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Abstract. Developing a reliable distributed system meeting desired per-
formance requirements is a hard and labor-intensive task. Formal specifi-
cation and analysis of a system design can yield correct designs as well as
reliable performance predictions. In this paper we present a correct-by-
construction automatic transformation mapping such a verified formal
specification of a system design in Maude to a distributed implementa-
tion satisfying the same safety and liveness properties. Two case studies
applying this transformation to state-of-the-art distributed transaction
systems show that high-quality implementations with acceptable perfor-
mance and meeting performance predictions can be automatically gener-
ated. In this way, formal models of distributed systems analyzed within
the same formal framework for both logical and performance properties
are automatically transformed into correct-by-construction implementa-
tions for which similar performance trends can be shown.

1 Introduction

Designing and implementing high-performance distributed systems are complex
tasks. Cloud-based systems, which typically rely on widely distributed data stor-
age for scalability, availability, and disaster tolerance, have further increased this
complexity. For example, the communication needed to maintain strong consis-
tency across sites may incur unacceptable latencies, so that designers must bal-
ance consistency and performance. Both performance and functional correctness
are therefore important system requirements that should be analyzed.

Formal methods have been advocated to develop and analyze high-level mod-
els of distributed system designs. However, today’s distributed systems present
a number of challenges to formal methods: (i) the complexity and heterogene-
ity of such systems require a flexible and expressive formal framework [32]; (ii)
the correctness properties that these systems must satisfy can be quite complex,
and there is a desire in industry for automatic verification methods [32]; and (iii)
both correctness and performance are, as mentioned, crucial requirements.

One formal framework that has shown promise in meeting the challenges (i)–
(iii) is Maude [10], a high-performance formal framework for executable specifi-
cation, verification, and programming of concurrent systems based on rewriting
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logic [8,28,29]. Maude meets challenge (i) by being based on a general and ex-
pressive, yet simple and intuitive, formalism. Regarding challenge (ii), Maude
provides a range of automatic model checking methods, including reachability
analysis and LTL and LTLR temporal logic model checking [2,10], which allows
us to express and analyze complex properties (see, e.g., [25]). For challenge (iii),
the PVeStA [1] statistical model checker can be used to statistically predict the
performance of a design specified in Maude.

These features have made possible the use of Maude to model and analyze
both the correctness and performance of high-level designs of a wide range of
systems [29]. To cite just one area, Maude has been used to formally model
and analyze, often for the first time, state-of-the-art industrial and academic
cloud-based transaction systems such as Apache Cassandra [18], ZooKeeper [19],
Google’s Megastore [4], P-Store [35], RAMP [3], and Walter [38]; and to design
the entirely new system ROLA [22] (see [7,23,24,33]). Furthermore, model-based
performance predictions using PVeStA have shown good correspondence with
experimental evaluation of implementations of Cassandra, RAMP, and Walter.

In this way, we can develop mature designs satisfying given correctness crite-
ria and having good predicted performance. However, this still leaves open the
problem of how to pass from a verified system design to a correct-by-construction
distributed implementation. This is the problem this paper solves.

Since Maude provides TCP/IP sockets as external objects which can interact
with standard Maude objects by message passing [10], a Maude object system
can be deployed as a distributed system across several machines. The goal of
this paper is to fully automate the passage from an object-based Maude design
M to a distributed Maude implementation D(M), and to prove that M and
an abstract model D0(M), which hides the details of D(M)’s TCP/IP-based
network communication, are stuttering bisimilar [27,30] and therefore satisfy the
same CTL∗ properties for any formulas not using the “next” operator. Therefore,
both safety and liveness properties are preserved by the transformation. Since
both the formal specification and its distributed implementation are given in
Maude, proving correctness of the generated code is quite straight-forward. This
is in contrast to code generation frameworks that generate code in languages,
such as C or Java, that are different from the formal specification language, and
where proving correctness of the generated code is hard and typically not done.

We have developed a prototype that automates the M �→ D(M) transforma-
tion, and have evaluated its effectiveness on two case studies. In the first one we
compare the distributed Maude implementation D(M) automatically generated
from the Maude specification M of the NO WAIT transaction protocol with a
state-of-the-art conventional C++ implementation of NO WAIT. In the second
case study we compare the Maude design M of the new distributed transaction
system ROLA with its first ever distributed implementation D(M).

