
Ritchie Lee

Susmit Jha

Anastasia Mavridou

Dimitra Giannakopoulou (Eds.)

12th International Symposium, NFM 2020
Moffett Field, CA, USA, May 11–15, 2020
Proceedings

NASA
Formal MethodsLN

CS
 1

22
29

Fo
rm

al
 M

et
ho

ds

Lecture Notes in Computer Science 12229

Formal Methods
Subline of Lectures Notes in Computer Science

Subline Series Editors

Ana Cavalcanti, University of York, UK

Marie-Claude Gaudel, Université de Paris-Sud, France

Subline Advisory Board

Manfred Broy, TU Munich, Germany

Annabelle McIver, Macquarie University, Sydney, NSW, Australia

Peter Müller, ETH Zurich, Switzerland

Erik de Vink, Eindhoven University of Technology, The Netherlands

Pamela Zave, AT&T Laboratories Research, Bedminster, NJ, USA

Founding Editors

Gerhard Goos, Germany
Juris Hartmanis, USA

Editorial Board Members

Elisa Bertino, USA
Wen Gao, China
Bernhard Steffen , Germany

Gerhard Woeginger , Germany
Moti Yung, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Ritchie Lee • Susmit Jha • Anastasia Mavridou •

Dimitra Giannakopoulou (Eds.)

NASA
Formal Methods
12th International Symposium, NFM 2020
Moffett Field, CA, USA, May 11–15, 2020
Proceedings

123

Editors
Ritchie Lee
NASA Ames Research Center
Moffett Field, CA, USA

Susmit Jha
SRI International
Menlo Park, CA, USA

Anastasia Mavridou
KBR Inc., NASA Ames Research Center
Moffett Field, CA, USA

Dimitra Giannakopoulou
NASA Ames Research Center
Moffett Field, CA, USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-55753-9 ISBN 978-3-030-55754-6 (eBook)
https://doi.org/10.1007/978-3-030-55754-6

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer Nature Switzerland AG 2020, corrected publication 2020
Chapter “Verifying a Solver for Linear Mixed Integer Arithmetic in Isabelle/HOL” is licensed under the terms
of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).
For further details see licence information in the chapter.
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-8881-4863
https://orcid.org/0000-0001-5983-9095
https://orcid.org/0000-0002-3943-9753
https://doi.org/10.1007/978-3-030-55754-6

Preface

The sustained improvement in hardware performance, the rapid progress in
software-based control, and the emergence of artificial intelligence with near-human
performance have accelerated the adoption of cyber-physical systems and, in particular,
autonomous or semi-autonomous systems. An immense increase in system complexity
has accompanied this acceleration in adoption. The traditional abstraction layers have
been broken by the rise in new enabling technologies such as hardware acceleration
and big-data-driven models, as well as unique application needs such as energy effi-
ciency, human-in-the-loop systems, and resilient distributed computing. These factors
have widened the gap between what can be designed with acceptable average behavior
and what can be analyzed for their worst-case behavior.

NASA and the aerospace industry are at the frontier of the effort to tame the growing
complexity of systems with the development of formal analysis approaches to ensure
system safety and certification. In recent years, new challenges have emerged for
system specification, development, verification, and the need for system-wide fault
detection, diagnosis, and prognostics. Systems such as autonomous on-board software
for Unmanned Aerial Systems (UAS) and UAS Traffic Management (UTM) require
rethinking traditional approaches to assurance. The NASA Formal Methods Sympo-
sium (NFM) is a forum to foster collaboration between theoreticians and practitioners
from NASA, academia, and the industry to address these challenges. The goal is to
facilitate the development of advanced techniques that address specification, design,
verification, validation, and certification requirements. These techniques will facilitate
the responsible adoption of these complex systems in mission-critical and
safety-critical applications in aerospace as well as other industries such as automobiles,
robotics, and medical equipment.

NFM is an annual event organized by the NFM Steering Committee, comprised of
researchers spanning several NASA centers. The series began in 1990 as the Langley
Formal Methods Workshop (LFM) at NASA Langley and later became the NASA
Formal Methods Symposium starting in 2009 when it became an annual NASA-wide
event. The symposium is hosted by a different NASA center each year. This year, NFM
was hosted and organized by the NASA Ames Research Center.

This volume contains the papers presented at the 12th NASA Formal Methods
Symposium (NFM 2020) held during May 11–15, 2020. The symposium was origi-
nally planned to be held physically at NASA Ames. However, due to the travel
restrictions and shelter-in-place orders arising from COVID-19, the symposium was
shifted to be completely online this year. The convenience of participating in a virtual
event brought a record number of registrations. This year, we had 857 registered
participants from 48 different countries around the world.

The main program contained two categories of papers: (1) regular papers, presenting
fully developed work and complete results and (2) short papers, presenting tools or

experience reports on applications of formal methods to real systems. We encouraged,
but did not require, that papers be accompanied by publicly-available artifacts.

We received 80 abstract submissions, which ultimately resulted in 62 paper sub-
missions. The symposium accepted a total of 25 papers (20 regular, 5 short) to be
presented, resulting in an overall acceptance rate of 40.3% (39.2% regular, 45.4%
short). The papers were reviewed by an international Program Committee of 44
members from a mix of academia, government, and industry. All submissions went
through a rigorous single-blind reviewing process overseen by the Program Committee
chairs. Each submission was reviewed by at least three reviewers.

The main program also featured six invited talks covering all aspects of
safety-critical systems. Professor Byron Cook from Amazon Web Services and
University College London gave a keynote talk on formal methods for cloud services.
Professor David Dill from Facebook Calibra and Stanford University gave a keynote
talk about formal methods for blockchain. Dana Schulze from the National Trans-
portation Safety Board (NTSB) gave a keynote talk about transportation accidents and
safety. Professor Sanjit Seshia from UC Berkeley gave a keynote talk on formal
methods for autonomous and cyberphysical systems. Dr. Vandi Verma from
NASA JPL gave a keynote talk about Mars 2020 rover and challenges. Finally, Léo-
nard Bouygues from Google Loon gave a keynote talk about safety and high-altitude
balloon networks. The main program also included a special session introducing the
SAE G-34/EUROCAE WG-114 Working Group, which is a standards development
committee for AI certification.

In addition to the main program, the symposium also had two affiliated workshops:
Workshop on AI Safety and Workshop on Formal Methods for Cryptographic Proofs.

We gratefully thank the authors for submitting and presenting their work at NFM
2020. We thank the invited speakers, Steering Committee, session chairs, Program
Committee and external reviewers, and support staff, all of whom have contributed to
make the virtual symposium successful. Finally, we thank our sponsor UTRC and
everyone who attended NFM this year. The NFM 2020 website can be found at https://
ti.arc.nasa.gov/events/nfm-2020/.

May 2020 Ritchie Lee
Susmit Jha

Anastasia Mavridou
Dimitra Giannakopoulou

The original version of the book was revised: a forgotten volume editor was added. The
correction to the book is available at https://doi.org/10.1007/978-3-030-55754-6_26

vi Preface

https://ti.arc.nasa.gov/events/nfm-2020/
https://ti.arc.nasa.gov/events/nfm-2020/

Organization

General Chairs

Dimitra Giannakopoulou NASA Ames Research Center, USA
Anastasia Mavridou NASA Ames Research Center and KBR, USA

Program Committee Chairs

Ritchie Lee NASA Ames Research Center, USA
Susmit Jha SRI International, USA

Steering Committee

Julia Badger NASA Johnson, USA
Aaron Dutle NASA Langley, USA
Klaus Havelund NASA JPL, USA
Michael R. Lowry NASA Ames, USA
Kristin Y. Rozier Iowa State University, USA
Johann Schumann NASA Ames and KBR, USA

Program Committee

Aaron Dutle NASA Langley, USA
Ahmed Irfan Stanford University, USA
Alessandro Cimatti Fondazione Bruno Kessler (FBK), Italy
Alwyn Goodloe NASA Langley, USA
Arie Gurfinkel University of Waterloo, Canada
Arnaud Venet Facebook, USA
Ashlie Hocking Dependable Computing, USA
Brian Jalaian Army Research Laboratory, USA
Catherine Dubois ENSIIE, France
Cesar Munoz NASA Langley, USA
Christoph Torens German Aerospace Center (DLR), Germany
Constance Heitmeyer Naval Research Laboratory, USA
Corina Pasareanu NASA Ames and Carnegie Mellon University, USA
Cormac Flanagan UC Santa Cruz, USA
Cristina Seceleanu Malardalen University, Sweden
Daniel Genin Johns Hopkins University APL, USA
Erika Ábrahám RWTH Aachen University, Germany
Ewen Denney NASA Ames and KBR, USA
Falk Howar Dortmund University, Germany
Huafeng Yu Boeing, USA

J. Aaron Pendergrass Johns Hopkins University APL, USA
Jean-Baptiste Jeannin University of Michigan, USA
Johann Schumann NASA Ames and KBR, USA
Klaus Haveland NASA JPL, USA
Konrad Slind Rockwell Collins, USA
Kristin Rozier Iowa State University, USA
Laura Kovacs TU Wien, Austria
Laura Titolo NASA Langley and NIA, USA
Marielle Stoelinga University of Twente and Radboud University,

The Netherlands
Michael Lowry NASA Ames, USA
Michael Whalen Amazon Web Services, USA
Natasha Neogi NASA Langley, USA
S. Ramesh General Motors, USA
Shaun McWherter NASA Armstrong, USA
Simon Bliudze Inria, France
Stavros Tripakis Northeastern University, USA
Stefan Mitsch Carnegie Mellon University, USA
Stefania Gnesi ISTI, Italy
Steven Drager Air Force Research Laboratory, USA
Taylor Johnson Vanderbilt University, USA
Ufuk Topcu The University of Texas at Austin, USA
Virginie Wiels ONERA, France
Willem Visser Stellenbosch University, South Africa
Xiaoqing Jin Apple, USA

Additional Reviewers

Peter Backeman
Davide Basile
Steven Carr
Esther Conrad
Thao Dang
Jyotirmoy Deshmukh
Florian Faissole
Alessandro Fantechi
Lu Feng
Predrag Filipovikj
Jie Fu
Georgios Giantamidis
Stephen Giguere
Rong Gu
Arnd Hartmanns
Fabian Immler
Brian Kempa

Rom Langerak
Nham Le
Makai Mann
Omer Nguena Timo
Melkior Ornik
Ivan Perez
Arnau Prat i Sala
Swarn Priya
John Rushby
Sebastian Schirmer
Stefan Schupp
Maximilian Schwenger
Tanner Slagel
Hari Govind Vediramana Krishnan
Abhinav Verma
Haoze Wu
Djurre van der Wal

viii Organization

Abstracts of Invited Talks

Automated Reasoning at Amazon

Byron Cook

Amazon Web Services, University College London
b.cook@cs.ucl.ac.uk

Abstract. This talk will discuss the development and use of formal verification
tools within Amazon Web Services (AWS) to increase the assurance of its cloud
infrastructure and to help customers help themselves build correct cloud-based
systems. I will also discuss some open challenges that could inspire future
research in the community.

Biography

Byron Cook is Professor of Computer Science at University College London
(UCL) and Senior Principal Scientist at Amazon. Byron’s interests include
computer/network security, program analysis/verification, programming languages,
theorem proving, logic, hardware design, operating systems, and biological systems.

A Formal Verifier for the Libra Blockchain
Move Language

David Dill

Facebook Inc., Stanford University
dill@cs.stanford.edu

Abstract. The Libra blockchain, which was initiated last year by Facebook,
includes a novel programming language called Move for implementing smart
contracts. We plan for the Libra blockchain to host massive amounts of assets,
and all transactions are mediated by Move programs, and smart contracts on
other blockchains have had devastating bugs resulting in major losses of assets,
so we consider the correctness of Move programs to be critical. The Move
language is designed to be as safe as we can make it, and it is accompanied by a
formal specification and automatic verification tool, called the Move Prover. Our
aspiration is that every Move program will be thoroughly specified and verified
before being deployed on the blockchain.

Biography

David L. Dill is a Lead Researcher at Facebook, working on the Libra blockchain
project. He is also Donald E. Knuth Professor, Emeritus, in the School of Engineering
at Stanford University. He was on the faculty in the Department of Computer Science
at Stanford from 1987 until going emeritus in 2017, and starting his current position at
Facebook in 2018. Prof. Dill’s research interests include formal verification of soft-
ware, hardware, and protocols, with a focus on automated techniques, as well as voting
technology and computational biology. He is an IEEE Fellow, an ACM Fellow, a
member of the National Academy of Engineering, and the American Academy of Arts
and Sciences. He received an EFF Pioneer Award for his work in voting technology
and is the founder of VerifiedVoting.org.

Improving Design Assurance Through
Accident/Incident Lessons Learned

Dana Schulze

National Transportation Safety Board (NTSB)
dana.schulze@ntsb.gov

Abstract. The NTSB has investigated or participated in the investigation of
numerous accidents and incidents involving the failure of complex aircraft
systems. While accidents involving these types of failures are quite rare, their
occurrence offers lessons learned for the design and certification communities.
Findings in several cases suggest that these malfunctions are not typically the
result of software production deficiencies but rather system or software
requirements deficiencies. Case studies involving two NTSB investigations will
be discussed and used to introduce the broader set of design issues that accident
and incident investigations have revealed, which could be useful in under-
standing the improvements needed in design assurance methods and their
implementation to improve complex system certification outcomes.

Biography

Dana Schulze, Director of the Office of Aviation Safety, has been with the National
Transportation Safety Board since 2002. She began her career with the Safety Board as
an Aircraft System Safety Engineer in the Aviation Engineering Division and served as
a Group Chairman and investigator on numerous major domestic and international
airline accident investigations, including Alaska Airlines flight 261, Pinnacle Airlines
flight 3701, and American Airlines flight 587. In 2006, Ms. Schulze became Chief
of the Aviation Engineering Division, which is responsible for investigating the air-
worthiness of aircraft involved in major aviation accidents and serious incidents. Ms.
Schulze later served as the Chief of the Major Investigations Division where she
oversaw more than a dozen major airline accident investigations, including the
investigation of US Airways flight 1549 in Weehawken, New Jersey, and Colgan Air
flight 3407 in Clarence Center, New York, and subsequently as Deputy Director,
leading the organization’s execution of air carrier investigations and safety initiatives as
well as the development of emergent programs for unmanned aircraft systems and
commercial space accident investigation. In 2018, she was named the Acting Director
of the Office of Aviation Safety and moved into the Director role in 2019. Prior to
joining the NTSB, Ms. Schulze worked in the commercial aerospace industry in staff
engineering and engineering management roles related to design, system safety, reli-
ability, and quality. She received her Bachelor of Science degree in Space Sciences and
Mechanical Engineering from the Florida Institute of Technology and Master of
Science degree in Mechanical Engineering from the State University of New York.

Ms. Schulze is also a recipient of the Distinguished Presidential Rank Award, which
recognizes a select group of career members of the United States Government Senior
Executive Service (SES) for sustained extraordinary accomplishments on a national or
international level.

xiv D. Schulze

Verified Artificial Intelligence and Autonomy

Sanjit Seshia

UC Berkeley
sseshia@berkeley.edu

Abstract. Verified artificial intelligence (AI) is the goal of designing AI-based
systems that have strong, verified assurances of correctness with respect to
mathematically-specified requirements. This goal is particularly important for
autonomous and semi-autonomous systems. In this talk, I will consider Veri-
fied AI from a formal methods perspective and with a special focus on auton-
omy. I will describe the challenges for and recent progress towards attaining
Verified AI, with examples from the domain of intelligent cyber-physical sys-
tems, with a particular focus on autonomous vehicles and aerospace systems.

Biography

Sanjit A. Seshia is a Professor in the Department of Electrical Engineering and
Computer Sciences at the University of California, Berkeley. He received a Masters
and PhD in Computer Science from Carnegie Mellon University, and a Bachelor in
Computer Science and Engineering from the Indian Institute of Technology, Bombay.
His research interests are in formal methods for dependable and secure computing, with
a current focus on the areas of cyber-physical systems, computer security, machine
learning, and robotics. He has made pioneering contributions to the areas of satisfia-
bility modulo theories (SMT), SMT-based verification, and inductive program syn-
thesis. He is co-author of a widely-used textbook on embedded, cyber-physical systems
and has led the development of technologies for cyber-physical systems education
based on formal methods. His awards and honors include a Presidential Early Career
Award for Scientists and Engineers (PECASE), an Alfred P. Sloan Research Fellow-
ship, the Frederick Emmons Terman Award for contributions to electrical engineering
and computer science education, the Donald O. Pederson Best Paper Award for the
IEEE Transactions on CAD, and the IEEE Technical Committee on Cyber-Physical
Systems (TCCPS) Mid-Career Award. He is a Fellow of the IEEE.

Operable NASA Robots on Mars and Beyond

Vandi Verma

NASA Jet Propulsion Laboratory (JPL)
vandana.verma@jpl.nasa.gov

Abstract. The talk will provide an overview of Mars rovers and the challenges
with developing operable space robots.

Biography

Vandi Verma leads the Operable Robotics group in the Mobility and Robotic Systems
Section at NASA Jet Propulsion Laboratory. She has developed software for and
operated multiple rovers on Mars and has worked on research rovers deployed in the
Arctic, Antarctic, and the Atacama. Vandi’s interests include space robotics, autonomy,
and operability. She is currently working on robotic arm and sample caching algo-
rithms, flight software for the Mars 2020 Perseverance rover, and is the software
architect for the Europa Lander advanced autonomy prototype. She has a PhD in
Robotics from Carnegie Mellon University.

Evolving Airspace Regulations and Systems
to Enable Large Scale, Highly Automated

Operations in the Stratosphere

Léonard Bouygues

Google Loon
leonardb@loon.com

Abstract. Loon is a network of stratospheric vehicles that provide connectivity
to thousands of people living in underserved regions around the world. With
over 350k flight hours in 2019 and over one million flight hours total, it is the
world’s first large-scale automated fleet of unmanned vehicles.
Aviation regulations, concepts of operations, and aviation systems need to

evolve to enable new technologies like Loon. Loon is partnering with regulators,
the entire community of stratospheric operators, and research organizations to
cooperatively evolve this airspace. 1) Develop collaborative traffic management
concepts that are necessary to handle the unique vehicle performance charac-
teristics and the dynamic ecosystem. 2) Develop new risk and
performance-based safety frameworks needed to ensure a safe environment in
which technologies and designs can evolve rapidly. 3) Develop new validation
methods for modern software development techniques and a rapidly evolving
software ecosystem. 4) Propose adaptations to roles and responsibilities of
humans in the context of large-scale automated systems.

Biography

Léonard is currently Head of Aviation Strategy at Loon. Loon is a network of
high-altitude balloons that provide telecommunications access to unserved and
underserved populations. It is the first large-scale automated fleet of unmanned vehicles
and has already surpassed one million flight hours.

In this role, Léonard is responsible for the development of innovative aviation
concepts. He currently leads industry players in the development of the “Collaborative
Traffic Management in the Stratosphere” CONOPs. He is also a key contributing author
of the initial paper that he presented at Drone Enable 2019. Additionally, Léonard is
currently working in partnerships with NASA, MITRE, academia, and research orga-
nizations to evolve safety frameworks within FAA’s safety continuum, in particular for
in-time safety management, risk budgeting, and human-automation teaming for the
supervision of large autonomous fleets.

After joining Loon in 2015, Léonard led Loon’s Flight Operations from 2017–
2019. In this position, he built and managed the company’s Operation Control Center,
enabling Loon to supervise a fleet of hundreds of autonomous vehicles. In this effort,

Léonard’s team also developed technology for live risk computation of Loon
operations.

Léonard started at Google’s European headquarters as an Analytical Lead, before
joining the Mountain View office to work as a Product Lead in the advertising division.
Léonard holds a Master’s in Aeronautical Engineering from Imperial College London,
a Master of Science in Management of Technology and Innovation form MIT, and a
Master of Science in management from HEC Paris.

xviii L. Bouygues

Contents

Learning and Formal Synthesis

From Passive to Active: Learning Timed Automata Efficiently 3
Bernhard K. Aichernig, Andrea Pferscher, and Martin Tappler

Generating Correct-by-Construction Distributed Implementations
from Formal Maude Designs . 22

Si Liu, Atul Sandur, JoséMeseguer, Peter Csaba Ölveczky, and Qi Wang

Parameter Synthesis and Robustness Analysis of Rule-Based Models 41
Matej Troják, David Šafránek, Lukrécia Mertová, and Luboš Brim

Formal Methods for DNNs

PaRoT: A Practical Framework for Robust Deep Neural
Network Training . 63

Edward W. Ayers, Francisco Eiras, Majd Hawasly, and Iain Whiteside

Simplifying Neural Networks Using Formal Verification 85
Sumathi Gokulanathan, Alexander Feldsher, Adi Malca, Clark Barrett,
and Guy Katz

High Assurance Systems

Neural Simplex Architecture. 97
Dung T. Phan, Radu Grosu, Nils Jansen, Nicola Paoletti,
Scott A. Smolka, and Scott D. Stoller

Strengthening Deterministic Policies for POMDPs. 115
Leonore Winterer, Ralf Wimmer, Nils Jansen, and Bernd Becker

Benchmarking Software Model Checkers on Automotive Code 133
Lukas Westhofen, Philipp Berger, and Joost-Pieter Katoen

Requirement Specification and Testing

Automated Requirements-Based Testing of Black-Box Reactive Systems 153
Massimo Narizzano, Luca Pulina, Armando Tacchella,
and Simone Vuotto

Formal Verification of Parallel Prefix Sum . 170
Mohsen Safari, Wytse Oortwijn, Sebastiaan Joosten,
and Marieke Huisman

Specification Quality Metrics Based on Mutation and Inductive Incremental
Model Checking . 187

Vassil Todorov, Safouan Taha, and Frédéric Boulanger

Validation and Solvers

A Validation Methodology for OCaml-to-PVS Translation 207
Xiaoxin An, Amer Tahat, and Binoy Ravindran

On the Usefulness of Clause Strengthening in Parallel SAT Solving 222
Vincent Vallade, Ludovic Le Frioux, Souheib Baarir, Julien Sopena,
and Fabrice Kordon

Solvers and Program Analysis

Verifying a Solver for Linear Mixed Integer Arithmetic in Isabelle/HOL 233
Ralph Bottesch, Max W. Haslbeck, Alban Reynaud, and René Thiemann

Constraint Caching Revisited . 251
Jan Taljaard, Jaco Geldenhuys, and Willem Visser

Per-Location Simulation. 267
Liyi Li and Elsa L. Gunter

Verification and Timed Systems

Sampling Distributed Schedulers for Resilient Space Communication 291
Pedro R. D’Argenio, Juan A. Fraire, and Arnd Hartmanns

Model Checking Timed Hyperproperties in Discrete-Time Systems 311
Borzoo Bonakdarpour, Pavithra Prabhakar, and César Sánchez

Verifying Band Convergence for Sampled Control Systems 329
P. Ezudheen, Zahra Rahimi Afzal, Pavithra Prabhakar,
Deepak D’Souza, and Meenakshi D’Souza

Autonomy and Other Applications

Heterogeneous Verification of an Autonomous Curiosity Rover 353
Rafael C. Cardoso, Marie Farrell, Matt Luckcuck, Angelo Ferrando,
and Michael Fisher

xx Contents

Run-Time Assurance for Learning-Enabled Systems 361
Darren Cofer, Isaac Amundson, Ramachandra Sattigeri, Arjun Passi,
Christopher Boggs, Eric Smith, Limei Gilham, Taejoon Byun,
and Sanjai Rayadurgam

hpnmg: A C++ Tool for Model Checking Hybrid Petri Nets
with General Transitions . 369

Jannik Hüls, Henner Niehaus, and Anne Remke

Hybrid and Cyber-Physical Systems

A Transformation of Hybrid Petri Nets with Stochastic Firings
into a Subclass of Stochastic Hybrid Automata . 381

Carina Pilch, Maurice Krause, Anne Remke, and Erika Ábrahám

Constraining Counterexamples in Hybrid System Falsification:
Penalty-Based Approaches . 401

Zhenya Zhang, Paolo Arcaini, and Ichiro Hasuo

Falsification of Cyber-Physical Systems with Constrained Signal Spaces 420
Benoît Barbot, Nicolas Basset, Thao Dang, Alexandre Donzé,
James Kapinski, and Tomoya Yamaguchi

Correction to: NASA Formal Methods. C1
Ritchie Lee, Susmit Jha, Anastasia Mavridou,
and Dimitra Giannakopoulou

Author Index . 441

Contents xxi

Learning and Formal Synthesis

From Passive to Active:
Learning Timed Automata Efficiently

Bernhard K. Aichernig1, Andrea Pferscher1(B), and Martin Tappler1,2

1 Institute of Software Technology, Graz University of Technology, Graz, Austria
{aichernig,andrea.pferscher,martin.tappler}@ist.tugraz.at
2 Schaffhausen Institute of Technology, Schaffhausen, Switzerland

mt@sit.org

Abstract. Model-based testing is a promising technique for quality
assurance. In practice, however, a model is not always present. Hence,
model learning techniques attain increasing interest. Still, many learning
approaches can only learn relatively simple types of models and advanced
properties like time are ignored in many cases. In this paper we present
an active model learning technique for timed automata. For this, we build
upon an existing passive learning technique for real-timed systems. Our
goal is to efficiently learn a timed system while simultaneously minimiz-
ing the set of training data. For evaluation we compared our active to
the passive learning technique based on 43 timed systems with up to 20
locations and multiple clock variables. The results of 18 060 experiments
show that we require only 100 timed traces to adequately learn a timed
system. The new approach is up to 755 times faster.

Keywords: Active automata learning · Genetic programming · Timed
automata · Model learning · Model inference

1 Introduction

Modeling of systems is an increasingly important area in computer science. The
reason for the popularity is that models help to create a common understanding
of — often complex — systems. Additionally, models are a useful tool to verify a
system, where the verification of models includes well-proven formal techniques
like model checking. However, during software development processes there is
usually little time to create or maintain system models. Furthermore, creating a
model can be a complex process. According to Peled et al. [22] we may face the
problem that we have no insight into the system under test (SUT), e.g., using
third party components. One promising solution for this problem is to learn
system models completely automatically instead of creating them manually.

In automata learning we distinguish between passive and active learning. The
former learns based on provided observations of the system, whereas the latter
generates learning data by querying the system on demand. Already in the 1980s
Angluin [7] proposed L*, which still presents a base for many active learning
c© Springer Nature Switzerland AG 2020
R. Lee et al. (Eds.): NFM 2020, LNCS 12229, pp. 3–21, 2020.
https://doi.org/10.1007/978-3-030-55754-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-55754-6_1&domain=pdf
https://doi.org/10.1007/978-3-030-55754-6_1

4 B. K. Aichernig et al.

approaches. The basic principle of active learning is to ask questions about the
SUT. Using the obtained answers, active learning interactively refines the learned
model until the model conforms to the SUT. In passive learning algorithms we
use given observation data, e.g. execution traces (logs). However, passive learning
requires a large number of system traces to create an adequate model of the
SUT. The reason is that the given observations must be representative, i.e. they
need to adequately cover the SUT. Active learning overcomes this problem by
selecting required tests on demand. Nevertheless, the number of asked questions
(tests) can be high. Thus, Walkinshaw et al. [32] proposed that learning based on
heuristics combined with model-based testing [29] can be a promising solution.

Automata learning provides a convenient technique to model systems. How-
ever, many approaches focus on comparatively simple representation schemes,
e.g., Mealy machines. The problem is that such representation schemes can
hardly describe complex system properties like time. For this, Alur and Dill
[5] introduced timed automata (TA) which are a modeling technique to repre-
sent timed behavior of real-time systems. TA are labeled transition system (LTS)
that are equipped with clock variables that represent time values. Constraints
on time values define the behavior of the TA. However, learning general TA can
be a challenging task, since their state space is infinitely large and they do not
have canonical forms [13]. Therefore, many learning approaches assume discrete
time or can only capture a restricted timed behavior.

Similar to our passive learning algorithm [27] we learn general input-output
TA. For this, we assume real-valued clock variables and distinguish between input
and output actions. Our assumed type of TA conforms to the one that is used in
the model-checker Uppaal [9]. However, to ensure testability we assume that our
TA are deterministic, input-enabled and output urgent. Regarding determinism,
we also assume that our TA have isolated outputs, i.e. only one output action
can be enabled at a single point in time.

Due to real-valued clock variables the state space is infinite. Hence, the TA
have no canonical form, which makes deterministic learning techniques, like L*,
not useful. To overcome this problem we use a metaheuristic search algorithm
to learn TA. It is based on genetic programming (GP). GP [16] is a machine
learning technique that uses the principle of evolution and natural selection. Over
several generations a population develops. During the evolution only the fittest
individuals survive and build a new population using crossover and mutation.
In our approach the population consists of TA. We evolve the population via
syntactic changes until no further improvement regarding fitness can be made
and then output the fittest individual of the population as a candidate solution.
The fact that TA have a very simple syntax and that GP is based on syntactic
manipulation, qualify it as a strong candidate for learning TA.

In this work we propose active model learning for TA. Our proposed technique
builds upon our passive learning procedure [27]. We use GP to build TA based
on a set of timed traces. These timed traces are actively generated by asking
questions about the SUT. Using conformance testing, we check whether the
proposed solution generated by GP behaves equally to the SUT. In the case

From Passive to Active 5

of non-conformance, we extend our test data by counterexamples showing non-
conformance between the proposed solution and the SUT. With these extended
data we learn a new TA. We repeat this process until we find a conforming TA.

In Sect. 2 we discuss the required background. Section 3 introduces our active
learning technique for TA via GP. In Sect. 4 we provide a tool that demonstrates
this technique. Section 5 discusses the comprehensive evaluation. Finally, Sect. 6
concludes this paper.

2 Preliminaries

2.1 Timed Automata

Timed automata (TA) are labeled transition systems (LTSs) that are equipped
with real-valued variables. These variables store time values and, therefore, rep-
resent real-time clocks. The clock values increase when time elapses. TA consist
of locations which are connected via edges that are labeled with input and output
actions. The behavior of a TA is defined via clock constraints, which are denoted
as guards. Let C be a finite set of clocks where each clock is a real-valued vari-
able ci with i ∈ N0. We denote the set of guards over C as G(C). Guards are a
conjunction of the formulas ci ⊕ k, with ci ∈ C, ⊕ ∈ {>,≥,≤, <}, and k ∈ N.

We write Σ for the set of input and output action symbols, where ΣI ⊆ Σ
includes all input actions and ΣO ⊆ Σ all output actions, and ΣI ∩ ΣO = ∅. An
input action is postfixed with a question mark “?” and an output action with
an exclamation mark “!”.

A TA over (C, Σ) is a triple 〈L, l0, E〉, with the set of locations L, the initial
location l0, and the set of edges E ⊆ L×Σ×G(C)×2C ×L. Further, let 2C be the
power set of C. We write l

g,a,r−−−→ l′ for an edge (l, g, a, r, l′) ∈ E with g ∈ G(C),
a ∈ Σ, and the clock resets r ∈ 2C . In the event of a clock reset each clock in
the set r is set to zero.

A clock valuation ν ∈ R
C
≥0 is a mapping ν : C → R≥0 that assigns a value

to each clock. Further, we denote 0C as the assignment of zero to each clock. An
increase of ν denotes the progress of time. We write ν +d for an increase of time
by a delay d ∈ R≥0 where (ν+d)(ci) = ν(ci)+d. If the clock valuation ν satisfies
a guard g ∈ G(C) we write ν |= g. Let ν[r] denote a reset, where every clock
ci ∈ r is reset to zero, i.e. ν[r](ci) = 0, and every cj ∈ C \ r, ν[r](cj) = ν(cj).

The semantics of a TA T is defined as a timed transition system (TTS)
�T � = 〈Q, q0, Σ, T 〉 with the set of states Q ⊆ L × R

C
≥0, the initial state q0, and

the transitions T ⊆ Q × (Σ ∪ R≥0) × Q. A state q ∈ Q is as a pair (l, ν), where
the initial state q0 of a TTS is (l0,0C). Furthermore, in a TTS we distinguish
timed and discrete transitions. A timed transition (l, ν) d−→ (l, ν+d) is performed
on a delay d ∈ R≥0 without changing the location. A discrete transition (l, ν) a−→
(l′, ν[r]) is performed on an action a ∈ Σ and may lead to a location change and
clock resets when taking an edge l

g,a,r−−−→ l′ where ν |= g holds.
Figure 1 shows a TA of a smart light switch inspired by an example of Hessel

et al. [15]. This TA has five locations and one clock variable c0. We can either

6 B. K. Aichernig et al.

press or release the switch. Depending on how long the switch is pressed we
observe either (1) nothing on a release before five time units, (2) touch on the
release after five time units, or (3) starthold after ten time units pressing the
button.

To ensure that the learning of TA is tractable, we make assumptions on the
semantic level of TA. Our assumptions are originally proposed by Springintveld
et al. [26] and then adapted by Hessel et al. [15] and in our previous work [27].
Given a TTS with a ∈ Σ, o, o′ ∈ ΣO, and d ∈ R≥0 , we assume ∀q ∈ Q:

1. Determinism: if ∃q′, q′′ ∈ Q : q
a−→ q′, q

a−→ q′′ then q′ = q′′,
2. Input Enabledness: ∀i ∈ ΣI : ∃q′ ∈ Q : q

i−→ q′,
3. Output Urgency: if ∃q′ : q

o−→ q′ ∈ Q then �q′′ ∈ Q : q
d−→ q′′,

4. Isolated Outputs: if ∃q′, q′′ ∈ Q : q
o−→ q′ ∧ q

o′
−→ q′′ then o = o′ and q′ = q′′.

To establish testability, we assume deterministic and input enabled TA. Input
enabledness ensures that all inputs contribute to valid tests, since every input
behaviour is defined in all states. Note that in illustrations of TA, e.g. Fig. 1, we
hide inputs on self-loops for clearness.

l0

l1 l2

l3

l4

�
press?

{c0}

c0 < 5
release?
{}

c0 ≥ 5
release?

�
touch!

{}

c0 ≥ 10
starthold!

�
release?
{}

�
endhold!
{}

Fig. 1. The illustrated TA represents a
smart light switch adapted from the exam-
ple of Hessel et al. [15].

We model urgent outputs as eager
actions [11]. They limit the sojourn
time in a location since they are
executed immediately after they are
enabled. For this, we introduce the fol-
lowing semantic extension: A timed
transition (l, ν) d−→ (l, ν + d) is possi-
ble iff ∀d′ ∈ R≥0, d

′ < d : ν + d′ |=
¬

∨
g∈GO

g with GO = {g|∃l′, o, r :

l
g,o,r−−−→ l′, o ∈ ΣO}. Other definitions

of TA add location invariants to limit
the sojourn time in locations.

To test TA, we use test sequences.
A test sequence ts is an ascendingly ordered sequence of time stamps tj and
inputs ij . Formally, ts = t0 · i0 · · · tm · im ∈ (R≥0 × ΣI)∗ with ∀j ∈ {0, . . . , m −
1} : tj ≤ tj+1. Let tt denote a timed trace that represents the execution of a
test sequence on a TA. A timed trace includes all inputs of a test sequence as
well as the observed outputs with their corresponding time stamps, i.e. tt =
t0 · a0 · · · tn−1 · an−1 ∈ (R≥0 × Σ)∗ with ∀i ∈ {0, . . . , n − 1} : ti ≤ ti+1. A timed
trace tt consists of pairs 〈ti, ai〉 of time stamps ti ∈ R≥0 and actions ai ∈ Σ. Let
|tt | denote the size of tt , i.e. the number of elements. Aichernig et al. [3] denote
a run in a TTS �T � as an alternating sequence of delay and discrete transitions
in form of

(l0, ν0)
d0−→ (l0, ν0 + d0)

a0−→ (l1, ν1)
d1−→ (l1, ν1 + d1)

a1−→ · · ·

The run induces a timed trace tt = t0 ·a0 · · · ti ·ai · · · tn−1 ·an−1 with all previous
delays d0 · · · dj , j < i summed up to the time stamp ti ∈ R≥0. One possible

From Passive to Active 7

observable timed trace in the smart light switch, depicted in Fig. 1, is e.g.:

10.8 · press? · 18.4 · release? · 18.4 · touch! · 20.6 · release? · · ·

2.2 Genetic Programming

Genetic programming (GP) [16] is developed on the basis of genetic algorithms.
Genetic algorithms are metaheuristic search-based algorithms that use the prin-
ciples of natural selection and the evolutionary process to find a candidate solu-
tion. Using these principles, GP provides a tool to automatically generate pro-
grams without explicitly programming them. In GP, a set of programs represents
the population and a program in a population is called individual. After creating
an initial population, the population is evaluated, where each individual of the
population receives a fitness value. Fitness is calculated using a domain-specific
fitness function and measures how well an individual solves its given task. Based
on the principle of natural selection the fittest individuals build a new popula-
tion. Following operations exist to build a new population:

– Reproduction: An individual is copied unmodified.
– Crossover: Properties of two individuals are merged.
– Mutation: Properties of one individual are changed.

In addition, GP comprises different design concepts. One of these concepts
is subpopulations and migration, which is based on the idea that several popula-
tions develop simultaneously and individuals of one population can migrate to
the other populations. Another design concept is elitism, where the fittest indi-
viduals are always copied to the next generation. Elitism helps to avoid destroy-
ing already well-conforming solutions. The generation of a new population is
repeated until no further fitness improvements can be made or the maximum
number of generations is reached.

2.3 Genetic Programming for Timed Automata

Generate
Tests

Generate
Populations

Evaluate
Populations

Stop?

Generate New
Populations

Output
Fittest

yes

no

Fig. 2. Basic procedure of our passive learning
algorithm [27]. The algorithm learns TA via GP
based on provided timed traces.

In previous work [27] we described
a passive learning algorithm
of TA. We introduce GP as
a promising solution to learn
timed systems. Figure 2 depicts
the basic procedure of our pas-
sive learning algorithm for TA
based on GP.

The learning process is based
on test data provided in the
form of timed traces. All used
traces are generated before-
hand. Independently, an initial

8 B. K. Aichernig et al.

population is randomly generated using the provided alphabet of the system
under test (SUT). Afterwards, the individuals of this population are evaluated.
For this, a fitness function for TA is defined. This fitness function is based on
the number of passing tests and further properties, e.g., size of the generated
TA and non-deterministic properties of the learned TA.

The GP procedure terminates if either the maximum number of generations
is reached or a solution is found that passes all test sequences and no further
fitness improvements can be observed. In this case, the procedure outputs the
fittest TA of the population. We refer to the fittest TA as our hypothesis H of
the SUT.

If the termination criterion is not satisfied, a new population is generated.
The used principles to generate a new population are basically crossover and
mutation. Furthermore, two populations, a global and a local population, are
evolved simultaneously. The global population develops based on all timed traces
and the local population only uses the timed traces that fail on the fittest indi-
vidual of the global population. Crossover between the two populations is used
to correct the failing behavior in the global population. In addition, the concept
of elitism is applied. Further details about the used mutations and the applied
fitness function can be found in [27].

2.4 Active Automata Learning

An active automata learning algorithm learns a model of the SUT by asking
questions about the system. Approaches based on Angluin’s L∗ [7] require, how-
ever, an equivalence oracle, which is, according to Berg et al. [10] the bottleneck
of active learning. Similarly, Walkinshaw et al. [32] point out that asking a large
number of questions to build an adequate model is not useful. Therefore, Walkin-
shaw et al. introduce an iterative refinement technique that uses heuristics to
learn an LTS and model-based testing to generate tests for conformance check-
ing. The following steps are performed to learn a system:

1. Infer an initial LTS from a provided set of execution traces
2. Generate tests from the LTS using a model-based tester
3. Execute the tests on the SUT and check if the tests fail
4. If no failing test is found: stop and output the learned LTS
5. Otherwise add the tests to the learning set and learn a new LTS then return

to Step 2

Using this approach we consider a learned LTS erroneous if a test generated
from the LTS fails on the SUT. In this case, the iterative refinement approach
starts again by adding the failing test case to the test suite and inferring a new
hypothesis. This process is repeated until a conforming hypothesis is learned.

3 Active Learning via Genetic Programming

3.1 Basic Procedure

The basic procedure of our active learning algorithm is based on the iterative
refinement approach proposed by Walkinshaw et al. [32] which we introduced in

From Passive to Active 9

Sect. 2.4. Figure 3 illustrates our basic procedure. Our active learning algorithm
starts with an initial set of randomly generated timed traces, e.g. monitored
execution traces. These randomly generated traces build our initial test data
and based on these test data we learn our initial hypothesis. The creation of
the initial hypothesis is done via genetic programming (GP) as introduced in
Sect. 2.3. Our hypothesis is always the fittest individual of the GP procedure.

Test
Data Model

random

learn

generate

good enough
conformance

Fig. 3. In recurring order, we learn a
model and extend our test data by coun-
terexamples to conformance until we find
a conforming model.

Afterwards, we check if the hypoth-
esis conforms to the SUT via model-
based testing. We define a con-
forming behavior between SUT and
hypothesis by trace equivalence, i.e.
the conformance relation is satisfied
if two timed systems produce the
same timed traces. Related to Tret-
mans’ [28] implementation relation, we
write H conforms to I if the hypoth-
esis H conforms to the SUT I. Let Traces(�T �) be a function that performs all
possible runs in a TTS �T � starting at the initial state q0. The function returns
the corresponding timed traces of all runs. We use Traces(�T �) to define the
following conformance relation for the hypothesis H and the SUT I:

H conforms to I ⇐⇒ Traces(�H�) = Traces(�I�). (1)

We use H passes tt to denote that a timed trace tt produced by executing
the corresponding test sequence ts on H is equal to the trace produced by I.
Respectively, H fails tt if the timed traces are different. Note that here we per-
form black-box testing on the SUT I. We execute a test sequence, which is a
sequence of inputs with timestamps, and observe a timed trace produced by I.
This means that we do not require knowledge about the internal structure of I.
Similar to the approach of Walkinshaw et al., we try to find a counterexample
that contradicts the conformance relation. If we find a counterexample to equiv-
alence between hypothesis and SUT, i.e. H fails tt , we add this trace to our
test data. Based on this updated test data we relearn a new hypothesis via GP.

Considering real-valued timed systems the number of possible traces is infi-
nite. During testing, we sample a finite amount of traces to find counterexamples
to language equivalence. Conformance Relation 1 combined with a hypothesis H
serves as an oracle for testing. However, the conformance relation is not directly
applicable for learning, as we learn from our test data, a finite set of sampled
traces. Therefore, we restrict the conformance relation for learning to this finite
set of traces, requiring hypothesis and SUT to agree on those traces.

We always start the GP procedure with the last population of the previ-
ous procedure, if there is one. Like in our passive approach, the GP procedure
either terminates if a solution is found or the maximum number of generations
is reached. The parameter gmaxactive limits the number of generations of the GP
procedure in each iteration in the active learning algorithm. Again, our hypoth-
esis is the fittest timed automaton of the GP procedure.

10 B. K. Aichernig et al.

After creating a new hypothesis, we repeat our conformance check on the
newly learned TA. However, the maximum number of overall performed genera-
tions in all iterations of the active learning is limited by gmax. The active learning
either terminates if our test data contain no counterexamples to conformance
between the hypothesis and the SUT and no further counterexamples can be
found, or the maximum number of generations is reached.

In contrast to the iterative refinement approach proposed by Walkinshaw et
al. [32], we only add test data that reveal non-conformance between the hypoth-
esis and the SUT, i.e. failing timed traces. The reason for that is the underly-
ing fitness function, which calculates the fitness value based on the number of
passing and failing timed traces. We want to achieve that learning the behav-
ior corresponding to the failing timed traces pays off. Adding passing timed
traces decreases the relative weight of the failing timed traces. Additionally,
we increase the weight by adding multiple failing timed traces simultaneously.
Therefore, implementing the failing timed traces increases the fitness value in the
GP process. If the fitness value increases significantly, it is more likely that the
individuals that implement the failing timed traces survive. As a result, adding
several failing timed traces increases the probability to find a better hypothesis.

3.2 Timed Trace Selection for Learning

For the timed trace selection we use a model-based testing approach to find
counterexamples to conformance between the hypothesis and the SUT. Figure 4
illustrates our proposed testing procedure.

Randomly Walk
Hypothesis

Test SUT

Counterexample?

Output
Timed Trace

yes

no

Fig. 4. We select timed traces that
reveal a different behavior.

The timed traces are generated by ran-
domly walking through the hypothesis. This
random walk is explained in more detail in
the next section. After we generated a timed
trace, we execute the test sequence of the
timed trace on the SUT. The timed trace
generated by the SUT is then compared with
the trace of the hypothesis. Let cmp(tt , tt ′)
denote a function that compares two timed
traces tt , tt ′ ∈ (R≥0 × Σ)∗, where tt = t0 ·
a0, · · · , tm−1 ·am−1 and tt ′ = t′0 ·a′

0, · · · , t′n−1 ·
a′
n−1 with n,m ∈ N. We compare the ele-

ments of the traces one by one until the end
of the shorter trace is reached. The function
returns

∣
∣tt ′∣∣ if the traces are equal. Otherwise,

the function returns the index i of the first element where ti or ai are different.
We can formalize the function by:

cmp(tt , tt ′) =

{
min{i | ∃ tiai ∈ tt , t′ia

′
i ∈ tt ′ : ti �= t′i ∨ ai �= a′

i} if ∃ i
∣
∣tt ′∣∣ otherwise

Let ttH be a timed trace that is observable during a random walk through the
hypothesis and ttI be the timed trace that can be observed when executing the

From Passive to Active 11

test sequence of ttH on the SUT. If cmp(ttH, ttI) = |ttH| then H passes ttI .
Otherwise, H fails ttI , i.e. we found a counterexample. In this case, we process
the timed trace ttI and add it to our test data.

Since executing a prefix of a timed trace is faster than executing the whole
trace, counterexample processing reduces the trace length. More concretely, we
reduce the length of the timed trace to the smallest length that reveals a dif-
ference between the SUT and the hypothesis. This value is equal to the index
returned by cmp(ttH, ttI). Furthermore, we check if the timed traces contain at
least one output. Our goal is to avoid timed traces without outputs, since our
TA are input-enabled. Using timed traces with no outputs would reward trivial
automata structures. If we find a counterexample that contains only inputs, we
try to extend the timed trace until we find an output. The processed counterex-
ample is then added to the test data.

The procedure in Fig. 4 is repeated until a counterexample is found, but at
the maximum nattempts times. After selecting nfail counterexamples, we start a
new GP procedure based on our extended test data.

3.3 Timed Trace Generation

We generate timed traces for the previously introduced model-based testing app-
roach. Aichernig and Tappler [4] showed that random walks through automata
are effective in test-based learning of Mealy machines. Here, we perform a ran-
dom walk on the semantic level of the timed transition system (TTS) of the
hypothesis. Figure 5 illustrates the steps of the random walk. The output of a
random walk is a timed trace ttH ∈ (R≥0 × Σ)∗.

The procedure starts with the initialization of the required variables. For a
random walk through a TTS we always start at the initial state q0 = (l0,0C).
Additionally, we store the overall elapsed time using the variable t ∈ R≥0. The
initial value of t is always zero. The random walk terminates once the generated
timed trace has the length of the parameter nlen ∈ N.

Whenever we extend a timed trace, we first check if any output is enabled.
Since we assume that outputs are urgent we have to take edges with enabled
outputs. In this case we add all urgent outputs and the current value of t to ttH.

Since our hypothesis is created with GP, we may observe non-deterministic
behavior during our random walk. We assume isolated outputs, i.e. only one
output in the current state can be enabled concurrently. If more than one output
is enabled, we randomly select one of the enabled outputs. Later in the GP
procedure, the fitness function penalizes the non-deterministic behavior. For
details on the fitness function see [27].

Another problem due to the generation via GP is that the TA may produce an
infinite amount of outputs without time elapsing. In the literature, this behavior
is denoted as Zeno behavior [8]. We assume that a Zeno behavior does not occur
in the SUT and penalize this misbehavior in a hypothesis by adding timed traces
that reveal infinite output loops. If the same state is visited in a sequence of
enabled outputs twice we stop the random walk. After observing such an infinite

12 B. K. Aichernig et al.

output sequence we add a randomly chosen input, to show that this input is not
possible and return immediately the timed trace ttH.

If no infinite output sequence is detected, we select an outgoing edge in the
current location. For this we have to make two decisions: (1) performing a non-
changing input and (2) selecting a delay from the constants of the edges.

A non-changing input is an input where the execution of this input neither
causes a location change nor a clock reset. We can perform such inputs since our
TA are input-enabled. The goal of performing non-changing inputs is to explore
new behavior that is not yet captured in our hypothesis. The probability to
perform such a non-changing input is defined by the parameter pinput. In later
iterations of our active learning approach we focus more on testing the already
explored behavior. Therefore, we decrease the probability pinput in each iteration
of the active learning algorithm by a constant.

Init

|ttH| < nlen

Add Urgent
Outputs

Output
ttH

Infinite
Outputs?

Add Action

Add Random
Input

Adapt nlen to
Urgent Output

yes

no

no

yes

Fig. 5. In the random walk we follow
edges of the TA and save the delays and
actions in a timed trace.

The second decision to make is the
selection of a delay. In random walks we
either delay the system by a randomly
chosen delay or by a constant that is
present in the guards of the outgoing
edges of the current location. The prob-
ability to perform a delay based on a
guard constant is defined by the param-
eter ptrans. This delay selection method
selects uniformly at random one constant
of the guards of the outgoing edges. This
method provides the opportunity to check
whether the learned delays are correct.
The random delays are selected in accor-
dance with a provided set of relevant
constants of the SUT. Like non-changing
inputs, selecting random delays helps to
explore undefined behavior.

After selecting a delay d ∈ R≥0, we
increase the clock valuation ν to ν+d and
select an action. If we do not perform a non-changing input, we check whether
outgoing edges are enabled. If there is a guard g such that g |= ν holds, we add
the action of this edge and t + d to our timed trace. Outputs may be triggered
earlier due to the assumed output urgency, where we adapt d to the occurrence
of the output action.

As a last step of our random walk, we check again if an output is enabled
and if |ttH| = nlen. If both are true, we increase nlen and we can add the output
in the next iteration. If |ttH| = nlen and no output is present, we return ttH.

4 Implementation

For the active learning approach, we extended our existing tool [27] which is
a graphical demonstrator of the passive learning procedure. The tool [24] now

From Passive to Active 13

demonstrates the passive and the active learning algorithm for 43 different exam-
ples, which are also discussed in Sect. 5. The predefined parameter setup con-
forms to the one used in our case studies. However, all parameters are config-
urable. The tool is available online [24] including a short user manual.

5 Case Studies

l0

l1 l2

l3

l4 l5

l6

l7

l8

l9l10

l11l12 l13

�
lock?
{}

�
unlock?
{}

�
close?

{}�
open?

{}

�
close?

{c0}

�
open?

{}

�
lock?
{c0}

�
unlock?
{}

c0 ≥ 2
armedOn!

{}

�
unlock?

{}

�
armedOff !

{}

�
open?

{}

�
armedOff !

{}

�
flashOn!

{}

�
soundOn!
{c0}

�
unlock?

{c0}

�
soundOff !
{}

�
unlock?

c0 ≥ 3
soundOff !
{c0}

c0 ≥ 27
flashOff !

�
unlock?

{}

�
flashOff !
{}

Fig. 6. A learned TA of the car alarm
system (CAS) which we adapted from
Aichernig et al. [2,3].

In our case studies we evaluated 43 differ-
ent timed systems including three exam-
ples from the industry and 40 randomly
generated timed systems. The aim of
these case studies is to check whether
the proposed active technique can learn
timed systems adequately. Furthermore,
we compare the results of the active with
our previously introduced passive learning
algorithm [27]. In the remainder of this
section we distinguish between learning
set and validation set1. Former denotes
the test data that are used by the learn-
ing algorithm to learn the timed automa-
ton (TA) and latter is used to evaluate the
final learned TA.

For the following case studies, we
address following research question: Can
our active learning technique improve
the existing passive technique regard-
ing performance? For this we measure
performance based on the following three
criteria: (1) number of passing tests, (2)
test-execution time and (3) runtime.

Passing Tests. For the measurement of
passing tests, we generate a validation set
which consists of 2 000 randomly gener-
ated timed traces. For this, we uniformly
select delays and inputs from the input
alphabet of the SUT. These randomly
generated test sequences are then simu-
lated on the SUT. The length of the gen-
erated timed traces is geometrically dis-
tributed. The evaluation in our previous
work [27] shows that 2 000 randomly gen-
erated timed traces are sufficient to represent the behavior of all considered

1 In machine learning these sets are often denoted as training and test set.

14 B. K. Aichernig et al.

systems. Furthermore, a manual analysis of the learned TA showed that they
were generally observationally equivalent to the SUTs. Here, we state the per-
cent of passed timed traces. Hence, 100% indicates that all 2 000 timed traces
passed.

Test-Execution Time. Since we learn timed systems the test execution depends
on time. In practice, we prefer tests that take less time. The test-execution time
of a timed trace is the sum of all performed delays. In these case studies we state
the overall execution time of the used learning set. This execution time is the
average consumed time of the timed traces multiplied by the learning set size.
We measure the execution in arbitrary time units.

Runtime. The runtime states the actual required time, given in minutes (min), by
the learning algorithm. We measure the runtime from the start of the algorithm
to the point where the algorithm terminates and outputs a final solution.

The parameter setup of the GP procedure is akin to our evaluation of the
passive algorithm. However, we use the same population size npop = 2000 for
all experiments. In addition, we set the maximum number of generations to
gmax = 2000, i.e. both the active and the passive algorithm use at most gmax gen-
erations to develop a candidate solution. The crossover probability pcr is the only
parameter which is set differently for the active and passive algorithm. For the
passive algorithm we set pcr = 0.25 and for the active algorithm pcr = 0.05. The
reason for this is that the passive algorithm learns from a large number of traces
provided, which means that more tests are failing at the beginning. Therefore,
the local population may contain more advanced solutions. The active algorithm
has less failing tests, therefore, the local population contains less knowledge and
crossover is less useful.

The maximum number of timed traces in the learning set is defined by the
parameter ntest. For our case studies, we use 21 different maximum learning set
sizes starting with 50 and continue with 100 to 2 000 using a step size of 100.
The passive technique always uses a training set with ntest timed traces. The
active algorithm starts with one randomly generated timed trace, which is used
for learning the initial hypothesis. Then the active algorithm only adds as many
timed traces to the learning set as required to find a confirming solution, but at
the maximum ntest. In each iteration of the active algorithm nfail timed traces
are added to the learning set. We assume that it is useful to add all timed traces
in the first 90% of generations. Therefore, we define nfail as follows:

nfail =

⌈
ntest

gmax
gmaxactive

· 0.9

⌉

(2)

For the active algorithm, we set pinput = 0.9 and reduced this probability in
each iteration of the active approach by 0.1. Furthermore, gmaxactive = 100,
nattempts = 2000 and ptrans = 0.5. To make the active and the passive algorithm
comparable, we used learning sets where the average lengths of the timed traces
are almost equal. For these case studies we achieve this by setting the maximum
timed trace length nlen to 40. For other systems, this parameter could be set

From Passive to Active 15

Table 1. Results of the active and passive learning algorithm.

Passing tests (%) Test-execution time

(time units ·103)
Runtime (min)

Quartile 1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd

Light Active 100 6.3 10.6 15.7 1.5 1.8 4.0

Passive 72.7 31.0 62.1 92.6 344.1 1360.1 1505.8

CAS Active 100 39.0 71.9 103.0 43.4 53.4 64.8

Passive 100 87.8 173.5 261.4 95.4 145.0 208.3

PC Active 100 15.5 31.5 40.2 37.9 57.1 93.1

Passive 93.8 99.8 100.0 23.7 47.5 71.9 378.1 642.8 996.1

C10/1 Active 100 9.4 17.6 24.2 5.0 8.0 9.4

Passive 100 28.2 56.9 85.1 9.9 25.0 35.5

C15/1 Active 100 23.9 38.5 51.7 43.2 55.3 72.6

Passive 99.6 99.8 99.9 28.5 57.7 86.4 259.0 570.9 712.4

C10/2 Active 100 13.2 27.0 39.7 52.1 82.7 134.5

Passive 99.8 99.9 99.9 22.3 44.9 66.8 183.0 372.6 630.4

C20/1 Active 100 23.4 44.0 66.4 96.7 146.2 179.4

Passive 99.8 99.9 99.9 29.8 59.8 88.7 278.3 470.7 572.5

according to an estimation of the system size or could be replaced by a stopping
probability for the trace generation.

The 43 timed systems include three examples from the industry and 40 ran-
domly generated TA which serve as SUTs. The examples from the industry
include a smart light switch (Light) [15], which is depicted in Fig. 1. The other
two examples from the industry are more complex. The first one is from the
automotive industry and represents a car alarm system (CAS). Figure 6 depicts
a learned TA of the CAS. In the literature, this example is used for various
different case studies on testing [2,3]. The third industrial example is a particle
counter (PC) [1], that counts particles in exhaust gases. A correct TA of the
PC includes one clock and 16 locations. The 40 randomly generated TA can be
categorized into four categories C10/1, C15/1, C10/2 and C20/1 according to
their number of locations (first number) and clock variables (second number).
Each category consists of ten different timed systems. The automata in the cate-
gories with 10 locations have four distinct inputs and four distinct outputs. The
automata from the other categories have five distinct inputs and outputs. All
timed automata of these case studies can be found online [24].

