ∈M and n ∈ Z, the set

M + n = {m+ n : m ∈ M}

is also a Maya diagram. Moreover, we have

σM+n = σM + n. (3)

We will refer to an equivalence class of Maya diagrams related by translations as
an unlabelled Maya diagram, and denote the set of all unlabelled Maya diagrams by
M/Z. One can visualize the passage from an unlabelled to a labelled Maya diagram
as choosing the placement of the origin.

For B ∈ Zp, where p = 2g + 1 is odd, we define the Maya diagram

Ξ(B) = (−∞, b0) ∪ [b1, b2) ∪ · · · ∪ [b2g−1, b2g), (4)

where b0 < b1 < · · · < b2g is an increasing enumeration of B and where [m, n) =
{j ∈ Z : m ≤ j < n}. Every Maya diagram has a unique representation of the form
Ξ(B) for some B ∈ Z2g+1. We will call the corresponding g ≥ 0 the genus of
M = Ξ(B) and refer to (b0, . . . , b2g) as the block coordinates of M . The block
coordinates may also be characterized as the unique set B ∈ Z such that fB(M) =
M + 1.

After removal of the initial infinite •� segment and the trailing infinite � segment,
a Maya diagram consists of alternating empty � and filled •� segments of variable
length. The genus g counts the number of such pairs. The even block coordinates b2i
indicate the starting positions of the empty segments, and the odd block coordinates
b2i+1 indicate the starting positions of the filled segments.
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3 Rational Extensions

For n ∈ Z, set

ψn(x) =
⎧
⎨

⎩
e− x2

2 Hn(x) if n ≥ 0

e
x2
2 H̃−n−1(x) if n < 0

where

Hn(x) = (−1)nex
2 dn

dxn
e−x2

, n = 0, 1, 2, . . .

are the Hermite polynomials, and

H̃n(x) = (−i)nHn(ix)

are the conjugate Hermite polynomials. We then have

−ψ ′′n (x)+ x2ψn(x) = (2n+ 1)ψn(x), n ∈ Z.

For n ≥ 0, the above solutions correspond to the bound states of the quantum
harmonic oscillator. The solutions for n < 0 do not satisfy the boundary conditions
at ±∞ and therefore represent virtual states.

For M ∈M with index set K ∈ Zp, let s1 > · · · > sr ≥ 0 and t1 > · · · > tq ≥ 0
be the uniquely specified lists of natural numbers such that

K = {−1− s1, . . . ,−1− sr , tq , . . . , t1}, p = q + r.

We will refer to (s1, . . . , sr | tq , . . . , t1) as the Frobenius symbol of M . It is easy to
check that the index of M is given by σ = q − r .

Let us now define

HM(x) = eσM
x2
2 Wr[ψk1 , . . . , ψkp ], (5)

where k1 < · · · < kp is an increasing enumeration of K , where σM ∈ Z is the
index, and Wr is the usual Wronskian determinant. The polynomial nature of HM(x)

becomes evident in the following pseudo-Wronskian [4] realization:

HM =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

H̃s1 H̃s1+1 . . . H̃s1+r+q−1
...

...
. . .

...

H̃sr H̃sr+1 . . . H̃sr+r+q−1

Htq H ′
tq

. . . H
(r+q−1)
tq

...
...

. . .
...

Ht1 H ′
t1

. . . H
(r+q−1)
t1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (6)
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A suitably normalized pseudo-Wronskian is a translation invariant of the under-
lying Maya diagram. The following result was proved in [4]. Set

ĤM = (−1)rqHM∏
i<j 2(sj − si)

∏
i<j 2(ti − tj )

. (7)

Then for M ∈M and n ∈ Z we have

ĤM = ĤM+n. (8)

The potential

UM(x) = x2 − 2
d2

dx2 log Wr[ψk1 , . . . , ψkp ],

= x2 + 2

(
H ′

M

HM

)2

− 2H ′′
M

HM

− 2σM

(9)

is known as a rational extension [3] of the harmonic oscillator. The corresponding
Hamiltonian operators

TM = − d2

dx2 + UM (10)

are exactly solvable with

TM [ψM,k] = (2k + 1)ψM,k,

where

ψM,k = e
εx2

2
Hfk(M)

HM

, ε =
{
+1 if k ∈ M

−1 if k /∈ M
.

Note that, as a consequence of (3) and (8), TM is translation covariant:

TM+n = TM + 2n, n ∈ Z. (11)

Let (b0, b1, . . . , b2g) be the block coordinates of M . By the Krein–Adler theorem
[1, 3, 8], the polynomial HM has no real zeros if and only if b2j − b2j−1 is even
for all j = 1, . . . , g, i.e., if all the finite •� segments of M have even size. For
such Maya diagrams, the potential UM is non-singular and hence TM corresponds
to a self-adjoint operator. The bound states of the operator correspond to the empty
boxes of M , i.e., to k /∈ M . It is precisely for such M ∈ M and k /∈ M that the
eigenfunction ψM,k is square-integrable. For such M and k, the polynomial part of
ψM,k is known as an exceptional Hermite polynomial [3].
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4 Categorical Structure

In this section, we define MD, a category whose objects are Maya diagrams and
whose arrows are multi-flips, and REXT, another category whose objects are
rational extensions and whose arrows are intertwining operators (definition given
below). We then exhibit a functor MD → REXT that we use to classify ladder
operators.

In order to define composition of arrows, it will first be necessary to generalize
the notion of a multi-flip. A multi-set is a generalized set object that allows for
multiple instances of each of its elements. Let Ẑp denote the set of integer multi-
sets of cardinality p and Ẑ =⋃p Ẑp the set of finite integer multi-sets. We express

a multi-set K ∈ Ẑ as

K = {kp1
1 , . . . , k

pq
q } (12)

where k1, . . . , kq ∈ Z are distinct, and where pi > 0 indicate the multiplicity of
element ki . The cardinality is then given by p = p1 + · · · + pq . The notion of a
multi-flip extends naturally from sets to multi-sets. Indeed, for K ∈ Ẑ , we re-use (2)
to define the multi-flip fK :M→M.

We say that K is an even multi-set if all of its elements have an even multiplicity.
Since flips are involutions, fK is the identity transformation if and only if K is
even. If K is an even multi-set, then it has the unique decomposition K = K1 ∪K1
where K1 has the same elements as K but with the multiplicities divided by 2. More
generally, every multi-set K ∈ Ẑ has a unique decomposition of the form

K = K0 ∪K1 ∪K1, K0 ∈ Z, K1 ∈ Ẑ, (13)

where K0 is the set of integers that occur in K with an odd multiplicity. Again, since
flips are involutions, we have fK = fK0 .

The objects of MD are labelled Maya diagrams M, and the arrows are pairs
(M,K) ∈ M × Ẑ . The source of (M,K) is M , and the target is fK(M).
Composition of morphisms is given by the union of multi-sets:

(M2,K2) ◦ (M1,K1) = (M1,K1 ∪K2),

where M1 ∈M, K1,K2 ∈ Ẑ, M2 = fK1(M1).
For differential operators A, T1, T2, we say that A intertwines T1, T2 if

AT1 = T2A.

The objects of REXT are the rational extensions TM, M ∈ M, and the arrows
are monic differential operators that intertwine two rational extensions. Observe
that if A intertwines T1, T2, then so does A ◦ p(T1), where p(x) is an arbitrary
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polynomial. Given T1, T2, we say that A is a primitive intertwiner if it does not
include a nontrivial right factor p(T1).

For a Maya diagram M ∈M and a set K ∈ Zp, we define the operator

AM,K [y] =
Wr[ψM,k1 , . . . , ψM,kp , y]

Wr[ψM,k1 , . . . , ψM,kp ]
.

By construction, AM,K is a monic differential operator of order p. These intertwin-
ing operators have their origin in SUSYQM (supersymmetric quantum mechanics),
and obey the intertwining relation

AM1,KTM1 = TM2AM1,K, M2 = fK(M1), M1,M2 ∈M, K ∈ Z.

It is possible to show that AM,K is a primitive intertwiner between TM and
TfK(M). Moreover, it is possible to show [2, Proof of Theorem 3.10] that every
arrow in REXT has the form AM,K ◦ p(TM), where AM,K is primitive (i.e., K is a
set), and p(x) is a polynomial. We also note that these intertwiners are translation
invariant:

AM+n,K+n = AM,K, n ∈ Z. (14)

In order to describe the composition of intertwiners, we need to extend the above
definition to include multi-sets. For K ∈ Ẑ , let K0 ∈ Z and K1 ∈ Ẑ be as per (13).
For M ∈M, we now define

AM,K = AM,K0 ◦
∏

k∈K1

(2k + 1− TM). (15)

In other words, if K ∈ Ẑ contains elements of higher multiplicity, then AM,K is no
longer primitive. The arrows of REXT are the operators AM,K, M ∈M, K ∈ Ẑ .
Composition of arrows is just the usual composition of differential operators.

Theorem 1 The correspondence M �→ TM, M ∈M and (M,K) �→ AM,K, K ∈
Ẑ is a covariant functor MD→ REXT.

Proof It suffices to observe that for M1 ∈M, K1,K2 ∈ Ẑ we have

AM2,K2 ◦ AM1,K1 = AM1,K1∪K2 , M2 = fK1(M1).

5 Ladder Operators

We define a ladder operator to be an intertwiner A such that

ATM = (TM + λ)A
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for some M ∈M and constant λ. Since TM+n = TM + 2n, Theorem 1 implies that
for every rational extension TM, M ∈M, and n ∈ Z, there exists a ladder operator
AM,K , where K = (M + n) %M . By (14) no generality is lost if we index such
ladder operators in terms of unlabelled Maya diagrams [M] ∈M/Z.

A recent result provides a characterization of translational multi-flips [5] in terms
of cyclic Maya diagrams. This characterization makes it possible to establish the
order of a ladder operator [6].

Theorem 2 Let M ∈M and n = 1, 2, . . .. Then,

|(M + n)%M| = n+ 2
n−1∑

i=0

gi, (16)

where gi is the genus of the Maya diagram

Mi = {m ∈ Z : mn+ i ∈ M}, i = 0, 1, . . . , n− 1.

Proof Let Bi ∈ Z2gi+1 be the block coordinates of Mi , and set

B =
n−1⋃

i=0

(nBi + i) =
n−1⋃

i=0

{nb + i : b ∈ Bi}.

Since Bi is the unique set such that fBi
(Mi) = Mi + 1, it follows that B is the

unique set such that fB(M) = M + n. Therefore B = (M + n)%M .

Fix a Maya diagram M ∈ M. An immediate consequence of Theorem 2 is the
existence of a primitive ladder operator that intertwines TM and TM + 2n for every
n ∈ Z. The ladder operator in question is Ln := AM,K , where K = (M + n)%M .
The order of Ln is given by (16). If n > 0, then both Ln and Ln

1 intertwine TM and
TM + 2n; it follows that there must be a syzygy of the form

Ln
1 = Ln ◦ p(TM),

where the roots of the polynomial p are determined by (15).
The action of ladder operators on states is that of a lowering or raising operator

according to

Ln[ψM,k] = CM,n,kψM,k−n, k /∈ M,

where CM,n,k is]zero if ψM,k−n is not a bound state, i.e., if k − n ∈ M . Otherwise,
CM,n,k is a rational number whose explicit form can be derived on the basis of (7).
As a particular example, suppose that the index set of M consists of positive integers
0 < k1 < · · · < kp, that n > 0, and that k /∈ M . In this case,

CM,n,k =
{∏

i∈M\(M+n)(2i − 2j)× (k − n+ 1)n 2n if k − n /∈ M

0 otherwise.
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6 Examples

The articles [9, 10] considered a particular class of ladder operators corresponding
to Maya diagrams obtained by a single state-adding transformation. Fix some n =
1, 2, . . ., and let M̃n be the Maya diagram with index set {−n}, i.e., let M̃n = Z− \
{−n}. We set

M̂n = M̃n + n = Z− ∪ {1, . . . , n− 1},
and observe that M̂n has index set {1, . . . , n− 1}. Hence,

Ln := A
M̃n,{−n,1,...,n−1},

is an nth order ladder operator that intertwines T
M̃n

and T
M̂n

. Ordering the flips in
ascending order, we obtain the following factorization into first-order intertwiners:

Ln = A
M̂n−1,{n−1} · · ·AM̂2,{2}AM̂1,{1}AM̃n,{−n};

each flip corresponds to a state-deleting transformation.
Let us also observe that M̃n is a genus 1 Maya diagram. It follows that

L1 := A
M̃n,{−n,−n+1,0}

is a third-order ladder operator that intertwines M̃n and M̃n + 1.
The composition Ln

1 is represented by the multi-set

n−1⋃

j=0

{−n+ j,−n+ j + 1, j} = {−n, 1, . . . , n− 1} ∪ {(−n+ 1)2, . . . , (−1)2, (0)2},

where the superscripts indicate repetition (and not a square). The syzygy between
Ln and L1 is therefore

Ln
1 = Ln

0∏

j=−n+1

(2j + 1− T
M̃n

).
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Tachyons and Representations
of Sp(2,R)

P. Moylan

Abstract Lacking in the mathematical physics literature is a detailed treatment of
tachyonic representations of the Poincaré group along lines similar to that for its real
mass, positive and negative energy representations. Such representations Wigner
did not consider in any detail in his 1939 paper on the unitary representations
of the inhomogeneous Lorentz group (Wigner, Ann Math 40:149–204, 1939),
and Bargmann and Wigner in their paper on the group theoretical classification
of relativistic wave equations did not consider them either because “they are
. . . unlikely to have a simple physical interpretation” (Bargmann and Wigner, Proc
Nat Acad Sci (USA) 34(5):211–223, 1948). We are making a detailed study of
tachyonic representations of the Poincaré group in four space-time dimensions
and we describe some of our results here. In particular, we relate tachyonic
representations of the Poincaré group to representations of the anti-de Sitter group,
in a way analogous to the way in which positive energy, real mass representations
of the Poincaré group are related to unitary principal series representations of the de
Sitter group via group contraction and deformation.

Keywords Tachyons · Representation theory · Poincaré group · de Sitter groups

1 Introduction

The connection between the unitary representation theory of the universal covering
groups of the de Sitter group, SO0(1, 4), and the Poincaré group is well understood
and much of it even in explicit detail. Unfortunately, the same cannot be said
for the connection between the unitary representations of the anti-de Sitter group,
SO0(2, 3), and the Poincaré group, even though SO0(2, 3) is more interesting from
the point of view of physical applications.
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For SO0(1, 4), its representations are described in terms of various realizations
or parallelizations [1]. The spherical, flat, and hyperbolic parallelizations are as
follows. Let KAN be the Iwasawa decomposition of SO0(1, 4), and let M be
the centralizer of A in K , then the “compact picture” [2] of its representations
(spherical parallelization) is given by vector-valued fields over K/M ∼= S3, with
S3 being the three sphere. The Bruhat decomposition SO0(1, 4) ∼=′ ÑMAN leads
to the non-compact picture (or flat parallelization) which describes representations
in terms of vector-valued functions on Ñ ∼= R

3. (By ∼=′ we mean isomorphic to
a dense open subset of SO0(1, 4).) Finally the Hannabuss decomposition, which is
SO0(1, 4) ∼=′ HAN , where H is SO(1, 3), gives the hyperbolic picture (hyperbolic
parallelization) describing SO0(1, 4) representations on SO0(1, 3)/M ∼= T

3, the
two-sheeted momentum hyperboloid. Now unitary representations of the inhomo-
geneous Euclidean group in four dimensions, the inhomogeneous Galilean group,
and the Poincaré group have realizations in terms of vector-valued fields on S3,
R

3, and T
3, respectively, and the relationship via contraction and deformation of

these representations to representations of SO0(1, 4), at least for the case of unitary
principal series representations of SO0(1, 4), is very well understood. We would like
to obtain an analogous description of this situation for SO0(2, 3) and it is to this goal
that the current article contributes. Compared to SO0(1, 4) the situation with respect
to SO0(2, 3) is much more complicated: instead of S3 we now have S1 × S2; there
are more Bruhat-like decompositions, so there are more non-compact pictures; and
finally there are two analogs of the Hannabuss decomposition [1].

2 SO0(2, 3), Sp(2,R), the Poincaré Group and Their Lie
Algebras

Let β0 = diag(1, 1, − 1, − 1, − 1), where the right-hand side of this equation
denotes a diagonal matrix with diagonal entries as shown inside the parentheses.
SO0(2, 3) is the component connected to identity of the group

SO(2, 3) = {g ∈ SL(5,R) | g β0 g† = β0}.

(† denotes transpose of a matrix.) Denote by so(2, 3) the Lie algebra of
SO0(2, 3). A realization of so(2, 3) is provided by the set of all matrices
(ai,j ) (−1 � i, j � 3) such that ai,i = 0 (−1 � i � 3),
ai,j = − aj,i (1 � i � j � 3 ), a0,j = aj,0 (1 � j � 3 ),
a−1,j = aj,−1 (1 � j � 3 ) and a−1,0 = − a0,−1. Let Ei,j be the matrix
such that the (i, j) component is equal to 1 and the other components are all equal
to 0. Let L−1,0 = − E−1,0 + E0,−1, Li,j =Ei,j − Ej,i (1 � i, j � 3, i �= j),
L0,i =Ei,0+E0,i (1 � i � 3 ), L−1,i =Ei,−1+E−1,i (1 � i � 3 ). The La,b

(a, b = −1, 0, 1, 2, 3), viewed abstractly, are a basis for so(2, 3). The commutation
relations of the La,b are
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[La,b,Lb,c] = −ebLa,c (1)

with e−1 = e0 = −e1 = −e2 = −e3 = 1.
Denote the Lie algebra of the Poincaré group by p. A basis for p is given by

the L0,i and Li,j (i, j = 1, 2, 3) of so(1, 3), the Lie algebra of the Lorentz
group, together with a Lorentz vector operator Pμ (μ = 0, 1, 2, 3), the components
of which mutually commute. (By “Lorentz vector operator” we mean that the Pμ

satisfy the same commutation relations with the generators Lμ,ν of so(1, 3) as the
L−1,μ (μ = 0, 1, 2, 3).)

We let U(p) be the universal enveloping algebra of p. Since U(p) is an integral
domain, it has no zero divisors. Hence it has a skew field (or “Lie field”) of fractions
which we denote by D(p). Similarly we denote the universal enveloping algebra of
g = so(2, 3) by U(g). For the same reason as for U(p), it also has a skew field of
fractions, i.e. Lie field, which we denote by D(g).

We introduce the following elements of

U(g) : L2 = L2
1,2 + L2

2,3 + L2
3,1, Q2 = L2

0,1 + L2
0,2 + L2

0,3 − L2,

Q4 =
(
L1,2L3,0 + L2,3L1,0 + L3,1L2,0

)2
,

D2 = −L2−1,0 + L2−1,1 + L2−1,2 + L2−1,3 +Q2 and

D4 =
⎛

⎝
3∑

ijk=1

1

2
εijkL−1,iLj,k

⎞

⎠
2

+
3∑

ijk�m=1

(
εijk

{
1

2
L−1,0 Lj,k + L−1,kL0,j

})

×
(
εi�m

{
1

2
L−1,0L�,m + L−1,�L0,m

})
.

The center Z(g) of U(g) is generated by D2 and D4. The center Z(p) of U(p)

is generated by the following set of elements: P2 = P2
0 − P2

1 − P2
2 − P2

3

and W =
3∑

μνρ=0

(
Pμ Pν Lν,ρ Lρ,μ − 1

2 Pρ Pρ Lμ,ν Lν,μ
)

where we use Einstein

summation convention with metric tensor β0.
Now to the symplectic group, Sp(2,R), which is defined as

Sp(2,R) = {g ∈ GL(4,R) | g†Jg = J } where J =
(

0 I2

−I2 0

)
∈ GL(4,R).

The Lie algebra of Sp(2,R) is given by

sp(2,R) = {X ∈ End(R4) | JX +X†J = 0}.
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We have the short exact sequence

Z2 → Sp(2,R)→ SO0(2, 3). (2)

An explicit isomorphism ϕ of the respective Lie algebras is given by

ϕ(L−1,0) = 1
2

[
0 −I2

I2 0

]
, ϕ(L1,2) = 1

2

[
σ̂2 0

σ̂2

]
,

ϕ(L1,3) = 1
2

[
0 −σ1

σ1 0

]
, ϕ(L2,3) = 1

2

[
0 −σ3

σ3 0

]
,

ϕ(L−1,1) = 1
2

[
0 σ1

σ1 0

]
, ϕ(L−1,2) = 1

2

[
0 σ3

σ3 0

]
, ϕ(L−1,3) = 1

2

[
I2 0
0 −I2

]
,

ϕ(L0,1) = 1
2

[−σ1 0
0 σ1

]
, ϕ(L0,2) = 1

2

[−σ3 0
0 σ3

]
, ϕ(L03) = 1

2

[
0 I2

I2 0

]

where I2 =
(

1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ̂2 =

(
0 −1
1 0

)
, and σ3 =

(
1 0
0 −1

)
. The

linear span of the four matrices in the top two rows of the above equation is k, the
Lie algebra of the maximal compact subgroup K of Sp(2,R). With θ the Cartan
involution on sp(2,R) specified by θ(X) = −X† for X ∈ sp(2,R), we have that
sp(2,R) = k ⊕ p̃ where p̃ is the real linear span of the six matrices in the bottom
two rows of the above equation.

A maximal parabolic subgroup P = MAN of Sp(2,R) is: (t, y0, y1, y2 ∈ R)

M =
{
m =

(
(σ3)

ε� 0
0 (σ3)

ε�†−1

) ∣∣∣∣ � =
(
a b

c d

)
∈ SL(2,R) , ε ∈ {0, 1}

}
;

A =

⎧
⎪⎪⎨

⎪⎪⎩
a(t) =

⎛

⎜⎜⎝

t 0 0 0
0 t 0 0
0 0 t−1 0
0 0 0 t−1

⎞

⎟⎟⎠

⎫
⎪⎪⎬

⎪⎪⎭
;N =

⎧
⎪⎪⎨

⎪⎪⎩
n(t) =

⎛

⎜⎜⎝

1 0 0 0
0 1 0 0

y0 + y2 y1 1 0
y1 y0 − y2 0 1

⎞

⎟⎟⎠

⎫
⎪⎪⎬

⎪⎪⎭
.

Then P = MAN is a maximal proper parabolic subgroup of Sp(2,R).

3 Algebraic Results

We define commutative algebraic extensions of D(p) and D(g) as [3–6]:

D̃(p) =
{
a + bY

∣∣∣ a, b ∈ D(p)
}
, where Y commutes with all elements of D(p)

and satisfies the equation Y 2 = P2; D̃(g) =
{
a + b Ỹ + c Ỹ 2 + d Ỹ 3

∣∣∣ a, b, c, d ∈
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D(g)
}

where Ỹ commutes with all elements of D(g) and satisfies the equation

Ỹ 4 + D
′
2 Ỹ 2 + D

′
4 = 0 with D

′
2 =

(
D2 + 5

2 I
)

and D
′
4 =

(
D4 + 1

4 D2 + 9
16 I

)
.

(I is the identity in D̃(g).) Now define a mapping τλ (λ ∈ R) from g to D̃(p) by

τλ(L̃μ,ν) = Lμ,ν , τλ(L̃−1,μ) = i λ

2 Y

[
Q2 , Pμ

]
+ Pμ. (3)

The λ−1τλ(L̃−1,μ) and τλ(L̃μ,ν) satisfy the commutation relations of the generators
of Sp(2,R). The τλ(L̃−1,μ) and τλ(L̃μ,ν) are a basis for an isomorphic copy gλ of
g, which differs from g by a scaling factor λ in the L−1,μ directions, and hence
generate Sp(2,R)λ. We henceforth consider for simplicity the case λ = 1 and let
τλ=1(Ỹ ) = Y , then τ = τλ=1 can be extended to a homomorphism of D̃(g) into
D̃(p) in an obvious way, which turns out to be surjective because of Theorem 2.

Denote this extension also by τ . Elements of D̃(g) are denoted with a tilde to keep
them distinct from elements of D̃(p).

Theorem 1 Let g be the deformation of p having basis elements Li,j ∈ g and
L−1,μ ∈ D̃(p) defined by Eqs. (3). Then (for λ = 1) the following holds:

D2 = − Y 2 −
[W
Y 2 +

9

4
I
]

, D4 =
[
Y 2 + 1

4

] W
Y 2 . (4)

Now we view the second set of equations in Eqs. (3) as algebraic equations in D̃(p)

and solve them for the Pμ.

Theorem 2 Solutions Pμ to Eqs. (3) (λ = 1) are given by:

Pμ = D−1 A ν
μ Lν,4 (5)

with A ν
μ = −D′4 δνμ + i

2

[(
Q2 + 1

4

)
δνμ − 3

2 Lν
μ − Lμ,ρLρ,ν −Q4ε

ν
μρτLρτ

]
Y−

[(
Q2 + 1

4 − D′2
)
δνμ − Lν

μ − Lμ,ρLρ,ν
]
Y 2 + i

(
1
2δ

ν
μ − Lν

μ

)
Y 3 and D = Q4 +

1
4 Q2 − D′4 + 3

16 I + i
(

Q2 + 1
2

)
Y −

(
Q2 − D′2 − 1

2

)
Y 2 + 2iY 3 . Furthermore Y 2

satisfies the equation

Y 4 + D′2Y 2 + D′4 = 0 . (6)

The proof of this theorem involves straightforward, tedious calculation. First one

shows that P0 = D−1 A ν
0 L−1,ν satisfies Eqs. (3), and then use Pi =

[
L0i , P0

]

to easily show the same is true for other components. For more details on the proofs
of both theorems see Ref. [5].
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Now we introduce a ∗ structure on D̃(p) which in view of Eqs. (3) and Theorem
2 induces a ∗ structure on D̃(g) via the homomorphism τλ. Let † be the adjoint
associated with this ∗ structure, then we have

Theorem 3 If L̃†
μ,ν = −L̃μ,ν , L̃†

4,μ = −L̃4,μ and if Ỹ † = Ỹ , then P̃μ =
(

D̃−1Ãρ
μL̃−1,ρ

)
and also P̃†

μ =
(

D̃−1Ãμ,ρL̃−1,ρ

)† = L̃†
−1,ρÃμ,ρ†

(
D̃†
)−1 =

−P̃μ. Furthermore
[ ˆ̃Pμ , ˆ̃Pν

]
= 0.

A proof of this theorem can be found in [5].
Although a representation of g always gives rise to a representation of the

enveloping algebra U(g), it does not necessarily give a representation of the skew
field. We have instead the following [5, 6]:

Theorem 4 Let (dπ,H) be an infinitesimally unitarizable representation of g on
an Hilbert space H, and let Ỹ be a self-adjoint operator on H which satisfies Ỹ 4 +
dπ(D̃′2)Ỹ 2+dπ(D̃′4) = 0. Then, if both dπ(D̃)−1 and dπ(D̃)†−1

exist on a suitable,
dense domain in H, there exists a skew symmetric representation dπ̃ of p on H

defined by: dπ̃(Li,j ) = dπ(L̃i,j ), dπ̃(P0) = dπ(D̃)−1 dπ(
3∑

μ=0
Ãμ

0 L̃−1,μ), and

dπ̃(Pi ) = [dπ̃(Li,0), dπ̃(P0)](i = 1, 2, 3).

Note that it is necessary for both of the operators dπ(D̃)−1 and dπ(D̃)†−1
to exist

on the suitable dense domain in H postulated in this theorem for the existence of
mutually commuting translation operators dπ̃(Pμ) on the representation space H of
the representation (dπ,H).

4 Representations

Let χν ∈ C be a complex character of A, i.e. χν(a(t)) = e(ν+3/2)t with ν ∈ C and
let (π(σ,ε), V (σ,ε)) be the representation πσ⊗χε of M where χε ∈ {̂1, σ3} (ε = 0, 1)
and πσ is a unitary representation of SL(2,R) on the complex vector space V (ρ,ε).
Consider π(σ,ε) ⊗ χν : MA→ V (σ,ε) and extend this to a representation from P to
V (σ,ε) by requiring that it act trivially on N .

Definition 1 Let G = Sp(2,R) and consider the space

H(σ,ε,ν) := IndG
P (π(σ,ε) ⊗ χν ⊗ 1N) =

{
f : G→ V (σ,ε) | f ∈ C∞(G) �

f (gman) = π(σ,ε)(m)χν(a)f (g) for g ∈ G,m ∈ M,a ∈ A, n ∈ N
}
.

For f ∈ IndG
P (π(σ,ε) ⊗ χν ⊗ 1N) and g ∈ G we define a representation π(σ,ε,ν) of

G on H(σ,ε,ν) by π(σ,ε,ν)(g)f (g′) = f (gg′) with g′ ∈ G.
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Let H be the lift-up of SO0(1, 3) specified by the exact sequence in Eq. (2) and
concretely determined by the Lie algebra homomorphism ϕ given in Sect. 1. Then,
according to Sekiguchi, we have Sp(2,R) ∼= HAN as a C∞ isomorphism of HAN

onto a dense open subset of G = Sp(2,R). Furthermore, the Cartan decomposition
H ∼= VM where V ∼= H/M gives us the isomorphism Sp(2,R) ∼= VMAN again
onto a dense open subset of Sp(2,R). From this it follows that any f in H(σ,ε,ν) is
essentially uniquely specified by its values on V ∼= H/M . Thus the representation
space H(σ,ε,ν) can equivalently be viewed essentially as the space of C∞ functions
on V with values in V (σ,ε). I do not state the required asymptotic conditions on
f ∈ H(σ,ε,ν). They are determined in a way analogous to that described in Ref. [7]
for SU(2, 2) and in Ref. [8] for S00(2, 4) ∼= SU(2, 2)/Z2.)

Now we come to a description of tachyonic representations of the Poincaré
group. Consider the double cover H � T 4 of the Poincaré group, SO0(1, 3) � T 4.
The translation subgroup T 4 = {eaμPμ |aμ ∈ R

4}. T 4 is an additive vector group
and so every unitary irreducible representation (UIR) of T 4 is one-dimensional and
of the form [15, 16]

χp : T 4 → C, a → χp(a) = exp{(ip · a)},

where p, a ∈ R
4 and p · a is the SO0(1, 3) invariant scalar product of the two

vectors p and a. It follows that we can characterize the equivalence classes of the
UIR’s of T 4 by elements p of the vector space dual T̂ 4 to T 4. The coadjoint action
of SO0(1, 3) on T̂ 4 is given by p → Λ−1p. Let Op0 be the orbit in T̂ 4 of a point
p0 ∈ T̂ 4 under the action of H and let Mp0 be the isotropy subgroup (stabilizer
subgroup) of the point p0. Clearly Mp0 is a closed subgroup of H and so Op0

∼=
H/Mp0 . Let γ : Op0 → H be a smooth cross-section such that for any point
p ∈ Op0 we have γ (p)p0 = p. For tachyonic representations of H � T 4 it suffices
to consider p0 of the form p0 = (0, 0, 0, μ) where μ ∈ R. For such p0 we have
Mp0

∼= M and Op0 = H/M ∼= {p ∈ T 4 | p · p = −|μ|2 < 0}. We use the
same representation π(σ,ε) of M on the space V (σ,ε) as for Sp(2,R), and we extend
it to a representation of the semidirect product B = M � T 4 by requiring π(σ,ε) ⊗
χp0(m, a) = π(σ,ε)(m) χp0(a) where (m, a) ∈ B with m ∈ M and a ∈ T 4. The
representation of H � T 4 induced from π(σ,ε) ⊗ χp0 is defined as follows:

Definition 2 Let p0 = (0, 0, 0, μ) where μ ∈ R and let

H(σ,ε,p0):=Ind
H�T 4

B (π(σ,ε)⊗χp0)=
{
f : H �T 4 → V (σ,ε) | f ∈ C∞(H �T 4) �

f (gmp) = π(σ,ε)(m)χp0(a)f (g) f or g ∈ H � T 4,m ∈ M,a ∈ T 4
}
.

For f ∈ Ind
H�T 4

B (π(σ,ε) ⊗ χp0) and g ∈ H � T 4 we define the representation
π(σ,ε,p0) of H � T 4 on H(σ,ε,p0) by π(σ,ε,ν)(g)f (g′) = f (gg′) with g′ ∈ H � T 4.
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As in the Sp(2,R) case any f ∈ H(σ,ε,p0) is uniquely specified by its values on
V ∼= H/M .

From Definitions 1 and 2 it is clear that tachyonic representations of H � T 4

are associated, in the sense of Sect. 3, with the representations π(σ,ε,ν) of Sp(2,R)

and that these representations should go over into tachyonic representations of
H � T 4 in the contraction limit, where by contraction limit we mean in the (global)
sense of Ref. [9]. In fact, the method given in Ref. [9] for the contraction limit
of the principal series unitary representations of a non-compact semisimple Lie
group G into its associated Cartan motion group K � V for (G,K) a non-compact
Riemannian symmetric pair should carry over to the case considered here and this
should provide an example of their contraction process for a non-compact semi-
Riemannian symmetric pair not of rank one, namely, (Sp(2,R),H).

For the action of the two Casimir operators D2 and D4 in the representation
π(σ,ε,ν) we obtain the following: (ν = iρ, ρ real and I is the identity)

π(σ,ε,ν)(D2) = −
(
ρ2 + σ(σ + 1)+ 9

4

)
I , π(σ,ε,ν)(D4) =

(
ρ2 + 1

4

)
σ(σ +1)I.

Substitution of these values into Eqs. (4) and solving for Y 2(= P2) and W gives the
following possibilities for the action of P2 and W in this representation

π̃ (σ,ε,ν)(P2) = ρ2 , π̃ (σ,ε,ν)(W) = ρ2σ(σ + 1)

or

π̃ (σ,ε,ν)(P2) =
(
σ + 1

2

)2

− 1

2
, π̃ (σ,ε,ν)(W) =

(
ρ2 + 1

4

)((
σ + 1

2

)2

− 1

2

)
.

Since the Pμ are skew symmetric translation generators, this result implies, for
the first possibly, that representations of H � T 4 obtained out of Theorem 4
are tachyonic. A study of the unitary representations of SL(2,R) shows that we
also obtain imaginary mass with the second possibility for the case of Sp(2,R)

representations induced from discrete series unitary representations of SL(2,R). We
leave it to the reader to show that the hypotheses of Theorems 3 and 4 hold true for at
least some of these representations, so that we get skew symmetric representations
of p (cf. Refs. [5, 6] where some special cases are worked out).

Finally, we conclude with a few remarks about possible physical relevance
of such tachyonic representations of the Poincaré group. Some of the tachyonic
representations described in the previous paragraph occur as contractions of his
case 4 representations in Ehrman’s classification of the unitary representations of
the universal covering group of SO0(2, 3) [10, 11]. They include contractions of
principal series representations of SO0(2, 3) to representations of the Poincaré
group [10]. In addition to calling attention to recent radical proposals for their
possible use in dark matter [12], we think it should also be possible to use



Tachyons and Representations of Sp(2,R) 139

such tachyonic representations for describing constituents in the construction of
elementary particles like the muon [13]. In fact, since tachyons cannot exist as
physically observable particles, it provides a method of confinement similar to
the kinematical confinement of Flato and Fronsdal in their description of massless
particles as tensor products of Di’s and Rac’s [14].
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A Confined Quasi-Maximally
Superintegrable N -dimensional System,
Classical and Quantum, in a Space
with Variable Curvature

Orlando Ragnisco

Abstract In the present paper I will briefly summarize some recent results about the
solvability of the classical and quantum version of a (hyper-)spherically symmetric
N -dimensional system living on a curved manifold characterized by a conformally
flat metric. The system appears as a generalization of the so-called Taub–NUT
system. We call it Quasi-Maximally Superintegrable (QMS) since it is endowed with
2N − 2 constants of the motion (with 2N − 1 it would have been Maximally Super-
integrable (MS)) functionally independent and Poisson commuting in the Classical
case, algebraically independent and commuting as operators in the Quantum case.
The eigenvalues and eigenfunctions of the quantum system are explicitly given,
while for the classical version we provide the analytic solution of the radial equation
of motion. A few comments about the connection between exact solvability and
superintegrability are made in the final part of the paper.

Keywords Hamiltonian systems · Superintegrability · Exact solvability

1 The Classical Model: General Features

We consider the two-parameter family of N -dimensional (ND) classical Hamilto-
nian systems (a degenerate case of the Perlick’s II system, introduced by V. Perlick
in the seminal paper [1], where a highly nontrivial extension of Bertrand theorem
[2] to curved spacetimes was proven), given by

H = T (q,p)+ U(q) =
(

1− |q|
ξ

) |q|
ξ

p2

2
+ k

ξ − |q| (1)
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where ξ and k are positive real numbers, q,p ∈ IRN are conjugate coordinates and
momenta with canonical Poisson bracket {qi, pj } = δij and

q2 =
N∑

i=1

q2
i , p2 =

N∑

i=1

p2
i , |q| = (q2)

1
2 .

To have a positive definite Hamiltonian, the position variables have to be
restricted to the (punctured) open ball (0 < |q| < ξ ).

The Hamiltonian H can also be written in terms of hyperspherical coordinates
r, θj , (and canonical momenta pr, pθj ), (j = 1, . . . , N − 1) defined by

qj = r cos θj

j−1∏

k=1

sin θk, 1 ≤ j < N, qN = r

N−1∏

k=1

sin θk (2)

so that

r = |q|, p2 = p2
r + r−2L2, L2 =

N−1∑

j=1

p2
θj

j−1∏

k=1

1

sin2 θk
.

Thus, for a given value of L, the Hamiltonian (1) becomes a 1D radial system:

H(r, pr) = T (r, pr)+ U(r) =
(

1− r

ξ

)
r

ξ

(
p2
r

2
+ L2

2r2

)
+ k

ξ − r
(3)

where r ∈ (0, ξ).

1.1 Metrics and Scalar Curvature

The classical Hamiltonian (we introduce an explicit dependence upon ξ in the
notation):

Hξ = Tξ (r, pr)+ Uξ (r) = 1

f 2
ξ (r)

(
p2
r

2
+ L2

2r2

)
+Uξ (r) (4)

describes a particle (with unit mass) on an ND hyperspherically symmetric space
under the action of the central potential Uξ (r) = k

ξ−r
, with k, ξ > 0.

In radial coordinates the ND hyperspherically symmetric metrics reads:

ds2
N = f 2

ξ (r)(dr
2 + r2dΩ2

N−1) (5)
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where dΩ2
N−1

.= ∑N−1
j=1 dθ2

j

∏j−1
k=1 sin2(θk), which is the metrics of the unit

hypersphere SN−1.
In (5) fξ (r) = ξ√

(ξ−r)r
> 0.

The metrics is singular in the limits r → 0 and r → ξ , and the scalar curvature
turns out to be:

R
(N)
ξ (r) = −(N − 1)

(N − 4)f ′2ξ (r)+ fξ (r)(2f ′′ξ (r)+ 2(N−1)
r

f ′ξ (r))
f 4
ξ (r)

,

i.e.:

R
(N)
ξ (r) = (N − 1)

(N − 2)(4r2 + 3ξ2)− 4ξr(2N − 3)

4ξ2r(ξ − r)
(0 < r < ξ) . (6)

1.2 Solution of the Radial Equation of Motion

We do not provide the complete solution (time evolution and trajectory) to the
dynamics of the classical system but focus our attention on the time behavior of
the radial variable. Indeed, starting from the expression of the radial Hamiltonian,
introducing the rescaled variable ρ = r

ξ
, and taking into account that consequently

pρ = ξpr , we readily see that the radial equation of motion can be written as the
following first order ordinary quadratic differential equation (on the energy surface
H = E):

(ρ̇)2 = −ρ2(ε + l2)+ ρ(−κ + ε + 2l2)− l2) (7)

where ε = 2E
ξ2 , l2 = L2

ξ4 , κ = 2k
ξ3 .

Denoting by ρ± the (real and positive) roots of the above quadratic polynomial
with ρ+ > ρ−, ρ+ < 1, and by a the negative quantity −(ε+ l2), (7) can be cast in
the form:

ρ̇ = ±√|a|(ρ+ − ρ)(ρ − ρ−). (8)

By setting (Euler substitution):

|a|(ρ+ − ρ)(ρ − ρ−) = |a|y (ρ+ − ρ−)
|a| + y2 ,

the differential equation (8) can be integrated for the variable y, whence the
following expression for the variable ρ can be finally obtained:

ρ(t) = ρ− sin2(ωt + α)+ ρ+ cos2(ωt + α)
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= ρ+ − ρ−
2

cos(2(ωt + α))+ ρ+ + ρ−
2

(9)

with 2ω = |a| 1
2 , and α an arbitrary phase.

So, we have a simple harmonic motion with frequency given by |a| 1
2 . We notice

that both the frequency and the amplitude are (algebraic) functions of the constants
of motion ε and l2, as well as of the coupling constant k.

Remark 1 One could ask about the possibility of manufacturing superintegrable
examples leading to a radial time evolution such that (ṙ)2 be given by a higher
degree polynomial. The simplest, and possibly most interesting case, would be a
third degree polynomial, entailing its solvability in terms of Weierstrass P function.
Work is in progress in that direction.

2 The Quantum Model

Hereafter, we will use the standard definitions for the quantum position q̂ and
momentum p̂ operators:

q̂i ψ(q) = qi, p̂i ψ(q) = −ih̄
∂ ψ(q)
∂qi

, [q̂i, p̂j] = ih̄δij, i, j = 1, . . . ,N,

together with the conventions

∇ =
(

∂

∂q1
, . . . ,

∂

∂qN

)
, Δ = ∇2 = ∂2

∂2q1
+ · · · + ∂2

∂2qN
, q · ∇ =

N∑

i=1

qi
∂

∂qi
.

Note that the operator |q̂| is defined as |q̂|ψ(q) = |q|ψ(q).
We will apply the so-called direct Schrödinger quantization prescription, and

will take the hyperspherical coordinates (2) together with the usual definition of the
linear momentum operators, namely

p̂r = −ih̄
∂

∂r
, p̂θj = −ih̄

∂

∂θj
, j = 1, . . . ,N− 1, (10)

so that the quantum radial Hamiltonian Ĥr reads

Ĥr = 1

2

(
1− r

ξ

)
r

ξ

(
1

r̂N−1
p̂r r̂

N−1 p̂r + L̂2

r̂2

)
+ k

ξ − r̂
(11)

where L̂2 is the square of the total quantum angular momentum operator, i.e.



A Quasi-Maximally Superintegrable System 145

L̂2 =
N−1∑

j=1

⎛

⎝
j−1∏

k=1

1

sin2 θk

⎞

⎠ 1

(sin θj )N−1−j
p̂θj (sin θj )

N−1−j p̂θj .

After reordering terms, we arrive at the following Schrödinger equation

(
1− r

ξ

)
r

ξ

(
− h̄2

2
∂2
r −

h̄2(N − 1)

2r
∂r + L̂2

2r2

)
Ψ (r, θ)

+ k

ξ − r
Ψ (r, θ) = E Ψ (r, θ), (12)

with θ := (θ1, . . . , θN−1). By taking into account that the hyperspherical harmonics
Y (θ) are such that

L̂2Y (θ) = Ĉ(N)Y (θ) = h̄2l(l +N − 2) Y (θ), l = 0, 1, 2 . . .

where l is the angular momentum quantum number, the Eq. (12) admits a complete
set of factorized solutions of the form

Ψ (r, θ) = Φ(r)Y (θ), (13)

and, moreover,

Ĉ(m)Ψ = cmΨ, m = 2, . . . , N (14)

where cm are the eigenvalues of the “Casimir” operators Ĉ(m) (m = 2, . . . , N ):

Ĉ(m) =
∑

N−m<i<j≤N

(q̂i p̂j − q̂j p̂i)
2, Ĉ(N) = L̂2. (15)

We notice that, being a hyperspherically symmetric system, our system is quasi-
maximally superintegrable, since it possesses further N − 1 commuting operators,
having the same expression as the “Casimir” operators (15), up to a reshuffling of
the summations. Technically, together with the right Casimirs , we have the lef t

Casimirs, defined as follows (m = 0, . . . , N − 2):

˜̂
C(N−m) =

∑

m<i<j≤N

(q̂i p̂j − q̂j p̂i)
2,

˜̂
C(N) = L̂2. (16)

As Ĉ(N) and ˜̂
C(N) coincide, we have 2N − 3 commuting operators. So, the set

H, Ĉ(m),
˜̂
C(m) consists of 2N − 2 independent commuting operators, related to the

(N − 1) quantum numbers of the angular observables, namely:

ck ↔ lk−1, k = 2, . . . , N − 1, cN ↔ l.
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Hence it follows

Y (θ) ≡ Y cN
cN−1,..,c2

(θ1, θ2, . . . , θN−1) ≡ Y l
lN−2,..,l1

(θ1, θ2, . . . , θN−1), (17)

Accordingly, the radial Schrödinger equation associated with Ĥ reads

(ξ − r)r

(
− h̄2

2ξ2

(
d2

dr2 +
N − 1

r

d

dr
− l(l +N − 2)

r2

))
Φ(r)

+ k

ξ − r
Φ(r) = E Φ(r), (18)

with k, ξ > 0 and 0 < r < ξ .
So we can formulate the following Proposition:

Proposition 1 The solution of the spectral problem associated with the radial
Schrödinger equation exists, and has the explicit closed form given by:

Φn,l(r) = cn,l(ξ)

(
1− r

ξ

) 1
2

√
1+ 8kξ

h̄2 + 1
2
(
r

ξ

)l

P
(√

1+ 8kξ
h̄2 , 2l+N−2

)

n

(
2r

ξ
− 1

)

En,l= h̄2

8ξ2

(
1+2n+

√

1+ 8kξ

h̄2

)(
1+ 2n+ 4

(
l + N − 2

2

)
+
√

1+ 8kξ

h̄2

)
.

In the formula for Φn,l(r), cn,l(ξ) are normalization factors and P(α,β)
n (x) are the

Jacobi orthogonal polynomials with parameters α
.=
√

1+ 8kξ
h̄2 and β

.= 2l+N−2.

The Jacobi orthogonal polynomials are defined for α, β > −1, meaning N +
2l > 1, i.e. N > 1. Moreover, the eigenfunctions Φn,l(r) are square integrable in
r ∈ (0, ξ).

Finally, the (unnormalized) eigenfunctions of the confined Hamiltonian read:

Ψn,l,lN−2,...,l1(r, θ) ∝ Y l
lN−2,..,l1

(θ1, θ2, . . . , θN−1)Φn,l(r) , (19)

and they are orthogonal with respect to the measure

dμ(r, θ)
.= rN−1

r(ξ − r)
sinN−2(θ1) sinN−3(θ2) . . . sin(θN−2)dr dθ1 dθ2 . . . dθN−1 ,

with

θ1, . . . , θN−2 ∈ [0, π), θN−1 ∈ [0, 2π), r ∈ (0, ξ).

In particular, the Jacobi orthogonal polynomials yield a δnn′ at fixed l = l′ (for l �= l′
the orthogonality comes from the δll′arising from the hyperspherical harmonics).



A Quasi-Maximally Superintegrable System 147

Note that the eigenfunctions Φn,l(r) are identically zero at r = ξ for each l ≥ 0.
At the origin the situation is different since they are zero for l �= 0 and approach a
constant value for l = 0.

Remark 2 We point out that the spectrum cannot be written in terms of a single
combination of the quantum numbers n and l, so it is not fully degenerate. This is a
clear indication that the system is not maximally superintegrable. However, Quasi-
Maximal Superintegrability (QMS) is ensured due to the hyperspherical symmetry
inside the punctured (open) hyperball BN

ξ :={xj > 0|∑N
j=1 x2

j < ξ2}.

3 Concluding Remarks and Future Perspectives

In the paper we have presented an example of a dynamically confined system, i.e.
a system whose eigenfunctions are square integrable and whose energy spectrum
is discrete by virtue of the functional form of the metrics and of the potential, not
because of external boundary conditions. In this sense, it is much similar to the
harmonic oscillator or to the Sutherland model. An interesting feature is that the
system is exactly solvable, its eigenfunctions being expressed in terms of polyno-
mials (up to an algebraic pre-factor), though not being maximally superintegrable,
but just quasi-maximally superintegrable. Actually, the radial system does not seem
to be amenable neither to an intrinsic Kepler nor to an intrinsic oscillator. Although
a deeper investigation on this delicate point is certainly needed, at the present stage
we do not expect extra dynamical symmetries of Laplace–Runge–Lenz or Demkov–
Fradkin type [3–6]. Of course, we do not claim that exact solvability and maximal
superintegrability are unrelated notions [7, 8]: we just claim that on this topic there
is still something that has to be better understood.

Notes and Comments I want to mention that most of the results described in this
paper have been obtained in collaboration with my former student Danilo Latini,
who got his Ph.D.a couple of years ago. Unfortunately at the moment he has not got
any position whatsoever.
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Conditional Discretization of a
Generalized Reaction–Diffusion Equation

Decio Levi, Miguel A. Rodríguez, and Zora Thomova

Abstract A PDE modeling a reaction–diffusion physical system is discretized
using its conditional symmetries. Discretization is carried out using two specific
conditional symmetries. Explicit solutions of the difference equation are constructed
when the symmetry is projective.

Keywords Symmetry · Integrable systems · Difference equations · Conditional
symmetry · Invariant discretization

1 Introduction

Partial differential equations (PDE) modeling interesting models in Physics are
generically hard to solve and exact solutions are rare and difficult to obtain. The Lie
symmetries of these equations provide, in many cases, explicit solutions, or at least
hints on how to find those solutions. This is a well-known topic, see, for example,
the following monographs dedicated to it [1, 3, 15, 16].

A particularly useful application of this method is the reduction of the order
of the equation or of the number of variables. The invariants of the vector field
corresponding to the infinitesimal symmetry provide a new set of coordinates and
the PDE, written in this new system, can be usually solved and solutions of the
original equation can be obtained. The well-known example is the construction of
the fundamental solution of the heat equation [2].

D. Levi
INFN, Sezione Roma Tre, Roma, Italy
e-mail: decio.levi@roma3.infn.it

M. A. Rodríguez
Depto. de Física Teórica, Universidad Complutense de Madrid, Madrid, Spain
e-mail: rodrigue@ucm.es

Z. Thomova (�)
Department of Mathematics and Physics, SUNY Polytechnic Institute, Utica, NY, USA
e-mail: zora.thomova@sunypoly.edu

© Springer Nature Switzerland AG 2021
M. B. Paranjape et al. (eds.), Quantum Theory and Symmetries, CRM Series in
Mathematical Physics, https://doi.org/10.1007/978-3-030-55777-5_14

149

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-55777-5_14&domain=pdf
mailto:decio.levi@roma3.infn.it
mailto:rodrigue@ucm.es
mailto:zora.thomova@sunypoly.edu
https://doi.org/10.1007/978-3-030-55777-5_14


150 D. Levi et al.

However, some reductions cannot be obtained by just studying the Lie point
symmetries of the equation, as was shown in [5] for the Boussinesq equation.
Additional reductions and new solutions can be obtained by considering conditional
symmetries [2], as done in [11]. Many articles are dedicated to this class of
symmetries, for example [17]. To find conditional symmetries of the given PDE, one
adds a condition (first order PDE) to the equation. The prolongation of the vector
field of the conditional symmetry annihilates the equation when the condition and
its differential consequences are simultaneously satisfied.

Given a PDE with a group of symmetries, the equation can be written in terms of
the invariants of these symmetries. We have recently shown [13] that this is also the
case for conditional symmetries when the characteristic equation and its differential
consequences are satisfied.

In a recent work [14] we have extended these ideas to the discrete case, using
the notion of invariant discretization. This concept has been introduced in [12] for
Lie point symmetries and applied in a great number of particular examples proving
its usefulness in the computation of approximate solutions and, for instance, in the
study of the behavior of the solutions in a neighborhood of a singularity. In the
case of conditional symmetries, the discrete equation can be written in terms of the
discrete invariants of the vector fields and the discretized characteristic equation.

In this work we apply these techniques to a particular equation used in reaction–
diffusion models and related to the Hodgkin–Huxley model of action potentials in
neurons [4]:

ut = uxx + k(x)u2(1− u). (1)

For particular values of k(x) the conditional symmetries of this equation have been
computed in [6–8].

We will study the Eq. (1) with k(x) = 2
x2

ut = uxx + 2
u2

x2 (1− u), u = u(x, t), (2)

whose conditional symmetries (cases Q̂1 and Q̂2 were given in [7, 8]) are

Q̂1 =∂t + 3

x
(u− 1)∂x − 3

x2
u(u− 1)2∂u, (3)

Q̂2 =∂x + u2 − 1

x
∂u, (4)

Q̂3 =∂x − (u− 1)(u− 3)

x
∂u, (5)

Q̂4 =∂x − u(u− 1)

x
∂u. (6)



Conditional Discretization of PDEs 151

We will discuss two of the conditional symmetries, Q̂1 (3), corresponding to the
case when the coefficient of ∂t in the vector field is equal to 1, and Q4 (6), when the
same coefficient is equal to 0.

2 Case Q̂1

Let us discuss here the symmetry reduction and discretization provided by the vector
field Q̂1.

2.1 Symmetry Reduced Equations and Solutions

The symmetry variables, that is, the invariants of the vector field, are

v = x(u− 1)

u
, y = x2 u− 3

u− 1
+ 18t, v = v(y) (7)

for u �= 0 and u �= 1 Then (2) reduces to the ODE

vvyy − 2v2
y = 0,

whose solution is

v = c1

y + c2
,

where c1 and c2 are two integration constants. Then from (7) a solution of (2),
different from the trivial constant u = 1, is

u(x, t) = x
(
3x2 + 18t + c2

)

x(x2 + 18t + c2)− c1
.

2.2 Construction of the Discretized Equation

To be able to construct the conditionally invariant discretization of (2) we need at
first to construct the invariant lattice.

The relevant necessary invariants in the point nm are

I1 = xnm − xnm

unm

, I2 = x2
nm

unm − 3

unm − 1
+ 18tnm.
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We look for a lattice invariant under the vector field Q̂1. Details on construction of
invariant lattices can be found in [9, 10, 14]. Introducing the distances and angles of
the discrete net

xn+1,m = xnm + hx
nm, xn−1,m = xnm + σx

nm,

and of the fields

un+1,m =unm + hx
nmDxu,

un,m+1 =unm + σx
nmDxu+ kDtu,

we get, after some nontrivial calculations, that hx
nm satisfies the polynomial equation

(hx
nm)3(unm − 1)Dxu+ (u− 1)(2xnmDxu+ u− 3)(hx

nm)2

+
[(

2x2
nm − h(unm − 1)

)
Dxu+ 2xnm(unm − 3)(unm − 1)

]
hx
nm

− h(unm − 1)2 = 0.

This expression will provide hx
nm in terms of x, u and the differences of u in each

point. This a cubic equation for hx
nm and we cannot get explicit expressions for the

point distances simple enough to achieve a complete solution of the problem.
This is a problem we have not found in previous works and it is due to the fact that

the vector field is not projective, that is, the coefficients of the partial derivatives with
respect to x (or t , the independent variables) depend on the dependent variable u.

3 Case Q̂4

3.1 Symmetry Reduced Equations and Solutions

The symmetry variables corresponding to the vector field Q̂4 (6) are

v = x(u− 1)

u
, y = t, v = v(y) (8)

and then (2) reduces to the ODE

vy = 0,

whose solution is v = c where c is a constant. Then, from (8) a family of solutions
for (2) different from the trivial constant u = 1 is
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u = x

x − c
. (9)

Invariants and Reconstruction of the Equation The invariants of the vector field
Q̂4 are easily computed

I1 =t, I2 = x − x

u
, I3 = x

u2
ut , (10)

I4 = x

u2
ux − 1

u
, I5 = x

u2
uxx + 2

u2
ux − 2x

u3
u2
x. (11)

The condition (the characteristic equation) of the conditional symmetry Q̂4 is
given by

C = ux + u

x
(u− 1) = u2

x
(I4 + 1) (12)

and its x derivative (differential consequence) is

Cx = uxx + 2u− 1

x
ux − u(u− 1)

x2
.

Equation (2) is obtained in terms of the invariants, the condition, and the differential
consequences of the condition:

ut − uxx + 2

x2
u2(u− 1) = u2

x

(
I3 − x

u2
Cx + 2u− 1

u2
C
)
= 0

as it can be done for any conditional symmetry [13].

3.2 Construction of the Discretized Equation

Lattice Construction Due to the form of Q̂4 (6) the lattice will be orthogonal and
constant in both directions x and t . From (6) and the results on the construction of
invariant lattices (see [9, 10, 14] for details) we get that with no loss of generality
we can choose

h(t)
nm = k, σ (t)

nm = 0, h(x)
nm = h, σ (x)

nm = 0,

where k and h are constants, the lattice spacing in the t and x directions. Then [9]
the discrete derivatives are

Dx = Δn

h
, Dt = Δm

k
.
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Conditional Discretization of the Generalized Reaction–Diffusion Eq. (2)
Using the prolongation of the discrete vector field [9] we get the following
invariants:

I1 =tnm, I2 = xnm − xnm

unm

I3 = xnmDt u

unm(unm + kDt u)
, I4 = xnmDxu− unm

unm(unm + hDxu)

I5 =2unmDxu− 2xnm(Dxu)
2 − hxnmDxuDxxu+ unm(xnm + 2h)Dxxu

unm(unm + hDxu)
(
unm + 2hDxu+ h2Dxxunm

)

whose continuous limits are the corresponding continuous invariants (10), (11). The
discrete characteristic equation of the discrete conditional symmetry is given by

C = u2
nm

xnm
(I4 + 1) = unm ((xnm + hunm)Dxu+ unm(unm − 1))

xnm(unm + hDxu)
,

with continuous limit the characteristic (12) of Q̂4, and with x-difference:

DxC = 1

xnm(xnm + h)(unm + hDxu)
(
unm + 2hDxu+ h2Dxxu

)

(
2h3xnm(Dxu)

4 + hxnm(xnm + 7hunm)(Dxu)
3

+ hunm((7unm − 3)xnm − 2hunm)(Dxu)
2

+ u2
nm((2unm − 1)xnm − h(3unm − 2))Dxu

+ (h4xnm(Dxu)
3 + h2xnm(xnm + h+ 3hunm)(Dxu)

2

+ hunm(x2
nm − h2unm + hxnm(2unm + 1))Dxu

+ u2
nm(x2

nm − h2(unm − 1)+ 2hxnm)
)
Dxxu− u3

nm(unm − 1)
)
.

The discretized equation (2) is written in terms of the discrete invariants and the
discrete condition and its differences as:

u2
nm

xnm

(
I3 + 2unm − 1

u2
nm

C − xnm

u2
nm

DxC
)
= 0,

with Eq. (2) as its continuous limit. Explicitly this equation is

un+2,m =kun,m+1u
3
n+1,mx2

nm(xnm + 2h) (13)

×
[
u2
nm(xnm + h)(kun,m+1(hun+1,m(h− 3xnm)+ x2

nm − h2)
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+ h2un+1,mx2
nm)− un,m+1un+1,munmxnm(xnm + h)

×
((

h2 + k
)
xnm − hk

)
− 2hkun,m+1u

3
nm(xnm + h)

× (hun+1,m − xnm − h)+ kun,m+1u
2
n+1,mx2

nm(hun+1,m + xnm + h)

]−1

.

The existence of this conditional symmetry allows, as in the continuous case,
to simplify the equation—reducing the number of variables in the continuous case
and reducing the number of indices in the discrete case. In this case we can assume
that unm depends only on the first index (that is, un,m+1 = unm). The difference
equation (13) becomes

un =
[
(xn−2 + h)

(
x2
n−2 − h(3xn−2 − h)un−1 − h2

)
u2
n−2

− xn−2

(
x2
n−2 − h2

)
un−1un−2 − 2h(xn−2 + h)(h(un−1 − 1)− xn−2)u

3
n−2

+ x2
n−2(h(un−1 + 1)+ xn−2)u

2
n−1

]−1
x2
n−2(xn−2 + 2h)u3

n−1. (14)

Equation (2) has the exact conditionally invariant solution (9) depending only on
x. It turns out that in this case, the discrete function and lattice:

un = xn

xn − c
, xn+1 = xn + h (15)

are an exact solution of the difference equation (14) for any constant c and any step
h. The proof is obtained by a direct substitution of (15) into (14). This implies that
the discrete scheme is exact. We present in Fig. 1 two plots of these expressions
(the continuous and discrete solutions) for c = −9 and c = π , respectively, to
graphically describe this situation. In the second plot, the discrete solution fits the
continuous one in spite of the singularity.

x

u(x)

5 10 15 20 25 30

0.2
0.3
0.4
0.5
0.6
0.7
0.8

u(x)

x2 3 4 5 6

-10

-5

5

10

Fig. 1 Solutions of Eqs. (2) and (14), for c = −9 (left) and c = π (right). The solid curves
correspond to the continuous exact solution, the dots to the discrete exact solution
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4 Conclusions

In this contribution we have applied our recent work on conditional symmetries of
continuous and discrete equations to a reaction–diffusion equation. We have shown
how to carry out the necessary computations for one conditional symmetry and the
difficulties which appear when the symmetry is not projective. In the solved case
we have also shown that the exact solution of the continuous equation becomes an
exact solution of the difference equation.
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Discrete Curve Flows in
Two-Dimensional Cayley–Klein
Geometries

Joseph Benson and Francis Valiquette

Abstract Using the method of equivariant moving frames, we study geometric
flows of discrete curves in the nine Cayley–Klein planes. We show that, under a
certain arc-length preserving flow, the curvature invariant κn evolves according to
the differential-difference equation ∂κn

∂t
= (1 + εκ2

n+1)(κn+1 − κn−1), where the
value of ε ∈ {−1, 0, 1} is linked to the geometry of the Cayley–Klein plane.

Keywords Discrete curve flows · Cayley–Klein geometry

1 Introduction

Invariant submanifold flows, particularly curve and surface flows, arise in a wide
range of applications, including geometric optics, computer vision, visual tracking
and control, and much more. Given a geometric submanifold flow, one of the typical
problems consists of determining the induced evolution on the geometric invariants
of the submanifold. For many geometric flows, this leads to completely integrable
evolution equations.

A similar phenomenon occurs in discrete geometry. For example, discrete
geometric curve flows in the Euclidean plane have been considered in [1–3], and
it was shown that the curvature evolves, under a certain arc-length preserving
flow, according to the differential-difference mKdV equation, which is completely
integrable. In this paper, we extend some of the work done in [1–3] by considering
discrete geometric curve flows in all nine 2-dimensional Cayley–Klein geometries,
[4]. Using the method of equivariant moving frames, our computations are per-
formed symbolically, which allows us to tackle the nine geometries simultaneously.
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Our computations will closely follow the exposition found in [1]. In this paper, we
will not be able to recall and explain all the results used from [1], and therefore
recommend that the reader reviews [1] for a more detailed exposition.

The main result of this note is that the curvature invariant of a discrete curve
in 2-dimensional Cayley–Klein geometries evolves, under a certain arc-length
preserving flow, according to the integrable differential-difference equation [5],

∂κn

∂t
= (1+ εκ2

n+1)(κn+1 − κn−1),

where the value of ε ∈ {−1, 0, 1} is related to the geometry of the Cayley–Klein
plane.

2 Cayley–Klein Planes

Let ε1, ε2 ∈ {−1, 0, 1}, and consider the 3-dimensional Cayley–Klein Lie algebra
soε1,ε2(3) spanned by three vectors P1, P2, J12, with nonzero commutators

[J12, P1] = P2, [J12, P2] = −ε2P1, [P1, P2] = ε1J12.

Exponentiating soε1,ε2(3) yields the special orthogonal Cayley–Klein group
SOε1,ε2(3) with 1-parameter subgroups

H1 = {eεP1 : ε ∈ R}, H2 = {eεP2 : ε ∈ R}, H12 = {eεJ12 : ε ∈ R}.

Definition 1 The two-dimensional Cayley–Klein planes are defined as the homo-
geneous spaces

S2[ε1],ε2
:= SOε1,ε2(3)/H12.

The nine geometries that one obtains appear in Table 1.

Table 1 Two-dimensional Cayley–Klein geometries

Measure of lengths

Measure of angles Elliptic ε1 = 1 Parabolic ε1 = 0 Hyperbolic ε1 = −1

Elliptic ε2 = 1 Elliptic geometry Euclidean geometry Hyperbolic geometry

Parabolic ε2 = 0

Oscillating
Newton–Hooke
spacetime Galilean spacetime

Expanding
Newton–Hooke
spacetime

Hyperbolic ε2 = −1
Anti-de Sitter
spacetime Minkowski spacetime de Sitter spacetime



Discrete Curve Flows in Two-Dimensional Cayley–Klein Geometries 159

Definition 2 For ε2 ∈ {−1, 0, 1}, the generalized imaginary number iε2 is a formal
symbol satisfying the equation

i2
ε2
= −ε2.

Using generalized imaginary numbers, a point in S2[ε1],ε2
may be represented by

the complex number

z = x + iε2y ∈ Cε2 .

The induced action of the Cayley–Klein group SOε1,ε2(3) on the point z ∈ Cε2 is
then given by

Z = αz+ β

α − ε1βz
where α, β ∈ Cε2 with αα + ε1ββ = 1, (1)

and z = x−iε2y denotes the complex conjugate of z. Geometrically, (1) corresponds
to the isometry group of the metric

g = dzdz

(1+ ε1zz)2 .

Computing the infinitesimal generators of the group action (1), and using the
isomorphism Cε2 
 R

2, we obtain

v12 = −ε2y
∂

∂x
+ x

∂

∂y
, v1 = [1+ ε1(x

2 − ε2y
2)] ∂

∂x
+ 2ε1xy

∂

∂y
,

v2 = 2ε1ε2xy
∂

∂x
+ [1− ε1(x

2 − ε2y
2)] ∂

∂y
. (2)

3 Moving Frames

Consider a discrete curve zn = xn + iε2yn ∈ Cε2 , where n ∈ Z. The Cayley–Klein
group acts on the curve via the product action

Zn = Xn + iε2Yn = αzn + β

α − ε1βzn
.

To define a moving frame, we consider the second order discrete jet space

J[2] = Z× C
3
iε2
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with local coordinates (n, zn−1, zn, zn+1), where the fiber C
3
iε2

consists of three

neighboring points on the curve. We refer to J[2] as a discrete jet space since the
points (zn−1, zn, zn+1) are sufficient to provide finite difference approximations of
the order 2 jet of a differentiable curve. A moving frame is then an equivariant
map ρ : J[2] → SOε1,ε2(3) from the discrete jet space into the Cayley–Klein group.
Choosing the cross-section

K = {zn = 0, yn+1 = 0} ⊂ J[2],

a moving frame is obtained by requiring that ρn · (zn−1, zn, zn+1) ∈ K, which yields
the normalization equations Zn = Yn+1 = 0. Solving the normalization equations
for the group parameters, we obtain the moving frame

β = −
√

1+ |zn|2eiε2θ zn, α =
√

1+ |zn|2eiε2θ ,

where eiε2 θ = Cε2(θ) + iε2Sε2(θ) is the generalized complex exponential function
with

Cε2(θ) =

⎧
⎪⎪⎨

⎪⎪⎩

cos
(√

εx
)

ε > 0

1 ε = 0

cosh
(√−εx

)
ε < 0

, Sε2(θ) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1√
ε

sin
(√

εx
)

ε > 0

x ε = 0
1√−ε

sinh
(√−εx

)
ε < 0

,

denoting the generalized cosine and sine functions, and where the angle θ is
determined by the equation

Tε2(2θ) = −
Δxnη +Δynξ

Δxnξ − ε2Δynη
,

where Tε2(θ) =
Sε2(θ)

Cε2(θ)
denotes the generalized tangent function, and

Δxn = xn+1 − xn, ξ = Re(1+ ε1znzn+1),

Δyn = yn+1 − yn, η = Im(1+ ε1znzn+1).

Given a moving frame, there is a systematic procedure, known as invariantization,
for constructing invariant functions. For example, the invariantization of a coordi-
nate function zk is the invariant ιn(zk) = ρn · zk . Invariantizing xn+1 and zn−1, we
obtain the invariants
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Kn = ιn(xn+1) = |Δzn|
|1+ ε1znzn+1| ,

In + iε2Jn = ιn(zn−1) = −ΔznΔzn−1(1+ ε1znzn+1)(1+ ε1znzn−1)

|Δzn||1+ ε1znzn+1||1+ ε1znzn−1|2 , (3)

where In, Jn are the real and imaginary parts of ιn(zn−1), respectively. The
invariantization map ιn extends to one-forms [1]. For example, the invariantization
of dzk = dxk + iε2dyk is the invariant one-form

%k
n = ωk

n+ iε2σ
k
n = ιn(dzk) = Δzn(1+ ε1znzn)(1+ ε1znzn+1)(1+ ε1znzk)

2dzk

|Δzn||1+ ε1znzn+1||1+ ε1znzk|4 ,

where ωk
n, σk

n are the real and imaginary parts of ιn(dzk), respectively.

4 Recurrence Relations

We now compute the recurrence relations for the exterior derivative and the shift
map. These formulas encapsulate the fact that the invariantization map does not,
in general, commute with the exterior derivative and the shift map. The general
recurrence formulas can be found in [1]. Below, we specialize these formulas to our
problem.

4.1 Exterior Derivative

Let μ1, μ2, and μ12 be a basis of Maurer–Cartan forms dual to the infinitesimal
generators (2). Then the recurrence relations for the exterior derivative are

d[ιn(xk)] = ωk
n + [1+ ε1(ιn(xk)

2 − ε2ιn(yk)
2]ν1

+ 2ε1ε2ιn(xk)ιn(yk)ν2 − ε2ιn(yk)ν12,

d[ιn(yk)] = σk
n+2ε1ιn(xk)ιn(yk)ν1+[1−ε1(ιn(xk)

2−ε2ιn(yk)
2]ν2+ιn(xk)ν12,

(4)

where ν1 = ρ∗μ1, ν2 = ρ∗μ2, ν12 = ρ∗μ12 denote the pull-back of the Maurer–
Cartan forms via the moving frame. The recurrence relations for the phantom
invariants ιn(xn) = ιn(yn) = ιn(yn+1) = 0 yield the normalized Maurer–Cartan
forms

ν1 = −ωn
n, ν2 = −σn

n , ν12 = σn
n − σn+1

n

Kn

− ε1Knσ
n
n .
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Substituting these expressions into the recurrence relations for the normalized
invariants In = ιn(xn−1), Jn = ιn(yn−1), Kn = ιn(xn+1) introduced in (3), we
obtain

dIn = ωn−1
n − ωn

n +
ε2Jn

Kn
(σn+1

n − σn
n )+ ε1

[
(ε2J

2
n − I2

n )ω
n
n + ε2Jn(Kn − 2In)σ

n
n

]
,

dJn = σn−1
n − σn

n +
In

Kn
(σn

n − σn+1
n )+ ε1

[− 2InJnω
n
n + (I2

n − ε2J
2
n − InKn)σ

n
n

]
,

dKn = ωn+1
n − ωn

n − ε1K
2
nω

n
n.

4.2 Shift Map

Let

mn = ρn+1 ρ−1
n =

[
an bn

−ε1bn an

]
, anan + ε1bnbn = 1,

denote the Maurer–Cartan invariant matrix, which is an element of the Cayley–Klein
group SOε1,ε2(3). Using the recurrence relations

In+1 + iε2Jn+1 = ιn+1(zn) = mn · ιn(zn) = mn · 0 = bn

an

,

0 = ιn+1(zn+1) = mn · ιn(zn+1) = anKn + bn,

we find that

an = eiε2φn

√
1+ ε1K2

n

, bn = K2
n e−iε2φn

√
1+ ε1K2

n

, (5)

where

Tε2(2φn) = Jn+1

In+1
.

We also obtain the syzygy

Kn =
√
I 2
n+1 + ε2J

2
n+1.
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For the invariant one-forms, we have the recurrence relation

S[%n
n ] = ιn+1(dzn+1) = mn · ιn(dzn+1) = −In+1 + iε2Jn+1

Kn(1+ ε1K2
n)

%n+1
n ,

so that

(ωn+1
n + iε2σ

n+1
n ) = %n+1

n

= − 1

Kn
(1+ ε1K

2
n)(In+1 − iε2Jn+1)S[%n

n ]

= −1+ ε1K
2
n

Kn

[
(In+1S(ωn

n)+ ε2Jn+1S(σn
n ))+ iε2(−Jn+1S(ωn

n)+ In+1S(σn
n ))

]
.

Similarly, for the backward shift,

ωn−1
n + iε2σ

n−1
n = %n−1

n = mn−1 · S−1[%n
n ]

= −1+ ε1K
2
n−1

Kn−1
(In + iε2Jn)S

−1[%n
n ]

= −1+ ε1K
2
n−1

Kn−1

[
(InS−1(ωn

n)− ε2JnS−1(σn
n ))+ iε2(JnS−1(ωn

n)+ InS−1(σn
n ))

]
.

5 Invariant Linearization Operators

Definition 3 The invariant linearization of an invariant In, is the invariant differ-
ence operator AIn satisfying the equality

dIn = AIn

([
ωn

n

σn
n

])
.

To compute the invariant linearization of In, compute its differential using the
recurrence relations (4) for the exterior derivative. The result is a linear combination
of the invariant one-forms ωk

n, σk
n . Then, use the recurrence relation for the shift map

to express ωk
n, σk

n in terms of ωn
n, σn

n and their shifts. We note that these computations
can be done symbolically, without requiring the coordinate expressions for the
invariant In and the one-forms ωk

n, σk
n .

For the normalized invariants In = ιn(xn−1), Jn = ιn(yn−1), and Kn = ιn(xn+1),
the components of the invariant linearization operators are
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Ax
In
= − (1+ ε1K

2
n−1)In

Kn−1
S−1 + ε1(ε2J

2
n − I 2

n )− 1+ ε2JnJn+1(1+ ε1K
2
n)

K2
n

S,

Ay
In
= ε2(1+ ε1K

2
n−1)Jn

Kn−1
S−1 + ε1ε2Jn(Kn − 2In)− ε2Jn

Kn

− ε2JnIn+1(1+ ε1K
2
n)

K2
n

S,

Ax
Jn
= − (1+ ε1K

2
n−1)Jn

Kn−1
S−1 − 2ε1InJn − InJn+1(1+ ε1K

2
n)

K2
n

S,

Ay
Jn
= − (1+ ε1K

2
n−1)In

Kn−1
S−1 + In

Kn

− 1+ ε1(I
2
n − ε2J

2
n − InKn)

+ InIn+1(1+ ε1K
2
n)

K2
n

S,

Ax
Kn
= −In+1(1+ ε1K

2
n)

Kn

S− (1+ ε1K
2
n),

Ay
Kn
= −ε2Jn+1(1+ ε1K

2
n)

Kn

S.

(6)

6 Geometric Flows

In the Euclidean plane, where ε1 = 0 and ε2 = 1, the authors of [1–3] define a
discrete curve to be parametrized by arc-length if Kn = |Δzn| = 1 for all n ∈ Z.
We extend the notion of arc-length parametrized discrete curves to the remaining
Cayley–Klein planes as follows.

Definition 4 A discrete curve zn is said to be parametrized by arc-length if

Kn = K

is constant for all n ∈ Z.

In light of the Maurer–Cartan invariants (5), we notice that when ε1 = −1, we
cannot set K = 1. This explains why the value of the constant in Definition 4
remains unspecified. From now on, we restrict our considerations to arc-length
parametrized discrete curves. For such curves, we introduce the discrete curvature

κn = Jn

In −K
= J̃n

Ĩn − 1
,
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where Ĩn = In
K

, J̃n = Jn
K

. Using the syzygy K2 = I 2
n + ε2J

2
n , we have that

Ĩn = In

K
= ε2κ

2
n − 1

ε2κ2
n + 1

and J̃n = Jn

K
= − 2κn

ε2κ2
n + 1

. (7)

For an arc-length parametrized curve, the invariant linearization operators (6) can
be expressed in term of the quantities (7):

Ax
In
= (1+ ε1K

2)
[
ε2J̃nJ̃n+1S− 1− ĨnS−1]+ 2ε1ε2K

2J̃ 2
n ,

Ay
In
= (1+ ε1K

2)ε2
[− J̃nĨn+1S− J̃n + J̃nS−1]+ 2ε1ε2K

2J̃n(1− Ĩn),

Ax
Jn
= (1+ ε1K

2)
[− ĨnJ̃nS− J̃nS−1]− 2ε1K

2ĨnJ̃n,

Ay
Jn
= (1+ ε1K

2)
[
ĨnĨn+1S+ Ĩn − 1− ĨnS−1]+ 2ε1Ĩn(Ĩn − 1),

Ax
Kn
= (1+ ε1K

2)[−Ĩn+1S− 1
]
,

Ay
Kn
= (1+ ε1K

2)
[− ε2J̃n+1S

]
.

Computing the differential of the curvature, we obtain

dκn = ε2κ
2
n + 1

2
· (κn dĨn − dJ̃n).

Therefore, the components of the invariant linearization operator for κn are

Ax
κn
= (1+ ε1K

2)(ε2κ
2
n + 1)

2K

(
− κnS−1 − κn + 2κn+1

ε2κ
2
n+1 + 1

S
)
+ 2ε1Kκn,

Ay
κn
= (1+ ε1K

2)(ε2κ
2
n + 1)

2K

(
−S−1 + 2+ ε2κ

2
n+1 − 1

ε2κ
2
n+1 + 1

S

)
− 2ε1K.

Next, let Tn and Nn be vectors in Ciε2
defined by the pairings

〈ωn
n,Tn〉 = 1, 〈σn

n ,Tn〉 = 0, 〈ωn
n,Nn〉 = 0, 〈σn

n ,Nn〉 = 1.

We now investigate the induced evolution equation of the curvature κn when the
curve zn evolves according to the geometric flow

∂zn

∂t
= αnTn + βnNn, (8)

where αn and βn are functions of the curvature κn and its shifts.
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Theorem 1 Let In be an invariant. Under the geometric curve flow (8), the
invariant In evolves according to the differential-difference equation

∂In

∂t
= AIn

([
αn

βn

])
,

where AIn is the invariant linearization of In.

To preserve the fact that our curves are parametrized by arc-length, we consider
flows that are arc-length preserving. Thus, we require that

∂Kn

∂t
= Ax

Kn
(αn)+Ay

Kn
(βn) = 0.

This leads to the finite difference equation

αn + Ĩn+1αn+1 + ε2J̃n+1βn+1 = 0. (9)

If ε2 �= 0, then

βn = − 1

ε2J̃n

(Ĩnαn + αn−1), (10)

where αn is arbitrary. If ε2 = 0, Eq. (9) reduces to

αn+1 = − 1

Ĩn+1
αn

whose solution is

αn = (−1)nπk

(
1

Ĩk+1
, 0, n

)
α0, (11)

where

πk(fk, n0, n) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

n−1∏

k=n0

fk n > n0

1 n = n0
n0−1∏

k=n

1

fk

n < n0

.

In this case, we note that βn is arbitrary. We observe that both constraints (10)
and (11) are satisfied when the components of the flow are
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αn = 2K

1+ ε1K2 , βn = 2Kκn

1+ ε1K2 .

For such an arc-length preserving flow, the evolution of curvature is governed by the
completely integrable differential-difference equation

∂κn

∂t
= Ax

κn

(
2K

1+ ε1K2

)
+Ay

κn

(
2Kκn

1+ ε1K2

)
= (1+ ε2κ

2
n+1)(κn+1 − κn−1).
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Zernike System Stems from Free Motion
on the 3-Sphere

Kurt Bernardo Wolf, Natig M. Atakishiyev, George S. Pogosyan,
and Alexander Yakhno

Abstract Systems that stem from projection of free motion on a manifold are the
best candidates to exhibit remarkable symmetry properties. This is the case of free
motion on the 3-sphere which, properly projected on the 2-dimensional manifold of
a disk, yields the Zernike system. This exhibits separability in a variety of coordinate
systems, polynomial solutions, and interbasis expansion coefficients that are special
Clebsch–Gordan coefficients and Hahn orthogonal polynomials.

Keywords Spherical geometry · Zernike system · Separation of variables ·
Clebsch–Gordan coefficients

1 Introduction: The so(4) Algebra

The Lie algebras of the orthogonal groups have a basis of generators Ki,j = −Kj,i ,
whose commutation relations are

[Ki,j ,Kk,�] = δj,kKi,� + δi,�Kj,k + δk,iK�,j + δ�,jKk,i , (1)
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and whose range of indices, i, j, k, � ∈ {1, 2, . . . N} determines the Lie algebra
so(N ) of dimension 1

2N(N−1).
We shall work in particular with the 4-dimensional orthogonal algebra so(4),

which has six generators. This is the only orthogonal algebra that splits into a direct
sum of two algebras:

so(4) = so(3)(1) ⊕ so(3)(2). (2)

To prove this, it is sufficient to build the generators

J
(1)
i := 1

2 (Kj,k +Ki,4), J
(2)
i := 1

2 (Kj,k −Ki,4), (3)

for i, j, k ∈ {1, 2, 3} cyclic. These two sets mutually commute,

[J (1)
i , J

(1)
j ] = −J

(1)
k , [J (2)

i , J
(2)
j ] = −J

(2)
k , [J (1)

i , J
(2)
j ] = 0. (4)

On the other hand, as all orthogonal algebras, it contains a Gel’fand–Zetlin or
canonical chain of subalgebras,

so(4) ⊃ so(3) ⊃ so(2), (5)

whose generators Ki,j have their skew-symmetric pairs of indices restricted to
i, j � 4, 3 or 2, respectively. We are very familiar with the SO(3) representation
theory, eigenvectors, and spectra ∼ �(� + 1), so we have reason to expect that
the Clebsch–Gordan coefficients C

�,m

j(1),m(1);j (2),m(2) = 〈j (1), m(1); j (2), m(2)|�,m〉 will
appear when we introduce specific realizations of the so(4) Lie algebra generators.

The Zernike system can be presented as a quantum mechanical problem, with a
Schrödinger equation and non-standard Hamiltonian

Ẑ(x, y) Ψ (r) = −EJ Ψ (r), Ẑ(x, y) := ∇2 − (r · ∇)2 − 2 r · ∇, (6)

on a space of functions Ψ (r) on the closed unit disk D := {(x, y) | x2 + y2 � 1},
that are finite on its boundary, |Ψ (r)||r|=1| < ∞ [1, 2]. The spectrum of EJ in (6)
is then found to be J (J + 2), for J ∈ {0, 1, . . .} =: Z+0 . We recognize this as the
spectrum of a so(4) Casimir invariant that is the Laplace–Beltrami operator on a
3-sphere. These are of course not coincidences, as we shall now detail, but bring in
the Zernike system as one of the fundamental proto-systems of quantum mechanics
such as the harmonic oscillator and the Bohr atom.

In our research into the classical [3] and quantum [4] Zernike systems, the
interbasis coefficients [5, 6] between two solutions sets with different separation
coordinates were found to be a special type of Clebsch–Gordan coefficient. The
reason for this appearance was laid out in Ref. [7], from which this proceedings
contribution is a concentrate.
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In Sect. 2 we present the well-known Lie algebra realization of the orthogonal
groups on spheres. We are using the algebra so(4) and the 3-sphere as its
homogeneous space, so in Sect. 3 we introduce two coordinate systems, where the
Laplace–Beltrami operator appears in different differential forms. The eigenfunc-
tions there already relate through Clebsch–Gordan coefficients, and continue to do
so when the 3-sphere is projected on a two-sphere in Sect. 4, resulting in a restricted
set of Clebsch–Gordan’s as interbasis coefficients between solutions of the Zernike
system in the two coordinate systems, shown in Sect. 5. In the concluding Sect. 6
we add some remarks on the significance of free motions on conics that project to
remarkable physical systems.

2 Realization of SO(4) on the 3-Sphere

Lie algebras, when exponentiated to the group, can act faithfully and transitively,
on any of its homogeneous coset spaces. Corresponding to cosets by the group
identity {1}, the action is on the group itself, a manifold of dimension 1

2N(N−1).
One may have spaces of cosets by SO(2), SO(3), etc. up to cosets by SO(N−1) [8].
The last is a privileged space because SO(N )/SO(N−1) = SN−1 is the (N−1)-
dimensional manifold of a sphere. In this space one can realize the generators as
Ki,j = si∂j − sj ∂i (∂j := ∂/∂sj ), that generate rotations of SN−1; the si are the
Cartesian coordinates restricted to the sphere by

∑N
i=1 s2

i = 1. Thus we realize
so(4) as the generators of rotations of the 3-dimensional manifold of S3.

While the Lie algebra so(3) has one well-known invariant J 2 := ∑3
i,j=1 K2

i,j

with eigenvalues j (j + 1) where j ∈ Z+0 , the Lie algebra so(4) has two second-
degree invariant Casimir operators. The first is the sum of all squares, i.e., the
Laplace–Beltrami operator on the 3-sphere, Δ

(3)
LB = ∑4

i,j=1 K2
i,j with spectrum

J (J +2), J ∈ Z+0 on S3; the second invariant,
∑3

i,j,k=1 εi,j,kKi,jKk,4 = 0 vanishes
in the coset space of the sphere. This implies that

J (1)2 = 1
4

3∑

i,j,k=1

(Kj,k ±Ki,4)
2 = J (2)2 ⇒ j (1) = j (2) =: j, (7)

Δ
(3)
LB = 2J (1) 2 + 2J (2) 2 spectrum J (J + 2)

4J (1) 2 = 4J (2) 2 spectrum 4 j (j + 1)

}
⇒ J = 2j ∈ Z+0 . (8)

Finally, in (5) the so(3) Casimir invariant 1
2

∑3
i,j=1 K2

i,j has the spectrum �(�+ 1),

� ∈ Z+0 , with the range of the branching rule 0 � � � J .



172 K. B. Wolf et al.

3 Two Coordinate Systems for S3

To parametrize the S3 sphere embedded in an ambient 4-space (s1, s2, s3, s4) ∈ R4,
there exist six distinct orthogonal coordinates, listed in Refs. [9, 10] as spherical,
cylindrical, sphero-elliptic, oblate and prolate elliptic, and ellipsoidal. Whereas
in Ref. [7] three coordinate systems were considered, in the present report we
shall consider only the cylindrical and the spherical systems. These are tailored,
respectively, for the split and the canonical subalgebra chains (3) and (5),

System I: cylindrical
so(4) ⊃ so(2)(1) ⊕ so(2)(2)

s1 = cos γ cosφ1,

s2 = cos γ sinφ1,

s3 = sin γ cosφ2,

s4 = sin γ sinφ2,

0 < γ < 1
2π,

0 � φ1, φ2 < 2π,

System II: spherical
so(4) ⊃ so(3) ⊃ so(2)

s1 = sinχ sin θ cosφ,

s2 = sinχ sin θ sinφ,

s3 = sinχ cos θ,
s4 = cosχ

0 < θ, χ < π,

0 � φ < 2π.

(9)

In these two coordinate systems, the so(4) Laplace–Beltrami operator Δ
(3)
LB ,

of spectrum J (J+2), is realized as two corresponding forms of second-order
differential operators [11–13],

Δ
(3) I
LB = ∂2

∂γ 2 + (cot γ − tan γ )
∂

∂γ
+ 1

cos2 γ

∂2

∂φ2
1

+ 1

sin2 γ

∂2

∂φ2
2

, (10)

Δ
(3) II
LB = ∂2

∂χ2 + 2 cotχ
∂

∂χ
+ 1

sin2 χ

(
∂2

∂θ2 + cot θ
∂

∂θ
+ 1

sin2 θ

∂2

∂φ2

)
. (11)

These determine the eigen-spaces J ∈ Z+0 of solutions, Φ I
J,m1,m2

(γ, φ1, φ2) and
Φ II

J,�,m(χ, θ, φ), where their further specification by labels, m1,m2 and �,m is done
by the realization of the following Lie algebra generators,

K1,2Φ
I

J,m1,m2
= im1Φ

I

J,m1,m2
, K3,4Φ

I

J,m1,m2
= im2Φ

I

J,m1,m2
,

∑3
i,j=1K

2
i,jΦ

II

J,�,m = −�(�+ 1)Φ II

J,�,m, K1,2Φ
II

J,�,m = imΦ II

J,�,m.

(12)

The differential operators (10) and (11), having implemented (12), lead to
Pöschl–Teller quantum mechanical Schödinger equations in the angle γ with
their quadratic spectrum, and parameters determined by m1,m2 and �,m. These
potentials have hypergeometric polynomial and/or trigonometric solutions:
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Φ I
J,m1,m2

(γ, φ1, φ2) = (cos γ )|m1|(sin γ )|m2| P (|m2|,|m1|)
1
2 (J−|m1|−|m2|)(cos 2γ )

× ei(m1φ1+m2φ2) =: eim1φ1 Ξ I
J,m1,m2

(γ, φ2), (13)

Φ II
J,�,m(χ, θ, φ) = (sinχ)� C�+1

J−�(cosχ)

× Pm
� (cos θ)eimφ =: eimφ Ξ II

J,�,m(χ, θ). (14)

Here Pm
� , Cλ

μ, and P
(α,β)
n are the associated Legendre, Gegenbauer, and Jacobi

polynomials. In (13), m1,m2 are restricted by J − |m1| − |m2| = even. We thus
expect that the overlaps of the two solution sets (with φ1 = φ and m = m1),

Φ I
J,m1,m2

(γ, φ1, φ2) =
J∑

�=|m|
W

�,m
J,m1,m2

Φ II
J,�,m(χ, θ, φ), (15)

once properly normalized, are Clebsch–Gordan coefficients; but not generic ones,
because the two coupled angular momenta are equal,

W
�,m
J,m1,m2

∼ C
�,|m1|
1
2 J,

1
2 (|m1|+|m2|); 1

2 J,
1
2 (|m1|−|m2|)

. (16)

4 Projection on the 2-Sphere S2

In both the I and II coordinate systems, (13) and (14), the solutions factorize into
a phase of one coordinate, and functions ΞJ,◦,◦ of the two remaining angles on a
2-sphere S2. It is indeed serendipitous that this reduction to the 2-sphere reveals the
Zernike system written in (6), and contained in the formulation of free motion on
the three-sphere [7].

Consider a change of coordinates (s1, s2, s3, s4) �→ (ξ1, ξ2, ξ3, ϕ),

s1 = ξ3 cosϕ, s2 = ξ3 sinϕ, s3 = ξ2, s4 = ξ1, (17)

that maps the 3-sphere
∑4

i=1 s2
i = 1 on the 2-sphere

∑3
i=1 ξ2

i = 1 and ϕ ∈ S1 on
the circle; over this angle we shall integrate over. In these coordinates, the Laplace–
Beltrami operator on S3, Δ

(3)
LB contains the two-dimensional Δ

(2)
LB in the (s3, s4)

subspace, plus derivatives in ξ3 and ϕ,

Δ
(3)
LB = Δ

(2)
LB −

3∑

i=1

ξi
∂

∂ξi
+ 1

ξ3

∂

∂ξ3
+ 1

ξ2
3

∂2

∂ϕ2 . (18)
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The functions ΞJ,◦,◦ in (13) and (14) of angles in the 2-sphere S2 can be isolated
through integrating, respectively, over the circles of φ1 and of φ; this will also set to
zero the corresponding labels m1 and m in those equations.

We perform this integration for the solutions in the coordinate System I of
cylindrical coordinates (13), without regard for normalization at this stage,

Ψ I
n,m(x, y) := 1

2π

∫ π

−π

dφ1 Φ I
J,m1,m2

(γ, φ1, φ2)

= e−i 1
2 πm(x2+y2)

1
2 |m|P (|m|,0)

nr

(
1−2(x2+y2)

)
eimφ. (19)

The index ranges are: n = J ∈ Z+0 is the principal quantum number, we have now
fixed m1 = 0 so we write m := −m2; and we have the radial quantum number
nr := 1

2 (n−|m|) ∈ Z+0 . For φ = 1
2π−φ2 and the ranges γ |π/2

0 and φ|π−π , the

Cartesian coordinates on the disk (x, y) ∈ D and positive half -sphere S2
+ are

x = ξ1 = sin γ sinφ2, y = ξ2 = sin γ cosφ2, ξ3 = cos γ � 0. (20)

These are polar coordinates with radius sin γ � 1 and angle φ2 over a circle.
The integration for the System II solutions in polar coordinates on the sphere (14)

yields

Ψ II
m1,m2

(x, y) := 1

2π

∫ π

−π

dφ Φ II
J,�,μ(χ, θ, φ)

= (1− x2)
1
2 m1Cm1+1

m2
(x) Pm1

(
y√

1−x2

)
. (21)

Here the principal quantum number is also n = m1+m2 = J ∈ Z+0 , while we can
set � := m1. The coordinates on the disk and half-sphere for the ranges χ |π0 and
θ |π0 , are

x = ξ1 = cosχ, y = ξ2 = sinχ cos θ, ξ3 = sinχ sin θ � 0. (22)

This coordinate system can be visualized as polar coordinates on a sphere, projected
on a plane that contains its poles.

We identify this construction to pertain the Zernike system because the defining
Hamiltonian, the first quadratic invariant of the Lie algebra so(4), is the Casimir
operator that serves also to classify hyper-spherical harmonics and generate free
evolution for ideal quantum systems given in (18), surprisingly contains the Zernike
system Hamiltonian (6). For functions ΦJ,ν,μ(α, β, φ) such as (13) and (14) with a
factor exp(iμφ), the Laplace–Beltrami operator on S3 is
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Δ
(3)
LBΦJ,ν,μ =

(
Δ

(2)
LB+ 1

ξ3

∂

∂ξ3
+ 1

ξ2
3

∂2

∂ϕ2

)
ΦJ,ν,μ =

(
Ẑ(x, y)−μ2

ξ2
3

)
ΦJ,ν,μ, (23)

and yields the Zernike Hamiltonian Ẑ(x, y) in (6), as the integration over φ restricts
μ = 0, and thus leaves only two labels for the original Zernike solutions Ψ I

n,m(x, y),
and for the solutions Ψ II

m1,m2
(x, y) found in [4], as well as all separated solutions in

other coordinate systems, including the solutions that separate in elliptic coordinates
on the sphere [14, 15].

5 Interbasis Expansion Coefficients

The interbasis expansion coefficients are the analogues of (15) and (16), for the
reduced indices,

Ψ I
n,m(x, y) =

n∑

m1=0

Wm1,m2
n,m Ψ II

m1,m2
(x, y), (24)

where m2 = n−m1 and, up to phases ω, the coefficients are a more special subset
of Clebsch–Gordan coefficients, and where m ∈ {−n,−n+2, . . . , n},

Wm1,m2
n,m = ωC

m1,0
1
2n,− 1

2 m; 1
2 n,

1
2m

. (25)

A property of these special Clebsch–Gordan coefficients is that they are special
hypergeometric be Saalschutzian 3F2(· · · |1) terminating series, known as Hahn
polynomials Qn(x; a, a, b) in the Askey scheme [6],

C
m1,0
1
2 n,− 1

2 m; 1
2 n,

1
2 m
= n!(

1
2 (m1−m2−m)

)
!
(

1
2 (n+m)

)
!

√
2m1+1

m2! (n+m1+1)!

× 3F2

(−m2, m1 + 1, − 1
2 (n+m)

−n, 1
2 (m1 −m2 −m)+ 1

∣∣∣∣ 1
)

(26)

= (n!)2
(

1
2 (n−m)

)
!
(

1
2 (n+m)

)
!

√
2m1+1

m2! (n+m1+1)!

×Qm2

(
1
2 (n+m); −n− 1, −n− 1, n

)
(27)

with m2 = n−m1.
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6 Concluding Remarks

We have here abstracted some of the results in Ref. [7] to exhibit the Zernike system
as a projection of the evidently highly symmetrical system of free motion on a conic.
In the case of the 3-sphere as homogeneous space for so(4), we have the benefit of
additional Lie-theoretical properties, such as Schrödinger equations with potentials
of Pöschl–Teller type.

The algebra so(4) and its special property of splitting (3) also serves for
finite and discrete image analysis, between Cartesian- and polar-pixellated arrays
[16]. In polar pixellation, the normal modes factorize and the radial functions are
also Clebsch–Gordan coefficients, although of the more general type (16) rather
than (25). Under various guises, the so(4) is an algebra that may contain other
physical or optical systems in their various realizations.

In this report we have used the Schrödinger representation of the Zernike
“wavefunctions” Ψ I

n,m(x, y) and Ψ II
m1,m2

(x, y) in their separated bases. It is then
natural to label kets |n,m〉I and |m1,m2〉II as a short and equally good realization
for the states of the system, and useful for computations. Following common
Dirac notation, we could bind the two realizations through stating Ψ I

n,m(x, y) =
(x, y|n,m〉I and Ψ II

m1,m2
(x, y) = (x, y|m1,m2〉II , provided a proper definition exists

for a Dirac basis {|x, y)}x,y∈D over a finite disk. This subject has been addressed in a
recent paper by Celeghini et al. [17], through the construction of a Hilbert space on
a closed subset of the R2 plane. We have been accustomed to use Hilbert spaces
and Gel’fand triplets for functions over the whole plane R2; the Zernike model
necessitates also function-theoretic analyses. Finally, we are aware that similar
constructions and projections can also be done with planes and hyperbolas—not
only spheres, and that a Lie algebra can project out a superintegrable Higgs algebra
[18, 19].
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W -Algebras via Lax Type Operators

Daniele Valeri

Abstract W -algebras are certain algebraic structures associated to a finite-
dimensional Lie algebra g and a nilpotent element f via Hamiltonian reduction. In
this note we give a review of a recent approach to the study of (classical affine and
quantum finite) W -algebras based on the notion of Lax type operators.

For a finite-dimensional representation of g a Lax type operator for W -algebras is
constructed using the theory of generalized quasideterminants. This operator carries
several pieces of information about the structure and properties of the W -algebras
and shows the deep connection of the theory of W -algebras with Yangians and
integrable Hamiltonian hierarchies of Lax type equations.

Keywords W-algebras · Lax type operators · Generalized quasideterminants ·
Integrable Hamiltonian hierarchies · (Twisted) Yangians

1 Introduction

The first quantum affine W -algebra, the so-called Zamolodchikov W3-algebra
[50], appeared in the physics literature in the study of 2-dimensional Conformal
Field Theory. Further generalizations of this algebra were provided soon after
[25, 40]. Physicists thought of these algebras as “non-linear” infinite dimensional
Lie algebras extending the Virasoro Lie algebra. In [27] the affine W -algebras
Wκ(g, f ) (κ is called the level), for a principal nilpotent element f ∈ g, were
described as vertex algebras obtained via a quantization of the Drinfeld–Sokolov
Hamiltonian reduction, which was used in [24] to construct classical affine W -
algebras. In particular, for sl2 one gets the Virasoro vertex algebra, and for sl3 the
Zamolodchikov’s W3 algebra. The construction was finally generalized to arbitrary
nilpotent element f in [36–38]. In these papers, affine W -algebras were applied to
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representation theory of superconformal algebras. Quantum affine W -algebras may
be also considered as an affinization of quantum finite W -algebras [46] which are a
natural quantization of Slodowy slices [34].

W -algebras are at the cross roads of representation theory and mathematical
physics and play important roles (just to cite some of them) in applications to
integrable systems [15, 24], to Gromov–Witten theory and singularity theory [3, 44],
the geometric Langlands program [28, 31–33], four-dimensional gauge theories
[1, 8, 48].

In this note we survey the recent approach to (quantum finite and classical affine)
W -algebras based on the notion of Lax type operators [18–21]. For a review of the
approach to (classical) W -algebras via generators and relations we refer to [13].

Throughout the paper the base field F is a field of characteristic zero.

2 What Is a W -Algebra?

W -algebras are a rich family of algebraic structures associated to a pair (g, f )

consisting of a finite-dimensional reductive Lie algebra g and a nilpotent element
f ∈ g. They are obtained via Hamiltonian reduction in different categories: Poisson
algebras, associative algebras and (Poisson), vertex algebras. We should think of
them as algebraic structures underlying some physical theories with “extended
symmetries.”

2.1 Fundamental Physical Theories and Corresponding
Fundamental Algebraic Structures

In Classical Mechanics the phase space, describing the possible configurations of
a physical system, is a Poisson manifold. The physical observables are the smooth
functions on the manifold, and they thus form a Poisson algebra (PA).

By quantizing this theory we go to Quantum Mechanics. The observables
become noncommutative objects, elements of an associative algebra (AA). Hence,
the Poisson bracket is replaced by the usual commutator and the phase space is
described as a representation of this associative algebra.

Going from a finite to an infinite number of degrees of freedom, we pass
from Classical and Quantum Mechanics to Classical and Quantum Field Theory,
respectively. The algebraic structure corresponding to an arbitrary Quantum Field
Theory is still to be understood, but in the special case of chiral quantum fields of
a 2-dimensional Conformal Field Theory (CFT) the adequate algebraic structure is
a vertex algebra (VA) [6], and its quasi-classical limit is known as Poisson vertex
algebra (PVA) [14].
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Hence, the algebraic counterparts of the four fundamental frameworks of physi-
cal theories can be put in the following diagram:

PVA

Zhu

quantization

VA
cl.limit

Zhu

PA

affiniz.

quantization

AA
cl.limit

affiniz.

(1)

The straight arrows in the above diagram correspond to canonical functors and have
the following meaning. Given a filtered AA (respectively, VA), its associated graded
algebra is a PA (respectively, PVA) called its classical limit. Moreover, starting
from a positive energy VA (respectively, PVA) we can construct an AA (resp. PA)
governing its representation theory, known as its Zhu algebra [51]. The processes of
going from a classical theory to a quantum theory (“quantization”) or from finitely
many to infinitely many degrees of freedom (“affinization”) are not functorial and
they are thus represented with dotted arrows.

(Poisson) Vertex Algebras

PVAs provide a convenient framework to study Hamiltonian partial differential
equations. Recall from [4] that a PVA is a differential algebra, i.e. a unital
commutative associative algebra with a derivation ∂ , endowed with a λ-bracket,
i.e. a bilinear (over F) map {· λ ·} : V × V → V[λ], satisfying the following axioms
(a, b, c ∈ V):

(i) sesquilinearity: {∂aλb} = −λ{aλb}, {aλ∂b} = (λ+ ∂){aλb};
(ii) skewsymmetry: {bλa} = −{a−λ−∂b};

(iii) Jacobi identity: {aλ{bμc}} − {bμ{aλc}} = {{aλb}λ+μc};
(iv) (left) Leibniz rule: {aλbc} = {aλb}c + {aλc}b.

Applying skewsymmetry to the left Leibniz rule we get
(v) right Leibniz rule: {abλc} = {aλ+∂c}→b + {bλ+∂c}→a.

In (ii) and (iv) we use the following notation: if {aλb} = ∑
n∈Z+ λnαn ∈ V[λ],

then {aλ+∂b}→c = ∑
n∈Z+ αn(λ + ∂)nc ∈ V[λ] and {a−λ−∂b} = ∑

n∈Z+(−λ −
∂)nαn ∈ V[λ] (if there is no arrow, we move ∂ to the left).

We denote by
∫ : V → V/∂V the canonical quotient map of vector spaces.

Recall that, if V is a PVA, then V/∂V carries a well-defined Lie algebra structure
given by {∫ f, ∫ g} = ∫ {fλg}|λ=0, and we have a representation of the Lie algebra
V/∂V on V given by {∫ f, g} = {fλg}|λ=0. A Hamiltonian equation on V associated
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to a Hamiltonian functional
∫
h ∈ V/∂V is the evolution equation

du

dt
= {∫ h, u} , u ∈ V . (2)

The minimal requirement for integrability is to have an infinite collection of linearly
independent integrals of motion in involution:

∫
h0 =

∫
h,
∫
h1,

∫
h2, . . . s.t. {∫ hm,

∫
hn} = 0 for all m, n ∈ Z≥0 .

In this case, we have the integrable hierarchy of Hamiltonian equations

du

dtn
= {∫ hn, u} , n ∈ Z≥0 .

Example 1 The Virasoro–Magri PVA on the algebra of differential polynomials
V = C[u, u′, u′′, . . . ] is defined by letting

{uλu} = (2λ+ ∂)u+ λ3 ,

and extending it to a λ-bracket for the whole V using sesquilinearity and Leibniz

rules. Let
∫
h = ∫

u2

2 . Then the corresponding Hamiltonian equation (2) is the
famous KdV equation:

du

dt
= u′′′ + 3uu′ .

Using the Lenard–Magri scheme of integrability [42] it can be shown that it belongs
to an integrable hierarchy.

Vertex Algebras

VAs were introduced in [6]. Following [14], we provide here a “Poisson-like”
definition using λ-brackets. A VA is a (not necessarily commutative nor associative)
unital algebra V with a derivation ∂ endowed with a λ-bracket [·λ·] : V × V −→
V [λ] satisfying sesquilinearity, skewsymmetry, Jacobi identity, and, moreover
(a, b, c ∈ V ):

1. quasicommutativity: ab − ba = ∫ 0
−∂
[aλb]dλ;

2. quasiassociativity: (ab)c − a(bc) = (|λ=∂a)
∫ λ

0 [bμc]dμ+ (|λ=∂b)
∫ λ

0 [aμc]dμ;

3. noncommutative Wick formula: [aλbc] = [aλb]c + b[aλc] +
∫ λ

0 [[aλb]μc]dμ.

We refer to [14] for explanations about the notation. As before, we denote by∫ : V → V/∂V the canonical quotient map of vector spaces. If V is a VA, then
V/∂V carries a well-defined Lie algebra structure given by [∫ f, ∫ g] = ∫ [fλg]|λ=0,
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and we have a representation of the Lie algebra V/∂V on V given by [∫ f, g] =
[fλg]|λ=0. A quantum integrable system consists in a collection of infinitely many
linearly independent elements

∫
hm ∈ V/∂V , m ∈ Z≥0, in involution.

Example 2 A VA is commutative if [aλb] = 0, for every a, b ∈ V . It follows
immediately from the definition that the category of commutative VAs is the same
as the category of differential algebras.

Remark 1 The (not necessarily commutative nor associative) product in a VA
corresponds to the normally ordered product of quantum fields in a CFT, while
the λ-bracket encodes the singular part of their operator product expansion (OPE).
We give a naive explanation of the latter sentence in a particular case. Consider the
VA λ-bracket of a Virasoro element u (recall Example 1 for its PVA analogue)

[uλu] = (2λ+ ∂)u+ c

12
λ3 ,

where c ∈ C is called the central charge. Replace, in the above relation, u by a
quantum field, say T (w), ∂ by ∂w and λ by ∂w acting on the rational function 1

z−w
.

Then we get

[T (w)∂wT (w)]→ 1

z− w
= ∂wT (w)

z− w
+ 2T (w)

(z− w)2 +
c/2

(z− w)4 ,

which is the singular part of the OPE of the stress-energy tensor in CFT.

2.2 A Toy Model

The simplest example when all four objects in diagram (1) can be constructed is
obtained starting with a finite-dimensional Lie algebra g, with Lie bracket [· , ·],
and with a non-degenerate invariant symmetric bilinear form (· | ·).

The universal enveloping algebra of g, usually denoted by U(g), is an associative
algebra, and its classical limit is the symmetric algebra S(g), with the Kirillov–
Kostant Poisson bracket.

Furthermore, we have also a Lie conformal algebra Cur g = (F[∂] ⊗ g) ⊕ FK ,
with the following λ-bracket:

[aλb] = [a, b] + (a|b)Kλ , [aλK] = 0 , for a, b ∈ g . (3)

The universal enveloping vertex algebra of Cur g is the so-called universal affine
vertex algebra V (g), and its classical limit is the algebra of differential polynomials
V(g) = S(F[∂]g), with the PVA λ-bracket defined by (3). We refer to [14] for
the definition of the latter structures and the construction of the corresponding Zhu
maps. Thus, we get the following basic example of diagram (1):
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V( )
Zhu

quantization

V
cl.limit

Zhu

S

affiniz.

quantization

U
cl.limit

affiniz.

( )

( )( )

(4)

2.3 Hamiltonian Reduction

All the four algebraic structures in diagram (1) admit a Hamiltonian reduction.
We review here only the case for associative algebras. Recall that the Hamiltonian
reduction of a unital associative algebra A by a pair (B, I ), where B ⊂ A is a
unital associative subalgebra and I ⊂ B is a two sided ideal, is the following unital
associative algebra:

W = W(A,B, I ) = (A/AI
)adB (5)

where adB denotes the usual adjoint action given by the commutator in an
associative algebra (note that B acts on A/AI both by left and right multiplication).
It is not hard to show that the obvious associative product on W is well defined.

Now, let {e, 2x, f } ⊂ g be an sl2-triple, and let

g =
d⊕

j=−d

j∈ 1
2Z

gj , (6)

be the ad x-eigenspace decomposition. We can perform the Hamiltonian reduction
of A = U(g) as follows. Let B = U(g>0) and I ⊂ B be the two sided ideal
generated by the set

{
m− (f |m)

∣∣m ∈ g≥1
}
. (7)

Applying the Hamiltonian reduction (5) with the above data we get the so-called
quantum finite W -algebra (it first appeared in [46])

Wfin(g, f ) = (U(g)
/
U(g){m− (f |m)

∣∣m ∈ g≥1}
)adg>0 .
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The Hamiltonian reduction (5) still makes sense if we replace associative
algebras with PVAs (respectively, PAs), and we can perform it with A = V(g),
B = V(g>0) and I ⊂ B the differential algebra ideal generated by the set (7)
(respectively, A = S(g), B = S(g>0), and I ⊂ B the ideal generated by the set (7)).
As a result we get the so-called classical affineW -algebra Waff(g, f ) (respectively,
classical finite W -algebra Waff(g, f )), see [17] for further details.

Unfortunately, a similar construction of a Hamiltonian reduction for vertex
algebras is not known, and the quantum affineW -algebraWaff(g, f ) is constructed
using a cohomological approach [27, 36].

2.4 From the Toy Model to W -Algebras

Let g be a finite-dimensional reductive Lie algebra, and let f ∈ g be a nilpotent
element. By the Jacobson–Morozov Theorem it can be embedded in an sl2-triple
{e, 2x, f } ⊂ g. Applying the machinery described in Sect. 2.3 we thus obtain a
Hamiltonian reduction of the whole diagram (4):

V

Zhu

HRf

V
cl.limit

HRf

Waff

Zhu

W affcl.limit

Zhu

S

HRf

U

HRf

Wfin W fincl.limit

( ) ( )

( )( )

  ,f)( 

  ,f)( 

  ,f)( 

  ,f)( 

(8)

It is a convention to use the calligraphic W to denote objects appearing in the
“classical” column of diagram (8) and the block letter W to denote objects appearing
in the “quantum” column of the same diagram. Also the upper label “fin” (resp.
“aff”) is used to denote objects appearing in the “finite” (resp. “affine”) row of
diagram (8), corresponding to physical theories with a finite (resp. infinite) number
of degrees of freedom.

Hence, as we can see from diagram (8), W -algebras provide a very rich family
of examples which appear in all the four fundamental aspects in diagram (1). Each
of these classes of algebras was introduced and studied separately, with different
applications in mind. The relations between them became fully clear later, see [14,
17, 34] for further details.
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Classical Finite W -Algebras

The classical finite W -algebra Wfin(g, f ) is a PA, which can be viewed as the
algebra of functions on the so-called Slodowy slice S(g, f ), introduced by Slodowy
while studying the singularities associated to the coadjoint nilpotent orbits of g [49].

Finite W -Algebras

The first appearance of the finite W -algebras Wfin(g, f ) was in a paper of Kostant
[39]. He constructed the finite W -algebra for principal nilpotent f ∈ g (in which
case it is commutative), and proved that it is isomorphic to the center of the universal
enveloping algebra U(g). The construction was then extended in [41] for even
nilpotent element f ∈ g. The general definition of finite W -algebras Wfin(g, f ),
for an arbitrary nilpotent element f ∈ g, appeared later in a paper by Premet [46].
Finite W -algebras have deep connection with geometry and representation theory
of simple finite-dimensional Lie algebras, with the theory of primitive ideals, and
the Yangians, see [9, 43, 46, 47].

Classical Affine W -Algebras

The classical affine W -algebras Waff(g, f ) were introduced, for principal nilpotent
element f , in the seminal paper of Drinfeld and Sokolov [24]. They were introduced
as Poisson algebras of functions on an infinite dimensional Poisson manifold, and
they were used to study KdV-type integrable bi-Hamiltonian hierarchies of PDE’s,
nowadays known as Drinfeld–Sokolov hierarchies. Later, there have been several
papers aimed at the construction of generalized Drinfeld–Sokolov hierarchies [10,
12, 23, 26, 29, 30]. In [15], the classical W -algebras Waff(g, f ) were described as
PVA, and the theory of generalized Drinfeld–Sokolov hierarchies was formalized in
a more rigorous and complete way [16, 18, 20].

Quantum Affine W -Algebras

They have been extensively discussed in the Introduction. A review of the subject
up to the early 1990s may be found in the collection of a large number of reprints
on W -algebras [7]. Recently, it has been shown that they are at the base of an
unexpected connections of vertex algebras with the geometric invariants called the
Higgs branches in the four-dimensional N = 2 superconformal field theories [2, 5].
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3 Linear Algebra Intermezzo

3.1 Set Up

Let g be a finite-dimensional reductive Lie algebra, let {f, 2x, e} ⊂ g be an sl2-
triple and let (6) be the corresponding ad x-eigenspace decomposition. In Sects. 4
and 5 we will use the projection map π≤ 1

2
: g → g≤ 1

2
= ⊕

k≤ 1
2
gk with kernel

g
> 1

2
= ⊕

k> 1
2
gk .

Let ϕ : g→ EndV be a faithful representation of g on an N -dimensional vector
space V . Throughout the paper we shall often use the following convention: we
denote by lowercase Latin letters elements of the Lie algebra g, and by the same
uppercase letters the corresponding (via ϕ) elements of EndV . For example, F =
ϕ(f ) is a nilpotent endomorphism of V . Moreover, X = ϕ(x) is a semisimple
endomorphism of V with half-integer eigenvalues. The corresponding X-eigenspace
decomposition of V is

V =
⊕

k∈ 1
2Z

V [k] . (9)

Note that d
2 is the largest X-eigenvalue in V .

Recall that the trace form on g associated to the representation V is, by definition,

(a|b) = trV (AB) , a, b ∈ g , (10)

and we assume that it is non-degenerate. Let {ui}i∈I be a basis of g compatible
with the ad x-eigenspace decomposition (6), i.e. I = (kIk where {ui}i∈Ik is a basis
of gk . We also denote I≤ 1

2
= (

k≤ 1
2
Ik . Moreover, we shall also need, in Sect. 5, that

{ui}i∈I contains a basis {ui}i∈If of gf = {a ∈ g | [a, f ] = 0}, the centralizer of
f in g. Let {ui}i∈I be the basis of g dual to {ui}i∈I with respect to the form (10),
i.e. (ui |uj ) = δi,j . According to our convention, we denote by Ui = ϕ(ui) and
Ui = ϕ(ui), i ∈ I , the corresponding endomorphisms of V .