Main Contributions: (i) the formal definition of the M �→ D(M) transfor-
mation; (ii) the proof that for any actor-like Maude specification M the system
D0(M) and M are stuttering bisimilar; (iii) a “proof-of-concept” implementa-
tion of the M �→ D(M) transformation allowing us to generate, deploy, and
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evaluate correct-by-construction implementations of state-of-the-art system de-
signs, and allowing interaction of such implementations with foreign objects (see
Sect. 3.3) such as the YCSB workload generator [12]; (iv) two case studies
using state-of-the-art distributed transaction systems evaluating the implemen-
tations obtained by the M �→ D(M) transformation with respect to: (a) the
statistical-model-checking-based performance predictions for M ; and (b) a con-
ventional high-performance C++ implementation. To the best of our knowledge,
this is the first time that formal models of distributed systems analyzed within
the same formal framework for both logical and performance properties are au-
tomatically transformed into logically correct-by-construction implementations
for which similar performance trends can be shown.

2 Preliminaries

Rewriting Logic and Maude. Maude [10] is a rewriting-logic-based executable
formal specification language and high-performance analysis tool for distributed
systems. Formal analysis methods include: simulation, reachability analysis, LTL
model checking, theorem proving [34,37], and, for performance estimation pur-
poses, statistical model checking with the PVeStA tool [1].

A Maude module specifies a rewrite theory (Σ,E ∪ B,R), where:

– Σ is an algebraic signature; i.e., a set of sorts, subsorts, and function symbols.
– (Σ,E ∪ B) is a membership equational logic theory specifying the system’s

data types, with E a set of conditional equations and membership axioms,
and B a set of equational axioms such as associativity, commutativity, and
identity, so that equational deduction is performed modulo the axioms B.

– R is a collection of labeled conditional rewrite rules [l] : t −→ t′ if cond ,
specifying the system’s local transitions.

We summarize the syntax of Maude and refer to [10] for details. Operators are
introduced with the op keyword: op f : s1 . . . sn -> s and can have user-definable
syntax. Equations and rewrite rules are introduced with, respectively, keywords
eq, or ceq for conditional equations, and rl and crl. The mathematical variables
in such statements are declared with the keywords var and vars.

A class declaration class C | att1 : s1, ..., attn : sn declares a class
C of objects with attributes att1 to attn of sorts s1 to sn. An object of class
C is represented as a term < o : C | att1 : val1, . . . , attn : valn >, where o, of
sort Oid, is the object’s identifier, and where val1 to valn are the current values
of the attributes att1 to attn. A message is a term of sort Msg. A system state
is modeled as a term of the sort Configuration, and has the structure of a
multiset made up of objects and messages. The dynamic behavior of a system is
axiomatized by specifying its transition patterns as rewrite rules. For example,
the rule

rl [l] : m(O,w) < O : C | a1 : x, a2 : O’, a3 : z > =>

< O : C | a1 : x + w, a2 : O’, a3 : z > m’(O’,x) .
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defines a family of transitions in which a message m(O, w) is read and consumed
by an object O of class C, whose attribute a1 is changed to x + w, and a new
message m’(O’,x) is generated. Attributes whose values do not change and do
not affect the next state, such as a3 and a2, need not be mentioned in a rule.

Sockets in Maude. Maude’s erewrite command supports rewriting with exter-
nal objects (that do not reside in the configuration) when the “portal” object
<> is present in the configuration. Objects in a Maude process, here called a
session, can communicate with external objects in the same session by message
passing. One such external object is Maude’s built-in socket manager object,
with name socketManager, that supports communicating through TCP sockets
with other remote Maude objects in other Maude sessions, as well as with re-
mote foreign objects (see Sect. 3.3) in other processes. Some of the messages
defining the interface between a Maude process and Maude’s socket manager are
the following: A message send(socketName,myOid,string) asks Maude to send
string through the socket socketName, and receive(socketName,myOid) solic-
its data through a socket. When some data (string) is received through a socket,
the socket manager sends the message received(myOid,socketName,string).

Stuttering Bisimulations. A Kripke structure A on a set AP of atomic proposi-
tions is a 4-tuple A = (A,→A, a0, LA) where A is a set of states, →A⊆ A×A is
the total transition relation on states, a0 ∈ A is the initial state, and LA, called
the labeling function, is a function LA : A → P(AP ) assigning to each state
a ∈ A the set of atomic state predicates LA(a) true in state a. A path π in A is
function π : N → A such that π(0) = a0 and ∀n ∈ N π(n) →A π(n + 1).