Overall we performed 18 060 experiments (43 timed systems × 21 training
set sizes × 10 repetitions × 2 learning algorithms). Due to this large number of
experiments, we had to distribute the experiments on different systems including
cloud services. Since cloud services use virtual CPUs the runtime values may
differ on other setups. However, we assume the trend of the results is independent
from the underlying setup.

16 B. K. Aichernig et al.

0 500 1,000 1,500 2,000

70

80

90

100

Maximum Learning Set Size

P
as

si
n
g
te
st
s
(%

)
Passing Tests of Light

active
passive

(a) The passive algorithm cannot learn an
adequate model due to a local maximum
in the fitness function. This problem is
not observable in our active algorithm.

0 500 1,000 1,500 2,000
0

500

1,000

1,500

2,000

Maximum Learning Set Size

N
ee

d
ed

L
ea

rn
in
g
S
et

S
iz
e

Learning Set Sizes for the CAS

active
passive

(b) The active algorithm can learn ade-
quately with only a fraction of the maxi-
mum learning set size. The values are in-
creasing due to Eq. 2.

Fig. 7. Comparison of the active and passive learning algorithm based on passing
learning and validation set sizes.

Table 1 shows the results of our evaluation. These values represent the first,
second (median), third quartile of the median results of all learning set sizes. For
the randomly generated timed systems we use the median results over all ten
different timed systems in one category. If all three values are equal, we state
only one number.

In our research question we asked if our active technique can achieve improve-
ments compared to the passive technique. The following results regarding (1)
passing tests, (2) test-execution time and (3) runtime can be observed:

Passing Tests. Table 1 shows the active algorithm passes all tests, whereas the
passive algorithm does not reach 100% for all examples. If we have a closer look
at the evaluation data, we see that the median percentage of passed tests is
always 100% for learning sizes starting at 100 timed traces. Hence, our active
technique can learn timed systems sufficiently with a learning set consisting of
100 timed traces. In addition, Table 1 shows that the passive technique cannot
correctly learn the Light example. We used the same example from our previous
evaluation [27], but increased the maximum clock constant cmax from 12 to 20.
Consequently, the passive algorithm seems to have problems to learn adequately
when an imprecise largest clock constant is provided.

Figure 7a gives a more detailed overview of the passing tests results of the
Light example for all learning set sizes. The x-axis states the maximum learning
set size, which is the actual learning set size of the passive approach but can be
lower in the active approach. On the y-axis we find the number of passing tests in
percent. The solid lines indicate the median values and the surrounding areas in
the corresponding color the range between the first and the third quartile. We see
that the median percentage of passing tests fluctuates for the passive algorithm.
The median percentage of passing tests is for the passively learned Light only

From Passive to Active 17

72.7%. We assume that this behavior is due to a local maximum in the fitness
function. Performing further mutations seems to decrease the fitness value and,
therefore, the population does not develop properly. We do not observe such a
behavior using the active algorithm. A reason for that might be the continuous
improvement of the learning set. In the active technique more failing timed traces
are added and, therefore, mutations more likely increase the fitness value.

0 500 1,000 1,500 2,000
0

500

1,000

1,500

Maximum Learning Set Size

L
ea

rn
in
g
R
u
nt

im
e
(m

in
)

Learning Runtime of the PC

active
passive

Fig. 8. The active algorithm has a more
stable runtime than the passive algorithm
and can be decreased significantly.

Test-execution time. We can also
decrease the overall test-execution time
of the used learning sets. This improve-
ment was mainly achieved due to the
fact that the active algorithm requires
less timed traces to learn the TA. Conse-
quently, an adequate TA can be learned
with a smaller learning set contain-
ing timed traces that better reflect the
behavior of the SUT. Figure 7b depicts
the needed training set size for the CAS
and shows that the active algorithm
passes all tests with significantly smaller
learning set size compared to the pas-
sive algorithm. However, due to Eq. 2,
we use more timed traces for a larger ntest. We selected the CAS because both
the active and the passive algorithm achieved 100% passing tests.

Runtime. The results in Table 1 show significant improvements in the runtime.
The median runtime to actively learn the Light example is only 1.8 min, whereas
the passive algorithm requires 1360.1 min. However, for this example the passive
technique cannot learn the TA correctly and, therefore, searches for a solution
until the maximum number of generations is reached. Overall the median runtime
of the active algorithm is at least 2.7 and up to 755 times faster than the passive
algorithm. Figure 8 shows the runtime for learning the PC in more detail. We
see that even the third quartile of the active algorithm’s runtime is significantly
lower than the runtime in the first quartile of the passive learning algorithm.

Further experiments and a more detailed description of the found results are
presented in the Master’s thesis of Pferscher [23].

6 Conclusion

Summary. In this paper we presented an active learning algorithm for timed
automata (TA) using model-based testing and genetic programming (GP). For
this, we combined our previously introduced passive learning algorithm [27] and
the iterative refinement approach of Walkinshaw et al. [32]. We proposed a test
data generator for TA which generates timed traces based on a random walk
through TA that also considers undefined behavior of the currently tested model.

18 B. K. Aichernig et al.

In a comprehensive evaluation – including 18 060 experiments – we found that
the active approach performs more efficiently than the passive approach. Since
we need fewer timed traces than the passive approach we could also decrease
the median execution time of the test suite by a factor of up to 5.8. In addition,
the active approach is up to 755 times faster. The tool and the analyzed timed
systems are available for download [24].

Related Work. Closely related to our work Grinchtein et al. [13,14] proposed
active learning algorithms for deterministic-event recording automata. Event-
recording automata [6] are TA where every action has its own clock and the
clock is reset when the action is performed. Such a modeling approach can be
insufficient for input enabled systems. Furthermore, the approaches seem to be
impractical due to high complexity. Lin et al. [17] also proposed an active learning
approach for event-recording automata. However, in their setup they assume an
optimal teacher.

Verwer et al. [30] uses state-merging to learn deterministic real-time
automata. Real-time automata [12] have only one clock which is reset in every
transition. Furthermore, they do not distinguish between input and output. Ver-
wer et al. [31] extended their approach to learn probabilistic real-time automata.
Mediouni et al. [20] proposed an improvement of the extended approach. Mao et
al. [18] learn continuous-time labeled Markov chains via state-merging. In this
approach the sojourn time spent in a state is defined by an exponential function.
More general assumptions about the timed behavior are considered by de Matos
Pedro et al. [19]. In their work they learn generalized semi-Markov processes gen-
erated by stochastic TA. Since all of these approaches rely on state-merging the
learned model is only as good as the provided set of samples. Pastore et al. [21]
extended the passive learning algorithm k-Tail to learn nested timed sequences.
However, they can only model a timed behavior that can be described by a start
and end point. Soto et al. [25] proposed an algorithm to synthesize linear hybrid
automata. Similar to our technique they start with an initial model which they
improve further by new execution samples. In contrast to our algorithm, which
is based on equivalence testing, they build a model using membership testing.

Future Work. One may use other tools, e.g. Uppaal [9], to model-check the
learned TA. The results of the model checker can then be used for learning. Addi-
tionally, many systems do not have the assumed strict limitations on the tim-
ing of outputs. Softening the assumptions on output urgency would immensely
increase the applicability of the proposed learning technique. Another not yet
covered behavior of systems is uncertainty. Learning stochastic timed automata
would be an interesting field for future work.

Acknowledgments. The work has been carried out as part of the TU Graz LEAD
project “Dependable Internet of Things in Adverse Environments”. We also want to
thank the anonymous reviewers for their insightful comments and suggestions.

From Passive to Active 19

References

1. Aichernig, B.K., et al.: Model-based mutation testing of an industrial measurement
device. In: Seidl, M., Tillmann, N. (eds.) TAP 2014. LNCS, vol. 8570, pp. 1–19.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09099-3 1

2. Aichernig, B.K., Brandl, H., Jöbstl, E., Krenn, W.: UML in action: a two-layered
interpretation for testing. ACM SIGSOFT Softw. Eng. Notes 36(1), 1–8 (2011).
https://doi.org/10.1145/1921532.1921559

3. Aichernig, B.K., Lorber, F., Ničković, D.: Time for mutants — model-based muta-
tion testing with timed automata. In: Veanes, M., Viganò, L. (eds.) TAP 2013.
LNCS, vol. 7942, pp. 20–38. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-38916-0 2

4. Aichernig, B.K., Tappler, M.: Learning from faults: mutation testing in active
automata learning. In: Barrett, C., Davies, M., Kahsai, T. (eds.) NFM 2017. LNCS,
vol. 10227, pp. 19–34. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
57288-8 2

5. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994). https://doi.org/10.1016/0304-3975(94)90010-8

6. Alur, R., Fix, L., Henzinger, T.A.: Event-clock automata: a determinizable class of
timed automata. Theor. Comput. Sci. 211(1–2), 253–273 (1999). https://doi.org/
10.1016/S0304-3975(97)00173-4

7. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput.
75(2), 87–106 (1987). https://doi.org/10.1016/0890-5401(87)90052-6

8. Asarin, E., Maler, O., Pnueli, A., Sifakis, J.: Controller synthesis for
timed automata. IFAC Proc. 31(18), 447–452 (1998). https://doi.org/10.
1016/S1474-6670(17)42032-5, http://www.sciencedirect.com/science/article/pii/
S1474667017420325, Special issue on the 5th IFAC Conference on System Structure
and Control 1998 (SSC 1998), Nantes, France, 8–10 July

9. Behrmann, G., David, A., Larsen, K.G.: A tutorial on Uppaal. In: Bernardo,
M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-30080-9 7

10. Berg, T., Grinchtein, O., Jonsson, B., Leucker, M., Raffelt, H., Steffen, B.: On
the correspondence between conformance testing and regular inference. In: Cerioli,
M. (ed.) FASE 2005. LNCS, vol. 3442, pp. 175–189. Springer, Heidelberg (2005).
https://doi.org/10.1007/978-3-540-31984-9 14

11. Bornot, S., Sifakis, J., Tripakis, S.: Modeling urgency in timed systems. In: de
Roever, W.-P., Langmaack, H., Pnueli, A. (eds.) COMPOS 1997. LNCS, vol. 1536,
pp. 103–129. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49213-
5 5

12. Dima, C.: Real-time automata. J. Autom. Lang. Comb. 6(1), 3–23 (2001). https://
doi.org/10.25596/jalc-2001-003

13. Grinchtein, O., Jonsson, B., Leucker, M.: Learning of event-recording automata.
Theor. Comput. Sci. 411(47), 4029–4054 (2010). https://doi.org/10.1016/j.tcs.
2010.07.008

14. Grinchtein, O., Jonsson, B., Pettersson, P.: Inference of event-recording automata
using timed decision trees. In: Baier, C., Hermanns, H. (eds.) CONCUR 2006.
LNCS, vol. 4137, pp. 435–449. Springer, Heidelberg (2006). https://doi.org/10.
1007/11817949 29

https://doi.org/10.1007/978-3-319-09099-3_1
https://doi.org/10.1145/1921532.1921559
https://doi.org/10.1007/978-3-642-38916-0_2
https://doi.org/10.1007/978-3-642-38916-0_2
https://doi.org/10.1007/978-3-319-57288-8_2
https://doi.org/10.1007/978-3-319-57288-8_2
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1016/S0304-3975(97)00173-4
https://doi.org/10.1016/S0304-3975(97)00173-4
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1016/S1474-6670(17)42032-5
https://doi.org/10.1016/S1474-6670(17)42032-5
http://www.sciencedirect.com/science/article/pii/S1474667017420325
http://www.sciencedirect.com/science/article/pii/S1474667017420325
https://doi.org/10.1007/978-3-540-30080-9_7
https://doi.org/10.1007/978-3-540-31984-9_14
https://doi.org/10.1007/3-540-49213-5_5
https://doi.org/10.1007/3-540-49213-5_5
https://doi.org/10.25596/jalc-2001-003
https://doi.org/10.25596/jalc-2001-003
https://doi.org/10.1016/j.tcs.2010.07.008
https://doi.org/10.1016/j.tcs.2010.07.008
https://doi.org/10.1007/11817949_29
https://doi.org/10.1007/11817949_29

20 B. K. Aichernig et al.

15. Hessel, A., Larsen, K.G., Nielsen, B., Pettersson, P., Skou, A.: Time-optimal real-
time test case generation using Uppaal. In: Petrenko, A., Ulrich, A. (eds.) FATES
2003. LNCS, vol. 2931, pp. 114–130. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-24617-6 9

16. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection. Complex Adaptive Systems. MIT Press (1993). ISBN 978-0-
262-11170-6

17. Lin, S.-W., André, É., Dong, J.S., Sun, J., Liu, Y.: An efficient algorithm for
learning event-recording automata. In: Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011.
LNCS, vol. 6996, pp. 463–472. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-24372-1 35

18. Mao, H., Chen, Y., Jaeger, M., Nielsen, T.D., Larsen, K.G., Nielsen, B.: Learning
deterministic probabilistic automata from a model checking perspective. Mach.
Learn. 105(2), 255–299 (2016). https://doi.org/10.1007/s10994-016-5565-9

19. de Matos Pedro, A., Crocker, P.A., de Sousa, S.M.: Learning stochastic timed
automata from sample executions. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012.
LNCS, vol. 7609, pp. 508–523. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-34026-0 38

20. Mediouni, B.L., Nouri, A., Bozga, M., Bensalem, S.: Improved learning for stochas-
tic timed models by state-merging algorithms. In: Barrett, C., Davies, M., Kah-
sai, T. (eds.) NFM 2017. LNCS, vol. 10227, pp. 178–193. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-57288-8 13

21. Pastore, F., Micucci, D., Mariani, L.: Timed k-tail: automatic inference of timed
automata. In: 2017 IEEE International Conference on Software Testing, Verifica-
tion and Validation, ICST 2017, Tokyo, Japan, 13–17 March 2017, pp. 401–411.
IEEE Computer Society (2017). https://doi.org/10.1109/ICST.2017.43, http://
ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7922464

22. Peled, D.A., Vardi, M.Y., Yannakakis, M.: Black box checking. J. Autom. Lang.
Comb. 7(2), 225–246 (2002). https://doi.org/10.25596/jalc-2002-225

23. Pferscher, A.: Active model learning of timed automata via genetic pro-
gramming. Master’s thesis, Graz University of Technology, Graz, Aus-
tria (2019). https://diglib.tugraz.at/active-model-learning-of-timed-automata-
via-genetic-programming-2019

24. Pferscher, A., Tappler, M.: Supplemental materials for “From passive to active:
learning timed automata efficiently” (2020). https://doi.org/10.6084/m9.figshare.
9976211.v1, https://figshare.com/articles/Supplemental Materials for From
Passive to Active Learning Timed Automata Efficiently /9976211/1

25. Garćıa Soto, M., Henzinger, T.A., Schilling, C., Zeleznik, L.: Membership-based
synthesis of linear hybrid automata. In: Dillig, I., Tasiran, S. (eds.) CAV 2019.
LNCS, vol. 11561, pp. 297–314. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-25540-4 16

26. Springintveld, J., Vaandrager, F.W., D’Argenio, P.R.: Testing timed automata.
Theor. Comput. Sci. 254(1–2), 225–257 (2001). https://doi.org/10.1016/S0304-
3975(99)00134-6

27. Tappler, M., Aichernig, B.K., Larsen, K.G., Lorber, F.: Time to learn – learning
timed automata from tests. In: André, É., Stoelinga, M. (eds.) FORMATS 2019.
LNCS, vol. 11750, pp. 216–235. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-29662-9 13

https://doi.org/10.1007/978-3-540-24617-6_9
https://doi.org/10.1007/978-3-540-24617-6_9
https://doi.org/10.1007/978-3-642-24372-1_35
https://doi.org/10.1007/978-3-642-24372-1_35
https://doi.org/10.1007/s10994-016-5565-9
https://doi.org/10.1007/978-3-642-34026-0_38
https://doi.org/10.1007/978-3-642-34026-0_38
https://doi.org/10.1007/978-3-319-57288-8_13
https://doi.org/10.1109/ICST.2017.43
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7922464
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7922464
https://doi.org/10.25596/jalc-2002-225
https://diglib.tugraz.at/active-model-learning-of-timed-automata-via-genetic-programming-2019
https://diglib.tugraz.at/active-model-learning-of-timed-automata-via-genetic-programming-2019
https://doi.org/10.6084/m9.figshare.9976211.v1
https://doi.org/10.6084/m9.figshare.9976211.v1
https://figshare.com/articles/Supplemental_Materials_for_From_Passive_to_Active_Learning_Timed_Automata_Efficiently_/9976211/1
https://figshare.com/articles/Supplemental_Materials_for_From_Passive_to_Active_Learning_Timed_Automata_Efficiently_/9976211/1
https://doi.org/10.1007/978-3-030-25540-4_16
https://doi.org/10.1007/978-3-030-25540-4_16
https://doi.org/10.1016/S0304-3975(99)00134-6
https://doi.org/10.1016/S0304-3975(99)00134-6
https://doi.org/10.1007/978-3-030-29662-9_13
https://doi.org/10.1007/978-3-030-29662-9_13

From Passive to Active 21

28. Tretmans, J.: Model based testing with labelled transition systems. In: Hierons,
R.M., Bowen, J.P., Harman, M. (eds.) Formal Methods and Testing. LNCS, vol.
4949, pp. 1–38. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
78917-8 1

29. Utting, M., Pretschner, A., Legeard, B.: A taxonomy of model-based testing
approaches. Softw. Test. Verification Reliab. 22(5), 297–312 (2012). https://doi.
org/10.1002/stvr.456

30. Verwer, S., de Weerdt, M., Witteveen, C.: An algorithm for learning real-time
automata. In: Benelearn 2007: Proceedings of the Annual Machine Learning Con-
ference of Belgium and the Netherlands, Amsterdam, The Netherlands, 14–15 May
2007, pp. 128–135 (2007)

31. Verwer, S., de Weerdt, M., Witteveen, C.: A likelihood-ratio test for identifying
probabilistic deterministic real-time automata from positive data. In: Sempere,
J.M., Garćıa, P. (eds.) ICGI 2010. LNCS (LNAI), vol. 6339, pp. 203–216. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-15488-1 17

32. Walkinshaw, N., Derrick, J., Guo, Q.: Iterative refinement of reverse-engineered
models by model-based testing. In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009.
LNCS, vol. 5850, pp. 305–320. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-05089-3 20

https://doi.org/10.1007/978-3-540-78917-8_1
https://doi.org/10.1007/978-3-540-78917-8_1
https://doi.org/10.1002/stvr.456
https://doi.org/10.1002/stvr.456
https://doi.org/10.1007/978-3-642-15488-1_17
https://doi.org/10.1007/978-3-642-05089-3_20
https://doi.org/10.1007/978-3-642-05089-3_20

Generating Correct-by-Construction Distributed
Implementations from Formal Maude Designs

Si Liu1(B), Atul Sandur2, José Meseguer2, Peter Csaba Ölveczky3,
and Qi Wang2

1 ETH Zürich, Zürich, Switzerland
si.liu@inf.ethz.ch

2 University of Illinois, Urbana-Champaign, Champaign, USA
3 University of Oslo, Oslo, Norway

Abstract. Developing a reliable distributed system meeting desired per-
formance requirements is a hard and labor-intensive task. Formal specifi-
cation and analysis of a system design can yield correct designs as well as
reliable performance predictions. In this paper we present a correct-by-
construction automatic transformation mapping such a verified formal
specification of a system design in Maude to a distributed implementa-
tion satisfying the same safety and liveness properties. Two case studies
applying this transformation to state-of-the-art distributed transaction
systems show that high-quality implementations with acceptable perfor-
mance and meeting performance predictions can be automatically gener-
ated. In this way, formal models of distributed systems analyzed within
the same formal framework for both logical and performance properties
are automatically transformed into correct-by-construction implementa-
tions for which similar performance trends can be shown.

1 Introduction

Designing and implementing high-performance distributed systems are complex
tasks. Cloud-based systems, which typically rely on widely distributed data stor-
age for scalability, availability, and disaster tolerance, have further increased this
complexity. For example, the communication needed to maintain strong consis-
tency across sites may incur unacceptable latencies, so that designers must bal-
ance consistency and performance. Both performance and functional correctness
are therefore important system requirements that should be analyzed.

Formal methods have been advocated to develop and analyze high-level mod-
els of distributed system designs. However, today’s distributed systems present
a number of challenges to formal methods: (i) the complexity and heterogene-
ity of such systems require a flexible and expressive formal framework [32]; (ii)
the correctness properties that these systems must satisfy can be quite complex,
and there is a desire in industry for automatic verification methods [32]; and (iii)
both correctness and performance are, as mentioned, crucial requirements.

One formal framework that has shown promise in meeting the challenges (i)–
(iii) is Maude [10], a high-performance formal framework for executable specifi-
cation, verification, and programming of concurrent systems based on rewriting
c© Springer Nature Switzerland AG 2020
R. Lee et al. (Eds.): NFM 2020, LNCS 12229, pp. 22–40, 2020.
https://doi.org/10.1007/978-3-030-55754-6_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-55754-6_2&domain=pdf
https://doi.org/10.1007/978-3-030-55754-6_2

Generating Distributed Implementations from Maude Designs 23

logic [8,28,29]. Maude meets challenge (i) by being based on a general and ex-
pressive, yet simple and intuitive, formalism. Regarding challenge (ii), Maude
provides a range of automatic model checking methods, including reachability
analysis and LTL and LTLR temporal logic model checking [2,10], which allows
us to express and analyze complex properties (see, e.g., [25]). For challenge (iii),
the PVeStA [1] statistical model checker can be used to statistically predict the
performance of a design specified in Maude.

These features have made possible the use of Maude to model and analyze
both the correctness and performance of high-level designs of a wide range of
systems [29]. To cite just one area, Maude has been used to formally model
and analyze, often for the first time, state-of-the-art industrial and academic
cloud-based transaction systems such as Apache Cassandra [18], ZooKeeper [19],
Google’s Megastore [4], P-Store [35], RAMP [3], and Walter [38]; and to design
the entirely new system ROLA [22] (see [7,23,24,33]). Furthermore, model-based
performance predictions using PVeStA have shown good correspondence with
experimental evaluation of implementations of Cassandra, RAMP, and Walter.

In this way, we can develop mature designs satisfying given correctness crite-
ria and having good predicted performance. However, this still leaves open the
problem of how to pass from a verified system design to a correct-by-construction
distributed implementation. This is the problem this paper solves.

Since Maude provides TCP/IP sockets as external objects which can interact
with standard Maude objects by message passing [10], a Maude object system
can be deployed as a distributed system across several machines. The goal of
this paper is to fully automate the passage from an object-based Maude design
M to a distributed Maude implementation D(M), and to prove that M and
an abstract model D0(M), which hides the details of D(M)’s TCP/IP-based
network communication, are stuttering bisimilar [27,30] and therefore satisfy the
same CTL∗ properties for any formulas not using the “next” operator. Therefore,
both safety and liveness properties are preserved by the transformation. Since
both the formal specification and its distributed implementation are given in
Maude, proving correctness of the generated code is quite straight-forward. This
is in contrast to code generation frameworks that generate code in languages,
such as C or Java, that are different from the formal specification language, and
where proving correctness of the generated code is hard and typically not done.

We have developed a prototype that automates the M �→ D(M) transforma-
tion, and have evaluated its effectiveness on two case studies. In the first one we
compare the distributed Maude implementation D(M) automatically generated
from the Maude specification M of the NO WAIT transaction protocol with a
state-of-the-art conventional C++ implementation of NO WAIT. In the second
case study we compare the Maude design M of the new distributed transaction
system ROLA with its first ever distributed implementation D(M).

Main Contributions: (i) the formal definition of the M �→ D(M) transfor-
mation; (ii) the proof that for any actor-like Maude specification M the system
D0(M) and M are stuttering bisimilar; (iii) a “proof-of-concept” implementa-
tion of the M �→ D(M) transformation allowing us to generate, deploy, and

24 S. Liu et al.

evaluate correct-by-construction implementations of state-of-the-art system de-
signs, and allowing interaction of such implementations with foreign objects (see
Sect. 3.3) such as the YCSB workload generator [12]; (iv) two case studies
using state-of-the-art distributed transaction systems evaluating the implemen-
tations obtained by the M �→ D(M) transformation with respect to: (a) the
statistical-model-checking-based performance predictions for M ; and (b) a con-
ventional high-performance C++ implementation. To the best of our knowledge,
this is the first time that formal models of distributed systems analyzed within
the same formal framework for both logical and performance properties are au-
tomatically transformed into logically correct-by-construction implementations
for which similar performance trends can be shown.

2 Preliminaries

Rewriting Logic and Maude. Maude [10] is a rewriting-logic-based executable
formal specification language and high-performance analysis tool for distributed
systems. Formal analysis methods include: simulation, reachability analysis, LTL
model checking, theorem proving [34,37], and, for performance estimation pur-
poses, statistical model checking with the PVeStA tool [1].

A Maude module specifies a rewrite theory (Σ,E ∪ B,R), where:

– Σ is an algebraic signature; i.e., a set of sorts, subsorts, and function symbols.
– (Σ,E ∪ B) is a membership equational logic theory specifying the system’s

data types, with E a set of conditional equations and membership axioms,
and B a set of equational axioms such as associativity, commutativity, and
identity, so that equational deduction is performed modulo the axioms B.

– R is a collection of labeled conditional rewrite rules [l] : t −→ t′ if cond ,
specifying the system’s local transitions.

We summarize the syntax of Maude and refer to [10] for details. Operators are
introduced with the op keyword: op f : s1 . . . sn -> s and can have user-definable
syntax. Equations and rewrite rules are introduced with, respectively, keywords
eq, or ceq for conditional equations, and rl and crl. The mathematical variables
in such statements are declared with the keywords var and vars.

A class declaration class C | att1 : s1, ..., attn : sn declares a class
C of objects with attributes att1 to attn of sorts s1 to sn. An object of class
C is represented as a term < o : C | att1 : val1, . . . , attn : valn >, where o, of
sort Oid, is the object’s identifier, and where val1 to valn are the current values
of the attributes att1 to attn. A message is a term of sort Msg. A system state
is modeled as a term of the sort Configuration, and has the structure of a
multiset made up of objects and messages. The dynamic behavior of a system is
axiomatized by specifying its transition patterns as rewrite rules. For example,
the rule

rl [l] : m(O,w) < O : C | a1 : x, a2 : O’, a3 : z > =>

< O : C | a1 : x + w, a2 : O’, a3 : z > m’(O’,x) .

Generating Distributed Implementations from Maude Designs 25

defines a family of transitions in which a message m(O, w) is read and consumed
by an object O of class C, whose attribute a1 is changed to x + w, and a new
message m’(O’,x) is generated. Attributes whose values do not change and do
not affect the next state, such as a3 and a2, need not be mentioned in a rule.

Sockets in Maude. Maude’s erewrite command supports rewriting with exter-
nal objects (that do not reside in the configuration) when the “portal” object
<> is present in the configuration. Objects in a Maude process, here called a
session, can communicate with external objects in the same session by message
passing. One such external object is Maude’s built-in socket manager object,
with name socketManager, that supports communicating through TCP sockets
with other remote Maude objects in other Maude sessions, as well as with re-
mote foreign objects (see Sect. 3.3) in other processes. Some of the messages
defining the interface between a Maude process and Maude’s socket manager are
the following: A message send(socketName,myOid,string) asks Maude to send
string through the socket socketName, and receive(socketName,myOid) solic-
its data through a socket. When some data (string) is received through a socket,
the socket manager sends the message received(myOid,socketName,string).

Stuttering Bisimulations. A Kripke structure A on a set AP of atomic proposi-
tions is a 4-tuple A = (A,→A, a0, LA) where A is a set of states, →A⊆ A×A is
the total transition relation on states, a0 ∈ A is the initial state, and LA, called
the labeling function, is a function LA : A → P(AP) assigning to each state
a ∈ A the set of atomic state predicates LA(a) true in state a. A path π in A is
function π : N → A such that π(0) = a0 and ∀n ∈ N π(n) →A π(n + 1).

Definition 1. [30] Given Kripke structures A = (A,→A, a0, LA) and B =
(B,→B, b0, LB), a stuttering bisimulation map, denoted h : A → B, is a func-
tion h : A → B such that: (1) given any path π in A there is a path ρ in B
and a strictly monotonic function κ : N → N such that: (i) for each n ∈ N and
each i, κ(n) ≤ i < κ(n + 1), (ii) h(π(κ(n))) = h(π(κ(i))) = ρ(n), and (iii)
LA(π(κ(n))) = LA(π(i)) = LB(ρ(n)). And (2) given any path ρ in B there is a
path π in A and a strictly monotonic function κ : N → N satisfying (i)–(iii).

The key property of a stuttering bisimulation map h : A → B is that all
formulas ϕ ∈ CTL∗ \ © satisfied by B are also satisfied by A, and vice versa,
where CTL∗ \ © denotes the subset of the CTL∗ temporal logic not involving
the “next” operator © (for more on CTL∗ and its LTL sublogic, see [9]):

Theorem 1. [30] (Implementation Correctness). If h : A → B is a stuttering
bisimulation map, for each ϕ ∈ CTL∗ \ © we have: B |= ϕ ⇔ A |= ϕ.

We can associate to a rewrite theory R = (Σ,E,R) and an initial state
init ∈ TΣ/E a corresponding Kripke structure K(R, init) = (Reach(init),−→•

R/E

, init , L) where Reach(init) is the set of all states [u] ∈ TΣ/E reachable from init ,
−→•

R/E is the (totalization of) the one-step rewrite relation −→R/E , and L maps
each reachable state [u] to the set L([u]) = {p ∈ AP | u |= p =E true}.

26 S. Liu et al.

3 The D Transformation

We define the transformation M �→ D(M), mapping a Maude model M of a
distributed system to a distributed Maude program D(M) deployed on different
machines. Multiple concurrent Maude sessions may run on the same machine.

The transformation D takes as input:

– an object-oriented Maude module M defining an actor system (see below);
– an initial state init of sort Configuration, which is a set of objects

< o1 : C1 | atts1 > ... < on : Cn | attsn > with distinct names oi;

– a distribution information function di : {o1, . . . , on} → String × N

assigning to each (top-level) object oj in init a pair (ip, i), where ip is the
IP address of the machine in which oj resides, and i is a session number.

The transformation D then gives us:

– A Maude program MDdi
that runs on each distributed Maude session; and

– an initial state initDdi
(ip, i) for each Maude session (ip, i).

Notation. We write MDdi
for D(M, init, di).

The object-oriented module M should model an “actor” system, so that its
rewrite rules must have the form

(to o from o’ : mc) < o : C | ... > => < o : C | ... > msgs [if ...] (†)

or

< o : C | ... > => < o : C | ... > msgs [if ...] (‡)

where msgs is a term of sort Configuration which, applying the equations in
the module, reduces to a multiset of messages

(to o1 from oθ :mc1) ... (to ok from oθ :mck)

for k ≥ 0, where θ is the substitution used when applying the rule. In such a
message, mci is the message content (or payload) of the message being sent to
the object named oi from the object named oθ.

3.1 The M �→ MDdi Transformation

The main idea for defining the distributed Maude program MDdi
is to add mid-

dleware for communication between Maude sessions and with external objects.
This is done by adding to each Maude session a communication mediator object
that takes care of communication with non-local objects, as illustrated in Fig. 1.

Generating Distributed Implementations from Maude Designs 27

A

B

C
E

F

D

B

A
C

F

E
D

D-transformation

Mediator Mediator Mediator

Fig. 1. Visualization of the D-Transformation

This mediator object opens
and maintains sockets for com-
munication between objects; there
is in general one socket for each
pair of objects that communicate
remotely (across machine/session
boundaries). Objects in the same
Maude session communicate with-
out using the mediator.

The only modification of the
rewrite rules in M is that a mes-
sage addressed to a remote object
is “redirected” to the local medi-
ator, which (i) establishes the re-
quired socket between the pair of
objects if not already established; (ii) transforms the original message into a
string with an “end-of-message” marker; and (iii) sends the resulting string
through the appropriate socket.

For receiving, the mediator object receives external messages through sockets
associated to “its” objects. Since TCP sockets do not preserve message bound-
aries, the mediator has to buffer the messages received in each socket. When
the buffered string contains the “end-of-message” string, the mediator extracts
the string representing the message, transforms it to a message, and leaves the
message (having a local addressee) in the local configuration.

The distributed program MDdi
consists of:

– A constant di of sort Map{Oid,Pair{String,Nat}} which specifies di as a
map from Oid to Pair{String,Nat} using an equation eq di =

– The module filter(M), which transforms M as described below.
– Declarations and rewrite rules defining the mediator objects and their be-

haviors (which import the SOCKET module).

The Module filter(M). The only change made by filter(M) to the rewrite rules
in M is that any message (to o’ from o : mc) generated by a rule in M is
replaced by a message (to di(o’) transfer mc from o to o’) if o’ and
o reside in different Maude sessions. Formally, this is done by adding an object
identifier < ip ; session > for each mediator object, adding a message constructor

op to_transfer_from_to_ : Oid MsgContent Oid Oid -> Msg [ctor] .

and changing each rewrite rule in M of the form (†) to

(to o from o’ : mc) < o : C | ... > => < o : C | ... > filter(msgs) [if ...]

(and similar with rules of the form (‡)), where filter redirects the messages go-
ing to remote objects to the mediator and leaves the other messages unchanged1:
1 We do not show variable declarations in this paper, but follow the convention that

variables are written in (all) capital letters.

28 S. Liu et al.

op filter : Configuration -> Configuration .

eq filter(none) = none .

eq filter((to O from O’ : MC) CONF)

= if di[O] =/= di[O’]

then (to di[O’] transfer MC from O’ to O) filter(CONF)

else (to O from O’ : MC) filter(CONF) fi .

Specifying the Mediator. Each mediator is defined as an object of class

class Med | sockets : Sockets,

contacts : Contacts,

bufferedMsgs : Configuration .

– sockets values are terms [socket1, str1] ... [socketk, strk], denoting that
the string str j has been received through socket socketj (and then buffered)
since the last time a message was extracted from this buffer;

– contacts is a set of triples < localObjId,socket,remoteObjId >, denoting the
socket used to communicate between two objects; and

– bufferedMsgs contains the outgoing messages when the appropriate sockets
have not yet been established.

We refer to https://github.com/siliunobi/d-transformation for a com-
plete specification of the mediator object, where most of the rewrite rules deal
with establishing Maude sockets along the lines explained in [10, Chapter 11].
In this paper we just show the following two rewrite rules for the mediator.

rl [sendRemote] :

(to O transfer MC from O’ to O’’)

< O : Med | contacts : CONTACTS ; < O’, SOCKET, O’’ > >

=>

< O : Med | >

send(SOCKET, O’, msg2string(to O’’ from O’ : MC) + "[msep]") .

In this rule, the mediator is tasked with transferring the message content MC
from the local object O’ to the remote object O’’. The rule uses Maude’s built-
in message send to send the message through the socket SOCKET, which has
already been established between O’ and O’’. Since sockets transport strings,
the function msg2string is used to transform the message into a string; the
end-of-message separator "[msep]" is then appended to the string.

The following rule applies when a configuration receives a message received(S,

SKT, DATA), denoting that a string DATA has been received through socket SKT.
The mediator adds DATA to the string STR that it has buffered for socket SKT:

rl [receiveData] :

received(S, SKT, DATA)

< O : Med | sockets : SKTS [SKT, STR] >

=>

< O : Med | sockets : SKTS [SKT, STR + DATA] >

receive(SKT, S) .

https://github.com/siliunobi/d-transformation

Generating Distributed Implementations from Maude Designs 29

See our report [26] for the rule where the mediator extracts a message from a
socket and adds it to the local configuration. Objects in the same Maude session
communicate without going through sockets or mediators.

The Module MDdi
. To summarize, the distributed Maude program MDdi

executed
at each local host consists of the definition of di and the union of the module
filter(M) and the mediator specification:

mod MDdi is including filter(M) + MEDIATOR . eq di = endm

3.2 Distributed Initial States

The initial state initDdi
(ip, n) at Maude session (ip, n) is a configuration with:

– the objects in init mapped to (ip, n) by di;
– one mediator object

< < ip ;n > : Med | sockets : empty, contacts : empty, bufferedMsgs : none >

– one occurrence of the built-in “portal” object <> denoting that we rewrite
with external objects, such as Maude’s built-in socket manager; and

– for each top-level (non-mediator) object o in the configuration, a message

createServerTcpSocket(socketManager, o, port#, 5)

3.3 Communicating with Foreign Objects

A socket-based distributed Maude object system can easily be extended to inter-
act with objects foreign to it with no changes to the existing rewrite rules: only
the new messages and rules defining the interaction with new foreign objects—
databases, web sites, display devices, and so on—need to be specified.

Suppose that C is a class of Maude objects that needs to communicate with
foreign objects. All we need are three things: (a) a signature of messages sent
by objects in C to such foreign object and by foreign objects to objects in C; (b)
rewrite rules for the objects of class C specifying how messages to foreign objects
are generated and how objects of class C react to messages sent by foreign objects;
and (c) a wrapper encapsulating a foreign object that can transform the string
representation of a message from a C object into an internal command to the
foreign object, and a reply from the foreign object into the string representation
of a message to a C object. In this work we have used the steps (a)–(c) to allow
communication between a YCSB [12] foreign object and standard Maude objects
to carry out system evaluations on realistic workloads.

30 S. Liu et al.

3.4 Deployment

We have built a simple Python-based prototype that automates the process of
deploying and running the distributed Maude model on distributed machines.
The tool takes as input the IP addresses of the distributed machines and the
number of Maude sessions on each machine.

We have run distributed Maude deployments to perform large-scale experi-
ments on distributed transaction systems. To experiment with realistic work-
loads, we have connected our distributed implementation to the well-known
YCSB workload generator [12] as explained in Sect. 3.3. Our tool also in-
vokes the workload generator to initialize and to load data into the database,
and to generate transactions for the different Maude instances to execute.

To measure the performance of our distributed implementation, we have
added a “log” attribute to each mediator object that records relevant data during
the distributed execution. A Python script then inspects and aggregates these
logs after execution to compute the overall performance metric of the system.

4 Correctness Preservation

Our goal is to obtain a distributed implementation of a Maude specification
that is correct by construction: If the original Maude model M , with initial
state init, satisfies a CTL∗ temporal logic property φ that does not contain the
“next” operator ©, then φ should also hold in the distributed implementation
MDdi

when started with corresponding distributed initial state(s), and vice versa.
Since MDdi

uses TCP/IP socket objects for communication between differ-
ent Maude sessions, a full proof of correctness of the M �→ MDdi

transformation
would require modeling the TCP/IP protocol and its associated network failure
model, which is beyond the scope of this paper. Instead, we use the approach
followed in other proofs of correctness of distributed systems obtained by trans-
formation from formal specifications, e.g., [36,40], where network communication
is abstracted away. Therefore, we present below a proof of correctness which uses
an intermediate formal model D0(M, init, di) which abstracts away the network
communication details by providing a high-level abstraction of it.

4.1 The Model D0(M, init, di)

The rewrite theory D0(M, init, di) is essentially as MDdi
, except that it ab-

stracts away the establishment of the appropriate sockets, and models the effect
of socket communication in rewriting logic at a higher level of abstraction. The
model D0(M, init, di) therefore simplifies MDdi

as follows.
Concerning the mediator class:

– Since we no longer have explicit sockets, the contacts attribute of Med is no
longer needed.

– Since we assume that the sockets have been successfully established, the
attribute bufferedMsgs, used to buffer outgoing messages that could not
yet be transmitted since some socket was not established, is not needed.

Generating Distributed Implementations from Maude Designs 31

– Since we abstract away the fact that TCP sockets do not preserve message
boundaries, we do not need to buffer messages at the receiving end, and
therefore the attribute sockets is no longer needed.

The mediator class therefore no longer needs any attributes, and is declared as
follows in D0(M, init, di): class Med .

The rewrite rules in D0(M, init, di) differ from those in MDdi
as follows:

– Since we abstract from the establishment of sockets, the rules in MDdi
dealing

with this issue (not shown in this paper) are omitted from D0(M, init, di).
– The rule sendRemote in MDdi

is replaced by the rule

rl [sendRemote] :

(to O transfer MC from O’ to O’’) < O : Med | >

=>

< O : Med | > transfer(di[O’’], O, msg2string(to O’’ from O’ : MC)) .

where a “transfer” message models socket communication.
– When a mediator receives such a transfer message (modeling socket commu-

nication), it transforms the received string into a message, which is then re-
leased into the configuration. Rules receiveData and extractRemoteMsg in
MDdi

are therefore replaced by the following rewrite rule in D0(M, init, di):

crl [receiveRemoteMsg] :

transfer(O, O’, STRING) < O : Med | >

=>

< O : Med | > string2msg(STRING) .

Initial States. The initial state in D0(M, init, di) corresponding to the state
init in M is just init with an additional mediator object < < ip ;n > : Med | >
for each (ip, n) ∈ image(di). We call this initial state initD0 .

4.2 D0(M, init, di) and M are Stuttering Bisimilar

We show that the Kripke structures K(D0(M, init, di), initD0) and K(M, init)
are stuttering bisimilar for their respective labeling functions L ◦ h and L.

We define the map h : Reach(initD0) → Reach(init) as follows:

eq h(none) = none .

eq h(< O : Med | > CONF) = h(CONF) .

ceq h(< O : C | > CONF) = < O : C | > h(CONF) if C =/= Med .

eq h((to O transfer MC from O’ to O’’) CONF)

= (to O’’ from O’ : MC) h(CONF) .

eq h((transfer(O,O’,STRING)) CONF) = string2msg(STRING) h(CONF) .

eq h((to O from O’ : MC) CONF) = (to O from O’ : MC) h(CONF) .

That is, h maps a configuration in D0(M, init, di) to a similar configuration in
M with the following modifications: (i) the mediator objects are forgotten, and
(ii) the three intermediate messages involved in transferring a message content
mc from o to a remote o′ are all mapped to the message (to o′ from o : mc).

32 S. Liu et al.

Theorem 2. h is a stuttering bisimulation map

h : K(D0(M, init, di), initD0) → K(M, init)

with corresponding labeling functions L ◦ h and L.

The proof of Theorem 2 is given in our longer report [26]. The following main
correctness-preservation result follows immediately from Theorems 1 and 2:

Theorem 3. Given a rewrite theory M specifying a distributed system and an
initial state init as described in Sect. 3, a distribution information function
di mapping the top-level objects in init to different machines/Maude sessions,
a labeling function L over a set AP of atomic propositions, and a CTL∗ formula
ϕ over AP not containing the “next” operator, then

K(M, init) |= ϕ if and only if K(D0(M, init, di), initD0) |= ϕ

for the labeling function L ◦ h in K(D0(M, init, di), initD0).

5 Prototype and Experiments

We have implemented, in around 300 LOC, a “proof-of-concept” prototype of the
D transformation that automatically transforms a Maude model of a distributed
system into a distributed Maude implementation. We have applied our prototype
to the Maude specification of: (i) a lock-based distributed transaction protocol
which has been implemented in C++ and evaluated in [16]; and (ii) the ROLA
transaction system design. ROLA [22] is a new design whose correctness and
performance have been analyzed using Maude and PVeStA, but which has
never been implemented. Using our prototype and the Maude specification of
ROLA we obtain the first distributed implementation of ROLA for free.

We have subjected our two distributed Maude implementations so obtained
to realistic workloads generated by YCSB to answer to the following questions:

Q1: Are the performance evaluations obtained for the distributed Maude imple-
mentations consistent with conventional distributed implementations of the
same designs (if available) and with the model-based performance predic-
tions obtained by statistical model checking of the original Maude designs?

Q2: How does the performance of a distributed Maude implementation auto-
matically generated by our unoptimized prototype compare with that of a
state-of-the-art distributed implementation in C++ of the same design?

Answers to Q1 cannot be an agreement between the performance values predicted
by statistically model checking a Maude model and the values measured in an ex-
perimental evaluation. This is impossible because: (i) measured values depend on
the experimental platform used; (ii) the probability distributions used in statis-
tical model checking are only approximations of the expected behavior; and (iii)
the sizes of initial states used in statistical model checking and in experimental

Generating Distributed Implementations from Maude Designs 33

evaluations are typically quite different, due to feasibility restrictions placed by
statistical model checking. Therefore, the desired consistency between the per-
formance predicted by statistically model checking a model and the performance
obtained by experimentally evaluating an implementation is an agreement be-
tween predicted and measured trends: If, e.g., throughput increases as a function
of the proportion of read transactions, then consistency means that it should do
so along curves that are similar up to a change of scale.

5.1 Experimental Setup

Implementation-Based Evaluation. We evaluated the two case studies using the
Yahoo! Cloud Serving Benchmark (YCSB) [12], which is the open standard for
performance evaluation of data stores. We used the built-in C++ implementation
of YCSB in [16] in our first case study. For ROLA, we used a variant of the
original Java implementation of YCSB adapted to transaction systems [3]. We
deployed the two systems on a cluster of d430 Emulab machines, with ping
time between machines approximately 0.13 ms. In both cases, we considered
5 partitions (of the database) on 5 machines, and client processes split across
another 5 separate machines; we considered the same mix of read-only, write-
only, and read-write transactions, with each transaction accessing up to 8 keys.
We used Zipfian distribution for key accesses with parametric skew factor theta.

Statistical Model Checking (SMC). By running Monte-Carlo simulations from a
given initial state, SMC estimates the expected value of an expression up to a
user-specified level of confidence. We probabilistically generated initial states so
that each PVeStA simulation starts from a different state. To mimic the real-
world network environment, we used lognormal distribution for message delays
[5]. We used 10 machines of the above type to perform statistical model checking
with PVeStA. The confidence level for all our statistical experiments is 95%.

Standard Model Checking. We used the CAT tool [25] for model checking con-
sistency properties of our Maude models. The analysis was performed with all
initial states up to 4 transactions, 2 keys, 2 clients, and 2 servers.

5.2 Case Study I: Lock-Based Distributed Transactions

NO WAIT [13] is a strict two-phase-locking-based distributed transaction sys-
tem with two-phase commit (2PC) as its atomic commitment protocol, and has
been implemented in the Deneva framework [16] using C++. We formally spec-
ified NO WAIT in Maude, and then automatically generated the corresponding
distributed Maude implementation. We used the C++ implementation in [16] in
our experiments with NO WAIT. Our Maude model of NO WAIT has around
600 LOC, whereas the C++ implementation in [16] has approximately 12K LOC.

We performed two sets of experiments (Lock A and Lock B in Fig. 2), fo-
cusing on the effect of varying the contention in the system. For each set of ex-
periments, we plot the results of statistical model checking of our Maude model,
and of measurements of the distributed Maude and C++ implementations.

34 S. Liu et al.

Regarding Q1, in Lock A we vary the contention by tuning the skew theta,
and compare two workloads, with 50% and 100% update transactions. In Lock B
we analyze the throughput as a function of the percentage of read-only transac-
tions with skew theta = 0.5, and focus on the impact of transaction sizes (number
of operations in a transaction). All three plots in each experiment show similar
trends for the model- and implementation-based evaluations. That is, our dis-
tributed Maude implementation-based evaluation not only agrees with statistical
predictions, but also with state-of-the-art implementation-based results.

Regarding Q2, our distributed system achieves lower peak throughput, by a
factor of 6, than the C++ implementation. Some reasons for this lower perfor-
mance are: (i) our tool is an unoptimized prototype, whereas the C++ imple-
mentation of NO WAIT is optimized for performance (e.g., the socket library
nanomsg provides a fast and scalable networking layer); and (ii) the M �→ D(M)
transformation allows adding any benchmarking tool as a foreign object, which
is flexible but adds an extra layer of communication, whereas YCSB and the
protocol clients are directly integrated in the C++ implementation.

We have also used the CAT tool [25] to model check our Maude model of
NO WAIT against 6 consistency properties, without finding any violation. If our
trusted code base executes correctly, Theorem 3 ensures that our distributed
Maude implementation of NO WAIT satisfies the same consistency properties
for the corresponding initial states.

5.3 Case Study II: The ROLA Transaction System

ROLA [22] is a recent distributed transaction protocol design that guarantees
read atomicity (RA) and prevents lost updates (PLU). In [22], ROLA was for-
malized in Maude, model checked for the above consistency properties, and sta-
tistical model checking performance estimation showed that ROLA outperforms
well-known distributed transaction system designs guaranteeing RA and PLU.
However, up to now there was no distributed implementation of ROLA. Us-
ing our tool and the Maude specification of ROLA in [22] (which consists of
approximately 850 LOC), we obtain such a correct-by-construction distributed
implementation for free.

We have performed statistical model checking of the Maude specification, and
have run our distributed Maude implementation on YCSB-generated workloads,
on two groups of experiments (see Fig. 3). In ROLA A we increase the amount of
reads, and compare throughput with various partitions of the entire database (5
partitions against 3 partitions). In ROLA B we plot throughput as a function of
the number of concurrent clients, and focus on the effect of increasing the amount
of contention (95% reads against 50% reads). Both plots in each experiment agree
reasonably well.

All consistency properties model checked in [22] are preserved (Theorem 3)
assuming correct execution of the trusted code base.

All system models, property specifications, and distributed Maude implemen-
tations are available at https://github.com/siliunobi/d-transformation.

https://github.com/siliunobi/d-transformation

Generating Distributed Implementations from Maude Designs 35

Fig. 2. NO WAIT: Throughput obtained from statistical model checking (top), dis-
tributed Maude implementation (middle), and C++ implementation (bottom). Exper-
iments Lock A (left) and Lock B (right) measure throughput for different ratios of
updates and transaction sizes when varying skew factors and ratios of reads, resp.

6 Related Work

Our work is related to various formal frameworks for specification, verification,
and implementation of distributed systems that try to reduce the formality gap
[41] between the formal specification of a distributed system’s design and its
implementation. They can be roughly classified in three categories (only some
example frameworks in each category are discussed):

1. Generating Imperative Implementation from Formal Models. Formal frame-
works such as those in, e.g., [14,15,39], offer the possibility of generating dis-
tributed Java or C implementations from formal models.

2. Specification, Verification, and Proof of Imperative Implementation. A good
example of state-of-the art recent work in this category is the IronFleet frame-

36 S. Liu et al.

Fig. 3. ROLA: Comparison between statistical model checking (top) and distributed
Maude implementation (bottom). Experiments ROLA A (left) and ROLA B (right)
measure throughput for different number of partitions and different ratios of reads
when varying ratios of reads and concurrent clients, respectively.

work [17]. Distributed systems are specified in a mixture of Lamport’s TLA and
Hoare logic assertions for imperative sequential code in Leino’s Dafny language
[20]. They are then formally verified with various tools, including Z3 [31] and
the Dafny prover. Dafny code is then compiled into C# code.

3. Specification, Verification, and Transformation into Correct Distributed Im-
plementation. Work in this category has for the most part been based on con-
structive logical frameworks such as Nuprl [11] and Coq [6]. In particular: (i) the
Event-ML framework begins with an Event-ML specification and the desired
properties both expressed in Nuprl and extracts a GPM program implementa-
tion; (ii) theVerdi framework [40] begins with a distributed system design and
a set of safety properties, both specified in Coq; after desired properties are
verified in Coq, the OCaml code of a correct implementation is extracted and
deployed using a trusted shim; (iii) the Chapar framework [21] is specialized to
extract correct-by-construction implementations of key-value stores in OCaml
from formal specifications of such stores and of their consistency properties ex-
pressed and verified in Coq; and (iv) the Disel modular framework [36] specifies
both distributed system designs and their desired properties in Coq, uses Coq to
prove the desired properties, and extracts correct-by construction OCaml code.

Comparison with the Maude Framework. To the best of our knowledge, none of
the above frameworks provide support for prediction of performance properties
by statistical model checking, whereas Maude does so through PVeSta. In con-

Generating Distributed Implementations from Maude Designs 37

trast to related work in category (1), where the correctness of the generated Java
or C code is not proved (e.g., [15]), we prove the correctness of the generated
distributed implementation. A possible exception is the effort in [14,39] which
“argues the correctness” of their compilation from I/O automata to Java by mod-
eling the compiled code as I/O automata. They also assume correctness of data
type implementations, and only claim preservation of safety properties, whereas
we also prove preservation of liveness properties. The main difference with the
IronFleet framework in category (2) is that imperative programs are a problem-
atic, low level choice for expressing formal design specifications. Furthermore,
system properties can be considerably harder to prove at that level. Regarding
frameworks in category (3), our work within the Maude framework shares with
them the possibility of generating correct-by-construction distributed implemen-
tations from designs and of verifying such designs using theorem proving [34,37],
but also adds the possibility of rapid exploration of different design alterna-
tives by testing and by automatic model checking analysis, and the prediction
of system performance before implementation. The point is that beginning with
a human-intensive theorem proving verification effort may be both premature
and costly. Instead, in Maude, designs can be analyzed and improved by fully
automated methods before a mature design is fully verified by theorem proving.

7 Conclusions

We have presented and implemented a “proof-of-concept” prototype of the D
transformation taking a Maude model M of a distributed system design and au-
tomatically generating the distributed Maude implementation D(M). We have
proved that M and a model D0(M) of D(M) abstracting network communica-
tion details are stuttering bisimilar and therefore satisfy the same safety and
liveness properties. We have applied our method to automatically obtain dis-
tributed implementations of two state-of-the-art distributed transaction system
designs—and have executed them on YCSB workloads. We have also compared
the performance of D(M) and a high-performance conventional C++ imple-
mentation, which outperforms our prototype by a factor of six. This work shows
that it is possible to automatically generate reasonable, but not yet optimal,
correct-by-construction distributed implementations from very high level and
easy to understand executable formal specifications of state-of-the-art system
designs which are much shorter (a factor of 20 for the C++ implementation of
NO WAIT) than conventional implementations.

Our Maude implementation of the M �→ D(M) transformation is a proof-of-
concept prototype with ample room for improvement. The obvious next step is to
arrive at an efficient Maude implementation of the M �→ D(M) transformation.

Acknowledgments. We thank the anonymous reviewers for helpful comments
on a previous version of this paper. This work has been partially supported by
NRL under contract N00173-17-1-G002, and the National Science Foundation
under grant NSF CCF 16-17401.

38 S. Liu et al.

References

1. AlTurki, M., Meseguer, J.: PVeStA: a parallel statistical model checking and
quantitative analysis tool. In: Corradini, A., Klin, B., Ĉırstea, C. (eds.) CALCO
2011. LNCS, vol. 6859, pp. 386–392. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-22944-2 28

2. Bae, K., Meseguer, J.: Model checking linear temporal logic of rewriting formulas
under localized fairness. Sci. Comput. Program. 99, 193–234 (2015)

3. Bailis, P., Fekete, A., Ghodsi, A., Hellerstein, J.M., Stoica, I.: Scalable atomic
visibility with RAMP transactions. ACM Trans. Database Syst. 41(3), 15:1–15:45
(2016)

4. Baker, J., et al.: Megastore: providing scalable, highly available storage for inter-
active services. In: CIDR 2011, pp. 223–234 (2011)

5. Benson, T., Akella, A., Maltz, D.A.: Network traffic characteristics of data centers
in the wild. In: IMC 2010, pp. 267–280. ACM (2010)

6. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development
- Coq’Art: The Calculus of Inductive Constructions. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-662-07964-5

7. Bobba, R., et al.: Survivability: design, formal modeling, and validation of cloud
storage systems using Maude. In: Assured Cloud Computing, chap. 2, pp. 10–48.
Wiley-IEEE Computer Society Press (2018)

8. Bruni, R., Meseguer, J.: Semantic foundations for generalized rewrite theories.
Theor. Comput. Sci. 360(1–3), 386–414 (2006)

9. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge
(2001)

10. Clavel, M., et al.: All About Maude. LNCS, vol. 4350. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-71999-1

11. Constable, R.L.: Implementing Mathematics with the Nuprl Proof Development
System. Prentice Hall, Englewood Cliffs (1987)

12. Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R.: Benchmarking
cloud serving systems with YCSB. In: SOCC 2010, pp. 143–154. ACM (2010)

13. Eswaran, K.P., Gray, J.N., Lorie, R.A., Traiger, I.L.: The notions of consistency
and predicate locks in a database system. Commun. ACM 19(11), 624–633 (1976)

14. Georgiou, C., Lynch, N.A., Mavrommatis, P., Tauber, J.A.: Automated imple-
mentation of complex distributed algorithms specified in the IOA language. STTT
11(2), 153–171 (2009)

15. Haberl, W.: Code generation and system integration of distributed automotive
applications. Ph.D. thesis, Technical University Munich (2011)

16. Harding, R., Van Aken, D., Pavlo, A., Stonebraker, M.: An evaluation of distributed
concurrency control. Proc. VLDB Endow. 10(5), 553–564 (2017)

17. Hawblitzel, C., et al.: IronFleet: proving safety and liveness of practical distributed
systems. Commun. ACM 60(7), 83–92 (2017)

18. Hewitt, E.: Cassandra: The Definitive Guide. O’Reilly Media, Sebastopol (2010)
19. Hunt, P., Konar, M., Junqueira, F.P., Reed, B.: Zookeeper: wait-free coordination

for internet-scale systems. In: USENIX ATC 2010. USENIX Association (2010)
20. Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness.