In Sects. 4 and 5 we will consider the following important element:

U =
∑

i∈I
uiU

i ∈ g⊗ EndV . (11)

Here and further we are omitting the tensor product sign.
Furthermore, the following endomorphism of V , which we will call the shift

matrix, will play an important role in Sect. 4

D = −
∑

i∈I≥1

UiUi ∈ EndV . (12)
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Finally, we denote by ΩV ∈ EndV ⊗ EndV the permutation map:

ΩV (v1 ⊗ v2) = v2 ⊗ v1 for all v1, v2 ∈ V . (13)

Using Sweedler’s notation we write ΩV = Ω ′
V ⊗Ω ′′

V to denote, as usual, a sum of
monomials in EndV ⊗ EndV . Suppose that V has a non-degenerate bilinear form
〈· | ·〉 : V × V → F, which is symmetric or skewsymmetric:

〈v1|v2〉 = ε〈v2|v1〉 , v1, v2 ∈ V , where ε ∈ {±1} . (14)

Then, we denote by

Ω
†
V = (Ω ′

V )† ⊗Ω ′′
V , (15)

where A† is the adjoint of A ∈ EndV with respect to (14).

3.2 The “Identity” Notation

Let U ⊂ V be a subspace of V , and assume that there is “natural” splitting V =
U ⊕ U ′. We shall denote, with an abuse of notation, by 1U both the identity map
U

∼−→ U , the inclusion map U ↪→ V , and the projection map V � U with kernel
U ′. The correct meaning of 1U should be clear from the context.

3.3 Generalized Quasideterminants

Let R be a unital associative algebra and let V be a finite-dimensional vector space
with direct sum decompositions V = U ⊕ U ′ = W ⊕ W ′. Assume that A ∈
R ⊗ End(V ) and 1WA−11U ∈ R ⊗ Hom(U,W) are invertible. The (generalized)
quasideterminant of A with respect to U and W , cf. [18, 35], is defined as

|A|U,W := (1WA−11U)−1 ∈ R ⊗ Hom(W,U) . (16)

Remark 2 Provided that both A and 1U ′A1W ′ are invertible, it is possible to
write the generalized quasideterminant (16) in the more explicit form |A|U,W =
1UA1W − 1UA1W ′(1U ′A1W ′)−11U ′A1W .
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4 Quantum Finite W -Algebras and (Twisted) Yangians

4.1 Lax Type Operators for Quantum Finite W -Algebras

We introduce some important EndV -valued polynomials in z, and Laurent series in
z−1, with coefficients in U(g). The first one is (cf. (11))

A(z) = z1V + U = z1V +
∑

i∈I
uiU

i ∈ U(g)[z] ⊗ End(V ) . (17)

(As in Sect. 3, we are dropping the tensor product sign.) Another important operator
is (keeping the same notation as in [19])

Aρ(z) = z1V +F +π≤ 1
2
U = z1V +F +

∑

i∈I≤ 1
2

uiU
i ∈ U(g)[z]⊗EndV . (18)

Now we introduce the Lax operator L(z). Consider the generalized quasideter-
minant (cf. (16))

L̃(z) = |Aρ(z)+D|
V [ d2 ],V [− d

2 ] =
(

1
V [− d

2 ]
(
z1V + F + π≤ 1

2
U +D

)−1
1
V [ d2 ]

)−1
,

(19)

where 1
V [− d

2 ] and 1
V [ d2 ] are defined in Sect. 3.2 (using the obvious splittings of

V given by the grading (9)), Aρ(z) is defined in Eq. (18) and D is the “shift
matrix” (12).

Let us denote by 1̄ the image of 1 ∈ U(g) in the quotient U(g)
/
U(g){m −

(f |m)
∣∣m ∈ g≥1}. The Lax operator L(z) is defined as the image of L̃(z) in this

quotient:

L(z) = Lg,f,V (z) := L̃(z)1̄ . (20)

The first main result in [21] can be summarized as follows.

Theorem 1

(a) The operator Aρ(z) + D is invertible in U(g)((z−1)) ⊗ EndV , and the
operator 1

V [− d
2 ](A

ρ(z)+D)−11
V [ d2 ] is invertible inU(g)((z−1))⊗Hom

(
V
[−

d
2

]
, V
[
d
2

])
. Hence, the quasideterminant defining L̃(z) (cf. (19)) exists and lies

in U(g)((z−1))⊗ Hom
(
V
[− d

2

]
, V
[
d
2

])
.

(b) The entries of the coefficients of the operator L(z) defined in (20) lie in the
W -algebra W(g, f ):

L(z) : = |z1V + F + π≤ 1
2
U +D|

V [ d2 ],V [− d
2 ]1̄
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∈ W(g, f )((z−1))⊗ Hom

(
V
[− d

2

]
, V
[d

2

])
.

Remark 3 For g = glN and V = F
N the standard representation, Eq. (19) may be

used to find a generating set (in the sense of PBW Theorem) for the quantum finite
W -algebra, see [22] for more details.

4.2 The Generalized Yangian Identity

Let α, β, γ ∈ F. Let R be a unital associative algebra, and let V be an N -
dimensional vector space. For β �= 0, we also assume, as in Sect. 3.1, that V is
endowed with a non-degenerate bilinear form 〈· | ·〉 : V ×V → F which we assume
to be symmetric or skewsymmetric, and we let ε = +1 and−1, respectively. Again,
when denoting an element of R ⊗ End(V ) or of R ⊗ End(V ) ⊗ End(V ), we omit
the tensor product sign on the first factor, i.e. we treat elements of R as scalars.

The generalized (α, β, γ )-Yangian identity for A(z) ∈ R((z−1))⊗End(V ) is the
following identity, holding in R[[z−1, w−1]][z,w] ⊗ End(V )⊗ End(V ):

(z− w + αΩV )(A(z)⊗ 1V )(z+ w + γ − βΩ
†
V )(1V ⊗ A(w))

= (1V ⊗ A(w))(z+ w + γ − βΩ
†
V )(A(z)⊗ 1V )(z− w + αΩV ) .

(21)

Recall that ΩV and Ω
†
V are defined by Eqs. (13) and (15), respectively.

Remark 4 In the special case α = 1, β = γ = 0, Eq. (21) coincides with the
so-called RTT presentation of the Yangian of gl(V ), cf. [19, 45]. Moreover, in the
special case α = β = 1

2 , γ = 0, Eq. (21) coincides with the so-called RSRS
presentation of the extended twisted Yangian of g = so(V ) or sp(V ), depending
on whether ε = +1 or −1, cf. [45]. Hence, if A(z) ∈ R((z−1)) ⊗ EndV

satisfies the generalized
( 1

2 ,
1
2 , 0

)
-Yangian identity we automatically have an algebra

homomorphism from the extended twisted Yangian X(g) to the algebra R. If,
moreover, A(z) satisfies the symmetry condition (required in the definition of
twisted Yangian in [45])

A†(−z)− εA(z) = −A(z)− A(−z)

4z
,

then we have an algebra homomorphism from the twisted Yangian Y (g) to the
algebra R.
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4.3 Quantum Finite W -Algebras and (Extended) Twisted
Yangians

Let g be one of the classical Lie algebras glN , slN , soN or spN , and let V = F
N

be its standard representation (endowed, in the cases of soN and spN , with a non-
degenerate symmetric or skewsymmetric bilinear form, respectively). Then, the
operator A(z) defined in Eq. (17) satisfies the generalized Yangian identity (21),
where α, β, γ are given by the following table:

g α β γ

glN or slN 1 0 0

soN or spN
1
2

1
2

ε
2

Note that V [ d2 ] ∼= V [− d
2 ]. Fix and isomorphism χ : V [ d2 ]

∼=−→ V [− d
2 ]. Then,

χ ◦L(z) ∈ W(g, f )((z−1))⊗End(V [− d
2 ]). By an abuse of notation, we still denote

this operator by L(z). We also let n = dimV [− d
2 ].

The second main result in [21] states that, for classical Lie algebras, the Lax
operator defined in (20) also satisfies a generalized Yangian identity.

Theorem 2 The operator L(z) ∈ W(g, f )((z−1)) ⊗ End(V [− d
2 ]) defined by (19)

and (20) (cf. Theorem 1) satisfies the generalized Yangian identity (21) with the
values of α, β, γ as in the following table:

g α β γ

glN or slN 1 0 0

soN or spN
1
2

1
2

ε−N+n
2

By Theorem 2 and Remark 4 we have an algebra homomorphism from the
extended twisted Yangian X(ḡ) (ḡ depends on the pair (g, f )) to the quantum
finite W -algebra W(g, f ). A stronger result has been obtained for g = glN by
Brundan and Kleshchev in [9] where quantum finite W -algebras were constructed
as truncated shifted Yangians (which are subquotients of the Yangian for glN ).

5 Classical Affine W -Algebras and Integrable Hierarchies
of Lax Type Equations

5.1 Lax Type Operators for Classical Affine W -Algebras

For classical affine W -algebras the discussion is similar to the one in Sect. 4 but
in a different setting: we need to substitute polynomials and Laurent series with
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differential operators and pseudodifferential operators, respectively (see [20] for a
review of their basic properties).

Consider the differential operators

A(∂) = ∂1V + U = ∂1V +
∑

i∈I
uiU

i ∈ V(g)[∂] ⊗ End(V )

and

Aρ(∂) = ∂1V + F + π≤ 1
2
U = ∂1V + F +

∑

i∈I≤ 1
2

uiU
i ∈ V(g≤ 1

2
)[∂] ⊗ EndV .

Recall from [15] that in the classical affine case we have W(g, f ) ⊂ V(g≤ 1
2
)

and that there exists a differential algebra isomorphism w : V(gf )
∼−→ W(g, f ).

Consider the generalized quasideterminant (cf. (16))

L(∂) = |Aρ(∂)|
V [ d2 ],V [− d

2 ] =
(

1
V [− d

2 ]
(
∂1V + F + π≤ 1

2
U
)−1

1
V [ d2 ]

)−1
. (22)

The following result has been proved in [20].

Theorem 3 L(∂) ∈W(g, f )((∂−1))⊗ Hom
(
V
[− d

2

]
, V
[
d
2

])
and

L(∂) =
(

1
V [− d

2 ]
(
∂1V + F +

∑

i∈If
w(ui)U

i
)−1

1
V [ d2 ]

)−1
. (23)

The above theorem consists of two statements. First, it claims that L(∂) is well
defined, i.e. both inverses in formula (22) can be carried out in the algebra of
pseudodifferential operators with coefficients in V(g≤ 1

2
), and that the coefficients

of L(∂) lie in the W-algebra W(g, f ). Then, it gives a formula, Eq. (23), for L(∂)

in terms of the generators w(ui), i ∈ If , of the W-algebra W(g, f ).

5.2 Integrable Hierarchies of Lax Type Equation

Let g be one of the classical Lie algebras glN , slN , soN or spN , and let V = F
N

be its standard representation (endowed, in the cases of soN and spN , with a non-
degenerate symmetric or skewsymmetric bilinear form, respectively). Then, we can
use the operator L(∂) in (23) to get explicit formulas for the λ-brackets among
the generators of W(g, f ) and construct integrable hierarchies of Hamiltonian
equations, see [20].
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Theorem 4

(1) L(∂) satisfies the generalized Adler type identity

{L(z)λL(w)} = α(1V ⊗ L(w + λ+ ∂))(z− w − λ− ∂)−1

× (L∗(λ− z)⊗ 1V )ΩV

− αΩV

(
L(z)⊗ (z− w − λ− ∂)−1L(w)

)

− β(1V ⊗ L(w + λ+ ∂))Ω
†
V (z+ w + ∂)−1(L(z)⊗ 1V )

+ β(L∗(λ− z)⊗ 1V )Ω
†
V (z+ w + ∂)−1(1V ⊗ L(w))

+ γ
(
1V ⊗

(
L(w + λ+ ∂)− L(w)

))
(λ+ ∂)−1

× ((L∗(λ− z)− L(z)
)⊗ 1V

)
, (24)

for the following values of α, β, γ ∈ F:

g α β γ

glN 1 0 0

slN 1 0 1
N

soN or spN
1
2

1
2 0

In Eq. (24) L∗ denotes the formal adjoint of pseudodifferential operators, and
ΩV and Ω

†
V are defined by Eqs. (13) and (15), respectively.

(2) For B(∂) a K-th root of L(∂) (i.e., L(∂) = B(∂)K for K ≥ 1) define the
elements hn,B ∈W(g, f ), n ∈ Z≥0, by (tr = 1⊗ tr)

hn,B = −K

n
Resz tr(Bn(z)) for n > 0 , h0 = 0 .

Then, all the elements
∫
hn,B are Hamiltonian functionals in involution and we

have the corresponding integrable hierarchy of Lax type Hamiltonian equations

dL(w)

dtn,B
= {∫ hn,B, L(w)} = [α(Bn)+ − β((Bn)∗†)+, L](w) , n ∈ Z≥0 .

(25)

(In the RHS of (25) we are taking the symbol of the commutator of matrix
pseudodifferential operators.)

Remark 5 For β = 0 solutions to the integrable hierarchy (25) can be obtained by
reductions of solutions to the multicomponent KP hierarchy, see [11].
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Color Algebraic Extension of
Supersymmetric Quantum Mechanics

Naruhiko Aizawa, Kosuke Amakawa, and Shunya Doi

Abstract In the recent paper, Bruce and Duplij introduced a Z
2
2-graded version of

supersymmetric quantum mechanics (SQM). It is an extension of Lie superalgebraic
nature of N = 1 SQM to a Z

2
2-graded color superalgebra. We present three

extensions of the result of Bruce and Duplij. Namely, Z2
2-graded SQM with higher

values of N ,Z2
2-graded version of superconformal mechanics, and Z

3
2-graded SQM.

All these were done by realizations of color superalgebra in terms of ordinary Lie
superalgebra.

Keywords Z
2
2-graded Lie algebras · Supersymmetric quantum mechanics ·

Superconformal mechanics

1 Introduction

Supersymmetric and superconformal quantum mechanics have been discussed in
surprisingly wide variety of problems in physics. Even in some of modern problems
such as curved extra dimension or M-theory they play fundamental and important
roles, see, for instance [1, 2] and references therein. It is, therefore, natural that
there exist many considerations on possible extensions of supersymmetric quantum
mechanics. Supersymmetric quantum mechanics (SQM) is a quantum mechanical
realization of the super-Poincaré algebra in (0 + 1)-dimensional spacetime. Thus
many extensions of SQM discuss possible replacement of Lie superalgebraic nature
of super-Poincaré algebra with more general setting (also in connection with the
no-go theorem of Coleman and Mandula).

One of the most recent works in this direction is due to Bruce [3] where Z2-
grading of the super-Poincaré algebra in (3 + 1) dimensional Minkowski space
are replaced with Z

n
2-grading. Z

n
2 denotes a direct product of n copies of the
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abelian group Z2 and Lie algebras with this kind of grading are referred to as color
(super)algebras in the literatures. Soon after this work, Bruce and Duplij presented
a model of Z2

2-graded SQM based on the reduction of the Z2
2-graded super-Poincaré

algebra of [3] to (0+ 1)-dimension [4] (references for other works on extension of
SQM are found in [4], too). We call the model discussed in [4] Bruce–Duplij model.

In the present work, we interpret the Bruce–Duplij model from more general
perspective. Namely, we provide a realization of Z2

2-graded color superalgebra by
ordinary Lie superalgebra. Then it can be seen that Bruce–Duplij model is a special
case of this realization. Moreover, the realization allows us further generalizations
of SQM. The Bruce–Duplij model may be regarded as a Z

2
2-graded version of N =

1 SQM. By using the realization, one may easily construct models of Z
2
2-graded

version of SQM with higher values of N . It is also possible to include conformal
invariance, since one may apply the realization to many models of superconformal
mechanics (SCM).

We remark that color superalgebras attract some physical interests in connection
with symmetries of non-relativistic Dirac equation (Lévy-Leblond equation) and
parastatistics [5, 6]. The present work, as well as [4], provides a new example of
deep connection of such algebras and physics.

This paper is organized as follows: In the next section, we give a definition of
Z

n
2-graded color superalgebra and an algebraic basis of the Bruce–Duplij model. In

Sect. 3, it is shown that if a matrix Lie superalgebra satisfies a certain condition, then
one may obtain a Z

2
2-graded color superalgebra with the same structure constants.

This result is used to extend the result in [4] to extended supersymmetry and
conformal supersymmetry. We also show in Sect. 4 that it is possible to construct
Z

3
2-graded SQM from the ordinary SQM as we did for Z2

2-graded case.

2 Z
n
2-Graded Color Superalgebra and Z

2
2-Graded SQM

We start with the definition of Zn
2-graded color superalgebra. Let g be a vector space

over C or R which is a direct sum of 2n subspaces labelled by an element of the
group Z

n
2 :

g =
⊕

α∈Zn
2

gα. (1)

Regarding an element α = (α1, α2, . . . , αn) of Zn
2 as an n dimensional vector, we

define an inner product of two elements of Zn
2 by

α · β =
n∑

i=1

αiβi . (2)
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Definition 1 If g admits a bilinear form � , � : g× g→ g satisfying the following
three relations, then g is called a Z

n
2-graded color superalgebra:

1. �gα, gβ� ⊆ gα+β ,

2. �Xα, Xβ� = −(−1)α·β �Xβ , Xα�,

3. �Xα, �Xβ , Xγ ��(−1)α·γ + cyclic perm. = 0,

where Xα ∈ gα and the third relation is called the graded Jacobi identity.

It is easily recognized that the bilinear form �Xα, Xβ� is realized by commutator
and anticommutator:

�Xα, Xβ� = XαXβ − (−1)α·βXβXα. (3)

The n = 1 case (Z2 grading) corresponds to the ordinary Lie superalgebras. The first
non-trivial example is the Z

2
2-graded color superalgebra consisting of four sectors

labelled by (0, 0), (0, 1), (1, 0), (1, 1).
The Z

2
2-graded version of SQM considered in [4] (Bruce–Duplij model) is a

realization of Z2
2-graded super-Poincaré algebra (Z2

2-SPA) in the Z
2
2-graded Hilbert

space L2(R)⊗C
4. Z2

2-SPA is spanned by H00,Q01,Q10, Z11 with the indicated Z
2
2

grading and their non-vanishing relations are given by

{Q01,Q01} = {Q10,Q10} = H00, [Q01,Q10] = iZ11. (4)

H00 is a diagonal matrix operator interpreted as a quantum mechanical Hamiltonian.
Q01 and Q10 play the role of supercharges, however, they have different degree. As
a consequence, they close by commutator (instead of anticommutator) into Z11, the
central element of the algebra.

3 Extensions of Bruce–Duplij Model

3.1 From Superalgebra to Z
2
2-Graded Color Superalgebra

As is seen from (4), in the Z
2
2-graded SQM of [4], each subspaces of degree (0, 1)

and (1, 0) has only one supercharge. So one may say that it is a Z2
2-version of N = 1

SQM. We would like to have quantum mechanical models which have more than one
supercharges in each subspace. We also want models of Z2

2-graded version of SCM.
These will be done by using the theorem shown below which relates an ordinary
superalgebra to its Z2

2-graded version [7].
Let s be an ordinary Lie superalgebra (Z2-graded Lie algebra) spanned by the

elements T a
i with a ∈ Z2 = {0, 1}. The defining relations may be written as
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[T 0
i , T 0

j ] = if k
ij T

0
k , [T 0

i , T
1
j ] = ihk

ij T
1
k , {T 1

i , T 1
j } = gk

ij T
0
k , (5)

where the summation over the repeated indices is understood.
Suppose that we have a representation of s in which odd (degree 1) elements

are represented by block-antidiagonal Hermitian matrix of dimensions 2m × 2m.

Suppose further that there exists a Hermitian block-diagonal matrix Γ of the same
dimension which satisfies the relations

{Γ, T 1
i } = 0, Γ 2 = I2m, (6)

where T 1
i denotes the matrix representation of s (slight abuse of notation) and I2m

denotes the 2m× 2m identity matrix. It then follows that [Γ, T 0
i ] = 0.

Now we define a set of Hermitian matrices:

T a
i = I2 ⊗ T a

i , T̃ a
i = σ1 ⊗ iaT a

i Γ. (7)

With these setting we have the followings:

Theorem 1 Let ŝ be the complex vector space spanned by the matrices (7). By the
assignment of the Z2

2-degree

deg(T 0
i ) = (0, 0), deg(T 1

i ) = (0, 1), deg(T̃ 1
i ) = (1, 0), deg(T̃ 0

i ) = (1, 1),
(8)

ŝ forms a Z
2
2-graded color superalgebra with the defining relations:

[T 0
i , T 0

j ] = if k
ijT 0

k , [T 0
i , T 1

j ] = ihk
ijT 1

k ,

[T 0
i , T̃ 1

j ] = ihk
ij T̃ 1

k , [T 0
i , T̃ 0

j ] = if k
ij T̃ 0

k ,

{T 1
i , T 1

j } = {T̃ 1
i , T̃ 1

j } = gk
ijT 0

k , [T̃ 0
i , T̃ 0

j ] = if k
ijT 0

k ,

[T 1
i , T̃ 1

j ] = igk
ij T̃ 0

k , {T̃ 0
i , T 1

j } = −hk
ij T̃ 1

k ,

{T̃ 0
i , T̃ 1

j } = hk
ijT 1

k . (9)

If there exist models of SQM or SCM satisfying the condition of Theorem 1,
then one may obtain their Z2

2-graded version immediately. As we see below, such
models of SQM and SCM indeed exist.

3.2 N Extension of Z2
2-Graded SQM

In order to have a model of N -extended version of Bruce–Duplij model, let us
see that the model of N -extended SQM by Akulov and Kudinov [8] satisfies the
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condition of Theorem 1. The model is formulated by using matrix representations
of the Clifford algebra. For a given positive integer n we introduce the N = 2n
Hermitian block-antidiagonal matrices subject to the relations:

{γI , γJ } = 2δIJ I2n , γ
†
I = γI , (10)

where I, J run from 1 to N . We mainly work on an alternative choice of the basis
of γ -matrices:

γ±a = 1

2
(γ2a−1 ± iγ2a), a = 1, 2, . . . , n. (11)

In this basis the relation (10) reads as follows:

{γ±a , γ±b } = 0, {γ+a , γ−b } = δab I2n . (12)

We also consider n Hermitian block-diagonal matrices given by a product of γI ’s:

Γa = iaγ1γ2 . . . γ2a, a = 1, 2, . . . , n. (13)

It is then immediate to verify that

Γ 2
a = I2n , [Γa, Γb] = 0 (14)

and

[γ±k , Γa] = 0 (k > a), {γ±k , Γa} = 0 (k ≤ a). (15)

The N supercharges of Akulov–Kudinov model are defined by the matrices γ±a
and Γa as follows:

Q+a =
1√
2
γ+a (p + iW(n)

a (x, Γ1, . . . , Γn)), Q−a = (Q+a )†. (16)

The superpotentials W
(n)
a are defined recursively. For instance, for n = 1 W(1) is

chosen to be W(1) = w0(x) and for n = 2

W
(2)
1 = w0(x)+ Γ2w1(x), w1(x) = ∂xw0(x)

2w0(x)
(17)

and so on. It is seen from (15) that Γn anticommutes with all the supercharges:

{Q±a , Γn} = 0, ∀a. (18)

Thus one may apply Theorem 1 to Akulov–Kudinov model.
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Proposition 1 Let H be Hamiltonian of Akulov–Kudinov model: {Q+a ,Q−b } =
δabH and A =

(
0 Γn

Γn 0

)
. The complex vector space spanned by the matrix

differential operators

Q±a = I2 ⊗Q±a , Q̃±a = iQ±a A, H = I2 ⊗H, H̃ = HA (19)

forms a Z2
2-graded superalgebra having the following non-vanishing relations:

{Q+a ,Q−b } = {Q̃+a , Q̃−b } = δabH, [Q±a , Q̃∓b ] = iδabH̃. (20)

The assignment of Z2
2-degree is

deg(H) = (0, 0), deg(Q±a ) = (0, 1), deg(Q̃±a ) = (1, 0), deg(H̃) = (1, 1).
(21)

Thus (19) gives a N -extended version of Bruce–Duplij model. The Bruce–Duplij
model is recovered from (19) by setting n = 1 (N = 2) and the identification

Q01 = 1√
2
(Q+a +Q−a ), Q10 = 1√

2
(Q̃+a + Q̃−a ). (22)

More detailed analysis of N = 2 case is found in [7].

3.3 Z
2
2-Graded SCM

Now we consider Z2
2-graded version of SCM by using Theorem 1. Many models of

SCM have been obtained so far (see, for instance, [2]). Some of the models, e.g. the
ones in [9, 10], satisfy the condition (6) so that we may have models of Z2

2-graded
SCM of N = 2, 4, 8 and so on.

As an example, we here present N = 1 model with osp(1|2) symmetry:

Q = 1√
2

(
σ1p − σ2

β

x

)
, S = x√

2
σ1,

H = 1

2

(
p2 + β2

x2

)
I2 + β

2x2 σ3, D = −1

4
{x, p} I2, K = x2

2
I2, (23)

where σi is Pauli matrices and β ∈ R is a coupling constant. Conformal subalgebra
so(1, 2) is given by 〈 H, D, K 〉. For this realization of osp(1|2) one may
immediately see that Γ = σ3 commute with Q and S. Thus Theorem 1 gives us
the following operators which is a model of Z2

2-graded SCM:
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(0, 0) : H =
(
H 0
0 H

)
, D =

(
D 0
0 D

)
, K =

(
K 0
0 K

)
,

(0, 1) : Q =
(
Q 0
0 Q

)
, S =

(
S 0
0 S

)
,

(1, 0) : Q̃ = i

(
0 Qσ3

Qσ3 0

)
, S̃ = i

(
0 Sσ3

Sσ3 0

)
,

(1, 1) : H̃ =
(

0 Hσ3

Hσ3 0

)
, D̃ =

(
0 Dσ3

Dσ3 0

)
, K̃ =

(
0 Kσ3

Kσ3 0

)
.

One may analyze this model in a standard way of conformal mechanics. Namely,
one consider eigenvalue problem of R = H + K, instead of H, by creation–
annihilation operator. Details of the analysis are presented in [7].

4 Z
3
2-Graded SQM

Encouraged by the results obtained so far, we try to build a model of Z
3
2-graded

version of SQM. Our strategy is similar to Z
2
2 case, i.e., find a realization of Z3

2-
graded super-Poincaré algebra by ordinary N = 1 SUSY algebra which is defined
by the supercharge Q and Hamiltonian H satisfying the relations:

{Q,Q} = 2H, [H,Q] = 0. (24)

The Z
3
2-SPA obtained from the result in [3] by dimensional reduction has the

following elements:

Q1 (0, 0, 1), Q2 (0, 1, 0), Q3 (1, 0, 0), Q4 (1, 1, 1),

H (0, 0, 0), Zab,
(25)

and the non-vanishing relations (cf. [11]):

{Qa,Qa} = 2H, [Qi ,Qj ] = 2iZij , {Qi ,Q4} = 2Zi4, (26)

where a, b take a value from 1, 2, 3, 4 and i, j are restricted to 1, 2, 3. The Z
3
2-

degrees of H and Qa are indicated in (25) and deg(Zab) = deg(Qa)+ deg(Qb).

In order to realize (25) in terms of (24) we introduce a complex representation of
the Clifford algebra Cl(4) :

γ1 = σ1 ⊗ σ1, γ2 = σ1 ⊗ σ2, γ3 = σ1 ⊗ σ3, γ4 = σ2 ⊗ I2. (27)

It is then straightforward to verify the following:
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Proposition 2 Let Γ be an Hermitian operator anticommuting with Q. We assume
further that Γ 2 is the identity operator. Then

Q1 = I2 ⊗ I4 ⊗Q, Q2 = iσ1 ⊗ γ1 ⊗QΓ,

Q3 = iσ1 ⊗ γ3 ⊗QΓ, Q4 = iσ3 ⊗ γ2γ4 ⊗Q (28)

realizes the Z3
2-SPA (25).

For completeness, we give the formula of the Hamiltonian and the central
elements:

H = I8 ⊗H,

Z12 = σ1 ⊗ γ1 ⊗HΓ, Z13 = σ1 ⊗ γ3 ⊗HΓ,

Z14 = iσ3 ⊗ γ2γ4 ⊗H, Z23 = −iI2 ⊗ γ1γ3 ⊗H,

Z24 = −iσ2 ⊗ γ1γ2γ4 ⊗HΓ, Z34 = iσ2 ⊗ γ2γ3γ4 ⊗HΓ. (29)

By (28) any model of (24) may be converted to the corresponding Z
3
2-graded

version if the operator Γ exists. Such Γ would exist in many cases. The simplest
example is a single particle moving in one-dimensional space. In this case, Q

consists of σ1, σ2 and differential operator, so that one may take Γ = σ3.

In the present work, we showed that Bruce–Duplij model of Z
2
2-graded SQM

is easily extended to higher values of N and to superconformal setting. It was also
shown that N = 1 SQM is possible to generalize Z3

2-graded SQM. These were done
by finding a realization of a color superalgebra by an ordinary Lie superalgebra.
Therefore, we expect that it is possible to obtain models of Zn

2-graded SQM and
SCM in a similar and a systematic way. If it is the case, then color superalgebras
would be a quite natural object in analysis of physical problems.
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The Racah Algebra and sln

Hendrik De Bie, Luc Vinet, and Wouter van de Vijver

Abstract We conjecture the existence of an embedding of the Racah algebra into
the universal enveloping algebra of sln. Evidence of this conjecture is offered by
realizing both algebras using differential operators and giving an embedding in this
realization.

Keywords Racah algebra · Embedding · Lie algebra sln

1 Introduction

The Racah algebra synthesizes the properties of the Racah polynomials [8, 13],
which are the most complicated univariate discrete orthogonal polynomials in the
Askey scheme [11].

Multivariate Racah polynomials were introduced by Tratnik in [12]. These
polynomials also have a solid algebraic underpinning, as was recently established
in [3] using the higher rank Racah algebra. This higher rank Racah algebra was
initially introduced in [9, 10] in the context of superintegrability and later in [4]
as a subalgebra of intermediate Casimir elements in the n-fold tensor product of
su(1, 1).

Although the initial motivation to introduce the (higher rank) Racah algebra was
to establish a connection with the multivariate Racah polynomials, the algebra has
now become an independent object of study. In particular its relation with other
algebraic structures is part of ongoing investigations. We refer the reader to [1] for
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connections with Brauer and Temperley-Lieb algebras, and to [6] for connections
with Howe duality.

The present paper aims to provide evidence for the following conjecture:

Conjecture 1 There exists an embedding of the higher rank Racah algebra into the
universal enveloping algebra of the Lie algebra sln.

Indeed, we construct this embedding for a differential operator realization of
Rn (recently introduced in [5]) in the enveloping algebra of a differential operator
realization of sln. Note that the embedding in the rank one case was already
constructed in [7].

2 Definition of the Higher Rank Racah Algebra

The algebra su(1, 1) is generated by three elements A± and A0 with following
relations:

[A−, A+] = 2A0, [A0, A±] = ±A±.

Its universal enveloping algebra U(su(1, 1)) contains the Casimir element of
su(1, 1):

C := A2
0 − A0 − A+A−.

We define the following elements of U(su(1, 1))⊗n for 1 ≤ k ≤ n:

A0,k := 1⊗(k−1) ⊗ A0 ⊗ 1⊗(n−k),

A±,k := 1⊗(k−1) ⊗ A± ⊗ 1⊗(n−k).

For any non-empty subset K ⊂ [n] := {1, . . . , n} we define similarly

A0,K :=
∑

k∈K
A0,k, A±,K :=

∑

k∈K
A±,k.

The three operators A0,K and A±,K generate an algebra isomorphic to su(1, 1). Its
Casimir is given by

CK := A2
0,K − A0,K − A+,KA−,K .

These operators generate the higher rank Racah algebra.

Definition 1 The higher rank Racah algebra Rn is the subalgebra of U(su(1, 1))⊗n

generated by the set of operators

{CA |A ⊂ {1, . . . , n} and A �= ∅}.
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A full account of Rn is presented in [4]. We mention one fact here: the operators
CA are not linearly independent. By formula (17) in [4] we have

CA =
∑

{i,j}⊂A

Cij − (|A| − 2)
∑

i∈A
Ci.

Hence, if one wants to present realizations of Rn, it suffices to give expressions for
the operators Cij and Ci . In Sect. 4 we will present the higher rank Racah algebra
as given in [5] this way.

3 Realizing sln in n − 1 Variables

Let sln(R) be the algebra of n × n matrices whose trace equals zero and with the
commutator as Lie bracket. Let Eij be the matrix whose entries are equal to 0 except
for the entry on the ith row and j th column which equals 1. Then the Lie algebra
sln(R) is generated by the set

{Eij |1 ≤ i, j ≤ n and i �= j} ∪ {Eii − Enn|1 ≤ i ≤ n− 1}.
Let ui , i ∈ {1 . . . n−1} be real variables. We introduce the differential operators:

Tij := −uj∂i i �= j and i, j < n

Tin := −∂i i < n

Tnj := uj Ẽ j < n

T̃d := −ud∂d − Ẽ d < n,

where the operator Ẽ is defined as

Ẽ :=
n−1∑

i=1

ui∂i − k.

Using again the commutator as Lie bracket we denote by Dn the Lie algebra spanned
by all the T̃d and Tij . The real number k is a deformation parameter that leaves the
algebra relations invariant. One observes that sln(R) and Dn are isomorphic. The
isomorphism σ is given by

σ(Eij ) = Tij

σ (Edd − Enn) = T̃d .

Note that this isomorphism does not extend to their universal enveloping algebras.
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3.1 Some Operators in U(Dn)

We introduce a number of operators we need later on. Observe that the operator Ẽ
is in the universal enveloping algebra U(Dn) but not in Dn because Dn lacks the
identity:

Ẽ = −1

n

(
k +

n−1∑

d=1

T̃d

)
.

Let uB :=∑k∈B uk . We have

uB Ẽ :=
∑

j∈B
Tnj .

We will also express uB∂α in function of the generators:

uB∂α := −δαB(T̃α + Ẽ)−
∑

j∈B\α
Tαj , (1)

where we introduced a new symbol standing for:

δαB :=
{

0, if α /∈ B

1, if α ∈ B.

It is then easy to check the following Lemma.

Lemma 1 The following holds

[uB Ẽ, ∂α] = −uB∂α − δαB Ẽ

[uA, ∂α] = −δαA.

4 Realization of Rn in n − 2 Variables

In [5] an explicit differential operator realization of Rn was given in Theorem 5. We
repeat this theorem here.

Theorem 1 The space Πn−2
k of all polynomials of degree k in n − 2 variables

carries a realization of the rank n − 2 Racah algebra Rn. This realization is given
explicitly by

C̃i = νi(νi − 1), i ∈ [n]



The Racah Algebra and sln 213

and, for i, j ∈ {3, . . . , n},

C̃12 = −
(
k − 1−

n−2∑

�=1

u�∂u�

)(
−k − ∂u1 +

n−2∑

�=1

u�∂u�

)
+ 2ν2

(
k −

n−2∑

�=1

u�∂u�

)

− 2ν1

(
−k − ∂u1 +

n−2∑

�=1

u�∂u�

)
+ (ν1 + ν2)(ν1 + ν2 − 1)

C̃1j = −
⎛

⎝1−
j−2∑

�=1

u�

⎞

⎠
2 (

k − 1−
n−2∑

�=1

u�∂u�

)
(
∂uj−2 − ∂uj−1

)

+ 2νj

⎛

⎝1−
j−2∑

�=1

u�

⎞

⎠
(
k −

n−2∑

�=1

u�∂u�

)
− 2ν1

⎛

⎝1−
j−2∑

�=1

u�

⎞

⎠(∂uj−2 − ∂uj−1

)

+ (ν1 + νj )(ν1 + νj − 1)

C̃2j = −
⎛

⎝
j−2∑

�=1

u�

⎞

⎠
2 (

1− k − ∂u1 +
n−2∑

�=1

u�∂u�

)
(
∂uj−2 − ∂uj−1

)

+ 2νj

⎛

⎝
j−2∑

�=1

u�

⎞

⎠
(
k + ∂u1 −

n−2∑

�=1

u�∂u�

)
+ 2ν2

⎛

⎝
j−2∑

�=1

u�

⎞

⎠(∂uj−2 − ∂uj−1

)

+ (ν2 + νj )(ν2 + νj − 1)

C̃ij = −
⎛

⎝
i−2∑

�=j−1

u�

⎞

⎠
2
(
∂ui−2 − ∂ui−1

) (
∂uj−2 − ∂uj−1

)

+ 2νj

⎛

⎝
i−2∑

�=j−1

u�

⎞

⎠(∂ui−2 − ∂ui−1

)− 2νi

⎛

⎝
i−2∑

�=j−1

u�

⎞

⎠(∂uj−2 − ∂uj−1

)

+ (νi + νj )(νi + νj − 1),

where we assume i > j and with un−1 = 0 whenever it appears.

We want to express these operators as elements in U(Dn−1).
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4.1 The Differential Embedding

To show that each generator of Rn is in U(Dn−1), we will express each generator
in function of ∂α , Ẽ, uB∂α , and uB Ẽ. Let us start with the operator C̃12. We can
express this operator as follows:

C̃12 = −
(
−Ẽ− 1

) (
−∂1 + Ẽ

)
+ 2ν2

(
−Ẽ
)
− 2ν1

(
−∂1 + Ẽ

)

+ (ν1 + ν2)(ν1 + ν2 − 1).

As ∂1 = −T1n−1 and Ẽ are in U(Dn−1) so is C̃12.
Consider the first term of the operator C̃1j :

− (1− u[j−2]
)2 (−1− Ẽ

) (
∂j−2 − ∂j−1

)

= (1− u[j−2]
)2 (

∂j−2 − ∂j−1
)
Ẽ

= (1− u[j−2]
) ((

∂j−2 − ∂j−1
) (

1− u[j−2]
)+ 1

)
Ẽ

= (1− u[j−2]
) (

∂j−2 − ∂j−1
) (

1− u[j−2]
)
Ẽ+ (1− u[j−2]

)
Ẽ.

In line 3 we used Lemma 1. Let

L
(j)

1 := (1− u[j−2]
) (

∂j−2 − ∂j−1
)

L
(j)

2 := (1− u[j−2]
)
Ẽ.

Both L
(j)

1 and L
(j)

2 can be expressed in function of the generators of U(Dn−1),
because of expression (1). The operator C̃1j can be expressed as follows:

C̃1j = L
(j)

1 L
(j)

2 − (2νj − 1)L(j)

2 − 2ν1L
(j)

1 + (ν1 + νj )(ν1 + νj − 1).

This means that C̃1j is also in U(Dn−1).
Consider the first term of the operator C̃2j :

− u2[j−2]
(

1− ∂1 + Ẽ

) (
∂j−2 − ∂j−1

)

= −u2[j−2]
(
∂j−2 − ∂j−1

) (−∂1 + Ẽ

)

= −u[j−2]
((
∂j−2 − ∂j−1

)
u[j−2] − 1

) (−∂1 + Ẽ

)

= −u[j−2]
(
∂j−2 − ∂j−1

)
u[j−2]

(
−∂1 + Ẽ

)
+ u[j−2]

(
−∂1 + Ẽ

)
.
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In line 3 we used Lemma 1. Let

L
(j)

3 := u[j−2]
(
∂j−2 − ∂j−1

)

L
(j)

4 := u[j−2]
(
−∂1 + Ẽ

)
.

Both L
(j)

3 and L
(j)

4 can be expressed in function of the generators of U(Dn−1), again
because of expression (1). The operator C̃2j can be expressed as follows:

C̃2j = −L(j)

3 L
(j)

4 − (2νj − 1)L(j)

4 + 2ν2L
(j)

3 + (ν2 + νj )(ν2 + νj − 1).

This means that C̃2j is also in U(Dn−1).
Consider the first term of the operator C̃ij :

− u2[j−1,i−2] (∂i−2 − ∂i−1)
(
∂j−2 − ∂j−1

)

= −u[j−1,i−2]
(
(∂i−2 − ∂i−1) u[j−1,i−2] − 1

) (
∂j−2 − ∂j−1

)

= −u[j−1,i−2] (∂i−2 − ∂i−1) u[j−1,i−2]
(
∂j−2 − ∂j−1

)

+ u[j−1,i−2]
(
∂j−2 − ∂j−1

)
.

In line 2 we used Lemma 1. Let

L
(ij)

5 := u[j−1,i−2] (∂i−2 − ∂i−1)

L
(ij)

6 := u[j−1,i−2]
(
∂j−2 − ∂j−1

)
.

Both L
(ij)

5 and L
(ij)

6 can be expressed in function of the generators of U(Dn−1). The
operator C̃ij can be expressed as follows:

C̃ij = −L(ij)

5 L
(ij)

6 − (2νi − 1)L(ij)

6 + 2νjL
(ij)

5 + (νi + νj )(νi + νj − 1).

This means that C̃ij is also in U(Dn−1).This proves Conjecture 1 for this differential
realization.

5 Conclusions

In this paper we have considered the higher rank Racah algebra in one of its
differential operator realizations, obtained in the recent paper [5]. We have shown
that this realization can be embedded in the enveloping algebra of a differential
operator realization of sln verifying Conjecture 1 in this realization.
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This embedding gives us a good idea of what should be the abstract embedding
of Rn in U(sln−1). Achieving the abstract construct remains, however, nontrivial.
The differential embedding simplifies the problem since, e.g. all central elements C̃i

become scalars and it is not immediate therefore how to lift the differential case to
the abstract one. An alternative construction might be better suited for that purpose
and we believe that the route taken in [2] for the case of the Heisenberg algebra is
promising in this respect.
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On Reducible Verma Modules over
Jacobi Algebra

V. K. Dobrev

Abstract With this paper we start the study of reducible representations of the
Jacobi algebra with the ultimate goal of constructing differential operators invariant
w.r.t. the Jacobi algebra. In this first paper we show examples of the low level
singular vectors of Verma modules over the Jacobi algebra. According to our
methodology these will produce the invariant differential operators.

Keywords Jacobi algebra · Verma modules · Singular vectors

1 Introduction

The role of nonrelativistic symmetries in theoretical physics was always important.
Currently one of the most popular fields in theoretical physics—string theory,
pretending to be a universal theory—encompasses together relativistic quantum
field theory, classical gravity, and certainly, nonrelativistic quantum mechanics, in
such a way that it is not even necessary to separate these components.

Since the cornerstone of quantum mechanics is the Schrödinger equation then
it is not a surprise that the Schrödinger group—the group that is the maximal
group of symmetry of the Schrödinger equation—was the first to play a prominent
role in theoretical physics. The latter is natural since originally the Schrödinger
group, actually the Schrödinger algebra, was introduced in [1, 2] as a nonrelativistic
limit of the vector-field realization of the conformal algebra. For a review on these
developments we refer to [3].

Another interesting nonrelativistic example is the Jacobi algebra [4, 5] which is
the semi-direct sum of the Heisenberg algebra and the sp(n) algebra. Actually the
lowest case of the Jacobi algebra coincides with the lowest case of the Schrödinger
algebra which makes it interesting to apply to the Jacobi algebra the methods we

V. K. Dobrev (�)
Institute of Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia,
Bulgaria

© Springer Nature Switzerland AG 2021
M. B. Paranjape et al. (eds.), Quantum Theory and Symmetries, CRM Series in
Mathematical Physics, https://doi.org/10.1007/978-3-030-55777-5_20

217

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-55777-5_20&domain=pdf
https://doi.org/10.1007/978-3-030-55777-5_20


218 V. K. Dobrev

applied to the Schrödinger algebra. This is a project we start in the present short
paper. Actually here we give as examples the low level singular vectors of Verma
modules over the Jacobi algebra.

2 Preliminaries

The Jacobi algebra is the semi-direct sum Gn := Hn � sp(n,R)C [4, 5]. The
Heisenberg algebra Hn is generated by the boson creation (respectively, annihila-
tion) operators a+i (a−i ), i, j = 1, . . . , n, which verify the canonical commutation
relations

[
a−i , a+j

] = δij , [a−i , a−j ] =
[
a+i , a+j

] = 0. (1)

Hn is an ideal in Gn, i.e., [Hn,Gn] = Hn, determined by the commutation relations
(following the notation of [6]):

[
a+k ,K+

ij

] = [a−k ,K−
ij ] = 0, (2a)

[a−i , K+
kj ] = 1

2δika
+
j + 1

2δij a
+
k ,

[
K−

kj , a
+
i

] = 1
2δika

−
j + 1

2δij a
−
k , (2b)

[
K0

ij , a
+
k

] = 1
2δjka

+
i ,

[
a−k ,K0

ij

] = 1
2δika

−
j . (2c)

K
±,0
ij are the generators of the Sn ≡ sp(n,R)C algebra:

[K−
ij , K

−
kl ] = [K+

ij , K
+
kl ] = 0, 2

[
K−

ij , K
0
kl

] = K−
il δkj +K−

j lδki , (3a)

2[K−
ij , K

+
kl ] = K0

kj δli +K0
lj δki +K0

kiδlj +K0
liδkj (3b)

2
[
K+

ij , K
0
kl

] = −K+
ikδj l −K+

jkδli , 2
[
K0

j i , K
0
kl

] = K0
j lδki −K0

kiδlj . (3c)

In order to implement our approach we introduce a triangular decomposition
of Gn :

Gn = G+n ⊕Kn ⊕ G−n , (4)

using the triangular decomposition Sn = S+n ⊕Kn ⊕ S−n , where:

G±n = H±n ⊕ S±n (5)

H±n = l.s.{ a±i : i = 1, . . . , n} ,
S+n = l.s.{K+

ij : 1 ≤ i ≤ j ≤ n} ⊕ l.s.{K0
ij : 1 ≤ i < j ≤ n}

S−n = l.s.{K−
ij : 1 ≤ i ≤ j ≤ n} ⊕ l.s.{K0

ij : 1 ≤ j < i ≤ n}
Kn = l.s.{K0

ii : 1 ≤ i ≤ n}.
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Note that the subalgebra Kn is abelian and is a Cartan subalgebra of Sn.
Furthermore, not only S±n , but also G±n are its eigenspaces:

[Kn,G±n ] = G±n . (6)

Thus, Kn plays for Gn the role that Cartan subalgebras are playing for semi-simple
Lie algebras.

3 Case G2

Note that the algebra G1 is isomorphic to the (1+1)-dimensional Schrödinger
algebra (without central extension). The representations of the latter are well known,
cf. [3, 7–9]. Thus, we study the first new case of the Gn series, namely, G2.

For simplicity, we introduce the following notations for the basis of S2 :

S+ : b+i ≡ K+
ii , i = 1, 2; c+ ≡ K+

12 , d+ ≡ K0
12 (7a)

S− : b−i ≡ K−
ii , i = 1, 2; c− ≡ K−

12 , d− ≡ K0
21 (7b)

K : hi ≡ K0
ii , i = 1, 2. (7c)

Next, using (2) and (3) we give the eigenvalues of the basis of G+ w.r.t. K :

h1 : (b+1 , b+2 , c+, d+, a+1 , a+2 ) : (1, 0, 1
2 ,

1
2 ,

1
2 , 0) , (8)

h2 : (b+1 , b+2 , c+, d+, a+1 , a+2 ) : (0, 1, 1
2 ,− 1

2 , 0, 1
2 ) ,

(e.g., [h1, b
+
1 ] = b+1 , [h2, d

+] = − 1
2d
+, etc). Naturally, the eigenvalues of

the basis of G− w.r.t. K are obtained from (8) by multiplying every eigenvalue
by (−1).

Next we introduce the following grading of the basis of G+2 :

(b+1 , b+2 , c+, d+, a+1 , a+2 ) : (2δ1, 2δ2, δ1 + δ2, δ1 − δ2, δ1, δ2). (9)

The grading of the S+2 part of the basis follows from the root system of S+2 ,
while the grading of the H+2 part of the basis is determined by consistency with
commutation relations (2). It is consistent also with formulae (8).

Naturally, the grading of the basis of G− w.r.t. are obtained from (9) by
multiplying every grading by (−1).
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4 Verma Modules and Singular Vectors

4.1 Definitions

We shall introduce Verma modules over the Jacobi algebra analogously to the case
of semi-simple algebras. Thus, we define a lowest weight Verma module VΛ over
Gn as the lowest weight module over Gn with lowest weight Λ ∈ K∗n and lowest
weight vector v0 ∈ VΛ, induced from the one-dimensional representation V0 ∼=
Cv0 of U(Bn) , (where Bn = Kn ⊕ G−n is a Borel subalgebra of Gn), such that:

X v0 = 0, ∀X ∈ G−n (10)

H v0 = Λ(H) v0 , ∀H ∈ Kn.

Pursuing the analogy with the semi-simple case and following our approach
we are interested in the cases when the Verma modules are reducible. Namely,
we are interested in the cases when a Verma module VΛ contains an invariant
submodule which is also a Verma module VΛ′ , where Λ′ �= Λ, and holds the
analog of

X v′0 = 0, ∀X ∈ G−n (11a)

H v′0 = Λ′(H) v′0 , ∀H ∈ Kn. (11b)

Since VΛ′ is an invariant submodule then there should be a mapping such that
v′0 is mapped to a singular vector vs ∈ VΛ fulfilling exactly (11). Thus, as in
the semi-simple case there should be a polynomial P of G+n elements which
is eigenvector of Kn: [H,P] = Λ′(H)P , (∀H ∈ Kn), and then we would have:
vs = Pv0 .

4.2 Case G2

We shall consider several examples of reducible Verma modules with different
weights.

Weight 2δ1

As first example we try to find a singular vector of weight Λ′ ∼ 2δ1 . There are six
possible terms in U(G2) with this weight, thus, we try:

v2δ1
s = (ν1b

+
1 + ν2c

+d+ + ν3b
+
2 (d+)2 + ν4(a

+
1 )2 + ν5a

+
1 a+2 d+

+ ν6(a
+
2 )2(d+)2)v0, (12)
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where νk are numerical coefficients which may be fixed when we impose (11a)
on (12). (Note that (11b) is fulfilled by every term of (12).)

After we impose (11a) on (12) we find the solution:

Λ(H1) = 3
4 , ν3 = − 2ν6,

ν1 = −ν6(Λ(H2)−Λ(H1))(2Λ(H2)− 2Λ(H1)− 1),

ν2 = 2ν6(2Λ(H2)− 2Λ(H1)− 1),

ν4 = ν6(Λ(H2)−Λ(H1))(Λ(H2)−Λ(H1)− 1
2 ),

ν5 = −ν6(2Λ(H2)− 2Λ(H1)− 1). (13)

Thus, the singular vector is:

v2δ1
s = ν6

(
(Λ(H2)− 3

4 )(Λ(H2)− 5
4 )((a

+
1 )2 − 2b+1 ) +

+ 2(Λ(H2)− 5
4 )(2c

+ − a+1 a+2 )d+ +
+ ((a+2 )2 − 2b+2 )(d+)2 )v0 , Λ(H1) = 3

4 . (14)

Weight 2δ2

As next example we try to find a singular vector of weight Λ′ ∼ 2δ2 . The possible
singular vector is:

v2δ2
s = (

μ1b
+
2 + μ2(a

+
2 )2 )v0. (15)

Imposing (11a) on (15) we obtain:

Λ(H2) = 1
4 , μ1 = − 2μ2, (16)

Thus, the singular vector is:

v2δ2
s = μ2((a

+
2 )2 − 2b+2 )v0 , Λ(H2) = 1

4 . (17)

Weight δ1 + δ2

Next we try a singular vector of weight Λ′ ∼ δ1 + δ2 . The possible singular
vector is:

vδ1+δ2
s = (

κ1c
+ + κ2b

+
2 d+ + κ3a

+
1 a+2 + κ4(a

+
2 )2d+

)
v0. (18)
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Imposing (11a) on (18) we obtain:

Λ(H2) = 3
2 −Λ(H1) , κ1 = (3− 4h(1))κ4 ,

κ2 = −2κ4 , κ3 = (2h(1)− 3
2 )κ4. (19)

Thus, the singular vector is:

vδ1+δ2
s = κ4

(
( 3

2 − 2h(1))(2c+ − a+1 a+2 )+ ((a+2 )2 − 2b+2 )d+
)
v0. (20)

Weight δ1 − δ2

Next we try a singular vector of weight Λ′ ∼ δ1 − δ2 . The only possible singular
vector is:

vδ1−δ2
s = λd+v0. (21)

Imposing (11a) on (21) we obtain that v
δ1−δ2
s is a singular vector iff:

Λ(H2) = Λ(H1). (22)

Weight δ1

Next we try a singular vector of weight Λ′ ∼ δ1 . The possible singular vector is:

vδ1
s = (

λ1a
+
1 + λ2a

+
2 d+

)
v0. (23)

Imposing (11a) on (23) we obtain:

λ1 = λ2 = 0. (24)

Thus, there is no singular vector of weight δ1 .

Weight δ2

Finally, we try a singular vector of weight Λ′ ∼ δ2 . The only possible singular
vector is:

vδ2
s = μa+2 v0. (25)

Imposing (11a) on (25) we obtain:

μ = 0. (26)

Thus, there is no singular vector of weight δ2 .
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Weight 3δ2

The only possible singular vector is:

vδ2
s = μb+2 a+2 v0 + ν(a+2 )3v0. (27)

Imposing (11a) on (27) we obtain:

μ = ν = 0. (28)

Thus, there is no singular vector of weight 3δ2 .
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Howe Duality and Algebras of the
Askey–Wilson Type: An Overview

Julien Gaboriaud, Luc Vinet, and Stéphane Vinet

Abstract The Askey–Wilson algebra and its relatives such as the Racah and
Bannai–Ito algebras were initially introduced in connection with the eponym
orthogonal polynomials. They have since proved ubiquitous. In particular they admit
presentations as commutants that are related through Howe duality. This paper
surveys these results.

Keywords Howe duality · Racah · Bannai–Ito and Askey–Wilson algebras ·
Commutants · Reductive dual pairs

1 Introduction

The quadratic algebras of Askey–Wilson type such as the Askey–Wilson algebra
itself, the Racah and Bannai–Ito algebras and their specializations and contractions
encode the bispectral properties of orthogonal polynomials that arise in recoupling
coefficients such as the Clebsch–Gordan or Racah coefficients. It is therefore natural
that these algebras be encountered in centralizers of the diagonal action of an
algebra of interest g' such as sl(2), osp(1|2), or Uq(sl(2)), on n-fold tensor products
of representations of g'. Indeed, elements of these centralizers will be used as
labeling operators to define bases whose overlaps will be expressed in terms of the
corresponding orthogonal polynomials.

Often the algebra g' forms a reductive pair with another algebra g in which
case the Howe duality operates in certain modules. This leads to alternative
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characterizations of the quadratic algebras that are in correspondence: on the one
hand commutants in representations of the universal enveloping algebra U(g) and on
the other hand, realizations of the type mentioned above as centralizers in recoupling
problems for g'. This is the topic of this brief review which is organized as follows.
Section 2 presents the general framework. Section 3 describes as illustration the
dual commutant picture for the Racah algebra; this will involve the reductive pair
(o(6), su(1, 1)). Section 4 gives a summary of the different cases that have been
analyzed and Sect. 5 provides a short outlook.

2 General Framework

We shall say following [1] that two algebras g and g' have dual representations on
a Hilbert space H if (1) this space carries fully reducible representations of both g

and g', (2) the action of g and g' commute, (3) the representation ρ of the direct
sum g ⊕ g' defined by the actions of g and g' on H is multiplicity-free, and (4)
each irreducible representation of g occurring in the decomposition of ρ is paired
with a unique irreducible representation of g' and vice versa. This is the essence of
Howe duality which can be proved in a number of situations. We shall consider such
instances in this paper.

Consider now a setup with the representation of g' in H = V⊗2n given by
σ̄⊗2n[Δ(2n−1)(g')] where σ̄ : g' → End V is a representation of g' on the vector
space V , Δ : g' → g' ⊗ g' is the coproduct, and Δ(n) is defined recursively by
Δ(n) = (Δ ⊗ 1⊗(n−1)) ◦ Δ(n−1), with Δ(0) = 1. This symmetric situation makes
it natural that there be an action of some other algebra g on the carrier space H
that commutes with the action of g'. Take the maximal Abelian subalgebra h of g
to be h 
 X⊕n with X one-dimensional. The pairing under Howe duality with the
representations of X⊕n implies that σ̄⊗2n[Δ(2n−1)(g')] = σ̄⊗2n[Δ⊗n ◦ Δ(n−1)(g')]
decomposes into representations of the form σ1 ⊗ σ2 ⊗ · · · ⊗ σn(Δ

(n−1)(g')) with
the σi’s being irreducible representations arising in the decomposition of σ̄⊗2. This
quotienting by h is a way of posing a generalized Racah problem for the recoupling
of the n representations σi of g'.

We indicated in the introduction that the quadratic algebras A of Askey–Wilson
type can be obtained as (subalgebras of) centralizers of diagonal actions in n-fold
tensor products of representations. The intermediate Casimir elements in σ1⊗ σ2⊗
· · · ⊗ σn manifestly centralize the action of g' on H mod h. They are taken to
generate the quadratic algebra of interest. This provides the first presentation of A
as a commutant. The dual one is identified as follows in the present context. We
know that g is the commutant of g' in H. Moreover from the application of Howe
duality, the generators of the representation σ1 ⊗ σ2 ⊗ · · · ⊗ σn of g' are known
to commute with those that represent the subalgebra h 
 X⊕n. The non-trivial
part of the centralizer of σ1 ⊗ σ2 ⊗ · · · ⊗ σn must therefore be obtained, in the
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given representation on H mod h, by those elements in the universal enveloping
algebra of g that commute with X⊕n. In other words, A can also be identified as the
commutant of h ⊂ g in U(g) as represented on H.

There is an equivalent way of looking at this. The pairing of the representations of
g and g' through Howe duality manifests itself in the fact that the Casimir elements
of g and g' are affinely related. Let C be a Casimir element of g'. Consider for
example the intermediate Casimir element given by σ̄⊗4[((Δ ⊗ Δ) ◦ Δ)(C)] ⊗
1⊗(2n−4) corresponding to the embedding of g' in the first four factors of g'⊗2n.
There will be a subalgebra g1 of g that will be dually related to g' on the restriction of
H to V⊗4 so that its Casimir element will be essentially the one of g'. Next, looking
at the intermediate Casimir element of g' associated with a different embedding,
for instance in the four last factors of g'⊗2n, there will be a dual pairing with a
different embedding in g of the same subalgebra g1 and again the two Casimir
elements will basically coincide. These observations lead to the conclusion that
the set of intermediate Casimir elements associated with the representation of g'

is algebraically identical to the set of Casimir elements of the subalgebras of g that
form dual pairs with g' when intermediate representations of the latter are taken. It
is not difficult to convince oneself that the set of invariants connected to the relevant
subalgebras of g consists in the commutant of the maximal Abelian subalgebra of g
as concluded differently before.

To summarize, in situations where Howe duality prevails with (g, g') the pair
of algebras that are dually represented on H and if the representation of g' is of
the form σ̄⊗2n[Δ(2n−1)(g')], the quadratic algebras A of Askey–Wilson type can be
viewed on one hand as the commutant of this action of g' on H and thus generated
by the intermediate Casimir elements of g', or on the other hand as the commutant
of h ⊂ g in the intervening representation of U(g). We shall present next an example
of how this can be concretely realized.

3 The Dual Presentations of the Racah Algebra

The Racah algebra R has three generators K1, K2, K3 that are subjected to the
relations [2]:

[K1,K2] = K3, [K2,K3] = K2
2 + {K1,K2} + dK2 + e1,

[K3,K1] = K1
2 + {K1,K2} + dK1 + e2,

(1)

where [A,B] = AB − BA, {A,B} = AB + BA and d, e1, e2 are central.
We shall explain how dual presentations of the algebra R as a commutant are

obtained in the fashion described in Sect. 2. The dual pair will be (o(6), su(1, 1))
and the representation space H will be that of the state space of six quantum har-
monic oscillators with annihilation and creation operators aμ, a

†
ν , μ, ν = 1, . . . , 6

verifying [aμ, a†
ν ] = δμν . The corresponding Hamiltonian H = a

†
1a1 + · · · + a

†
6a6
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is manifestly invariant under the rotations in six dimensions. These are encoded in
the Lie algebra o(6), realized by the generators Lμν = a†

μaν − aμa
†
ν and possessing

the Casimir element C =∑μ<ν Lμν
2.

The Lie algebra su(1, 1) has generators J0, J± that obey the following commuta-
tion relations: [J0, J±] = ±J±, [J+, J−] = −2J0, and its Casimir operator is given
by C = J0

2 − J+J− − J0. The six harmonic oscillators also provide a realization
of this algebra through the addition of six copies of the metaplectic representation
of su(1, 1), for which the generators are mapped to: J

(μ)
0 = 1

2 (a
†
μaμ + 1

2 ),

J
(μ)
+ = 1

2 (a
†
μ)

2, J (μ)
− = 1

2 (aμ)
2, μ = 1, . . . , 6. Note that the operators

∑6
μ=1 J

(μ)•
are invariant under rotations. The space of state vectors H thus carries commuting
representations of o(6) and su(1, 1) and Howe duality takes place.

The maximal Abelian algebra of o(6) is o(2)⊕ o(2)⊕ o(2) and is generated by
the set {L12, L34, L56}. The non-abelian part of its commutant in the representation
of U(o(6)) on H is generated by the two invariants

K1 = 1

8

(
L12

2 + L34
2 + L13

2 + L23
2 + L14

2 + L24
2), (2)

K2 = 1

8

(
L34

2 + L56
2 + L35

2 + L36
2 + L45

2 + L46
2). (3)

Define K3 by [K1,K2] = K3. Working out the commutation relations of K3 with
K1 and K2, it is found that they correspond to those (1) of the Racah algebra with
the central parameters given by d = − 1

8

(
C + L12

2 + L34
2 + L56

2
)
,

e1 = − 1
64

(
C−L12

2− 4
)(
L34

2−L56
2
)
, and e2 = − 1

64

(
C−L56

2− 4
)(
L2

34−L2
12

)
.

For details see [3]. By abuse of notation we designate the abstract generators and
their realizations by the same letter.

Regarding the su(1, 1) picture, let J
(μ,ν,ρ,λ)• = J

(μ)• + J (ν)• + J
(ρ)• + J (λ)•

denote the addition of the four metaplectic representations labeled by the vari-
ables μ, ν, ρ, λ all assumed different. The corresponding Casimir operator is
C(μ,ν,ρ,λ) = (J

(μ,ν,ρ,λ)
0 )2 −J

(μ,ν,ρ,λ)
+ J

(μ,ν,ρ,λ)
− − J

(μ,ν,ρ,λ)
0 . Quite clearly, these

actions of su(1, 1) restricted to state vectors of four oscillators are paired with
commuting actions of the Lie algebra o(4) of rotations in the four dimensions
labeled by μ, ν, ρ, λ. It is hence not surprising to find, owing to Howe duality,
that C(1234) = −2K1 and C(3456) = −2K2, namely that the intermediate su(1, 1)
Casimir operators corresponding to the recouplings of the first four and last four
of the six metaplectic representations are equal (up to a factor) to the Casimir
elements of the two corresponding o(4) subalgebras of o(6) which together generate
as we observed the non-trivial part of the commutant of o(2)⊕ o(2)⊕ o(2) in
U(o(6)). This entails the description of the Racah algebra as the commutant in
U(su(1, 1)⊗3) of the action of su(1, 1) on H. Alternatively, picking the su(1, 1)
representations associated with those of o(2)⊕ o(2)⊕ o(2) under Howe duality
yields the sum of three irreducible representations of su(1, 1) belonging to the
discrete series; these are realized as dynamical algebras of three singular oscillators.
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Note that corresponding to the su(1, 1) representation J
(μ,ν)• = J

(μ)• + J (ν)• is the
Casimir C(μν) = − 1

4

(
Lμν

2 + 1
)
. With the dependence on the polar angles “rotated

out”, the total Casimir element C(123456) becomes the Hamiltonian of the generic
superintegrable system on the two-sphere; the constants of motion are the quotiented
intermediate Casimir elements and the symmetry algebra that they generate is hence
that of Racah.

4 More Dual Pictures: An Overview

The main algebras of Askey–Wilson type have been studied recently from the
commutant and Howe duality viewpoints. We summarize in the following the main
results and give in particular the dualities that are involved.

4.1 The Racah Family

The higher rank extension of the Racah algebra [4] defined as the algebra generated
by all the intermediate Casimir elements of σ1 ⊗ σ2 ⊗ · · · ⊗ σn(Δ

(n−1)(su(1, 1)))
can be described in the framework of the preceding section with the help of the dual
pair (o(2n), su(1, 1)) using in this case the module formed by the state vectors of
2n harmonic oscillators. It is then seen to be dually the commutant of o(2)⊕n in the
oscillator representation of U(o(2n)) [5].

The case n = 2 is special and of particular interest since it pertains to the
Clebsch–Gordan problem for su(1, 1), that is, the recoupling of the two irreducible
representations σ1 and σ2. There are no intermediate Casimirs here; the relevant
operators associated with the direct product basis and the recoupled one are
respectively M1 = σ1(J0) − σ2(J0) and the total Casimir M2 = (σ1 ⊗ σ2)Δ(C).
These are seen to obey the commutation relations of the Hahn algebra [6]:

[M1,M2] = M3, [M2,M3] = −2{M1,M2} + δ1,

[M3,M1] = −2M1
2 − 4M2 + δ2,

(4)

where δ1 = 4(σ1(J0) + σ2(J0))(σ1(C) − σ2(C)) and δ2 = 2(σ1(J0) + σ2(J0))
2 +

(σ1(C) + σ2(C)) are central. The name of the algebra comes from the fact that
the 3j -coefficients involve dual Hahn polynomials. In the setup with four harmonic
oscillators, with H carrying the product of four metaplectic representations, Howe
duality will imply that the total Casimir element C(1234) of su(1, 1) coincides with
the Casimir of o(4)—this is the same computation as the one described above.
It is easily seen that σ1(J0) − σ2(J0) is derived from 1

2 (N1 + N2 − N3 − N4)

under the quotient by o(2) ⊕ o(2) with Ni = a
†
i ai , i = 1, . . . , 4. It can in fact
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be checked directly, again abusing notation, that M1 = 1
2 (N1 +N2 −N3 −N4)

and M2 = − 1
4

(
L12

2 + L34
2 + L13

2 + L23
2 + L14

2 + L24
2
)

satisfy the relations
given in Eq. (4) with δ1 = − 1

2 (N1 + N2 + N3 + N4 + 2)(L12
2 − L34

2) and
δ2 = 1

2 (N1 +N2 +N3 +N4 + 2)2 − (L12
2 + L34

2 + 2), in correspondence with
the preceding expressions for δ1 and δ2 in the realization J (1234)• of su(1, 1). From
the expressions of these last M1 and M2, we can claim that the Hahn algebra is the
commutant of o(2) ⊕ o(2) in U(u(4)) represented on H. Let us stress that it is the
universal enveloping algebra of u(4) that intervenes here.

4.2 The Bannai–Ito Ensemble

The Bannai–Ito algebra [7] takes its name after the Bannai–Ito polynomials that
enter in the Racah coefficients of the Lie superalgebra osp(1|2). This algebra has
three generators Ki, i = 1, . . . , 3 that satisfy the relations

{Ki,Kj } = Kk + ωk, i �= j �= k ∈ {1, 2, 3} (5)

with ωi central and {X, Y } = XY + YX. The relevant reductive pair in this
case is (o(6), osp(1|2)) and the representation space H is that of Dirac spinors in
six dimensions with the Clifford algebra generated by the elements γμ verifying
{γμ, γν} = −2δμν, μ, ν = 1, . . . , 6. That the pair (o(6), osp(1|2)) is dually
represented on H is seen as follows: The spinorial representation of o(6) with
generators

Jμν = −iLμν +Σμν, Lμν = xμ∂ν − xν∂μ, Σμν = i

2
γμγν (6)

leaves invariant the following operators:

J− = −i
∑

1≤μ≤6

γμ∂μ, J+ = −i
∑

1≤μ≤6

γμxμ, J0 =
∑

1≤μ≤6

xμ∂μ, (7)

which in turn realize the commutation relations of the Lie superalgebra osp(1|2):
[J0, J±] = ±J±, {J+, J−} = −2J0 with J0 even and J± odd. Howe duality
thus takes place. As a matter of fact, for any subset A ⊂ {1, . . . , 6} of car-
dinality |A| the operators JA− = −i

∑
μ∈A γμ∂μ, JA+ = −i

∑
μ∈A γμxμ, and

JA
0 = |A|

2 +∑μ∈A xμ∂μ realize osp(1|2). The Casimir element of osp(1|2) is given

by C = 1
2 ([J−, J+]− 1)S with S the grade involution obeying S2 = 1, [S, J0] = 0,

{S, J±} = 0. In the realizations at hand, SA = i|A|/2∏
μ∈A γμ with |A| even.



Howe Duality and AW Algebras 231

It can be checked that the operators

K1 = M1 + 3
2Σ12Σ34, K2 = M2 + 3

2Σ34Σ56, K3 = M3 + 3
2Σ12Σ56,

M1 = (L12γ1γ2 + L13γ1γ3 + L14γ1γ4 + L23γ2γ3 + L24γ2γ4 + L34γ3γ4)Σ12Σ34,

M2 = (L34γ3γ4 + L35γ3γ5 + L36γ3γ6 + L45γ4γ5 + L46γ4γ6 + L56γ5γ6)Σ34Σ56,

M3 = (L12γ1γ2 + L15γ1γ5 + L16γ1γ6 + L25γ2γ5 + L26γ2γ6 + L56γ5γ6)Σ12Σ56

realize the relations (5) of the Bannai-Ito algebra upon taking the fol-
lowing: ωij = 2ΓkΓ123 + 2ΓiΓj , where Γ1 = J12, Γ2 = J34, Γ3 = J56, and
Γ123 =

( 5
2 − i

∑
1≤μ<ν≤6 LμνΣμν

)
Σ12Σ34Σ56. That these arise from dual pictures

is explained as follows (see [8] for details). On the one hand, K1,K2,K3 are
observed to belong to the commutant in U(o(6)) of the o(2) ⊕ o(2) ⊕ o(2)
subalgebra of o(6) spanned by {J12, J34, J56}. On the other hand, considering the
Casimir elements CA of osp(1|2) associated with the realization by the operators
{JA

0 , JA± , SA}, we find that C(1234) = K1, C(3456) = K2, and C(1256) = K3.
This confirms that the Bannai–Ito algebra can be dually presented either as the
commutant of o(2)⊕o(2)⊕o(2) in the spinorial representation of U(o(6)) or as the
centralizer of the action of osp(1|2) on H. These considerations can be extended to
higher dimensions [8] so as to obtain analogously dual commutant pictures for the
Bannai–Ito algebras of higher ranks [9].

4.3 The Askey–Wilson Class

The Askey–Wilson algebra can be presented as follows:

[KA,KB ]q
q2 − q−2

+KC = γ

q + q−1
,

[KB,KC]q
q2 − q−2

+KA = α

q + q−1
,

[KC,KA]q
q2 − q−2 +KB = β

q + q−1 ,

(8)

with [A,B]q = qAB − q−1BA and α, β, γ central.
The Uq(su(1, 1)) algebra has three generators, J± and J0, obeying

[J0 , J±] = ±J± and J−J+ − q2J+J− = q2J0 [2J0]q with [x]q = qx−q−x

q−q−1 .
Its coproduct is defined by Δ(J0) = J0 ⊗ 1 + 1 ⊗ J0, Δ(J±) =
J± ⊗ q2J0 + 1 ⊗ J±. The Casimir operator C of Uq(su(1, 1)) is given by

C = J+J−q−2J0+1 − q

(1−q2)2

(
q2J0−1 + q−2J0+1

)+ 1+q2

(1−q2)2 .
The q-deformation oq1/2(N) of o(N) is defined as the algebra with generators

Li,i+1 (i = 1, . . . , N − 1) obeying the relations
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Li−1,i L
2
i,i+1 − (q1/2 + q−1/2)Li,i+1 Li−1,i Li,i+1 + L2

i,i+1 Li−1,i = −Li−1,i ,

Li,i+1 L2
i−1,i − (q1/2 + q−1/2)Li−1,i Li,i+1 Li−1,i + L2

i−1,i Li,i+1 = −Li,i+1,

[Li,i+1, Lj,j+1] = 0 for |i − j | > 1.

We shall use the notation L±ik = [L±ij , L±jk]q±1/4 for any i < j < k, and by definition

L±i,i+1 = Li,i+1.
The reductive pair (oq1/2(6), Uq(su(1, 1)) is the one which is of relevance for

the Askey–Wilson algebra. Let us indicate how oq1/2(2n) and Uq(su(1, 1)) are
dually represented on the standard state space H of 2n independent q-oscillators
described by operators {A±i , A0

i } such that [A0
i , A

±
i ] = ±A±i , [A−i , A+i ] = qA0

i ,
A−i A+i − qA+i A−i = 1, i = 1, . . . , 2n. The algebra Uq(su(1, 1)) is represented on
H by using the coproduct to embed it in the tensor product of 2n copies of the
q-deformation of the metaplectic representation, this gives

J
(2n)
0 = Δ(2n−1)

(
1
2

(
A0

i + 1
2

) )
= 1

2

2n∑

i=1

(
A0

i +
1

2

)
,

J
(2n)
± = Δ(2n−1)

(
1

[2]q1/2
(A±i )2

)
= 1

[2]q1/2

2n∑

i=1

(
(A±i )2

2n∏

j=i+1

q
A0

j+ 1
2

)
.

(9)

The algebra oq1/2(2n) can also be realized in terms of 2n q-oscillators. The 2n − 1
generators take the form

Li,i+1 = q−
1
2 (A

0
i+ 1

2 )
(
q

1
4 A+i A−i+1 − q−

1
4 A−i A+i+1

)
, i = 1, . . . , 2n− 1.

It can be checked that [J (2n)
0 , Li,i+1] = [J (2n)

± , Li,i+1] = 0, i = 1, . . . , 2n − 1, in
other words, that Uq(su(1, 1)) and oq1/2(2n) have commuting actions on the Hilbert
space H of 2n q-oscillators. This sets the stage for Howe duality. In order to connect
with the Askey–Wilson algebra we take n = 3. The expressions of the operators KA

and KB acting on H that realize the relations (8) (together with the specific central
elements) are rather involved and we shall refer the reader to [10] for the formulas.
We shall only stress that these operators can be obtained in a dual way: They are
affinely related to the generators of the commutant of oq1/2(2)⊕3 in oq1/2(6) as well
as to the intermediate Uq(su(1, 1)) Casimir elements C(1234) = Δ(3)(C)⊗1⊗1 and
C(3456) = 1⊗1⊗Δ(3)(C) of the q-metaplectic representation (see (9)). This can be
extended to higher ranks by letting n be arbitrary [11]. For n = 2 we are looking at
the Clebsch–Gordan problem for Uq(su(1, 1)). The q-Hahn algebra that arises has
two dual realizations [12]: one as the commutant of oq1/2(2)⊕2 in Uq(u(4)) and the
other in terms of the following two Uq(su(1, 1)) operators, (Δ(J0)⊗1⊗1)−(1⊗1⊗
Δ(J0)) and Δ(2)(C) (the full Casimir element) in the q-metaplectic representation.



Howe Duality and AW Algebras 233

5 Conclusion

This paper has offered a summary of how the quadratic algebras of Racah, Hahn,
Bannai–Ito, Askey–Wilson, and q-Hahn types can be given dual descriptions as
commutant of Lie algebras, superalgebras, and quantum algebras. The connection
between these dual pictures is rooted in Howe dualities whose various expressions
have been stressed. The attentive reader will have noticed that the Clebsch–Gordan
problem for osp(1|2) has not been mentioned; this is because it has not been
analyzed yet. We plan on adding this missing piece to complete the picture.
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Second-Order Supersymmetric Partners
of the Trigonometric Rosen–Morse
Potential

Rosa Reyes, D. J. Fernández, and H. Gasperín

Abstract The second-order supersymmetric partners of the trigonometric Rosen–
Morse potential are studied. The stationary Schrödinger equation for this potential
is solved in such a way that the general solution supplies straightforwardly the
eigenstates of the Hamiltonian while the non-physical solutions turn out to be conve-
niently expressed for characterizing its global properties. This allows to implement
in a simple and systematic way the second-order supersymmetry transformations.

Keywords Supersymmetric quantum mechanics · Trigonometric Rosen–Morse
potential

1 Introduction

The trigonometric Rosen–Morse (TRM) potentials belong to the exactly solvable
class of potentials, i.e., there exist explicit analytic expressions for their energy
eigenstates and eigenvalues [1, 2]. These potentials are interesting in physics mainly
for two reasons: the first one is their possible use for describing the quark-gluon
interaction in quantum chromodynamics [3]; the second one is their intrinsic
properties, making them ideal as a toy model for studying nonlinear algebras and
supersymmetric quantum mechanics (SUSY QM) [4–6]. For example, they have a
relatively simple dependence of the x-coordinate in a finite domain. In addition,
they have an infinite discrete energy spectrum, with a nonlinear dependence of the
energy levels on the index labeling them, making these potentials a clear case study
for nonlinear algebras.

On the other hand, SUSY QM is a powerful tool for generating, from an exactly
solvable initial Hamiltonian, new families of exactly solvable Hamiltonians whose
spectra are quite similar to the initial one [7–11]. In this work we will apply the
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second-order SUSY QM to the TRM potential for generating new families of exactly
solvable potentials. Through these transformations we can design the spectra for the
new potentials in several different ways, as we will exhibit in this article.

This work consists of three parts, the first one contains a brief review of the
second-order SUSY QM, while the second will address the TRM potential and
the solution to the corresponding Schrödinger equation. In the third part we will
show results of the second-order SUSY transformation when applied to the TRM
potential. At the end we will highlight the main results of this paper.

2 Supersymmetric Quantum Mechanics

The basic idea of SUSY QM is to deal with an intertwining relation which involves
the operators Hi (i = 0, 2) and B† as follows:

H2B
† = B†H0. (1)

We suppose that Hi (i = 0, 2) are two one-dimensional Schrödinger Hamiltonians

Hi = −1

2

d2

dx2
+ Vi(x), i = 0, 2,

where, for simplicity, we are working in dimensionless coordinates and B† is the
second-order differential intertwining operator

B† = 1

2

(
d2

dx2
− η(x)

d

dx
+ γ (x)

)
,

with η(x), γ (x) being two real unknown functions. If we plug the expressions for
B† and Hi (i = 0, 2) into the intertwining relationship (1) we arrive to a coupled
system of equations which, after some work, leads to

V2 = V0 − η′, γ = η′

2
+ η2

2
− 2V0 + d, (2)

ηη′′

2
− η′2

4
+ η2η′ + η2

4
− 2V0η

2 + dη2 + c = 0, (3)

where d, c are two real integration constants. It is important to note that in these
expressions we have four unknown functions V0, V2, η, γ , but only three equations
to determine them, thus we need some extra information to deal with the problem.
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Suppose now that V0(x) is given, then we can determine V2(x) and γ (x) once
the solution η(x) to the nonlinear differential equation (3) is obtained (see Eq. (2)).
This is done by using the ansatz

η′ = −η2 + 2βη + 2ξ,

with β, ξ being two functions of x to be determined. This ansatz transforms Eq. (3)
into the following set of equations:

ξ2 = c, ε = 1
2 (d + ξ), β ′ + β2 = 2 (V0 − ε) .

The first two equations produce the solutions ξ1,2 = ±√c and ε1,2 =
(
d ±√c

)
/2.

The third one is a first-order nonlinear differential equation known as Riccati
equation, which can be transformed into a linear equation through the change
βi = u′0i/u0i , leading to

− 1

2
u′′0i + V0u0i = εiu0i , i = 1, 2. (4)

This is the initial stationary Schrödinger equation with potential V0 for the two
factorization energies ε1, ε2. The functions u0i , i = 1, 2 are named seed solutions
in the literature; depending on whether they are square integrable or not, they are
called physical or non-physical solutions of the initial Hamiltonial H0.

The second-order transformations can be classified according to the sign of the
constant c involved in the factorization energies ε1,2. Thus, three different cases
appear: the real case for c > 0, the complex case for c < 0, and the confluent case
for c = 0 [10–12]. In all three cases the new potential is given by

V2(x) = V0(x)− [ln (W(u01, u02))]
′′ . (5)

The function W(u01, u02) denotes the Wronskian of the two seed solutions u01 and
u02 in the real and complex cases, while for the confluent case it is given by

W(u01, u02) = w0 +
∫ x

x0

[u01(y)]
2 dy, (6)

where u01 is a seed solution satisfying Eq. (4), u02 fulfills (H0 − ε1)u02 = u01,
and w0 is an integration constant that can be adjusted to avoid that W(u01, u02) will
have a zero in the x-domain. For the real case u01 and u02 must be taken as real
solutions to Eq. (4), for the complex case u01 and u02 are complex conjugate seed
solutions of (4) such that u02 = u∗01. For further details on the conditions that the
seed solutions must fulfill in each case, see for example [10–12].



238 R. Reyes et al.

On the other hand, the eigenfunctions ψ0n(x) of the initial Hamiltonian H0 are
related with those of the new Hamiltonian H2 (ψ2n(x)) as follows:

ψ2n (x) = B†ψ0n (x)√
(En − ε1) (En − ε2)

.

Moreover, there exist solutions to the stationary Schrödinger equation for H2 with
factorization energies ε1, ε2, which are given by:

ψ2ε1 (x) ∝
u02 (x)

W(u01, u02)
, ψ2ε2 (x) ∝

u01 (x)

W(u01, u02)
.

The kind of modifications that can done in the spectrum of the resultant Hamiltonian
H2, as compared with the initial one, depends on the factorization energies chosen,
as well as on the square-integrability of ψ2ε1 and ψ2ε2 .

3 Trigonometric Rosen–Morse Potential

In this section we describe briefly the trigonometric Rosen–Morse potentials. They
form a biparametric family of one-dimensional potentials in a finite domain, which
in the dimensionless coordinate x are given by

V0(x) = a(a + 1)

2
csc2(x)− b cot(x), a > 0, b ∈ IR, x ∈ (0, π),

(7)
with a, b being the parameters of the potential. Since these potentials are time
independent, it is required just to solve the corresponding stationary Schrödinger
equation

(
−1

2

d2

dx2 +
a(a + 1)

2
csc2(x)− b cot(x)

)
ψ(x) = Eψ(x). (8)

One way to solve this equation is to transform it into the hypergeometric equation.
After doing this, the general solution to the Schrödinger equation (8) is

ψ(x) = AψL(x)+ BψR(x), A,B ∈ C, (9)

where

ψL(x) = κ(a, ν, μ)e−[μ
2−i(ν+a)]x sina+1(x) 2F1

(
ν+a, a+1+ iμ

2 ; ν+ iμ
2 ; e2ix

)

+ρ(a, ν, μ)e[μ
2+i(1−ν−a)]x sin−a(x)
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×2F1

(
1−ν−a,−a− iμ

2
; 2−ν− iμ

2
; e2ix

)
, (10)

μ = 2b√
E+
√

E2+b2
, ν = 1−

√
E +√E2 + b2,

κ(a, ν, μ) = Γ (2a+2)Γ (1−ν−i
μ
2 )

Γ (a+1−i
μ
2 )Γ (a+2−ν)

, ρ(a, ν, μ) = ( i2
)2a+1 Γ (2a+2)Γ (ν−1+i

μ
2 )

Γ (a+1+i
μ
2 )Γ (a+ν)

,

and

ψR(x) = ψL(π − x). (11)

In this expression, in order to obtain ψR(x), in addition of making the reflection of
ψL(x) with respect to π/2 we have to change as well in ψL(π − x) the parameter
b by −b. Note that {ψL(x), ψR(x)} is a set of two linearly independent solutions
of Eq. (8) vanishing to the left (x = 0) and to the right (x = π ), respectively.
These expressions make easy to study the behavior of the solutions, particularly the
non-physical ones. If the condition of square-integrability is imposed, we obtain the
energy spectrum of the TRM Hamiltonian, whose energy levels are given by

En = 1

2
(n+ a + 1)2 − b2

2 (n+ a + 1)2 , n ∈ IN, (12)

with bound state solutions

ψn(x) = Cne
−
[

b
n+1+a

−in
]
x

sina+1(x)

× 2F1

(
−n, a + 1− ib

n+ 1+ a
; 2a + 2; 2ie−ix sin(x)

)
, (13)

where Cn is a normalization constant. We have now all the information required to
implement the second-order SUSY transformations for the TRM potentials.

4 SUSY Partners of the Trigonometric Rosen–Morse
Potential

Once the general solution (9) to the stationary Schrödinger equation (8) has
been constructed, we can study the second-order SUSY transformations that lead
to a final non-singular real potential by exploring all possible combinations of
factorization energies and associated seed solutions for the real, complex, and
confluent cases [10–12]. Some examples of the resulting potentials for the different
kinds of transformations are now discussed.
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The real case has been partially analyzed in the past, for factorization energies
coinciding with two consecutive energy levels of the initial Hamiltonian [13]. To
illustrate this example, let us take as seed solutions the two bound states associated
with the factorization energies ε1 = E2 and ε2 = E1, which leads to the following
potential:

V2(x) = (a + 2)(a + 3)

2
csc2(x)− b cot(x)+ 4[(a + 3)2 + b̃2]

× (a + 2)2 + b̃2 + [(a + 2)(a + 3)− b̃2] cos(2x)− (2a + 5)b̃ sin(2x)

{(a + 3)2 + b̃2 + [(a + 2)(a + 3)− b̃2] cos(2x)− (2a + 5)b̃ sin(2x)}2
(14)

where b̃ = b/(a+1). Up to our knowledge, the explicit expression for this potential
is new.

Note that in this work we extend these results, by using general seed solutions (9)
whose factorization energies are not in the spectrum of the TRM potential. For doing
this, we need to choose carefully such seed solutions, since their behavior depends
on the two constants A, B involved in the linear combination (9), which will be
taken real in order to guarantee that the seed solutions will be real. Moreover, if
A, B have the same sign, then the number of zeros of the seed solution will be even,
otherwise it will be odd. This information is enough for selecting appropriately the
seed solutions, in order to implement non-singular transformations [10].

In Fig. 1 we can see several examples of how the new potential changes as the
spectrum of the TRM potential is modified by a second-order transformation in
the real case. In the left side we observe the potentials resulting from erasing two
consecutive energy levels (dotted and dashed curves) of V0(x) (continuous curve).
Let us note that the dashed curve in the graph corresponds to a potential given by
Eq. (14). On the right side of Fig. 1 it is seen the potentials resulting from adding
two levels in the same energy gap (dotted and dashed curves).

For the complex and confluent cases there exist some restrictions on the behavior
of the seed solutions at the edges of the x-domain (see for example [10–12]). As
the solutions (10) and (11) satisfy precisely such requirements, we can use them
directly to implement the corresponding transformations.

For two complex conjugate seed solutions, and factorization energies, the
implemented SUSY transformations generate isospectral potentials. Some examples
are shown in Fig. 2.

On the other hand, the confluent case generates Hamiltonians which can be
whether or not isospectral to the initial one. This depends on the w0-parameter of
Eq. (6), as well as of the factorization energy chosen. Due to the difficulty involved
in evaluating the integral for general factorization energies, in this work we show
only examples with a factorization energy coinciding with one of the energy levels
of the initial Hamiltonian. In Fig. 3 we can see examples of the new potentials
resulting from applying the confluent second-order SUSY transformation to the
TRM potentials for the two factorization energies ε1 = E0, E3.
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Fig. 1 TRM potential with a = 2, b = 50 (continuous curve) and its second-order SUSY partners
in the real case (dashed and dotted curves). Left: potentials resulting from a transformation with
ε1 = E2 = −37.5, ε2 = E1 = −70.125 (dashed curve), and with ε1 = E5 = 12.4688, ε2 =
E4 = −1.0102 (dotted curve). Right: potentials appearing from a transformation with ε1 = −40,
ε2 = −60 (dashed curve), and with ε1 = −2, ε2 = −10 (dotted curve)
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Fig. 2 Second-order SUSY partners (dashed and dotted curves) of the TRM potential with a = 2,
b = 50 (continuous curve) for two complex conjugate factorization energies ε2 = ε∗1 . Left: for
ε1 = E1 + 0.5i (E1 = −70.125) and for ε1 = E1 + 20i (dashed and dotted curves, respectively).
Right: for ε1 = 0.5i and ε1 = 20i (dashed and dotted curves, respectively)
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Fig. 3 Confluent second-order SUSY partner potentials (dashed and dotted curves) of the TRM
potential with a = 2, b = 50 (continuous curve). Left: for ε1 = E0 = −134.389, w0 = 0.1
(dashed curve), and for ε1 = E0, w0 = 0.5 (dotted curve). Right: for ε1 = E2 = −37.5, w0 = 0.5
(dashed curve), and for ε1 = E2, w0 = 0.1 (dotted curve)

5 Conclusions

In this work we have expressed in an appropriate way the general solution to the
stationary Schrödinger equation for the TRM potential. The main advantage of this
construction is the possibility of characterizing simply its global properties, namely,
the number of zeros and the behavior at the edges of the domain of the potential. This
allows us to implement in a systematic way the second-order SUSY transformations
once the seed solutions have been conveniently chosen.

We have reproduced the results reported in [13], but we have gone beyond by
completing the study for the real case, also we have developed in full the complex
case, and we have partially studied the confluent case, by considering only the
situation when the factorization energy becomes one of the energy levels of H0
in the last case.

Acknowledgment Rosa Reyes acknowledges the Conacyt scholarship No. 280723.
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A Noncommutative Geometric Approach
to the Batalin–Vilkovisky Construction

Roberta A. Iseppi

Abstract In this paper we argue why noncommutative geometry offers a natural
geometrical framework to describe the Batalin–Vilkovisky construction for gauge
theories over algebraic spaces. A key role is played by the notion of BV-spectral
triple, which encodes all the elements of a BV-extended theory within a purely
noncommutative geometrical object. An interesting aspect of this approach is that it
provides all physical properties, like being a ghost field or anti-ghost field, with
a geometrical interpretation. We present our results for the case of U(2)-matrix
models. However, indications are given on how to perform the construction in the
general setting of U(n)-theories.

Keywords Noncommutative geometry · Batalin–Vilkovisky construction · Finite
spectral triple · Gauge theory · Matrix models

1 Introduction: Why Noncommative Geometry

Since its early days, noncommutative geometry [9] has shown a reciprocal and
valuable interconnection with several areas of mathematics, such as motivic and
foliation theory, operator algebras, and KK-theory. However, maybe even more
remarkably, noncommutative geometry revealed a deep relation to quantum field
theory and gauge theory in particular. A confirmation of that can be found in a
series of the celebrated results, which began with the pioneering papers by Connes
[8, 10], had a breakthrough in [3, 4, 11], and finally arrived to the key result obtained
by Chamseddine, Connes, and Marcolli [5] of deriving the full Standard Model of
particles, with neutrino mixing and minimally coupled to gravity, from a purely
noncommutative geometrical object. Furthermore, recently new approaches have
been suggested to go beyond the Standard Model, using the framework provided by
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noncommutative geometry as starting point to search for a new spectral model of
gravity coupled with matter [6, 7, 13].

Therefore, as confirmed by the quoted monumental results, it is natural to
investigate whether noncommutative geometry could provide a new mathematical
description of other constructions developed in the context of gauge theories. In
this article we focus in particular on the Batalin–Vilkovisky approach to the BRST
construction. After a concise recall of the needed notions from the noncommutative
geometric world (cf. Sect. 2), we will briefly outline the algebraic approach to the
Batalin–Vilkovisky construction for gauge theories with an affine configuration
space (cf. Sect. 3). Then, Sect. 4 is devoted to present our main result: focusing on
a U(2)-matrix model, we present how all the elements playing a role in the BV
construction can be successfully encoded in a purely noncommutative geometrical
object, the so-called BV-spectral triple. Finally, in Sect. 5 we explain how the
problem can be approached and solved in the general context of finite spectral triples
on the algebra Mn(C).

2 Finite Spectral Triples and Induced Gauge Theories

Without any doubt, the notion of spectral triple plays a central role in contemporary
noncommutative geometry. In its full generality, a spectral triple can be viewed as
a noncommutative version of the classical concept of Riemannian spin manifold.
However, conversely to what happens in the classical setting, a spectral triple
presents a very rich and interesting structure also when the underline topological
space is 0-dimensional, and hence the corresponding spectral triple is finite dimen-
sional. Even more, it is precisely a finite spectral triple that, in the description of
the full Standard Model as induced by an almost commutative spectral triple [5],
encodes the particle content of the theory. Therefore, we briefly recall the needed
notions in this finite dimensional context, where also our construction will take place
(cf. [9, 12]).

Definition 1 A spectral triple (A,H,D) consists of an involutive unital algebra A,
faithfully represented as operators on a Hilbert space H, together with a self-adjoint
operator D on H, with a compact resolvent, such that the commutators [D, a] are
bounded operators for each a ∈ A. A spectral triple (A,H,D) is finite if the Hilbert
space H and hence the algebra A are finite dimensional.

Given a spectral triple (A,H,D), its structure can be further enriched via the
introduction of a real structure, determining a real spectral triple (A,H,D, J ).

Definition 2 A real structure of odd KO-dimension n (mod 8) on a spectral triple
(A,H,D) is an anti-linear isometry J : H→ H that satisfies

J 2 = ε and JD = ε′DJ.
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The constants ε and ε′ depend on the odd KO-dimension n (mod 8) as follows:

n 1 3 5 7
ε 1 −1 −1 1
ε′ −1 1 −1 1

Moreover, we require for all a, b ∈ A that:

– the action of A satisfies the commutation rule:
[
a, Jb∗J−1

] = 0;
– the operator D fulfills the first-order condition: [[D, a], J b∗J−1] = 0.

Next to its purely geometrical nature, a spectral triple is also strongly related to
gauge theory: indeed, each spectral triple (A,H,D) naturally induces a gauge theory,
whose gauge-invariant action is given by the so-called spectral action.

Definition 3 For a finite spectral triple (A,H,D) and a suitable real-valued function
f , the spectral action S0 is given by

S0[D +M] := T r
(
f (D +M)

)

with domain the set of self-adjoint operators of the form M = ∑
j aj [D, bj ], for

aj , bj ∈ A.

Definition 4 Let X0 be a vector space over R, S0 be a functional on X0, S0 : X0 → R,
and G be a group acting on X0 through an action F : G × X0 → X0. Then the pair
(X0, S0) is a gauge theory with gauge group G if it holds that

S0(F (g, ϕ)) = S0(ϕ), ∀ϕ ∈ X0, ∀g ∈ G.

Concerning the terminology, X0 is the configuration space, an element ϕ in X0 is
a gauge field, the functional S0 is the action, and G is known as the gauge group.

Proposition 1 Each finite spectral triple (A,H,D) naturally induces a gauge theory
(X0, S0), where the configuration space is the space of inner fluctuation

X0 :=
{
ϕ =

∑

j

aj
[
D, bj

] : ϕ∗ = ϕ, aj , bj ∈ A
}
,

for ∗ the involution on A, and the action functional S0 is the spectral action

S0[D + ϕ] := T r
(
f (D + ϕ)

)
,

with f a polynomial in one real variable and T r the classical matrix trace. Finally,
the unitary elements in A determine the gauge group G

G := U(A) = {u ∈ A : uu∗ = u∗u = 1
}
,
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which acts on X0 as follows:

G ×X0 −→ X0

(u, ϕ) �→ uϕu∗ + u[D,u∗].

The proof of the above classical Proposition is a straightforward checking. We
remark that a similar construction can be performed also in the infinite dimensional
case. To conclude the section, we recall that there is another notion of action
for spectral triples, which will play a key role in our construction: the so-called
fermionic action.

Definition 5 For a finite spectral triple (A,H,D) (finite real spectral triple
(A,H,D, J )) the fermionic action on Hf ⊆ H is given by

Sferm[ϕ] = 1

2
〈ϕ,Dϕ〉

(
Sferm[ϕ] = 1

2
〈Jϕ,Dϕ〉

)
; for ϕ ∈ Hf .

3 The BV Construction in the Algebraic Context

The Batalin–Vilkovisky (BV) formalism (cf. [1, 2]) can be viewed as the end point
of a long path, which had its motivation in the problem of defining the path integral
(cf.[16]) for gauge theories and its origin in the introduction of the concept of ghost
field by Faddeev and Popov in 1967 [14]. As suggested by the name, the ghost fields
are non-existing particles, whose function is to compensate the presence of local
symmetries and hence the appearance of divergences in the path integral. Moreover,
next to the ghost fields, the BV formalism requires also the introduction of all the
corresponding anti-fields/anti-ghost fields.

Definition 6 A field/ghost field ϕ is a graded variable characterized by two integers:

deg(ϕ) ∈ Z and ε(ϕ) ∈ {0, 1}, with deg(ϕ) = ε(ϕ) (mod Z/2).

deg(ϕ) is the ghost degree, while ε(ϕ) is the parity, which distinguishes between the
bosonic case, where ε(ϕ) = 0 and ϕ behaves as a real variable, and the fermionic
case, where ε(ϕ) = 1 and ϕ behaves as a Grassmannian variable:

ϕψ = −ψϕ, and ϕ2 = 0, if ε(ϕ) = ε(ψ) = 1.

The anti-field/anti-ghost field ϕ∗ corresponding to a field/ghost field ϕ satisfies

deg(ϕ∗) = − deg(ϕ)− 1, and ε(ϕ∗) = ε(ϕ)+ 1, (mod Z/2).

Then, given an initial gauge theory (X0, S0), the BV construction associates with
that a new pair (X̃, S̃), where the extended configuration space X̃ and the extended
action S̃ are given by:
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X̃ = X0 ∪ { ghost & anti-ghost fields } S̃ = S0 + terms in ghost/anti-ghosts.

However, conditions need to be imposed on how we perform this extension, on the
number and type of ghost and anti-ghost fields we have to introduce and on the
properties satisfied by the extended action S̃ (cf. [15, 17]).

Definition 7 Let the pair (X0, S0) be a gauge theory. Then an extended theory
associated with (X0, S0) is a pair (X̃, S̃) where X̃ = ⊕i∈Z[X̃]i is a super graded vector
space suitable to be decomposed as

X̃ ∼= F ⊕ F∗[1], with [X̃]0 = X0 (1)

for F = ⊕i�0F i a graded locally free OX0 -module with homogeneous components
of finite rank, and S̃ ∈ [OX̃]0 is a regular function on X̃, with S̃|X0 = S0, S̃ �= S0 and
such that it solves the classical master equation, i.e.,

{S̃, S̃} = 0,

where {−,−} denotes the graded Poisson structure on the algebra OX̃.

Note The condition in (1) enforces the prescription of the BV formalism of
introducing all anti-fields/anti-ghost fields corresponding to the fields/ghost fields
in X̃. In particular, F describes the fields/ghost fields in the extended theory while
F∗[1] denotes the shifted dual module of the anti-fields/anti-ghost fields:

F∗[1] = ⊕i∈Z
[
F∗[1]]i with

[
F∗[1]]i = [F∗]i+1

.

Moreover, the Poisson structure on OX̃ is completely determined by requiring that,
on the generators of X̃, it satisfies the following conditions:

{
βi, βj

} = 0,
{
β∗i , βj

} = δij and
{
β∗i , β∗j

} = 0

for βi ∈ Fp and β∗i ∈
[
F∗[1]]−p−1, p ∈ Z�0, while its value on any other possible

combination of fields/ghost fields/anti-fields and anti-ghost fields is equal to zero.

4 BV-Spectral Triple: The Notion and the Relevance

In this section we present how the BV construction for gauge theories on affine
spaces can be encoded in the framework of noncommutative geometry. For simplic-
ity, we focus on a U(2)-gauge theory, induced by the finite spectral triple

(M2(C),C2,D),
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where D is a self-adjoint 2× 2-matrix. By applying Proposition 1, we have that the
above spectral triple induces a gauge theory (X0, S0) with

X0 = {M ∈ M2(C) : M∗ = M}, S0[M] = T r(f (M)) and G = U(2),

where f a polynomial in OX0 . By fixing as basis for X0 the one given by the Pauli
matrices together with the identity matrix {σ1, σ2, σ3, σ4 = Id}, we have the following
identifications:

X0 
 A
4
R
= 〈M1,M2,M3,M4〉R S0 =

r∑

k=0

(M2
1 +M2

2 +M2
3 )

kgk(M4),

where Ma , a = 1, . . . , 4 are real variables and gk(M4) are suitable polynomials only in
M4. Given the gauge theory (X0, S0) just described, one can verify (cf. [17]) that the
corresponding minimally BV-extended theory has an extended configuration space
whose decomposition as Z-graded vector space is:

X̃ = 〈E∗〉−3⊕〈C∗1 , · · · , C∗3 〉−2⊕〈M∗
1 , . . . ,M

∗
4 〉−1⊕X0⊕〈C1, · · · , C3〉1⊕〈E〉2.

and an extended action

S̃ = S0 +
∑

i,j,k

εijkM
∗
i MjCk +

∑

i,j,k

C∗i (MiE + εijkCjCk). (2)

for εijk a totally antisymmetric tensor in the indices i, j, k ∈ {1, 2, 3}, with ε123 = 1.
After having determined this BV-extended pair (X̃, S̃), a natural question arises:

indeed, because the pair (X0, S0) came as the gauge theory naturally induced by
a finite spectral triple, one might wonder if also the corresponding BV-extended
theory can be encoded in a new BV-spectral triple. In other words, we want to
determine a real spectral triple (ABV ,HBV ,DBV , JBV ) such that its fermionic action
Sferm coincides with the BV action SBV := S̃ − S0 of the model. As we explain in
the theorem below, this goal can be reached. However, before constructing all the
elements entering the BV-spectral triple, we remark that the reason why we have to
introduce a real structure and to consider the fermionic action, instead of the spectral
action, is the presence of Grassmannian variables both in X̃ and S̃.

We define the following data:

• ABV := M2(C);
• HBV :=

[
M2(C)

]
M
⊕ [M2(C)

]
C
⊕ [M2(C)

]
E

.
The inner product structure is the Hilbert–Schmidt inner product on each
summand. Moreover, by HBV,f , we identify the following subspace:

HBV,f = i · u(2)⊕ i · su(2)⊕ u(1)


 {[M1, . . . ,M4], [C1, . . . , C3, 0], [0, . . . , 0, iE]} (3)
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where, for now, Ma , Cj , and E are all treated as real variables;
• the self-adjoint linear operator DBV acting on HBV is given by

DBV :=
⎛

⎝
0 R T

R S 0
T 0 0

⎞

⎠

where the linear operators R, S, T are defined by

R : HC → HM ;
ϕC �→ [β, ϕC],

S : HC → HC;
ϕC �→ [α, ϕC],

T : HM → HM ;
ϕC �→ [α, ϕC]+.

Here, α and β denote Hermitian, traceless 2×2-matrices and we stress that, while
R and S are defined as a commutator, T is an odd derivation, given in terms the
anti-commutator. Alternatively, if we write α and β in terms of the Pauli matrices
as follows:

α = 1
2

[
(−C∗1 )σ1 + (−C∗2 )σ2 + (−C∗3 )σ3

]

β = 1
2

[
(−M∗

1 )σ1 + (−M∗
2 )σ2 + (−M∗

3 )σ3
]
,

for C∗i and M∗
i real variables, R, S, and T can be expressed as the following 4× 4-

matrices:

R :=

⎛

⎜⎜⎝

0 +iM∗
3 −iM∗

2 0
−iM∗

3 0 +iM∗
1 0

+iM∗
2 −iM∗

1 0 0
0 0 0 0

⎞

⎟⎟⎠ , S :=

⎛

⎜⎜⎝

0 +iC∗3 −iC∗2 0
−iC∗3 0 +iC∗1 0
+iC∗2 −iC∗1 0 0

0 0 0 0

⎞

⎟⎟⎠

T :=

⎛

⎜⎜⎝

0 0 0 C∗1
0 0 0 C∗2
0 0 0 C∗3
C∗1 C∗2 C∗3 0

⎞

⎟⎟⎠

• JBV : HBV → HBV, with JBV(ϕ) := i · ϕ∗, for ϕ ∈ HBV . Note that (JBV )2 = Id.

We remark that the operator DBV neither commutes nor anti-commutes with JBV.
Indeed, if we decompose DBV as

DBV = D1 +D2 with D1 =
⎛

⎝
0 R 0
R∗ S 0
0 0 0

⎞

⎠ , D2 =
⎛

⎝
0 0 T

0 0 0
T 0 0

⎞

⎠ .

we find that

JBVD1 = −D1JBV, JBVD2 = +D2JBV.
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Hence, we are constructing a real spectral triple of mixed KO-dimension.

Theorem 1 The data (ABV,HBV,DBV, JBV) define a real spectral triple (with
mixed KO-dim.), whose fermionic action coincides with the BV action in (2):

SBV = 1

2
〈JBV(ϕ),DBVϕ〉, with ϕ ∈ HBV,f .

where Ma,E and C∗j have to be treated as real variables while M∗
a and Cj behave as

Grassmannian variables.

Note It can be checked that the algebra ABV is the largest unital algebra that
complete the triple (HBV ,DBV , JBV ) defined above to a real spectral triple.

Because the theorem is proved by directly checking all the requirements
appearing in the definition of a spectral triple (cf. [18]), we prefer not to present the
details but to conclude with few remarks on how the physical properties of the BV-
extended theory get translated in the noncommutative geometrical language. Indeed,
we have that, while the anti-fields/anti-ghost fields M∗

a and C∗j appear as entries of the
operator DBV, the fields/ghost fields Ma , Cj , and E determine the elements in HBV,f .
Moreover, the new phenomena of a spectral triple of mixed-KO dim. accounts for
the presence of bosonic and fermionic fields both X̃ and S̃.

5 Conclusions and Outlooks

The construction presented in the above section can be applied also to the more
general case of U(n)-gauge theories, naturally induced by finite spectral triples on
the algebra Mn(C). What made the above construction possible was the fact that the
extended action S̃ was precisely linear in the anti-fields/anti-ghost fields: indeed,
this property allows to rewrite the BV action as a fermionic action, having all the
anti-fields/anti-ghost fields as entries of the operator DBV . However, this linearity
condition holds also for U(n)-theories, with n > 2. Even though in principle a BV
action obtained by applying the algebraic BV construction could contain higher
other terms in anti-fields/anti-ghost fields, the fact that for this class of models the
algebra of gauge transformation is closed under commutations on the critical locus
Xcrit ⊂ X0 of the action functional S0 ensures the appearance of only linear terms
in the anti-fields/anti-ghost fields. Hence the structure found for this U(2)-model
perfectly replicates for the whole class of U(n)-theories.
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A New Method for Constructing
Squeezed States for the Isotropic 2D
Harmonic Oscillator

James Moran and Véronique Hussin

Abstract We introduce a new method for constructing squeezed states for the 2D
isotropic harmonic oscillator. Based on the construction SU(2) coherent states, we
define a new set of ladder operators for the 2D system as a linear combination of the
x and y ladder operators and construct the SU(2) coherent states. The new ladder
operators are used for generalizing the squeezing operator to 2D and the SU(2)
coherent states play the role of the Fock states in the expansion of the 2D squeezed
states. We discuss some properties of the 2D squeezed states.

Keywords Coherent states · Squeezed states · Harmonic oscillator · SU(2)
coherent states · 2D coherent states · 2D squeezed states · Uncertainty principle

1 Introduction

Degeneracy in the spectrum of the Hamiltonian is one of the first problems we
encounter when trying to define a new type of coherent states for the 2D oscillator.
As a continuation of the work in [1] we produce a non-degenerate number basis
(SU(2) coherent states) for the 2D isotropic harmonic oscillator with accompanying
generalized creation and annihilation operators. The squeezed states for the 2D
isotropic harmonic oscillator are then defined in terms of the SU(2) coherent states
and generalized ladder operators.
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Work on degeneracy in coherent state theory has been done, Klauder described
coherent states of the hydrogen atom [2] which preserved many of the usual
properties required by coherent state analysis [3]. Fox and Choi proposed the
Gaussian Klauder states [4], an alternative method for producing coherent states
for more general systems with degenerate spectra. An analysis of the connection
between the two definitions was studied in [5].

In the first part of the paper we address the degeneracy in the energy spectrum
by constructing non-degenerate states, the SU(2) coherent states, and we define
a generalized ladder operator formed from a linear combination of the 1D ladder
operators with complex coefficients.

In the last part of the paper we use a generalized squeezing operator and Fock
space expansion to define squeezed states for the 2D system. In both cases we use
the same definitions as for the 1D squeezed states, but replacing the Fock states with
the SU(2) coherent states and the 1D ladder operators with the new generalized
ladder operators. We discuss the spatial probability distributions of the 2D squeezed
states, as well as their dispersions.

2 Squeezed States of the 1D Harmonic Oscillator

Squeezed states, or squeezed coherent states, are a generalization of the standard
coherent states first studied by Schrödinger [6], and then formalized in the context of
quantum optics by Glauber and Sudarshan [7, 8]. In terms of the displacement and

squeezing operators D(ψ) = eψa†−ψ̄a , S(ξ) = e
1
2 (ξa

†2−ξ̄ a2) respectively, where
a, a† are the annihilation and creation operators, squeezed states are expressed as

|ψ, ξ 〉 = D(ψ)S(ξ) |0〉 , (1)

ψ, ξ ∈ C. Writing ξ = reiθ , in terms of Fock states, {|n〉}, the squeezed states are
given by

|z, γ 〉 = 1

N (z, γ )

∞∑

n=0

1√
n!
(
γ

2

) n
2

Hn

( z√
2γ

)
|n〉 , (2)

where 1
N (z,γ )

= 1√
cosh r

e−
|z|2

2 e
tanh r

2 Re(eiθ z̄2). The states in Eq. (2) are solutions to the
eigenvalue equation

(a + γ a†) |z, γ 〉 = z |z, γ 〉 . (3)

Equivalence between definitions (1) and (2) is understood through the following
relationships between the parameters [9]:
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z = ψ − ψ̄eiθ tanh r,

γ = −eiθ tanh r.
(4)

The term “squeezing” is used because the squeezed states saturate the Robertson–
Schrödinger uncertainty relation [10] but with unequal dispersions in position and
momentum (unlike the standard coherent states which saturate the Heisenberg
uncertainty principle with equal dispersions). The squeezed states have the follow-
ing dispersions:

(ΔX)2|ψ,ξ 〉 = 〈ψ, ξ |X2 − 〈X〉2 |ψ, ξ 〉 = 1

2
+ sinh2 r + Re(eiθ ) cosh r sinh r;

(ΔP )2|ψ,ξ 〉 = 〈ψ, ξ |P 2 − 〈P 〉2 |ψ, ξ 〉 = 1

2
+ sinh2 r − Re(eiθ ) cosh r sinh r,

(5)

where (ΔÔ)2|ψ〉 ≡ 〈ψ |O〉2 − 〈Ô〉2 |ψ〉 is the variance of the operator Ô in the
state |ψ〉. The position and momentum operators are expressed in the usual way
X̂ = 1√

2
(a† + a), P̂ = 1√

2i
(a − a†). When the squeezing is purely real ξ = r ,

the dispersions become (ΔX)2|ψ,ξ 〉 = 1
2e
−2r , (ΔP )2|ψ,ξ 〉 = 1

2e
2r , in this case the

squeezed states saturate the Heisenberg uncertainty relation (ΔX)2|ψ,ξ 〉(ΔP )2|ψ,ξ 〉
= 1

4 .
Like the standard coherent states, the squeezed states are also non-orthogonal

and they admit a resolution of the identity [11], therefore they represent an over-
complete basis for the Hilbert space of the 1D harmonic oscillator.

3 The 2D Oscillator

For a 2D isotropic oscillator we have the quantum Hamiltonian

Ĥ = −1

2

d2

dx2 −
1

2

d2

dy2 +
1

2
x2 + 1

2
y2, (6)

where we have set h̄ = 1 and the mass m = 1 and the frequency ω = 1. We
solve the time independent Schrödinger equation H |Ψ 〉 = E |Ψ 〉 and obtain the
usual energy eigenstates (or Fock states) labeled by |Ψ 〉 = |n,m〉 with eigenvalue
En,m = n+m+ 1 and n,m ∈ Z≥0. These states may all be generated by the action
of the raising and lowering operators in the following way [12]:

a−x |n,m〉 =
√
n |n− 1,m〉 , a+x |n,m〉 =

√
n+ 1 |n+ 1,m〉 ;

a−y |n,m〉 =
√
m |n,m− 1〉 , a+y |n,m〉 =

√
m+ 1 |n,m+ 1〉 .

(7)
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The states |n,m〉 in configuration space have the following wavefunction:

〈x, y|n,m〉 = ψn(x)ψm(y) = 1√
2n+mn!m!

√
1

π
e−

x2
2 − y2

2 Hn (x)Hm (y) , (8)

where ψn(x) = 1√
2nn!

(
1
π

) 1
4
e− x2

2 Hn (x) is the wavefunction of the 1D oscillator

and Hn(x) are the Hermite polynomials. For the physical position and momentum
operators, X̂i = 1√

2
(a+i + a−i ), P̂i = 1√

2i
(a−i − a+i ), respectively in the i direction,

the states |n,m〉 have the following dispersions:

(ΔX̂)2|n,m〉 = (ΔP̂x)
2|n,m〉 =

1

2
+ n; (9)

(ΔŶ )2|n,m〉 = (ΔP̂y)
2|n,m〉 =

1

2
+m. (10)

They satisfy the Heisenberg uncertainty relation (ΔX̂)|n,m〉(ΔP̂x)|n,m〉 = 1
2 + n

which grows linearly in n in the x direction. Similarly for the Y quadratures, we
obtain (ΔŶ )|n,m〉(ΔP̂y)|n,m〉 = 1

2 +m.
In what follows we will construct two new ladder operators as linear combina-

tions of the operators in (7) and proceed to define a single indexed Fock state for the
2D system which yields the SU(2) coherent states. The new ladder operators and
SU(2) coherent states are used to extend the definitions of the 1D squeezed states
in Sect. 2 to the 2D oscillator.