Definition 1. [30] Given Kripke structures A = (A,→A, a0, LA) and B =
(B,→B, b0, LB), a stuttering bisimulation map, denoted h : A → B, is a func-
tion h : A → B such that: (1) given any path π in A there is a path ρ in B
and a strictly monotonic function κ : N → N such that: (i) for each n ∈ N and
each i, κ(n) ≤ i < κ(n + 1), (ii) h(π(κ(n))) = h(π(κ(i))) = ρ(n), and (iii)
LA(π(κ(n))) = LA(π(i)) = LB(ρ(n)). And (2) given any path ρ in B there is a
path π in A and a strictly monotonic function κ : N → N satisfying (i)–(iii).

The key property of a stuttering bisimulation map h : A → B is that all
formulas ϕ ∈ CTL∗ \ © satisfied by B are also satisfied by A, and vice versa,
where CTL∗ \ © denotes the subset of the CTL∗ temporal logic not involving
the “next” operator © (for more on CTL∗ and its LTL sublogic, see [9]):

Theorem 1. [30] (Implementation Correctness). If h : A → B is a stuttering
bisimulation map, for each ϕ ∈ CTL∗ \ © we have: B |= ϕ ⇔ A |= ϕ.

We can associate to a rewrite theory R = (Σ,E,R) and an initial state
init ∈ TΣ/E a corresponding Kripke structure K(R, init) = (Reach(init),−→•

R/E

, init , L) where Reach(init) is the set of all states [u] ∈ TΣ/E reachable from init ,
−→•

R/E is the (totalization of) the one-step rewrite relation −→R/E , and L maps
each reachable state [u] to the set L([u]) = {p ∈ AP | u |= p =E true}.
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3 The D Transformation

We define the transformation M �→ D(M), mapping a Maude model M of a
distributed system to a distributed Maude program D(M) deployed on different
machines. Multiple concurrent Maude sessions may run on the same machine.

The transformation D takes as input:

– an object-oriented Maude module M defining an actor system (see below);
– an initial state init of sort Configuration, which is a set of objects

< o1 : C1 | atts1 > ... < on : Cn | attsn > with distinct names oi;

– a distribution information function di : {o1, . . . , on} → String × N

assigning to each (top-level) object oj in init a pair (ip, i), where ip is the
IP address of the machine in which oj resides, and i is a session number.

The transformation D then gives us:

– A Maude program MDdi
that runs on each distributed Maude session; and

– an initial state initDdi
(ip, i) for each Maude session (ip, i).

Notation. We write MDdi
for D(M, init, di).

The object-oriented module M should model an “actor” system, so that its
rewrite rules must have the form

(to o from o’ : mc) < o : C | ... > => < o : C | ... > msgs [if ...] (†)

or

< o : C | ... > => < o : C | ... > msgs [if ...] (‡)

where msgs is a term of sort Configuration which, applying the equations in
the module, reduces to a multiset of messages

(to o1 from oθ :mc1) ... (to ok from oθ :mck)

for k ≥ 0, where θ is the substitution used when applying the rule. In such a
message, mci is the message content (or payload) of the message being sent to
the object named oi from the object named oθ.

3.1 The M �→ MDdi Transformation

The main idea for defining the distributed Maude program MDdi
is to add mid-

dleware for communication between Maude sessions and with external objects.
This is done by adding to each Maude session a communication mediator object
that takes care of communication with non-local objects, as illustrated in Fig. 1.
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Fig. 1. Visualization of the D-Transformation

This mediator object opens
and maintains sockets for com-
munication between objects; there
is in general one socket for each
pair of objects that communicate
remotely (across machine/session
boundaries). Objects in the same
Maude session communicate with-
out using the mediator.

The only modification of the
rewrite rules in M is that a mes-
sage addressed to a remote object
is “redirected” to the local medi-
ator, which (i) establishes the re-
quired socket between the pair of
objects if not already established; (ii) transforms the original message into a
string with an “end-of-message” marker; and (iii) sends the resulting string
through the appropriate socket.

For receiving, the mediator object receives external messages through sockets
associated to “its” objects. Since TCP sockets do not preserve message bound-
aries, the mediator has to buffer the messages received in each socket. When
the buffered string contains the “end-of-message” string, the mediator extracts
the string representing the message, transforms it to a message, and leaves the
message (having a local addressee) in the local configuration.