In: Clarke, E.M., Voronkov, A. (eds.) LPAR 2010. LNCS (LNAI), vol. 6355, pp.
348–370. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17511-
4 20

21. Lesani, M., Bell, C.J., Chlipala, A.: Chapar: certified causally consistent distributed
key-value stores. In: POPL 2016, pp. 357–370. ACM (2016)

https://doi.org/10.1007/978-3-642-22944-2_28
https://doi.org/10.1007/978-3-642-22944-2_28
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20

Generating Distributed Implementations from Maude Designs 39

22. Liu, S., Ölveczky, P.C., Santhanam, K., Wang, Q., Gupta, I., Meseguer, J.: ROLA:
a new distributed transaction protocol and its formal analysis. In: Russo, A.,
Schürr, A. (eds.) FASE 2018. LNCS, vol. 10802, pp. 77–93. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-89363-1 5

23. Liu, S., Ölveczky, P.C., Wang, Q., Gupta, I., Meseguer, J.: Read atomic transac-
tions with prevention of lost updates: ROLA and its formal analysis. Formal Asp.
Comput. 31(5), 503–540 (2019)

24. Liu, S., Ölveczky, P.C., Wang, Q., Meseguer, J.: Formal modeling and analysis of
the Walter transactional data store. In: Rusu, V. (ed.) WRLA 2018. LNCS, vol.
11152, pp. 136–152. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
99840-4 8

25. Liu, S., Ölveczky, P.C., Zhang, M., Wang, Q., Meseguer, J.: Automatic analysis
of consistency properties of distributed transaction systems in Maude. In: Vojnar,
T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11428, pp. 40–57. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-17465-1 3

26. Liu, S., Sandur, A., Meseguer, J., Ölveczky, P.C., Wang, Q.: Generating correct-
by-construction distributed implementations from formal Maude designs. Tech-
nical report, Department of Computer Science, University of Illinois at Urbana-
Champaign (2019). http://hdl.handle.net/2142/106018

27. Manolios, P.: A compositional theory of refinement for branching time. In: Geist,
D., Tronci, E. (eds.) CHARME 2003. LNCS, vol. 2860, pp. 304–318. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-3-540-39724-3 28

28. Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. Theor.
Comput. Sci. 96(1), 73–155 (1992)

29. Meseguer, J.: Twenty years of rewriting logic. J. Algebr. Log. Program. 81, 721–781
(2012)

30. Meseguer, J., Palomino, M., Mart́ı-Oliet, N.: Algebraic simulations. J. Log. Algebr.
Program. 79(2), 103–143 (2010)

31. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

32. Newcombe, C., Rath, T., Zhang, F., Munteanu, B., Brooker, M., Deardeuff, M.:
How Amazon Web Services uses formal methods. Commun. ACM 58(4), 66–73
(2015)

33. Ölveczky, P.C.: Formalizing and validating the P-Store replicated data store in
Maude. In: James, P., Roggenbach, M. (eds.) WADT 2016. LNCS, vol. 10644, pp.
189–207. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-72044-9 13

34. Rocha, C., Meseguer, J.: Proving safety properties of rewrite theories. In: Corra-
dini, A., Klin, B., Ĉırstea, C. (eds.) CALCO 2011. LNCS, vol. 6859, pp. 314–328.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22944-2 22

35. Schiper, N., Sutra, P., Pedone, F.: P-store: genuine partial replication in wide area
networks. In: SRDS 2010, pp. 214–224. IEEE Computer Society (2010)

36. Sergey, I., Wilcox, J.R., Tatlock, Z.: Programming and proving with distributed
protocols. PACMPL 2(POPL), 28:1–28:30 (2018)

37. Skeirik, S., Stefanescu, A., Meseguer, J.: A constructor-based reachability logic for
rewrite theories. In: Fioravanti, F., Gallagher, J.P. (eds.) LOPSTR 2017. LNCS,
vol. 10855, pp. 201–217. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-94460-9 12

38. Sovran, Y., Power, R., Aguilera, M.K., Li, J.: Transactional storage for geo-
replicated systems. In: SOSP 2011, pp. 385–400. ACM (2011)

https://doi.org/10.1007/978-3-319-89363-1_5
https://doi.org/10.1007/978-3-319-99840-4_8
https://doi.org/10.1007/978-3-319-99840-4_8
https://doi.org/10.1007/978-3-030-17465-1_3
http://hdl.handle.net/2142/106018
https://doi.org/10.1007/978-3-540-39724-3_28
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-319-72044-9_13
https://doi.org/10.1007/978-3-642-22944-2_22
https://doi.org/10.1007/978-3-319-94460-9_12
https://doi.org/10.1007/978-3-319-94460-9_12

40 S. Liu et al.

39. Tauber, J.A.: Verifiable compilation of I/O automata without global synchroniza-
tion. Ph.D. thesis, Massachusetts Institute of Technology (2005)

40. Wilcox, J.R., et al.: Verdi: a framework for implementing and formally verifying
distributed systems. In: PLDI 2015, pp. 357–368. ACM (2015)

41. Woos, D., Wilcox, J.R., Anton, S., Tatlock, Z., Ernst, M.D., Anderson, T.E.: Plan-
ning for change in a formal verification of the Raft consensus protocol. In: CPP
2016, pp. 154–165. ACM (2016)

Parameter Synthesis and Robustness
Analysis of Rule-Based Models

Matej Troják(B), David Šafránek, Lukrécia Mertová, and Luboš Brim

Systems Biology Laboratory, Masaryk University, Brno, Czech Republic
xtrojak@fi.muni.cz

Abstract. We introduce the Quantitative Biochemical Space Language,
a rule-based language for a compact modelling of probabilistic behaviour
of complex parameter-dependent biological systems. Application of rules
is governed by an associated parametrised rate function, expressing par-
tially known information about the behaviour of the modelled system.
The parameter values influence the behaviour of the model. We propose
a formal verification-based method for the synthesis of parameter values
(parameter synthesis) which ensure the behaviour of the modelled sys-
tem satisfies a given PCTL property. In addition, we demonstrate how
this method can be used for robustness analysis.

1 Introduction

In systems biology, models of biological processes have to reflect several levels of
abstraction adapted accordingly to the known information. At every level, the
system has to be described rigorously in a formal language to avoid misunder-
stood and ambiguous interpretations.

Rule-based languages represent an intuitive and convenient modelling tool for
biologists because the dynamics of biochemical systems is typically determined
by the underlying causal rules. Existing rule-based languages focus on specific
features such as structures binding [15,19], regulatory interactions [41], modular-
ity [39], or spatial aspects [24]. However, a challenge is to combine suitable levels
of abstraction (ranging from qualitative to quantitative aspects) with the com-
pactness of the description while not compromising human readability. To that
end, we have introduced Biochemical Space Language (BCSL) [42], a high-level
rule-based language that combines several features of rule-based frameworks in
a single formalism.

BCSL design stems from a long-time practical experience with describing
biochemical processes rigorously but still in a way that is understandable by the
users (biologists in this case). The central goal is to describe the biochemistry
of a given process at the mechanistic level, in our words, to build the so-called
biochemical space of the given process. Biochemical space plays a central role in
the platform we are developing for modelling, specification, and analysis of bio-
logical processes [43]. In this context, the rule-based description in BCSL serves

This work has been supported by the Czech Science Foundation grant 18-00178S.

c© Springer Nature Switzerland AG 2020
R. Lee et al. (Eds.): NFM 2020, LNCS 12229, pp. 41–59, 2020.
https://doi.org/10.1007/978-3-030-55754-6_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-55754-6_3&domain=pdf
https://doi.org/10.1007/978-3-030-55754-6_3

42 M. Troják et al.

as a bridge between the explicit biological knowledge and mathematical models
that typically encrypt the information in non-trivial chains of approximations.
It is worth noting that rule-based description of (bio)chemical processes is the
essence of chemistry and hence the rule-based view is natural to systems mod-
ellers [38]. BCSL has been successfully used in the international consortium for
cyanobacteria modelling and analysis [43].

Apparently, by building the biochemical space in a rule-based language, we
obtain an executable alternative to the existing mathematical models [20]. In
particular, the long-term goal is to use the biochemical space as an integrated
model of the given biological problem. To fulfil this goal, the language has to
support quantitative aspects of the rules, e.g., the rate of performing the rule.
Such quantitative aspects have been addressed in Kappa [15], BNGL [19], and
BIOCHAM [11], a more general framework has been introduced in Chromar [24],
and in the process-algebraic approach of BioPEPA [13]. However, quantita-
tive aspects have not yet been addressed in BCSL. Due to the specific level of
abstraction considered in BCSL, it is not possible to directly adapt the solutions
employed in above-mentioned languages.

In this paper, we introduce the quantitative BCSL (qBCSL) by extending
BCSL with quantitative dynamical aspects. This is realised by associating rules
with parametrised rate functions of the current state of the system dynam-
ics. The intended meaning is to quantify the rate of the particular interaction.
A model with rate-assigned rules gives rise to probabilistic semantics which is
expressed by means of parametric Markov Chains (pMC) [16,33] representing
the family of Discrete Time Markov Chains (DTMC) for all admissible set-
tings of parameters (parametrisations) appearing in rate functions. Based on
the tool Storm [18] we establish a framework for (exact) parameter synthesis of
qBCSL models with respect to PCTL [23] properties. Technically, the method
computes a rational function that assigns the probability of satisfying a given
property to each parametrisation. Note that the stochastic semantics of a rule-
based model is traditionally formalised as a Continuous Time Markov Chain
(CTMC) [21]. However, the scalability of existing exact methods [2,10] is lim-
ited to small models, other available methods are just simulation-based, thus
providing only approximative results. Following the idea of using approximate
models with discrete-time semantics [3], we consider the DTMC that provides
efficient methods to analyse exact probability of PCTL properties.

In addition, we provide an approach for global robustness analysis of qBCSL
models with respect to a given parameter perturbation and a PCTL formula.
Global robustness characterises the mean validity of a formula over all parameter
values in the given perturbation set [5,12]. The entire framework is implemented
in the open source tool eBCSgen1 and demonstrated on a biological case study.

The primary contribution of this paper is in bringing the exact parame-
ter synthesis into the field of rule-based models with stochastic semantics. The
uniqueness of our solution is not only in the level of abstraction qBCSL pro-
vides but also in the fact that we directly interpret rule-based models by means

1 https://github.com/sybila/eBCSgen.

https://github.com/sybila/eBCSgen

Parameter Synthesis and Robustness Analysis of Rule-Based Models 43

of DTMCs to support formal analysis. Such a setting allows to apply efficient
parameter synthesis techniques [16,17,22] to rule-based models.

1.1 Related Work

In qBCSL, objects are projected into multisets that represent the model states.
The stochastic multiset rewriting (SMR) was used in [3] to encode expressive pro-
cess calculi such as π-calculus. In [4], SMR was used as a base for parametrised
mass-action reaction-based models encoded by means of interval Markov Chains
(iMC) where parameters range over closed intervals. Given the fixed structure
of mass-action kinetics and intervals of kinetic parameters values, they compute
lower and upper bounds for reachability probability. In our case, we support
rational parametrised kinetic functions and employ parameter synthesis tech-
niques giving a symbolic function representing the exact parameter sets.

Methods for parameter synthesis of pMCs have been introduced with sym-
bolic computation of reachability properties through state elimination [16,22,27],
recently improved by parameter lifting [40] and fraction-free Gaussian elimina-
tion [26]. Here we employ these techniques as implemented in Storm tool.

An alternative approach to the analysis of complex stochastic models under
parameter uncertainty is based on statistical methods [1,8,9,35]. There are only
a few works that bridge the rule-based framework to such techniques. In [34], a
statistical parameter sampling method is employed to analyse unknown parame-
ters in BNGL models represented by means of CTMCs where the rate function is
limited to mass action kinetics. The work [28] employes statistical model check-
ing for parameter synthesis of CTMCs. The recent work [30] combines statistical
model checking with machine learning techniques to calibration (estimation) of
parameters in order to maximise the probability of satisfying a given specifica-
tion. In [6], the authors adapt simulation-based and moment-based methods. In
general, statistical techniques do not give an exact symbolic representation of
satisfying parameter sets.

2 Preliminaries

Throughout this section, we consider a given set of atomic propositions AP.
Discrete Time Markov Chain (DTMC) is a tuple (S, s0, ρ, L) where S is the set
of states, s0 ∈ S is the initial state, ρ : S ×S → [0, 1] is the transition probability
matrix, where for all s ∈ S we require that

∑
s′∈S ρ(s, s′) = 1, and L : S → 2AP

is a labelling function which gives the atomic propositions that are true in a
state.

The matrix entry ρ(s, s′) gives the probability of making a transition from s
to s′. The probability of following a finite path s0s1 . . . sn is ρ(s0, s1)·ρ(s1, s2)·. . .·
ρ(sn−1, sn). These probabilities for finite paths give rise to a unique probability
measure Prs on the set Paths of infinite paths starting in state s defined on the
sets of paths having a finite common prefix, such that

Pr({ω | ω = ss1 . . . sn.ω′}) = ρ(s, s1) · ρ(s1, s2) · . . . · ρ(sn−1, sn).

44 M. Troják et al.

The logic PCTL [23] is a probabilistic variant of CTL where the existential
and the universal quantification over paths in CTL is replaced with a proba-
bilistic operator Π���(·), where �� ∈ {≤, <,>,≥} and � ∈ [0, 1] is the probability
threshold, that can be applied to a path formula. The formal syntax of PCTL
formulae is given by the following grammar:

φ ::=True | a ∈ AP | φ ∧ φ | ¬φ | Π�� n(ψ)
ψ ::=Xφ | φUφ

The semantics of PCTL is the same as that of CTL [14] for the fragment
where they both coincide. The semantics of the probabilistic operator is:

s |= Π�� n(ψ) iff Prs({ω ∈ Paths | ω |= ψ}) �� n

meaning that the probability measure of the set of paths satisfying ψ is calculated
and compared to the threshold n, yielding true or false.

The standard qualitative model checking algorithm proceeds in the same
way as for CTL, by induction on φ. In [16], a symbolic approach was proposed.
It is based on derivation of a finite state automaton (FSA) A = (S, Σ, δ,Sf)
from given DTMC. S is the same set of states as in the DTMC, the alphabet
Σ consists of the strictly positive entries of the probability matrix, the set of
final states Sf and the transition function δ depend on the path formula under
consideration.

The regular language L(A, s) recognized by A with an initial state s ∈ S,
corresponds to the (possibly infinite) set Ω of finite paths from s to some final
state in Sf , following only transitions allowed by δ.

A regular expression r over an alphabet Σ is computed using the state-
elimination algorithm [25]. The evaluation val(r) of the regular expression can
be done by replacing union by addition, concatenation by multiplication, and
star by the limit of a geometric series (for the formal definition, see [16]).

The evaluation of a regular expression r computed for a language L(A, s) is
the probability measure in s of the set of paths with prefixes in Ω:

val(r) = Prs({ω ∈ Paths | ∃k ≥ 0.ω(k) ∈ Sf ∧ ∀l < k, ∃a ∈ Σ.ω(l + 1) ∈ δ(ω(l), a)})

The model checking problem can be then solved for a state s by evaluating
a regular expression r equivalent to the language recognized by the automaton
with the initial state s, i.e. s |= Π�� n(ψ) iff val(r) �� n.

We can also directly specify properties which evaluate to a numerical value
– the result of quantitative model checking. This is achieved by replacing the
probability bound from Π operator with ‘=?’. Note that this is only allowed
when the Π in question is the outermost operator of the property. The evaluation
is then given as Π=?(ψ) = Prs({ω ∈ Paths | ω |= ψ}) which means it can be
computed using the symbolic approach as Π=?(ψ) = val(r).

Parameter Synthesis and Robustness Analysis of Rule-Based Models 45

3 Quantitative Biochemical Space Language

In this section, we define quantitative Biochemical Space Language (qBCSL)
with quantitative aspects, as an extension of BCSL [42]. The quantitative aspects
enable to reason about the rate of interactions to occur. All the definitions are
demonstrated in a simple example in Sect. 3.1.

Let NT, NA, Nc, and Nδ be mutually exclusive finite sets of agent, atom,
compartment, and feature names, respectively. The syntax of the qBCSL objects
is given by the following grammar:

multiset M ::= ∅ | T | M,M atomic name η ::= x ∈ NA

agent T ::= μλ
c (γ) agent name μ ::= x ∈ NT

composition γ ::= ∅ | A, γ feature δ ::= x ∈ Nδ

atom A ::= η{δ} compartment c ::= x ∈ Nc

complex ID λ ::= x ∈ N

We restrict ourselves only to finite expressions and require that an atomic
name occurs at most once in a composition.

We denote by M the set of all multisets. We assume the structural congru-
ence ≡ to be the least congruence on multisets satisfying axioms M1,M2 ≡
M2,M1 and M, ∅ ≡ M, where M1,M2 represents the union of multisets M1 and
M2. Additionally, we assume a similar relation ≡γ on compositions defined as
the least congruence satisfying axioms A, γ ≡γ γ,A and ∅, γ ≡γ γ.

The structural congruence ≡ (resp. ≡γ) allows us to formally define the
algebraic multiset operations ∈,⊆,⊂,∪,∩ and \ on qBCSL terms. For example,
T ∈ M corresponds to ∃M′ ∈ M.M ≡ T,M′ and M ⊆ M′ corresponds to ∃M′′ ∈
M.M′ ≡ M,M′′. Moreover, by M(T) we denote the number of occurrences of
agent T in the multiset M and by M(M′) the number of occurrences of multiset
M′ in the multiset M, which is at least one in the case M ⊆ M′ (formally, it is
defined as minimal M(T) for all T ∈ M′).

We denote by Λ the set of all complex IDs of a multiset M. Two multisets
are equal, M1 = M2, if there exists a bijective function h : Λ1 → Λ2 such that
Mh

1 ≡ M2 where Mh
1 denotes M1 with every occurrence of a complex ID λ replaced

by h(λ).
Agent signature σT : NT → 2NA is a function from an agent name to a set

of atomic names. Set of possible agent signatures is denoted as ΣT. Atomic
signature σA : NA → 2Nδ is a function from an atomic name to a non-empty set
of feature names. Set of possible agent signatures is denoted as ΣA.

Let Vc and Vλ be mutually exclusive finite sets of the compartment and
complex variables, respectively. Additionally, let Vδ = Nδ ∪ {ε} be a set of
feature names extended by a special symbol ε. Pattern P is defined according to
the same grammar as multisets with the following modifications:

feature δ ::= s ∈ Vδ

compartment c ::= v ∈ Vc ∪ Nc

complex ID λ ::= l ∈ Vλ

We denote by P the set of all patterns and with P⊥ we denote the set of
all patterns restricted to δ ∈ Nδ and c ∈ Nc. Note that the congruence relation

46 M. Troják et al.

defined on multisets does not hold in case of patterns. A pattern is well-formed
if the atoms are alphanumerically sorted with respect to their names.

An instantiation is a function I : Vδ ∪ Vc ∪ Vλ → Nδ ∪ Nc ∪ N such that
I(s) ∈ Nδ, I(v) ∈ Nc, and I(l) ∈ N for s ∈ Vδ, v ∈ Vc, and l ∈ Vλ, respectively.
We denote by Γ the set of all instantiations.

Given an atomic signature σA and a pattern P ∈ P, with I(P) we denote the
multiset obtained by replacing each occurrence of a term ν appearing in P with
the corresponding instantiation I(ν) respecting the signature σA. Particularly,
the signature σA restricts instantiation of each feature ε to one of the feature
names defined for the appropriate atomic name. Please note that the same term
repeating on separate positions in the pattern can be instantiated to different
values.

Given two finite patterns P = T1,T2, . . . ,Tn and P′ = T′
1,T

′
2, . . . ,T

′
m, instan-

tiations I, I ′ ∈ Γ are consistent with respect to the given patterns P,P′, written
I(P)Δ I ′(P′), if ∀i ∈ [1,min(m,n)] the following conditions hold:

1. λ(Ti) = λ(T′
i) ⇒ λ(I(Ti)) = λ(I ′(T′

i))
2. c(Ti) = c(T′

i) ⇒ c(I(Ti)) = c(I ′(T′
i))

3. Ak(Ti) = Ak(T′
i) ⇒ Ak(I(Ti)) = Ak(I ′(T′

i))

where λ(T) denotes the complex ID λ of the agent T, c(T) denotes compartment
c of the agent T, and Ak(T) denotes the atom from the composition γ of agent
T on a position k.

Pattern expansion is a function 〈 〉 : P × ΣT → P which extends a given
pattern P to a pattern 〈P〉 such that every occurrence of a composition γ of an
agent T is extended by atoms whose names are not yet present in γ and are
defined in the given signature σT ∈ ΣT. These newly added atoms have assigned
feature ε and are inserted to the composition in such way that they preserve the
alphanumerical order.

Let V be a set of parameters. For each parameter v, a domain of admissible
positive values is assigned, denoted by D(v) ∈ 2R

+
. In the following, we define

the grammar for the algebraic rational rate expression f:

rate expression f ::= g
g | g

polynomial expression g ::= c | v | [t] | g + g | g × g | gn

where c ∈ R is a constant, v ∈ V is a parameter, n ∈ N is an exponent, and t ∈ P
is a pattern such that all agents have the same complex ID λ.

We denote by F the set of all rate expressions and with Fv rate expressions
without the patterns (note that Fv ⊆ F). For the sake of readability, we allow
additional simplifications (e.g. parentheses) which can always be converted to a
form given by the provided grammar.

Multiset evaluation F × M → Fv of a rate expression f on a multiset M,
written f(M), is a rate expression f′ ∈ Fv such that each pattern [t] is replaced
by an integer

∑
I∈Γ M(I〈t〉) expressing the sum of all possible instantiations of

the pattern. Note that number of possible instantiations Γ is finite with respect
to the set of all complex IDs Λ of multiset M.

Parameter Synthesis and Robustness Analysis of Rule-Based Models 47

Rewrite rule R is a triple (Pl,Pr, f) ∈ P ×P ×F, usually written as Pl
f−→ Pr.

It describes a structural change of a multiset defined by the difference between
left-hand and right-hand side patterns, associated with the rate expression f.

A qBCSL model M is a tuple (R, σT, σA,M0,V) such that R is a finite set
of rewrite rules, σT ∈ ΣT is an agent signature, σA ∈ ΣA is an atomic signature,
M0 ∈ M is an initial multiset, and V ∈ V is a set of parameters.

3.1 Example

We provide an example consisting of a fragment of photosynthesis processes of
cyanobacteria. Note that this fragment is not accurate and its purpose is to
demonstrate all the formal aspects of the language only.

Let ps1tlm(p700{n}, a{n}, achl{∗}) denote an agent – photosystem of cyanobac-
teria – in thylakoid membrane compartment (tlm) with three active domains
represented as atoms: photosystem reaction center p700, primary acceptor of
photosystem a (both in neutral state n), and chlorophyll antenna achl in excited
state ∗.

Next, let us have an agent signature σT = {ps → {p700, a, achl}}, which
defines allowed set of atoms for the photosystem. Note that each atomic name
defined in the agent signature for an agent has to be used in its composition.
An atomic signature σA = {p700 → {n,+}, a → {n,−}, achl → {n, ∗,+}} defines
allowed states for reaction center p700, acceptor a, and antenna achl.

We can use a pattern P = psxtlm(p700{n}, a{ε}) to describe the photosystem
such that its affiliation to a particular complex is not given, only identified by
a variable x. The state of p700 is specified as neutral while for the acceptor a
it is unknown (denoted with ε). Additionally, note that not every atom from
the signature has to be specified (achl is omitted), which is the key aspect for
compactness of the rule-based approach.

Such pattern can be instantiated by function I = {x → 1, ε → −} which
assigns to each unspecified element of a pattern a particular value. Applying the
instantiation on the pattern P, we obtain I(P) = ps1tlm(p700{n}, a{−}).

However, the achl atom is missing in the composition. For this purpose,
the pattern expansion is defined, which, when applied on a pattern, creates the
expanded pattern 〈P〉 = psxtlm(p700{n}, a{ε1}, achl{ε2}). Given the instantiation
function I = {x → 1, ε1 → −, ε2 → +}, the instantiation of expanded pattern is
I〈P〉 = ps1tlm(p700{n}, a{−}, achl{+}).

psxtlm(p700{n}, achl{+})
k1×[psxtlm(p700{n},achl{+})]−−−−−−−−−−−−−−−−−→ psxtlm(p700{+}, achl{n}) (1)

The rule 1 represents a reduction of oxidized primary electron donor in pho-
tosystem. It describes a change of states of p700 and achl regardless of the state
of acceptor a. Complex variable x ensures that the complex ID of the agent does
not change. The rate expression is dependent on the number of occurrences of the
pattern in a given multiset and a parameter k1 ∈ [5, 10] representing admissible
values for mass action law constant.

48 M. Troják et al.

psxtlm(∅), psytlm(∅)
k2×[psxtlm(∅)]×([psytlm(∅)]−1)−−−−−−−−−−−−−−−−−→ psxtlm(∅), psxtlm(∅) (2)

The rule 2 describes a formation of a complex from two ps agents. The
formation is independent of the particular conformation of compositions of the
agents (represented by ∅). Similar to the previous rule, the rate is dependent on
the number of occurrences and a parameter k2 ∈ [0, 2] representing admissible
values for mass action law constant.

3.2 Semantics

The semantics for the qBCSL is given in two steps – (1) we construct a para-
metric Quantitative Labelled Transition System (pQLTS) by transitive rewriting
of multisets with rules such that nodes represent multisets, transitions applied
rules, and quantitative labels evaluated rate expressions; and (2) we create para-
metric DTMC (pMC) from pQLTS such that labels of outgoing edges for each
state are normalised to probability functions of parameters.

Let M = (R, σT, σA,M0,V) be a qBCSL model. The rewriting of the mul-

tisets is given by labelled transition relation M1
f′−→ M2 with f′ ∈ Fv and

M1,M2 ∈ M satisfying the following inference rule:

R : Pl
f−→ Pr Ms = Mt

∃ I, I ′ ∈ Γ. I〈Pl〉 = Ml ∧ I ′〈Pr〉 = Mr

I〈Pl〉Δ I ′〈Pr〉
Unique(Ms;Ml) ∧ Unique(Mt;Mr)

Ms,Ml
f(Ms,Ml)−−−−−→ Mt,Mr

It is possible to consider multiset rewriting which is context-free in terms of
complex manipulations. It enables so-called side effects – modifications beyond
the scope of the rule (e.g. synthesis of a new agent with an already existing com-
plex ID). In order to avoid these side effects, we define predicate Unique(M1;M2)
which holds if ∀(T1,T2) ∈ M1 × M2.λ(T1) �= λ(T2) for some M1,M2 ∈ M. This
predicate is used in conditions of inference rule of labelled transition relation,
which ensures that if the rule is modifying a complex, it is modifying it as a
whole and if the rule is creating a new complex, it has a unique identifier across
the newly created multiset. An indirect consequence of disabled side effects is
that the number of encoded particular agents of a model is finite.

We define parametric Quantitative Labelled Transition System pQLTS as a
triple (S,L, �→) where each transition corresponds to the application of a rewrite
rule. For a model, it is obtained by transitive closure of inference rule starting
from M0. The label � ∈ L of a transition is an evaluated rate expression of the
applied rule. We denote by �(s, s′) the label of transition t(s, s′) ∈ �→.

Parametric Markov chain pMC is a tuple (S, s0, ρ
′,V, L) where S is a finite

set of states, s0 ∈ S is the initial state, ρ′ : S × S → Fv is the parametric
transition probability matrix, V is a finite set of parameters, and L : S → 2AP is
a labelling function which gives the atomic propositions that are true in a state.

Parameter Synthesis and Robustness Analysis of Rule-Based Models 49

We consider a given set of atomic propositions AP which are expressions
over the set of patterns P⊥ of type [a] �� n where a ∈ P⊥, �� ∈ {≤, <,>,≥}, and
n ∈ N. Moreover, Boolean combinations of such expressions are also allowed.

We define the probabilistic semantics of a qBCSL model using a translation
from its pQLTS into a pMC. We have to calculate, for each states s and s′ of
pQLTS, the probability of moving from s to s′, by exploiting rate functions. We
define a function ϑ : S → Fv where

ϑ(s) =
∑

s′∈ S
�(s, s′) (3)

such that by default if t(s, s′) �∈ �→ then �(s, s′) = 0.
We derive a pMC (S, s0, ρ

′,V) from a pQLTS (S,L, �→) by computing para-
metric transition probability matrix ρ′ : S × S → Fv such that ∀s, s′ ∈ S.s �= s′

holds that if ϑ(s) = 0 then ρ′(s, s′) = 0 and ρ′(s, s) = 1; ρ′(s, s′) = �(s, s′)/ϑ(s)
otherwise. Moreover, V is set of all parameters used in the rate expression in L.

Given the set of parameters V and a domain D(v) for each parameter v ∈ V,
the parameter space PPP induced by the set of parameters V is defined as the Carte-
sian product of individual parameter domains PPP =

�
v∈V D(v). A parametri-

sation p ∈ PPP is a |V|-tuple holding a single value for each parameter, i.e.
p = (v1p , . . . , v|V|p), assuming an arbitrary ordering on parameters.

For a pMC C, the set of DMTCs induced by the parameter space PPP is defined
as C = {Cp | p ∈ PPP}. For each Cp, all parameters in the probability matrix
are instantiated to respective components of p. A DTMC Cp is well-defined iff
ρ(s, s′) ∈ [0, 1] for all s, s′ ∈ S and

∑
s′∈ S ρ(s, s′) = 1 for all s ∈ S. For every

pMC C we assume the set C contains only well-defined DTMCs.

s

s1 s2

k1 k2 × 2

s

s1 s2

k1
k1+k2×2

k2×2
k1+k2×2

Fig. 1. (left) A state s of pQLTS with all its outgoing edges, labelled with appropriate
multiset evaluation of rate function – state s1 was created by applying the rule 1 and
s2 by applying the rule 2. (right) A pMC constructed from the pQLTS on the right
such that the labels of both its outgoing edges are computed as the appropriate label
from pQLTS divided by the sum of all outgoing labels, which is k1 + k2 × 2. This, in
general, ensures the sum of all labels of outgoing edges for a state is always 1.

3.3 Example (Continued)

Let M = ps1tlm(p700{n}, a{−}, achl{+}), ps2tlm(p700{n}, a{n}, achl{∗}) be a multi-
set consisting of two ps agents differing in the state of their atoms a and achl,

50 M. Troják et al.

and their complex ID. We show how application of two rules from the previous
example modify the multiset M.

Applying the rule 1 changes states of the first ps agent and creates a multiset
M1 = ps1tlm(p700{+}, a{−}, achl{n}), ps2tlm(p700{n}, a{n}, achl{∗}). The label of
the transition is multiset evaluation of rate function, f(M), which is k1 × 1.
([psxtlm(p700{n}, achl{+})] = 1).

Applying the rule 2 forms a complex from both agents and creates a multiset
M2 = ps1tlm(p700{n}, a{−}, achl{+}), ps1tlm(p700{n}, a{n}, achl{∗}). The label of
the transition is multiset evaluation of rate function, f(M), which is k2 × 2 × 1.
([psxtlm(∅)] = 2, [psytlm(∅)] = 2). Please note the instantiation of variables in rate
functions is independent on the instantiation of left-hand side of the rule.

Both applications give rise to a simple pQLTS, from which a pMC can be
constructed (Fig. 1).

4 Model Analysis

We now provide algorithms for parameter synthesis and robustness problems for
qBCSL models. Both algorithms are done semi-symbolically.

4.1 Parameter Synthesis

Given a qBCSL model M = (R, σT, σA,M0,V) and a PCTL formula φ, the
problem of parameter synthesis is to compute a partitioning of parameter space
into three disjoint subsets: TRUE – the model satisfies the property, FALSE – the
model does not satisfy the property, and UNKNOWN – the result is not known.

We solve this problem in three steps – (1) we construct pQLTS for the given
qBCSL model by transitive closure of inference rule starting from initial state;
(2) we derive a pMC from the pQLTS by computing parametric transition prob-
ability matrix as a normalisation of the label for all outgoing edges for every
state; (3) we apply a method introduced in [16] and elaborated in [22], which is
very similar to the model checking of DTMC outlined in preliminaries.

The Finite State Automaton for a pMC and a path formula is derived as
in the non-parametric case. The regular expression is also evaluated recursively.
Operators of union, concatenation, and star on regular expressions, are replaced
by addition, multiplication, and inversion for rational functions respectively.
Thus, by evaluating the corresponding regular expression, we obtain an alge-
braic expression of the probability measure of the sets of paths satisfying a path
formula, as a rational function of parametrisations. We can use the result to
check whether the system satisfies a formula for different values of the parame-
ters, without having to model check the system for any given parametrisation.

This method is applicable to formulas without nested probabilistic operators
only, but this does not represent a strong restriction in practice because such
formulas are usually not needed to specify the properties of interest.

Parameter Synthesis and Robustness Analysis of Rule-Based Models 51

The computed rational function is used in parameter space exploration. An
SMT solver (e.g., Z3) can be used to determine whether there exists a parametri-
sation inside the candidate region of the parameter space whose corresponding
instantiated DTMC exceeds a given threshold on the probability.

The general approach is to maintain a set UNKNOWN of regions for which
the result is still unknown. Initially, it is represented as the whole parameter
space PPP . Then, it takes a region out of this set and tries to decide its value.
The answer can be definite, i.e. either the region satisfies the formula φ and is
added to set TRUE or it does not satisfy the formula φ is added to set FALSE;
or the answer is uncertain and the region is split into smaller subregions. This
can be recursively executed until the required precision is met (e.g., coverage of
the decided area, a boundary in recursion depth).

For a PCTL formula φ, we additionally consider a set of atomic propositions
AP′ such that the expressions of type [a] �� n are extended to a ∈ P. These
formulae allow to reason about patterns which is very natural in the rule-based
setting. The semantics of the expression is:

s |= [a] �� n iff
∑

I∈Γ

s(I〈a〉) �� n

In order to use the instantiation, the signatures are required. These are avail-
able in the qBCSL model.

We have implemented our approach in the prototype tool eBCSgen, which
can generate explicit pMC straightforwardly represented as a PRISM model [32].
The only issue is the presence of patterns allowed in atomic propositions of
the PCTL property. Since a pattern basically compactly represents all possible
instantiated agents (resp. multisets), it can be expressed as a sum of these agents.
To that end, we introduce formulas which encode the sum in the PRISM model.
Once defined, properties operating with their identifier (in our case the pattern
itself) are valid.

Then, we employ Storm, which for a PRISM model, PCTL formula, and given
parameter space returns the partitioning of the space to required areas (using
storm − pars). In addition, the tool uses parameter lifting optimisation [40],
which improves the state-elimination approach. We apply a simple visualisation
to show the result of partitioning graphically.

4.2 Robustness Analysis

The problem of global robustness [31] of a system s is defined as

Rs
a,P =

∫

P

ψ(p)Ds
a(p)dp

where a is the property of the system under scrutiny, P is the set of all pertur-
bations, ψ(p) is the probability of the perturbation p, local robustness Ds

a(p) is
a measure stating how much the property a is preserved in perturbation p. The
local robustness returns for each parameterisation p ∈ P the quantitative model

52 M. Troják et al.

checking result for the respective DTMC (built for the parameterisation p) and
the given property a.

We solve this problem for given qBCSL model M and a PCTL property φ
(with the outermost operator Π=?). We construct pMC from the model followed
by algorithm from [16] to compute the rational function f . Function f can be
directly used for evaluation of the local robustness.

We consider the parameter space PPP as the set of all perturbations. Since each
parameterisation p ∈ PPP has uniform probability, computing ψ(p) is straightfor-
ward – it is inversely proportional to the volume of the entire parameter space.
Considering all the assumptions, the robustness for the qBCSL model M and a
property φ is computed as RM

φ,PPP =
∫
PPP

1
|PPP |f(p)dp.

We have used Storm to obtain the rational function f and package scipy [29]
to compute the definite integral of the function in the assumed parameter space.
Moreover, since it is possible some discontinuities are present in the function f ,
we first analyse them using package sympy [36] and then integrate without these
particular points.

KaiCx
cyt(S{u}),KaiCx

cyt(S{u})
kcat1×[KaiA2ycyt(∅)])

(Km+[KaiCxcyt(S{u}),KaiCxcyt(S{u})])
−−−−−−−−−−−−−−−−−−−−−−−→ KaiCx

cyt(S{p}),KaiCx
cyt(S{p})

KaiCx
cyt(T{u}),KaiCx

cyt(T{u})
kcat3×[KaiB4ycyt(act{a}),KaiA2ycyt(∅)])

(Km+[KaiCxcyt(T{u}),KaiCxcyt(T{u})])
−−−−−−−−−−−−−−−−−−−−−−−→ KaiCx

cyt(T{p}),KaiCx
cyt(T{p})

KaiCx
cyt(S{p}),KaiCx

cyt(S{p})
kcat2×[KaiA2ycyt(∅)])

(Km+[KaiCxcyt(S{p}),KaiCxcyt(S{p})])
−−−−−−−−−−−−−−−−−−−−−−−→ KaiCx

cyt(S{u}),KaiCx
cyt(S{u})

KaiCx
cyt(T{p}),KaiCx

cyt(T{p})
kcat4×[KaiB4ycyt(act{a}),KaiA2ycyt(∅)])

(Km+[KaiCxcyt(T{p}),KaiCxcyt(T{p})])
−−−−−−−−−−−−−−−−−−−−−−−→ KaiCx

cyt(T{u}),KaiCx
cyt(T{u})

KaiB4xcyt(act{i})
kcatb2×[KaiB4xcyt(act{i})]
Kmb2+[KaiB4xcyt(act{i})]

−−−−−−−−−−−−−−−−→ KaiB4xcyt(act{a})

KaiB4xcyt(act{a})
kcatb1×[KaiB4xcyt(act{a})]
Kmb1+[KaiB4xcyt(act{a})]

−−−−−−−−−−−−−−−−→ KaiB4xcyt(act{i})

KaiCx
cyt(∅),KaiCy

cyt(∅)
kdimer×[KaiCxcyt(∅)]×([KaiCycyt(∅)]−1)
−−−−−−−−−−−−−−−−−−−−−−−→ KaiCx

cyt(∅),KaiCx
cyt(∅)

KaiCx
cyt(∅),KaiCx

cyt(∅)
kdimer×[KaiCxcyt(∅),KaiCxcyt(∅)]

KaiCx
cyt(∅),KaiCy

cyt(∅)

Fig. 2. Rules of simplified Miyoshi et al. model. The first four rules are responsible
for the change of phosphorylation level of KaiC dimers. The rate functions of these
rules represent enzymatic laws and are dependent on current numbers of KaiA dimers
and KaiB tetramers. The next two rules change the activity level of KaiB4 complex
and the last two rules form and disassembly the KaiC dimer. The particular values
of known constants are Km = 0.602, Kmb1 = 2.423, kcatb1 = 0.602, kdimer = 1.77,
Kmb2 = 66.75, and kcatb2 = 0.346. The exact meaning of individual constants and
parameters is described in [37]

Parameter Synthesis and Robustness Analysis of Rule-Based Models 53

5 Case Study

In this section, we demonstrate our contribution on a case study2 from the
biological domain. Miyoshi et al. [37] ODE model describes circadian rhythms
in cyanobacteria. We have adopted this model to our rule-based formalism with
several simplifications in order to avoid combinatorial explosion.

The core of the circadian rhythms model is formed by three main proteins
– KaiA, KaiB, and KaiC. The protein KaiC has two phosphorylation sites (S –
serine and T – threonine), both of them can be either phosphorylated or unphos-
phorylated. Two KaiC proteins can form a homo-dimer.

1. Phosphorylation experiment
(a) initial state:

KaiC1
cyt(S{u},T{u}),KaiC2

cyt(S{u},T{u}),KaiB43cyt(act{a}),KaiA24cyt(∅)
(b) property of interest :

Π≥0.99(True U [KaiCx
cyt(S{p},T{p}),KaiCx

cyt(S{p},T{p})] > 0)
(c) parameters:

kcat1 ∈ [0, 1] kcat2 = 0.539 kenz = 8.756 × 10−4

kcat3 ∈ [0, 2] kcat4 = 0.89
(d) additional rule for construction of KaiA dimer and KaiB4 tetramer complex:

KaiB4xcyt(∅),KaiA2ycyt(∅)
kenz×[KaiB4xcyt(∅)]×[KaiA2ycyt(∅)]
−−−−−−−−−−−−−−−−−−−−→ KaiB4xcyt(∅),KaiA2xcyt(∅)

2. Dephosphorylation experiment
(a) initial state:

KaiC1
cyt(S{p},T{p}),KaiC2

cyt(S{p},T{p}),KaiB43cyt(act{a}),KaiA23cyt(∅)
(b) property of interest :

Π≥0.99(True U [KaiCx
cyt(S{u},T{u}),KaiCx

cyt(S{u},T{u})] > 0)
(c) parameters:

kcat1 = 0.539 kcat2 ∈ [0, 1] kenz = 8.756 × 10−4

kcat3 = 1.079 kcat4 ∈ [0, 2]
(d) additional rule for disassembly of KaiA dimer and KaiB4 tetramer complex:

KaiB4xcyt(∅),KaiA2xcyt(∅)
kenz×[KaiB4xcyt(∅),KaiA2xcyt(∅)]
−−−−−−−−−−−−−−−−−−−→ KaiB4xcyt(∅),KaiA2ycyt(∅)

Fig. 3. Two setups of the Miyoshi model in qBCSL. The goal of the experiment (1) is
to find parametrisation such that the model reaches the fully phosphorylated level of
KaiC dimer. The model is extended by a rule for the construction of complex possibly
disabling the phosphorylation. The experiment (2) is focused on dephosphorylation of
KaiC dimer enabled by an additional rule for the enzymatic complex disassembly.

Protein KaiA can also form a homo-dimer and act as a kinase for phosphory-
lation of KaiC dimers. Since the KaiA dimer cannot undergo any modification,
we model it as a single agent. Protein KaiB can form a homo-tetramer, which
2 An additional case study targeting a tumour growth is available in Appendix A.

54 M. Troják et al.

can be either active or inactive as a whole. For this reason and, again, for the
simplicity, we model it as a single agent.

The KaiA dimer has a positive enzymatic effect on the phosphorylation of
KaiC dimers. On the other hand, active KaiB tetramer then serves as an inhibitor
of KaiC dimer phosphorylation, i.e. it enhances its dephosphorylation. This is
done such that it forms a complex with KaiA dimer and inhibits its phosphory-
lation efforts.

The rules of the model are available in Fig. 2. The mechanism of phosphory-
lation and activation causes the model to have an oscillatory behaviour. For our
simplified case, we investigate whether the probability of reaching the phospho-
rylated KaiC dimer followed by reaching the unphosphorylated dimer is close to
one.

We assume two different experiments both having different initial condi-
tions, one additional rule for manipulation of KaiA and KaiB interaction, dif-
ferent unknown parameters, and finally a different property of interest. Both
experiments are specified in Fig. 3. The first experiment expresses conditions
with unphosphorylated KaiC dimer and property of reaching the phosphory-
lated KaiC dimer. For the second experiment, it is the other way around. The
probability for both properties should be close to one since the oscillation should
always be present.

Fig. 4. Visualisation of results of parameter synthesis for the Miyoshi model. The
left picture depicts the results for the phosphorylation experiment (Fig. 3, 1). The
horizontal axis represents values of the parameter kcat1 ∈ [0, 1] and the vertical axis
represents values of the parameter kcat3 ∈ [0, 2]. The right picture depicts the results
for the dephosphorylation experiment (Fig. 3, 2). The horizontal axis represents values
of the parameter kcat2 ∈ [0, 1] and the vertical axis represents values of the parameter
kcat4 ∈ [0, 2].

Parameter Synthesis and Robustness Analysis of Rule-Based Models 55

In Fig. 4, there is a visualisation of parameter synthesis for both cases. The
results of the first experiment show that the property is almost always satisfied
except for some marginal cases when the parameter values are close to zero. This
fact is in agreement with the global robustness degree, which is approximately
0.995. In the second experiment, the property was satisfied in a smaller frac-
tion of parameter space, caused by different initial conditions and the additional
rule. However, this difference is very insignificant, which confirms the robust-
ness degree with a value of approximately 0.98. These results confirm that the
behaviour of the model is very robust to perturbation of parameters directly
responsible for phosphorylation activity, thus showing the oscillatory behaviour
is very persistent.

6 Conclusions

First, we have defined a quantitative version of the Biochemical Space Language
(qBCSL). The language allows us to specify parametrised quantitative aspects
(rates) of the dynamics of individual rules, resulting in probabilistic behaviour
of models considered in discrete time. Second, we have encoded the semantics of
qBCSL models by means of parametric Markov Chains. That enables applica-
tions of existing symbolic parameter synthesis methods. Finally, we have shown
how to (exactly) compute robustness of a given property with respect to a given
parameter perturbation. Bridging the efficient parameter synthesis methods with
rule-based modelling is an important step towards application of formal methods
in biological domain [7,10]. To that end, we have demonstrated our approach on
a case study from the biological domain.

The main challenge to be faced in future is the scalability. Rule-based models
can expand in large state spaces making thus the construction of the pQLTS (and
pMC) infeasible. In particular, we want to find ways allowing to avoid enumer-
ation of the pMC, e.g., by employing on-the-fly and static analysis approaches.

A Tumour Growth

Tumour growth is based on mitosis (i.e. cell division). The cell cycle is the
process between two mitoses and it consists of four phases: the resting phase G1,
the DNA replication phase S, the resting phase G2, and the mitosis phase M in
which the cells segregate the duplicated sets of chromosomes between daughter
cells. The three phases G1, S, and G2 constitute the pre-mitotic phase, also
called interphase.

We have adopted the model of tumour growth [44] to our language. It con-
siders two populations of tumour cells: those in interphase and those in mitosis.
We represent the tumour cell as an agent T. The current phase is expressed with
an atom phase in its composition, which can have two different states – i for
interphase and m for mitosis. For simplicity, we omit the compartment from the
rules since it does not change and plays no important role in this model.

56 M. Troják et al.

Tx(phase{i}) a1×[Tx(phase{i})]−−−−−−−−−−−→ Tx(phase{m})

Tx(phase{m}) a2×[Tx(phase{m})]−−−−−−−−−−−→ Ty(phase{i}),Tz(phase{i})

Tx(phase{i}) d1×[Tx(phase{i})]−−−−−−−−−−−→ ∅

Tx(phase m)
d2×[Tx(phase{m})]

Fig. 5. Rules of the tumour growth model. The first rule describes the change of the
phase of a cell from interphase to mitosis. The second rule describes the duplication of
the cell to two daughter cells. Note that both start in interphase. The last two rules
describe the death of cells in both possible states.

The rules of the model are available in Fig. 5. Note that this model is a
demonstration where all rules are reaction-based, i.e. they do not describe an
abstract rule, only modification of concrete agents.

Given rate functions of rules are parametrised. Parameters a1 and a2 are
present in rules responsible for change of phase and cell division, while param-
eters d1 and d2 are in the rules where the cell disappears or dies. The values
a2 = 0.5 and d1 = 0.3 are constant the other two parameters are given by
admissible ranges: a1 ∈ [0; 3] and for d2 ∈ [0.001; 0.5].

Fig. 6. Visualisation of results of parameter synthesis (left) and quantitative model
checking using sampling (right) for property φ for tumour growth model. The horizontal
axis represents values of the parameter a1 ∈ [0, 3] and the vertical axis represents values
of the parameter d2 ∈ [0.001, 0.5]. The probability threshold 0.5 from the property φ is
visible in both sampling (approximately the yellow line) and parameter synthesis (the
grey line). It shows that the parameter synthesis method gives us a very precise result
and is in agreement with quantitative model checking. (Color figure online)

Parameter Synthesis and Robustness Analysis of Rule-Based Models 57

For the initial state, we assume a single agent T1(phase{i}). Please note that
the model gives rise to infinite pMC since the second rule can generate additional
agents. To obtain a finite abstract probabilistic model, we have heuristically
limited the number of states of the model. Particularly, we generate all the
states having the number of individuals of both species less or equal to 5 and
we introduce a special abstract state which represents all the other states, which
limits the size of possible state space to 62. This approximation is incorrect only
in cases when one wants to reach a state which is represented by the special
state.

We are interested in property whether the population of tumour cells will
reach almost its maximum with the probability higher than 0.5, meaning that
the growth is not random but has rather tendency to grow without limitations.
This property can be expressed as φ = Π≥ 0.5(True U Tj(∅) > 8). In Fig. 6,
there is a visualisation of parameter synthesis. The results show that the higher
values of the parameter a1 (cell division) and the lower values of the parameter
d2 increase the probability of property satisfaction. This result is quite expected,
because both parameters directly influence cell division (a1) and degradation (d2)
of cells. We have also computed the global robustness degree of the property,
which is approximately 0.24. It can be interpreted as 24% of parameter space
satisfies the property True U Tj(∅) > 8.

References

1. Backenköhler, M., Bortolussi, L., Wolf, V.: Moment-based parameter estimation
for stochastic reaction networks in equilibrium. TCBB 15(4), 1180–1192 (2018)

2. Baier, C., Haverkort, B., Hermanns, H., Katoen, J.P.: Model-checking algorithms
for continuous-time Markov chains. IEEE Trans. Softw. Eng. 29(6), 524–541 (2003)

3. Barbuti, R., Caravagna, G., Maggiolo-Schettini, A., Milazzo, P.: An intermedi-
ate language for the stochastic simulation of biological systems. TCS 410(33–34),
3085–3109 (2009)

4. Barbuti, R., Levi, F., Milazzo, P., Scatena, G.: Probabilistic model checking of
biological systems with uncertain kinetic rates. TCS 419, 2–16 (2012)

5. Bartocci, E., Bortolussi, L., Nenzi, L., Sanguinetti, G.: On the robustness of tem-
poral properties for stochastic models. arXiv preprint arXiv:1309.0866 (2013)

6. Bock, C., Bortolussi, L., Krüger, T., Mikeev, L., Wolf, V.: Model-based whole-
genome analysis of DNA methylation fidelity. In: Abate, A., Šafránek, D. (eds.)
HSB 2015. LNCS, vol. 9271, pp. 141–155. Springer, Cham (2015). https://doi.org/
10.1007/978-3-319-26916-0 8

7. Bonzanni, N., Feenstra, K.A., Fokkink, W., Krepska, E.: What can formal methods
bring to systems biology? In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS,
vol. 5850, pp. 16–22. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-05089-3 2

8. Bortolussi, L., Milios, D., Sanguinetti, G.: Smoothed model checking for uncertain
continuous-time Markov chains. Inform. Comput. 247, 235–253 (2016)

9. Bortolussi, L., Silvetti, S.: Bayesian statistical parameter synthesis for linear tem-
poral properties of stochastic models. In: Beyer, D., Huisman, M. (eds.) TACAS
2018. LNCS, vol. 10806, pp. 396–413. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-89963-3 23

http://arxiv.org/abs/1309.0866
https://doi.org/10.1007/978-3-319-26916-0_8
https://doi.org/10.1007/978-3-319-26916-0_8
https://doi.org/10.1007/978-3-642-05089-3_2
https://doi.org/10.1007/978-3-642-05089-3_2
https://doi.org/10.1007/978-3-319-89963-3_23
https://doi.org/10.1007/978-3-319-89963-3_23

58 M. Troják et al.

10. Brim, L., Češka, M., Šafránek, D.: Model checking of biological systems. In:
Bernardo, M., de Vink, E., Di Pierro, A., Wiklicky, H. (eds.) SFM 2013. LNCS,
vol. 7938, pp. 63–112. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-38874-3 3

11. Calzone, L., Fages, F., Soliman, S.: BIOCHAM: an environment for modeling bio-
logical systems and formalizing experimental knowledge. Bioinformatics 22(14),
1805–1807 (2006)

12. Česka, M., Šafránek, D., Dražan, S., Brim, L.: Robustness analysis of stochastic
biochemical systems. PLoS ONE 9(4), e94553 (2014)

13. Ciocchetta, F., Hillston, J.: Bio-PEPA: an extension of the process algebra PEPA
for biochemical networks. ENTCS 194(3), 103–117 (2008)

14. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state
concurrent systems using temporal logic specifications. ACM Trans. Program.
Lang. Syst. (TOPLAS) 8(2), 244–263 (1986)

15. Danos, V., Laneve, C.: Formal molecular biology. Theor. Comput. Sci. 325(1),
69–110 (2004)

16. Daws, C.: Symbolic and parametric model checking of discrete-time Markov chains.
In: Liu, Z., Araki, K. (eds.) ICTAC 2004. LNCS, vol. 3407, pp. 280–294. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-31862-0 21

17. Dehnert, C., et al.: PROPhESY: A PRObabilistic ParamEter SYnthesis tool. In:
Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 214–231.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21690-4 13

18. Dehnert, C., Junges, S., Katoen, J.-P., Volk, M.: A storm is coming: a modern prob-
abilistic model checker. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS,
vol. 10427, pp. 592–600. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-63390-9 31

19. Faeder, J.R., Blinov, M.L., Hlavacek, W.S., et al.: Rule-based modeling of bio-
chemical systems with BioNetGen. Methods Mol. Biol. 500, 113–167 (2009)

20. Fisher, J., Henzinger, T.A.: Executable cell biology. Nat. Biotechnol. 25(11), 1239
(2007)

21. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys.
Chem. 81(25), 2340–2361 (1977)

22. Hahn, E.M., Hermanns, H., Zhang, L.: Probabilistic reachability for parametric
Markov models. STTT 13(1), 3–19 (2011)

23. Hasson, H., Jonsson, B.: A logic for reasoning about time and probability. FAOC
6, 512–535 (1994)

24. Honorato-Zimmer, R., Millar, A.J., Plotkin, G.D., Zardilis, A.: Chromar, a rule-
based language of parameterised objects. TCS 335, 49–66 (2017)

25. Hopcroft, J.E.: Introduction to Automata Theory, Languages, and Computation.
Pearson Education India (2008)

26. Hutschenreiter, L., Baier, C., Klein, J.: Parametric Markov chains: PCTL com-
plexity and fraction-free Gaussian elimination. arXiv preprint arXiv:1709.02093
(2017)

27. Jansen, N., et al.: Accelerating parametric probabilistic verification. In: Norman,
G., Sanders, W. (eds.) QEST 2014. LNCS, vol. 8657, pp. 404–420. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-10696-0 31

28. Jha, S.K., Clarke, E.M., Langmead, C.J., Legay, A., Platzer, A., Zuliani, P.: A
Bayesian approach to model checking biological systems. In: Degano, P., Gorrieri,
R. (eds.) CMSB 2009. LNCS, vol. 5688, pp. 218–234. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03845-7 15

https://doi.org/10.1007/978-3-642-38874-3_3
https://doi.org/10.1007/978-3-642-38874-3_3
https://doi.org/10.1007/978-3-540-31862-0_21
https://doi.org/10.1007/978-3-319-21690-4_13
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-319-63390-9_31
http://arxiv.org/abs/1709.02093
https://doi.org/10.1007/978-3-319-10696-0_31
https://doi.org/10.1007/978-3-642-03845-7_15

Parameter Synthesis and Robustness Analysis of Rule-Based Models 59

29. Jones, E., Oliphant, T., Peterson, P., et al.: SciPy: open source scientific tools for
Python (2001). http://www.scipy.org/

30. Khalid, A., Jha, S.K.: Calibration of rule-based stochastic biochemical models using
statistical model checking. In: 2018 IEEE BIBM, pp. 179–184 (2018)

31. Kitano, H.: Towards a theory of biological robustness. Mol. Syst. Biol. 3(1), 137
(2007)

32. Kwiatkowska, M., Norman, G., Parker, D.: Quantitative analysis with the proba-
bilistic model checker PRISM. ENTCS 153(2), 5–31 (2006)

33. Lanotte, R., Maggiolo-Schettini, A., Troina, A.: Parametric probabilistic transition
systems for system design and analysis. FAOC 19(1), 93–109 (2007)

34. Liu, B., Faeder, J.R.: Parameter estimation of rule-based models using statistical
model checking. In: 2016 IEEE BIBM, pp. 1453–1459. IEEE (2016)

35. Lück, A., Wolf, V.: Generalized method of moments for estimating parameters of
stochastic reaction networks. BMC Syst. Biol. 10(1), 98 (2016)

36. Meurer, A., et al.: SymPy: symbolic computing in Python. PeerJ Comput. Sci. 3,
e103 (2017)

37. Miyoshi, F., Nakayama, Y., Kaizu, K., Iwasaki, H., Tomita, M.: A mathemati-
cal model for the Kai-protein-based chemical oscillator and clock gene expression
rhythms in cyanobacteria. J. Biol. Rhythms 22(1), 69–80 (2007)

38. Nedbal, L., Červený, J., Schmidt, H.: Scaling and integration of kinetic models of
photosynthesis: towards comprehensive e-photosynthesis. In: Laisk, A., Nedbal, L.,
Govindjee (eds.) Photosynthesis in Silico. AIPH, pp. 17–29. Springer, Dordrecht
(2009). https://doi.org/10.1007/978-1-4020-9237-4 2

39. Pedersen, M., Phillips, A., Plotkin, G.D.: A high-level language for rule-based
modelling. PLoS ONE 10, 1–26 (2015)

40. Quatmann, T., Dehnert, C., Jansen, N., Junges, S., Katoen, J.-P.: Parameter syn-
thesis for markov models: faster than ever. In: Artho, C., Legay, A., Peled, D.
(eds.) ATVA 2016. LNCS, vol. 9938, pp. 50–67. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-46520-3 4

41. Romers, J.C., Krantz, M.: rxncon 2.0: a language for executable molecular systems
biology. bioRxiv (2017)

42. Troják, M., Šafránek, D., Brim, L.: Executable biochemical space for specification
and analysis of biochemical systems. In: SASB (2018, to appear)

43. Troják, M., Šafránek, D., Hrabec, J., Šalagovič, J., Romanovská, F., Červený, J.:
E-Cyanobacterium.org: a web-based platform for systems biology of cyanobacteria.
In: Bartocci, E., Lio, P., Paoletti, N. (eds.) CMSB 2016. LNCS, vol. 9859, pp. 316–
322. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45177-0 20

44. Villasana, M., Radunskaya, A.: A delay differential equation model for tumor
growth. J. Math. Biol. 47(3), 270–294 (2003)

http://www.scipy.org/
https://doi.org/10.1007/978-1-4020-9237-4_2
https://doi.org/10.1007/978-3-319-46520-3_4
https://doi.org/10.1007/978-3-319-46520-3_4
https://doi.org/10.1007/978-3-319-45177-0_20

Formal Methods for DNNs

PaRoT: A Practical Framework
for Robust Deep Neural Network Training

Edward W. Ayers1, Francisco Eiras2, Majd Hawasly2, and Iain Whiteside2(B)

1 DPMMS, Cambridge University, Cambridge, UK
e.w.ayers@maths.cam.ac.uk

2 FiveAI, 20 Cambridge Place, Cambridge, UK
{francisco.eiras,majd.hawasly,iain.whiteside}@five.ai

Abstract. Deep Neural Networks (DNNs) are finding important appli-
cations in safety-critical systems such as Autonomous Vehicles (AVs),
where perceiving the environment correctly and robustly is necessary for
safe operation. Raising unique challenges for assurance due to their black-
box nature, DNNs pose a fundamental problem for regulatory acceptance
of these types of systems. Robust training—training to minimize exces-
sive sensitivity to small changes in input—has emerged as one promising
technique to address this challenge. However, existing robust training
tools are inconvenient to use or apply to existing codebases and models:
they typically only support a small subset of model elements and require
users to extensively rewrite the training code. In this paper we introduce
a novel framework, PaRoT , developed on the popular TensorFlow plat-
form, that greatly reduces the barrier to entry. Our framework enables
robust training to be performed on existing DNNs without rewrites to
the model. We demonstrate that our framework’s performance is compa-
rable to prior art, and exemplify its ease of use on off-the-shelf, trained
models and its testing capabilities on a real-world industrial application:
a traffic light detection network.