4 SU(2) Coherent States

We use the ladder operators presented in Sect. 3 to construct a single set of creation
and annihilation operators for the 2D oscillator. Introducing a set of states {|ν〉}, and
defining a new set of ladder operators through their action on the set,

A− |ν〉 = √ν |ν − 1〉 , A+ |ν〉 = √ν + 1 |ν + 1〉 , 〈ν|ν〉 = 1, ν = 0, 1, 2, . . .
(11)

These states have a linear increasing spectrum Eν = ν + 1. We may build the states
by hand starting with the only non-degenerate state, the ground state, |0〉 ≡ |0, 0〉
and we take simple linear combinations of the 1D ladder operators

A+α,β = αa+x ⊗ Iy + Ix ⊗ βa+y ;
A−α,β = ᾱa−x ⊗ Iy + Ix ⊗ β̄a−y ;
[A−α,β, A+α,β ] = (|α|2 + |β |2)Ix ⊗ Iy ≡ I,

(12)
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Table 1 Construction of the
states |ν〉α,β using the relation
A+α,β |ν〉α,β =√
ν + 1 |ν + 1〉α,β

|ν〉 |n,m〉
|0〉 |0, 0〉
|1〉 α |1, 0〉 + β |0, 1〉
|2〉 α2 |2, 0〉 + √2αβ |1, 1〉 + β2 |0, 2〉
.
.
.

.

.

.

|ν〉 ∑n+m=ν
n,m αnβm

√(
ν
n

) |n,m〉

for α, β ∈ C, Ix ⊗ Iy = Iy ⊗ Ix ≡ I and normalization condition |α|2 + |β |2 = 1.
Constructing the states {|ν〉} starting with the ground state gives us Table 1.

The states, |ν〉, in Table 1 depend on α, β and may be expressed as

|ν〉α,β =
ν∑

n=0

αnβν−n

√(
ν

n

)
|n, ν − n〉 . (13)

The states |ν〉α,β are precisely the SU(2) coherent states in the Schwinger boson
representation [3]. This makes sense from our construction, the degeneracy present
in the spectrum En,m is an SU(2) degeneracy, and so we created states which
averaged out the degenerate contributions to a given ν. These states have the
following orthogonality relations:

〈μ|γ,δ |ν〉α,β = (γ̄ α + δ̄β)νδμ,ν, (14)

which reduces to a more familiar relation when γ = α and δ = β

〈μ|α,β |ν〉α,β = δμ,ν, (15)

using the normalization condition |α|2 + |β |2 = 1. The probability densities,
| 〈x, y|ν〉α,β |2, of the quantum SU(2) coherent states form ellipses when viewed
as density plots, this mimics the classical 2D oscillator spatial distribution. This has
been studied extensively by Chen [13] (Fig. 1).

The SU(2) coherent states have the following variances for the physical position
and momentum operators X̂i = 1√

2
(a+i + a−i ), P̂i = 1√

2i
(a−i − a+i ), respectively,

in the i direction:

(ΔX̂)2|ν〉α,β = (ΔP̂x)
2|ν〉α,β =

1

2
+ |α|2ν; (16)

(ΔŶ )2|ν〉α,β = (ΔP̂y)
2|ν〉α,β =

1

2
+ |β |2ν. (17)

The results are essentially the same as those in (9) and (10), but they are tuned by
the continuous parameters α, β introduced in (12).
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Fig. 1 Density plots of | 〈x, y|ν〉α,β |2 for α =
√

3
2 ei

π
2 , β = 1

2 (left) and α =
√

3
2 , β = 1

2 (right)
both at ν = 40

5 2D Squeezed States

By analogy with the 1D case we define a 2D displacement and 2D squeezing
operators

D(Ψ ) = e
ΨA+α,β−Ψ̄ A−α,β , (18)

and

S(Ξ) = exp

(
1

2
[ΞA+α,β

2 − Ξ̄A−α,β
2]
)
, (19)

respectively. The generalized squeezed state is obtained through the action of the
two operators on the 2D vacuum

|Ψ,Ξ 〉α,β = D(Ψ )S(Ξ) |0〉α,β . (20)

Using the expansion of the 1D squeezed states, we replace the basis |n〉 → |ν〉α,β
and use capital lettered parameters (to indicate they are 2D states) to get the
following:

|Z,Γ 〉α,β = 1√
coshR

e−
|Z|2

2 e
tanhR

2 Re(eiΘ Z̄2)
∞∑

ν=0

1√
ν!
(
Γ

2

) ν
2

Hν

( Z√
2Γ

)
|ν〉α,β ,

(21)
with Z = Ψ − Ψ̄ eiΘ tanhR,Γ = −eiΘ tanhR. In Fig. 2 we see the effect of
increasing the strength of the squeezing, on the leftmost plot the squeezing is
relatively small, R = 0.1 and the probability density is converging to a single
maximum. This is in agreement with the limit R → 0 which would produce a
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Fig. 2 Density plots of | 〈x, y|Z,Ξ 〉α,β |2 for α =
√

3
2 ei

π
2 , β = 1

2 , Z = 1, R = 0.1,Θ = 0 (left)

and α =
√

3
2 , β = 1

2 , Z = 1, R = 10,Θ = 0 (right) both with 20 terms kept in the expansion of
Eq. (21)

Gaussian distribution with single maximum [1]. On the other hand, the rightmost
plot, R = 10, reveals a separation of the probability density onto two distinct
maxima. It is important to note that the graphs are not properly normalized as a
truncated sum (20 terms) was used in the computation.

Restricting to the case of the 2D squeezed vacuum, Ψ = 0, the squeezing
operator admits an su(1, 1) decomposition [14] yielding

|Ξ 〉α,β = 1√
coshR

exp

{
eiΘ

2
tanhR(α2a+x

2 + β2a+y
2 + αβa+x a+y )

}
|0, 0〉

(22)

in terms of the 1D ladder operators. Equation (22) does not factorize, |Ξ 〉 �=
|ξx〉x ⊗

∣∣ξy
〉
y
; the bilinear 1D terms in the expansion of A+α,β

2
have induced a

coupling between the x and y modes of the oscillator. This represents a non-
trivial generalization of the squeezed states to 2D, a two-mode-like squeezing was
generated as a result of the construction, but the 2D squeezed states themselves
retain most of the definitions of their 1D counterparts.

To calculate the dispersions in x and y we use the Baker–Campbell–Hausdorff
identity eABe−A = B + [A,B] + 1

2 [A, [A,B]] + . . . [15] to compute Bogoliubov
transformations, for example, the x ladder operators are transformed as

S†(Ξ)a−x S(Ξ) = (|β |2 + |α|2 coshR)a−x + αβ̄(coshR − 1)a−y

+ eiΘ sinhR(α2a+x + αβa+y );
(23)

S†(Ξ)a+x S(Ξ) = (|β |2 + |α|2 coshR)a+x + ᾱβ(coshR − 1)a+y

+ e−iΘ sinhR(ᾱ2a−x + ᾱβa−y ).
(24)
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Using these transformations we can compute the dispersions in x

(ΔX̂)2|Ξ 〉α,β =
1

2
+ |α|2 sinh2 R + Re(eiΘα2) sinhR coshR;

(ΔP̂x)
2|Ξ 〉α,β =

1

2
+ |α|2 sinh2 R − Re(eiΘα2) sinhR coshR,

(25)

and similarly for y

(ΔŶ )2|Ξ 〉α,β =
1

2
+ |β |2 sinh2 R + Re(eiΘβ2) sinhR coshR;

(ΔP̂y)
2|Ξ 〉α,β =

1

2
+ |β |2 sinh2 R − Re(eiΘβ2) sinhR coshR.

(26)

These results also hold for the generalized squeezed states |Ψ,Ξ 〉α,β because the
action of the displacement operator has no effect on the variances. The results
resemble those in Eq. (5) but are modified by α, β. We see in the limit R → 0
we saturate the Heisenberg uncertainty relation in both x and y.

6 Conclusion

In this paper we have described a method for constructing squeezed states for the
2D isotropic oscillator which relies on using the minimal set of definitions used to
describe the squeezed states of the 1D oscillator. Unlike the coherent states defined
in a similar manner in [1], the generalized squeezed states did not factorize into the
product of squeezed states on x and y independently. A coupling was induced which
took the form of a two-mode like squeezing creating an entanglement between the
two modes.

We found the dispersions for the 2D squeezed states and saw that they resemble
the dispersions in the 1D case but modified by the parameters α, β introduced during
the construction of the SU(2) coherent states. As well we saw a separation of
the spatial probability densities into two distinct maxima for larger values of the
squeezing R.

Finally, perhaps this method can be used to construct squeezed states for more
general degenerate and higher dimensional systems and oscillators. The approach
presented in this paper will require modification on a case by case basis because in
general a multidimensional system will admit a more complex degenerate structure,
which would significantly modify the generalized ladder operators as well as the
non-degenerate basis {|ν〉}. If a system possesses non-algebraic degeneracies, such
as the 2D particle in a box (e.g., 12 + 72 = 52 + 52), a new method for counting
states contributing to a degenerate subgroup |ν〉 would be required.
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Electron in Bilayer Graphene with
Magnetic Fields Associated with Solvable
Potentials

Daniel O. Campa, Juan D. García, and David J. Fernández

Abstract The behavior of an electron in bilayer graphene with applied magnetic
fields orthogonal to the surface is studied. By using second-order supersymmetric
quantum mechanics some analytic solutions are found, which are expressed in
terms of the eigenfunctions of two intertwined Schrödinger Hamiltonians. The
case of a constant homogeneous magnetic field which leads to a pair of shifted
harmonic oscillator potentials is discussed. A variant of this example produces
inhomogeneous magnetic fields whose exact solutions for the electron motion in
bilayer graphene are straightforwardly identified.

Keywords Bilayer graphene · SUSY QM · Solvable potentials

1 Introduction

Graphene is one of the so-called Dirac materials in the literature, which nowadays
are of great interest in physics. In particular, the analysis of its electronic properties
has become an extensive field of study. Here, we will focus in the electron motion
in bilayer graphene. The effective Hamiltonian describing the electron behavior in
either monolayer or bilayer graphene is well known [1–3]. For low energy electrons
in the monolayer a tight-binding model leads to a massless Dirac equation, where
the Fermi velocity replaces the speed of light. Nevertheless, to find exact analytic
solutions to this equation is not always simple. The first-order supersymmetric
quantum mechanics (SUSY QM) has proven useful for addressing this task [4–6].
However, for bilayer graphene a similar model does not end up with a massless
Dirac equation, but with slightly more complicated equations involving second-
order derivatives. This suggests to use now the second-order SUSY QM, where
the intertwining operators are of second order. Thus, in this paper we will use
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the second-order SUSY QM to study the electron motion in bilayer graphene, by
looking for exact solutions to the auxiliary Schrödinger problems.

2 Bilayer Graphene: A Brief Overview

2.1 Effective Hamiltonian

In the study of the electron motion in bilayer graphene, it is usual to work in the
framework of the tight-binding model [1], in which the effective Hamiltonian is
given by

H = 1

2m∗

(
0 π2

(π†)2 0

)
, (1)

where π = px − ipy , with pj being the momentum operator in j -direction,
j = x, y. Some important physical quantities are the effective mass of the electron
m∗ = |t⊥|/2vF 2 ≈ 0.054me, with me being the free mass electron, the Fermi
velocity vF =

√
3a/2h̄ ≈ c/300 where c is the speed of light [2]. Several structure

parameters of the graphene lattice appear as well in the Hamiltonian, e.g., the lattice
constant a = 2.46 Å and the hopping parameter t⊥ = 0.381 eV. In Fig. 1 it is shown
the lattice structure of bilayer graphene. Each layer is divided into two sublattices
A and B, with the two layers placed in positions such that the sublattices A are
aligned to each other. This configuration is the most natural in graphene, and it is
called Bernal staking. It can be noticed that the hopping parameters are labeled like
γi ; however, it is usual in the literature to denote γ0 = t for the in-plane hopping

B1 A1

A2 B2

γ1

γ0

γ0

γ4

γ3

a

Fig. 1 Lattice structure of bilayer graphene. It is shown also the lattice constant a and the hopping
parameters γi , i = 0, 1, 3, 4
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parameter and γ1 = t⊥ for the hopping from an atom in the sublattice A1 to an atom
in the sublattice A2.

2.2 Effective Hamiltonian with an Applied Magnetic Field

Let us suppose now that a magnetic field "B orthogonal to the graphene surfaces
is applied, which points along z-direction. For simplicity, we suppose that "B just
changes along a certain given direction on the surface. Working in the Landau gauge
we can write "A(x) = A(x)ŷ, "B(x) = B(x)ẑ, with B(x) = dA(x)/dx. According
with the minimal coupling rule, a term proportional to A(x) must be added to the
operator π [4]. Thus, we get the new operator Π = px − ipy − i(e/c)A(x), while
the effective Hamiltonian which takes into account the magnetic field effects looks
like

H = 1

2m∗

(
0 Π2

(Π†)2 0

)
. (2)

The next step is to determine the eigenvectors and eigenvalues of H , which is a
non-trivial but sometimes solvable problem.

2.3 Stationary States of H

The eigenvalue equation for H can be written as

HΨ (x, y) = EΨ (x, y). (3)

Due to the gauge chosen, this equation is invariant under translations along y-
direction, i.e., in this direction the motion is of free particle type. Thus, it is natural
to propose Ψ (x, y) as follows:

Ψ (x, y) = eiky√
2

(
ψ(2)(x)

ψ(0)(x)

)
, (4)

where k is the wavenumber in y-direction and 1/
√

2 is a normalization factor. Since
pj = −ih̄∂j , j = x, y, after plugging equation (4) into (3) the next coupled system
of equations is obtained:

L2ψ
(0) = −εψ(2), L

†
2ψ

(2) = −εψ(0). (5)
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Note that ε = 2m∗E/h̄2 and L2 is the second-order differential operator

L2 = d2

dx2 + η(x)
d

dx
+ γ (x). (6)

Let us remark that η(x) is given by

η(x) = 2

(
k + e

ch̄
A(x)

)
, (7)

thus it is directly related with B(x) as follows:

B(x) = ch̄

2e

dη(x)

dx
. (8)

For the time being, the form of the function γ (x) is not relevant here. We will see
later on that it can be expressed in terms of η(x).

The coupled system of Eqs. (5) and the form of the operator L2 in Eq. (6) suggest
to use the second-order SUSY QM to address the problem.

3 Second-Order SUSY QM

Let us consider two Schrödinger Hamiltonians

Hj = − d2

dx2 + Vj (x), j = 0, 2. (9)

They are called second-order SUSY partners if there exists a second-order operator
L2 intertwining them

H2L2 = L2H0, (10)

with L2 being given by Eq. (6). Equation (10) produces a set of relations among
η(x), γ (x), V0(x), V2(x), which after some work leads to

V2(x) = V0(x)+ 2η′(x), (11)

γ (x) = η2(x)

2
− η′(x)

2
− V0(x)+ ε1 + ε2

2
, (12)

V0(x) = η′′(x)
2η(x)

− (η′(x))2

4η2(x)
− η′(x)+ η2(x)

4
+ ε1 + ε2

2
+
(
ε1 − ε2

2η(x)

)2

, (13)
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where η′(x) ≡ dη(x)/dx and so on. The factorization energies ε1 and ε2 are in
general complex [7]. However, in this paper we will work just with real values,
specifically with two consecutive eigenvalues of H0, i.e., ε2 = E

(0)
j , ε1 = E

(0)
j+1.

Although the spectra of H2 and H0 are almost the same, H0 has two extra energy
levels at ε1 and ε2. Moreover, there are some relations between the eigenfunctions
of H0 and H2, which can be derived from the next equations

L2L
†
2ψ

(2)
n = (E(2)

n − E
(0)
j

)(
E(2)

n − E
(0)
j+1

)
ψ(2)

n , (14)

L
†
2L2ψ

(0)
n = (E(0)

n − E
(0)
j

)(
E(0)

n − E
(0)
j+1

)
ψ(0)

n , (15)

where ψ
(l)
n and E

(l)
n are the corresponding eigenfunctions and eigenvalues of Hl ,

l = 0, 2, respectively. Another important fact is that the two eigenfunctions ψ
(0)
j ,

ψ
(0)
j+1 of H0, which are also in the kernel of L2, L2ψ

(0)
j (x) = L2ψ

(0)
j+1 = 0, are

required to determine the intertwining transformation of Eq. (10). In particular, the
function η(x) can be determined from ψ

(0)
j , ψ

(0)
j+1 through the relation

η(x) = −W ′(ψ(0)
j , ψ

(0)
j+1

)

W
(
ψ

(0)
j , ψ

(0)
j+1

) , (16)

with W(f, g) = fg′ − f ′g being the Wronskian of f and g.
Now we can solve our original problem posed in the system of Eqs. (5). First of

all, according to (15) the eigenvalues ε and thus the energy levels E for electrons
(positive energies) are given by

Eñ = h̄2

2m∗

√(
E

(0)
n − E

(0)
j

) (
E

(0)
n − E

(0)
j+1

)
. (17)

The index of E is denoted ñ rather that n, since the ordering of the energy levels
of H is non-standard although the orderings of the eigenvalues of the auxiliary
Hamiltonians Hl are standard. In addition, the ground state zero energy has always
double degeneracy, due to the choice of the factorization energies as two consecutive
energy levels of H0. According with Eq. (4), the eigenvectors Ψ (x, y) can be written
as

Ψñ(x, y) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

eiky

(
0

ψ
(0)
n (x)

)
for n = j, j + 1,

eiky√
2

(
ψ

(2)
n (x)

ψ
(0)
n (x)

)
for n �= j, j + 1.

(18)
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4 Solvable Cases

4.1 Case with j=0

Let us consider now a constant magnetic field "B = (0, 0, B0). In the Landau gauge
the corresponding vector potential becomes "A = (0, xB0, 0). Equation (7) implies
that η(x) = 2k + ωx, where ω = 2eB0/ch̄. By using Eqs. (11)–(13) the SUSY
partner potentials become

V0(x) = ω2

4

(
x + 2k

ω

)2

− ω

2
, (19)

V2(x) = ω2

4

(
x + 2k

ω

)2

+ 3

2
ω. (20)

It is seen that these potentials are two shifted harmonic oscillators differing from
each other by a constant. In the language of SUSY QM it is said that they are shape
invariant potentials, in the sense that one of them can be obtained from the other
by changing just some parameters and, perhaps, displacing the energy by a global
quantity, see Fig. 2.

The energy levels of V0(x) and V2(x) are

E
(0)
0 = 0, E

(0)
1 = ω, E(0)

n = E(2)
n = nω, n = 2, 3, 4, . . . , (21)

i.e., Sp(H0) = {E(0)
0 , E

(0)
1 , Sp(H2)}. The factorization energies were taken in this

case as ε1 = E
(0)
1 and ε2 = E

(0)
0 . The eigenfunctions of H0 and H2 can be expressed

in terms of Hermite polynomials

-10 -5 5
x

5

10

15

V(x)V0(x)
V2(x)
eB(x)/ch

Fig. 2 Second-order SUSY partner potentials V0(x), V2(x) as functions of x and the constant
magnetic field (scaled) inducing them
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-2 -1 1 2
k

1

2

3

4

2 m*E
h2

Fig. 3 The eigenvalues Eñ as functions of k for the constant magnetic field

ψ(0)
m (z) = ψ

(2)
m+2(z) = e−

1
2 z

2
Hm(z), m = 0, 1, 2, . . . , (22)

where z = √ω/2(x − 2k/ω). Thus, the eigenvectors Ψñ(x, y) looks like

Ψñ(x, y) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

eiky

(
0

ψ
(0)
n (x)

)
for n = 0, 1,

eiky√
2

(
ψ

(2)
n (x)

ψ
(0)
n (x)

)
for n = 2, 3, 4, . . .

(23)

Finally, the eigenvalues of H take the form

Eñ = h̄2ω

2m∗
√
n(n− 1), n = 0, 1, 2, 3, . . . (24)

Note once again that E0̃ = E1̃ = 0, i.e., the ground state energy is double
degenerate. Moreover, the previous eigenvalues do not depend of the wavenumber
k, as it is shown in Fig. 3.

4.2 Case with j �=0

In this case we take the V0(x) of Eq. (19) as the initial potential, whose eigenvalues
and eigenfunctions are given in Eqs. (21) and (22). The factorization energies are
taken as ε1 = E

(0)
j+1 and ε2 = E

(0)
j with j > 0, and the function η(x) is calculated
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from Eq. (16). The previous choice implies that the new SUSY partner potentials
Ṽ2(x) and V0(x) are no longer shape invariant, i.e., the new potential Ṽ2(x) obtained
from Eq. (11) is not just a shifted and/or displaced harmonic oscillator potential (see
Fig. 4). Moreover, the new magnetic field B̃(x) generated through this technique is
obtained from Eq. (8), and now it is not homogeneous as in the case with j = 0 (see
Fig. 5). The eigenvalues Eñ of H can be written as

Eñ = h̄2ω

2m∗
√
(n− j)(n− j − 1). (25)

In order that they have a standard ordering, the index ñ as a function of n should be
expressed as

ñ =
{
j − n for n = 0, . . . , j

n− (j + 1) for n = j + 1, j + 2, . . .
(26)

We can see that our system has now (j+1) double degenerate energy levels. The
eigenfunctions ψ

(2)
n (x) of V2(x) are obtained by using Eq. (5). Due to the double

degeneracy of {E0̃, . . . , Ej̃ } the eigenvectors of H turn out to be given by Eq. (18).

Plots of the SUSY partner potentials V0(x), Ṽ2(x), and the V2(x) of the previous
section are shown in Fig. 4 for ω = k = 1 and j = 3. The generated magnetic field,
as compared with the constant case of the previous section, is drawn in Fig. 5.

-10 -5 5
x

5

10

15

V(x)V0
V2

V2̃

Fig. 4 Second-order SUSY partner potentials V0(x), Ṽ2(x) and V2(x) as functions of x for ω =
k = 1 and j = 3
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h

Fig. 5 Magnetic fields B̃(x) and B(x) = B0 as functions of x for ω = k = 1 and j = 3

5 Conclusions

The second-order SUSY QM is the natural technique to solve the electron motion
in bilayer graphene with applied magnetic fields. When a constant magnetic field is
chosen, with the factorization energies being taken as the first two energy levels of
V0(x), a shape invariant SUSY partner potential V2(x) is obtained, and the effective
Hamiltonian has a minimal number of eigenvalues with double degeneracy (just the
ground state). In this case V0(x) and V2(x) are simple shifted harmonic oscillators
and the associated magnetic field is constant. On the other hand, if the factorization
energies are taken as two consecutive energy levels of V0(x), without including
E

(0)
0 , the new SUSY partner potential Ṽ2(x) is no longer shape invariant (it leaves

to be just a shifted harmonic oscillator), the number of eigenvalues (j + 1) with
double degeneracy grows up, and the associated magnetic field B̃(x) is not constant
anymore.
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Twist Knot Invariants and Volume
Conjecture

P. Ramadevi and Zodinmawia

Abstract Chern–Simons theory provides a natural framework to construct a variety
of knot invariants. The calculation of colored HOMFLY-PT polynomials of knots
using SU(N) Chern–Simons theory requires the knowledge of 6j -symbols for
the quantum group Uq(slN) which are not known for arbitrary representation.
Interestingly, our conjectured formula for superpolynomials (categorification of
colored HOMFLY-PT polynomials) of twist knots led to deducing closed form
expression for these symbols for a class of multiplicity-free Uq(slN) representation.
Using the twist knot superpolynomials, we compute the classical and quantum
super-A-polynomials and test the categorified version of the quantum volume
conjecture.

Keywords Chern–Simons theory · Knot invariants · Colored HOMFLY-PT
polynomials · Quantum 6j -symbols · Superpolynomials · Volume conjectures ·
Super-A-polynomials

1 Introduction

The pioneering work of Witten [1] showed that Chern–Simons theory on a three-
sphere S3 naturally describes knots and their invariants. The Chern–Simons action
CS(S3) based on SU(N) gauge group is

CS(S3) = k

∫

S3
Tr

(
A ∧ dA+ 2

3
A ∧ A ∧ A

)
, (1)
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where k is the coupling constant and A (gauge field) are the su(n) Lie algebra-valued
one forms: A =∑a,μ Aa

μt
adxμ with ta denoting the generators of the gauge group.

For a knot K in S3, the corresponding Wilson loop operator (WLO) is obtained by
taking the holonomy of the gauge fields along the knot. More precisely, if T a

R are
the generators in a representation R ∈ SU(N), then the operator colored by R is
given by

WR[K] = TrR exp

(∮

K

A

)
.

The expectation value of WLO, 〈WR[K]〉, are the knot invariants. In fact, the
〈WR= [K]〉 is proportional to the Jones polynomial, J (K; q), for gauge group
SU(2) and HOMFLY-PT polynomial, P(K; a, q), for SU(N) gauge group. The
polynomial variables are related to coupling constant and rank of the group as
follows: a = qN and q = exp{[2πi/(k +N)]} [1]. For higher dimensional
representation R, 〈WR[K]〉 define the colored Jones JR(K; q) (R ∈ SU(2)) and
the colored HOMFLY-PT PR(K; a, q) (R ∈ SU(N)) polynomials. Collectively,
the knot invariants obtained from Chern–Simons theory are referred to as quantum
invariants of knots. In this note we focus on the colored HOMFLY-PT polynomials.

An intriguing property about quantum invariants of knots is the integrality
structure. We observe that the Jones polynomial for any knot has a Laurent series
expansion J (K; q) =∑i ciq

i, where {ci}’s are integers. Other quantum invariants
are also polynomials with integer coefficients. The quest to give a topological
answer to such an integrality property of Jones polynomials led Khovanov to
discover knot homology [2]. Particularly, Khovanov constructed a bigraded chain
complex (naturally associated with a planar diagram of a knot K) whose homol-
ogy Hsl2

i,j (K) is invariant under the Reidemeister moves. Hence Hsl2
i,j (K) is an

invariant of the knot. More importantly, the Euler characteristics of this bigraded
homology are the Jones polynomial: J (K; q) =∑i,j (−1)iqjdimHsl2

i,j (K). Clearly,

dimHsl2
i,j (K) must necessarily be an integer which provides a topological meaning

to the integers appearing in the Jones polynomial. Furthermore, a new, two-variable
invariant polynomial called Khovanov polynomial, Kh(K; q, t), can be constructed
by taking the graded Poincaré polynomial,

Kh(K; q, t) =
∑

i,j

t iqjdimHsl2
i,j (K). (2)

Note that Jones polynomial is the t = −1 limit of Khovanov polynomial. In this
sense, Khovanov polynomial is the lift, or categorification, of the Jones polynomial.

The categorification of Jones polynomial by Khovanov led to the study of
homology theory for other quantum invariants. For the case of colored HOMFLY-PT
polynomial, a triply graded colored HOMFLY homology, (HHOMFLY

R (K))i,j,k , was
proposed in refs. [3–7] such that the graded Euler characteristic gives the colored
HOMFLY polynomial:
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PR(K; a, q) =
∑

i,j,k

aiqj (−1)kdim
(
HHOMFLY

R (K)
)

i,j,k
. (3)

(HHOMFLY
R (K))i,j,k also has the physical realization as spaces of BPS states [8]. All

the information about (HHOMFLY
R (K))i,j,k can be encoded in its graded Poincaré

polynomial PR(K; a, q, t) which are called superpolynomial.
Quantum knot invariants have deep connections to the three-dimensional geom-

etry in which they are embedded. The first of this relation is the volume conjecture
proposed by Kashaev [9] and later reinterpreted by Murakami [10]. This conjecture
relates the large color behavior of Jones polynomial to the hyperbolic volume of the
complement of the knot in S3 (S3\K):

lim
n→∞

2π

n
log
∣∣∣Jn

(
K; q = e

2πi
n

)∣∣∣ = Vol
(
S3\K) .

Here and afterward we use n to denote the (n−1)-th rank symmetric representation

(n ≡ n−1
︸︷︷︸).

The volume conjecture is further generalized by incorporating another knot
invariant, known as the classical A-polynomial A(K; x, y), which encodes the
SL(2,C) character variety of the fundamental group of the knot complement (S3/K

). More precisely, the generalized volume conjecture [11] states that in the double
scaling limit n→∞, h̄→ 0, q = eh̄ → 1, x = qn = enh̄ = fixed,
the colored Jones polynomial has the asymptotic behavior

lim
n→∞,�→0

Jn

(
K; q = e�

) = exp

(
1

�
S0 + . . .

)
,

where S0(x) = Vol
(
S3\K)+ iCS

(
S3\K)+

∫ x

1

dx

x
log y. (4)

The integral over x is done along A(K; x, y) = 0. Differentiating the above
equation, the conjecture states that

log y = −x
d

dx

⎡

⎣ lim
n→∞, h̄→0

enh̄=x

h̄ log Jn

(
K; q = eh̄

)
⎤

⎦ , (5)

gives the zero locus of the classical A-polynomial of the knot K .
One can quantize the classical A-polynomial by promoting the variables (x, y)

to operators (x̂, ŷ) such that

x̂Jn(K; q) = qnJn(K; q), ŷJn(K; q) = Jn+1(K; q). (6)

The quantum A-polynomial Â(K; x̂, ŷ; q) is a polynomial in the operators (x̂, ŷ)

and the variable q. In fact, Â(K; x̂, ŷ; q) is defined as:
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Â(K; x̂, ŷ; q)Jn(K; q) = 0, (7)

which is also equivalent to the q-difference equation
∑k

m=0 am(x̂, q)Jn+m(K; q) of
minimal order. We expect to recover the classical A-polynomial from the quantum
A-polynomial by taking the classical limit q = 1:

Â(K; x̂, ŷ; q = 1) = A(K; x, y). (8)

The above assertion is known as the quantum volume conjecture [11], or, the AJ
conjecture [12, 13].

The generalized volume conjecture and the quantum volume conjecture (AJ con-
jecture) were further categorified for superpolynomials in [14, 15] by including the
two-parameters (a, t). In this categorified version, one defines the classical super-A-
polynomial, Asuper(K; x, y; a, t), to be an (a, t) deformation of A(K; x, y) which
can be obtained by substituting Pn(K; a, q, t) for Jn(K; q) in (5). Likewise, the
quantum super-A-polynomial, Âsuper(K; x̂, ŷ; a, q, t), is also an (a, t) deformation
of Â(K; x̂, ŷ; q). Basically x̂, ŷ are defined as

x̂Pn(K; a, q, t) = qnPn(K; a, q, t), ŷPn(K; a, q, t) = Pn+1(K; a, q, t),

and the corresponding quantum super-A-polynomial obeys

Âsuper(K; x̂, ŷ; a, q, t)Pn(K; a, q, t) = 0. (9)

The categorified version of the quantum volume conjecture states that

Âsuper(K; x̂, ŷ; a, q = 1, t)) = Asuper(K; x, y; a, t). (10)

This note is organized as follows. In Sect. 2, we briefly review how to use
the correspondence between Chern–Simons theory and Wess–Zumino–Novikov–
Witten (WZNW) model given in [1] to calculate knot invariants. This method
explicitly requires the knowledge of the quantum 6j -symbols or the quantum
group Uq(slN) to write colored HOMFL-PT polynomials. In Sect. 3, we focus on
a class of knots called twist knots Kp. Particularly, motivated by the structure of
colored Jones polynomials Jn(Kp, q) for the twist knots, we conjectured the colored
superpolynomials for the twist knots. Comparing Pn(Kp; a, q) with the formal
Chern–Simons knot invariant, we obtained a closed form algebraic expression for
the Uq(slN) quantum 6j -symbols for a class of multiplicity-free representation.
Using our conjectured superpolynomials, we find the classical super-A-polynomial
and the quantum super-A-polynomials for the 52 twist knot in Sect. 4 and test the
categorified quantum volume conjecture.
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2 Chern–Simons Theory and Knot Invariants

In order to calculate 〈WR[K]〉 for a given knot, we slice the three-sphere S3

containing the knot (redrawn in an appropriate way) into pieces as shown in Fig. 1.
Each three-ball has one or more S2 boundaries with punctures. Arborescent knots
are those knots in S3 obtained from gluing three-balls with four punctured S2

boundaries. Other knots which cannot be viewed by gluing three-balls with four
punctured S2 boundaries are called non-arborescent knots. We will confine to
invariants of arborescent knots carrying symmetric representation of SU(N) group.

Chern–Simons functional integral on three-balls with one or more four punctured
boundaries is denoted by states in the space of four-point conformal blocks of
SU(N)k WZNW conformal field theory [1]. As evident from the knot 10152 diagram
shown in Fig. 1, we require states corresponding to the fundamental building blocks
in Fig. 2. The braid word B in v2 are made up of concatenation of the four types
of braiding between two adjacent strands shown in Fig. 3. Then, using the Chern–
Simons and WZNW correspondence, the basis states of the braiding generators are
the four-point conformal blocks (see Fig. 4):

b
(±)
1 |φt

(
R1, R2, R̄3, R̄4

)〉 = λ
(±)
t

(
R1, R2

)|φt

(
R2, R1, R̄3, R̄4

)〉 , (11)

b
(±)
2 |φ̂s

(
R1, R2, R̄3, R̄4

)〉 = λ(±)
s

(
R2, R̄3

)|φ̂s

(
R1, R̄3, R2, R̄4

)〉 , (12)

b
(±)
3 |φt

(
R1, R2, R̄3, R̄4

)〉 = λ
(±)
t

(
R̄3, R̄4

)|φt

(
R1, R2, R̄4, R̄3

)〉 . (13)

Here bi means braiding between i-th and the (i + 1)-th strands and the braiding
eigenvalues in the vertical framing are

Fig. 1 Knot 10152 from
gluing three-balls
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Fig. 2 Building blocks

λ
(±)
t (R1, R2) = ε

(±)
t;R1,R2

(
q

CR1
+CR2

−CRt
2

)±1

, (14)

where ε
(±)
t;R1,R2

= ±1 and CR is the quadratic Casimir for representation R. Note
that the internal representation has to satisfy the fusion rules. That is, t ∈ (R1 ⊗
R2) ∩ (R3 ⊗ R4) and s ∈ (R2 ⊗ R̄3) ∩ (R̄1 ⊗ R4). Since the two bases spanned the
same Hilbert space, they are linearly related to each other by the fusion matrix ats

|φt

(
R1, R2, R̄3, R̄4

)〉 = ats

[
R1 R2

R̄3 R̄4

]
|φ̂s

(
R1, R2, R̄3, R̄4

)〉
.

For SU(N)k WZNW model, the properties of the fusion matrix are same as the
quantum Racah coefficients (proportional to the 6j symbols of the quantum groups
Uq(slN)). Using these four-point conformal block basis, braiding eigenvalues and
fusion matrices, the states denoting the fundamental building blocks in Fig. 2 are

v1 =
√
dR1dR2

∣∣φ0
(
R1, R̄1, R2, R2

)〉(1)
, v̂1 =

√
dR1dR2

∣∣φ̂0
(
R1, R̄2, R2, R̄1

)〉(1)
,

v2 =
∑

l∈(R1⊗R2)∩(R3⊗R4)

{
B
∣∣φl

(
R1, R2, R̄3, R̄4

)〉}(1) ∣∣φl

(
R1, R2, R̄3, R̄4

)〉(2)
,
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Fig. 3 Types of braiding

Fig. 4 Two bases for four-point conformal blocks

vr =
∑

t

(√
dt

)2−r ∣∣φt

(
R1, R̄1, R2, R2

)〉(1)
. . .
∣∣φt

(
Rr, R̄r , R1, R1

)〉(r)
, (15)

where t ∈ (R1 ⊗ R̄1) ∩ . . . . ∩ (Rr ⊗ R̄r ) and dR is the quantum dimension of a
representation R. The superscripts outside the four-point conformal blocks denote
the boundaries as indicated in Fig. 1. The 0 in φ0 and φ̂0 represents the singlet
representation. Substituting the building blocks states for each three-ball, we can
write 〈WR[10152]〉. Basically, gluing the three-balls along oppositely oriented S2

boundaries involves inner product of four-point conformal bases with its dual four-
point conformal blocks. The final invariant can be written in terms of braiding
eigenvalues and the Uq(slN) Racah coefficients [16]. In order to write the explicit
polynomial form in variables a = qN, q, we require the Uq(slN) Racah coefficients
which is not known for general SU(N) representations. We will now review our
work on superpolynomials for twist knots leading us to conjecture some Uq(slN)

Racah coefficients.
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3 Twist Knots

The colored Jones polynomial of twist knots Kp with 2p half-twists [17] has a
multi-sum expression. We observed that the summand consists of the polynomial
of the trefoil K1 = 31 for p > 0 (K−1 = 41 for p < 0 ) as the main body and a
twisting factor. With this structure in mind, the superpolynomials for trefoil 31 and
figure-eight 41 [14, 15] can be seen in a more succinct form:

Pn(K1; a, q, t) = (−t)−n+1
∞∑

k=0

qk (−atq−1; q)k
(q; q)k

(
q1−n; q)

k

(− at3qn−1; q)
k

≡ (−t)−n+1
∞∑

k=0

qkHn,k ≡ (−t)−n+1
∞∑

k=0

Fn,k(a, q, t), (16)

Pn(K−1; a, q, t) =
∞∑

k=0

(− at2)−k
q−k(k−3)/2Hn,k ≡

∞∑

k=0

Gn,k(a, q, t), (17)

where we use the q-Pochhammer symbol (z; q)k = ∏k−1
j=0(1 − zqj ). We expect

the superpolynomial for twist knots Kp for |p| > 1 involving the above summand
multiplied by twisting factors:

Pn(Kp>0; a, q, t) = (−t)−n+1
∞∑

s|p|�···�s1�0

Fn,sp (a, q, t)×Twisting Factor, (18)

Pn(Kp<0; a, q, t) =
∞∑

s|p|�···�s1�0

Gn,sp (a, q, t)× Twisting Factor. (19)

The form of the twisting factor can be conjectured from the colored superpolyno-
mials of 52 = K2 and 61 = K−2 calculated in refs. [4, 18] up to n = 3. From this
data we could guess the form of the twisting factor for |p| = 2 and generalize to
arbitrary |p|. We have checked our conjectured superpolynomials (See eqns.(2.18,
2.19) in ref. [19]) with known results in the literature.

In order to study asymptotic expansion of superpolynomials, it is important to
reduce the multi-summation to minimum number of summation. We succeeded in
converting the multi-summation into a double summation using Bailey identities
(see appendix A in ref. [19]):

Pn(Kp>0; a, q, t) = (−t)−n+1
∞∑

k=0

k∑

�=0

qk

(− atq−1; q)
k

(q; q)k (q1−n; q)k(−at3qn−1; q)k

× (−1)�
(
at2)p�

q(p+1/2)�(�−1) 1− at2q2�−1

(at2q�−1; q)k+1

[
k

�

]

q

. (20)
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where q-binomial is given by

[
n

k

]

q

= (q;q)n
(q;q)k(q;q)n−k

. Pn(Kp<0; a, q, t) has the

same expression as Pn(Kp>0; a, q, t) but without the factor (−t)−n+1. Following
the methodology in section 2, the Chern–Simons field theory invariant 〈WR[Kp]〉,
in terms of braiding eigenvalues and Uq(slN) Racah coefficients, for twist knots Kp

turns out to be

〈WR[Kp]〉 =
∑

s,s′
εR,R̄
s

√
dsε

R,R̄
s′

√
ds′
(
λ(−)
s

(
R, R̄

))−2
ass′

[
R R̄

R R̄

] (
λ
(−)

s′
(
R, R̄

))−2p
,

where s, s′ ∈ R ⊗ R̄. Comparing the superpolynomials at t = −1 with the
above invariant, we obtained Uq(slN) Racah coefficients for SU(N) symmetric
representations up to rank n = 3 [16]. Comparing with the formula of the Uq(sl2)

6j -symbols obtained by Kirillov and Reshetikhin [20], we conjectured a closed
form expression for the Uq(slN) quantum Racah coefficients [21] for the following
two types:

ats

[
R1 R̄2

R3 R̄4

]
; ats

[
R1 R2

R̄3 R̄4

]
,

where R1, R2, R3, R4 are symmetric representations with single row in the Young
diagram.

4 Volume Conjectures and Super-A-Polynomial

We consider the asymptotic form of our conjectured formula of superpolyno-
mials (20) for knot 52 and perform saddle point analysis to obtain classical
super-A-polynomials Asuper(Kp=2; x, y; a, t). We introduce two variables z =
eh̄k, w = eh̄� and take the limits: q = eh̄ → 1, a = fixed, t = fixed, x =
qn = fixed, in (20) and convert the two summation to integrals over z and w. Then
using the categorified volume conjecture, we have

Pn(Kp>0; a, q, t)
n→∞
h̄→0∼

∫
dzdw e

1
h̄

(
W̃(Kp>0;z,w)+O(h̄)

)

∼ e

(
1
h̄

∫
log y dx

x
+ ...

)

,

(21)
where the integral on RHS in Eq. (21) is over the zero locus of the classical super-
A-polynomial, i.e., Asuper(Kp=2; x, y; a, t) = 0. Taking such limits replaces
q-Pochhammer into di-logarithms giving the superpotential
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W̃(Kp=2; z,w)

= − ln x ln(−t)− π2

3
+ iπ lnw + lnw(p(ln a + 2 ln t)+ lnw

p+ 1
2 )

+ Li2(x
−1)− Li2(x

−1z)+ Li2(−at)− Li2(−atz)+ Li2(−at3x)

− Li2(−at3xz)− Li2(at
2w)+ Li2(at

2wz)+ Li2(w)+ Li2(zw
−1). (22)

The saddle point analysis of Eq. (21) in the limit h̄ → 0 imposes the following
conditions:

∂W̃(Kp>0; z,w, x)

∂z

∣∣∣∣
(z,w)=(z0,w0)

= 0 = ∂W̃(Kp>0; z,w, x)

∂w

∣∣∣∣
(z,w)=(z0,w0)

. (23)

Further, the zero locus of the classical super-A-polynomial is determined by

y = exp

(
x
∂W̃(Kp>0; z0, w0, x)

∂x

)
. (24)

Plugging the value of W̃(Kp=2; z,w)(22) into the above Eqs. (23) and (24), and
eliminating the extremum z0 and w0, we obtained classical super-A-polynomials
(see Table 6 in ref. [19]).

In order to calculate the quantum super-A-polynomials, we have to find a
difference equation of minimal order for the colored superpolynomials. To find
the difference equations, we used the program iSumq.txt written by Xinyu
Sun, based on q-analogue of the algorithm developed in ref. [22] and obtained
Âsuper(52; x̂, ŷ; a, q, t) (see Table 7 in ref. [19]). We checked that our results obey

Âsuper(52; x̂, ŷ; a, q = 1, t) = Asuper(52; x, y; a, t), (25)

showing the validity of the categorified quantum volume conjecture for knot 52.
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Demazure Formulas for Weight Polytopes

Mark A. Walton

Abstract The characters of simple Lie algebras are naturally decomposed into
lattice-polytope sums. The Brion formula for those polytope sums is remarkably
similar to the Weyl character formula. Here we start to investigate if other character
formulas have analogs for lattice-polytope sums, by focusing on the Demazure
character formulas. Using Demazure operators, we write expressions for the lattice
sums of the weight polytopes of rank-2 simple Lie algebras, and the rank-3 algebra
A3.

Keywords Lattice polytopes · Simple Lie algebras · Characters · Demazure
character formula

1 Introduction

The Brion formula [3, 4] for lattice-polytope sums is remarkably similar to the Weyl
formula for characters of simple Lie algebras [6, 11, 15]. As a consequence, the
expansion of Weyl characters in terms of lattice-polytope sums is natural and useful
[6, 11–13, 15, 16]. This polytope expansion of Lie characters is highly reminiscent
of the early work of Antoine and Speiser [2] and the recursive formulas found by
Kass [8].

Here we explore further the relation between Lie characters and lattice-polytope
sums. Other formulas exist for the characters—might corresponding formulas
describe lattice-polytope sums?1

We focus on the Demazure character formulas [1, 5, 7], and use the Demazure
operators involved to write expressions for the lattice-polytope sums. So far, we

1This question was already asked in [15].
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have obtained results for all rank-2 simple Lie algebras and for the rank-3 algebra
A3. We hope these first formulas will help lead to general Demazure formulas for
the lattice-polytope sums relevant to Lie characters, and perhaps others.

How might such a formula be useful? Starting with the Demazure character
formulas, Littelmann was able to derive a generalization for all simple Lie algebras
of the famous Littlewood–Richardson rule for Ar tensor-product decompositions
[10]. In a similar way, formulas of the Demazure type might lead to efficient, general
computational methods for lattice polytopes.

Physical applications should also be possible. An attempt to apply the Demazure
character formula to Wess–Zumino–Witten conformal field theories was made in
[14], and it has already been used in the study of solvable lattice models [9].

In the following section, we review the initial motivation for the present work,
the similarity between the Weyl character formula and the Brion lattice-polytope
sum formula, and the polytope expansion that exploits it. Section 3 is a quick
review of the Demazure character formulas. Our new results are presented in Sect. 4:
expressions involving Demazure operators for lattice-polytope sums for rank-2
simple Lie algebras, and A3. The final section is a short conclusion.

2 Polytope Expansion of Lie Characters

Let Xr denote a simple Lie algebra of rank r , so that X = A,B,C,D,E, F, or G.
The sets of fundamental weights and simple roots will be written as F := {Λi | i ∈
{1, 2, . . . , r} } and S := {αi | i ∈ {1, 2, . . . , r} }, respectively. The weight and root
lattices are P := ZF and Q := Z S, respectively. The set of integrable weights is
P+ := N0 F , and we write R (R+) for the set of (positive) roots of Xr .

2.1 Weyl Character Formula

Consider an irreducible representation L(λ) of Xr of highest weight λ ∈ P+. The
formal character of L(λ) is defined to be

chλ =
∑

μ∈P(λ)

multλ(μ) e μ . (1)

Here P(λ) is the set of weights of the representation L(λ), and multλ(μ) is the
multiplicity of weight μ in L(λ).

The formal exponentials of weights obey eμ eν = eμ+ν . If we write

eμ(σ ) =: e〈μ,σ 〉 , (2)
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where 〈μ, σ 〉 is the inner product of weights μ and σ , the formal exponential eμ

simply stands for e〈μ,σ 〉 before a choice of weight σ is made. A choice of σ fixes
a conjugacy class of elements in the Lie group exp(Xr). The formal character then
becomes a true character chλ(σ ), the trace, in the representation of highest weight
λ, of elements of exp(Xr) in the conjugacy class labeled by σ .

The celebrated Weyl character formula is

chλ =
∑

w∈W(detw) ew.λ

∏
α∈R+ (1− e−α)

. (3)

Here W is the Weyl group of the simple Lie algebra Xr , and w.λ = w(λ + ρ) − ρ

denotes the shifted action of Weyl-group element w ∈ W on the weight λ, with
ρ =∑r

i=1 Λi .
The Weyl invariance of the character can be made manifest:

chλ =
∑

w∈W
ewλ

∏

α∈R+
(1− e−wα)−1 . (4)

Here now

(
1− eβ

)−1 =
{

1+ eβ + e2β + . . . , β ∈ R−;
−e−β − e−2β − . . . , β ∈ R+.

(5)

The rule-of-thumb is expand in powers of eβ , with β a negative root.

2.2 Brion Lattice-Polytope Sum Formula

A polytope is the convex hull of finitely many points in R
d . A polytope’s vertices are

such a set of points with minimum cardinality. A lattice polytope has all its vertices
in an integral lattice in R

d . The (formal) lattice-polytope sum is the sum of terms
e φ over the lattice points φ in the polytope.

Brion [3, 4] found a general formula for these lattice-polytope sums. Let the
weight polytope Ptλ be the polytope with vertices given by the Weyl orbit Wλ.
Consider the lattice-polytope sum

Bλ :=
∑

μ∈(λ+Q)∩Ptλ

e μ , (6)

where the relevant lattice is the λ-shifted root lattice λ + Q of the algebra Xr .
Applied to a weight polytope, the Brion formula yields
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Bλ =
∑

w∈W
ewλ

∏

α∈S
(1− e−wα)−1 . (7)

Here S denotes the set of simple roots of Xr .

2.3 Polytope Expansion

The Brion formula (7) is remarkably similar to the Weyl character formula, as
written in (4) [6, 15]. It is therefore natural, and fruitful, to consider the polytope
expansion of Lie characters [6, 15, 16]:

chλ =
∑

μ≤λ

polytλ(μ) Bμ . (8)

The polytope multiplicities polytλ(μ) are defined in analogy with weight multiplic-
ities multλ(μ).

We do not consider the polytope expansion further in this note. Instead we focus
on the striking relation described above between characters and polytope sums.

3 Demazure Character Formulas

Do other character formulas point to the existence of new formulas for the lattice
sums of weight polytopes? More general polytopes?

In particular, do the Demazure formulas for Lie characters indicate the existence
of Demazure-type formulas for the lattice sums of weight polytopes?

Let us first sketch the Demazure character formulas. The Weyl group W is
generated by the primitive reflections ri in weight space across the hyperplanes
normal to the corresponding simple roots αi :

ri λ = λ − (
λ · α∨i

)
αi ; (9)

here α∨i = 2αi/(αi · αi) is the simple co-root.
Define Demazure operators for every simple root αi ∈ S:

Dαi
=: Di = 1 − e−αi ri

1− e−αi
, (10)

where ri(e
λ) = eriλ . Then
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Di e
λ =

{
e λ + e λ−αi + e λ−2αi + · · · + e riλ, λ · α∨i � 0 ;
−e λ+αi − e λ+2αi − · · · − e ri (λ+αi), λ · α∨i < 0 .

(11)

For every Weyl-group element w ∈ W a Demazure operator Dw can be defined.
First, identify Dri := Di , and then use any reduced decomposition of w, replacing
the factors rj in the reduced decomposition with Dj . The resulting operator Dw

must be independent of which reduced decomposition is used. As a result, the
Demazure operators obey relations encoded in the Coxeter–Dynkin diagrams of Xr .

For example, consider the longest element wL of the Weyl group of A2: wL =
r1r2r1 = r2r1r2. The associated Demazure operator DwL

can be written in two
ways, so that D1D2D1 = D2D1D2.

If wL is the longest element of the Weyl group W , then the Demazure character
formula is

chλ = DwL
e λ . (12)

Also, define Di =: 1 + di , and then dw for all w ∈ W by reduced
decompositions. Then

chλ =
∑

w∈W
dw e λ . (13)

Demazure operators can also be defined for every positive root β ∈ R+:

D(β) := 1 − e−β r(β)

1− e−β
, (14)

where

r(β)λ := λ − (
λ · β∨)β and r(β)

(
eλ
) = er(β)λ . (15)

Operators d(β) = D(β) − 1,

d(β) := e−β [1 − r(β)]

1− e−β
, (16)

are also defined for all positive roots β ∈ R+.

4 Lattice-Polytope Formulas of Demazure Type

In the hopes of helping lead to a more general result, we take a direct approach here,
and write formulas for low-rank weight-polytope sums that involve the Demazure
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operators. We report only preliminary new results, formulas for all rank-2 cases, and
for one of rank 3, related to the Lie algebra A3.

But before treating ranks 2 and 3, let us first dispense with the unique rank-1
algebra, A1. In this case, the character and weight-polytope lattice sum are identical,

chλ = Bλ = eλ + eλ−α1 + eλ−2α1 + . . .+ e−λ . (17)

The Demazure character formulas therefore apply to Bλ.
The A1 Weyl group W has 2 elements, the identity and r1 = r(α1), where α1

is the simple root, and only positive root. The longest element of W is therefore
wL = r1 = r(α1), with a unique reduced decomposition. Applying the Demazure
formulas (12) and (13), we find

Bλ = D1 eλ = [
d(α1) + 1

]
eλ . (18)

The last expression will turn out to be the most relevant here—see (23) and (25)
below.

The 3 rank-2 algebras can be treated in a unified way. Put the p := dimR+
positive roots of your rank-2 algebra in angular order; label them γj . So we get, for
A2,

{γ1, γ2, γp=3} = {α1, α1 + α2, α2} ; (19)

for B2 (∼= C2),

{γ1, . . . , γp=4} = {α1, α1 + α2, α1 + 2α2, α2} ; (20)

and for G2,

{γ1, . . . , γp=6} = {α1, α1 + α2, 2α1 + 3α2, α1 + 2α2, α1 + 3α2, α2} . (21)

In a generic weight diagram, these positive roots are parallel to half of the
boundaries, in angular order. They specify a path from the highest weight to the
lowest weight along the polytope edges labeled by γ1 through γp, in that order.
Correspondingly, the longest element wL of the Weyl group can be written as a
product of the reflections defined in (15):

wL = r(γp)r(γp−1) · · · r(γ2)r(γ1) . (22)

The weights of the first p−1 boundaries can be generated, and then the polytope
can be filled in by γp-strings of weights. If Bλ = B (eλ), then

B = [
d(γp)+ 1

] [
d(γ

p−1)r(γp−2) · · · r(γ1)

+ d(γ
p−2)r(γp−3) · · · r(γ1) + · · · + d(γ2)r(γ1) + d(γ1) + 1

]
. (23)
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Fig. 1 Weight polytope for a
regular highest weight of the
Lie algebra A3

Here we use the Demazure operators defined in (16) above. Eq. (23) is one formula
of Demazure type that applies to all rank-2 cases.

Now consider a rank-3 example, the Lie algebra A3. The weight polytope for
a highest weight with all Dynkin labels non-zero, and unequal, is illustrated in
Fig. 1. Notice that the facets are the weight polytopes for the rank-2 algebras whose
Coxeter–Dynkin diagrams are obtained from that of A3 by deleting a single node.
Hence, the facets are hexagonal A2 weight polytopes of 2 types, and rectangular
A1 ⊕ A1 polytopes.

The longest element of the A3 Weyl group can be written as in (22), with p = 6
and

{γ1, . . . , γ6} = {α1, α12, α123, α2, α23, α3} , (24)

where α12 := α1 + α2, etc. The expression corresponds to a path along the edges of
the polytope from the highest to the lowest weight.

It is not difficult to see that the following expression

B = [d(α3) + 1
] [

d(α23)r(α2) + d(α2) + 1
]

× [d(α123)r(α12)r(α1) + d(α12)r(α1) + d(α1) + 1
]

(25)

generates the A3 weight-polytope lattice sum. Notice the order of factors follows
the order of factors in the expression (22), as in the rank-2 result (23).

5 Conclusion

We have begun a search for Demazure-type formulas for the exponential sums
of weight polytopes of simple Lie algebras. Our results are preliminary, mostly
summarized in (23) and (25), expressions valid for all rank-2 algebras (A2, B2 ∼=
C2,G2) and A3, respectively.

Clearly, Demazure-type formulas can be written. However, our expressions are
not unique—we have obtained others. What is needed is a universal formula, one
that applies to all simple Lie algebras, as the Weyl (3) and (4) and Demazure (12)
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and (13) character formulas do, as well as the Brion formula (7) for a weight
polytope. Similarities in the formulas given here may indicate that we are on the
right track.

Acknowledgments I thank Jørgen Rasmussen for collaboration and Chad Povey for 3D-printing
rank-3 weight polytopes. This research was supported by a Discovery Grant from the Natural
Sciences and Engineering Research Council of Canada (NSERC).
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Point Transformations: Exact Solutions
of the Quantum Time-Dependent Mass
Nonstationary Oscillator

Kevin Zelaya and Véronique Hussin

Abstract In this note, we address the exact solutions of a time-dependent Hamilto-
nian composed by an oscillator-like interaction with both frequency and mass terms
that depend on time. The latter is achieved by constructing the appropriate point
transformation that deforms the Schrödinger equation of a stationary oscillator into
the one of the time-dependent model. In this form, the solutions of the latter can
be seen as deformations of the well-known stationary oscillator solutions, and thus
an orthogonal set of solutions can be determined straightforwardly. The latter is
possible since the inner product structure is preserved by the point transformation.
Moreover, any invariant operator of the stationary oscillator is transformed into an
invariant of the time-dependent model. This property leads to a straightforward way
to determine constants of motion without using any ansatz.

Keywords Nonstationary oscillator · Point transformations · Time-dependent
Hamiltonians · Exact solutions · Quantum invariants

1 Introduction

The dynamics of non-relativistic quantum systems is determined through the
solutions of the Schrödinger equation. In the latter, the information of the system
under consideration is coded in the Hamiltonian operator. Most of the physical
systems of interest are stationary and described by time-independent Hamilto-
nians. On the other hand, for open systems, time-dependent Hamiltonians are
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required to provide an accurate description. Physical applications are found in
electromagnetic traps of particles [1–3], in which external time-dependent electric
and magnetic fields allow the confinement of particles [4]. In such a case, we
describe the respective Hamiltonian through a parametric oscillator potential, also
known as nonstationary oscillator, which consists of an oscillator-like interaction
with a frequency that varies in time. Exact solutions were studied in detail by
Lewis and Riesenfeld for the classical and quantum cases [5, 6]. Given that the
Hamiltonian has an explicit dependence on time, an eigenvalue equation associated
with Hamiltonian is no longer feasible and the existence of an orthonormal set of
solutions cannot be taken for granted, as it is customary for the stationary quantum
oscillator. Nevertheless, Lewis and Riesenfeld introduced an approach in which a
nonstationary eigenvalue equation can be still found once the appropriate constant of
motion is determined [6]. With the latter, solutions to the Schrödinger equation are
found by adding the appropriate time-dependent complex-phase to the nonstationary
eigenfunctions. The constant of motion, or invariant operator Î (t), is usually
imposed as an ansatz and determined from the condition [i∂/∂t − Ĥ (t), Î (t)] = 0.
Such approach has been applied successfully to other time-dependent models as
well [7].

In this note, we address the solutions of the nonstationary oscillator with time-
dependent mass. To this end, we consider the method of point transformations,
which has been used in the context of quadratic time-dependent potentials [8] and
nonstationary Darboux transformations [9]. In particular, we use the construction
introduced in [10]. The latter allows deforming the well-known Schrödinger
equation of the stationary oscillator into the one of the time-dependent model.
This method leads to a straightforward way to obtain the solutions of the time-
dependent model as deformations of the stationary oscillator. Remarkably, the point
transformation preserves the first integrals, this means that the constants of motion
and the spectral properties for the time-dependent model are inherited from the
stationary oscillator, without requiring to impose any anstaz [6].

2 Nonstationary Oscillator with Time-Dependent Mass

Let us first consider the quantum harmonic oscillator, defined through the Hamilto-
nian

Ĥosc =
p̂2
y

2
+ ŷ2

2
, (1)

where ŷ and p̂y stand for the canonical position and momentum operators, [ŷ, p̂y] =
i. With the latter, the Schrödinger equation, represented in the spatial coordinate ‘y’,
reads as
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i
∂Ψ

∂τ
= −1

2

∂2Ψ

∂y2
+ y2

2
Ψ, (2)

where τ is the time parameter, the momentum operator was represented as p̂y =
−i ∂

∂y
and Ψ (y, τ) = 〈y|Ψ (τ)〉 is the respective wave function. Given that Ĥosc is

time-independent, the solutions of (2) can be easily computed using the separation
of variables Ψ (y, τ) = e−iEτΦ(y), where Φ(y) = 〈y|Φ〉 fulfills the eigenvalue
equation

− 1

2

d2Φ

dy2 +
y2

2
Φ = EΦ. (3)

A set of physical solutions {Φn(y)}∞n=0 is determined with the aid of the finite-norm
condition |||Φn〉||2 = 〈Φn|Φn〉 <∞, where the inner product of two eigenfunctions
Φ(1)(y) and Φ(2)(y) is defined through

〈Φ(2)|Φ(1)〉 =
∫ ∞

−∞
dy Φ∗(2)(y)Φ(1)(y) . (4)

The spectral information of the harmonic oscillator is then given by

Φn(y) =
√

1

2nn!√π
e−

y2

2 Hn (y) , En = (n+ 1/2), (5)

where Hn(z) are the Hermite polynomials [11]. The set of eigenfunctions is
orthonormal, 〈Φm|Φn〉 = δn,m, and it generates the space H = span{|Φn〉}∞n=0.

Now, we introduce the nonstationary oscillator with time-dependent mass,
defined in terms of the canonical position and momentum operators x̂ and p̂x ,
respectively, together with the time parameter t through the time-dependent Hamil-
tonian

Ĥ (t) = 1

2m(t)
p̂2
x +

1

2
m(t)Ω2(t)x̂2 + F(t)x̂ + V0(t), (6)

where m(t) is the time-dependent mass, Ω2(t) the time-dependent frequency, F(t)

an external driving force and V0(t) a zero-point energy term. The wave functions
ψ(x, t) = 〈x|ψ(t)〉 associated with the Hamiltonian (6) are thus computed from the
Schrödinger equation

i
∂ψ

∂t
= − 1

2m(t)

∂2ψ

∂x2 +
1

2
m(t)Ω2(t)x2ψ + F(t)xψ + V0(t)ψ. (7)

In the sequel, we address the solutions of (7) by constructing the point transforma-
tion.
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3 Point Transformation

In order to transform the Schrödinger equation of the stationary oscillator (2) into
the one of the nonstationary oscillator with time-dependent mass (7), let us consider
relationships between the elements of the set {y, τ, Ψ } and those of the set {x, t, ψ}
of the form [12]

y = y(x, t), τ = τ(x, t), Ψ = Ψ (y(x, t), τ (x, t)) = G(x, t;ψ(x, t)). (8)

The dependence of Ψ on x and t is implicit, so, we have introduced the function
G as a reparametrization that allows to rewrite Ψ as an explicit function of x, t

and ψ . In this way, we have at hand a mechanism to map any solution of (2) into a
solution of (7). The explicit form of the relationships in (8) is determined through

the total derivatives dΨ
dx

, dΨ
dt

and d2Ψ
dx2 . It allows finding relationships between the

partial derivative of the initial and final models, leading to the forms

∂Ψ

∂τ
= G1

(
x, t;ψ,

∂ψ

∂x
,
∂ψ

∂t

)
,

∂2Ψ

∂y2 = G2

(
x, t;ψ,

∂ψ

∂x
,
∂2ψ

∂x2 ,
∂ψ

∂t

)
.

(9)
The latter leads in general to nonlinear terms, but the conditions [10]

Ψ = G(x, t;ψ) = A(x, t)ψ , τ = τ(t) , (10)

remove such nonlinearities. With (10), and after some calculations, it can be shown
that the relationships in (9) are written as

Ψτ = A

τt

[
− yt

yx
ψx + ψt +

(
At

A
− yt

yx

Ax

A

)
ψ

]
,

Ψy,y = A

y2
x

[
ψx,x +

(
2
Ax

A
− yxx

yx

)
ψx +

(
Axx

A
− yxx

yx

Ax

A

)
ψ

]
,

(11)

where the subindex notation denotes partial derivatives, fu = ∂f
∂u

. The substitution
of (10) and (11) into (2) leads, after some arrangements, to

iψt = −1

2

τt

y2
x

ψx,x + B(x, t)ψx + V (x, t)ψ, (12)

with
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B(x, t) = i
yt

yx
− 1

2

τt

y2
x

(
2
Ax

A
− yxx

yx

)
,

V (x, t) = −i

(
At

A
− yt

yx

Ax

A

)
− 1

2

τt

y2
x

(
Axx

A
− yxx

yx

Ax

A

)
+ τt

2
y2(x, t).

(13)

Given that (12) must be of the form (7), we impose the conditions

τt

y2
x

= 1

m(t)
, B(x, t) = 0. (14)

To simplify the calculations, it is convenient to introduce the real-valued functions
μ(t) and σ(t) such that τt = σ−2(t) and m(t) = μ2(t). From the first condition
in (14) we get

τ(t) =
∫ t dt ′

σ 2(t ′)
, y(x, t) = μ(t)x + γ (t)

σ (t)
, (15)

where the real-valued function γ (t) results from the integration with respect to x.
From B(x, t) = 0 we obtain A(x, t) as

A(x, t) = exp

[
i
μ

σ

(Wμ

2
x2 +Wγ x + η

)]
, (16)

where η(t) is a complex-valued function resulting from the integration with respect
to x and

Wμ(t) = σμ̇− σ̇μ, Wγ (t) = σ γ̇ − σ̇ γ, (17)

with ḟ = df
dt

. With (16), the new time-dependent potential V (x, t) in (13) takes the
form

V (x, t) = μ2

2

(
Ẇμ

μσ
+ 1

σ 4

)
x2 + μ

(
Ẇγ

σ
+ γ

σ 4

)
x + V0(t) ,

V0(t) = Wμξ

σ 2 + μξ̇

σ
− W2

γ

2σ 2 +
γ 2

2σ 4 − i
Wμ

2μσ
.

(18)

After comparing (18) with the potential energy term in (7) we obtain a system of
equations for σ , γ and η that, without loss of generality, reduces to quadratures by
considering1 V0(t) = 0. We thus have

1For V0(t) �= 0, the solutions are just modified by adding a global complex-phase, for details see
App. B of [10].
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σ̈+
(
Ω2 − μ̈

μ

)
σ = 1

σ 3 , γ̈+
(
Ω2 − μ̈

μ

)
γ = F

μ
,

μ

σ
η = ξ− i

2
ln

σ

μ
, (19)

where the real-valued function ξ(t) is given by

ξ(t) = γWγ

2σ
− 1

2

∫ t

dt ′F(t ′)γ (t ′)
μ(t ′)

. (20)

From (19) it follows that σ(t) satisfies the Ermakov equation [13], whose solutions
are well-known in the literature [13–15]. In general, for a set of nonnegative
parameters {a, b, c} we have [13]

σ(t) =
[
aq2

1 (t)+ bq1(t)q2(t)+ cq2
2 (t)

]1/2
, b2 − 4ac = − 4

W 2
0

, (21)

where q1 and q2 are two linearly independent real solutions of the linear equation

q̈1,2 +
(
Ω2 − μ̈

μ

)
q1,2 = 0 , (22)

and the Wronskian W(q1, q2) = W0 is a constant. The constraint in the constants
a, b, c ensures that σ > 0 at any time [14, 15]. Thus, the transformed coordinate
y(x, t) and time parameter τ(t) are free of singularities at any time. Notice that (21)
corresponds to the classical equation of motion of the parametric oscillator [4, 5]. On
the other hand, γ (t) is a solution to the classical parametric oscillator subjected to a
driving force F(t). In general, γ can be expressed as the sum of the homogeneous
solution γh = γ1q1+γ2q2 and the particular solution γp(t), where the real constants
γ1,2 are fixed according to the initial conditions and the function γp(t) is determined
once the driving force F(t) has been specified. Moreover, the function τ introduced
in (15) can be rewritten in terms of q1 and q2 as well, leading to [15]

τ(t) =
∫ t dt ′

σ 2(t ′)
= arctan

[
W0

2

(
b + 2c

q2

q1

)]
. (23)

From (10) and with the functions σ , γ and τ already identified, the solutions
to the Schrödinger equation (7) are simply given in terms of the solutions of the
stationary oscillator Ψ (y, τ) as

ψ(x, t) = exp

[
−i

μ

σ

(Wμ

2
x2 +Wγ x

)
− iξ

]√
μ

σ
Ψ (y(x, t), τ (t)) . (24)

That is, the solutions of the nonstationary oscillator with time-dependent mass Ĥ (t)

can be seen as a mere deformation of the solutions of the stationary oscillator,
provided by the appropriate point transformation. From the latter, it is natural to
ask whether the structure of the inner product defined in terms of the new solutions
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ψ(x, t) is deformed as well. To this end, let us consider a pair of arbitrary solutions
of the stationary oscillator, Ψ(1)(y, τ ) and Ψ(2)(y, τ ). Straightforward calculations
show that

〈Ψ(2)(τ )|Ψ(1)(τ )〉 =
∫ ∞

−∞
dy Ψ(2)

∗(y, τ )Ψ(1)(y, τ )

=
∫ ∞

−∞
dx ψ(2)

∗(x, t)ψ(1)(x, t) = 〈ψ(2)(t)|ψ(1)(t)〉, (25)

that is, the point transformation preserves the structure of the inner product.

3.1 Orthogonal Set of Solutions and the Related Spectral
Problem

With the transformation rule (24), we can find an orthogonal set of solutions
for (7). From the preservation of the inner product (25), it is natural to consider
the orthogonal solutions of the stationary oscillator Ψn(y, τ ), where Ψn(y, τ ) =
e−i(n+1/2)τΦn(y) and Φn(y) is given in (5). Hence, the orthogonal set of solutions
{Ψn(y, τ )}∞n=0 maps into the orthogonal set {ψn(x, t)}∞n=0, where

ψn(x, t) = e−i(n+1/2)τ (t)ϕn(x, t), (26)

with ϕn(x, t) = A−1(x, t)Φn (y(x, t)) written as

ϕn(x, t) = exp

{
−
(
μ2

σ 2
+ i

μWμ

σ

)
x2

2
−
(
μγ

σ 2
+ i

μWγ

σ

)
x −

(
γ 2

2σ 2
+ iξ

)}

×
√

1

2nn!√π

√
μ

σ
Hn

(
μx + γ

σ

)
. (27)

Notice that the orthogonality condition obtained from (25) holds provided that both
solutions are evaluated at the same time, that is, 〈ψn(t)|ψm(t)〉 = δn,m. In turn, the
orthogonality cannot be taken for granted at different times, 〈ψm(t ′)|ψn(t)〉 �= δn,m
for t �= t ′. Moreover, the space of solutions generated with (26) is dynamic, H(t) =
Span{|ψn(t)〉}∞n=0. Such a property is beyond the scope of this work and will be
studied elsewhere. For information on the matter see [16].

We have shown the orthonormality of the solutions ψn(x, t), however, it is
necessary to emphasize that they are not eigenfunctions of the Hamiltonian Ĥ (t).
Nevertheless, the functions ψn(x, t) are admissible from the physical point of view.
Since Ĥ (t) is not a constant of motion of the system d

dt
Ĥ (t) �= 0, we wonder

about the observable that defines the system uniquely so that it includes the set
{ψn(x, t)}∞n=0 as its eigenfunctions. Moreover, what about the related spectrum?



302 K. Zelaya and V. Hussin

The latter points must be clarified in order to provide the functions (26), and any
linear combination of them, with a physical meaning.

Remarkably, such information is obtained from the point transformation itself,
because any conserved quantity is preserved [12]. Indeed, from (5) we see that the
energy eigenvalues En = (n + 1/2) of the stationary oscillator must be preserved
since they are constant quantities. To be specific, using the relationships (11)
together with A(x, t)=(16), the stationary eigenvalue equation (3) deforms into

− σ 2

2μ2

∂2ϕn

∂x2 +
1

2

(
W2

μ +
μ2

σ 2

)
x2ϕn − σWμ

2μ
i

(
2x

∂

∂x
+ 1

)
ϕn

− σWγ

μ
i
∂ϕn

∂x
+
(
WμWγ + μγ

σ 2

)
xϕn + 1

2

(
W2

γ +
γ 2

σ 2

)
ϕn = Enϕn, (28)

where the eigenvalues En = (n + 1/2) have been inherited from the stationary
oscillator. It is immediate to identify the operator

Î (t) = σ 2

2μ2 p̂
2
x +

1

2

(
W2

μ +
μ2

σ 2

)
x̂2 + σWμ

2μ
(x̂p̂x + p̂x x̂)+ σWγ

μ
p̂x

+
(
WμWγ + μγ

σ 2

)
x̂ + 1

2

(
W2

γ +
γ 2

σ 2

)
I(t), (29)

with I(t) =∑∞
n=0 |ψn(t)〉〈ψn(t)| the representation of the identity operator in H(t).

The invariant operator Î (t) is such that we get the eigenvalue equation Î (t)|ϕn(t)〉 =
(n + 1/2)|ϕn(t)〉. Besides, straightforward calculations show that Î (t) satisfies the
invariant condition

d

dt
Î (t) = i[Ĥ (t), Î (t)] + ∂

∂t
Î (t) = 0. (30)

That is, Î (t) is an integral of motion of the parametric oscillator. Remark that
the invariant operator Î (t) arises naturally from the point transformation, without
requiring any ansatz, contrary to [6]. Moreover, with Î (t) and (26) we find

ψn(x, t) = e−iÎ (t)τ (t)ϕn(x, t) = e−iw(n+1/2)τ (t)ϕn(x, t). (31)

Thus, we can conclude that the time-dependent complex-phase of the Lewis and
Riesenfeld approach [6] coincides with the exponential term in (31), that is, such a
phase is proportional to the deformed time parameter τ(t). Notice that, contrary to

the stationary case, the operator e−iÎ (t)τ (t) in (31) is not the time evolution operator.
It is worth to mention that, for γ1 = γ2 = F(t) = 0 and a constant mass m(t) =
μ(t) = 1, the operator (29) coincides with the invariant of Lewis and Riesenfeld [6].
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4 Concluding Remarks

It was shown that a set of orthonormal solutions for the time-dependent mass nonsta-
tionary oscillator can be found by constructing the appropriate point transformation
and deforming the solutions of the stationary oscillator. The latter is possible since
the point transformation preserves the structure of the inner product. Although the
Hamiltonian depends explicitly on time, a spectral problem can be identified for
the appropriate constant of motion that emerges from the transformed Hamiltonian
of the stationary oscillator. The procedure has been developed in general for any
time-dependent mass, frequency and an external driving force. Among the examples
that could be addressed we have the Caldirola–Kanai oscillator, which leads to the
quantum Arnold transformation [17], and the Hermite oscillator [18]. A detailed
discussion will be provided elsewhere.
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Influence of the Electron–Phonon
Interaction on the Topological Phase
Transition in BiTeI

Véronique Brousseau-Couture and Michel Côté

Abstract The topological order of a material is intrinsically related to its bulk
electronic structure. Topological phase transitions require that the bulk band gap
vanishes. However, the gap is affected by atomic motion through electron–phonon
interaction, even at T = 0 K. As a consequence, electron–phonon interaction
can either promote or suppress topologically non-trivial phases. In this work, the
temperature dependence of the pressure-induced topological phase transition in
Rashba semiconductor BiTeI is investigated through first-principles methods. We
first present an overview of electron–phonon interaction within the framework of
density-functional perturbation theory (DFPT) and derive a qualitative argument
to understand how it will affect the band gap for both typical semiconductors
and topological insulators. Then, by tracking both the pressure and temperature
dependence of the bulk band gap, we show how the Weyl semimetal and topological
insulator phases of BiTeI evolve with temperature, thus providing a guideline for
experimental detection.

Keywords Electron–phonon interaction · Density-functional theory ·
Topological phase transitions

1 Introduction

Since their theoretical prediction in the 1980s, the study of topological phases of
matter has grown to become a very active field of research in condensed matter
physics. A peculiarity of such phases resides in the fact that they cannot be
explained by Landau theory, as transitioning from a topologically trivial to a non-
trivial phase does not involve any symmetry breaking. From the bulk-boundary
correspondence principle [1], the non-trivial phases are characterized by symmetry-
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protected boundary states, since one cannot go from a bulk insulator to a topological
insulator (TI) without closing the bulk band gap.

First-principles studies have been widely used to predict and characterize new
topological materials since they do not make any assumptions on the system and
do not rely on external parameters besides the crystal structure. However, most
of these calculations are done under the assumption of the static lattice, while
experiments are inherently done at finite temperature, where atoms are necessarily in
motion. Such calculations thus disregard how an increasing population of thermally
activated phonons affects material properties.

1.1 Electron–Phonon Interaction in Semiconductors

When studying topological insulators from first-principles, one aims to identify
topologically non-trivial electronic band structures, which manifest themselves
through a local inversion of the leading orbital character of the valence and
conduction bands in the vicinity of their respective extrema (band inversion) [1]. To
accurately predict the topology of a given band structure at some finite temperature,
one must, therefore, assess how the temperature affects the electronic structure. In
analogy with the Lamb shift in QED, where the electronic energy levels are modified
by an interaction with the vacuum fluctuations, in condensed matter, electrons
interact with phonons even at T = 0 K, through the zero-point motion of the ions.
This electron–phonon interaction (EPI) gives rise to many distinctive features in the
band structure, such as a variation of the band gap energy with temperature, band
broadening induced by the finite lifetime of electronic excitations, the presence of
replica bands, and the formation of kinks near the Fermi level for metals [2].

1.2 Phonon-Induced Topological Insulation

From this point a view, since a topological phase transition requires the bulk
band gap to close and EPI governs the temperature dependence of the electronic
structure, one can naturally wonder if EPI could be strong enough to close
the gap and drive a topological phase transition (TPT). This question was first
addressed by Saha and Garate [3, 4] through model Hamiltonians, and later
investigated with first-principles calculations for BiTl(S1−δSeδ)2 [5] and Sb2Se3 [6].
In those last two studies, the TPT is driven by an experimentally controllable
parameter, respectively, stoichiometric substitution and hydrostatic pressure. TPTs
can, therefore, be detected by tracking the variation of the bulk electronic band
gap, which must vanish at the critical parameter. Since temperature affects the
gap energy, the critical parameter at which the TPT takes place evolves with
temperature. Understanding how temperature influences the topological properties
of such materials is crucial for the efficient design of technological applications
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that would rely on the robust topologically protected metallic surface states, such as
spintronics, quantum computing, or topological transistors.

2 Electron–Phonon Interaction from First-Principles

In this section, we briefly present how EPI can be computed from first-principles.
For more details, we refer our readers to the review by Giustino [2]. We use the
Hartree atomic unit system (h̄ = me = e = 1). Let us start from the Hamiltonian:

H =
∑

kn

ε0
knc

†
knckn +

∑

qν

ωqν

(
a†

qνaqν + 1
2

)

+
∑

knn′,qν
gknn′,qνc

†
k+qn′ckn

(
aqν + a

†
−qν

)
. (1)

The first term describes Bloch electrons, with wavevector k, band index n, and bare
electronic eigenenergy ε0

kn. The second accounts for the phonons, with wavevector
q, branch index ν, and frequency ωqν . The last term captures the interaction between
the kn-electron and the qν-phonon, with EPI vertex gknn′,qν . c†

kn, ckn and a
†
qν , aqν

are, respectively, the creation and annihilation operators for electrons and phonons.
Within many-body perturbation theory, the temperature-dependent correction to

the electronic eigenenergies corresponds to the energy of the quasiparticle peak in
the real part of the frequency-dependent electron–phonon self-energy, ΣEPI

kn (T , ω).
Applying the on-the-mass-shell approximation, thus evaluating the self-energy at
the poles of the Green’s function, namely at the bare electronic eigenvalues, the
renormalized eigenenergies take the form:

εkn(T ) ≈ ε0
kn +Re

[
ΣEPI

kn

(
T , ω = ε0

kn

)]
. (2)

We work within the Migdal approximation, where the EPI vertex corrections
can be neglected because of the large mass difference between electrons and ions.
Expanding the third term of Eq. (1) to the lowest order, one obtains a contribution
known in the literature as the Fan term (Fig. 1, middle):

ΣFan
kn

(
T , ω = ε0

kn

) =
∑

qν

∑

n′

1

2ωqν

∣∣ 〈ψkn| δV (1)
qν

∣∣ψk+qn′
〉 ∣∣2

×
[

nq,ν(T )+ fk+q,n′(T )

ω − ε0
k+qn′ + ωqν + iηk

+ nq,ν(T )+ 1− fk+q,n′(T )

ω − ε0
k+qn′ − ωqν + iηk

]
.

(3)
In this expression, |ψkn〉 is a static lattice eigenstate and ηk is an infinitesimal
parameter introduced to maintain causality. δV

(1)
qν is the first-order variation of
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Fig. 1 Feynman diagrams
for the Fan and Debye–Waller
contributions to the EPI
self-energy, ΣEPI, within the
Allen–Heine–Cardona (AHC)
formalism

= +

Fan Debye-Waller

Σ EPI
(AHC)

the ionic potential created by the qν-phonon. The two terms inside the square
brackets, respectively, describe phonon absorption and emission processes. The
whole temperature dependence is captured by the Fermi–Dirac and Bose–Einstein
occupation factors, fk+qn′(T ) and nqν(T ).

Since the Fan term is a second-order term in first-order perturbation theory (it has
two first-order vertices in δV ), for consistency we must also include the contribution
of a first-order term in second-order perturbation theory (one second-order vertex
in δV ), known as the Debye–Waller term (Fig. 1, right). Approximating the self-
energy to the sum of the Fan and Debye–Waller terms is known in the literature as
the Allen–Heine–Cardona (AHC) theory [7].

2.1 A Competition Between Intraband and Interband
Couplings

We will now consider a simple two-band model to understand qualitatively how
EPI impacts the band gap. In a typical semiconductor, the Fan contribution (Eq. (3))
usually dominates the self-energy. The sum on band index, n′, can be split into
contributions from the occupied and unoccupied subsets of bands. Couplings within
a given subset are mapped onto intraband interactions, while couplings between
different subsets are mapped to interband interactions.

One can see from Eq. (3) that the sign of each contribution to the self-energy
is entirely governed by the sign of the energy difference between the coupled
electronic states in the denominators. Thus, when considering intraband couplings
(Fig. 2a, left), the valence band maximum (VBM) energy increases since it couples
to states of lower energy, while the conduction band minimum (CBM) energy
decreases since it couples to states of higher energies, thus reducing the band gap
energy. Those behaviors are reversed for interband couplings, such that the band
gap energy increases. The leading interaction will dictate the sign of the total band
gap renormalization. In a typical semiconductor, the band gap is usually of the
order of eV, such that interband couplings are strongly disfavored because of a
larger energy difference in the denominators. Hence, intraband couplings dominate
the EPI, leading to a band gap closing with increasing temperature, known in the
literature as the Varshni effect.

For a topological insulator, the situation is more subtle, since we must also
consider the leading orbital character of the valence and conduction bands, and the
band inversion phenomenon that occurs in the TI phase. Let us consider the case of
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to the band inversion phenomena. The + and − refer to the sign of each contribution to the Fan
self-energy (Eq. (3))

the VBM of “blue” character in Fig. 2b (left, white circle). Suppose that, in the trivial
phase, the intraband contribution dominates, such that the sum of couplings between
bands of the same character (“blue-blue”) and between bands of different characters
(“blue-red”) moves this band extremum to higher energy. This behavior remains
the same in the topological phase, but this extremum is now the CBM because of
the band inversion. By a similar argument, the band extremum of “red” character
(gray square) will be moved to lower energies, both in the trivial phase where it
is the CBM and in the TI phase, where it is the VBM. We can, therefore, deduce
from this simple heuristic argument that if the EPI interaction closes the gap in the
trivial phase, thus facilitation a band inversion, it will open it in the TI phase, further
stabilizing an already inverted gap. On the contrary, if EPI opens the gap in the trivial
phase, thus delaying the band inversion, it will close it in the TI phase, eventually
reversing the band inversion. In summary, intraband contributions globally promote
the topological phase, while interband contributions favor the trivial phase.

3 Topological Phase Transition in BiTeI

In this section, we specifically address the EPI contribution to the temperature
dependence of the TPT in BiTeI. For a more refined analysis of our results and
more details about our methodology, we refer to our forthcoming paper [8].

BiTeI is a trigonal crystal composed of atomic trilayers weakly bound by Van der
Waals interaction along the normal crystallographic axis. Due to strong spin–orbit
interaction and broken inversion symmetry, it exhibits one of the largest Rashba
splitting known so far (∼100 meV) [9]. As a consequence, its well-defined spin-
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momentum locking in-plane allows enhanced control of the spin degree of freedom,
making this material a promising candidate for spintronic applications.

In 2012, a DFT calculation predicted that BiTeI would turn into a strong Z2
topological insulator when subjected to hydrostatic pressure [10]. Following this
prediction, evidences of the TPT were documented experimentally, using x-ray
diffraction and infrared spectroscopy [11], electrical resistivity [12] and Shubnikov–
de Haas oscillations [13]. Liu and Vanderbilt later showed that broken inversion
symmetry imposed the existence of a mandatory (albeit narrow) Weyl semimetal
phase (WSM) between the trivial and topological insulator phases [14]. As a
consequence, the TPT of BiTeI exhibits two distinct critical pressures: the first when
the Weyl nodes are created in the H-A-L plane of the Brillouin zone, and the second
when they annihilate each other in the M-L-A mirror planes of the Brillouin zone
after migrating in the ±kz direction (see Fig. 11 of ref. [14]).

3.1 Static Lattice

Our first step was to reproduce the TPT in the static lattice approximation. To do
so, we tracked the band gap energy as a function of pressure as well as the leading
orbital character of the valence and conduction bands on either side of the TPT. The
TI phase was confirmed by computing the Z2 topological invariant using a hybrid
Wannier charge center analysis [15]. We find the critical pressures PC1 = 2.08
GPa and PC2 = 2.28 GPa (gray vertical lines of Fig. 3a). We also observe a band
inversion between Bi-6pz and Te/I- 5pz states (Fig. 3b), as originally predicted [10].
We stress that the current implementation of our DFPT methodology assumes that
the gap energy is larger than the maximal optical phonon frequency (dashed line
on Fig. 3a). We thus restricted our EPI calculations inside this pressure range (red
markers). For more details about the underlying assumptions of our analysis of the
temperature-dependent topological phases, we refer to our forthcoming paper [8].

3.2 Phonon-Induced Gap Renormalization

Figure 4a shows the EPI induced temperature-dependent renormalization for the
CBM (upper panel), VBM (center), and band gap (bottom). Three main elements
can be highlighted from this figure. First, both band extrema show a positive
renormalization in the trivial phase, while they shift in opposite directions in the
TI phase. As a consequence, the total gap renormalization is much larger in the TI
phase, since both contributions reinforce each other rather than cancel out. Second,
the Bi extremum (CBM in trivial phase and VBM in TI phase) is almost unaffected
by the increased pressure and the change in topology, while the Te/I extremum
(VBM in trivial phase and CBM in TI phase) demonstrates a greater dependency
with respect to pressure and even changes sign as the system undergoes the TPT.
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Lastly, the band gap opens with temperature in the trivial phase in the vicinity of
the TPT and closes in the TI phase. Thus, in both phases, EPI is not favorable to the
TI phase, as it tends to delay or reverse the band inversion phenomena. From the
heuristic model of Sect. 2.1, this suggests that interband couplings between states
across the gap play an important role in this material.
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By extrapolating the VBM and CBM renormalization towards the TPT within
each phase and applying this correction to the static band gap shown in Fig. 3a, we
evaluate the temperature dependence of critical pressures PC1 and PC2. From the
above discussion, the EPI being globally unfavorable to the TI phase leads to both
critical pressures being pushed towards higher values for increasing temperature,
as seen in the topological phase diagram of Fig. 4b. Nevertheless, the stronger
renormalization of PC2 compared to PC1 leads to a widening of the WSM phase
with increasing temperature. While the WSM phase width remains small, it has
increased by ∼50% at 100K and has more than doubled by 300K. Our findings,
therefore, indicate that EPI interaction does not obstruct experimental detection of
the WSM phase in BiTeI.

4 Conclusion and Outlook

We have computed the EPI contribution to the temperature dependence of the
band gap energy for BiTeI using first-principles methods. We explain the different
possible gap behaviors in the light of a simplified heuristic two-band model. We
show that the band extrema are affected differently by EPI depending on their
leading orbital character and that EPI is globally not favorable to the non-trivial
topology in BiTeI. With increasing temperature, both critical pressures are pushed
towards higher values, and the WSM phase is widened. A complete description
of the temperature dependence of the TPT would require evaluating the thermal
expansion contribution [8]. Further analysis of the individual couplings could also
provide meaningful insight into how the Rashba interaction affects the EPI strength
within and between spin-split bands.
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Nonlinear Coherent States for
Anisotropic 2D Dirac Materials

E. Díaz-Bautista, Y. Concha-Sánchez, and A. Raya

Abstract We construct nonlinear coherent states for electrons in anisotropic 2D
Dirac materials in a homogeneous magnetic field orthogonal to the sample. By
solving the anisotropic Dirac equation in Landau gauge, we identify the ladder
operators of the system. Nonlinear coherent states are obtained as eigenstates of
a generalized annihilation operator with complex eigenvalues which depends on an
arbitrary function f of the number operator. The anisotropy effects on these states
are analyzed by using the probability density and the Heisenberg uncertainty relation
for three different choices of f .

Keywords Coherent states · Anisotropic Dirac matter · Magnetic field

1 Introduction

2-Dimensional Dirac materials (2DDMs) like graphene [1–3], topological insula-
tors [4, 5], and organic conductors [6, 7] stand out because their charge carriers
at low-energy are described by a Dirac equation. Recently, the interest to control
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their physical properties, e.g., their stiffness, strength, and optical conductivity by
manipulation of their mechanical properties emerged, as in straintronics [8].

On the other hand, coherent states (CSs) were conceived by Schrödinger [9]
as the most classical states that describe the motion of a particle in a quadratic
potential. Although it is not always possible to obtain these states, they have been
used in many branches of physics, as optics, atomic, nuclear, condensed matter, and
particle physics (see Ref. [10] and references therein). For the harmonic oscillator,
the CSs are constructed from the ladder operators a and a† that together with the
identity operator are generators of the Heisenberg–Weyl (HW) algebra. This algebra
can be f -deformed by replacing them with [11]

A = af (N) = f (N + 1)a, A† = f (N)a† = a†f (N + 1), N = a†a, (1)

where f is a well-behaved real function of the number operator N , verifying

[N,A] = −A, [N,A†] = A†, [A,A+] = (N + 1)f 2(N + 1)−Nf 2(N).

(2)
Thus, nonlinear coherent states (NLCSs) are introduced as eigenstates of A|α〉f =
α|α〉f [11]. f (N) is selected to guarantee that such states belong to the Hilbert
space. NLCS are physically realized as stationary states of the center-of-mass
motion of a trapped ion [12] or the vibrations of polyatomic molecules [13]. By
generalizing the results in [14] to anisotropic 2DDMs, we aim to obtain a semi-
classical description of the effects of magnetic fields and anisotropy in physical
properties of these materials [10, 15–18].

For that purpose, this contribution is organized as follows. In Sect. 2 the
anisotropic 2D Dirac equation is solved analytically. In Sect. 3 a generalized
annihilation operator is presented and the NLCSs are constructed as its eigenstates.
We obtain their probability density and the Heisenberg uncertainty relation (HUR).
In Sect. 4 we present our conclusions.

2 Anisotropic 2D Dirac Hamiltonian

The isotropic 2D Dirac Hamiltonian H = vF "σ · "p, where "σ = (σx, σy) are the
Pauli matrices and "p is the canonical momentum, may be modified either because
the material is inherently anisotropic or it has been mechanically deformed, yielding
a Fermi velocity vF which is no longer isotropic. The anisotropic 2D Dirac equation
(see [19] and references therein) in a magnetic field is

HΨ (x, y) = "σ · ↔v · "Π Ψ (x, y) = (vxxσxπx + vyyσyπy)Ψ (x, y) = EΨ (x, y),

(3)

where
↔
v is the 2× 2 symmetric Fermi velocity tensor with non-vanishing diagonal

components vxx and vyy (see Fig. 1) and πx,y = px,y + eAx,y , with "A denoting the
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Fig. 1 Dirac cones for an isotropic (dashed gray contour) and anisotropic material (solid blue
contour). For the former, their cross-sections are circles and ellipses for latter with semi-major axis
along (a) the px -axis (vxx < vyy ) or (b) the py -axis (vxx > vyy )

vector potential which defines a magnetic field orthogonal to the sample. In Landau
gauge, such that "A(x, y) = B0xĵ and "B = ∇ × "A = B0k̂, we can write

Ψ (x, y) = N exp(iky)

(
ψ+(x)
iψ−(x)

)
, (4)

where N is for normalization. Substituting (4) into (3), and decoupling, we get

H±
ζ ψ±(x) =

[
− d2

dx2 +
ω2

ζ

4

(
x + 2k

ωB

)2

± 1

2
ωζ

]
ψ±(x) = (ε±)2ψ±(x), (5)

with ε± = E/vxxh̄, ωζ = ωB/ζ , ωB = 2eB0/h̄ and ζ = vxx/vyy being the
anisotropy parameter. The spectrum is

E−0 = 0, E−n = E+n−1 = ±h̄
√
vxxvyy ωB |n|, n = 0,±1,±2, . . . . (6)

with ± standing for the conduction and valence bands. Eigenfunctions are

ψn(x) =
√

1

2nn!
(ωζ

2π

)1/2
exp

[
−ωζ

4

(
x + 2k

ωB

)2
]
Hn

[√
ωζ

2

(
x + 2k

ωB

)]
.

(7)
Finally, we take N 2 = 2(δ0n−1), ψ−n ≡ ψn and ψ+n ≡ ψn−1 in (4).
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3 Annhilation Operator

Let us define the dimensionless differential operators

θ± = 1√
2

(
∓ d

dξ
+ ξ

)
, θ+ = (θ−)† , ξ =

√
ωζ

2

(
x + 2k

ωB

)
, (8)

where ξ is the guiding center and the θ± satisfy

θ−ψn = √nψn−1, θ+ψn =
√
n+ 1ψn+1, [θ−, θ+] = 1. (9)

Defining Sq = diag(sq, sq) and S
2
q = diag(s2

q , s
2
q), q = 0, 1, where

sq = 1√
2iq

(
θ− + (−1)qθ+

)
, s2

q =
1

2

(
2N + 1+ (−1)q((θ−)2 + (θ+)2)

)
,

(10)

from σSq =
(
〈S2

q〉 − 〈Sq〉2
)1/2

, we have σS0 ≡ σξ and σS1 ≡ σp with σξσp ≥ 1/2.

Likewise, we define a deformed annihilation operator Θ−
f as:

Θ−
f =

[
cos(δ)

√
N+2√
N+1

f (N + 2)θ− sin(δ) f (N+2)√
N+1

(θ−)2

− sin(δ)f (N + 1)
√
N + 1 cos(δ)f (N + 1)θ−

]
, Θ+

f = (Θ−
f )†,

(11)
in order to guaranty the action Θ−

f Ψn = cnΨn on eigenstates in (4), namely:

Θ−
f Ψn(x, y) = f (n)√

2δ1n
exp(iδ)

√
nΨn−1(x, y), n = 0, 1, 2, . . . , (12)

where f (N) is a well-behaved function of N = θ+θ− and δ ∈ [0, 2π ] allows us to
consider either diagonal or non-diagonal representation for Θ±

f , which satisfy

[
Θ−

f ,Θ+
f

] =
[
Ω(N + 1) 0

0 Ω(N)

]
, Ω(N) = (N + 1)f 2(N + 1)−Nf 2(N).

(13)
For the choice f (N) = 1, one recovers the HW algebra in order to obtain standard-
like CSs.

3.1 Nonlinear Coherent States

We construct NLCSs Ψ
f
α (x, y) as eigenstates of the operator Θ−

f :

Θ−
f Ψ f

α (x, y) = αΨ f
α (x, y), α ∈ C, (14)
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which are also a linear combination of Landau states (4),

Ψ f
α (x, y) =

∞∑

n=0

anΨn(x, y), (15)

with the coefficients of expansion an verifying the relations

a1f (1) = √2α̃a0, an+1f (n+ 1)
√
n+ 1 = α̃an, α̃ = α exp(−iδ). (16)

Hence, Θ−
f introduces a phase δ in the eigenvalue α and an is a parameter depending

on whether f (n+ 1) �= 0 or f (n+ 1) = 0.

3.2 Some Examples

We now consider some examples for f (N) with the aim of obtaining coherent states
as similar to the standard ones, as well as to discuss the effects of strain on the
NLCSs [14, 20]. It is worth to mention that the functions f (N) are chosen according
to the relations in Eq. (16).

Case for f (1) �= 0 Choosing f (N + 1) = 1, that satisfies f (1) �= 0, the
corresponding NLCSs, their probability density ρα(x) and the mean values of the
operators Sq and S

2
q in such states (see Fig. 2) are

Ψ f
α (x, y) = 1√

2 exp
(|α̃|2)− 1

[
Ψ0(x, y)+

∞∑

n=1

√
2 α̃n

√
n! Ψn(x, y)

]
, (17a)

ρα(x) = 1

2 exp
(|α̃|2)− 1

⎡

⎣ψ2
0 (x)+

∣∣∣∣∣

∞∑

n=1

α̃n

√
n!ψn(x)

∣∣∣∣∣

2

+
∣∣∣∣∣

∞∑

n=1

α̃n

√
n!ψn−1(x)

∣∣∣∣∣

2

+ 2 Re

( ∞∑

n=1

α̃n

√
n!ψn(x)ψ0(x)

)⎤

⎦ , (17b)

〈Sq〉α = α̃ + (−1)q α̃∗√
2iq(2 exp

(|α̃|2)− 1)

[
exp

(
|α̃|2

)
+

∞∑

n=1

|α̃|2n√
(n− 1)!(n+ 1)!

]
,

(17c)

〈S2
q〉α =

1

2(2 exp
(|α̃|2)− 1)

[
1+ 4|α̃|2 exp

(
|α̃|2

)
+ (−1)q(α̃2 + α̃∗2)
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Fig. 2 (a, b) Probability density ρα(x) in Eq. (17b) for |α| = 6 and some values of the parameter
ζ . For ϕ = Arg(α) = (2m + 1)π/2, m = 0, 1, . . . , ρα(x) is located around the position x0
(horizontal red lines). (a, c) (σξ )α(σp)α as function of α. As |α| increases, the HUR tends to the
value 1/2. In these cases, we set B0 = 1/2, k = ωB = 1 and δ = 0

×
[

exp
(
|α̃|2

)
+

∞∑

n=1

√
n+ 1 |α̃|2n√

(n− 1)!(n+ 2)!
]]

. (17d)

Case for f (1) = 0 Assuming that f (1) = 0, two new cases arise.

(a) f (2) �= 0. Choosing f (N + 1) = g(N) = √
N/
√
N + 1, the NLCSs, their

probability density ρα(x) and the mean values of the operators Sq and S
2
q are

Ψ f
α (x, y) = exp

(
−|α̃|

2

2

) ∞∑

n=0

α̃n

√
n!Ψn+1(x, y), (18a)

ρα(x) = exp
(−|α̃|2)

2

⎡

⎣
∣∣∣∣∣

∞∑

n=0

α̃n

√
n!ψn+1(x)

∣∣∣∣∣

2

+
∣∣∣∣∣

∞∑

n=0

α̃n

√
n!ψn(x)

∣∣∣∣∣

2
⎤

⎦ ,

(18b)



Nonlinear Coherent States for Anisotropic 2D Dirac Materials 323

〈Sq〉α = α̃ + (−1)q α̃∗

2
√

2iq

[
1+ exp

(
−|α̃|2

) ∞∑

n=0

√
n+ 2 |α̃|2n√
n!(n+ 1)!

]
, (18c)

〈S2
q〉α = 1+ |α̃|2 + (−1)q

(α̃2 + α̃∗2)

4

×
[

1+ exp
(
−|α̃|2

) ∞∑

n=0

√
n+ 3 |α̃|2n√
n!(n+ 1)!

]
. (18d)

(b) f (2) = 0. Finally, considering f (N + 2) = h(N) = √
N
√
N + 1/

√
N + 2,

which satisfies f (2) = 0, the corresponding NLCSs, their probability density
and 〈Sq〉α and 〈S2

q〉α , are (see Fig. 4):

Ψ f
α (x, y) =

( |α̃|
I1(2|α̃|)

)1/2 ∞∑

n=0

α̃n

√
n!(n+ 1)!Ψn+2(x, y), (19a)

ρα(x) =
( |α̃|

2 I1(2|α̃|)
)⎡

⎣
∣∣∣∣∣

∞∑

n=0

α̃n

√
n!(n+ 1)!ψn+2(x)

∣∣∣∣∣

2

+
∣∣∣∣∣

∞∑

n=0

α̃n

√
n!(n+ 1)!ψn+1(x)

∣∣∣∣∣

2
⎤

⎦ ,

(19b)

〈Sq 〉α = α̃ + (−1)q α̃∗

2
√

2iq

( |α̃|
I1(2|α̃|)

)[ ∞∑

n=0

|α̃|2n√
n![(n+ 1)!]3 +

∞∑

n=0

√
n+ 3 |α̃|2n√

n!(n+ 2)!(n+ 1)!

]
,

(19c)

〈S2
q 〉α = 2+ |α̃| I2(2|α̃|)

I1(2|α̃|) + (−1)q
(α̃2 + α̃∗2)

4

( |α̃|
I1(2|α̃|)

)

×
[ ∞∑

n=0

|α̃|2n√
n!(n+ 2)!(n+ 1)! +

∞∑

n=0

√
n+ 4 |α̃|2n√

n!(n+ 1)!(n+ 2)!

]
, (19d)

where I1(x) denotes the Bessel function of first kind.

In a semi-classical interpretation, the eigenvalue α = |α| exp (iϕ) determines the
initial conditions of the motion of the electrons. For ϕ ∈ [0, 2π ] and a fixed value of
ζ , the maximum probability performs an oscillatory motion around the equilibrium
position x0 = 2k/ωB (vertical red lines in panels (a) and (b) in Figs. 2, 3 and 4).
This fact shows that according to the phase ϕ, electrons can be found either close
to the turning point x or the equilibrium point x0 at a certain time t , as it happens
for a classical particle moving in a closed path with center at x0, seen from x-axis,
due to the Lorentz force "F = q "v × "B. Likewise, the distance between the points
x, the position of the center of the probability density ρα(x) along the x-axis, and
x0 is also affected by ζ , depending on whether vxx < vyy or vxx > vyy . On the
other hand, panel (c) in Figs. 2, 3 and 4 shows that the HUR behaves differently for
each NLCS considered due to the state of minimum energy Ψn that contributes to
the linear combination of Ψ f

α .
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Fig. 3 (a, b) Probability density ρα(x) in Eq. (18a) for |α| = 6 and some values of the parameter
ζ . For ϕ = (2m + 1)π/2, m = 0, 1, . . . , ρα(x) is centered in the position x0 (horizontal red
lines). (σξ )α(σp)α as function of α. As |α| increases, the HUR tends to 1/2. In these cases, we set
B0 = 1/2, k = ωB = 1 and δ = 0

4 Conclusions

In this work, we have supplied a semi-classical description of the effects of
anisotropy on the dynamics of the Dirac particles in a magnetic field. Describing the
background field in Landau gauge, we construct the coherent states that depend on
anisotropy through ζ = vxx/vyy . According to these states, when the anisotropy is
aligned to the px-axis (ζ < 1), the distance between the turning points x of the semi-
classical oscillatory motion of electrons and the equilibrium position x0 = 2k/ωB
is less than when the anisotropy is aligned to the py-axis (ζ > 1), for which the
points x move away from x0. For the first case, the NLCSs in (19a) could better
describe such situation because they tend to oscillate close to the equilibrium point
x0 (Fig. 4), while the NLCSs (17a) and (18a) could be used to describe the second
one (Figs. 2 and 3).

We consider that the results obtained in this work can be useful to describe
phenomena on 2DDMs by using the coherent states formulation, which has been
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Fig. 4 (a, b) Probability density ρα(x) in Eq. (19b) for |α| = 6 and different values of the
parameter ζ . For ϕ = (2m + 1)π/2, m = 0, 1, . . . , ρα(x) is placed in the position x0 (horizontal
red lines). (σξ )α(σp)α as function of α. As ϕ changes, the HUR shows variations. In all these cases,
we set B0 = 1/2, k = ωB = 1 and δ = 0

extended to the symmetric gauge for the background field [21], in order to describe
the bidimensional effects of the anisotropy on these materials. This formalism can
also be extended to the situation where the velocities vij can depend on the spatial
coordinates [22].

Acknowledgments YCS acknowledges support from CIC-UMSNH under grant 3820801. AR
acknowledges support from Consejo Nacional de Ciencia y Tecnología (México) under grant
256494. EDB acknowledges support from UPIIH of the National Polytechnic Institute (IPN,
México) under grant 20201196.

References

1. K.S. Novoselov, et al., Nat. Phys. 2, 177 (2006). https://doi.org/10.1038/nphys245
2. K.S. Novoselov, et al., Science 315, 1379 (2007). https://doi.org/10.1126/science.1137201
3. A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183 (2007). https://doi.org/10.1038/nmat1849

https://doi.org/10.1038/nphys245
https://doi.org/10.1126/science.1137201
https://doi.org/10.1038/nmat1849


326 E. Díaz-Bautista et al.

4. M.Z. Hasan, C.L. Kane, Rev. Mod. Phys. 82, 3045 (2010). https://doi.org/10.1103/
RevModPhys.82.3045

5. X.-L. Qi, S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011). https://doi.org/10.1103/RevModPhys.
83.1057

6. S. Katayama, A. Kobayashi, Y. Suzumura, Eur. Phys. J. B 67, 139 (2009). https://doi.org/10.
1140/epjb/e2009-00020-0

7. K. Kajita, et al., J. Phys. Soc. Jpn. 83, 072002 (2014). https://doi.org/10.7566/JPSJ.83.072002
8. V.M. Pereira, A.H. Castro Neto, N.M.R. Peres, Phys. Rev. B 80, 045401 (2009) . https://doi.

org/10.1103/PhysRevB.80.045401
9. E. Schrödinger, Naturwissenschaften 14, 664–666 (1926). https://doi.org/10.1007/

BF01507634
10. J.R. Klauder, B.S. Skagerstam, Coherent States: Applications in Physics and Mathematical

Physics (World Scientific, Singapore, 1985). https://doi.org/10.1142/0096
11. V.I. Man’ko, et al., in ed. by N. Atakishiyev, T.H. Seligman, Proceedings of the IV Wigner Sym-

posium (World Scientific, New York, 1996), pp. 421. https://doi.org/10.1142/9789814531207;
Phys. Scripta 55, 528 (1997). https://doi.org/10.1088/0031-8949/55/5/004

12. R.L. de Matos Filho, W. Vogel, Phys. Rev. A 54, 4560 (1996). https://doi.org/10.1103/
PhysRevA.54.4560

13. D. Bonatsos, C. Daskaloyannis, Phys. Rev. A 46, 75 (1992). https://doi.org/10.1103/PhysRevA.
46.75; Phys. Rev. A 48, 3611 (1993). https://doi.org/10.1103/PhysRevA.48.3611

14. E. Díaz-Bautista, D.J. Fernández, Eur Phys. J. Plus 132, 499 (2017). https://doi.org/10.1140/
epjp/i2017-11794-y

15. A. Feldman, A.H. Kahn, Phys. Rev. B 1, 4584 (1970). https://doi.org/10.1103/PhysRevB.1.
4584

16. F.T. Arecchi, et al., Phys. Rev. A 6, 2211 (1972). https://doi.org/10.1103/physreva.6.2211
17. Y.K. Wang, F.T. Hioe, Phys. Rev. A 7, 831 (1973). https://doi.org/10.1103/PhysRevA.7.831
18. W.-M. Zhang, et al., Rev. Mod. Phys. 62, 867 (1990). https://doi.org/10.1103/RevModPhys.62.

867
19. M. Oliva-Leyva, C. Wang, Ann. Phys. 384, 61 (2017). https://doi.org/10.1016/j.aop.2017.06.

013
20. E. Díaz-Bautista, Y. Concha-Sánchez, A. Raya, J. Phys. Condens. Mat. 31, 435702 (2019).

https://doi.org/10.1088/1361-648X/ab2d18
21. E. Díaz-Bautista, M. Oliva-Leyva, Y. Concha-Sánchez, A. Raya, J. Phys. A: Math. Theor. 53,

105301 (2019). https://doi.org/10.1088/1751-8121/ab7035
22. M. Oliva-Leyva, G.G. Naumis, Phys. Lett. A 379, 2645–2651 (2015). https://doi.org/10.1016/

j.physleta.2015.05.039

https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1140/epjb/e2009-00020-0
https://doi.org/10.1140/epjb/e2009-00020-0
https://doi.org/10.7566/JPSJ.83.072002
https://doi.org/10.1103/PhysRevB.80.045401
https://doi.org/10.1103/PhysRevB.80.045401
https://doi.org/10.1007/BF01507634
https://doi.org/10.1007/BF01507634
https://doi.org/10.1142/0096
https://doi.org/10.1142/9789814531207
https://doi.org/10.1088/0031-8949/55/5/004
https://doi.org/10.1103/PhysRevA.54.4560
https://doi.org/10.1103/PhysRevA.54.4560
https://doi.org/10.1103/PhysRevA.46.75
https://doi.org/10.1103/PhysRevA.46.75
https://doi.org/10.1103/PhysRevA.48.3611
https://doi.org/10.1140/epjp/i2017-11794-y
https://doi.org/10.1140/epjp/i2017-11794-y
https://doi.org/10.1103/PhysRevB.1.4584
https://doi.org/10.1103/PhysRevB.1.4584
https://doi.org/10.1103/physreva.6.2211
https://doi.org/10.1103/PhysRevA.7.831
https://doi.org/10.1103/RevModPhys.62.867
https://doi.org/10.1103/RevModPhys.62.867
https://doi.org/10.1016/j.aop.2017.06.013
https://doi.org/10.1016/j.aop.2017.06.013
https://doi.org/10.1088/1361-648X/ab2d18
https://doi.org/10.1088/1751-8121/ab7035
https://doi.org/10.1016/j.physleta.2015.05.039
https://doi.org/10.1016/j.physleta.2015.05.039


Monopole Operators and Their
Symmetries in QED3-Gross–Neveu
Models

Éric Dupuis, M. B. Paranjape, and William Witczak-Krempa

Abstract Monopole operators are topological disorder operators in 2 + 1 dimen-
sional compact gauge field theories appearing notably in quantum magnets with
fractionalized excitations. For example, their proliferation in a spin-1/2 kagome
Heisenberg antiferromagnet triggers a quantum phase transition from a Dirac spin
liquid phase to an antiferromagnet. The quantum critical point (QCP) for this tran-
sition is described by a conformal field theory: Compact quantum electrodynamics
(QED3) with a fermionic self-interaction, a type of QED3-Gross–Neveu model. We
obtain the scaling dimensions of monopole operators at the QCP using a state-
operator correspondence and a large-Nf expansion, where 2Nf is the number
of fermion flavors. We characterize the hierarchy of monopole operators at this
SU(2)× SU(Nf ) symmetric QCP.

Keywords Topological disorder operators · Gauge theories and dualities ·
Quantum phase transition · Quantum spin liquids · Conformal field theory

1 Confinement of a Dirac Spin Liquid

An abelian gauge theory consists of the Maxwell term for the gauge field aμ and
potentially some matter coupled through a U(1) charge

L = 1

2e2

(
εμνρ∂νaρ

)2 +Matter charged under U(1). (1)
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In 2 + 1 dimensions, the magnetic current is constructed by contracting the rank-
3 antisymmetric tensor with the field strength j

μ
top = 1

2π εμνρ∂νaρ . The current
conservation then expected is violated when regularizing the theory on the lattice.
Indeed, the gauge field aμ then becomes periodic, taking values in the compact
U(1) gauge group. This implies the existence of monopole operators M†

q which
create gauge field configurations Aq that may be written as1

Aq = q(1− cos θ)dφ , (2)

where the magnetic charge q is half-quantized to respect the Dirac condition. In
turn, this implies 2π quantization of the magnetic flux Φ = ∫

S2 dAq = 4πq.
Monopole operators may render a gauge theory unstable. In the compact pure

U(1) gauge theory in 2 + 1 dimensions, monopole operators are relevant and
condense. This leads to confinement and to the emergence of a mass gap [1, 2].
Adding massless matter may, however, stabilize the gauge theory. For a large
number N of massless matter flavors, the monopole two-point function is

〈
Mq(x)M†

q(0)
〉 ∼ |x|−2ΔMq ≈ |x|−2N(... ) , N � 1 , (3)

where ΔMq
is the scaling dimension of the monopole operator, and the

ellipses (. . . ) denote a number of order 1 [3, 4]. Monopoles are thus suppressed
for a sufficient number of flavors N . Interestingly, a confinement–deconfinement
transition can therefore be achieved by tuning an interaction which gaps the massless
matter and removes its stabilizing screening effect.

The stability of compact gauge theories plays a key role in strongly correlated
systems where fractionalized quasiparticles and gauge excitations emerge. In
particular, certain frustrated 2D quantum magnets may be described at low energy
by a Dirac spin liquid (DSL). This is a version of quantum electrodynamics in three
dimensions (QED3),

LQED3 = −Ψ̄ /DaΨ + 1

2e2

(
εμνρ∂νaρ

)2
, (4)

with 2N flavors of two-component gapless Dirac fermions Ψ = (ψ1 , . . . , ψ2N
)ᵀ

.
The gauge covariant derivative is defined as /Da = γμ

(
∂μ − iaμ

)
where γμ are

the Pauli matrices. The 2N fermion flavors can represent the two magnetic spins
and N Dirac nodes in momentum space, typically two as well. In particular, many
numerical studies suggest that a DSL with N = 2 Dirac cones may describe the
ground state of the spin-1/2 kagome Heisenberg antiferromagnet [5–10].

The stability of the DSL then hinges on the irrelevance of monopole excitations
allowed by the lattice. Whether it is stable or not at N = 2 is still an ongoing

1In vector notation using spherical coordinates on Euclidean spacetime R
3, it would be written as

A
q
μ = q(1− cos θ)/(r sin θ)δ

φ
μ.
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AFMDSL

Fig. 1 Phase transition from a Dirac spin liquid to a coplanar antiferromagnet. A condensed spin-
Hall mass lets a monopole with spin quantum numbers proliferate

question [11–13]. Here, we suppose a stable DSL and we focus on the possible
confinement–deconfinement transition. In this context, the transition may be driven
by a Gross–Neveu type interaction δL = − 1

2h
2(Ψ̄ T aΨ )2, where T a is a generator

of the flavor symmetry group SU(2N). For a sufficiently strong coupling, the
corresponding fermion bilinear condenses 〈Ψ̄ T aΨ 〉 �= 0, allowing monopoles
to proliferate. Importantly, different types of monopole operators exist in QED3.
This is because half of the 4qN fermion zero modes on a monopole must be
filled to minimize its scaling dimension and yield a vanishing fermion number
[3, 14]. Therefore, the possible zero modes dressings define monopoles with the
same scaling dimension but distinct quantum numbers. Which type of monopole
proliferates is determined by the type of condensed fermion bilinear and its
spontaneously chosen direction.

In particular, by tuning a chiral-Heisenberg Gross–Neveu (cHGN) interaction,

LQED3-cHGN = LQED3 −
h2

2
(Ψ̄ σΨ )2 , (5)

a spin-Hall mass n̂ · 〈Ψ̄ σΨ 〉 is condensed, and a monopole with non-zero magnetic
spin M↓n̂

q proliferates. Here, the 3-vector of Pauli matrices σ acts on the magnetic
spin. Coming back to the spin-1/2 kagome Heisenberg antiferromagnet, this model
describes the transition from a DSL to a coplanar antiferromagnet [15, 16] as shown
in Fig. 1. To characterize this QED3-cHGN quantum critical point (QCP), we obtain
the scaling dimension of monopoles.

2 Scaling Dimension of a Monopole Operator

We first warm up by examining the non-compact theory and establish the existence
of the QCP. To do so, an auxiliary vectorial boson φ = (φ1, φ2, φ3) is introduced to
decouple the quartic interaction, L′ = −Ψ̄

(
/Da + φ · σ )Ψ − 1

2h2 φ2. The fermions
are then integrated out, yielding the following effective action:

Seff = −N ln det
(
/Da + φ · σ )+ 1

2h2

∫
d3x φ2 . (6)



330 É. Dupuis et al.