The distributed program MDdi
consists of:

– A constant di of sort Map{Oid,Pair{String,Nat}} which specifies di as a
map from Oid to Pair{String,Nat} using an equation eq di = ....

– The module filter(M), which transforms M as described below.
– Declarations and rewrite rules defining the mediator objects and their be-

haviors (which import the SOCKET module).

The Module filter(M). The only change made by filter(M) to the rewrite rules
in M is that any message (to o’ from o : mc) generated by a rule in M is
replaced by a message (to di(o’) transfer mc from o to o’) if o’ and
o reside in different Maude sessions. Formally, this is done by adding an object
identifier < ip ; session > for each mediator object, adding a message constructor

op to_transfer_from_to_ : Oid MsgContent Oid Oid -> Msg [ctor] .

and changing each rewrite rule in M of the form (†) to

(to o from o’ : mc) < o : C | ... > => < o : C | ... > filter(msgs) [if ...]

(and similar with rules of the form (‡)), where filter redirects the messages go-
ing to remote objects to the mediator and leaves the other messages unchanged1:
1 We do not show variable declarations in this paper, but follow the convention that

variables are written in (all) capital letters.
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op filter : Configuration -> Configuration .

eq filter(none) = none .

eq filter((to O from O’ : MC) CONF)

= if di[O] =/= di[O’]

then (to di[O’] transfer MC from O’ to O) filter(CONF)

else (to O from O’ : MC) filter(CONF) fi .

Specifying the Mediator. Each mediator is defined as an object of class

class Med | sockets : Sockets,

contacts : Contacts,

bufferedMsgs : Configuration .

– sockets values are terms [socket1, str1] ... [socketk, strk], denoting that
the string str j has been received through socket socketj (and then buffered)
since the last time a message was extracted from this buffer;

– contacts is a set of triples < localObjId,socket,remoteObjId >, denoting the
socket used to communicate between two objects; and

– bufferedMsgs contains the outgoing messages when the appropriate sockets
have not yet been established.

We refer to https://github.com/siliunobi/d-transformation for a com-
plete specification of the mediator object, where most of the rewrite rules deal
with establishing Maude sockets along the lines explained in [10, Chapter 11].
In this paper we just show the following two rewrite rules for the mediator.

rl [sendRemote] :

(to O transfer MC from O’ to O’’)

< O : Med | contacts : CONTACTS ; < O’, SOCKET, O’’ > >

=>

< O : Med | >

send(SOCKET, O’, msg2string(to O’’ from O’ : MC) + "[msep]") .

In this rule, the mediator is tasked with transferring the message content MC
from the local object O’ to the remote object O’’. The rule uses Maude’s built-
in message send to send the message through the socket SOCKET, which has
already been established between O’ and O’’. Since sockets transport strings,
the function msg2string is used to transform the message into a string; the
end-of-message separator "[msep]" is then appended to the string.

The following rule applies when a configuration receives a message received(S,

SKT, DATA), denoting that a string DATA has been received through socket SKT.
The mediator adds DATA to the string STR that it has buffered for socket SKT:

rl [receiveData] :

received(S, SKT, DATA)

< O : Med | sockets : SKTS [SKT, STR] >

=>

< O : Med | sockets : SKTS [SKT, STR + DATA] >

receive(SKT, S) .

https://github.com/siliunobi/d-transformation
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See our report [26] for the rule where the mediator extracts a message from a
socket and adds it to the local configuration. Objects in the same Maude session
communicate without going through sockets or mediators.

The Module MDdi
. To summarize, the distributed Maude program MDdi

executed
at each local host consists of the definition of di and the union of the module
filter(M) and the mediator specification:

mod MDdi is including filter(M) + MEDIATOR . eq di = ... . endm

3.2 Distributed Initial States

The initial state initDdi
(ip, n) at Maude session (ip, n) is a configuration with:

– the objects in init mapped to (ip, n) by di;
– one mediator object

< < ip ;n > : Med | sockets : empty, contacts : empty, bufferedMsgs : none >

– one occurrence of the built-in “portal” object <> denoting that we rewrite
with external objects, such as Maude’s built-in socket manager; and

– for each top-level (non-mediator) object o in the configuration, a message

createServerTcpSocket(socketManager, o, port#, 5)

3.3 Communicating with Foreign Objects

A socket-based distributed Maude object system can easily be extended to inter-
act with objects foreign to it with no changes to the existing rewrite rules: only
the new messages and rules defining the interaction with new foreign objects—
databases, web sites, display devices, and so on—need to be specified.