1 Introduction

Deep Neural Networks (DNNs) are finding important applications in safety-
critical systems, such as Autonomous Vehicles (AVs), where perceiving a complex
environment correctly and robustly is necessary for safe operation [4,11,17]. The
challenge of assuring these so-called AI-enabled systems is well-known [22] and
has attracted the attention of researchers and research bodies, e.g., DARPA [9].
Existing standards and techniques—such as the ubiquitous ‘V’ model—lean
heavily on the existence of a clear specification to verify against [32]. Unfor-
tunately, the very nature of deep learning—where the specification is implicit
in the training data—poses a fundamental problem for regulatory acceptance of
these systems in a safety-critical domain.

One of the most troubling features of DNNs is their ‘intriguing’ susceptibil-
ity to adversarial examples: imperceptible perturbations in the input space that

c© Springer Nature Switzerland AG 2020
R. Lee et al. (Eds.): NFM 2020, LNCS 12229, pp. 63–84, 2020.
https://doi.org/10.1007/978-3-030-55754-6_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-55754-6_4&domain=pdf
https://doi.org/10.1007/978-3-030-55754-6_4

64 E. W. Ayers et al.

(a) (b) (c)

(d)

Fig. 1. Traffic Light Detection Network : (a) an image from the test set in which the
traffic light is identified correctly; (b) an adversarial example: a subtly modified version
of the original image, identified using PaRoT ; (c) norm of the difference between the
original image and the adversarial images; (d) the inference result on the adversarial
example, with a confidence heatmap on the left and bounding boxes of the identified
traffic lights on the right.

cause a large change in the output space. For example, causing an object detec-
tion network to misclassify an image [35]. Figure 1 shows an adversarial example
on a traffic light detector.

The formal verification community has responded to this provocation with
gusto [3,5,13,16,19,20]. Exacerbating the verification challenge is the indirect
nature of any ‘fixes’ that can be applied to failure of post-hoc formal verification
for a DNN: typically an augmentation to the training set. Unlike with traditional
software, fixes to DNNs can feel very much like playing a game of whack-a-mole.

The emerging robust training paradigm, which integrates the verification pro-
cess directly into the training scheme, is, in our view, the most promising app-
roach towards formally verified neural networks. The goal of robust training is
to minimize a so-called worst-case adversarial loss. Formally, let Nθ : Rp → Rq

be a neural network with p input features and q outputs, parameterized with
weights θ. Let Bε(x) be an �∞-ball of radius ε around an input point x ∈ Rp. For
a given loss function L, we can define the worst-case adversarial loss LNθ

at a
point x as:

LNθ
(x, y) := max

x̃∈Bε(x)
L(Nθ(x̃), y) (1)

In general, one may replace the ball Bε(x) with some parameterized set πε(x).
For a set of labelled training data {(xi, yi)}n

i=1, robust training can be formulated

PaRoT: A Practical Framework for Robust Deep Neural Network Training 65

as a saddle-point problem:

min
θ

max
i

LNθ
(xi, yi) (2)

Finding the worst-case adversarial loss for a given example is computation-
ally expensive in general. In practice, most approaches approximate the worst-
case adversarial loss in one way or another [27,41,42]. In recent years, robust
training has progressed from single layer, dense networks to moderate—though
not yet state-of-the-art—sized Convolutional Neural Networks (CNNs). This has
brought these techniques within the realm of various DNNs used within the refer-
ence AV stack being built by Five AI. In our bid to understand the practicalities
of robust training, we found that existing tools are inconvenient to use or apply
to existing models: they typically only support a small subset of model elements
and require users to re-specify the models in a specialized language, which can
mean extensive rewrites to the training code.

To tackle these problems, we introduce a framework in this paper, called
Practical Robust T raining (PaRoT)1, developed on the popular TensorFlow
platform [1]. Our framework allows robust training—using differentiable abstract
interpretation [27]—to be performed on arbitrary DNNs without any rewrites
of the model. In PaRoT , one can start a robust model training for a popular
convolutional neural network with a minimal amount of code, as we demonstrate
in Listing 1.2. We have, for example, used PaRoT to robustly train the traffic
light detection network seen in Fig. 1.

Contributions. The main contribution of this paper is a practical framework,
PaRoT , built in the Tensorflow platform [1]. In particular,

– Our tool can automatically apply abstract interpretation on an existing model
definition. Thus, it can be used to verify robustness on existing DNNs without
having to change the model code, allowing for seamless adoption with existing
codebases.

– Our framework implements a broad set of robustness properties that go
beyond the usual ε-ball, and provides a clean interface for specifying custom
properties.

– We improve upon the abstract interpretation techniques used by Mirman et
al. [27]. In particular, we refine several abstract transformers for activation
functions.

Structure of Paper. In Sect. 2 we introduce the requisite background in robust
training with abstract interpretation. In Sect. 3 we describe the architecture and
functionality of the PaRoT framework and evaluate its performance in Sect. 4.
In Sect. 5 we place our work more broadly in the field of formal verification
of DNNs. Finally, in Sect. 6, we conclude and present future directions for this
framework and paradigm.

1 The framework is available at https://github.com/fiveai/parot

https://github.com/fiveai/parot

66 E. W. Ayers et al.

2 Background

We build on the robust training approach of DiffAI, introduced by Mirman et
al. [27], where the inner maximization of Eq. 2 is approximated using abstract
interpretation. In this section, we sketch the mathematical prerequisites to our
framework.

2.1 Abstract Interpretation

Abstract interpretation is a general theory for approximating infinite sets of
behaviours with a finite representation [7,8]. In the present study, this corre-
sponds to convex approximations of a non-convex adversarial polytope.

Fig. 2. An illustration of abstract domains. The dotted grey box corresponds to a
domain object, and the blue shape is the true set that the domain object seeks to
approximate. (Color figure online)

The two basic constructs in abstract interpretation are the abstract domain
and the abstract transformer. Intuitively, an abstract domain gives a finite
(approximate) representation of the (potentially infinite) concrete space, while
an abstract transformer provides an over-approximation of the behaviour of a
function. Formally, an abstract domain is a set D (the domain) and a pair of
maps α : P(Rp) → D and γ : D → P(Rp), called the abstraction and concretiza-
tion maps, respectively. P(X) is the powerset of X. The abstraction function is
defined such that U ⊆ γ(α(U)) for all U ⊆ Rp.

Additionally, an abstract domain is equipped with a mapping from a fixed set
of primitive functions F to abstract transformers in D such that each f : Rp → Rq

in F is mapped to a function D(f) : D → D′. For each element in the concrete
space, z, transformers must obey the following soundness relation:

f [γ(z)] ⊆ γ(D(f)(z)) (3)

This ensures that transformers produce new abstract elements whose concretiza-
tion overapproximates the image of the function. Since transformers compose,
we may transform any composite function f = f1 ◦ f2 ◦ · · · ◦ fn : Rp → Rq where
fi ∈ F . Figure 2 illustrates graphically the abstract domains and transformers
for a single layer of a DNN. We can construct a composite transformer D(N)
that represents that network, and write the sound approximation for an ε-ball
around a point x as:

γ(D(N)[α(Bε(x))]). (4)

PaRoT: A Practical Framework for Robust Deep Neural Network Training 67

2.2 Abstract Domains for DNNs

We consider three abstract domain types: Box, Zonotope and HybridZono-
tope:

– Box, represented by i = 〈c,b〉. A Box domain is a p-dimensional axis-aligned
box, parameterized by its center c ∈ Rp and a positive vector b ∈ Rp

>0

containing the half-widths of the box. Figure 2 illustrates the concept of the
Box domain.

– Zonotope, represented by z = 〈c,E〉. For dimension p, a Zonotope is
parameterized by a center point c ∈ Rp as well as a matrix E ∈ Rp×e for
some fixed dimension e. The set z ⊆ Rp is the E image of an e-dimensional
hypercube, centerd at c. The concretization is given by:

γ(z) := {c + E v : |vi| ≤ 1, i ∈ {1, . . . , e}} (5)

The key feature of a Zonotope domain is that transformers exist for affine
functions—such as the matrix multiplications associated with transition func-
tions of DNNs—that do not increase the approximation error.

– HybridZonotope, represented by h = 〈c,b,E〉. One problem with the
Zonotope domain is that computation can be expensive compared to a Box
domain. The HybridZonotope solves this problem with the inclusion of an
extra positive vector b ∈ Rp

>0, with a concretization:

γ(h) := {c + E v + diag(b) w | |vi| ≤ 1, |wj | ≤ 1,

i,∈ {1, . . . , e}, j ∈ {1, . . . , p}}. (6)

Note that these definitions mean that Box and Zonotope are both subsets
of HybridZonotope. In the HybridZonotope domain, it is possible to con-
vert b values to E values and vice-versa through correlation and decorrelation,
as noted in [28].

2.3 Hybrid Zonotope Transformers for DNNs

It is straightforward to show that exact transformers can be constructed for
matrix multiplication [27]. In contrast, accurate modeling of piecewise linear acti-
vation functions, such as relu(x) := max(x, 0), necessarily introduce an approx-
imation. Here we generalize the work in [34] to find optimal hybrid zonotopes
for a given activation function. Since activations are one-dimensional (1D) and
act on each dimension separately, we may consider just the problem in 1D. For
a given function f : R → R and input bounds x, x, the challenge is to find a
parallelogram containing the graph of f restricted to [x, x] that has minimal
area, as shown in Fig. 3 below.

In the first instance, we consider an activation function f which is convex or
concave. If x = x, we can treat the transformer as acting on a point. Otherwise,
we compute the slope of the parallelogram:

μ :=
f(x) − f(x)

x − x

68 E. W. Ayers et al.

We provide an extremum function xf (μ) for the given f . Assuming a convex
function:

xf (μ) = argmin
x∈R

(f(x) − μx) (7)

If f is concave, replace argmin with argmax. Since f is convex/concave, this
xf (μ) will always be in the interval [x, x] or otherwise f(x) − μx is zero every-
where in [x, x]. For many of the activation functions we care about, it is simple
to find these extremum functions. For example, xrelu(μ) = 0 and xexp (μ) = lnμ.
Then, one can compute:

e := xf (μ) · μ − f(x) · x + x · f(x)
x − x

(8)

which may be interpreted as the height of the resulting zonotope parallelogram.
From this we may compute the center of the parallelogram in the y direction:

cy :=
1
2
(f(x) + f(x) − e) (9)

Finally we compute the new 1D hybrid zonotope:

D(f)〈cx, bx,Ex〉 = 〈cy, μbx +
e

2
, μE〉 (10)

To extend this approach to nonconvex functions, such as sigmoid, we instead
need to find a pair of extrema xf (μ), xf (μ) which may in general depend on
the interval bounds [x, x]. In the case of sigmoid, one can show that these are
minus the natural logarithm of the solutions Y± to the quadratic equation μ +
(2μ−1)Y +μY 2 = 0. Figure 3 shows zonotope transformers for relu and sigmoid
activation functions.

Fig. 3. Constructing zonotope transformers for relu and sigmoid activation functions.

PaRoT: A Practical Framework for Robust Deep Neural Network Training 69

2.4 Robust Training

To train with an abstract domain on a model N , from each training datum
(x,y) we compute a prediction value N(x) and a transformed domain object
D(N)(Bε(x)) of the domain representation of an �∞-ball Bε(x) around the input
x for some fixed perturbation radius ε. An axis-aligned bounding box is drawn
around the resulting output domain object, and the vertex v furthest away from
the true target y is chosen. We construct a combined loss Lcomb with the stan-
dard loss, the adversarial loss, a mixing factor λ ∈ R≥0, and a regularization
term ξ(N):

Lcomb(x,y) := L(N(x),y) + λL(argmax
v∈D(N)(x)

‖v − y‖2,y) + ξ(N) (11)

3 PaRoT System Description

In this section, we detail how PaRoT can be used for robust training and testing.
The main overview of the system is presented in Fig. 4. The training aspects of
the framework can be divided into domains (in the module parot.domains),
which correspond to the ones identified in Sect. 2.21, and properties (in the
module parot.properties) corresponding to the types of adversaries we are
trying to robustify against. Section 3.2 presents the built-in properties available
in PaRoT . As our system uses the TensorFlow platform, we first introduce some
terminology.

TensorFlow [1] is a deep learning platform that enables the user to build a
computation graph representing their neural network model and training scheme.
This computation graph is a directed, acyclic graph whose nodes are tensors—a
generalization of matrices to potentially higher dimensions—and whose edges
are called ops and consist of a list of input and output tensors. An output tensor
can be the input tensor for arbitrarily many ops. To illustrate, the left-hand side
of Fig. 5 shows the computation graph constructed for a single dense layer of
a neural network. The ops MatMul (matrix multiplication), BiasAdd (adding a
bias to a value), and ReLU (rectified linear unit operation) form those required
to represent this example layer. Once a computation graph has been created,
TensorFlow compiles it, allowing PaRoT to use this graph to automatically
derive abstract transformers for a given model, as described in Sect. 3.1. This
enables a user to use an existing model and immediately start robust training
without needing code rewrites. It should be noted that the models supported by
PaRoT must use only the operations supported by the framework in the selected
domain. A list of the operations is available in Appendix 6.

1 With the exception of the Zonotope domain, which is not implemented in PaRoT .

70 E. W. Ayers et al.

Fig. 4. PaRoT overview. Robust training is enabled by a property and an abstraction
domain which can be chosen from those supported by PaRoT or extended with a
custom domain. Given an input and a model prediction, PaRoT creates a domain
object for the input based on the specified property, and it automatically transforms the
operations associated with the model (see Sect. 3.1). At testing time, PaRoT provides
auxiliary utilities.

3.1 Automatic Transformer Generation

In order to transform a computation graph G from a given input tensor x to
an output tensor z, we find the subgraph Sx,z of G whose vertices are the ys
such that there exist paths x � y and y � z. This can be easily extended
to multiple inputs and outputs. This subgraph Sx,z is found through a graph
traversal algorithm backtracking from z, which also produces a pair of adjacency
maps C and M . C maps a tensor to a set of ops which consume it, while M
maps an op f to the indices of the output tensors of the op in G. Once Sx,z is
constructed, the transformation process can begin. The output of the process is
a dictionary T which maps p-dimensional tensors to domain objects D (or the
constant None). T is constructed by iteratively exploring Sx,z starting at x. The
complete transformation algorithm is given in Algorithm 1.

PaRoT: A Practical Framework for Robust Deep Neural Network Training 71

When transforming ops, various challenges arise. For example, a transformer
D(f) can accept inputs that are not domain objects but instead just tensors.
This occurs, for example, when a constant tensor needs to be added to a domain
object. The acyclic graph structure makes this transformation non-trivial. The
first issue arises when an operation consumes two or more domain objects. This
happens in reticulated model architectures e.g., SkipNet from [40].

To illustrate the challenges of transforming ops, take two tensors x, y, con-
sider the transformed computation graph for their addition x + y where both
x and y have abstract domains to be transformed. To transform + for the
Box domain, this entails merely adding the cs and bs of x and y. However,
for HybridZonotope, the manner with which the merging should take place
depends on how the E matrices were constructed. If x and y are both derived
from the same starting zonotope, then their E matrices will both be referenc-
ing the same parameterization. In this case the E matrices for x and y can be
added. However, if they originate from different starting zonotopes, then their
e dimensions may not match up, and in this case they need to be concatenated
along the e dimension:

〈cx,bx,Ex〉 + 〈cy,by,Ey〉 := 〈cx + cy,bx + by, [Ex,Ey]〉 (12)

72 E. W. Ayers et al.

Similar considerations must be made for, e.g., the Concat op which concatenates
two tensors along a given dimension.

Fig. 5. An example computation graph for robust training showing the original (blue)
and generated (green) computation graph on a dense layer. (Color figure online)

Another complication in extending transformers to computation graphs arises
with ops which do not output a transformed domain object. The most prominent
example of this is the Shape op which returns the dimensions of a tensor. We
support these operations by allowing the domain implementer to return None
instead of a domain object, flagging that the transformer algorithm should use
the un-transformed output.

With these two considerations in mind, we have a procedure for transforming
arbitrary TensorFlow graphs composed from a set of atomic transformers.

Figure 5 illustrates computing the transformed graph of the nodes on the left-
hand side which represent the ops of a dense layer. Each green group on the right-

PaRoT: A Practical Framework for Robust Deep Neural Network Training 73

hand side is the generated transformer computation graph of the corresponding
f in the domain HybridZonotope, i.e.,, the result of calling D(f) for the op.
Note that the variables from the original layer are shared with the transformed
ops.

3.2 Robustness Properties

In this section, we describe several built-in robustness properties that can be
trained with in PaRoT , and an interface for specifying custom properties.

Built-in Properties. Let 1s denote a tensor with shape s with all elements being
ones. All the following supported properties are centered on a training input x
with shape s.

– BallDemoted: the �∞-norm ball adversarial attack represented as an axis-
aligned Box where b = ε · 1s.

– BallPromoted: another �∞-norm ball adversarial attack represented in the E
matrix of the HybridZonotope as E = ε · diag(1s)

– Brightness: a simple property with a single column in E where all pixels
may have a constant added to them. That is, E = ε · 1...s,1.

– UniformChannel: similar to Brightness except that each channel of the
image is allowed to vary independently.

– Fourier: for a 2D image x, each column of E is a plane wave. That is, each
column of E is an image I : H × W → R:

I(i, j) = ε · κ

(
i
2πn

H
+ j

2πm

W

)
,

74 E. W. Ayers et al.

for κ ∈ {sin, cos}, n ∈ {−N, ..., N} ⊂ Z and m ∈ {−M, ...,M} ⊂ Z. Our
motivation to investigate this property is to study the robustness to pertur-
bations that we might observe in real data collected in the field. For example,
in the case of detecting traffic lights, we can investigate whether it is possi-
ble to attack the network using only low frequencies (to model markings or
distortions on a physical traffic light). An example of an adversarial example
obtained through the Fourier on MNIST [24] is shown in Fig. 6.

Custom Properties. Defining a custom property in PaRoT is as simple as imple-
menting a child class of Property, as presented in Listing 1.1.

3.3 Robust Training Using PaRoT

Integrating our framework in a codebase can easily be done with minimal changes
to the existing code, as exemplified in Listing 1.2. Given a training dataset with
inputs x and groundtruth outputs y in tensor form, as well as the predictions of
the model for the inputs, y pred, we create a domain object using a Box abstrac-
tion around the inputs and transform the resulting computation graph. Then, a
combined loss function can be created and passed to the desired optimizer for
robust training.

4 Experiments

We evaluate PaRoT quantitatively to demonstrate performance, and qualita-
tively to validate its ease of use. We first show that our performance is com-
parable to the results obtained by DiffAI [27]. We then exemplify the ease of
use on pre-trained models and finish with qualitative examples demonstrating a
PaRoT robustness property. Throughout these experiments, we use the terms
‘standard’, ‘regular’ and ‘baseline’ interchangeably to describe a training process
that solely uses a sparse cross-entropy loss.

In quantitative experiments, we make use of three metrics to measure per-
formance:

– Test Error: percentage of misclassified examples in the testing set; the com-
plement of classification accuracy.

– Test error under a PGD attack: a test based on the state-of-the-art Projected
Gradient Descent attack first presented in [26] and used in [27]. PGD finds an
adversarial example by following the gradient of the loss function inside an
ε-ball around the actual test example on the input side. Thus, the reported
values correspond to a lower bound on the percentage of the misclassified
examples in the testing set that are susceptible to an attack of this type.

– Test error under a HybridZonotope attack Verify: similar to the hSwitch
upper bound metric in [27], this metric uses the adversarial example dis-
covered by the HybridZonotope on the output side, as in (11). Thus, the
reported values correspond to an upper bound of the percentage of verifiably-
susceptible examples in the testing set under this attack.

PaRoT: A Practical Framework for Robust Deep Neural Network Training 75

4.1 DiffAI Comparison

To validate the results of our framework, we ran robust training experiments
similar to those in [27] of the Box and HybridZonotope domains for MNIST [24]
and CIFAR10 [23]. The architecture of the networks used is as defined in [27]
and is also presented in Appendix 6. We similarly augment the loss with an
adversarial term with weight λ = 0.1 and an L2 regularization constant of 0.01.
The learning rate and ε used are 10−3 and 0.1 for MNIST, and 10−4 and 0.007 for
CIFAR10, respectively. We run all experiments for 100 epochs using the Adam
optimizer [21]. The results are in Table 1.

As the table shows, our framework achieves comparable results to those
obtained in [27]. In all cases, introducing an adversarial training method leads to
a minor drop in accuracy—an expected outcome when optimizing for a combined
loss function with a finite capacity [18,37]. In terms of Box training, we observe,
as expected, a slight increase in PGD and a strong increase in the number of
verifiably-safe examples. For a HybridZonotope training when compared to
the baseline, we notice that the number of examples susceptible to a PGD attack
grows slightly while, in general, the number of verifiable cases improves signifi-
cantly. Overall, these results are similar and in many cases improve upon the ones
in [27] with minor exceptions that can be justified by implementation differences
and stochasticity in weight initialization.

4.2 Re-training Models

In this experiment, we showcase the ease of use of PaRoT using a pre-trained
network. We train a network with two convolutional layers and two dense layers,
following the architecture of ConvSmall (see [27]), on the MNIST dataset using a
standard loss for 200 epochs (learning rate of 10−3) and save it to a TensorFlow
checkpoint file. We proceed to load this checkpoint’s graph, and, using PaRoT ’s
Box abstract domain, add an adversarial term to the loss function, which we
then use to further train the loaded model for 100 epochs. The results of the
process are presented in Table 2. Re-training achieves similar accuracy, while
improving significantly the PGD and verification metrics. It should be noted
that at no point in the re-training process did we have to re-define the model or
state the required operations, one of the main advantages of our framework.

4.3 Custom Robustness Properties: Case Study

As described in Sect. 3.2, PaRoT includes a variety of built-in robustness prop-
erties on 2D images for HybridZonotope. In this section, we showcase the
identification of adversarial examples based on the Fourier property. Figure 6
exemplifies an attack on a regularly trained network following the architecture of
ConvMed (see [27]). The Fourier robustness property is motivated by the obser-
vation that a typical adversarial attack will include high frequency components
which may be filtered away or rendered irrelevant by the variability in the real-
world input image. It is interesting to ask whether adversarial examples exist
only consisting of frequencies at roughly the scale of the original image.

76 E. W. Ayers et al.

Table 1. Quantitative Comparison: results of running our framework on the same
datasets, architectures and parameters as in [27]. In the experiments run, we used
ε = 0.1 for MNIST and 0.007 for CIFAR10.

Dataset Model Train method Test Error % PGD % Verify %

MNIST FFNN Baseline 1.8 3.2 100.0

Box 3.2 4.2 30.6

HybridZonotope 3.2 4.0 30.2

ConvSmall Baseline 1.4 2.4 100.0

Box 2.0 2.4 12.8

HybridZonotope 1.8 2.4 91.8

ConvMed Baseline 1.8 2.2 100.0

Box 1.8 2.2 13.6

HybridZonotope 2.4 2.6 88.6

ConvBig Baseline 0.6 1.2 100.0

Box 1.2 1.4 14.0

HybridZonotope 1.8 2.0 74.2

ConvSuper Baseline 0.6 1.0 100.0

Box 1.0 1.2 12.2

HybridZonotope 1.0 1.6 72.4

Skip Baseline 0.6 0.8 100.0

Box 1.0 1.8 11.0

HybridZonotope 0.8 1.6 10.0

CIFAR10 FFNN Baseline 45.8 45.8 100.0

Box 50.4 50.4 76.2

HybridZonotope 48.8 48.8 75.8

ConvSmall Baseline 33.3 33.4 100.0

Box 36.2 36.2 72.0

HybridZonotope 38.6 38.6 96.2

ConvMed Baseline 34.6 34.6 100.00

Box 35.8 35.8 69.6

HybridZonotope 34.4 34.6 96.4

ConvBig Baseline 35.4 35.6 100.0

Box 36.0 36.0 71.2

HybridZonotope 38.0 38.0 99.4

ConvSuper Baseline 34.4 35.2 100.0

Box 33.6 34.2 100.0

HybridZonotope 35.3 35.4 98.6

Skip Baseline 34.0 34.6 100.0

Box 40.0 39.8 73.2

HybridZonotope 39.4 39.6 74.0

PaRoT: A Practical Framework for Robust Deep Neural Network Training 77

Table 2. Re-training Models: comparison between the original network trained only
with standard loss and a re-trained network using an adversarial loss term.

Model Test error % PGD % Verify %

Original 1.70 2.30 100.00

Re-trained (Box) 2.88 1.47 14.80

(a) (b) (c)

Fig. 6. Fourier Attack : example of a Fourier attack on an image of the MNIST dataset
(a) an image that under regular training is correctly identified as a 2 (b) an adversarial
example identified using PaRoT and a Fourier attack which leads the network trained
with a standard loss function to identify as a 3. (c) is a grid of thumbnails of the
available Fourier terms that were added to (a).

In this scenario, the network correctly identifies the Figure 6a as a 2, yet
is stumped by the adversarially generated image of Fig. 6b (using the Fourier
terms presented in Fig. 6c), mistakenly identifying it as a 3. After training with
HybridZonotope with λ = 0.1 and ε = 0.01 for 200 epochs for this robustness
property, the model correctly identifies this specific example as a 2.

5 Related Work

We consider three main areas of related work: early, heuristic approaches to
training more robust networks; formal verification tools that typically oper-
ate on fully trained networks; and several other representative robust training
approaches.

Heuristic Approaches. Early art in adversarial robustness in the deep learning
community broadly tackled the problem with heuristic techniques: with archi-
tecture and training scheme modifications [6,14,38,44]. These techniques have
shown quite impressive results, and real progress has been made to training more
inherently robust networks. However, it has been shown that these networks
often remain susceptible to simple attacks [29,30]. This game of cat and mouse
has led to ever more sophisticated attack and defense, e.g., [2,10,12,15,26,36,43].
In terms of their usability, however, many of these early approaches are com-
parable to ours. A lot of the techniques involve modifications to the training
scheme rather than the network architecture itself. As has been shown, this is

78 E. W. Ayers et al.

broadly similar to how robust training can be applied within our framework.
The main limitation of these approaches is that they do not provide guarantees
for robustness and, as ever, the bad guys tend to be one step ahead.

Formal Verification. Formal verification techniques provide guarantees on the
robustness of a DNN at individual data-points [3,13,16,19,20], and, in at least
one case for a small single-layer network, across the entirety of the input
space [31]. Most of the work in this area focuses on Satisfiability Modulo Theo-
ries (SMT), reachability or optimization-based approaches to provide sound and
complete guarantees on a per-example basis [25]. It has been shown that many
of these techniques can be viewed as flavours of a unified Branch-and-Bound
framework [5]. Through this lens, one can see the scalability challenges as an
artifact of the combinatorial branching associated with piecewise-linear activa-
tion functions such as ReLUs. Similar to our framework, these formal verification
tools require no modification to an existing codebase. In practice, most of the
tooling is limited to a small subset of DNN activations and layer types (e.g., con-
volutional networks are often not supported) limiting their utility in practice.
Furthermore, the intractability of these approaches, as detailed in [25], detracts
their use in many of the larger networks we study in this paper. Lastly, as has
been previously noted, these approaches do not offer systematic improvements
at scale, i.e., the verification or falsification of each point needs to be considered
iteratively in the training process.

Verifiably Robust Training. Our work falls within a verifiably robust training
approach. We omit any theoretical comparison of the approaches, which is well
described in [27]. Our system is most closely similar to DiffAI [27]. However, it
distinguishes itself in the way the abstract transformers are generated from exist-
ing models: DiffAI requires that the user specify their model using specialized
classes. This makes their library difficult to use with pre-existing models, since
it requires rewriting the models to fit within the DiffAI framework. Our frame-
work, on the other hand, can take an existing TensorFlow graph [1] representing
a model and transform it automatically without having to rewrite any model
code, as shown in Sect. 3. This makes it more practical to use within an existing
pipeline, as it decouples the maintenance of the model from the verified robust-
ness procedure, allowing for faster development and testing. We observe that
PaRoT achieves similar performance to DiffAI and in a similar total training
times to those reported in [27] for the same GPU configuration (Nvidia GeForce
GTX 1080 Ti).

In [39], the introduced framework, MixTrain, reaches better accuracy and a
higher percentage of verifiably-safe examples when compared to [27]. Similarly,
comparing the results presented in [39] with ours, we conclude that MixTrain
outperforms the ones obtained in Sect. 4. However, it should be noted that some
of techniques that MixTrain uses to achieve this improvement can be replicated
easily when using our framework. For example, while in Listing 1.2 we defined
the loss function as in [27] for the sake of simplicity, our framework allows for
flexible definitions, including the dynamic loss function defined per epoch in [39].

PaRoT: A Practical Framework for Robust Deep Neural Network Training 79

Other works in this area involve convex relaxation techniques such as the ones
presented in [33], or dual optimization techniques as in [42]. In terms of accuracy
and adversarial robustness, further studies need to be carried out to compare
our work to [33] and [42]. Despite this, the implementation of both [33] and [42]
requires the re-writing of the models to adapt to the method’s requirements,
which, as in the case of [27], constitutes a set back to integration efforts in
production software stacks.

6 Conclusion and Future Work

In this paper we introduce PaRoT , a novel framework for verifiable robust train-
ing that can be used directly on existing codebases and requires minimal code
changes. We believe that this is the first practical framework for robust train-
ing that supports the vast majority of operations required for most large-scale
models. Our work further contributes to the community with the introduction of
new abstract transformers, novel formal robustness properties, and a framework
for adding user-defined properties to robust training. We plan to build upon this
framework in several directions:

– We wish to investigate more natural training schemes that, for example, use
the robust loss more effectively and adapt the robustness property through
the training cycle. Similarly, we plan to explore how we could provide features
such as the stochastic robust approximation techniques from [39] for better
performance.

– We also want to perform a theoretical study of abstract domains and training
techniques that scale better with larger DNN widths and lengths; a funda-
mental problem of most of the methods presented in Sect. 5 [25]. It can be
seen in Table 1, for example, that HybridZonotopes did not perform as
well as would be expected on larger networks, and an in-depth analysis could
help shed some light on the cause of this phenomenon.

– We wish to introduce an API for users to easily add and test their own op
transformers, so that the framework can easily be extended to work on model
code with currently unsupported ops. Currently supported ops may be viewed
in Appendix 6.

– Finally, we would like to conduct a comprehensive ablation study that
includes many of the alternatives mentioned in Sect. 5 to further understand
the comparative performance of our framework.

Appendix A Implemented TensorFlow Operations and
Keras Layers

Table 3 lists the currently implemented TensorFlow operations in PaRoT , while
Table 4 shows the implemented Keras layers. Other Keras layers might be sup-
ported depending on the implementation in terms of TensorFlow operations.

80 E. W. Ayers et al.

Table 3. TensorFlow operations implemented in PaRoT

Operation type Box HybridZonotope

Abs �

Add � �

BiasAdd � �

ConcatV2 � � (only between HZ and tf.Tensor)

Conv2D � � (the second input should be tf.Tensor)

Exp �

GreaterEqual � �

Log �

Log1p �

MatMul � � (only first input HZ)

Maximum �

MaxPool � � (only for ‘keras.MaxPool2D(2))

Mean �

Minimum �

Mul � �

Neg � �

OnesLike � �

Pack �

RealDiv � �

Relu � �

Reshape � �

Select � (first input not HZ)

Shape � �

Sigmoid � �

Softmax � �

StridedSlice � �

Sub � �

Sum �

Transpose � �

ZerosLike � �

Appendix B Network architectures

We follow the design of [27]. For convolutional layers c×w×h [s] is for channels,
kernel width, kernel height and stride, respectively.

FFNN. Five fully-connected layers, 100-node each, with ReLU.

PaRoT: A Practical Framework for Robust Deep Neural Network Training 81

Table 4. Keras layers supported by PaRoT out of the box

Layer Box HybridZonotope

Concatenate � �

Conv2D � �

Dense(‘relu’) � �

Dense(‘sigmoid’) � �

Dense(‘softmax’) � �

Flatten � �

MaxPooling2D � �

ConvSmall. Two convolutional layers with no padding (16 × 4 × 4 [2], 32 ×
4 × 4 [2]), followed by a 100-node fully-connected layer.

ConvMed. Two convolutional layers with padding of 1 (16 × 4 × 4 [2], 32 ×
4 × 4 [2]), followed by a 100-node fully-connected layer.

ConvBig. Four convolutional layers with padding of 1 (32 × 3 × 3 [1], 32 × 4 ×
4 [2], 64 × 3 × 3 [1], 64 × 4 × 4 [2]), followed by a 512-node fully-connected
layer, ReLU, and a 512-node fully-connected layer.

ConvSuper. Four convolutional layers with no padding (32 × 3 × 3 [1] , 32 ×
4 × 4 [1], 64 × 3 × 3 [1], 64 × 4 × 4 [1]), followed by a 512-node fully-connected
layer, ReLU, and a 512-node fully-connected layer.

Skip. A concatenation of two covolutional networks followed by ReLU, 200-node
fully-connected network, and ReLU. The two networks are:

– Three convolutional layers (16 × 3 × 3 [1], 16 × 3 × 3 [1], 32 × 3 × 3 [1]),
followed by a 200-node fully-connected layer

– Two convolutional layers (32 × 4 × 4 [1], 32 × 4 × 4 [1]) followed by a
200-node fully-connected layer.

References

1. Abadi, M., et al.: TensorFlow: a system for large-scale machine learning. In:
12th {USENIX} Symposium on Operating Systems Design and Implementation
({OSDI} 2016), pp. 265–283 (2016)

2. Akhtar, N., Mian, A.S.: Threat of adversarial attacks on deep learning in computer
vision: a survey. IEEE Access 6, 14410–14430 (2018)

3. Akintunde, M., Lomuscio, A., Maganti, L., Pirovano, E.: Reachability analysis
for neural agent-environment systems. In: Principles of Knowledge Representation
and Reasoning: Proceedings of the Sixteenth International Conference, KR 2018,
Tempe, Arizona, 30 October–2 November 2018, pp. 184–193 (2018)

82 E. W. Ayers et al.

4. Bojarski, M., et al.: End to end learning for self-driving cars. CoRR abs/1604.07316
(2016)

5. Bunel, R., Turkaslan, I., Torr, P.H.S., Kohli, P., Mudigonda, P.K.: A unified view
of piecewise linear neural network verification. In: Advances in Neural Information
Processing Systems 31: Annual Conference on Neural Information Processing Sys-
tems 2018, NeurIPS 2018, 3–8 December 2018, Montréal, Canada, pp. 4795–4804
(2018)

6. Cissé, M., Bojanowski, P., Grave, E., Dauphin, Y.N., Usunier, N.: Parseval net-
works: improving robustness to adversarial examples. In: Proceedings of the 34th
International Conference on Machine Learning, ICML 2017, Sydney, NSW, Aus-
tralia, 6–11 August 2017, pp. 854–863 (2017)

7. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proceedings
of the 4th ACM SIGACT-SIGPLAN symposium on Principles of Programming
Languages, pp. 238–252. ACM (1977)

8. Cousot, P., Cousot, R.: Abstract interpretation frameworks. J. Log. Comput. 2(4),
511–547 (1992)

9. Defense Advanced Research Projects Agency: Assured Autonomy. https://www.
darpa.mil/program/assured-autonomy

10. Dong, Y., et al.: Boosting adversarial attacks with momentum. In: 2018 IEEE
Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake
City, UT, USA, 18–22 June 2018, pp. 9185–9193 (2018)

11. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. The MIT Press (2016)
12. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial

examples. In: 3rd International Conference on Learning Representations, ICLR
2015, Conference Track Proceedings, San Diego, CA, USA, 7–9 May 2015 (2015)

13. Gopinath, D., Wang, K., Zhang, M., Pasareanu, C.S., Khurshid, S.: Symbolic exe-
cution for deep neural networks. CoRR abs/1807.10439 (2018)

14. Gu, S., Rigazio, L.: Towards deep neural network architectures robust to adversar-
ial examples. In: 3rd International Conference on Learning Representations, ICLR
2015, Workshop Track Proceedings, San Diego, CA, USA, 7–9 May 2015 (2015)

15. Huang, R., Xu, B., Schuurmans, D., Szepesvári, C.: Learning with a strong adver-
sary. CoRR abs/1511.03034 (2015). http://arxiv.org/abs/1511.03034

16. Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural
networks. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp.
3–29. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9 1

17. Janai, J., Güney, F., Behl, A., Geiger, A.: Computer vision for autonomous vehicles:
problems, datasets and state-of-the-art. CoRR abs/1704.05519 (2017)

18. Jetley, S., Lord, N.A., Torr, P.H.: With friends like these, who needs adversaries?
In: Proceedings of the 32nd International Conference on Neural Information Pro-
cessing Systems, NIPS 2018, pp. 10772–10782. Curran Associates Inc., USA (2018)

19. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an
efficient SMT solver for verifying deep neural networks. In: Majumdar, R., Kunčak,
V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 97–117. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63387-9 5

20. Katz, G., Katz, G., et al.: The Marabou framework for verification and analysis
of deep neural networks. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol.
11561, pp. 443–452. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
25540-4 26

21. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

https://www.darpa.mil/program/assured-autonomy
https://www.darpa.mil/program/assured-autonomy
http://arxiv.org/abs/1511.03034
https://doi.org/10.1007/978-3-319-63387-9_1
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-030-25540-4_26
https://doi.org/10.1007/978-3-030-25540-4_26
http://arxiv.org/abs/1412.6980

PaRoT: A Practical Framework for Robust Deep Neural Network Training 83

22. Koopman, P., Wagner, M.: Challenges in autonomous vehicle testing and validation
(2016)

23. Krizhevsky, A., et al.: Learning multiple layers of features from tiny images. Tech-
nical report, Citeseer (2009)

24. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., et al.: Gradient-based learning
applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

25. Liu, C., Arnon, T., Lazarus, C., Barrett, C., Kochenderfer, M.J.: Algorithms for
verifying deep neural networks. arXiv preprint arXiv:1903.06758 (2019)

26. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learn-
ing models resistant to adversarial attacks. In: 6th International Conference on
Learning Representations, ICLR 2018, Vancouver, BC, Canada, 30 April–3 May
2018, Conference Track Proceedings (2018)

27. Mirman, M., Gehr, T., Vechev, M.: Differentiable abstract interpretation for prov-
ably robust neural networks. In: Dy, J., Krause, A. (eds.) Proceedings of the 35th
International Conference on Machine Learning. Proceedings of Machine Learning
Research, Stockholmsmässan, Stockholm, Sweden, 10–15 July 2018, vol. 80, pp.
3578–3586. PMLR (2018)

28. Mirman, M., Singh, G., Vechev, M.T.: A provable defense for deep residual net-
works. CoRR abs/1903.12519 (2019)

29. Moosavi-Dezfooli, S., Fawzi, A., Fawzi, O., Frossard, P.: Universal adversarial per-
turbations. In: 2017 IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pp. 86–94, July 2017. https://doi.org/10.1109/CVPR.2017.17

30. Papernot, N., McDaniel, P., Jha, S., Fredrikson, M., Celik, Z.B., Swami, A.: The
limitations of deep learning in adversarial settings. In: 2016 IEEE European Sym-
posium on Security and Privacy (EuroS P), pp. 372–387, March 2016

31. Raghunathan, A., Steinhardt, J., Liang, P.: Certified defenses against adversarial
examples. In: 6th International Conference on Learning Representations, Confer-
ence Track Proceedings, ICLR 2018, Vancouver, BC, Canada, 30 April–3 May 2018
(2018)

32. Salay, R., Czarnecki, K.: Using machine learning safely in automotive software: an
assessment and adaption of software process requirements in ISO 26262. CoRR
abs/1808.01614 (2018)

33. Salman, H., Yang, G., Zhang, H., Hsieh, C.J., Zhang, P.: A convex relax-
ation barrier to tight robustness verification of neural networks. arXiv preprint
arXiv:1902.08722 (2019)

34. Singh, G., Gehr, T., Mirman, M., Püschel, M., Vechev, M.: Fast and effective
robustness certification. In: Advances in Neural Information Processing Systems,
pp. 10802–10813 (2018)

35. Szegedy, C., et al.: Intriguing properties of neural networks. In: 2nd International
Conference on Learning Representations, ICLR 2014, Conference Track Proceed-
ings, Banff, AB, Canada, 14–16 April 2014 (2014)

36. Tramèr, F., Kurakin, A., Papernot, N., Goodfellow, I.J., Boneh, D., McDaniel,
P.D.: Ensemble adversarial training: Attacks and defenses. In: 6th International
Conference on Learning Representations, ICLR 2018, Conference Track Proceed-
ings, Vancouver, BC, Canada, 30 April–3 May 2018 (2018)

37. Tsipras, D., Santurkar, S., Engstrom, L., Turner, A., Madry, A.: Robustness may
be at odds with accuracy. In: 7th International Conference on Learning Represen-
tations, ICLR 2019, New Orleans, LA, USA, 6–9 May 2019 (2019)

http://arxiv.org/abs/1903.06758
https://doi.org/10.1109/CVPR.2017.17
http://arxiv.org/abs/1902.08722

84 E. W. Ayers et al.

38. Wang, B., Gao, J., Qi, Y.: A theoretical framework for robustness of (deep) clas-
sifiers against adversarial samples. In: 5th International Conference on Learning
Representations, ICLR 2017, Workshop Track Proceedings, Toulon, France, 24–26
April 2017 (2017)

39. Wang, S., Chen, Y., Abdou, A., Jana, S.: MixTrain: scalable training of formally
robust neural networks. arXiv preprint arXiv:1811.02625 (2018)

40. Wang, X., Yu, F., Dou, Z.-Y., Darrell, T., Gonzalez, J.E.: SkipNet: learning
dynamic routing in convolutional networks. In: Ferrari, V., Hebert, M., Sminchis-
escu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11217, pp. 420–436. Springer,
Cham (2018). https://doi.org/10.1007/978-3-030-01261-8 25

41. Wong, E., Kolter, J.Z.: Provable defenses against adversarial examples via the
convex outer adversarial polytope. In: Proceedings of the 35th International Con-
ference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden,
10–15 July 2018, pp. 5283–5292 (2018)

42. Wong, E., Schmidt, F., Metzen, J.H., Kolter, J.Z.: Scaling provable adversarial
defenses. In: Advances in Neural Information Processing Systems, pp. 8400–8409
(2018)

43. Yuan, X., He, P., Zhu, Q., Li, X.: Adversarial examples: attacks and defenses for
deep learning. IEEE Trans. Neural Netw. Learn. Syst. 30(9), 2805–2824 (2019)

44. Zheng, S., Song, Y., Leung, T., Goodfellow, I.: Improving the robustness of deep
neural networks via stability training. In: 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 4480–4488, June 2016

http://arxiv.org/abs/1811.02625
https://doi.org/10.1007/978-3-030-01261-8_25

Simplifying Neural Networks Using
Formal Verification

Sumathi Gokulanathan1, Alexander Feldsher1, Adi Malca1, Clark Barrett2,
and Guy Katz1(B)

1 The Hebrew University of Jerusalem, Jerusalem, Israel
{sumathi.giokolanat,feld,adimalca,guykatz}@cs.huji.ac.il

2 Stanford University, Stanford, USA
barrett@cs.stanford.edu

Abstract. Deep neural network (DNN) verification is an emerging field,
with diverse verification engines quickly becoming available. Demonstrat-
ing the effectiveness of these engines on real-world DNNs is an important
step towards their wider adoption. We present a tool that can leverage
existing verification engines in performing a novel application: neural net-
work simplification, through the reduction of the size of a DNN without
harming its accuracy. We report on the work-flow of the simplification
process, and demonstrate its potential significance and applicability on
a family of real-world DNNs for aircraft collision avoidance, whose sizes
we were able to reduce by as much as 10%.

Keywords: Deep neural networks · Simplification · Verification ·
Marabou

1 Introduction

Deep neural networks (DNNs) are revolutionizing the way complex software is
produced, obtaining unprecedented results in domains such as image recogni-
tion [28], natural language processing [5], and game playing [27]. There is now
even a trend of using DNNs as controllers in autonomous cars and unmanned
aircraft [2,18]. With DNNs becoming prevalent, it is highly important to develop
automatic techniques to assist in creating, maintaining and adjusting them.

As DNNs are used in tackling increasingly complex tasks, their sizes (i.e.,
number of neurons) are also increasing—to a point where modern DNNs can
have millions of neurons [13]. DNN size is thus becoming a liability, as deploy-
ing larger networks takes up more space, increases energy consumption, and
prolongs response times. Network size can even become a limiting factor in sit-
uations where system resources are scarce. For example, consider the ACAS Xu
airborne collision avoidance system for unmanned aircraft, which is currently
being developed by the Federal Aviation Administration [18]. This is a highly
safety-critical system, for which a DNN-based implementation is being consid-
ered [18]. Because this system will be mounted on actual drones with limited
c© Springer Nature Switzerland AG 2020
R. Lee et al. (Eds.): NFM 2020, LNCS 12229, pp. 85–93, 2020.
https://doi.org/10.1007/978-3-030-55754-6_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-55754-6_5&domain=pdf
https://doi.org/10.1007/978-3-030-55754-6_5

86 S. Gokulanathan et al.

memory, efforts are being made to reduce the sizes of the ACAS Xu DNNs as
much as possible, without harming their accuracy [17,18].

Most work to date on DNN simplification uses various heuristics, and does
not provide formal guarantees about the simplified network’s resemblance to
the original. A common approach is to start with a large network, and reduce
its size by removing some of its components (i.e., neurons and edges) [12,15].
The parts to be removed from the network are determined heuristically, and
network accuracy may be harmed, sometimes requiring additional training after
the simplification process has been performed [12].

Here, we propose a novel simplification technique that harnesses recent
advances in DNN verification (e.g., [9,19,32]). Using verification queries, we pro-
pose to identify components of the network that never affect its output. These
components can be safely removed, creating a smaller network that is completely
equivalent to the original. We empirically demonstrate that many such removable
components exist in networks of interest.

We implement our technique in a proof-of-concept tool, called NNSimplify.
The tool uses the following work-flow: (i) it performs lightweight simulations
to identify parts of the DNN that are candidates for removal; (ii) it invokes
an underlying verification engine to dispatch queries that determine which of
those parts can indeed be removed without affecting the network’s outputs; and
(iii) it constructs the simplified network, which is equivalent to the original. A
major benefit of the proposed verification-based simplification is that it does not
require any retraining of the simplified network, which may be expensive.

Our implementation of NNSimplify (available online [10]) can use existing
DNN verification tools as a backend. For the evaluation reported here, we used
the recently published Marabou framework [21] as the underlying verification
engine. We evaluated our approach on the ACAS Xu family of DNNs for airborne
collision avoidance [18], and were able to reduce the sizes of these DNNs by up to
10%—a highly significant reduction for systems where resources are scarce.

The rest of the paper is organized as follows. In Sect. 2, we provide a brief
background on DNNs and their verification and simplification. Next, we describe
our verification-based approach to simplification in Sect. 3, followed by an eval-
uation in Sect. 4. We then conclude in Sect. 5.

2 Background: DNNs, Verification and Simplification

DNNs are comprised of an input layer, an output layer, and multiple hidden
layers in between. A layer is comprised of multiple nodes (neurons), each con-
nected to nodes from the preceding layer using a predetermined set of weights
(see Fig. 1). By assigning values to inputs and then feeding them forward through
the network, values for each layer can be computed from the values of the pre-
vious layer, finally resulting in values for the outputs.

As DNNs are increasingly used in safety-critical applications (e.g., [2,18]),
there is a surge of interest in verification methods that can provide formal guar-
antees about DNN behavior. A DNN verification query consists of a neural net-
work and a property to be checked; and it results in either a formal guarantee

Simplifying Neural Networks Using Formal Verification 87

v1

v2

v3

v4

1.3

−2

0.7

4.2

Hidden
layer

Input
layer

Output
layer

Fig. 1. A small neural network with 2 hidden nodes in one hidden layer. Weights are
denoted over the edges. Hidden node values are typically determined by computing
a weighted sum according to the weights, and then applying a non-linear activation
function to the result.

that the network satisfies the property, or a concrete input for which the property
is violated (a counter-example). Verification queries can encode various proper-
ties about DNNs; e.g., that slight perturbations to a network’s inputs do not
affect its output, and that it is thus robust to adversarial perturbations [1,4,30].

Recently, there has been significant progress on DNN verification tools
that can dispatch such queries (see a recent survey [24]). Some of the pro-
posed approaches for DNN verification include the use of specialized SMT
solvers [14,19,21], the use of LP and MILP solvers [7,31], symbolic interval prop-
agation [32], abstract interpretation [9], and many others (e.g., [3,6,8,25,26]).
This new technology has been applied in a variety of contexts, such as collision
avoidance [19], adversarial robustness [11,14,20], hybrid systems [29], and com-
puter networks [22]. Although DNN verification technology is improving rapidly,
scalability remains a major limitation of existing approaches. It has been shown
that a common variant of the DNN verification problem is NP-complete, and
becomes exponentially harder as the network size increases [19,23].

In recent years, enormous DNNs have been appearing in order to tackle
increasingly complex tasks—to a point where DNN size is becoming a liability,
because large networks take longer to train and even to evaluate when deployed.
Techniques for neural network minimization and simplification have thus started
to emerge: typically, these take an initial, large network, and reduce its size by
removing some of its components [12]. The pruning phase involves the removal of
edges from the network. The selection of which edges to remove is done heuristi-
cally, often by selecting edges that have very small weights, because these edges
are less likely to significantly affect the network’s outputs. If all edges connect-
ing a node to the preceding layer or to the succeeding layer are removed, then
the node itself can be removed. After the pruning phase, the reduced network is
retrained [12,15].

3 Simplification Using Verification

Despite the demonstrated usefulness of pruning-based DNN simplification [12,
15], heuristic-based approaches might miss removable edges, if these edges do not
have particularly small weights. However, such edges can be identified using ver-
ification. For example, consider the network shown in Fig. 2. As all edge weights

88 S. Gokulanathan et al.

have identical magnitudes, none of them would be pruned by a heuristic-based
approach. However, using a verification engine, it is possible to check the prop-
erty: “does there exist an input for which v4 takes a non-zero value?”. If the
verification tool answers “no”, as is the case for the network in Fig. 2 (because
v4 = v2 − v3 and v2 = v3), then we are guaranteed that v4 is always assigned
0, regardless of the input. In turn, this means that v4 can never affect nodes in
subsequent layers. In this case, v4 and all its edges can be safely removed from
the network (rendering the network’s output constant). Due to the soundness of
the verification process, we are guaranteed that the simplified DNN is completely
equivalent to the original DNN, and thus no retraining is required.

v1

v2

v3

v4 v5

1

1

1

−1

1

Fig. 2. Using verification, we can discover that node v4 can safely be removed from
the network.

Using verification to identify nodes that are always assigned 0 for every pos-
sible input, and can thus be removed, is the core of our technique. However,
because verification is costly, posing this query for every node of the DNN might
take a long time. To mitigate this difficulty, we propose the following work-flow:

1. Use lightweight simulations to identify nodes that are candidates for removal.
Initially, all hidden nodes are such candidates. We then evaluate the network
for random input values, and remove from the list of candidates any hidden
node that is assigned a non-zero value for some input. With each simulation,
the number of candidates for removal decreases.

2. For each remaining candidate node v, we create a separate verification query
stating that v �= 0, and use the underlying verification engine to dispatch
it. If we get an UNSAT answer, we mark node v for removal. The candidates
are explored in a layer-by-layer order, which allows us to only examine a
part of the DNN for every query. For example, when addressing a candidate
in layer #2, we do not encode layers #3 and on as part of our verification
query, as a node’s assignment can only be affected by nodes in preceding
layers. Because verifying smaller networks is generally easier, this layer-by-
layer approach accelerates the process as a whole. In addition, this process
naturally lends itself to parallelization, by running each verification query on
a separate machine.

3. Finally, we construct the simplified network, in which the nodes marked for
removal and all their incoming and outgoing edges are deleted. We can also
remove any nodes that subsequently become irrelevant due to the removal
of all of their incoming or outgoing edges (e.g., for the DNN in Fig. 2, after
removing v4 we can also remove v2 and v3, as neither has any remaining
outgoing edges).

Simplifying Neural Networks Using Formal Verification 89

We note that our technique can be extended to simplify DNNs in additional
ways, by using different verification queries. For example, it can identify separate
nodes that are always assigned identical, non-zero values (duplicates) and unify
them, thus reducing the overall number of nodes. It can also identify and remove
nodes that can be expressed as linear combinations of other nodes.

4 Evaluation

Our proof-of-concept implementation of the approach, called NNSimplify, is com-
prised of three Python modules, one for performing each of the aforementioned
steps. The tool is general, in two ways: (1) it can be applied to simplify any
DNN, regardless of its application domain; and (2) it can use any DNN verifica-
tion engine as a backend, benefiting from any future improvement in verification
technology. For our experiments we used the Marabou [21] verification engine.
In practice, it is required that the DNN in question be supported by the backend
verification engine—for example, some engines may not support certain network
topologies. Additionally, the DNN needs to be provided in a format supported
by NNSimplify; currently, the tool supports the NNet format [16], and we plan
to extend it to additional formats. The tool, additional documentation, and all
the benchmarks reported in this section are available online [10].

We evaluated NNSimplify on the ACAS Xu family of DNNs for airborne
collision avoidance [18]. This set contains 45 DNNs, each with 5 input neurons,
5 output neurons, and 300 hidden neurons spread across 6 hidden layers. The
ACAS Xu networks are fully connected, and use the ReLU activation function
in each of their hidden nodes—and are thus supported by Marabou.

For each of the 45 ACAS Xu DNNs, we ran the first Python module of
NNSimplify (random simulations), resulting in a list of candidate nodes for
removal. For each DNN we performed 20000 simulations, and this narrowed
down the list of nodes that are candidates for removal to about 7% of all hidden
nodes (see Fig. 3). The simulations were performed on points sampled uniformly
at random, although other distributions could of course be used.

0
50

100
150
200
250

1 100 10000N
um

be
r o

f C
an

di
da

te

N
od

es

Number of Simulations (logscale)

Fig. 3. Using simulation to identify nodes that are candidates for removal, on one
ACAS Xu network.

90 S. Gokulanathan et al.

Next, for each candidate for removal we ran the second Python module,
which takes as input a DNN and a node v that is a candidate for removal. This
module constructs a temporary, smaller DNN, where the candidate node v is the
only output node (subsequent layers are omitted). These temporary DNNs were
then passed to the underlying verification engine, with the query v �= 0. Here,
we encountered the following issue: the Marabou framework, like many linear-
programming based tools, does not provide a way to directly specify that v �= 0,
but rather only to state that v ≥ ε for some ε > 0 (we assume all hidden nodes
are, by definition, never negative, which is the case for the ACAS Xu DNNs).
We experimented with various values of ε (see Fig. 4), and concluded that the
choice of ε has very little effect on the outcome of the experiment—i.e., nodes
tend to either be obsolete, or take on large values. The set of removed nodes
was almost identical in all experiments, with minor differences due to different
queries timing out for different values of ε.