In the N = ∞ saddle point solution, the gauge field vanishes due to gauge
invariance 〈aμ〉 = 0, and we take a homogeneous ansatz for the boson 〈φ〉 = Mn̂.
By solving the resulting gap equation ∂Seff/∂M = 0, we find that the order
parameter 〈φ〉 condenses for h−2 < h−2

c = 0.2 The effective action at the critical
point is then

Sc
eff = −N ln det

(
/Da + φ · σ ) . (7)

We now proceed to compute the scaling dimension of monopole operators in
QED3-cHGN. Following similar work done in QED3 [3] and in the CPN−1 model
[4], we employ the state-operator correspondence: An operator O in a conformal
field theory on R

3 can be mapped to a state |O〉 in an alternate theory on S2 × R.
The two spacetimes aforementioned related by a conformal transformation

dr2 + r2dΩ2 → dτ 2 + R2dΩ2 , r = Reτ/R , (8)

where the radius of the sphere is R. With this transformation, the dilatation operator
on R

3 is mapped to the Hamiltonian on S2 × R. This implies that the scaling
dimension of the operator O is equal to the energy of its related state, ΔO = E|O〉.

For a monopole operator O =M†
q , the alternate theory is obtained by adding a

monopole background gauge field Aq [3] and by putting the effective action (7) on
S2 × R. This selects the topological sector of operators with charge q. We restrain
our study to the monopole operator with the minimum scaling dimension Δq ≡
min(ΔMq

), which corresponds to the ground state of this alternate theory. But the
ground state energy is the free energy in the zero temperature limit. The scaling
dimension at leading order in 1/N , Δq = NΔ

(0)
q + O(1/N0), is then given by the

saddle point value of the effective action

Δ(0)
q = 1

N
Sc

eff[Aq ]
∣∣∣〈aμ〉=0 ,〈φ〉=Mqẑ

= − ln Det
(
/D
S2×R
Aq +Mqσz

)
, (9)

where 〈φ〉 is again taken homogeneous and along ẑ without loss of generality.
The Dirac operator in Eq. (9) depends on generalized angular momentum Lq =

r × (
p +Aq

) − qr̂ and total spin J q = Lq + τ/2 where τ acts on particle-
hole (Lorentz) space. Spinor monopole harmonics S±

q;�,m diagonalize L2
q, J

z
q , and

J 2
q → j± (j± + 1) where j± = � ± 1/2. These are two-component spinors

built with generalized spherical harmonics Yq;�m such that L2
q → � (�+ 1) and

Lz
q → m, where � = |q|, |q| + 1, . . . [17]. Working in the j = � − 1/2 basis

(S−
q;�,m, S+

q;�−1,m)ᵀ, the Dirac operator reduces to a matrix with c-number entries
[3]. As for the spin-Hall mass Mqσz, it is already diagonal in spacetime and particle-

2Divergences in the gap equation are treated with a Zeta regularization.
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hole space. The operator in the determinant of Eq. (9) then yields the following
spectrum [18]:

ω + iσMq , � = q , (10)

±
√
ω2 + ε2

� , � = {q + 1, q + 2, . . . } , (11)

where ε� = R−1
√
�2 − q2 +M2

qR
2 is the energy, σ = ±1 is the spin projection

and the magnetic charge is taken positive q > 0. Importantly, the zero modes of
QED3 corresponding to a minimum angular momentum � = q now have a non-
zero energy, positive for spin up modes and negative for spin down modes. As
monopole operators are still dressed with half of those “zero” modes, the minimal
scaling dimension is now obtained by filling only the spin down “zero” modes. The
spectrum (10) and (11) is inserted in Eq. (9) to obtain the scaling dimension

Δq = −N

(
dqMq +

∞∑

�=q+1

2d�ε�

)
+O(1/N0) , d� = 2� , (12)

where the radius R was eliminated with rescaling. This indeed corresponds to
the energy obtained by filling all valence modes and spin down “zero” modes as
represented in Fig. 2a.

The gap equation ∂Δ(0)/∂Mq = 0 can be solved for the non-trivial expectation
value of the spin-Hall mass 〈|φ|〉 = Mq . We stress that this mass Mq defines a
monopole operator at the QCP and is not an indication of spontaneous symmetry
breaking in the model. The scaling dimension is computed by inserting Mq in
Eq. (12).3 The spin-Hall mass Mq and the monopole operator scaling dimension Δq

obtained numerically are shown for a few magnetic charges in Fig. 2b. The case of
QED3, where there is no fermion self-interaction and Mq = 0, is also shown. Full
lines in Fig. 2b are analytical approximations obtained for a large magnetic charge
q. Note that the scaling dimension Δq is smaller in QED3-cHGN than in QED3. For
the minimal magnetic charge q = 1/2, the scaling dimension at the QCP is

Δq=1/2 = 2N × 0.195+O(1/N0) . (13)

For 2N = 2.56, this seems to indicate a unitarity bound violation, Δq=1/2 < 1/2.

A Brief Aside on the Monopole Fermion Number Monopole operators are gauge
invariant and must have a vanishing fermion number. In QED3-cHGN, this is
obtained by dressing monopoles with half of the fermion “zero” modes. While

3Divergences in the scaling dimension and the related gap equation are treated with a zeta function
regularization. It is important to keep the same regularization scheme that was used to determine
the critical effective action in the non-compact theory (7).
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Fig. 2 (a) Schematic representation of the fermion occupation of the monopole operator with the
lowest scaling dimension and with a spin-Hall mass 〈Ψ̄ σΨ 〉 ∝ 〈φ〉 = Mqẑ. (b) The scaling
dimension as a function of the magnetic charge q in QED3-cHGN and in QED3 (Mq = 0) with the
analytical approximation from the large-q expansion. This figure appears with a shorter range in q

in Ref. [18]

this condition is not imposed in the formalism above, it just so happens that,
in QED3-cHGN, 4πq-flux operators with a minimal scaling dimension have the
correct fermion number. In general, the fermion number can be imposed by adding
a chemical potential μ that couples to the fermion number density Ψ †Ψ . The
chemical potential can be viewed as an imaginary gauge field whose saddle point
equation is solved when the fermion number vanishes [18, 19]. In QED3-cHGN,
the chemical potential is independent of other parameters and vanishes [18], which
explains why it can simply be ignored. As spin up and spin down zero modes
are shifted by opposite energies, μ = 0 remains at the center of the energy
spectrum. This not the case if we instead tune a SU(2N)-symmetric Gross–Neveu
interaction δL ∼ (Ψ̄ Ψ )2 in QED3. This model, dubbed QED3-GN, describes
the transition to chiral spin liquid via the condensation of the symmetric fermion
mass.4 Here, monopoles at the QCP are described by a flavor independent mass
parameter, which, if non-zero, shifts all fermion zero modes by the same energy
Mq = 〈Ψ̄ Ψ 〉. A chemical potential set to this energy, μ = 〈Ψ̄ Ψ 〉, yields a vanishing
fermion number. Using this additional constraint, it is found that the monopole
scaling dimension in QED3-GN is minimized by a vanishing mass Mq = 0

[18], thus Δ
QED3-GN
q = Δ

QED3
q +O(1/N0). Interestingly, this large-N result may

be extrapolated to test a conjectured duality between the QED3-GN model with
2N = 2 flavors of massless fermions and the CP 1 model [20] (see Ref. [18]).

4Note that contrary to other transitions described in Sect. 1, here the symmetric mass generates a
Chern–Simons term which prevents monopole proliferation.
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3 Hierarchy Among Monopole Operators

So far, we have only computed the minimal scaling dimension of monopole
operators in QED3-cHGN. Monopole operators with larger scaling dimensions
are expected at this QCP since the degeneracy of monopoles in QED3 should be
lifted [18] by the cHGN interaction which breaks the flavor symmetry

SU(2N)→ SU(2)× SU(N) . (14)

We first review how monopole operators are organized in QED3 with flavor
symmetry SU(2N). We focus on the simplest case with the minimal magnetic
charge q = 1/2 where monopole operators are automatically Lorentz scalars [3].
A monopole operator can then be written as half of the 2N zero modes creation
operators c

†
Ii

multiplying a bare monopole operator M†
Bare which creates all

negative energy modes in a 2π magnetic flux background

M†
I1...IN

= c
†
I1

. . . c
†
IN
M†

Bare , Ii ∈ {1, 2, . . . , 2N} . (15)

Antisymmetry between these fermionic operators yields a rank-N antisymmetric
tensor in flavor space. The first step in understanding the hierarchy of monopole
operators at the QCP is to obtain the reduction of this SU(2N) irreducible
representation (irrep) in terms of irreps of the subgroup SU(2) × SU(N). This is
a specific case of the reduction SU(MN)→ SU(M)×SU(N), where M and N are
integers, whose branching rules are well studied [21].

For N = 2, there are two valleys v = L,R and monopoles form the rank-
2 antisymmetric irrep of SU(4), denoted by its dimension 6. We note that for the
specific examples discussed in this section, the irreps are uniquely determined by
their dimension. Monopole operators are then expressed as

c†A
(
c†)ᵀM†

Bare , (16)

where A acts on vectors in flavor space c† = (c†
↑,L, c

†
↑,R, c

†
↓,L, c

†
↓,R
)
. At the QCP,

monopole operators in the irrep 6 of SU(4) of QED3 reorganize as irreps (m,n)

with dimension m× n of the remaining subgroup SU(2)Spin × SU(2)Nodal [21]

6 → (3, 1)⊕ (1, 3) . (17)

Monopoles are then decomposed as spin and nodal triplets, respectively (3, 1) and
(1, 3), which may be written as [15]

"M†
Spin = c† (σyσ ⊗ μy

) (
c†)ᵀM†

Bare ,
"M†

Nodal = c† (σy ⊗ μyμ
) (

c†)ᵀM†
Bare ,

(18)
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where μ are Pauli matrices acting on nodal subspace. The scaling dimension of
monopole operators in these spin and nodal triplets are expected to differ given
that no hidden symmetry connects the multiplets. Monopole operators with the
largest total spin (here, S = 1) have access to the largest polarization and as a
result can minimize the contribution from the spin-Hall mass. These operators have
the lowest scaling dimension and are the finite-N analogues of monopoles with
minimal scaling dimension Δ1/2 studied in Sect. 2. In our large-N analysis, we
gave the example of a monopole filled only with spin down “zero” modes along
ẑ such that the corresponding spin-Hall mass 〈Ψ̄ σzΨ 〉 ∝ Mq > 0 is minimized. As
we perform a SU(2)Spin transformation rotating the spin down modes to spin up
modes, the spin-Hall mass sign changes 〈Ψ̄ σzΨ 〉 → −〈Ψ̄ σzΨ 〉. This leaves the
scaling dimension unchanged as we rotate to another monopole of the triplet as
schematically shown in Fig. 3. A rotation could also make the spin-Hall mass point
in the x̂ direction, in which case a combination of all the states in the spin triplet
would yield the monopole operator polarized along x̂. Note that this specific element
was not well addressed in [18] as the possibility of a rotating the spin-Hall mass was
not discussed.

Further insight is obtained by considering the QCP with larger values of N . For
N = 3, the flavor symmetry is reduced as SU(6)→ SU(2)Spin × SU(3)Nodal at the
QCP, and the rank-3 antisymmetric representation 20 of SU(6) decomposes as [21]

20 → (4, 1)⊕ (2, 8) . (19)

The RHS has dimension 4 × 1 + 2 × 8 = 20 as required. Again, monopole
operators with the highest SU(2)spin spin, here a spin quadruplet S = 3/2, the
4 in Eq. (19), have the lowest scaling dimension. As for the spin doublet S = 1/2
(denoted 2), it is obtained by the composition of three spins: Two spins form a singlet
while the remaining spin is either up or down. For general N , monopole operators
reorganize as various magnetic spin multiplets with total spin Smin ≤ S ≤ N/2,
with minimum spin Smin = 0 for N even and Smin = 1/2 for N odd. For large-N ,
this distinction does not affect the scaling dimension. The almost equally populated
spin up and spin down “zero” modes of a spin doublet S = 1/2 monopole mostly
cancel their contribution to the scaling dimension. The remaining unpaired “zero”
mode has a contribution order O(1/N0) which is neglected in our leading order

E
ba

Fig. 3 Fermion zero modes occupation of monopole operators for N = 2 and q = 1/2. (a) The
spin down monopole and (b) the spin up monopole are related by a SU(2)spin rotation which
changes the sign of the spin-Hall mass. Here, Mq > 0
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treatment. Therefore, the largest scaling dimension (characterizing monopoles with
either S = 0 or S = 1/2) is given, at leading order in 1/N , by the second term
in (12). The gap equation for this expression is solved for Mq = 0, which yields
the same scaling dimension as in QED3. Monopole operators in QED3-cHGN then
have scaling dimensions ΔMq

which vary between the lowest monopole scaling
dimension in QED3-cHGN and QED3,

ΔQED3-cHGN
q ≤ Δ

QED3-cHGN
Mq

≤ ΔQED3
q , leading order in 1/N . (20)

This upper boundary was overestimated in [18] as the possibility of different masses
Mq defining each monopole multiplet was not considered.

Conclusion The DSL is a parent state of many quantum phases and exotic non-
Landau transitions in frustrated quantum magnets. We characterized monopole
operators in QED3-GN models describing various QCPs between this DSL and
other ordered phases. Notably, we obtained the lowest scaling dimension of
monopole operators in the QED3-cHGN model. At leading order in 1/N , we find
it is lower than its counterpart in QED3. Specifically, for a minimal magnetic
charge, it is given by Δ

QED3-cHGN
q=1/2 = 2N × 0.195 + O(1/N0). We discussed how

monopoles are reorganized as irreps of the QED3-cHGN QCP reduced symmetry
group SU(2)× SU(N). Monopoles multiplets with the highest SU(2) spin have the
lowest scaling dimension. A more detailed exploration of this monopole hierarchy
at the QCP is reserved for future work.
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Critical Exponents for the
Valence-Bond-Solid Transition in Lattice
Quantum Electrodynamics

Rufus Boyack and Joseph Maciejko

Abstract Recent sign-problem-free quantum Monte Carlo simulations of (2+1)-
dimensional lattice quantum electrodynamics (QED3) with Nf flavors of fermions
on the square lattice have found evidence of continuous quantum phase transitions
between a critical phase and a gapped valence-bond-solid (VBS) phase for flavor
numbers Nf = 4, 6, and 8. We derive the critical theory for these transitions, the
chiral O(2) QED3-Gross–Neveu model, and show that the latter is equivalent to the
gauged Nambu–Jona-Lasinio model. Using known large-Nf results for the latter,
we estimate the order parameter anomalous dimension and the correlation length
exponent for the transitions mentioned above. We obtain large-Nf results for the
dimensions of fermion bilinear operators, in both the gauged and ungauged chiral
O(2) Gross–Neveu models, which, respectively, describe the long-distance power-
law decay of two-particle correlation functions at the VBS transition in lattice QED3
and the Kekulé-VBS transition for correlated fermions on the honeycomb lattice.

Keywords Lattice gauge theory · Valence-bond solid · Quantum phase
transition · Quantum electrodynamics · Gross–Neveu model ·
Nambu–Jona-Lasinio model · Conformal field theory

Quantum phase transitions that involve fractionalized degrees of freedom fall
outside the traditional Landau paradigm and have been the focus of much interest
in recent years. The classic example is deconfined quantum critical points between
conventional phases of quantum antiferromagnets [1, 2], where emergent fractional-
ized matter fields and gauge fields appear at the critical point but are confined in the
phases themselves. A class of transitions comparatively less studied, but also beyond
the Landau paradigm, are transitions between phases supporting fractionalized
excitations, such as different types of spin liquids, or between a fractionalized
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phase and a conventional phase. In the language of lattice gauge theories of
quantum antiferromagnets [3], where spin degrees of freedom fractionalize into
emergent fermions coupled to gauge fields, these correspond to transitions between
distinct deconfined phases of a lattice gauge theory or between a deconfined
phase and a confined phase, respectively. Besides their application to frustrated
magnetism and elementary particle physics, lattice gauge theories may now be
experimentally realized using ultracold atoms in optical lattices [4, 5], and thus
constitute an important class of interacting many-body systems whose phases and
phase transitions are of intrinsic interest.

Recently, sign-problem-free quantum Monte Carlo (QMC) simulations of (2+1)-
dimensional lattice quantum electrodynamics (QED3) with an even number Nf of
flavors of fermions on the square lattice [6, 7] have found evidence for a U(1)
deconfined phase with power-law correlations, and for continuous quantum phase
transitions from this phase to conventional confined phases. For Nf = 2, the
putative U(1) phase is adiabatically connected to the algebraic spin liquid [8] and
the transition is towards a Néel antiferromagnet. This transition is described by the
chiral O(3) QED3-Gross-Neveu (GN) model, whose universal critical properties
were studied recently using both ε-expansion [9, 10] and large-Nf techniques [10].
For Nf = 4, 6, and 8, the confinement transition is found to be towards a
gapped valence-bond-solid (VBS) phase. The corresponding critical theory was
conjectured to be of the chiral O(2) QED3-GN type [6], but its critical properties
have thus far not been investigated. In this paper, we establish the precise form
of the critical theory, show its equivalence to the gauged Nambu–Jona-Lasinio
(NJL) model [11, 12], and determine various critical exponents using the large-Nf

expansion. In both the gauged and ungauged chiral O(2) GN models, we obtain new
results for the scaling dimensions of fermion bilinears that, respectively, describe
the power-law decay of certain two-particle correlation functions at the U(1)-VBS
transition and the semimetal-to-Kekulé-VBS transition for interacting fermions on
the honeycomb lattice [13–15]. Critical exponents for the U(1)-VBS transition at
O(1/N2

f ) in the large-Nf expansion and four-loop order in the ε-expansion will be
reported in a future publication [16].

1 The U(1)-VBS Transition

The U(1) lattice gauge theory studied in Ref. [6, 7] is a quantum rotor model with
fermions on the square lattice. The Hamiltonian is

H = 1

2
JNf

∑

〈rr ′〉

1

4
L2

rr ′ − t

Nf∑

α=1

∑

〈rr ′〉

(
c†
rαe

iθrr′ cr ′α + h.c.
)

+ 1

2
KNf

∑

�
cos(Δ× θ), (1)
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where c
(†)
rα annihilates (creates) a fermion of flavor α = 1, . . . , Nf on site r , 〈rr ′〉

denotes bonds between nearest-neighbor sites r and r ′, the angular bond variable
θrr ′ ∈ [0, 2π) and the angular momentum Lrr ′ are canonical conjugates, and Δ× θ

denotes the lattice curl of θ around a plaquette �. The magnetic coupling K > 0
favors a background flux of π in each plaquette. To begin, consider the fermionic
part of the Hamiltonian, in the absence of gauge fluctuations (J = 0). A gauge for
the background flux can be chosen such that the Hamiltonian is

H0 =
Nf∑

α=1

∫

BZ

d2k

(2π)2 c
†
kαh(k)ckα, (2)

with the two-component spinor ckα = (ck,α,A, ck,α,B), where A and B denote the
two sublattices arising from the choice of gauge, and

h(k) = −t

(
0 f (k)

f ∗(k) 0

)
, f (k) = 1− ei(kx−ky)+ e−i(kx+ky)+ e−2iky . (3)

Two Dirac nodes are found at±Q = (0,±π
2 ). Keeping only the degrees of freedom

near the Dirac nodes, the low-energy Hamiltonian becomes

H0 ≈ vF

Nf∑

α=1

∑

η=±

∫
d2p

(2π)2
χ†
αη(p)(μ1px + μ2py)χαη(p), (4)

where vF = 2t . The two-component Dirac fields are defined by

χα,+(p) =
(
cQ+p,α,A

cQ+p,α,B

)
, χα,−(p) =

(
c−Q+p,α,B

−c−Q+p,α,A

)
. (5)

These can be combined into Nf flavors of four-component Dirac fermions Ψα =
(χα,+, χα,−)T . We introduce the following 4 × 4 (reducible) representation of the
Euclidean Dirac algebra in 2+ 1 dimensions:

Γμ =
(
γ̃μ 0
0 −γ̃μ

)
, μ = 0, 1, 2, (6)

where γ̃μ are 2 × 2 Euclidean Dirac matrices defined in terms of Pauli matrices by
(γ̃0, γ̃1, γ̃2) = (σ3, σ2,−σ1). Using the Dirac conjugate Ψ α = Ψ †

α Γ0, the Lagrange
density for the Hamiltonian (4) is L0 = ∑

α Ψ αΓμ∂μΨα . For small but nonzero
J > 0, a Maxwell kinetic term for gauge-field fluctuations Aμ about the π -flux
background is generated and ∂μ in L0 is promoted to the gauge-covariant derivative
Dμ = ∂μ + iAμ. This results in the QED3 Lagrangian, which exhibits a conformal
infrared fixed point for sufficiently large Nf [17]—in accordance with the critical
phase observed numerically at small J [6, 7]. We are at present treating the U(1)
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gauge field as noncompact; the effects of compactness due to the original lattice
formulation will be discussed in Sect. 4.

For J larger than some critical value Jc, a VBS phase with unbroken global
SU(Nf )/ZNf

symmetry is found for Nf = 4, 6, 8 [6, 7]. Columnar VBS order
doubles the unit cell of the square lattice and spontaneously breaks the latter’s
D4 point-group symmetry to a D2 subgroup; it is represented by a time-reversal-
invariant vector order parameter V = (Vx, Vy) transforming in the two-dimensional
E irreducible representation of D4. Using the projective symmetry group approach,
one can determine how gauge-invariant operators in the low-energy QED3 theory
transform under the microscopic lattice symmetries [10]. Defining the two 4 × 4
Hermitian matrices

Γ3 =
(

0 −i

i 0

)
, Γ5 = Γ0Γ1Γ2Γ3 =

(
0 1
1 0

)
, (7)

which square to the identity and anticommute with each other and with the
Dirac matrices (6), one finds that the pair of time-reversal-invariant and flavor-
symmetric Dirac bilinears

(∑
α iΨ αΓ5Ψα,

∑
α iΨ αΓ3Ψα

)
transform precisely

in the E irreducible representation of D4. Furthermore,
∑

α iΨ αΓ5Ψα is odd
under x-reflections and lattice x-translations and even under y-translations, while∑

α iΨ αΓ3Ψα transforms oppositely. Thus one can identify Vx ∼ ∑
α iΨ αΓ5Ψα

and Vy ∼ ∑
α iΨ αΓ3Ψα . A nonzero expectation value of V corresponds to a

nonzero fermion mass, in accordance with the gapped spectrum observed in the
VBS phase [7]. Note that V is Lorentz invariant since Γ3 and Γ5 commute with the
Euclidean transformations exp

(− i
2ωμνσμν

)
where σμν = i

4 [Γμ, Γν].
The occurrence of a VBS phase for J > Jc can be understood as arising

from a short-ranged four-fermion interaction term∼(g2/Nf )V
2 generated by gauge

fluctuations at the lattice scale. Such interactions are perturbatively irrelevant at the
conformal QED3 fixed point, but if sufficiently strong can give rise to dynamical
fermion mass generation via a quantum critical point. Decoupling this interaction
term with a pair φ = (φ1, φ2) of scalar fields and tuning to the quantum critical
point, we obtain the chiral O(2) QED3-GN model,

LO(2)QED3−GN

=
Nf∑

α=1

[
Ψ αΓμ

(
∂μ + e√

Nf

iAμ

)
Ψα + g√

Nf

iφ · Ψ αMΨα

]
+ . . . , (8)

where M = (Γ3, Γ5), and . . . includes Maxwell and gauge-fixing terms for the
gauge field, and symmetry-allowed kinetic and self-interaction terms for the scalar
field φ. At the free-field fixed point, the gauge coupling e2 and the Yukawa coupling
g2 have units of mass and are thus relevant. However, the fields have been rescaled to
make explicit the fact that e and g appear with a suppressing factor of 1/

√
Nf . In the

large-Nf limit, the physics at momenta |q| 2 e2, g2 is dominated by the coupling
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between fermions and soft bosonic fluctuations, i.e., the terms in square brackets
in Eq. (8), and can be computed systematically in powers of 1/Nf . Conceptually
similar applications of the 1/Nf expansion to the chiral Ising and O(3) QED3-GN
models can be found in Refs. [18–23] and [10], respectively. To leading (zeroth)
order in this expansion, the large-Nf scalar-field and gauge-field propagators in the
infrared limit are, respectively:

Dab(q) = 4

g2|q|δab, Πμν(q) = 8

e2|q|
(
δμν − qμqν

q2

)
, (9)

where a, b = 1, 2. The gauge-field propagator is given in the Landau gauge.
The extra terms . . . in Eq. (8) contain a coupling of the form∝ (φ1+ iφ2)

4+c.c.,
which transforms trivially under C4 rotations and is thus allowed by the microscopic
symmetries. Such a term is relevant at the free-field fixed point. However, Eq. (9)
implies that the scaling dimension of φ at the chiral O(2) QED3-GN critical point
is Δφ = 1+O(1/Nf ), thus this term is irrelevant at the U(1)-VBS critical point in
the large-Nf limit. (Other D4-allowed terms are already irrelevant at the free-field
fixed point.) Thus the Lagrangian (8) acquires an emergent SO(2) symmetry under
Ψα → e−iWθ/2Ψα , φa → Rab(θ)φb, where W = −iΓ3Γ5 and R(θ) is the SO(2)
matrix for a rotation through angle θ .

2 The Gauged NJL Model and Critical Exponents

The NJL model was originally introduced as a toy model of chiral symmetry
breaking and dynamical mass generation in high-energy physics [11]. Its gauged
version [12] is described by the Lagrangian

LNJL =
Nf∑

α=1

[
ψαγμ

(
∂μ + e√

Nf

iAμ

)
ψα + g√

Nf

ψα (φ1 + iφ2γ5) ψα

]
+ . . . ,

(10)

where ψα are four-component Dirac spinors, and, as previously, . . . denotes terms
not involving fermions which, besides a gauge-fixing term, are irrelevant in the
large-Nf limit of interest to us. We now show that the gauged NJL model is entirely
equivalent to the chiral O(2) QED3-GN model (8). Define the gamma matrices
in Eq. (10) in terms of those in Eq. (6)–(7) by γμ = iΓμΓ3, μ = 0, 1, 2 and
γ5 = −iΓ3Γ5, and in addition define Ψα = ψα and ψα = Ψ †

α γ0. The Hermitian
matrices γμ and γ5 obey the usual Euclidean Dirac algebra (i.e., they anticommute
with each other and square to the identity). Using these gamma matrices, the gauged
NJL Lagrangian (10) becomes equal to the chiral O(2) QED3-GN Lagrangian (8).
The emergent SO(2) symmetry of the latter is identified with the invariance of the
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former under U(1) chiral transformations ψα → e−iγ5θ/2ψα , with a concomitant
rotation of the scalar field φ = (φ1, φ2).

If the gauge field is absent, this also establishes the equivalence between the
ungauged NJL model and the chiral O(2) GN model. The latter describes the
semimetal-to-Kekulé-VBS transition for interacting fermions on the honeycomb
lattice [13–15]. The D6 point-group symmetry of the honeycomb lattice allows for
a term of the form∝ (φ1+ iφ2)

3+c.c. in the critical Lagrangian, which is marginal
in the Nf = ∞ limit at the chiral O(2) GN fixed point. However, a renormalization-
group analysis in the large-Nf limit shows that the O(1/Nf ) correction renders this
term irrelevant [15]. QMC simulations of the joint probability distribution P(φ1, φ2)

of the two components of the VBS order parameter also support the emergent SO(2)
symmetry at the critical point [15].

The critical points of the gauged and ungauged NJL models are strongly coupled
(2+ 1)-dimensional conformal field theories characterized by a spectrum of scaling
dimensions that correspond to universal critical exponents. Some of these exponents
have already been computed in the 1/Nf expansion in general d spacetime
dimensions [24–27]. The order-parameter anomalous dimension for d = 3 is

chiral O(2) QED3-GN : ηφ = 1+ 56

3π2Nf

+O
(
1/N2

f

)
, (11)

chiral O(2) GN : ηφ = 1− 8

3π2Nf

+ 544

27π4N2
f

+O
(
1/N3

f

)
, (12)

and is related to the scalar-field scaling dimension by Δφ = 1
2

(
1+ ηφ

)
. The inverse

correlation length exponent is

chiral O(2) QED3-GN : ν−1 = 1− 80

3π2Nf

+O
(
1/N2

f

)
, (13)

chiral O(2) GN : ν−1 = 1− 16

3π2Nf

+ 8
(
364+ 27π2

)

27π4N2
f

+O
(
1/N3

f

)
,

(14)

and is related to the scaling dimension of the φ2 operator by Δφ2 = 3− ν−1.

3 Fermion Bilinear Scaling Dimensions

The scaling dimension Δφ characterizes the power-law decay at long distances of
the microscopic VBS correlation function 〈OVBS(r)OVBS(r

′)〉 ∼ |r − r ′|−2Δφ at
the U(1)-VBS critical point of the lattice gauge theory (1), where OVBS(r) can
be chosen as (−1)x

∑
A SA(r)SA(r + x̂) or (−1)y

∑
A SA(r)SA(r + ŷ), describing
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columnar VBS order in the x and y directions, respectively. Here SA(r) =∑
αβ c

†
rαT

αβ
A crβ denotes the SU(Nf ) spin operator, where TA, A = 1, . . . , N2

f − 1
is a Hermitian generator of the SU(Nf ) Lie algebra. The corresponding thermody-
namic susceptibility χVBS(q) ∼ |q|2Δφ−3 ∼ |q|−(2−ηφ), which can be computed
in QMC, diverges as q → 0, signaling the onset of VBS order. In the U(1)
phase itself, which is a critical phase, other gauge-invariant observables such as
the staggered density operator OCDW(r) = (−1)x+y

∑
α c

†
rαcrα , the staggered

SU(Nf ) spin OA(r) = (−1)x+ySA(r), and a quantum anomalous Hall mass
operator OQAH(r) defined in Ref. [10] also exhibit universal power-law correlations
characterized by (non-diverging) susceptibilities χO(q) ∼ |q|2ΔO−3 [8], which are
also in principle accessible in QMC. Such susceptibilities remain power law at the
U(1)-VBS critical point, but with different exponents characterizing the conformal
field theory associated with the chiral O(2) QED3-GN fixed point as opposed to that
of the pure-QED3 fixed point. Detecting a change in these exponents numerically
upon approach to the critical point J → J−c would be a signature of the new
universality class discussed in the present paper.

At the U(1)-VBS critical point, the microscopic observables above correspond
in the long-wavelength limit to Lorentz-invariant fermion bilinears in the chiral
O(2) QED3-GN field theory (8): the flavor-singlet, time-reversal-even bilinear
ΨΨ ∼ OCDW, the flavor-adjoint, time-reversal-even bilinear ΨTAΨ ∼ OA, and the
flavor-singlet, time-reversal-odd bilinear iΨ Γ3Γ5Ψ ∼ OQAH. We have computed
the scaling dimensions of these bilinears at O(1/Nf ) in the large-Nf expansion
by adapting the methods used in Ref. [23] for the chiral Ising QED3-GN model,
accounting for the matrix structure in the Yukawa vertex and the anticommutation
properties of Γ3 and Γ5. We obtain

chiral O(2) QED3-GN : ΔΨΨ = ΔΨTAΨ = 2− 40

3π2Nf

+O
(
1/N2

f

)
, (15)

ΔiΨΓ3Γ5Ψ
= 2+ 80

3π2Nf

+O
(
1/N2

f

)
, (16)

chiral O(2) GN : ΔΨΨ = ΔΨTAΨ = 2− 8

3π2Nf

+O
(
1/N2

f

)
, (17)

ΔiΨΓ3Γ5Ψ
= 2+ 16

3π2Nf

+O
(
1/N2

f

)
. (18)

4 Discussion

In Tables 1 and 2, we evaluate the previous expressions at values of Nf currently
accessible to QMC simulations to obtain estimates of critical exponents at the
U(1)-VBS and semimetal-to-Kekulé-VBS transitions, respectively. In Table 2 we
also provide the values of ηφ and ν already obtained from QMC simulations [15].
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Table 1 Large-Nf critical
exponents for the chiral O(2)
QED3-GN model

ηφ 1/ν ν ΔΨΨ ΔiΨΓ3Γ5Ψ

Nf = 4 1.473 0.3245 3.081 1.662 2.675

Nf = 6 1.315 0.5497 1.819 1.775 2.450

Nf = 8 1.236 0.6623 1.510 1.831 2.338

Table 2 Large-Nf and QMC critical exponents for the chiral O(2) GN model

ηφ ηφ (QMC) 1/ν ν ν (QMC) ΔΨΨ ΔiΨΓ3Γ5Ψ

Nf = 2 0.9166 0.71(3) 1.209 0.8270 1.06(5) 1.865 2.270

Nf = 3 0.9329 0.78(2) 1.033 0.9681 1.07(4) 1.910 2.180

Nf = 4 0.9454 0.80(4) 0.9848 1.015 1.11(3) 1.932 2.135

Nf = 5 0.9542 0.85(4) 0.9686 1.032 1.07(2) 1.946 2.108

Nf = 6 0.9607 0.87(4) 0.9632 1.038 1.06(3) 1.955 2.090

For ν, a better agreement with QMC results is found than with a previously used
renormalization-group approach [15], while the opposite is true for ηφ .

Our discussion of the U(1)-VBS transition has thus far ignored the compactness
of the U(1) gauge field, which may cause monopole (instanton) proliferation.
In the large-Nf limit, the scaling dimension of the smallest symmetry-allowed
monopole operator at the conformal QED3 fixed point is ΔM = 0.53Nf −0.0383+
O(1/Nf ) [28]. This suggests that for Nf = 6 and 8, ΔM > 3 and monopoles are
irrelevant, while for Nf = 4 the smallest monopole is relevant; however, at such
values of Nf , subleading corrections in the 1/Nf expansion may be significant.
As with the chiral O(3) QED3-GN model [9], at the chiral O(2) QED3-GN fixed
point the scaling dimension of the smallest monopole operator is expected to grow
linearly with Nf at leading order in 1/Nf but with a different coefficient than at
the conformal QED3 fixed point. Should this coefficient be sufficiently small, the
U(1)-VBS critical point may be destabilized at sufficiently small Nf , resulting in a
first-order transition. The QMC results [6, 7], however, suggest that a continuous
U(1)-VBS transition persists with increasing Nf ≥ 4 but is simply pushed to
larger values of Jc. While the critical value of Nf above which monopole operators
are irrelevant is not precisely known, the numerical observation of a continuous
transition suggests that either monopoles are in fact irrelevant for Nf ≥ 4 or the

crossover length scale L∗ ∼ ag
−1/(3−ΔM)

0 beyond which they proliferate, where a

is the lattice constant and g0 the bare monopole fugacity, is much larger than the
system sizes currently accessible in QMC.
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Emergent Geometry from Entanglement
Structure

Sudipto Singha Roy, Silvia N. Santalla, Javier Rodríguez-Laguna,
and Germán Sierra

Abstract We attempt to reveal the geometry, emerged from the entanglement
structure of any general N -party pure quantum many-body state by representing
entanglement entropies corresponding to all 2N bipartitions of the state by means of
a generalized adjacency matrix. We show this representation is often exact and may
lead to a geometry very different than suggested by the Hamiltonian. Moreover, in
all the cases, it yields a natural entanglement contour, similar to previous proposals.
The formalism is extended for conformal invariant systems, and a more insightful
interpretation of entanglement is presented as a flow among different parts of the
system.

Keywords Quantum entanglement · Geometry · Entanglement entropy

1 Introduction

Study of the distribution of quantum entanglement in different parts of the low-lying
states of quantum many-body Hamiltonians often unveils many interesting features
related to the physical system [1–3]. For instance, bounded growth of quantum
entanglement between a region and its exterior can be attributed to the fact that
interactions in the quantum many-body systems are typically local [4–7]. In this
work, we aim to explore the connection between the area-law for entanglement [4–
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7] and geometry which emerges from the distribution of quantum entanglement
across all possible bipartitions of a pure quantum many-body state. Towards this
aim, we first define the notion of geometry by means of a generalized adjacency
matrix such that the approximate entanglement entropy of any given bipartition
can be obtained as a linear sum of the weights of the links connecting it with its
surroundings. We show that the representation is exact when there is a perfect area-
law. In other cases, it still provides an efficient approximation with minimal error.
Interestingly, we also report some other important states, e.g., the rainbow state
[8–15], where though a strong violation of area-law is observed for the geometry
defined by the local structure of the Hamiltonian, an area-law feature can indeed be
recovered for a geometry which is completely different than that suggested by the
Hamiltonian.

As an application of the formalism, we provide a route to compute the entangle-
ment contour function for quantum many-body systems, which is radically different
than that previously introduced in Ref. [16]. A quantitative comparison of the
contour functions obtained using these two different approaches is made for the
ground state of a non-interacting model. Additionally, we also study the behavior of
contour function obtained for an interacting model, which surpasses the limitation
of the previous approach [16–22].

Finally, we extend our analysis to conformal invariant physical systems [23–26].
As an important finding, we show that the conformal field theory (CFT) descriptions
help us to interpret the elements of the generalized adjacency matrix as the two-point
correlator of an entanglement current operator. This field theory realization provides
a framework to consider entanglement as a flow among different parts of the system
[27], similar to the flow of energy that is characterized by the stress tensor.

In the following sections, after briefly introducing the formalism, we elaborate
on our main findings.

2 Emergent Geometry

We start with an N -party pure quantum state |ψ〉, and characterize its entanglement
properties by computing the von Neumann entropies SA = −TrA(ρA log ρA) for
all possible bipartitions of the state, namely (A,Ac), where ρA = TrAc |ψ〉〈ψ |, and
TrA(Ac) denotes partial trace on the subsystem A(Ac). We then aim to investigate
whether the set of entropies obtained in this way respond to an area-law for some
geometry. As a first step, we assign a classical spin configuration {si}N to each such
bipartitions using the rule

si =
{

1, if i ∈ A

−1, if i ∈ Ac.
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Fig. 1 Schematic of the
entanglement entropy
obtained for an arbitrary
bipartition (A,Ac) by
removing the links
connecting the sites. Here the
links represent the constants
Jij

Ac A

Jiji

j

These spins are not physical but only a convenient way to describe the different
bipartitions of the system. If two spins, say i and j , belong to the same partition, A
or Ac, we get sisj = 1, while if they belong to different partitions, sisj = −1. In the
former case, there is no contribution to the entanglement entropy SA, while in the
second case, they may contribute to SA with a certain amount that will depend on
their positions. We are thus led to express the entropy SA of the bipartition (A,Ac)

as

SA = 1

2

∑

ij

Jij (1− sisj )+ s0, (1)

where Jij defines the coupling between the classical spins i and j and s0 may
constitute a topological entropy term. The entropy SA thus can be further simplified
as the sum of contributions coming from all possible pairs, Jij , i.e.,

SA =
∑

i∈A,j∈Ac

Jij + s0. (2)

A closer look at the derivation of the above entropy function reveals the fact that
it is a clear manifestation of the area-law of entanglement entropy associated with
the geometry revealed by the elements of J . More elaborately, the coupling function
Jij can be interpreted as the weight of an adjacency matrix of a generalized graph,
such that the approximate entanglement entropy of the region A can be computed
only by simply summing the weights (Jij ) associated with all the connecting edges
between A and Ac. A schematic representation of the above formulation is depicted
in Fig. 1. If Eq. (2) holds exactly or at least approximately, the matrix J will be
termed the entanglement adjacency matrix (EAM) of the state |ψ〉. Additionally, we
note that for the case when Eq. (2) is exact, Jij equals to the mutual information
between the sites i, j .
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2.1 Graphical Representation

An equivalent way to conceptualize the entropic functions obtained for different
bipartitions is through the following graphical representation we outline here.
Similar to Venn diagrams, which illustrate the logical relationships between two
or more sets, here we present the schematic representation of the entropy values of
different bipartitions by shading different regions in the J -matrix. As an example,
consider a contiguous bipartition (A,Ac), such that the sites 1 . . . m ∈ A and
m + 1 . . . N ∈ Ac. The entropy value of the block A (SA) can be schematically
represented by shading the region of the J -matrix with i ∈ 1, 2, . . . m and j ∈
m+ 1 ∈ N and its conjugate part. Figure 2 depicts the single-site entropies and the
mutual information of a system AAc by shading different regions in the J -matrix.

A B C

A

B

C

S(A)

A B C

a b c

A

B

C

S(B)

A B C

A

B

C

I(A : B)

H(X,Y )

H(X |Y ) H(Y |X)H(X) H (Y )I(X : Y )

Quantum version of Venn diagrams

Venn diagrams

Fig. 2 Similar to the illustration of the different entropies and the mutual information between two
variables X and Y using Venn diagrams, as shown in the upper panel, a graphical representation of
the quantum version of different entropic relations is presented in the lower panel (a)–(c)
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2.2 Exact Examples

For any general pure quantum state, computation of its entanglement adjacency
matrix requires knowledge of the entanglement of all possible bipartitions of the
state. The number of such bipartitions increases exponentially with the size of the
system. Hence, even for moderate system size, estimation of the entanglement adja-
cency matrix demands lots of computational effort. However, if the quantum state
possesses certain properties such that all entropies can be computed analytically,
corresponding entanglement adjacency matrix can be obtained straightforwardly.
Below we discuss few such cases, where the elements of the entanglement adjacency
matrix can be computed exactly.

I. Dimer model.—We start with the dimer state, which can be mathematically
expressed as |Ψ 〉 = |i1j1〉 ⊗ |i2j2〉 ⊗ · · · ⊗ |ikjk〉, with k = N

2 for even
N and |iljl〉 = 1√

2
(| ↑il↓jl 〉 − | ↓il↑jl 〉). Such states belong to the family

of valence bond states and appear as approximate ground states of certain
strongly inhomogeneous free-fermionic model. Here, from the configuration
of the state, one can observe that all the single-site entropies become S(ρi) =
log(2),∀i ∈ N . On the other hand, for the two-site blocks, if i, j form a dimer
S(ρij ) = 0, and S(ρij ) = 2 log(2), otherwise. Therefore, the elements of the
entanglement adjacency matrix possess non-zero values only when i, j form
singlet, given byJij = log(2). In this case, one can find that the geometry
revealed by the entanglement adjacency matrix is a mere restriction of the one-
dimensional adjacency matrix representing the Hamiltonian.

II. Rainbow state.—Another important member of the family of valence bond
states we consider in our work is the rainbow state, which is also the ground
state of a local Hamiltonian [8–15]. Here, dimer are established among
symmetric qubits with respect to the center: ik = k, jk = N + 1 − k. The
state exhibits volume-law scaling of entanglement entropy with the increase
of the system size. In this case also, all the single-site entropies become
S(ρi) = log(2). Whereas, the non-zero values of the entanglement entropies
can be obtained only for ρij such that i+j �= N+1, given by S(ρij ) = 2 log(2).
As a result, we get Jij = log(2), for i + j = N + 1 and zero otherwise.
Interestingly, one can note that in this case, the entanglement adjacency matrix
is not emerging as a restriction on the adjacency matrix representing the
Hamiltonian. In other words, an observer trying to determine the geometry
from the distribution of the entanglement will not find the correct geometry of
the Hamiltonian.

III. GHZ state.—A different case we consider here is the N -party GHZ state,
expressed as |GHZ〉 = 1√

2
(|0〉N | + |1〉N). In this case, the entropy values

of all the bipartitions, irrespective of the number of sites, become identical,
given by log(2). Hence, all the Jij ’s become same. As a result, to represent the
block entropies using our formalism, we consider Jij = 0 ∀i, j ∈ N and put
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the value of the constant term in Eq. (2), s0 = log(2). This suggests that the
GHZ state does not have a geometrical interpretation in this framework.

2.3 Numerical Computation

In this section, we describe the numerical methodology to obtain the entanglement
adjacency matrix for which Eq. (2) is not exact. For any general block, the relation
between parameters and entropies can be expressed through

∑

(ij)

DI,(ij)Jij = SI , (3)

where I = (x1 · · · xN) denotes the binary expansion for the index of each block,
i.e. xk = 1 if site k belongs to block I (and zero otherwise), and D(x1···xN ),(ij) = 1
if (xi, xj ) = (0, 1) or (1,0), and zero otherwise. In our case, vector J contains all
the Jij in order, i.e., has dimension N(N − 1)/2, while vector SI contains all the
entropies, so it has dimension 2N . Thus, matrix D has dimension 2N ×N(N−1)/2.
In other terms: as many rows as entropies, and as many columns as couplings.

Equation (3) is a strongly overdetermined linear system which will be, in general,
incompatible. Yet, it is possible to find an approximate solution in the least-squares
sense, using the equation

∑

(i′j ′)
D†D(ij),(i′j ′)Ji′j ′ =

∑

I

DI,(ij)SI . (4)

Subsequently, an estimation of the relative error made in this optimization process
can be made as follows. Let ŜI be the estimate obtained through Eq. (4). The error
will be defined as

E = 1

2N

2N−1∑

I=0

∣∣∣SI − ŜI

∣∣∣ . (5)

In the forthcoming section, we will use this formula to compute the error made in
computation of entanglement adjacency matrix for various physical models.

3 Entanglement Contour

In this section, we discuss another important facet of our formalism, where a
more refined approach to characterize entanglement entropy of any bipartition is
presented in terms of the entanglement contour function introduced earlier in the
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literature [16] (see also [12, 17–22]). The entanglement contour function for a given
block estimates the contribution of each site to the entanglement entropy obtained
for that bipartition. For a given block A, mathematically it can be expressed as

SA =
∑

i∈A
sA(i), sA(i) ≥ 0 . (6)

Interestingly, from Eq. (2) one can observe that the entanglement adjacency matrix
provides a natural entanglement contour which can be expressed as

sA(i) ≡
∑

j∈Ac

Jij . (7)

The contour function defined above satisfies all the standard constraints listed in
Ref. [16]. Here, we stress the fact that unlike the actual formulation of the entan-
glement contour introduced in Ref. [16], our approach aims to provide an overall
description of bipartite entanglement by considering contributions of all bipartitions
and not just the ones consisting of simply connected intervals. Moreover, the
formalism includes any general quantum systems, including interacting cases.

Contour Plot for Free-Fermionic Hamiltonian For free-fermionic model, described
below

Hfree−ferm = −1

2

∑

ij

tij
(
c

†
i cj + hc

)
, (8)

where ci(c
†
i )’s is the fermionic annihilation (creation) operators at site i, and tij is

the hopping matrix, a proposal for the contour is given in Ref. [16],

sA(i) =
|A|∑

p=1

∣∣Φ(A)
p,i

∣∣2 H(νp), (9)

where Φ
(A)
p,i is the eigenvector with eigenvalue νp, of the correlation matrix block [8,

28] restricted to A and H(x) = − [x log x + (1− x) log(1− x)
]
. Using the above

equation, in Fig. 3a, we compute the entanglement contour function for the ground
state of the dimerized Hamiltonian, which can be obtained from the free-fermionic
model described in Eq. (8), for tij = (1+δ(−1)i), |i−j | = 1 and compare that to the
contour function obtained using the elements of the entanglement adjacency matrix,
Jij , as described in Eq. (7). From the figure, we note that the contour functions
obtained using these two different methods are very similar to each other.

Contour Plot for XXZ Hamiltonian Subsequently, we move one step further and
apply the formalism to an interacting model, namely, the one-dimensional XXZ

model, expressed as
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Fig. 3 In panel (a), we compare the contour functions for the entanglement entropy sA(i), those
obtained using the Eqs. (7) and (9), for the ground state of dimerized Hamiltonian (tij = (1 +
δ(−1)i ), |i − j | = 1, δ = 0.5, N = 14). Whereas, in panel (b), we plot the contour functions for
the entanglement entropy obtained using Eq. (7) for ground state of XXZ Hamiltonian for different
values of the parameter Δ, and for N = 12. Additionally, in the inset of both the figures, the scaling
of the error (E) with the system size (N ) have been shown for all the parameter values considered

HXXZ =
N∑

i

Sx
i S

x
i+1 + S

y
i S

y

i+1 +ΔSz
i S

z
i+1, (10)

where Sk
l (k ∈ x, y, z) are the Pauli operators at site l, and Δ is the anisotropy along

the z-direction. Note that in this case, to obtain the set of entropies for all possible
bipartitions of the ground state of the model, we perform the exact diagonalization
method. The behavior of the entanglement contour function obtained for the half-
chain, for the critical (Δ ≤ 1) and non-critical (Δ > 1) cases are depicted in Fig. 3b.

4 Entanglement Current

In this section, we extend our formalism to one-dimensional conformal invariant
systems and attempt to provide an interpretation of the entanglement adjacency
matrix entries, Jij , as the two-point correlator of an entanglement current operator.
The entanglement entropy of the ground state of a CFT for an interval A = (u, v)

embedded in the infinite line is given by

SA = c

3
log

v − u

ε
, (11)

where c is the central charge and ε > 0 a UV cut-off. One can note that Eq. (11) can
be obtained from a continuous version of Eq. (2)

SA = c

6

∫

Aε

dx

∫

Ac

dy J (x, y) , (12)
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with Aε = (u+ ε, v − ε) and Ac = (−∞, u) ∪ (v,∞), by choosing

J (x, y) = 1

(x − y)2 . (13)

This equation indicates that J (x, y) is the two-point correlator, on the complex
plane, of a current operator J, whose integration along segments, as in Eq. (12), is
invariant under reparametrization. J (x, y)dxdy represents the amount of entangle-
ment between the intervals (x, x+dx) and (y, y+dy). This field theory realization
leads to think of entanglement as a flow among the parts of the system, in analogy
to the flow of energy that is characterized by the stress tensor. Moreover, using the
construction described in Ref. [26] for entanglement Hamiltonians in CFT, one can
show that Eq. (12) reproduces the values of SA, for the space-time geometries Σ ,
that are conformally equivalent to an annulus. In these cases J (x, y) is given by
the two-point correlator J (x, y) = 〈J(x) J(y)〉Σ. Notice that in the conformal field
theory systems the representation is exact only when A is an interval, but not in
general.

5 Conclusion

To conclude, in this work, we aimed to unveil the geometry revealed from the
entanglement properties of any pure quantum state through the elements of a
generalized adjacency matrix, such that the entropy values of any bipartition of the
state can be approximated as a weighted sum of all the links connecting the sites
across that bipartition. We reported certain examples, where the optimal geometry
emerged from the entanglement structure, turned out to be completely different
from that suggested by the parent Hamiltonian of the system. Subsequently, we
showed that our formalism provided a natural route to compute the entanglement
contour, introduced earlier for the non-interacting models, which essentially helped
us to extend the concept for interacting models as well. Finally, we showed that for
conformal invariant systems, a more insightful explanation of the elements of such
generalized adjacency matrices can be obtained in terms of a two-point correlator
of an entanglement current operator.
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Interplay of Coulomb Repulsion and
Spin–Orbit Coupling in Superconducting
3D Quadratic Band Touching Luttinger
Semimetals

Serguei Tchoumakov, Louis J. Godbout, and William Witczak-Krempa

Abstract We investigate the superconductivity of 3D Luttinger semimetals, such
as YPtBi, where Cooper pairs are constituted of spin-3/2 quasiparticles. Various
pairing mechanisms have already been considered for these semimetals, such as
from polar phonons modes, and in this work we explore pairing from the screened
electron–electron Coulomb repulsion.

In these materials, the small Fermi energy and the spin–orbit coupling strongly
influence how charge fluctuations can mediate pairing. We find the superconducting
critical temperature as a function of doping for an s−wave order parameter, and
determine its sensitivity to changes in the dielectric permittivity. Also, we discuss
how order parameters other than s−wave may lead to a larger critical temperature,
due to spin–orbit coupling.

Keywords Superconductivity · Luttinger semimetals · Coulomb repulsion ·
Critical temperature · Eliashberg equation · Spin–orbit

1 Introduction

In regular metals, Coulomb repulsion is commonly believed to compete against the
superconducting pairing between electrons. For example, in the electron-phonon
mechanism of superconductivity with electron-phonon coupling g, the critical
temperature below which an electron gas becomes superconducting is [1]
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Tc = 〈ω〉
1.2

exp

(
− 1.04(1+ λ)

λ− μ∗(1+ 0.62λ)

)
, (1)

where λ = 2
∫∞

0 dωg2D(ω)/ω is the coupling constant, 〈ω〉 = 2
∫∞

0 dωg2D(ω) is
the averaged phonon frequency, and μ∗ is the Coulomb pseudo-potential. D(ω) is
the phonon density of states. Equation (1) informs us that increasing the electronic
Coulomb repulsion exponentially decreases the critical temperature. In a normal
electron gas, the interaction strength is proportional to the Wigner–Seitz radius
given in units of the effective Bohr radius, rs = me2/(αε∗kF ) where m is the band
mass, e the electronic charge, α = (4/9π)1/3 ≈ 0.52, ε∗ the background dielectric
constant, and kF is the Fermi wavevector. The superconductivity in semiconductors
is often attributed to the electron-phonon coupling. However, for some materials
such as SrTiO3 and bismuth-based half-Heuslers, like YPtBi, the importance of
the electron-phonon coupling in superconductivity is yet unresolved. In SrTiO3 it
was even proposed that superconductivity may come from the electron–electron
repulsion [2, 3]. The qualitative explanation does not only rely on the Kohn–
Luttinger mechanism [4] but also on the contribution of plasmons to screening [2].
The effective attraction between electrons is a consequence of the screening of the
Coulomb potential, with a dielectric function ε(ω,q) that is computed in the random
phase approximation

εRPA(ω,q) = 1− V0(q)Π0(ω,q), (2)

with V0(q) = 4πe2/(ε∗q2) the bare Coulomb potential and Π0(ω,q) the bare
electron polarizability. The dielectric function ε(ω,q) depends on the system under
study and has a role similar to the density of states of phonons, D(ω) that appears
in Eq. (1). In Ref. [5] we use a variational approach similar to that in [6] to show
how the critical temperature depends on each component (ω,q) of the dielectric
function, as we discuss further below.

This mechanism for SrTiO3, however, does not directly apply to bismuth-
based half-Heusler materials, such as YPtBi, where the band structure is not
well approximated by the free Hamiltonian HN(k) = h̄2k2/(2m) − μ but also
includes strong spin–orbit coupling. It is a candidate Luttinger semimetal with
Hamiltonian [7]

Ĥ0(k) = h̄2

2m

[
−5

4
k2 +

(
k · Ĵ

)2
]
− μ, (3)

where we introduce the j = 3/2 total angular momentum operators Ĵ = (Ĵx, Ĵy, Ĵz)

and the chemical potential μ. This model has inversion, rotational, and time-reversal
symmetries. The spectrum consists of four bands that meet quadratically at k = 0
with degenerate lower and upper bands with energies ±h̄2k2/(2m) as shown in
Fig. 1a. In the present proceeding we outline our findings regarding screening,
quasiparticles, and superconductivity in Luttinger semimetals arising from the
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Fig. 1 (a) Band structure of a Luttinger semimetal, the red plane is at the Fermi level. The upper
and lower bands are doubly degenerate. (b)–(c) The (b) real and (c) imaginary parts of the inverse
dielectric permittivity, 1/ε(ω, q), for rs = 0.5 as a function of wavevectors, q, and frequencies, ω.
The white dashed lines are the branches of the particle-hole continuum

screened Coulomb repulsion [5, 8]. We also discuss how the J = L = S = 1
order parameter may have a larger critical temperature than in the s−wave channel,
due to spin–orbit coupling.

2 Screening and Electronic Properties of Luttinger
Semimetals

We perturb the bare Hamiltonian (3) with the bare Coulomb potential V0(q)

Ĥint = 1

2V
∑

s1s2k1k2,q �=0

V0(q)ψ̂
†
k1+qs1

ψ̂
†
k2−qs2

ψ̂k2s2ψ̂k1s1 , (4)

where V is the volume of the electron gas and introduce the annihilation oper-
ators ψ̂ps = {ψ̂p,3/2, ψ̂p,1/2, ψ̂p,−1/2, ψ̂p,−3/2} of the aforementioned j = 3/2
representation. In the following, we set h̄ = kB = 1 with energies in units of
the Fermi energy EF and wavevectors in units of the Fermi wavevector kF . The
amplitude of the Coulomb potential is then given by the Wigner–Seitz radius,
rs = me2/(αε∗kF ) with α ≈ 0.51. In [8] we computed the bare charge polarisability
Π0(ω,q) and the self-energy corrections Σ±(ω,k) on the upper (+) and lower (−)
bands. We find that, because of strong spin–orbit coupling, the plasma frequency
is diminished compared to a regular quadratic band, and that screening receives
important contributions from interband excitations (see Fig. 1b,c).

The difference in screening between a Luttinger semimetal and a normal electron
gas affects the quasiparticle properties. We find that for Luttinger semimetals the
quasiparticle residue ZF and the first Landau coefficients, f0s and f1s , are less
affected by the Coulomb potential [8].
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3 Superconductivity in Luttinger Semimetals

We evaluate the critical temperature of a singlet s−wave superconductor using the
linear Eliashberg equation [3, 9], with account of self-energy corrections,

λ(T )φσ1(iωn1 , k1) (5)

= −T
∑

σ2ωn2

∫ ∞

0
dk2

k2

k1

I0σ1σ2(iωn1 , k1; iωn2 , k2)φσ2(iωn2 , k2)

(ωn2Zσ2(iωn2 , k2))2 + (ξσ2(k2)+ χσ2(iωn2 , k2))2 ,

where φσ represents the superconducting order parameter, ωn = (2n + 1)πT are
the Matsubara frequencies, σ = ± is the band index, I0 is the angular average
of the screened Coulomb potential with spin–orbit corrections, and Σ±(iωn, k) ≡
χ±(iωn, k) + iωn(1 − Z±(iωn, k)) are the self-energy corrections. Note that we
have included the pairing order parameter on the upper band (+), as it will play an
important role. Equation (6) is an eigenvalue equation where the critical temperature
is found for eigenvalues λ(T ) such that λ(Tc) = 1.

In this approach, the absence of symmetry in Eq. (6) on parameters (σ, ωn, k)
makes its resolution complex and time consuming . We thus perform the transfor-
mation φσ (iωn, k) → φ̄σ (iωn, k) = kφσ (iωn, k)/((ωnZσ (iωn, k))

2 + (ξσ (k) +
χσ (iωn, k))

2) to have a symmetric form of Eq. (6)

ρ(T )φ̄ = Sφ̄, (6)

with S a symmetric operator on parameters (σ, ωn, k) and where the critical
temperature Tc is obtained for ρ(Tc) = 0. One can show that ρ(T > Tc) < 0, so Tc

is computed from the largest eigenvalue ρmax and, using the variational properties
of symmetric matrices, for any test function φ̄t:

ρmax ≥ ρt = φ̄t · Sφ̄t

φ̄t · φ̄t
⇒ Tc ≥ T t

c , (7)

with T t
c the critical temperature obtained with the test function.

We use this equation to reproduce the critical temperature for singlet s−wave
pairing from the screened Coulomb repulsion in a single quadratic band structure
[9], and compute it for a Luttinger semimetal (see Fig. 2). For large Wigner–Seitz
radii, the critical temperature of the Luttinger semimetal Tc/TF ≈ 4.4 × 10−4 is
smaller than for a single quadratic band, but extends to smaller values of rs [5].
We perform this calculation down to rs = 0.01, below which we are limited by the
numerical resolution of the jump in the eigenvalue ρ(T ) that scales likes rs . We note
that it was important to keep φ+ in Eq. (6), otherwise we would not find a solution.
The value we obtain is comparable to the ratio Tc/TF ≈ (2 − 5) × 10−4 from
measurements on the half-Heusler YPtBi [10–12]. Because we have an s−wave
superconductor, our result stands in contradiction with a recent proposition that
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a b c

Fig. 2 (a) Critical temperature in units of K∗ = m/(meε
∗2)K for a single quadratic band (gray,

dashed) and a Luttinger semimetal (plain, black). For comparison we superimpose the Bose–
Einstein condensation temperature TB2 for a density n/2 and a mass 2m. Reproduced with
permission from [5]. (b)–(c) The functional derivative δTc/δε(iΩn, q) in percent of the critical
temperature for (b) a single quadratic band structure and (c) a Luttinger semimetal, for rs = 15.
The white dashed lines are the branches of the particle–hole excitation diagram in real frequency
and the black line is the plasmon dispersion in real frequency. The critical temperature is mostly
sensitive to the dielectric function in the region of plasmons and near the q = 2kF static screening

YPtBi is a line-node superconductor [13] but this interpretation, based on magnetic
properties, is arguable due to the small value of the lower critical field Bc1 in YPtBi
[14], among other caveats.

Because the critical temperature depends on an integral equation involving every
component (iΩn, q) of the dielectric function ε(iΩn, q), it is not straightforward to
understand the origin of superconductivity. If one changes ε(iΩn, q) by δε(iΩn, q)

then the critical temperature Tc changes by

ΔTc = 2πT
∑

Ωn

∫
dq

δTc

δε(iΩn, q)
δε(iΩn, q). (8)

The functional derivative δTc/δε(iΩn, q) is a measure of the sensitivity of the
critical temperature to screening and it can be decomposed into

δTc

δε(iΩn, q)
= − δρ

δε(iΩn, q)

∣∣∣∣
T=Tc

/
∂ρ

∂T

∣∣∣∣
T=Tc

. (9)

In this equation, ρ is the maximal eigenvalue of the linear Eliashberg equation (6).
We use it to evaluate numerically the derivative ∂ρ/∂T |T=Tc and we use the
Hellmann–Feynman theorem to compute δρ/δε(iΩn, q) [5]. In Fig. 2b,c, we show
the sensitivity of the critical temperature Tc to the different components of the
dielectric function ε(iΩn, q) for a quadratic band and a Luttinger semimetal [5].
We notice larger values in the area associated to plasmons and close to 2kF ,
which are, respectively, associated to plasmon and Kohn–Luttinger mechanisms
of superconductivity [2, 4]. We stress that, albeit a contribution analogue to the
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Kohn–Luttinger mechanism, the dynamical screening is central in the present
mechanism of superconductivity and we do not expect s−wave pairing for a static
interaction [4].

4 Pairing Beyond s−Wave from Spin–Orbit Coupling

In Luttinger semimetals, the quasiparticles are described with j = 3/2 multiplets
instead of spin-1/2 as in ordinary metals. The rotational symmetry of Eqs. (3–4)
allows to describe Cooper pairs by a gap function ΔJ,LS(iωn, k) with a well-defined
total angular momentum J that combines the pseudo-spin S of the Cooper pair
and its orbital angular momentum L [15, 16]. At the critical temperature, these gap
functions satisfy the linear Eliashberg equations

λ(T )ΔJ,L1S1
σ1

(iωn1 , k1) (10)

= −T
∑

�σ2ωn2
Lambda2S2

∫
dk2k2

k1

V�(i(ωn1 − ωn2), k1, k2)A
J,L1S1L2S2
�,σ1σ2

(k1, k2)

(ωn2Zσ2(iωn2 , k2))2 + (ξσ2(k2)+ χσ2(iωn2 , k2))2

×ΔJ,L2S2
σ2

(iωn2, k2),

with λ(T ) = 1 for T = Tc. Note that we have written the Eliashberg equation in
its non-symmetrized form, in contrast to Eq. (6). This self-consistent relation can
be complemented with off-diagonal components of the gap function [17], that we
neglect in the present discussion. In Eq. (10), the electron pairing is determined
by V�, the projection of the screened Coulomb potential V0(q)/ε(iΩn,q) on the
Legendre polynomial P�, and by the form factor due to spin–orbit coupling:

A
J,L1S1L2S2
�,σ1σ2

= 2�+ 1

2
(11)

×
∫

d2Ω1d
2Ω2

(2π)3 P�

(
k̂1 · k̂2

)
Tr
[
P̂σ1(k1)N̂

J,L1S1(k1)P̂σ2(k2)N̂
J,L2S2†(k2)

]
,

where Ω i is the solid angle of ki . Here, the matrices N̂J,LS(k) correspond to the
representation of the rotation symmetry on J = L+ S,

N̂J,LS(k) =
∑

mLmS

CJ
LmL,SmS

YLmL
(θk, φk)M̂SmS

, (12)

where CJ
LmL,SmS

are the Clebsch–Gordan coefficients, YLmL
the spherical harmon-

ics, and M̂SmS
the pairing matrices with pseudo-spin S of the Cooper pairs. Some of
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these combinations, for L = 0, 1, are listed in [15, 16]. We introduce the projectors
P̂± in Eq. (12) to decompose the gap equation on the eigenstates of Ĥ0 on the upper
(+) and lower (−) bands, that we, respectively, associate to eigenstates ±3/2 and
±1/2 of the helicity operator λ̂ = k̂ · Ĵ. Note that, for a given value of J , there
is a finite number of components V� that contribute in the summation in Eq. (10).
For example, for s−wave J = L = S = 0 only � = 0 and 2 contribute. In the
following, we further simplify Eq. (10) by considering a gap function in a unique
(J, L, S) sector, ΔJ,LS , and write A

J,LSLS
�,σ1σ2

= A
J,LS
�,σ1σ2

. A more refined analysis
would allow for mixing between different values of (L, S) for a fixed J .

It is expected that the amplitude of the pairing potential depends on the largest
combination of the coefficients V� and AJ,LS close the Fermi surface, where
σ1 = σ2 = − and k1 = k2 = kF . To be more accurate, one should consider the full
k−dependence but let us work in this simpler limit. It was shown that this amplitude
is the strongest for J = L = S = 0 [15], which is precisely the order parameter
we consider in our work (see Sect. 3). This logic of maximizing the product
V�A

J,LS
� applies well for superconductiviy from an attractive potential, like the

electron-phonon coupling, where the eigenvalue of Eq. (10) with the largest absolute
value, λ1(T ), is already positive. However, it is not straightforward to extend
to superconductivity from a repulsive potential, such as the Coulomb repulsion
between electrons, where in the s−wave channel the eigenvalue with the largest
absolute value is negative, λ1(T ) < 0, because of the overall repulsive nature
of the Coulomb potential. Then, the s−wave solution to Eq. (10) comes from the
second largest-in-absolute-value eigenvalue, λ2(T ) > 0, which corresponds to the
first electronic configuration where the Coulomb potential is attractive [9].

In a multi-orbital system, the coefficient AJ,LS
� is a matrix that can have positive

or negative eigenvalues. Then, the superconducting pairing can be favored not only
by increasing the product V�A

J,LS
� but also by changing its sign. In the case of

the repulsive Coulomb potential in Eq. (10), the eigenvalue λ1(T ) with the largest
magnitude is negative for J = L = S = 0 and it will not be responsible for the
critical temperature defined by λ(Tc) = 1 > 0. Yet, the sign of λ1 can be positive for
other order parameters ΔJ,LS if AJLS

� has a negative eigenvalue, which we obtain

for J = L = S = 1 = �, i.e. N̂111 = √3(−kz(Ĵx+iĴy)+(kx+iky)Jz)/(
√

5k) [16],
and which decomposes as a matrix on the bands with helicity ±1/2 and ±3/2

A111
1 =

(
2/5 3/10

3/10 0

)
. (13)

This matrix has eigenvalues (2 ± √13)/10, with one negative (≈ −0.16). For this
channel, the sign of λ1 can be positive and eventually be a solution to λ1(Tc) = 1.
This may have a larger critical temperature since we now consider the largest
eigenvalue in magnitude, instead of the second largest. However, it is difficult to
speculate on the resulting critical temperature and a refined study is needed to
evaluate the corresponding critical temperature.
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5 Conclusion

Over a wide range of doping, we find that the s−wave critical temperature for a
Luttinger semimetal with screened Coulomb repulsion is Tc/TF ≈ 4.4 × 10−4.
Tc/TF is small but may be an explanation for the superconductivity of YPtBi, a
candidate Luttinger semimetal, where experiments report Tc/TF ≈ (1− 8)× 10−4.
Previous theoretical works on YPtBi, with phonon-based pairing, estimate a critical
temperature at least one order of magnitude smaller than in experiments [15, 18].
We quantitatively show the origins of superconductivity, in relation to the plasmon
[9] and Kohn–Luttinger [4] mechanisms of superconductivity. We also analyze
the Eliashberg equation of j = 3/2 fermions [15, 16] and propose that an
unconventional order parameter, with J = L = S = 1, may turn the repulsive
contribution of the screened Coulomb potential to attractive. This reminds a recent
discussion on graphene, where the Berry curvature promotes the � = 1 component
of a repulsive interaction to attractive [19]. A more involved study would be required
to determine the dominant superconducting channel.
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Soft Degrees of Freedom,
Gibbons–Hawking Contribution and
Entropy from Casimir Effect

Glenn Barnich and Martin Bonte

Abstract Recent work on non-proper gauge degrees of freedom in the context of
the Casimir effect is reviewed. In his original paper, Casimir starts by pointing out
that, when the electromagnetic field is confined between two perfectly conducting
parallel plates, there is an additional physical polarization of the electromagnetic
field at zero value for the discretized longitudinal momentum besides the standard
two transverse polarizations at non-zero values. In this review, the dynamics of
these additional modes is obtained from first principles. At finite temperature, their
contribution to the entropy is proportional to the area of the plates and corresponds
to the contribution of a massless scalar field in 2+1 dimensions. When the plates
are charged, there is a further contribution to the partition function from the zero
mode of this additional scalar that scales with the area but does not contribute to
the entropy. It reproduces the result obtained when the Gibbons–Hawking method is
applied to the vacuum capacitor. For completeness, a brief discussion of the classical
thermodynamics of such a capacitor is included.

Keywords Edge modes · Casimir effect · Gibbons–Hawking entropy · Black
hole micro-states

1 Introduction

That seemingly unphysical polarizations of the electromagnetic field have an
important role to play in the presence of charged particles is known since the work
by Dirac [1], and Fock and Podolski [2], where the Coulomb force between two non-
relativistic electrons is constructed in terms of creation and destruction operators
associated with the scalar potential A0.
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When all polarizations are quantized, it is important to understand how equiv-
alence with reduced phase space quantization is achieved. Arguably the most
transparent implementation is through the quartet mechanism [3] which implies
the cancellation of the contributions from unphysical polarizations and ghost
variables when computing matrix elements of gauge invariant operators between
gauge invariant states in the context of Hamiltonian BRST operator quantization.
Furthermore, the associated path integral is simply related to the manifestly Lorentz
invariant Lagrangian BRST path integral by integrating out momenta (see, e.g. [4]
for a comprehensive review). More generally, as is well known in the context of
topological field theories, these cancellations no longer work perfectly when there
is non-trivial topology.

Whereas the quartet mechanism is relatively straightforward for the free electro-
magnetic field where the quartets are associated with temporal oscillators for the
scalar potential and to oscillators for the longitudinal part of the vector potential on
the one hand, and to oscillators for the ghost fields on the other, this is no longer
the case in the presence of charged sources, where gauge invariance becomes a non-
trivial issue [5]. For the simplest source representing a charged point particle at rest,
it turns out that the BRST invariant vacuum state is a coherent state constructed
out of unphysical null oscillators that represents the quantum Coulomb solution
[6]. Some technical details and clarifications on this elementary construction are
provided in Appendix “Details on Quantum Coulomb Solution”.

The ultimate aim of this research is a better understanding of the degrees of
freedom responsible for black hole entropy. In this context, it is intriguing to note
that in one of the earliest papers on linearized quantum gravity by Bronstein [7]
(see [8] for perspective), the last part of the paper follows closely the derivation
by Dirac, Fock, and Podolski on the Coulomb law in order to obtain Newton’s law
between two test masses from the creation and destruction operators associated with
the metric fluctuations h00. How to extend the considerations below to the case of
linearized gravity will be discussed elsewhere.

In order to avoid facing the question of the detailed interaction of the quantized
electromagnetic field with charged dynamical matter, it is instructive to first
consider the case where these interactions can be idealized as boundary conditions
imposed on the free electromagnetic field. This naturally leads one to consider the
electromagnetic field in the presence of charged conducting plates. In the absence of
charge, this is precisely the set-up of the Casimir effect [9] at non-zero temperature
[10] (see also [11, 12] and e.g. [13–15] for reviews).

As we will discuss in details below, that there is an additional physical polar-
ization at zero value for the discretized longitudinal momentum, besides the two
transverse ones at non-zero values, is well known in this context. We will focus on
how to determine the dynamics of these “edge” modes and isolate their contribution
to the partition function and the entropy, which scales with the area of the plates.

We then provide a microscopic understanding of the charged vacuum capacitor,
where there is an additional contribution to the partition function that comes from
the zero mode of the additional polarization and that also scales with the area but
does not contribute to the entropy [16].
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Before turning to these issues, we will first discuss the thermodynamics of a
capacitor by standard methods. In the context of general relativity, the Euclidean
approach of Gibbons and Hawking [17] consists in deriving the thermodynamics of
Kerr–Newman black holes or of de Sitter space by evaluating on-shell the Euclidean
action improved through suitable boundary terms. What these boundary terms are
in the electromagnetic sector has been discussed, for instance, in [18, 19]. That
the construction and interpretation of such boundary terms is very transparent
in the first Hamiltonian formulation is discussed, for instance, in the derivation
of the thermodynamics of the BTZ black hole [20]. We then review how the
thermodynamics of the capacitor can easily be reproduced from the Euclidean
approach [16].

2 Capacitor Thermodynamics: Textbook Approach

Consider a capacitor made of two conductors with charges +q and −q and area A.
Its capacity C = q

V
in Lorentz–Heaviside units is

CS = 4πR1R2

R2 − R1
(1)

for two concentric spheres of radii R1 < R2 and

CP = A

d
(2)

for two parallel planes of area A separated by a distance d (see, e.g. [21, chapter 2]).
The capacitor begins with 0 charge, energy, and entropy. Charges±dq are added

on both side until one reaches ±q.
In order to charge the capacitor, one may use a circuit without any resistance so

that no heat would be produced in the process. One then would quickly arrive at the
standard results (see, e.g., chapter 14.2 of [22] in the absence of the system and its
electric polarization). A better understanding of the absence of entropy can however
be gained by considering a set-up with a resistor [23].

If a potential difference V is applied on the capacitor, there will be a current
I (t) = q

RC
e− t

RC . The heat lost by the system through the resistor is

Q =
∫ ∞

0
RI 2(t)dt = 1

2
CV 2. (3)

Instead of a single step, the capacitor can be charged in N steps, each increasing
the voltage by V

N
. At each step, the circuit relaxes until the current vanishes. The

heat lost in all N steps is then
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QN = 1

2
C (ΔV )2 ×N = 1

2

CV 2

N
. (4)

If the ambient temperature is constant, the increase of entropy is

ΔSN = QN

T
= 1

2

CV 2

TN
. (5)

In the limit N → ∞, the charging of the capacitor becomes a quasi-static process.
Since in this case, there is no increase of entropy, dS = 0 = S(q), the process is
reversible.

By the first law, it now follows that the increase of internal energy dU is due to
the work done by the voltage source alone,

dU = dW = V dq. (6)

Since V = q
C

, we get

U(q) = 1

2

q2

C
, (7)

which is the well-known energy of a charged capacitor. In this case, it is also the
free energy,

F(T , q) = [U(q, S)− T S(q)]S=S(T ) = 1

2

q2

C
. (8)

3 Capacitor Thermodynamics: Euclidean Approach

In the absence of gravity and of sources between the conductors, the starting point
is the first-order action

I =
∫

d4x
[
Ȧiπ

i −H0 + A0∂iπ
i
]
, H0 = 1

2

(
πiπi + BiBi

)
, (9)

where magnetic and electric fields are given, respectively, by Bi = εijk∂jAk , Ei =
−πi . The variation of this action is

δI =
∫

d4x
[
δAi

(
−π̇ i − εijk∂jBk

)
+ δA0

(
∂iπ

i
)
+ δπi(Ȧi − πi − ∂iA0)

]

+
[∫

d3x δAiπ
i

]t2

t1

+
∫ t2

t1

dt

∫
dσi

(
εijkBj δAk + A0δπ

i
)
. (10)
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We focus in this section on time-independent solutions for which the equations
of motions reduce to πi = −∂iA0 with ΔA0 = 0 and ΔAi − ∂i∂jA

j = 0. We also
assume that Δ is invertible on ∂iπ

i, ∂jA
j and that the gauge condition ∂jA

j = 0
may be imposed. Defining the transverse part of a vector field through "V T = "V −
"V L, with the longitudinal part given by "V L = "∇(Δ−1 "∇ · "V ), the gauge condition
is equivalent to "A = "AT , while the equations of motion determine the longitudinal
part "πL in terms of the harmonic potential A0 and imply "πT = 0 = Δ "AT . We
assume here that this implies "AT = "v, with "v constant.

Consider a spherical capacitor with conducting spheres at radii R1 < R2 and
charges+q and−q, respectively. Under the above assumptions, the general solution
to the equations of motion is

A0 = − q

4πr
+ c, πi = − qxi

4πr3 , R1 < r < R2, (11)

with c a constant and 0 outside of the shell. The classical observable that captures
electric charge is

Q = −
∫

S

dσi π
i, (12)

with S a closed surface inside the shell, for instance r = R, R1 < R < R2 so that
Q = q on-shell.

In the case of planar conductors at z = 0 and z = d with charge densities q
A

and
− q

A
, we have instead

A0 = − q

A
z+ c, πi = −δi3

q

A
, 0 < z < d, (13)

and 0 outside of the capacitor. In this case, the electric charge observable is Q in (12)
with S a plane at z = L, 0 < L < d.

For later purposes, note that both solutions (11) and (13) can be transformed into
solutions with A0 = 0 by a time dependent gauge transformation. The associated
vector potential satisfies "∇ · "A = 0 between the conductors and is longitudinal.

When working at fixed charge, all surface terms in the second line of (10)
vanish on the solutions under consideration. In the Euclidean approach, there is
a contribution to the partition function from the Euclidean action evaluated at these
classical solutions. It is given by

− βF(β,Q) = −1

h̄
IE(β,Q)|on− shell, (14)

where

IE =
∫ h̄β

0
dτ

∫
d3x

[
−iȦiπ

i +H0 − A0∂iπ
i
]
. (15)
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On-shell, only the longitudinal electric field in the Hamiltonian contributes and gives

F(β, q) = 1

2

q2

C
, (16)

where C is the capacity given by (1) and (2) in the spherical and the flat case,
respectively, in agreement with (8).

When working at fixed electric potential A0 = −φ, with A0|S1 = −φ1, A0|S2 =
−φ2 constants and μ = φ1 − φ2, the general solution is instead

A0 = − 1

R2 − R1

(
R2φ2 − R1φ1 + μR1R2

r

)
, πi = − μR1R2 xi

(R2 − R1)r3 ,

Q = CSμ, (17)

in the spherical and

A0 = −φ1 + μ

d
z, πi = −δi3

μ

d
, Q = CPμ, (18)

in the planar case. At fixed potential, the last surface term in (10) does no longer
vanish on-shell. Instead, the improved action

I ′ = I −
∫

dt

∫
dσiA0π

i, (19)

has a true extremum on-shell. In the Euclidean action, we have instead

I ′E = IE +
∫ h̄β

0
dτ

∫
dσiA0π

i = IE + (φ2 − φ1)Q. (20)

When evaluated on-shell, this now leads to

F(β,μ) = −1

2
Cμ2, (21)

which is related to (16) through a standard Legendre transformation.

4 Boundary Conditions

In the case of the capacitor, the boundary conditions for perfect conductors are "n×
"E = 0 = "n · "B on the boundary defined by the conductors, with "n the normal
to the boundary. In the planar case, to which we limit ourselves in the following,
one thus considers free electromagnetism on R2 × [0, d], with boundary conditions
Ex = 0 = Ey at z = 0 and z = d. It thus follows that πa , a = 1, 2, satisfy Dirichlet
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conditions. We then take Dirichlet conditions for Aa as well since this guarantees
well-defined Poisson brackets and a standard quantization in terms of the Fourier
coefficients of sine functions. The requirement that B3 = ∂1A2 − ∂2A1 should also
satisfy Dirichlet conditions then holds automatically.

There remains the boundary conditions on (A3, π
3) and, in the case of BRST

quantization, on (A0, π
0) as well as the ghost variables (η,P), (C̄, ρ). A natural

choice is Neumann conditions for (A3, π
3), and Dirichlet for all others in the case of

BRST quantization. This choice implies that the divergence "∇ · "π satisfies Dirichlet
conditions. The constraint "∇· "π = 0 in the space between the conductors can then be
implemented by variation in the action principle (9) through a field A0 that satisfies
Dirichlet conditions as well. Proper gauge transformations are defined by gauge
parameters that satisfy Dirichlet conditions, which implies the same conditions for
the ghost variables. In the context of BRST quantization, this choice guarantees that
the quartet mechanism for (A0, π

0), ( "AL, "πL) and ghost pairs will be effective.
If k3 = π

d
n3, fields with Dirichlet conditions on R2 × [0, d] are expanded as

φ(xi) =
∑

n3>0

φS
k3
(xa) sin k3z, φS

k3
(xa) = 1

d

∫ d

−d

dz φ(xi) sin k3z, (22)

while A3, π
3 with Neumann conditions are expanded as

φ(xi) =
∑

n3≥0

φC
k3
(xa) cos k3z,

{
ck3(x

a) = 1
d

∫ d

−d
dz φ(xi) cos k3z

φC
0 (xa) = 1

2d

∫ d

−d
dz φ(xi)

. (23)

5 Physical Degrees of Freedom

In the Hamiltonian approach, the reduced physical phase space or rather functions
thereon can be characterized through BRST cohomology in ghost number 0. This
can be done independently of a choice of gauge fixation, which enters in the
specification of the Hamiltonian.

In the case of free electromagnetism in Euclidean space R3, the Helmholtz
decomposition of vector fields alluded to above allows one to show that this
cohomology consists of functions of transverse vector potentials and their momenta.
Alternatively, in terms of Fourier transforms, it consists of functions of transverse
oscillator variables.

The analysis of the BRST cohomology in momentum space in the case of the
capacitor [16] then shows that, at k3 �= 0, there are the standard two transverse
polarizations, while there is in addition the mode at n3 = 0 contained in (A3, π3).
This is the additional physical polarization of the Casimir effect.

In the original paper, this additional polarization was not discussed in the context
of BRST quantization. Even though not explicitly stated in [9], it is clear from the
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context and from [24], that the analysis is done in radiation gauge, A0 = 0 = "∇ · "A,
imposed together with the constraint equations π0 = 0, "∇ · "π = 0. When translated
to momentum space with the above boundary conditions, it follows directly that
the k3 �= 0 modes of ( "A, "π) give rise to the two transverse polarizations, while the
k3 = 0 mode of ( "A, "π) is also divergence-free.

The divergence-free vector fields in position space associated with the k3 = 0
mode are given by

ANPG
i = δ3

i A
C
3,0(x

a), πi
NPG = δi3π

3C
0 (xa). (24)

The argument why they are non-trivial from a position space viewpoint in equation
(4.10) of [16] is incorrect. Let us focus on "πNPG, which has a direct interpretation
in electrostatics, the argument for "ANPG being the same. The vector field "πNPG
has a non-trivial longitudinal piece. The associated 1 form is co-closed without
being co-exact. This follows from the Helmholtz decomposition in the presence of
boundaries. Indeed, under suitable fall-off assumptions at infinity, there is a unique
decomposition

"π = "∇ϕ + "∇ × "α, (25)

ϕ(x) = −
∫

d3x′ (
"∇ · "π)(x′)

4π |"x − "x′| +
∮

S

("n · "π dσ)(x′)
4π |"x − "x′| , (26)

"α(x) =
∫

d3x′ (
"∇ × "π)(x′)
4π |"x − "x′| −

∮

S

("n× "π dσ)(x′)
4π |"x − "x′| . (27)

When this decomposition is applied to "πNPG for the capacitor, the potential for the
longitudinal part comes entirely from the boundary contribution and is explicitly
given by

ϕNPG(x) = 1

4π

∫
dx′dy′π3C

0 (x′a)
([(

ρ2 + (z− d)2
)]− 1

2 −
[
ρ2 + z2

]− 1
2
)
,

(28)
while the potential for the transverse part comes entirely from the bulk contribution
and is explicitly given by

αi
NPG(x) = δia

4π

∫
dx′dy′εab∂ ′bπ3C

0 (x′c) ln

√
ρ2 + (d − z)2 + d − z√

ρ2 + z2 − z
, (29)

where ρ2 = (x − x′)2 + (y − y′)2.
One then has to decide how to deal with the transverse space R2. As usual, we

will put the system in a finite two-dimensional box in an intermediate stage. In
this box, we can adopt either perfectly conducting conditions as in [9, 24], or use
periodic conditions, which is what was done in [16]. In the large area limit, where
sums go to integrals, both approaches yield the same results for finite temperature
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partition functions (without zero modes). In the latter, we thus consider expansions
as in equation (4.4) of [25], with d = 3 and p = 1, but we explicitly keep the
zero mode because we need it for the microscopic understanding of the Gibbons–
Hawking contribution. This is reminiscent of the expansion of the complex scalar
field in [26].

6 Dynamics and Charge

For the transverse degrees of freedom at k3 �= 0, the usual discussion in terms of
two transverse polarizations applies. In addition, the canonical Hamiltonian H0 =∫
d3xH0 induces a Hamiltonian for the non-proper gauge degrees of freedom given

by

HNPG = d

∫
d2x

[
1

2
π2 + 1

2
∂aφ∂

aφ

]
, (30)

where φ = AC
30, π = π3C

0 . When taking into account the kinetic term in
the associated first-order action and after eliminating the momentum by its own
equation of motions, the associated Lagrangian action is that of a massless scalar in
2+ 1 dimensions with prefactor d,

SNPG = d

∫
dtd2x

[
1

2
φ̇2 − 1

2
∂aφ∂

aφ

]
. (31)

The electric charge observable can be written as a function on the phase space that
includes the non-proper gauge degrees of freedom as,

Q = −
∫

d2x π. (32)

From this expression, it follows that charge is related to the momentum of the zero
mode of the scalar field, which is a particle. For canonical commutation relations,
the appropriate normalization (see e.g. [16] Appendix A for details) is

q =
√

d

A

∫
d2x φ, p =

√
d

A

∫
d2x π, (33)

and the associated Hamiltonian and charge observable are given by

H 0
NPG =

1

2
p2, Q = −

√
A

d
p. (34)
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7 Extra Contributions to Partition Function

When naively decomposing the additional massless scalar field into its zero mode,
the particle, and the remaining bulk modes in two dimensions, their contributions to
the partition function is straightforward. In the charged case, the former is given by

Z0
NPG(β, μ) = Tre−β(H 0

NPG−μQ). (35)

This can be related to the well-known partition function of a free particle of unit
mass by completing the square. The result is

lnZ0
NPG(β, μ) = lnΔq − 1

2
ln
(

2πh̄2β
)
+ A

2d
βμ2. (36)

Here Δq denotes the divergent interval of integration of q, while the last term
reproduces the Gibbons–Hawking contribution−βF(β,μ) to the partition function
as discussed in (21).

The partition function of a massless scalar in two dimensions can be obtained
as usual after putting the field in a box with periodic boundary conditions and by
neglecting the zero mode. The standard result in the limit of large volume in two
dimensions, which is the area of the plates in the current context, is

lnZ′NPG =
A

2π
ζ(3)(h̄β)−2. (37)

A different discussion along the lines of [27, 28] gives instead

F 0
NPG(β, 0) = β−1[div+ lnβ + cte], (38)

which differs by a factor of 2 in the lnβ term from (36). Note however that this
difference will not matter for the considerations below as long as the μ dependent
part will still be given by − A

2d μ
2.

8 Charged Black Body Partition Function

In order to discuss the full, finite result, one may follow and adapt the discussion of
the finite temperature Casimir effect [10, 11] (see e.g. [13–15] for reviews).

One considers segments on the z-axis given by

I = [0, d], I I = [d, Lz], I II = [0, Lz/η], IV = [Lz/η,Lz]. (39)

The analog FC(β,μ) of the Casimir free energy is defined as
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FC(β,μ) = FI (β, μ)+ FII (β, 0)− FIII (β, 0)− FIV (β, 0). (40)

The zero mode will then only give the Gibbons–Hawking contribution

F 0
C(β, μ) = − A

2d
μ2. (41)

Non-zero modes, both those at k3 �= 0 and those of the additional scalar, will not
contribute to the μ dependent part. As usual, one separates the zero temperature
contribution from the thermal one,

F ′C(β) = F ′C(∞)+ F ′TC (β). (42)

In the limit of large plate area A and large Lz, the former is the standard zero
temperature Casimir energy that may be computed from the zero point energies.
Between the plates, one finds

F ′I (∞) = h̄

2

A

(2π)2

∫
d2k

⎡

⎣
√
kaka + 2

∞∑

n=1

√

kaka + π2n2

d

⎤

⎦ , (43)

while

F ′II (∞)− F ′III (∞)− F ′IV (∞) = −d
h̄

2

A

(2π)2

∫
d2k

[∫ +∞

−∞
dkz

2π

√
kaka + k2

z

]
.

(44)

After a suitable cut-off regularization and with the help of the Euler–Maclaurin
formula, one then finds

F ′C(∞) = −Aπ2h̄

720d3
. (45)

Note that the first term in the square brackets of (43) is due to the additional massless
scalar and gives the first term at discrete value 0 with the correct 1/2 in the Euler–
Maclaurin formula. When using ζ function regularization, this divergent term is
usually omitted because it does not depend on the separation distance and thus does
not contribute to the Casimir force.

In the same way, the temperature dependent contribution, which needs no
regularization, is given by
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F ′TC (β) = 2A

β

∫
d2k

(2π)2

[ ∞∑

n=0

′
ln
(

1− e−h̄β
√

kaka+( nπ
d

)2
)

(46)

−d

∫ +∞

−∞
dkz

2π
ln
(

1− e−h̄β
√

kaka+k2
z

)]
,

where the prime on the sum means that the term at n = 0 comes with a factor 1/2.
This term is due to the non-zero modes of the additional scalar. More explicitly, if

b(d, β, n) = 1

2β

∫ ∞

n2
ds ln

(
1− e−

πh̄β
d

√
s
)

(47)

one finds

F ′TC (β) = − A

2πh̄2β3
ζ(3)+ Aπ

d2

∞∑

n=1

b(d, β, n)+ Vπ2

45h̄3β4
. (48)

The first term from the additional scalar coincides with the contribution from (37)
to the free energy. It does not contribute to the Casimir force but does contribute to
the entropy. The last term corresponds to the subtraction of the black body result,
that is to say the contribution of the two transverse polarization in empty space.
The middle term corresponds to the contribution of the two transverse polarizations
at discretized non-zero values of k3. Low and high temperature expansions are
discussed in the cited literature. The full result is then

FC(β,μ) = F 0
C(β, μ)+ F ′C(∞)+ F ′TC (β). (49)

Appendix: Details on Quantum Coulomb Solution

Consider the electromagnetic field interacting with a static point particle sitting at
the origin,

S
[
Aμ; jμ

] =
∫

d4x

[
−1

4
FμνFμν − jμAμ

]
, jμ = δ

μ
0 Qδ3("x). (50)

The modified vacuum state that is annihilated by the BRST charge in the presence
of the source is given by

|0〉Q = e
∫
d3k q("k)b̂†("k)|0〉, q("k) = Q

(2π)3/2
√

2ω("k)3/2
, (51)

if
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A0(x) = 1

(2π)3/2

∫
d3k√
2ω("k)

[
a0("k, t)ei"k·"x + c.c.

]
, (52)

Ai(x) = 1

(2π)3/2

∫
d3k√
2ω("k)

[
am("k, t)emi ("k)ei"k·"x + c.c.

]
, (53)

where ω("k) = |"k| = k, the polarization vectors are e3
i = ki/ω("k), and kieai =

0, a = 1, 2, while the unphysical null oscillators are defined by

a("k) = a3("k)+ a0("k), b("k) = 1

2

[
a3("k)− a0("k)

]
, (54)

(see [4] for detailed conventions including the adapted mode expansions for the
momenta, up to the correction pointed out in [6]). This state is constructed so as to
be annihilated by the BRST charge in the presence of the source,

Ω̂Q|0〉Q = 0, (55)

where

ΩQ = −
∫

d3x
[
iρπ0 + η

(
∂iπ

i − j0
)]

, (56)

Ω̂Q =
∫

d3k
[
ĉ†("k)âQ("k)+ âQ†("k)ĉ("k)

]
, âQ("k) = â("k)− q("k). (57)

Note that it is not the only state with this property, for instance

|0〉′Q = e−
∫
d3k q("k)â†

0(
"k)|0〉 = e−

∫
d3k

q("k)
2 â†("k)|0〉Q, (58)

is also annihilated by Ω̂Q, and as in [1, 2], it is constructed out of temporal
oscillators alone.1

The gauge fixed Hamiltonian

Hξ = H0 +
{
ΩQ,Kξ

}
, H0 =

∫
d3x

1

2

[
πiπi + BiBi

]
, Bi = εijk∂jAk,

(59)
is constructed by using the gauge fixing fermion

Kξ = −
∫

d3x

[
iC̄∂kA

k + PA0 − ξ
i

2
C̄π0

]
. (60)

1G.B. is grateful to M. Schmidt and S. Theisen for pointing this out and for prompting the
considerations below.
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Since

{ΩQ,Kξ } =
∫

d3x

[
∂kA

kπ0 + A0

(
−∂iπ

i + j0
)
+ iPρ + i∂i C̄∂iη − 1

2
ξπ0π0

]
,

(61)

the gauge fixed Hamiltonian contains in particular the correct source term. When
using the decomposition πi = πi

T + 1
Δ
∂i∂jπ

j , it follows that

1

2

∫
d3x πiπi = 1

2

∫
d3x πi

T π
T
i −

1

2

∫
d3x ∂jπ

j 1

Δ
∂kπ

k. (62)

The last term can be written as

− 1

2

∫
d3x ∂jπ

j 1

Δ
∂kπ

k =
{
ΩQ,−1

2

∫
d3x P 1

Δ

(
∂iπ

i + j0
)}

−1

2

∫
d3x j0 1

Δ
j0, (63)

so that

Hξ = H ph +
{
ΩQ, K̃

Q
ξ

}
, (64)

H ph = 1

2

∫
d3x

[
πi
T π

T
i − AT

j ΔA
j
T − j0 1

Δ
j0
]
, (65)

K̃
Q
ξ = Kξ − 1

2

∫
d3x P 1

Δ

(
∂iπ

i + j0
)
. (66)

In Feynman gauge ξ = 1, when expressed in terms of modes, we have

Ĥξ=1 = Ĥ phys +
[
Ω̂Q,

ˆ̃
K

Q
ξ=1

]
, (67)

Ĥ phys =
∫

d3k ω("k)
[
â†
a(
"k)âa("k)+ q("k)2

]
, (68)

ˆ̃
K

Q
ξ=1 =

∫
d3k ω("k)

(
ˆ̄c†("k)

[
b̂("k)+ ω("k)

2

]
+
[
b̂†("k)+ ω("k)

2

]
ˆ̄c("k)

)
, (69)

and

[
Ω̂Q,

ˆ̃
K

Q
ξ=1

]
=
∫

d3k ω("k)
[
â†("k)b("k)+ b̂†("k)â("k)+ ˆ̄c†("k)ĉ("k)+ ĉ†("k) ˆ̄c("k)

]

+
∫

d3k ω("k)q("k)[â0("k)+ â
†
0(
"k)], (70)
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where the first line is proportional to the number operator for unphysical oscillators,
while the second line contains the correct source term. Since â†b̂ + b̂†â + qâ0 +
qâ

†
0 = â

†
3 â3 − (â

†
0 − q)(â0 − q) + q2, it follows that |0〉′Q is an eigenstate of this

gauge fixed Hamiltonian

Ĥξ=1|0〉′Q =
∫

d3k ω("k)q("k)2|0〉′Q. (71)

In the context of BRST quantization, one may modify the gauge fixing fermion
and remove the source dependent term therein, that is to say, one may replace K̃

Q
ξ

by

K̃ξ = Kξ − 1

2

∫
d3x P 1

Δ
∂iπ

i, (72)

ˆ̃
Kξ=1 =

∫
d3k ω("k)

[ ˆ̄c†("k)b̂("k)+ b̂†("k) ˆ̄c("k)
]
, (73)

[
Ω̂Q,

ˆ̃
Kξ=1

]
=
∫

d3k ω("k)
[
âQ†("k)b("k)+ b̂†("k)âQ("k)

+ˆ̄c†("k)ĉ("k)+ ĉ†("k) ˆ̄c("k)
]
, (74)

since this modifies the ghost number 0 part of the Hamiltonian by terms that are
proportional to the constraints. It now follows that |0〉Q is an eigenstate of the new
gauge fixed Hamiltonian Ĥ ′

ξ=1,

Ĥ ′
ξ=1 = Ĥ ph +

[
Ω̂Q,

ˆ̃
Kξ=1

]
, Ĥ ′

ξ=1|0〉Q =
∫

d3k ω("k)q("k)2|0〉Q, (75)

with the same eigenvalue than |0〉′Q is of Ĥξ=1.

Note also that the difference between e
∫
d3k

q2("k)
2 |0〉′Q and |0〉Q is BRST exact.

Indeed,

e
∫
d3k

q2("k)
2 |0〉′Q − |0〉Q =

(
e−

∫
d3k

q("k)
2 âQ†("k) − 1̂

)
|0〉Q. (76)

The result follows from the fact that − ∫ d3k
q("k)

2 âQ†("k) is BRST exact,

−
∫

d3k
q("k)

2
â†Q("k) = [K̂, Ω̂Q], K̂ = −

∫
d3k

q("k)
2

ĉ
†
("k), (77)
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and that the difference of the exponential of a BRST exact operator minus the unit
operator is a BRST exact operator,

e[K̂,Ω̂Q] − 1̂ =
[
L̂, Ω̂Q

]
, (78)

for some operator L̂ (see, e.g. [4], exercise 14.3 for the proof), so that

e
∫
d3k

q2("k)
2 |0〉′Q = |0〉Q − Ω̂QL̂|0〉Q, (79)

since |0〉Q is BRST closed.
Some additional comments on [6] are in order.

(i) In the computation (2.8), an obvious infrared regularization is understood since
the Fourier transform of k−2 is 1

4πr
only when using such a regulator,

1

(2π)3

∫
d3k

1

k2 + μ2 e
i"k·"x = 1

4πr
e−μr ,

with the desired result obtained when μ→ 0+.
(ii) Equation (2.7) is not correct. Starting from

∂iA
i = i

(2π)3/2

∫
d3"k

√
ω("k)

2

[
a("k)+ 2b("k)

2
ei
"k·"x − c.c.

]
(80)

one finds instead of (2.7) that

Q〈0|∂iÂi |0〉Q = i

(2π)3/2

∫
d3"k

√
ω("k)

2

[
1

2
q("k)ei"k·"x − c.c.

]
= 0. (81)

Indeed, the two terms cancel since both ω("k) and q("k) are even under "k →
−"k. There is no explanation needed for the difference of a factor 2 between
(2.5) and (2.6) because Aμ is not a gauge invariant quantity, as opposed to "π
and "∇ × "A whose associated expectation values are correctly given in (2.8)
and (2.9). Note however that the Hamiltonian Ĥ ′

ξ=1 gives rise to the usual
oscillating behavior for all oscillators in the Heisenberg picture, except for
â("k), â†("k) which evolve according to

âQ(t, "k) ≡ â(t, "k)− q("k) = e−iω("k)t âQ("k), (82)

and its complex conjugate.
(iii) In order to make contact with the original [5] and subsequent work, note that

the new vacuum corresponds to the old one “dressed” by
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e

∫
d3x′
[
i
Q
2

x′i
|"x′ |3 Â

(−)
i ("x′)− 1

2 j
0("x′)(−Δ)−1/2A

(−)
0 ("x′)

]
, (83)

where the subscript (−) denotes the creation part.
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Probes in AdS3 Quantum Gravity

Alejandra Castro

Abstract The Chern–Simons formulation of three-dimensional gravity is a pow-
erful framework to explore non-perturbative aspects of quantum gravity; it allows
us to describe properties of gravitational theories without resorting to a metric
description. For higher spin gravity this is particularly important, where a geometric
formulation can be cumbersome. Here we will review how this formalism has
provided unique insights regarding the local properties of higher spin gravity in
AdS3. We will discuss various definitions of black holes in AdS3 gravity, and how
to probe them using the observables that naturally arise in Chern–Simons theory.

Keywords AdS/CFT · Black holes · Higher spin gravity

1 Introduction

Higher spin theories are gravitational theories that challenge our geometrical
intuition. A higher spin theory is characterized by being somewhat crowed by
symmetries: the theory introduces massless higher spin fields whose gauge sym-
metries and interactions spoil the standard notions of causality and curvature that
we hold sacred otherwise. Very natural concepts in general relativity, such as black
holes, become rather puzzling in higher spin gravity. This makes higher spin gravity
an excellent arena to explore the repercussions of having violent modifications of
general relativity. The aim of this review is to explore potential definitions of black
holes in gravitational theories that lack such a geometrical description.

An important appeal of higher spin gravity is that it allows us to introduce non-
linear and non-geometrical features classically. These are features we expect to
arise in quantum gravity, but are generically difficult to quantify. Within higher spin
gravity there is a rather powerful example: in three dimensions the massless higher
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spin sector can be consistently described using Chern–Simons theory. Depending on
the gauge group we assign to the theory, we will have a different spectrum of higher
spin fields. For example, these include pure AdS3 gravity [1, 2], gravity coupled
to Abelian gauge fields, and a tower of massless spin-s fields coupled to a gravity,
among many other examples. This can be viewed as truncations of the interacting
Prokushkin–Vasiliev higher spin theory [3, 4] which includes in addition massive
scalar fields.

In the context of AdS3/CFT2, the Chern–Simons sector captures the chiral
algebra of the dual two-dimensional CFTs which have an extended symmetry
algebras of W-type [5–8]. And here is where the AdS/CFT correspondence has
provided a useful framework to organize our understanding of higher spin gravity:
it is rather clear how to define, e.g. correlation functions, currents, and sources
on both sides of the correspondence. What this description lacks is the addition
of light primary fields that are generic in CFTs. Nevertheless, the Chern–Simons
sector will suffice to probe how deviations from general relativity can affect our
understanding of gravity, and in particular the mechanics behind black holes. For
reviews on holographic aspects of AdS3/CFT2 involving higher spin fields, we refer
the reader to [9, 10] and references within.

As we mentioned before, our main goal here is to be capable of describing
black holes in higher spin gravity. In the absence of a metric, which is crucial
for giving a notion of causality, it is rather non-trivial to think of a definition
of black hole at a non-linear and non-local level. Is it the horizon its defining
property? Is it the high mass density that gives rise to a curvature singularity? Is
it the thermodynamic nature the defining feature? Or the fact that it is the fastest
scrambler? Or something else, such as the ring-down pattern? All of these are, in
my opinion, valid starting points. The remarkable property of general relativity is
that these facts are generically implied by each other. But as we modify violently
the interactions, it is not clear if we should expect that these different properties are
still so intimately tied: perhaps one could find important deviations from the usual
lore in a two-derivative theory of gravity.

In the following I will present one general strategy our community has taken to
define a black hole in higher spin gravity. This strategy was initially put forward in
the original proposal of [11] and further refined in later work, as we will elaborate
in the following sections. I leave it as a challenge to the reader to further explore
and question this starting point: any deviations from the lore of GR would be very
interesting! And as we will see, some of these deviations are already present given
the modest starting point we take.

This talk covers only three topics in this field: Euclidean black holes (Sect. 3),
extremal black holes (Sect. 4), and Wilson lines in higher spin gravity (Sect. 5).
There are also many other topics in higher spin gravity that I will not explore. I
will provide references as appropriate, but unfortunately the field is rather large so
many interesting corners will be left out here.
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2 AdS3 Higher Spin Gravity

The simplest way to craft a higher spin theory exploits the Chern–Simons formula-
tion of three-dimensional gravity: general relativity with a negative cosmological
constant can be reformulated as a SL(2,R) × SL(2,R) Chern–Simons theory
[1, 2, 12]. A high spin theory can be crafted by simply taking instead SL(N,R) ×
SL(N,R), which will produce an interacting higher spin theory for symmetric
tensors of spin s = 2, 3, . . . , N [13]. There are of course other ways to build higher
spin theories, but here we restrict the attention to these models. For a more complete
discussion on properties of these theories, see, for example, [9, 14, 15].

The action of the SL(N,R)× SL(N,R) Chern–Simons theory is given by

S = SCS[A] − SCS[Ā] , SCS[A] = k

4π

∫

M
tr
(
A∧ dA+ 2

3
A∧A∧A

)
. (1)

Here M is the 3-manifold that supports the sl(N,R) algebra valued connections A

and Ā, and the trace “tr” denotes the invariant quadratic form of the Lie algebra.
The equations of motion following from (1) are

dA+ A ∧ A = 0 , dĀ+ Ā ∧ Ā = 0 . (2)

The conventions here follow those in [16].
The metric and higher spin fields are obtained from the Chern–Simons connec-

tion as symmetric, traceless tensors that transform in the spin s representation of
SL(2,R). For example, the metric and the spin three fields can be expressed as
follows

gμν ∼ tr
(
eμeν

)
, φμνρ ∼ tr

(
e(μeνeρ)

)
, (3)

where, in line with the pure gravity case, one defines

e = �

2

(
A− Ā

)
, ω = 1

2

(
A+ Ā

)
(4)

and we introduced the AdS radius �. The metric and higher spin fields can then be
expressed in terms of trace invariants of the vielbein [6, 7], with the total number
of inequivalent invariants being N − 1 for sl(N,R). This definition for metric-like
fields is appropriate for the principal embedding of sl(2,R) in sl(N,R).

The relation between the Chern–Simons level and the gravitational couplings is

k = �

8G3εN
, εN ≡ trf (L0L0) = 1

12
N(N2 − 1) , (5)

in accordance with the pure gravity limit. The notation trf denotes a trace in
the fundamental representation of sl(N,R). The central charge of the asymptotic
symmetry group is [5, 6]
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c = 12kεN = 3�

2G
. (6)

The standard way to parametrize solutions to (2) is by gauging away the radial
dependence, i.e.

A = b(r)−1 (a(x+, x−)+ d
)
b(r) , Ā = b(r)

(
ā(x+, x−)+ d

)
b(r)−1 .

(7)
Here r is the holographic radial direction, and x± = t ± φ are the boundary
coordinates. In Lorentzian signature we will consider solutions with R × D2
topology; the compact direction on D2 is described by φ ∼ φ + 2π . In Euclidean
signature we will analytically continue x± to complex coordinates (z, z̄), and the
topology of the bulk is now a solid torus with z ∼ z+ 2π ∼ z+ 2πiτ . Here τ is the
modular parameter of the boundary torus. b(r) is a radial function that is normally
taken to be erL0 .1

The connections a(x+, x−) and ā(x+, x−) contain the information that char-
acterizes the state in the dual CFT. In the absence of sources there is systematic
procedure to label them: a suitable set of boundary conditions on the connections
results in W-algebras as asymptotic symmetries [5–8, 19]. These are commonly
known as Drinfeld–Sokolov boundary conditions. To be concrete, for sl(N)×sl(N)

the connections take the form

az = L1 −
N∑

s=2

J(s)(z)W
(s)
−s+1 , āz̄ = −

(
L−1 −

N∑

s=2

J̄(s)(z̄)W
(s)
s−1

)
, (8)

while az̄ = āz = 0. Here {L0, L±1} are the generators of the sl(2,R) subalgebra in
sl(N), and W

(s)
j are the spin-s generators with j = −(s − 1), . . . (s − 1); note that

W
(2)
j = Lj . And J(s)(z) are dimension-s currents whose algebra is WN , and same

for the barred sector.
Our general arguments and results will not be very sensitive to the choice of

gauge group, but for the sake of simplicity our explicit computations will involve
connections valued in either the Lie algebra sl(2) (standard spin-2 gravity on AdS3)
or sl(3) (a graviton coupled to a single spin-3 field).

3 Euclidean Black Holes

We will start the discussion with the most successful (and elegant) definition:
Euclidean black holes in AdS3. We will review our current understanding of the

1How to choose b(r) is very important when considering Lorentzian properties of the solutions,
and it is usually overlooked. See [17, 18] for a recent discussion on this topic.
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solutions and its properties in the Chern–Simons formulation of higher spin gravity.
This section is a collection of results in [11, 15, 20–23].

Any definition of black holes should include at least two inputs:

1. A quantitative definition of physical observables; in particular, a definition of
conserved charges (such as mass and angular momentum) and its counterparts
potentials (such as temperature and angular velocity).

2. A notion of regularity and smoothness. The aim here would be to find a notion
of horizon. But even more broadly, we need to clearly argue if a solution, at least
in Euclidean signature, lacks singularities.

Let us elaborate first on how to obtain conserved charges. The properties and
values of these observables are intimately tied to the boundary conditions we use.
For instance, in AdS spacetimes we are mostly accustomed to Dirichlet boundary
conditions and to implement a notion of asymptotically AdS spaces (AAdS). But
let me emphasize: there is more than one choice! This occurs even in AdS3 gravity,
where some non-trivial examples are shown in [24, 25] and more recently a broad
analysis was presented in [26] which are important deviations from the standard
Brown–Henneaux boundary conditions [27].

In higher spin gravity we of course have similar choices, but in addition there
are further complexities as we turn on sources. More concretely, consider the
Chern–Simons connections in (7) and (8), and that we impose AAdS boundary
conditions. From the CFT perspective, it is natural to capture the currents in az
and the sources in az̄, and vice versa for ā [11]. From the gravitational perspective,
the canonical prescription is to encode in (aφ, āφ) the currents [28–31]. These two
choices, az versus aφ , amount for different partition functions as shown in [23]:
the az prescription, denoted holomorphic black hole, corresponds to a Lagrangian
deformation of the theory; the aφ prescription, denoted canonical black hole,
corresponds to a Hamiltonian deformation. It is important to make a distinction
between these two, since the Legendre transformation that connects these two
prescriptions is non-trivial.

In the remainder of these lectures we will mostly use the canonical description.
Moreover, we are interested in stationary black hole solutions, hence (a, ā) are
constant flat connections that contain both charges and sources. This in particular
implies that the φ-component will be always written as

aφ = L1 −
N∑

s=2

Q(s)W
(s)
−s+1 , āφ = L−1 −

N∑

s=2

Q̄(s)W
(s)
s−1 , (9)

where (Q(s), Q̄(s)) are constants (not functions) and they represent the conserved
charges associated with the zero modes of each higher spin current (J(s), J̄(s)).
The at component will contain the information about the potentials, which we will
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usually denote as μs .2 Hence a solution that contains both charges and potentials
will be interpreted in the CFT as being part of a canonical ensemble, where

Zcan [τ, αs, ᾱs] = TrH exp 2πi

[
N∑

s=2

(
αsJ

(s)
0 − ᾱs J̄

(s)
0

)]
. (10)

Here, J (s)
0 and J̄

(s)
0 denote the zero modes of the corresponding currents; Q(s) and

Q̄(s) would be the eigenvalues of these operators. For s > 3 we have

μs = iαs

Im(τ )
, μ̄s = − iᾱs

Im(τ )
, (11)

which are the chemical potential associated with each operator; recall that τ is the
complex structure of the torus. For s = 2 we have

J
(2)
0 = L0 − c

24
, J̄

(2)
0 = L̄0 − c

24
, (12)

and the CFT Hamiltonian and angular momentum are H = L0 + L̄0 − c
12 and

J = L0−L̄0, respectively. For the potentials the relation with the complex structure
of the torus is

α2 = τ = iβ

2π

(
1+Ω

)
, ᾱ2 = τ̄ = iβ

2π

(−1+Ω
)
, (13)

with β the inverse temperature and Ω the angular velocity.
The feature that distinguishes black holes from other solutions is a smoothness

condition, and this brings us to the second bullet point mentioned above. In a metric
formulation of gravity, the Euclidean section of a black hole has the property that
the compact Euclidean time direction smoothly shrinks to zero size at the horizon of
the black hole, resulting in a smooth cigar-like geometry as in Fig. 1. In the Chern–
Simons formulation of gravity, this property is normally thought to generalize to the
idea that a black hole is a flat gauge connection defined on a solid torus, where the
holonomy along the thermal cycle of the torus belongs to the center of the group,
i.e.

P exp

(∮

CE

a

)
∼= e2π(τaz+τ̄ az̄) ∼= e2πiL0 , (14)

2For a quantitative and general definition of μs in terms of (at , aφ) see, for example, [23]. Here
we will just define them via examples.
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r

tE

Fig. 1 Topology of the Euclidean higher spin black hole for a static solution, where the compact
direction is Euclidean time t = itE . The red curve depicts the cycle along which the smoothness
condition (14) is imposed, and it is independent of the radial position. In Euclidean signature, the
geometry ends at a finite value of r: in a metric-like formulation of gravity this end point would be
the horizon

and similarly in the barred sector; here L0 denotes the Cartan element of sl(2),3 and
CE is the thermal cycle z ∼ z+ 2πiτ which is contractible in the bulk.

The smoothness condition (14) is a robust and successful definition of Euclidean
black holes. It reproduces in an elegant manner many properties that we expect from
a thermal state in the dual CFT2. This definition has also unveiled novel properties
of systems in the grand canonical ensemble of WN , such as microscopic features
of the entropy [30, 35, 36], ensemble properties [21, 23], and novel phase diagrams
[37], and it inspires new observables related to entanglement entropy [33, 38, 39].

It is perhaps worth emphasizing that there exist several ways to compute the
entropy of higher spin black holes, all giving the same result. In the original proposal
of [11], the entropy was inferred by demanding integrability of the thermodynamic
laws. For a Hamiltonian derivation of the entropy, see, e.g. [22, 28, 40]. The entropy
can also be understood as the on-shell value of the appropriate action functional in
a microcanonical ensemble, where the charges at infinity are held fixed [21]. The
punchline is that the entropy of a higher spin black hole reads

S = −2πikTr
[
(az + az̄) (τaz + τ̄ az̄)− (āz + āz̄) (τ āz + τ̄ āz̄)

]
. (15)

More interestingly, one can exploit the holonomy conditions to cast the entropy
directly as function of the charges only. Using the smoothness conditions (14) one

3Depending on the gauge group, the choice of center in the rhs of (14) is not unique [32].
The choice used here has the feature that it is smoothly connected to the BTZ solution. The
interpretations of other choices are discussed in [33, 34].
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finds that (15) can be written equivalently as [21]

S = 2πkTr
[(

λφ − λ̄φ

)
L0

]
, (16)

where λφ and λ̄φ are diagonal matrices containing the eigenvalues of the angu-
lar component of the connection (9), which carries the values of the charges
(Q(s), Q̄(s)).