Suppose that C is a class of Maude objects that needs to communicate with
foreign objects. All we need are three things: (a) a signature of messages sent
by objects in C to such foreign object and by foreign objects to objects in C; (b)
rewrite rules for the objects of class C specifying how messages to foreign objects
are generated and how objects of class C react to messages sent by foreign objects;
and (c) a wrapper encapsulating a foreign object that can transform the string
representation of a message from a C object into an internal command to the
foreign object, and a reply from the foreign object into the string representation
of a message to a C object. In this work we have used the steps (a)–(c) to allow
communication between a YCSB [12] foreign object and standard Maude objects
to carry out system evaluations on realistic workloads.
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3.4 Deployment

We have built a simple Python-based prototype that automates the process of
deploying and running the distributed Maude model on distributed machines.
The tool takes as input the IP addresses of the distributed machines and the
number of Maude sessions on each machine.

We have run distributed Maude deployments to perform large-scale experi-
ments on distributed transaction systems. To experiment with realistic work-
loads, we have connected our distributed implementation to the well-known
YCSB workload generator [12] as explained in Sect. 3.3. Our tool also in-
vokes the workload generator to initialize and to load data into the database,
and to generate transactions for the different Maude instances to execute.

To measure the performance of our distributed implementation, we have
added a “log” attribute to each mediator object that records relevant data during
the distributed execution. A Python script then inspects and aggregates these
logs after execution to compute the overall performance metric of the system.

4 Correctness Preservation

Our goal is to obtain a distributed implementation of a Maude specification
that is correct by construction: If the original Maude model M , with initial
state init, satisfies a CTL∗ temporal logic property φ that does not contain the
“next” operator ©, then φ should also hold in the distributed implementation
MDdi

when started with corresponding distributed initial state(s), and vice versa.
Since MDdi

uses TCP/IP socket objects for communication between differ-
ent Maude sessions, a full proof of correctness of the M �→ MDdi

transformation
would require modeling the TCP/IP protocol and its associated network failure
model, which is beyond the scope of this paper. Instead, we use the approach
followed in other proofs of correctness of distributed systems obtained by trans-
formation from formal specifications, e.g., [36,40], where network communication
is abstracted away. Therefore, we present below a proof of correctness which uses
an intermediate formal model D0(M, init, di) which abstracts away the network
communication details by providing a high-level abstraction of it.

4.1 The Model D0(M, init, di)

The rewrite theory D0(M, init, di) is essentially as MDdi
, except that it ab-

stracts away the establishment of the appropriate sockets, and models the effect
of socket communication in rewriting logic at a higher level of abstraction. The
model D0(M, init, di) therefore simplifies MDdi

as follows.
Concerning the mediator class:

– Since we no longer have explicit sockets, the contacts attribute of Med is no
longer needed.

– Since we assume that the sockets have been successfully established, the
attribute bufferedMsgs, used to buffer outgoing messages that could not
yet be transmitted since some socket was not established, is not needed.
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– Since we abstract away the fact that TCP sockets do not preserve message
boundaries, we do not need to buffer messages at the receiving end, and
therefore the attribute sockets is no longer needed.

The mediator class therefore no longer needs any attributes, and is declared as
follows in D0(M, init, di): class Med .

The rewrite rules in D0(M, init, di) differ from those in MDdi
as follows:

– Since we abstract from the establishment of sockets, the rules in MDdi
dealing

with this issue (not shown in this paper) are omitted from D0(M, init, di).
– The rule sendRemote in MDdi

is replaced by the rule

rl [sendRemote] :

(to O transfer MC from O’ to O’’) < O : Med | >

=>

< O : Med | > transfer(di[O’’], O, msg2string(to O’’ from O’ : MC)) .

where a “transfer” message models socket communication.
– When a mediator receives such a transfer message (modeling socket commu-

nication), it transforms the received string into a message, which is then re-
leased into the configuration. Rules receiveData and extractRemoteMsg in
MDdi

are therefore replaced by the following rewrite rule in D0(M, init, di):

crl [receiveRemoteMsg] :

transfer(O, O’, STRING) < O : Med | >

=>

< O : Med | > string2msg(STRING) .

Initial States. The initial state in D0(M, init, di) corresponding to the state
init in M is just init with an additional mediator object < < ip ;n > : Med | >
for each (ip, n) ∈ image(di). We call this initial state initD0 .