1

3

5

7

9

11

13

15

0.00001 0.0001 0.001 0.01 0.1

N
um

be
r o

f r
em

ov
ed

 n
od

es

Value of ε

Fig. 4. Number of removed nodes as a function of the value of ε, on one of the ACAS
Xu networks.

Finally, we ran the third Python module that uses the results of the previous
steps to construct the simplified network.

We performed this process for each of the 45 DNNs. We ran the experiments
on machines with Intel Xeon E5-2670 CPUs (2.60GHz) and 8GB of memory,
and used ε = 0.01. Each verification query was given a 4-h timeout. Out of
1069 verification queries (1 per candidate node), 535 were UNSAT (node marked
for removal), 15 were SAT, and 519 timed out (node not marked for removal).
Thus, on average, 4% of the nodes were marked for removal (535 nodes out
of 13500). Figure 5 depicts their distribution across the 45 DNNs. In most net-
works, between 11 and 15 nodes (out of 300) could be removed; but for a few
networks, this number was higher. For one of the networks we discovered 29 neu-
rons that could be removed—approximately 10% of that network’s total number
of neurons.

Simplifying Neural Networks Using Formal Verification 91

0

5

10

15

20

25

0-5 6-10 11-15 16-20 21-25 26-30
N

um
be

r o
f N

et
w

or
ks

Number of Removed Nodes

Fig. 5. Total number of removed nodes in the ACAS Xu networks.

5 Conclusion

DNN verification is an emerging field, and we are just now beginning to tap
its potential in assisting engineers in DNN development. We presented here the
NNSimplify tool, which uses black-box verification engines to simplify neural net-
works. We demonstrated that this approach can lead to a substantial reduction
in DNN size. Although our experiments show that the tool is already applicable
to real-world DNNs, its scalability is limited by the scalability of its underlying
verification engine; but as the scalability of verification technology improves, that
limitation will diminish. In the future, we plan to extend this work along several
axes. First, we intend to explore additional verification queries, which would
allow to simplify DNNs in more sophisticated ways—for example by revealing
that some neurons can be expressed as linear combinations of other neurons, or
that some neurons are always assigned identical values and can be merged. In
addition, we plan to investigate more aggressive simplification steps, which may
change the DNN’s output, while using verification to ensure that these changes
remain within acceptable bounds. Finally, we intend to apply the technique to
additional real-world DNNs and case studies.

Acknowledgements. This project was partially supported by grants from the Bina-
tional Science Foundation (2017662), the Israel Science Foundation (683/18), and the
National Science Foundation (1814369).

References

1. Bastani, O., Ioannou, Y., Lampropoulos, L., Vytiniotis, D., Nori, A., Criminisi, A.:
Measuring neural net robustness with constraints. In: Proceedings of 30th Confer-
ence on Neural Information Processing Systems (NIPS) (2016)

2. Bojarski, M., et al.: End to end learning for self-driving cars. Technical report
(2016). http://arxiv.org/abs/1604.07316

3. Bunel, R., Turkaslan, I., Torr, P.H., Kohli, P., Kumar, M.P.: Piecewise linear neural
network verification: a comparative study. Technical report (2017). https://arxiv.
org/abs/1711.00455v1

http://arxiv.org/abs/1604.07316
https://arxiv.org/abs/1711.00455v1
https://arxiv.org/abs/1711.00455v1

92 S. Gokulanathan et al.

4. Carlini, N., Katz, G., Barrett, C., Dill, D.: Provably minimally-distorted adversarial
examples. Technical report (2017). https://arxiv.org/abs/1709.10207

5. Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P.:
Natural language processing (almost) from scratch. J. Mach. Learn. Res. (JMLR)
12, 2493–2537 (2011)

6. Dutta, S., Jha, S., Sanakaranarayanan, S., Tiwari, A.: Output range analysis for
deep neural networks. In: Proceedings of 10th NASA Formal Methods Symposium
(NFM), pp. 121–138 (2018)

7. Ehlers, R.: Formal verification of piece-wise linear feed-forward neural networks.
In: Proceedings of 15th International Symposium on Automated Technology for
Verification and Analysis (ATVA), pp. 269–286 (2017)

8. Elboher, Y., Gottschlich, J., Katz, G.: An abstraction-based framework for neural
network verification. Technical report (2019). http://arxiv.org/abs/1910.14574

9. Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., Vechev,
M.: AI2: safety and robustness certification of neural networks with abstract inter-
pretation. In: Proceedings of 39th IEEE Symposium on Security and Privacy (S&P)
(2018)

10. Gokulanathan, S., Feldsher, A., Malca, A., Barrett, C., Katz, G.: The NNSimplify
Code (2020). https://drive.google.com/open?id=19TbPS7P9fo-2tRXo8ENnggLY
1LxxPCd1

11. Gopinath, D., Katz, G., Pǎsǎreanu, C., Barrett, C.: DeepSafe: a data-driven app-
roach for checking adversarial robustness in neural networks. In: Proceedings of
16th International Symposium on Automated Technology for Verification and
Analysis (ATVA), pp. 3–19 (2018)

12. Han, S., Mao, H., Dally, W.: Deep compression: compressing deep neural networks
with pruning, trained quantization and Huffman coding. Technical report (2015).
http://arxiv.org/abs/1510.00149

13. Howard, A., et al.: MobileNets: efficient convolutional neural networks for mobile
vision applications. Technical report (2017). http://arxiv.org/abs/1704.04861

14. Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural
networks. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp.
3–29. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9 1

15. Iandola, F.N., Han, S., Moskewicz, M.W., Ashraf, K., Dally, W.J., Keutzer, K.:
SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5 MB model
size. Technical report (2016). http://arxiv.org/abs/1602.07360

16. Julian, K.: NNet Format (2018). https://github.com/sisl/NNet
17. Julian, K., Kochenderfer, M., Owen, M.: Deep neural network compression for

aircraft collision avoidance systems. J. Guid. Control Dyn. 42(3), 598–608 (2019)
18. Julian, K.D., Lopez, J., Brush, J.S., Owen, M.P., Kochenderfer, M.J.: Policy com-

pression for aircraft collision avoidance systems. In: Proceedings of 35th Digital
Avionics Systems Conference (DASC), pp. 1–10 (2016)

19. Katz, G., Barrett, C., Dill, D., Julian, K., Kochenderfer, M.: Reluplex: an efficient
SMT solver for verifying deep neural networks. In Proceedings of 29th International
Conference on Computer Aided Verification (CAV), pp. 97–117 (2017)

20. Katz, G., Barrett, C., Dill, D., Julian, K., Kochenderfer, M.: Towards proving the
adversarial robustness of deep neural networks. In: Proceedings of 1st Workshop
on Formal Verification of Autonomous Vehicles (FVAV), pp. 19–26 (2017)

21. Katz, G., et al.: The Marabou framework for verification and analysis of deep
neural networks. In: Proceedings of 31st International Conference on Computer
Aided Verification (CAV), pp. 443–452 (2019)

https://arxiv.org/abs/1709.10207
http://arxiv.org/abs/1910.14574
https://drive.google.com/open?id=19TbPS7P9fo-2tRXo8ENnggLY1LxxPCd1
https://drive.google.com/open?id=19TbPS7P9fo-2tRXo8ENnggLY1LxxPCd1
http://arxiv.org/abs/1510.00149
http://arxiv.org/abs/1704.04861
https://doi.org/10.1007/978-3-319-63387-9_1
http://arxiv.org/abs/1602.07360
https://github.com/sisl/NNet

Simplifying Neural Networks Using Formal Verification 93

22. Kazak, Y., Barrett, C., Katz, G., Schapira, M.: Verifying deep-RL-driven systems.
In: Proceedings of 1st ACM SIGCOMM Workshop on Network Meets AI & ML
(NetAI), pp. 83–89 (2019)

23. Kuper, L., Katz, G., Gottschlich, J., Julian, K., Barrett, C., Kochenderfer, M.:
Toward scalable verification for safety-critical deep networks. Technical report
(2018). https://arxiv.org/abs/1801.05950

24. Liu, C., Arnon, T., Lazarus, C., Barrett, C., Kochenderfer, M.: Algorithms for ver-
ifying deep neural networks. Technical report (2019). http://arxiv.org/abs/1903.
06758

25. Lomuscio, A., Maganti, L.: An approach to reachability analysis for feed-forward
ReLU neural networks. Technical report (2017). http://arxiv.org/abs/1706.07351

26. Narodytska, N., Kasiviswanathan, S., Ryzhyk, L., Sagiv, M., Walsh, T.: Verifying
properties of binarized deep neural networks. Technical report (2017). http://arxiv.
org/abs/1709.06662

27. Silver, D., et al.: Mastering the game of Go with deep neural networks and tree
search. Nature 529(7587), 484–489 (2016)

28. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. Technical report (2014). http://arxiv.org/abs/1409.1556

29. Sun, X., Khedr, H., Shoukry, Y.: Formal verification of neural network controlled
autonomous systems. In: Proceedings of 22nd ACM International Conference on
Hybrid Systems: Computation and Control (HSCC), pp. 147–156 (2019)

30. Szegedy, C., et al.: Intriguing properties of neural networks. Technical report
(2013). http://arxiv.org/abs/1312.6199

31. Tjeng, V., Xiao, K., Tedrake, R.: Evaluating robustness of neural networks with
mixed integer programming. In: Proceedings of 7th International Conference on
Learning Representations (ICLR) (2019)

32. Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Formal security analysis of
neural networks using symbolic intervals. Technical report (2018). http://arxiv.
org/abs/1804.10829

https://arxiv.org/abs/1801.05950
http://arxiv.org/abs/1903.06758
http://arxiv.org/abs/1903.06758
http://arxiv.org/abs/1706.07351
http://arxiv.org/abs/1709.06662
http://arxiv.org/abs/1709.06662
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/1804.10829
http://arxiv.org/abs/1804.10829

High Assurance Systems

Neural Simplex Architecture

Dung T. Phan1(B), Radu Grosu2, Nils Jansen3, Nicola Paoletti4,
Scott A. Smolka1, and Scott D. Stoller1

1 Department of Computer Science, Stony Brook University, Stony Brook, NY, USA
dphan@cs.stonybrook.edu

2 Department of Computer Engineering, Technische Universität Wien,
Vienna, Austria

3 Department of Software Science, Radboud University, Nijmegen, The Netherlands
4 Department of Computer Science, Royal Holloway, University of London,

London, UK

Abstract. We present the Neural Simplex Architecture (NSA), a new
approach to runtime assurance that provides safety guarantees for neu-
ral controllers (obtained e.g. using reinforcement learning) of autonomous
and other complex systems without unduly sacrificing performance. NSA
is inspired by the Simplex control architecture of Sha et al., but with
some significant differences. In the traditional approach, the advanced
controller (AC) is treated as a black box; when the decision module
switches control to the baseline controller (BC), the BC remains in con-
trol forever. There is relatively little work on switching control back to
the AC, and there are no techniques for correcting the AC’s behavior
after it generates a potentially unsafe control input that causes a failover
to the BC. Our NSA addresses both of these limitations. NSA not only
provides safety assurances in the presence of a possibly unsafe neural
controller, but can also improve the safety of such a controller in an
online setting via retraining, without overly degrading its performance.
To demonstrate NSA’s benefits, we have conducted several significant
case studies in the continuous control domain. These include a target-
seeking ground rover navigating an obstacle field, and a neural controller
for an artificial pancreas system.

Keywords: Runtime assurance · Simplex architecture · Online
retraining · Reverse switching · Safe reinforcement learning

1 Introduction

Deep neural networks (DNNs) in combination with reinforcement learning (RL)
are increasingly being used to train powerful AI agents. Such agents have
achieved unprecedented success in strategy games, including defeating the world
champion in Go [30] and surpassing state-of-the-art chess and shogi engines [29].
For these agents, safety is not an issue: when a game-playing agent makes a
mistake, the worst-case scenario is losing a game. The same cannot be said for
c© Springer Nature Switzerland AG 2020
R. Lee et al. (Eds.): NFM 2020, LNCS 12229, pp. 97–114, 2020.
https://doi.org/10.1007/978-3-030-55754-6_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-55754-6_6&domain=pdf
https://doi.org/10.1007/978-3-030-55754-6_6

98 D. T. Phan et al.

Neural
Controller

(NC)

Baseline
Controller

(BC)

Plant
(P)

Decision Module
(DM)

Adaptation
Module (AM)

Fig. 1. The Neural Simplex Architecture. The green check marks indicate pre-certified
components. (Color figure online)

AI agents that control autonomous and other complex systems. A mistake by
an AI controller may cause physical damage to the controlled system and its
environment, including humans.

In this paper, we present the Neural Simplex Architecture (NSA), a new app-
roach to runtime assurance that provides safety guarantees for AI controllers,
including neural controllers, of autonomous and other complex systems without
unduly sacrificing performance. NSA is inspired by Sha et al.’s Simplex control
architecture [26,28], where a pre-certified decision module (DM) switches con-
trol from a high-performance but unverified (hence potentially unsafe) advanced
controller (AC) to a verified-safe baseline controller (BC) if the AC produces an
unrecoverable action; i.e., an action that would lead the system within one time
step to a state from which the BC is not guaranteed to preserve safety.

In the traditional Simplex approach, the AC is treated as a black box, and
after the DM switches control to the BC, the BC remains in control forever.
There is, however, relatively little work on switching control back to the AC
[10,18,34], and there are no techniques to correct the AC after it generates an
unrecoverable control input.

NSA, illustrated in Fig. 1, addresses both of these limitations. The high-
performance Neural Controller (NC) is a deep neural network (DNN) that given
a plant state (or raw sensor readings), produces a control input for the plant.
NSA’s use of an NC, as opposed to the black-box AC found in traditional Sim-
plex, allows for online retraining of the NC’s DNN. Such retraining is performed
by NSA’s Adaptation Module (AM) using RL techniques. For systems with large
state spaces, it may be difficult to achieve thorough coverage during initial train-
ing of the NC. Online retraining has the advantage of focusing the learning on
areas of the state space that are relevant to the actual system behavior, i.e.,
regions of the state space the system actually visits.

The AM seeks to eliminate unrecoverable actions from the NC’s behavior,
without unduly degrading its performance, and in some cases actually improv-
ing its performance. While the BC is in control of the plant, the NC runs in
shadow mode and is actively retrained by the AM. The DM can subsequently
switch control back to the NC with high confidence that it will not repeat the

Neural Simplex Architecture 99

same mistakes, permitting the mission to continue under the auspices of the
high-performance NC. Note that because NSA preserves the basic principles of
Simplex architecture, it guarantees that the safety of the plant is never violated.

NSA addresses the problem of safe reinforcement learning (SRL) [15,38]. In
particular, when the learning agent (the NC) produces an unrecoverable action,
the AM uses that action as a training sample (but does not execute it), with a
large negative reward. A comparison with related approaches to SRL is provided
in Sect. 6.

We conducted an extensive evaluation of NSA on several significant example
systems, including a target-seeking rover navigating through an obstacle field,
and a neural controller for an artificial pancreas. Our results on these case studies
conclusively demonstrate NSA’s benefits.

In summary, the main contributions of this paper are the following:

– We introduce the Neural Simplex Architecture, a new approach to runtime
assurance that provides safety guarantees for neural controllers.

– We address two limitations of the traditional Simplex approach, namely lack
of established guidelines for switching control back to the AC so that mission
completion can be attained; and lack of techniques for correcting the AC’s
behavior after a failover to the BC, so that reverse switching makes sense in
the first place.

– We provide a key insight into safe reinforcement learning (by demonstrating
the utility of potentially unsafe training samples, when appropriately and sig-
nificantly penalized), along with a thorough evaluation of the NSA approach
on two significant case studies.

2 Background

Simplex Architecture. The main components of the Simplex architecture (AC,
BC, DM) were introduced above. The BC is certified to guarantee the safety
of the plant only if it takes over control while the plant’s state is within a
recoverable region RBC . For example, consider the BC for a ground rover that
simply applies maximum deceleration amax. The braking distance to stop the
rover from a velocity v is therefore dbr(v) = v2/(2·amax). The BC can be certified
to prevent the rover from colliding with an obstacle if it takes over control in a
state where dbr(v) is less than the minimum distance dmin to any obstacle. The
set of such states is the recoverable region of this BC.

A control input is called recoverable if it keeps the plant inside RBC within
the next time step. Otherwise, the control input is called unrecoverable. The
DM switches control to the BC when the AC produces an unrecoverable con-
trol input. The DM’s switching condition determines whether a control input is
unrecoverable. We also refer to it as the forward switching condition (FSC) to
distinguish it from the condition for reverse switching, a new feature of NSA.

Techniques to determine the FSC include: (i) shrink RBC by an amount
equal to a time step times the maximum gradient of the state with respect to

100 D. T. Phan et al.

the control input; then classify any control input as unrecoverable if the current
state is outside this smaller region; (ii) simulate a model of the plant for one
time step if the model is deterministic and check whether the plant strays from
RBC ; (iii) compute a set of states reachable within one time step and determine
whether the reachable set contains states outside RBC .

Reinforcement Learning. Reinforcement learning [32] deals with the problem
of how an agent learns which sequence of actions to take in a given environ-
ment such that a cumulative reward is maximized. At each time step t, the
agent receives observation st (the environment state) and reward rt from the
environment and takes action at. The environment receives action at and emits
observation st+1 and reward rt+1 in response. In the control of autonomous sys-
tems, the agent represents the controller, the environment represents the plant,
and the state and action spaces are typically continuous.

The goal of RL is to learn a policy π(a | s), i.e., a way of choosing an action
a having observed s, that maximizes the expected return from the initial state,
where the return at time t is defined as the discounted sum of future rewards from
t (following policy π): Rt =

∑∞
k=t γk−trk+1; here γ ∈ [0, 1] is a discount factor.

For this purpose, RL algorithms typically involve estimating the action-value
function Qπ(s, a) = E[Rt | st = s, a], i.e., the expected return for selecting action
a in state s and then always following policy π; and the state-value function
V π(s) = E[Rt | st = s], i.e., the expected return starting from s and following π.

While early RL algorithms were designed for discrete state and action spaces,
recent deep RL algorithms, such as TRPO [25], DDPG [19], A3C [21], and
ACER [36], have emerged as promising solutions for RL-based control prob-
lems in continuous domains. These algorithms leverage the expressiveness of
deep neural networks (DNNs) to represent policies and value functions.

3 Neural Simplex Architecture

In this section, we discuss the main components of NSA, namely the neural con-
troller (NC), the adaptation module (AM), and the reverse switching logic. These
components in particular are not found in the Simplex control architecture.

The dynamics of the plant, i.e., the system under control, is given by st+1 =
f(st, at), where st ∈ S is the state of the plant at time t, S ⊆ R

n is the real-
valued state space, f is a possibly nonlinear function, and at ∈ A is the control
input to the plant at time t, with A ⊆ R

m the action space. This equation
specifies a deterministic dynamics, even though our approach equally supports
nondeterministic (st+1 ∈ fnd(st, at)) and stochastic (st+1 ∼ fst(s | st, at)) plant
dynamics. We assume full observability, i.e., that the BC and NC have access to
the full state of the system st.1

We denote with DMt ∈ {NC,BC} the state of the decision module at time
t: DMt = NC (DMt = BC) indicates that the neural (baseline) controller is in
1 In case of partial observability, the full state can typically be reconstructed from

sequences of past states and actions, but this process is error-prone.

Neural Simplex Architecture 101

control. Let aNC
t and aBC

t denote the action computed by the NC and the BC,
respectively. The final action at performed by the NSA agent depends on the
DM state: at = aNC

t if DMt = NC, at = aBC
t if DMt = BC.

Let β be the BC’s control law, i.e., aBC
t = β(st). For a set of unsafe states

U ⊆ S, the recoverable region is the largest set RBC such that s ∈ RBC ⇒
f(s, β(s)) ∈ RBC and RBC ∩ U = ∅. For s ∈ S, a ∈ A, the forward switching
condition must satisfy f(s, a) �∈ RBC ⇒ FSC(s, a).

The Neural Controller. The NC is represented by a DNN-based policy πθt
, where

θt are the current DNN parameters. The policy maps the current state into a
proposed action aNC

t = πθt
(st). We stress the time dependency of the parameters

because adaptation and retraining of the policy is a key feature of NSA. As for
the dynamics f , our approach supports stochastic policies (aNC

t ∼ π(a | st, θt)).
The NC can be obtained using any RL algorithm. We used DDPG with the

safe learning strategy of penalizing unrecoverable actions, as discussed in Sect. 4.
DDPG is attractive as it works with deterministic policies, and allows uncorre-
lated samples to be added to the pool of samples for training or retraining. The
latter property is important because it allows us to collect disconnected samples
of what the NC would do while the plant is under the BC’s control, and to use
these samples for online retraining of the NC.

Adaptation and Retraining. The AM is used to retrain the NC in an online
manner while the BC is in control of the plant (due to NC-to-BC failover).
The main purpose of this retraining is to make the NC less likely to trigger the
FSC, thereby allowing it to remain in control for longer periods of time, thereby
improving overall system performance.

Techniques that we consider for online retraining of the NC include super-
vised learning and reinforcement learning. In supervised learning, state-action
pairs of the form (s, a) are required for training purposes. The training algorithm
uses these examples to teach the NC safe behavior. The control inputs produced
by the BC can be used as training samples, although this will train the NC to
imitate BC’s behavior, which may lead to a loss in performance.

We therefore prefer SRL for online retraining, with a reward function that
penalizes unrecoverable actions and rewards recoverable, high-performing ones.
The reward function for retraining can be designed as follows.

r(s, a, s′) =

{
runrecov, if FSC(s, a)
rperf (s, a, s′), otherwise

(1)

where rperf (s, a, s′) is a performance-related reward function, and runrecov is a
negative number used to penalize unrecoverable actions. The benefits of this
approach to SRL are discussed in Sect. 4.

The AM retrains the NC at each time step the BC is in control by maintaining
a pool of retraining samples of the form (st, a

NC
t , s′, r′), where aNC

t is the NC-
proposed action, s′ = f(st, a

NC
t) is the state that the system would evolve to if

the NC was in control, and r′ = r(s, aNC
t , s′) is the corresponding reward. I.e.,

102 D. T. Phan et al.

samples are obtained by running the NC in shadow mode: when BC is in control,
the AM obtains a retraining sample by running a simulation of the system for
one time step and applying aNC

t , while the actual system evolves according to
the BC action aBC

t .
The AM updates the NC’s parameters θt as follows:

θt =

{
RL(θt−1, (st, a

NC
t , s′, r′)), if DMt = BC

θt−1, otherwise

where RL is the deep RL algorithm chosen for NC adaptation. Note that as soon
as the DM switches control to the BC after the NC has produced an unrecov-
erable action (see also the Switching Logic paragraph below), a corresponding
retraining sample for the NC’s action is added to the pool.

We evaluated a number of variants of this procedure by making different
choices along the following dimensions.

1. Start retraining with an empty pool of samples or with the pool created
during the initial training of the NC.

2. Add (or do not add) exploration noise to NC’s action when collecting a sam-
ple. With exploration noise, the resulting action is aNC

t + νt, where νt is a
random noise term. Note that we consider noise only when NC is running in
shadow mode (BC in control), as directly using noisy actions to control the
plant would degrade performance.

3. Collect retraining samples only while BC is in control or at every time step.
In both cases, the action in each training sample is the action output by NC
(or a noisy version of it); we never use BC’s action in a training sample. Also,
in both cases, the retraining algorithm for updating the NC is run only while
the BC is in control.

We found that reusing the pool of training samples (DDPG’s so-called experience
replay buffer) from initial training of the NC helps evolve the policy in a more
stable way, as retraining samples gradually replace initial training samples in
the sample pool. Another benefit of reusing the initial training pool is that the
NC can be immediately retrained without having to wait for enough samples to
be collected online. We found that adding exploration noise to NC’s actions in
retraining samples, and collecting retraining samples at every time step, both
increase the benefit of retraining. This is because these two strategies provide
more diverse samples and thereby help achieve more thorough exploration of the
state-action space.

Switching Logic. NSA includes reverse switching from the BC to the retrained
NC. An additional benefit of well-designed reverse switching is that it lessens the
burden on the BC to achieve performance objectives, leading to a simpler BC
design that focuses mainly on safety. Control of the plant is returned to the NC
when the reverse switching condition (RSC) is true in the current state. We can
summarize NSA’s switching logic by describing the evolution of the DM state

Neural Simplex Architecture 103

Recoverable region

NC-to-BC switching boundary

BC-to-NC reverse-switching
boundary

Fig. 2. Switching boundaries. The blue region is a subset of the orange area, which in
turn is a subset of the green region. (Color figure online)

DMt. NSA begins with the NC in control, i.e., DMt = NC for t ≤ 0. For t > 0,
the DM state is given by:

DMt =

⎧
⎪⎨

⎪⎩

BC, if DMt−1 = NC and FSC (st, a
NC

t)
NC, if DMt−1 = BC and RSC (st)
DMt−1, otherwise

To ensure safety when returning control to the NC, the FSC must not hold if
the RSC is satisfied, i.e., RSC(s) ⇒ ¬FSC(s, a), for all s ∈ S, a ∈ A.

We seek to develop reverse switching logic that returns control to NC when
it is safe to do so and which avoids frequent back-and-forth switching between
the BC and NC. We propose two such approaches. One is to reverse-switch
if a forward switch will not occur in the near future. This can be checked
by simulating the composition of the NC and plant for T time steps, and
reverse-switching if the FSC does not hold within this time horizon.2 Formally,
RSC(st) =

∧t+T
t′=t ¬FSC(s′

t′ , πθt
(s′

t′)), where s′
t = st and s′

t′+1 = f(s′
t′ , πθt

(s′
t′)).

This approach, used in our inverted pendulum and artificial pancreas case stud-
ies, prevents frequent switching.

A simpler approach is to reverse-switch if the current plant state is sufficiently
far from the NC-to-BC switching boundary; see Fig. 2. Formally, RSC(st) =
sup{d(st, s

′) | s′ ∈ S, FSC(s′, πθt
(s′))} > ε, where d is a metric on R

n and
ε ∈ R

+ is the desired distance. This approach is used in our rover case study.
We emphasize that the choice of RSC does not affect safety and is application-

dependent. Note that both of our approaches construct an RSC that is stricter
than a straight complement of the FSC. This helps avoid excessive switching. In
our experiments, we empirically observed that the system behavior was not very
sensitive to the exact value of T or ε; so choosing acceptable values for them is
not difficult.

2 For nondeterministic (stochastic) systems, a (probabilistic) model checker can be
used instead of a simulator, but this approach may be computationally expensive.

104 D. T. Phan et al.

4 Safe Reinforcement Learning with Penalized
Unrecoverable Continuous Actions

We evaluate the use of two policy-gradient algorithms for safe reinforcement
learning in NSA. The first approach filters the learning agent’s unrecoverable
actions before they reach the plant. For example, when the learning agent, i.e.,
the NC, produces an unrecoverable action, a runtime monitor [13] or a preemp-
tive shield [3] replaces it with a recoverable one to continue the trajectory. The
recoverable action is also passed to the RL algorithm to update the agent and
training continues with the rest of the trajectory.

In the second approach, when the learning agent produces an unrecoverable
action, we assign a penalty (negative reward) to the action, use it as a training
sample, and then use recoverable actions to safely terminate the trajectory (but
not to train the agent). Safely terminating the trajectory is important in cases
where for example the live system is used for training. We call this approach safe
reinforcement learning with penalized unrecoverable continuous actions (SRL-
PUA). By “continuous” here we mean real-valued action spaces, as in [9]. Other
SRL approaches such as [2] use discrete actions.

To compare the two approaches, we used the DDPG and TRPO algorithms
to train neural controllers for an inverted pendulum (IP) control system. Details
about our IP case study, including the reward function and the BC used to
generate recoverable actions, can be found in [24].

We used the implementations of DDPG and TRPO in rllab [11]. For TRPO,
we trained two DNNs, one for the mean and the other for the standard deviation
of a Gaussian policy. Both DNNs have two fully connected hidden layers of 32
neurons each and one output layer. The hidden layers use the tanh activation
function, and the output layer is linear. For DDPG, we trained a DNN that
computes the action directly from the state. The DNN has two fully connected
hidden layers of 32 neurons each and one output layer. The hidden layers use
the ReLU activation function, and the output layer uses tanh. We followed the
choice of activation functions in the examples accompanying rllab.

For each algorithm, we ran two training experiments. In one experiment,
we reproduce the filtering approach; i.e., we replace an unrecoverable action
produced by the learning agent with the BC’s recoverable action, use the latter
as the training sample, and continue the trajectory. We call this training method
SRL-BC. In the other experiment, we evaluate the SRL-PUA approach. Note
that both algorithms explore different trajectories by resetting the system to
a random initial state whenever the current trajectory is terminated. We set
the maximum trajectory length to 500 time steps, meaning that a trajectory is
terminated when it exceeds 500 time steps.

We trained the DDPG and TRPO agents on a total of one million time
steps. After training, we evaluated all trained policies on the same set of 1,000
random initial states. During evaluation, if an agent produces an unrecoverable
action, the trajectory is terminated. The results are shown in Table 1. For both
algorithms, the policies trained with recoverable actions (the SRL-BC approach)

Neural Simplex Architecture 105

produce unrecoverable actions in all test trajectories, while the SRL-PUA app-
roach, where the policies are trained with penalties for unrecoverable actions,
does not produce any such actions. As such, the latter policies achieve superior
returns and trajectory lengths (they are able to safely control the system the
entire time).

In the above experiments, we replaced unrecoverable actions with actions
generated by a deterministic BC, whereas the monitoring [13] and preemptive
shielding [2] approaches allow unrecoverable actions to be replaced with random
recoverable ones, an approach we refer to as SRL-RND. To show that our con-
clusions are independent of this difference, we ran one more experiment with
each learning algorithm, in which we replaced each unrecoverable action with an
action selected by randomly generating actions until a recoverable one is found.
The results, shown in Table 2, once again demonstrate that training with only
recoverable actions is ineffective. Compared to filtering-based approaches (SRL-
BC in Table 1 and SRL-RND in Table 2), the SRL-PUA approach yields a 25-
to 775-fold improvement in the average return.

Table 1. Policy performance comparison. SRL-BC: policy trained with BC’s actions
replacing unrecoverable ones. SRL-PUA: policy trained with penalized unsafe actions.
Unrec Trajs: # trajectories terminated due to an unrecoverable action. Comp Trajs:
trajectories that reach the limit of 500 time steps. Avg. Return and Avg. Length:
average return and trajectory length over 1,000 trajectories.

TRPO DDPG

SRL-BC SRL-PUA SRL-BC SRL-PUA

Unrec Trajs 1,000 0 1,000 0

Comp Trajs 0 1,000 0 1,000

Avg. Return 112.53 4,603.97 61.52 4,596.04

Avg. Length 15.15 500 14.56 500

Table 2. Policy performance comparison. SRL-RND: policy trained with random
recoverable actions replacing unrecoverable ones.

TRPO DDPG

SRL-RND SRL-PUA SRL-RND SRL-PUA

Unrec Trajs 1,000 0 1,000 0

Comp Trajs 0 1,000 0 1,000

Avg. Return 183.36 4,603.97 5.93 4,596.04

Avg. Length 1.93 500 14 500

106 D. T. Phan et al.

5 Case Studies

An additional case study, the Inverted Pendulum, along with further details
about the case studies presented in this section can be found in [24].

5.1 Rover Navigation

We consider the problem of navigating a rover to a predetermined target loca-
tion while avoiding collisions with static obstacles. The rover is a circular disk
of radius r. It has a maximum speed vmax and a maximum acceleration amax.
The maximum braking time is therefore tbr max = vmax/amax, and the maxi-
mum braking distance is dbr max = v2

max/(2 · amax). The control inputs are the
accelerations ax and ay in the x and y directions, respectively. The system uses
discrete-time control with a time step of dt.

The rover has n distance sensors whose detection range is lmax. The sensors
are placed evenly around the perimeter of the rover; i.e., the center lines of sight
of two adjacent sensors form an angle of 2π/n. The rover can only move forwards,
so its orientation is the same as its heading angle. The state vector for the rover
is [x, y, θ, v, l1, l2, ..., ln], where (x, y) is the position, θ is the heading angle, v is
the velocity, and the li’s are the sensor readings.

O

Fig. 3. Illustration of assumptions about obstacle shapes.

We assume the sensors have a small angular field-of-view so that each sensor
reading reflects the distance from the rover to an obstacle along the sensor’s
center line of sight. If a sensor does not detect an obstacle, its reading is lmax.

We also assume that when the sensor readings of two adjacent sensors si and
sj are li and lj , respectively, then the (conservative) minimum distance to any
obstacle point located in the cone formed by the center lines of sight of si and
sj is min{li, lj} − ε. Here, ε is a constant that limits by how much an obstacle
can protrude into the blind spot between si and sj ’s lines of sight; see Fig. 3.

A state s of the rover is recoverable if starting from s, the baseline controller
(BC) can brake to a stop at least distance dsafe from any obstacle. Let the
braking distance in state s be dbr(s) = v2/(2 ·amax), where v is the rover’s speed
in s. Then s is recoverable if the minimum sensor reading lmin in state s is at
least dsafe + dbr(s) + ε.

The FSC holds when the control input uNC proposed by the NC will put the
rover in an unrecoverable state in the next time step. We check this condition

Neural Simplex Architecture 107

by simulating the rover for one time step with uNC as the control input, and by
then determining if lmin < dsafe + dbr(s) + ε.

The RSC is lmin ≥ m · vmax · dt + dsafe + dbr max + ε, ensuring that the
FSC does not hold for the next m − 1 time steps. Parameter m can be chosen
to reduce excessive back-and-forth switching between the NC and BC.

The BC performs the following steps: 1) Apply the maximum braking power
amax until the rover stops. 2) Randomly pick a safe heading angle θ based on the
current position and sensor readings. 3) Rotate the rover until its heading angle
is θ. 4) Move with heading angle θ until either the FSC becomes true (this is
checked after each time step by the BC itself), in which case the BC is re-started
at Step 1, or the RSC becomes true (this is checked by the DM), in which case
the NC takes over.

Experimental Results. Parameter values used: r = 0.1m, vmax = 0.8m/s,
amax = 1.6m/s2, lmax = 2m, n = 32, dsafe = 0.2m, ε = 0.01m, m = 5,
dt = 0.1 s. The target is a circular disk at location (0, 0) with a radius of 0.1m.
The obstacle field, which is fixed during training and testing, consists of 12 cir-
cular obstacles with a minimum radius of 0.25m. Rover initial position (x0, y0)
is randomized in the area [−5, 5] × [−5, 5].3 We assume that the sensor field-of-
view is at least 7.25◦, thereby satisfying the assumption that an obstacle does
not protrude more than ε into the blind spot between adjacent sensors. See also
Fig. 3. The NC is a DNN with two ReLU hidden layers, each of size 64, and a
tanh output layer. We used the DDPG algorithm for both initial training and
online retraining of the NC. For initial training, we ran DDPG for 5 million time
steps. The reward function for initial training and online retraining is:

r(s, a, s′) =

⎧
⎪⎨

⎪⎩

−20, 000, if FSC(s, a)
10, 000, if DT(s) ≤ 0.2
−1 − 20 · DT(s), otherwise

(2)

where FSC(s, a) is the forward switching condition and DT(s) is the center-to-
center distance from the rover to the target in state s. The rover is considered
to have reached the target if DT(s) ≤ 0.2, as, recall, the target is a circular
disk with radius of 0.1 m and the radius r of the rover is 0.1m. If the action a
triggers the forward switching logic, it is penalized by assigning it a negative
reward of -20,000. If a causes the rover to reach the target, it receives a positive
reward of 10,000. All other actions are penalized by an amount proportional to
the distance to the target, encouraging the agent to reach the target quickly.

Our experiments with online retraining use the same DDPG settings as in
initial training, except that we initialize the AM’s pool of retraining samples with
the pool created by initial training, instead of an empty pool. The pool created
by initial training contains one million samples; this is the maximum pool size,

3 Although the obstacles are fixed, the NC still generalizes well (but not perfectly)
to random obstacle fields not seen during training, as shown in this video https://
youtu.be/ICT8D1uniIw.

https://youtu.be/ICT8D1uniIw
https://youtu.be/ICT8D1uniIw

108 D. T. Phan et al.

which is a parameter of the algorithm. When creating retraining samples, the AM
adds Gaussian noise to the NC’s actions. The NC’s actions are collected (added
to the pool) at every time step, regardless of which controller is in control; thus,
the AM also collects samples of what the NC would do while the BC is in control.

We ran the NSA instance starting from 10,000 random initial states. Out
of 10,000 trajectories, forward switching occurred in 456 of them. Of these 456
trajectories, the BC was in control for a total of 70,974 time steps. This means
there were 70,974 (∼71K) retraining updates to the NC. To evaluate the benefits
of online retraining, we compared the performance of the NC after initial training
and after 20K, 50K, and 71 K online updates. We evaluated the performance of
each of these controllers (by itself, without NSA) by running it from the same
set of 1,000 random initial states.

The results in Table 3 show that after 71 K retraining updates, the NC out-
performs the initially trained version on every metric. Table 3 also shows that
the NC’s performance increases with the number of retraining updates, thus
demonstrating that NSA’s online retraining not only improves the safety of the
NC, but also its performance.

Table 3. Benefits of online retraining (∼71K NC updates in total) for ground rover
navigation. IT: results for initially trained NC. 20K RT, 50K RT, 71K RT: results
for NC after 20K, 50K, 71K retraining updates. All controllers evaluated on same
set of 1,000 random initial states. FSCs: # trajectories in which FSC becomes true.
Timeouts: # trajectories that reach the limit of 500 time steps without reaching target
or having FSC become true. Targets: # trajectories that reach the target. Avg. Ret.
and Avg. Len.: average return and average trajectory length over all 1,000 trajectories.

IT 20K RT 50K RT 71K RT

FSCs 100 79 43 8

Timeouts 35 49 50 22

Targets 865 872 907 970

Avg. Ret. −9,137.3 −9,968.8 −5,314.6 −684.0

Avg. Len. 138.67 142.29 156.13 146.56

We resumed initial training to see if this would produce similar improve-
ments. Specifically, we continued the initial training for an additional 71K, 1M,
and 3M samples. The results, included in [24], show that extending the initial
training slowly improves both the safety and performance of the NC but requires
substantially more updates. 71K retraining updates provide significantly more
benefits than even 3M additional samples of initial training.

5.2 Artificial Pancreas

The artificial pancreas (AP) is used to control blood glucose (BG) levels in
Type 1 diabetes patients through automated delivery of insulin. We use the

Neural Simplex Architecture 109

linear plant model of [6] to describe the physiological state of the patient. The
main state variable of interest is G, which is the difference between the reference
BG (7.8 mmol/L) and the patient’s BG. The control action, i.e., the insulin input,
is denoted by u. Further details of this model, including its ODE dynamics, can
be found in [24].

The AP should maintain BG levels within the safe range of 4 to 11 mmol/L.
In particular, it should avoid hypoglycemia (i.e., BG levels below the safe range),
which can lead to severe health consequences. Hypoglycemia occurs when the
controller overshoots the insulin dose. Insulin control is uniquely challenging
because the controller cannot take a corrective action to counteract an excessive
dose; its most extreme safety measure is to turn off the insulin pump. Hence,
the baseline controller for the AP sets u = 0.

We intentionally under-train the initial NC so that it exhibits low perfor-
mance and produces unrecoverable actions. Low-performing AP controllers may
arise in practice for several reasons, e.g., when the training-time model param-
eters do not match the current real-life patient parameters.

The reward function r is designed to penalize deviations from the reference
BG level, as captured by state variable G. We assign a positive reward when G
is close to zero (within ±1), and we penalize larger deviations with a 5× fac-
tor for mild hyperglycemia (1 < G ≤ 3.2), a 7× factor for mild hypoglycemia
(−3.8 ≤ G < −1), 9× for strong hyperglycemia (G > 3.2), and 20× for strong
hypoglycemia (G < −3.8). The other constants are chosen to avoid jump dis-
continuities in the reward function.

r(s, u, s′) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

10 − |G′|, if |G′| ≤ 1
14 − 5 · |G′|, if 1 < G′ ≤ 3.2
26.8 − 9 · |G′|, if G′ > 3.2
16 − 7 · |G′|, if − 3.8 ≤ G′ < −1
65.4 − 20 · |G′| otherwise

where G′ is the value of G in state s′.
An AP plant state s is recoverable if under the control of the BC, a state where

G′ < −3.8 cannot be reached starting from s. This condition can be checked by
simulation. The FSC holds when the NC’s action leads to an unrecoverable state
in the next time step. For reverse switching, we return control to the NC if the
FSC does not hold within time T = 10 from the current state.

Experimental Results. To produce an under-trained NC, we used 107,000 time
steps of initial training. We ran NSA on the under-trained controller on 10,000
trajectories, each starting from a random initial state. Among the first 400 tra-
jectories, 250 led to forward switching and hence retraining. The retraining was
very effective, as forward switching did not occur after the first 400 trajectories.

As in the other case studies we conducted, we then evaluated the benefits
of retraining by comparing the performance of the initially trained NC and
the retrained NC on trajectories starting from the same set of 1,000 random

110 D. T. Phan et al.

initial states. The results are given in Table 4. Retraining greatly improves the
safety of the NC: the initially trained controller reaches an unrecoverable state
in all 1,000 of these trajectories, while the retrained controller never does. The
retrained controller’s performance is also significantly enhanced, with an average
return 2.9 times that of the initial controller.

Table 4. Benefits of retraining for the AP case study. There were 61 updates to the
NC. Row labels are as per Table 1.

Initially trained Retrained

Unrecov Trajs 1,000 0

Complete Trajs 0 1,000

Avg. Return 824 2,402

Avg. Length 217 500

6 Related Work

The original Simplex architecture did not consider reverse switching. In [26,
27], when the AC produces an unrecoverable action, it is disabled until it is
manually re-enabled. It is briefly mentioned in [18] that reverse switching should
be performed only when the FSC is false, and that a stricter RSC might be
needed to prevent frequent switching, but the paper does not pursue this idea
further. A more general approach to reverse switching, which uses reachability
analysis to determine if the plant is safe in the next two time steps irrespective
of the controller, is presented in [10]. This approach results in more conservative
reverse switching conditions, as it does not take the behavior of the AC into
account, unlike one of the approaches we propose. The idea of reverse switching
when the AC’s outputs are stabilized is briefly mentioned in [34].

Regarding approaches to safe reinforcement learning (SRL), we refer the
reader to two recent comprehensive literature reviews [15,38]. Bootstrapping of
policies that are known to be safe in certain environments is employed in [31],
while [16] restricts exploration to a portion of the state space close to an optimal,
pre-computed policy.

In [3], the authors synthesize a shield (a.k.a. post-posed shield) from a
temporal-logic safety specification based on knowledge of the system dynam-
ics. The shield monitors and corrects an agent’s actions to ensure safety. This
approach targets systems with finite state and action spaces. Suitable finite-
state abstractions are needed for infinite-state systems. In [5], the shield-based
approach is extended to stochastic systems. In contrast, NSA’s policy-gradient-
based approach is directly applicable to systems with infinite state spaces and
continuous action spaces.

In [13], the authors use formally verified runtime monitors in the RL training
phase to constrain the actions taken by the learning agent to a set of safe actions.

Neural Simplex Architecture 111

The idea of using the learned policy together with a known-safe fallback policy
in the deployed system is mentioned, but further details are not provided. In
contrast, we discuss in detail how the NSA approach guarantees runtime safety
and how SRL is is used for online retraining of the NC. In [14], a verification-
preserving procedure is proposed for learning updates to the environment model
when SRL is used and the exact model is not initially known. The approach to
SRL is mainly taken from [13], so again the learned policy is not guaranteed
safe. Note that the SRL approach of [13,14] allows the training algorithm to
speculate when the plant model is deviating from reality.

Other approaches to SRL incorporate formal methods to constrain the
SRL exploration process. These include the use of (probabilistic) temporal
logic [17,20,37], ergodicity-based notions of safety [22], and providing proba-
bly approximately correct (PAC) guarantees [12]. All of these techniques work
on finite state spaces.

In [8], the authors use Lyapunov functions in the framework of constrained
Markov decision processes to guarantee policy safety during training. They focus
on policy-iteration and Q-learning for discrete state and action problems. Their
approach is currently not applicable to policy-gradient algorithms, such as the
DDPG algorithm used in our experiments, nor continuous state/action problems.
Lyapuanov functions are also used in [4] for SRL, but it likewise cannot be used
for policy-gradient algorithms.

In [33], the authors propose Reward Constrained Policy Optimization
(RCPO), where a per-state weighted penalty term is added to the reward func-
tion. Such weights are updated during training. RCPO is shown to almost surely
converge to a solution, but does not address the problem of guaranteeing safety
during training. In contrast, we penalize unrecoverable actions and safely termi-
nate the current trajectory to ensure plant safety.

In [1], the authors present the Constrained Policy Optimization algorithm for
constrained MDPs, which guarantees safe exploration during training. CPO only
ensures approximate satisfaction of constraints and provides an upper bound on
the cost associated with constraint violations. In [23], the authors use control bar-
rier functions (CBFs) for SRL. Whenever the learning agent produces an unsafe
action, it is minimally perturbed to preserve safety. In contrast, in NSA, when
the NC proposes an unsafe action, the BC takes over and the NC is retrained
by the AM. CBFs are also used in [7].

Similar to the shield-based method, a safety layer is inserted between the pol-
icy and the plant in [9]. Like the CBF approach, the safety layer uses quadratic
programming to minimally perturb the action to ensure safety. There are, how-
ever, no formal guarantees of safety because of the data-driven linearization of
the constraint function.

7 Conclusions

We have presented the Neural Simplex Architecture for assuring the runtime
safety of systems with neural controllers. NSA features an adaptation module

112 D. T. Phan et al.

that retrains the NC in an online fashion, seeking to eliminate its faulty behav-
ior without unduly sacrificing performance. NSA’s reverse switching capability
allows control of the plant to be returned to the NC after a failover to BC,
thereby allowing NC’s performance benefits to come back into play. We have
demonstrated the utility of NSA on three significant case studies in the contin-
uous control domain.

As future work, we plan to investigate methods for establishing statistical
bounds on the degree of improvement that online retraining yields in terms of
safety and performance of the NC. We also plan to incorporate techniques from
the L1Simplex architecture [35] to deal with deviations of the plant model’s
behavior from the actual behavior.

Acknowledgments. We thank the anonymous reviewers for their helpful comments.
This material is based upon work supported in part by NSF grants CCF-191822, CPS-
1446832, IIS-1447549, CNS-1445770, and CCF-1414078, FWF-NFN RiSE Award, and
ONR grant N00014-15-1-2208. Any opinions, findings, and conclusions or recommen-
dations expressed in this material are those of the author(s) and do not necessarily
reflect the views of these organizations.

References

1. Achiam, J., Held, D., Tamar, A., Abbeel, P.: Constrained policy optimization. In:
International Conference on Machine Learning, pp. 22–31 (2017)

2. Alshiekh, M., Bloem, R., Ehlers, R., Könighofer, B., Niekum, S., Topcu, U.: Safe
reinforcement learning via shielding. arXiv preprint arXiv:1708.08611 (2017)

3. Alshiekh, M., Bloem, R., Ehlers, R., Könighofer, B., Niekum, S., Topcu, U.: Safe
reinforcement learning via shielding. In: AAAI (2018). https://www.aaai.org/ocs/
index.php/AAAI/AAAI18/paper/view/17211

4. Berkenkamp, F., Turchetta, M., Schoellig, A., Krause, A.: Safe model-based rein-
forcement learning with stability guarantees. In: Advances in Neural Information
Processing Systems, pp. 908–918 (2017)

5. Bouton, M., Karlsson, J., Nakhaei, A., Fujimura, K., Kochenderfer, M.J., Tumova,
J.: Reinforcement learning with probabilistic guarantees for autonomous driving.
CoRR abs/1904.07189 (2019)

6. Chen, H., Paoletti, N., Smolka, S.A., Lin, S.: Committed moving horizon estima-
tion for meal detection and estimation in type 1 diabetes. In: American Control
Conference (ACC 2019), pp. 4765–4772 (2019)

7. Cheng, R., Orosz, G., Murray, R.M., Burdick, J.W.: End-to-end safe reinforce-
ment learning through barrier functions for safety-critical continuous control tasks.
AAAI (2019)

8. Chow, Y., Nachum, O., Duenez-Guzman, E., Ghavamzadeh, M.: A Lyapunov-
based approach to safe reinforcement learning. In: Advances in Neural Information
Processing Systems, pp. 8103–8112 (2018)

9. Dalal, G., Dvijotham, K., Vecerik, M., Hester, T., Paduraru, C., Tassa, Y.: Safe
exploration in continuous action spaces. arXiv e-prints (2018)

10. Desai, A., Ghosh, S., Seshia, S.A., Shankar, N., Tiwari, A.: A runtime assurance
framework for programming safe robotics systems. In: IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN) (2019)

http://arxiv.org/abs/1708.08611
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17211
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17211

Neural Simplex Architecture 113

11. Duan, Y., Chen, X., Houthooft, R., Schulman, J., Abbeel, P.: Benchmarking deep
reinforcement learning for continuous control. In: Proceedings of the 33rd Interna-
tional Conference on Machine Learning ICML 2016, vol. 48, pp. 1329–1338 (2016).
http://dl.acm.org/citation.cfm?id=3045390.3045531

12. Fu, J., Topcu, U.: Probably approximately correct MDP learning and control with
temporal logic constraints. In: 2014 Robotics: Science and Systems Conference
(2014)

13. Fulton, N., Platzer, A.: Safe reinforcement learning via formal methods. In: AAAI
2018 (2018)

14. Fulton, N., Platzer, A.: Verifiably safe off-model reinforcement learning. In: Vojnar,
T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11427, pp. 413–430. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-17462-0 28

15. Garćıa, J., Fernández, F.: A comprehensive survey on safe reinforcement learning.
J. Mach. Learn. Res. 16(1), 1437–1480 (2015). http://dl.acm.org/citation.cfm?
id=2789272.2886795

16. Garćıa, J., Fernández, F.: Probabilistic policy reuse for safe reinforcement learning.
ACM Trans. Auton. Adapt. Syst. (TAAS) 13(3), 14 (2019)

17. Hasanbeig, M., Abate, A., Kroening, D.: Logically-correct reinforcement learning.
CoRR abs/1801.08099 (2018)

18. Johnson, T., Bak, S., Caccamo, M., Sha, L.: Real-time reachability for verified
Simplex design. ACM Trans. Embed. Comput. Syst. 15(2), 26:1–26:27 (2016).
https://doi.org/10.1145/2723871, http://doi.acm.org/10.1145/2723871

19. Lillicrap, T., et al.: Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971 (2015)

20. Mason, G., Calinescu, R., Kudenko, D., Banks, A.: Assured reinforcement learning
with formally verified abstract policies. In: ICAART, no. 2, pp. 105–117. SciTePress
(2017)

21. Mnih, V., et al.: Asynchronous methods for deep reinforcement learning. In: ICML,
pp. 1928–1937 (2016)

22. Moldovan, T.M., Abbeel, P.: Safe exploration in Markov decision processes. In:
ICML. icml.cc/Omnipress (2012)

23. Ohnishi, M., Wang, L., Notomista, G., Egerstedt, M.: Barrier-certified adaptive
reinforcement learning with applications to Brushbot navigation. IEEE Trans.
Robot. 1–20 (2019). https://doi.org/10.1109/TRO.2019.2920206

24. Phan, D., Paoletti, N., Grosu, R., Jansen, N., Smolka, S.A., Stoller, S.D.: Neural
simplex architecture. arXiv preprint arXiv:1908.00528 (2019)

25. Schulman, J., Levine, S., Abbeel, P., Jordan, M., Moritz, P.: Trust region policy
optimization. In: ICML, pp. 1889–1897 (2015)

26. Seto, D., Krogh, B., Sha, L., Chutinan, A.: The Simplex architecture for safe online
control system upgrades. In: Proceedings of 1998 American Control Conference,
vol. 6, pp. 3504–3508 (1998). https://doi.org/10.1109/ACC.1998.703255

27. Seto, D., Sha, L., Compton, N.: A case study on analytical analysis of the inverted
pendulum real-time control system (1999)

28. Sha, L.: Using simplicity to control complexity. IEEE Softw. 18(4), 20–28 (2001).
https://doi.org/10.1109/MS.2001.936213

29. Silver, D., Hubert, T., Schrittwieser, J., et al.: Mastering chess and shogi
by self-play with a general reinforcement learning algorithm. arXiv preprint
arXiv:1712.01815 (2017)

30. Silver, D., Schrittwieser, J., Simonyan, K., et al.: Mastering the game of Go without
human knowledge. Nature 550(7676), 354 (2017)

http://dl.acm.org/citation.cfm?id=3045390.3045531
https://doi.org/10.1007/978-3-030-17462-0_28
http://dl.acm.org/citation.cfm?id=2789272.2886795
http://dl.acm.org/citation.cfm?id=2789272.2886795
https://doi.org/10.1145/2723871
http://doi.acm.org/10.1145/2723871
http://arxiv.org/abs/1509.02971
https://doi.org/10.1109/TRO.2019.2920206
http://arxiv.org/abs/1908.00528
https://doi.org/10.1109/ACC.1998.703255
https://doi.org/10.1109/MS.2001.936213
http://arxiv.org/abs/1712.01815

114 D. T. Phan et al.

31. Simão, T.D., Spaan, M.T.J.: Safe policy improvement with baseline bootstrapping
in factored environments. In: AAAI, pp. 4967–4974. AAAI Press (2019)

32. Sutton, R., Barto, A.: Reinforcement Learning: An Introduction. MIT Press, Cam-
bridge (1998)

33. Tessler, C., Mankowitz, D.J., Mannor, S.: Reward constrained policy optimization.
arXiv e-prints (2018)

34. Vivekanandan, P., Garcia, G., Yun, H., Keshmiri, S.: A Simplex architecture for
intelligent and safe unmanned aerial vehicles. In: 2016 IEEE 22nd International
Conference on Embedded and Real-Time Computing Systems and Applications
(RTCSA), pp. 69–75 (2016). https://doi.org/10.1109/RTCSA.2016.17

35. Wang, X., Hovakimyan, N., Sha, L.: L1Simplex: fault-tolerant control of cyber-
physical systems. In: 2013 ACM/IEEE International Conference on Cyber-Physical
Systems (ICCPS), pp. 41–50 (2013)

36. Wang, Z., et al.: Sample efficient actor-critic with experience replay. arXiv preprint
arXiv:1611.01224 (2016)

37. Wen, M., Ehlers, R., Topcu, U.: Correct-by-synthesis reinforcement learning with
temporal logic constraints. In: IROS, pp. 4983–4990. IEEE Computer Society Press
(2015)

38. Xiang, W., et al.: Verification for machine learning, autonomy, and neural networks
survey. arXiv e-prints (2018)

https://doi.org/10.1109/RTCSA.2016.17
http://arxiv.org/abs/1611.01224

Strengthening Deterministic Policies
for POMDPs

Leonore Winterer1(B), Ralf Wimmer1,2, Nils Jansen3, and Bernd Becker1

1 Albert-Ludwigs-Universität Freiburg, Freiburg im Breisgau, Germany
{winterel,wimmer,becker}@informatik.uni-freiburg.de

2 Concept Engineering GmbH, Freiburg im Breisgau, Germany
3 Radboud University, Nijmegen, The Netherlands

n.jansen@science.ru.nl

Abstract. The synthesis problem for partially observable Markov deci-
sion processes (POMDPs) is to compute a policy that satisfies a given
specification. Such policies have to take the full execution history of a
POMDP into account, rendering the problem undecidable in general. A
common approach is to use a limited amount of memory and random-
ize over potential choices. Yet, this problem is still NP-hard and often
computationally intractable in practice. A restricted problem is to use
neither history nor randomization, yielding policies that are called sta-
tionary and deterministic. Previous approaches to compute such policies
employ mixed-integer linear programming (MILP). We provide a novel
MILP encoding that supports sophisticated specifications in the form
of temporal logic constraints. It is able to handle an arbitrary num-
ber of such specifications. Yet, randomization and memory are often
mandatory to achieve satisfactory policies. First, we extend our encod-
ing to deliver a restricted class of randomized policies. Second, based
on the results of the original MILP, we employ a preprocessing of the
POMDP to encompass memory-based decisions. The advantages of our
approach over state-of-the-art POMDP solvers lie (1) in the flexibility
to strengthen simple deterministic policies without losing computational
tractability and (2) in the ability to enforce the provable satisfaction of
arbitrarily many specifications. The latter point allows to take trade-offs
between performance and safety aspects of typical POMDP examples
into account. We show the effectiveness of our method on a broad range
of benchmarks.

1 Introduction

Partially observable Markov decision processes (POMDPs) are a formal model
for planning under uncertainty in partially observable environments [23,37].
POMDPs adequately model a number of real-world applications, see for
instance [33,43]. While an agent operates in a scenario modeled by a POMDP,
it receives observations and tries to infer the likelihood of the system being in a
certain state, the belief state. Together with a belief update function, the space
of all belief states forms a (uncountably infinite) belief MDP [5,26,35].
c© Springer Nature Switzerland AG 2020
R. Lee et al. (Eds.): NFM 2020, LNCS 12229, pp. 115–132, 2020.
https://doi.org/10.1007/978-3-030-55754-6_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-55754-6_7&domain=pdf
https://doi.org/10.1007/978-3-030-55754-6_7

116 L. Winterer et al.

Consider the following simple example [11] as sketched in Fig. 1. A space
shuttle has to transport goods between two stations, while docking at these
stations is subject to failure with certain probabilities. The perception of the
shuttle is limited in the sense that it will only see the stations if it is directly
facing them. If not, it can only see empty space and has to infer from the history
which of the stations is the next one to deliver goods to.