3.1 Example

To illustrate the discussion in this section, we will consider black holes in SL(3)×
SL(3) Chern–Simons theory. In this case we define:4

a+ = L1 −Q(2)L−1 − Q(3)

4
W−2 ,

a− = μ3

(
W2 + 2Q(3)L−1 +Q2

(2)W−2 − 2Q(2)W0

)
,

ā− = −
(
L−1 −Q(2)L1 + Q(3)

4
W2

)
, (17)

ā+ = μ3

(
W−2 − 2Q(3)L1 +Q2

(2)W2 − 2Q(2)W0

)
.

For simplicity we have turned off rotation, i.e. Q(2) = Q̄(2) and Q(3) = −Q̄(3); this
as well implies that τ is purely imaginary (τ = iβ) and μ̄ = −μ. The interpretation
of these connections as thermal states depends on the boundary conditions used
to define the classical phase space. The holomorphic black hole is given by the
following connections:

ah = a+dz+ a−dz̄ , āh = ā+dz+ ā−dz̄ . (18)

In this notation the components (az, āz̄) contain the information of the charges of the
system: (Q(2),Q(3)) are the zero modes of the stress tensor and dimension-3 current
of the W3 asymptotic symmetry group that organizes the states in this theory. (β, μ)

are their respective sources which are fixed by the smoothness condition (14). The
second prescription, i.e. the canonical black hole, is given by

ac = a+dφ + (a+ + a−)dt, āc = −ā−dφ + (ā+ + ā−)dt . (19)

4Note that the equations of motion, flatness condition, simply impose that [a+, a−] = 0 =
[ā−, ā+] as can be checked explicit for (17).
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For this prescription, again (Q(2),Q(3)) are the zero modes of the currents in W3.
The quantitative difference between the holomorphic and canonical definitions lies
in the spatial components of the connection; both ac and ah have the same time
component.

The smoothness condition (14) enforces relations between the parameters Q(2),
Q(3), μ3, and β. Following [11, 20], these constraints can be solved in terms of
dimensionless parameter C ≥ 3:

Q(3) = 4(C − 1)Q(2)

C3/2

√
Q(2) ,

μ3 = 3
√
C

4(2C − 3)

√
1

Q(2)
,

μ3

β
= 3

4π

(C − 3)
√

4C − 3

(3− 2C)2 . (20)

The limit C → ∞ makes the higher spin charges vanish, and we recover the BTZ
case. C = 3 and μ3 fixed corresponds to a zero temperature solution which defines
an extremal higher spin black hole [11, 41] which is the subject of the next section.

Applying (15) to the canonical black hole (19) we get

S = 8k
(
2βQ(2) + 3α3Q(3)

)
, (21)

where the thermal spin-3 source α3 is related to the spin-3 chemical potential μ3 as
in (11). This expression is clearly compatible with a first law of thermodynamics. It
is simple to generalize this expression to restore the barred variables; this gives

S = − 8πik
(
2τQ(2) + 3α3Q(3)

)+ 8πik
(
2τ̄ Q̄(2) + 3ᾱ3Q̄(3)

)
. (22)

The entropy as function of the charges can be achieved via (16), and for this
purpose it is convenient to trade the charges (Q(2),Q(3)) for the eigenvalues of aφ .
More concretely, we parametrize

Eigen(aφ) = (λ1, λ2,−λ1 − λ2) , (23)

so that

Q(2) = 1

4

(
λ2

1 + λ1λ2 + λ2
2

)
, Q(3) = 1

2
λ1λ2 (λ1 + λ2) , (24)

with analogous expressions in the barred sector. In Lorentzian signature the
eigenvalues (λi, λ̄i) are independent and real when one chooses the connection to
be valued in sl(3;R) . In Euclidean signature, we have λ∗i = −λ̄i , which implies
that Q(2)

∗ = Q̄(2) and Q(3)
∗ = −Q̄(3). Equation (16) then gives us immediately

the entropy as a function of the charges
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S = 2πk
(
λ1 − λ3

)+ other sector

= 2πk
(
2λ1 + λ2

)+ other sector , (25)

with λ1 and λ2 obtained by inverting (24) and choosing the branch of the solution
that connects smoothly to the BTZ black hole as one turns off the Q(3) charge.

4 Extremal Black Holes

In general relativity there is a wide variety of black holes which are not necessarily
Euclidean. For example, there are Lorentzian black holes that do not have a real
Euclidean continuation (such as five-dimensional black rings), there are eternal
black holes (which are the maximal extension of the Euclidean geometry in
Lorentzian signature), and black holes that arise from gravitational collapse. And
there are as well extremal black holes. Extremal black holes have undoubtedly
played a crucial role in string theory: due to their enhanced symmetries and their
capacity to preserve supersymmetry, they have become a landpost for microstate
counting and precursors to many aspects of holography. As such, it is very natural
to wonder what is the definition of extremality in higher spin gravity. This is the
question we will address in this section. The discussion here is a summary of the
results presented in [41]. See also [42] for a discussion on related properties.

4.1 A Practical Definition of Extremality

In conventional gravitational theories, the notion of extremality is tied to the
confluence of two horizons. This feature generically implies that the Hawking
temperature of the black hole is zero. We could declare that extremality in higher
spin theories is simply defined as a solution at zero temperature. However, our aim
is to propose a definition that is along the lines of confluence (degeneration) of the
parameters of the solution and that relies only on the topological formulation of the
theory, yielding in particular the zero temperature condition as a consequence.

In this spirit, in [41] we proposed that a 3d extremal higher spin black hole is a
solution of Chern–Simons theory corresponding to flat boundary connections a and
ā satisfying the following conditions:

1. They obey AAdS boundary conditions,5

2. Their components are constant, and therefore correspond to stationary solutions,

5In the literature these boundary conditions are commonly known as Drinfeld–Sokolov boundary
conditions.
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3. They carry charges and chemical potentials, which are manifestly real in the
Lorentzian section,

4. The angular component of at least one of a and ā, say aφ , is non-diagonalizable.

Naturally, the key point of the definition is the non-diagonalizability of the aφ
component. The rationale behind this requirement is as follows. Suppose both the
aφ and āφ components were diagonalizable. Since the boundary connections are
assumed to be constant, by the equations of motion the (Euclidean) time components
of the connection commute with the angular components, and can be diagonalized
simultaneously with them. It is then possible to solve (14) and find a non-zero and
well-defined temperature and chemical potentials as function of the charges. On
the other hand, if at least one of aφ and āφ is non-diagonalizable, then acontract
will be non-diagonalizable as well. If we insist upon (14), then both features are
compatible if we take a zero temperature limit, because the smoothness condition
becomes degenerate as well. This is consistent with the usual notion that the solid
torus topology of the finite-temperature black hole should change at extremality.

The role of boundary conditions is crucial for our definition. For a general
connection the degeneration of eigenvalues does not imply non-diagonalizability.
However, the special form of the flat connections dictated by the AAdS boundary
conditions will guarantee that if two eigenvalues of aφ are degenerate, then the
connection is non-diagonalizable. From this perspective, we could interpret that
equating eigenvalues of aφ is in a sense analogous to the confluence of horizons
for extremal black holes in general relativity.

4.2 Example: Extremal sl(3) Black Holes

In [41] several supersymmetric and non-supersymmetric cases were studied. For
brevity, here we will only look at the extremal cousin of the Euclidean black hole
we considered in 3.1.

Let us write again (17) but will focus on the unbarred sector for concreteness;
recall that it is sufficient to impose our definition of extremality on one sector to
obtain the desired features. Using canonical boundary conditions, the connections
are given by

aφ = L1 −Q(2)L−1 − Q(3)

4
W−2 , (26)

iatE + aφ = 2a− = 2μ3

(
W2 + 2Q(3)L−1 +Q2

(2)W−2 − 2Q(2)W0

)
. (27)

It is also instructive to re-write the solutions to (14) for the general rotating case, i.e.
the generalization of (20). This gives
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τ = i
2λ2

1 + 2λ1λ2 − λ2
2

(λ1 − λ2) (2λ1 + λ2) (λ1 + 2λ2)
, (28)

α3 = − 6i
λ2

(λ1 − λ2) (2λ1 + λ2) (λ1 + 2λ2)
, (29)

and

μ3 = 6
(
1+Ω

)
(

λ2

2λ2
1 + 2λ1λ2 − λ2

2

)
, (30)

μ̄3 = − 6
(
1−Ω

)
(

λ̄2

2λ̄2
1 + 2λ̄1λ̄2 − λ̄2

2

)
. (31)

In the above expression we traded Q(2) and Q(3) by its eigenvalues λ1 and λ2 as
defined in (23). With these explicit relations we can now implement our definition
of extremality. Requiring that aφ should be non-diagonalizable gives us a necessary
condition

λ1 = λ2 ≡ λ ⇒ Q(2) = 3

4
λ2 , Q(3) = λ3 . (32)

As a consequence, while the finite-temperature angular holonomy is diagonalizable,
in the extremal limit we obtain

Holφ(a) ∼
⎛

⎝
e−4πλ 0 0

0 e2πλ 1
0 0 e2πλ

⎞

⎠ . (33)

Turning now our attention to the potentials, from (28)–(31) we see in particular
that in this limit

extremal potentials: β →∞ , μ→ 4
γ

λ
, Ω → 1 , μ̄→ 0 , (34)

so the temperature is zero as expected. The spin-3 chemical potential μ remains
finite and becomes a simple homogeneous function of the charges, whereas the
corresponding thermal source α scales with the inverse temperature and blows up.
On the other hand, the barred sector spin-3 potential μ̄ goes to zero because the
thermal source ᾱ remains unconstrained and in particular finite, as no condition is
imposed on the barred charges.

Several comments are now in order.

1. Jordan decomposition versus zero temperature: A valid concern is to wonder if
our definition of extremality implies zero temperature and vice versa. From (28)
it is clear that there are three combinations of λ1 and λ2 that achieve β → ∞ .
The additional other branches also give non-trivial Jordan forms, since they
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just correspond to different pairings of eigenvalues that are degenerate. For this
reason, all these cases are captured by (32): any pairing λi = λj with i �= j

implies the extremality bound Q3
(2) = 27/64Q2

(3).
6 At least for N = 2, 3, a non-

trivial Jordan decomposition implies zero temperature and vice versa. And from
the heuristic argument in Sect. 4.1, we expect this to always be the case.

2. Other Jordan classes: For λ ≡ λ1 = λ2 �= 0, aφ has only two linearly
independently eigenvectors. If take first λ2 = 0 and then λ1 = 0, the holonomy
of aφ belongs to a different Jordan class where there is only one eigenvector; this
case corresponds to extremal BTZ within sl(3)⊕ sl(3) Chern–Simons theory.

3. Finite entropy: We have a continuous family of extremal W3 black holes
parametrized by λ, and from (25) the contribution of the extremal (unbarred)
sector to the total entropy is

Sext = 2πkcs λ = πk

3

√
48Q(2)

= 2πk
(
Q(3)

)1/3
. (35)

The answer is clearly finite. This should be contrasted with extremal BTZ, where
the contribution of the extremal sector vanishes. It would be interesting to derive
such bound and residual entropy in a CFT with W3 symmetry.

4. Extremality vs. unitarity: The extremality condition we have discussed can be
thought of as a bound

Q3
(2) ≥

27

64
Q2

(3) (36)

on the charges of a spin-3 black hole. On the other hand, in a theory with W3
symmetry, the unitary bound in the semiclassical limit is [43]7

64

5c

(
h3 − c

32
h2
)
≥ 9q2

3 , (37)

where the map between the CFT variables (h, q3) and the gravitational charges
is

h− c

24
= 4kQ(2) , q3 = kQ(3) . (38)

6 Different pairings of eigenvalues conflict with the ordering of eigenvalues used in (25), but this
is easily fixed by reordering the eigenvalues appropriately.
7The quantum (finite-c) unitarity bound reported in [43] is

64

22+ 5c
h2
(
h− 1

16
− c

32

)
− 9q2

3 ≥ 0 .
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It is clear that (36) and (37) do not agree. However, the W3 unitarity
bound (37) encloses the bulk extremality bound (36), indicating that all sl(3)
black holes are dual to states allowed by unitarity in the dual CFT.

5. Conformal invariance: In two-derivative theories of gravity in D = 4, 5 all
extremal black holes contain an AdS2 factor in its near horizon geometry [44, 45].
The enhancement of time translations to conformal transformations is non-trivial
and unexpected a priori; moreover, it is key to build microscopic models of
extremal black holes. Here we have not investigated this feature explicitly, but
we do expect that the connection at the extremal point is invariant a larger set of
gauge transformations relative to the non-extremal connection. Some evidence
was reported in [18].

6. Entropy bounds: The extremal limit of the spin-3 higher spin black hole was first
discussed in [11]. Their bound was found as the maximal value of Q(3) for a
given Q(2) such that the entropy is real, and it agrees with (32). Using the reality
of entropy as a bound which enhanced symmetries of the solution was also used
in [42]. It is not clear if this approach is always compatible with ours, and it will
be interesting to explore potential discrepancies.

7. Supersymmetry and Extremality: As we mentioned above, extremality can be
understood as the saturation of certain inequalities involving conserved charges,
and it is natural to contrast these inequalities with BPS bounds that appear
in supersymmetric setups. It is well known that in two-derivative theories of
supergravity these two types of conditions are intimately related: supersymmetry
always implies zero temperature and therefore extremality in the context of BPS
black holes. In supersymmetric theories of higher spin gravity this seems to not
be true!! In [41] we showed that there exist non-extremal solutions in the class of
diagonalizable connections that possess 4 independent Killing spinors. This is,
within the sl(3|2) theory, we managed to construct a smooth higher spin black
hole that is both at finite temperature and BPS. Understanding why higher spin
theories allow for this peculiar behavior is an open question that needs urgent
attention.

5 Wilson Lines

As we have mentioned throughout, higher spin gravity does not admit a conventional
geometric understanding. However, they do admit interesting higher spin invariant
probes. In this section we will consider the Wilson line operator constructed in [39,
46]. This object will allow us to address two important questions:

1. How to capture casual properties in higher spin gravity?
2. How to probe local bulk physics using the Chern–Simons formulation of gravity?

In the following we will only provide the basic definitions, features, and main results
obtained in this area. For a detailed discussion we refer to [16, 18, 39, 46].
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5.1 Wilson Lines in AdS3/CFT2

The Wilson loop in our 3D higher spin gravity is given by

WR(C) = TrR

(
P exp

(∫

C

A

)
P exp

(∫

C

Ā

))
. (39)

Here A and Ā are the connections representing a higher spin background in
SL(N,R) Chern–Simons theory. The representation R is the infinite-dimensional
highest-weight representation of sl(N,R), and C is a loop in the bulk. We may also
consider an open-ended Wilson line operator. To define this object we specify the
locations of its endpoints (xi, xf ). We must also specify boundary data in the form
of two specific states |Ui〉, |Uf 〉 ∈ R at these endpoints. The Wilson line operator
is then

WR(xi, xf ) = 〈Uf |P exp

(
−
∫

γ

A

)
P exp

(
−
∫

γ

Ā

)
|Ui〉 , (40)

where now γ (s) is a curve with bulk endpoints (xi, xf ) parametrized by s.
WR(xi, xf ) is no longer fully gauge-invariant; clearly it depends in a gauge-
covariant manner on the choice of boundary data |Ui〉, |Uf 〉. Nevertheless, for flat
connections, WR(xi, xf ) only depends on the topology of γ , but not on the shape
of the curve.

In AdS3 the presence of a boundary allows the formulation of suitably diffeo-
morphism invariant observables—the correlation functions of the dual CFT2—and
thus one would expect that it would be possible to compute such objects in
the Chern–Simons formulation. Some progress in this direction was made in
[16, 34, 38, 39, 47], motivated largely by the computation of entanglement entropy
of field theories dual to 3d bulk higher spin gravity. These developments have shown
that a Wilson line in an infinite-dimensional highest-weight representation R under
the bulk SL(N) × SL(N) gauge group could be used to compute boundary theory
correlators, i.e.

WR(xi, xf ) =
r→∞ 〈Ψ |O(yi)O(yf )|Ψ 〉 , (41)

where we have picked coordinates xμ = (r, yi) with r an AdS holographic coor-
dinate and yi a CFT coordinate. See Fig. 2. Here the Wilson line WR ends on the
boundary at r →∞, and Ψ denotes the CFT2 state dual to a particular configuration
of Chern–Simons gauge fields that constitute the gravitational background in the
interior. The representation space R was generated from the Hilbert space of an
auxiliary SL(N)-valued quantum mechanical degree of freedom U(s) that lives on
the Wilson line. The quadratic Casimirs of the representation R mapped in the usual
manner to the conformal dimensions (h, h̄) of the dual CFT operator O(y).
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Fig. 2 Wilson line with
endpoints at the boundary of
AdS3. This object computes a
correlation function, or more
precisely a conformal block,
in the dual CFT2

xi

xf

The application of Wilson lines to Lorentzian properties of higher spin gravity
is extremely useful. In [18] we studied how to describe an eternal black hole in the
Chern–Simons sector of AdS3 higher spin gravity. We probed such black holes using
bulk Wilson lines and motivated new regularity conditions that must be obeyed by
the bulk connections in order for the geometry to be consistent with an interpretation
as a thermofield state in the dual CFT2. We demonstrated that any higher spin black
hole may be placed in a gauge that satisfies these conditions: this is the Chern–
Simons analogue of the construction of Kruskal coordinates that permit passage
through the black hole horizon. We also argued that the Wilson line provides a
higher spin notion of causality in higher spin gravity that can be used to associate a
Penrose diagram with the black hole. See Fig. 3.

These Wilson lines then provide us with a sensitive probe of bulk higher spin
geometries. Interestingly, we found that the study of Wilson lines on the eternal
black hole background required a refined understanding of regularity properties
on the bulk gauge connections. One of our main results was the description of
a particular bulk gauge choice—which we call Kruskal gauge—that is in many
ways the Chern–Simons analogue of the Kruskal choice of coordinates that permit
passage through the event horizon to the full maximally extended spacetime. This
gauge choice simply amounts to demanding that the connections be smooth when
evaluated at the Euclidean origin: while this may sound like a very benign condition,
it involves an interplay between the bulk radial coordinate and Euclidean time, and
so is novel from the point of view of Chern–Simons theory. In particular, it is
stronger than the familiar “holonomy conditions” of Euclidean regularity that are
normally used to define black hole connections: however, given a black hole that
satisfies the holonomy condition, there is an algorithm that can be followed to place
it into Kruskal gauge. Some recent work that also implements this stronger notion
of regularity is in [17].

With an understanding of this bulk gauge choice one can further study the
properties of eternal higher spin black holes. We presented in [18] computations
in several gauges to illustrate potential pitfalls, and verify that in Kruskal gauge,
all correlators behave as expected for a thermofield state. We also studied some
of the resulting physics: in particular, we demonstrated that the interior of a two-
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Fig. 3 Wilson line with
endpoints in different
boundaries of the eternal
black hole background. Here
WR(xi , xf ) allows us to test
properties that rely on the
presence of the left and right
boundary RightLeft

Singularity

sided eternal black hole “grows” with time (as measured by the action of a bulk
Wilson line). We also highlighted some interesting features of purely one-sided
correlators, in particular the behavior of the extremal limit and provided evidence
for the emergence of an infrared AdS2.

Finally, another interesting development is the results we obtained in [46]. By
selecting |U 〉 to be singlet states of so(2, 2), we showed that

WR(xi, xf ) = e−2hD(xi ,xf )

1− e−2D(xi ,xf )
(42)

where D(xi, xf ) is the geodesic length of an effective metric given by

gμν = 1

2
Tr(Aμ − U−1ĀμU)(Aν − U−1ĀνU) . (43)

Equation (42) is the familiar bulk-to-bulk propagator of a minimally coupled scalar
field in a locally AdS3 background [48, 49]. An expression such as (42) makes rather
evident that the Wilson line is a propagator, and hence its ties to geometry. It should
be viewed as an operator that satisfies

(
1

2
�xf − 2h(h− 1)

)
WR(xf , xi) = 1

8π

δ(xf , xi)√−g
, (44)

where now �xf is the Laplacian on the bulk AdS3 spacetime.
An important issue that we have not addressed is quantum corrections due to

fluctuations of the background connections. This would capture 1/c corrections, i.e.
corrections controlled by the AdS radius in Planck units, or equivalently subleading
terms controlled by the level of the Chern–Simons theory. Work in this direction
has been done for SL(2) Chern–Simons theory, where Virasoro conformal blocks
are known to be tied to appropriate Wilson line in Chern–Simons [50–52]. Recent
developments for this holomorphic theory include [53–59]. It would be interesting
to evaluate 1/c corrections of our worldline quantum mechanics; in this case we
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expect that the intertwining of the two copies of sl(2) will produce interesting
features. For example, we should be able to probe if the global conditions on the
|U 〉 states are enhanced to the Virasoro conditions on the Ishibashi state [60, 61], or
something completely different, such as the conditions proposed in [62]. We leave
these questions for future work.

Another natural direction forward is to use our construction to build probes in
SL(N) × SL(N) Chern–Simons theory, and hence generalize (42) beyond pure
AdS3 gravity. This would provide a unique way to build local probes in higher spin
gravity. A discussion of Ishibashi states for W3 algebra was done in [63], which is
a natural starting point for future investigations.
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Fundamental Physics, the Swampland
of Effective Field Theory and Early
Universe Cosmology

Robert Brandenberger

Abstract Cosmological inflation is not the only early universe scenario consistent
with current observational data. I will discuss the criteria for a successful early uni-
verse cosmology, compare a couple of the proposed scenarios (inflation, bouncing
cosmologies, and the emergent scenario), focusing on how future observational data
will be able to distinguish between them. I will argue that we need to go beyond
effective field theory in order to understand the early universe, and that principles of
superstring theory will yield a non-singular cosmology.

Keywords Early universe cosmology · String theory

1 Introduction

In this talk I would like to convey three main messages. The first is that the
inflationary scenario is not the only early universe scenario which is consistent
with current observational data. The second message is that the inflationary scenario
does not appear to naturally emerge from superstring theory. On a positive note (and
this is the third message), there are arguments based on fundamental principles of
superstring theory which indicate that the cosmology which emerges from string
theory will be non-singular.

The two past decades have provided us with a wealth of data about the structure
of the universe on large scales. From the point of view of Standard Big Bang
cosmology most of the data cannot be explained. Why is the universe close to
homogeneous and isotropic on scales which at the time of recombination had never
been in causal contact? Why is the universe so close to being spatially flat? These
are the famous horizon and flatness problems of Standard Big Bang cosmology.
We now have detailed measurements of the small amplitude inhomogeneities in
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the distribution of matter and radiation, most spectacularly the high precision all
sky maps of the cosmic microwave background (CMB) radiation [1]. The angular
power spectrum of these anisotropies shows that the fluctuations are scale-invariant
on large scales and are characterized by acoustic oscillations on smaller scales.
What is the origin of these fluctuations?

The physics which yields the abovementioned acoustic oscillations in the angular
power spectrum of CMB fluctuations was discussed in two pioneering papers
[2, 3]. These authors assumed the existence of a roughly scale-invariant spectrum
of curvature fluctuations on super-Hubble scales (the Hubble radius is H−1(t),
where H is the Hubble expansion rate) at a time before recombination. These
fluctuations are standing waves which are frozen in until the time when the Hubble
radius becomes larger than the length scale of the fluctuations (in the linear regime
fluctuations have constant wavelength in comoving coordinates; hence, in the
matter-dominated epoch their physical wavelength grows as t2/3 while the Hubble
radius grows at the faster rate ∼t). After they enter they begin to oscillate. Modes
which have performed an even (odd) number of half oscillations by the time of
recombination yield maxima (local minima) in the power spectrum. The papers
[2, 3] date back to 10 years before the development of inflationary cosmology. Both
the CMB acoustic oscillations and the baryon acoustic oscillations in the power
spectrum of matter fluctuations were predicted already then.

The question which was not addressed in [2, 3] is the origin of the super-
Hubble fluctuations at early times. In Standard Big Bang cosmology the Hubble
radius equals the horizon, and hence having super-Hubble fluctuations appears to be
acausal. Inflationary cosmology [4] was the first scenario to propose an origin [5]
for these fluctuations, but now we know that it is not the only one. In the following
I will develop necessary criteria for an early universe scenario to be able to explain
the near homogeneity of the universe and the origin of the observed cosmological
perturbations. I will then introduce a couple of early universe scenarios which satisfy
the criteria. In Sect. 3 I will turn to the question of which early universe scenario
might emerge from superstring theory.

2 Early Universe Scenarios

The first criterion which a successful early universe scenario must satisfy is that the
horizon (the radius of the forward light cone of a point on the initial value surface)
is much larger than the Hubble radius H−1(t) at late times. This is necessary to be
able to address the horizon problem of Standard Big Bang cosmology. In order to
admit the possibility of a causal mechanism to generate the primordial fluctuations,
comoving scales which are probed with current cosmological observations must
originate inside the Hubble radius at early times. This is the second criterion. If
the fluctuations emerge as quantum vacuum perturbations (as they are postulated
to in inflationary cosmology), then scales we observe today must evolve for a long
time on super-Hubble scales in order to obtain the squeezing of the fluctuations
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which is necessary to obtain classical perturbations at late times (third criterion).
Finally (fourth criterion), the structure formation scenario must produce a nearly
scale-invariant spectrum of primordial perturbations (see e.g. [6] for a more detailed
discussion).

Inflationary cosmology [4] is the first scenario which satisfies the four above
criteria. During the time interval ti < t < tR during which the universe undergoes
nearly exponential expansion, the horizon expands exponentially while the Hubble
radius remains almost unchanged. Since the physical length of a fixed comoving
scale also expands nearly exponentially during the period of inflation, scales which
we observe today originate inside the Hubble radius as long as the period of
inflation is sufficiently long. Fluctuations are squeezed on super-Hubble scales for a
long time, and the approximate time-translation symmetry of the inflationary phase
ensures that the spectrum of primordial fluctuations is nearly scale-invariant [5, 7].

Bouncing cosmologies provide a second scenario in which the four criteria for
a successful early universe scenario can be satisfied. In a bouncing scenario the
horizon is infinite. The Hubble radius decreases during the period of contraction and
then increases during the period of expansion. As long as the period of contraction
is comparable in length to the period of Standard Big Bang expansion, scales
which we observed today emerge from inside the Hubble radius, thus allowing a
possible causal structure formation scenario. As in inflationary cosmology, there is a
long period during which scales propagate with super-Hubble length, thus enabling
the squeezing of the fluctuations. There are (at least) three classes of bouncing
cosmologies. First, the matter bounce [8] in which there is a long phase of matter-
dominated contraction. Second, there is the Pre-Big-Bang scenario [9] in which
contraction is driven by a field with an equation of state w = 1, where w is the ratio
of pressure to energy density. Finally, there is the Ekpyrotic scenario [10] in which
contraction is obtained by means of a scalar field with equation of state w � 1.
There is a duality between the evolution of curvature fluctuations in a matter-
dominated phase of contraction and in an exponentially expanding background [11].
Hence, the matter bounce automatically leads to a roughly scale-invariant spectrum
of fluctuations. There is a duality in the evolution of scalar field fluctuations between
a cosmology with Ekpyrotic contraction and one of exponential expansion [12].
Hence, it is also possible to obtain a scale-invariant spectrum of fluctuations. In
the case of the Pre-Big-Bang scenario it is possible to obtain a scale-invariant
spectrum making use of axion fields [13]. See [14] for a detailed review of
bouncing cosmologies. Ekpyrotic and Pre-Big-Bang cosmologies produce a steep
blue spectrum of primordial gravitational waves. Hence, on cosmological scales
the spectrum of primordial gravitational waves is predicted to be negligible. This
contrasts with the predictions of inflationary models which forecast a roughly scale-
invariant spectrum.

A third scenario for early universe cosmology is the emergent scenario which is
based on the assumption that the universe emerged from an initial high density state
in which matter was in global thermal equilibrium. One toy model for this is String
Gas Cosmology [15] in which it is assumed that the universe loiters for a long time
in a Hagedorn phase of a gas of fundamental strings, and there is a phase transition
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to the expanding phase of Standard Big Bang cosmology (see e.g. [16] for a review).
In the emergent scenario, the horizon is infinite, and scales which are observed
today are trivially sub-Hubble in the emergent phase (since the Hubble radius is
infinite in the limit that the emergent phase is static). As discovered in [17], the
spectrum of cosmological perturbations originating from thermal fluctuations of the
string gas is nearly scale-invariant. A prediction with which String Gas Cosmology
can be distinguished from simple inflationary models is the tilt of the spectrum
of primordial gravitational waves. Whereas inflationary models based on a matter
content which satisfies the usual energy conditions predict a slight red tilt of the
spectrum, String Gas Cosmology predicts a blue tilt nt satisfying a consistency
relation nt = ns−1, where ns−1 is the tilt of the spectrum of curvature fluctuations
[18].

None of the early universe scenarios discussed above is without problems. In
the case of inflationary cosmology we can point to the trans-Planckian problem for
fluctuations: if the period of inflation is much longer than the minimal period which
inflation has to last in order to enable a causal generation mechanism of fluctuations,
the length scale of all modes which are currently observed today was smaller than
the Planck length at the beginning of inflation [19]. Thus, new physics must enter to
give the initial conditions for the fluctuations.

As discussed in [20], the matter bounce scenario is not a local attractor in initial
condition space: initial anisotropies blow up during the contracting phase. The
Ekpyrotic scenario does better in this respect: initial anisotropies decay and the
homogeneous Ekpyrotic contracting trajectory is a local attractor in initial condition
space [21]. Note that in the case of large field inflation, the inflationary slow-roll
trajectory is also a local attractor [22]. A key challenge for bouncing scenarios is that
new physics is required to yield the cosmological bounce. An important problem for
the emergent scenario is to obtain dynamical equations which describe the emergent
phase.

Both inflationary and Ekpyrotic models are obtained in the context of Einstein
gravity by taking the dominant component of matter to be given by a scalar field ϕ

with a potential V (ϕ). To obtain slow-roll inflation the potential has to be very flat

V ′

V
λm−1

pl , (1)

where the prime indicates a derivative with respect to ϕ, and where mpl is the Planck
mass. For models free of an initial condition fine tuning problem the field ϕ must roll
over a field range |Δϕ| > mpl during inflation. In contrast, the Ekpyrotic scenario
is based on scalar field matter with a negative and steep exponential potential. V ′/V
is large in Planck units, and the scalar field rolls a distance smaller than mpl .

I highlight this point in connection with the constraints on effective field theories
involving scalar fields which emerge from the considerations based on fundamental
physics to be discussed in the following section.
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3 Constraints from Fundamental Physics

The evolution of the very early universe should be described by the best available
theory which describes physics at the highest energies. There is evidence that all
forces of nature might unify at high energies. They must be described quantum
mechanically. The best candidate for such a quantum theory is superstring theory.
Superstring theory is based on the assumption that the basic building blocks of
nature are not point particle, but rather elementary strings.

The quantum theory of point particles is quantum field theory. There is a huge
landscape of quantum field theories: any number of space-time dimensions and
fields is allowed, and any shape of field potentials. Superstring theory is very
restrictive. The number of space-time dimensions is fixed, and the string interactions
are constrained. At low energies, the physics emerging from superstring theory
should be describable by an effective field theory.

However, the set of effective field theories compatible with string theory is
constrained by what are known as the swampland criteria. Only theories consistent
with these criteria are admissible. The vast number of field theories are not—they
are said to lie in the swampland (see [23] for a review). Note that at the moment
these criteria are not proven—they are educated guesses.

The first swampland criterion [24] is that the field range over which a given
effective field theory is valid is constrained by Δϕ < O(1)mpl . The second
condition [25] is that, for a scalar field which is rolling and which dominates the
energy density of the universe, the potential cannot be too flat:

V ′

V
> c1m

−1
pl , (2)

where c1 is a constant of order one. This condition is opposite to what is required for
simple slow-roll inflation models. Hence, it appears that cosmological inflation is in
tension with superstring theory. A corollary of the second swampland condition
is that a cosmological phase dominated by a positive cosmological constant is
not possible. Hence, Dark Energy cannot be a cosmological constant [26]. Scalar
field models of Dark Energy are, however, consistent with (but constrained by) the
swampland conditions [26, 27].

In light of the tension between inflationary cosmology and the principles of
string theory it appears that we may need a new paradigm of early universe
cosmology. Such a paradigm should be based on the key new degrees of freedom
and symmetries which differentiate string theory from point particle theories. New
degrees of freedom include the string oscillatory and winding modes. Let us for
simplicity consider the background space to be toroidal. Strings on this space have
momentum modes whose energies are quantized in units of 1/R, where R is the
radius of the torus, winding modes whose energies are quantized in units of R, and
an tower of oscillatory modes whose energies are independent of R. Point particles
only have momentum modes. If we consider a box of strings in thermal equilibrium
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and compress the radius, then the temperature of the gas will initially increase since
the energy of the momentum modes (which are the light modes for large values of
R) increases. Eventually it becomes thermodynamically preferable to excite higher
and higher energy oscillatory modes. The increase in temperature will level off:
there is a maximal temperature of a gas of strings, the Hagedorn temperature TH

[28]. When R decreases below the string scale, the energy will flow into the winding
modes (which are now the light modes), and the temperature will decrease. Hence
[15], thermodynamic reasoning indicates that there is no temperature singularity in
a stringy early universe cosmology.

String theory also features a new symmetry, T-duality symmetry. For a toroidal
space, this implies that there is a symmetry between a space of radius R and a
dual space of radius 1/R (in string units) obtained by interchanging the momentum
and winding quantum numbers. As already argued in [15], the number of position
operators in a quantum theory of strings must be doubled compared to a theory of
point particles: there is one position operator which is the Fourier transform of the
momentum

|x >=
∑

n

|p >n , (3)

where |p >n is the eigenstate of momentum which quantum number n (n ranging
over the integers), and a dual operator |x̃ > which is dual to the winding number
eigenstates. Physical length lp is measured in terms of |x > if R is large, but in
terms of |x̃ > if R is small. Hence, as R decreases from some large value towards
zero, lp remains finite (it is an even function of ln(R)). This is another way to see
the non-singularity of a stringy early universe cosmology.

The challenge for string cosmology remains to find consistent equations for the
time-dependent cosmological background. Einstein gravity is not applicable since
it is not consistent with the T-duality symmetry of string theory. In String Gas
Cosmology [15] it was postulated that the universe emerges from a quasi-static
initial Hagedorn phase. Such a phase could emerge from a better understanding of
non-perturbative string theory. If we want to model the dynamics using an effective
field theory, this effective field theory must live in double the number of spatial
dimensions as the topological background contains in order to take into account both
the |x > and |x̃ > coordinates. A candidate for such a theory is Double Field Theory
[29], a theory which is given by the action for a generalized metric in doubled space.
The cosmology which results if we couple the Double Field Theory action for the
background to “string gas matter” (matter which has an equation of state of radiative
modes for large volumes of the |x > space, and that of winding modes for a small
volume) was recently analyzed in [30]. In this context it can be shown that the
solutions in the string frame are non-singular.
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4 Conclusions and Discussion

In the context of effective field theories of matter coupled to Einstein gravity, a
number of early universe scenarios have been proposed which can explain current
observational data. Inflationary cosmology is one of them, but not the only one.
However, general considerations based on superstring theory indicate a tension
between fundamental physics and inflation. In fact, they indicate that any approach
based on effective field theory of matter coupled to Einstein gravity will break down
in the early universe, and that we need a radically different approach which takes
into account the new degrees of freedom and new symmetries which distinguish
string theories from point particles theories. I presented a toy model which takes
these aspects into account which indicates that the cosmology emerging from string
theory will be non-singular, and that it may not include any phase of inflation.
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Scale-Invariant Scalar Field Dark Matter
Through the Higgs-Portal

Catarina Cosme

Abstract We introduce an oscillating scalar field coupled to the Higgs that can
account for all dark matter in the Universe. Due to an underlying scale invariance of
this model, the dark scalar only acquires mass after the electroweak phase transition.
We discuss the dynamics of this dark matter candidate, showing that it behaves like
dark radiation until the electroweak phase transition and like non-relativistic matter
afterwards. In the case of a negative coupling to the Higgs field, the scalar gets a
vacuum expectation value after the electroweak phase transition and may decay into
photons although being sufficiently long-lived to account for dark matter. We show
that, within this scenario, for a mass of 7 keV, the model can explain the observed
galactic and extra-galactic 3.5 keV X-ray line. Nevertheless, it will be very difficult
to probe this model in the laboratory in the near future. This proceedings paper is
based on Refs. Cosme et al. (J High Energy Phys 1805, 129, 2018; Phys Lett B 781,
639, 2018).

Keywords Dark matter · Scalar field · Higgs boson

1 Introduction

Dark matter (DM) is one of the greatest unsolved questions in Physics. This
invisible form of matter constitutes almost 27% of the Universe’s energy density
content and is required to explain its structure on large scales, the anisotropies
in the Cosmic Microwave Background (CMB), and the galaxy rotation curves.
Despite a large number of candidates that arise in theories beyond the Standard
Model of Particle Physics (SM), the origin and the constitution of DM remain
unknown. Although Weakly Interacting Massive Particles (WIMPs) are among the
best-motivated thermally produced DM candidates, they have not been detected so
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far and the absence of new particles at the LHC motivates looking for alternatives
to the WIMP paradigm.

In this work, we introduce an oscillating scalar field coupled to the Higgs as
a dark matter candidate. Even though the Higgs-portal for dark matter has been
explored in the context of thermal dark matter candidates (WIMPs), there are
few proposals in the literature that investigate the case of a scalar field which is
oscillating in the minimum of its quadratic potential, behaving like non-relativistic
matter. Thus, we focus on a model where the oscillating scalar field dark matter
obtains its mass only through the Higgs mechanism, i.e., through scale-invariant
Higgs-portal interactions. We assume an underlying scale invariance of the theory,
spontaneously broken by some mechanism that generates the Planck and the
electroweak scales in the Lagrangian, but which forbids a bare mass term for the
dark scalar. The scale invariance is maintained in the dark sector and, therefore,
the dark scalar only gets mass after the electroweak phase transition (EWPT).
Additionally, the model has a U(1) gauge symmetry which ensures the dark matter
candidate stability if unbroken. The relevant interaction Lagrangian density is the
following:

−Lint = ± g2 |Φ|2 |H|2 + λφ |Φ|4 + V (H)+ ξR |Φ|2 , (1)

where the Higgs potential, V (H), has the usual “Mexican hat” shape, g is the
coupling between the Higgs and the dark scalar, λφ is the dark scalar’s self-coupling,
and the last term in Eq. (1) corresponds to a non-minimal coupling of the dark matter
field to curvature, where R is the Ricci scalar and ξ is a constant.

In this paper, we will focus on the case where the Higgs-dark scalar interaction
has a negative sign. Hence, the U(1) symmetry may be spontaneously broken, which
can lead to interesting astrophysical signatures, as we will see later.

This proceedings paper is structured as follows: in Sect. 2 , we describe the
dynamics of the field from the inflationary period up to the EWPT. In Sect. 3
we discuss the behavior of the field after the EWPT, computing the present dark
matter abundance. The phenomenology of this scenario is explored in Sect. 4 and
the conclusions are summarized in Sect. 5. For more details and a complete list of
references, see Refs. [1, 2].

2 Dynamics Before Electroweak Symmetry Breaking

In this section, we describe the evolution of the dark matter candidate before the
EWPT, where the Higgs-portal coupling term has a negligible role. First, we discuss
the dynamics of the dark scalar during the inflationary period, where the non-
minimal coupling term dominates its behavior. Then, we examine the behavior of
the field in the radiation era until the EWPT, where the self-interactions term drives
the dark scalar dynamics.
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2.1 Inflation

During inflation, in the regime where ξ � g, λφ , the dynamics of the field is mainly
driven by the non-minimal coupling to gravity in Eq. (1). This term provides an
effective mass to the dark scalar, mφ :

mφ 

√

12 ξ Hinf , (2)

where we have used the fact that the Ricci scalar during inflation is R 
 12H 2
inf

and the Hubble parameter, written in terms of the tensor-to-scalar ratio r , reads:

Hinf (r) 
 2.5× 1013
( r

0.01

)1/2
GeV . (3)

Note that mφ > Hinf for ξ > 1/12. Thus, although the classical field is driven
towards the origin during inflation, its average value never vanishes due to de Sitter
quantum fluctuations on super-horizon scales. Any massive field during inflation
exhibits quantum fluctuations that get stretched and amplified by the Universe’s
expansion and, in particular, for mφ/Hinf > 3/2 (ξ > 3/16) the amplitude of each
Fourier mode with comoving momentum k is given by Riotto [3]:

|δφk|2 

(
Hinf

2π

)2 (Hinf

mφ

)
2π2

(
a Hinf

)3 , (4)

where a(t) is the scale factor. Integrating over the super-horizon comoving momen-
tum 0 < k < aHinf , at the end of inflation, the homogeneous field variance reads:

〈
φ2
〉

 1

3

(
Hinf

2π

)2 1√
12ξ

, (5)

which sets the initial amplitude for field oscillations in the post inflationary era:

φinf =
√〈

φ2
〉 
 α Hinf α 
 0.05 ξ−1/4 . (6)

After inflation, when mφ � H is satisfied, the field oscillates about the minimum of
its potential. Moreover, since R = 0 in a radiation-dominated era and R ∼ O(H 2)

in the following eras, we may neglect the effects of the non-minimal coupling
term in the evolution of the field after inflation. Hence, we may conclude that the
role of the non-minimal coupling to gravity is to make the field sufficiently heavy
during inflation so to suppress potential isocurvature modes in the CMB anisotropy
spectrum.
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2.2 Radiation Era

After inflation and the reheating period (which we will assume to be instantaneous,
for simplicity), the Universe becomes radiation-dominated and R = 0. Above the
EWPT, the dominant term in the potential of the dark scalar is the quartic one
(see Eq. (1)), since the thermal effects can keep the Higgs field localized about
its origin. The dark scalar acquires an effective field mass mφ =

√
3 λφ φ and, when

the condition mφ � H is satisfied, it starts to oscillate about the origin with an
amplitude φrad given by:

φrad (T ) = φinf

Trad

T =
(
π2 g∗
270

)1/4 (
φinf

MPl

)1/2
T

λ
1/4
φ

. (7)

where the temperature at the onset of fields oscillations, Trad , reads

Trad = λ
1/4
φ

√
φinf MPl

(
270

π2 g∗

)1/4

, (8)

g∗ is the number of relativistic degrees of freedom and MPl is the reduced Planck
mass. Since the dark scalar’s amplitude decays as a−1 ∝ T and ρφ ∼ a−4, we
conclude that the field behaves like dark radiation during this period.

As soon as the temperature of the Universe drops below the electroweak scale,
both the Higgs and the dark scalar fields acquire a vacuum expectation value (vev)
and, consequently, the Higgs generate a mass for the dark scalar, as we will see in
the next section. The electroweak phase transition is completed when the leading
thermal contributions to the Higgs potential become Boltzmann suppressed, at
approximately TEW ∼ mW , where mW is the W boson mass.

3 Dynamics After the Electroweak Symmetry Breaking

At the EWPT, the relevant interaction potential is

V (φ, h) = − g2

4
φ2 h2 + λφ

4
φ4 + λh

4

(
h2 − ṽ2

)2
, (9)

where the Higgs self-coupling is λh 
 0.13.
At this point, the Higgs and the dark scalar acquire a non-vanishing vev,

respectively:

h0 =
(

1− g4

4 λφ λh

)−1/2

ṽ ≡ v, φ0 = g v√
2λφ

, (10)
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where v = 246 GeV. Notice that a non-vanishing vev for the dark scalar implies
g4 < 4λφλh, which we assume to hold. The mass of the dark scalar, which is
generated only by the Higgs, is then:

mφ = g v . (11)

As pointed out in Refs. [1, 2], the dark scalar starts to oscillate about φ0, with
an amplitude φDM ≡ xDM φ0 with xDM � 1 once the leading contributions to the
Higgs potential become Boltzmann suppressed, below TEW ∼ mW . This xDM is
not an extra parameter of the model, it is just a theoretical uncertainty that takes into
account the evolution of the dark scalar during the electroweak crossover. Although
a numerical simulation of the dynamics of the field during the electroweak crossover
would be required, we can estimate the value of xDM . Since TEW � TCO by an
O (1) factor, where TCO corresponds to the electroweak crossover temperature, and
given that φ ∼ T while behaving as radiation and φ ∼ T 3/2 while behaving as non-
relativistic matter, the field’s amplitude might decrease by at most an O (1) factor
as well. For more details, see Refs. [1, 2]. Hence, we may conclude that the field
smoothly changes from dark radiation to a cold dark matter behavior at the EWPT,
as its potential becomes quadratic about the minimum.

As soon as the dark scalar starts to behave like cold dark matter, its amplitude
evolves with the temperature as φ (T ) = φDM(T /TEW )3/2 and the number of
particles in a comoving volume, nφ

s
, becomes constant:

nφ

s
= 45

4π2g∗S
mφφ

2
DM

T 3
EW

, (12)

where g∗S 
 86.25 is the number of relativistic degrees of freedom contributing

to the entropy at TEW , s = 2π2

45 g∗S T 3 is the entropy density of radiation, and
nφ ≡ ρφ

mφ
is the dark matter number density. We can use this to compute the present

DM abundance, Ωφ,0 
 0.26, obtaining the following relation for the field’s mass:

mφ =
(
6Ωφ,0

)1/2
(

g∗S
g∗S0

)1/2 (
TEW

T0

)3/2
H0MPl

φDM

, (13)

where g∗S0, T0, and H0 are the present values of the number of relativistic degrees
of freedom, CMB temperature, and Hubble parameter, respectively. Then, plugging
Eq. (11) into Eq. (13), we find a relation between g and λφ :

g 
 2× 10−3
(xDM

0.5

)−1/2
λ

1/4
φ . (14)

This relation is a key point of our model: essentially, it has only a single free
parameter, which we take to be the mass of the field. We will come back to this
when discussing the phenomenology of the model.
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The idea of this work is to introduce a dark matter candidate which is never in
thermal equilibrium with the cosmic plasma. However, there are two main processes
that can lead to the evaporation of the condensate. One of them is the Higgs
annihilation into higher-momentum φ particles, which is prevented if [1, 2]

g � 8× 10−4
( g∗

100

)1/8
. (15)

The other process is the production of φ particles from the coherent oscillations of
the background condensate in a quartic potential, which is not efficient if [1, 2]

λφ < 6× 10−10
( g∗

100

)1/5 ( r

0.01

)−1/5
ξ1/10 . (16)

If the constraints of Eqs. (15) and (16) are satisfied, the dark scalar is never in
thermal equilibrium with the cosmic plasma, behaving like an oscillating condensate
of zero-momentum particles throughout its cosmic history. Equation (16) yields the
most stringent constraint on the model, limiting the viable dark matter mass to be
mφ � 1 MeV [1, 2].

4 Phenomenology

In this section, we will discuss two possible ways of probing the proposed model.
For more examples and a complete and detailed discussion, see Refs. [1, 2].

4.1 Dark Matter Decay

Since the dark scalar and the Higgs field are coupled, they exhibit a small mass

mixing, ε = g2 φ0 v
m2

h

[1]. This means that the dark scalar can decay into the same

decay channels as the Higgs, provided that they are kinematically accessible. Due to
the mass restriction coming from Eq. (16), which translates into mφ � 1 MeV, the
only kinematically accessible decay channel is the decay into photons. It is possible
to show that the decay width of the dark matter candidate into photons is suppressed
by a factor ε2 with respect to the decay width of a virtual Higgs boson into photons,
yielding for the dark scalar’s lifetime [1, 2]:

τφ 
 7× 1027
(

7 keV

mφ

)5 (xDM

0.5

)2
s. (17)
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Hence, although the lifetime is much larger than the age of the Universe, it can
lead to an observable monochromatic line in the spectrum of galaxies and galaxy
clusters.

Recently, the XMM-Newton X-ray observatory detected a line at 3.5 keV in the
Galactic Center, Andromeda, and Perseus cluster [4–7]. The nature of this line
has arisen some interest in the scientific community, leading to several interesting
proposals in the literature, in particular, the possibility of it resulting from DM
decay or annihilation [7–12]. In fact, the analysis in Refs. [6, 13] has shown that the
intensity of the line observed in the astrophysical systems mentioned above could
be explained by the decay of a DM particle with a mass of 
 7 keV and a lifetime
in the range τφ ∼ (6− 9)× 1027 s. In the case of our dark scalar field model, fixing
the field mass to this value, we predict a DM lifetime exactly in this range, up to
some uncertainty in the value of the field amplitude after the EWPT parametrized
by xDM � 1. This is illustrated in Fig. 1. Notice that, for this mass, g 
 3 × 10−8

and λφ 
 4× 10−20, satisfying the constraints in Eqs. (15) and (16).
The uniqueness of this result should be emphasized: our model predicts that the

decay of the dark scalar φ into photons produces a 3.5 keV line compatible with the
observational data, with effectively only one free parameter: either g or λφ . Recall
that, originally, the model involves four parameters—the couplings g and λφ , the
non-minimal coupling ξ , and the scale of inflation r . The role of ξ is simply to
suppress the potential cold dark matter isocurvature perturbations, while r only sets
the initial amplitude of the field at the beginning of the radiation era. At the EWPT,
the field starts to oscillate around φ0, with an initial amplitude of this order—which
does not depend on ξ nor r . So, when the dark scalar starts to behave effectively
as cold dark matter, only g and λφ affect its dynamics. Therefore, we have three
observables that rely on just two parameters (g and λφ)—the present dark matter

xDM = 0.7
xDM = 0.5
xDM = 0.3

4 6 8 10 12
1026

1027

1028

1029

mf (keV)

τ f
 (s

ec
)

Fig. 1 Lifetime of the scalar field dark matter as a function of its mass, for different values of
xDM � 1. The horizontal red band corresponds to the values of τφ that can account for the 3.5 keV
X-ray line detected by XMM-Newton for a mass around 7 keV. From [2]
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abundance, the dark scalar’s mass, and its lifetime. Fixing the present dark matter
abundance, we get a relation between g and λφ (Eq. (14)), implying that mφ and
τφ depend exclusively on the Higgs-portal coupling. Hence, the prediction for the
magnitude of the 3.5 keV line in different astrophysical objects is quite remarkable
and, as far as we are aware, it has not been achieved by other scenarios, where the
dark matter’s mass and lifetime can be tuned by different free parameters.

4.2 Invisible Higgs Decays into Dark Scalars

One way to probe the Higgs-portal scalar field dark matter is to look for invisible
Higgs decays into dark scalar pairs. The corresponding decay width is

Γh→φφ = 1

8π

g4v2

4mh

√√√√1− 4m2
φ

m2
h

, (18)

where mh is the Higgs mass. Assuming the upper limit for the dark matter mass,
mφ = 1 MeV, the bound on the branching ratio is

Br (Γh→inv) < 10−19 . (19)

Considering that the current experimental limit is

Br (Γh→inv) = Γh→inv

Γh + Γh→inv

� 0.23 , (20)

where we assume that Γh→inv = Γh→φφ , we conclude that this process is too
small to be measured with current technology. However, it may serve as motivation
for extremely precise measurements of the Higgs boson’s width in future collider
experiments, given any other experimental or observational hints for light Higgs-
portal scalar field dark matter, such as, for instance, the 3.5 keV line that we have
discussed earlier.

5 Conclusions

In this proceedings paper, we summarize the results of Refs. [1, 2], where we have
shown that an oscillating scalar field coupled to the Higgs boson is a viable DM
candidate that can explain the observed 3.5 keV X-ray line. This is a simple model,
based on the assumed scale invariance of DM interactions, and, at the same time,
extremely predictive, with effectively only a single free parameter upon fixing the
present DM abundance. Hence, our scenario predicts a 3.5 keV X-ray line with the
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observed properties for the corresponding value of the DM mass although it will be
very difficult to probe it in the laboratory in the near future.
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The Moduli Portal to Dark Matter
Particles

Maíra Dutra

Abstract The out-of-equilibrium production of dark matter (DM) from standard
model (SM) species in the early universe (freeze-in mechanism) is expected in
many scenarios in which very heavy beyond the SM fields act as mediators. In this
conference, I have talked about the freeze-in of scalar, fermionic, and vector DM
through the exchange of moduli fields (Chowdhury et al. Phys Rev D 99(9):095028,
2019), which are in the low-energy spectrum of many extra-dimensions and string
theory frameworks. We have shown that the high temperature dependencies of
the production rate densities in this model, as well as the possibility of having
moduli masses at the post-inflationary reheating scale, make it crucial to consider
the contribution of the freeze-in prior the start of the standard radiation era for a
correct prediction of the DM relic density.

Keywords Dark matter · Moduli fields · Freeze-in production

1 Introduction

The close relationship between the couplings dark matter (DM) particles might have
to particles belonging to the Standard Model of Particle Physics (SM) and their
evolution through the early universe makes the DM puzzle an open problem in the
interface between particle physics and cosmology.

Direct detection searches seek to detect nuclear or electronic recoils from DM
scatterings, and the current status of no positive signals but more and more sensitive
detectors mean that the SM-DM couplings need to be weaker and weaker. However,
very weak couplings might imply that DM and SM particles were never in thermal
equilibrium in the early universe. The out-of-equilibrium production of DM from
SM species in the early universe, which is the so-called freeze-in mechanism [1–3],
is expected in many scenarios in which very heavy beyond the SM (BSM) fields act
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as mediators. If the masses of these heavy mediators are close to the scale of the
post-inflationary reheating, it is important to take into account the freeze-in during
a reheating period in which entropy is being injected into the thermal bath. Here
we shed light on this matter, presenting handy formulae that can be useful for any
scenario.

Moduli fields are scalars which would be present in the effective limit of many
string theory frameworks. Since they would need to be very feebly coupled to SM
fields, it is interesting to investigate whether their feeble interactions with dark
and visible matter would be enough to produce dark matter via freeze-in. In this
conference, I have presented a recent study on the moduli portal to dark matter [4].

2 The Model

We have considered a complex modulus field, T = t + ia, whose presence
at temperatures below some cut-off scale Λ would appear as corrections to the
free Lagrangians.1We consider BSM scalar, fermionic, and vector fields as feebly
interacting massive particle (FIMP) candidates, which are DM candidates produced
via freeze-in. Our effective Lagrangian connecting the modulus field to dark and
standard scalars, fermions, and vectors, here generically denoted by Φ,Ψ , and Xμ,
reads

Leff ⊃

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
1+ αi

Λ
t
)
(|DμΦ|2 − μ2

Φ) (scalars)

1
2

(
1+ αi

L,R

Λ
t + i

βi
L,R

Λ
a

)
Ψ̄L,Ri /DΨL,R (fermions)

− 1
4

(
1+ αi

Λ
t
)
XμνX

μν − βi

Λ
a XμνX̃

μν (vectors).

(1)

Couplings to the real and imaginary components of the modulus are denoted,
respectively, by α and β, and the tensors Xμν and X̃μν are, respectively, the field
strength and dual field strength of Xμ.

In order to avoid imaginary contributions to the mass and kinetic terms of the
scalars, we assume that only the real component of the modulus interacts with the
SM Higgs and the scalar FIMP candidate. In the case of the scalar FIMP, though,
we do not assume that the modulus changes the mass term. The interactions with
fermions are in principle chiral and a chirality flip would give us explicit dependence
on the fermion mass in the amplitudes. For this reason, SM fermions cannot produce
the FIMPs above EWSB, since they are massless. For the interactions of moduli with
vectors, we have a Higgs-like operator for the real component and a Peccei–Quinn
operator for the axial component.

As we are going to emphasize in the next section, the squared amplitudes of the
freeze-in processes give us valuable information about the freeze-in temperature. In

1We here consider corrections up to the first order in the cut-off scale Λ.
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Fig. 1 Schematic Feynman diagrams leading to the freeze-in production of our FIMP candidates,
scalar (φ), fermionic (ψ) and vector (Vμ) fields, out of annihilations of all the SM bosons
(H,Ga

μ, Bμ,W
i
μ) via exchange of the real (t) and axial (a) components of a modulus field

our case, the FIMP candidates are produced from s-channel annihilations of Higgs
bosons and SM gauge bosons, having t and a as mediators, as depicted in Fig. 1.
The squared amplitudes are given by:

|M|20 =
α2

DMλ(s, αi)

Λ4

s4
(

1− 2m2
DM
s

)2

(s −m2
t )

2 +m2
t Γ

2
t

(2)

|M|21/2 =
α2

DMλ(s, αi)

Λ4

m2
DMs3

(
1− 4m2

DM
s

)

(s −m2
t )

2 +m2
t Γ

2
t

+ β2
DMλ(s, βi)

Λ4

m2
DMs3

(s −m2
a)

2 +m2
aΓ

2
a

(3)

|M|21=
α2

DMλ(s, αi)

Λ4

s4
(

1− 4m2
DM
s
+ 6m4

DM
s2

)

(s −m2
t )

2 +m2
t Γ

2
t

+ β2
DMλ(s, βi)

Λ4

s4
(

1− 4m2
DM
s

)

(s −m2
a)

2 +m2
aΓ

2
a

.

(4)
Above, λ(s, αi), λ(s, βi) are the sums over Higgs and SM gauge bosons contri-

butions, which can be a function of the Mandelstam variable s. For further details,
see [5].

3 Results

3.1 Production Rate Densities and Evolution of FIMP Relic
Density

The freeze-in temperature is determined by the interactions between FIMPs and the
SM species involved. In particular, the temperature dependence of the production
rate densities tells us if the freeze-in happens at the lowest or highest scale of a
given cosmological period. This is what I want to emphasize in this section.
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The rate at which the number of DM particles change in a comoving volume
a3, with a the scale factor, is given by the Boltzmann fluid equation ṄDM =
RDM(t)a3, with NDM = nDMa3 the total number of DM particles and RDM(t)

the time/temperature-dependent interaction rate density, which in the case of the
freeze-in only account for production and not for loss of FIMPs. On the other hand,
the Hubble rate H(t) determines how the scale factor varies with time, H(t) = ȧ/a,
and since this quantity is proportional to the total energy density of the universe,
different species dominating the expansion lead to different final total number of
DM particles, as well as different time-temperature relations.

For a 12 → 34 process, the production rate density of species 3, in the limiting
case where species 1 and 2 have Maxwell–Boltzmann distributions, is given by
Dutra [5]

R12→34
3 ≡ n

eq

1 n
eq

2 〈σv〉 = S12S34

32(2π)6

∫
ds

√
λ(s,m2

3,m
2
4)

s

∫
dΩ13|M|2

× 2T√
s

√
λ(s,m2

1,m
2
2)K1

(√
s

T

)
,

(5)

In Fig. 2, I show the production rate densities of a scalar, fermionic, and vector
FIMPs (blue, green, and red curves, respectively), as functions of the inverse
of temperature. Generic features of the production rates are that, the higher the
temperature, the more DM is produced. Also, notice that the rates start to vanish
when the temperature of the thermal bath becomes smaller than the DM mass,

Fig. 2 Production rate densities of our FIMP candidates as functions of the inverse of the SM bath
temperature. We indicate by dashed lines where T equals mt ,ma and mDM, making it possible to
identify when the on-shell production of mediators and the Boltzmann suppression occurs. Also
pointed out are the approximate temperature dependencies of the rates
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which is the famous Boltzmann suppression. We can recognize the presence of the
poles of both components of the modulus, when the temperature of the thermal bath
equals their masses. We can also notice the weaker temperature dependence of the
production rate of a fermionic FIMP, due to the chirality flip. For completeness, I
point out in Fig. 2 the analytic approximations of the production rates in the limiting
cases where the mediators are much lighter, of the same order and much heavier
than the temperature of the SM thermal bath.

As previously stated, the relic density of DM depends on which species
dominates the cosmic expansion. While it is usual to assume that DM production
happened during a radiation-dominated era, in which H(T ) ∝ T 2, this might not be
the case in general. In inflationary theories, the universe had undergone a period of
entropy production called reheating in which it cools down slower and H(T ) ∝ T 4.
Such a period would happen from a moment when the temperature of the SM bath
reaches a maximal value TMAX up to the moment in which there is no more entropy
production, the so-defined reheat temperature TRH. We do not know the scale of
TRH, which could be as low as 4×10−3 GeV [6] and as high as 7×1015 GeV [7]. A
general study of freeze-in through heavy portals should therefore take into account
the possibility that the masses of mediators are at the reheating scale. So, as long as
we have a thermal bath of SM radiation, it starts producing DM. In this context, the
relic density of dark matter today receives a contribution from the reheating period
and from the radiation era [5]:

Ω0
DMh2 = mDM

2.16× 10−28

( ∫ TRH

T0

dT
g∗s

gs
√
ge

RDM(T )

T 6

+ 1.6 c Bγ g
−3/2
RH T 7

RH

∫ TMAX

TRH

dT g∗e
RDM(T )

T 13

)
.

(6)

It is easy to see from the equation above that if RDM ∝ T n for n < 5, the
production during radiation era is infrared (happens at the lightest scale available)
and if n > 5, it is ultraviolet (happens at the highest scale available, T > TRH). The
same is true for the production during reheating, where the power of temperature is
n = 12. This analysis is valid for an inflation which behaves as a matter content,
with w = 0. For the generic case where the inflation’s potential lead to w �= 0,
we refer the reader to Ref. [8]. Another quantity which depends on the specific
inflationary reheating model is the ratio TMAX/TRH, here set to 100. The larger this
ratio, the stronger the dilution due to inflation decay, which means the larger the
production rate for a given final value of relic density.

From the temperature dependence of the production rates pointed out in Fig. 2,
we can understand that the freeze-in of all the FIMP candidates happens at the
highest scale of radiation era, the reheating temperature (n > 5), except for the
case where the moduli are produced on-shell, which can make the relic density
raises again after levelling-off. Neglecting the production during reheating in such a
model leads to an underestimation in the relic density of many orders of magnitude,
as it was explicitly shown in the case of an on-shell exchange of spin-2 fields [9].
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Fig. 3 Evolution of the relic density of our FIMP candidates for the same parameters of Fig. 2.
This comes from the solution of Eq. (7) coupled to the evolution of the inflation and radiation
contents

Such an underestimation is strongly dependent on the masses of the mediators as
well as on the ratio TMAX/TRH.

In Fig. 3, we see the resulting evolution of the relic density, for the same set of
free parameters of Fig. 2. These are the solutions of the coupled set of Boltzmann
fluid equations for the evolution of DM, SM radiation, and inflation (driving the
reheat period). More specifically, the DM yield YDM = NDM/S evolves as

dYDM

dA
= RDM(A)

As(A)H(A)
− YDM

S

dS

dA
, (7)

with A ≡ aTRH the dimensionless scale factor and s the entropy density. It is the
second term which couples this equation to the evolution of the energy density of
the radiation and inflation contents [5].

We have fixed TRH = 1011 GeV and TMAX = 1013 GeV. In the presence of an
on-shell production of a mediator, the production of DM is enhanced and that is
why we see the relic density of vector and fermionic DM getting enhanced close to
the pole of the axial modulus. Of course, the final relic density needs to agree to the
Planck results, as I am going to show in the next section.

3.2 Agreement with Planck Results

We can now see the values of the new physics scale Λ and FIMP mass providing a
good relic density of DM today, as inferred by the Planck satellite [10]. In Fig. 4, the
reheating and maximal temperatures are set to 1010 and 1012 GeV. Since the relic



Fig. 4 Contours of good relic density in our free parameter slice comprised by the DM mass
(mDM) and the cut-off scale (Λ), which needs to be the highest scale available in our framework.
The enhancements in the production rates due to on-shell exchange of mediators need to be
compensated as to provide the same relic density value. In this slice, the rates can be lowered
by higher values of Λ. The gray region, corresponding to Λ above the Planck scale, is of course
no meaningful but shown for an overview of the contours’ behavior. We can see that the freeze-
in is able to produce the right amount of dark matter for moduli mediator and reheating scale at
intermediate scales
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density increases with DM mass, we need smaller overall couplings in order to not
overproduce the FIMPs and therefore Λ needs to be raised for a given relic density
value. Also, due to the exponential Boltzmann suppression, the thermal bath cannot
produce dark matter much before the time of maximal temperature and Λ is sharply
lowered as to compensate the suppressed rates. In the upper panel, the pole of the
axial modulus is reached inside the radiation era. Since it enhances the relic densities
of vector and fermionic DM candidates, we need higher values of Λ. Notice that the
curves for the fermionic DM depend strongly on the DM mass, due to the chirality
flip. In the lower panel, the exchange of a heavier real modulus suppresses more the
relic densities, so that we can have lower values of Λ, but still at intermediate scales.

4 Concluding Remarks

In this conference, I have discussed the case in which heavy moduli fields exchange
between visible and dark matter are the underlying physics of the feeble couplings
necessary for the freeze-in to happen. Such fields appear in many structural
extensions of the SM, and our results are expected to be embedded in more realistic
realizations. We have seen that if the temperature dependencies of the production
rates of FIMPs are strong enough, which can be achieved in effective models with
derivative couplings, FIMPs would have already been produced at the start of the
radiation era. As an interesting outcome, in a wide range of our parameter space
a good relic density is “naturally” achieved for scalar, fermionic, and vector FIMP
candidates with the moduli masses at intermediate scales, and for reasonable scales
of new physics.
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Unified Superfluid Dark Sector

Elisa G. M. Ferreira

Abstract In this talk I present a new model of a unified dark sector, where late-time
cosmic acceleration emerges from the dark matter (DM) superfluid framework. We
will start by reviewing the dark matter superfluid model and show how it describes
the dynamics of DM in large and small scales. Then we will show that if the
superfluid consists of a mixture of two distinguishable states with a small energy
gap, such as the ground state and an excited state of DM, interacting through a
contact interaction a new dynamics of late-time accelerated expansion emerges in
this system, without the need of dark energy, coming from a universe containing
only this two-state DM superfluid. I will show the expansion history and growth
of linear perturbations, and show that the difference in the predicted growth rate in
comparison to ΛCDM is significant at late times.

Keywords Superfluid dark matter · Unification

1 Introduction

Our concordance model, the ΛCDM model, exhibits an outstanding agreement
with current large scale cosmological observations [1–3]. In this model the present
accelerated expansion is described by a cosmological constant, and the dark matter
(DM) is described in the hydrodynamical limit as a fluid with negligible pressure
and sound speed, with, at most, very weakly interaction with baryonic matter,
the Cold Dark Matter (CDM). However, this simple coarse grained description
of those components presents some challenges. The cosmological constant is
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problematic since its smallness is vexing given its radiative instability under
quantum corrections [4]. On small scales, a number of challenges have emerged
for this hydrodynamical description of the CDM [5], with the most striking being
the scaling relations like the mass discrepancy acceleration relation (MDAR), which
correlates the dynamical gravitational acceleration inferred from rotation curves and
the gravitational acceleration due to baryons only [6, 7].

There is a debate about the explanation for these curious relations on small scales.
Within ΛCDM model it is claimed that it can be solved by the inclusion of baryonic
feedback effects in simulations (see [8] for a review). An alternative is to modify
the behavior of DM on small scales while maintaining the successes of CDM on
large scales. Ultra-light fields have emerged as an alternative DM scenario with a
different mechanism to explain the dynamics on small scales where DM forms a
Bose–Einstein condensate (BEC) or a superfluid in galaxies (for a review [8] of this
class of models). One model that accomplishes that is the DM superfluid [9, 10],
where sub-eV mass particles with sufficiently strong self-interactions thermalize
and condense in galaxies. On top of that for a certain superfluid equation of state
and in the presence of coupling of the DM phonons to baryons, this theory’s effective
Lagrangian is similar to the MOND scalar field theory [11] that leads to a modified
dynamics inside galaxies similar to Milgrom’s empirical law1 [12] known to explain
and predict these scaling relations.

An interesting question is if the late-time cosmic acceleration can also emerge in
the DM superfluid framework, as yet another manifestation of the same underlying
substance. We show here that it is indeed possible if we consider that the DM is
composed by a mixture of two superfluids, which can be in two different states of the
same superfluid, that are in contact and interacting through a contact Josephson-like
interaction [13], converting one species into the other. For the phonons that describe
the superfluid this interaction appears as an oscillatory potential that drives the late-
time acceleration. The unified vision of the dark sector is attractive for its simplicity,
given that in this model needs DM in the form of a superfluid alone to describe both
the DM behavior on large and small scales, and the late-time acceleration.

The DM superfluid model and the unified framework present a series of
observational consequences [9, 10, 14] that successfully explain some observational
challenges in galactic dynamics, cosmological evolution or present new interesting
phenomenological consequences.

1This empirical law states that the total gravitational acceleration a is approximately the Newtonian
acceleration aN due to baryonic matter alone, in the regime aN � a0, and approaches the geometric
mean

√
aNa0 whenever aNλa0.
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2 Review of Dark Matter Superfluid

Superfluidity is one of the most striking quantum mechanical phenomena on
macroscopic scales. It appears in fluids that when brought to very low temperatures,
form a Bose–Einstein condensate, now described by a single wave-function of
systems coming from the superposition of the de Broglie wavelength of these
bosons. The emergent degree of freedom of this collective system has an emergent
new dynamics: it flows without friction.

We want to use the physics of superfluidity to build a model of DM that on
central region of galaxies DM condenses forming a Bose–Einstein condensation
with a superfluid phase. The necessary conditions for condensation, assuming
weakly coupling, are that de Broglie wavelength λdB ∼ 1

mv
must be larger than

the mean inter-particle separation � ∼ (m/ρ)1/3, and that particle should interact
enough to thermalize. The first condition translates to an upper bound on the mass,
m � (ρ/v3)1/4, which for a MW-like galaxy (M = 1012M3) results in m � 4.3 eV.
The second condition requires that the particles interact strongly. An axion-like
particle that obeys these conditions condenses on the central regions of galaxies,
forming a core, which is enveloped by DM particles that are not condensed and
behave like CDM having the usual NFW profile.

After we guaranteed the conditions for DM to condense on galactic scales, we
need to describe the evolution of the superfluid. A superfluid is described by a
weakly self-interacting field theory of a complex field Ψ ∝ ρeiΘ with global U(1)
symmetry. This symmetry is spontaneously broken by the superfluid ground state of
a system at chemical potential μ, so that Θ = mt + θ . At low energy the relevant
degrees of freedom are phonons, which are excitations of the Goldstone boson θ for
the broken symmetry. The effective theory of phonons must be invariant under the
shift symmetry, θ → θ+c, and Galilean symmetry, appropriate for a non-relativistic
superfluid. Therefore, its most general form at leading order in derivatives and zero
temperature is given by:

Lphonons = P(X) ; X = θ̇ −mΦ − ( "∇θ)2/2m, (1)

where Φ is the gravitational potential. The equation of state of the superfluid is
encoded in the form of P(X), and the phonon sound speed is given by c2

s =
P,X

ρ,X
= 1

m

P,X

P,XX
. Superfluids are often described by a polytropic equation of state,

P(X) ∼ Xn, corresponding to P(ρ) ∼ ρ
n

n−1 . Written in this form, we can describe
a standard weakly coupled superfluid (BEC DM), for n = 2; for n = 5/2 this
effective theory describes the Unitary Fermi Gas, a gas of ultra-cold fermionic atoms
tuned at unitary.

In the case of the DM superfluid, since we want to reproduce MOND on galactic
scales, this corresponds to n = 3/2, which gives the expected equation of state for
MOND, P ∼ n3. One extra ingredient is necessary in order to mediate the MOND
force, is that the phonons couple to the baryon mas density. The action for the DM
superfluid is given by LDM = PDM(X)+ Lint where
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PDM(X) = 2Λ(2m)3/2

3
X
√|X| , Lint = αΛ

θ

MPl
ρb (2)

where α is dimensionless coupling constant. The square-root form also ensures that
the Hamiltonian is bounded from below. This phenomenological interaction term
breaks shift symmetry softly.

With this description in hand, we can obtain the halo profile. In the center regions
of the halo, we have the superfluid region, where phonon gradients dominate,2

the phonon-mediated acceleration matches the deep-MOND expression aphonon =√
a0ab, where ab is the Newtonian gravitational acceleration due to baryons only.

The critical acceleration a0 is related to the theory parameters as a0 = (α3Λ2)/MPl.
The total force experienced by baryons is the sum of the phonon-mediated force,
and the Newtonian gravitational acceleration due to baryons and the DM condensate
itself.

3 Unified Dark Superfluid

In this section, we are going to generalize the above model to two non-relativistic
superfluid species, described in terms of two distinct phonon excitations, each
given by an effective Lagrangian like (1). For instance, these could represent two
distinguishable states of DM with slightly different energies, ΔEλm, such as a
ground state (represented with subscript 1) and an excited state (2). The theory of
the mixture of these two states has a U (1) × U (1) global symmetry, describing
particle number conservation of each species separately. We assume that these
species have a contact interaction, the simplest and ubiquitous possible interaction,
of the form Lint ∝ −

(
Ψ ∗

1 Ψ2 + Ψ ∗
2 Ψ1

)
/ |Ψ1| |Ψ2|. At low energies, this translates

into a potential for the phonons:

V (θ2 − θ1 +ΔE t) = M4 [1+ cos (θ2 − θ1 +ΔE t)] . (3)

This is the known and well studied in condensed matter systems Josephson or Rabi
coupling. Now number density is not conserved alone anymore, n 
 P1,X1 +P2,X2 ,
but there is the possibility of conversion between species. Consistent with the non-
relativistic approximation we assume that ΔEλmi , and that the mass splinting is
large in comparison to θ̇2 − θ̇1, so V (θ2 − θ1 +ΔE t) ∼ V (ΔE t).

In the non-relativistic approximation, the pressure is given by P = P1(X1) +
P2(X2)− V (ΔE t) and the energy density of the superfluids is

2The phonon effective field theory breaks down for large phonon gradients, like in the vicinity of
stars (e.g. in our solar system). For a more detailed, see Sect. 5 of [9].
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ρ = 1

2
(m1 +m2)n

︸ ︷︷ ︸
ρ+

+ 1

2
ΔE

(
P1 ,X1 − P2 ,X2

)

︸ ︷︷ ︸
ρ−

+V (ΔE t) . (4)

The adiabatic sound speed of each species, governing the growth of perturbations,
is c2

s i = Pi ,Xi
/(miPi ,XiXi

), where Pi ,XiXi
≥ 0 to ensure the c2

s i > 0.
With that, the Friedmann equations for a spatially flat universe can be written, in

the non-relativistic approximation as:

3H 2M2
Pl = ρ+ + ρ− + V (ΔE t) , ḢM2

Pl 
 −(1/2) (ρ+ + ρ−) . (5)

The energy density ρ+ redshifts like matter and represents the conservation of
number density of DM particles, ρ− evolves under the influence of the potential
and the potential term evolves as dark energy. In the case n = 2, the BEC DM,

P(Xi) = Λ4
i

X2
i

m2
i

, the “+” can be thought as the energy density for the sum of the

phases and “−” for the difference. This can be recast in the canonical variables3

representing the two states of the superfluid: ξ = (1/N)(N2
1 θ1 + N2

2 θ2) and

χ = (N1N2/N)(θ1 − θ2), with Ni = Λ2
i /mi and N =

√
N2

1 +N2
2 .

The Friedmann equations can be combined leading to a universal equation for
the Hubble parameter:

2Ḣ + 3H 2 = V (ΔE t)/M2
Pl . (6)

From this equation, we can see that during matter domination the potential
is not important and the density redshifts as matter; for late times, when the
potential becomes dominant, so to ensure that the slow-roll approximation holds
for the acceleration we need ΔE/2H0λ1, which implies, for n = 2, that Λ �√
Mpl(m1 +m2)/2 and that the decay constant, the scale of the spontaneous

symmetry breaking fχ , is super-Planckian as in the case of pNGB models.
We can see in Fig. 1 the evolution of the unified model in comparison to

the concordance model, choosing M4 = 2M2
plH

2
0 ∼ meV4, in order to have

acceleration today; and ΔE/2H0 = 0.2. Our model evolves like ΛCDM until times
close to today, describing the matter era and the late-time acceleration, evolving in
a distinct way in the future.

4 Growth of Density Inhomogeneities

A viable alternative to the ΛCDM model must not only reproduce the evolution of
the background, but it should be able to describe the growth of density perturbations

3Coming from the diagonalization of the Lagrangian at leading order in ΔE/miλ1.
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Fig. 1 Hubble parameter H as a function of time for our model (blue solid curve) for our model
in comparison to the ΛCDM model (black dashed curve)

that leads to the structures we observe in our universe. In this section we turn to the
analysis of density perturbations.

For simplicity we will focus on the BEC DM superfluids. Since our theory
describes two interacting superfluids, it is instructive to write down their equations
of motion in terms of fluid variables. The continuity and Euler’s equations are first-
order equations, hence to derive them we must work in the Hamiltonian description.
The density is given by ρξ = Λ2Πξ and ρχ = (Λ2

1Λ
2
2/Λ

2)(ΔE/m)Πχ , with
Πi = ∂L/∂i̇ where i = ξ, χ . Because these were derived in the weak-field
approximation, they can be applied to the cosmological context in the free-falling
coordinate system (valid for H�λ1) of the Friedmann–Robertson–Walker (FRW)
metric: ds2 = −(1+ 2Φ)dt2 + (1− 2Ψ )d"�2, where � is the proper distance related
to the coming distance x by the scale factor, "� = a(t)"x.

Each fluid density can be decomposed into a background piece and an inhomo-
geneous term: ρξ = ρ̄ξ (t) + δρξ ("x, t) and ρχ = ρ̄χ (t) + δρχ("x, t). Note that δρξ

and δρχ are not assumed small at this stage. In this expanding coordinate system,
the background densities obey the equations:

˙̄ρξ + 3Hρ̄ξ = 0
˙̄ρχ + 3Hρ̄χ = −ΔE V ′ (ΔE t)

 ⇒ ˙̄ρ+3Hρ̄ = −ΔE V ′ (ΔE t) , (7)

where ρ̄ = ρ̄ξ + ρ̄χ . This confirms, in particular, that ρ̄ξ describes dust and redshifts
as 1/a3. Meanwhile, the evolution of ρχ is influenced by the potential. To study the
evolution of the background energy density, we solve these equations starting at
matter-radiation equality. We will set m = (m1 + m2)/2 = 1eV and Λ1 = Λ2 =
500 eV. The initial condition for ρ̄ξ and ρ̄χ , or for the ground or excited state of the
superfluid depends on how the energy gap ΔE compares to the DM temperature at
matter-radiation equality, which depends on the production mechanism of our DM
particles. For ΔE = 5×10−11eV, Teq ∼ 10−26 eVλΔE, all the matter density is in
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energy (dotted gray)

the ground state θ1: ρ̄ eq
ξ 
 ρeq = 0.4 eV4. In Fig. 2 we separate the energy densities

of each degree of freedom of the superfluid mixture and the energy density of the
potential. The sum of the two superfluid species gives the total DM density. This is
only for illustrative purposes, since all of these quantities represent the same fluid.
We can see that close to today we have the transition from a matter dominated period
to an accelerated expansion, as matter redshifts away and the potential dominates.
However, since the potential oscillates and induces conversion of species, eventually
the other species of the superfluid dominates in the future and we will have a new
matter domination period. Given the oscillation of the potential, this change might
occur many times in the future.

Now, we are interested in analyzing the perturbations relative to the total
background density, defined as δi ≡ δρi/ρ̄ with i = ξ, χ . The fully non-
linear equations for the perturbations that describe the Newtonian hydrodynamical
equations in an expanding universe can be written as:

δ̇ξ + 1

a
"∇ ·
((

ρ̄ξ

ρ̄
+ δξ

)
"vξ
)
− 1

a
"∇ ·
((

ρ̄χ

ρ̄
+ δχ

)
"v
)
= ΔE V ′

ρ̄χ

δξ ;

"̇vξ +H "vξ + 1

a

(
"vξ · "∇

)
"vξ = − ρ̄

Λ4

"∇δξ

a
− "∇φ

a
;

δ̇χ + 1

a
"∇ ·
((

ρ̄χ

ρ̄
+ δχ

)
"vξ
)
= ΔE V ′

ρ̄χ

δχ ; (8)

"̇vχ +H "vχ + 1

a

(
"vχ · "∇

)
"vχ − 1

a

(
"v · "∇

)
"v = − Λ4ρ̄

Λ4
1Λ

4
2

( m

ΔE

)2 "∇δχ

a
− "∇φ

a
,
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where the velocities are given by "vi("l/a(t), t) = "ui −H "l, with uξ = −"∇ξ/Λ2 and

vχ = −(Λ2/Λ2
1Λ

2
2)(m/ΔE) "∇χ , plus Poisson’s equation, "∇2Φ = a2

2M2
Pl
ρ̄ δ.

We can simplify these equations by taking the linear regime, where δi and vi
are small. We can also ignore the spatial gradients, since both cs,iλ1. We can then
combine the above equations into the equation for the density perturbations:

δ̈ +
(

2H − ΔE V ′

ρ̄

)
δ̇ = 1

2M2
Pl

ρ̄ δ + ΔE V ′

ρ̄

(
5H + ΔE V ′

ρ̄

)
δ, (9)

The total velocity evolves as "̇v +H "v 
 0, which redshifts as 1/a.

5 Observational Signatures

Although our model has an evolution that is very close way to ΛCDM, it predicts
distinct observational implications. We cite some of those in this section.

Growth of Structures The potential has a distinct evolution than the one of a cosmo-
logical constant, affecting also the evolution equations for the density perturbations.
This change is explicit in the growth rate, f (z) ≡ −d ln δ(z)/(d ln(1+ z)), a
quantity that is interesting since various probes of structure formation are sensitive,
which is shown in Fig. 3. We can see that the unified model has a smaller growth rate
today than ΛCDM, which is caused by the potential which is increasing with time,
suppressing more structure formation than in ΛCDM. This difference is around

Fig. 3 Growth rate with respect to the redshift for our model (solid blue line), and the prediction
for ΛCDM (dashed gray line), with initial condition at equality δeq = 10−5. The fractional
difference between our model and ΛCDM can be seen in the small box
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10% today, for the parameters chosen for the model, which is a difference that can
be probed by future experiments.

Vortices Quantum vortices are a prediction of superfluids rotating faster than the
critical angular velocity and its measurements would be a smoking gun for the
superfluid model. To calculate the abundance and properties of those vortices, it
is necessary to have a full microscopic description of the superfluid. This topic is
worth further investigation since the detection of such effect would be an important
evidence for the presence of superfluids in galaxies.

For a review of other effects of the DM superfluid in galaxies and clusters, one
can see [8, 9, 14]
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de Sitter Vacua in the String Landscape:
La Petite Version

Keshav Dasgupta, Maxim Emelin, Mir Mehedi Faruk, and Radu Tatar

Abstract In this review we argue that four-dimensional effective field theory
descriptions with de Sitter isometries are allowed in the presence of time-dependent
internal degrees of freedom in type IIB string landscape. Both moduli stabilizations
and time-independent Newton constants are possible in such backgrounds. However
once the time-dependences are switched off, there appear no possibilities of
effective field theory descriptions and these backgrounds are in the swampland.

Keywords String theory · M-theory · de Sitter vacua · Flux compactifications

1 Introduction

The late time (quasi-)de Sitter vacuum is a desired consequence of any UV
complete theory of quantum gravity, therefore one would expect its appearance
in string theory. Earlier attempts to reproduce such a vacuum in the context of
type II theories [1] have had some successes although more recently various
questions have been raised (see, for example, [2–4]) regarding the validity of such
computations. The answers to some of these objections are attempted in [5] and
[6], mostly by clarifying the role of anti D3-branes as one of the key ingredients
in realizing a four-dimensional de Sitter vacuum. A more serious objection, not
just against the computations of [1], but against the very existence of de Sitter
vacua in the string landscape, has been recently raised in [7] claiming that string
theory prefers quintessence instead of an inflationary evolution towards a late time
de Sitter vacuum. The situation is rather paradoxical because objections against
models of quintessence were around from early on, and more recently [8] showed
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that the swampland criteria of [7] are in fact inconsistent with simple models
of quintessence. More general arguments against swampland criteria themselves
have also been raised mostly concerning their implications on cosmology (see, for
example, [9]), or their implications on general effective field theories [10]. The latter
paper in fact questioned the ad hoc nature of the criteria themselves. As a response
to these objections, in [11], the criteria were given a slightly formal derivation using
the trans-Planckian problems first raised for inflationary cosmology in [12]. The
original swampland criteria of [7] are then elevated to a Trans-Planckian Censorship
Conjecture (TCC), meaning that the validity of the criteria [7] rely on censoring the
trans-Planckian modes in a theory of quantum gravity because these modes have
non-unitary evolutions. Whether this is really a problem in string theory, where we
expect a well-defined behavior at short distances, remains to be seen.

In this review, which basically summarizes some parts of [13] and [14], we
will argue that if the internal degrees of freedom in a type IIB compactification
with four-dimensional de Sitter isometries remain time-independent, then there is
no four-dimensional effective field theory description possible. Such backgrounds
may truly be in the swampland, thus providing some credence to [7]. However once
the internal degrees of freedom become time-dependent (but preserving the four-
dimensional Newton constant), then an effective field theory description becomes
possible.

2 How Hard Is to Get a de Sitter Vacuum in String Theory?

Let us consider two sets of backgrounds: one, in which we allow a four-dimensional
de Sitter space with a flat slicing and an internal six-dimensional compact space with
time-independent warp-factors; and two, a similar compactification but now with an
internal six-dimensional space with time-dependent warp-factors. Additionally, for
the first case we allow all internal degrees of freedom to be time-independent (the
internal degrees of freedom being the three and five-form fluxes; as well as the axio-
dilaton), whereas for the second case we allow all internal degrees of freedom to
be time-dependent. In both cases however we keep vanishing axion but constant
dilaton. Question is which of these two backgrounds would solve the equations of
motion in type IIB theory?

In the absence of quantum corrections, even if we allow fluxes, branes, anti-
branes, and/or orientifold planes, neither of the two backgrounds can solve the sugra
equations of motion as was shown in [15] and [16]. This is of course a consequence
of the no-go theorem first proposed in [17]. The situation becomes more interesting
when quantum corrections are added in. The naive expectation would be that once
a sufficient number of quantum terms are added in, either of the two backgrounds
should solve the equations of motion. Unfortunately this expectation did not quite
turn out to be correct as was first demonstrated in [16] and [13]. In the absence
of time-dependent internal degrees of freedom, the equations of motion can never
be solved because the quantum corrections do not lead to an effective field theory
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description in four-dimensions with de Sitter isometries [13, 14, 16]. Thus these
backgrounds are truly in the swampland [7]. On the other hand, once the internal
degrees of freedom become time-dependent, miraculously the effective field theory
description reappears [13, 14].

Why is this the case? The answer can be ascertained from many angles, but
we shall adopt the strategy of uplifting the IIB background to M-theory and then
studying the dynamics from there. The reason for choosing M-theory as opposed
to IIB is not just for the sheer compactness of the representation of the degrees of
freedom (the number of degrees of freedom of course does not change from IIB
to M-theory), but also for the fact that M-theory allows a Lagrangian formulation
(even with non-local counter-terms, as we shall discuss a bit later) as opposed
to IIB, where a Lagrangian formulation is harder to come by. Existence of a
Lagrangian formulation then allows us to express the most generic form of the
quantum corrections as a series in polynomial powers of four-form flux components
and Riemann curvature tensors as well as with spatial and temporal derivatives as
shown in eq. (2.6) of [14]. The spatial derivatives are with respect to the internal
eight-manifold which is an orbifolded torus fibered over the six-dimensional base
that we have in the IIB side. The existence of an effective field theory in lower
dimensions then depends on whether the quantum series allows a hierarchy or not.
This hierarchy should of course be with respect to Mp, but also with respect to any
other relevant expansion parameter. The only other allowed expansion parameter is
the type IIA string coupling gs , so the question of hierarchy boils down to finding a

finite number of operators at any order in g
|a|
s /Mb

p, where (a, b) ∈
(
Z

3 ,Z
)

, and the

1/3 moding has been explained in [13, 14]. Note that while b can have any sign, we
take only positive powers of gs . This is because all the negative powers of gs can be

resummed into powers of exp

(
− 1

g
1/3
s

)
, taking the expected non-perturbative form

and expressing the full set of corrections as a resurgent trans-series.
All of these would make sense when gs 2 1. As a happy coincidence, the type

IIA coupling gs turns out to be related to the dimensionless temporal coordinate
in the IIB side (the dimension being determined by the cosmological constant Λ).
This means at late time, where we expect Λ|t |2 to vanish (recall that we are in the
flat slicing), the type IIA string coupling gs also vanishes, implying that the weak
coupling limit is also the late time limit in our case. This is good, but the fact that
gs now becomes time-dependent implies that one needs to deal with the quantum
series (eq (2.6) in [14]) much more carefully. In fact one would also have to assign
certain temporal dependences of the background G-flux components in M-theory. A
simple ansatz for the G-flux is given in eq. (2.5) of [14] where, note that, we have
traded the temporal dependences with gs dependences. This means generically all
degrees of freedom may be expanded into a series of perturbative as well as non-
perturbative gs-dependent terms. At late time, the non-perturbative terms decouple,
so we are left with a perturbative series in gs .

A careful study of the quantum series then reveals the following interesting fact.
One can easily isolate the dominant gs coefficient of the quantum series, which we
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henceforth express as g
θk
s , with θk is as given by eq. (2.10) in [14]. This is expressed

in terms of polynomial powers of the curvature tensor and G-flux components
(which are denoted in eq (2.10) in [14] by li ∈ Z); parameters ki ∈ Z

2 that denote
how the gs dependences of the various G-flux components are expressed in eq.
(2.5) of [14]; as well as on n0 and n1,2,3, the former being related to the number
of temporal derivatives and the latter to the number of internal spatial derivatives
in the quantum series given as eq. (2.6) of [14]. If the G-flux components are time-
independent (i.e. when ki = 0), then θk , which we write as θ0, is as in eq. (2.11) of
[14].

The important thing to note now is the difference between eq. (2.10) and eq.
(2.11) in [14]. If k1 � 0, k2 � 3

2 and n3 = 0, then eq. (2.10) has no relative minus
signs, whereas eq. (2.11) does have relative minus signs. Interestingly switching on
n3, i.e. derivatives along the toroidal directions, both the expressions have relative
minus signs. For the time being let us assume that we have switched off n3 (we
will come back to non-zero n3 just a bit later). In that case, the gs scalings of the
energy-momentum tensors along the various directions in M-theory (i.e. along the
space-time, internal six-manifold, and the internal toroidal directions) now become
eq. (2.12) of [14]. What does that imply?

Let us take the 2+1 dimensional space-time directions to clarify the implications
of the above gs scalings. The energy-momentum tensors of the quantum terms will
appear on the RHS of the Einstein’s equation. The gs scalings of the Einstein as
well as of the classical G-flux terms can be shown to scale as g0

s , i.e. they are at
zeroth order in gs (there is some subtlety associated with the scaling as shown in
section 4.1 of [13]). Now comparing the gs scalings of the quantum terms along
the space-time directions, i.e. eq. (2.12) of [14], we see that θk = 8

3 , implying that
the quantum terms are constructed out of eighth order polynomials in curvature and
G-flux components. This seems like a marvellous thing, until we notice that for the
time-independent case the equations θ0 = 8

3 do not have a finite number of integer
solutions for (li , n1,2, n0). The loss of finiteness is precisely because of the presence
of relative minus signs in the expression for θ0 in eq. (2.12) of [14]. On the other
hand, with θk = 8

3 in eq. (2.11), there are no relative minus signs (we have made
n3 = 0), so there is only a finite number of operators to zeroth order in gs .

Such a conclusion would appear to immediately rule out the time-independent
compactifications, because allowing an infinite number of operators means that we
have lost gs hierarchy. However the scenario is a bit more subtle than what appears at
face-value. In fact a careful analysis reveals a few caveats. First is of course the case
with n3 > 0. Second, and this may be more important, all the quantum terms (finite
or infinite) at zeroth order in gs have different Mp suppressions. Thus although we
have lost our gs hierarchy for the time-independent case, we seem to still retain an
Mp hierarchy in the system. Could we then just make Mp → ∞ and get rid of
operators suppressed by higher powers of Mp and retain a finite set of operators for
both time-dependent and time-independent cases, respectively? What goes wrong
with such a line of reasoning?
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The answer lies in the careful mapping between the degrees of freedom of IIB in
M-theory. For example not all G-flux components can be allowed without breaking
the four-dimensional de Sitter isometries in the IIB side. In particular, if we allow the
internal G-flux components with two components along the toroidal directions, they
cannot be global fluxes. In fact they can only be localized fluxes so that they appear
as gauge fluxes on seven branes in the IIB side (the seven branes being related to
the orbifold points in M-theory). In the simplest case, the localized pieces of the G-
flux components can be viewed as a Gaussian over the toroidal space. The spread of
such Gaussian pieces is measured in terms of Mp, at least for the time-independent
cases, implying that the localized fluxes could in principle have hidden Mp scalings
implicit in their definitions themselves. Such Mp scalings are in general harmless
because they do not interfere or change the Mp suppressions of the quantum terms.
However, the quantum terms, i.e. eq. (2.6) of [14], do also have derivatives along the
toroidal directions which we called n3 earlier. If we switch on these n3 derivatives,
we see that now they are able to influence the Mp scalings of the quantum terms!

As shown in [14], the n3 derivatives change the Mp scalings of the quantum terms
in an interesting way: they introduce a relative minus sign there. The gs scaling θ0
already had their share of minus signs, and now putting everything together we can
ask, for the time-independent case, how many operators are allowed at zeroth order
in gs and Mp (we can even ask at zeroth order in gs but second order in Mp). The
answer is as shown in eq. (2.23), defined in terms of certain variables that may be
expressed in terms of (li , ni, n0) in eq. (2.16), both equations being from [14]. The
worrisome thing is the relative minus signs in eq. (2.23) whose RHS is 8, related
to the eighth order polynomials in curvature and G-flux components. There are an
infinite number of integer solutions to this equation, all to zeroth order in gs and Mp.
Now we have clearly lost both the gs and Mp hierarchies, implying that there cannot
be an effective field theory description in the IIB side with de Sitter isometries and
with time-independent internal degrees of freedom.

The above conclusion is definitely intriguing, but couldn’t we say the same thing
for the time-dependent cases too when we switch on the n3 derivatives? Why should
the time-dependent cases be any different? Answering this will take us to the second
level of subtleties in our construction, that we hitherto kept under the rug.

In the time-dependent case, most of the arguments related to the localized fluxes
go through in a similar way to the time-independent case. However there are now
a few subtle differences. The first difference lies in the scale of the Gaussian
spread of the localized function. As shown in eq. (2.25) in [14], the Gaussian
spread now involves both gs and Mp, simply because the distances are measured
in terms of warped metric components (that involve gs dependences). This means
the n3 derivatives in the quantum terms of eq. (2.6) will contribute to both gs and
Mp scalings. We already discussed how the Mp scalings change, so the question
now is whether the change in the gs scalings can alter our earlier conclusion. The
answer turns out to be a bit more subtle. If the G-flux ansatz for the localized
flux, as given by eq. (2.15) and eq (2.25) of [14], has gs independent coefficients
(i.e. An0 in eq. (2.25)), then even the extra gs contributions from n3 derivative
cannot change the conclusion. The reason is simple to state: with time-independent
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coefficients we are as though allowing gs independent pieces in our original G-flux
ansatz eq. (2.5) of [14]. This would be like having k2 = 0 in eq (2.6) of [14],
leading to the above-mentioned problems. Thus the coefficients of the localized
G-flux components should also have gs dependent factors. Such factors easily
arise by simply normalizing the localized functions! Putting everything together
immediately reproduces eq. (2.28) of [14], implying finite number of operators at
zeroth orders in gs and Mp with time-dependent internal degrees of freedom.

The story does not end here because M-theory could also have non-local quantum
terms, these terms are sometime christened as non-local counter-terms. A simple
way to infer their presence is to go to the infinite derivative limits of eq. (2.6) in
[14]. More generic form of non-localities are possible in the limit where (n0, ni)
themselves become negative. Such negative-derivative actions may be rewritten as
nested integrals as shown in [13] and [14], thus allowing a Lagrangian formulation
of the scenario. One however needs to be careful in introducing such terms because
we do not expect the non-localities to show up in the low energy limit of M-theory.
The validity of the non-local quantum terms has been discussed in great details in
[13], and we urge the readers to look up the discussions therein. What we want to
question here is what happens to the two cases once we switch on these non-local
quantum terms.

The answer as meticulously shown in section 3 of [14], to any given order in
g
|a|
s /Mb

p, there are only finite number of operators possible when all the internal
degrees of freedom become time-dependent, whereas the number of such operators
tend to become infinite once time-dependences are switched off. These have been
demonstrated in figure 1–4 in [14], where moving vertically down in any figure
counts the number of operators. The vertical axis in each figure represents the level
of non-locality (i.e. how many nested integrals are taken into account), and the
horizontal axis represents the Mp scalings. Thus it appears that non-localities do
not seem to change the generic idea that four-dimensional effective field theory
description with de Sitter isometries remains valid whenever the internal degrees of
freedom become time-dependent, but fails when the time-dependences are switched
off. Interestingly all of these happen while still keeping the four-dimensional
Newton constant time-independent.

There are many other questions that may be asked at this stage, for example: How
are the moduli stabilized? How are the equations of motion satisfied? How does the
flux quantization, and anomaly cancellation work out in the time-dependent cases?
All of these have been answered, and to preserve the brevity of the note we will refer
the interested readers to our longer works [13] and [14]. We will however make two
comments, one, related to the quantum potential as it appears in eq. (2.7) of [14] and
two, related to the possibility of realizing inflation in our construction.

The quantum potential, with contributions from both local and non-local quan-
tum terms, gives rise to an exact expression for the renormalized cosmological
constant Λ as given in eq. (4.1) of [14]. This contribution appears from the zeroth
order in gs and second order in Mp (i.e. to order g0

s /M
2
p once we assume the non-

local contributions are suppressed by the toroidal volume in M-theory). Why don’t
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the higher order quantum terms contribute to the cosmological constant? The answer
as detailed in [13] and [14] is easy to see: at higher orders in gs we also switch on
other G-flux components that appear at higher orders in k in eq. (2.5) of [14]. These
components back-react on the geometry creating negative gravitational potentials.
These negative gravitational potentials are then exactly cancelled by the positive
contributions from the quantum potential at higher orders in gs in such a way that
the zeroth order cosmological constant remains unaltered.

The final comment is on the possibility of realizing inflation on our set-up. It
has been claimed in [18] that warm inflation may indeed be outside the swampland.
Here however we want to comment on the possibility of using the time-dependences
to allow for some variant of the D3-D7 inflationary model of [19], the D7-branes
in IIB appearing from the orbifold points in M-theory and the D3-branes appearing
from the M2-branes that we require the cancel anomalies in the system. This of
course calls for a F-theory uplift of our IIB picture, so a natural question is to see
whether the M-theory and F-theory connection could be made more precise with
time-dependent internal degrees of freedom. It would also be interesting to compare
our answers with those of [20].

3 Discussion and Conclusion

In this short note we have summarized some of the contents of [13] and [14]
related to the possibility of the existence of four-dimensional effective field theory
description with de Sitter isometries and time-dependent internal degrees of freedom
in IIB. However there are still questions related to the exact meaning of Wilsonian
effective actions in such spaces, for example, how the time-dependent degrees of
freedom are integrated out, and whether the de Sitter solutions that we have could be
interpreted as vacua or coherent states over some supersymmetric solitonic minima.
Additionally, the precise connection to TCC needs to be spelled out, maybe along
the lines of the recent work [21]. All these and other advances show that this is
indeed an exciting time for cosmology.
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Intensity Mapping: A New Window into
the Cosmos

Hamsa Padmanabhan

Abstract The technique of intensity mapping (IM) has emerged as a powerful
tool to explore the universe at z < 6. IM measures the integrated emission from
sources over a broad range of frequencies, unlocking significantly more information
than traditional galaxy surveys. Astrophysical uncertainties, however, constitute an
important systematic in our attempts to constrain cosmology with IM. I describe
an innovative approach which allows us to fully utilize our current knowledge of
astrophysics in order to develop cosmological forecasts from IM. This framework
can be used to exploit synergies with other complementary surveys, thereby opening
up the fascinating possibility of constraining physics beyond ΛCDM from future IM
observations.

Keywords Intensity mapping · Cosmology · Large-scale structure

1 Introduction

Intensity mapping (IM) has emerged as a novel, powerful probe of cosmology
over the last decade (e.g., [4]). In this technique, the aggregate intensity of
spectral line emission is mapped out to probe the underlying large-scale structure,
without resolving individual systems. This offers a three-dimensional picture of the
formation and growth of baryonic material (primarily neutral hydrogen—HI), with
the frequency dependence tracing their redshift evolution. In contrast to traditional
galaxy surveys, which reach their sensitivity limits at z ∼ 2, probing only about
a few percent [6] of the comoving volume of the observable universe, IM has the
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potential to directly access the exciting ‘dark ages’ of the universe (z ∼ 1000− 30)
immediately following the decoupling of radiation and matter, the formation and
turning on of the first luminous sources (z ∼ 30 − 15), and, ultimately, the epoch
of reionization: the second major phase transition of (almost) all the cosmological
baryons (believed to have completed around z ∼ 6). IM can also provide valuable
insights into astrophysical phenomena on smaller scales: probing the interstellar
medium (ISM), the site of active star formation in most normal galaxies, through
mapping the carbon monoxide (CO) line emission (which acts as a tracer of
molecular hydrogen, H2, e.g., Ref. [8]) and the 158 μm fine structure transition
of the [CII] species (singly ionized carbon; e.g., Ref. [9]).

Besides offering exciting astrophysical insights, the unique ability of IM to
efficiently probe vast volumes of the universe makes it an ideal probe of cosmology
and fundamental physics—such as modified gravity and dark energy models, the
nature of dark matter, inflationary scenarios and several others. However, due to
the complex interplay between astrophysics and cosmology in IM surveys, this
requires a precise quantification of the impact of astrophysics on the robustness
of cosmological constraints. In this article, we summarize recent work exploring
various facets of this inter-relationship, specifically focussing on the effect of
astrophysical uncertainties on the precision and accuracy of cosmological forecasts
from future IM surveys. We also describe how such analyses can open up the
fascinating possibility of using IM to constrain physics beyond the standard model
of ΛCDM.

2 Forecasts for Cosmology and Astrophysics

The challenge for using line-intensity mapping to constrain cosmology and astro-
physics is twofold: (1) the foregrounds—both galactic and extragalactic—are orders
of magnitude stronger than the signal and (2) the astrophysics of the tracer itself
(such as HI) serves as an effective ‘systematic’ in deriving cosmological constraints
from intensity maps. The former constraint may be mitigated using techniques
such as foreground avoidance and subtraction, since the frequency structure of
the foregrounds is estimated to be very different from those of the signal (e.g.,
[14]). The latter effect, which may be referred to as the ‘astrophysical systematic’,
can be effectively addressed by quantifying the impact of our uncertainty in the
knowledge of the tracer astrophysics, on the observable intensity fluctuations. In
the case of 21 cm intensity mapping, this can be done by using a data-driven, halo
model framework which uses a parametrized form for the HI-halo mass relation
MHI(M, z), given by [11]:

MHI(M, z) = αfH, cM

(
M

1011 M3/h

)β

exp

[
−
(

vc,0

vc(M, z)

)3
]

(1)
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with free parameters (1) α, the fraction of HI relative to cosmic fH, c, (2) β, the
logarithmic slope of the HI-halo mass relation and (3) vc, 0, the lower virial velocity
cutoff below which haloes preferentially do not host HI. Similarly, the small-scale
HI density profile, ρHI(r,M, z) can be described by:

ρHI(r;M, z) = ρ0 exp

[
− r

rs(M, z)

]
, (2)

with rs defined as rs(M, z) ≡ Rv(M)/cHI(M, z) and Rv(M) denoting the virial
radius of the dark matter halo of mass M . The normalization ρ0 is fixed by requiring
the HI mass within the virial radius Rv to be equal to MHI at each (M, z). Here,
cHI(M, z) denotes the concentration parameter defined as [7]:

cHI(M, z) = cHI,0

(
M

1011M3

)−0.109 4

(1+ z)η
, (3)

with the free parameters cHI, 0 and η describing the normalization and redshift
evolution, respectively. Given the combination of all the data in HI available at
present (DLAs, HI galaxy surveys and presently available IM observations), the
best-fitting values and uncertainties for the HI astrophysical parameters are con-
strained to be [10, 11]: α = 0.09± 0.01, β = −0.58± 0.06, log

(
vc,0/km s−1) =

1.56± 0.04, cHI, 0 = 28.65± 1.76 and η = 1.45± 0.04.
The full, nonlinear power spectrum of HI intensity fluctuations comprises one-

and two-halo terms, which are given by:

PHI, 1h(k, z) =
∫

dM nh(M, z)

[
MHI(M)

ρ̄HI(z)

]2

|uHI(k|M, z)|2. (4)

and

PHI, 2h(k, z) = Plin(k, z)×
[∫

dM nh(M, z)bh(M, z, k)
MHI(M)

ρ̄HI(z)
|uHI(k|M, z)|

]2

,

(5)
with

uHI(k|M, z) = 4π

MHI(M, z)

∫ Rv(M)

0
dr ρHI(r;M, z)

sin(kr)

kr
r2, (6)

and

PHI(k, z) = PHI, 1h(k, z)+ PHI, 2h(k, z) (7)

is the total HI power spectrum. In the above expressions, the ρ̄HI(z) denotes the
average HI density at redshift z. The observable, on-sky quantity in an IM survey is
the projected angular power spectrum, denoted by CHI

� (z) (for the HI case), which
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enables a tomographic analysis of clustering in multiple redshift bins without the
assumption of an underlying cosmological model (e.g., [15]). The expression for
CHI

� (z) can be constructed using the Limber approximation (accurate to within 1%
for scales above � ∼ 10; e.g., Ref. [5]), using the angular window function, WHI(z)

of the survey, as:

CHI
� (z) = 1

c

∫
dz

WHI(z)
2H(z)

R(z)2 PHI[�/R(z), z], (8)

where H(z) is the Hubble parameter at redshift z, and R(z) is the comoving
distance to redshift z. From the above angular power spectrum, and given an exper-
imental configuration, a Fisher forecasting formalism can be used for predicting
constraints on the various cosmological [{h,Ωm, ns,Ωb, σ8}] and astrophysical
[{cHI, α, β, η, vc, 0}] parameters, generically denoted by pμ. The Fisher matrix
element corresponding to parameters {pμ, pν} at a particular redshift bin centred
at zi is given by:

Fμν(zi) =
∑

�<�max

∂μC
HI
� (zi)∂νC

HI
� (zi)

[
ΔCHI

� (zi)
]2 , (9)

where ∂μ is the partial derivative of CHI
� with respect to parameter pμ. The standard

deviation, ΔC�(zi) is defined in terms of the noise of the experiment, NHI
� and the

sky coverage of the survey, fsky:

ΔCHI
� =

√
2

(2�+ 1)fsky

(
CHI

� +NHI
�

)
. (10)

An example angular power spectrum at z ∼ 0.8 with its associated standard devia-
tion (illustrated by the error bars) for a SKA I MID-like experimental configuration
is shown in Fig. 1. The full Fisher matrix for an experiment is constructed by
summing over the individual Fisher matrices in each of the z-bins in the range
covered by the survey: Fij,cumul =

∑
zi
Fij (zi). Given the cumulative Fisher

matrix, we can calculate the standard errors on the parameter pi for the cases of
fixing and marginalizing over other parameters: σ 2

i,fixed = F−1
ii , and σ 2

i,marg =
(F−1)ii . This is useful to quantify the degradation in cosmological constraints
when the astrophysical parameters (cHI, η, α, β, vc, 0) are marginalized over. We
find that (as shown in Fig. 2) although the astrophysical information broadens the
cosmological constraints, the broadening is, for the large part, mitigated by the prior
information coming from the present knowledge of the astrophysics, quantified by
the halo model. We also find that experiments reaching lower z-values achieve more
precise cosmological constraints, as do those having a larger tomographic coverage
(such as the SKA I MID; Ref. [13]).
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Fig. 1 Angular power
spectrum CHI

� at redshift 0.8,
using the best-fitting HI
astrophysical parameters
from the halo model and a
redshift binning of
Δz = 0.05. The error bars
shown in red represent the
standard deviation ΔCHI

l ,
calculated for a SKA 1
MID-like configuration
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With astrophysical prior
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vc,0 β
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Without cosmological prior

Fig. 2 Left panel: Constraints on the cosmological parameters from a SKA I MID-like configura-
tion, (1) marginalized over astrophysics, (2) with fixed astrophysics and (3) with the astrophysical
prior coming from the present data. Right panel: Astrophysical forecasts (1) without cosmological
priors and (2) with fixed cosmology. Figure adapted from Ref. [13]

Cross-correlating 21 cm intensity maps with galaxy surveys (both photometric
and spectroscopic) offer exciting prospects for constraining astrophysical and
cosmological parameters. It can be shown [12] that cross-correlating such surveys
covering similar redshift ranges and sky areas significantly improves astrophysical
constraints (see Fig. 3 for an example of a CHIME-like and DESI-like survey cross-
correlated in the northern hemisphere). Further, cross-correlation is a valuable tool
to mitigate the effects of contaminants and foregrounds, which are expected to be
significantly uncorrelated between the two surveys (e.g., Ref. [2]).

The Fisher formalism can also be used to quantify how a complementary effect,
the accuracy of cosmological constraints, is affected by the astrophysical prior
information. This can be done by calculating the relative biases on cosmological
parameters, induced by a wrong assumption on the astrophysical ones. Such biases
can be naturally quantified using the ‘nested likelihoods’ (e.g., Ref. [3]) framework
in which the parameter space is split into two subsets: one containing all the
parameters of interest and the other, all those deemed ‘nuisance’ or systematic
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σ

A
/A

Fixed astrophysics
With astrophysical prior

vc,0 β Q

Fixed cosmology
With astrophysical prior
Original astro prior

Fig. 3 Cross-correlation forecasts for a CHIME-DESI like survey combination. Fractional errors
σA/A are plotted for A = {h,Ωm, ns,Ωb, σ8, vc,0, β}, and an additional parameter Q which
quantifies the scale dependence of the optical galaxy bias. Left panel: Constraints on the
cosmological parameters (1) without marginalizing over astrophysics, (2) with the astrophysical
prior coming from the present data. Right panel: Constraints on astrophysical parameters when:
(1) not marginalizing over cosmology and (2) marginalizing over cosmology and adding the
astrophysical prior. The violet bands in the right panel show the extent of the prior in each case.
Figure adapted from Ref. [12]

for the analysis being carried out. In the present case, these two sets represent
‘cosmological’ and ‘astrophysical’ parameters, respectively. The bias on a given
cosmological parameter pa , denoted by bpa , is computed as:

bpa = δpαFbα

(
F−1

)

ab
. (11)

Here, F−1 is the full Fisher matrix of astrophysical and cosmological parameters,
and Fbα represents the submatrix mixing cosmological and astrophysical parame-
ters. The term δpα denotes the vector of shifts in the astrophysical parameters from
their fiducial values:

δpα = pfid
α − ptrue

α . (12)

An exciting science case for current and future intensity mapping surveys lies
in exploring effects beyond the standard model of Λ CDM cosmology. Two widely
studied examples of beyond-ΛCDM physics include (1) the existence of a nonzero
fNL parameter that quantifies the primordial non-Gaussianity and (2) incorporating
the effects of modified gravity by allowing the growth parameter, γ to deviate
from its fiducial value of 0.55. It can be shown [1] that these two effects lead
to easily characterizable signatures on the intensity mapping power spectrum, by
affecting the quantities nh(M) and bh(M, z), i.e., the abundance and bias of dark
matter haloes. Thus, they can be incorporated in a straightforward manner into the
angular power spectrum and as such, the Fisher forecasting formalism can be used
to compute relative constraints on these observables in the presence of astrophysical
uncertainties. Figure 4 shows the relative biases on all the standard cosmological
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Fig. 4 Relative bias on cosmological parameters in the extended-ΛCDM framework with a SKA
I MID-like experimental configuration, obtained on shifting either astrophysical parameter, β (left
panels) or log vc, 0 (right panels), by 1σ from its fiducial value. Top panels contain the parameters in
ΛCDM+γ , and lower panels contain those in ΛCDM+fNL. Empty (filled) circles indicate negative
(positive) values of biases. Figure from Ref. [1]

parameters, as well as fNL and γ , induced by a deviation of either astrophysical
parameter, vc, 0 or β from its fiducial (i.e., best-fit) value, as a function of the
maximum multipole �max considered in the analysis. The figure reveals that the
relative biases on the standard cosmological parameters and the modified gravity
parameter γ all remain within a few σ as long as the � range stays below 1000.
Remarkably, astrophysical uncertainties are found to have negligible effects on the
fNL parameter, despite it being strongly linked to the HI bias. Intuitively, this can
be understood from the fact that fNL measurements probe the very largest scales,
and hence are not ‘coupled’ as strongly to the details of the HI astrophysics as other
cosmological parameters.

3 Conclusions

In this article, we have explored the ability of current and future intensity mapping
surveys to provide stringent constraints on cosmology and fundamental physics. A
data-driven, halo model framework is well-positioned to mitigate the ‘astrophysical
systematic’ effect on the precision and accuracy of cosmological forecasts from
these surveys. Such an approach is a powerful tool to test extensions to the ΛCDM
framework, such as primordial non-Gaussianity and deviations from General Rela-
tivity at cosmic scales, as well as to mitigate foregrounds through cross-correlating
future intensity mapping and optical galaxy surveys. In the future, combining these
datasets with more traditional probes of the high-redshift universe has the potential
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to uncover fundamental physics constraints from the hitherto unexplored epochs of
Cosmic Dawn and reionization.
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Aberration in Gravito-Electromagnetism

Victor Massart and M. B. Paranjape

Abstract The dynamical effects of general relativity which go past Newtonian
gravity, specifically the expectation that gravitational effects propagate with a finite
velocity, have not been directly verified. In this article we use the formalism of
gravito-electromagnetism to compute the first dynamical corrections to Newtonian
gravity due to general relativity. We consider a system with multiple sources of
dynamical gravitational effects. The main problem that arises is that there are
different retarded times for the different sources. We use the Lagrange inversion
theorem to express all dynamical effects in terms of the instantaneous time and
then simply superpose them. We apply our results to a proposed, realizable
experimental set-up and find a dynamical effect that could be observed in a LIGO-
type experiment.

Keywords Gravito-electromagnetism · Aberration · Retarded time · Lagrange
inversion theorem

1 Gravito-electromagnetism

Gravito-electromagnetism is a linearized, weak-field, non-relativistic approximation
to general relativity. The name comes from the fact that in this approximation,
gravity is almost exactly analogous to Maxwell electromagnetism. Throughout this
article we will use the notation from Jackson’s textbook [1] on electromagnetism,
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the review article of Mashhoon [2] and that of Ruggiero and Tartaglia [3]. This work
is inspired by a previous work of M. Paranjape [4].