4.2 D0(M, init, di) and M are Stuttering Bisimilar

We show that the Kripke structures K(D0(M, init, di), initD0) and K(M, init)
are stuttering bisimilar for their respective labeling functions L ◦ h and L.

We define the map h : Reach(initD0) → Reach(init) as follows:

eq h(none) = none .

eq h(< O : Med | > CONF) = h(CONF) .

ceq h(< O : C | > CONF) = < O : C | > h(CONF) if C =/= Med .

eq h((to O transfer MC from O’ to O’’) CONF)

= (to O’’ from O’ : MC) h(CONF) .

eq h((transfer(O,O’,STRING)) CONF) = string2msg(STRING) h(CONF) .

eq h((to O from O’ : MC) CONF) = (to O from O’ : MC) h(CONF) .

That is, h maps a configuration in D0(M, init, di) to a similar configuration in
M with the following modifications: (i) the mediator objects are forgotten, and
(ii) the three intermediate messages involved in transferring a message content
mc from o to a remote o′ are all mapped to the message (to o′ from o : mc).
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Theorem 2. h is a stuttering bisimulation map

h : K(D0(M, init, di), initD0) → K(M, init)

with corresponding labeling functions L ◦ h and L.

The proof of Theorem 2 is given in our longer report [26]. The following main
correctness-preservation result follows immediately from Theorems 1 and 2:

Theorem 3. Given a rewrite theory M specifying a distributed system and an
initial state init as described in Sect. 3, a distribution information function
di mapping the top-level objects in init to different machines/Maude sessions,
a labeling function L over a set AP of atomic propositions, and a CTL∗ formula
ϕ over AP not containing the “next” operator, then

K(M, init) |= ϕ if and only if K(D0(M, init, di), initD0) |= ϕ

for the labeling function L ◦ h in K(D0(M, init, di), initD0).

5 Prototype and Experiments

We have implemented, in around 300 LOC, a “proof-of-concept” prototype of the
D transformation that automatically transforms a Maude model of a distributed
system into a distributed Maude implementation. We have applied our prototype
to the Maude specification of: (i) a lock-based distributed transaction protocol
which has been implemented in C++ and evaluated in [16]; and (ii) the ROLA
transaction system design. ROLA [22] is a new design whose correctness and
performance have been analyzed using Maude and PVeStA, but which has
never been implemented. Using our prototype and the Maude specification of
ROLA we obtain the first distributed implementation of ROLA for free.

We have subjected our two distributed Maude implementations so obtained
to realistic workloads generated by YCSB to answer to the following questions:

Q1: Are the performance evaluations obtained for the distributed Maude imple-
mentations consistent with conventional distributed implementations of the
same designs (if available) and with the model-based performance predic-
tions obtained by statistical model checking of the original Maude designs?

Q2: How does the performance of a distributed Maude implementation auto-
matically generated by our unoptimized prototype compare with that of a
state-of-the-art distributed implementation in C++ of the same design?

Answers to Q1 cannot be an agreement between the performance values predicted
by statistically model checking a Maude model and the values measured in an ex-
perimental evaluation. This is impossible because: (i) measured values depend on
the experimental platform used; (ii) the probability distributions used in statis-
tical model checking are only approximations of the expected behavior; and (iii)
the sizes of initial states used in statistical model checking and in experimental
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evaluations are typically quite different, due to feasibility restrictions placed by
statistical model checking. Therefore, the desired consistency between the per-
formance predicted by statistically model checking a model and the performance
obtained by experimentally evaluating an implementation is an agreement be-
tween predicted and measured trends: If, e.g., throughput increases as a function
of the proportion of read transactions, then consistency means that it should do
so along curves that are similar up to a change of scale.

5.1 Experimental Setup

Implementation-Based Evaluation. We evaluated the two case studies using the
Yahoo! Cloud Serving Benchmark (YCSB) [12], which is the open standard for
performance evaluation of data stores. We used the built-in C++ implementation
of YCSB in [16] in our first case study. For ROLA, we used a variant of the
original Java implementation of YCSB adapted to transaction systems [3]. We
deployed the two systems on a cluster of d430 Emulab machines, with ping
time between machines approximately 0.13 ms. In both cases, we considered
5 partitions (of the database) on 5 machines, and client processes split across
another 5 separate machines; we considered the same mix of read-only, write-
only, and read-write transactions, with each transaction accessing up to 8 keys.
We used Zipfian distribution for key accesses with parametric skew factor theta.