Docked in
left station

Facing
left station

Back to
left station

Space,
facing left

Space,
facing right

Facing
right station

Back to
right station

Docked in
right station

Fig. 1. The space shuttle benchmark – yellow states share an observation. Transitions
have been simplified for clarity. (Color figure online)

Traditional POMDP problems typically comprise the computation of a policy
that maximizes a cumulative reward over a finite horizon. However, the applica-
tion may require that the agent’s behavior obeys more complicated specifications.
For example, temporal logics (e.g., LTL [31]) describe task properties like reach-
ability or liveness that cannot be expressed using reward functions [25]. For the
aforementioned space shuttle, maximizing the reward corresponds to maximiz-
ing the number of succesful deliveries. Additional specifications may for instance
require the shuttle to only navigate in empty space for a limited number of steps.

Policy synthesis for POMDPs is hard. For infinite- or indefinite-horizon prob-
lems, computing an optimal policy is undecidable [26]. Optimal action choices
depend on the whole history of observations and actions, and thus require an
infinite amount of memory. When restricting the specifications to maximizing
accumulated rewards over a finite horizon and also limiting the available memory,
computing an optimal policy is PSPACE-complete [29]. This problem is, practi-
cally, intractable even for small instances [27]. When policies are restricted to be
memoryless, finding an optimal policy within this set is still NP-hard [39]. For
the more general LTL specifications, synthesis of policies with limited memory
is even EXPTIME-complete [8].

State-of-the-art. The aforementioned hardness and intractability of the compu-
tation of exact solutions for the POMDP problems discussed earlier triggered
several feasible approaches. Notably, there are approximate [20], point-based [30],
or Monte-Carlo-based [36] methods. Yet, none of these approaches provides
guarantees for temporal logic specifications. The tool PRISM-pomdp [28] actu-
ally provides guarantees by approximating the belief space into a fully observ-
able belief MDP, but is restricted to small examples. Other techniques, such as
those employing an incremental satisfiability modulo theory (SMT) solver over
a bounded belief space [40] or a simulation over sets of belief models [18], are

Strengthening Deterministic Policies for POMDPs 117

also restricted to small examples. [42] employs a game-based abstraction app-
roach to efficiently solve problems with specific properties. In [22], finite-state
controllers for POMDPs are computed using parameter synthesis for Markov
chains [19,21] by applying convex optimization techniques [12,13]. Another work
employs machine learning techniques together with formal verification to achieve
sound but not optimal solutions [7].

Our Approach. The problem we consider in this paper is to compute a policy for
a POMDP that provably satisfies one or more specifications such as temporal
logic constraints and expected (discounted) reward properties. First, we restrict
ourselves to a simple class of policies which are both memoryless and do not
randomize over action choices, that is, they are deterministic. A natural approach
encodes this problem as a mixed-integer linear program (MILP) [34]. We extend
previous approaches [2,24] to account for multiple specifications and provide a
particular encoding for temporal logic constraints. The advantage is that these
MILPs yield simple, small, and easy-to-analyze policies which can be computed
by efficient state-of-the-art tools like Gurobi [17].

However, policies that incorporate randomization over choices often trade
off the necessity of memory-based decisions [1,10], and randomization may be
needed for multiple objectives [3,15]. To preserve the advantages of MILP solv-
ing, we propose static randomization. We augment the MILP encoding in the
following way. In addition to deterministic choices, the policy may to select an
arbitrary but fixed distribution over all possible actions. As we will demonstrate
in this paper, often any distribution is sufficient as long as randomization is
possible.

Yet, for certain problems a notion of (at least finite) memory is required. As
a third step to strengthen deterministic policies, we perform a preprocessing of
the POMDP regarding previous computations for purely deterministic policies.
At states where the choices are bad according to the specifications, we perform a
technique we call observation and state splitting which essentially encodes finite
memory into the state space of the POMDP. Intuitively, we enable a policy to
distinguish states that previously shared an observation.

Summarized, we provide three contributions. First, we enable the compu-
tation of deterministic polices that provably adhere to multiple specifications.
Second, we augment the underlying MILP to account for randomization using
fixed distributions over actions. Third, we introduce a novel POMDP preprocess-
ing which encodes finite memory into critical states. We showcase the feasibility
and competitiveness of our approach by a thorough experimental evaluation on
well-known case studies.

2 Preliminaries

For a finite or countably infinite set X, μ : X → [0, 1] with
∑

x∈X μ(x) = 1
denotes a probability distribution over X; the set of all probability distributions
over X is Dist(X). A partial function f : X �→ Y is a function f : X ′ → Y for
some subset X ′ = dom(f) ⊂ X.

118 L. Winterer et al.

Definition 1 (Markov Decision Process). A Markov Decision Process
(MDP) is a tuple M = (S, sinit,Act , P,R) where S is a finite set of states,
sinit ∈ S the initial state, Act a finite set of actions, P : S × Act �→ Dist(S) a
(partial) probabilistic transition function, and R : S×Act → R a reward function
that assigns to every tuple (s, α) ∈ dom(P) a real-valued reward.

The set of actions that are enabled in s is Act(s) = {α ∈ Act | (s, α) ∈ dom(P)}.
A partially observable Markov decision process (POMDP) [23] models

restricted knowledge of the current state of an MDP.

Definition 2 (POMDP). A partially observable Markov decision process
(POMDP) is a tuple D = (M,O, λ) such that M = (S, sinit,Act , P,R) is the
underlying MDP of D, O a finite set of observations, and λ : S → O the obser-
vation function.

Note that in our definition of a POMDP each state has exactly one observation.
Sometimes a more general definition of POMDPs is used, in which the obser-
vation function depends not only on the current state, but also on the previous
action, and returns not a fixed observation, but a probability distribution over
the possible observations. However, there is a polynomial reduction from this
general case to the one we use in this work [9].

Definition 3 (Path). A sequence π = s0α0s1α1 . . . with si ∈ S, αi ∈ Act and
P (si, αi)(si+1) > 0 for all i ≥ 0 is called a path. Paths can be finite (ending in a
state) or infinite. The set of finite paths is Pathsfin and the set of infinite paths
Pathsinf . For a finite path π, we denote by last(π) the final state of π.

Definition 4 (Observation Sequence). If π = s0α0s1α1 . . . sn−1αn−1sn is
a finite path, then θ := λ(π) := λ(s0)α0λ(s1)α1 . . . λ(sn−1)αn−1λ(sn) is called
the observation sequence of π.

Before a probability space over paths of (PO)MDPs can be defined, the non-
determinism needs to be resolved. This resolution is done by an entity called a
policy that determines the next action to execute:

Definition 5 (Policy). A policy for a POMDP D is a function σ : Pathsfin →
Dist(Act) such that σ(s0 . . . sn)(α) > 0 implies α ∈ Act(sn). We denote the set
of all possible policies for a POMDP D with ΣD.

A policy is observation-based if σ(π) = σ(π′) holds for all π, π′ with λ(π) =
λ(π′). A policy is σ stationary if σ(π) = σ(π′) holds whenever last(π) = last(π′).
The set of all stationary policies for a POMDP D is Σstat

D . Policies that are not
stationary, are called history-dependent. A policy is deterministic if σ(π)(α) ∈
{0, 1} for all π and α. Policies that are not deterministic are called randomized.

Stationary observation-based policies are typically regarded as functions σ : O →
Dist(Act) (randomized policy) or σ : O → Act (deterministic policy). As a policy
resolves all nondeterminism and partial observability, it turns a (PO)MDP into
a discrete-time Markov chain (DTMC), which is a purely stochastic process.

Strengthening Deterministic Policies for POMDPs 119

Definition 6 (Induced DTMC). Let D be a POMDP as defined above with
reward function R and σ : Pathsfin → Dist(Act) a policy. The induced DTMC is
a tuple Dσ = (Pathsfin , sinit, P

′) such that P ′(π, π′) = σ(π)(α) · P (last(π), α, s)
if π′ = παs, and P ′(π, π′) = 0 otherwise. The induced reward function
R′ : Pathsfin → R is defined as R′(π) =

∑
α∈Act(last(π)) σ(π)(α) · R(last(π), α).

In the following we consider the computation of observation-based policies for
POMDPs. The goal is to find a policy such that the induced DTMC satisfies
a given specification. For the scope of this paper, we focus on reachability and
expected discounted reward specifications and combinations thereof. Note that
general LTL properties for probabilistic systems can be reduced to reachabil-
ity [4].

Definition 7 (Reachability). Let C = (S, sinit, P) be a DTMC and T ⊆ S a
set of target states. The probability to reach a state in T from s is the unique
solution of the following linear equation system:

xs =

⎧
⎪⎨

⎪⎩

1 if s ∈ T,

0 if there is no path from s to T,
∑

s′∈succ(s) P (s, s′) · xs′ otherwise.

Definition 8 (Expected discounted rewards). For a discount factor β ∈
(0, 1) and a DTMC C = (S, sinit, P), the expected discounted reward of a state
state s is the unique solution of the following linear equation system:

rs = R(s) + β ·
∑

s′∈succ(s)

P (s, s′) · rs′ for each s ∈ S.

Recall that the problem to determine a policy that optimizes expected rewards
or probabilities is undecidable [26] in general.

3 Solving POMDPs as MILPs

While several sophisticated algorithms exist to compute policies for POMDPs,
a simple, small, and easy-to-analyze policy can be obtained by encoding the
POMDP into a Mixed Integer Linear Program (MILP), which can be solved with
linear optimization tools like Gurobi [17]. As a central advantage of the MILP
formulations, it is straightforward to support multiple specifications simultan-
iously. For instance, one can maximize the discounted reward under the condition
that the probability of reaching a target state is above a given bound and the
discounted cost below another threshold.

3.1 Maximum Reachability Probabilities

Let D = (M,O, λ) be a POMDP and T ⊆ S a set of target states. We assume
that the states in T have been made absorbing and that M contains only states

120 L. Winterer et al.

from which T is reachable under at least one possible policy. All other states can
be removed from the POMDP. We define the following MILP:

maximize : psinit (1a)
subject to :

∀s ∈ S \ T :
∑

α∈Act(s)

σλ(s),α = 1 (1b)

∀s ∈ T : ps = 1 (1c)

∀s ∈ S \ T ∀α ∈ Act(s) : ps ≤ (1 − σλ(s),α) +
∑

s′∈succ(s,α)

P (s, α, s′) · ps′ (1d)

∀(s, α) ∈ Actpr ∀s′ ∈ succ(s, α) : rs < rs′ + 1 − ts,s′ (2a)

∀(s, α) ∈ Actpr : ps ≤ 1 − σλ(s),α +
∑

s′∈succ(s,α)

ts,s′ (2b)

The variables ps ∈ [0, 1] store the probability to reach a target state from s
under the chosen policy. We maximize this probability for the initial state sinit
(1a). The variables σz,α for z ∈ O and α ∈ Act encode the policy. σλ(s),α = 1
implies that the policy chooses action α in all states with observation λ(s) –
as we are computing stationary deterministic policies, σλ(s),α ∈ {0, 1} for all
s ∈ S and α ∈ Act(s). Thus, (1b) ensures that for each observation exactly one
action is selected. (1c) ensures that target states are assigned a probability of 1.
For non-target states s ∈ S \ T , (1d) recursively defines the probability ps: for
actions that are not chosen, i.e., σλ(s),α = 0, the inequality is always satisfied,
as it can be simplified to ps ≤ 1 + ε with ε ≥ 0. If σλ(s),α = 1, the probability
is defined as the sum of the probability in each of the successors of the current
state, multiplied with the probability to proceed to this successor when taking
the current action. Maximizing the value of ps ensures that this constraint is
satisfied by equality. If the target states are reachable from all states under
all possible policies, (1a)–(1d) are sufficient. We add (2a) and (2b) to avoid
computing invalid values under policies that make the targets unreachable from
some states: we define the problematic states Spr as the set of states that can only
reach the target states under some policies, and compute them using standard
graph algorithms. The problematic actions are then given by Actpr =

{
(s, α) ∈

S × Act
∣
∣ α ∈ Act(s) ∧ succ(s, α) ⊆ Spr

}
. We then introduce a ranking over

the problematic states: each s ∈ Spr is assigned a value rs ∈ [0, 1]. Next, we
try to assign a transition to a successor state of s by setting ts,s′ = 1 such
that the value of the rank increases along the transition, i.e., rs′ > rs. If this
is not the case, (2a) enforces ts,s′ = 0. If the target state cannot be reached
under the current policy, i.e., ts,s′ = 0 for all successors of s, (2b) ensures that
ps = 0. This technique is inspired by the reachability constraints from [41] that
are used to compute counterexamples for MDPs [14]. An alternative formulation
of reachability constraints using flow constraints can be found in [38].

Strengthening Deterministic Policies for POMDPs 121

3.2 Maximum Expected Discounted Rewards

Let D = (M,O, λ) be a POMDP. For a discount factor β ∈ (0, 1) and an upper
bound on the maximum discounted expected reward v∗

max, we can built the MILP
as follows:

maximize : vsinit (3a)
subject to :

∀s ∈ S :
∑

α∈Act(s)

σλ(s),α = 1 (3b)

∀s ∈ S ∀α ∈ Act(s) : vs ≤ v∗
max · (1 − σλ(s),α) + r(s, α)

+ β ·
∑

s′∈succ(s,α)

P (s, α, s′) · vs′ (3c)

The MILP for maximum discounted reward is analogous to the formulation
for maximum reachability, with the following differences: The real-valued vari-
ables vs ∈ R for each s ∈ S store the maximum discounted expected reward
corresponding to the selected policy.

As vs can have values >1, in (3c), we need an upper bound v∗
max on the

maximum expected reward. One possibility is setting v∗
max to the maximum

expected discounted reward of the underlying MDP M, which serves as an upper
bound on the reward that can be achieved in D. An alternative is using v∗

max :=
1

1−β · maxs,α R(s, α). Since we no longer have any target states, the expected
reward is computed for an infinite run of D under the selected policy. 0 < β < 1
guarantees that the expected reward converges to a finite number. Thus, we don’t
need the reachability constraints we introduced in Sect. 3.1. This simplification
makes the MILP considerably smaller and more efficient to solve.

3.3 Randomization

Stationary, deterministic policies can be restrictive in many use cases. However,
while randomization might often be necessary, sometimes the actual probability
distribution does not matter. In Fig. 2, any stationary deterministic policy can
reach the blue state with probability of at most 0.5. However, assigning any
distribution with σyellow,α > 0 and σyellow,β > 0 leads to a probability of 1.

s1

s2

s3

s4
α α

1
2

1
2

α

β

β

α

α

Fig. 2. Simple example that needs arbitrary randomization for maximum reachability
of s4. (Color figure online)

122 L. Winterer et al.

In order to achieve this effect, we allow (besides deterministic choices) a
randomized choice with an arbitrary, but fixed distribution over the enabled
actions. This can be done by introducing an additional action u �∈ Act that
is enabled in the set S′ ⊆ S of states with (1) a non-unique observation and
(2) more than one enabled action. We replace the underlying MDP M by M′ =
(S, sinit,Actu, Pu) such that Actu := Act ∪ {u} and Pu as follows: Pu coincides
with P in states S \ S′ and whenever α �= u. For instance, consider a state
s ∈ S′ where we want to achieve a uniform distribution over all actions. We set
Pu(s, u, s′) = 1

|Act(s)| · ∑
α∈Act(s) P (s, α, s′) for s′ ∈ S.

Any finite set of distributions can be supported that way. We suggest three
modes of randomization, as illustrated in Fig. 3: Pure (no randomization), Light
(adding one uniform distribution the enabled actions for each state) and Heavy
(adding a uniform distribution for each non-empty subset of enabled actions.

α

β

γ

(a) Pure

α
β

γ

α + β + γ

1/3

1/3

1/3

(b) Light

α

βγ

α + β + γ

α + β

α + γ

β + γ

1/2

1/2

1/2

1/2

1/2

1/2

(c) Heavy

Fig. 3. A POMDP without, with light, and with heavy static randomization

4 Splitting Observations and States

Finding an optimal stationary policy is a much easier problem than optimizing
over all (history-dependent) policies, but the quality of stationary policies can
be arbitrarily worse than the quality of a general optimal policy. We attempt to
preprocess POMDPs in a way that implicitly adds history locally by encoding
previous observations into the states – thus, making stationary policies computed
on the augmented POMDP more powerful. In order to do so, we introduce
observation splitting and state splitting.

4.1 Observation Splitting

Let D = (M,O, λ) be a POMDP with underlying MDP M = (S, sinit,Act , P,R),
z ∈ O an observation, and λ−1(z) = {s ∈ S | z = λ(s)} the set of states with
observation z. W. l. o. g., let |λ−1(λ(sinit))| = 1 and P (s, sinit) = 0 for all s ∈ S.
An existing POMDP can easily be modified to conform with these requirements.

Strengthening Deterministic Policies for POMDPs 123

Definition 9 (Pre-observations). For s ∈ S, the pre-observations of s are
defined as predD(s) =

{
(z, α) ∈ O × Act

∣
∣ ∃s′ ∈ S : z = λ(s′) ∧ P (s′, α, s) > 0

}
.

Assume that s, s′ are the only states with observation z = λ(s) = λ(s′) and
that the pre-observations of s are disjoint from the pre-observations of s′. A
history-dependent policy can easily distinguish the two states by remembering
the previous observation and action, but a stationary policy can not. Observation
splitting assigns distinct observations to the two states. While a memoryless
policy on the original POMDP has to make the same decision in s and s′, it can
make different decisions on the modified system. Therefore, a memoryless policy
on the modified system typically corresponds to a history-dependent policy on
the original POMDP. Note that this operation does not increase the number of
states or transitions.

An observation z can be split if we can partition λ−1(z) into two disjoint
subsets A and B such that

(⋃
s∈A predD(s)

) ∩ (⋃
s∈B predD(s)

)
= ∅, i.e., when

z is observed, we can distinguish states in A from states in B if the observation in
the predecessor state as well as the last chosen action are known. This informa-
tion can be encoded into the POMDP by assigning distinct observations to the
states in A and the states in B. Formally, we get the POMDP D′ = (M,O′, λ′)
with

O′ = (O \ {z}) ∪̇ {zA, zB} and λ′(s) =

⎧
⎪⎨

⎪⎩

λ(s) if s /∈ A ∪̇ B,

zA if s ∈ A,

zB if s ∈ B.

Theorem 1. Let D′ be the POMDP we obtain by splitting some observation z
of POMDP D into new observations zA and zB. Then:

1. {Dσ |σ ∈ ΣD} = {D′
σ |σ ∈ ΣD′}, and

2. {Dσ |σ ∈ Σstat
D } ⊆ {D′

σ |σ ∈ Σstat
D′ }.

If we consider the set of all policies, observation splitting does not make a dif-
ference as we can obtain the same induced DTMCs before and after observation
splitting. However, if we only consider stationary policies, we get more freedom
and can choose among a larger set of induced DTMCs.

Proof. Let D be a POMDP and D′ result from D by splitting observation z.
Let, for i = 1, 2, πi = si

0α
i
0s

i
1α

i
1 . . . si

n ∈ Pathsfin be twoSfinite paths in D, and
π′

i be the corresponding paths in D′. It is easy to see that λ′(π′
1) = λ′(π′

2) iff
λ(π1) = λ(π2). That means, for each policy in D there is a corresponding policy
in D′ that makes the same decisions and vice versa.

Additionally, for all states s1, s2 of D and D′, we have λ(s1) �= λ(s2) ⇒
λ′(s1) �= λ′(s2). Therefore a stationary policy that can make different choices in
s1 and s2 in D can make different choices in D′ as well. ��

124 L. Winterer et al.

4.2 State Splitting

Often, observation splitting is not applicable to a given POMDP. We define state
splitting for refining the POMDP to enable observation splitting: In Fig. 4, all
states that have the same color share an observation (i.e., λ(s1) = λ(s2) = λ(s3)).
We have predD(s2) = predD(s1) ∪ predD(s3), so the three states cannot be
split into disjoint sets by means of their pre-observations and thus, observation
splitting cannot be applied. However, by creating two copies s12 and s22, the pre-
observations of s12 and s1 on the one hand and s22 and s3 on the other hand
become disjoint, thus enabling observation splitting on the yellow observation.

s

s1

s2

s3

α

1/2
1/2

β
1/2

1/2

state
splitting

s

s1

s12

s22

s3

α

1/2

1/2

β

1/2

1/2

observation
splitting

s

s1

s12

s22

s3

α

1/2

1/2

β

1/2

1/2

Fig. 4. Applying state splitting and observation splitting to a POMDP. The observa-
tions are given by the color of the states. (Color figure online)

Formally, we can split a state s ∈ S in a POMDP D = (M,O, λ) whenever
|predD(s)| > 1. Again, we assume that predD(sinit) = ∅. We obtain a modified
POMDP D′ = (M′,O′, λ′) with

– S′ :=
(
S \ {s}) ∪̇ {

(s, z, α)
∣
∣ (z, α) ∈ predD(s)

}
;

– for all t ∈ S′ we set: λ′(t) := λ(s) if t = (s, z, α) for some z ∈ O and α ∈ Act ,
and λ′(t) := λ(t) otherwise;

– for all t, t′ ∈ S′, β ∈ Act :

P ′(t, β, t′) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P (t, β, t′) if t, t′ ∈ S \ {s},

P (s, β, s) if t = (s, z, α) and t′ = (s, z, β)
for some z ∈ O and α ∈ Act ,

P (t, β, s) if t ∈ S \ {s} and t′ = (s, λ(t), β),
P (s, β, t′) if t = (s, z, α) for some z ∈ O

and α ∈ Act and t′ ∈ S \ {s},

0 otherwise;

– for all t ∈ S′ and β ∈ Act(t) we set: R′(t, β) := R(s, β) if t = (s, z, α) for
some z ∈ O and α ∈ Act , and R′(t, β) := R(t, β) otherwise.

Strengthening Deterministic Policies for POMDPs 125

Algorithm 1: Splitting Heuristic
Input: POMDP D
oldResult ← 0;
splitObservations(D);
newResult ← computeMILP(D);
while newResult > oldResult do

oldResult ← newResult;
splitGroup ← computeSplitGroup(D, oldResult);
splitStates(D, splitGroup);
splitObservations(D);
newResult ← computeMILP(D);

Theorem 2. Let D be a POMDP and let D′ result from D by splitting a state s
of D. Then D and D′ are bisimilar.

After extending the definition of bisimulation to POMDPs, this can be proven
by defining an equivalence relation between s and the states (s, z, α) produced
by splitting it.

It is well known [16] that bisimilar systems satisfy (among others) the
same LTL and PCTL properties, including reachability and discounted expected
rewards.

5 Implementation

We implemented both MILP formulations described in Sect. 3 and use the com-
mercial solver Gurobi [17] to solve them. From our experience, Gurobi often finds
a feasible solution, which satisfies all constraints, quickly, but then spends a lot
of time trying to improve this initial solution or prove its optimality. However,
even this initial solution is often already close to the optimum. Thus, we have
implemented a time limit mode, in which the solver tries to optimize the result
for a predefined number of seconds after the first solution is found.

We implemented the MILPs with three different levels of randomization as
in Sect. 3.3, and observation and state splitting as in Sect. 4.

State splitting by itself only increases the size of the state space and yields
a bisimilar system. Therefore it only makes sense to apply state splitting when
it enables observation splitting, which in turn increases the power of stationary
policies. However, it is not clear beforehand which states to split. So as a rule of
thumb, we want to determine a small subset of states whose splitting enables a
large number of observation splits.

Splitting Heuristic. We suggest a splitting heuristic that uses previous results of
the MILP to iteratively refine the POMDP by selecting states for splitting, see
Algorithm 1 for an outline. First, we apply observation splitting on the original
POMDP and compute the optimal stationary policy in that POMDP to get a

126 L. Winterer et al.

baseline for the following optimization. Then, we use this solution to determine
a set of states for splitting. Similar to what policy iteration for MDPs [32] does,
we check if locally changing a selected action would result in an improvement.
σ∗ is the current policy and v∗

s the corresponding value of state s. We choose

σ′(s) :∈ argmax
α∈Act(s)

∑

s′∈S

P (s, α, s′) · v∗
s′ ,

preferring σ′(s) = σ∗(s) where possible.
Whenever σ′(s) �= σ∗(s) holds, then being able to distinguish s from the other

states with the same observation would lead to an improvement. Therefore s is
added to the set splitGroup. State splitting is applied to all states in splitGroup.
Afterwards we apply observation splitting as long as it modifies the POMDP,
and solve the MILP for the modified POMDP. We repeat this procedure, until
no further improvements can be made.

In case of multiple specifications, it can happen that the initial MILP is
infeasible on the original POMDP. In this case we apply Algorithm 1 to optimize
the first constraint until it is satisfied. Then we optimize the second one under
the condition that the first constraint is satisfied, etc. In the end, we either
obtain a policy that satisfies all constraints, or at some point we cannot satisfy
one of the specifications. This can have two reasons: either the POMDP does
not satisfy the specification or state plus observation splitting are not powerful
enough to yield a POMDP on which a stationary policy satisfies the constraints.
Note that a complete method does not exist due to the undecidability of the
problem.

6 Experiments

Experimental Setup. All experiments were run on a machine with a 3.3 GHz
Intel R© Xeon R© E5-2643 CPU and 64 GB RAM, running Ubuntu 16.04.

We consider seven benchmarks from two different sources. The
4 × 4grid avoid was taken from the PRISM-pomdp model checker1 and is a max-
imum reachability probability grid world (with one absorbing “bad” state that
needs to be avoided). The other benchmarks were adopted from the POMDP
page2 and slightly modified to fit our definitions. 1d, 4 × 4.95, cheese.95, mini-
hall2, and parr95.95 are grid worlds in which a reward is issued for reaching
certain states. shuttle.95 describes a space shuttle delivering cargo between two
space stations, and a reward is issued for every successful delivery (see Fig. 1).

For two of the benchmarks, we added secondary constraints to demon-
strate the effectiveness of our approach to multi-objective model checking. On
4 × 4grid avoid, we added a cost of 1 for each step in the grid (except for the
self loops in the goal and bad state). We require the reachability probability to
be at least 0.25, and minimize the (un-discounted) expected reward. Note that

1 http://www.prismmodelchecker.org/files/rts-poptas/.
2 http://www.pomdp.org/examples/.

http://www.prismmodelchecker.org/files/rts-poptas/
http://www.pomdp.org/examples/

Strengthening Deterministic Policies for POMDPs 127

computing un-discounted reward is sound in this case, as we asure the compu-
tation of a valid policy by the reachability contraints as seen in Sect. 3.1 and
a sink state is eventually reached with probability 1. On cheese.95, we added
a new state – each time the goal state is reached, there is a choice to continue
back into the maze, or to transit to a rewardless sink state. We then declared
one state of the grid “bad” and required that the probability to reach this state
is at most 0.5, while still maximizing the total expected discounted reward.

We run our MILP implementation using Gurobi 8.1 to solve all benchmarks.
To improve runtimes, we used time limits of 5, 10, 30, and 60 s for the optimiza-
tion part of each solver call (see Sect. 5). We also let the optimization run to
termination (with a total time limit of 7200 s) to get an assessment of the quality
of the solutions that were found.

For comparison, we also ran the maximum expected reward benchmarks with
the explicit point based POMDP solvers SARSOP [6] and solvePOMDP3. The
results for the maximum reachability probability benchmark (4× 4grid avoid)
were compared against PRISM-pomdp. All solvers were run using standard
parameters. We did not find any solver that could handle the type of multi-
objective model checking we implemented for 4 × 4.95 and cheese.95.

Table 1. Results for different benchmarks, timeouts, and implementations

Benchmark TO Pure Light Heavy Pure + H Light + H Heavy + H SARSOP solvePOMDP PRISM-pomdp

1d 5 s 0.61/0.1s 0.65/0.1s 0.65/0.1s 0.83/0.1s 0.83/0.7s 0.83/0.1s 0.95/0.003s 0.95/1.3s —
10 s
30 s
60 s

4×4.95 5 s 0.22/0.1s 0.41/0.4s 3.0/0.7s 0.22/0.5s 3.55/34.3s 3.0/4.0s 3.55/0.05s 3.55/20.5s —
10 s 3.55/71.6s
30 s 3.55/209.2s
60 s

4×4grid avoid 5 s 0.21/0.1s 0.3/0.2s 0.85/0.1s 0.21/0.2s 0.88/3.3s 0.93/9.3s — — 0.96/346.9s
10 s
30 s
60 s

4×4grid avoid 5 s UNSAT/0.1s 13.63/0.1s 4.4/0.2s UNSAT/0.1s 3.43/2.8s 4.40/17.2s* — — —
(p≥0.25, MinR) 10 s 4.40/34.8s*

30 s 4.21/112.3s*
60 s 3.95/456.5s*

cheese.95 5 s 0.62/0.6s 1.2/1.6s 1.84/19s* 3.31/35.3s 1.2/16.7s 1.84/34.7s* 3.40/0.03s 3.40/13.7s —
10 s 1.84/37.7s* 3.31/72.7s 2.06/71.7s 1.84/70.3s*
30 s 1.84/113.7s* 3.34/226.2s* 2.1/222.8s* 1.84/217s*
60 s 1.84/162.5s 3.34/454.3s* 2.1/452s* 1.84/382.4s*

cheese.95 5 s 0.40/0.8s 0.45/1.9s 0.47/19.1s* 0.40/0.8s 0.50/39.8s 0.47/36.4s* — — —
(p≤0.5, MaxR) 10 s 0.47/37.5s* 0.50/77.7s 0.47/73.3s*

30 s 0.47/116.2s* 0.50/232.2s 0.47/229.3s*
60 s 0.47/148.7s 0.51/464.6s* 0.47/370.8s*

mini-hall2 5 s 2.43/0.4s 2.43/12s 2.43/18.1s 2.5/20.1s 2.43/29.5s* 2.43/33.6s 2.71/0.04s 2.71/33.8s —
10 s 2.43/37.2s 2.58/38.2s* 2.43/46.3s* 2.43/71.2s
30 s 2.46/114.2s 2.43/114.2s 2.43/121.5s* 2.46/213s
60 s 2.51/228s 2.58/227.9s* 2.43/235s* 2.51/434.9s*

parr95.95 5 s 6.0/0.2s 6.0/0.2s 6.0/0.2s 6.84/0.5s 6.84/0.5s 6.84/0.7s 6.84/0.02s 6.84/8.1s —
10 s
30 s
60 s

shuttle.95 5 s 18.0/0.2s 18.0/0.4s 18.0/1.0s 31.25/36.8s* 31.25/34.1s* 18.63/18.3s 31.25/0.05s 31.25/804s —
10 s 31.25/74.6s 31.25/71.1s* 22.8/67.3s
30 s 31.25/226s* 31.25/223.2s* 31.25/217.3s*
60 s 31.25/452s* 31.25/451.5s* 31.25/443.6s*

3 https://www.erwinwalraven.nl/solvepomdp/.

https://www.erwinwalraven.nl/solvepomdp/

128 L. Winterer et al.

t(s)

vsinit

100 300 5000

1

2

3

Pure

Light
Heavy

Pure + H

Light + H

Heavy + H

(a) cheese.95

t(s)

vsinit

100 200 3000

1

2

3

Pure
Light

Heavy

Pure + H

Light + H

Heavy + H

(b) 4 4.95

Fig. 5. Probability and runtime of the different MILP approaches for different grid
world benchmarks (Color figure onlie)

s1 s5 s9 s13

s2 s6 s10 s14

s3 s7 s11 s15

s4 s8 s12 s16

(a) Pure

s1 s5 s9 s13

s2 s6 s10 s14

s3 s7 s11 s15

s4 s8 s12 s16

(b) Light

s1 s5 s9 s13

s2 s6 s10 s14

s3 s7 s11 s15

s4 s8 s12 s16

(c) Heavy

Fig. 6. Policies computed for the 4 × 4grid avoid benchmark with different randomiza-
tion modes (Color figure online)

Results. Table 1 summarizes our experimental results. The first column has the
name of the benchmark – for each benchmark, there are four lines representing
the four different timeouts used, as specified in the second column (“TO”). Each
entry shows both the result (maximum expected discounted reward or maximum
reachability probability) for the initial state of the POMDP, and the run time.
For each randomization mode (Pure, Light, Heavy) we show both the result of a
single MILP call as well as the result of the state splitting heuristic introduced
in Sect. 5, indicated by “+H” in the column name. For the “+H” column, the
solve time comprises all calls to the solver as well as the time used for splitting
states and observations.

Entries printed in bold had the same result and runtime as the optimal
solution without timeouts, i.e., they were not influenced by the timeouts. In
these cases, we omit the entries for higher timeouts, as they had the same values.

For entries marked with an star (∗), the result is either the same as the opti-
mal solution or (for the columns using the splitting heuristic) the same/better
than the last iteration that could be solved optimally within two hours. Addi-
tionally, the results for cheese.95 and 4× 4.95 are also visualized in Fig. 5 – the
blue dots represent the results for Pure, Light and Heavy randomization modes

Strengthening Deterministic Policies for POMDPs 129

without state splitting, while the red dots represent the results when applying
the splitting heuristic. Data points that have been produced on the same mode,
but using different timeouts, are connected by a dashed line.

Figure 6 shows the polices computed by the MILP using different random-
ization modes for the 4× 4grid avoid benchmark.

Evaluation. Solving the MILP just once and without any randomization is fast,
but doesn’t yield a very good result in most cases. However, already the “Light”
randomization can improve the result significantly, in same cases up to a fac-
tor of 2, without significantly increasing the computation time. Adding the full
“Heavy” randomization yields a further improvement in the result – most notice-
ably for the 4× 4.95 benchmark, where the result is improved by factor 7 – but
it can also significantly increase the run time of the solver.

While some benchmarks, like 4 × 4.95 and 4× 4grid avoid, profit immensely
from adding randomization, others, like 1d, have an immediate benefit when
using preprocessing. parr95.95 and shuttle.95 even achieve the same results as the
reference solvers when applying the state splitting heuristic, while randomization
had no effect on the results at all. In general, deterministig, history dependend
policies are more powerful than stationary, randomized ones and with arbitrary
history, randomization can be simulated – e.g., taking an action every second
time a state is visited.

All benchmarks can achieve results that are very close to those of the reference
solvers. In terms of run time, our approach is slower than SARSOP, but highly
outperforms solvePOMDP and PRISM-pomdp.

As can be seen in Fig. 5a, when using different timeouts, the intermediary
solution Gurobi returns before fully optimizing the result is already very close
to the optimum in many cases. Interestingly, for the mini-hall2 benchmark and
the “Pure + H” combination, a timeout of 10 s even yields a better result than
a 30 s timeout: the less-optimized result after 10 s causes the heuristic to trigger
additional state splits that the benchmark ultimately benefits from.

The same cause can result in the values getting worse when more randomiza-
tion is added, as seen with the 4× 4.95 benchmark. The heuristic picks different
states to split, resulting in a higher value for the maximum expected discounted
reward in the Light + H case than the Heavy + H approach. However, these
additional split states also lead to a higher run time.

For the 4× 4grid avoid benchmark with multi objective model checking, we
get UNSAT for the two entries using no randomization, since the required level
of reachability probability can not be achieved.

The effects randomization has on a policy are shown in Fig. 6. All sub-figures
depict the 4× 4grid avoid benchmark, a grid world with one absorbing goal state
(blue) and an absorbing bad state (red). All of the white states share an obser-
vation and have four possible actions, although we omit the self-loops that occur
when trying to move outside of the grid. The arrows corresponding to actions
chosen under the current policy are drawn bold. The system randomly starts
in one of the white states. The policy without randomization always chooses to
move right – only s1, s5 and s9 can reach the goal state. The policy computed

130 L. Winterer et al.

with “Light” randomization enables all actions for all states – now each state has
the possibility to reach the goal state, but the probability to get to the bad state
is still higher. Only with “Heavy” randomization can the bad state be avoided
with a higher probability – each state has equal probability to move down and
right, getting the best chance to reach the goal in the lower right corner. All sub-
figures depict the 4 × 4grid avoid benchmark, a grid world with one absorbing
goal state (blue) and an absorbing bad state (red).

7 Conclusion

We introduced a MILP formulation to optimize both reachability probabilities
and expected discounted rewards in POMDPs. We used these MILPs to com-
pute optimal stationary deterministic policies and employed the concept of static
randomization. Furthermore, we introduced state and observation splitting as
preprocessing for a POMDP to locally add history to the otherwise stationary
policies. Since blindly splitting states leads to a significant growth of the state
space, we proposed a heuristic that iteratively improves solutions by splitting
carefully selected states. We show the approaches are competitive to state-of-the-
art POMDP solvers, and that MILP formulations for rewards and reachability
can easily be combined to find policies that satisfy an arbitrary number of spec-
ifications at the same time.

References

1. Amato, C., Bernstein, D.S., Zilberstein, S.: Optimizing fixed-size stochastic con-
trollers for POMDPs and decentralized POMDPs. Auton. Agent. Multi-Agent Syst.
21(3), 293–320 (2010). https://doi.org/10.1007/s10458-009-9103-z

2. Aras, R., Dutech, A., Charpillet, F.: Mixed integer linear programming for exact
finite-horizon planning in decentralized POMDPs. In: ICAPS, pp. 18–25. AAAI
(2007). http://www.aaai.org/Library/ICAPS/2007/icaps07-003.php

3. Baier, C., Dubslaff, C., Klüppelholz, S.: Trade-off analysis meets probabilistic
model checking. In: CSL-LICS, pp. 1:1–1:10. ACM (2014). https://doi.org/10.
1145/2603088.2603089

4. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

5. Braziunas, D.: POMDP Solution Methods. University of Toronto (2003)
6. Brock, O., Trinkle, J., Ramos, F.: SARSOP: Efficient point-based POMDP plan-

ning by approximating optimally reachable belief spaces. In: Robotics: Science and
Systems IV. MIT Press (2009). https://doi.org/10.15607/RSS.2008.IV.009

7. Carr, S., Jansen, N., Wimmer, R., Serban, A.C., Becker, B., Topcu, U.:
Counterexample-guided strategy improvement for POMDPs using recurrent neural
networks. In: IJCAI, pp. 5532–5539. ijcai.org (2019)

8. Chatterjee, K., Chmeĺık, M., Gupta, R., Kanodia, A.: Qualitative analysis of
POMDPs with temporal logic specifications for robotics applications. In: ICRA,
pp. 325–330 (2015). https://doi.org/10.1109/ICRA.2015.7139019

https://doi.org/10.1007/s10458-009-9103-z
http://www.aaai.org/Library/ICAPS/2007/icaps07-003.php
https://doi.org/10.1145/2603088.2603089
https://doi.org/10.1145/2603088.2603089
https://doi.org/10.15607/RSS.2008.IV.009
https://doi.org/10.1109/ICRA.2015.7139019

Strengthening Deterministic Policies for POMDPs 131

9. Chatterjee, K., Chmeĺık, M., Gupta, R., Kanodia, A.: Optimal cost almost-sure
reachability in POMDPs. Artif. Intell. 234, 26–48 (2016). https://doi.org/10.1016/
j.artint.2016.01.007

10. Chatterjee, K., De Alfaro, L., Henzinger, T.A.: Trading memory for randomness.
In: QEST. IEEE (2004). https://doi.org/10.1109/QEST.2004.1348035

11. Chrisman, L.: Reinforcement learning with perceptual aliasing: the perceptual dis-
tinctions approach. In: AAAI, pp. 183–188. AAAI Press/The MIT Press (1992)

12. Cubuktepe, M., Jansen, N., Junges, S., Katoen, J.-P., Papusha, I., Poonawala,
H.A., Topcu, U.: Sequential convex programming for the efficient verification of
parametric MDPs. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol.
10206, pp. 133–150. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-
662-54580-5 8

13. Cubuktepe, M., Jansen, N., Junges, S., Katoen, J.-P., Topcu, U.: Synthesis in
pMDPs: a tale of 1001 parameters. In: Lahiri, S.K., Wang, C. (eds.) ATVA 2018.
LNCS, vol. 11138, pp. 160–176. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-01090-4 10

14. Dehnert, C., Jansen, N., Wimmer, R., Ábrahám, E., Katoen, J.-P.: Fast debug-
ging of PRISM models. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014. LNCS,
vol. 8837, pp. 146–162. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
11936-6 11

15. Etessami, K., Kwiatkowska, M.Z., Vardi, M.Y., Yannakakis, M.: Multi-objective
model checking of Markov decision processes. Logical Methods Comput. Sci. 4(4)
(2008). https://doi.org/10.2168/LMCS-4(4:8)2008

16. Givan, R., Dean, T.L., Greig, M.: Equivalence notions and model minimization in
Markov decision processes. Artif. Intell. 147(1–2), 163–223 (2003)

17. Gurobi Optimization, LLC: Gurobi optimizer reference manual (2019). http://
www.gurobi.com

18. Haesaert, S., Nilsson, P., Vasile, C.I., Thakker, R., Agha-mohammadi, A., Ames,
A.D., Murray, R.M.: Temporal logic control of POMDPs via label-based stochastic
simulation relations. IFAC-PapersOnLine 51(16), 271–276 (2018). In: ADHS

19. Hahn, E.M., Hermanns, H., Zhang, L.: Probabilistic reachability for parametric
Markov models. Softw. Tools Technol. Transfer 13(1), 3–19 (2010)

20. Hauskrecht, M.: Value-function approximations for partially observable Markov
decision processes. J. Artif. Intell. Res. 13, 33–94 (2000)

21. Junges, S., et al.: Parameter synthesis for Markov models. CoRR abs/1903.07993
(2019)

22. Junges, S., Jansen, N., Wimmer, R., Quatmann, T., Winterer, L., Katoen, J.,
Becker, B.: Finite-state controllers of POMDPs using parameter synthesis. In: UAI,
pp. 519–529. AUAI Press (2018)

23. Kaelbling, L.P., Littman, M.L., Cassandra, A.R.: Planning and acting in partially
observable stochastic domains. Artif. Intell. 101(1), 99–134 (1998)

24. Kumar, A., Mostafa, H., Zilberstein, S.: Dual formulations for optimizing Dec-
POMDP controllers. In: ICAPS, pp. 202–210. AAAI Press (2016)

25. Littman, M.L., Topcu, U., Fu, J., Isbell, C., Wen, M., MacGlashan, J.:
Environment-independent task specifications via GLTL. arXiv preprint 1704.04341
(2017)

26. Madani, O., Hanks, S., Condon, A.: On the undecidability of probabilistic planning
and infinite-horizon partially observable Markov decision problems. In: AAAI, pp.
541–548. AAAI Press (1999)

https://doi.org/10.1016/j.artint.2016.01.007
https://doi.org/10.1016/j.artint.2016.01.007
https://doi.org/10.1109/QEST.2004.1348035
https://doi.org/10.1007/978-3-662-54580-5_8
https://doi.org/10.1007/978-3-662-54580-5_8
https://doi.org/10.1007/978-3-030-01090-4_10
https://doi.org/10.1007/978-3-030-01090-4_10
https://doi.org/10.1007/978-3-319-11936-6_11
https://doi.org/10.1007/978-3-319-11936-6_11
https://doi.org/10.2168/LMCS-4(4:8)2008
http://www.gurobi.com
http://www.gurobi.com

132 L. Winterer et al.

27. Meuleau, N., Peshkin, L., Kim, K.E., Kaelbling, L.P.: Learning finite-state con-
trollers for partially observable environments. In: UAI, pp. 427–436. Morgan Kauf-
mann (1999)

28. Norman, G., Parker, D., Zou, X.: Verification and control of partially observable
probabilistic systems. Real-Time Syst. 53(3), 354–402 (2017)

29. Papadimitriou, C.H., Tsitsiklis, J.N.: The complexity of Markov decision processes.
Math. Oper. Res. 12(3), 441–450 (1987)

30. Pineau, J., Gordon, G., Thrun, S.: Point-based value iteration: an anytime algo-
rithm for POMDPs. In: IJCAI, pp. 1025–1032. Morgan Kaufmann (2003)

31. Pnueli, A.: The temporal logic of programs. In: FOCS, pp. 46–57. IEEE Computer
Society (1977). https://doi.org/10.1109/SFCS.1977.32

32. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. Wiley Series in Probability and Statistics, Wiley-Interscience (2005)

33. Russell, S.J., Norvig, P.: Artificial Intelligence - A Modern Approach (3. internat.
ed.). Pearson Education (2010)

34. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, Hoboken (1999)
35. Shani, G., Pineau, J., Kaplow, R.: A survey of point-based POMDP solvers. Auton.

Agents Multi-Agent Syst. 27(1), 1–51 (2013)
36. Silver, D., Veness, J.: Monte-carlo planning in large pomdps. In: Lafferty, J.D.,

Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) NIPS, pp. 2164–
2172. Curran Associates, Inc. (2010)

37. Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics. The MIT Press, Cam-
bridge (2005)

38. Velasquez, A.: Steady-state policy synthesis for verifiable control. In: Kraus, S.
(ed.) IJCAI, pp. 5653–5661. ijcai.org (2019). https://doi.org/10.24963/ijcai.2019/
784

39. Vlassis, N., Littman, M.L., Barber, D.: On the computational complexity of
stochastic controller optimization in POMDPs. ACM Trans. Comput. Theory 4(4),
12:1–12:8 (2012). https://doi.org/10.1145/2382559.2382563

40. Wang, Y., Chaudhuri, S., Kavraki, L.E.: Bounded policy synthesis for POMDPs
with safe-reachability objectives. In: AAMAS, pp. 238–246. Int’l Foundation for
Autonomous Agents and Multiagent Systems Richland, SC, USA/ACM (2018)

41. Wimmer, R., Jansen, N., Ábrahám, E., Katoen, J.P., Becker, B.: Minimal coun-
terexamples for linear-time probabilistic verification. Theor. Comput. Sci. 549,
61–100 (2014). https://doi.org/10.1016/j.tcs.2014.06.020

42. Winterer, L., et al.: Motion planning under partial observability using game-based
abstraction. In: CDC, pp. 2201–2208. IEEE (2017)

43. Wongpiromsarn, T., Frazzoli, E.: Control of probabilistic systems under dynamic,
partially known environments with temporal logic specifications. In: CDC, pp.
7644–7651. IEEE (2012)

https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.24963/ijcai.2019/784
https://doi.org/10.24963/ijcai.2019/784
https://doi.org/10.1145/2382559.2382563
https://doi.org/10.1016/j.tcs.2014.06.020

Benchmarking Software Model Checkers
on Automotive Code

Lukas Westhofen1, Philipp Berger2(B), and Joost-Pieter Katoen2

1 OFFIS e.V, Oldenburg, Germany
lukas.westhofen@offis.de

2 RWTH Aachen University, Aachen, Germany
{berger,katoen}@cs.rwth-aachen.de

Abstract. This paper reports on our experiences with verifying auto-
motive C code by state-of-the-art open source software model checkers.
The embedded C code is automatically generated from Simulink open-
loop controller models. Its diverse features (decision logic, floating-point
and pointer arithmetic, rate limiters and state-flow systems) and the
extensive use of floating-point variables make verifying the code highly
challenging. Our study reveals large discrepancies in coverage—which is
at most only 20% of all requirements—and tool strength compared to
results from the main annual software verification competition. A hand-
crafted, simple extension of the verifier CBMC with k-induction delivers
results on 63% of the requirements while the proprietary BTC Embed-
dedValidator covers 80% and obtains bounded verification results for
most of the remaining requirements.

1 Introduction

Software Model Checking. Software model checking is an active field of research.
Whereas model checking algorithms initially focused on verifying models, various
dedicated techniques have been developed in the last two decades to enable model
checking of program code. This includes e.g., predicate abstraction, abstract
interpretation, bounded model checking, counterexample-guided abstraction
refinement (CEGAR) and automata-based techniques. Combined with the enor-
mous advancements of SAT and SMT-techniques [1], nowadays program code
can be directly verified by powerful tools. Companies like Microsoft, Facebook,
Amazon, and ARM check software on a daily basis using in-house model check-
ers. The enormous variety of code verification techniques and tools has initiated
a number of software verification competitions such as RERS, VerifyThis, and
SV-COMP. For software model checking, the annual SV-COMP competition is
most relevant. Launched with 9 participating tools in 2012, it gained popularity
over the years with more than 40 competitors in 2019 [2]. It runs off-line in a
controlled manner, and has several categories. Competitions like SV-COMP have
established standards in input and output format, and evaluation criteria. Soft-
ware model checkers are ranked based on the verification results, earning points
for correct results while being punished for wrong outcomes. A more recent
c© Springer Nature Switzerland AG 2020
R. Lee et al. (Eds.): NFM 2020, LNCS 12229, pp. 133–150, 2020.
https://doi.org/10.1007/978-3-030-55754-6_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-55754-6_8&domain=pdf
https://doi.org/10.1007/978-3-030-55754-6_8

134 L. Westhofen et al.

development is the usage of witnesses to validate verification results. Results
are provided in so-called quantile plots indicating the required verification time
versus the cumulative score over the benchmarks.

Aims of this Paper. This paper focuses on: how do the SV-COMP competitors
perform on automotive code? and how do these tools compare to proprietary
tools that are tailored to such code? The objective of this paper is to bench-
mark a rich set of participating tools in SV-COMP using two case studies from
a major car manufacturer taken from [3]. In contrast to the SV-COMP, where a
diverse set of open-source verification tasks ranging from small academic exam-
ples over concurrent programs up to software systems are submitted by research
and development groups, we focus on an industrial grade automotive code base.
To the best of our knowledge, such an evaluation has not been made before.
While a set of two case studies is certainly a small benchmark in comparison,
the size of the two case studies (of about 1400 and 2500 lines of embedded C
code respectively), its diverse features (decision logic, floating-point arithmetic,
pointer dereferencing, rate limiters, bitwise operations and state-flow systems),
the rich set of (179) requirements, and the availability of verification results
obtained by the proprietary software model checker BTC EmbeddedValidator,
make it an interesting starting point to validate and compare various open-source
software model checkers on an automotive code base.

Approach. We selected 11 software model checkers from the SV-COMP 2019 [2],
based on (a) the aforementioned characteristics of the two automotive case stud-
ies, (b) the requirements that mostly are safety properties, and (c) the availability
of a license that enables an academic evaluation. In addition, we considered a
simple hand-crafted extension of CBMC [4] with k-induction that is tailored to
the control-flow characteristics of the two benchmarks. We conducted two main
experiments. The first experiment runs the 12 software model checkers on the
179 requirements, 99% of which are invariants, and focuses on comparing the
coverage of the tools (how many requirements could be verified or refuted), and
their verification time. The second experiment benchmarks the open-source code
verifiers against the proprietary verifier BTC EmbeddedValidator1.

Our Main Findings. The main results of this paper are:

– The SV-COMP competitors are able to obtain results for at most 20% of all
requirements. Various competitors covered between 0 and 5% only.

– A hand-crafted, simple extension of CBMC with k-induction covers 63%.
– BTC EmbeddedValidator covers 80% and obtains bounded verification results

for 85% of the remaining requirements.

Our results show that there is a lot of untapped optimization potential for making
existing open source software model checkers more appealing and applicable
to automotive code. Suitable benchmark candidates are currently too closely

1 https://www.btc-es.de/en/products/btc-embeddedplatform/.

https://www.btc-es.de/en/products/btc-embeddedplatform/

Benchmarking Software Model Checkers on Automotive Code 135

guarded by industry to be really driving scientific development. Therefore, the
message of this paper is to emphasize the need for a synchronization between
the industrial and scientific software verification communities.

2 Preliminaries

2.1 The Automotive Benchmarks

Benchmark Description. Both case studies involve auto-generated code of
two R&D prototype Simulink models from Ford Motor Company: the next-gen
Driveline State Request (DSR) feature and the next-gen E-Clutch Control (ECC)
feature. The DSR and ECC features implement the decision logic for opening
and closing the driveline and calculating the desired clutch torque and corre-
sponding engine control torque of the vehicle, respectively. The case studies are
described in detail in [3]. Unfortunately, because of non-disclosure agreements,
we cannot make the benchmarks publicly available; instead we give a detailed
characterization of the used code in the following.

Table 1. Code metrics of the benchmarks.

Metric DSR ECC

Complexity

Source lines of code 1,354 2,517

Cyclomatic complexity 213 268

Global constants 77 274

char 12 8

char[] [12,32] 2 0

float 35 77

float[] [6-12] 9 [2-7] 4

float* 1 1

void* 18 184

Global variables 273 775

char 199 595

char[] [16-32] 3 0

float 46 110

float[] [4-10] 25 [2-4] 70

Operations 5232 10096

Addition/subtraction 133 346

Multiplication/division 52 253

Bit-wise operations 65 191

Pointer dereferences 83 180

Code Characteristics. From the
Simulink models, generated by a
few thousand blocks, around 1,400
and 2,500 source lines of C code
were extracted for DSR and ECC.
Both code bases have a cyclomatic
complexity of over 200 program
paths. The cyclomatic complexity
is a common software metric indi-
cating the number of linearly inde-
pendent paths through a program’s
code. Table 1 presents the metrics
collected on both case studies.

Constants are used to account
for configurability, i.e. they repre-
sent parameters of the model that
can be changed for different types of
applications. The configurable state-
space consists of 77 and 274 con-
stants, for DSR and ECC respec-
tively. Most of them are of type float, sometimes in a fixed-length array, as
indicated by the square brackets. Their size range is also given in square brack-
ets. Additionally, both case studies contain pointers to constant data (e.g. const
void*).

With a couple of hundred variables, globals are heavily employed . They are
used for exchanging data with other compilation units. Here, the char type is

136 L. Westhofen et al.

most prevalent, taking up around three quarters of the variable count. float
variables make up the remaining quarter.

The number of operations in the call graph are around 5, 000 and 10, 000 for
DSR and ECC. While linear arithmetic is most prominent, we also observe a
large amount of multiplication and division operations, possibly on non-constant
variables. Challenges for software verifiers rise along with the complexity of oper-
ators used. Pointer and floating-point arithmetic, as well as bit-wise operations
impose challenges. These case studies employ a variety of bit-wise operations
such as >>, &, and |, mainly on 32-bit variables. Such operators can force the
underlying solvers to model the variable bit by bit. A noticeable amount of
pointer dereferences, namely 180 and 83 occurrences, is present in the programs.

Requirement Characteristics. The requirements originate from internal and
informal documents of the car manufacturer and have been formalized by hand.
As described in [3], obtaining an unambiguous formal requirement specification
can be a substantial task. All differences between the formalization in [3] and this
work in number of properties stem from different splitting of the properties. For
the DSR case study, from 42 functional requirements we extracted 105 properties,
consisting of 103 invariants and two bounded-response properties. For the ECC
case study, from 74 functional requirements we extracted 71 invariants and three
bounded-response properties.

Invariant properties are assertions that are supposed to hold for all reachable
states. Bounded-response properties request that a certain assertion holds within
a given number of computational steps whenever a given, second assertion holds.

2.2 The Software Model Checkers

In order to analyze the performance of open-source verifiers on our specific use
case of embedded automotive C code from Simulink models, we selected a suit-
able subset of C verifiers based on the following criteria:

1. Has matured enough to compete in the SV-COMP 2019 [2] in the ReachSafety
and SoftwareSystems category.

2. Has a license that allows an academic evaluation.

Based on these criteria, we selected the verifiers: 2LS, CBMC, CPAChecker,
DepthK, ESBMC, PeSCo, SMACK, Symbiotic, UltimateAutomizer, Ulti-
mateKojak, and UltimateTaipan. The study was conducted in March 2019.
We used the latest stable versions of each tool to that date. We also included
CBMC+k (described in Sect. 2.3), a variant of CBMC that enables k-induction
as a proof generation technique on top of CBMC. Let us briefly introduce the
selected open-source verifiers.

CBMC 5.11 [5]. The C Bounded Model Checker is a matured bounded model
checker for C programs. CBMC takes a pre-specified bound up to which the

Benchmarking Software Model Checkers on Automotive Code 137

program loops are unrolled. The resulting transition system is encoded symbol-
ically, and finally passed to an SAT-solver. For a given bound k, this formula
over the program states is created in the following manner, where I is the initial
condition, T the transition relation, si a state and P the property:

BMC k(s0, . . . , sk) = I(s0) ∧
(

k−1∧
i=0

T (si, si+1)

)
∧

(
k∨

i=0

¬P (si)

)
(1)

ESBMC 6.0.0 [6]. The Efficient SMT-based Bounded Model Checker was forked
off of a 2008 version of CBMC and has been replacing original framework parts
ever since. One of its goals is to directly translate to SMT-theories instead of
relying on SAT-solvers. It furthermore supports k-induction. Here, a generalized
mathematical induction is applied to program loops, where a “look-back” of
k steps is allowed for the induction hypothesis. The verification task can be
specified as a formula over the program states:

INDk(s0, . . . , sk) =

(
k−1∧
i=0

T (si, si+1)

)
∧

(
k−1∧
i=0

P (si)

)
∧ ¬P (sk) (2)

2LS 0.7.0 [7]. This is another fork of CBMC that expands from bounded model
checking to a multitude of verification approaches. It interprets program analysis
as a problem of solving a second-order logic instance. This leads to a variety of
concepts that 2ls can employ, including (incremental) bounded model checking,
k-induction, k-induction k-invariants, and abstract interpretation.