We begin with the full Einstein equations,

Rμν − 1

2
gμνR = 8πGTμν. (1)

We linearize the equations by expanding the metric around the Minkowski vacuum
with small perturbations : gμν = ημν + hμν , |hμν |λ1. We then compute the metric
connection (the Christoffel symbols), the Riemann tensor, the Ricci tensor, and the
curvature scalar in the approximation where we neglect terms of order h2 and higher.
We make the following gauge choice,

∂μ(hμν − 1

2
ημνh

λ
λ) ≡ ∂μh̄μν = 0, (2)

which fixes four of the degrees of freedom of the metric. This leads to the linearized
Einstein equations,

�h̄μν = −16πGTμν. (3)

This is a wave equation with a source, it describes propagating gravitational waves
in the absence of sources.

Remarkably, Eq. (3) looks essentially identical to Maxwell’s equations for the
electromagnetic potential in Lorenz gauge with sources,

�Aν = 4πjν.

This similarity is very useful since electromagnetism is well understood analytically
and intuitively, in particular we know the physical (retarded) solution,

Aν = 4π
∫

DR(x − x′)J ν(x′)d4x′,

as well as the general form of the corresponding electric and magnetic fields, where
DR(x − x′) is the retarded Green function of the d’Alembertian.

We will use the non-relativistic limit for the sources in the linearized Einstein
equations. The space–space part of the stress energy tensor on the right-hand side
of Eq. (3) can be neglected as typically T ij ∼ vivj while T 0i ∼ vi and T 00 ∼ v0.
Then in the weak-field, non-relativistic limit, keeping terms to first order in vi , we
find for the gravitational analog of the electromagnetic gauge potential h̄0ν(x),

h̄0ν(x) = −16πG

∫
DR(x − x′)T 0ν(x′)d4x′. (4)
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We can use the well-known electromagnetic potential of a point source, the
Lienard–Wiechert potentials, to write down their gravitational counterparts. To
make the comparison let us define h̄00 ≡ 4ΦG and h̄0i = 4Ai

G and then we find the
electromagnetic potentials are analog with the corresponding gravitational potential
as:

φE.M.(x, t) =
[

e

(1− β · n)R
]∣∣∣∣

ret

 ⇒ φG(x, t) =
[

−√GM

(1− β · n)R

]∣∣∣∣∣
ret

(5)

AE.M.(x, t) =
[

eβ

(1− β · n)R
]∣∣∣∣

ret

 ⇒ AG(x, t) =
[
−√GMβ

(1− β · n)R

]∣∣∣∣∣
ret

,

(6)

where R(tr ) ≡ |x − r(tr )| is the position of the source at the retarded time and
β(tr ) ≡ d

cdtr
r(tr ) is its associated (dimensionless) speed. It is clear that analog of e,

the electric charge, is the gravitational charge:
√
GM . It is then natural to define a

gravitational electric and magnetic field EG = −∇ΦG−∂0AG and BG = ∇∧AG.
Their exact form, expressed in retarded time, is

EG = −√GM

[
n− β

(1− n · β)3R2

]∣∣∣∣
ret

− √GM

[
n ∧ ((n− β) ∧ β̇)

(1− n · β)3R

]∣∣∣∣∣
ret

(7)

BG = [n ∧EG]|ret . (8)

These two fields are completely analogous to the electromagnetic ones and so are
their Maxwell-like equations. The difference is in the minus sign which comes from
the fact that gravitation is attractive while electromagnetism is not.

Nevertheless the Lorentz-like force on a particle of mass m, which comes from
the geodesic equation, is

dp

dt
= √Gm(−∇ΦG − 4∂tAG + 2v ∧ BG)). (9)

For the purpose of computing a force, it is natural to define an effective gravito-
electric field : EEff

G = −∇ΦG − 4∂tAG. Throughout this article the goal will be to
compute this effective field in order to find the force on a detector due to a moving
mass.
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2 Lagrange Inversion Theorem and Analysis

Our aim is to propose an experiment that can be used to measure the speed of gravity.
In the Newtonian limit, gravitational effects are instantaneous. By calculating
dynamical correction to the Newtonian result we can identify observable effects
that would allow a direct measurement of the speed of gravity. We consider a simple
situation with two oscillators located on either side of a detector. The configuration
is such that the ratios of their mass over the distance squared (distance to the
detector), M

R2 are equal, as shown on the LHS in Fig. 1. This makes the Newtonian
gravitational contribution at the detector cancel. Then dynamical effects, which
depend on the delay of the propagation of gravitational effects from the two sources
to the detector, do not cancel and can be used to measure the speed of propagation
of gravity, and in principle other effects due to the dynamical nature of general
relativity.

We are considering two different sources of gravitational effects, and as all
their dynamical gravitational effects are normally and easily expressed in terms
of their respective individual retarded times, we cannot simply linearly superpose
these effects at the detector. However, if we can find the dynamical effects in terms
of the instantaneous time, then their linear superposition is sensible. Consider the
definition of retarded time:

tr = t − |R(tr )|
c

, (10)

where tr is the retarded time, t is the instantaneous time, R(tr ) is the distance to the
detector at the retarded time, and c is the speed of gravity (presumably equal to the
speed of light). The most obvious way to rewrite a quantity (like the gravito-electric

Fig. 1 LHS, a scheme of the experiment with two oscillators (O1,O2 with amplitudes is Δ and
2Δ), of masses M and 4M at distances R0 and 2R0, respectively, from the central detector at
D. RHS, a space-time diagram showing the position of mass M at the retarded time and at the
instantaneous time from the detector
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field) in terms of the instantaneous time is to find tr as a function of t . We will then
identify a small parameter in which we can perform a Taylor expansion to obtain
a manageable expression.1 A useful mathematical result is the Lagrange inversion
theorem.

We define the dimensionless retarded time z as

z ≡ ctr

R0
, (11)

with R0, the distance between the center of the oscillator and the detector. To make
apparent the small parameter, we consider a motion of the form

R(z) = R0(1+ αf (z)), (12)

where f (z) describes the motion around R0 in z and α is a small parameter. We
define a dimensionless instantaneous time y in a similar way to the retarded time,

y ≡ ct

R0
− 1 then z = y − αf (z). (13)

The important point to note is the −1 in the definition of y it represents the time
it takes for the signal to propagate the distance R0. We then have z equals y plus
a small perturbation that depends on z. However, we must in the end express our
results in terms of y + 1 rather than just y as y + 1 is the actual instantaneous time
(apart from multiplicative factors).

The Lagrange inversion theorem2 says if the equation in z

z = y + ηφ(z)

has one root in the interior of a contour C, then any function g(z) analytic on and
inside C can be expanded in a power series in η by the formula

g(z) = g(y)+
∞∑

n=1

ηn

n!
dn−1

dyn−1

(
g′(y)φn(y)

)
.

We will use the theorem with φ(z) replaced by R(z) and η being replaced by −α.
The motion of the mass on the left, O1, is taken to be

R(z) = −r(z) = R0(1+ α sin(vz))x̂, (14)

1For a non-relativistic motion, surely tr will be equal to t plus a constant and some small
perturbation that depends on tr .
2For details see, for example, the book on modern analysis of Whittaker and Watson [5].
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where α ≡ Δ
R0

λ1 and v ≡ ωR0
c

λ1. The effective gravito-electric field reduces to

EEff
G = −x̂

√
GM

(
1

γ 2(1− β · n)2R2 −
3β2

(1− β · n)3R2 +
3Rβ̇

(1− β · n)2R2

)∣∣∣∣
ret

.

(15)

Then we apply the theorem for g(z) = EG(z), expanding in the acceleration a or
velocity v and neglecting all terms of second order or higher, we obtain

−x̂
√
GM

(
1

R(t)2 −
4a(t)

R(t)2

)∣∣∣∣
inst

∼ (−x̂)
√
GM

(
1

R(t)2 −
4a(t)

R2
0

)∣∣∣∣∣
inst

,

where a(t) ≡ αv2 sin v(y + 1) = R0Δω2

c2 sinωtλ1. Note that this result reduces,
for non-accelerated motion, to the famous Newtonian result of “instantaneous”
propagation, that uniform motion is observed at the instantaneous position and not
at the retarded position. (See Jackson [1], chapter 14.)

The form of the solution for the second mass is of course exactly the same except
for the value of the parameters. The sum of the two gravito-electric fields will give
the total field at the detector at the instantaneous time and we get

− 4
√
G

(
Ma

R2
0

+ M ′a′

(R′0)2

)
∼ −4

√
GM

ω2

c2

Δ

R0

(
1− R′0Δ′

R0Δ

)
, (16)

which is the first non-zero term of the force that is created at the detector by the
oscillating masses in the directions −x̂.

However, this result is not actually correct.3 We must always consider sources
which conserve energy-momentum as those which do not are not physically
realizable movements. Our oscillating masses do not conserve energy-momentum, a
single mass simply cannot oscillate by itself. Even taking into account the movement
of the mass on the other side of the detector, energy-momentum is not conserved.
We must add compensating masses attached to our masses by say springs which
move in anti-synchronous motion with respect to our oscillators, allowing for the
conservation of energy-momentum.

Originally we had thought that if these compensating masses were very heavy
(think Earth) then the motion of these masses will be infinitesimal and will not
contribute significantly to the gravitational field at the detector. This is indeed true
for the higher order time dependent motion of the masses, such as the quadrupole,
however, it is not true for the effective dipole. Indeed, because there are no
physical, negative masses in general relativity, the net dipole moment cannot be
time dependent.

3We thank the referee for bringing this point to our attention.
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For simplicity, consider a heavy mass, MH connected to one of our oscillating
masses by a short (taken for convenience to be length zero), ideal spring. Then the
equilibrium position of the two masses is at the same place, say X0. The motion
must conserve momentum, hence

M
dΔ(t)

dt
+MH

dΔH(t)

dt
= 0, (17)

where Δ(t) and ΔH(t) are the time dependent parts of the motions of the
two masses. Clearly this implies that the dipole moment p(t) is actually time
independent

d

dt
p(t) = d

dt
M(R0 +Δ(t))+ d

dt
MH(R0 +ΔH(t)) = 0. (18)

Even though

dΔH (t)

dt
= − M

MH

dΔ(t)

dt
λ
dΔ(t)

dt
(19)

as M
MH

→ 0, however, we still have

M
d2Δ(t)

dt2 +MH

d2ΔH(t)

dt2 = 0, (20)

i.e.,

Ma +MHaH = 0 (21)

for the acceleration. Thus our result Eq. (16) for each of our oscillating masses is
exactly cancelled by the contribution of the necessary compensating masses. We
understand that this is how it should be. However, we can now easily ascertain that
the similar analysis does not apply to quadrupole time dependence. The quadrupole
moment Q is constructed from

Q ∼ MR2. (22)

Then

Q̇ ∼ 2MR(t)Ṙ(t) = 2MRΔ̇(t) = 2M(R0 +Δ(t))Δ̇(t). (23)

Realizing ΔH(t) for the compensating heavy mass we would find

Q̇H ∼ 2MHRH(t)ṘH (t) = 2MHRH(t)Δ̇H (t) = 2MH(R0 +ΔH(t))Δ̇H (t).

(24)
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Then given MΔ = −MHΔH

Q̇+ Q̇H = 2MΔ(t)Δ̇(t)+ 2MHΔH(t)Δ̇H (t) = 2MΔ(t)(Δ̇(t)− Δ̇H (t))

= 2MΔ(t)Δ̇(t)

(
1+ M

MH

)
(25)

and we see the additional contribution of the compensating mass is indeed negligi-
ble.

3 Final Expression for the Force

We now impose harmonic motion for the movement of all the masses as given in
Eq. (14), then use the Lagrange inversion theorem to obtain a final expression for
the gravitational force at the detector from all of the masses. We will give the full
details in an extended article. We find for the mass m and its compensating mass

MH , dropping all terms of O
(

m
MH

)

EEff
G (t) =

√
GMH

R2
0

+
√
Gm

R2(t)
− 4
√
Gm

ω2

c2

Δ2

R2
0

(cos2(ωt)+ 3 sin2(ωt))

=
√
GMH

R2
0

+
√
Gm

R2(t)
− 4

√
Gm

R2
0

(a(t)Δ(t)+ 3v2(t)). (26)

It is clear that the compensating mass does not contribute to the time dependent
oscillatory force on the detector. The system on the other side is composed of
mass 4m at a distance 2R0 with oscillation amplitude 2Δ and for convenience
compensatory mass 4MH . This last choice makes the static Newtonian force of the
compensating masses also cancel at the detector. Then summing all the contributions
together, we find

EEff
G,total(t) = 12

√
Gm

R2
0

(a(t)Δ(t)+ 3v2(t)). (27)

We note that the result we obtain is not identical to that which is usually obtained
for the field in the wave zone, which corresponds to distances much larger than the
size of the source and the wavelength of the radiation produced. In the wave zone
the gravitoelectromagnetic potentials drop off like ∼ 1

r
. The gravitoelectromagnetic

fields then fall off as ∼ 1
r2 . The approximations done to obtain those results are

simply not valid for our analysis. Correspondingly, our result is not proportional
to the third time derivative of the quadrupole moment squared, which is the
result obtained as the leading term in the wave zone. Here we are well inside a
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single wavelength, we are computing what is normally called Newtonian noise.
Dimensionally of course, the result we obtain is the same as the far field result,
and hence the analysis at Eq. (25) applies to our result, just as well.

4 LIGO-Type Experiment

To get an idea of experimental observability of the predicted force, suppose that
we choose 4m = 1 kg and the factor α = Δ

R0
to be 1/20. Then for a frequency

of 1 kHz (which is at the good precision upper limit of LIGO), the total effective
gravito-electric field of the four oscillating masses is

E1 kHz
G,total(t) = 12

√
Gm

(ω
c

)2
(

Δ

R0

)2

(cos2(ωt)+ 3 sin2(ωt))


 26.4× 10−18 × (cos2(2000πt)+ 3 sin2(2000πt)). (28)

Let us consider the LIGO system, here the mirror mass is 40 kg. Then the total
force exerted on the LIGO mirror, obtained from the geodesic equation (Eq. (9)),
would be

〈F 1 kHz
G (t)〉 
 8.6× 10−21. (29)

This result is very encouraging, as the amplitude of this force corresponds exactly
to the sensitivity zone of LIGO [6], see accompanying figure.
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Stable, Thin Wall, Negative Mass Bubbles
in de Sitter Space-Time
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and Natalia Tapia-Arellano

Abstract Up to now, only configurations of negative mass have been found (Bel-
letête and Paranjape, Int J Mod Phys D22:1341017, 2013; Mbarek and Paranjape,
Phys Rev D90(10):101502, 2014), no stability or dynamics was considered. Here we
show the existence of stable, static, negative mass bubbles in de Sitter space-time.
The bubbles have an interior that is pure de Sitter, separated by a thin wall from the
exact, negative mass Schwarzschild-de Sitter space-time exterior. We use the Israel
junction conditions at the wall. We find the bubbles can collapse spherically to the
singular negative mass solution, violating the cosmic censorship hypothesis.
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1 Introduction

The Schwarzschild-de Sitter metric is a singular solution of the Einstein equations
with cosmological constant. The mass is a parameter that can be taken negative.
Here we show that it is possible to deform the metric and smooth out the singularity
with physically sensible energy-momentum, that which satisfies the dominant
energy condition everywhere. This means for any future directed time-like or light-
like vector u:

T 0νuν ≥ 0 and T μνuνTμαu
α ≥ 0. (1)

The example of such a deformation was given in [1]. Then in [2] it was shown that
with an ideal fluid, there exist bubble like configurations with the exterior space-time
given exactly by the negative mass Schwarzschild-de Sitter space-time. The fluid
was not dynamical, no equation of state was specified. However, it was seen that an
ideal fluid, could in principle organize itself to correspond to localized regions of
negative mass.

In this work we show how to obtain dynamically stable, non-singular solutions
of negative mass which satisfy the dominant energy condition everywhere. They are
made up of a de Sitter space-time inside a thin wall separated from negative mass
Schwarzschild-de Sitter space-time on the outside. The Israel junction conditions
[3, 4] express the conservation of energy-momentum across the wall.

2 Thin Wall Bubbles

The stress-energy tensor of the wall will be taken as

S
âb̂
= diag. (σ,−ϑ,−ϑ). (2)

The interior mass function is taken to be m−(r) which is not yet specified while the
exterior mass function is taken to be

m+(r) = −M + Λr3

6
(3)

that of a negative mass Schwarzschild-de Sitter space-time with mass −M and
cosmological constant Λ. The conservation of energy-momentum flux through the
wall gives the equations:

(
1− 2m−(r)

r
+ ṙ2

)1/2

−
(

1+ 2M

r
− Λr2

3
+ ṙ2

)1/2

= 4πσr (4)
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and
(

1− m−(r)
r
−m′−(r)+ ṙ2 + rr̈

)

(
1− 2m−(r)

r
+ ṙ2

)1/2 −
(

1+ M
r
− 2Λr2

3 + ṙ2 + rr̈
)

(
1+ 2M

r
− Λr2

3 + ṙ2
)1/2 = 8πϑr. (5)

Writing Eq. (4) as

(
a + ṙ2

)1/2 −
(
b + ṙ2

)1/2 = c1/2 (6)

we can solve for ṙ as

ṙ2

2
+ V (r) = 0. (7)

with

V (r) = − 1
2

(
(a − b)2

4c
− (a + b)

2
+ c

4

)
, (8)

which is the potential for the radius of the wall and explicitly it is

V (r)

= − 1
2

⎛

⎜⎝

(
m−(r)+M − Λr3

6

)2

16π2σ 2r4 −
(

1+ (m−(r)−M)

r
+ Λr2

6

)
+ 4π2σ 2r2

⎞

⎟⎠ .

(9)

3 Stable Negative Mass de Sitter Bubbles

If we take m−(r) = Λir
3

6 with σ → (
√
Λ/3/4π)σ , r → √

3/Λ r and M →
(1/
√

3Λ)M , we find

V (r) = − M2

18σ 2r4 +
M
(
(1− (Λi/Λ))+ σ 2

)

6σ 2r

− r2
(
2(Λi/Λ)σ 2 + (1− (Λi/Λ))2 + σ 4 + 2σ 2

)

8σ 2
+ 1

2
. (10)

Then if we generalize σ → σ(r) we can obtain a stable minimum. We start with
σ = 0.04 and then we modify it as
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r
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–0.2

0.2

0.6 0.8 1.0 1.2

0.4

Fig. 1 The potential V (r) for constant σ = 0.04 (red) and the modified potential V̄ (r) (blue) with
σ(r) given by Eq. (11), and M = 0.045,Λi/Λ = 0.994

σ(r) = 0.04− 0.0035 tanh

(
25

r0
(r − r0 + 0.105)

)
(11)

where r0 is the position of the maximum of the potential when σ = 0.04. We find
that the potential has a stable minimum as shown in Fig. 1. The potential V (r) for
constant σ is shown and the modified potential with the stable minimum is called
V̄ (r).

The dominant energy condition is obviously satisfied in the bulk. On the wall,
the spatial stress [4] is given by

ϑ(r) = σ(r)+ r

2

dσ(r)

dr
(12)

and we also find numerically that the dominant energy condition on the wall, σ �
|ϑ |, is satisfied.

4 Conclusion

In conclusion, we report here that there exist dynamically stable, non-singular
solutions of the Einstein equations which correspond to negative mass bubbles in
an asymptotically de Sitter space-time. The import of such solutions to cosmology
must be examined.
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Ferromagnetic Instability in PAAI
in the Sky

R. MacKenzie, M. B. Paranjape, and U. A. Yajnik

Abstract We study an idealised plasma of fermions, coupled through an abelian
gauge force U(1)X, and which is asymmetric in that the masses of the oppo-
sitely charged species are greatly unequal. The system is dubbed PAAI, plasma
asymétrique, abélien et idéalisé. It is argued that due to the ferromagnetic instability
that arises, the ground state gives rise to a complex of domain walls. This complex
being held together by stresses much stronger than cosmic gravity, does not evolve
with the scale factor and along with the heavier oppositely charged partners
simulates the required features of Dark Energy with mass scale for the lighter
fermions in the micro-eV to nano-eV range. Further, residual X-magnetic fields can
mix with Maxwell electromagnetism to provide the seed for cosmic-scale magnetic
fields. Thus the scenario can explain several cosmological puzzles including Dark
Energy.

Keywords Itinerant ferromagnetism · Dark energy · Domain walls

1 Introduction

There are several important unresolved issues in our current understanding of
cosmology. Paramount among these are the problems of Dark Matter (DM) and
Dark Energy (DE). Within the Λ-CDM model DM assists in galaxy formation and
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should be a gas of non-relativistic particles, while the issue of DE is closely tied
to that of the cosmological constant [1], since data [2] suggests that its energy
density is constant over the epochs scanned by the cosmic microwave background
(CMB). If treated as a dynamical phenomenon, DE demands an explanation for
the equation of state p = −ρ in terms of relativistic phenomena. From the point
of view of naturalness, explaining a value of a dynamically generated quantity
which is many orders of magnitude away from any of the scales of elementary
particle physics or gravity is a major challenge. There are explanations that obtain
such a sector as directly related to and derived from more powerful principles
applicable at high scales [3–5]. On the other hand, extended and space filling
objects, specifically domain walls as possible solutions to understanding Dark
Energy have been proposed earlier in a variety of scenarios [6–10]. In this paper we
pursue the latter approach, of invoking new species of particles and their interactions
at the new low mass scale, agnostic of their connection to the known physics other
than gravity. A more extensive discussion of the results reported here can be found
in [11].

We consider a new sector of particles with interaction mediated by an unbroken
abelian gauge symmetry denoted U(1)X. The core of our mechanism involves the
existence of a fermionic species that enters into a ferromagnetic state. As we will
show, it is required to have an extremely small mass and hence an extremely large
magnetic moment; we dub this species the magnino,1 denoted M . We assume
that the medium remains neutral under the X-charge due to the presence of a
significantly heavier species Y of opposite charge which does not enter the collective
ferromagnetic state. The wall complex resulting from the formation of magnetic
domains then remains mutually bound, and due to interaction strength much larger
than cosmic gravity, remains frozen. The binding of the heavier species to this
complex due to the requirement of X-electrical neutrality then ensures that these
particles remain unevolving, and after averaging over the large scales of the cosmic
horizon act like a homogeneous space filling medium of constant density.

It is possible to explain DM within the same sector, including possible dark
atoms formed by such species [14–17]. This would also solve the concordance
problem, that is, the comparable energy densities carried in the cosmological
energy budget by the otherwise-unrelated components, DM and DE. Further, the
X-electromagnetism is expected to mix kinetically with the standard electromag-
netism. The existence of cosmic magnetic fields at galactic and intergalactic scales
[18–20] is an outstanding puzzle of cosmology. Our mechanism relying as it does on
spontaneous formation of domains of X-ferromagnetism has the potential to provide
the seeds needed to generate the observed fields through such mixing.

In the following, in Sect. 2 we motivate the origin of negative pressure for
extended objects in cosmology. In Sect. 3 we discuss the calculation of the exchange
energy for a spin-polarised PAAI. Thus we motivate the possibility of occurrence of
an extended structure of domain walls, and their metastable yet long lived nature.
In Sect. 4 we discuss the main results of our proposal, obtaining suggestive values
for the masses and abundances for the scenario to successfully explain DE, and for

1The term magnino was earlier introduced in a different connotation in [12, 13].
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the DM discussion we refer the reader to our longer paper [11]. In Sect. 5 we obtain
a restriction on the length scale of the domains for successful explanation of origin
of cosmic magnetic fields from mixing with standard electromagnetism. After the
conclusion in Sect. 6 we also include a few salient questions from the audience and
their answers in Sect. 7.

2 Cosmic Relics and the Origin of Negative Pressure

A homogeneous, isotropic universe is described by the Friedmann equation for the
scale factor a(t) supplemented by an equation of state relation p = wρ. Extended
relativistic objects in gauge theories in the cosmological setting [21] are known to
lead to negative values for w [22, 23]. A heuristic argument runs as follows. In
the case of a frozen-out vortex line network, the average separation between string
segments scales as 1/a3 but there is also an increment in the energy proportional to
a due to an average length of vortex network proportional to a entering the physical
volume. As such, the energy density of the network has to be taken to scale as 1/a2,
and we get the effective value w = −1/3. Likewise, for a domain wall complex, the
effective energy density scales as 1/a and w = −2/3. By extension, for a relativistic
substance filling up space homogeneously, the energy density is independent of
the scale factor, and has w = −1. In quantum theory this arises naturally as the
vacuum expectation value of a relativistic scalar field. In the following, we consider
a scenario that gives rise to a complex of domain walls whose separation scale is
extremely small compared to the causal horizon and which remains fixed during
expansion, and hence simulates an equation of state p = −ρ.

3 Ferromagnetic Instability of PAAI

A system of fermions can be treated as a gas of weakly interacting quasi-particles
in the presence of oppositely charged much heavier ions or protons which are
mostly spectators and serve to keep the medium neutral. The total energy of such
a system can be treated as a functional of electron number density, according to
the Hohenberg–Kohn theorem. In a relativistic setting, it becomes a functional of
the covariant 4-current, and hence also of the electron spin density [24]. In the
Landau fermi liquid formalism the quasi-particle energy receives a correction from
an interaction strength f with other quasi-particles which can be determined from
the forward scattering amplitude M [25]

f (ps, p′s′) = m

ε0(p)
m

ε0(p′)
M(ps, p′s′), (1)

where ε0 is the free particle energy and M is the Lorentz-covariant 2 → 2
scattering amplitude in a specific limit not discussed here. The exchange energy
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can equivalently be seen to arise as a two-loop correction to the self-energy of the
fermion [26]. Using f this one can compute the exchange energy Exc, as

Exc =
∑

±s

∑

±s′

∫
d3p

(2π)3

d3p′

(2π)3 f (ps, p′s′)n(p, s)n(p′, s′) (2)

and the effective quasi-particle energy is the kinetic energy of the quasi-particles
with renormalised mass parameter Ekin plus the spin-dependent exchange energy in
a spin-polarised background. For this purpose it is necessary to calculate the self-
energy with a Feynman propagator in the presence of non-zero number density, and
spin imbalance [27].

To set up a spin-asymmetric state, we introduce a parameter ζ such that the net
density n splits up into densities of spin up and down fermions as

n↑ = n(1+ ζ ) and n↓ = n(1− ζ ) (3)

Correspondingly, we have Fermi momenta pF↑ = pF (1+ζ )1/3 and pF↓ = pF (1−
ζ )1/3, with p3

F = 3π2n. The exchange energy was calculated in [27] and the final
expression is too long to be quoted in this presentation. However the leading order
expansions in β = pF /m for the fully polarised case ζ = 1 is [11]

Ekin(ζ = 1) = m4

{
β̃5

20π2 −
β̃7

112π2 +O
(
β9
)}

(4)

Exc(ζ = 1) = −αXm4

{
β̃4

2π2 −
7β̃6

27π2 +O
(
β̃8
)}

, (5)

where β̃ = 21/3β. The ζ = 0 case has same leading power laws with different
coefficients. Thus the exchange energy tends to lower the quasi-particle energy
parametrically determined by α, with either ζ = 0 or ζ = 1 becoming the absolute
minimum depending on β. For comparison, in this notation, the rest mass energy of
the degenerate gas is Erest = m4β3/(3π2).

Exploring the energy expression presents three possibilities; ζ = 1 is not a
minimum at all, ζ = 1 is a local minimum but E(0) < E(1), i.e. a metastable
vacuum, and finally, ζ = 1 is the absolute minimum with ζ = 0 unstable vacuum. In
Fig. 1 we have plotted the approximate regions of the three phases in the parameter
space.

3.1 Evolution and Stability of Domain Walls

We expect domain walls to occur in this spin-polarised medium just like in
ferromagnets. However due to the SU(2) of spin being simply connected, the
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Fig. 1 Phase plot in the fine structure constant α vs β = pF /m plane showing the allowed region
of spontaneous ferromagnetism

defects are not topologically stable and can unwind. However these processes are
suppressed by a competition between the gradient energy and the extra energy
stored in the domain walls, and there is a Ginzberg temperature TG [21] below
which thermal fluctuations cannot destabilise the walls trivially. The mechanism
for destabilisation is then the one studied in detail in [28]. The rate for such decay
is governed by an exponential factor exp(−B/λ) [29] where the exponent is the
Euclidean action of a suitable “bounce” solution connecting the false and the true
vacua [30]. On phenomenological grounds we need this complex to be stable for
≈1017 s. The bounce B is typically ∝ 1/λ, where λ is a generic dimensionless
coupling constant. Then large suppression factors ∼10−30 are natural for λ ∼ 0.01.
The other mechanism for disintegration of the DW network resides in the magnino
gas becoming non-degenerate.

4 A Minimal Model for Dark Energy

We consider a hitherto unobserved sector with particle species we generically call
M and Y . They are assumed to be oppositely charged under a local abelian group
U(1)X with fine structure constant αX. The mass mM of M is assumed in the sub-eV
range while the Y mass mY is assumed to be much larger. Charge neutrality requires
that the number densities of the two species have to be equal, in turn this means
that the Fermi energies are also the same. The hypothesis of larger mass is to ensure
that Y with Compton wavelength M−1 << p−1

F does not enter into a collective
magnetic phase.

We start our considerations at time t1 when the temperature is just below TG so
that the wall complex has materialised. The parameters of this wall complex are ω,
the thickness of individual walls and L the average separation between walls. On the
scale of the horizon, the wall complex behaves just like a space filling homogeneous
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substance. Further, due to the demand of neutrality, the heavier gas Y cannot expand
either, although it has no condensation effects. Let us denote the number density of
the magninos trapped in the walls to be nX

walls and the remainder residing in the
enclosed domains by nX

bulk. Averaged (coarse grained) over a volume much larger
than the L3, this gives the average number density of the magninos to be

〈nX〉 = ω

L
nX

walls +
(

1− ω

L

)
nX

bulk (6)

And from the neutrality condition we have

〈nX〉 = 〈nY 〉 (7)

Then we can demand that PAAI in this phase acts as the DE, so that assuming Y to
be non-relativistic, and ignoring other contributions,

ρY ≈ mY 〈nY 〉 = ρDE = 2.81× 10−11 (eV)4 (8)

We can express the number density of Y as a ratio of the number density nγ =
3.12 × 10−12 (eV)3 of photons, and set ηY = 〈nY 〉/nγ . Then we can obtain
conditions that determine the ratio

mM

mY

= βY

β
≈ (ηY )4/3 × 10−6λ1 (9)

These are the essential constraints determining the key parameters of our model.
Then we find that mM ranges over 10−4 to 10−6 eV corresponding to ηY ranging
from 10−4 to 10−8 eV; and mY , respectively, ranges from 1 keV to 1 GeV. Further,
we can also develop a corresponding multi-flavour dark sector so that Dark Matter
can also be accommodated as neutral atoms of this sector. The details can be found
in [11].

5 Origin of Cosmic Magnetic Fields

The origin and evolution of galactic scale magnetic fields is an open question
[18, 31]. In particular the extent of seed magnetic field as against that generated
by subsequent motion is probably experimentally distinguishable [19, 20]. In the
present case, we can estimate the field strength of the X-magnetism in each domain,
and is found to be

Bdom ≈
(mM

eV

)2
(
e′

e

)(
β

0.1

)3

× 2.2× 10−8T (10)
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Since the domain structure is completely random we expect zero large-scale
magnetic field on the average. Residual departure from this average can be estimated
by assuming that the deviation from the mean grows as

√
N as we include N

domains. Thus if the X-magnetic field in individual domains has the value Bdom,
then on the scale of galactic clusters Lgal it possesses a root mean square value
ΔB ≡ Bdom(L/Lgal)

3/2.
Assuming U(1)X field mixes kinetically with standard electromagnetism through

term of the form ξFμνFX
μν , the ξ is well constrained from Supernova 1987A data to

[32] 10−7 < ξ < 10−9. The exact value of the seed required depends on the epoch
being studied and other model dependent factors [33]. We consider the possibility
of a seed of 10−30T with a coherence length of 0.1 kpc∼ 3× 1018 m obtained with
ξ = 10−8.

ΔBseed = 10−30T ∼ 10−8 ×
(mM

eV

)2
(
e′

e

)
β3
(
L

m

)3/2

× 10−40T (11)

From this, representative values for L for β = 0.1 are in the range 1011 to
1013 m which is solar system size. A detailed treatment to estimate the residual
fluxes on large coherence length scales could trace the statistics of flux values in
near neighbour domains and the rate at which the magnetic flux could undergo
percolation, providing perhaps a smaller value for L, which should tally with above.

6 Conclusions

We have proposed the possibility of a negative pressure medium as arising from
nothing more radical than a peculiar ground state of a pair of asymmetric fermion
species interacting through an unbroken abelian gauge force. In an attempt to high-
light the potential utility of the PAAI to cosmology, specifically to DE and to cosmic
ferromagnetism, we have been agnostic about the earlier history of this sector. A
study of temperature dependence of this phenomenon as also phenomenological
inputs from the cosmic dawn data would help to sharpen this scenario.

7 Questions from the Audience

Here we address two of the more important questions raised variously by several
members of the audience, which we take the liberty to recapitulate and freely
paraphrase. We gratefully acknowledge these inputs as having sharpened our
understanding of our proposal.

Q1 The condensed state of the magninos seems to define a special frame of
reference. Does that not conflict with the standard cosmology?
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A1 The magnino and accompanying particles form a homogeneous relativistic
gas at a high temperature just like the visible sector in the standard model of
cosmology. It thus defines its own comoving set of coordinates. Thus it will
be necessary for this medium to be interacting with the standard sector during
an early epoch so that the two define a common comoving frame. The new
sector becomes “dark” only in the late universe. The emergent DW structure
is then a comoving constant energy contribution.

Q2 What is the equation of the state of the spin-polarised ground state? Intuitively
any medium consisting of ordinary quasi-particles should be subject to
evolution with the corresponding equation of state and will not simulate
constant energy density.

A2 The spin-polarised medium if infinite, has been estimated to satisfy p =
−0.1ρ. However we note firstly that a negative value of effective w implies
a strongly coupled medium. Further, the domain wall structure would be
immune to expansion since it exists by virtue of local stresses whose strength
is many orders of magnitudes greater than the local gravitational tidal force.
For this reason we expect the DW complex to protect both itself and the
strongly coupled quasi-particle gas from suffering tidal acceleration. Thus
the energy density should remain constant, and averaged over an enormous
number of domains, should be homogeneous.
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Three Partial Differential Equations
in Curved Space and their Respective
Solutions

Gopinath Kamath

Abstract The partial differential equation in curved space whose solution is the
electrostatic potential A0 is obtained following Whittaker (Whittaker, Proc R Soc
A 116:720–735, 1927) in: a. 2 + 1 dimensions with the metric gμν given by
(a) Deser, Jackiw and ‘tHooft (Deser et al., Ann Phys 152:220–235, 1984), and
Clement (Clement, Int J Theor Phys 24:267, 1985) and (b) by Banados, Teitelboim
and Zanelli (Banados et al., Phys Rev Lett 69:1849, 1992); and in b. 3 + 1
dimensions with the cylindrically symmetric metric due to Trendafilova and Fulling
(Trendafilova and Fulling, Eur J Phys 32:1663, 2011). While a series solution of
the partial differential equation is easily obtained for two of the examples cited in
2 + 1 and 3 + 1 dimensions, respectively, a sensible solution eludes us with the
Banados–Teitelboim–Zanelli (Banados et al., Phys Rev Lett 69:1849, 1992) black
hole metric, inviting an alternative to Whittaker’s approach (Whittaker, Proc R Soc
A 116:720–735, 1927) that is exact and sketched here briefly.

Keywords Partial differential equations in curved spaces · Whittaker’s method ·
2 + 1 and 3 + 1 dimensions

1 Introduction

The method of images has been a go-to for solutions to problems in electrostatics;
while the theoretical aspects of image charges have been discussed at length by
Muller-Kirsten [1], its application to several problems has been dealt with in detail
both by Jackson [2] and Muller-Kirsten [1]. Parenthetically, from the standpoint
of a stress-tensor the method has also been adopted for the Casimir effect [3] for
the parallel plate problem at zero and finite temperatures by Brown and Maclay
[4]. Going further, a matrix solution to the Maxwell’s equations in flat space that
yields both the static and time-dependent solutions has been presented by Moses [5]
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recently. The aforesaid methods motivate this report in an effort to determine the
electrostatic and exact solutions to Maxwell’s equation in curved space; while the
former are easier to obtain as solutions of second-order partial differential equations
using Whittaker’s method [6] in two examples in 2 + 1 and 3 + 1 dimensions,
respectively, and this will be dealt with first in the sequel, a sensible answer with
Ref. [6] eludes us for the third example with the metric of Banados, Teitelboim and
Zanelli [7], thus motivating—in the latter part of this report—an answer via the first-
order partial differential equations of Moses [5] but with the orientation suggested
by Plebanski [8].

We begin with Eq. (5) in Whittaker’s paper [6], namely,

∑

q,r

gqrφprq = jp (1)

Editing it here with a change of notation to

gμνA0:μ;ν = j0 (2)

helps, as for electrostatic phenomena in a gravitational field ji, Ai i �= 0 are zero and
the time derivatives of A0 are zero. In 2 + 1 dimensions following Deser, Jackiw
and ‘tHooft [9] and Clement [10] one has

ds2 = (cdt + λdθ)2 − dr2 − r2dθ2 (3)

and Eq. (2) becomes

r2 ∂
2A0

∂r2
+ r

∂A0

∂r
+ ∂2A0

∂θ2
= j0 (4)

where the gμν are given with λ = kJ
2π , k = 8πG, J =

∣∣∣
−→
J

∣∣∣ by

g00 = 1, g10 = 0, g20 = λ, g11 = −1, g22 = −r2 + λ2, (5)

G being the gravitational constant and J the spin of the massless particle. The
counterpart of (3) in 3+ 1 dimensions for the cylindrically symmetric metric defined
by

ds2 =
(a
r

)
c2dt2 − r

a
dr2 − r2dθ2 − 0

( r
a

)2
dz2, a �= 0, r2 = x2 + y2 (6)

is

r2 ∂
2A0

∂r2 + 2r
∂A0

∂r
+ r

a

∂2A0

∂θ2 + ar
∂2A0

∂z2 = j0 (7)
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Eq. (7) bears comparison with Eq. (25) in Ref. [6], namely

(
1− α

r

) ∂

∂r

(
r2 ∂φ0

∂r

)
+ 1

sin θ

∂

∂θ

(
sin θ

∂φ0

∂θ

)
+ 1

sin2 θ

∂2φ0

∂φ2 = 0 (8)

it being obtained on using the Schwarzschild metric with gμν given by

g00 = r

r − α
, g11 = −c2 r − α

r
, g22 = −c2

r2 , g
33 = − c2

r2sin2θ
(9)

A general solution to (8) has been given in Eq. (31) of that paper in terms of the
product

P 1
n (z)P

n
m (cos θ) (am cosm φ + bm sinm φ) , α (z+ 1) ≡ 2r (10)

and can similarly be determined here for the homogeneous versions of Eqs. (4)
and (7).

While presenting the solutions to Eqs. (4) and (7) below we note that Eq. (6) is a
special case of

ds2 = ( r
a

)j
c2dt2 − ( r

a

)j+k
dr2 − r2dθ2 − ( r

a

)k
dz2,

a �= 0, 2 (j + k) = −jk
(11)

that was discussed by Trendafilova and Fulling [11] recently.

2 The Solutions to Eqs. (4) and (7)

A general solution to the homogeneous version of (4) is easily obtained as

A0 (r, θ) =
∞∑

m=0

(
amrm + bmr−m

)
(cm sinmθ + dm cosmθ) (12)

Equally for Eq. (7) the radial part will be a solution of

r
d2R

dr2 + 2
dR

dr
+ ν2R = 0, aν2 = a2 p2 −m2 (13)

with the θ and z dependence of the solution written in terms of the product

(am cosmθ + bm sinmθ)
(
cne

−pz + dne
pz
)

(14)
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in the general solution to the homogeneous version of (7). Eq. (13) has the general
solution

R(r) = 1

ν
√
r

(
C1J1

(
2ν
√
r
)+ C2Y1

(
2ν
√
r
))

(15)

with J1 and Y1 being the Bessel functions of the first and second kind, respectively,
of order 1; and the general solution to the homogeneous version of Eq. (7) will,
therefore, be

φ (r, θ, z) =
∞∫
−∞

dp
∞∑

m=0

{
1

ν
√
r

(
C1J1

(
2ν
√
r
)+ C2Y1

(
2ν
√
r
))

(am cosm θ + bm sinm θ)
(
cpθ(p)e−pz + dpθ (−p) epz

)
}

(16)

While Eqs. (12) and (16) are the general solutions, one also has the radial
functions of φ(r) = ln r and φ(r) = 1

r
associated with the Coulomb potential

as obvious solutions to Eqs. (4) and (7), respectively; in this context, there have
been several calculations [12–14] on the correction to the hydrogen spectrum from
the inclusion of the Schwarzschild metric, for example, as a perturbation. However,
a complementary investigation involving the quantum mechanics of a hydrogen ion,
for instance, subject to the Coulomb-like potential expressed by (12) and (16) is
clearly preempted as the solutions are infinite series rather than a sum; to this end it
clearly pays to obtain the required answer from the method of Moses [5] tempered
with the orientation due to Plebanski [8] that will be introduced in the latter part
of this paper, if only because it has none of the infirmities that are evident in this
section.

2.1 A Third Example

In 2 + 1 dimensions the metric of Banados, Teitelboim and Zanelli [7] is got from

ds2 = −(N⊥)2dt2 + 1
f 2 dr

2 + r2
(
dθ +Nθdt

)2
,

2r2Nθ = −J,
(
N⊥)2 = f 2 = −M + r2

l2
+ J 2

4r2

(17)

and in polar coordinates it works to

g00 = M − r2

l2
, g11 = 1

f 2
, g02 = −J

2
, g22 = r2 (18)
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The counterpart of Eqs. (4) and (7) is now given by

f 2 ∂
2A0

∂r2 + 1

r

(
f 2 − J 2

2r2

)
∂A0

∂r
− M − r2

l2

f 2r2

∂2A0

∂θ2 −
(

2

l2
+ J 2

4l2f 2r2

)
A0 = j0

(19)

the homogeneous version of which becomes

d2R

dr2 +
1

r

(
1− J 2

2f 2r2

)
dR

dr
+ 1

f 2

(
m2

f 2r2

(
M − r2

l2

)
−
(

2

l2
+ J 2

4l2f 2r2

))
R=0

(20)

with A0(r, θ ) = R(r)H(θ ) and m an integer following from

∂2H

∂θ2
+m2H = 0 (21)

Eq. (20) has a regular singular point at r = 0 and with h(r) = r2f2 one gets

h2 d
2R

dr2 +
h2

r

(
1− J 2

2h

)
dR

dr
+ r2

[
m2
(
M − r2

l2

)
− 2

l2

(
h+ J 2

8

)]
R = 0

(22)

Eq. (22) is solved through transformations following Polyanin and Zaitsev [15] so
as to reconcile it with

4g2 d
2y

dx2
−
(

2g
d2g

dx2
−
(
dg

dx

)2

+ b

)
y = 0 (23)

the solution to which is an elementary function whose form depends on the constant
b. Reworking Eq. (22) to

4h2 d
2K

dt2 −
(
m2 t

l2
+ t2

l4
− a

)
K = 0,

4a ≡ 7M2 − 5J 2

l2
+ 4Mm2, t ≡ r2 (24)

and writing the solution to (24) as

K(t) = hc exp
b

2

∫
dt

h
(25)
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the constants c, b work to

4c = 1±√2,

2b = (m2 +M
) (

1±√2
) (26)

with the parameter m2 hitherto free, as a solution to

4c2m4 + (4c + 1)m2M + 1

4

(
7M2 +

(
−3± 2

√
2
) J 2

l2

)
= 0 (27)

Clearly, m = 0 is not a root of this equation as it would imply that

J 2 = 7
(
−3∓ 2

√
2
)
M2l2 (28)

Thus it would seem that there are no θ -dependent solutions to (19) with the metric
given by (18). That this conclusion is wrong is easily checked from a Frobenius
approach to the differential equation; as an alternative therefore to Whittaker’s
method for Eq. (17), the sequel suggests a way out may consist in solving Maxwell’s
equations as first-order partial differential equations with constant coefficients in
curved space following Moses [5] and Plebanski [8]. To this end we define following
Ref. [8],

Da = √−gf 0a,H = √−gf 21, Ea = fa0, B = f21 (29)

to obtain

Di,i = −4π

c
j0

D1,0 +H,2 = 4π

c
j1 (30)

D2,0 −H,1 = 4π

c
j2

−B,0 + E2,1 − E1,2 = 0

as Maxwell’s equations, noting that in Cartesian coordinates (see Eq. (43) below)√−g = 1. The definitions
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Ψ ≡ (B + iH E1 + iD1 E2 + iD2 0)T ,

Γ ≡
(

0
4πi

c
j1 4πi

c
j2 4πi

c
j0
)T

(31)

now enable one to rewrite Eqs. (30) as a matrix equation with 4 × 4 matrices as

(I∂0 + α1∂1 + α2∂2) Ψ = Γ (32)

with I being the unit matrix and the α’s defined by

α1 =

⎛

⎜⎜⎝

0 0 −1 0
0 0 0 1
− 1 0 0 0
0 −1 0 0

⎞

⎟⎟⎠ , α2 =

⎛

⎜⎜⎝

0 1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

⎞

⎟⎟⎠ (33)

The operator −→α ·−→∂ has eigenvalues ±p,±ip with p = ∣∣−→p ∣∣, with the respective
linearly independent set of orthonormal eigenvectors given by

√
2pX+ = ei

−→
p ·−→x (0 ip1 ip2 p

)T
,
√

2pX− = ei
−→
p ·−→x (0 p1 p2 ip

)T
√

2pY+ = ei
−→
p ·−→x (p p2 −p1 0

)T
,
√

2pY− = ei
−→
p ·−→x (−p p2 −p1 0

)T

(34)

A diligent application of the work by Moses [5] now helps to determine the
matrix elements in

Ψ = (B + iH E1 + iD1 E2 + iD2 0)T

in terms of those in

Γ =
(

0
4πi

c
j1 4πi

c
j2 4πi

c
j0
)T

exactly. For time-independent solutions one easily obtains the answer

Ψ (x) = 4πi

c

∫

p

∫

z

ei
−→
p ·(−→x −−→z )

2p3

(
−2ip

(
p2j

1 − p1j
2
)

2ipp1j
0 2ipp2j

0 − 2ip
(
p1j

1 + p2j
2
))T

(35)
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The last term in (35) will be zero by current conservation and the momentum
integration yields

Ψ (x) = 2i
c

∫
z

(−→
j ×(−→x −−→z )
|−→x −−→z |2 − j0

2 ∂x log
∣∣−→x −−→z ∣∣2 − j0

2 ∂y log
∣∣−→x −−→z ∣∣2 0

)T

≡ (B + iH E1 + iD1 E2 + iD2 0
)T

(36)

The second equality in (36) yields

−→
E + i

−→
D = −i grad

(
log
∣∣∣−→x −−→R

∣∣∣
2
)

(37)

when j0 = cδ
(−→

z −−→R
)

reflecting an unit charge at −→z = −→R . By extension one

also has

B + iH = 2i

c

∫

z

−→
j × (−→x −−→z )
∣∣−→x −−→z ∣∣2

(38)

The relation between
(
B,
−→
E
)

and
(
H,
−→
D
)

follows from

fa0 = gabg0cf
ab, f21 = g2μg1νf

μν (39)

as Da = f0a, H = f21, Ea = fa0, B= f21vide Eq. (27) above. To elaborate one has for
Eq. (39)

fa0 = (ga0g01 − ga1g00) f
01 + (ga0g02 − ga2g00) f

02 + (ga2g01 − ga1g20) f
21

f21 = (g20g11 − g21g10) f
01 + (g20g12 − g22g10) f

02 + (g22g11 − g21g12) f
21

(40)

and with a little effort one gets from Eqs. (40)

⎛

⎝
B + iH

E1 + iD1

E2 + iD2

⎞

⎠ = K

⎛

⎝
f 01

f 02

f 21

⎞

⎠ (41)

where

K =
⎛

⎝
(g20g11 − g21g10) (g20g12 − g22g10) (g22g11 − g21g12 + i)

(g10g01 − g11g00 + i) (g10g02 − g12g00) (g12g01 − g11g20)

(g20g01 − g21g00) (g20g02 − g22g00 + i) (g22g01 − g21g20)

⎞

⎠

(42)
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One can now determine through matrix inversion the column vector on the right-
hand side of (41) as Eqs. (38) and (39) define the left-hand side of Eq. (41) for an

unit charge at −→z = −→R .
This is a lengthy calculation that will be pursued in detail elsewhere, but to wrap

up this paper we give below in Cartesian coordinates the gμν that is the counterpart

of the polar versions given by Eqs. (18) and (5), respectively, with f 2 = −M+ r2

l2
+

J 2

4r2 , r2 = x2 + y2:

g00 = M − r2

l2
, g01 = jy

2r2 , g02 = − jx

2r2 ,

g11 = x2+y2f 2

r2f 2 , g12 = xy

r2

(
1

f 2−1

)
, g22 = y2+x2f 2

r2f 2

(43)

and

g00 = 1, g01 = − λy

x2+y2 , g02 = λx
x2+y2 ,

g11 = −1+
(

λy

z2+y2

)2
, g12 = − λ2xy

(x2+y2)
2 , g22 = −1+

(
λx

x2+y2

)2 (44)

Each of Eqs. (43) and (44) leads through Eqs. (41) and (42) to the time-

independent
−→
D(x), H(x) for the metric given in (18) and (5), respectively, and they

will be the counterparts in curved space of the Coulomb potential of φ(r) = ln r in
2 + 1 dimensional flat space. Needless to say so and in conclusion, one can simply
repeat the above steps to obtain for the cylindrically symmetric metric of Eq. (6) the
counterpart of the Coulomb potential of φ(r) = 1

r
.
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Integrability



What Does the Central Limit Theorem
Have to Say About General Relativity?

Réjean Plamondon

Abstract In this paper, we speculate on a possible connection between the
Bayes’s law and the Einstein’s general relativity equation to support the use of a
metric based on an erfc gravitational potential that has been recently proposed to
provide some cues to open problems in the solar systems. Starting from a basic
interdependence premise, an analogy between Einstein’s equation and Bayes’s law
is used to analyze the linear case of a weak field static symmetric massive object,
providing a probabilistic context that takes into account the probability of presence
of a given energy density in its corresponding 4D curved space-time manifold.
Using the Central Limit Theorem to model globally the very slow process of star
formation and mathematically express the corresponding probability density, the
new framework provides a rationale for the emergence of a weighted Newton’s law
of gravitation. One key feature of this modified gravity model is that it relies on the
existence of an intrinsic emergent physical constant σ , a star-specific proper length
that scales all its surroundings.

Keywords Modified gravity · Weighted Newton’s law · Central limit theorem ·
Bayes’s law · Star proper length · erfc potential · Emergence · Self-organization

In its most general configuration, a complex system is a network of heterogeneous
and usually simpler subsystems that interact among each other to give rise to
emergent features that guides its self-organization into a more complex system.
The description of the whole process simplifies at a given level of representation,
leading to some emergent properties [1]. These emergent systems are omnipresent
in physics, chemistry, and biology [2].

Among the tools that can be used to study such systems and their convergence
is the Central Limit Theorem [3]. This theorem has been developed over four
centuries in the context of searching for the asymptotic probabilistic behavior of a
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sum of independent or quasi-independent random variables. The key feature of this
theorem, which makes it practical for the study of complex systems, is that although
the details of the individual sub-processes are unknown, the behavior of the whole
system can be predicted, under some non-restrictive conditions, to converge toward
multivariate Gaussian functions.

In this paper, we use this modeling approach to conjecture about emergent
gravity, speculating from a possible connection between the Bayes’s law and the
Einstein’s general relativity equation. The idea of modifying gravity to come up
with new relativistic field descriptions has been proposed time and again in the
last decades to provide among other things alternative explanations to some open
problems in astronomy and astrophysics [4, 5, 6]. These extensions aimed at
correcting and enlarging Einstein’s theory to encompass several shortcomings when
cosmological, astrophysical, mathematical, and quantum mechanical observations
and objections are taken into account [7, 8, 9]. In this mindset, in a recent paper
[10], the static non-empty symmetric geometry described by a metric based on an
erfc gravitational potential has been proposed and studied in detail. This new metric
provides a consistent set of predictions and interpretations regarding some open
problems in the solar system, like the fly-by anomalies, the secular increase of the
astronomical unit, the residual Pioneers’ delays [11].

In the present manuscript, a fundamental question is addressed: can we lay the
foundations for an emergent model that predicts the existence of an erfc potential
using the central limit theorem? In the next section, starting from a complementarity
that has been pointed out by Wheeler, we propose a comparison between Einstein’s
equation and Bayes’s law of conditional probabilities and use it to support our
analogical and speculative argumentation. The whole framework relies on a global
probabilistic description of a star formation from which a fundamental law of
gravitation comes out as a consequence of an asymptotic convergence predicted by
the Central Limit Theorem. In Sect. 2, we put the general relativity in a probabilistic
context and in Sect. 3, we present the conditions under which a weighted Newton’s
law automatically emerges from this new scheme and then conclude.

1 Introducing a Probabilistic Context in General Relativity

Einstein’s gravitation equation, which links the space-time curvature tensor G to the
energy-momentum tensor T,

G = KT (1)

has been encapsulated by Wheeler as, “Space-time tells matter how to move; matter
tells space-time how to curve.” [12]. This points out an interesting interdependence
that can be used to put general relativity into a probabilistic context if this assertion
is converted into a general and fundamental premise:
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“Space-time curvature (S) and energy-momentum (E) are two inextricable
descriptive approaches to define the physically observable probabilistic universe
(U); they must be mutually exploited to describe any subset Ui of this universe. The
probability of observing and describing a given subset of the universe P(Ui), i.e.
the joint probability P(Si,Ei), can be studied from two equivalent methods: either
by analyzing the curvature of space-time Si after hypothesizing a given energy-
momentum Ei or by analyzing the energy-momentum Ei under the hypothesis of
a given space-time curvature Si. In terms of conditional probabilities, this leads to
two equivalent descriptions:

P (Ui) = P (Si, Ei) = P (Si/Ei) P (Ei) = P (Ei/Si)P (Si) (2)

Using the corresponding probability density function f () of these conditional
probabilities P() and rewriting (2) in a 4D Bayesian format, we get:

f
(
Sμν/Eμν

)
f
(
Eμν

) = f
(
Eμν/Sμν

)
f
(
Sμν

)

f
(
Sμν/Eμν

) = f
(
Sμν

)

f
(
Eμν

) × f
(
Eμν/Sμν

) (3)

In other words, we consider the space-time curvature and the energy-momentum
tensors as continuous 4D random variables and the values of their probability
density functions define the probability that these random variables have a particular
range of values within an infinitesimal space-time interval, providing an estimate of
the relative likelihood that these random variables have these values in this interval.

This latter equation can be linked to Einstein’s Eq. (1) through the following
analogy:

Gμν ⇐⇒ f
(
Sμν/Eμν

)
(4)

and

KT μν ⇐⇒ f
(
Sμν

)

f
(
Eμν

) × f
(
Eμν/Sμν

)
(5)

In other words, f (Sμν /Eμν) can be interpreted as describing the probability of
space-time to be curved under the conditional probability of observing a given

energy-momentum density

[
f
(
Sμν

)

f
(
Eμν

) × f
(
Eμν/Sμν

)
]

, which can be linked to

Gμν and Tμν , respectively.

2 Emergence of a Weighted Newton’s Law of Gravitation

Under weak field, low speed, classical conditions, only the 00-component of (1) is
significant:
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G00 = R00 − 1

2
g00R = KT 00 (6)

Applying the previous analogy to such a system and using dimensional analysis,
one can associate f (S00/E00), in (E/L−4), with the probability density of the space-
time subset S00 to be curved given a matter-energy E00, to G00, a curvature
component in (L−2):

f (S00/E00) = k1G00 (7)

Similarly,

f (S00)

f (E00)
f (E00/S00) = k2KT 00 (8)

where the coefficients k1 and k2 are unit-balancing constants.
A way to perform estimate f (E00/S00) is to analyze the very slow process of star

formation using a simple stochastic model. Assuming that in a remote and isolated
part of the Universe, a star is slowly building up from the gradual agglomeration of
chunks of matter-energy. Considering these chunks as random variables described
by their own density functions, this process, which involves hydrodynamics,
thermodynamics, radiation transport, etc., is equivalent, from a global probabilistic
point of view, to adding up random variables, i.e. making the convolution of
their corresponding probability density functions. Since these densities respect the
Lindeberg conditions [13], in the sense that they are real, normalized, non-negative
functions with a finite third moment and a scaled dispersion, then the Central Limit
Theorem applies and predicts that in a flat Euclidean space-time, when the number
of random chunks is very large (N→∞),

f (E00/S00) ∝ f (x) = lim
N→∞ [f1 (x) ∗ f2 (x) ∗ · · · ∗ fN (x)] (9)

and the ideal form of the global probability density f (x) will be a Gaussian
multivariate and will tend to the following general form:

f (x) = 1

(2π)n/2|Σ |1/2
exp

[
−1

2
(x− μ)T Σ−1 (x− μ)

]
(10)

where x is an n dimension random vector measuring the distance from the mean
vector μ of the distribution, and + = E[(x − μ), (x − μ)T] is the statistical
covariance matrix measuring the expected (E) dispersion of this distribution.

For a 4D pseudo-Euclidean static system n = 4, with the quadri-vector x =(
ct, x, y, z

)
, centered at μ = (ct, 0, 0, 0

)
, Eq. (10) can be rewritten as:



What Does the Central Limit Theorem Have to Say About General Relativity? 507

f (r) = 1

4π2σ 4 exp

(
− r2

2σ 2

)
(11)

where r is the Euclidian distance
(
r2 = x2 + y2 + z2

)
from the zero-centered mean

of the f (r) density. The diagonal covariance matrix (+) reduces to σ 2, a weighting
parameter that scales the norm of the quadri-vector x, a Lorentz invariant. This scalar
σ 2 is de facto a Lorentz invariant, an intrinsic and emergent feature of the central
limit process. It reflects the system intrinsic proper length. This specific scale is the

basic feature that can be used to get a curved space description f
(
-
r
)

of the star’s

probability density and to point out some of its specific inherent properties.
Indeed, Eq. (11) is not practically useful in its present form, since it is only valid

in a flat space-time that is, when an observer is at infinity from the star or locally, on
a geodesic.

In other words, r defines the distance from the apparent star center as seen from
infinity in a hypothetical flat space while

-
r defines the physical curvilinear distance

from the star center in the curved space-time.
In their simplest algebraic form, the relationship between r and

-
r can be

summarized as follows:
[
r = 0 at

-
r = ∞

r = ∞at
-
r = 0

]
⇒ r = s

-
r

(12)

where s is a scale parameter that can be determined from the invariance of σ :

r = σ = -
r ⇒ s = σ 2 (13)

This leads to making the following change of coordinates:

r

σ
= σ

-
r

(14)

to get f
(
-
r
)

, a projection of f (r) on a manifold of variable curvature described

locally by the coordinate
-
r . Making this change of coordinates making sure that

the normalization of the probability densities in both representation spaces is
maintained, this leads to:

f
(-
E00/

-

S 00
) = k3f

(
-
r
)
= k3

4π2σ 2-r
2

exp

(
−σ 2

2
-
r

2

)
(15)
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Equation (15) expresses the probability density of finding the star within an
equivalent 3-ball of radius

-
r , in a curved manifold under static, symmetric, weak

field, and low speed conditions.
Pursing on this analogy, one can define the energy priori probability density by:

f (E00) = 1

Mtotc2 (16)

Taking into account the mapping defined by Eq. (14) f (S00) can be estimated
in two steps. First, an invariant reference surface, valid both in the flat and curved
descriptions, must be established. This is done assuming that the total energy of
the star is distributed on the reference 2-spheres of constant curvature 1/σ 2 in both
representations:

f
(
S00(r=σ)

) = 1

4πσ 2 = f

(
S

00
(
-
r=σ

)
)

(17)

Second, a value of f
(
S00(r)

)
valid all over the flat space is obtained by weighting

by the corresponding 3-ball volumes defined at r and σ , respectively:

f
(
S00(r)

) = 1

4πσ 2

V3b.r

V3b.σ
= 1

4πσ 2

4π
3 r3

4π
3 σ 3

= 4πσ 2 r3

σ 3
(18)

which, using Eq. (14), leads to an expression for f

(
S

00
(
-
r
)
)

valid at any

corresponding r position:

f

(
S

00
(
-
r
)
)
= 1

4πσ 2

σ 3

-
r

3 =
σ

4π
-
r

3 (19)

In other words, the mapping resulting from Eq. (14) guarantees that the energy-
momentum tensor T

00
(
-
r
) affecting the curvature at a radial distance

-
r in the curved

space is consistent with the energy-momentum tensor component T00(r) that would
be measured in an ideal flat space at the corresponding distance r from the Gaussian
density center.

Substituting Eqs. (15) and (19) in Eq. (6) leads to the description of a central
force field as a function of the curvilinear distance from the star center:

∇2Φ (r) = 2Kc2σ 2Mc2

(4πσ)3r5
exp

(
− σ 2

2r2

)
, (20)

where K = k3/k1 (with k1 and k2 in L−2 and k3 in L4 E−1) and where, from now on,

the curved hat over the coordinate r is omitted
(
-
r → r

)
.
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This Laplacian can be solved to get an expression for the magnitude of the linear
radial gravitational field:

g(r) = −
∣∣∣
−→∇ Φ (r)

∣∣∣ = −2Kc2Mc2

(4πσ)3r2
exp

(
− σ 2

2r2

)
(21)

which reduces to the Newton description for large r values.
The gravitational potential can be obtained, if Eq. (21) is integrated:

Φ(r) =
r∫

0

g(r)dr = 2Kc2Mc2

(4πσ)3

( √
π√
2σ

)
erf c

(
σ√
2r

)
= Φerf c(r) (22)

where the integration limits, from 0 to r, are consistent, according to Eq. (14), with
integration from r = ∞ to 0 in the corresponding flat space representation, which
leads to an erfc potential. In other words, in a flat space, the gravitational potential
is fixed to zero at r = ∞ and the Minkowskian metric is recovered under this
condition. But when the flat model is projected into a curved space, according to
the inverse relationship (14) between r and

-
r , Eq. (22) predicts a constant potential

at r = infinity. This is the particular feature of an erfc potential which leads to an
original description of the space-time surrounding a massive object as previously
published [7, 8]. Eq. (22) also converges toward the Newton limit, if the constant
term included in the erfc function is arbitrarily subtracted, which leads to an erf
potential that tends toward a 1/r behavior at large r values.

3 Conclusion

Under the paradigm of a self-organizing universe, the laws of physics should emerge
from the space-time and matter-energy distribution. From a global perspective,
the analogical and speculative approach presented in this paper can be seen as a
heuristic strategy to mathematically take into account Mach’s principle [9]. On top
of Einstein’s arguments [14], Eq. (3) provides a rationale based on a fundamental
law of probabilities, the Bayes’s law [15]. Applying this interdependence principle
and the Central Limit Theorem, we have pinpointed a possible explanation for the
emergence of a weighted Newton’s law of gravitation in such a system. One key
feature of the present theory [16] is that it is based on the existence of an intrinsic
star-specific physical constant, the parameter σ 2, which automatically emerges from
a convergence process described by the Central Limit Theorem. As reported in [7,
8], the new erfc potential once incorporated into a spherically symmetric metric,
describes various features of the resulting modified Schwarzschild geometry. For
example, computing the systematic errors that emerge when the effect of σ is
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neglected, the Hubble constant H0 can be linked to σ Sun and the secular increase of
the astronomical unit VAU to σEarth, which leads to accurate numerical predictions:
H0 = 74.42(.02)(km/s)/Mpc and VAU ∼= 7.8cm - yr−1. Moreover, investigating the
expected impacts of the erfc potential on the fly-bys anomalies and the residual
Pioneers’ delay lead to corrections for the osculating asymptotic velocity of a fly-
by at the perigee of the order of 10 mm/s and an inward radial acceleration of
8.34 × 10−10m/s2 affecting the Pioneer spacecrafts.

To the best of our knowledge, the Bayesian paradigm proposed in this paper has
never been investigated. Bayesian approaches have extensively been used to explore
complex problems from a probabilistic point of view in numerous fields of science
[17, 18], including quantum physics [19], astronomy [20], artificial intelligence
[21], and neuroscience [22], to name a few examples. The present model adds up to
this exhaustive list.
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Dressing for a Vector Modified KdV
Hierarchy

Panagiota Adamopoulou and Georgios Papamikos

Abstract We present the hierarchy and soliton solutions associated with a multi-
component generalisation of the modified Korteweg–de Vries equation. A recursive
formula for obtaining the Lax operators associated with the higher flows of the
hierarchy is provided. Using the method of rational dressing and the symmetries
of the Lax operators we obtain the one-soliton solution. We also derive the general
rank one-breather solution and express it in terms of determinants. We present the
simplest case of the one-breather solution, which is parameterised by two constant
unit vectors normal to each other. Finally, we obtain the associated Bäcklund
transformation for the hierarchy.

Keywords Multi-component integrable hierarchies · Soliton solutions ·
Darboux-dressing transformations · Lax representation

1 Introduction

Since the establishment of the modern theory of integrable systems there have
appeared many generalisations of soliton equations in both independent and depen-
dent variables, such as extensions in 2 + 1 variables, systems of equations, and
equations with non-commutative variables. Multi-component integrable equations
and their hierarchies have also attracted much attention due to their rich mathemat-
ical structure and appearance in applications. In the current paper we are concerned
with the hierarchy associated with the following multi-component generalisation of
the modified KdV (mKdV) equation:

P. Adamopoulou (�)
Heriot-Watt University, Edinburgh, UK
e-mail: p.adamopoulou@hw.ac.uk

G. Papamikos
University of Essex, Colchester, UK
e-mail: g.papamikos@essex.ac.uk

© Springer Nature Switzerland AG 2021
M. B. Paranjape et al. (eds.), Quantum Theory and Symmetries, CRM Series in
Mathematical Physics, https://doi.org/10.1007/978-3-030-55777-5_48

513

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-55777-5_48&domain=pdf
http://orcid.org/0000-0002-0151-069X
http://orcid.org/0000-0001-5523-3627
mailto:p.adamopoulou@hw.ac.uk
mailto:g.papamikos@essex.ac.uk
https://doi.org/10.1007/978-3-030-55777-5_48


514 P. Adamopoulou and G. Papamikos

ut + uxxx + 3

2
‖u‖2ux = 0 , with u = u(x, t) ∈ IRN , (1)

and its soliton solutions obtained via the Darboux-dressing scheme. In (1), ‖u‖
denotes the standard Euclidean norm in IRN and the subscripts denote partial
differentiation with respect to the corresponding variables. For convenience, in
what follows we will denote by uj the j th partial derivative with respect to x,
with u0 = u. We remark that Eq. (1), which has also appeared in [11], is not the
vector modified KdV (vmKdV) equation associated with the vector NLS hierarchy.
Several other multi-component generalisations of the mKdV equation have also
been studied in e.g. [3, 5]. In [1] the authors derived the hierarchy of commuting
flows associated with Eq. (1) based on the Drinfel’d–Sokolov scheme [4], and
further presented the soliton solution as well as the breather solutions of general rank
for the hierarchy. Here, we additionally present the Bäcklund transformation for the
hierarchy, as well as an explicit formula for the simplest one-breather solution.

2 Higher Vector mKdV Flows

Equation (1) admits an infinite number of conservation laws, as shown in [1] and
also discussed in [6]. Additionally, the vmKdV is invariant under the Lie symmetries

x̃ = x + α ,

t̃ = t + β ,

(̃x, t̃ , ũ) = (eεx, e3ε t, e−εu) ,

and is also ON -invariant, i.e. invariant under ũ = Au with A ∈ ON . A hierarchy
of commuting generalised symmetries can be recursively constructed ut2n+1 =
Rut2n−1 , n = 1, 2, . . . using the recursion operator R, given in [1, 2, 10],

Rf = −D2
xf− ‖u‖2f− u1D

−1
x

(
uT f

)
−D−1

x (u1fT − fuT
1 )u , (2)

starting from ut1 = u1. For example, we obtain the vmKdV equation (1) by acting
with R on ut1 = u1

ut3 = Rut1 = −u3 − 3

2
‖u‖2u1 ,

and similarly from ut5 = Rut3 we obtain

ut5 = u5 + 5

2
‖u‖2u3 + 5

2
‖u1‖2u1 + 5

(
uT u1

)
u2 + 5

(
uT u2

)
u1 + 15

8
‖u‖4u1 .
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All members of the hierarchy ut2n+1 = Rnu1 admit a zero curvature represen-
tation [L(λ),A2n+1(λ)] = 0, where the linear operators L(λ) and A2n+1(λ) are of
the form

L(λ) = Dx − U(λ) , A2n+1(λ) = Dt2n+1 − V2n+1(λ) , n = 1, 2, . . . . (3)

Here λ is a spectral parameter, Dx and Dt2n+1 denote differentiation with respect to x

and t2n+1, respectively, and U(λ) and V2n+1(λ) take values in soN+2(D)[λ], where
D is the differential ring IR[u,u1, . . .], with Dxuj = uj+1. The Lax operators (3)
are invariant under a ZZ2×ZZ2×ZZ2 reduction group (see e.g. [7]), and in particular
they satisfy

X (λ)† = −X (λ) , X (λ∗)∗ = X (λ) , QX (−λ)Q−1 = X (λ) , (4)

where † denotes the formal adjoint operator, ∗ denotes complex conjugation, and
Q = diag(−1, 1, . . . , 1). The matrix U(λ) in (3) is of the form U(λ) = λJ + U

with [10]

J =
⎛

⎝
0 1 0T

−1 0 0T

0 0 0N

⎞

⎠ , U =
⎛

⎝
0 0 0T

0 0 uT

0 −u 0N

⎞

⎠ , (5)

where 0 is the N -dimensional zero vector and 0N the N × N zero matrix. The
V2n+1(λ) are found recursively starting from V1(λ) = U(λ) according to

V2n+1(λ) = λ2V2n−1 + λA2n−1 + B2n−1 , n = 1, 2, . . . , (6)

where

A2n−1 = −[J,Ut2n−1 ] −D−1
x (uT ut2n−1)J ,

B2n−1 = −DxUt2n−1 −D−1
x (uT ut2n−1)U +D−1

x

[
DxUt2n−1, U

]
.

For example, we have that

V3(λ) = λ2U(λ)−λ

(
[J,DxU ] + ‖u‖

2

2
J

)
−D2

xU−
‖u‖2

2
U+[DxU,U ] , (7)

such that the compatibility condition [L(λ),A3(λ)] = 0 is equivalent to vmKdV
equation (1).
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3 Soliton Solutions for the Vector mKdV Hierarchy

Employing the method of rational dressing (see for example [8, 12]), we construct
soliton and breather solutions to the vmKdV hierarchy. Given that Ψ (x, t2n+1, λ)

is the fundamental solution to the overdetermined compatible system of linear
equations

L(λ)Ψ = 0 , A2n+1(λ)Ψ = 0 , n = 1, 2, . . . , (8)

then a Darboux transformation

Ψ → Φ = M(λ)Ψ , with detM(λ) �= 0 ,

is a gauge transformation that leaves the linear equations form invariant

L̃(λ)Φ = 0 , Ã2n+1(λ)Φ = 0 , (9)

where L̃(λ) = Dx− Ũ(λ) with Ũ(λ) = U (̃u, λ), and similarly for Ã2n+1(λ). Here ũ
is a new exact solution of the vmKdV hierarchy. The Darboux matrix M(λ) can be a
constant matrix with respect to the independent variables and it will result to the ON -
invariance of the vmKdV hierarchy, or it can be a non-constant matrix which leads to
Darboux-dressing relations or to a dressing chain (Bäcklund transformation). From
the compatibility condition of (8) and (9) it follows that the Darboux matrix M(λ)

satisfies the Lax–Darboux equations

DxM = ŨM −MU , Dt2n+1M = Ṽ2n+1M −MV2n+1 , (10)

or equivalently,

L̃ = MLM−1 , Ã2n+1 = MA2n+1M
−1 . (11)

We further require that the Darboux matrix also satisfies the relations

M(λ)M(λ)T = 1 , M(λ) = M(λ∗)∗ , M(λ) = QM(−λ)Q−1 , (12)

which follow from the symmetries (4) of the Lax operators. The Darboux matrices
that lead to the one-soliton and one-breather solutions of the vmKdV hierarchy are
parameterised by a complex number and an element of the complex Grassmannian
Gr(s,CN+2), with s = 1, 2, . . . , N +1 in the case of a breather solution, and s = 1
for a soliton solution. Further details are presented in [1], see also [8] in relation to
the dressing for the vector sine-Gordon equation.



Dressing for a Vector Modified KdV Hierarchy 517

3.1 Soliton Solution: Dressing and Bäcklund Transformations

We consider a Darboux matrix with rational dependence on the spectral parameter
λ, satisfying relations (12). The soliton solution corresponds to a Darboux matrix
with two simple poles at λ = ±iμ of the form [1, 8, 9]

M(λ) = 1+ 2iμ

λ− iμ
P − 2iμ

λ+ iμ
QPQ , with P ∗ = QPQ, (13)

where the matrix P is a projector of rank(P ) = 1 of the form

P = QqqT

qT Qq
with qT q = 0 , (14)

and q(x, t2n+1) ∈ CPN+1. From Eqs. (11) we obtain explicit expressions for q in
terms of the fundamental solution of the linear systems (8), as well as the dressing
transformation u → ũ that leads to soliton solutions for the vmKdV hierarchy. In
particular, from the constant in λ terms of the first equation in (11) and the double
pole at λ = iμ of both equations in (11) we obtain respectively

Ũ = U − 2iμ [J, P − P ∗] , PL(iμ)P T = 0 , PA2n+1(iμ)P T = 0 . (15)

Using the first equation in (15) to express Ũ in terms of U and P leads to the
dressing transformation for the hierarchy

ũj = uj − 4iμ
q1 qj+2

−q2
1 +

∑N+2
k=2 q2

k

, j = 1, 2, . . . , N , (16)

with qj the components of q, while the other two equations provide conditions for
q. More precisely, we obtain that the complex vector q satisfies

L(iμ)q = 0, A2n+1(iμ)q = 0 , (17)

which imply that

q = Ψ (iμ)C , with CT C = 0 , (18)

where Ψ (iμ) is the fundamental solution of the linear systems (8) at λ = iμ and
C ∈ CN+2 constant.
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Example: One-Soliton Solution Starting from the trivial solution u = 0 the
fundamental solution of (8) is given by

Ψ = exp(ξJ ) , with ξ(t2n+1, μ) =
∞∑

n=0

(−1)nμ2n+1t2n+1 ,

with t1 = x. The solution Ψ takes the form

Ψ =
⎛

⎝
cosh ξ i sinh ξ 0T

−i sinh ξ cosh ξ 0T

0 0 1N

⎞

⎠ .

Further, the conditions P ∗ = QPQ and CT C = 0 in (13) and (18) imply that C =
(i, c0, cT )T , with c0 ∈ IR, and c ∈ IRN a constant vector such that c2

0 + ‖c‖2 = 1,
see [1, 9]. Thus, the vector q takes the form

q = (i cosh ξ + ic0 sinh ξ, c0 cosh ξ + sinh ξ, cT )T . (19)

Then, the dressing formula (16) leads to the one-soliton solution for the vmKdV
hierarchy

ũ = 2μ c
cosh ξ + c0 sinh ξ

.

We can also use the Darboux matrix (13) in order to derive the Bäcklund
transformation for the vmKdV hierarchy. To this end, we first express q in the form

q = (i, a0, aT )T , with a2
0 + ‖a‖2 = 1 , (20)

and a0 ∈ IR, a ∈ IRN . Using the first equation in (15) to express the components of
matrix P in terms of the components of U and Ũ and, given the form of P in (14),
we obtain the following relation:

a = ũ− u
2μ

. (21)

Then, from the residue of the simple pole at λ = iμ of the Lax–Darboux
equations (10) we find that ax = −μa0a − a0u, and thus combining with (21)
we obtain

(̃u− u)x = −μa0(̃u+ u) , a2
0 +

1

4μ2 ‖̃u− u‖2 = 1 . (22)
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3.2 Breather Solution

The breather solution corresponds to a Darboux matrix M(λ) with four poles at
λ = ±μ,±μ∗, with μ a generic complex number, of the form [1, 8]

M(λ) = 1+ M0

λ− μ
− QM0Q

λ+ μ
+ M∗

0

λ− μ∗
− QM∗

0Q

λ+ μ∗
, (23)

where

M0 = q∗BqT +QqCqT +Qq∗DqT , qT q = 0 , (24)

and q ∈ Gr(s,CN+2) 
 MN+2,s(C)/GLs(C), for s = 1, 2, . . . , N + 1. Here,
B,C,D ∈ Ms,s(C) are of the form

B = DG∗H ∗−1, C = −D∗F ∗H ∗−1, D = −
(
FH−1F ∗ +G∗H ∗−1G∗ −H ∗)−1

,

(25)
where the matrices F,G,H are given by

F = 1

2μ
qT Qq , G = 1

μ− μ∗
q∗T q , H = 1

μ+ μ∗
q∗T Qq . (26)

The double pole at λ = μ of the Lax–Darboux equations (11) leads to relations

L(μ)q = 0, A2n+1(μ)q = 0 ,

thus, we can express the matrix q in terms of the fundamental solution of the linear
problems L(μ)Ψ = 0 , A2n+1(μ)Ψ = 0 as

q = Ψ (μ)C , with CT C = 0 , (27)

and C ∈ MN+2,s(C) a constant matrix. The constant in λ terms of the first
equation in (11) provide the following dressing transformation leading to breather-
type solutions of the vmKdV hierarchy:

ũj = uj − 4Re
s∑

k,l=1

∣∣∣∣∣∣∣

qk
1 0 0
0 ql

j+2 B∗kl −D∗kl
0 q∗lj+2 Ckl

∣∣∣∣∣∣∣
, j = 1, 2, . . . , N , (28)

with B,C,D given in (25), see [1] for details. Hence, the breather-type solutions
for the hierarchy are characterised by the rank s of matrix q as well as the position
μ of the pole of the Darboux matrix M(λ) in (23). In the following example we
derive the simplest (s = 1) one-breather solution, and show that it can be expressed
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as a ratio of determinants and that it is parameterised by two constant unit vectors
normal to each other.

Example: Rank One One-Breather Solution In the case s = 1, the dressing
transformation (28) takes the form

ũj = uj − 4Re
Δj

Δ
, j = 1, 2, . . . , N , (29)

where Δj and Δ are the determinants

Δj =

∣∣∣∣∣∣∣

q1 0 0
0 qj+2 H −G

0 q∗j+2 F ∗

∣∣∣∣∣∣∣
, Δ =

∣∣∣∣
F H −G

G+H F ∗

∣∣∣∣ ,

and F,G,H are now scalar quantities. Starting with the trivial solution u = 0, the
fundamental solution of the linear system (8) at λ = μ takes the form

Ψ (μ) =
⎛

⎝
cos ξ sin ξ 0T

− sin ξ cos ξ 0T

0 0 1N

⎞

⎠ , with ξ =
∞∑

n=0

μ2n+1t2n+1 .

The one-breather solution can be written as

ũ = − 4

Δ
Re
(
(C1 cos ξ + C2 sin ξ)(F ∗c+ (G−H)c∗)

)
, (30)

where C = (C1, C2, cT )T such that CT C = 0. The latter condition implies that the
real and imaginary parts of vector C have the same length, and furthermore they are
normal to each other. Using the fact that C is in CPN+1 we can normalise its real
and imaginary parts and assume their length is equal to one. It follows that the one-
breather solution for the vmKdV hierarchy is parameterised by a complex number
(the pole of the Darboux matrix (23)) and an element of the unit tangent bundle
T1
(
SN+1) of the sphere

T1

(
SN+1

)
= {(v1, v2) ∈ IR2(N+2)| 〈v1, v2〉 = 0 , ‖v1‖ = ‖v2‖ = 1} .

For example, in the case where the real and imaginary parts of vector C are given
by

CR = (1, 0, 0)T , CI = (0, . . . , 0, 1, 0, . . . , 0)T ,

respectively, where 1 appears in the (j + 2) position in CI , then, starting from the
trivial solution u = 0 the breather solution (30) takes the form
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ũk =
{− 4

Δ
Re
(
i cos ξ(F ∗ +H −G)

)
, k = j ,

0 , k �= j .
(31)

The denominator in the above expression can be written in the form

Δ = − 1

r2

(
tan θ sin2 A+ cosh2 B

tan θ

)2

, (32)

where r = |μ|, θ = arg(μ), A = Re(ξ) and B = Im(ξ). Finally, for the particular
choice of C given above, we obtain the following expression for the rank one one-
breather solution:

ũj = 4r
sin θ sinA sinhB − cos θ cosA coshB

tan θ sin2 A+ cosh2 B
tan θ

, (33)

which, as expected, is a breather solution of the scalar mKdV.

4 Conclusions

In this paper we presented a vectorial generalisation of the well-known mKdV
equation, namely Eq. (1). It is important to note that this equation is not the third
flow of the vector NLS hierarchy, since its Lax pair is characterised by relations (4),
and additionally J in (5) is not a regular element of the underlying Lie algebra,
contrary to the Drinfel’d–Sokolov construction [4]. For Eq. (1) we presented its
recursion operator which can be used to construct all higher flows of the integrable
hierarchy, and also a recursive formula that produces the Lax operator associated
with each member of the hierarchy. We used the structure of the Lax operators to
construct two Darboux transformations and we obtained the one-soliton solution
and the general rank one-breather solution. The breather solution, in the simplest
case, is a breather solution of the scalar mKdV equation. We leave the study of the
more general breather solutions, as well as the n-soliton and n-breather solution
for future work. As part of this goal, we aim to study Hirota’s direct method as
well as the general scattering problem and its inversion through a Riemann–Hilbert
problem.
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Time Evolution in Quantum Systems
and Stochastics

Anastasia Doikou, Simon J. A. Malham, and Anke Wiese

Abstract The time evolution problem for non-self-adjoint second order differential
operators is studied by means of the path integral formulation. Explicit computation
of the path integral via the use of certain underlying stochastic differential equations,
which naturally emerge when computing the path integral, leads to a universal
expression for the associated measure regardless of the form of the differential
operators. The discrete non-linear hierarchy (DNLS) is then considered and the
corresponding hierarchy of solvable, in principle, SDEs is extracted. The first couple
members of the hierarchy correspond to the discrete stochastic transport and heat
equations. The discrete stochastic Burgers equation is also obtained through the
analogue of the Cole–Hopf transformation. The continuum limit is also discussed.

Keywords Time evolution · Non-self-adjoint operators · Quantum integrability ·
Hierarchy of SDEs

One of our main aims here is the solution of the time evolution problem associated
with non-self-adjoint operators using the path integral formulation. We consider
the general second order differential operator L̂0, and the associated time evolution
problem:

−∂tf (x, t) = L̂f (x, t) =
(
L̂0 + u(x)

)
f (x, t), (1)

L̂0 = 1

2

M∑

i,j=1

gij (x)
∂2

∂xi∂xj

+
M∑

j=1

bj (x)
∂

∂xj

, g(x) = σ(x)σ T (x), (2)

where the diffusion matrix g(x) and the matrix σ(x) are in general dynamical
(depending on the fields xj ) M×M matrices, while x and the drift b(x) are M vector
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fields with components xj , bj , respectively, and T denotes usual transposition. The
operator L̂0 is not in general self-adjoint (Hermitian), therefore we also introduce
the adjoint operator defined for any suitable function f (x, t) as

L̂
†
0f (x, t) = 1

2

M∑

i,j=1

∂2

∂xi∂xj

(
gij (x)f (x, t)

)
−

M∑

j=1

∂

∂xj

(
bj (x)f (x, t)

)
. (3)

Then, two distinct time evolution equations emerge.

1. The Fokker–Planck equation:

∂t1f (x, t1) = L̂
†
0f (x, t1) (4)

t1 ≥ t2 , with known initial condition f (x, t2) = f0(x).
2. The Kolmogorov backward equation:

− ∂t2f (x, t2) = L̂0f (x, t2) (5)

t2 ≤ t1, with known final condition f (x, t1) = ff (x).

To simplify the complicated situation of non-constant diffusion coefficients we
employ a local change of frame, which reduces the L̂ operator to the simpler form
with constant diffusion coefficients, and an effective drift. We then compute the
generic path integral by requiring that the fields involved satisfy discrete time
analogues of stochastic differential equations (SDEs). These equations naturally
emerge when computing the path integral via the time discretization scheme. This
leads to the computation of the measure, which turns out to be an infinite product of
Gaussians.

Our second objective is to explore links between SDEs, and quantum integrable
systems. To illustrate these associations we discuss a typical exactly solvable
discrete quantum system, the discrete non-linear Schrödinger hierarchy. We express
the quantum integrals of motion as second order differential operators after a
suitable rescaling of the fields and we then extract a hierarchy of associated SDEs,
which can be in principle solved by means of suitable integrator factors. The first
two non-trivial members of the hierarchy correspond to the discrete stochastic
transport and heat equations. The discrete stochastic Burgers equation is also
obtained from the discrete stochastic heat equation through the analogue of the
Cole–Hopf transformation (see also relevant [1]). More details on the derivation
of the reported results can be found in [2].
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1 Time Evolution and the Feynman–Kac Formula

Before we compute the solution of the time evolution problem via the path integral
formulation we shall implement the quantum canonical transform that turns the
dynamical diffusion matrix in (2) into identity at the level of the PDEs. This result
will be then used for the explicit computation of the general path integral, and the
derivation of the Feynman–Kac formula [2].

1.1 The Quantum Canonical Transformation

We will show in what follows that the general L̂ operator can be brought into the
less involved form:

L̂ = 1

2

M∑

j=1

∂2

∂yj
2 +

M∑

j=1

b̃j (y)
∂

∂yj

+ u(y) (6)

with an induced drift b̃(y). This can be achieved via a simple change of the
parameters xj , which geometrically is nothing but a change of frame. Indeed, let
us introduce a new set of parameters yj such that [2]:

dyi =
∑

j

σ−1
ij (x) dxj , det σ �= 0, (7)

then L̂ can be expressed in the form (6), and the induced drift components are given
as

b̃k(y) =
∑

j

σ−1
kj (y)bj (y)+ 1

2

∑

j,l

σjl(y)∂yl
σ−1
kj (y). (8)

Bearing also in mind that
∑

j σjlσ
−1
kj = δkl , we can write in the compact

vector/matrix notation:

b̃(y) = σ−1(y)
(
b(y)− 1

2
(∇yσ

T (y))T
)
, ∇y =

(
∂y1, . . . , ∂yM

)
, (9)

where one first solves for x = x(y) via (7). The transformation discussed above
corresponds to a generalization of the so-called Lamperti transform at the level of
SDEs (we refer the interested reader to [2] and the references therein).
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1.2 The Path Integral: Feynman–Kac Formula

We are now in the position to solve the time evolution problem for the considerably
simpler operator (6). Our starting point is the time evolution equation (3), (4), (6):

∂tf (y, t) = L̂†f (y, t),

we then explicitly compute the propagator K(yf , yi |t, t ′):

f (y, t) =
∫ M∏

j=1

dy′j K(y, y′|t, t ′)f (y′, t ′) (10)

=
∫ N∏

n=1

M∏

j=1

dyjn

N∏

n=1

K(yn+1, yn|tn+1, tn)f (y1, t1). (11)

We employ the standard time discretization scheme as shown above, (see also, for
instance, [3]), we insert the unit N times, ( 1

2π

∫
dyjn dpjn eipjn(yjn−a) = 1), for

each component yj , and we perform the Gaussian integrals with respect to each pjn

parameter. We then conclude that the path integral can be expressed as

K(yf , yi |t, t ′) =
∫

dq exp

⎡

⎣−
∑

j

∑

n

(
Δyjn − δb̃jn(y)

)2

2δ
+ δ

∑

n

un(y)

⎤

⎦

(12)

dq = 1

(2πδ)
NM

2

N∏

n=2

M∏

j=1

dyjn, (13)

where fn = fn(yn) and Δyjn = yjn+1−yjn, where δ = tn+1−tn and with boundary
conditions: yf = yN+1, yi = y1, ti = t ′ = 0 (t ′ will be dropped henceforth for
brevity), tf = t .

We recall expression (12) and we make the fundamental assumption [2]:

Δyn − δb̃n(y) = Δwn (14)

assuming also that wnj are Brownian paths (see, for instance, [4] on Wiener
processes), i.e., (14) is the discrete time analogue of an SDE. After a change of
the volume element in (12), subject to (14), we conclude (see [2] for the detailed
computation):

K(yf , yi |t) =
∫

dM e
∫ t

0 u(ys )ds, (15)
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dM = lim
δ→0

lim
N→∞

1

(2πδ)
NM

2

exp
[
− 1

2δ

N∑

n=1

ΔwT
n Δwn

] N∏

n=2

M∏

j=1

dwjn. (16)

We may now evaluate the measure: in the continuum time limit (16), we consider the
Fourier representation on [0, t] for ws , i.e., Wiener’s representation of the Brownian
path [4]:

ws = f0√
t
s +

√
2

t

∑

k>0

fk
ωk

sinωks, ωk = 2πk

t
. (17)

f0 = wt√
t

and fk, k ∈ {0, 1, . . .} are M vectors with components fkj , j ∈
{1, 2, . . . ,M} being standard normal variables. We are interested in the compu-
tation of the measure in the continuum limit N → ∞, δ → 0, and we also recall
the following boundary conditions: w(s = 0) = 0, w(s = t) = wt , then

dM = e− 1
2t wT

t wt

(2πt)
M
2

dM0

dM0 =
∏

k≥1

M∏

j=1

dfkj√
2π

exp

⎡

⎣−1

2

∑

k≥1

∑

j

f2
kj

⎤

⎦. (18)

The measure naturally is expressed as an infinite product of Gaussians regardless of
the specific forms of the diffusion coefficients and the drift.

Having computed the propagator explicitly (15) we conclude that Eq. (11) can
be then expressed as

f (xf , tf ) =
∫

dM e
∫ t

0 u(xs )dsf0(x0), f0(x0) = f (x0, t0)

which is precisely the Feynman–Kac formula, and describes the time evolution of a
given initial profile f0(x0) to f (xf , tf ) a solution of the Fokker–Planck equation.
One could have started from the Kolmogorov backward equation and computed the
path integral backwards in time:

f (x0, t0) =
∫

dM e
∫ t

0 u(xs )dsff (xf ), ff (xf ) = f (xf , tf ).

In this case the Feynman–Kac formula describes the reversed time evolution of a
given final state ff (xf ), to a previous state f (x0, t0) a solution of the Kolmogorov
backward equation.
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One of the main aims is the computation of expectation values:

〈O(xs)〉 =
Et

(
O(xs) e

∫ t
0 u(xs )ds

)

Et

(
e
∫ t

0 u(xs )ds
) , 0 ≤ s ≤ t, (19)

where we define via (15), (18)

Et

(
O(xs)

)
=
∫

dwt dM O(xs) 0 ≤ s ≤ t. (20)

Equation (19) can be used provided that solutions of the associated SDEs are
available, so that the fields xtj are expressed in terms of the variables wtj .

2 The Quantum (D)NLS and a Hierarchy of S(P)DEs

We start our analysis with the DNLS model (see, for instance [5–7], [9]), with the
corresponding quantum Lax operator given by [5, 6],

Lj (λ) =
(
λ+Θj + zjZj zj

Zj 1

)

zj , Zj are canonical [zi, Zj ] = −δij , and we consider the map:

zj �→ xj , Zj �→ ∂xj
. (21)

Let us now define the generating function of the integrals of motion of the system:

t(λ) = tr
(
LM(λ) . . . L2(λ)L1(λ)

)
. (22)

Indeed, the expansion of ln t(λ) = ∑M
k=0

Ik
λk provides the local integrals of motion

(see, e.g., [8]). We keep here terms up to third order in the expansion of ln t and by
suitably scaling the involved fields, we obtain the first three local integrals of motion
of the quantum DNLS hierarchy (keeping the suitably scaled terms) [5]:

H1 =
M∑

j

xj ∂xj

H2 = 1

2

M∑

j=1

x2
j ∂

2
xj
−

M∑

j=1

Δ(1)(xj )∂xj
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H3 = 1

2

M∑

j=1

x2
j ∂

2
xj
− ν

M∑

j=1

Δ(2)(xj )∂xj
+ (higher order terms) . . . , (23)

where we have chosen Θj = 1, and H1 = I1, H2 = −I2 + 1
2I1, H3 = − 1

3

(
I3 +

I2− 1
2I1), ν = 1

3 . We also define: Δ(1)zj = zj+1−zj , Δ(2)zj = zj+2−2zj+1+zj .
The next order in the expansion provides H4, which is the Hamiltonian of the
quantum version of complex mKdV system and so on. The equations of motion
(classical and quantum) associated, e.g., with H(2) can be derived via the zero
curvature condition or Heisenberg’s equation (recall also (21)):

dzj

dt
= −Δ(1)zj + z2

jZj . (24)

Similar equations can be obtained for H3, but are omitted here for brevity. The
Hamiltonians H2,3 are of the form (2), and the corresponding set of SDEs are [2]

dxtj = −νkΔ
(k−1)xt dt + xtj dwtj , (25)

where k ∈ {2, 3} and ν2 = 1, ν3 = 1
3 . νk can be set equal to one henceforth, after

suitably rescaling time. By comparing (24) and (25) (k = 2) we observe that the
non-linearity appearing in (24) is replaced by the multiplicative noise in (25).

Let us now derive the solution of the set of SDEs (25) introducing suitable
integrator factors (see, e.g., [10]). Let us consider the general set of SDES

dxtj = bj (xt )dt + xtj dwtj .

We introduce the following set of integrator factors:

Fj (t) = exp
(
−
∫ t

0
dwsj + 1

2

∫ t

0
ds
)

(26)

and define the new fields: ytj = Fj (t)xtj , then one obtains a differential equation
for the vector field y:

dyt

dt
= A(t)yt ⇒ yt = P exp

( ∫ t

0
A(s)ds

)
y0. (27)

For instance, in the case of (25), for k = 2, the M ×M matrix A is given as

A(t) =
M∑

j=1

(
ejj − Bj (t)ejj+1

)
, Bj (t) = exp

(
Δ(1)(wtj )

)
,
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where eij are M×M matrices with entries (eij )kl = δikδjl . For k = 3, the A matrix
involves also terms ejj+2, and so on. The solution (27) can be expressed as a formal
series expansion

P exp
( ∫ t

0
A(s)ds

)

=
∞∑

n=0

∫ t

0

∫ tn

0
. . .

∫ t2

0
dtndtn−1 . . . dt1A(tn)A(tn−1) . . .A(t1),

t ≥ tn ≥ tn−1 . . . ≥ t2.

Remark 1 The discrete version of the stochastic Burgers equation can be obtained
from the discrete stochastic heat equation through the analogue of the Cole–Hopf
transformation. Indeed, by setting xj = eyj , in (25) (k = 3):

dyj = −
(
eΔyj

(
eΔyj+1 − 1

)− (eΔyj + 1
))

dt + dwj , (28)

where for simplicity we have set Δ(1) = Δ. By also setting uj = Δyj , we obtain a
discrete version of the stochastic Burgers equation

duj = −
(
eun+1

(
euj+2 − euj

)− 2
(
euj+1 − euj

))
dt +Δdwj . (29)

Assuming the scaling Δyj ∼ δ, we expand the exponentials and keep up to second
order terms in (28), (29):

dyj = −
(
Δ(2)yj +

(
Δyj

)2 +O(δ3)
)
+ dwj (30)

duj = −
(
Δ(2)uj +Δu2

j +O(δ3)
)
+Δdwj . (31)

The second of the equations above provides a good approximation for the discrete
viscous Burgers equation, as will be also clear in the next subsection.

2.1 The Continuum Models and SPDEs

It will be instructive to consider the continuum limits of the Hamiltonians
H2, H3 (23) and the respective SDEs. After considering the thermodynamic limit
M →∞, δ → 0 (δ ∼ 1

M
) we obtain

xtj → ϕ(x, t),
xtj+1 − xtj

δ
→ ∂xϕ(x, t),
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δ
∑

j

fj →
∫

dx f (x), wtj → W(x, t), (32)

where the Wiener field or Brownian sheet W(x, t) is periodic and square integrable
in [−L, L], and is represented as [4]

W(x, t) =
√
L

π

∑

n≥1

1

n

(
X

(n)
t cos

nπx

L
+ Y

(n)
t sin

nπx

L

)
, (33)

X
(n)
t , Y

(n)
t are independent Brownian motions. In the continuum limit the Hamilto-

nians (23) become the Hamiltonians of quantum NLS hierarchy:

H(k)
c =

∫
dx
(1

2
ϕ2(x)ϕ̂2(x)− ∂(k−1)

x ϕ(x)ϕ̂(x)
)
, k = 2, 3, (34)

where
[
ϕ(x), ϕ̂(y)

] = δ(x − y), (ϕ̂(x) ∼ ∂
∂ϕ(x)

) and the SDEs (25) become the
stochastic transport (k = 2) and heat equation (k = 3) with multiplicative noise:

∂tϕ(x, t) = −∂k−1
x ϕ(x, t)+ ϕ(x, t)Ẇ (x, t).

The stochastic heat equation can be mapped to the stochastic Hamilton–Jacobi and
viscous Burgers equations [1]. Indeed, we set: ϕ = eh, u = ∂xh then (35):

∂th(x, t) = −∂2
xh(x, t)− (∂xh(x, t))

2 + Ẇ (x, t)

∂tu(x, t) = −∂2
xu(x, t)− 2u(x, t)∂xu(x, t)+ ∂xẆ (x, t). (35)

Connections between the SDEs and the quantum Darboux transforms [11, 12] can be
also studied. The classical Darboux–Bäcklund transformation [9, 13, 14] provides
an efficient way to find solutions of integrable PDEs. The key question is how this
transformation can facilitate the solution of SDEs [1, 15, 16].

Acknowledgments AD acknowledges support from the EPSRC research grant: EP/R009465/1.
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Solvable Models of Magnetic Skyrmions

Bernd Schroers

Abstract We give a succinct summary of the recently discovered solvable models
of magnetic skyrmions in two dimensions, and of their general solutions. The
models contain the standard Heisenberg term, the most general translation invariant
Dzyaloshinskii–Moriya (DM) interaction term and, for each DM term, a particular
combination of anisotropy and Zeeman potentials. We argue that simple mathemat-
ical features of the explicit solutions help understand general qualitative properties
of magnetic skyrmion configurations in more generic models.

Keywords Magnetic skyrmions · Gauged sigma models

1 Introduction

Magnetic skyrmions are topological solitons in two-dimensional field theories for
the magnetisation field n of a magnetic material [1, 2]. In the continuum version, the
energy functional consists of the Dirichlet energy (quadratic in derivatives), a poten-
tial which includes anisotropy terms and a Zeeman contribution (no derivatives),
and the crucial Dzyaloshinskii–Moriya (DM) interaction term (linear in derivatives)
[3, 4]. Such an energy functional has stationary configurations which are stable
under Derrick scaling provided the DM term is negative for those configurations.

Magnetic skyrmions have been the subject of intensive experimental and numer-
ical studies in recent years because they combine interesting physics with potential
technological applications in magnetic information storage and manipulation [5].
More recently, rigorous analytical studies have established conditions for the
existence of solutions as well as energy bounds in different topological sectors [6, 7],
and have clarified the interesting way in which the relative energy of skyrmions and
anti-skyrmions depends on the DM term [8].
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Fig. 1 Magnetic skyrmion solutions in the model with DM term (n,∇ × n) and the potential
1
2 (1 − n3)

2. The value of the magnetisation vector n, assumed to be of unit length, is shown in
terms of the Runge colour sphere: the region near the south pole n3 = −1 is shown in black, and
the ‘vacuum region’ near the north pole n3 = 1 is shown in white. Elsewhere, the longitudinal angle
arctan(n2/n1) is mapped onto the colours red, green, blue, with intermediate colours interpolating.
Solutions are determined by a choice of a holomorphic function h and the formula (23). Top from
left to right: the Bloch skyrmion with h(z) = 0, the line defect with h(z) = i

2 z and the anti-
skyrmion with h(z) = z. Bottom from left to right: the ‘empty bag’ with h(z) = 2i/z, the anti-
skyrmion of charge Q = 5 with h(z) = z5 and the anti-skyrmion of charge Q = 4 with h(z) =
1/z5

This talk is about the critically coupled models recently proposed in [9] and [10].
These models require a particular choice of potential for any given DM term, but
with this choice they can be viewed as a gauged version of the Belavin–Polyakov
O(3) sigma model [11]. In particular, solutions can be obtained explicitly in terms
of holomorphic functions to the Riemann sphere C ∪ {∞}. In Fig. 1, we show
examples of such solutions in a model with standard DM term (n,∇ × n) and
the potential 1

2 (1 − n3)
2. They include the axisymmetric skyrmion configuration

(which has topological charge Q = −1 in our conventions), a line defect (Q =
0), an anti-skyrmion configuration (Q = 1) as well as bags and multi-(anti)-
skyrmion configurations which show qualitative features of the configurations
studied numerically in [12] and [13].

This talk is designed to explain the models and the construction of their solutions
from holomorphic data as simply and directly as possibly. We sum up the method of
solution as a four-step recipe in Sect. 3. For details we refer the reader to the papers
[9, 10].
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2 Magnetic Skyrmions and Gauged Sigma Models

2.1 Formulating Magnetic Skyrme Models as Gauged Sigma
Models

The most general energy functional for the magnetisation field n : R2 → S2 which
we consider has the form

E[n] =
∫

R2

(
1

2
(∇n)2 +

3∑

a=1

2∑

i=1

Dai(∂in× n)a + V (n)

)
dx1dx2, (1)

where V is a potential which may include a Zeeman term and anisotropy terms, and
D is the spiralization tensor parametrising the DM interaction.

In the following we will use the complex coordinate z = x1 + ix2 in the plane,
and define associated derivatives in the standard way, so ∂z = 1

2 (∂1 − i∂2) and
∂z̄ = 1

2 (∂1 + i∂2). As shown in [10], one can view the expression (1) as the energy
functional of a gauged sigma model with a fixed SU(2) background gauge field. To
see this, it is convenient to think of an SU(2) gauge field in the plane simply as a
pair of vectors A1 and A2 in R

3, one for each Cartesian direction in the plane, which
act on the magnetisation field n ∈ R

3 via the vector product (the commutator of the
su(2) Lie algebra) so that the covariant derivative and curvature are

Din = ∂in+Ai × n, i = 1, 2, F 12 = ∂1A2 − ∂2A1 + 1

2
A1 ×A2. (2)

The energy functional of the gauged non-linear sigma models studied in [10] is

EA[n] =
∫

R2

(
1

2
|D1n|2 + 1

2
|D2n|2 − (F 12,n)

)
dx1dx2. (3)

In the application to magnetic skyrmions, the gauge field is fully determined
by the spiralization tensor: the Cartesian components A1 and A2 are simply the
negatives of the column vectors which make up the 3× 2 spiralization matrix D. In
symbols

(Ai )a = −Dai, (4)

so that the DM term can be written as

3∑

a=1

2∑

i=1

Dai(∂in× n)a =
2∑

i=1

(Ai × n, ∂in). (5)
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We now need to pick a particular form of the potential V in (1) to obtain a solvable
model, namely

VA(n) = 1

2
|A1 × n|2 + 1

2
|A2 × n|2 − (n,A1 ×A2). (6)

With the choice V = VA, the magnetic skyrmion energy (1) equals the energy (3) of
the gauged sigma model with the gauge field (4). This is easily checked, and makes
use of the fact that, for constant gauge fields, one has F 12 = A1×A2. Note that the
energy functional (3) is invariant under SU(2) gauge transformations, but that this
gauge invariance is broken by the gauge choice (4) to obtain the magnetic skyrme
energy functional (1) at critical coupling. The residual symmetries of the critically
model are discussed in [9] and [10].

For a simple illustration, consider

A1 = −κe1,A2 = −κe2, (7)

where e1 = (1, 0, 0)t and e2 = (0, 1, 0)t are the first two elements of the canonical
frame for R3, and κ > 0 is a real parameter. This produces the standard DM term

κ(n,∇×n) and the potential VA = κ2

2 (1−n3)
2. Expanding the square, the potential

is seen to be a particular linear combination of an easy-plane anisotropy potential
with a Zeeman potential, see [9]. This model with κ = 1 is the one whose solutions
are shown in Fig. 1.

2.2 A Bogomol’nyi Equation for Gauged Sigma Models

Returning now to the case of a general gauge field, we use various gauge-theoretical
identities [9, 10] to write the energy (3) as

EA[n] = 1

2

∫

R2
(D1n+ n×D2n)

2dx1dx2 + 4π(Q+ΩA), (8)

where Q is the integral expression for the degree of n

Q[n] = 1

4π

∫

R2
(n, ∂1n× ∂2n)dx1dx2, (9)

and ΩA is a generalised version of what was called total vortex strength in [9]:

ΩA[n] = − 1

4π

∫

R2
(∂1(A2,n)− ∂2(A1,n))dx1dx2. (10)
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If these integrals are well-defined, they only depend on global properties of n and on
its boundary behaviour. If the latter is kept fixed, the energy is therefore minimised
when the square in (8) vanishes, i.e. when the Bogomol’nyi equation holds. This is
a gauged version of the Bogomol’nyi equations in the standard Belavin–Polyakov
model [11], but with a definite sign:

n×D1n = D2n. (11)

Ths Bogomol’nyi equation implies the variational equation of the energy func-
tional (3), see [10].

In the context of magnetic skyrmions, Eq. (11) first appeared in [7] where it
was noticed that, for a certain family of potentials V , it characterises the energy
minimisers in the Q = −1 sector of the theory with the standard DM term
(n,∇ × n). The role of this equation in critically coupled magnetic skyrme models
for arbitrary degree Q ≥ −1 was observed and explored in [9]. Its role and
solvability in the more general gauged sigma model and the associated magnetic
skyrmion models are the subject of [10]. Generalised versions of this equation have
been studied in differential geometry as vortex equations for maps from Riemann
surfaces into Kähler manifolds which permit the action of a Lie group, but in that
case the gauge field typically obeys a second, coupled equation [14]. The relation
between these vortex equations and Eq. (11) with a fixed background as proposed
in [10] was clarified in [15].

2.3 Boundary Contributions to the Energy

As far we are aware it is not known for which class of magnetisation fields n the
general energy functional (1) is well-defined and finite. For the standard DM term
(n,∇ × n) and a certain class of potentials V , this question is answered in [6] and
[7], where it was also pointed that, for analytical reasons, it is preferable to modify
the energy functional by adding the boundary term

Eκ,∞[n] = −κ

∫

R2
(∂1n2 − ∂2n1)dx1dx2. (12)

Adding this term to the energy effectively modifies the DM term: κ(n,∇ × n) is
replaced by κ((n−e3),∇×n) where e3 = (0, 0, 1)t , and this is the term considered
in [6, 7].

In the context of gauged sigma models, it was proposed in [10] that one should
more generally add the boundary term

EA,∞[n] = −4πΩA[n] =
∫

R2
(∂1(A2,n)− ∂2(A1,n))dx1dx2 (13)
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to obtain a well-defined variational problem. Clearly, (13) reduces to (12) for the
simple gauge field (7).

Adding the term (13) to the energy (3) has a number of advantages, at least from
an analytical point of view. It does not change the Euler–Lagrange equation one
obtains for variations which vanish rapidly at infinity, but its inclusion means that
one can allow for variation with a slower fall-off. We refer the reader to [10] for
details. Furthermore, the study of solutions of arbitrary degree in [9] shows that the
modified energy is well-defined for some solutions for which the unmodified energy
integral (3) is not.

Geometrically, the unmodified energy (3) has a natural interpretation when
evaluated on a solution of the Bogomol’nyi equation as the equivariant degree of
that solution [15]. By contrast, the modified energy evaluated on a solution n of the
Bogomol’nyi equation is equal to the integral expression for the degree:

EA[n] + EA,∞[n] = 4πQ[n] if n×D1n = D2n. (14)

3 Exact Magnetic Skyrmions

3.1 The General Solution in Four Easy Steps

Since the magnetic skyrmion energy functional (1) with the potential (6) is a
particular example of the energy for a gauged sigma model of the form (3), we can
obtain an infinite family of solutions of the variational equations by solving (11).
Here we focus on the formula needed for magnetic skyrmions, so for constant gauge
fields. In that case, the solution of (11) can be obtained via the following recipe. For
details we again refer to [10].

(I) Complex coordinate for the magnetisation: In order to write down the
solution, one needs to work in terms of a complex stereographic coordinate
for the magnetisation field n. It is given by stereographic projection from the
south pole, or algebraically by

w = n1 + in2

1+ n3
. (15)

(II) Complexified gauge field: Next, one needs to write the gauge field explicitly
as an su(2) matrix-valued gauge field on R

2 according to

Ai =
3∑

a=1

Aa
i ta, i = 1, 2, (16)
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where ta = − i
2τa , and τa are the Pauli matrices. In fact we require the complex

linear combination

Az̄ = 1

2
(A1 + iA2). (17)

In the case at hand, this is a constant, complex and traceless 2 × 2 matrix, so
generically an element of sl(2,C).

(III) Solution in complex coordinates: The solution of the Bogomol’nyi equation
is given in terms of the exponential

g(z̄) = exp

(
−1

2
(A1 + iA2)z̄

)
=
(
a(z̄) b(z̄)

c(z̄) d(z̄)

)
, (18)

which is a 2×2 matrix function of z̄ with determinant one. The general solution
of (11) in stereographic coordinates is

w(z, z̄) = c(z̄)+ d(z̄)f (z)

a(z̄)+ b(z̄)f (z)
, (19)

where f is an arbitrary holomorphic function from C into CP 1 
 C ∪ {∞}
(in particular it is allowed to take the value∞).

(IV) Translating back into Cartesian coordinates: Substitution of the general
solution (19) into the inverse of (15)

n1 + in2 = 2w

1+ |w|2 , n3 = 1− |w|2
1+ |w|2 , (20)

yields an explicit (but possibly complicated) formula for the magnetisation
field.

The energy density of Bogomol’nyi solutions is either the degree density or the
sum of the degree density and the vorticity, depending on the choice of energy
functional, see our discussion in Sect. 2.3. Expressions for both directly in terms
the stereographic coordinates are given in [9, 10].

3.2 Examples

Axisymmetric DM Terms As discussed in [10], the DM term is invariant under
rotations in the plane and simultaneous rotations of the magnetisation field about
a suitable axis if and only if A1 and A2 are orthogonal and have the same length.
In that case (A1,A2,A1 ×A2) is an oriented and (up to scaling) orthonormal basis
of R3. With |A1| = |A2| = κ , the potential for the solvable model is conveniently
expressed in terms of Â := A1 ×A2/κ

2 as
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VA(n) = κ2

2

(
1− (n,Â)

)2 = κ2

8
(n− Â)4. (21)

The DM term (5) and the integrand of the boundary term (13) combine neatly into∑3
a=1

∑2
i=1 Dai(∂in×(n−Â))a in this case. For the simple case (7) with DM term

κ(n,∇ × n) and potential V (n) = κ2

2 (1− n3)
2, one checks that the matrix (18) is

g =
(

1 − i
2κz̄

0 1

)
. (22)

The solution (19) is best written in terms of the inverse coordinate v = 1/w as

v = − i

2
κz̄+ h, (23)

where h = 1/f is, like f , an arbitrary holomorphic map C → CP 1. The simplest
choice h = 0 leads to the Bloch hedgehog skyrmion with Q = −1 and the
Belavin–Polyakov profile function θ(r) = 2 arctan

(
r

2κ

)
, as already noticed in [7].

Many other solutions are discussed in [9], and our Fig. 1 shows the solutions one
obtains for different choices of rational functions h. It follows from the calculations
in [9] that the degree of a skyrmion configuration depends on the parameter
L = lim|z|→∞ |(2h)/(κz̄)|. For configurations determined by (23) with rational
h(z) = p(z)/q(z), where p and q are polynomials of degree M and N , it is

Q[n] =

⎧
⎪⎪⎨

⎪⎪⎩

M if L > 1

N if L = 1

N − 1 if L < 1.

(24)

This shows in particular that in this model there are infinitely many solutions of
the Bogomol’nyi equation (11) for each integer degree Q ≥ −1. The modified
energy (14) takes the values 4πQ on these solutions.

Rank One DM Interactions The spiralization tensor has rank one when A1 and A2
are linearly dependent, so A1 × A2 = 0. In this case, the curvature F 12 vanishes
and the gauge field (and therefore the DM interaction) can be removed by an SU(2)
gauge transformation. The solvable model with the potential (6) can therefore be
mapped into the standard Belavin–Polyakov O(3) sigma model [11]. It follows
immediately that solutions of (11) exist for any integer degree Q in these models,
and that their energy (14) is 4π |Q|. In particular it follows that skyrmions and
anti-skyrmions of equal and opposite degree have the same energy. This result was
derived in [8] for |Q| = 1 in more general rank one models. Example solutions of
solvable rank one models and their properties are discussed in [10] and also [16]. We
note that a similar reformulation in terms of a flat gauge field was recently applied
to a rather different ferromagnetic model in [17].
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4 Conclusion

We have shown that solvable models of magnetic skyrmions exist for any DM
interaction term. Even though they require fine-tuning of the potential, their exact
solutions shed light on qualitative properties of solutions in more general models.
These include general features of multi-(anti)-skyrmion configurations such as the
appearance of Q + 1 maxima in the energy density of certain charge Q > 0
configurations (as shown in the Q = 5 solution in Fig. 1), or the deformation of
a skyrmion to an anti-skyrmion via a line defect, as shown in the top row of Fig. 1
and discussed in some detail in [9].

The solvable models also shed light on the crucial influence of the DM
interaction on the relative energy of skyrmions compared to anti-skyrmions. Our
short discussion illustrates the more general findings of [8]. In the axisymmetric
models of Sect. 3.2, Q = −1 skyrmions have energy −4π , whereas Q = 1 anti-
skyrmions have the opposite energy 4π (this can be reversed by a different choice
of solvable model, see [9]). In rank one models, by contrast, skyrmions and anti-
skyrmions have the same energy. It was shown in [8] that models with generic
spiralization tensors should interpolate between these two extremes, and it would
be interesting to explore this in the solvable models with generic DM terms.