Statistical Model Checking (SMC). By running Monte-Carlo simulations from a
given initial state, SMC estimates the expected value of an expression up to a
user-specified level of confidence. We probabilistically generated initial states so
that each PVeStA simulation starts from a different state. To mimic the real-
world network environment, we used lognormal distribution for message delays
[5]. We used 10 machines of the above type to perform statistical model checking
with PVeStA. The confidence level for all our statistical experiments is 95%.

Standard Model Checking. We used the CAT tool [25] for model checking con-
sistency properties of our Maude models. The analysis was performed with all
initial states up to 4 transactions, 2 keys, 2 clients, and 2 servers.

5.2 Case Study I: Lock-Based Distributed Transactions

NO WAIT [13] is a strict two-phase-locking-based distributed transaction sys-
tem with two-phase commit (2PC) as its atomic commitment protocol, and has
been implemented in the Deneva framework [16] using C++. We formally spec-
ified NO WAIT in Maude, and then automatically generated the corresponding
distributed Maude implementation. We used the C++ implementation in [16] in
our experiments with NO WAIT. Our Maude model of NO WAIT has around
600 LOC, whereas the C++ implementation in [16] has approximately 12K LOC.

We performed two sets of experiments (Lock A and Lock B in Fig. 2), fo-
cusing on the effect of varying the contention in the system. For each set of ex-
periments, we plot the results of statistical model checking of our Maude model,
and of measurements of the distributed Maude and C++ implementations.
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Regarding Q1, in Lock A we vary the contention by tuning the skew theta,
and compare two workloads, with 50% and 100% update transactions. In Lock B
we analyze the throughput as a function of the percentage of read-only transac-
tions with skew theta = 0.5, and focus on the impact of transaction sizes (number
of operations in a transaction). All three plots in each experiment show similar
trends for the model- and implementation-based evaluations. That is, our dis-
tributed Maude implementation-based evaluation not only agrees with statistical
predictions, but also with state-of-the-art implementation-based results.

Regarding Q2, our distributed system achieves lower peak throughput, by a
factor of 6, than the C++ implementation. Some reasons for this lower perfor-
mance are: (i) our tool is an unoptimized prototype, whereas the C++ imple-
mentation of NO WAIT is optimized for performance (e.g., the socket library
nanomsg provides a fast and scalable networking layer); and (ii) the M �→ D(M)
transformation allows adding any benchmarking tool as a foreign object, which
is flexible but adds an extra layer of communication, whereas YCSB and the
protocol clients are directly integrated in the C++ implementation.

We have also used the CAT tool [25] to model check our Maude model of
NO WAIT against 6 consistency properties, without finding any violation. If our
trusted code base executes correctly, Theorem 3 ensures that our distributed
Maude implementation of NO WAIT satisfies the same consistency properties
for the corresponding initial states.

5.3 Case Study II: The ROLA Transaction System

ROLA [22] is a recent distributed transaction protocol design that guarantees
read atomicity (RA) and prevents lost updates (PLU). In [22], ROLA was for-
malized in Maude, model checked for the above consistency properties, and sta-
tistical model checking performance estimation showed that ROLA outperforms
well-known distributed transaction system designs guaranteeing RA and PLU.
However, up to now there was no distributed implementation of ROLA. Us-
ing our tool and the Maude specification of ROLA in [22] (which consists of
approximately 850 LOC), we obtain such a correct-by-construction distributed
implementation for free.

We have performed statistical model checking of the Maude specification, and
have run our distributed Maude implementation on YCSB-generated workloads,
on two groups of experiments (see Fig. 3). In ROLA A we increase the amount of
reads, and compare throughput with various partitions of the entire database (5
partitions against 3 partitions). In ROLA B we plot throughput as a function of
the number of concurrent clients, and focus on the effect of increasing the amount
of contention (95% reads against 50% reads). Both plots in each experiment agree
reasonably well.

All consistency properties model checked in [22] are preserved (Theorem 3)
assuming correct execution of the trusted code base.

All system models, property specifications, and distributed Maude implemen-
tations are available at https://github.com/siliunobi/d-transformation.

https://github.com/siliunobi/d-transformation
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Fig. 2. NO WAIT: Throughput obtained from statistical model checking (top), dis-
tributed Maude implementation (middle), and C++ implementation (bottom). Exper-
iments Lock A (left) and Lock B (right) measure throughput for different ratios of
updates and transaction sizes when varying skew factors and ratios of reads, resp.