CPAChecker 1.8.0 [8]. The Configurable Program Analysis Checker provides a
framework for implementing a rich set of analysis and verification techniques.
By employing an abstract analysis algorithm, it implements concrete approaches
such as predicate abstraction [9], value analysis [10], and k-induction [11].

PeSCo 1.7 [12]. PeSCo is a recent fork of CPAChecker which exploits machine
learning to effectively select a fitting configuration for the given verification task.

DepthK 3.1 [13]. DepthK uses k-induction on top of ESBMC combined with
an invariant-strengthening approach. It supports the iterative proof process by
inferring possibly over-approximating invariants over polyhedral constraints.

SMACK 1.9.3 [14]. Rather than being a verifier by itself, SMACK translates
from the LLVM intermediate representation (IR) into the Boogie [15] intermedi-
ate verification language (IVL). Corral, the default verification back end, employs
bounded model checking with a goal-directed search algorithm.

Symbiotic 6.0.3 [16]. Symbiotic applies program instrumentation, static slicing
and symbolic execution to identify counterexamples. Internally, it uses a patched
KLEE version for symbolic execution and witness generation.

138 L. Westhofen et al.

UltimateAutomizer 91b1670e [17]. This tool implements a trace-abstraction
based on automata in a CEGAR fashion. Its development is based on the Ulti-
mate framework which provides access to program representation, code transfor-
mations, and SMT-solvers. It applies a CEGAR scheme until an error automaton
with sufficient abstraction is found.

UltimateKojak 91b1670e [18]. As part of the Ultimate tool chain, UltimateKojak
uses CEGAR with interpolation over multiple program paths.

UltimateTaipan 91b1670e [19]. Similar to UltimateAutomizer, UltimateTaipan
employs automata-based trace abstraction and CEGAR. It uses a fixed-point
iteration to refine error paths until a sufficient precision is reached.

2.3 A Simple, Tailored Variant of CBMC

The SV-COMP verifiers are complemented by a simple, hand-crafted extension
of the bounded model checker CBMC (version 5.11) with k-induction. Our imple-
mentation is tailored to the two case studies, in particular to programs with one
main outermost control loop. Our prime motivation to consider this variant is
to show the effect of a simple, almost trivial, tweak of a bounded model checker.
The main goal of k-induction is harvesting the power of efficient bounded model
checkers such as CBMC for proof generation. In this way, verifiers that natively
only support bug hunting but have matured over time, can be elevated.

extern void __VERIFIER_error();

int main() {
initialize();

while(1) {

step();
if(!property())
__VERIFIER_error();

}
}

�

extern void __VERIFIER_error();
extern void __VERIFIER_assume(int);
int main() {
initialize();
set loop variables nondet();
unsigned int i = 0;
while(1) {

VERIFIER assume(property());
i++;
step();
if(i == k && !property())
__VERIFIER_error();

}
}

Fig. 1. The transformation that is applied in the k-th induction step.

Our implementation CBMC+k is realized by a straightforward code trans-
formation [20], see Fig. 1. It creates a new program representing the induction
step such that all input variables are set non-deterministically on entering the
loop. It then runs the back-end verifier on both the base step – i.e. the input
file – and the induction step. If the base step returns a counterexample, the tool
reports False. In case the induction step returns no counterexample for iteration
k and the base case has also reached k, it reports True. Our two case studies do
not require the forward case in [20], thus simplifying the implementation.

Benchmarking Software Model Checkers on Automotive Code 139

CBMC+k has severe restrictions on its input code. It is targeted to embed-
ded C programs containing one (unbounded) main loop with a strictly bounded
loop body. The property has to be checked at the very end of every loop iter-
ation. Although there exist transformations from general programs to one-loop
programs, we decided to skip this step as our case studies do not exhibit nested
unbounded loops. Evidently, CBMC+k inherits the capabilities (and deficien-
cies) of its back-end verifier, specifically its ability to handle large state spaces.

CBMC+k should thus not be considered a generic, widely applicable exten-
sion of CBMC with k-induction. Our prime motivation to consider this variant is
to show the effect of a simple, almost trivial, tweak on a bounded model checker.
We have taken CBMC for this variant as it performed very well in identifying
counterexamples, an important trait for k-induction.

The CBMC+k implementation is made publicly available at https://github.
com/moves-rwth/cbmc-with-kInduction.

2.4 Experimental Setup

All experiments were performed on a machine with 192 GB RAM and two Intel
Xeon Platinum 8160 processors, each containing 24 cores at 2.1 GHz. Our bench-
mark script executed ten benchmarks in parallel, giving each execution four CPU
cores with a memory limit of 18 GB and a CPU-time limit of two hours. Further
details can be found in the Appendix. Every verification was followed by two
witness validation runs of CPAChecker and Ultimate. Conforming to the regu-
lations of the SV-COMP 2019, the time limit for a correctness witness was two
hours, whereas a violation witness had to complete within 12 min. We collected
the data points:

– the result; either True, False or Unknown,
– why no definite answer was given, e.g. Timeout, Memout or Verifier bug,
– the used CPU-time, in seconds,
– the peak memory usage, in MB,
– if measurable, the time spent by a SAT solver, in seconds,
– if measurable, the reached depth in a BMC or k-induction setting, and
– the witness validation results; either Correct (validation result = original

result), Invalid (unparseable witness) or Unknown (resource exhaustion, or
validation result �= original result).

To keep the results comparable and the competition fair, we used the default
configurations that the tool maintainers chose for the SV-COMP 2019 reachabil-
ity tasks. The exact settings can be found in the Appendix. CBMC was invoked
with increasing values of k by a wrapper script similar to the one employed in the
SV-COMP 2019. For the Ultimate tool chain, a bit-precise memory model was
applied2 to the Boogie translator configuration. The witness validation processes
for CPAChecker and Ultimate were set up as in SV-COMP 2019 with scaled run
times where necessary. Due to the aforementioned confidentiality reasons, we
cannot disclose the extracted benchmark data and verifier outputs.
2 by adding Memory model=HoenickeLindenmann Original.

https://github.com/moves-rwth/cbmc-with-kInduction
https://github.com/moves-rwth/cbmc-with-kInduction

140 L. Westhofen et al.

3 Comparing the Open-Source Verifiers

Coverage. Figure 2 shows the verification results of running the open-source
verifiers on the two case studies, omitting the results of the witness validation.

0

20

40

60

80

100

CBM
C+k

CBM
C

UltimateTaipan

ESBM
C

UltimateAutomizer

Symbiotic

CPAChecker

PeSCo

DepthK

UltimateKojak

2LS
SM

ACK

P
er
ce
nt
ag

e

True
False
Timeout
Out of memory
Verifier bug
Spurious counterexample
Max. depth reached

Fig. 2. The overall result distribution for each software model checker, in percent.

CBMC+k is able to verify about 63% of the verification tasks; CBMC and
UltimateTaipan cover roughly 20%. ESBMC delivers results on 10% of the
requirements. The remaining verifiers reach a coverage of at most 5%. The
majority of the verifiers is either able to identify counterexamples or produce
proofs, but seldom both. 2LS and SMACK cannot return a single definite
result. The only successful witness validation was a proof of PeSCo validated
by CPAChecker, indicated by True (Correct). CBMC delivered invalid witnesses
on all tasks, leading it to fail the witness validation process.

Figure 2 also indicates the reasons for Unknown answers. We observe that
time- and memory-outs prevail, but a large number of verifiers exhibit erroneous
behavior. A detailed description of the latter issues is given in Sect. 5.

To get insight into which requirements are covered by which software model
checker, Fig. 3 depicts two Venn diagrams indicating the subsets of all 179 verifi-
cation tasks. Each area represents the set of verification tasks on which a verifier
returned a definite result. Those areas are further divided into overlapping sub-
areas, where a number indicates the size of this set. For reasons of clarity, we
included only the top five verifiers for the respective case study, based on the
number of definite answers. For both case studies, there is not one verifier which
covers all requirements covered by the other verifiers. For DSR, CBMC+k cov-
ers all but one definite results of the remaining verifiers. In this case, CBMC
was able to identify a counterexample close to the timeout. CBMC+k exhausts
its resources on this requirement as the inductive case occupies a part of the
available computation time. For ECC, UltimateTaipan, ESBMC, and CBMC+k
together cover the set of all definite results. Note that some verifiers—e.g. Ulti-
mateTaipan and ESBMC—perform rather well on one case study, but lose most
of their coverage on the other. In most of such cases, this is due to erroneous
behavior of the verifier manifesting on just one of the two case studies.

Benchmarking Software Model Checkers on Automotive Code 141

DSR (105)

44

4

2

3

7

1

13

CBMC+k (73)

UAutomizer (6)

CPAChecker (5)

Symbiotic (7)

CBMC (21)

ECC (74)

4

4

5

9

6

2

12

2

12

2

1

ESBMC (15)

CBMC+k (40)

UTaipan (31)

UAutomizer (3)

CBMC (14)

Fig. 3. Venn diagrams indicating the requirement coverage (i.e., a definite result was
issued) by the top-five verifiers for case study DSR (left) and ECC (right).

We believe that the substantial difference in verifier coverage for the two case
studies, as seen in Fig. 3, is the result of structural differences in the benchmark
code. While the overall control-flow structure (closed loop, step-based input to
output propagation) is the same for DSR and ECC, the difference in overall size
and the higher number of global constants, pointers and floating-point variables
make ECC imposing different challenges. Even a small increase in code size can
lead to verifiers not even getting through costly initial preparatory steps, that,
if completed, might have quickly been followed by a result.

Quantile Plot. As standard in SV-COMP, a quantile plot for the results on both
case studies together is depicted in Fig. 4. Note the log-log scale. To this end,
a score is assigned to each verification run according to the SV-COMP3 scheme
in Table 2.

Table 2. The employed scoring scheme for the quantile plots as adopted from SV-
COMP.

Verification result False True

Validation result ✓ ? ✗ ✓ ? ✗

Score +1 ±0 ±0 +2 +1 ±0

The score depends on the results of the witness validation which can either
be validated (verification and validation result coincide, indicated by ✓), not
validated (resource exhaustion or verification and validation result differ, ?) or
invalid (unparseable witness, ✗). In absence of expected verification results, no
punishments for wrong answers are given. In Sect. 4, we compare the verification
results against those obtained by the commercial verifier BTC EmbeddedVal-
idator.

3 https://sv-comp.sosy-lab.org/2019/rules.php#scores.

https://sv-comp.sosy-lab.org/2019/rules.php#scores

142 L. Westhofen et al.

The quantile plot in Fig. 4 indicates the accumulated score for all verifica-
tion runs, sorted by ascending run time (x-axis), against the required CPU-time
(y-axis). A (log, log) scale is used for improved readability. As invalid and unval-
idated counterexamples are not rewarded in this score, verifiers returning such
results – 2LS, CBMC, DepthK, SMACK and Symbiotic – obtain a zero score.
Verifiers with a large number of proofs obtain higher scores. As only one witness
could be validated, this aspect plays a negligible role in the scores. CBMC+k
exhibits a higher score than other verifiers; runner-up ESBMC obtains various
results only after one hour. In general, 50% and 90% of the answers were given
within seven and 75 min, respectively. Only few verifiers used the full time limit
of two hours: The Ultimate verifiers and CBMC+k obtained many results within
an hour.

3600

1

10

100

1000

10000

501 10

C
P
U
-T

im
e
[s
]

Accumulated score

CPAChecker
ESBMC
PeSCo

UltimateAutomizer
UltimateKojak
UltimateTaipan

k-Induction

Fig. 4. The quantile (log, log) plot for all verifiers except the tools 2LS, CBMC,
DepthK, SMACK and Symbiotic (as they reach a zero score).

4 Benchmarking Against BTC EmbeddedValidator

To compare the results of open-source software verifiers to a commercial tool, we
additionally ran the verification tasks using BTC EmbeddedValidator (BTC for
short).4 The main purpose of this examination is the establishment of a reference
point. This reference can subsequently be used as a foundation to interpret the
applicability of the open-source verifiers to the industrial case studies.

BTC EmbeddedValidator is part of BTC EmbeddedPlatform, a commercial
model-checking tool developed for industrial applications. It is, among others,
heavily optimized for industrial embedded software—such as the benchmarks
4 Similar results were provided in [3]. We have used a more recent version of BTC

EmbeddedValidator and considered 179 rather than 112 requirements, as require-
ments were split differently.

Benchmarking Software Model Checkers on Automotive Code 143

considered in this paper—and unsurprisingly performs very well on the ECC and
DSR case studies. This focus is also a weak point: It can not or not easily deal
with memory allocation and many standard library headers usually not present
in the targeted embedded code, making it unsuitable for a direct comparison
on established SV-COMP benchmarks. Requirements can be specified directly
using a pattern-based approach, see [21,22]. BTC EmbeddedValidator employs
several back-end tools for verification: CBMC5, iSAT3, AutoFXP, SMIBMC,
and VIS. Code transformation, static analysis, and detection of spurious, i.e.,
incorrect, counterexamples are done as part of the verification.

We used BTC EmbeddedPlatform 2.3p1 under Windows 7 with 4 GB RAM
and an Intel i7-6700HQ with a timeout of two hours. While this setup is using
a smaller CPU and less RAM than our experiment in Sect. 3 and is therefore
incomparable, it is important to stress that we use the results of BTC only for
deciding the baseline truth and do not depend on the performance (see also
Sect. 4.2).

4.1 BTC EmbeddedValidator Verification Results

Table 3 states the result distribution for both case studies, in percent of the 105
and 74 verification tasks, respectively.

Table 3. Verification results of BTC EmbeddedValidator on both case studies, in
percent of the 105 and 74 verification tasks.

Case study DSR (105) ECC (74)

Result True False Unknown True False Unknown

Percentage 56.2% 21.9% 21.9% 55.4% 27.0% 17.6%

BTC did not return a result on 21.9% of the DSR tasks; 91% of which were
due to reaching only bounded correctness, but no unbounded proof. BTC timed
out on the remaining 9%. Of the 17.6% Unknown answers for ECC, 92% are
bounded proofs, and 8% timed out. In comparison to the open-source verifiers,
BTC takes first place in both case studies when considering the overall number
of definite answers. As witness output is not available in BTC and wall clock
times were measured, we cannot integrate BTC fairly into our scoring system,
and thus refrain from calculating a quantile plot score. Although we were not
able to determine exact CPU-times from BTC due to tool limitations, a wall
clock time was collected. The average wall clock time of BTC on tasks where
definite answers were returned amounts to 17 ± 4 s on DSR and 308 ± 1109 s on
ECC. Figure 5 shows the results for all 143 verification tasks on which BTC
returned a definite result. It also indicates conflicts, i.e. different outcomes than
BTC EmbeddedValidator.

5 A different, custom version than used in SV-COMP 2019.

144 L. Westhofen et al.

4.2 Scores Assuming Correct Results by BTC EmbeddedValidator

In absence of the true verification results, let us assume the results of BTC
EmbeddedValidator as a “ground truth”. As this is a mature industrial tool
developed over many years specifically for such industrial cases considered here,
we believe that this is a reasonable assumption. For this, we restrict the veri-
fication tasks to those on which BTC returns a definite answer. We are aware
of the fact that this is debatable, but given the very low number of verification
results by BTC EmbeddedValidator that could be shown by other tools to be
invalidated (as depicted later), this gives a quite good impression. We would like
to point out that we are not interested in either shaming or praising specific
tools, we simply are trying to provide a look at the “big picture” with respect
to model checking certain types of industrial embedded code. Our assumption
of using BTC EmbeddedValidator as a ground truth does certainly not imply
the validity of all its results. But, considering the purpose of this section, it
represents a sufficiently precise reference point for a comparison. We update the
quantile plots to now punish wrong results (i.e., results in conflict with BTC) by
−16 and −32 points for wrong violation and proof results, respectively, as in the
SV-COMP. The resulting plots are given in Fig. 6.

Compared to Fig. 4, the scores of CBMC+k are substantially worse as it
has three conflicts with BTC EmbeddedValidator. This is due to the fact that
the SV-COMP punishment scheme is bad for verifiers returning many results
of which some are wrong. It is almost as good (in terms of the scoring scheme)
to not generate any result at all (and thus no “wrong” result). This effect is
certainly important when witness validaation is seldom, as it is the case in our
setting where only one witness could be validated. CBMC+k produced definite
verification results on many of the requirements, and consequently has a higher
chance of producing a conflicting result. With conflicts being punished heav-
ily and non-validated answers that are deemed correct not being accounted for
much, the accumulated score of a verifier returning many definitive results some
of which are wrong has a high chance to score worse than a verifier return-
ing a small number of results. Figure 7 presents updated Venn diagrams when
removing all results that are in conflict with BTC.

0

20

40

60

80

100

BTC
CBM

C+k

CBM
C

UltimateTaipan

ESBM
C

UltimateAutomizer

Symbiotic

CPAChecker

PeSCo

UltimateKojak

DepthK

2LS
SM

ACK

P
er
ce
nt
ag

e

True
True (Conflict w/ BTC)
False
False (Conflict w/ BTC)
Timeout
Out of memory
Verifier bug
Spurious counterexample
Max. depth reached

Fig. 5. The verification results for each verifier, in percent of the 143 verification tasks
on which BTC returned a definite result. No witness validation results are depicted, as
they were previously given in Fig. 2.

Benchmarking Software Model Checkers on Automotive Code 145

3600

10

100

1000

10000

1 10

C
P
U
-T

im
e
[s
]

Accumulated score

CPAChecker
ESBMC
PeSCo

UltimateAutomizer
UltimateKojak
UltimateTaipan

CBMC+k
CBMC

Fig. 6. The quantile plot for each verifier, assuming BTC results as ground truth. The
tools 2LS, DepthK, SMACK and Symbiotic have been omitted as they do not reach a
score other than zero.

DSR (82)

41

3

7
4

2

1

9

CBMC+k (66)

CPAChecker (5)

Symbiotic (7)

UAutomizer (6)

CBMC (17)

ECC (61)

9

4

5
4

2

12

6

2

1

2

12

CBMC+k (38)

ESBMC (12)

UTaipan (11)

UAutomizer (3)

CBMC (14)

Fig. 7. Venn diagrams indicating the requirement coverage (i.e., a definite result was
issued) by the top-five verifiers for case study DSR (left) and ECC (right), assuming
BTC results as ground truth.

146 L. Westhofen et al.

We did a careful comparison of the verification results of all verifiers. Our
findings are summarized in Table 4. For the ECC case study, the verifiers gave
contradicting answers for 18 requirements, i.e., about 24% of all requirements.
UltimateTaipan finds violations in 16 cases, while no verifier confirms these refu-
tations. There were no conflicts between the open-source verifiers for DSR. Three
conflicts were however encountered with BTC EmbeddedValidator. In two cases,
CBMC (and CBMC+k) found a counterexample at depth two, conflicting a
bounded proof of BTC EmbeddedValidator of depth 10. As these requirements
involve equality of floating-point numbers, there seems to be a subtle issue behind
this. This can be related to different intermediate floating-point precisions being
used (e.g. 64 or 80 bits) and allows for multiple different, albeit correct, con-
flicting results. No witnesses could be validated for any conflicting requirement,
meaning that we do not have a correct measure of identifying correct answers.
Because of the high complexity of the involved C code, we refrained from manual
analysis. While we strongly believe in the importance of witness generation and
-verification, especially in industrial applications, we want to point out that in
this case, the exact results are of reduced interest—we rather want to convey
the overall big picture of how well the selected open source model checkers are
optimized towards real-world industrial applications.

Table 4. The contradicting results observed in DSR and ECC, respectively.

Case study True False Count

DSR CBMC+k BTC 1

BTC CBMC, CBMC+k 2
∑

= 3

ECC BTC UltimateTaipan 7

BTC, CBMC+k UltimateTaipan 4

BTC, ESBMC, CBMC+k UltimateTaipan 4

BTC, ESBMC UltimateTaipan 1

ESBMC, CBMC+k DepthK 1

ESBMC BTC, UltimateTaipan 1
∑

= 18

5 Encountered Issues

During the course of this work we identified issues and bugs in most of the ver-
ifiers. In case we were able to identify a minimal working example, we reported
bugs to the developers as noted in the footnotes below. We give a brief descrip-
tion of the occurring issues. Issues encountered with earlier versions of BTC
EmbeddedValidator have been described in [3].

Benchmarking Software Model Checkers on Automotive Code 147

CBMC 5.11. We encountered a bug that presented itself on the code outputted
by Frama-C [23], which led CBMC to report spurious counterexamples. In version
5.11, CBMC did not handle variables that are local to a switch block correctly
and always assumed a non-deterministic value for them6. This bug has been
fixed in subsequent releases. Additionally, when employing CBMC 5.9 or larger
for CBMC+k we noticed a drop in performance for the inductive steps compared
to version 5.8, sometimes resulting in resource exhaustion for the 5.11 version.
This behavior was not emerging in the base cases, i.e., it most likely corresponds
to the introduced non-deterministic state spaces, although we were not able to
identify a specific cause. Lastly, CBMC outputs witnesses that do not adhere to
the format specification7.

ESBMC 6.0.0. On DSR, we observed a verifier bug on 97.1% of the verifica-
tion tasks. Here, ESBMC seems to specify a faulty input for its default SMT
solver, Boolector. Specifically, it appears to create if-else branching conditions
of different sorts. This problem could be avoided e.g. by using Z3.

2LS 0.7.0. We identified a simple program on which 2LS delivers false negatives,
consisting of two nested loops and a VERIFIER error() statement after the
inner loop. 2LS reports such a program as safe with its k-induction setting8.
Apart from this, 2LS did not execute on any verification task. This seems to be
due to a bug in a bit-vector map implementation, where a size assertion fails.

CPAChecker 1.8.0. C typedefs were not resolved correctly9. This bug initially
prevented the tool from running on the case studies completely, although it
was quickly fixed by the tool developers. Furthermore, we found that switch-
local variables, similar to CBMC, are not represented internally at all, and thus
ignored10. As we tried to run CPAChecker with Z3, we were deterred by a bug
in the Z3-abstraction of JavaSMT11.

DepthK 3.1. Due to the bug exhibited by ESBMC (see above), DepthK did
not execute on most of the verification tasks. Here, it creates ESBMC instances
which immediately fail until DepthK reaches the time out.

SMACK 1.9.3. SMACK did not return a single definite answer, most likely due
to the default loop bound of one.

Symbiotic 6.0.3. For both case studies, there are some properties for which
KLEE prints that it is silently concretizing an expression to value 0 due to float-
ing points, which leads to Symbiotic failing the verification. Additionally, KLEE
6 https://github.com/diffblue/cbmc/issues/3283.
7 https://github.com/diffblue/cbmc/issues/4418.
8 https://github.com/diffblue/2ls/issues/123.
9 https://groups.google.com/forum/#!topic/cpachecker-users/wTqHOedBOb0.

10 https://groups.google.com/forum/#!topic/cpachecker-users/ bH55x INOw.
11 https://groups.google.com/forum/#!topic/cpachecker-users/6wv6fgwHnk4.

https://github.com/diffblue/cbmc/issues/3283
https://github.com/diffblue/cbmc/issues/4418
https://github.com/diffblue/2ls/issues/123
https://groups.google.com/forum/#!topic/cpachecker-users/wTqHOedBOb0
https://groups.google.com/forum/#!topic/cpachecker-users/_bH55x_INOw
https://groups.google.com/forum/#!topic/cpachecker-users/6wv6fgwHnk4

148 L. Westhofen et al.

extracted some spurious counterexamples that it could not replay. Symbiotic
stops the execution thereafter.

UltimateAutomizer 91b1670e. We observed two verification runs where Ulti-
mateAutomizer is unable to convert an assertion to an internal function repre-
sentation. There are 40 ECC verification tasks leading to erroneous behavior. In
38 cases the usage of an unknown enum constant leads to program abortion. The
remaining two instances are identical to the described bug on DSR.

UltimateTaipan 91b1670e. On DSR and ECC, the same two conversion error
instances as for UltimateAutomizer apply.

6 Epilogue

This paper reported on applying 12 software model checkers to two embedded
C code case studies from the automotive domain. Although this is a rather
limited set of case studies, our findings give some observations that we hope
to be insightful for the software verification community. From the fact that the
open-source verifiers cover in the best up to 20% of all requirements—about
99% of them being invariants—makes clear that there seems to be a serious gap
between the needs of automotive code verification and open-source software model
checker capabilities. The specific characteristics of the two case studies (many
floating-points, pointer dereferencing, bitwise operations etc.) are certainly a
decisive factor in this respect. Additionally, the structure of an infinite outer
loop (forever processing inputs) with nested finite loops seems to require an
tailored k-induction to properly capture behavior, which we believe explains
part of the success of CBMC+k and BTC. While both tools are heavily tailored
towards special use-cases and are unsuitable for more general programs, we firmly
believe these optimizations are worth pursuing and integrating into mainstream
open-source verifiers. Admittedly, the fact that our benchmarks are not publicly
available is a weak point. More studies like the one in this paper are needed.
To that end, the software model checking community and industrial partners
covering various application domains should take up an orchestrated effort to set
up a substantial set of industrial benchmarks. The only way to meet the needs
in industry is to be able to apply software model checkers on real industrial
software of different domains. Finally, the results of our study (particularly,
the score of CBMC+k relative to BTC) suggest to revisit the scoring scheme
of verification competitions such as SV-COMP . In particular, the punishment
of wrong verification results is too severe; it is currently measured in absolute
terms (the number of wrong answers), whereas a relative judgment (what is the
percentage of wrong answers that a verifier obtained) seems to be more fair.

Acknowledgment. We thank BTC Embedded Systems AG, in particular Tino Teige
and Markus Gros, for their support and helpful advice. We are grateful to Md Tawhid
Bin Waez and Thomas Rambow (both from Ford Motor Company) for their support
on the case studies in an earlier phase and for fruitful discussions on formal verification

Benchmarking Software Model Checkers on Automotive Code 149

and Simulink. We thank Dirk Beyer for very useful feedback on an earlier version of
the paper.

References

1. Beyer, D., Dangl, M., Wendler, P.: A unifying view on SMT-based software verifi-
cation. J. Autom. Reason. 60(3), 299–335 (2018)

2. Beyer, D.: Automatic verification of C and Java programs: SV-COMP 2019. In:
Beyer, D., Huisman, M., Kordon, F., Steffen, B. (eds.) TACAS 2019. LNCS, vol.
11429, pp. 133–155. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
17502-3 9

3. Berger, P., Katoen, J.-P., Ábrahám, E., Waez, M.T.B., Rambow, T.: Verifying
auto-generated C code from simulink. In: Havelund, K., Peleska, J., Roscoe, B., de
Vink, E. (eds.) FM 2018. LNCS, vol. 10951, pp. 312–328. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-95582-7 18

4. Kroening, D., Tautschnig, M.: CBMC – C bounded model checker. In: Ábrahám,
E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 389–391. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54862-8 26

5. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24730-2 15

6. Gadelha, M.R., Monteiro, F.R., Morse, J., Cordeiro, L.C., Fischer, B., Nicole,
D.A.: ESBMC 5.0: an industrial-strength C model checker. In: 33rd ACM/IEEE
International Conference on Automated Software Engineering, pp. 888–891. ACM
Press (2018)

7. Schrammel, P., Kroening, D.: 2LS for program analysis. In: Chechik, M., Raskin, J.-
F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 905–907. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-49674-9 56

8. Beyer, D., Henzinger, T.A., Théoduloz, G.: Configurable software verification: con-
cretizing the convergence of model checking and program analysis. In: Damm, W.,
Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 504–518. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-73368-3 51

9. Beyer, D., Keremoglu, M.E., Wendler, P.: Predicate abstraction with adjustable-
block encoding. In: FMCAD, pp. 189–197. IEEE (2010)

10. Beyer, D., Löwe, S.: Explicit-state software model checking based on CEGAR and
interpolation. In: Cortellessa, V., Varró, D. (eds.) FASE 2013. LNCS, vol. 7793, pp.
146–162. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37057-
1 11

11. Beyer, D., Dangl, M., Wendler, P.: Boosting k -induction with continuously-refined
invariants. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp.
622–640. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21690-4 42

12. Richter, C., Wehrheim, H.: PeSCo: predicting sequential combinations of verifiers.
In: Beyer, D., Huisman, M., Kordon, F., Steffen, B. (eds.) TACAS 2019. LNCS,
vol. 11429, pp. 229–233. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-17502-3 19

13. Rocha, W., Rocha, H., Ismail, H., Cordeiro, L., Fischer, B.: DepthK: a k -induction
verifier based on invariant inference for C programs. In: Legay, A., Margaria, T.
(eds.) TACAS 2017. LNCS, vol. 10206, pp. 360–364. Springer, Heidelberg (2017).
https://doi.org/10.1007/978-3-662-54580-5 23

https://doi.org/10.1007/978-3-030-17502-3_9
https://doi.org/10.1007/978-3-030-17502-3_9
https://doi.org/10.1007/978-3-319-95582-7_18
https://doi.org/10.1007/978-3-642-54862-8_26
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1007/978-3-662-49674-9_56
https://doi.org/10.1007/978-3-540-73368-3_51
https://doi.org/10.1007/978-3-642-37057-1_11
https://doi.org/10.1007/978-3-642-37057-1_11
https://doi.org/10.1007/978-3-319-21690-4_42
https://doi.org/10.1007/978-3-030-17502-3_19
https://doi.org/10.1007/978-3-030-17502-3_19
https://doi.org/10.1007/978-3-662-54580-5_23

150 L. Westhofen et al.

14. Rakamarić, Z., Emmi, M.: SMACK: decoupling source language details from veri-
fier implementations. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559,
pp. 106–113. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-9 7

15. Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: a
modular reusable verifier for object-oriented programs. In: de Boer, F.S., Bon-
sangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp.
364–387. Springer, Heidelberg (2006). https://doi.org/10.1007/11804192 17

16. Chalupa, M., Vitovská, M., Jonáš, M., Slaby, J., Strejček, J.: Symbiotic 4: beyond
reachability. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10206, pp.
385–389. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54580-
5 28

17. Heizmann, M., Hoenicke, J., Podelski, A.: Software model checking for people who
love automata. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp.
36–52. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8 2

18. Ermis, E., Nutz, A., Dietsch, D., Hoenicke, J., Podelski, A.: Ultimate kojak. In:
Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 421–423.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54862-8 36

19. Greitschus, M., et al.: Ultimate Taipan: trace abstraction and abstract interpre-
tation. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10206, pp.
399–403. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54580-
5 31

20. Gadelha, M.Y.R., Ismail, H.I., Cordeiro, L.C.: Handling loops in bounded model
checking of C programs via k-induction. STTT 19(1), 97–114 (2017)

21. Teige, T., Bienmüller, T., Holberg, H.J.: Universal pattern: formalization, testing,
coverage, verification, and test case generation for safety-critical requirements. In:
MBMV, Albert-Ludwigs-Universität Freiburg (2016). P. 6–9

22. Berger, P., Nellen, J., Katoen, J.-P., Ábrahám, E., Waez, M.T.B., Rambow, T.:
Multiple analyses, requirements once. In: Larsen, K.G., Willemse, T. (eds.) FMICS
2019. LNCS, vol. 11687, pp. 59–75. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-27008-7 4

23. Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.:
Frama-C. In: Eleftherakis, G., Hinchey, M., Holcombe, M. (eds.) SEFM 2012.
LNCS, vol. 7504, pp. 233–247. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-33826-7 16

https://doi.org/10.1007/978-3-319-08867-9_7
https://doi.org/10.1007/11804192_17
https://doi.org/10.1007/978-3-662-54580-5_28
https://doi.org/10.1007/978-3-662-54580-5_28
https://doi.org/10.1007/978-3-642-39799-8_2
https://doi.org/10.1007/978-3-642-54862-8_36
https://doi.org/10.1007/978-3-662-54580-5_31
https://doi.org/10.1007/978-3-662-54580-5_31
https://doi.org/10.1007/978-3-030-27008-7_4
https://doi.org/10.1007/978-3-030-27008-7_4
https://doi.org/10.1007/978-3-642-33826-7_16
https://doi.org/10.1007/978-3-642-33826-7_16

Requirement Specification and Testing

Automated Requirements-Based Testing
of Black-Box Reactive Systems

Massimo Narizzano1(B), Luca Pulina2, Armando Tacchella1,
and Simone Vuotto1,2

1 DIBRIS, University of Genoa, Viale Causa 13, 16145 Genoa, Italy
{massimo.narizzano,armando.tacchella}@unige.it

2 Chemistry and Pharmacy Department, University of Sassari,
Via Vienna 2, Sassari, Italy

{lpulina,svuotto}@uniss.it

Abstract. We present a new approach to conformance testing of black-
box reactive systems. We consider system specifications written as linear
temporal logic formulas to generate tests as sequences of input/output
pairs: inputs are extracted from the Büchi automata corresponding to
the specifications, and outputs are obtained by feeding the inputs to the
systems. Conformance is checked by comparing input/output sequences
with automata traces to detect violations of the specifications. We con-
sider several criteria for extracting tests and for stopping generation, and
we compare them experimentally using both indicators of coverage and
error-detection. The results show that our methodology can generate test
suites with good system coverage and error-detection capability.

Keywords: Automated testing and verification · Runtime
verification · Black-box conformance testing

1 Introduction

We are concerned with the problem of checking whether a reactive system—
which we can execute, but for which we have no internal representation—
conforms to a set of requirements provided as temporal logic formulas. This
problem arises in a variety of contexts, e.g., when a system is developed by inte-
grating commercial off-the-shelf (COTS) componenents [20]. In these scenarios,
techniques such as model checking [4] or (white-box) model-based testing [28] are
ruled out. Also, classical black-box techniques like random testing, equivalence
partitioning or boundary analysis [11] either do not take into account the speci-
fication or require manual effort to assemble meaningful test suites. Techniques
aimed at automated test generation for black-box reactive systems relying on for-
mal models of the specifications have been explored—see, e.g., [5,17–19,26]—and
they seem more promising than classical techniques when both efficiency of test
generation and effectiveness in covering the specification are considered. Run-
time verification [9] techniques can be seen as a form of oracle-based testing [10]:
c© Springer Nature Switzerland AG 2020
R. Lee et al. (Eds.): NFM 2020, LNCS 12229, pp. 153–169, 2020.
https://doi.org/10.1007/978-3-030-55754-6_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-55754-6_9&domain=pdf
https://doi.org/10.1007/978-3-030-55754-6_9

154 M. Narizzano et al.

each test is executed on the system implementation and the test oracle, i.e., the
monitor in runtime verification jargon, observes the system and checks whether
its executions are behaviors allowed by the specification or not. Following this
stream of research, a technique based on the use of monitors as test oracles is
proposed in [3]. Their approach can test for safety properties (“something bad
will never happen”), but it does not deal with liveness properties (“something
good will happen infinitely often”). While liveness properties are not amenable
to monitoring on finite executions, their proper subclass of co-safety properties
(“something good will happen”) consists of formulas that can be monitored on
finite traces and that we wish to consider when testing a system for conformance.

Our approach is inspired by [3], but aims to deal with a more general class
of properties. Our methodology is based on a visit of the Büchi automaton cor-
responding to the requirements. The visit starts from the initial state of the
automaton and generates a sequence of input values with which the black-box
system is fed to obtain a corresponding sequence of output values. We check such
input/output sequence against the automaton, i.e., we check whether there exists
at least one state in the automaton that can be reached along the sequence. If
there is no such state, then the system is not conformant to the requirements and
the sequence provides a counterexample. Otherwise, we can continue the gener-
ation of the sequence by iterating the above steps until either (i) an acceptance
state of the automaton is reached with a sequence of length at least kmin or (ii)
an acceptance state cannot be reached with a sequence of length at most kmax,
where kmin and kmax are two parameters such that kmin < kmax. Multiple tests
can be obtained by iterating this procedure until all the reachable transitions
have been visited at least once.

We evaluate our approach in three different experimental settings. In the first
one we consider benchmarks taken from the LTL Track of the 2018 edition of
the Reactive Synthesis Competition (SYNTCOMP 2018)1 and we compare our
approach with the one described in [3]. In the second setting we use the Adaptive
Cruise Control (ACC) prototype implemented in [2] and we compare the tests
generated by our approach with those generated with a model-based generation
strategy. In the third setting we test the model of a robotic arm controller in
order to evaluate our approach on a large set of requirements coming from an
industry-grade prototype. In the two former settings we use a mix of fault-
injection [15] and mutation analysis [1] in order to compare different approaches.
In the third setting we inject faults manually. The results we obtained with our
experiments show that our approach can outperform the one in [3] by finding
more induced faults. Furthermore, generating tests based on the specification
can be as effective as approaches based on the system model, discovering almost
the same number of faults. Finally, our approach can be effective in finding faults
in small-to-medium sized industry-grade systems.

The rest of the paper is structured as follows. In Sect. 2 we present some
basic notation and definitions. In Sect. 3 we describe our framework for test
case generation of black-box system. Finally, in Sect. 4 we show experimental

1 http://www.syntcomp.org/.

http://www.syntcomp.org/

Automated Requirements-Based Testing of Black-Box Reactive Systems 155

results and we conclude the paper in Sect. 5 with some remarks and an agenda
for future work.

2 Preliminaries and Related Work

In this Section we recall the basic concepts used trough the paper. First, we
present some basic definitions, followed by syntax and semantics of Linear Tem-
poral Logic (LTL). Then we provide a short introduction to ω-regular grammars
and languages and we conclude the section by presenting related work.

2.1 Non Deterministic Büchi Automa

Definition 1 (Non Deterministic Büchi Automata). A non deterministic
Büchi Automata (NBA) A is a tuple A = (Q, Σ, δ, q0, F) where:

– Q is a finite set of states,
– Σ is an alphabet,
– δ : Q × Σ → 2Q is a transition function
– q0 ∈ Q is the initial state
– F ⊆ Q is a set of accept states, called acceptance set.

Let Σω denote the set of all infinite words over the alphabet Σ.

Definition 2 (Run). A run for an infinite word σ = A0A1A2... ∈ Σω denotes
an infinite sequence �= q0q1q2... of states in A such that q0 ∈ Q0 and qi+1 =
δ(qi, Ai) for i ≥ 0, and ∀Ai, Ai ∈ Σ.

Notice that each run � in a NBA induces a corresponding word σ ∈ Σω.

Definition 3 (Accepting run). A run � is accepting if there exist qi ∈ F such
that qi occurs infinitely many times in �.

Figure 1 (top), shows a NBA where Q= {0, 1, 2, 3, 4, 5, 6}, Σ = 2AP ,
AP = {p0, p1}, q0 = 0, and F = {1, 3, 5}. Throughout the paper we make use
of propositional logic formulae as a shorthand notation for the transitions of
NBAs. For instance, a label a ∨ b on an edge from a state q to a state p, repre-
sents three transitions from q to p: one for the symbol {a}, one for the symbol
{b}, and one for the symbol {a, b}.

2.2 LTL Syntax and Semantics

Linear temporal logic (LTL) [25] formulae consist of atomic propositions,
Boolean operators, and temporal operators. The syntax of a LTL formula φ
is given as follows:

φ = � | ⊥ | a | ¬φ1 | φ1 ∨ φ2 | X φ1 | φ1 U φ2 | (φ)

156 M. Narizzano et al.

Fig. 1. A state-based Büchi automaton (top), the corresponding monitor (bottom-left)
and a Mealy machine (bottom-right). We write pi to denote ¬pi.

where a ∈ AP , φ, φ1, φ2 are LTL formulae, X is the “next” operator and U is the
“until” operator. In the following, unless specified otherwise using parentheses,
unary operators have higher precedence than binary operators. We also write φ
to denote ¬φ.

Informally, the semantics of an LTL formula φ can be defined over the lan-
guage that contains all infinite words over the alphabet 2AP . More precisely:

Definition 4 (Set of words over 2AP). Given a set of atomic propositions
AP , (2AP)ω denotes the set of words that arise from the infinite concatenation
of symbols from the alphabet (2AP). Each word is defined as σ = A0A1A2 . . . ∈
(2AP)ω, where each Ai is a set over AP , i.e. Ai ∈ 2AP .

In the following, for σ = A0A1A2 . . . ∈ (2AP)ω, σ[j . . .] = AjAj+1 . . . ∈
(2AP)ω is the suffix of σ starting in the (j + 1)st symbol Aj .

Definition 5 (LTL semantics over words). Let φ be an LTL formula over
the set AP and let σ =A0A1A2 . . . be an infinite word over (2AP). We define
the relation “|=” between σ and φ as as the smallest relation with the following
properties:

1. σ |= true

Automated Requirements-Based Testing of Black-Box Reactive Systems 157

2. σ |= a iff a ∈ A0

3. σ |= φ1 ∧ φ2 iff σ |= φ1 and σ |= φ2

4. σ |= ¬ φ iff σ �|= φ
5. σ |= X φ iff σ[1...] = A1A2A3 |= φ
6. σ |= φ1 U φ2 iff ∃j ≥ 0 such that σ[j...] = AjAj+1... |= φ2 and σ[i...] |= φ1

∀0 ≤ i < j

We consider other Boolean connectives like “∧” and “→” with the usual
meaning, while we introduce ♦φ (“eventually”) to denote � U φ and �φ
(“always”) to denote ¬♦¬φ.

Definition 6 (Accepted Words for a LTL formula). We also define the
set of accepted Words of a LTL formula φ as the set containing all the infininte
word σ over 2AP that satisfy the property φ, i.e.

Words(φ) = {σ ∈ 2AP | σ |= φ}

Theorem 1 (Constructing an NBAs for an LTL formula [4]). For any
LTL formula φ (over AP) there exists an NBA Aφ with Words(φ)=Lω(Aφ).

Example 1. Figure 1 (top), shows a NBA obtained from the formula

p0 ↔ (X � p1 ∨ ♦p1)

where AP = {p0, p1}. The NBA is obtained using spot [13].2

Definition 7 (Mealy machine).
A Mealy machine is a tuple M=(S, s0, I, O, δ) where:

– S is a finite set of states,
– s0 ∈ S is the start state
– I is a set of symbols called input alphabet,
– O is a set of symbols called output alphabet,
– δ : S × I → S × O is a transition function mapping pairs of states and input

symbols to the corresponding pairs of states and output symbols

In other words, a Mealy machine is a finite-state machine whose output values
are determined by its current state and the current inputs.

Example 2. Figure 1 (bottom-right) shows a Mealy machine obtained by using
STRIX [23] on the formula

p0 ↔ (X � p1 ∨ ♦p1)

where S = {0, 1, 2}, s0 = 0, I = {p0} and O = {p1}.

2 Using the command line ltl2tgba -B -f “p0 <−> (X G p1 | ! F p1)”.

158 M. Narizzano et al.

2.3 Monitor

A monitor is an automaton supposed to follow the execution of a system and
move accordingly. An error is detected when the monitor cannot move, i.e., the
system has performed some action, or reached some state that it was not meant
to be.

Definition 8 (Monitor). A monitor M is a tuple M=(Q, Σ, δ, q0) where:

– Q is a finite set of states,
– Σ is an alphabet,
– δ : Q × Σ → 2Q is a transition function
– q0 ∈ Q is the initial state

Example 3. Figure 1 (bottom-left) shows a monitor obtained using spot [13]3

for the formula
p0 ↔ (X � p1 ∨ ♦p1)

where Q = {0, 1, 2, 3}, Σ = 2AP , AP = {p0, p1}, and q0 = 0.

2.4 Related Work

The research most closely related to ours is presented in [3] where the authors
describe a methodology for online testing of Java classes. Their key technique is
to exploit a monitor derived from LTL specifications to check conformance of the
system to stated requirements, with a focus on safety properties. In order to com-
pare this mehodology with our approach, we reimplemented the idea presented
in [3], making it applicable to any black-box system and not just Java classes.
Another work related to ours is presented in [19] where the authors describe a
methodology for specification based testing of black-box systems. They assume
that the specification of the system is given as a non-blocking input/output timed
automaton, and the system itself—whose model need not to be known—is also a
timed automaton. The two main differences between their methodology and ours
are (i) the capability of dealing with real-time requirements and (ii) the form of
the specification: ours is “declarative”, in the form of a set of LTL requirements,
whereas theirs is “operational” in the form of an automaton. We thus incur into
one additional step, i.e., extracting an automaton from the requirements, after
which the two methodologies proceed in a similar way. However, given the differ-
ent form and expressivity of the requirements, a direct comparison is not easily
feasible, and might be even misleading. More recently in [5], another approach
based on timed automata to specify input signals constraints has been proposed.
Also this approach bears some similarity with ours and with that of [19], but in
our opinion it is not directly comparable, at least in the settings that we consider
for our experimental analisys.

Other research which is closely related to ours appears in a series of
papers [27,29,30] where the authors present a test-case generation methodol-
ogy that (i) translates LTL requirements into Generalized Büchi Automata, (ii)
3 Fired with command line ltl2tgba -MD -f “p0 <−> (X G p1 | ! F p1)”.

Automated Requirements-Based Testing of Black-Box Reactive Systems 159

builds trap properties from them—using different criteria—and (iii) performs
model checking of negated trap properties against the system model in order to
extract test cases. The main difference with our work is that such methodology
relies on a model of the system under testing, a model that must be verified
against the system specification. Failing to do so, may generate conflicting tests,
i.e., a test which fulfills a requirement, and violates another. To the extent of
our knowledge there is no other recent work on formally-grounded methods for
requirement based testing, while there is some not-so-recent work mentioning
conformance testing to specification, such as, for example [17,18,26]. However,
in these works specifications are mostly “operational” in the form, e.g., of finite
state machines and thus a direct comparison with our methodology is not pos-
sible.

Fig. 2. The main workflow of our approach.

3 Automatic Test Case Generation from LTL
Specification

In order to test black-box systems, our approach adopts the workflow presented
in Fig. 2. We assume that the specification is composed of a list of LTL formu-
las, the declaration of the set I of input propositions, and the set O of output
propositions such that I ∪ O = AP and I ∩ O = ∅. The “Test Generator”
pipeline in Fig. 2 has the goal to produce a set of valid tests to execute on the
system under test (SUT). The pipeline comprises four components:

– Parser reads the input specification, creates the intermediate data structures
and builds the conjunction of requirements.

– Automata Builder builds a Büchi or equivalent automaton representation of
the input specification.

– Input Generator chooses which inputs to execute on the SUT.
– Test Oracle evaluates the output produced by the SUT and checks if it satisfies

the specifications.

160 M. Narizzano et al.

Testing Environment is responsible for orchestrating the interaction between the
components. It queries Input Generator for new inputs to test and it executes
them on the SUT. Testing Environment collects the output and passes it to Test
Oracle for evaluation. If the test is complete, Testing Environment stores the final
verdict and resets the environment to start a new test. Moreover, the Test Oracle
provides to the Input Generator the set of possible states in which the automaton
can currently be, given the executed trace. In the following, we present each step
of our implementation in more detail.

3.1 Requirements and Automata Processing

The input of the test generator algorithm is a set R = {φ1, . . . , φn} of LTL
formulas along with the list of input and output variables. The parser reads the
input formulas as a conjunction Φ = φ1 ∧ · · · ∧ φn to build the correspond-
ing automaton. We rely on spot [13] to perform the construction of the Büchi
automaton represented as a directed graph. Before test generation starts, we
preprocess the automaton by expanding the edges where spot groups different
equivalent assignments to move from one state another, to obtain exactly one
assignment for each edge. During preprocessing, variables are omitted if they
are not relevant for a particular transition, e.g., if the transition is enabled inde-
pendently from their value. In such cases, we set the input variables to false by
default, while we leave the outputs unchanged. This is because we want to have
a fully defined and deterministic input, but we do not want to impose additional
constraints that are not specified by the requirements on the outputs. Other
choices are possible; for example, one could set the undefined inputs randomly
or could copy the value of such variables from previous assignments, if any.

3.2 Test Oracle

The aim of the test oracle is to decide if a trace τ , composed of input and
output variables, is correct with respect to the given LTL specification Φ. A more
permissive check, often considered for runtime monitoring, consists in verifying
that τ is a valid prefix of the language Words(Φ). This can be done by checking
that there exists a run induced by τ on the automaton AΦ, or, equivalently, using
monitors. This kind of check is useful to identify violations of safety properties,
but it is ineffective for liveness ones, even for the co-safety subclass. For example,
we cannnot detect violations of the formula φ = ♦ a with a monitor, because
every prefix is valid as long as the proposition a becomes true eventually. In order
to solve this issue, a number of different LTL semantics for finite traces have been
proposed, such as FLTL [21], LTL∓ [14], LTL3 [7] and LTL-RV [8]. In [6] the
authors propose a counting semantics making predictions based on the number of
steps necessary to witness the satisfaction or violation of a formula. Evaluations
under such semantics can range from a 2-valued verdict – namely True (�) or
False (⊥) – to a 5-value one; True (�), Presumably True (�P), Inconclusive
(?), Presumably False (⊥P) and False (⊥). The choice of the semantics defines
the specific kind of conformance to the specification adopted and implemented

Automated Requirements-Based Testing of Black-Box Reactive Systems 161

by the test oracle. In the following, we rely on the FLTL semantics, formalized
below in Definition 9—for a discussion of different semantics, we refer the reader
to [8].

Definition 9. Given a finite word (or trace) τ of length n and an FLTL formula
φ, τ(= τ, 0) satisfies φ, denoted as τ |= φ, under the following conditions (s.t.
0 ≤ i < n):

τ, i |= p ∈ AP iff a ∈ τ [i]
τ, i |= ¬φ iff τ, i �|= φ
τ, i |= φ1 ∧ φ2 iff τ, i |= φ1 and τ, i |= φ2

τ, i |= X φ iff (i + 1 < n) and τ, i + 1 |= φ
τ, i |= Nφ iff (i + 1 ≥ n) or τ, i + 1 |= φ
τ, i |= φ1 U φ2 iff ∃i ≤ j < n.(τ, j |= φ2 ∧ ∀i ≤ m < j.(τ,m |= φ1))
τ, i |= ♦φ iff ∃i ≤ j < n.(τ, j |= φ)
τ, i |= �φ iff ∀i ≤ j < n.(τ, j |= φ)

Regarding the boolean operators, FLTL semantics coincides with the stan-
dard LTL semantics on infinite words. However, with temporal operators, such
as X and U , there is a difference concerning the maximum length of the word. In
particular, the semantics distinguishes between a strong next operator X , which
require a next time step to exists, and a weak version N , which it is always
satisfied at the last step of a trace. In our requirements, however, we only make
use of the strong variant. In our approach, the FLTL oracle is implemented on
an automaton and traces are checked directly on the generated Büchi Automa.
We posit that every trace τ ending in an acceptance state q∗ of the Automata
AΦ, also satisfies the formula Φ from which the automaton is built.

3.3 Input Generator

The main idea behind the generation of input sequences for testing the SUT
consists in exploring different paths of the automaton AΦ that represents the
specification. Given a choice of (i) an exploration strategy to prioritize paths
and (ii) a termination condition to end the search, we obtain our algorithm
Guided Depth First Search (GDFS) presented in 1. As the name suggests, it is
a variant of the classical depth-first search algorithm on directed graphs.

The algorithm takes as input the automaton AΦ, the interval kmin and kmax,
i.e., the minimum and the maximum length of each trace, the oracle object and
the environment env object. The algorithm starts with the initialization of the
visitCounter map, that counts how many times an edge has been explored (lines
2–5). Notice that only the outgoing edges from the initial state are initialized,
while the other ones are incrementally added during the exploration (lines 11–
13). The algorithm terminates when all the edges in visitCounter have been
visited at least once. At the beginning of each test, the trace τ is initialized
to an empty word and the current state sc is initialized to the initial state of
the automaton (lines 7–8). Then the enviroment is reset to start at the initial
state (line 9). The test is computed by iteratively choosing an edge (line 14),

162 M. Narizzano et al.

Algorithm 1. Guided Depth First Search
1: function GDFS(AΦ, kmin, kmax, oracle, env)
2: visitCounter ← emptyMap()
3: for e ∈ AΦ.outgoingEdges(AΦ.initState) do
4: visitCounter[e] ← 0
5: end for
6: while ∃e ∈ visitCounter.(visitCounter[e] == 0) do
7: τ ← {}
8: sc ← AΦ.initState
9: env.reset()

10: while oracle.validPrefix(τ) ∧ |τ | < kmax do
11: for e ∈ AΦ.outgoingEdges(sc) ∧ e /∈ visitCounter do
12: visitCounter[e] ← 0
13: end for
14: e ← selectNextEdge(AΦ, sc, visitCounter)
15: i ← getInput(e)
16: for e ∈ AΦ.outgoingEdges(sc) ∧ getInput(e) == i do
17: visitCounter[e] ← visitCounter[e] + 1
18: end for
19: o ← env.performAction(i)
20: sc ← getSuccessor(AΦ, sc, i ∪ o)
21: τ.append(i ∪ o)
22: if |τ | ≥ kmin ∧ sc ∈ AΦ.acceptanceStates then
23: break
24: end if
25: end while
26: res ← oracle.evaluate(τ)
27: env.addTest(τ, res)
28: end while
29: end function

extracting the input on its label (line 15), executing it on the SUT by means of
the env object (line 19) and using the output to choose the successor state, if any,
and to build the trace τ (lines 20–21). The function selectNextEdge chooses
the next state to execute by selecting the edge with less visits so far. In case of
multiple edges with the same score, it sorts them with an heuristics that takes
into account the distance from the nearest acceptance state and the degree of the
target state. Moreover, the visitCounter is updated after each choice (lines 16–
18) by increasing the counter of all edges leaving sc that present the input i. This
is a small optimization to reduce the number of steps necessary to terminate,
because many edges could produce the same input but expect different accepted
outputs. From an input point of view, these edges are equivalent, but only one
of them will be traversed, depending on the produced output. Termination of a
test occurs exactly when one of the following three cases is true: (i) τ is no more
a valid prefix of L(AΦ) and therefore the test failed; (ii) the length τ reached
the maximum length kmax; (iii) the length of τ is greater than kmin and the

Automated Requirements-Based Testing of Black-Box Reactive Systems 163

exploration reached an acceptance state. At the end of each test, the oracle gives
its final verdict and the result is stored in the env object (lines 26–27).

4 Experimental Analysis

We present the results of three experiments4 involving the framework previously
introduced. In the first one, we aim to assess the quality of the generated test
suite involving a set of benchmarks borrowed by the LTL Track of the Reac-
tive Synthesis Competition 20185 (SYNTCOMP 2018). The second experiment
aims to compare the effectiveness of our approach with respect to model-based
strategies; in order to do that, we consider the use case of an Adaptive Cruise
Control System made available in [2] and we compare our algorithm with state-
of-the-art model-based approaches when it comes to spotting erroneous mutants.
Finally, our last experiment aims to evaluate the scalability of our approach in
a real world use case. So, we consider a set of requirements from the design of
an embedded controller for a robotic manipulator used in the context of the EU
project CERBERO6 [22,24]. The experiments described in the following ran on
a workstation equipped with an Intel Xeon E31245 @ 3.30 GHz CPU and 32 GB
RAM running Lubuntu 18.10 64bits. For all the experiments, we granted a time
limit of 600 CPU seconds (10 min) and a memory limit of 30 GBs.

4.1 Syntcomp Benchmarks

The set of benchmarks we consider is the one provided for the LTL Track of the
Reactive Synthesis Competition 2018. We first translate the TLSF [16] specifi-
cations into equivalent LTL ones accepted by our tool. Note that we do not use
SyFCo, a tool for manipulating and transforming TLSF specifications in other
existing specification formats for synthesis, because we handle ASSUME formu-
lae in a different way. In particular, SyFCo would translate ASSUME formulae
are as a precondition (left-hand side of an implication) and the ASSERT and
GUARANTEE formulae aspostconditions (right-hand side of an implication).
Therefore, if an ASSUME formula is violated, the system is not required to
satisfy the given requirements. This behavior would lead to many useless tests,
because whenever an assumption is falsified during the test execution, the spec-
ification would be trivially satisfied and no constraint would be enforced on
the output. In order to solve this problem, we require the ASSUME part to be
satisfied together with the ASSERT and GUARANTEE part, i.e., we replace
implication with conjuction. We refer the reader to [16] for more details on the
standard translation from TLSF to LTL. We exclude benchmarks whose output
assignments appear in the ASSUME part of the specification. This is because,
as explained before, we require the assumptions to hold during the execution of
the test, but assumptions containing outputs can always be falsified, thus failing
4 All benchmarks are available at https://gitlab.sagelab.it/sage/benchmarks-tests.
5 http://www.syntcomp.org/.
6 http://cerbero-h2020.eu.

https://gitlab.sagelab.it/sage/benchmarks-tests
http://www.syntcomp.org/
http://cerbero-h2020.eu

164 M. Narizzano et al.

the test. We sysntesize Mealy machines for the specifications with Strix [23],
the winner of the SYNTCOMP 2018 competition, and we exclude benchmarks
for which Strix times out in 600 CPU seconds. For each synthesized Mealy
machine, we compute 100 mutants randomly applying one of the following rules:

– change the target state of a random transition to a different one;
– flip the output value of a variable on a random transition, namely setting it

to false if it was true and vice-versa.