To end, we note that the language of gauged non-linear sigma models provides
a rare and rather beautiful link between pure mathematics and real physics by
connecting the geometry of holomorphic maps and vortex equations as discussed
in [14] with magnetic skyrmions. In fact, simply allowing the gauge field to depend
non-trivially on space may provide further applications, for example, to the study of
impurities as discussed in [18] and [10].

Acknowledgments I thank Bruno Barton-Singer for sharing his Python code for generating the
plots in Fig. 1, Calum Ross for pointing out an error in an earlier version of this paper, and the
referee for constructive comments.
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Applications of Symmetry to the Large
Scale Structure of the Universe (Scale
Invariance) and to the Hadronic
Spectrum (Heavy Diquark Symmetry)

Mark B. Wise

Abstract Two applications of symmetries of quantum theories that are relevant in
very different circumstances, early universe cosmology and hadronic physics, are
discussed. The first concerns constraints on the form of correlations of the density
perturbations in the very early universe. The second is about the hadronic spectrum,
in particular states with flavor quantum numbers corresponding to two heavy bottom
quarks and two light anti-quarks (tetraquarks with two heavy quarks).

Keywords Symmetry · Scale invariance · Hadronic spectrum

1 Scale Invariance and Inflationary Cosmology

In this section I will not provide references to the early pioneering work on inflation.
They can be found in the excellent review [1].

The inflationary cosmology is a hypothetical era in the very early universe
when the energy density was dominated by potential energy (i.e., an effective
cosmological constant). We view this as arising from the evolution of a scalar field
(the inflation) which temporarily is moving slowly along a flat part of its potential
with almost constant energy density V . If there is a large enough smooth patch of
space time the metric in that patch becomes de Sitter space time, where

ds2 = −dt2 + a(t)2dxidxi, a(t) = eHt and H 2 = 8π

3
GV. (1)

With enough of this de Sitter exponential expansion this smooth patch can expand
to cover the whole visible universe. Eventually the scalar field enters a part of
its potential where it moves more rapidly towards the minimum and the universe
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reheats because of the inflations coupling to other fields, for example, the standard
model, Higgs field. I will not dwell on how hard it actually is to dynamically
realize this situation. The upshot is that we end up with an extremely smooth (the
exponential expansion dilutes all classical inhomogeneities) region that includes our
whole visible universe (and perhaps much more).

This scenario provides a mechanism to dynamically generate the density per-
turbations through quantum fluctuations in a scalar degree of freedom. In different
gauges precisely how the scalar degree of freedom is defined takes different forms.
We prefer to work in a gauge where the inflation field is spatially homogeneous.
In this gauge it is the curvature perturbation δζ (x, t) during the inflationary era that
is the scalar degree of freedom that characterizes the fluctuations about pure de
Sitter space time. Just after inflation the energy density perturbations δρ that cause
the microwave background anisotropies and the correlations of galaxy positions (on
large scales) have wavelengths well outside the horizon. They reenter the horizon
during the matter dominated era and on long wavelengths are related to the curvature
perturbations generated during the inflationary era by,

δρ ∝ ∇2δζ . (2)

1.1 Symmetries of Space Time Metrics

Let us start with the metric for flat Minkowski space time, ds2 = −dt2 + dxidxi .
Some symmetries of this metric are translations of time t → t + d, translations of
space xi → x′i = xi + ci and rotations xi → x′i = Rij xj , RRT = I . These
symmetries have implications for the equal time correlations of a scalar quantum
field φ(t, x) in a Minkowski space background. Fourier transforming,

φ(t, x) =
∫

d3k

(2π)3 e
ik·xφ̃(t,k) (3)

one has that

〈φ̃(t,k)φ̃(t,k′)〉 = Pφ(k)(2π)3δ(k+ k′). (4)

The Dirac delta function arises from the spatial translation invariance, and the fact
that the power spectrum Pφ(k) only depends on k, the magnitude of the wave vector
k follows from rotational invariance. Time translation invariance did not play a role
since we evaluated the equal time two-point correlation.

For a de Sitter space time background the metric is no longer invariant under time
translations. Instead a combined time translation and scale transformation

t → t ′ = t + d, xi → x′i = λxi, λ = e−Hd (5)



Applications of Symmetry to the Large Scale Structure of the Universe. . . 547

is an invariance. At infinite time this just becomes scale invariance. Now let the
scalar field φ(t, x) be propagating in a de Sitter background space time. Fourier
transforming with respect to the comoving coordinate x,

φ(t, x) =
∫

d3k

(2π)3
eik·xφ̃(t,k). (6)

In free quantum field theory it is modes of fixed comoving wave vector k that evolve
independently in a simple fashion. The physical wave vector is p = k/a(t) is time
dependent. In this case the symmetries of the metric imply that,

〈φ̃(∞,k)φ̃(∞,k′)〉 = Pφ(k)(2π)3δ(k+ k′), Pφ(k) ∝ 1/k3. (7)

Note that the scale invariance fixes the k dependence of the power spectrum. It is
only the overall normalization of the power spectrum that is not determined by the
symmetries.

1.2 Mass Density Perturbations in the Inflationary Cosmology

During the inflationary era there are quantum fluctuations of the scalar curvature
field ζ and since the metric is approximately de Sitter and as t → ∞ in the
inflationary era,

Pζ (k) ∝ 1

k3 . (8)

Today (t = t0
1) we are interested in fluctuations in the mass density ρ. At very small

wave vectors

δ̃ρ(k; t0) ∝ δ̃ζ (k)k2, (9)

where the factor of k2 arises from the Laplacian in Eq. (2). This implies that the
power spectrum for the mass density fluctuations has the form

Pρ(k; t0) ∝ k2k2

k3
= k (10)

at small k. This is called a Harrison–Zeldovich spectrum.
Observationally the measured power spectrum determined by measurements of

the cosmic microwave background (CMB) anisotropy is quite close to this. At low
k the Planck collaboration found that [2],

Pρ(k; t0) ∝ kns , ns = 0.9655± 0.0062. (11)

1We take a(t0) = 1 so physical and comoving wave vectors coincide.
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In the inflationary cosmology scale invariance is not exact. It is broken by a small
amount because the inflaton potential is not exactly flat and the Hubble constant
decreases somewhat as the inflaton evolves along its potential. The measured tilt
(ns − 1) is consistent with what inflationary models give. Moving away from very
small k the density perturbations take the form

δ̃ρ(k; t0) = δ̃ζ (k)k2T (k), (12)

where the transfer function T (k) goes to a constant as k → 0 but cuts off the growth
at large k.

Non-Gaussianities in the curvature probability distribution imply the existence of
higher point connect correlations of the curvature scalar. For the n-point correlation

〈ζ(∞,k1), . . . , ζ̃ (∞,kn)〉c = P
(n)
ζ (k1, . . . ,kn)(2π)3δ(k1 + · · · + kn). (13)

The higher point spectra2 are also constrained by the symmetries of de Sitter space.
The P (n)’s are rotationally invariant functions of the wave vectors so they must
depend only on the magnitudes and dot products of the wave vectors. Furthermore
scale invariance implies that

P
(n)
ζ (λk1, . . . , λkn) = λ3−3nP

(n)
ζ (k1, . . . ,kn), (14)

where the +3 in the power of λ arises because of the Dirac delta function on the
sum of the wave vectors.

An example of a curvature bispectrum P (3) consistent with this scaling is

P (3)(k1,k2,k3) ∝
[(

1

k3
1

)(
1

k3
2

)
+
(

1

k3
1

)(
1

k3
3

)
+
(

1

k3
2

)(
1

k3
3

)]
, (15)

where kj = |kj |. This form occurs in a phenomenological model called local non-
Gaussianity.

Measurements of the CMB anisotropy place constraints on primordial non-
Gaussianity [3]. Those constraints are usually written as limits on the quantities
fNL and τNL where schematically,

P
(3)
ζ ∼ fNLP

(2)
ζ P

(2)
ζ , P

(4)
ζ ∼ τNLP

(2)
ζ P

(2)
ζ P

(2)
ζ . (16)

Since the microwave background temperature anisotropy is very small δT /T ∼
10−5 it implies very schematically that ζ is of that order. P (3)

ζ has three ζ s in its

definition, while P
(2)
ζ P

(2)
ζ has four. Hence, if non-Gaussianity was order one, we

2Note P (2) = P .
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would expect that fNL ∼ 105. But the constraint from the CMB is (for local non-
Gaussianity) roughly fNL < 10. Clearly this is a very strong constraint and the fact
that single field inflation is consistent with this is a success of that model. Similar
remarks hold for τNL.

Even though in standard single field inflation the perturbations in the curvature
and hence the mass density are almost Gaussian [5], more complicated models with
additional fields that are not much heavier than the Hubble constant during inflation
and couple to the inflation can give rise to non-Gaussianities that are consistent with
CMB limits and may be measured in the future by galaxy surveys.

The simplest model of this type is called quasi single field inflation (QSFI) [6]
and it has one additional scalar field. If the mass of the additional scalar m is small
compared with the Hubble constant during inflation, then the bispectrum in the so-
called squeezed limit (i.e., q = |k1| = |k2 + k3| 2 |k2,3|) can have dramatic
physical consequences that we discuss later. In the squeezed limit k2 
 −k3 (in
configuration space it corresponds to the points x2 and x3 close together and well
separated from x3) QSFI gives for the bispectrum,

P (3) ∝ k−α

q3−αk3
, (17)

where α = m2/(3H)2 with m the mass of the additional scalar. This form holds
when α is small compared with unity. There is a similarly simple expression for
the trispectrum P (4) in what is called the compressed limit where k1 
 −k2 (k 

k1,2) k3 
 −k4 (k′ 
 k3,4) and q = |k1 + k2| = |k3 + k3| << k, k′,

P (4) ∝ (kk′)−α

q3−2α(kk′)3 . (18)

Note in coordinate space the compressed limit corresponds to the spatial points x1,2
close to each other and x3,4 close to each other with these pairs of points far apart.
The form of the bispectrum and trispectrum in the squeezed and compressed limits
in QSFI has been discussed several times in the literature, see, for example, [7] and
the references therein.

1.3 Non-Gaussianity and the Galaxy Power Spectrum at Small
Wave Vectors

Galaxies do not trace the mass. Rather their smoothed number density ng is a
continuous field in some function of the mass density fluctuations averaged over
a region of size R that corresponds to the size of a region that collapses to
form a galaxy when the fluctuations in the mass density go nonlinear. We denote
this averaged mass density fluctuation by δρ,R(x). In Fourier space δ̃ρ,R(k) =
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W(kR)δ̃ρ(k) where W(kR) is a window function that goes to zero for k >> 1/R
and a constant for k << 1/R. For simplicity we imagine the galaxy number density
fluctuations (δg(x) = (ng(x) − n)/n) are related to the smeared mass density
perturbations by the expansion

δg(x) = b1δρ,R(x)+ b2

(
δρ,R(x)2 − 〈(δρ,R(x))2〉

)
+ · · · (19)

This relation is sometimes called a bias expansion. The values of the bias coef-
ficients bj are independent of δρ,R and fix what a galaxy is in terms of the
smeared primordial fluctuations. Of course more complicated expansions involving
derivatives would be more realistic but this will do for our purposes. Fourier
transforming gives a power spectrum for galaxies

〈δ̃g(q1)δ̃g(q2)〉 = Pg(q)(2π)3δ(q1 + q2), (20)

where in the argument of the power spectrum q = |q1| = |q2|. The two-point
correlation for the fluctuations in the galaxy number density then has an expansion

〈δg(x)δg(y)〉 = b2
1〈δρ,R(x)δρ,R(y)〉
+b2b1

(
〈δρ,R(x)2δρ,R(y)〉c + 〈δρ,R(x)δρ,R(y)2〉c

)

+b2
2〈δρ,R(x)2δρ,R(y)2〉c + · · · (21)

The term proportional to b2
1 gives a contribution to the power spectrum for the

galaxy number density perturbations that, at small q, is linear in the wave vector
q since it is proportional to the power spectrum for the smeared mass density
fluctuations. The other terms can give very different behavior at small q if there
is primordial non-Gaussianity. Using Eq. (17) at low q the primordial three-point
function gives a contribution to the galaxy power spectrum that is proportional to
b1b2 and has an enhanced behavior at small q (recall α is small),

Pg(q) ∼ b1b2

[∫
d3k

(2π)3 T (k)2(k2)2W(kR)2(1/k3+α)

]
q2/q3−α ∝ 1/q1−α.

(22)
Similarly the primordial trispectrum in Eq. (18) gives a contribution to the galaxy
power spectrum

Pg(q) ∼ b2
2

[∫
d3k

(2π)3
T (k)2(k2)2W(kR)2(1/k3+α)

]2

1/q3−2α ∝ 1/q3−2α.

(23)
Enhancements by 1/q2 and 1/q4 of the power spectrum for fluctuations in the

galaxy number density over the power spectrum for the mass density fluctuations
(e.g., Eqs. (22) and (23) when α = 0) were originally discovered, respectively,
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in [8] and [9]. Similar enhancements occur in the primordial bispectrum for galaxies
in QSFI [10].

The enhancements in Eqs. (22) and (23) occur in other inflationary models. In
QSFI they arise from tree Feynman diagrams in de Sitter space. There are simple
models where it is one loop diagrams [11] that give rise to these effects.

The SPHEREx all sky survey should be able to observe primordial non-
Gaussianity if fNL is greater than unity (http://spherex.caltech.edu). It may also
see these enhancements in the galaxy power spectrum at low q.

2 Heavy Diquark and Quark Spin Flavor Symmetry

In this section I will mostly give references for more recent work. See [12] for
references to the earlier work on the applications of heavy quark symmetry and the
development of the 1/mQ expansion.

Heavy quarks Q have mQ � ΛQCD. In a meson or baryon that contains
a single heavy quark and other light degrees of freedom (i.e., light quarks and
gluons) the interactions of the light degrees of freedom with the heavy quark
and between themselves involve momentum transfers of order the non-perturbative
scale associated with the strong interactions, ΛQCD. Changes in the heavy quark
velocity caused by these interactions Δv ∼ ΛQCD/mQ → 0 as mQ → ∞. In
this limit the strong interactions of light degrees of freedom with the heavy quark
are independent of the heavy quark’s mass and spin. Hence for charm and bottom
quarks with the same four velocity, in the limit mc,b → ∞, there is an SU(4) spin
flavor symmetry.3 This symmetry has physical implications that are important for
understanding the properties of hadrons containing a single heavy quark and for
extracting the elements of the CKM matrix Vcb and Vub from experimental data.
Note that the heavy quark flavor symmetry arises not because the charm and bottom
quarks have almost equal mass (mc/mb ∼ 1/3) but rather because both their masses
are large when compared with ΛQCD.

In the limit mQ → ∞, for a given spin of the light degrees of freedom sl �= 0,
hadrons with a single heavy quark come in degenerate multiplets with total spin
s = sl−1/2 and s = sl+1/2. For sl = 1/2 and Q = b an example is the B̄ (s = 0)
and B̄∗ (s = 1) mesons. Hadrons with sl = 0 (e.g., for Q = c the Λc) have total
spin 1/2 and are not members of a doublet with different total spins.

The effective theory for a heavy quark Q moving with four velocity v replaces
the full QCD heavy quark field Q with Qv where

Q(x) = exp[−imQv · x] (Qv(x)+ · · · ) , (24)

3The top quark is the heaviest of the quarks but since its mass is greater than the W boson mass its
lifetime is comparable to time scales associated with non-perturbative strong interactions and so it
never forms a hadron.

http://spherex.caltech.edu
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and vμγ
μQv = Qv . The exponential factor scales out the large part of the heavy

quark’s momentum proportional to its mass. Using this definition one can derive an
effective theory for a heavy quark where the Lagrange density takes the form

L = iQ̄vv ·DQv − 1

2mQ

Q̄vD
2Qv − c(mQ/μ)

g

4mQ

Q̄vσ ·GQv + · · ·. (25)

The leading interactions, which are not suppressed by powers of 1/mQ, are
independent of mQ and display the spin flavor symmetry. In the above c is a constant
and μ is the subtraction point. Dependence on the subtraction point cancels between
the matching coefficient c and matrix elements of the chromo magnetic moment
operator it multiplies. At leading log level, c(1) = 1.

2.1 Evidence for the Applicability of Heavy Quark Symmetry

Heavy quark spin flavor symmetry is an approximate symmetry and so it is useful
before we apply a variant of it to tetraquarks to see how well some of the predictions
work for ordinary mesons that contain a heavy quark. Since the term in Eq. (25)
that breaks the spin symmetry (i.e., the chromomagnetic operator term) and induces
a splitting between members of the meson spin doublets has a coefficient with
heavy quark mass dependence 1/mQ (neglecting the mQ dependence in c) one
has the approximate relation m2

B∗ − m2
B = m2

D∗ − m2
D . This works reasonably

well (especially when you take into account that the charm quark is not so heavy
compared with the scale of the strong interactions). Experimentally m2

B∗ − m2
B =

480 × 103 MeV2, while m2
D∗ − m2

D = 550 × 103 MeV2. But there is more going
here than heavy quark symmetry since it also works for the hadrons with only light
quarks, i.e., m2

ρ −m2
π = 570× 103 MeV2 and m2

K∗ −m2
K = 550× 103 MeV2.

Next consider the pseudoscalar meson decay constants fM defined by,

〈0|q̄γμQ|M(p)〉 = fMpμ. (26)

Here M is a pseudoscalar meson with Qq̄ flavor quantum numbers and p is its
four momentum. Treating the bottom and charm quark masses as very large, when
compared with the scale of the non-perturbative strong interactions, heavy quark
flavor symmetry predicts that

fB

fD

=
(
mD

mB

)1/2 (
αs(mb)

αs(mc)

)−6/25


 0.67. (27)

For this ratio lattice QCD calculations are more accurate than the data and give [13],
fB/fD 
 184/213 
 0.86. This is not a huge success of heavy quark methods,
but perhaps reasonable agreement with the prediction of heavy quark symmetry in
Eq. (27) given that there are ΛQCD/mc corrections.
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The next topic we discuss is the semileptonic form factors for B̄ → D�ν� and
B̄ → D∗�ν� decay. The D and D∗ mesons are members of the charm quark ground
state heavy meson doublet with sl = 1/2. The Lorentz invariant form factors that
determine the invariant matrix elements for these decays (and hence the differential
decay distributions) are defined by,

〈D(v′)|c̄γ μb|B̄(v)〉 = (mBmD)1/2 [h+(v + v′)μ + h−(v − v′)μ
]
, (28)

〈D∗(v′ε)|c̄γ μb|B̄(v)〉 = (mBmD∗)
1/2hV εμναβε∗ν v′αvβ, (29)

and

〈D∗(v′ε)|c̄γ μγ5b|B̄(v)〉 = (mBmD∗)
1/2 [−ihA1(w + 1)ε∗μ + ihA2((w)(ε∗ · v)vμ

+ihA3(ε
∗ · v)v′μ] . (30)

In the equations above v is the four velocity of the decaying B̄ meson, v′ is the four
velocity of the final state D or D∗ meson, and w = v · v′. The point w = 1 is
special since at that point the final state charmed meson is at rest in the rest frame
(v = (1, 0, 0, 0)), of the decaying B̄ meson. Because heavy quark flavor symmetry
relates particles at the same four velocity and not momentum it is convenient to use
initial and final four velocities to parameterize the matrix elements. The six Lorentz
scalar form factors h+, h−, hV , hA1 , hA2 , and hA3 are functions of w. The form
factors have a weak dependence on the charm and bottom quark masses that can be
calculated by perturbatively matching QCD onto the heavy quark effective theory.
Neglecting matching corrections, heavy quark spin symmetry allows one to relate
all the form factors to a single universal function ξ(w),

h+(w) = hV (w) = hA1(w) = hA3(w) = ξ(w), h−(w) = hA2(w) = 0. (31)

Heavy quark flavor symmetry determines that ξ(1) = 1 and furthermore there are
no ΛQCD/mc,b corrections to this normalization condition for the zero recoil matrix
elements of the currents. The absence of ΛQCD/mc,b corrections to the zero recoil
matrix elements is known as Luke’s theorem.

There is evidence from lattice QCD simulations that heavy quark symmetry
predictions for the semileptonic form factors in the D meson case work well, in
particular h− is much smaller than h+ and h+(1) is close to unity. That is illustrated
by the plots of recent lattice results [14] for h± versus w in Figs. 1 and 2.

Armed with some confidence that heavy quark spin flavor symmetry is a
quantitatively useful tool we now discuss its application to tetra quarks that contain
two heavy quarks.
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Fig. 1 Comparison of the
NLO (hatched) and NNLO
(solid) chiral-continuum fits
for h+ versus w

Fig. 2 Comparison of the
NLO (hatched) and NNLO
(solid) chiral-continuum fits
for h− versus w

2.2 TQQq̄q̄ Tetraquarks

For very heavy quarks Q the lowest lying TQQq̄q̄ tetraquark states are stable with
respect to the strong and electromagnetic interactions [16, 17]. The reason for this
is quite simple. If mQ � ΛQCD, then the heavy QQ diquark in the tetraquark will
be in a color 3̄ configuration since in the color channel 3 × 3 → 3̄ the one gluon
color Coulombic potential,

Vc(r) = −2

3

αs

r
(32)
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is attractive. Hence the diquark has a large Coulombic binding energy4 (compared
with ΛQCD) and a small size5 (compared with 1/ΛQCD). Strong decay of the lowest
lying TQQq̄q̄ tetraquark states to a baryon with two heavy quarks and an anti-nucleon
(when q = u, d), ΞQQq + N̄qqq , is kinematically forbidden since the final state has
an additional qq̄ pair, which costs an additional ∼600 MeV of mass. Strong decay
to two heavy mesons MQq̄+MQq̄ does not require an additional qq̄ pair but now the
final state does not have the large color Coulombic binding energy proportional to
mQ that the tetraquark state does and so this channel is also kinematically forbidden.
For very heavy quarks the diquark inside a tetraquark is a small color anti-triplet that
can be treated as a point like object.

There has been some recent theoretical work [18–20] that indicates that the
bottom quark is heavy enough for the ground state Tbbq̄q̄ tetraquarks to be stable
with respect to the strong and electromagnetic interactions with a mass that is around
100 MeV below the B̄B̄ threshold. Such tetraquarks produced at a collider will be
long lived with a lifetime approximately half the B meson lifetime. The three papers
supporting this conclusion on the stability of tetraquarks with two heavy bottom
quarks are a lattice calculation, a fit using heavy quark methods, and a fit/derivation
using more phenomenological methods.

Treating the color triplet Q̄Q̄ diquark as point like there is heavy quark-diquark
spin flavor symmetry and it implies (neglecting terms suppressed by the heavy quark
mass) the mass relation,

mTQQq̄q̄
−mΛQqq

= mΞQQq
−mMQq̄

, (33)

which was used in [19]. Here I have written the mass relation when the two light
anti-quarks in the tetraquark and baryon are in a light degree of freedom spin-zero
configuration (this is appropriate when the two light quarks are an up and a down
quark). There is an analogous relation when sl = 1. It is easy to understand why
Eq. (33) holds in the heavy quark and diquark limit. On both sides of the equation
the mass of the light degrees of freedom cancels out and the difference between
the diquark and quark masses is the same on the left- and right-hand sides of the
equation. There are other interesting applications of heavy quark-diquark symmetry,
see, for example, [21].

We are interested in the case where the diquark consists of two heavy b quarks.
Then the heavy diquark has spin one. The heavy flavor symmetry is not between
and bottom and a charm quark but between a b quark and a bb diquark. Hence there
are no ΛQCD/mc corrections to Eq. (33). The notation for the light quarks is a little
schematic in Eq. (33). For example, as we already mentioned the subscript qq could
correspond to ud. Furthermore we have neglected the light quark masses.

This symmetry relation neglects the finite size of the diquark QQ configuration
and so relies on the diquark being small, with a size much less than 1/ΛQCD . A

4The binding energy is of order α2
s mQ.

5The size is of order 1/(αsmQ).
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contribution to the shift in the mass of the tetraquark due to the radius of the diquark
was estimated in [22] to be of order

ΔmTbbq̄q̄
∼
(
παs(mbvrel)〈r2〉

54

)
f 2
BmB, (34)

where 〈r2〉 is the radius squared of the non-relativistic diquark state. This mass shift
is only about 10 MeV for6 〈r2〉 = 3.2 GeV−2 and so treating the diquark as a
point object is likely to be a good approximation. Finite diquark size corrections are
not always proportional to αs〈r2〉 ∝ 1/(αsm

2
Q). A recent calculation [23] found a

finite diquark size correction to hyperfine splittings that goes as (1/m2
Q)αs〈1/r〉 ∼

α2
s /mQ.

No stable (with respect to the strong and electromagnetic interactions) hadrons
have been discovered that contain two heavy bottom quarks. In 2017, the doubly
charmed baryon Ξ++

cc (or in the notation used in this paper Ξccu) was discov-
ered at LHCb [24]. It has been observed in the exclusive weak decay modes,
Ξ++

cc → Λ+c K−π+π− (the discovery mode) and Ξ++
cc → Ξ+

c π+ [25]. There is
considerable interest in the detection of the analogous baryons containing two heavy
bottom quarks Ξbbq , q = u, d, partly because it would be the first step towards
observing the tetraquark states, Tbbq̄q̄ .

Recently, Gershen and Poluektov [26] proposed the inclusive decay mode Ξbbq

or Tbbq̄q̄ → B̄c + Xc,s,q as a potential discovery channel for the doubly bottom
weakly decaying hadrons at the LHC. They made the clever observation that B̄c’s
that do not point back to the collision interaction point, but instead are displaced
from it, can only arise from the weak decay of a hadron with two bottom quarks.
They also note that the decay chain, B̄c → J/ψπ− → μ+μ−π−, is a reasonable
mode to detect a displaced B̄c meson. Ordinary B̄ mesons that are displaced will
not do for this purpose since they can result from the weak decay of a long lived B̄c

meson. The branching ratio for this B̄c decay is not small and there will be many
more B̄c’s produced at the interaction point by hadronization then there are baryons
with two heavy bottom quarks. The method of Gershen and Poluektov would not
tell you if it was a tetraquark or baryon with two heavy bottom quarks that was
produced or the mass of the hadron with two heavy bottom quarks that was decaying
to the displaced B̄c but it would represent the first step along the journey to discover
tetraquarks with two heavy bottom quarks that are stable with respect to the strong
and electromagnetic interactions.

Acknowledgments This work was supported by the by DOE Grant DE-SC0011632. I am also
grateful for the support provided by the Walter Burke Institute for Theoretical Physics.

6This is the radius squared for the diquark bound by the Cornell potential V = −(2/3)0.3/r +
(1/2)(0.2 GeV2)r .
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Leptophobic Z′ in Supersymmetry
and Where to Find Them

Jack Y. Araz

Abstract This report presents possible loopholes in heavy Z′ searches which are
concentrated around high-mass resonances. We present a scenario where massive
neutral vector boson Z′, predicted by E6-inspired U(1)′ models, can become
leptophobic due to kinetic mixing between Z − Z′. Such a scenario can avoid
high-mass dilepton resonance searches. Furthermore, we propose a channel through
supersymmetric cascade decays to observe leptophobic Z′. We show that it is
possible to reach up to 8σ at

√
s = 14 TeV and 3 ab−1 integrated luminosity. This

report follows the steps of the work that has been conducted in Araz et al. (J High
Energy Phys 02:092, 2018).

Keywords Supersymmetry · Z′

1 Introduction

Heavy neutral gauge boson, Z′, can be obtained by extending the Standard
Model (SM) gauge structure with a U(1) gauge group. Such models have been
widely studied under Grand Unified Scheme [1]. Similarly, under supersymmetric
realisations, Z′ can emerge from U(1) extended minimal supersymmetric extension
of the SM (UMSSM). It can also be achieved in the so-called Sequential Standard
Model (SSM) where Z′, and W ′, bosons have same couplings to fermions as their
SM counterparts.

Search for heavy neutral vector bosons in LHC has been extensively studied by
experimental collaborations due to its relatively familiar resonance signature [2–7].
These searches set the mass bound for the Z′ assuming that it can only decay through
the SM particles. These studies focus on high-mass dilepton or dijet resonances.
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In case of the dijet resonance studies at
√
s = 13 TeV, ATLAS collaboration [5]

presented the Z′ mass bounds around 2.1–2.9 TeV for 37 fb−1 integrated luminosity
and CMS collaboration [3] around 2.7 TeV for 12.9 fb−1. In case of dilepton
resonance studies, ATLAS collaboration presented the mass bounds at 3.8–4.1 TeV
for 36.1 fb−1 [2] and CMS collaboration presented at 3.5 TeV for 13 fb−1 integrated
luminosity.1 We investigate possible loopholes within the specific scenarios to lower
these mass limits and also propose a leptophobic framework for Z′ to search for a
possible signal through supersymmetric decay channels in HL- & HE-LHC.

The rest of this report is organised as follows; in Sect. 2, we introduced the
theoretical properties of UMSSM and discussed current mass bounds on Z′ at the
time when this study conducted. In the following Sect. 3, we discussed possible
supersymmetric signatures to observe a leptophobic Z′ in HL- & HE-LHC and
finally we conclude in Sect. 4.

2 Theoretical Framework and Z′ Mass Bounds

Within a possible minimal representation in supersymmetry (SUSY), Z′ bosons can
arise from the breaking of rank-6, E6 group, which is greatly motivated by Grand
Unified Theories. Among the various possible breaking schemes of E6 exceptional
group, the so-called UMSSM framework being the U(1)′ extended MSSM, arises
from the breaking through SO(10). The two-step breaking structure creates separate
U(1) gauge groups [8–10]

E6 → SO(10)⊗ U(1)ψ → (SU(5)⊗ U(1)χ )⊗ U(1)ψ ,

where these U(1)’s can mix via θE6 angle and generate U(1)′,

U(1)′ = U(1)ψ cos θE6 − U(1)χ sin θE6 .

Here SU(5) group further breaks into MSSM gauge structure. Alongside with
such vector boson, extending MSSM framework with a U(1) gauge provides an
anomaly free gauge structure. This can prevent the R-parity violating terms from
the Lagrangian and eliminates short-lived proton possibility which occurs due to
SU(5) breaking.

In E6, the matter sector of UMSSM arises from the breaking of 27-plet vector
representation in to 16 ⊕ 10 ⊕ 1, where 16 further decomposes to the matter
fields, 10 to electroweak Higgs fields and exotic quarks and singlet, 1, becomes
U(1)′ singlet superfield, S. In addition to the MSSM’s large particle content,
UMSSM accommodates extended slepton, sneutrino, and squark sector up to 6
supersymmetric particles in each family. Also, breaking SO(10)’s 16-plet vector

1It is important to note that these limits are recently updated. See [6] for dijet resonances at
137 fb−1 and [7] for dilepton resonances at 139 fb−1.
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representation provides a right-handed neutrino superfield which generates right-
handed neutrino and its supersymmetric partner in this framework. The Higgs sector
consists of two charged H± and four neutral scalar bosons, which are a pseudoscalar
A and three neutral scalars h, H , and H ′, where h and H are being MSSM-like
Higgs. This spectrum also creates an extended gaugino sector with a total of six
neutralinos where chargino sector remains unchanged.

At tree level, the squared mass of Z′ boson is given by

M2
Z′ = g′(Q′S

2
v2
S +Q′Hu

2
v2
Hu
+Q′Hd

2
v2
Hd

) ,

where g′ being the coupling constant of the U(1)′ gauge group, Q′i is corresponding
U(1)′ charge of singlet s, doublet Hu, and doublet Hd superfields, and vi being their
respective vacuum expectation values. The existence of the U(1)′ group leads to
extra D- & F-terms which contributes to the masses of the supersymmetric partners
and Higgses. Large bounds of Z′ boson requires large vS which further leads to
a heavy particle spectrum especially in the Higgs sector. Thus, requiring massive
Z′ also causes massive particle spectrum, which can be tuned via corresponding
softmasses.

The interaction Lagrangian of the fields B̂μ and Ẑ′μ with the fermions is
suppressed by their corresponding coupling and charge, g1Yi and g′Q′i , respectively,
where i represents the corresponding fermionic field in the interaction, g1 and g′ are
U(1)Y and U(1)′ couplings, respectively. The typical E6-inspired relation between
U(1)Y and U(1)′ couplings is taken to be g′/g1 = √5/3. In [11], it has been shown
that shifting this relation from GUT scale to Z′-mass scale, and abandoning grand
unification assumption, and adding the possibility to decay through supersymmetric
particles, can reduce Z′ mass limit up to 300 GeV depending on θE6 angle [12, 13].
Breaking SUSY sector in a higher scale generates enough room for U(1)′ coupling
to grow via renormalisation group equations which leads to larger g′ and higher
production amplitudes for Z′. Thus, breaking SUSY in a lower energy scale limits
the growth in g′ and reduces the production cross section, which leads to relatively
less stringent mass bounds for Z′. In Fig. 1 we compared high-mass dilepton limit
from ATLAS collaboration [2] to our results, sampling θE6 at −0.79π (U(1)′η)
and 0 (U(1)′ψ ), where Z′ production has been calculated in next-to-leading order
(NLO) precision. In both panels, the y-axis shows the production cross section
with its branching fraction to dilepton final states where Z′ mass varied between
2 and 5 TeV within the bounds of narrow width approximation. Panels show the
effect of different breaking scales where for the left panel g′/g1 relation is taken
at GUT scale, and in the right panel, it downgraded to Z′ mass scale. The dashed
line shows the case where Z′ is only allowed to decay into the SM particles (USM),
and the dotted line shows the case with SUSY particles added (UMSSM). The error
bars represent the theoretical uncertainties, scale and parton distribution function
(PDF) uncertainties added in quadrature. The calculation has been performed via
MADGRAPH [14]. The left panel of Fig. 1 reveals that, when the relation between
couplings are assumed to be taken at GUT scale, the addition of supersymmetric
partners to the possible decay channels improves the mass limits around 20% and
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Fig. 1 The effect of symmetry breaking scale in both inclusive (UMSSM) and noninclusive
(USM) supersymmetric particle cases is presented. The left panel shows Z′ mass versus its
corresponding cross section times branching ratio to dilepton final states where SUSY breaking
occurring at GUT scale. The dotted line represents UMSSM and dashed line USM realisations,
and the error bars show the variation caused by theoretical uncertainties. The right panel shows the
same for SUSY breaking occurring at Z′ mass scale. These results are presented in [11]

reduces it up to 4 TeV. Moving this relation to a lower scale in the right panel reduces
the mass limits up to 3.8 TeV, where still preserving the difference between USM
and UMSSM.

Although reducing production amplitudes and adding supersymmetric particles
as possible decay channels create a considerable deviation from the current bounds,
it is also possible to propose an altogether leptophobic Z′ to avoid the bounds
coming from Drell–Yan modes. Leptophobic Z′ can be achieved by mixing U(1)Y
and U(1)′ gauge fields. The mixing can be delivered in twofolds. First, there can
be mixing between Z and Z′ mass eigenstates. This, however, is constrained by
electroweak precision tests to be at the O(10−3) [15]. Secondly, a kinematical
mixing between Z and Z′ can be introduced through an angle χ ,

Lkin ⊂ − sinχ

2
B̂μνẐ′μν ,

where B̂μν and Ẑ′μν are the U(1)Y and U(1)′ boson field strength tensors,
respectively. This mixing further modifies the interaction vertices between Z′ and
other fermions. The interaction term can be written in terms of canonical (diagonal)
kinetic terms, Z′μ, as,

Lint ⊂ −g′ψ̄iγ
μ

(
Q′i

cosχ
− g1

g′
Yi tanχ

)
Z′μψi ,

where ψi is corresponding fermionic field and Yi and Q′i being their U(1)Y and
U(1)′ charges. For simplicity, we limited the Lagrangian with the Z′ portion. The
term in the parenthesis can be represented as modified U(1)′ charge, Q̄i . To end
up with a leptophobic Z′, Q̄i needs to be zero for left and right lepton superfields
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Fig. 2 Plot shows leptophobic Z′ mass versus production cross section and dijet branching ratio
with corresponding acceptance rate. The dashed line shows the USM sample, which assumes that
Z′ can only decay through the SM particles, and the dotted line shows UMSSM, including all
supersymmetric particles. Error bars include scale and PDF variations as well as the variation in
the dijet decay rate per sample. The CMS limit is taken from [3]

[16]. As shown in [11], left and right leptonic superfield charges can be set to zero,
Q̄L = Q̄E = 0, only around

θE6 = (n− 0.79)π for n = 0, 1, 2 . . . , (1)

which requires sinχ ∼= (−1)n+10.3, assuming g′/g1 = √5/3 ratio is satisfied at Z′
mass scale.

Such leptophobic Z′ can only be bounded via high-mass dijet searches. It has
been shown, in [3], that these bounds are much weaker compared to Drell–Yan
signature. In Fig. 2 we performed a similar comparison as above where this time the
leptophobic Z′ mass varied to compare with CMS collaboration’s dijet limits [3]. In
order to zoom into the respectively low mass region, we varied Z′ mass between 1
and 3.5 TeV and plotted against the multiplication of its production cross section,
branching ratio to dijet final states and the acceptance rate stated in [3]. Again, the
dashed line assumes that Z′ can only decay to the SM particles (USM) and dotted
line includes its possible decay channels to SUSY particles as well (UMSSM). In
addition to the theoretical uncertainties, the error bars also show the variation in the
total decay rate to dijet final states. Such construction reduces the Z′ mass limits
to 1.6 TeV and creates a considerably large deviation between USM and UMSSM
depending on the dijet branching fraction.

3 Leptophobic Z′ in HL- & HE-LHC

A leptophobic Z′ can still be observed through leptonic final states, but instead of
direct decays, leptons can be produced through a cascade decay of supersymmetric
particles. In Fig. 3, we proposed a possible scenario where two charginos are pair
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Fig. 3 Chosen analysis
signal where Z′ production
and its decay through two
lightest charginos. The figure
has been produced with the
help of the JAXODRAW

package [17] Z
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Table 1 UMSSM parameters for the reference points BM I and BM II

Parameter tanβ μeff (GeV) M0 (TeV) M1 (GeV) Mχ̃±1
(GeV)

BM I 9.11 218.9 2.6 106.5 344

BM II 16.08 345.3 1.9 186.7 178

Parameter M2 (GeV) M3 (TeV) M ′
1 (GeV) A0 (TeV) Aλ (TeV)

BM I 230.0 3.6 198.9 2 5.9

BM II 545.5 5.5 551.7 1.5 5.1

produced via on-shell Z′ and they further decay into missing energy and dileptons
through W . Such scenario might generate its background through heavy Higgs
production and their decay to charginos. However, we observed that the branching
fraction of such decay is negligible compared to heavy Z boson’s decay rate. Also,
neutralino pair production or chargino-neutralino associative production through
Z′ has been observed to have small branching fraction compared to chargino pair
production. To test this hypothesis, we choose two UMSSM benchmarks to study
possible observability of such leptophobic scenarios. Following [11], we chose two
benchmarks using Eq. (1), where for BM I n chosen to be 0 and for BM II n chosen
to be 1. A conservative, 2.5 TeV Z′ mass has been chosen for both benchmarks
where other parameters are shown in Table 1. The particle mass spectrum has
been calculated in SARAH [18] interfaced with SPHENO [19, 20]. The particle
masses and decay tables can be found in [11] which are not quoted here. The Z′
branching ratio to chargino pairs is about 2% (6%) for BM I (BM II). To ensure
100% branching ratio of chargino to LSP, the mass splitting between two particles
is chosen to be slightly larger than W mass.

The amplitudes of the process are computed at NLO precision for a centre-of-
mass energy

√
s = 14 TeV, using MADGRAPH5_AMC@NLO [14] with the NLO set

of NNPDF 2.3 parton densities. The production cross section of Z′ calculated as 120
fb. Prepared matrix-level events are hadronized and showered in PYTHIA 8 [21] and
the detector response has been simulated in DELPHES [22] using the SNOWMASS

parametrization [23, 24]. The jets are clustered using FASTJET program [25] with
antikT algorithm using R = 0.6.
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For the preselection, jets (leptons) are required to have minimum 40 (20) GeV
transverse momentum and |η| < 2.4 (1.5). Leptons within ΔR < 0.4 to a hard
jet are omitted. Only two muons are allowed in the final state with 15% hadronic
activity within a cone radius R = 4 and the angular separation in the transverse
plane between two leptons is required to be greater than 2.5. To isolate the dilepton
final state, all jets are vetoed. The leading and second-leading leptons are required
to have at least 300 and 200 GeV transverse momentum, respectively. Finally,
the missing transverse energy has been required to be greater than 100 GeV. We
calculated the significance of the signal over the background using two different

approaches. One being standard (s = S/

√
B + σ 2

B) and other begin Asimov
significance [26] given as;

ZA =
√√√√2

(
(S + B) ln

[
(S + B)(S + σ 2

B)

B2 + (S + B)σ 2
B

]
− B2

σ 2
B

ln

[
1+ σ 2

BS

B(B + σ 2
B)

])
,

where S being the number of signal events, B number of the background events, and
σB is the uncertainty over the background. For 10% systematic uncertainty on the
background, we calculated s = 4.2σ , ZA = (3.5± 0.9)σ for BM I, and s = 8.14σ ,
ZA = (6.06 ± 1.18)σ for BM II at 3 ab−1. The details of the analysis alongside
with the differential distributions can be found in [11].

It is possible to project these results into higher energies with different luminosity
values to estimate the effect of HL- & HE-LHC. In Fig. 4, we calculated Z′
production cross section at

√
s = 27 TeV with its mass varying between 1.5 and

4 TeV. Using a naive assumption that all the kinematic structure and cut efficiencies
will propagate in the same way, we projected our results to 3 ab−1 and 15 ab−1 and
presented them with various systematic uncertainties on the background from 10%
to 30% where the error bars showing the theoretical uncertainties. Our results shows

Fig. 4 Left panel shows the standard significance against Z′ mass plotted for various luminosity
and systematic uncertainty values. Right panel shows the same figure for Asimov significance, ZA.
These results are presented in [27]
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that 5σ significance can be reached using standard (ZA) significance for a Z′ at 3.5
(3.2) TeV assuming 30% systematic uncertainty and 3 ab−1 integrated luminosity.
We showed that, due to the linear dependence of the systematic uncertainties to the
luminosity, its effect increases with increasing luminosity.

4 Conclusion

We investigate possible loopholes in E6-inspired UMSSM searches at LHC,
specifically through Z′ production. We showed that the inclusion of supersymmetric
particles could cause a 20% reduction in Z′ mass limits, and even those limits can be
reduced further by changing the SUSY breaking scale. Throughout our analysis, we
continually compared UMSSM with USM to emphasise the difference that inclusion
of supersymmetric particles can create.

Furthermore, we examined the possibility of having a leptophobic Z′ by adding
kinetic mixing between Z−Z′ to avoid high-mass leptonic resonance searches. We
showed that the bounds from dijet resonances are considerably small and allow a
light Z′ up to 1.6 TeV. To back up such claim, we proposed a supersymmetry driven
channel to observe such leptophobic Z′. We showed that it is possible to reach 8σ
sensitivity at 14 TeV centre-of-mass energy with 3 ab−1 integrated luminosity using
chargino production through Z′ where charginos further decayed into two leptons
and missing energy.

Assuming all cut efficiencies and kinematic structures will be preserved, we
extrapolated our results to higher energies and luminosities. We showed the
observable mass range for Z′ up to 5σ sensitivity for 27 TeV centre-of-mass energy.
All results are compared with different systematic uncertainties on the background
and different luminosity values to address the importance of understanding the
background as well as the signal itself. These results show that investigating such
scenarios is both feasible and worthwhile at HL- & HE-LHC.
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Axion-Like Particles, Magnetars,
and X-ray Astronomy

Jean-François Fortin and Kuver Sinha

Abstract If they exist, axion-like particles (ALPs) can be produced in the core of
magnetars. As they propagate, they then convert to photons in the magnetosphere,
leading to possible signatures in the X-ray photon spectrum. Moreover, since ALPs
only mix with the parallel mode of the photon, interesting modifications to the
photon polarization are also possible. We determine these effects by computing
the Stokes parameters in the presence of ALPs and show that the relevant quantity
factorizes into a product of the ALP-to-photon conversion probability and a factor
that depends on the initial mixture of ALPs and photons at the surface of the
magnetar.

Keywords Astroparticle · Axions · Magnetars · X-rays

1 Introduction

Although the Standard Model (SM) of particle physics explains a wealth of
phenomena, several questions remain unanswered. One of the outstanding problems
of the SM concerns dark matter (DM). DM—non-baryonic matter not included
in the SM—represents approximatively 85% of the total matter content of the
Universe. It was introduced to explain discrepancies between theoretical predictions
and direct observations of galaxy clusters and galactic rotation curves. The strong
CP problem—another issue of the SM—relates to the smallness of the neutron
electric dipole moment and can be explained by the introduction of axions [1, 2].
Axions, and more generically ALPs, could play the role of DM, thus simultaneously
solving two important questions left unanswered by the SM.
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ALPs are ubiquitous in string theory [3]. Contrary to vanilla axions that couple
to the SM through coupling constants dependent on their mass, ALPs in the
string theory axiverse have independent parameters: their coupling constants to
the SM are unrelated to their mass. Moreover, ALPs are generically very light
and weakly coupled. Hence, they are notoriously hard to produce and detect.
Their existence might nonetheless be inferred from indirect detection. Indeed, in
dense stellar objects, ALP production can be significant and, once produced, they
can easily escape, leading to an extra energy sink. Thus, ALP production cannot
be too large otherwise the extra energy sink would ruin the agreement between
standard astrophysical evolution scenarios and observations. The upper bound is
usually taken as follows: the ALP emissivity should not be larger than the neutrino
emissivity. This condition leads to one constraint on the ALP parameter space.

Moreover, in background magnetic fields, oscillations between ALPs and pho-
tons occur [4]. Such oscillations can lead to significant changes to the photon
spectrum. Since the ALP emissivity can be as large as the neutrino emissivity, and
the latter is usually much larger than the photon emissivity, a second constraint
on the ALP parameter space appears. For the oscillations to be substantial, it is
necessary to have extreme magnetic fields. Therefore magnetars—neutron stars
with extreme magnetic fields—are the natural stellar candidates to focus on in such
scenarios. Moreover, since the dominant ALP production mechanism in the core
of magnetars is nucleon–nucleon bremsstrahlung, the ALP emissivity peaks in the
X-ray range, thus ALP oscillations will predominantly occur with X-ray photons.
One interesting effect of the oscillations is therefore related to X-ray polarization.
Indeed, ALPs couple to the parallel mode of the photon, hence the photon spectrum
and the photon polarization, described by the Stokes parameters, are modified by
the presence of ALPs. This brief communication presents the modifications to the
Stokes parameters originating from the production of ALPs in magnetars and their
subsequent conversion in the magnetosphere [5, 6].

2 Oscillation Equations

The interacting Lagrangian between ALPs and the SM particles of interest for
magnetars is given by

L ⊃ −g

4
aFμνF̃

μν + gaN(∂μa)N̄γ μγ5N. (1)

Here the first term is responsible for ALP–photon oscillations in the magnetosphere
while the second term leads to ALP production through bremsstrahlung in the
magnetar core. Hence the usual energy sink argument constrains gaN while the
photon spectrum argument constrains g (more precisely a combination of g and
gaN ).
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At energies below the electron mass, only photons are relevant and their
Lagrangian is obtained by integrating out the electron loop, leading to non-linear
quantum electrodynamics (QED). With the non-linear QED Lagrangian and the
ALP–photon interaction (1) the evolution equations for the ALP and photons are
(with negligible plasma contributions) [4, 7]

i
d

dx

⎛

⎝
a

E‖
E⊥

⎞

⎠ =
⎛

⎝
ωr0 +Δar0 ΔMr0 0

ΔMr0 ωr0 +Δ‖r0 0
0 0 ωr0 +Δ⊥r0

⎞

⎠

⎛

⎝
a

E‖
E⊥

⎞

⎠ , (2)

where

Δ‖ = 1

2
q‖ω sin2 θ, Δ⊥ = 1

2
q⊥ω sin2 θ, Δa = −m2

a

2ω
, ΔM = 1

2
gB sin θ.

(3)
Here the ALP, parallel, and perpendicular photon electric fields are a(x), E‖(x), and
E⊥(x), respectively. The dimensionless evolution parameter is given by x = r/r0
where r is the distance from the center of the magnetar to the propagating fields and
r0 is the magnetar’s radius. The propagating fields have energies ω while the angle
between the magnetic field and the direction of propagation is θ . Finally, the ALP
mass is given by ma while q‖ and q⊥ are dimensionless functions of the background
magnetic field B given by [4, 7]

q‖ = 7α

45π
b2q̂‖, q̂‖ = 1+ 1.2b

1+ 1.33b + 0.56b2 , (4)

q⊥ = 4α

45π
b2q̂⊥, q̂⊥ = 1

1+ 0.72b5/4 + (4/15)b2 , (5)

with b = B/Bc and Bc = m2
e/e the critical QED field strength.

Hence the three-state oscillation system (2) decouples into a two-state oscilla-
tion system for the ALP and the parallel photon mode, and a one-state system
for the perpendicular photon mode. Using the probability conservation property
d
dx
[|a(x)|2 + |E‖(x)|2] = 0 it is easy to recast the evolution equations (2) in the

form [5, 6]

dχ(x)

dx
= −ΔMr0 cos[Δφ(x)], (6)

dΔφ(x)

dx
= (Δa −Δ‖)r0 + 2ΔMr0 cot[2χ(x)] sin[Δφ(x)], (7)

dΣφ(x)

dx
= (2ω +Δa +Δ‖)r0 − 2ΔMr0 csc[2χ(x)] sin[Δφ(x)], (8)

dφ⊥(x)
dx

= (ω +Δ⊥)r0, (9)
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where a(x) = A cos[χ(x)]e−iφa(x) and

E‖(x) = iA sin[χ(x)]e−iφ‖(x), E⊥(x) = A⊥e−iφ⊥(x). (10)

Here the angle χ(x) determines the relative ALP–photon mixture, Δφ(x) =
φa(x)−φ‖(x) is the phase difference between the ALP field and the parallel photon
field, Σφ(x) = φa(x) + φ‖(x) is the sum of the ALP field and the parallel photon
field phases, while φ⊥(x) is the phase of the perpendicular photon field.

Since the quantities of interest in the following are the intensities

Ia(x) = A2 cos2[χ(x)], I‖(x) = A2 sin2[χ(x)], I⊥(x) = A2⊥, (11)

for the ALP field, the parallel photon field, and the perpendicular photon field,
respectively, only the evolution equations for χ(x) and Δφ(x) are relevant. The
evolution equations for Σφ(x) and φ⊥(x) can be discarded, greatly simplifying the
analysis.

3 Stokes Parameters

Before discussing polarization, it is important to note that the dominant ALP
production mechanism and the dominant hard X-ray photon production mechanism
are completely independent. Hence, the initial phase difference Δφ0 = Δφ(1)
is effectively random and one should average over it, leading to the averaged
intensities

Īa(χ0, x) =
∫ 2π

0

dΔφ0

2π
Ia(χ0,Δφ0, x), Ī‖(χ0, x) =

∫ 2π

0

dΔφ0

2π
I‖(χ0,Δφ0, x).

(12)
Therefore, at a distance xr0 from the magnetar, the relevant Stokes parameters

are

I (χ0, x) = Ī⊥(x)+ Ī‖(χ0, x), Q(χ0, x) = Ī⊥(x)− Ī‖(χ0, x), (13)

and depend on the initial relative ALP–photon mixture χ0 = χ(1). Here I (χ0, x)

and Q(χ0, x) are the sum and difference between the (averaged) perpendicular
photon intensity and the averaged parallel photon intensity, respectively. By sub-
tracting the Stokes parameters at a distance xr0 from the magnetar (which are
ultimately observed on Earth) by their values at the surface of the magnetar (which
are determined by the astrophysics of magnetars), the surface-subtracted Stokes
parameters

ΔI (χ0, x) = I (χ0, x)− I (χ0, 1) = Ī‖(χ0, x)− A2 sin2(χ0), (14)
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ΔQ(χ0, x) = Q(χ0, x)−Q(χ0, 1) = −ΔI (χ0, x) (15)

characterize the effects of ALP–photon oscillations in the magnetosphere. Indeed,
in the absence of ALPs, the surface-subtracted Stokes parameters are ΔI (χ0, x) =
ΔQ(χ0, x) = 0. However, non-vanishing surface-subtracted Stokes parameters
satisfying the relation ΔQ(χ0, x) = −ΔI (χ0, x) can be seen as a smoking gun
signature for the presence of ALPs.

4 ALP-to-Photon Conversion Probability

By studying the normalized surface-subtracted Stokes parameter

R(χ0, x) = ΔI (χ0, x)

A2
(16)

= cos(2χ0)

∫ 2π

0

dΔφ0

2π

1

2

{
1− cos

[
2χ(x)|χ(1)=χ0,Δφ(1)=Δφ0

]

cos(2χ0)

}
,(17)

it is possible to show that R(χ0, x) factorizes as

R(χ0, x) = Pa→γ (x) cos(2χ0), (18)

where

Pa→γ (x) = sin2 [χ(x)|χ(1)=0,Δφ(1)=0
]
, (19)

is the ALP-to-photon conversion probability at a distance xr0 for pure ALP initial
state [6]. This remarkable factorization property can be traced back to the averaging
over the initial phase difference Δφ0 and would not necessarily occur if the
dominant ALP and photon production mechanisms were related.

Hence, the Stokes parameters (13) and the averaged intensities (12) at a distance
xr0 from the magnetar are given explicitly in terms of the initial photon and ALP
intensities through A⊥, A, and χ0 (which depend on the production mechanisms)
and the ALP-to-photon conversion probability through Pa→γ (x) (which depends on
the ALP and magnetar parameters through the evolution equations). They are given
respectively by

I (χ0, x) = A2⊥ +
A2

2

{
1+ [2Pa→γ (x)− 1] cos(2χ0)

}
, (20)

Q(χ0, x) = A2⊥ −
A2

2

{
1+ [2Pa→γ (x)− 1] cos(2χ0)

}
, (21)

for the Stokes parameters and
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Īa(χ0, x) = A2

2

{
1− [2Pa→γ (x)− 1] cos(2χ0)

}
, (22)

Ī‖(χ0, x) = A2

2

{
1+ [2Pa→γ (x)− 1] cos(2χ0)

}
, (23)

Ī⊥(χ0, x) = A2⊥, (24)

for the averaged intensities.
Under some assumptions (mainly usual perturbation theory and magnetic field

dipolar approximation), the ALP-to-photon conversion probability can also be
computed analytically, bypassing the evolution equations, as [6]

Pa→γ (x) =
(
ΔM0r

3
0

r2
a→γ

)2

×

⎧
⎪⎪⎨

⎪⎪⎩

π
3|Δara→γ |e

6Δara→γ
5 |Δara→γ | > 0.45

Γ
(

2
5

)2

5
6
5 |Δara→γ |

4
5

|Δara→γ | < 0.45
, (25)

where the conversion radius ra→γ is given by

xa→γ = ra→γ

r0
=
(

7α

45π

)1/6 (
ω

ma

B0

Bc

| sin θ |
)1/3

. (26)

Hence the Stokes parameters and all averaged intensities have been determined
in terms of the ALP and magnetar parameters.

5 Discussion and Conclusion

The introduction of ALPs can lead to extra cooling of stellar objects. This extra
cooling can be used to restrict the ALP parameter space. Due to ALP–photon
oscillations in background magnetic fields, ALPs propagating away from stellar
objects like magnetars (which have magnetospheres with extreme magnetic fields)
leads to modifications of the photon spectrum and polarization. By demanding that
the photon luminosity derived from ALP–photon oscillations does not exceed the
observed photon luminosity, extra constraints on the ALP parameter space appear.
Moreover, since ALP–photon oscillations occur only with the parallel mode of the
photon, the presence of ALPs could be inferred from modifications to the Stokes
parameters.

Starting from the fact that the dominant production mechanisms for ALPs and
photons are independent, we computed the Stokes parameters in the presence
of ALPs in terms of the intensities at the magnetar’s surface (determined by
astrophysics) and the ALP-to-photon conversion probability (determined by the
ALP and magnetar parameters through the evolution equations). In the process, we
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uncovered an interesting factorization property. Using reasonable assumptions, we
then computed the ALP-to-photon conversion probability analytically. Therefore,
the Stokes parameters in the presence of ALPs were completely determined by the
parameters of the theory, i.e. in terms of the astrophysics of magnetars and in terms
of the ALP parameters. It is then straightforward to use these results to constrain the
ALP parameter space for specific magnetars [5, 6]. Such an analysis shows that the
Stokes parameter Q is modified by the presence of ALP oscillations and can even
change sign, leading to a clear effect on X-ray polarization.
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Anomalies in B Decays: A Sign of New
Physics?

David London

Abstract At the present time, there are a number of measurements of B-decay
observables that disagree with the predictions of the standard model. These discrep-
ancies have been seen in processes governed by two types of decay: (1) b→ sμ+μ−
and (2) b → cτ−ν̄. In this talk, I review the experimental results, as well as the
proposed new-physics explanations. We may be seeing the first signs of physics
beyond the standard model.

Keywords Anomalies in B decays · New physics

1 Introduction

The development of the standard model (SM) in particle physics is one of the great
triumphs in all of physics. The SM has made a great many predictions, almost all of
which have been verified, including the existence of the Higgs boson. There is no
question that the SM is correct.

However, there are many reasons to believe it is not complete, such as the
large number of arbitrary parameters, the hierarchy problem, the matter-antimatter
asymmetry in the universe, dark matter, etc. In order to address these issues, there
must be physics beyond the SM. We do not know what the new physics (NP) is, nor
where it is, so we have to search for it in all possible ways:

• Direct searches: in high-energy experiments, one task is to look for the produc-
tion of new particles. Unfortunately, to date, such searches have revealed nothing.
No SUSY, no direct dark matter detection, no new particles.

• Indirect searches: here the idea is to look for virtual effects of new particles. This
method has been more promising.
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2 B-Decay Anomalies

2.1 b → sμ+μ−

b → s transitions, which have ΔQem = 0, are flavor-changing neutral-current
(FCNC) processes. In the SM, these can arise only at loop level. One such FCNC
decay is b → sμ+μ−. This process receives several SM contributions, one of
which is shown in Fig. 1. The SM amplitude is suppressed by loop factors and small
elements in the Cabibbo–Kobayashi–Maskawa (CKM) quark mixing matrix:

A ∼ 1

16π2

g4

M2
W

m2
t

M2
W

VtbV
∗
ts . (1)

Processes whose rates are small in the SM are excellent places to search for NP.
Indeed, there are a number of measurements of observables involving b→ sμ+μ−
that disagree with the predictions of the SM:

• The measured branching ratios of B → K∗μ+μ− [1] and Bs → φμ+μ− [2]
have been found to be smaller than the predictions of the SM. Here there are
significant theoretical uncertainties, related to the poorly known values of the
hadronic form factors [3–5].

• Deviations from the SM expectations have been found in measurements of
the angular distribution of B → K∗μ+μ− [6–9], particularly in the angular
observable P ′5 [10]. Here, the form-factor uncertainties are smaller than for the
branching ratios [11, 12], but they are still important.

• LHCb has measured

RK ≡ B(B̄ → Kμ+μ−)
B(B̄ → Ke+e−)

. (2)

Using the Run 1 data (2014) [13], for 1 � q2 � 6 GeV2, where q2 is the dilepton
invariant mass-squared, it was found that

Rold
K,Run 1 = 0.745+0.090

−0.074 (stat)± 0.036 (syst) . (3)

The SM prediction is RSM
K = 1 ± 0.01 [14]. This measurement disagrees with

the SM at the level of 2.6σ , suggesting a violation of lepton universality.

Fig. 1 One SM contribution
to b→ sμ+μ−
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At the Rencontres de Moriond, 2019, LHCb presented new RK results [15]:
(1) the Run 1 data were reanalyzed using a new reconstruction selection method,
and (2) the Run 2 data were analyzed. The results are

Rnew
K,Run 1 = 0.717+0.083

−0.071 (stat)+0.017
−0.016 (syst) ,

RK,Run 2 = 0.928+0.089
−0.076 (stat)±+0.020

−0.017 (syst) . (4)

Combining the Run 1 and Run 2 results gives

RK = 0.846+0.060
−0.054 (stat)+0.016

−0.014 (syst) . (5)

The central value is closer to the SM prediction, but, due to the smaller errors,
the discrepancy with the SM is still ∼ 2.5σ .

LHCb has also measured

RK∗ ≡ B(B̄ → K∗μ+μ−)
B(B̄ → K∗e+e−)

, (6)

finding [16]

RK∗ =
{

0.660+0.110
−0.070 (stat)± 0.024 (syst) , 0.045 � q2 � 1.1 GeV2 ,

0.685+0.113
−0.069 (stat)± 0.047 (syst) , 1.1 � q2 � 6.0 GeV2 .

Compared to SM predictions, these correspond to discrepancies of 2.4σ and
2.5σ .

At the Rencontres de Moriond, 2019, Belle announced its measurement of
RK∗ [17]:

RK∗ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

0.52+0.36
−0.26 ± 0.05 , 0.045 � q2 � 1.1 GeV2 ,

0.96+0.45
−0.29 ± 0.11 , 1.1 � q2 � 6.0 GeV2 ,

0.90+0.27
−0.21 ± 0.10 , 0.1 � q2 � 8.0 GeV2 ,

1.18+0.52
−0.32 ± 0.10 , 15.0 � q2 � 19.0 GeV2 ,

0.94+0.17
−0.14 ± 0.08 , 0.045 � q2 .

Although the central values are closer to the SM predictions, the errors are
considerably larger than in the LHCb measurement.

• On average, older measurements of the branching ratio of Bs → μ+μ− were in
agreement with the prediction of the SM [18–20]. However, a new measurement
by ATLAS disagrees with SM by 2.4σ [21]. Combining all results leads to
tension of ∼ 2σ with the SM.

There are therefore quite a few measurements of observables that are in disagree-
ment with the predictions of the SM. All of these involve the decay b → sμ+μ−,
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which suggests trying to explain the data by allowing NP to contribute to this decay.
The model-independent starting point is the effective Hamiltonian

Heff = −αGF√
2π

VtbV
∗
ts

∑

a=9,10

(CaOa + C′aO ′
a) , (7)

where O9(10) = [s̄γμPLb][μ̄γ μ(γ5)μ], and the primed operators have L→ R. The
Wilson coefficients include both SM and NP contributions: CX = CX,SM+CX,NP.

Performing a combined fit to all the data, in the simplest scenarios it is found that
the data can be explained if1

(i) C
μμ

9,NP = −1.10± 0.16 ,

(ii) C
μμ

9,NP = −C
μμ

10,NP = −0.53± 0.08 , (8)

with a pull of close to 6σ (!). (I note in passing that scenario (ii) involves purely
left-handed NP.)

2.2 b → cτ−ν̄

There is another set of observables whose measurements also exhibit discrepancies
with the SM. They involve the decay b → cτ−ν̄. This is a ΔQem = 1 process, and
proceeds in the SM via tree-level W exchange, see Fig. 2. The amplitude is given by

A ∼ g2
2

M2
W

Vcb , (9)

where |Vcb| 
 0.04.
Before the Rencontres de Moriond, 2019, BaBar, Belle, and LHCb measured the

quantities

RD(∗) ≡ B(B̄ → D(∗)τ−ν̄τ )
B(B̄ → D(∗)�−ν̄�)

, (� = e, μ) . (10)

Fig. 2 SM diagram for
b→ cτ−ν̄

1These numbers are taken from Ref. [22]. Other analyses [23–27] obtain similar results.
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Their measurements exhibited discrepancies with the predictions of the SM.
Combining RD and RD∗ , the deviation was ∼ 3.8σ [28]. At Moriond, 2019, Belle
announced new results [29]:

R
τ/�
D∗ /(R

τ/�
D∗ )SM = 1.10± 0.09 ,

R
τ/�
D /(R

τ/�
D )SM = 1.03± 0.13 . (11)

These results are in better agreement with the SM, so that the deviation from the
SM in RD and RD∗ (combined) has been reduced from ∼ 3.8σ to 3.1σ [28].

LHCb has also measured

RJ/ψ ≡ B(B+c → J/ψτ+ντ )
B(B+c → J/ψμ+νμ)

, (12)

finding [30]

RJ/ψ

(RJ/ψ)SM
= 2.51± 0.97 . (13)

Here the discrepancy with the SM is 1.7σ [31].
The discrepancies in RD , RD∗ , and RJ/ψ are hints of τ -μ and τ -e universality

violation in b→ c�−ν̄, and suggest the presence of NP in b→ cτ−ν̄ decays.

3 Models of New Physics

For the b → sμ+μ− anomalies, there are two classes of NP models that contribute
to the decay at tree level, and can explain the data.

The first class involves a new Z′ boson (see Fig. 3). The Z′ must have a FCNC
coupling to s̄b and must couple to μ+μ−. The model can follow scenarios (i) or (ii)
[Eq. (8)]. A great many Z′ models have been proposed (far too many to list here).
Some combine explanations of the B anomalies with other weaknesses of the SM,
such as dark matter, (g − 2)μ, and neutrino masses.

Fig. 3 Z′ (left) and LQ (right) contributions to b→ sμ+μ−
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Fig. 4 W ′ (top left), charged-Higgs (top right), and LQ (bottom) contributions to b→ cτ−ν̄

The second class of NP models involves leptoquark (LQ) exchange (see Fig. 3).
There are several different types of LQ that can explain the b → sμ+μ− data. All
fit within scenario (ii) of Eq. (8) (purely LH NP) [32].

Turning to b → cτ−ν̄, there are three types of NP whose contributions to this
decay could explain the data: (1) a new W ′ boson, (2) a charged-Higgs boson,
and (3) a leptoquark (see Fig. 4). However, the H− is disfavored by (theoretical)
constraints from B−c → τ−ν̄τ [33], leaving the W ′ or (several different types of)
LQ as NP explanations. Here, the NP couplings can be left-handed (LH) and/or
right-handed (RH).

3.1 Distinguishing NP Explanations

As we have seen, there are several NP explanations for the anomalies in b →
sμ+μ−. But this raises the question: how can we distinguish among them? One way
is to look at CP violation in B → K∗μ+μ− [32]. Now, CP violation is generated
by the interference of (at least) two amplitudes with different weak phases. In the
presence of NP, this can arise due to SM-NP interference. Here the signal is not
direct CP violation, but rather CP asymmetries in the angular distribution. The key
point here is that SM-Z′ and SM-LQ interferences are different, leading to different
CP-violating effects. Thus, by measuring CP violation in B → K∗μ+μ−, one can
differentiate the NP models.

The situation is similar for the NP explanations of the b → cτ−ν̄ anomalies.
By looking at CP violation in B → D∗τ−ν̄ (and also in B → D∗μ−ν̄), one can
distinguish NP models [34]. Once again, the signal involves CP asymmetries in the
angular distribution. The measurement of CP violation in these decays allows us to
differentiate the W ′ and LQ models. It also provides information about the LH/RH
NP couplings.
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3.2 Simultaneous Explanations of b → sμ+μ− and b → cτ−ν̄

Now, (c, s)L is a doublet of SU(2)L. This suggests that, if the NP coupling is purely
LH, b→ s and b→ c transitions are related. It should therefore be possible to find
NP that can simultaneously explain both the b→ sμ+μ− and b→ cτ−ν̄ anomalies
[35].

There are two classes of models that, in principle, can do this:

• A new triplet of vector bosons (W ′±, Z′0). The W ′ and Z′ contribute respectively
to b→ cτ−ν̄ and b→ sμ+μ−.

• A LQ of charge Qem = 2
3 . It couples to b̄μ+ and s̄μ+ (for b → sμ+μ−) and to

b̄τ+ and cν̄τ (for b→ cτ−ν̄).

It is found [36–39] that, when all constraints are taken into account, including
those from direct searches at the LHC, the (W ′±, Z′0) model is excluded. But the
LQ model is viable!

4 Summary

The SM is certainly correct, but it is not complete: there must be physics beyond
the SM. Recently, there have been several measurements of observables that are in
disagreement with the predictions of the SM:

• b → sμ+μ−: These include many observables involving this decay. Some are
clean, while others have important theoretical uncertainties. Global fits allowing
for NP in b→ sμ+μ− find improvements over the SM at the level of close to 6σ .
NP Models with an extra Z′ or with different types of LQs have been proposed
as explanations.

• b → cτ−ν̄: here there are several clean observables, with a net deviation from
the SM of ∼ 3σ . These can be explained in models with an extra W ′ or with
different types of LQs.

It is of course possible that these discrepancies with the SM are all statistical
fluctuations, and will go away with more data. This said, their combined statistical
significance is sizeable (� 4σ ), so they will not disappear soon. Hopefully, we are
indeed seeing the first experimental signals of NP.
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Loopholes in WR Searches at the LHC

Özer Özdal

Abstract We present mass bounds of the WR gauge boson in generic left-right
symmetric models. Assuming that the gauge bosons couple universally to quarks
and leptons, we allow different gauge couplings gR �= gL and mass mixing,
V L
CKM �= V R

CKM in the left and right sectors. We investigate scenarios where WR

is lighter, or heavier than the right-handed neutrino νR . In these scenarios, WR

mass bounds can be considerably relaxed, while ZR mass bounds are much more
stringent. In the case where MWR

≤ MνR , the experimental constraints come from
WR → tb and WR → jj channels, while if MWR

≥ MνR , the dominant constraints
come from WR → ��jj . Our results show that WR mass bounds can be relaxed
significantly.

Keywords Left-right symmetric models · Exclusion limits for heavy
right-handed W boson

Left-right symmetric models (LRSMs) [1–3] provide a natural explanation for
neutrino masses without resorting to higher scales. Based on the SU(2)L ⊗
SU(2)R ⊗ U(1)B−L, these models restore parity symmetry, which is conserved
at high energy, and spontaneously broken at some energy scale connected to the
SU(2)R breaking scale [4]. Small neutrino masses are induced by heavy (and
most often, Majorana) right-handed neutrinos through the phenomena known as
the seesaw mechanism [5, 6]. Within the framework described here both Type I and
Type II seesaw mechanisms can be naturally imbedded in the model.

In making any specific predictions, there are several sources of uncertainty in
the model. The most important source of uncertainty comes from the right-handed
quark mixing matrix, similar to that of the left-handed quark Cabibbo–Kobayashi–
Maskawa (CKM) mixing. It is also commonly assumed that left-right symmetry
imposes gL = gR . If breaking of SU(2)R ⊗U(1)B−L occurs at a high scale, at that
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scale gL = gR , but below that, the couplings gL and gR could evolve differently,
and would be different at low energy scales.

Bounds on extra particle masses depend strongly on the above assumptions, in
particular on the size of the right-handed gauge coupling and/or the right-handed
CKM matrix elements, and none more so than the charged gauge boson WR .
This boson is interesting for several reasons. First, regardless of the other details
of the spectrum of left-right models, discovery of a charged gauge boson will
be an indication of the presence of an additional SU(2) symmetry group, and if
testing its decay products would indicate that it is right-handed, this will be an
unambiguous signal for left-right symmetry.1 Second, the LHC has significantly
improved searches for WR bosons, and the limits on their masses are becoming
more stringent.

Both left- and right-handed fermions are doublets under the extended SU(3)c ⊗
SU(2)L ⊗ SU(2)R ⊗ U(1)B−L gauge group. The electroweak symmetry is broken
by the bi-doublet Higgs field. In addition, to break the SU(2)R ⊗ U(1)B−L gauge
symmetry and to provide Majorana mass terms for neutrinos (the right-handed
neutrino is automatically included in the right-handed lepton doublet), we introduce
the Higgs triplets under SU(2)L ⊗ SU(2)R ⊗ U(1)B−L:

ΔL ≡
(
δ+L /

√
2 δ++L

δ0
L −δ+L /

√
2

)
∼ (3, 1, 2) , ΔR ≡

(
δ+R/

√
2 δ++R

δ0
R −δ+R/

√
2

)
∼ (1, 3, 2) .

(1)
While only ΔR is needed for symmetry breaking, ΔL is included to preserve left-
right symmetry. After symmetry breaking, the most general vacuum is

〈Φ〉 =
(
κ1/
√

2 0
0 κ2e

iα/
√

2

)
, 〈ΔL〉 =

(
0 0

vLe
iθL/

√
2 0

)
, 〈ΔR〉 =

(
0 0

vR/
√

2 0

)
.

(2)

For the LRSM model to break down to the SM, the hierarchy of the vacuum

expectation values (VEVs) must be, vR � (κ1, κ2) � vL, and
√
κ2

1 + κ2
2 = v =

246 GeV. Here the presence of non-zero VEV of ΔR , vR breaks the SU(2)R ⊗
U(1)B−L to U(1)Y , while the presence of bi-doublet VEVs κ1 and κ2 break the
electroweak symmetry, at the same time inducing a VEV for ΔL denoted by vL.

In the charged sector, the left and right gauge bosons mix to give the mass
eigenstates, W1 and W2;

(
W1

W2

)
=
(

cos ξ − sin ξ

sin ξ cos ξ

)(
WL

WR

)
, (3)

1Unlike the discovery of a Z′ which can indicate the presence of any variety of additional U(1)′
groups.
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where the mixing angle ξ and the mass eigenvalues are given by

tan 2ξ = 4gRgLκ1κ2

2g2
Rv

2
R + (g2

R − g2
L)v

2
≈ 2gLκ1κ2

gRv
2
R

(4)

M2
W1
= 1

4

[
g2
Lv

2 cos2 ξ + g2
R(2v

2
R + v2) sin2 ξ − 2gRgLκ1κ2 cos ξ sin ξ

]

M2
W2
= 1

4

[
g2
Lv

2 sin2 ξ + g2
R(2v

2
R + v2) cos2 ξ + 2gRgLκ1κ2 cos ξ sin ξ

]
. (5)

The SU(2)R breaking scale vR and mixing angle ξ are restricted from low energy
observables, such as KL−KS , εK , B0− B̄0 mixings and b→ sγ processes, which
constrain the right scale through the charged right-handed WR boson mass as well
as the triplet Higgs masses. Taking into account the smallness of the mixing angle ξ ,
in what follows we shall refer to W1 as WL and W2 as WR , as to be able to compare
with experimental results and nomenclature.2

In most analyses, WR bosons are expected to be heavy. However all of the
analyses assume that the model is manifestly left-right symmetric, that is, the
coupling constants are the same for the left and right gauge sectors, gL = gR and
that the quark mass mixing in the right-handed sector V R

CKM is either diagonal,
or equal to the one in the left-handed sector (the Cabibbo–Kobayashi–Maskawa
matrix, V L

CKM ). This does not have to be the case, and analyses of a more general
model, the so-called asymmetric left-right model exist [7, 8].

We take this general approach here. We calculate the production cross section
and decays of the WR bosons in the LRSM with gL �= gR and allowing for general
entries in the mixing matrix for the right-handed quarks, V R

CKM , parametrized as the
left-handed matrix, but allowing the elements to vary independently:

V R
CKM =

⎡

⎣
cR12c

R
13 sR12c

R
13 sR13e

iδR

−sR12c
R
23 − cR12s

R
23s13e

iδR cR12c
R
23 − sR12s

R
23s

R
13e

iδR sR23c
R
13

sR12s
R
23 − cR12c

R
23s

R
13e

iδR −cR12c
R
23 − sR12c

R
23s

R
13e

iδR cR23c
R
13

⎤

⎦ (6)

We then proceed as follows:

• We first choose one value for MWR
. Then we vary the parameters cR12, cR13, and

cR23 in the range [−1, 1]. The phase δR is set to zero (as we are not concerned
with CP violation), and we impose matrix unitary condition. For each set of
the randomly chosen V R

CKM parameters as above, we impose the theoretical and
experimental constraints including the mass bounds and flavor constraints from
K and B mesons. This ensures, for instance, that the non-SM neutral bi-doublet
Higgs boson is very heavy (>10 TeV), as required to suppress flavor-violating
effects.

2Note however that they both contain a non-zero left and right SU(2) gauge component.
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• For each value of MWR
we obtain many solutions for V R

CKM consistent with all
bounds. Of these solutions, we choose the one yielding the smallest branching
ratio for WR → t b̄. 3

• When MνR > MWR
, solutions emerge allowing for low values of BR(WR →

t b̄), which vary from about 23.3% for high MWR
, to about 29% for low MWR

,
while when MνR < MWR

, this ratio changes from 15.7% for high MWR
, to about

24.7% for low MWR
.

We performed random scans over the parameter space and imposed the mass
bounds on all the particles, as well as other constraints as given in Table I [9]. In a
general left-right model, the masses of the ZR and WR gauge bosons are related,
but the mass ratios depend sensitively on the values of the coupling constants
gR and gB−L. While the mass of WR is proportional to gR , the mass of the ZR

boson is proportional to
√
g2
R + g2

B−L. Lowering gR will decrease the production
cross section for WR , while having no effect on its branching ratios. Breaking the
symmetry to U(1)EM imposes that couplings constants are related through

1

e2 =
1

g2
L

+ 1

g2
R

+ 1

g2
B−L

, (7)

and therefore decreasing gR results in increasing gB−L. Note also that these
couplings are related, through SU(2)R ⊗ U(1)B−L → U(1)Y symmetry breaking
to the coupling of the hypercharge group, gY , through

1

g2
Y

= 1

g2
R

+ 1

g2
B−L

. (8)

This means, using the usual definition of sinφ = gB−L√
g2
R + g2

B−L

and sin θW =
gY√

g2
L + g2

Y

, we obtain the following theoretical limit:

tan θW = gR sinφ

gL

� gR

gL

, (9)

showing clearly that we cannot lower gR below its minimum value, gL tan θW . We
analyze the case where gR = gL, as well as when gL �= gR = 0.37, its allowed
minimal value.

3We have also tried to minimize BR(WR → jj) but found that this choice yields a more restrictive
lower mass bound for WR .
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We investigate the case where the right-handed neutrino is heavier than WR , (so
the on-shell decay WR → νR� is disallowed) and where the possible decay channels
for WR are

WR → jj (qq̄ ′), WR → WLh, WR → WLZ and WR → WLhh ,

all the other Higgs states being very heavy. Of these, the three-body decay WLhh

is very weak with Γ (WR→WLh)
Γ (WR→WLhh)

∼ 1/v, while the decay WR → WLh depends on
tanβ. Most analyses assume tanβ to be very small (∼ 0.01), yielding BR(WR →
WLh) to be negligible. Perturbativity bounds alone require tanβ < 0.8; however,
the mass of the SM-like Higgs boson h also depends on tanβ, and values of
tanβ > 0.6 result in the instability of the h mass. To keep our analysis general,
we investigated the production and decays of the WR mass for two cases: small
tanβ = 0.01, and large tanβ = 0.5. In addition, we allow for two values of gR , viz.
gR = gL, and gL �= gR = 0.37, as well as vary matrix elements of V R

CKM to show
how the results are affected. The resulting plots for σ(pp → WR)×BR(WR → t b̄)

are given in the left plane of Fig. 1, where we compare our four different cases
(different color-coded, as indicated in the panel insertion) with the CMS result [10]
using collision data collected at

√
s =13 TeV with L=35.9 fb−1. We show the

observed and expected limit curves for the combined electron and muon final states.
For gL = gR , V L

CKM = V R
CKM, and tanβ = 0.01, we note that the branching ratio

WR into t b̄ ranges from 32% to 33%, as WR decays into qq̄ ′ pairs democratically.
We confirm the CMS result [10] and exclude WR boson mass up to 3.6 TeV. For
the case where gR �= gL and V L

CKM = V R
CKM, represented by the blue line, we

set gR 
 0.37 and tanβ = 0.01. The WR production cross section decreases due to
relatively small gR , and the exclusion limit for WR masses can be reduced to 2.7 TeV
in that scenario. Increasing tanβ to 0.5 and gR 
 0.37 enhances the branching ratios
of WR → WLh to about∼ 1.95% and the branching ratio of WR → WLZL to about
∼2.0%. In this case, the branching ratio of WR → t b̄ is reduced slightly, to 31.0–
31.8%, as shown by the pink line. As can be read from the plot, this reduces the WR

mass limits only slightly, to 2675 GeV. However, when we allow V L
CKM �= V R

CKM,
tanβ= 0.5, and gR 
 0.37, this maximizes decays of WR into other final states, and
the branching ratio of WR → t b̄ is reduced substantially: from about 20% for high
MWR

(4 TeV) to about 29% for low MWR
(1.5 TeV). The orange line in the left plane

of Fig. 1 represents our result for this scenario, and the exclusion limit is reduced to
2360 GeV with respect to observed limit, whereas it can be estimated at 1940 GeV
based on the expected limit.

In the right panel of Fig. 1 we plot the cross section of σ × BR(WR → jj) vs
WR mass, and compare it to the ATLAS result [11] at

√
s =13 TeV for L=37 fb−1.

(For comparison, we included their acceptance factor A.) The red curve represents
the exclusion limit for WR mass when the gauge couplings gL = gR , and tanβ

= 0.01. The branching fraction of WR → jj varies slightly with mass. We keep
the same color coding for curves as in the previous panel. The mass restrictions
are comparable, but slightly weaker than those for the WR → t b̄ decay, ranging
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Fig. 1 (left): The cross section of WR → tb vs WR mass for different values of tanβ and gR ;
(right): The cross section of WR → jj vs WR mass, for different values of tanβ and gR , compared
to ATLAS data [11]

from MWR
� 3625 GeV when gL = gR , tanβ = 0.01, and V R

CKM = V L
CKM, to

MWR
� 2.0 TeV when gR = 0.37, tanβ = 0.5, and V R

CKM �= V L
CKM. Neither results

are particularly sensitive to values of tanβ, but depend on choices for gR and V R
CKM.

The case where the WR is heavier than the right-handed neutrino opens the
possibility of WR → νR�, followed by decay of νR → �W ∗

R → �jj giving rise to an
��jj signature. The Majorana nature of the right-handed neutrino allows for probing
both the same-sign and opposite-sign dilepton channels [12]. Both the ATLAS [13]
and CMS [14] collaborations have looked for such a WR signal, excluding WR

masses up to about 4.7 TeV for right-handed (muon or electron) neutrino masses
up to 3.1 TeV [14]. For lower right-handed neutrino masses (below 200 GeV), the
bound is less restrictive than the one originating from dijet searches. For the tau
channel, it is even much weaker, with MWR

constrained to be only smaller than
2.9 TeV [15].

In addition to WR → t b̄ and WR → jj channels, the most stringent bounds
come from the channel in which the WR boson decays to a first or second generation
charged lepton and a heavy neutrino of the same lepton flavor. Both ATLAS [13]
and CMS [14] assume that the heavy neutrino further decays to another charged
lepton of the same flavor and a virtual W0

R with a 100% rate. Then, the virtual W0
R

then decays into two light quarks, producing the decay chain. However, this is true
only for small tanβ values, where the corresponding mixing angle ξ between the
two charged gauge bosons is extremely small. In the large tanβ case, the mixing
between WL and WR , although small enough to satisfy flavor and CP bounds,
becomes important.

The planes of Fig. 2 show the result of the analysis of the ��jj final states. The left
panel plots the result for decays into �� = ee channel whereas the right one is for the
�� = μμ channel. For the scenarios where tanβ = 0.01, the contribution through
WL bosons is suppressed. Therefore, the main contribution to ��jj final states comes
via the virtual W0

R boson. However, for consistency we sum up the contributions
through the virtual W0

R and real WL boson, and our graphs for large tanβ values in
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Fig. 2 (left) The cross section of WR → eejj vs WR mass, for the case MνR = MWR
/2, compared

to the CMS data [14]; (right) The cross section of WR → μμjj vs WR mass, for the case where
MνR = MWR

/2, compared to [14]

the bottom planes represent the combined contribution. The most stringent bounds
occur for gL = gR , tanβ = 0.01, and V L

CKM = V R
CKM. We confirmed in that case

the CMS result [14] and find out that the observed (expected) 95 % CL lower limit
on WR masses is 4420 (4420) GeV in the ee channel and 4420 (4500) GeV in the
μμ channel.

The observed (expected) limit is reduced to 3800 (3800) GeV in the ee channel
and 3800 (3950) GeV in the μμ channel when gL �= gR , tanβ = 0.01, and
V L

CKM = V R
CKM. In the scenarios where tanβ = 0.5, contributions to ��jj final

states proceed through both virtual W0
R and WL bosons. When the WR mass is about

1 TeV, approximately 90.5% of the combined contribution is obtained through WL

bosons, limiting the virtual W0
R boson contribution to 9.5%. However, this relation

is flipped when WR mass is about 4 TeV, where 77.5% of the combined contribution
to ��jj final states is obtained through the virtual W0

R boson, leaving the WL boson
to contribute at 20.6%. In the scenario where we gL �= gR = 0.37, tanβ = 0.5, and
V L

CKM = V R
CKM, we improve the bounds to where the observed (expected) 95% CL

lower limit is 3725 (3720) GeV in the ee channel, and 3750 (3900) GeV in the μμ

channel. In addition to lowering gR and increasing tanβ, we verified the effect of
different CKM matrices, allowing V L

CKM �= V R
CKM in our final scenario. The partial

contributions through virtual W0
R and WL in this scenario are very close to the one

where V L
CKM = V R

CKM and gR �= gL, and tanβ = 0.5. In this case the results are
least constraining and we find that the observed (expected) 95% CL lower limit is
3100 (3300) GeV in the ee channel and 3350 (3400) GeV in the μμ channel.

In Fig. 3, we analyze the correlations in the two dimensional MWR
− MνR

mass plane, covering a range of neutrino masses both below and above the WR

boson mass. Contrary to the CMS analysis [14], which assumes that only one
heavy neutrino flavor νR contributes significantly to the WR decay width, in our
analysis all three heavy right-handed neutrino flavors contribute democratically. The
WR production cross section is calculated for each solution in this 2D plane using
MG5_AMC@NLO, and the observed (expected) 95% CL limits obtained from our
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analysis are applied to explore excluded regions. The expected and observed upper
limits on the cross section for different WR and νR mass hypotheses are compared
with the latest CMS results [14] @ L = 35.9 fb−1 and ATLAS results [13] @
L = 36.1 fb−1, as seen in Fig. 3. Note that we generate our results using the CMS
[14] data, as this is available. The ATLAS analysis, although more recent and at
a slightly higher luminosity, is able to rule out a small subset of parameter points
in the MWR

< MνR region. However they do not share their observed (expected)
cross section results publicly. Because of that, when we extrapolate our results for
slightly higher luminosity in that region, our cross sections are very small, and we
do not obtain any restrictions. Thus, we decided it safer to compare our analysis
with the existing data points provided by CMS, while indicating restrictions from
both experimental analyses on the plots.

In the MνR < MWR
case, we assume that the contribution comes through the

following decay chain:

WR → �νR → ��W0
R → ��qq ′, � = e or μ , (10)

while in the MνR > MWR
case, we assume that the contribution comes through the

following decay chain:

W0
R → �νR → ��WR → ��qq ′, � = e or μ . (11)

In our analysis, there is no excluded solution in the MνR > MWR
region since

the corresponding cross section in that region is below the experimental limits, as
can be read from the color bars in Fig. 3. This is understood from our previous
analysis, as the production cross section of νR� through WR bosons dominates the
one obtained through the virtual W0

R bosons. The top planes of Fig. 3 represent the
results of the exclusion in the two dimensional MWR

−MνR mass plane based on the
scenario where gL = gR , tanβ = 0.01, and V L

CKM = V R
CKM, whereas middle and

bottom planes show the same exclusion for the scenario where gL �= gR = 0.37,
tanβ = 0.5, V L

CKM = V R
CKM, and gL �= gR = 0.37, tanβ = 0.5, V L

CKM �= V R
CKM,

respectively. For the scenario where gL �= gR , tanβ = 0.5, and V L
CKM = V R

CKM,
WR bosons with masses up to 3.7 (3.7) TeV in the ee channel and up to 3.7 (3.9)
TeV in the μμ channel are excluded at 95% CL, for MνR up to 2.8 (2.9) TeV in the
ee channel, and 3.1 (3.0) TeV in the μμ channel. The 2D exclusion limits are less
stringent in the ee channel, where WR boson masses are excluded up to 3.0 TeV
for νR masses close to the MWR

= MνR degeneracy line. On the other hand, we
exclude less parameter space in the two dimensional MWR

−MνR mass plane when
gL �= gR = 0.37, tanβ = 0.5, and V L

CKM �= V R
CKM. As seen from the bottom planes

of Fig. 3, WR bosons with masses up to 3.1 (3.3) TeV are excluded at 95% CL, for
MνR up to 2.1 TeV, in the ee channel whereas WR bosons with masses up to 3.3
(3.4) TeV are excluded at 95% CL, for MνR up to 2.6 (2.5) TeV in the μμ channel.
Here again, the 2D exclusion limits are less stringent in the ee channel, where WR

boson masses are excluded up to 2.0 TeV for MνR masses close to the MWR
= MνR

degeneracy line.
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Fig. 3 Observed (continuous lines) and expected (dashed lines) 95% CL exclusion contours in
the MWR

−MνR plane in the ee (left columns) and μμ (right columns) channels for Majorana νR
neutrinos. The dashed blue line in the each plane indicates the region where MWR

= MνR . We also
show observed and expected limits by ATLAS [13] @ L = 36.1 fb−1, and CMS [14] @ L = 35.9
fb−1, obtained assuming gL = gR , tanβ = 0.01, and V L

CKM = V R
CKM. The cross section values

are indicated by the colors in the legend of the planes. In the top planes, the continuous (dashed)
black (red) line shows the estimated observed (expected) limit for the scenario where gL = gR ,
tanβ = 0.01, and V L

CKM = V R
CKM. In the middle planes, gL �= gR = 0.37, tanβ = 0.5, and

V L
CKM = V R

CKM, whereas the same limits in the bottom planes are analyzed for the scenario where
gL �= gR = 0.37, tanβ = 0.5, and also V L

CKM �= V R
CKM
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Table 1 Related branching ratios and cross sections for BM I and BM II

BM I :MνR > MWR
BM II :MνR < MWR

mWR
[GeV] 2557 3689

mνR [GeV] 16797 1838

σ (pp→WR) [fb] @13 TeV 48.7 3.98

σ (pp→WR) [fb] @27 TeV 478.0 77.3

BR(WR → tb) [%] 26.3 19.9

BR(WR → jj ) [%] 58.6 45.8

BR(WR → νR�) [%] – 6.5 (each family)

BR(WR → h1WL) [%] 1.8 1.5

BR(WR → WLZ) [%] 2.0 1.6

BR(νR → �qq ′) [%] – 65.3

BR(νR → WL�) [%] 1.1×10−4 33.1

BR(νR → WR�) [%] 99.9 –

Finally, allowing gL �= gR = 0.37 and V L
CKM �= V R

CKM will not have significant
consequences on other sectors of the model. Both the singly charged and doubly
charged Higgs bosons δ+R and δ++R are expected to be heavy. Even so, their
production mechanism is dominated by photon-mediated Drell Yan, or γ γ fusion,
and their branching ratios are independent of gR . This leads further support to WR

production and decay as being most promising signal to test this scenario. To assess
properties and differences between the two scenarios, we give two representative
benchmarks, one for the first scenario, MνR > MWR

and one for the second scenario,
MνR < MWR

, with the WR masses, cross sections and branching ratios given in
Table 1, for LHC at

√
s = 13 and 27 TeV. Overall our results yield weaker limits on

WR mass, yielding hope that WR could be discovered at HL-HE LHC.
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t-t-h, Top & Bottom Partners,
and the Brane Higgs Limit

Manuel Toharia

Abstract Higgs boson production in association with top quarks (tth) is one of the
most interesting Higgs production mechanisms, as it probes the top quark Yukawa
coupling. The ATLAS experiment announced a combined observed significance
of 6.3 sigma for this process along with a combined expected significance of 5.1
sigma (both relative to the background-only hypothesis) (Aaboud et al. [ATLAS],
Phys Lett B 784:173–191, 2018). The CMS experiment announced a combined
observed significance of 5.2 sigma with a combined expected significance of 4.2
sigma (Sirunyan et al. (CMS Collaboration), Phys Rev Lett 120:23180, 2018). We
explore the possibility of deviations in Higgs Yukawa couplings that might lead to
enhancements in tth production, within models with vector-like partners of the top
and bottom quarks, with masses of order 1–2 TeV. In a certain limit of parameter
space, Higgs production through gluon fusion can remain under control even with
large deviations of the top quark Yukawa coupling. We call this scenario the “Brane
Higgs Limit”, as it can emerge naturally in models of warped extra-dimensions with
all matter fields in the bulk (except the Higgs). The scenario is predictive and easily
falsifiable for all Higgs production and decay modes.

Keywords Collider physics · Higgs boson · Warped extra-dimensions

1 Introduction

RUN 1 of the LHC culminated in the discovery of a new particle consistent with the
Standard Model (SM) Higgs boson with a mass of 125 GeV. Extensions to the SM
could manifest themselves indirectly within the Higgs sector, and in particular they
could affect the production cross section and decay rates of the Higgs boson. After
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the end of Run II of the LHC, both ATLAS and CMS report that the main production
channel of the Higgs (gluon fusion) is consistent with the SM expectation.

As mentioned in the abstract, both ATLAS and CMS experiments have
announced the observation of t th channel with a combined observed significance of
6.3 sigma and 5.2 sigma respectively [1, 2]. In both results the expected significance
is slightly lower (5.1 sigma for ATLAS and 4.2 for CMS) in both cases caused by
mild excesses in the t t → H → γ γ channel (very mild excesses with measured
cross sections of σ(t t̄H) × B(H → γ γ ) = 1.59+0.43

−0.39 fb for ATLAS [3] and

σ(t t̄H) × B(H → γ γ ) = 1.56+0.34
−0.32 fb for CMS [4], to be compared with the SM

expected cross section of 1.13+0.08
−0.11 fb). Of course, measurements in the t th channel

are hindered by poor statistics, and moreover, not all decay channels give slightly
enhanced signal strengths. Nevertheless, should these tantalizing signals survive
more precise measurements at higher luminosity, they would provide the much
awaited signals for new physics.

One possibility to explain a possible t th enhancement is the modification of
the Higgs coupling to the top quark. A simple explanation would be to invoke the
presence of vector-like quarks which will mix with the SM top quark and thus can
modify their couplings to the Higgs, and in particular it could enhance them (see for
example [5] for an early proposal or the more recent [6] and references therein). In
this framework, the rates for loop-induced processes (specially gluon fusion Higgs
production) could remain SM-like by compensating effects between SM fermions
and the new vector-like fermions in the loops [6]. The masses of these vector-like
quarks must be of order 1–2 TeV in order to modify significantly the top Yukawa
coupling; such masses may still be safe from the current LHC lower limits on their
masses, mVLQ � 1000 GeV [7].

2 Top and Bottom Partners: A Doublet and Two Singlets

The simple scenario that we consider contains the usual SM gauge groups and
matter fields, with the addition of a vector-like quark SU(2) doublet and two
vector-like quarks SU(2) singlets, one with up-type gauge charge and another with

down-type gauge charge. We denote q0
L ≡

(
t0
L

b0
L

)
as the SM third generation

doublet, and t0
R as the SM right handed top. Using similar notation we define

QL,R ≡
(
Qt

L,R

Qb
L,R

)
as the new vector-like quark doublet, TR,L as the new vector-like

up-type quark singlet, and BL,R as the new vector-like down-type singlet. We can
write down the Yukawa couplings between the SM top quark and the new vector-like
quarks, which will lead to 5 × 5 fermion mass matrices. The mass and interaction
Lagrangian in the top sector can be then written as



t-t-h, Top & Bottom Partners, and the Brane Higgs Limit 601

Lmass = Y 0
t qLH̃ tR + YqT qLH̃TR + YQt QLH̃ tR + Y1QLH̃TR + Y2QRH̃TL

+MQQLQR +MT T LTR, (1)

with a similar expression for the bottom sector. After electroweak symmetry
breaking, the Yukawa couplings induce off-diagonal terms into the fermion mass
matrix. In the basis defined by the vectors (qL,QL, T L) and (tR,QR, TR) we can
write the heavy quark mass matrix as

Mt =
⎛

⎝
vY 0

t 0 vYqT

vYQt MQ vY t
1

0 vY t
2 MT

⎞

⎠ , (2)

where, in general, all entries are complex and where v is the Higgs vacuum
expectation value (VEV). A similar expression will hold for the bottom sector heavy
quark mass matrix. The associated top and bottom sector Yukawa coupling matrices
are

Ỹt =
⎛

⎝
Y 0
t 0 YqT

YQt 0 Y t
1

0 Y t
2 0

⎞

⎠ and Ỹb =
⎛

⎝
Y 0
b 0 YqB

YQb 0 Yb
1

0 Yb
2 0

⎞

⎠ . (3)

The mass matrices Mt and Mb are diagonalized by bi-unitary transformations,
Vt

†
LMtVtR = Mt

diag , and Vb
†
LMbVbR = Mdiag

b . At the same time, the Higgs
Yukawa couplings are obtained after transforming the Yukawa matrices into the
physical basis, Vt

†
LỸtVtR = Yphys

t and Vb
†
LỸbVbR = Yphys

b .
In the physical basis, the top quark mass and the top Yukawa coupling (the first

entries in the physical mass matrix and the physical Yukawa matrix) are not related
anymore by the SM relationship m

phys
t = vySM

t (see for example [8] and references
therein) (with v normalized to v = 174 GeV for simplicity). The same goes for the
bottom quark, and we thus define the shifts, δyt and δyt , between the SM and the
physical Yukawa couplings, due to the diagonalization, as

y
phys
t = ySM

t − δyt and y
phys
b = ySM

b − δyb. (4)

2.1 Higgs Production in the Brane Higgs Limit

Let us now consider the radiative coupling of the Higgs boson to gluons. This
coupling depends on the physical Yukawa couplings ynn of all the fermions running
in the loop and on their physical masses mn. The real and imaginary parts of
the couplings (the scalar and pseudo-scalar parts) contribute to the cross section
through different loop functions, AS

1/2 and AP
1/2, as they generate the two operators

hGμνG
μν and hGμνG̃

μν .
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Fig. 1 Feynman diagram for
the production cross section
gg → h in a setup with new
vector-like fermions Q, T
and B

gm

gm

h

t, b, T, Q, B

The cross section for the process depicted in Fig. 1, is

σgg→h = α2
s m

2
h

576π

[
|cSggh|2 + |cPggh|2

]
δ(s −m2

h) (5)

where

cSggh =
3∑

n=1

Re

(
ynn

mn

)
AS

1/2(τf ) and cPggh =
3∑

n=1

Im

(
ynn

mn

)
AP

1/2(τf ) (6)

with τ = m2
h/4m2

n and with the loop functions AS
1/2(τ ) and AP

1/2(τ ) as defined in
[9].

The amplitudes cSggh and cPggh can then be written in terms of traces involving the
fermion mass and Yukawa matrices involving top and vector-like up-quarks, and
bottom and any vector-like down quarks, Mi and Yi with i = t, b, so that we obtain

cSggh =
∑

n

Re

(
yu
nn

mu
n

)
+
∑

n

Re

(
yd
nn

md
n

)
− Re

(
yb

mb

)
+ Re

(
yb

mb

)
AS

1/2(τb) (7)

where we have added and subtracted the bottom quark loop contribution in order to
keep the dependence in A1/2(τb), and with a similar expression holding for cPggh.
We evaluate exactly the sums in the top sector and find

∑

n

(
yu
nn

mu
n

)
= 1

v

1+ 3εQt εT
|Y t

2 |
|Y 0

t |e
iθ t

2

(
1− eiθ

t
1
|Y t

1 ||Y 0
t |

|YQt ||YqT |
)

1+ εQt εT
|Y t

2 |
|Y 0

t |e
iθ t

2

(
1− eiθ

t
1
|Y t

1 ||Y 0
t |

|YQt ||YqT |
) , (8)

where we have defined the small parameters εT = v|YqT |
|MT | , εQt =

v|YQt |
|MQ| , and

θ t
1 and θ t

2 are relative phases between the entries of the Yukawa matrix. Similar
expressions will hold in the bottom sector.
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In the SM limit, the expression in Eq. (7) must tend to ∼ 1

v
(1 + AS

1/2(τb)), and

we would like to find a way to ensure that the overall contribution from the top
partners to Higgs production (in gluon fusion) is kept under control. We will require
that the Yukawa coupling matrices involving the new vector-like quarks are such
that det Ỹt = det Ỹb = 0 with the matrices Ỹt and Ỹb defined in Eq. (3). This

constraint implies that Y t
2

(
1− eiθ1

|Y t
1 ||Y 0

t |
|YQt ||YqT |

)
= 0 and thus ensures that the top

sector contribution to Higgs production, given in Eq. (8), gives the same result as
the SM top quark contribution to the same process.

The above condition of vanishing determinant could simply come from a specific
flavor structure in the Yukawa matrix but it turns out that the flavor structure required
can also be obtained naturally in models of warped extra-dimensions. In particular
we think of the usual Randall–Sundrum warped extra-dimensional scenario [10]
with matter fields in bulk. It is necessary, that the Higgs be sufficiently localized
towards the brane and that the KK modes of the top quark (and bottom quark) be
much lighter than the KK partners of the rest of quarks. Because of this connection
to extra-dimensions, we call this parameter space region of our simple model with
vector-like fermions the Brane Higgs Limit [6].

Finally we can write the ggh couplings as

cSggh =
1

v

(
1+ AS

1/2(τb)
)
+ Re

(
δyb

mb

)(
1− AS

1/2(τb)
)

, (9)

and

cPggh = Im

(
δyb

mb

)(
3

2
− AP

1/2(τb)

)
, (10)

where we have used the definitions of the Yukawa coupling shifts in Eq. (4).

2.2 Higgs Phenomenology

We will analyze the new physics in the Higgs sector by computing the signal
strengths of different processes, i.e. the ratio of the event cross section with the
expected SM cross section.

For gluon fusion production, we obtain in our scenario

σgg→h

σSM
gg→h

= Γh→gg

Γ SM
h→gg

= (1+Δgg) , (11)
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where Δgg = 2.13v

(
Re

δyb

mb

)
+ 1.13v2

(
Re

δyb

mb

)2

+ 2.51v2
(
Im

δyb

mb

)2

. This

result links in a simple and nontrivial way Higgs production through gluon fusion to
the bottom quark Yukawa coupling (or more precisely to its relative shift vδyb/mb).

For t th production cross section, we obtain using Eq. (4),

σpp→t th

σ SM
pp→t th

=
∣∣∣∣

yt

ySM

∣∣∣∣
2

= (1+Δtt ) where Δtt = −2vRe

(
δyt

mt

)
+ v2

∣∣∣∣
δyt

mt

∣∣∣∣
2

.

(12)

Once the Higgs is produced it will decay and so we need to obtain the different
partial decay widths. For b-decays we find

Γh→bb

Γ SM
h→bb

=
∣∣∣∣
yb

ySM

∣∣∣∣
2

= (1+Δbb) where Δbb = −2vRe

(
δyb

mb

)
+ v2

∣∣∣∣
δyb

mb

∣∣∣∣
2

.

(13)

We can also obtain the correction of Higgs decay into γ γ within the Brane Higgs
Limit, since the fermion loop is the same as the gluon fusion loop (although there is
an additional W loop contribution in this case). We find

Γh→γ γ

Γ SM
h→γ γ

= (1+Δγγ ) , (14)

where Δγγ = −0.14v

(
Re

δyb

mb

)
+ 0.005v2

(
Re

δyb

mb

)2

+ 0.01v2
(
Im

δyb

mb

)2

.

The signal strength of a particular production and decay mode is defined as
μii

ggh = σ(gg → h)/σSM(gg → h) × Br(h → ii)/BrSM(h → ii) with a similar

expression for μii
t t̄h

.
With all these ingredients, we find the t t̄h production and decay strengths

μVV
tt̄h
= (1+Δtt )

(1+ 0.58Δbb + 0.086Δgg)
, (15)

μbb
t t̄h
= μVV

tt̄h
(1+Δbb) , (16)

μ
γγ

t t̄h
= μVV

tt̄h
(1+Δγγ ) , (17)

as well as the ggh strengths

μVV
ggh =

(1+Δgg)

(1+ 0.58Δbb + 0.086Δgg)
, (18)

μ
γγ

ggh = μVV
ggh(1+Δγγ ) , (19)

with the corrections Δii depending only on top or bottom quark Yukawa coupling
shifts and where we have taken into account the numerical values for the main SM
Higgs branching ratios.
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2.3 Higgs Phenomenology

Within the Brane Higgs Limit region of parameter space, all signal strengths
associated with the Higgs will deviate from the SM values only due to shifts in
the top and bottom quark Yukawa couplings. This means that ratios of Higgs signal
strengths involving electroweak production processes, and decays through the same
channels “ii”, should be equal to one, i.e. μii

VBF /μii
Wh = μii

VBF /μii
Zh = 1. Also

signal strengths involving decays into WW should be equal to signals with decays
into ZZ, i.e. μWW

ggh /μZZ
ggh = μWW

tth /μZZ
tth = μWW

Vh /μZZ
Vh = μWW

VBF /μZZ
VBF = 1.

The corrections to the rest of Higgs signal strengths depend only on two complex
parameters, i.e. the relative top and bottom Yukawa coupling deviations δyt and
δyb. We start exploring the dominant Higgs production mechanism, the gluon fusion

process, paying particular attention to the signal strengths μ
γγ

ggh and μ
WW,ZZ
ggh . These

depend only on the deviation of the bottom quark coupling (magnitude and phase).
It is therefore possible to study the relationship between these two signal strengths,
for different values of δyb. This is plotted in Fig. 2, where we show that only a

specific region in the (μγγ

ggh, μ
WW,ZZ
ggh ) plane is allowed, due to the Brane Higgs

Limit constraint.

Fig. 2 Contours of the bottom quark Yukawa correction
∣∣δyb/ySM

b

∣∣ with respect to the gluon
fusion signal strengths μVV

ggh and μ
γγ

ggh. The Gray bands represent the experimental bounds set
by the LHC RUNS 1 and 2. The “Theory Excluded” regions are points excluded by the Brane
Higgs Limit constraint. Each contour is traced by varying the phase of δyb and we include two
parameter space points as example limits, marked by a ⊕ and a %, representing, respectively, an
overall enhancement or suppression with respect to the SM predictions. Note that the SM point
lies exactly at the boundary between the “Theory Excluded” region and the “allowed” region (blue
shaded) and note that the (blue) boundary line separating both regions does not represent a contour
of constant

∣∣δyb/ySM
b

∣∣
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Fig. 3 Contours of the bottom quark Yukawa correction
∣∣δyb/ySM

b

∣∣ with respect to the gluon
fusion signal strength μVV

ggh and the ratio of the t t̄h signal strengths μbb
tth/μ

VV
tth (left panel); and

dependence of the Higgs signal strength μVV
tth with respect to the top quark Yukawa coupling

correction
∣∣δyt /ySM

t

∣∣ (right panel). The Gray bands represent the experimental bounds set by the
LHC RUNS 1 and 2. The “Th. Excl.” region comprises all points excluded by the Brane Higgs
Limit constraint and we included (left) the two same parameter space points, marked by ⊕ and %,
as in the previous figure

After exploring the gluon fusion signals, we study the effect of small shifts in the
bottom Yukawa coupling in t th signals. In particular we focus on the behavior of
the ratios μbb

tth/μ
VV
tth = μbb

V h/μ
VV
V h as a function of μVV

ggh (all top quark Yukawa
dependence cancels out in the ratio). This is shown on the left panel of Fig. 3,
where we consider variations of the ratio μbb

tth/μ
VV
tth with respect to the gluon fusion

strength μbb
tth.

We now investigate the signals that do depend on the top Yukawa coupling
deviations. In the right panel of Fig. 3 we study the variation of μVV

tth with respect
to the top Yukawa deviation |δyt |. The rest of t t̄h signals strengths can be obtained
from ratios of other Higgs production signals strengths, since for example μ

γγ

tth =
μ

γγ

ggh

μVV
ggh

μVV
tth . We conservatively assume no bottom quark Yukawa coupling shifts for

this plot (δyb = 0), in which we see that the parameter space region is a diagonal
band. We also show contours of the phase of the top Yukawa shift δyt , tracing the
band diagonally. The dependence is very sensitive to variations in the phase of the
shift of the top Yukawa coupling. We can clearly see that if the magnitude of the top
Yukawa deviation is less than 1 (the natural expectation for heavy KK top partners),
in order to obtain a signal enhancement (as hinted by LHC data), the phase must be
close to π .



t-t-h, Top & Bottom Partners, and the Brane Higgs Limit 607

3 Outlook

We have presented a simple explanation of possible enhancements in the t t̄h assoc-
iated production, with the effect decoupled from deviations in Higgs production
through gluon fusion at the LHC. This was possible by the addition of vector-like
top and bottom partners whose main effect is to modify the top and bottom quark
Yukawa couplings and thus potentially modify the cross section for t t̄h production.

In general the effect should also affect the cross section for Higgs production
through gluon fusion but we showed that working in a particular limit of parameter
space, the Brane Higgs limit, the corrections to gluon fusion caused by the top
Yukawa coupling variations are exactly offset by the contributions of the new top
partners, thus keeping the cross section under control (and only depending on
variations of the bottom quark Yukawa coupling!).

Essentially the scenario manages to decouple possible deviations on gluon fusion
production from deviations in t th production, which are usually expected to be
directly connected. We showed how the scenario links and constrains theoretically
all the possible deviations making the scenario easily falsifiable in the coming high
luminosity runs at the LHC.
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Mirror Dirac Leptogenesis

Kevin Earl, Chee Sheng Fong, Thomas Gregoire, and Alberto Tonero

Abstract We consider a mirror world scenario, in which light Dirac neutrinos are
generated from a seesaw mechanism and leptogenesis occurs at high scale without
violating lepton number. After leptogenesis, the conservation laws of the theory
imply the visible baryon-minus-lepton asymmetry to be equal to the mirror baryon-
minus-lepton asymmetry. We extend previous work by presenting a detailed study
of this Dirac leptogenesis mechanism by constructing the full set of Boltzmann
Equations (BEs) for both cases of unflavored and flavored regimes. We show that
Z2 breaking and lepton/mirror lepton flavor effects can be exploited to enhance the
final baryon-minus-lepton asymmetry in our world by several orders of magnitude.

Keywords Leptogenesis · Dirac neutrinos · Mirror world models

1 The Model

We consider a model that, in addition to the SM sector, is characterized by the
presence of a mirror sector with the same structure and field content as the SM. In
addition to SM fields and their mirror copies, we add heavy singlet neutrinos to both
sectors with a Dirac mass term which serves as a portal between the two sectors [1]:

L = iN̄Ri /∂NRi + iN̄ ′
Ri

/∂N ′
Ri −MiN̄RiN

′c
Ri

−yαj l̄LαΦ̃NRj − y′αj l̄′LαΦ̃
′N ′

Rj + h.c. (1)

The fields lLα and Φ are SM lepton and Higgs doublets charged under the SM
EW SU(2)L × U(1)Y and Φ̃ = iσ2Φ

∗, while l′Lα and Φ ′ are mirror lepton and
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Higgs doublets that transform under the mirror EW group SU(2)′L × U(1)′Y and
Φ̃ ′ = iσ2Φ

′∗. The fields NRi and N ′
Ri are heavy fermions which are singlets under

both the SM and the mirror EW group. The number of generations in the mirror
sector is not fixed, though a minimum of two generations of mirror fermions as
well as NRi and N ′

Ri are required for leptogenesis and to explain the two observed
neutrino squared mass differences. In Eq. (1), the Dirac mass term is responsible
for connecting the SM and the mirror sector. In addition, we have chosen, without
loss of generality, the basis where the Dirac mass matrix M , the charged lepton and
mirror lepton Yukawa couplings (not shown above) are real and diagonal. Other
portal interactions might exist, such as a Higgs portal or photon-mirror photon
mixing, but are more model dependent.

The structure of Eq. (1) can be obtained by imposing a global U(1) symmetry that
can be identified with the total lepton number Ltot = L − L′ which is an extended
lepton number defined in terms of both SM lepton number (L) and mirror lepton
number (L′). We have

Ltot(lLα) = Ltot(NRi) = −Ltot(l
′
Lα) = −Ltot(N

′
Ri), Ltot(Φ) = Ltot(Φ

′) = 0.
(2)

In this case, the SM and twin right-handed neutrinos combine to form heavy Dirac
states

N = NR + (N ′
R)

c. (3)

With this definition, we can rewrite the model Lagrangian as follows:

L = iN̄i /∂Ni −MiN̄iNi − yαj l̄αΦ̃PRNj − y′αj l̄′αΦ̃ ′PRN
c
j + h.c. (4)

1.1 Heavy N Decay and CP Violation

In the model considered in this study we can have the following decay processes
involving the heavy neutrinos Ni → lαΦ, Ni → l̄′αΦ̄ ′, and its antiparticle N̄i →
l̄αΦ̄, N̄i → l′αΦ ′. For generic complex Yukawa couplings y and y′ in Eq. (4) we can
have CP violation in the decays of the heavy neutrinos and this will imply non-zero
ΔΓ (Ni)α ≡ Γ (Ni → lαΦ) − Γ (N̄i → l̄αΦ̄) in the visible sector and non-zero
ΔΓ ′(N̄i)α ≡ Γ (N̄i → l′αΦ ′) − Γ (Ni → l̄′αΦ̄ ′) in the mirror sector. Let us define
Γ (Ni) ≡ ∑

α[Γ (Ni → lαΦ) + Γ (Ni → l̄′αΦ̄ ′)] and Γ (N̄i) ≡ ∑
α[Γ (N̄i →

l̄αΦ̄)+ Γ (N̄i → l′αΦ ′)]. CPT conservation implies that

Γ (Ni) = Γ (N̄i) ≡ ΓNi
, (5)

where

ΓNi
= Mi

16π
[(y†y)ii + (y′†y′)ii]. (6)
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It follows that

∑

α

ΔΓ (Ni)α =
∑

α

ΔΓ ′(N̄i)α. (7)

Furthermore, we can define the CP violating parameters in the SM and mirror
sector as follows:

εiα = ΔΓ (Ni)α

2ΓNi

, (8)

ε′iα =
ΔΓ ′(N̄i)α

2ΓNi

. (9)

The relation in Eq. (7) shows that the total CP violation in the visible and hidden
sector is the same, namely

εi = ε′i , (10)

where εi ≡∑α εiα and ε′i ≡
∑

α ε′iα . The relation above is ensured by the presence
of a global B−B ′−Ltot symmetry as discussed in the previous section. The explicit
computation of εiα gives

εiα = 1

8π

1

(y†y)ii + (y
′†y′)ii

∑

k

[
1

1− xk
Im[(y†y)kiyαky

∗
αi] +

√
xk

1− xk
Im[(y′†y′)ikyαky∗αi]

]
, (11)

where xk = M2
k /M

2
i . This parameter is obtained from the interference between the

tree- and loop-level diagrams in the top row of Fig. 1. Interestingly, the right diagram
on the top row of Fig. 1 involves mirror particles in the loop and in performing the
computation, “the propagator of the internal Nk picks up a mass term instead of the
momentum” and is the only diagram that contributes in the unflavored case.