6 Related Work

Our work is related to various formal frameworks for specification, verification,
and implementation of distributed systems that try to reduce the formality gap
[41] between the formal specification of a distributed system’s design and its
implementation. They can be roughly classified in three categories (only some
example frameworks in each category are discussed):

1. Generating Imperative Implementation from Formal Models. Formal frame-
works such as those in, e.g., [14,15,39], offer the possibility of generating dis-
tributed Java or C implementations from formal models.

2. Specification, Verification, and Proof of Imperative Implementation. A good
example of state-of-the art recent work in this category is the IronFleet frame-
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Fig. 3. ROLA: Comparison between statistical model checking (top) and distributed
Maude implementation (bottom). Experiments ROLA A (left) and ROLA B (right)
measure throughput for different number of partitions and different ratios of reads
when varying ratios of reads and concurrent clients, respectively.

work [17]. Distributed systems are specified in a mixture of Lamport’s TLA and
Hoare logic assertions for imperative sequential code in Leino’s Dafny language
[20]. They are then formally verified with various tools, including Z3 [31] and
the Dafny prover. Dafny code is then compiled into C# code.

3. Specification, Verification, and Transformation into Correct Distributed Im-
plementation. Work in this category has for the most part been based on con-
structive logical frameworks such as Nuprl [11] and Coq [6]. In particular: (i) the
Event-ML framework begins with an Event-ML specification and the desired
properties both expressed in Nuprl and extracts a GPM program implementa-
tion; (ii) theVerdi framework [40] begins with a distributed system design and
a set of safety properties, both specified in Coq; after desired properties are
verified in Coq, the OCaml code of a correct implementation is extracted and
deployed using a trusted shim; (iii) the Chapar framework [21] is specialized to
extract correct-by-construction implementations of key-value stores in OCaml
from formal specifications of such stores and of their consistency properties ex-
pressed and verified in Coq; and (iv) the Disel modular framework [36] specifies
both distributed system designs and their desired properties in Coq, uses Coq to
prove the desired properties, and extracts correct-by construction OCaml code.

Comparison with the Maude Framework. To the best of our knowledge, none of
the above frameworks provide support for prediction of performance properties
by statistical model checking, whereas Maude does so through PVeSta. In con-
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trast to related work in category (1), where the correctness of the generated Java
or C code is not proved (e.g., [15]), we prove the correctness of the generated
distributed implementation. A possible exception is the effort in [14,39] which
“argues the correctness” of their compilation from I/O automata to Java by mod-
eling the compiled code as I/O automata. They also assume correctness of data
type implementations, and only claim preservation of safety properties, whereas
we also prove preservation of liveness properties. The main difference with the
IronFleet framework in category (2) is that imperative programs are a problem-
atic, low level choice for expressing formal design specifications. Furthermore,
system properties can be considerably harder to prove at that level. Regarding
frameworks in category (3), our work within the Maude framework shares with
them the possibility of generating correct-by-construction distributed implemen-
tations from designs and of verifying such designs using theorem proving [34,37],
but also adds the possibility of rapid exploration of different design alterna-
tives by testing and by automatic model checking analysis, and the prediction
of system performance before implementation. The point is that beginning with
a human-intensive theorem proving verification effort may be both premature
and costly. Instead, in Maude, designs can be analyzed and improved by fully
automated methods before a mature design is fully verified by theorem proving.

7 Conclusions

We have presented and implemented a “proof-of-concept” prototype of the D
transformation taking a Maude model M of a distributed system design and au-
tomatically generating the distributed Maude implementation D(M). We have
proved that M and a model D0(M) of D(M) abstracting network communica-
tion details are stuttering bisimilar and therefore satisfy the same safety and
liveness properties. We have applied our method to automatically obtain dis-
tributed implementations of two state-of-the-art distributed transaction system
designs—and have executed them on YCSB workloads. We have also compared
the performance of D(M) and a high-performance conventional C++ imple-
mentation, which outperforms our prototype by a factor of six. This work shows
that it is possible to automatically generate reasonable, but not yet optimal,
correct-by-construction distributed implementations from very high level and
easy to understand executable formal specifications of state-of-the-art system
designs which are much shorter (a factor of 20 for the C++ implementation of
NO WAIT) than conventional implementations.

Our Maude implementation of the M �→ D(M) transformation is a proof-of-
concept prototype with ample room for improvement. The obvious next step is to
arrive at an efficient Maude implementation of the M �→ D(M) transformation.
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