By a similar computation for the decay to the mirror sector (bottom row of Fig. 1),
we obtain ε′iα

ε′iα =
1

8π

1

(y†y)ii + (y
′†y′)ii

∑

k

[
1

1− xk
Im[(y′†y′)kiy′αky′∗αi] +

√
xk

1− xk
Im[(y†y)iky

′
αky

′∗
αi]
]
. (12)

Notice that in general the two CP parameter εiα and ε′iα are different; however, they
become equal in the Z2 symmetric limit where y = y′.
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Ni

l ′
β

Φ′
Nk

lα

Φ

Ni

lβ

Φ
Nk

lα

Φ

+ +Ni

lα

Φ

Ni

lβ

Φ
Nk

l ′
α

Φ′

Ni

l ′
β

Φ′
Nk

l ′
α

Φ′

+ +Ni

l ′
α

Φ′

Fig. 1 Diagrams responsible for the decay of the heavy neutrino N into SM particles (top row)
and the mirror particles (bottom row), contributing to the calculation of the CP violating parameters
εiα and ε

′
iα

The middle diagrams of Fig. 1 involving the same type of particles in the loop as
in the final states are relevant only in the flavored case. They give rise respectively
to the first terms in the square brackets of Eqs. (11) and (12) which vanish only if
one sums over α.

Summing over α, one can verify that Eq. (10) holds with

εi = ε′i =
1

8π

1

(y†y)ii + (y
′†y′)ii

∑

k

√
xk

1− xk
Im[(y′†y′)ik(y†y)ik]. (13)

This parameter measures the total amount of CP violation induced by the decay of
the heavy neutrino Ni . Compared to the standard leptogenesis result [2, 3], there is
no triangle or vertex diagram contribution and the CP violation comes only from the
interference between the tree-level and the one-loop self-energy diagrams [1].

2 Flavor Enhancement

Here we will discuss a novel enhancement effect that can be achieved in this
model [4]. Assuming that |y′| � |y|, from Eqs. (11) and (12), we have the following
parametric dependence:

εiα ∼ a(y4/y′2)+ b(y2), (14)

ε′iα ∼ a(y′2)+ b(y2), (15)

where a(x) represents the “purely flavor terms” i.e. the first terms in the square
brackets of Eqs. (11) and (12) while b(x) represents the second terms in the square
brackets of Eqs. (11) and (12). Notice that the purely flavored term in the ε′
parameter is enhanced by a factor of ∼ y′2/y2 ∼ P−1 with P the branching ratio



Mirror Dirac Leptogenesis 615

for singlet decay to the SM sector.1 Hence if Ni decays mostly to the mirror sector,
the flavored CP parameters in the mirror sector can be enhanced accordingly. In
this case, even if the flavored CP parameters in the SM are not enhanced, due to
conservation of (B − L) − (B ′ − L′) charge, the enhanced production of mirror
(B ′ − L′) asymmetry will be fed back to the SM sector, resulting in an overall
enhancement of asymmetry production. This is an appealing feature of the model.

As a concrete example, we study N1 leptogenesis by choosing the following
parameters:

(P1e, P1μ, P1τ ) = 10−3(1/3, 1/3, 1/3), (16)

(P ′1e, P ′1μ, P ′1τ ) = 0.999(8× 10−3, 2× 10−3, 0.99), (17)

(ε1e, ε1μ, ε1τ ) = −(1/3, 1/3, 1/3)εmax
1 , (18)

(ε′1e, ε′1μ, ε′1τ ) = (1000, 990,−1991)εmax
1 , (19)

where the total CP parameter is ε1 = ε′1 = −εmax
1 . By setting M1 = 8 × 108 GeV,

f = 500 GeV, m3 + m1 = 0.1. The final baryon asymmetry YB obtained from
solving the BEs as a function of K1

K1 ≡ ΓN1

H(T = M1)
(20)

is plotted in Fig. 2. The solid red and purple dashed lines refer respectively to the
case with zero and thermal initial N1 abundances while the dotted horizontal line is
the observed baryon asymmetry YB = 8.7× 10−11.

3 Notes and Comments

Regarding the flavor effects, we have the following comments:

• In both cases of thermal and zero initial abundance we have that flavor effects
are impotent in the weak washout regime. In this case the washout terms are
negligible during decays of N1, allowing one to sum over the source term and
the final asymmetry will be proportional to the total CP parameter ε1 which is
too small in the three-flavor regime. For the parameters specified in the previous
section, as shown in Fig. 2, a sufficient baryon asymmetry can be generated for
K1 � 15 and K1 � 55 respectively for thermal and zero initial N1 abundance.

1For N1 leptogenesis, the flavored terms will have an additional M1/Mk>1 suppression while for
N2 leptogenesis, there can be an enhancement of M2/M1. Here will assume M1/Mk>1 is of a
factor of a few and focus on N1 leptogenesis.
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Fig. 2 The final baryon asymmetry YB as a function of K1 with M1 = 8 × 108 GeV in the
three-flavor regime assuming the parameters specified in Eqs. (16)–(19) and below them. The red
solid and purple dashed lines represent respectively the baryon asymmetry obtained with zero
and thermal initial N1 abundance. The dotted horizontal line represents the value of the observed
baryon asymmetry YB = 8.7× 10−11. For the parameters specified above, the baryon asymmetry
with initial thermal N1 abundance has the wrong sign which could be changed by flipping the sign
of CP parameters in Eqs. (18) and (19)

• For the zero initial N1 abundance, the largest asymmetry is induced in the flavor
α for which P ′1αK1 ∼ O(1) in order to have a significant washout of the initial
“wrong” sign baryon asymmetry generated during N1 production. For our choice
of parameters, the largest asymmetry is generated in the τ sector.

• On the other hand, for thermal initial N1 abundance, the largest asymmetry is
induced in the flavor α for which P ′1αK1 is the smallest, i.e. the washout is the
smallest. For our choice of parameters, we have that the largest asymmetry is
generated in the μ sector. Moreover, for the parameters specified above, the final
baryon asymmetry obtained with initial thermal N1 abundance has the wrong
sign compared to that with zero initial N1 abundance. The correct sign can be
obtained by flipping the signs of CP parameters in Eqs. (18) and (19).

• Since the model is symmetric under the exchange of y ↔ y′, we can also achieve
the same enhancement by having |y| � |y′|.
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Fast Tests for Probing the Causal
Structure of Quantum Processes

Giulio Chiribella and Swati

Abstract The identification of causal relations is a cornerstone of the scientific
method. Traditional approaches to this task are based on classical statistics. How-
ever, such classical approaches do not apply in the quantum domain, where a broader
spectrum of causal relations becomes accessible. New approaches to quantum causal
inference have been developed in recent years, and promising new features have
been discovered. In this paper, we review and partly expand the framework and
results of reference (Chiribella and Ebler, Nat. Commun. 10(1):1472, 2019), which
demonstrated quantum speedups in the identification of various types of causal
relations induced by reversible processes.

Keywords Causal inference · Quantum estimation theory · Indefinite causal
order

1 Introduction

Identifying cause-effect relations is a fundamental problem in science and engi-
neering [1–3]. In its simplest form, the problem can be described as follows: an
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experimenter has collected some amount of raw data about the values of a set of
variables, and wants to determine whether a certain variable X influences another
variable Y in the set. Since the data are typically subject to noise and fluctuations, the
problem of identifying causal relations is ultimately a statistical inference problem.

Traditionally, causal inference methods have been designed for classical vari-
ables. Recent advances in quantum science and engineering motivate an extension
of these methods to the quantum domain. Experimental techniques can now address
individual quantum systems, initialize them in a given quantum state, and subject
them to a variety of quantum measurements. In this context, the presence of causal
dependencies between two quantum systems acquire a concrete practical relevance.
For example, if the interaction of two quantum spins induces a causal dependence
between them, then the state of one spin can be controlled by operating on the other
spin, to some degree that is determined by the strength of the causal relation.

For quantum systems, classical methods of causal inference turn out to be
inadequate. The reason is that such methods assume that randomness can always
be reduced to ignorance about the initial conditions of some additional, latent
variable. This assumption is at odds with the violation of Bell inequalities, which
rules out local realistic models for quantum correlations. For this reason, classical
causal models cannot be applied to the Bell scenario [4]. A similar conclusion also
holds for more general scenarios, including more than two quantum systems, and/or
timelike separations [5, 6].

The breakdown of classical causal inference methods calls for a new, genuinely
quantum formulation of the notions of cause and effect. Several frameworks have
been proposed to date, with different features and sometimes different purposes. The
framework of quantum combs, introduced by Chiribella, D’Ariano, and Perinotti in
a series of works [7–9], describes networks of quantum processes connected with
one another according to a given causal structure. In this framework, one can express
the fact that a given process induces a causal dependence between a quantum system
and another. More broadly, this notion can also be generalized to probabilistic
theories beyond quantum mechanics [10], and to an even broader class of theories
described by symmetric monoidal categories [11, 12]. Frameworks for describing
causal relations in quantum theory and beyond have been developed in [13–
15]. More recently, a quantum framework for describing causal relations between
quantum systems has been developed by Allen et al. [16]. This framework, known
as quantum causal models, can be regarded as an enrichment of the framework
of quantum combs, with new conditions that allow one to express the conditional
independences among quantum variables.

Given a framework for describing causal relationships among quantum variables,
one can develop strategies for identifying such relations. Two interesting examples
were presented in Refs. [17, 18]. In these works, the authors considered the problem
of determining whether two quantum systems, say two photons, are in a spacelike
or timelike configuration. Equivalently, this amounts to determining whether the
states of the two systems are marginals of a bipartite quantum state (spacelike
configuration, corresponding to a past common cause in the joint preparation of the
two systems), or whether the state of one system is obtained from the state of the
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other by a quantum process (timelike configuration, corresponding to a cause-effect
relation directed from one system to the other). Remarkably, the authors found out
that certain quantum correlations can distinguish between these two situations, thus
defying the classical motto “correlation does not imply causation.”

The fact that quantum correlations can be witnesses of causal relationships
suggests that quantum measurements could offer more powerful ways to identify
causal relations compared to their classical counterpart. In a recent work [19], Chiri-
bella and Ebler showed that quantum features like entanglement and superposition
can lead to speedups in the identification of various types of causal relations. In
particular, they addressed the following question: given a variable, which variable
out of a list of candidate variables, is the effect of it? For simplicity, they focussed
on the basic scenario where the cause-effect relation is induced by a reversible
process. Classically, it turns out that the minimum probability of error is pC

err(N) =
1/[2dN−1], where d is the dimension of the quantum systems associated with the
given variables, and N is the number of times the variables are probed. This means
that the error probability decays exponentially as pC

err(N) ≈ 2−RCN , with decay rate
RC = log2 d. In stark contrast, Chiribella and Ebler showed that the error probability
for quantum strategies decays quadratically faster, with an exponential decay rate
equal to 2 log2 d. Similar advantages arise in the task of identifying the presence of
a causal link between two variables, and in the task of identifying the cause of a
given effect.

This paper reviews the framework and the results of Ref. [19] in a way that
is suitable for non-specialists. The paper is organized as follows: in Sect. 2, we
provide preliminary notions that will be used later in the paper. In Sect. 3, we
review the problem of identifying the effect of a given variable, and we provide
the minimum error probability and its decay rate for classical strategies. Then, we
provide quantum strategies that achieve a speedup over their classical counterpart
(Sect. 4). In Sect. 5, we generalize the above results for the case of multiple
hypotheses and provide some applications. Finally, we conclude in Sect. 6 by
discussing directions of future research.

2 Preliminaries

In this section we review and expand the framework of Ref. [19], providing some
additional definitions that help clarifying the different types of causal relations
induced by quantum processes.

2.1 Notation

For a given Hilbert space H, we denote by B(H) the space of bounded operators on
H, by T (H) the space of trace-class operators, and by St(H) := {ρ ∈ T (H) | ρ �
0 , tr[ρ] = 1} the convex set of density operators. In the context of causal inference,
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quantum systems are often called quantum variables. We will denote quantum
systems by Roman letters, such as A,B, . . . , and the corresponding Hilbert spaces
as HA,HB, . . . , respectively. We will use the shorthand notation St(A) := St(HA).

Let A and B be two quantum systems, and let HA and HB be the corresponding
Hilbert spaces. We will denote by A ⊗ B the composite system consisting of
subsystems A and B, corresponding to the tensor product Hilbert space HA⊗B =
HA ⊗HB . The partial trace over the Hilbert space HA will be denoted as trA.

A quantum process with input A and output B is described by a linear, completely
positive, trace-preserving map C : T (HA) → T (HB), mapping input states
ρ ∈ St(A) into output states C(ρ) ∈ St(B). Linear, completely positive and trace-
preserving maps will be sometimes abbreviated as CPTP maps. The set of CPTP
maps from T (HA) to T (HB) will be denoted by CPTP(A→ B).

2.2 Cause-Effect Relations Induced by Quantum Processes

Let A and B be two quantum systems.

Definition 1 We say that a process C ∈ CPTP(A → B) induces a cause-effect
relation from A to B if and only if C is non-constant. If this is the case, then we say
that A is a cause for B, and that B is an effect of A.

In other words, a process induces a causal relation from A to B if and only if
changing the state of system A can induce changes in the state of system B. The
ability to induce changes serves as a witness of the fact that A is a cause for B.

Definition 1 can be generalized to processes involving multiple inputs and
outputs.

Definition 2 We say that a bipartite process D ∈ CPTP((A ⊗ A′) → (B ⊗ B ′))
induces a cause-effect relation from A to B if and only if there exists at least one
state α ∈ StH(A′) such that the reduced process

Dα ∈ CPTP(A→ B) , ρ �→ trB ′ [D(ρ ⊗ α)] (1)

is non-constant. If this is the case, then we say that A is a cause for B, and that B is
an effect of A.

Note that a process C ∈ CPTP(A → B) may not induce a cause-effect relation
from A to B, but may still be the reduced process of some other process D ∈
CPTP((A ⊗ A′) → (B ⊗ B ′)) that does induce a cause-effect relation from A

to B. This observation shows that the presence of a cause-effect relation, as defined
in Definitions 1 and 2, is a property of the process under consideration, and not
just of the variables A and B. In other words, a cause-effect relation that is actually
present may not be detected by inspecting the process from A to B alone.

The notion of “process inducing a cause-effect relation” provided in Definitions 1
and 2 is rather weak, because it allows the influence of the cause on the effect to be
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arbitrarily small. A stronger notion arises when the cause-effect relation is faithful,
in the following sense:

Definition 3 We say that a process C ∈ CPTP(A → B) induces a faithful cause-
effect relation from A to B if and only if C is correctable, meaning that there exists
another process R ∈ CPTP(B → A) such that

R ◦ C = IA , (2)

where IA ∈ CPTP(A → A) is the identity process. When this is the case, we say
that B is a causal intermediary of A.

Intuitively, variable B is a causal intermediary for variable A if all the possible
causal influences of A can be reconstructed from B. In other words, every process
from A to a third variable B ′ must factorize into the process from A to B, followed
by some process from B to B ′. This intuition is formalized by the following
proposition:

Proposition 1 The process C ∈ CPTP(A → B) induces a faithful cause-effect
relation from A to B if and only if, for every quantum system B ′, and for every
process E ∈ CPTP(A→ B ′) there exists a processD ∈ CPTP(B → B ′) such that

E = D ◦ C . (3)

Proof Suppose that C induces a faithful cause-effect relation. Then, let R ∈
CPTP(B → A) be the process that inverts C, namely R ◦ C = IA. Then, for
every system B ′ and every process E ∈ CPTP(A→ B ′), one has E = D ◦ C, with
D := E ◦R.

Conversely, suppose that, for every quantum system B ′ and for every process
E ∈ CPTP(A → B ′), there exists a process D ∈ CPTP(B → B ′) such that
E = D ◦ C. In particular, one can pick B ′ ≡ A and E ≡ IA, in which case the
condition E = D ◦ C implies that C is correctable, and therefore induces a faithful
cause-effect relation. 6(

In general, the presence of a faithful cause-effect relation from A to B does not
imply that the causal influences of A propagate exclusively through B. For example,
quantum secret sharing protocols, such as those presented in Ref. [20], provide
examples of processes where a given cause can have multiple causal intermediaries.
The situation is much simpler when the cause-effect relation is reversible, in the
following sense:

Definition 4 We say that a process C ∈ CPTP(A→ B) induces a reversible cause-
effect relation between A and B if and only if C is reversible, meaning that there
exists another process R ∈ CPTP(B → A) such that

R ◦ C = IA and C ◦R = IA , (4)

where IX ∈ CPTP(X → X) is the identity process on system X ∈ {A,B}.
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In this paper, we will focus on situations where the cause-effect relation between
two variables is reversible. In this case, the presence of a cause-effect relation
between variables A and B rules out the possibility of any cause-effect relation from
A to any other variable B ′ that is independent of B. More precisely, if a process
D ∈ CPTP(A → B ⊗ B ′) is such that its reduced process C = (IB ⊗ trB ′) ◦ D is
reversible, then D must be of the form D = C ⊗ β, where β ∈ St(B ′) is some fixed
state of system B ′.

2.3 Discrimination of Causal Hypotheses

Consider the situation where an experimenter has access to a black box, implement-
ing a quantum process with a given set of input systems and a given set of output
systems. The goal of the experimenter is to figure out the causal relations among
the systems involved in the process. For example, the black box could implement a
process with input system A and output system B, and the experimenter may want
to figure out whether the process induces a cause-effect relation.

In general, we will assume that the black box is guaranteed to satisfy one, and
only one, of k possible hypotheses (Hi )

k
i=1 about the cause-effect relations occurring

between its inputs and outputs. No further information about the process is available
to the experimenter. To figure out which hypothesis is correct, the experimenter will
set up a test designed to probe the causal relations.

We will use the term causal hypotheses for hypotheses on the causal relations
induced by a given process. The problem of distinguishing between alternative
causal hypotheses will be called discrimination of causal hypotheses. To illustrate
the problem, we will focus on one basic instance: discover which of two variables
B and C is the effect of a given variable A. More specifically, we consider the
following alternative hypotheses:

H1: B is a causal intermediary for A, and C is uniformly random,
H2: C is a causal intermediary for A, and B is uniformly random.

For simplicity, we will assume that systems A,B, and C have the same dimension,
equal to d < ∞. In terms of the process C ∈ CPTP(A → (B ⊗ C)) the two
hypotheses correspond to the following statements:

H1: C has the form C(·) = U · U† ⊗ I/d, for some unitary operator U ∈ B(Cd),
H2: C has the form C(·) = I/d ⊗ V · V †, for some unitary operator V ∈ B(Cd).

In either case, the unitary operators U and V are unknown to the experimenter.
In general, every hypothesis on the causal relations between inputs and outputs

is in one-to-one correspondence with a subset of CPTP maps. In the above example,
the two hypotheses H1 and H2 correspond to the sets

H1 =
{
U · U† ⊗ I/d | U ∈ B(Cd) , U†U = UU† = I

}
(5)
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Fig. 1 General setup for testing causal hypotheses on a process C with one input variable and two
output variables [7–9]. The experimenter prepares an initial state Ψ , possibly entangled with an
auxiliary system, and probes the process for N times. Between one execution of the process C and
the next, the experimenter can intervene by performing a unitary gate Ui on the output systems of
C and on some auxiliary system in the laboratory. Finally, a measurement M is performed and the
outcome is used to produce a guess of the correct causal hypothesis

H2 =
{
I/d ⊗ V · V † | V ∈ B(Cd) , V †V = VV † = I

}
. (6)

The problem is to determine whether the given process C belongs to H1 or to H2.
For the discrimination between these two hypotheses we will consider setups

that probe the unknown process C for N times, by inserting them in a sequential
quantum circuit, as illustrated in Fig. 1. As a figure of merit, we will consider the
minimization of the probability of error, in the worst case over all possible processes
C that are compatible with the causal hypotheses (5) and (6).

In general, the error probability in distinguishing two known quantum processes
decays exponentially with the number of interrogations [21]. Informally, this means
that the error probability scales asymptotically as perr(N) ≈ 2−N R for some
exponent R > 0, called the decay rate. More formally, the decay rate is defined
as R := lim infN→∞− log[perr(N)]/N , where we assume base 2 for the logarithm
here and in the rest of the paper. In the following, we will use the decay rate to assess
the performance of various strategies for distinguishing causal hypotheses.

3 Optimal Classical Strategy for Finding a Causal
Intermediary

Let us consider the classical version of the problem in Sect. 2.3. The classical
version involves three classical random variables A,B, and C, each with sample
space of cardinality d <∞. The two causal hypotheses are:

H1: B is a permutation of A, and C is uniformly random,
H2: C is a permutation of A, and B is uniformly random.

In either case, the exact form of the permutation is unknown to the experimenter.
For parallel strategies where the unknown process is probed on N independent

inputs, the optimal error probability pC
err(N) is [19]
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pC
err(N) = 1

2dN−1 . (7)

This implies the optimal decay rate is

RC = log d. (8)

A result by Hayashi [22] implies that the decay rate cannot be improved by
considering more general sequential strategies such as those in Fig. 1.

4 Quantum Advantages

Classical random variables can be regarded as quantum systems that have lost
coherence with respect to a privileged orthonormal basis of “classical states.”
But what if the coherence is preserved? In the following we will show that the
possibility of probing processes through coherent superpositions of classical inputs
can enhance our ability to identify the correct causal hypothesis.

4.1 A Benefit of Quantum Coherence

The three classical random variables A,B, and C considered in the previous section
can be considered as the decohered versions of three quantum systems A, B, and
C with d-dimensional Hilbert spaces. Similarly, a permutation of the values of the
random variable A according to an element π of the symmetric group S(d) can
be regarded as the decohered version of the unitary permutation operator Uπ =∑d

i=1 |π(i)〉〈i|, where {|i〉}di=1 is the orthonormal basis representing the classical
states.

In this scenario, the two “classical” causal hypotheses become

H1: C has the form C(·) = Uπ · U†
π ⊗ I/d, for some permutation π ∈ S(d),

H2: C has the form C(·) = I/d ⊗ Uσ · U†
σ , for some permutation σ ∈ S(d).

To distinguish between these two hypotheses, the experimenter could prepare N

probes in the superposition state

|e0〉 = 1√
d

d−1∑

i=0

|i〉 , (9)

which is invariant under permutations. Thus, the unknown process C yields either(
|e0〉 〈e0| ⊗ I

d

)⊗N

or
(
I

d
⊗ |e0〉 〈e0|

)⊗N

depending on which causal hypothesis is
correct.



Fast Tests for Probing the Causal Structure of Quantum Processes 625

The probability of error can be computed by taking advantage of the symmetry
of the problem, which implies that the worst case error probability is equal to the
average error probability when the prior probability for the two hypotheses H1 and
H2 is uniform. In this case, Helstrom’s theorem [23] states that the minimum error
probability in distinguishing between the states ρ1 and ρ2, given with uniform a
priori probability, is

perr,ave(ρ1, ρ2) = 1− 1
2 ‖ρ1 − ρ2‖1

2
, (10)

where ‖G‖1 := tr
√
G†G denotes the trace norm of a generic trace-class operator

G ∈ T (H). Applied to our problem, Helstrom’s theorem yields the error probability

pcoh
err =

1

2dN
. (11)

By comparison with the classical error probability (7), we can see that coherence
provides a reduction of the error probability by a factor d. This is a relatively
minor improvement, as it does not affect the decay rate. Still, it is an interesting
first illustration of how quantum effects can affect the discrimination of causal
hypotheses.

4.2 General Quantum Scenario

Let us move on now to the general quantum scenario, where the relation between
cause and effect is described by an arbitrary unitary operator (not necessarily a
permutation operator, as in the previous subsection).

At first, this problem appears to be much more challenging for our experimenter,
since the dependence between cause and effect can be any arbitrary element of the
special unitary group SU(d). Surprisingly, however, the same error probability as in
Eq. (11) can be achieved.

Let us consider the case where N is an integer multiple of d, say N = d t for
some non-negative integer t . In this case, a universal quantum strategy with error
probability (11) is to divide the N probes into groups of d, and to prepare each
group of probes in SU(d) singlet state

|Sd〉 = 1√
d!

∑

k1,··· ,kd
εk1···kd |k1, · · · , kd〉 , (12)

where εk1···kd represents the totally antisymmetric tensor and the summation extends
over all the vectors in the computational basis.

Each of the d particles in each group is then fed into one use of the unknown
process. Since the singlet state is invariant under unitary transformations, the
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problem becomes to distinguish between the state |Sd〉〈Sd |⊗t⊗(I/d)⊗N (hypothesis
H1) and (I/d)⊗N ⊗ |Sd〉〈Sd |⊗t (hypothesis H2). In this case, Helstrom’s theorem
again gives error probability 1/(2dN), which is equal to the value pcoh

err obtained in
the previous subsection.

If N is not a multiple of d, a rough strategy is to use only the first Ñ := d 7N/d8
probes, and to apply the above procedure. In this way, one obtains error probability
1/(2dÑ ), which is suboptimal but still has the same decay rate as the coherent
strategy we saw in the previous subsection.

4.3 Parallel Strategies with an External Reference System

We now show that the decay rate of the minimal error probability can be doubled if
the experimenter uses an additional reference system entangled with N input probes
in the protocol. For simplicity, we will assume that N is a multiple of d.

The basic idea for constructing the quantum-enhanced strategy is the following.
In the absence of a reference system, the strategy was to divide the N probes into
N/d subgroups of size d, and to put the particles in each group in the singlet state.
However, there are many ways of dividing N particles into groups of d. Each of
these ways leads to the error probability pcoh

err = 1/[2dN ]. What about trying all
possible ways in a coherent superposition?

Consider an external reference system with an orthonormal basis {|i〉}GN,d

i=1 , where
the index i labels the possible ways in which N particles can be divided into groups
of d, and GN,d denotes the number of such ways. Then, one can construct the
superposition state

|ψ〉 = 1√
GN,d

GN,d∑

i=1

(
|Sd〉⊗N/d

)

i
⊗ |i〉 , (13)

where
(|Sd〉⊗N/d

)
i

denotes the product of N/d singlet states distributed in the i-th
way.

While a classical randomization over all the possible ways to group the N

particles is useless, the quantum superposition (13) turns out to be very useful. After
some algebra [19], it is possible to show that the optimal setup using the state (13)
has error probability

pQ
err(N) = m(N, d)

2dN

(
1−

√

1− 1

m(N, d)2

)
, (14)

where
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m(N, d) := N !
d∏

i=1

(d − i)!
(N/d + d − 1)! (15)

is the multiplicity of the trivial representation of SU(d) in the N -fold tensor
representation U �→ U⊗N . For large N , the above expression can be approximated
as

pQ
err(N) ≈ 1

4m(N, d) dN
. (16)

Using the explicit expression (15), we then obtain the decay rate

RQ = − lim
N→∞

log[pQ
err(N)]
N

= 2 log(d) = 2RC . (17)

Thus, the presence of entanglement between the probes and the external reference
system allows one to double the decay rate of the error probability.

The asymptotic limit can be achieved for sufficiently small number of interro-
gations of the unknown process. For example, an error probability less than 10−6

can be achieved by using 12 interrogations for discrimination of a causal relation
between two quantum bits, while 20 interrogations are necessary for classical binary
variables in order to achieve the same error threshold.

4.4 The Ultimate Quantum Limit

In the previous Sects. 4.2 and 4.3, we considered strategies where the unknown
process was applied for N times in parallel on N input systems. These strategies
are a special case of the sequential strategies shown in Fig. 1. Can our experimenter
further reduce the error probability by using these more general strategies?

A useful tool to address this question is the notion of fidelity divergence between
two processes, introduced in Ref. [19], and later generalized to a broader set of
channel divergences in Ref. [24]. The fidelity divergence between processes C1 and
C2 is defined as

∂F (C1, C2) := inf
R

inf
ρ1,ρ2

F
(
ρ′1, ρ′2

)

F(ρ1, ρ2)
, (18)

where ρ1 and ρ2 are states of the process input and of a reference system R, ρ′1 :=
(C1⊗IR)(ρ1), and ρ′2 := (C2⊗IR)(ρ2). In order for the above expression to be well
defined, the infimum is taken over all the states (ρ1, ρ2) such that F(ρ1, ρ2) �= 0.

Let us denote by p
seq
err (C1, C2;N) the error probability in distinguishing between

the two processes C1 and C2 using a sequence of N interrogations, as in Fig. 1. It
can be shown that the error probability satisfies the bound [19]
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p
seq
err (C1, C2;N) � ∂F (C1, C2)

N

4
. (19)

In the special case where C1 = U ⊗ I/d and C2 = I/d ⊗ V with U(·) = U ·U† and
V(·) = V ·V † being fixed unitary processes, the fidelity divergence is 1/d2, and the
error probability is lower bounded as

p
seq
err (C1, C2;N) � 1

4d2N
. (20)

Hence, the decay rate cannot be larger than 2 log d, even if the unitaries U and V

are known! If the unitaries U and V are unknown, as in the causal discrimination
scenario, then the decay rate can only be 2 log d or smaller. This observation proves
that the decay rate 2 log d, achievable with a parallel strategy, is optimal among all
decay rates achievable by arbitrary sequential strategies.

As a further curiosity, one may ask whether the rate could be improved in
some exotic scenario where the order of the N interrogations is indefinite, unlike
in the scenario of Fig. 1, where the N interrogations happen in a well-defined
sequential order. In principle, quantum probability theory is logically compatible
with scenarios where quantum processes are combined in an indefinite causal order
[25–27]. Physically, these scenarios may arise in exotic quantum gravity regimes,
although research on such realizations is still in its infancy (and, of course, no
complete theory of quantum gravity has been formulated yet). Still, as a theoretical
possibility, one can already investigate the question of whether the ability to test a
process for N times in an indefinite causal order could help identifying the causal
relations occurring between its inputs and outputs.

For the identification of the causal intermediary, the answer turns out to be
negative. The proof strategy is to bound the discrimination error for two simple
processes, namely, C1 = I ⊗ I/d and C2 = I/d ⊗ I using arbitrary setups
with indefinite order. Using semidefinite programming, Ref. [19] showed that the
minimum error probability over all setups that place N uses of the unknown process
in an indefinite order is

pind
err (C1, C2;N) ≥ 1

2

(
1−

√
1− 1

d2N

)
. (21)

This result establishes the decay rate 2 log d as the ultimate limit placed by quantum
mechanics to the identification of a causal intermediary. In addition, the strong
duality of semidefinite programming guarantees that there exists a suitable setup
(possibly requiring indefinite causal order) that achieves the above error probability
exactly.
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5 Other Examples of Speedups in the Identification
of Causal Hypotheses

5.1 Multiple Candidates for the Causal Intermediary

In the previous sections, we have seen how to identify the causal intermediary of
a variable A among two possible candidates B and C. What about more than two
candidates? For k > 2 candidates, the derivation is technically more involved, but
the main results remain unchanged:

• In the classical case, when causal relations are described by arbitrary permuta-
tions, the minimal error probability is given by

pC
err,k =

(k − 1)

2dN−1 +O(d−2N) , (22)

and the decay rate is log d.
• In the quantum case, parallel strategies without a reference system achieve error

probability

p
Q
err,k =

(k − 1)

2dN
+O(d−2N) , (23)

and the decay rate is still log d. In contrast, parallel strategies using entanglement
with an external reference system can achieve a doubled decay rate 2 log d.

5.2 Detection of Causal Link Between Two Variables

A basic example of identification of causal hypotheses is to determine whether there
is a causal link between two variables A and B. In this case, the task is to determine
whether B is a causal intermediary for A, or whether B fluctuates at random
independently of A. As it turns out, entanglement with a reference system can once
again double the decay rate of the error probability: the classical error probability
decays with rate log d, while the quantum error probability with reference systems
decays with doubled rate 2 log d.

5.3 Identification of the Cause of a Variable

Another interesting problem is to identify which variable in a given set {A1, · · ·Am}
is the cause for a given variable B (assuming that one and only one variable can be
the cause). Again, we assume that causal relation is induced by a reversible process
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(a permutation in the classical case, or a unitary gate in the quantum case) and that
all the variables have sample space of cardinality d in the classical case, or Hilbert
space of dimension d in the quantum case.

Classically, the problem is to find the random variable Ai such that B is a
permutation of Ai , with i ∈ {1, · · · ,m}. In the simplest case, when the permutation
is known, the cause can be determined without error by interrogating the unknown
process 9logd(m)< times.

In the quantum case, Ref. [19] showed that, if the unitary operator inducing the
causal relation is known, then there exists a test that achieves error probability

perr(N) = m− 1

d2N +m− 1
. (24)

This means that one can get an error probability smaller than any desired ε > 0 by
using N = 9(1 + ε)(logd m)/2< interrogations, which is approximately half of the
number of classical interrogations.

In the case where the dependency between cause and effect is unknown (arbitrary
permutation in the classical case, or arbitrary unitary operator in the quantum case),
the analysis is more complex. However, it is still possible to show that quantum
strategies can identify the cause using only N = 9(1+ε)(logd m)/2< interrogations.

6 Discussion and Conclusions

In this paper, we reviewed the framework and the results of Ref. [19], which showed
that quantum features such as coherence and entanglement offer advantages in
detecting cause-effect relations induced by reversible processes.

In the problem of identifying the effect of a given variable, it was shown that
entanglement between the probes and an external reference system can double the
rate at which the error probability decays. For classical random variables with d

possible values, the decay rate is log d. For quantum systems of dimension d, the
decay rate is 2 log d. As it turns out, the value 2 log d is the ultimate limit posed
by quantum theory to the problem of identifying the causal intermediary of a given
variable.

Interestingly, both the classical and quantum decay rates can be expressed as
log dimStR(A) where StR(A) is the vector space spanned by linear combinations
of states of system A. For classical systems, the states are probability distributions
over the sample space, and the dimension of the corresponding vector space is d.
For quantum systems, the states are density matrices, and the dimension of the
vector space is d2. It would be interesting to study the problem of causal hypothesis
discrimination in toy theories with higher dimensional state spaces, such as quantum
theory on quaternionic Hilbert spaces [28] or the quartic toy theory proposed by
Życzkowski in Ref. [29].
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On a more practical side, it is important to extend the analysis from the idealized
scenario where the cause-effect dependencies are induced by reversible processes,
to the more realistic scenario where they are induced by general noisy processes.
Preliminary results in Ref. [19] indicate that quantum advantages may still persist
for sufficiently low noise levels. However, a fully general treatment of noise is still
lacking and will be important for future applications.

Given the success of causal discovery algorithms in classical statistics and
machine learning, it is natural to expect that the development of quantum causal
discovery algorithms may have applications to the burgeoning field of quantum
machine learning [30–32]. This connection is largely unexplored and represents an
exciting direction of future research.
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Qubits as Edge State Detectors:
Illustration Using the SSH Model

Meri Zaimi, Christian Boudreault, Nouédyn Baspin, Hichem Eleuch,
Richard MacKenzie, and Michael Hilke

Abstract As is well known, qubits are the fundamental building blocks of quantum
computers, and more generally, of quantum information. A major challenge in
the development of quantum devices arises because the information content in
any quantum state is rather fragile, as no system is completely isolated from its
environment. Generally, such interactions degrade the quantum state, resulting in a
loss of information.

Topological edge states are promising in this regard because they are in ways
more robust against noise and decoherence. But creating and detecting edge states
can be challenging. We describe a composite system consisting of a two-level
system (the qubit) interacting with a finite Su–Schrieffer–Heeger chain (a hopping
model with alternating hopping parameters) attached to an infinite chain. In this
model, the dynamics of the qubit changes dramatically depending on whether or not
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an edge state exists. Thus, the qubit can be used to determine whether or not an edge
state exists in this model.

Keywords Open quantum systems · Decoherence · Topological materials ·
Edge states

1 Introduction

The two-level system (TLS) is the simplest nontrivial quantum system. Its simplicity
notwithstanding, many important systems are TLSs. Some familiar examples are: a
spin-1/2 particle (two spin states), a photon (two polarizations), a two-level atom
(the two levels), a quantum dot (empty/full), two-meson systems (K , K̄), two-flavor
neutrino oscillations (ν1,2). Some of the above play the role of qubits, the building
blocks of quantum information systems (quantum computers, teleportation, etc.).

An isolated TLS, like any isolated quantum system, will evolve unitarily. This
implies that pure states remain pure; assuming the two basis states are coupled, a
system put in one state will oscillate back and forth between the two.

However, no system is perfectly isolated; in reality, a TLS interacts with its
environment and becomes entangled with it. From the point of view of the TLS,
entanglement with the environment is indistinguishable from a mixed state. We
say that the pure state becomes impure, or it decoheres. In addition, in many TLSs
(including the one we will study here) the interaction can permit a particle to escape
from the system to the environment. In this case, from the point of view of the TLS
probability is not conserved.

Decoherence and nonconservation of probability are almost always undesirable;
in particular, decoherence results in a loss of information and also a loss of
the potential advantage of quantum vs classical computing, quantum vs classical
communication, etc. Thus, understanding (and, usually, minimizing) decoherence is
critically important to the functioning of quantum devices. As an example, in [1] a
tripartite system was studied: a TLS coupled to one end of a finite chain (or channel)
whose other end was coupled to a semi-infinite chain; both chains were described
by tight-binding Hamiltonians. The question addressed was: how can one reduce the
decoherence of the TLS? It was found that adding noise to the channel did the trick,
essentially due to Anderson localization: if excitations in the channel are localized,
it becomes hard for a particle in the TLS to make its way to the far side of the
channel and escape to infinity.

Here, we study a similar system with a very different goal in mind (Fig. 1).
The main difference is that the channel is a Su–Schrieffer–Heeger (SSH) [2]
chain (free of disorder) described by a hopping parameter with alternating hopping
strengths. Such chains have topological edge states (for a review, see [3]), and rather
than trying to minimize the decoherence of the TLS, we imagine measuring its
decoherence rate to determine whether the system to which it is attached has edge
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Lead SSH chain TLS
tL t1 t2 tC τt1 t2 ϵ1ϵ2

Fig. 1 Tripartite system geometry. Rightmost SSH chain hopping parameter is t1 or t2 depending
on whether number of sites N is even or odd, respectively (odd case shown here)

states. As we will see, the presence of edge states greatly increases the decoherence
rate.

2 Two-Level System: A Rapid Review

We review the isolated TLS, mostly to establish notation to be used in what follows.
The TLS Hamiltonian is

HDD =
(
ε2 τ

τ ε1

)
≡
(
ε0 − δ0/2 τ

τ ε0 + δ/2

)
. (1)

The energies are λ± = 1
2 (ε1 + ε2 ± δ) = ε0 ± δ

2 , where δ = √(ε1 − ε2)2 + 4τ 2.
The energy-dependent Green’s function is defined by GDD(E) = (E−HDD)−1;

its Fourier transform gives the time-dependent Green’s function, which is a sum of
oscillatory terms with frequencies given by the energies; for instance,

GDD
12 (t) = −2πiτ

δ

(
e−iλ+t − e−iλ−t

)
. (2)

When we couple the TLS to the rest of the system, it will decohere; this will be seen
in the Green’s function, which will exhibit decaying behavior [1].

3 Su–Schrieffer–Heeger Model and Edge States

The SSH Hamiltonian [2], proposed in the context of the polymer polyacetylene for
reasons we will not go into here, is
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HSSH =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 t1

t1 0 t2

t2 0 t1

t1 0
. . .

. . .
. . . t

t 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3)

where t = t1 or t2 for N even or odd, respectively. We will assume t1, t2 > 0 for
simplicity, and for now we assume N is even and write N = 2M . Much of what
follows is known [4–7]; we repeat it to establish notation and to focus on results to
be used below.

To solve the Schrödinger equation, translational invariance (by two sites) sug-
gests the following ansatz:

|ψ〉 =
M−1∑

n=0

(A |2n+ 1〉 + B |2n+ 2〉) ein2k. (4)

We can take k between ±π/2 since k → k + π has no effect on |ψ〉. The middle
components of the Schrödinger equation (all but the first and last) determine the
dispersion relation and also the ratio A/B. The former is

E2 = t2
1 + t2

2 + 2 t1t2 cos 2k. (5)

Assuming k is real, (t1 − t2)
2 < E2 < (t1 + t2)

2 so there are two energy bands.
For any allowed energy, (5) has two equal and opposite solutions for ±k where
we assume k > 0. Thus the general solution to the middle equations is a linear
combination of the solutions for ±k.

The edge components of the Schrödinger equation (the first and last) determine
the ratio of these two solutions, and also the energy eigenvalues. The latter are given
by the solutions of the following equation for k, where r = t1/t2 and we have
written sj = sin(jk).

r sN+2 + sN = 0 (6)

where r = t1/t2 and we have written sj = sin(jk).
This equation cannot be solved analytically; however, numerically or graphically

(see Fig. 2) we find that there are N real solutions, as required, for r > rC whereas
there are two fewer real solutions for r < rC, where [4]

rC ≡ N

N + 2
. (7)
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Fig. 2 Graphical solution of (6) for N = 6 (rC = 0.75). Left panel: r = 0.9; six solutions. Right
panel: r = 0.7; four solutions (Note that k = 0,±π/2, although solutions of (6), do not correspond
to solutions to the SE)
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Fig. 3 Decay rate κ and decay length l of edge states for various values of N . Also displayed is
an analytic solution to (8) for N →∞

Thus, for r < rC there are two missing solutions. These turn out to be solutions
of complex wave number, k = π/2± iκ , where κ is the positive solution of

sinh(Nκ)

sinh((N + 2)κ)
= r (8)

the solution of which is displayed in Fig. 3 for various values of N . These states,
having complex k, are exponentially confined to the edges of the system: they are
edge states. Also displayed is l = 1/κ , the penetration length of the edge states. As
r → rC from below, we see that the length scale goes to infinity; the “edginess” of
the edge states becomes irrelevant if l � N .

We conclude with a brief discussion of the case N odd, which is in fact much
simpler. It is easy to show that no matter the value of r , there is always exactly one
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Fig. 4 Energy spectra for two values of N as a function of r . The shaded regions are the bands
for N = ∞. Dotted lines outside the bands are edge states. The inset on the left focuses on the
transition between an edge state (to the left of the vertical broken line) and a non-edge state (to the
right, in the shaded region)

zero-energy edge state (the remainder of the spectrum being symmetric). This state
is confined to the left (right) edge for r < 1 (r > 1) with decay length l = 1/| log r|.
Figure 4 displays the spectra for N = 20 and 21.

4 Tripartite System: TLS-SSH-Chain

We now study the tripartite system displayed in Fig. 1. Although it is an infinite-
dimensional system, the effects of the SSH chain and semi-infinite chain on the
TLS can be nicely incorporated into a 2×2 effective Hamiltonian for the TLS; these
effects are simply given by a term added to the (1, 1) component of the Hamiltonian
[7, 8]:

ε2 → ε2 +ΣSSH,∞ ≡ ε′2. (9)

Here ΣSSH,∞ is proportional to the surface Green’s function of the combined SSH
chain and semi-infinite chain. This can be calculated analytically, although it is fairly
nasty. The result is [7]



Qubits as Edge State Detectors: Illustration Using the SSH Model 639

ΣSSH,∞ =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

tC
2 Et2sN −Σ∞(t1sN−2 + t2sN)

t2
2 (t1sN+2 + t2sN)− Et2Σ∞sN

(N even)

tC
2 t2(t2sN−1 + t1sN+1)− EΣ∞sN−1

t1t2EsN+1 − t1Σ∞(t2sN+1 + t1sN−1)
(N odd)

(10)

where

Σ∞ = tL
2

2

(
E − i

√
4− E2

)
. (11)

Note that ε′2 is complex, so the effective Hamiltonian is no longer Hermitian. This is
related to the open nature of the TLS: being non-Hermitian, time evolution preserves
neither probability nor purity, reflecting the fact that the particle can escape to its
environment, and that the TLS and environment become entangled.

Defining λ′± and δ′ as the quantities defined in Sect. 2 with the substitution (9),
we can use these substitutions in the definition of GDD(E) given earlier to get
the new energy-dependent Green’s function, GDD

SSH,∞(E). It is tempting to suppose
that these substitutions also work for the time-dependent Green’s function. This
is not quite correct, since λ′± depend in a highly nontrivial way on E so the
Fourier transform cannot be evaluated exactly. An analytical approximation which is
justified in the weak-coupling limit (tCλ1) [1] indicates that to a good approximation
the new (complex) frequencies λ′± can be evaluated at the old frequencies: the
time-dependent Green’s function has, according to this approximation, frequencies
λ′±(λ±). According to this analytic approximation, the decay rates are given by the
imaginary part of the frequencies, and we conclude that the decoherence time τφ is
given by

(
τφ
)−1 ≈ min

(
−1

2
Im
{
ΣSSH,∞(λ±)± δ′(λ±)

})
. (12)

This analytical approximation can be justified post hoc by comparing (12) with
a numerical evaluation of the decoherence rate. Both are displayed in Fig. 5. The
figure, which encapsulates our main result, merits some discussion. There are four
cases to consider, two for each graph.

The graph on the left corresponds to r = 1.21, for which there are no edge states
if N is even, while there is a right edge state if N is odd. If N is even, both TLS states
lie in the gap, so there are no SSH states with which they can hybridize. Thus, the
SSH chain represents a sort of potential barrier impeding escape of the particle to the
semi-infinite chain. As a result, the tunneling rate decreases exponentially with N

beyond about 20. If N is odd (blue, upper curve), the right-hand edge state couples
strongly to the TLS forming a pair of hybridized wave functions which penetrate
the SSH chain. This penetration facilitates decoherence, and the rate remains large
as N increases. Since the hybridized wave function itself drops off exponentially
away from the right edge of the SSH chain, its effect on decoherence drops off as
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Fig. 5 Decoherence rate as a function of N for t1 = 1/t2 = 1.1 (left), t2 = 1/t1 = 1.1 (right). For
both figures, (ε1, ε2, τ, tC, tL) = (.4022, .0022, .03, .035, .65). The values for ε1,2 were chosen so
that the isolated TLS has a zero eigenvalue, corresponding exactly (N odd) and approximately (N
even) to the edge state energy. The energy of the other TLS state lies in the SSH gap

N increases; although this is not apparent in Fig. 5, if we continue the graph beyond
about N = 120, this effect is clearly seen [7]: eventually the blue curve on the left
drops much like the red one does.

The graph on the right corresponds to r 
 0.83, for which there are two edge
states if N is greater than 10 and even, while there is a left edge state if N is odd.
Again, the behavior is dramatically different for even vs. odd parity. If N is even
(red, upper curve), the presence of edge states results in hybridized wave functions
which facilitate decoherence. As was discussed above (r = 1.21, N even), the
decoherence is relatively independent of N until around N = 120, after which it
drops exponentially. If N is odd (blue, lower curve), the absence of an edge state on
the TLS side of the SSH chain impedes hybridization and giving rise to exponential
decoherence suppression as N increases starting around N = 30.

While we believe the presence or absence of edge states explains in general
terms the behavior exhibited in Fig. 5, one unresolved issue is why the dropoff
in decoherence begins where it does. It is easy to show that for the parameters
used the edge states have a characteristic width of about ten sites, so it is puzzling
why the enhanced decoherence illustrated by the upper curves persists until beyond
N = 100.

5 Conclusions

The interaction between a TLS and its environment can have a strong effect on the
dynamics of the TLS. Here, we argued that coupling to one end of an SSH chain
(which is coupled at the other end to an undimerized infinite chain) can have a very
strong effect on the decoherence of the TLS. The effect is dramatically different
depending on whether there is or is not an edge state at the TLS end of the SSH
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chain: an edge state causes decoherence to remain high independent of chain length,
whereas in the absence of an edge state decoherence decreases exponentially with
chain length. This suggests using a TLS as a sort of edge state detector.
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RepLAB: A Computational/Numerical
Approach to Representation Theory

Denis Rosset, Felipe Montealegre-Mora, and Jean-Daniel Bancal

Abstract We present a MATLAB/Octave toolbox to decompose finite dimensional
representations of compact groups. Surprisingly, little information about the group
and the representation is needed to perform that task. We discuss applications to
semidefinite programming.

Keywords Representation theory · Compact groups

Early in the development of quantum formalism, some saw group theory as a mere
nuisance. The label Gruppenpest is attributed to Pauli’s talent for derision [1].
Today, the usefulness of group theory is no longer debated, usually a handful
of groups are employed: symmetric, cyclic, Pauli and Clifford groups, and the
(special) unitary group. It turns out that a larger variety of groups are present
in quantum information computations. Thousands of Bell inequalities [2] have
been discovered [3]: most with some form of symmetry [4]. And even a well
understood problem (Schur-Weyl duality) required recent extensive work [5–9]
to cater for partial transposition. In parallel, quantum information has seen the
rise of numerical methods, especially those based on semidefinite positive (SDP)
optimization. Density operators correspond naturally to SDP matrices, and so
do a variety of quantum objects [10–12]; see, for example, SDP relaxations to
test entanglement [13–16]. Moment-based (SDP) relaxations bound the set of
quantum correlations [17–21]. Such SDP relaxations inherit the symmetries of the
objects studied. We thus need an approach to decompose representations of a large
class of symmetry groups. This paper presents the first compact, self-contained
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software to automate symmetry reduction of SDP optimization problems, with
direct application to quantum information problems.1

An invariant SDP problem corresponds to a matrix invariant under a group
representation. Following [24], let G be a compact group, with finite dimensional
representation ρ acting on the representation space V = C

n:

ρ : G→ U(n), g �→ ρg, (1)

where U(n) is the group of unitary2 n×n matrices. If a SDP problem is ρ-invariant,
it has a Hermitian matrix X with X = ρgXρ

†
g for all g ∈ G, so that X is in the

commutant [25, Sec 1.7] Cρ of the algebra generated by ρ:

Cρ = {X ∈ C
n×n : [X, ρg] = 0,∀g ∈ G}, [X, ρg] = ρgX −Xρg . (2)

The decomposition of ρ into irreducible subrepresentations (irreps) corresponds
to

V = V 1 ⊕ . . .⊕ V N, V i = Wi,1 ⊕ . . .⊕Wi,Mi , (3)

where the isotypic components V i regroup the subspaces Wi,j corresponding to
identical irreps. We write Di = dimWi,j the dimension of the i-th irrep in the
decomposition and Mi its multiplicity. There is a unitary U such that ∀g ∈ G:

ρ̂g = UρgU
† =

⎛

⎜⎝
ρ̂1
g

. . .

ρ̂I
g

⎞

⎟⎠ , ρ̂i
g =

⎛

⎜⎝
ρ̂
i,1
g

. . .

ρ̂
i,Mi
g

⎞

⎟⎠ = �Mi
⊗ ρ̂i,1

g ,

(4)
as ρ̂

i,j
g = ρ̂

i,k
g ,∀j, k. By Schur’s lemma [26], the matrix X has the form:

X̂ = UXU† =
⎛

⎜⎝
X̂1

. . .

X̂N

⎞

⎟⎠ , X̂i = Ξi ⊗ �Di
, (5)

where Ξi is a Mi ×Mi Hermitian matrix, so X > 0 is equivalent to {Ξi > 0}i .3

1Noting that a similar approach is currently pursued for conformal bootstrap [22, 23].
2RepLAB works with nonunitary representations of compact groups too as they can have numerical
advantages. We keep this presentation simple by assuming unitarity.
3 This saves on memory and CPU time requirements. Consider a SDP problem minX tr[CX] such
that X is SDP and tr[AiX] = bi for i = 1, . . . , m. Assume X has dimension n× n with blocks of
size ni so that n = n1 + . . .+ nI . The complexity of standard interior point primal-dual methods
is as follows. For CPU time [27]: when m � n, the factoring of the Schur complement matrix
dominates in O(m3). When mλn (which we observe is the common case), Cholesky factorizations
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The block-diagonalization of an invariant SDP rests on the following.

Problem 1 Given a description of a compact group G and its representation ρ,
return the change of basis matrix U , the dimensions {Di}, and the multiplicities
{Mi} such that (4) and (5) are satisfied.

RepLAB solves this problem as follows. The compact group G is given as an
oracle that samples from the Haar measure on G; for finite groups, a permutation
representation can be provided for faster computations. The representation ρ

is provided as an image function. Our algorithm then returns a floating-point
approximation of the change of basis matrix U along with {Di}, {Mi}. Additional
structure is discovered and returned for real representations (see next section).

1 A Tour of RepLAB Features

Let us consider a small toy problem, resulting from a symmetrized moment-based
relaxation [28]. We compute the quantum upper bound on the CHSH expression

I =
〈
ψ

∣∣∣
∑

xy(−1)xyAxBy

∣∣∣ψ
〉
, where |ψ〉 is a bipartite quantum state and {Ax},

{By} are ±1-valued Hermitian operators acting on the first and second subsystem,
respectively, for x, y ∈ {0, 1}.

The SDP program corresponds to

MAX4y
s.t. X = C + Ay > 0

, C =
( 1

1
1

1
1

)
, A =

( 0
1 1
1 −1

1 1
1 −1

)
, (6)

where y ∈ R, X is Hermitian and the constraint X > 0 means that X is SDP. This
SDP is invariant under the signed permutation matrices ρg1 and ρg2 :

ρg1 =
( 1

0 1
1 0

1 −1

)
, ρg2 =

⎛

⎝
1 −1 0

0 −1
−1 0
0 −1

⎞

⎠ , (7)

corresponding to the action of the signed permutations [29] g1 = [1, 3, 2, 4,−5]
and g2 = [1,−4,−5,−2, 3] where we write a signed permutation using the image
on its domain g = [g(1), g(2), g(3), g(4), g(5)]. The domain is i ∈ {1, . . . , 5}; by
repeated composition, following the convention (gḣ)(i) = g(h(i)), these generate
the group G = 〈g1, g2〉. We now show how to block diagonalize ρ using RepLAB

and eigenvalue computations usually dominate, in O((n1)
3+ . . . (nI )

3). For memory: the problem
data scales in O(mn2) in the worst-case, but often less due to sparsity. The Schur complement
matrix requires O(m2) storage, and the matrices X and χ require storage in O((n1)

2+. . .+(nI )
2).

When using our technique, the block-diagonalization of a SDP of size n× n produces a SDP with
blocks of size n′i = Mi .
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running under either the MATLAB or Octave environment (the latest version
is always available at https://github.com/replab/replab). Part of the transcript is
truncated due to page limits, and // indicates a newline.

>> g1 = [1 3 2 4 -5]; g2 = [1 -4 -5 -2 -3];
>> G = replab.signed.Permutations(5).subgroup({g1 g2})
replab.signed.PermutationSubgroup

domainSize: 5
generator(1): [1, 3, 2, 4, -5] // generator(2): [1, -4, -5, -2, -3]

The natural representation represents G using signed permutation matrices:
>> rep = G.naturalRep
Orthogonal representation by images

dimension: 5 // field: ’R’ // group: replab.signed.PermutationSubgroup
images_internal{1}: [1, 0, 0, 0, 0; 0, 0, 1, 0, 0; ...
images_internal{2}: [1, 0, 0, 0, 0; 0, 0, 0, -1, 0; ...

and we ask RepLAB to decompose that representation
>> dec = rep.decomposition
Orthogonal similar representation (irreducible decomposition)

dimension: 5 // field: ’R’ // group: replab.signed.PermutationSubgroup
basis.(:,1): [1, 0, 0, 0, 0].’
basis.(:,2): [0, 0.5, 0.5, 0.70711, -1.5403e-37].’
basis.(:,3): [0, 0.5, -0.5, 1.6492e-36, 0.70711].’
basis.(:,4): [0, 0.5, -0.5, 1.3109e-36, -0.70711].’
basis.(:,5): [0, 0.5, 0.5, -0.70711, -4.9235e-37].’

component(1): Isotypic component R(1) (trivial)
component(2): Isotypic component R(2)
component(3): Isotypic component R(2)

The change of basis matrix is U = dec. basis†, it diagonalizes A and thus X:

U =
⎛

⎜⎝

2 0 0 0 0
0 1 1

√
2 0

0 1 −1 0
√

2
0 1 −1 0 −√2
0 1 1 −√2 0

⎞

⎟⎠ /2, UAU† =
⎛

⎜⎝

0 √
2 √

2
−√2

−√2

⎞

⎟⎠ , (8)

with D1 = 1, D2 = D3 = 2, and M1,2,3 = 1. The SDP problem (6) becomes MAX4y,
such that 1±√2y � 0. This is easily solved for the maximum 4y0 = 2

√
2.

The transcript above emphasizes the choices we made in building RepLAB: we
reuse plain types when possible (e.g., integer vectors to represent permutations),
the library is object-oriented (so operations are discovered easily), and results are
returned in floating-point arithmetic.

1.1 Unique Features

RepLAB supports compact groups. We decompose the representation ρ : u �→
ρu = u ⊗ u∗ of the unitary group U(2) (u∗ is the complex conjugate). The Bell
state

∣∣Φ+
〉 = (|00〉 + |11〉) /√2 spans the trivial representation, and its orthogonal

subspace is another subrepresentation.
>> U = replab.U(2); % creating the unitary group
>> defRep = U.definingRep; % instance of its defining representation
>> rep = kron(defRep, conj(defRep)) % representations can be manipulated
Unitary tensor representation

https://github.com/replab/replab
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>> dec = rep.decomposition
Complex similar representation (irreducible decomposition)

dimension: 4 // field: ’C’ // group: 2 x 2 unitary matrices
basis.(:,1): [-0.49064+0.50919i, 5.3749e-17+1.4048e-17i, ...

...
basis.(:,4): [-0.69962+0.10261i, 1.8576e-17-1.6639e-17i, ...

component(1): Isotypic component C(1) (trivial)
component(2): Isotypic component C(3)

>> dec.nice % we ask for rational basis recovery
Complex similar representation (irreducible decomposition)

...
basis.(:,1): [1, 0, 0, 1].’
basis.(:,2): [0, 0, 1, 0].’
basis.(:,3): [0, 1, 0, 0].’
basis.(:,4): [1, 0, 0, -1].’

Most SDP solvers encode complex-valued problems using real matrices with
overhead. It is thus more efficient to block diagonalize real SDPs over the real field.
RepLAB identifies the three types of division algebras that appear in irreducible real
representations (real-type ’R’, complex-type ’C’, quaternion-type ’H’). Below
we demonstrate a cyclic group and the quaternion group.

>> C3 = replab.S(3).cyclicSubgroup; decC3 = C3.naturalRep.decomposition
Orthogonal similar representation (irreducible decomposition)

dimension: 3 // field: ’R’ // ...
component(1): Isotypic component R(1) (trivial)
component(2): Isotypic component (harmonized) C(2)

>>> qminus = [-1 -2 -3 -4]; qi = [2 -1 4 -3]; qj = [3 -4 -1 2];
>>> Q = replab.signed.Permutations(4).subgroup({qminus qi qj});
>>> decQ = Q.naturalRep.decomposition
Orthogonal irreducible similar representation (irreducible decomposition)

dimension: 4 // field: ’R’ // ...
component(1): Isotypic component (harmonized) H(4)

RepLAB standardizes the matrix encodings of the complex and quaternion division
algebras: for example, decC3.component(2).sample returns the representa-
tion of a random group element, of the form [a -b; b a] for some a and b.

RepLAB contains out-of-the-box support for a variety of groups. Those groups
can be combined using standard constructions (direct, semidirect, and wreath
products, which are relevant in nonlocality [30]). RepLAB is compatible with the
free MATLAB clone Octave [31]. It extends the toolbox YALMIP [32] by providing
invariant SDP variables and constraints. It can also block diagonalize data in an
extension of the SeDuMi SDP solver format [33].

2 Algorithm

The decomposition of ρ implies four subtasks. First, we sample generic elements
from the commutant Cρ . Second, we compute the eigendecomposition of a generic
Hermitian matrix from Cρ to obtain invariant subspaces. Third, we find which
irreducible subrepresentations are equivalent and harmonize their bases. Fourth,
only for real subrepresentations, we identify the representation type and express
its division algebra in a standard encoding.
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2.1 Sampling from the Commutant Algebra

We first obtain a generic element of the commutant algebra. Compared to other
approaches [34–36], we sample first a generic matrix X from the Gaussian Unitary
Ensemble [37]. This ensures that the distribution is invariant under unitary changes
of basis, and provides guarantees on eigenvalue separation. We then project X on
the commutant subspace. We compute X = ∫

G
ρgXρ−1

g dμ(g), where μ is the Haar

measure of G. This simplifies to X = 1
|G|
∑

g∈G ρgXρ−1
g for finite groups. We thus

reduced the problem of sampling from Cρ to the problem of projecting on Cρ .
To average X over a compact group, we work with an oracle that samples ele-

ments from the Haar measure μ. Given an integer ν, we sample sets T1, . . . , Tν from
μ, typically with |Ti | = 3. We then define Xν = Σρ,Tν [Σρ,Tν−1 [. . . Σρ,T1 [X]]],
and observe that Xν → X when ν → ∞. We monitor convergence by the
Frobenius norm Δi =

∣∣|Xi+1 −Xi

∣∣ |FRO, and fit Δi ≈ ν+α exp(−βi) (exponential
convergence on top of numerical noise floor ν). We thus reduced the subtask of
sampling from Cρ to the task of sampling from G itself.

For finite groups, we use a trick from [38] where fixed sets {Ti} are computed
such that Xν = X exactly for finite ν. Of course, one can always set ν = 1 and
T1 = G, but in practice much better decompositions are obtained.4

2.2 Computing the Eigendecomposition of a Hermitian Matrix

We decompose numerically X
′ = X + X

†
into X̂ = UX

′
U†, getting a change

of basis matrix U such that X̂ is diagonal. After eigenvalue reordering, X̂ has the
form (5) with fully diagonal blocks Ξi . Due to genericity, no eigenvalue repeats
inside each Ξi and across them. We thus group equal eigenvalues and denote the
basis of the corresponding eigenspaces by the matrices U1, . . . , UM . Then

σ i : g �→ σ i
g = Uiρg(U

i)† (9)

are irreducible subrepresentations of ρ. The computational cost of this step is O(n3)

if n is the dimension of ρ.

4For example, every element of the symmetric group SD can be written uniquely as a product
of powers of the cycles (1, 2), (1, 2, 3), . . . , (1, . . . , D), reducing the computational effort from
O(|G|) = O(D!) to O(D2) image computations.
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2.3 Grouping Equivalent Representations

We take another sample X
′′

from Cρ and apply the following.

Proposition 1 Given two basis matrices Ui and Uj , let σ i and σj be two

subrepresentations of ρ according to (9). Let X
′′
be sampled from Cρ , and F =

UiX
′′
(Uj )†. If F = 0, then (almost always) σ i and σ j are inequivalent. Otherwise,

σ i and σ j are equivalent, σ i
g = Fσ

j
g F

−1, with αF unitary for some α ∈ C.

Proof Noting that (Ui)†Ui is a projector on the corresponding invariant subspace,
we verify that F is an equivariant map: σ i

gF = Fσ
j
g for all g ∈ G. We now use

Schur’s lemma [26, Prop. 4]. By the assumption of genericity, F = 0 happens
only when F has to be zero, and σ i is inequivalent to σ j . Otherwise, there is a
unitary [39] matrix A such that σ i

g = Aσ
j
g A

−1, and thus σ
j
g (A

−1F) = (A−1F)σ
j
g .

By Schur’s lemma A−1F = α�, and we have necessarily F = αA with α ∈ C.

Checking all pairs (i, j), we group the bases Ui into isotypic components and
harmonize bases with A. We get the dimensions {Di} and multiplicities {Mi}.5

2.4 Post-processing Real Representations

Let σ be a real irreducible representation of G of unknown division algebra type. We
sample a generic non-Hermitian element X of Cσ .6 We compute the complex matrix

Z = (X + X
?
)/2+ i(X − X

?
)/2, a generic Hermitian element of the commutant

of the complexification of σ . If Z has a single eigenvalue with multiplicities, then
σ is of real-type: it does not decompose further over C. Otherwise, Z is either of
complex-type or quaternion-type. We will describe in a future publication how we
recognize quaternion-type representations and put the basis of the division algebra
in a standard form.

3 Other Approaches to Solve Problem 1

Algebraic Approaches The GAP [40] package AREP [41] returns exact algebraic
solutions when ρ is a monomial representation and G a finite solvable group, using

5Note that the same proposition can be adapted to decide whether two irreducible representations
of G, σ 1 : G → U(n1) and σ 2 : G → U(n2) are equivalent, and computing the change of basis
matrix between them. This problem, considered in [39] for finite groups only, can be solved for
compact groups by applying the proposition above to ρ : g �→ ρg = σ 1

g ⊕ σ 2
g .

6Usually, σ is a subrepresentation of some ρ, so that we sample from Cρ and restrict.
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algebraic techniques. However, equivalent irreps are not always grouped nor put in
the same basis, and AREP works only over the complex numbers.

Character Table Approaches It is possible to use the character table [42–44] of a
finite group to decompose a generic representation ρ: by expanding the character
χ : g �→ tr[ρg] as a linear combination of irreducible characters, one can construct
a block-diagonal representation ρ′ similar to ρ. However, this approach does not
provide directly the change of basis matrix. GAP itself can compute the character
table and irreducible representations, but does not provide the change of basis
matrix that reveals the irreducible decomposition.7 These first two approaches
have the advantage of providing exact algebraic solutions. However, they do not
apply to compact groups, and depend on a large library of algorithms and data
tables. In comparison, RepLAB is lightweight and readily integrates with the
MATLAB/Octave ecosystem related to semidefinite optimization.

Approaches Based on ∗-Algebra Decomposition By observing that the commutant
algebra Cρ is a ∗-algebra [36], it can be decomposed using the Artin–Wedderburn
theorem; this has been discussed several times in the context of invariant SDP
programs [35, 36, 45]. We found an incomplete implementation of the algorithm
of [35] in the software package NCSOSTools [46]. However, the paper [35]
prescribes the use of exotic matrix decomposition techniques, some of which do
not have implementations available.

The approach used in RepLAB directly inspired by this last class of approaches;
we will describe our technical improvements in a future publication. Note that
RepLAB does not aim to replace a Computer Algebra System such as GAP System;
rather, it focuses on the numerical symmetrization of optimization problems.

4 Conclusion

We presented a toolbox to numerically decompose arbitrary finite dimensional
representation of compact groups. Surprisingly, the user needs to provide only
little information about the group and its representation, and there is no need to
compute much structure to accomplish our task. The current unoptimized code is
able to deal with representations of size up to∼10,000. We foresee RepLAB having
impact in two ways. The first one is reducing the computational cost of solving
SDPs, thus expanding the applicability of a wide variety of quantum information
methods. The second one is pedagogical: by delegating all computations to the
software, a hands-on approach to representation theory can be taught, focusing

7Note that for groups of small order, the approach discussed in [26] could give the change of basis
matrix. But note that the authors of [23] remarked that the exact algorithms of GAP were sometimes
slow and restricted their decompositions to groups of order <100 in their symmetrization of
conformal bootstrap.
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on the physics by working on concrete examples right at the start. Along the
same line, RepLAB can be used to quickly check whether an algebraic analysis
of the symmetries of a problem is worthwhile: while the bases returned are
approximate, the dimensions and multiplicities of the irreducible subrepresentations
are themselves not approximate.

Still, this manuscript presents an early version of our package, and it presents
several areas for improvement. Can we obtain better scaling factors for the algorithm
of Sect. 2? Currently, our running time is dominated by the eigendecomposition
step, which has running time similar to a single solver iteration on the original SDP.
Another route is to use the black-box algorithms above in the last resort, and exploit
structural information: RepLAB has built in support for a dozen standard group
and representation constructions, but is not exploiting that structure currently. Also,
RepLAB works in hardware double floating-point precision, and uses a tolerance of
ε = 10−10 in all convergence tests. We are currently analyzing error propagation in
all the steps of our algorithm, and will replace those tolerances by proper bounds.
Finally, RepLAB performs limited exact solution recovery: can we extend those
recovery methods?
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Fig. 1 The effect of symmetry breaking scale in both inclusive (UMSSM) and noninclusive
(USM) supersymmetric particle cases is presented. The left panel shows Z′ mass versus its
corresponding cross section times branching ratio to dilepton final states where SUSY breaking
occurring at GUT scale. The dotted line represents UMSSM and dashed line USM realisations,
and the error bars show the variation caused by theoretical uncertainties. The right panel shows the
same for SUSY breaking occurring at Z′ mass scale. These results are presented in [11]

Fig. 2 Plot shows leptophobic Z′ mass versus production cross section and dijet branching ratio
with corresponding acceptance rate. The dashed line shows the USM sample, which assumes that
Z′ can only decay through the SM particles, and the dotted line shows UMSSM, including all
supersymmetric particles. Error bars include scale and PDF variations as well as the variation in
the dijet decay rate per sample. The CMS limit is taken from [3]
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Fig. 3 Chosen analysis
signal where Z′ production
and its decay through two
lightest charginos. The figure
has been produced with the
help of the JAXODRAW

package [17] Z
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Fig. 4 Left panel shows the standard significance against Z′ mass plotted for various luminosity
and systematic uncertainty values. Right panel shows the same figure for Asimov significance, ZA.
These results are presented in [27]
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gravitational couplings, 391
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ALP–photon oscillations, 568, 572
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Angular momentum operators, 360
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Anisotropic Dirac matter, 318–319
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318
diagonal/non-diagonal representation, 320
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Ansatz, 237
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Askey–Wilson type

Askey–Wilson algebra, 231, 232

Bannai–Ito algebra, 230, 231
Casimir element, 227
definition, 225
dual presentations, Racah algebra,

227–229
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Howe duality, 225, 226
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Associative algebra (AA), 182
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Asymmetric left-right model, 587
Asymptotically AdS spaces (AAdS), 393
Asymptotic behaviour, 70
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Axial modulus, 432
Axion-like particles (ALPs)

ALP–photon oscillations, 568, 570, 571
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magnetars, 568, 569
neutrino emissivity, 568
oscillations, 568
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SM particles, 568
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B
Bailey identities, 282
Baker–Campbell–Hausdorff identity, 261
Band inversion, 308
Baryon acoustic oscillations, 410
Baryonic material, 457
Batalin–Vilkovisky (BV) construction

anti-fields/anti-ghost fields, 248–249
classical master equation, 249
gauge theory, 249
ghost field, 248–249
notion and relevance, 249–252
Pauli matrices, 250

Bayes’s law, 500, 505
b→ cτ−ν, 578–581
b→ gμ+μ−,576–579, 581
Bernal staking, 266
Bertrand theorem, 141
Bessel function, 323
Bethe–Salpeter equation, 102
Beyond the SM (BSM), 427
Bilayer graphene

effective Hamiltonian, 266–267
effective Hamiltonian with magnetic field,

267
electron motion, 265, 266
lattice structure, 267
stationary states of H, 267–268

Bi-rational equivalence, 70
Birationality, 22
Bismuth-based half-Heuslers, 360
BiTeI, 311–314
Black hole entropy, 372
Black holes, 390
Bloch electrons, 309
Block entropies, 351
Bogoliubov transformations, 261–262
Bogomol’nyi equation, 534–536
Bohr atom, 170
Boltzmann fluid equation, 430, 432
Boltzmann suppression, 434
Bose–Einstein condensate (BEC), 438
Boundary conditions, 376–377
Braiding

eigenvalues, 283
generators, 279
types, 279, 281

Breather solution, 517–519
Brillouin zone

H-A-L plane, 312
M-L-A mirror planes, 312

Brion lattice-polytope sum formula, 287,
289–290

Brown–Henneaux boundary conditions, 393

BRST cohomology in, 377
BRST invariant vacuum state, 372
BRST quantization, 377
Bruce–Duplij model, 200

N -extended SQM, 203, 204
superalgebra, Z22-graded color

superalgebra, 202, 203
Z22-graded SCM, 204–205
Z32-graded SQM, 205–206

Bulk-boundary correspondence principle, 307
BV-spectral triple, 246, 249–252

C
Cabibbo–Kobayashi–Maskawa (CKM), 576,

585, 586, 589–592
Caldirola–Kanai oscillator, 303
Calogero–Sutherland models, 3

Calogero model, 4–5
Sutherland model, 5–6

Canonical black hole, 396, 397
Canonical boundary conditions, 399
Canonical commutation, 379
Capacitor thermodynamics

entropy, 373
Euclidean approach, 374–376
free energy, 374
heat loss, 373
Lorentz–Heaviside units, 373
quasi-static process, 374

Carbon monoxide (CO), 458
Cartan–Dieudonné theorem, 39
Cartan element, 395
Casimir effect, 377
Casimir operators, 145
Causal inference methods, 616
Cayley–Klein geometry

generalized imaginary number, 159
moving frame, 159–161
three-dimensional, 158
two-dimensional, 158, 159

CCH solutions
susy G(2, 4) σ -model, 94–95

case of Z1, 95–96
case of Z2, 96–98
case of Z3, 98–99
case of Z4, 99

Susy G(M , N) σ -model, 92–94
susy invariant solutions, 94

Central limit theorem
asymptotic probabilistic behavior, 499
Bayesian paradigm, 506
complex systems, 500
erfc gravitational potential, 500, 505, 506
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gravitation, 505
gravity, 499
probabilistic context, general relativity,

500–501
star-specific physical constant, 505
static non-empty symmetric geometry, 500

Characters
Demazure formulas (see Demazure

character formulas)
Lie (see Lie characters)
simple Lie algebras, 287
Weyl formula (see Weyl character formula)

Charged black body partition function
Casimir force, 382
Casimir free energy, 380
Euler–Maclaurin formula, 381
Gibbons–Hawking contribution, 381
non-zero modes, 382
temperature Casimir effect, 380
temperature dependent contribution, 381
zero point energies, 381

Charged vacuum capacitor, 372
Chern–Simons (CS) sector, 390
Chern–Simons (CS) theory, 390, 398

description, 275, 390
gauge group, 275–276
and knot invariants, 276, 279–281
three-dimensional gravity, 391
WLO, 276

CHIME-DESI like survey, 462
Chiral-Heisenberg Gross–Neveu (cHGN)

interaction, 329
Classical affine W -algebras

integrable hierarchies, lax type equation,
194, 195

lax type operators, 193, 194
Classical finite W -algebra, 188
Classical Hamiltonian systems, 141
Classical Hurwitz numbers, 78
Clebsch–Gordan coefficients, 175, 176, 364
Clebsch–Gordan or Racah coefficients, 225
Clifford algebras, 38–39

anti-automorphisms, 40
automorphisms, 40
multiplicative groups, 39

CMB anisotropy spectrum, 419
Coherent states (CSs)

degeneracy, 256
harmonic oscillator, 318
NLCSs, 317–325
properties, 256
SU(2), 258–260
2D oscillator, 255

Cold Dark Matter (CDM), 437, 438

Cole–Hopf transformation, 528
Collider physics, 422
Colored HOMFLY-PT polynomials

definition, 276
Euler characteristics, 276
gauge group, 276
triply graded, 276

Compact groups, 642
Compensatory mass, 472
Complexity analysis, 28
Complex oscillator, 51–52

SUSY transformation, 52–53
Complex system, 499
Conduction band minimum (CBM) energy,

310–314
Confinement–deconfinement transition, 329
Conformal field theory (CFT), 182

characterization, 342, 343
descriptions, 348
entanglement entropy, 354
Hamiltonians, 355
state-operator correspondence, 330
Wess–Zumino–Witten, 288

Conservation law (CL), 58
Consistency around the cube (CAC), 24
Continuum models, 528–529
Conventional phase, 338
Coordinate permutation operators, 7
Cosmic magnetic fields, 482, 486–487
Cosmic microwave background (CMB), 410,

417, 421, 482, 545, 547
acoustic oscillations, 410
angular power spectrum, 410
radiation, 410

Cosmology, 482, 487
Cosmology and astrophysics inter-relationship

angular power spectrum, 460–462
CHIME-DESI like survey, 461, 462
cosmological constraints, 460
Fisher formalism, 461
Fisher matrix, 462
HI astrophysical parameters, 459
HI-halo mass relation, 458, 459
HI power spectrum, 459
Hubble parameter, 460
IM, 458
intensity fluctuations, 458
ΛCDM cosmology, 462
Limber approximation, 460
normalization, 459
nuisance, 461
systematic, 458
uncertainties, 463

Coulomb force, 371
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Coulombic binding energy, 553
Coulomb potential, 360
Coulomb repulsion

critical temperature, 361
electronic, 360
electrons, 365
Luttinger semimetal, 366
quadratic band structure, 362
superconducting pairing, 359

Coxeter–Dynkin diagrams, 293
Critical exponents

and NJL model, 341–342
and VBS (see Valence-bond solid (VBS))

D
Darboux–Bäcklund transformations, 41–42,

529
spin groups, 42–44

Darboux-dressing scheme, 512
Darboux-dressing transformations, 514, 519
Darboux matrix, 516
‘Dark ages’, 457
Dark energy (DE), 413

cosmic magnetic fields, 482, 486–487
cosmological constant, 482
cosmological energy budget, 482
domain walls, 482
minimal model, 485–486

Dark matter (DM), 481, 567
EWPT (see Electroweak phase transition

(EWPT))
hydrodynamical limit, 437
non-minimal coupling, 418
oscillating scalar field, 418
particles, 427
scalar’s self-coupling, 418
superfluid (see Superfluid dark matter)
U(1) gauge symmetry, 418
Universe’s energy density content, 417
WIMPs, 417

Dark scalar field model, 423
Data-driven framework, 458
Decoherence rate, 638
Deep-MOND expression, 440
Demazure character formulas

and Demazure operators, 287, 290–291
lattice-polytope formulas, 288, 291–293
lattice sums, 290
physical applications, 288

Demazure operators, 287, 290–293
Density-functional perturbation theory

(DFPT), 312
Density-functional theory (DFT), 312

Density inhomogeneities
background density, 443
BEC DM superfluids, 442
fluid density, 442
FRW, 442
matter-radiation equality, 442
Newtonian hydrodynamical equations, 443
perturbations, 441, 443
superfluid species, 443

Desingularisation pattern, 2D, 27
de Sitter quantum fluctuations, 419
de Sitter space time, 543

Einstein equations, 476
mass, 476
negative mass, 476
stable negative mass de sitter bubbles,

477–478
thin wall bubbles, 476–477

de Sitter vacua
D3-branes, 447
inflationary evolution, 447
string theory, 448–453
UV complete theory, 447

Dielectric function, 360, 363
Difference equations, 68
Differential-difference equation, 68, 71
Dijet resonances, 557
Dimensional analysis, 502
Dimer model, 351
Dirac delta function, 544, 546
Dirac equation, 265
Dirac materials, 265
Dirac matrices, 340
Dirac neutrinos, 176
Dirac nodes, 339
Dirac operator, 330
Dirac spin liquid (DSL)

confinement, 327–329
confinement–deconfinement transition,

329
coplanar antiferromagnet, 329
phase transition, 329
stability, 328

Dirichlet conditions, 377
Dirichlet energy, 531
Discrete curve flows

differential-difference mKdV equation,
157

Euclidean plane, 157
geometric flows, 163
invariant linearization, 163, 164
recurrence relations

exterior derivative, 161, 162
shift map, 162, 163
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Discrete equations, 21–22
Discrete integrability

definition, 22
Discrete non-linear hierarchy (DNLS) models,

526–528
Discretized longitudinal momentum, 372
Dispersion function, 12
DM abundance, 421
DM decay, 422–424
DM interactions, 424
DM superfluid model, 438
Domain walls, 482
Double Field Theory, 414
Drinfeld–Sokolov boundary conditions, 392
Drinfeld–Sokolov scheme, 512
Dual map, 73
Dunkl operators, 8
Dzyaloshinskii–Moriya (DM), 531–535, 537,

538

E
Early universe cosmology, 411, 414
Early universe scenarios

bouncing cosmologies, 411
Ekpyrotic scenario, 411, 412
emergent scenario, 411
Hubble radius, 410
inflationary cosmology, 411
large field inflation, 412
matter bounce, 411
Pre-Big-Bang scenario, 411
quantum vacuum perturbations, 410
scalar field, 412
String Gas Cosmology, 411
trans-Planckian problem, 412

Edge modes, 372
Effective field theory, 413
Effective Hamiltonian, 266–267
Effective Hamiltonian with magnetic field, 267
Einstein equations, 465
Einstein gravity, 414, 415
Electrical resistivity, 312
Electric charge, 379
Electromagnetic gauge, 466
Electron motion, 265, 266
Electron-phonon coupling, 359, 360
Electron–phonon interaction (EPI)

first-principles, 309–311
intraband and interband couplings,

310–311
phonon-induced topological insulation,

308–309
in semiconductors, 308

and TPTs (see Topological phase transitions
(TPTs))

Electrostatics, 378
Electroweak phase transition (EWPT)

coherent oscillations, 422
cosmic history, 422
crossover temperature, 421
dark scalar dynamics, 418
Higgs-portal coupling, 418, 420
inflation, 419
phenomenology, 421
radiation era, 420
relativistic degrees of freedom, 421
thermal equilibrium, 422

Electroweak symmetry, 586
Eliashberg equation, 362–364
Emergence, 501–505
Emergent geometry

arbitrary bipartition, 349
dimer model, 351
EAM, 349, 351
entropy, 349
GHZ state, 351–352
graphical representation, 350
numerical computation, 352
rainbow state, 351
Venn diagrams, 350
von Neumann entropies, 348

Energy density, 482
Energy-momentum tensors, 450, 501, 505
Energy priori probability density, 504
Entanglement adjacency matrix (EAM), 349,

351, 352
Entanglement current, 354–355
Entanglement entropy

area-law, 349
entanglement contour function, 352–354
entanglement current, 354–355

Entropy, 32
Entropy density, 432
erfc gravitational potential, 500, 505, 506
Euclidean approach, 373

Legendre transformation, 376
longitudinal electric field, 376
magnetic and electric fields, 374
partition function, 375
planar conductors, 375
spherical capacitor, 375
time-independent solutions, 375
true extremum, 376

Euclidean black holes
angular momentum, 394
boundary conditions, 393
canonical, 393, 394, 396, 397
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Euclidean black holes (cont.)
CFT Hamiltonian, 394
Chern–Simons connections, 393
Chern–Simons theory, 396
definition, 393
diagonal matrices containing, 396
eigenvalues, 394, 397
holomorphic, 393, 396
Legendre transformation, 393
novel properties, 395
signature, 397
smoothness conditions, 395–397
time direction, 394
topology, 395
torus, 394
zero modes, 393, 396

Euclidean Dirac algebra, 339, 341
Euclidean Dirac matrices, 339
Euclidean space-time, 502
Euler–Lagrange equation, 536
Euler–Poincaré characters, 65
Evolution operator, 103, 105
Exact solutions

quantum invariants, 295–303
Exclusion limits for heavy right-handed W

boson, 587
Explicit differential operators, 113
External reference system, 624
Extremal black holes

conventional gravitational theories,
398–399

Lorentzian, 398
sl(3), 399–402
string theory, 398

F
Feebly interacting massive particle (FIMP)

candidates, 428
couplings, 428
DM, 432
fermionic, 431, 434
freeze-in production, 429
Higgs and SM gauge, 429
Peccei–Quinn operator, 428
radiation era, 431
rate densities, 430
scalar, 428
s-channel annihilations, 429
time/temperature-dependent interaction,

430
Fermi–Dirac and Bose–Einstein occupation

factors, 310
Fermi energy, 361

Fermion bilinear scaling dimensions, 342–343
Fermionic action, 248
Fermionic DM, 434
Fermionic DM candidates, 434
Fermi velocity, 265
Ferromagnetic instability, PAAI

domain walls, 484–485
exchange energy, 483, 484
fermions, 483
Landau fermi liquid formalism, 483
quasi-particle energy, 484
relativistic setting, 483

Feynman diagrams, 310
Feynman–Kac Formula, 524–526
Fields oscillations, 420
Finite order symmetry operators, 113
Finite spectral triple, 246–248
Finite-temperature angular holonomy, 400
First-order perturbation theory, 310
First-order SUSY QM, 265
First-principles EPI, 309–311
Fisher forecasting formalism, 460–462
Flavor-changing neutral-current (FCNC), 576,

579
Fock states, 256
Fokker–Planck equation, 522, 525
Foreground avoidance and subtraction

techniques, 458
Four-dimensional de Sitter space, 448
4D pseudo-Euclidean static system, 502
Four-dimensional effective field theory,

453
Fourier transforms, 377
Fourth-order Volterra-like equations, 71
Fractionalized phase, 337–338
Free electromagnetic field, 372
Free electromagnetism, 366
Free-field fixed point, 341
Free-particle Salpeter equation, 102
Freeze-in mechanism, 427
Freeze-in temperature, 429
Freezing trick, 3–4
Frequency-dependent electron–phonon

self-energy, 309
Frustrated magnetism, 338
Fusion matrix, 280

G
Galactic scale magnetic fields, 486
Galaxy power spectrum, 547–459
Gamma matrices, 341
Gap function, 364
Gauge coupling, 340
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Gauged and ungauged NJL models, 32
Gauged sigma models

Bogomol’nyi equation, 534–536
boundary, 535
magnetic skyrme models, 533–534

Gauge-field propagator, 341
Gauge invariance, 92, 96
Gauge-invariant operators, 340
Gauge theory, 245–250, 327, 328

BV construction, 249
and dualities, 332
and finite spectral triples, 246–248
lattice, 338, 342
and quantum field theory, 245

Gaussian distribution, 261
Gaussian Klauder states, 256
Gaussian pieces, 451
Geometric flows

arc-length parametrized discrete curves,
164, 166

arc-length preserving flow, 167
invariant linearization operator, 165

Geometry
definition, 348
emergent geometry, 348–352
entanglement contour function, 352–354
entanglement current, 354–355

G-flux ansatz, 451
G-flux components, 450, 451
Ghost field, 248–249
GHZ state, 351–352
Gibbons–Hawking contribution, 379, 380
Gluon fusion signals, 604
Good relic density, 433
Grand canonical ensemble, 395
Grand Unified Scheme, 557
Graphene, 317
Grassmannian sigma models, 91
Grassmannian variables, 250
Gravitation, 501–505
Gravitational charge, 467
Gravitational potential, 505
Gravitational theories, 389
Gravito-electromagnetism, 465, 472
Gravity, 499
Green function, 466
Green’s function, 309, 637
Gross–Neveu (GN) model

cHGN, 329
SU(2N)-symmetric, 332
type interaction, 329

Ground state
non-interacting model, 348
zero energy, 269

H
Hagedorn phase, 411
Haldane–Shastry (HS) spin chain, 3, 6

chain sites, 10
partition functions, 11–12
scalar potential, 9

Half-Heusler YPtBi, 362
Halo-model framework, 458
Hamiltonian, 338–339, 360
Hamiltonian BRST operator quantization,

372
Hamiltonian derivation, 395
Hamiltonian operator, 295
Harmonic oscillator

and Bohr atom, 170
CSs, 318
1D, 256–257
quantum, 124
state vectors, 229
and SUSY partners, 247
and Sutherland model, 147
2D isotropic, 255

Harrison–Zeldovich spectrum, 545
Hartree atomic unit system, 309
Heavy diquark and quark spin flavor symmetry

Lorentz invariant form factors, 551
ΛQCD, 549
ΛQCD/mc,b, 551
meson/baryon, 549
1/mQ expansion, 549, 550
NLO vs. NNLO chiral-continuum fits, 552
pseudoscalar meson, 550
QCD, 549, 550
TQQ.q .q tetraquark, 552–554

Heisenberg uncertainty principle, 257
Heisenberg–Weyl (HW) algebra, 318
Helicity operator, 365
Hellmann–Feynman theorem, 363
Helmholtz decomposition, 377
Helstrom’s theorem, 623
Hermite polynomials, 258, 270, 297
Hermitian matrices, 340, 341
Hierarchy of SDEs, 522
Higgs annihilation, 422
Higgs boson, 422, 424
Higgs coupling, 598

loop functions, 600
Yukawa coupling matrices, 601

Higgs mechanism, 418
Higgs-portal coupling, 424
Higgs-portal scalar field DM, 424
Higgs production mechanism, 603
Higher dimensional consistency, 22
Higher-rank projectors, 61
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Higher spin gravity
AdS3, 391–392
AdS/CFT correspondence, 390
black holes (see Euclidean black holes;

Extremal black holes)
features, 389
puzzling, 389
Wilson lines, 402–406

Higher spin theories, 389
Hilbert–Schmidt inner product, 250
Hilbert space, 257, 280, 318
Hodgkin–Huxley model, 150
Holographic radial direction, 392
Holomorphic black hole, 396
Holonomy conditions, 404
Homogeneous field variance, 419
Honeycomb lattice, 342
Horizon and flatness problems, 409
Hubble radius, 411
Hypotheses

algorithms, 629
causal intermediary, 627
cause and effect, 628
variables, 627

I
IIB compactification, 448
Inflation, 419
Inflationary cosmology, 413, 415, 543

CMB anisotropy, 545–547
coordinate space, 547
density perturbations, 546
de Sitter space, 546
Harrison–Zeldovich spectrum, 545
mass density, 545
non-Gaussianities, 546, 547
potential energy, 543
QSFI, 547
quantum fluctuations, 544, 545

Inflationary reheating model, 431
Inflationary scenario, 409
Infrared spectroscopy, 312
Integrability, 68–70
Integrability indicators, 69
Integrable fourth-order difference equation,

67
Integrable systems, 4, 511
Intensity mapping (IM)

astrophysical phenomena, 458
astrophysics, 458
cosmology, 457
inter-relationship (see Cosmology and

astrophysics inter-relationship)

large-scale structure, 457
surveys, 458

Interstellar medium (IM), 458
Intraband and interband couplings, 310–311
Invariant operator, 296
Ishibashi state, 406
Isocurvature perturbations, 423
Isometries, 38–39
Itinerant ferromagnetism, 482, 485

J
Jacobi algebra

case G2, 219
definition, 217
triangular decomposition, 218

Jacobi orthogonal polynomials, 146, 147
J -matrix, 350
Jones polynomial

asymptotic behavior, 277
categorification, 276
structure, 277
twist knots, 282

K
Kähler angles, 65
Kerr–Newman black holes, 373
Khovanov polynomial, 276
Knot homology, 276
Knot invariants

and CS theory, 276, 279–281
integrality structure, 276
quantum, 277

Kohn–Luttinger mechanisms, 363
Kolmogorov backward equation, 522
Krawtchouk orthogonal polynomials, 60
Kruskal gauge, 404

L
Ladder operators

categorical structure, 126–127
examples, 129
harmonic oscillator, 122
Maya diagrams, 122–123, 127, 128
rational extensions, 122, 124–125

Lagrange inversion theorem and analysis
compensating mass, 470, 472
conserve momentum, 471
dimensionless instantaneous time, 469
dynamical effects, 468
energy-momentum, 470
final expression, 472
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gravitational effects, 468
gravito-electric field, 470
instantaneous propagation, 470
Newtonian limit, 468
perturbation, 469
power series, 469
quadrupole moment, 471
retarded time, 468, 469
time dependent, 471

Lagrangian BRST, 372
Lagrangian density, 418
Lagrangian formulation, 452
Lamperti transform, 523
Landau coefficients, 361
Landau gauge, 319, 324, 341
Landau paradigm, 337
Laplace–Beltrami operator, 112, 172
Laplace transform method, 104–107
Largest-in-absolute-value eigenvalue, 365
Lattice gauge theory

language, 338
quantum antiferromagnets, 338

U (1), 338
Lattice-polytopes

Brion formula, 287–290
Demazure character formulas, 288,

291–293
Lax–Darboux equations, 514, 516, 517
Lax pairs, 23
ΛCDM model

baryonic feedback effects, 438
cosmological observations, 437
growth of structures, 444
Hubble parameter, 442
late-time acceleration, 441
observational implications, 444
vortices, 445

Left-and right-handed fermions, 586
Left-right symmetric models (LRSMs), 585,

586
Leptogenesis

CP parameter, 609
CPT conservation, 608
CP violation, 610
decay processes, 608
final baryon asymmetry, 612
flavor enhancement, 610–611
Higgs portal, 608
SM and mirror sector, 609
SM sector, 607

Leptophobic Z′ in supersymmetry
ATLAS collaboration, 557–559
CMS collaboration, 558
dijet resonances, 557

Drell–Yan modes, 560
heavy neutral vector bosons, LHC, 557
heavy particle spectrum, 559
Higgs sector, 559
high-mass dijet searches, 561
MSSM, 558
NLO, 559
production cross section and dijet branching

ratio, 561
SM, 557
squared mass, 559
UMSSM, 558–560, 564

Leptoquark (LQ), 580
Lewis and Riesenfeld approach, 302
LHC, 557, 594
LHCb, 579
Lie algebra, 391, 392
Lie algebra spin, 39
Lie characters

Brion lattice-polytope sum formula,
289–290

and lattice-polytope sums, 287
polytope expansion, 287, 290
Weyl character formula, 287–289

Lienard–Wiechert potentials, 467
LIGO sensitivity zone, 473
LIGO-type experiment, 473
Linear Algebra Intermezzo

generalizes quasideterminant, 190
identity notation, 190
setup, 189, 190

Linear radial gravitational field, 505
Line-node superconductor, 363
Littlewood–Richardson rule, 288
Lorentz force, 323
Lorentzian signature, 397
Lorentz invariant, 340
Lorentz-invariant fermion bilinears, 343
Lorentz-like force, 467
Low-energy QED3 theory, 340
Luttinger semimetals, 362–364

M
Magnetars, 568–573
Magnetic field

anisotropic 2D Dirac Hamiltonian,
318–319

and anisotropy, 318
bilayer graphene, 266–268
definition, 319
effective Hamiltonian, 267
and time-dependent electric, 296

Magnetic skyrme models, 533–534
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Magnetic skyrmions
Bogomol’nyi equation, 538
Cartesian coordinates, 537
Dirichlet energy, 531
Dzyaloshinskii–Moriya, 531, 532, 537–539
gauged non-linear sigma models, 539
Gauged sigma models (see Gauged sigma

models)
gauge field, 536
holomorphic data, 532
intensive experimental and numerical

studies, 531
inverse coordinate, 538
magnetisation, 536
multi-(anti)-skyrmion configurations, 539
rank one models, 538, 539
rigorous analytical studies, 531
solvable model, 538, 539
spiralization tensor, 538
stereographic coordinates, 537
two-dimensional field theories, 531

Magnetisation, 536
Mass, 476
Mass eigenvalues, 587
Matrix integrals

determinantal representation, 85–86
Eulerian Wronskian representation, 86
quantum/classical spectral curve

Eigenvalue equations, 83
Meijer G-functions, 84
rational weighting case, 84

quantum spectral curve, 83
quantum weight generating functions,

87–88
Wronskian determinants, 82
Wronskian representation, 86–87

Matrix models, 246
Maxwell–Boltzmann distributions, 430
Maxwell electromagnetism, 465
Maxwell’s equations, 466
Mellin-Barnes integral representations, 82, 84
Mellin-Barnes integrals, 84–85
“Mexican hat” shape, 418
Migdal approximation, 309
Minkowski vacuum, 466
Mirror world models, 607
Model-independent starting point, 578
Modified gravity, 458, 462, 463
Modified KdV (mKdV), 511, 512
Modified Schwarzschild geometry, 505
Moduli fields

FIMP, 428
freeze-in production, 429
Higgs-like operator, 428

imaginary components, 428
Mandelstam variable, 429
scalars, 428
SM fermions, 428

Momentum modes, 413, 414
MOND scalar field theory, 438
Monolayer graphene, 265
Monopole fermion number, 331
Monopole operators, 328–335
Motivic and foliation theory, 245
M-theory

D3-branes, 453
degrees of freedom, 451
energy-momentum tensors, 450
G-flux components, 449
IIB background, 449
Lagrangian formulation, 449
non-local counter-terms, 452
non-localities, 452
sheer compactness, 449

Multi-component integrable hierarchies, 511
Multi-orbital system, 365
Multi-soliton Darboux transformation, 44
Multivariate Racah polynomials, 209
MWR — MνR , 590, 592–594

N
Nambu–Jona-Lasinio (NJL) model, 341–342
Néel antiferromagnet, 338
Negative mass, 476
Neumann conditions, 377
Neutrinos, 586
New physics (NP), 575

b→ cτ−ν, 580, 581
b→ sμ+μ−, 579, 581
CP violation, 580
standard model, 575
Z′ models, 579

Newtonian hydrodynamical equations, 443
Newtonian noise, 473
Next-to-leading order (NLO), 559
Non-arborescent knots, 279
Noncommutative geometry

BV construction, 248–249
gauge theory, 245
motivic and foliation theory, 245

Non-compact theory, 329
Non-diagonalizability, 399, 400
Non-Gaussianity, 547–459
Non-interacting model, 348
Non-intersecting spheres, 64
Nonlinear coherent states (NLCSs)

Annihilation operator, 320–321
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polyatomic molecules, 318
probability density, 321–325
strain, 321
2DDMs, 317–325

Nonlinear defining equations, 115–119
Nonlinear power spectrum, 459
Non-linear QED, 569
Nonlocal operator, 104–107
Non-minimal coupling, 423
Non-perturbative terms decouple, 449
Non-self-adjoint operators, 521
Nonstationary oscillator, 296

time-dependent mass, 296–297
Non-trivial phases, 307–308
Normalization, 379
Numerical computation, 352

O
1D Harmonic oscillator, 256–257
1D ladder operators, 258, 261
One-dimensional Schrödinger Hamiltonians,

236
One-soliton solution, 516
Optimal classical strategy

error probability, 622
Organic conductors, 317
Oscillators, 372

P
Painlevé IV (PIV) equation, 47
Parametric oscillator, 296
Partial differential equations (PDE)

application, 149
definition, 149
discretized equation, 153–155
lie-point symmetries, 150
reaction diffusion models, 150
symmetry reduction and discretization,

case, 151–153
Partial differential equations in curved spaces

elementary function, 494
homogeneous version, 493, 494
matrix inversion, 498
Maxwell’s equations, 495
orthonormal eigenvectors, 496
time-independent solutions, 496
2 + 1 and 3 + 1 dimensions, 491, 492, 494
Whittaker’s method, 491, 495

Partial differential operators, 114
Particle mass spectrum, 562
Partition functions, 11–12, 14–15, 380
Parton distribution function (PDF), 559

Pauli matrices, 250, 251, 328, 329, 339
Pearcey equation, 103, 108
Perlick’s II system, 141
Phases resides, 307
Phenomenology

DM decay, 422–424
Higgs-portal scalar field, 424

Phonon-based pairing, 366
Phonon-induced gap renormalization, 312–314
Phonon-induced topological insulation,

308–309
Phonons, 439
Photon spectrum, 568
Physical degrees of freedom, 377–379
Physical/non-physical solutions, 237
PIV transcendents, 53–54
Planck satellite, 432
Planck units, 412
Point transformations

complex-valued function, 299
Ermakov equation, 300
invariant operator, 302
nonstationary oscillator, 300
orthogonal set of solutions, 301–302
parametric oscillator, 300
real-valued functions, 299, 300
Schrödinger equation, 298, 300
stationary oscillator, 302
subindex notation, 298
time-dependent complex-phase, 302

Poisson algebra (PA), 182
Poisson brackets, 377
Poisson vertex algebra (PVA), 182
Polychronakos–Frahm (PF) spin chain, 10
Polynomial Heisenberg algebras (PHA), 49

second-degree, 50–51
Polytope expansion, 290
Pre-Big-Bang scenario, 411
Primordial non-Gaussianity, 462, 463
Probability density, 321–325
Projector formalism, 58–59
Prokushkin–Vasiliev higher spin theory, 390
Pseudo-Euclidean space, 39

Q
QED3-cHGN quantum critical point (QCP)

characterize, 329
monopole operator, 331, 333
QED3-GN models, 335
SU(6) decomposes, 334

QED3-Gross–Neveu (GN) model, 327–335,
338, 340, 341, 343, 344

QED3 Lagrangian, 339
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Quad equation, 22–23
algebraic entropy, 28
CAC, 24
discrete Lax pairs, 23–24
Lax pair from CAC, 24–25
singularity structure, 26–27
square lattice, evolution, 28–29
symmetries, 25–26
vertical/horizontal symmetries (see

Symmetries)
Quantum advantages

coherence, 622
random variables, 622

Quantum affine W-algebra, 181
Quantum canonical transformation, 523
Quantum causal models, 616
Quantum computing, 309
Quantum corrections, 448
Quantum correlations, 617
Quantum coulomb solution

BRST charge, 383
BRST exact, 385, 386
BRST quantization, 385
electromagnetic field, 382
Feynman gauge, 384
gauge fixed Hamiltonian, 383–385
Heisenberg picture, 386
infrared regularization, 386
modified vacuum state, 382
polarization vectors, 383

Quantum critical point (QCP), 329, 331,
333–335, 340

Quantum electrodynamics (QED), 569
Quantum electrodynamics in three dimensions

(QED3), 328–333, 335, 338–340,
344

Quantum entanglement
area-law, 347
distribution, 347, 348
geometry, 348

Quantum Finite W -Algebras
lax type operators, 191
twisted Yangians, 192

Quantum invariants, 295–303
Quantum 6j -symbols, 278, 283
Quantum knot invariants, 277
Quantum Monte Carlo (QMC) simulations,

338
critical exponents, 343–344
principle, 343

Quantum phase transitions, 337
Quantum processes

algorithm, 645
Bell inequalities, 616

causal hypotheses, 621
causal inference methods, 616
causal relations, 617, 620
cause-effect relations, 615, 618–620
commutant algebra, 646
equivalent representations, 647
Hermitian Matrix, 646
interrogations, 625
measurements, 617
notation, 617–618
post-processing real representations, 647
probabilistic theories, 616
scenario, 623–625
variables, 616

Quantum terms, 451
Quantum theory, 413
Quantum volume conjecture, 278
Quantum vortices, 445
Quartet mechanism, 372
Quasi-Maximally superintegrable (QMS)

Bertrand theorem, 141
Hamiltonian systems, 142
metrics/scalar curvature, 142, 143
quantum model, 144–147
radial equation, motion, 143, 144

Quasiparticle properties, 361
Quasi-relativistic evolution equation, 107
Quasi single field inflation (QSFI), 547, 549

R
Racah algebra

definition, 209
differential embedding, 214, 215
higher rank, 210, 211
Rn, 212–213
sln , n-1 variables, 211–212
U(Dn) operators, 212

Racah coefficients, 283
Rainbow state, 348, 351
Rational difference equations, 69
Rational transformations, 22
Recursive solution, 104–107
Reheating, 431
Renormalization-group approach, 344
RepLAB features, 648

CHSH expression, 643
decompose, 644
MATLAB, 644
unique features, 644–645

Representation theory
algebraic results, 135, 136
Bruhat decomposition, 132
Casimir operators, 138
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de Sitter group, 131
Hermitian matrix, 642
Lie algebra homomorphism, 137
quantum formalism, 641
SDP relaxations, 641
skew symmetric translation generators, 138
SO0(2, 3), Sp(2,R), Poincaré group/lie

algebras, 132–134
Sp(2,R), 136

Riccati equation, 237
Ricci scalar, 419
Ricci tensor, 466
Riemann sphere, 79
Riemann tensor, 466
Right-handed neutrino, 589
Right-handed WR boson mass, 587

S
Salpeter equation, 101

solutions, 103–104
Scalar field, 543
Scale invariance

de Sitter space time, 543–545
Dirac delta function, 544
energy density perturbations, 544
free quantum field theory, 545
galaxy power spectrum, 547–459
Minkowski space time, 544
non-Gaussianity, 547–459
power spectrum, 545

Scaling dimension
fermion bilinear, 342–343
monopole operator, 329–332

Schrödinger equation, 101, 112, 237, 238, 257,
295–298, 300, 634

Schwarzschild-de Sitter metric, 476
Schwinger boson, 258
Second-degree PHA, 50–51
Second-order difference equations, 67
Second-order differential operator, 268
Second-order perturbation theory, 310
Second-order SUSY partners, 268

TRM potentials, 239–242
Second-order SUSY QM, 236–238

and constant magnetic field, 270, 271
eigenfunctions, 269, 271
eigenvalues, 269, 271
and functions, 272
harmonic oscillators, 270
magnetic fields, 272, 273
Schrödinger Hamiltonians, 268

Second-order symmetry operator, 113
Second-order transformations, 237

Self-organization, 499, 505
Semiconductors, EPI, 308
Semimetal-to-Kekulé-VBS transition, 342
Sequential Standard Model (SSM), 557
Short-ranged four-fermion interaction, 340
Shubnikov–de Haas oscillations, 312
Sigma models, 58

analytical solutions, 59–61
Simple Lie algebras

characters, 287
and homogeneous spaces, 3
Littlewood–Richardson rule, 288

Single-site entropies, 350
Singularities, 31–32
Singularity analysis, 26–27
Singular vectors, 221
sl(3) black holes

conformal invariance, 402
entropy bounds, 402
extremality vs. unitarity, 401–402
finite entropy, 401
Jordan classes, 401
Jordan decomposition vs. zero temperature,

400–401
supersymmetry and extremality, 402

Slow-roll inflation models, 413
Small neutrino masses, 585
SM-DM couplings, 427
Smooth cigar-like geometry, 394
Smoothness condition, 395, 397
SM radiation, 431
Soliton solution, vmKdV hierarchy

breather solution, 517–519
Darboux transformation, 514, 519
dressing and Bäcklund transformation,

515–516
Lax–Darboux equations, 514
Lax operator, 514, 519
linear equations, 514
rational dressing, 514

Solvable potentials
case with j=0, 270–271
case with j �=0, 271–273

Space-memory, 103
Space quantization, 372
Space-time, 500, 501
SPDEs, 528–529
Spectral action, 247
Spin-3 chemical potential, 397, 400
Spin dynamical models, 6–7

AN−1 spin Calogero model, 7–9
coordinate permutation operators, 7
Dunkl operators, 8

Spin-Hall mass, 330–332
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Spinless Salpeter equation, 102
Spin matrices, 62
Spin–orbit corrections, 362
Spin–orbit coupling, 360, 361, 364–365
Spin-s representation, 61–62
Spintronics, 309
Spin-valued linear problems, 40–41

geometric interpretation, 41
soliton surfaces approach, 41

Spin-valued spectral problems, 38
Square lattice, evolution, 28–29
Squeezed states

1D Harmonic oscillator, 256–257
SU(2) coherent states, 258–260
2D, 260–262
2D isotropic oscillator, 257–258

SrTiO3, 360
Stable negative mass de sitter bubbles, 477–478
Standard Big Bang cosmology, 409
Standard model (SM), 557, 567, 575, 579–581,

597
gauge groups, 598
loop-induced processes, 598
Yukawa couplings, 599

Standard Model of Particle Physics (SM), 417,
418, 427

Star proper length, 503
Static lattice, 312, 313
Static Newtonian force, 472
Statistical mechanics, 4
Stellar objects, 572
Stochastic Burgers equation, 528
Stochastic differential equations (SDEs), 522
Stochastic heat equation, 529
Stokes parameters, 570–573
Stress-energy tensor, 476
String gas cosmology, 411, 412
String theory, 409
SU(2) coherent states, 258–260
Super-A-polynomials

quantum, 278
and volume conjectures, 283–284

Superconductivity
Coulomb repulsion, 365, 366
electron-phonon coupling, 359
Luttinger semimetals, 360, 362–364
semiconductors, 360

Superconformal mechanics (SCM), 200
Superconformal quantum mechanics, 199
Superfluid dark matter

BEC, 439
Broglie wavelength, 439
conditions, 439
Galilean symmetry, 439

MOND, 439
phonon-mediated acceleration, 440
polytropic equation, 439

Super-Hubble fluctuations, 410
Superintegrable Higgs algebra, 176
Super-Planckian, 441
Super-Poincaré algebra, 199
Superpolynomials, 277

asymptotic expansion, 282
categorified, 278
trefoil, 282
twist knots, 278, 281, 282

Superstring theory, 413
Supersymmetric quantum mechanics (SUSY

QM), 47–49, 121
complex oscillator, 52–53
definition, 199
first-order, 265
Hamiltonians, 235
and nonlinear algebras, 235
second-order, 236–238, 265, 268–269
Zn2-graded color superalgebra, 200, 201

Supersymmetric spin models
chemical potential, 14
exchange operator, 13
partition functions, 14–15

Su–Schrieffer–Heeger (SSH), 632
Sutherland model, 147
Swampland, 448, 449
Swampland criteria, 413
Symmetries

five points symmetries, 30
heavy diquark and quark spin flavor

symmetry (see Heavy diquark and
quark spin flavor symmetry)

inflationary cosmology (see Inflationary
cosmology)

Lax pair, 30
scale invariance (see Scale invariance)
three points symmetries, 29

Sym’s (or Sym-Tafel) formula, 41

T
Tachyonic representations, see Representation

theory
T -duality symmetry, 414
Tensor-to-scalar ratio, 419
Test function, 362
Thermodynamics, 17–18

su(1|1) case, 18–19
Thin wall bubbles, 476
Third order superintegrability, 114–115
3D consistency, 30, 33
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Tight-binding model, 266
Time-dependent cosmological background,

414
Time-dependent Hamiltonians

description, 295–296
nonstationary oscillator, 296–297

Time-dependent warp-factors, 448
Time evolution

adjoint operator, 522
continuum models, 528–529
discrete stochastic Burgers equation,

522
DNLS models, 526–528
Feynman–Kac Formula, 524–526
Fokker–Planck equation, 522
Hierarchy of SDEs, 522
Kolmogorov backward equation, 522
non-constant diffusion coefficients, 522
non-self-adjoint operators, 521
quantum canonical transformation, 523
quantum integrable systems, 522
SDEs, 522
SPDEs, 528–529

Time-independent compactifications, 450
Time-independent internal degrees of freedom,

451
TLS-SSH-chain, 636–638
Topological disorder operators, 330
Topological insulator (TI), 308, 310, 317
Topological phase transitions (TPTs), 308

in BiTeI, 311–314
in condensed matter physics, 307

Topological transistors, 309
Toy model, 185, 186
TQQ.q .q tetraquark, 552–554
Trans-Planckian Censorship Conjecture

(TCC), 448
Trans-Planckian problem, 412
Transverse degrees of freedom, 379
Transverse polarizations, 378
Tremblay, Turbiner and Winternitz (TTW)

system, 112
Trigonometric Rosen–Morse (TRM) potentials

description, 238
eigenstates and eigenvalues, 235
Hamiltonian, 239
Schrödinger equation, 238

Tripartite system geometry, 633
Twist knots, 278, 282–283
2D coherent states, 258
2-Dimensional Dirac materials (2DDMs),

317–325
2D isotropic oscillator, 257–258
2D lattice, 23

2D squeezed states, 260–262
Two-level system (TLS), 632

decoherence, 632
Hamiltonian, 633

Two-mode-like squeezing, 261
2N fermion flavors, 328
2 + 1 and 3 + 1 dimensions, 491, 492
Two-soliton Darboux transformation, 43
Type IIA string coupling, 449

U
U (1) extended minimal supersymmetric

extension of the SM (UMSSM),
558–560, 562, 564

Ultimate quantum limit, 625–626
Uncertainty principle

Heisenberg, 257
Robertson–Schrödinger, 257

Unified dark superfluid
canonical variables, 441
concordance model, 441
condensed matter systems, 440
Friedmann equations, 441
interaction, 440
non-relativistic approximation, 440
phonon excitations, 440
slow-roll approximation, 441

Universal affine vertex algebra, 185
Unphysical polarizations, 371
U (1)-VBS transition, 338–341, 343, 344

V
Vacuum expectation values (VEVs), 420, 586,

599
Valence band maximum (VBM) energy,

310–312, 314
Valence-bond solid (VBS)

Columnar VBS order doubles, 340
U (1) lattice gauge theory, 338–341

Vandermonde determinant, 86
Varshni effect, 310
Vector modified KdV (vmKdV)

conservation laws, 512
Drinfel’d–Sokolov scheme, 512
ON -invariant, 512
Lax operators, 513, 519
N -dimensional zero vector, 513
soliton solutions (see Soliton solution,

vmKdV hierarchy)
vector NLS hierarchy, 512, 519

Venn diagrams, 350
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Verma modules
case G2, 220–223
definition, 220

Veronese sequence, 60
Vertex algebra (VA), 182
Vertex model, 16–17
Volume conjectures, 277

classical A-polynomial, 277–278
quantum, 278
and super-A-polynomials, 283–284

V RCKM parameters, 587–589, 591

W
W -algebras

AA, 182
CFT, 182
classical affine, 188
definition, 182
finite, 188
Hamiltonian reduction, 186, 187
Jacobson–Morozov Theorem, 187
PA, 182
physical call theories, 183
PVA, 183, 184
quantum affine, 188
toy model, 185, 186
VA, 184, 185

Warped extra-dimensions
Weakly Interacting Massive Particles

(WIMPs), 417, 418
Weierstrass elliptic function, 116
Weierstrass formula, 63–65
Weighted double Hurwitz numbers, 79

hypergeometric Toda t-functions, 81–82
Weighted Hurwitz numbers, 77–80
Weighted Newton’s Law, Gravitation

central force field, 504
diagonal covariance matrix, 503
dimensional analysis, 502
energy-momentum tensor, 504
energy priori probability density, 504
erfc potential, 505
4D pseudo-Euclidean static system, 502
gravitational potential, 505
linear radial gravitational field, 504
star formation, 502
unit-balancing constants, 502

Weight generating function
hypergeometric Toda t-functions, 81

Weight polytope, 289
Wess–Zumino–Novikov–Witten (WZNW)

model, 278–280
Weyl character formula, 287–289

lattice-polytope, 287
Weyl semimetal phase (WSM), 312, 314
Whittaker’s method, 491, 495
Wigner–Seitz radius, 361
Wilson lines

AdS3/CFT2, 403
bulk-to-bulk propagator, 405
Chern–Simons analogue, 404
Chern–Simons formulation, 403
Chern–Simons sector, 404
Chern–Simons theory, 403–405
coordinates, 403
correlators, 404
gauge-invariant, 403
higher spin notion, 404
holonomy conditions, 404
operator, 402
quantum corrections, 405
Virasoro conditions, 406

Wilson loop operator (WLO), 276
WR → eejj vs. WR mass, 590
WR → jj vs. WR mass, 590
WR → tb vs. WR mass, 589, 590

X
XMM-Newton X-ray observatory, 423
X-ray diffraction, 312
X-rays, 568, 570, 573

Y
Yukawa coupling, 340, 599, 601, 604

Z
Zamolodchikov W3-algebra, 181
Zernike system

interbasis expansion coefficients, 175
separation of variables, 170
SO(4) Algebra, 169–170
3-sphere, SO(4), 171
two coordinate systems, S3, 172, 173
2-Sphere S2, 173, 174
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