We apply only one mutation per mutant because the synthesized models are
usually small in size and one variation is often enough to expose a violation of
the specification. However, some of the resulting mutants may still be correct
with respect to the corresponding specification. At the end of this process we have
128 different benchmarks, each of those with 100 mutants. In the experiment,
we compare the results obtained with 5 different algorithms. GDFS-1, GDFS-3
and GDFS-5 are the algorithm described in Sect. 3 with kmin set to 1, 3 and 5,
respectively. For comparison purpose, we also re-implemented, – and generalized
to fit our framework – the algorithm presented in [3]. Briefly, the algorithm
traverses the monitor automaton of the specification during the test execution,
and stops when a coverage criteria is fulfilled. A test is concluded either when an
objective is reached or when the maximum length kmax of the trace is reached.
In [3] two strategies are proposed, namely Random Walk (RW) and Guided Walk
(GW) and we implemented and tested both of them. As for the coverage criteria,
we implemented what they call Atomic Proposition Coverage (APC), i.e., each
atomic proposition on each transition of the monitor must be covered. For each
algorithm we set kmax equal to 100 and we stop the execution as soon as a test
fails and the mutant is killed. Notice that 600 CPU seconds are alloted to each
benchmark, including automata processing and evaluation of all mutants.

Figure 3 (left) shows the number of mutants killed per benchmark by each
algorithm, ranging from 0 to 100. Figure 3 (right) shows the average number
of steps executed, namely the sum of the length of each test, averaged over
the mutants. In both charts, the abscissa represents the number of benchmarks,
while the ordinate shows the number of mutants killed (left) and the number of
steps executed (right). Notice that, since the results of RW and GW can vary
due to non-deterministic behaviors, we execute the test 3 times and we report
the median value as reference for these two algorithms. The results reveal that
GDFS-5 clearly outperform all the other algorithms in terms of total amount of
mutants killed, and that the number of executed steps is only slightly higher than
GDFS-1 and GDFS-3. However, only for two benchmarks all the 100 mutants
have been killed. Moreover, in 25 cases it did not kill any mutant, 15 of which due
to timeouts. Regarding RW and GW, they both revealed totally ineffective for
73 of the 129 benchmarks, although only 2 timeouts occurred. However, looking
at Fig. 3 (right) we notice that in 59 of these benchmarks, the two algorithms
did not perform any testing at all. This phenomenon is due to the nature of the
benchmarks involved, where the specification only contains liveness properties
and the monitor is a single state automaton accepting all prefixes.

Automated Requirements-Based Testing of Black-Box Reactive Systems 165

Fig. 3. Total amount of mutants killed (left) and average number of steps (right)
computed by the considered algorithms in the set of SYNTCOMP 2018 benchmarks.

Table 1. Experimental results on the ACC use case.

RC AC UFC GDFS-1 GDFS-3 GDFS-5

Number of test cases 6 7 18 26 4912 2597

Branch coverage (%) 78.3 78.3 86.7 45.0 70.0 71.7

Number of killed mutants 488 488 488 414 480 480

Killed mutants (%) 93.1 93.1 93.1 79.0 91.6 91.6

4.2 Adaptive Cruise Control

In our second experiment we consider the Adaptive Cruise Control (ACC) pro-
totype implemented in [2]. The ACC system adjusts the current velocity of the
vehicle towards a target cruise velocity defined by driver. If the vehicle gets
too close to the forward vehicle, the ACC system must adjust the current dis-
tance between the two and maintain a certain safety distance. Additionally, the
driver can intervene by: (1) activating the system via an ACC button; (2) deac-
tivating the system via the ACC button; and (3) deactivating the system by
braking or accelerating the car. The authors of [2] also generated test cases from
LTL requirements using three different requirements coverage criteria: require-
ments coverage (RC), antecedent coverage (AC), and unique first cause cover-
age (UFC). Tests are generated with a model-based generation strategy: trap-
properties are built from requirements, and a counterexample is produced with
a model checker. The algorithms are evaluated with 524 mutants of the correct
implementation.

The goal of the experiment here described is to compare the performance of
our algorithm with respect to model-based techniques that make explicit use of a
model to generate test cases. We modified slightly the set of requirements, reduc-
ing numerical comparisons and enums (available in the NuSMV [12] models used
in [2]) to boolean variables. This is a mere syntactic variation to represents LTL
formulae in the default syntax as described in Sect. 2.2. The resulting specifica-
tion is composed of 12 requirements, 6 input and 10 output variables. The results

166 M. Narizzano et al.

are depicted in Table 1. In order to ease the comparison with the model-based
approach, we also report the results from [2].

The results show that the GDFS algorithm performances are comparable to
the model-based algorithms, with a difference of only 8 mutants (1.5% of the
total) for kmin equal 3 or 5, at the expense of many more tests. Notice however
that the test generation and execution is still quite small; it takes about 1 s to run
GDFS-1, 11 s for GDFS-3 and 5 s for GDFS-5. Moreover, the whole test suite is
executed only if all tests succeed, but if a failure is detected it can terminate much
earlier. In the case of GDFS-5, for example, the average number of tests executed
per mutant is 329, much lower than the test suite size (2597). However, despite
the large test suite, GDFS reaches a lower branch coverage than the model-
based counterparts, stopping at 71.7%. Also notice that, in this context, with all
requirements being safety properties, the RW algorithm described in the previous
experiment performs well, achieving similar results to GDFS-5 (although with
some variation due to randomness). These results show that the black-box testing
with the framework presented in Sect. 3 can be almost as effective as model-based
techniques, where more manual work is required to model the system. A final
remark on the kmin and kmax parameters of the GDFS algorithm is in order.
As shown in Table 1, kmin plays an important role in the test suite size and
performance. In our experience, the longer the test, the more the automaton is
covered and the less transitions close to the initial state are repeated. Similarly,
also kmax can influence a test suite size and performance: an excessively small
value could lead to some false positive tests, while an excessively large value
could produce unnecessarily long tests before declaring them failed. However,
the generated test suite depends not only on the algorithm and the specification,
but also on the SUT behavior. The optimal values of such parameters is context
dependent, and may require some fine tuning.

4.3 Robotic Manipulator

Our last experiment considers a set of requirements from the design of an embed-
ded controller for a robotic manipulator. The controller should direct a properly
initialized robotic arm—and related vision system—to look for an object placed
in a given position and move to such position in order to grab the object; once
grabbed, the object has to be moved and released into the bucket without touch-
ing it. The robot must stop also in the case of an unintended collision with other
objects or with the robot itself—collisions can be detected using torque esti-
mation from current sensors placed in the joints. Finally, if a general alarm is
detected, e.g., by the interaction with a human supervisor, the robot must stop
as soon as possible. The manipulator is a 4 degrees-of-freedom Trossen Robotics
WidowX arm7 equipped with a gripper. The design of the embedded controller
is part of the activities related to the “Self-Healing System for Planetary Explo-
ration” use case in the context of the EU project CERBERO. In this case the
specification is composed of 31 requirements, 3 inputs and 11 outputs. The SUT

7 http://www.trossenrobotics.com/widowxrobotarm.

http://www.trossenrobotics.com/widowxrobotarm

Automated Requirements-Based Testing of Black-Box Reactive Systems 167

is implemented as an smv model. With GDFS-5 (kmin = 5 and kmax = 30), we
obtain 1441 tests and a total of 12867 steps executed in 1171 s. At each step,
NuSMV [12] is called in order to determine the evolution of the system. Then, we
manually inject faults by removing some constraints in the guards (forcing the
system to evolve from one state to another) or by modifying value assignments
of some variables. At the end, we obtain 10 different NuSMV faulty models. We
show the results of this analysis in Table 2. First, we report that a failed test
has been detected in all considered cases. Looking at the Table, we can observe
that, for each bugged system, a small number of tests is necessary to discover
the failure. Therefore, in most cases, it is not necessary to perform a complete
exploration of the automaton and an early stopping strategy can save substantial
time when debugging an application.

Table 2. Fault-Injection results on the robotic manipulator use case.

Injection # Tests # Steps Time(s)

1 1 2 7.64

2 2 14 8.61

3 2 14 8.74

4 1 2 7.75

5 1 7 8.15

6 4 25 8.61

7 56 502 25.23

8 1 3 8.15

9 1 6 7.84

10 2 10 8.17

5 Conclusions

In this paper, we have described a new approach to conformance testing of black-
box reactive systems. We evaluated our approach across three different exper-
imental settings. In the first setting we synthesized a set of benchmarks taken
from the SYNTCOMP 2018 competition and we showed that our approach is
better at finding mutants than (a generalization of) two different algorithms
presented in [3]. In the second setting, we showed that our approach compares
favorably with state-of-the-art model-based techniques. Finally, in the third set-
ting we tested a controller for a robotic manipulator modeled in smv and we
showed that our approach is able to find some manually injected faults. As future
work, we plan to (i) extend the framework with more test oracles and exploration
strategies and (ii) increase the input language expressiveness with the addition
of numerical constraints. The implementation of our approach is freely available
in the SpecPro8 Java library.
8 https://gitlab.sagelab.it/sage/SpecPro.

https://gitlab.sagelab.it/sage/SpecPro

168 M. Narizzano et al.

Acknowledgments. The research of Luca Pulina and Simone Vuotto is part of
the FitOptiVis project funded by the ECSEL Joint Undertaking under grant num-
ber H2020-ECSEL-2017-2-783162. The research of Luca Pulina has been also par-
tially funded by the ECSEL JU Project COMP4DRONES and the Sardinian Regional
Projects PROSSIMO (POR FESR Sardegna 2014/20-ASSE I).

References

1. Andrews, J.H., Briand, L.C., Labiche, Y., Namin, A.S.: Using mutation analysis
for assessing and comparing testing coverage criteria. IEEE Trans. Softw. Eng.
32(8), 608–624 (2006)

2. Aniculaesei, A., Howar, F., Denecke, P., Rausch, A.: Automated generation of
requirements-based test cases for an adaptive cruise control system. In: 2018 IEEE
Workshop on Validation, Analysis and Evolution of Software Tests (VST), pp.
11–15. IEEE (2018)

3. Arcaini, P., Gargantini, A., Riccobene, E.: Online testing of LTL properties for java
code. In: Bertacco, V., Legay, A. (eds.) HVC 2013. LNCS, vol. 8244, pp. 95–111.
Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03077-7 7

4. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT press, Cambridge
(2008)

5. Barbot, B., Basset, N., Dang, T.: Generation of signals under temporal constraints
for CPS testing. In: Badger, J.M., Rozier, K.Y. (eds.) NFM 2019. LNCS, vol. 11460,
pp. 54–70. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20652-9 4

6. Bartocci, E., Bloem, R., Nickovic, D., Roeck, F.: A counting semantics for mon-
itoring LTL specifications over finite traces. In: Chockler, H., Weissenbacher, G.
(eds.) CAV 2018. LNCS, vol. 10981, pp. 547–564. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-96145-3 29

7. Bauer, A., Leucker, M., Schallhart, C.: Monitoring of real-time properties. In:
Arun-Kumar, S., Garg, N. (eds.) FSTTCS 2006. LNCS, vol. 4337, pp. 260–272.
Springer, Heidelberg (2006). https://doi.org/10.1007/11944836 25

8. Bauer, A., Leucker, M., Schallhart, C.: Comparing LTL semantics for runtime
verification. J. Logic Comput. 20(3), 651–674 (2010)

9. Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for LTL and TLTL.
ACM Trans. Softw. Eng. Methodol. (TOSEM) 20(4), 14 (2011)

10. Bernot, G., Gaudel, M.C., Marre, B.: Software testing based on formal specifica-
tions: a theory and a tool. Softw. Eng. J. 6(6), 387–405 (1991)

11. Burnstein, I.: Practical Software Testing: A Process-oriented Approach. Springer,
Heidelberg (2006)

12. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R., Tacchella, A.: NuSMV 2: an opensource tool for symbolic model
checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp.
359–364. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45657-0 29

13. Duret-Lutz, A., Lewkowicz, A., Fauchille, A., Michaud, T., Renault, É., Xu, L.:
Spot 2.0—a framework for LTL and ω-automata manipulation. In: Artho, C.,
Legay, A., Peled, D. (eds.) ATVA 2016. LNCS, vol. 9938, pp. 122–129. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-46520-3 8

14. Eisner, C., Fisman, D., Havlicek, J., Lustig, Y., McIsaac, A., Van Campenhout, D.:
Reasoning with temporal logic on truncated paths. In: Hunt, W.A., Somenzi, F.
(eds.) CAV 2003. LNCS, vol. 2725, pp. 27–39. Springer, Heidelberg (2003). https://
doi.org/10.1007/978-3-540-45069-6 3

https://doi.org/10.1007/978-3-319-03077-7_7
https://doi.org/10.1007/978-3-030-20652-9_4
https://doi.org/10.1007/978-3-319-96145-3_29
https://doi.org/10.1007/978-3-319-96145-3_29
https://doi.org/10.1007/11944836_25
https://doi.org/10.1007/3-540-45657-0_29
https://doi.org/10.1007/978-3-319-46520-3_8
https://doi.org/10.1007/978-3-540-45069-6_3
https://doi.org/10.1007/978-3-540-45069-6_3

Automated Requirements-Based Testing of Black-Box Reactive Systems 169

15. Hsueh, M.C., Tsai, T.K., Iyer, R.K.: Fault injection techniques and tools. Computer
30(4), 75–82 (1997)

16. Jacobs, S., Klein, F., Schirmer, S.: A high-level LTL synthesis format: Tlsf v1. 1.
arXiv preprint arXiv:1604.02284 (2016)

17. Jard, C., Jéron, T.: TGV: theory, principles and algorithms. Int. J. Softw. Tools
Technol. Transfer 7(4), 297–315 (2005)

18. Koch, B., Grabowski, J., Hogrefe, D., Schmitt, M.: Autolink-a tool for automatic
test generation from SDL specifications. In: Proceedings. 2nd IEEE Workshop on
Industrial Strength Formal Specification Techniques, pp. 114–125. IEEE (1998)

19. Krichen, M., Tripakis, S.: Black-box conformance testing for real-time systems. In:
Graf, S., Mounier, L. (eds.) SPIN 2004. LNCS, vol. 2989, pp. 109–126. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-24732-6 8

20. Li, J., Conradi, R., Bunse, C., Torchiano, M., Slyngstad, O.P.N., Morisio, M.:
Development with off-the-shelf components: 10 facts. IEEE Softw. 26(2), 80–87
(2009)

21. Manna, Z., Pnueli, A.: Temporal Verification of Reactive Systems: Safety. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-1-4612-4222-2

22. Masin, M., Palumbo, F., Myrhaug, H., de Oliveira Filho, J., Pastena, M., Pelcat,
M., Raffo, L., Regazzoni, F., Sanchez, A., Toffetti, A., et al.: Cross-layer design of
reconfigurable cyber-physical systems. In: Proceedings of the Conference on Design,
Automation & Test in Europe, pp. 740–745. European Design and Automation
Association (2017)

23. Luttenberger, M., Meyer, P.J., Sickert, S.: Strix (2018). https://strix.model.in.tum.
de/. Accessed 27 June 2019

24. Palumbo, F., et al.: CERBERO: cross-layer model-based framework for multi-
objective design of reconfigurable systems in uncertain hybrid environments:
Invited paper: CERBERO teams from UniSS, UniCA, IBM research, TASE, INSA-
Rennes, UPM, USI, Abinsula, Ambiesense, TNO, S&T, CRF. In: Proceedings of
the 16th ACM International Conference on Computing Frontiers, pp. 320–325.
ACM (2019)

25. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foun-
dations of Computer Science, 1977, pp. 46–57. IEEE (1977)

26. Schmitt, M., Ebner, M., Grabowski, J.: Test generation with autolink and test
composer. In: Proceedings of 2nd Workshop of the SDL Forum Society on SDL
and MSC-SAM, vol. 2000 (2000)

27. Tan, L., Sokolsky, O., Lee, I.: Specification-based testing with linear temporal logic.
In: Conference on Information Reuse and Integration, pp. 483–498 (2004)

28. Utting, M., Legeard, B.: Practical Model-Based Testing: A Tools Approach. Mor-
gan Kaufmann Publishers Inc., San Francisco (2007)

29. Zeng, B., Tan, L.: Test reactive systems with Büchi automata: acceptance con-
dition coverage criteria and performance evaluation. In: 2015 IEEE International
Conference on Information Reuse and Integration, pp. 380–387. IEEE (2015)

30. Zeng, B., Tan, L.: Test reactive systems with Büchi-automaton-based temporal
requirements. In: Bouabana-Tebibel, T., Rubin, S.H. (eds.) Theoretical Informa-
tion Reuse and Integration. AISC, vol. 446, pp. 31–57. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-31311-5 2

http://arxiv.org/abs/1604.02284
https://doi.org/10.1007/978-3-540-24732-6_8
https://doi.org/10.1007/978-1-4612-4222-2
https://strix.model.in.tum.de/
https://strix.model.in.tum.de/
https://doi.org/10.1007/978-3-319-31311-5_2

Formal Verification of Parallel Prefix Sum

Mohsen Safari1(B), Wytse Oortwijn2, Sebastiaan Joosten1,
and Marieke Huisman1

1 Formal Methods and Tools, University of Twente, Enschede, The Netherlands
{m.safari,s.j.c.joosten,m.huisman}@utwente.nl

2 Department of Computer Science, ETH Zurich, Zurich, Switzerland
woortwijn@inf.ethz.ch

Abstract. With the advent of dedicated hardware for multicore pro-
gramming, parallel algorithms have become omnipresent. For example,
various algorithms have been proposed for the parallel computation of a
prefix sum in the literature. As the prefix sum is a basic building block
for many other multicore algorithms, such as sorting, its correctness is
of utmost importance. This means, the algorithm should be functionally
correct, and the implementation should be thread and memory safe.

In this paper, we use deductive program verification based on
permission-based separation logic, as supported by VerCors, to show
correctness of the two most frequently used parallel in-place prefix sum
algorithms for an arbitrary array size. Interestingly, the correctness proof
for the second algorithm reuses the auxiliary lemmas that we needed to
create the first proof. To the best of our knowledge, this paper is the
first tool-supported verification of functional correctness of the two paral-
lel in-place prefix sum algorithms which does not make any assumption
about the size of the input array.

Keywords: GPU verification · Deductive verification · Separation
logic

1 Introduction

With many emerging parallel computing paradigms and architectures, inves-
tigating how to parallelize algorithms to optimize performance has become an
active research area. General Purpose Graphics Processing Units (GPGPUs) are
a promising new parallel architecture, where many threads cooperate together,
executing the same instructions, but on different data.

One of the algorithms for which several parallel (GPU-based) implementa-
tions have been proposed is the prefix sum algorithm [4,9,15,20]. It takes an
array of integers and, for each element, it computes the sum of the previous ele-
ments. The prefix sum algorithm is used in many other algorithms, e.g. in radix
sort, quick sort, to solve recurrences, and in tridiagonal linear systems; see Blel-
loch [4]. Blelloch introduced a parallel in-place prefix sum algorithm and Harris
[12] adapted it for GPUs. Kogge-Stone [15] proposed a different parallel in-place
c© Springer Nature Switzerland AG 2020
R. Lee et al. (Eds.): NFM 2020, LNCS 12229, pp. 170–186, 2020.
https://doi.org/10.1007/978-3-030-55754-6_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-55754-6_10&domain=pdf
https://doi.org/10.1007/978-3-030-55754-6_10

Formal Verification of Parallel Prefix Sum 171

prefix sum algorithm and Horn [13] adapted it for GPUs. These two parallel
versions [4,15] are the most used in practice and are available as a primitive
operation in many libraries (e.g., AMD APP SDK1, NVIDIA CUDA SDK2).

The GPU-based implementations of these two algorithms are widely used,
even as a building block for other algorithms (e.g., sorting). Therefore, the cor-
rectness of these algorithms is of utmost importance. This means that the algo-
rithms must be memory and thread safe (i.e. free of data races), and that they
must be functionally correct, i.e. it actually produces the result we expect. Con-
cretely, in this case functional correctness means that the result must be the
prefix sum of the input. In general, proving functional correctness of parallel
programs is a difficult task. In particular, proving the functional correctness of
these two parallel prefix sum algorithms is challenging for several reasons. First,
both algorithms are in-place, i.e. we need to reason about values that are unsta-
ble and change during the algorithm. Second, the computational pattern of the
algorithms makes it complex to reason about the final result. Therefore, it is a
challenge to find suitable properties to relate the internal computation steps in
the algorithms to the final result. In particular, in Blelloch’s algorithm, there
are two independent, but closely related phases with different computation pat-
tern in each phase, which makes the verification harder. As a result, establishing
functional correctness of the two algorithms is non-trivial.

For the verification, we use deductive verification, a static approach that
does not require running the programs. Intermediate annotations are added to
capture the intermediate properties of the program. Then, using a proof system,
the annotated code is translated into proof obligations which are discharged to
an automated theorem prover; in our case Z3.

To prove memory safety and functional correctness of two parallel prefix
sum algorithms, we use VerCors [5], which is a verification tool for reasoning
about the correctness of concurrent programs. First, we show how to verify the
correctness of Blelloch’s algorithm. An important feature of our verification is
that it is a non-trivial example of how ghost code3 helps to reason about in-place
algorithms. Second, we show how we can verify a different parallel in-place prefix
sum algorithm, Kogge-Stone, using the same approach as the first verification.
This demonstrates that the verification setup introduced in this paper (approach,
operations and lemma) is not specific to this particular case study and can be
used in other verifications. To the best of our knowledge, this is the only tool-
supported verification of data race-freedom and functional correctness of the two
most used parallel prefix sum algorithms for any arbitrary size of input. Note
that none of the existing other approaches to analyse GPU applications is able to
verify similar properties. Most approaches are dynamic [11,17–19,21], and only
aim to find bugs. Other existing static verification techniques [3,10,14,16] either
require a bound on the input size, or they do not fully model all aspects of GPU

1 http://developer.amd.com/tools/heterogeneous-computing/amd-accelerated-para
llel-processing-app-sdk.

2 https://developer.nvidia.com/gpu-computing-sdk.
3 Ghost code is not part of the algorithm and is used purely for verification purposes.

http://developer.amd.com/tools/heterogeneous-computing/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools/heterogeneous-computing/amd-accelerated-parallel-processing-app-sdk
https://developer.nvidia.com/gpu-computing-sdk

172 M. Safari et al.

programming, such as the use of barriers. Furthermore, our work enables the
verification of other complicated parallel algorithms, such as stream compaction
and radix sort, that are built on top of the prefix sum algorithms.
Contributions. The main contributions of this paper are:

1. We show the parallel prefix sum algorithm by Blelloch is data race-free and
functionally correct for any arbitrary size of input, using deductive approach.

2. We show the lemmas used to verify the first algorithm are general enough to
prove data race-freedom and functional correctness of a different algorithm,
Kogge-Stone, for any arbitrary size of input.

Organization. Section 2 explains the necessary background, i.e., it introduces
VerCors, the two prefix sum algorithms verified in this paper, and their encoding
in VerCors. Section 3 and Sect. 4 describe how to specify and verify the correct-
ness of the prefix sum algorithms by Blelloch and Kogge-Stone, respectively.
Section 5 discusses related work and Sect. 6 concludes the paper.

2 Background

This section briefly describes VerCors and explains both parallel prefix sum algo-
rithms. In particular, it briefly discusses the VerCors verifier and its underlying
logic. We describe the prefix sum problem and then we explain the parallel algo-
rithms proposed by Blelloch and Kogge-Stone to solve this problem. In addition,
we discuss the pseudocode of the algorithms as we encoded in VerCors.

2.1 VerCors

VerCors is a verifier to specify and verify (concurrent and parallel) programs
written in a high-level language such as (subsets of) Java, C, OpenCL, OpenMP
and PVL, where PVL is VerCors’ internal language for prototyping new features.
VerCors can be used to verify memory safety (e.g., race freedom) and func-
tional correctness of programs. The program logic behind VerCors is based on
permission-based separation logic [1,7]. Therefore, the programs are annotated
with pre/post-conditions in permission-based separation logic [2,8]. Permissions
are used to capture which memory locations may be accessed by which threads.
Permissions are written as fractional values in the interval (0, 1] (cf. Boyland [8]):
any fraction in the interval (0, 1) indicates a read permission, while 1 indicates a
write permission. A write permission can be split into multiple read permissions
and read permissions can be added up, and transformed into a write permission
if they add up to 1. Blom et al. [6] show how to reason about GPU kernels
including barriers. We illustrate the logic to verify a GPU kernel by an example.

Formal Verification of Parallel Prefix Sum 173

List. 1. A simple annotated GPU program

1 /*@ context_everywhere array != NULL && array.length == size;

2 requires tid != 0 ==> Perm(array[tid-1], read);

3 requires tid == 0 ==> Perm(array[size-1], read);

4 ensures Perm(array[tid], 1);

5 ensures tid != 0 ==> array[tid] == \old(array[tid-1]);

6 ensures tid == 0 ==> array[tid] == \old(array[size-1]); @*/

7 __kernel void rightRotation(int array[], int size) {

8 int temp;

9 int tid = get_global_id(0); // get the index

10 if (tid != 0) { temp = array[tid-1]; } else { temp = array[size

-1]; }

11
12 /*@ requires (tid != 0 ==> Perm(array[tid-1], read)) **

13 (tid == 0 ==> Perm(array[size-1], read));

14 ensures Perm(array[tid], 1); @*/

15 barrier(CLK_GLOBAL_MEM_FENCE);

16 array[tid] = temp;

Verification Example. List 1 shows a specification of a simple kernel that
rotates the elements of an array to the right4. To specify permissions, we use
predicates Perm(L,π) where L is a heap location and π a fractional value in
the interval (0, 1]5. Preconditions and postconditions, keywords ’requires’ and
’ensures’, respectively (lines 2–6), should hold at the beginning and the end
of the function, respectively. The keyword ’context everywhere’ is used as an
invariant (line 1) that must hold throughout the function. As preconditions,
each thread has read permission to its left neighbor (except thread 0 which
has read permission to the last index) in lines 2–3. The postconditions indicate
each thread has write permission to its location (line 4) and the result of the
function as right rotation of all elements (lines 5–6). Each thread first reads its
left location (lines 10). Then it synchronizes in the barrier (line 15). When a
thread invokes a barrier, it has to fulfill the barrier preconditions, and then it
can assume the barrier postconditions. Additionally, it has to be shown that
the barrier only redistributes the resources that are available by the threads
upon entering the barrier. In this case, each thread gives up read permission on
its left location and obtains write permission on its own location (lines 12–14).
After that, each thread writes the value read before to its own location (line
16). Note that, we use && for logical conjunction (line 1) and ∗∗ as separating
conjunction in separation logic (lines 12–13). Moreover, the keyword \old is
used for an expression to refer to the value of that expression before entering a
function (lines 5–6). The OpenCL example is translated into the PVL language of
VerCors, using two parallel nested blocks. The outer block indicates the number
of workgroups and the inner one shows the number of threads per workgroup
(see [6] for more details). In this case study, we reason at the level of the PVL

4 We assume there is one workgroup and ’size’ threads inside it.
5 The keywords ’read’ and ’write’ can also be used instead of fractions in VerCors.

174 M. Safari et al.

Fig. 1. After the up-sweep phase (left) and the down-sweep phase (right) in Blelloch’s
algorithm (two arrows coming to a circle indicates summation and one arrow indicates
replacement, red color values show the effect of computations and circles with thick
border are indicators as in Algorithm 1). (Color figure online)

encoding directly, but it is straightforward to adapt this to the verification of
the OpenCL kernel.

2.2 Prefix Sum Algorithms

Given an array of integers, the prefix sum of the array is another array with the
same size such that each element is the summation of all previous elements. We
define an algorithm as an (inclusive) prefix sum if it satisfies the following:

– INPUT: An array Input of integers of size N .

– OUTPUT: An array Output of size N such that Output[i] =
i∑

t=0

Input[t] for
0 ≤ i < N .

In the exclusive prefix sum algorithm, where the ith element is excluded from
the summation, the output will be:

– OUTPUT: An array Output of size N such that Output[i] =
i−1∑

t=0

Input[t] for
0 ≤ i < N .

Blelloch’s Parallel Prefix Sum. Blelloch’s algorithm [4] consists of two
phases: up-sweep and down-sweep. Figure 1 illustrates both up and down-sweep
phases visually, and Algorithm 1 shows the encoding of the in-place algorithm
in VerCors. The up-sweep part in the figure corresponds to lines 2–8 of the
algorithm and the down-sweep part corresponds to lines 12–23. Therefore, each
iteration in the up/down phases in Algorithm 1 (lines 3–8/16–23) correspond to
different levels in Fig. 1. We suppose that at the beginning of Algorithm 1, the
input and output array have the same values. There is a variable, stride, which
initially is 1 (line 2) and it is updated in both phases (lines 8 and 23). In the
figure, the input values are at level 0 in the up-sweep phase. As we can see, in
each iteration of the up-sweep, each pair is summed up at each level. As a result,
the last element at the highest level is the summation of the input values. In the

Formal Verification of Parallel Prefix Sum 175

Algorithm 1. Blelloch’s Prefix Sum Algorithm
1: function exclusive prefixsum(int[] Input, int[] Output, int tid , int N)
2: int indicator = 2 × tid + 1; int stride = 1;
3: while stride < N do

4: if indicator < N && indicator ≥ stride then

5: Output [indicator] = Output [indicator] + Output [indicator − stride];

6: Barrier(tid);
7: indicator = 2 × indicator + 1;
8: stride = 2 × stride;

9:
10: Barrier(tid);
11:
12: indicator = N × tid + N - 1; stride = N / 2;
13: int temporary;
14: if indicator < N then

15: Output [indicator] = 0;

16: while stride ≥ 1 do

17: if indicator < N && indicator ≥ stride then

18: temporary = Output [indicator];
19: Output [indicator] = Output [indicator] + Output [indicator − stride];
20: Output [indicator − stride] = temporary;

21: Barrier(tid);
22: indicator = (indicator - 1) / 2;
23: stride = stride / 2;

down-sweep phase, we first set the last element to 0. Then, we use the partial
sums calculated from the up-sweep to compute the prefix sum of the input as
indicated at the lowest level in down-sweep. Note that in order to synchronize
threads at each level of both phases, a barrier is needed (lines 6 and 21). There is
also a barrier between up-sweep and down sweep (line 10). The main purpose of
having this barrier is for a specification to redistribute the threads permissions.

Kogge-Stone’s Parallel Prefix Sum. In contrast to Blelloch’s algorithm,
Kogge-Stone’s [15] algorithm consists of one phase. Algorithm 2 illustrates the
encoding and Fig. 2 illustrates the algorithm visually. The levels in the figure
correspond to lines 2–11 of the algorithm. In the figure, the lowest level are the
input values. As we can see, at each level, each thread (tid) sums up elements in
locations tid and tid − offset . Since threads need current values before updating,
in the algorithm, we use an auxiliary variable, temp, and a barrier (line 7). The
threads are synchronized at each level by another barrier (line 10). As a result,
at the highest level, where offset exceeds the length of the array, the values are
the prefix sum of the values in the input array.

176 M. Safari et al.

Fig. 2. Kogge-Stone’s prefix sum algorithm (two arrows coming to a circle indicates
summation and one arrow indicates replacement, red color values show the effect of
computations and circles with thick border show tid ≥ offset as in Algorithm 2). (Color
figure online)

Algorithm 2. Kogge-Stone’s Prefix Sum Algorithm
1: function inclusive prefixsum(int[] Input, int[] Output, int tid , int N)
2: int offset = 1; int temp;
3: while offset < N do

4: temp = Output [tid];
5: if tid ≥ offset then

6: temp = Output [tid − offset] + temp;

7: Barrier(tid);
8: if tid ≥ offset then

9: Output [tid] = temp;

10: Barrier(tid);
11: offset = 2 × offset;

3 Verification of Blelloch’s Algorithm

In this section, we explain how we verify Blelloch’s parallel prefix sum algorithm.
We first discuss how to prove data race-freedom and then functional correctness.
Instead of presenting the full specification, we explain the main ideas and veri-
fication steps by pictures and refer to Appendix A for the crucial annotations6.

3.1 Data Race-Freedom

To show that the algorithm is data race-free, we need to specify permissions
over resources that are shared among threads. Algorithm 1 has two arrays for
input and output. Thus, we specify how threads can read or write from these two
arrays. In the input array, each thread (tid) only needs read access to location
tid . The situation is more complicated for the output array. Figure 3 visualizes
the permission scheme of threads for the output array graphically. The red ele-
ments indicate the initial permissions for both phases. In the up-sweep, each

6 The source code is available at https://github.com/Safari1991/Prefixsum.

https://github.com/Safari1991/Prefixsum

Formal Verification of Parallel Prefix Sum 177

Fig. 3. Permission patterns for array of length 8: (left) up-sweep and (right) down
sweep phases of Blelloch’s algorithm (Wti indicates thread i has write permission, red
color indicates initial permissions of active threads, blue shows changes in permission
pattern and green shows lost permissions which assigned to thread 0. (Color figure
online)

thread needs write access to indicator and indicator − stride (line 5 in Algo-
rithm 1). Since initially, indicator and stride are 2 × tid + 1 and 1, respectively,
we specify write access for each thread to locations 2 × tid + 1 and 2 × tid ,
indicated by red color in Fig. 3 (left). Then, in each iteration, indicator and
stride are updated. Therefore, in the barrier of up-sweep (line 6), we change the
permissions according to the new values of indicator and stride, as shown in
blue.

Note that, in each iteration some threads lose permissions, since indicator
exceeds the array length (N). According to this scheme, at the end of up-sweep,
no threads have permissions left to access elements of the output array due
to indicator > N (blue color disappears). However, we need the same pattern
of permissions in down-sweep, and in the barrier between up and down sweep
(line 10), we cannot invent permissions, but we can only redistribute the current
permissions. To solve this, we specify that one random thread (thread 0) collects
the lost permissions in each iteration (indicated by green). As we can see, at the
end of up-sweep, thread 0 has write permission to all locations in the array.

In the down-sweep phase, Fig. 3 (right), we have the same permission pattern
in reverse direction. In down-sweep, thread 0 is the only one whose indicator
initially is in the bound of the output size (i.e, indicator is N × tid + N − 1).
Thus, initially, thread 0 has write access to indicator and indicator − stride
(indicated in red). Note that, at the beginning of this phase we update stride to
N/2. Thread 0 also has write permission for the rest of elements (indicated by
green color), since we need the permissions to redistribute them in the barrier
of down-sweep (line 21). As we can see, when we move down, the permission
scheme changes according to indicator and stride. In the end, each thread (tid)
has write permission to its own location (tid) of the output array. In this way
threads can safely compute the prefix sum in parallel.

178 M. Safari et al.

3.2 Functional Correctness

To verify functional correctness, we show that at the end of this algorithm,
the output array contains the prefix sum of the input array. Proving functional
correctness of this algorithm is particularly challenging because:

1. The algorithm is in-place; which means the elements change in each iteration.
2. There are two phases in the algorithm, each with different computations.
3. The intermediate steps are non-trivial, and non-trivial invariants have to be

proven to conclude that indeed the prefix sum is proven.

To overcome the above challenges, we keep track of the values in each iteration
of the algorithm. For this history of values, we use ghost variables (i.e., for each
iteration in both phases, we assign the current values of the output array to a
ghost variable of type sequence). Moreover, we need to specify invariants that
relate the computations in up-sweep and down-sweep. If we look at the only
values that change in Fig. 1 (red-colored values), we notice that in up-sweep
(left) the sum of those values equals the sum of the values in the input array in
each iteration. Further, in the down-sweep (right), the red values at each level
are the prefix sum of the red values at the corresponding level in the up-sweep.
Therefore, our general strategy to tackle the above challenges is:

1. Define different ghost variables in both up-sweep and down-sweep to keep a
history of values.

2. Define mathematical functions to update the ghost variables (according to
actual computations) in each iteration of the algorithm.

3. Prove functional correctness over the ghost variables using two invariants:
– In up-sweep, the sum of values that change in each iteration equals the sum
of the values in the input array.
– In down-sweep, the values that change at each level are the prefix sum of
the values that change at the corresponding level in up-sweep.

4. Relate the ghost variables to the actual arrays; i.e., prove that the elements
in the ghost variables capture the same elements as in the actual arrays.

Up-Sweep Ghost Variables. We go through the steps above to show func-
tional correctness of the algorithm. First, in the up-sweep phase, we define two
ghost variables: one to keep track of all values in each iteration as a full history
(f hist with type sequence of sequences), and one to keep history of the only
values that change as a partial history (p hist with type sequence of sequences).
We define two different ghost variables because p hist is used to show preser-
vation of the above two invariants, while f hist is used to prove that the ghost
variable in down-sweep is capturing the elements in the output array. Initially,
these two ghost variables contain the values in the input array.

Formal Verification of Parallel Prefix Sum 179

Fig. 4. Ghost variables: (left) Building f hist by applying Build full history to
f hist prev lvl , blue color indicates how value changes, (middle) Building p hist by
applying Build partial history to p hist prev lvl , colors show combination of each pair
and (right) creating down seq by applying p sum to p hist lvl . (Color figure online)

The next step is to define mathematical functions over these ghost vari-
ables to update them in the same way as the actual computations do over the
actual arrays. To update f hist in each iteration of up-sweep, we must add a
new sequence of current values in the output array to the chain of sequences in
f hist . Therefore, we define a Build full history function as shown in List 2. The
function takes the previous level in f hist , named as f hist prev lvl , the stride
and an integer i. The integer i, starts from 0 and increases up to the length of
f hist prev lvl , indicates the location of elements in f hist prev lvl to be updated.
The Build full history function goes through all elements and updates the ele-
ments if the condition (i%(2 × stride)) == (2 × stride − 1) && (i ≥ stride)
holds (lines 11–13), otherwise it keeps the elements unchanged (lines 14–15).
Note that, this is a recursive function that captures the same computation as
in the algorithm, but over the ghost variable. The postconditions (lines 2–8)
specify that the result is either the sum of two elements (according to stride) if
the condition holds (lines 3–5) or unchanged (lines 6–8) otherwise. By applying
this function (to f hist prev lvl), in each iteration of the algorithm, a full his-
tory of values is created like a matrix as sequence of sequences (Fig. 4 (left)). In
the figure, the underlined elements show the locations where the condition (in
Build full history) holds and the blue ones show how the values change accord-
ing to stride.

180 M. Safari et al.

List. 2. The Build full history function

1 /*@ requires stride > 0 && stride < |f hist prev lvl|;
2 ensures |\result| == |f hist prev lvl|-i;
3 ensures (\forall int j; j ≥0 && j <|\result|; ((i <|f hist prev lvl|) &&

4 ((i+j)≥stride) && (((i+j)%(2×stride)) == (2×stride-1))) ==>

5 \result[j] == f hist prev lvl[i+j] + f hist prev lvl[i+j-stride]);
6 ensures (\forall int j; j ≥0 && j <|\result|; ((i <|f hist prev lvl|) &&

7 (((i+j)<stride) || (((i+j)%(2×stride)) != (2×stride-1)))) ==>

8 \result[j] == f hist prev lvl[i+j]); @*/

9 static pure seq<int> Build full history(seq<int> f hist prev lvl, int stride,
10 int i) = i <|f hist prev lvl| ? (

11 ((i%(2×stride)) == (2×stride-1) && (i ≥ stride) ?

12 seq<int> {f hist prev lvl[i] + f hist prev lvl[i-stride]} +

13 Build full history(f hist prev lvl, stride, i+1) :

14 seq<int> {f hist prev lvl[i]} +

15 Build full history(f hist prev lvl, stride, i+1))) : seq<int> {};

To update p hist , which keeps only the values that change during the itera-
tions, we define a Build partial history function (see List 3). It takes the previous
sequence, p hist prev lvl , as an argument, and it creates a sequence that con-
tains the values that changed according to the actual computation by summin
up each pair of elements (lines 4–5). Note that, the function uses operations head
and tail, where head returns the first element of a sequence and tail returns
a new sequence by eliminating the first element. Figure 4 (middle) shows the
result of applying Build partial history to p hist prev lvl .

Down-Sweep Ghost Variables. Next, in down-sweep, we define a ghost vari-
able, down seq , as a sequence to keep the values that change only in the current
iteration. In this way, we can show that the values that change in down-sweep
are in fact the exclusive prefix sum of the values changed in up sweep in each
iteration. To update down seq in each iteration of down-sweep, we define a func-
tion, epsum (List 4), and we apply it to the corresponding level of p hist , shown
as p hist lvl in the function. The argument i is initially 0. Note that the intsum
operation sums all elements in a sequence and take(xs, i), returns the i first ele-
ments of a sequence xs. The epsum function calculates the exclusive prefix sum
for each element in p hist lvl and returns it as a sequence to update down seq .
As an example, Fig. 4 (right) shows how down seq is updated in each iteration.
As we can see, the elements in down seq are the exclusive prefix sum of the ele-
ments in p hist at each level. Hence, it is the exclusive prefix sum of the lowest
level which is the input array.

Formal Verification of Parallel Prefix Sum 181

Fig. 5. Relation between Output (left) and p hist (middle) according to active threads
(grey color) in the table (right): Output [indicator] == p hist [lvl − 1][2 × tid + 1] and
Output [indicator − stride] == p hist [lvl − 1][2 × tid] (lvl > 0).

List. 3. The Build partial history function

1 //@ requires |p hist prev lvl| ≥ 0;

2 static pure seq<int> Build partial history(seq<int> p hist prev lvl) =

3 1 < |p hist prev lvl| ?

4 seq<int> {head(p hist prev lvl) + head(tail(p hist prev lvl))} +

5 Build partial history(tail(tail(p hist prev lvl))) : p hist prev lvl;

List. 4. The epsum function

1 /*@ requires 0 ≤ i && i ≤ |p hist lvl|;
2 ensures |\result| == |p hist lvl|-i;

3 ensures (\forall int j; j ≥0 && j <|\result|;

4 \result[j] == intsum(take(p hist lvl, i+j))); @*/

5 static pure seq<int> epsum(seq<int> p hist lvl, int i) =

6 i <|p hist lvl| ? seq<int> {intsum(take(p hist lvl, i))} + epsum(

p hist lvl, i+1) :

7 seq<int> { };

Relating Ghost Variables and Concrete Variables. We proved functional
correctness over the ghost variables, but we need to prove it against the actual
arrays. Therefore, the last step is to relate them. First of all, It is trivial to
relate the levels in f hist to the output array, because of the postconditions in
List 2 (lines 2–8), but we should relate the output array and p hist . Figure 5
indicates the relationship between the output array and p hist , according to tid
and indicator , where gray colors (in the table) indicate the active threads in each
iteration. The loop of the algorithm starts from level 1. We update the values in
the output array according to the current values. Correspondingly, the values are
created in p hist according to the previous level. The indicator and stride are also
updated in each iteration. In the output array and p hist , the same colors belong
to one thread according to tid , indicator and stride. The invariants that we have
in each iteration of up-sweep is Output [indicator] == p hist [lvl − 1][2 × tid + 1]
and Output [indicator − stride] == p hist [lvl − 1][2 × tid]. To prove them as
loop invariants in VerCors, we need some smaller steps and prove a property:

182 M. Safari et al.

Fig. 6. Relation between the actual array, Output , (left) and the ghost variable,
down seq (middle) according to active threads (grey color) in the table (right).

Property 1. For any sequence xs:
∀i.0 ≤ i < |xs| → Build partial history(xs)[i] == xs[2 × i] + xs[2 × i + 1].

Using this property and the invariants, we can establish the relation between
the output array and p hist . The invariants that hold in each iteration of down-
sweep is Output [indicator] == down seq [tid] and Output [indicator − stride] ==
p hist [lvl][2 × tid] (see Fig. 6, for an example). Again, the gray colors indicate
the active threads and the same colors (in ghost and array) belong to one thread.
To prove the invariants in the tool, we first prove these two properties:

Property 2. For any sequence xs:
∀i.0 ≤ i < |xs|/2 → epsum(Build partial history(xs))[i] == epsum(xs)[2 × i].

Property 3. For any sequence xs:
∀i.0 ≤ i < |xs|/2 → epsum(xs)[2 × i + 1] == epsum(xs)[2 × i] + xs[2 × i].

As in up-sweep, by using the invariants, the two properties and several inter-
mediate small steps, we can establish the relation between down seq and the
output array. We refer to the implementation for further proof details.

4 Verification of Kogge-Stone’s Algorithm

This section explains the verification of Kogge-Stone’s parallel prefix sum algo-
rithm. We discuss how to verify this algorithm using the same approach as before.
Again, we first discuss data race-freedom and then functional correctness. We
only present the main ideas and refer to Appendix B for crucial annotations7.

4.1 Data Race-Freedom

To verify data race freedom of this algorithm, we need to specify permissions
over the output array. Figure 7 shows the permission pattern in each iteration.

7 The source code is available at https://github.com/Safari1991/Prefixsum.

https://github.com/Safari1991/Prefixsum

Formal Verification of Parallel Prefix Sum 183

Fig. 7. Permissions in Kogge-Stone’s algorithm; Rti,tj indicates read permission by
threads i and j, Wti indicates write permission by thread i, red color shows initial
permissions, blue/green show how the permissions change in the first/second barrier.
(Color figure online)

As in Algorithm 2, each thread (tid) first needs read permission to locations
tid and tid − offset (lines 4 and 6). Since offset initially is 1, each thread (tid)
needs read permission to its own (tid) and its left (tid − 1) locations as indicated
by the red color in Fig. 7. Then, in the first barrier (line 7), each thread gives
up read permissions and obtains write permission to its location to store the
results of the computation in line 9 (as shown in blue in Fig. 7). Finally, threads
reach the second barrier (line 10) and we change the permissions according to
the new value of offset for the next iteration. This is indicated in green in the
figure. This pattern is repeated by each iteration of the algorithm. At the end
of this algorithm, since offset is greater than all tids, each thread only has read
permission to its own location (tid).

4.2 Functional Correctness

Next, we briefly discuss how to verify functional correctness of the algorithm.
The difference between this algorithm and the previous one is that first, Kogge-
Stone is an inclusive prefix sum algorithm and second, there is only one phase.
Having one phase makes it easier to verify functional correctness, even though
this algorithm is in-place as well. We could reuse the functions and operations we
defined for the earlier verification. Since this algorithm is for an inclusive prefix
sum, first of all, we slightly change the definition of epsum to be an inclusive
prefix sum (ipsum). The strategy to verify this algorithm is the same as before,
i.e., we define a ghost variable to capture the elements in the output array and a
function to update this ghost variable in the same way as the actual computation
does. Then, we prove functional correctness over this ghost variable by using a
suitable property. Finally, we relate the ghost variable to the output array.

As we can see in Fig. 2, in each iteration, the values from index 0 up to
index offset are actually the inclusive prefix sum of the input array. We use this
property as a loop invariant to show that at the end of the algorithm, we have
the prefix sum of the input array. Thus, we define a ghost variable, temp seq ,

184 M. Safari et al.

and we update it inside the loop according to the partial prefixsum function in
List 5. This function captures the same computation as in the algorithm. We can
see from the postcondition of the function (lines 4–6 in List 5) that if index (and
the corresponding tid) is less than offset , then the second intsum returns 0, and
the first intsum returns the prefix sum up to index 8. Thus, in each iteration for
tid less than offset the result will be the prefix sum in temp seq . Therefore, in
the end, when offset is the length of the input (and output) array, all values in
the ghost variable are the prefix sum of the values in the input array.

List. 5. The partial prefixsum function

1 /*@ requires |input seq| ≥ 0 && index ≥ 0 && index ≤ |input seq|;

2 requires offset > 0 && offset ≤ 2×|input seq|;
3 ensures |\result| == |input seq| - index;

4 ensures (\forall int j; 0≤ j && j <|\result|; \result[j] ==

5 intsum(take(input seq, index+j+1)) -

6 intsum(take(input seq, index+j+1-offset))); @*/

7 static pure seq<int> partial prefixsum(seq<int> input seq, int index,
int offset) =

8 index < |input seq| ? seq<int> {intsum(take(input seq, index+1)) -

9 intsum(take(input seq, index+1-offset))} +

10 partial prefixsum(input seq, index+1, offset) : seq<int> { };

As we use offset in the function and from the postcondition that we defined,
VerCors can infer that in each iteration for tid less than offset , temp seq and
the output array have the same values (specified by a loop invariant). Thus, we
conclude that Kogge-Stone’s algorithm indeed computes the prefix sum.

5 Related Work

There are a few approaches to reason about GPGPU programs which mostly
focus on finding data races. In dynamic approach, programs are instrumented,
and then memory accesses are recorded by running them, trying to identify data
races (e.g., cuda-memcheck [18], Oclgrind [19] and GRace [21]). This is a simple
technique to apply, but since it depends on concrete inputs, it does not guarantee
the absence of data races. An improvement over this approach is dynamic sym-
bolic execution where concrete and symbolic (concolic) execution is used, such
as GKLEE [17] and KLEE-CL [11]. There are also several static approaches to
verify data race-freedom of GPGPU programs. In static approaches, we use logic
and theorem provers to guarantee the absence of data races. The key of this app-
roach is using invariants to prove data race-freedom. In addition to VerCors, tools
such as PUG [16] and GPUVerify [3] are based on this approach. Except VerCors
and VeriFast [14], none of these tools can reason about functional correctness
of parallel programs. VeriFast is a verification tool based on static approach to

8 Note that, the partial prefixsum is a recursive function. In lines 4–6, for the final
result, j is 0 and the parameter of take will be index + 1 , which means the first
index + 1 elements (i.e., starting from 0 it becomes up to element index).

Formal Verification of Parallel Prefix Sum 185

prove functional correctness of single-threaded and multithreaded C and Java
programs, but not able to reason about GPGPU programs.

The closest related work to our paper is by Chong et al. [10] where they ver-
ify data race-freedom and propose a method to verify functional correctness of
Blelloch’s and Kogge-Stone’s algorithm along with two other parallel prefix sum
algorithms for all inputs up to fixed sizes. They show that if a parallel prefix sum
algorithm is proven to be data race-free, then the correctness can be established
by generating one test case. Therefore, they use GPUVerify to prove data race-
freedom of 4 parallel prefix sum algorithms. Their approach is applicable for any
parallel prefix sum algorithm with other operations and types instead of sum-
mation and integers. Comparing VerCors to their tool, GPUVerify benefits from
more automation, while we need to specify the annotations manually. However,
since GPUVerify is based on model-checking approaches, to verify even data
race-freedom of GPU programs, the input size must be bounded. As a result,
they only show functional correctness for a fixed input size (a realistic size for
current GPUs). In this paper, we verified data race-freedom and also functional
correctness of the two algorithms for any arbitrary size of input. We believe that
it should be no problem to also prove the other two algorithms.

6 Conclusion

This paper shows how we verify data race-freedom and functional correctness of
the two most widely-used parallel prefix sum algorithms, Blelloch’s and Kogge-
Stone’s algorithm, for an arbitrary input size by encoding the algorithms into
VerCors verifier. Proving functional correctness of Blelloch’s algorithm is chal-
lenging for multiple reasons. First, the algorithm is in-place. Second, it consists
of two independent, but related phases and third, it is non-trivial to relate the
computations in both phases to conclude the desired end result (i.e., that it
establishes a prefix sum). We overcome these challenges by introducing ghost
variables and defining suitable functions that mimic the computations on the
ghost variables. Moreover, we prove suitable properties that help us to reason
about the algorithm. The verification of Kogge-Stone’s algorithm is not as hard
as the first one, since there is only one phase and the property that we define is
straightforward. We benefit from functions, operations and properties that are
defined in the earlier verification and reuse them in the second verification.

As future work, we plan to verify more complicated parallel algorithms that
use the prefix sum algorithm internally, such as stream compaction and sorting
algorithms. We also would like to investigate how to further automate the process
of proof creation. We believe that a substantial part of the required annotations,
in particular those related to permissions, can be generated automatically. In
addition, we plan to add a CUDA front-end to the tool.

References

1. Amighi, A., Haack, C., Huisman, M., Hurlin, C.: Permission-based separation logic
for multithreaded Java programs. LMCS 11(1), 2–65 (2015)

186 M. Safari et al.

2. Berdine, J., Calcagno, C., O’Hearn, P.W.: Smallfoot: modular automatic asser-
tion checking with separation logic. In: de Boer, F.S., Bonsangue, M.M., Graf,
S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 115–137. Springer,
Heidelberg (2006). https://doi.org/10.1007/11804192 6

3. Betts, A., Chong, N., Donaldson, A., Qadeer, S., Thomson, P.: GPUVerify: a ver-
ifier for GPU kernels. In: OOPSLA, pp. 113–132. ACM (2012)

4. Blelloch, G.E.: Prefix Sums and their Applications, Synthesis of Parallel Algo-
rithms. Morgan Kaufmann Publishers Inc., San Francisco (1993)

5. Blom, S., Darabi, S., Huisman, M., Oortwijn, W.: The VerCors tool set: verification
of parallel and concurrent software. In: Polikarpova, N., Schneider, S. (eds.) IFM
2017. LNCS, vol. 10510, pp. 102–110. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-66845-1 7

6. Blom, S., Huisman, M., Mihelčić, M.: Specification and verification of GPGPU
programs. Sci. Comput. Program. 95, 376–388 (2014)

7. Bornat, R., Calcagno, C., O’Hearn, P., Parkinson, M.: Permission accounting in
separation logic. In: POPL, pp. 259–270 (2005)

8. Boyland, J.: Checking interference with fractional permissions. In: Cousot, R. (ed.)
SAS 2003. LNCS, vol. 2694, pp. 55–72. Springer, Heidelberg (2003). https://doi.
org/10.1007/3-540-44898-5 4

9. Brent, R.P., Kung, H.T.: A regular layout for parallel adders. IEEE Trans. Comput.
3, 260–264 (1982)

10. Chong, N., Donaldson, A.F., Ketema, J.: A sound and complete abstraction for
reasoning about parallel prefix sums. In: ACM SIGPLAN Notices, vol. 49, pp.
397–409. ACM (2014)

11. Collingbourne, P., Cadar, C., Kelly, P.H.J.: Symbolic testing of OpenCL code. In:
Eder, K., Lourenço, J., Shehory, O. (eds.) HVC 2011. LNCS, vol. 7261, pp. 203–218.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34188-5 18

12. Harris, M., Sengupta, S., Owens, J.D.: Parallel prefix sum (scan) with CUDA.
GPU Gems 3(39), 851–876 (2007)

13. Horn, D.: Stream reduction operations for GPGPU applications. GPU Gems 2(36),
573–589 (2005)

14. Jacobs, B., Smans, J., Philippaerts, P., Vogels, F., Penninckx, W., Piessens, F.:
VeriFast: a powerful, sound, predictable, fast verifier for C and Java. In: Bobaru,
M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617,
pp. 41–55. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20398-
5 4

15. Kogge, P.M., Stone, H.S.: A parallel algorithm for the efficient solution of a general
class of recurrence equations. IEEE Trans. Comput. 100(8), 786–793 (1973)

16. Li, G., Gopalakrishnan, G.: Scalable SMT-based verification of GPU kernel func-
tions. In: SIGSOFT FSE 2010, Santa Fe, NM, USA, pp. 187–196. ACM (2010)

17. Li, G., Li, P., Sawaya, G., Gopalakrishnan, G., Ghosh, I., Rajan, S.P.: GKLEE:
concolic verification and test generation for GPUs. In: ACM SIGPLAN Notices,
vol. 47, pp. 215–224. ACM (2012)

18. Nvidia: Cuda-memcheck: User manual (version 10) (2019). https://developer.
nvidia.com/cuda-memcheck

19. Price, J., McIntosh-Smith, S.: Oclgrind: an extensible OpenCL device simulator.
In: Proceedings of the 3rd International Workshop on OpenCL, p. 12. ACM (2015)

20. Sklansky, J.: Conditional-sum addition logic. IRE Trans. Electron. Comput. 2,
226–231 (1960)

21. Zheng, M., Ravi, V.T., Qin, F., Agrawal, G.: GRace: a low-overhead mechanism
for detecting data races in GPU programs. ACM SIGPLAN Not. 46(8), 135–146
(2011)

https://doi.org/10.1007/11804192_6
https://doi.org/10.1007/978-3-319-66845-1_7
https://doi.org/10.1007/978-3-319-66845-1_7
https://doi.org/10.1007/3-540-44898-5_4
https://doi.org/10.1007/3-540-44898-5_4
https://doi.org/10.1007/978-3-642-34188-5_18
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1007/978-3-642-20398-5_4
https://developer.nvidia.com/cuda-memcheck
https://developer.nvidia.com/cuda-memcheck

Specification Quality Metrics Based
on Mutation and Inductive Incremental

Model Checking

Vassil Todorov1,2(B), Safouan Taha2, and Frédéric Boulanger2

1 Groupe PSA, 78140 Vélizy-Villacoublay, France
2 Université Paris-Saclay, CNRS, CentraleSupélec, LRI,

91405 Orsay, France
todorov@lri.fr

Abstract. When using formal verification on Simulink or SCADE mod-
els, an important question about their certification is how well the speci-
fied properties cover the entire model. A method using unsatisfiable cores
and inductive model checking called IVC (Inductive Validity Cores) has
been recently proposed within modern SMT-based model checkers such
as JKind. The IVC algorithm determines a minimal set of model ele-
ments necessary to establish a proof and gives back the traceability to
the design elements (lines of code) necessary for the proof. These metrics
are interesting but are rather coarse grain for certification purposes.

In this paper, we propose to use mutation combined with incremental
inductive model checking to give more precision and quality to the trace-
ability process and look inside the lines of code. Our algorithm, based
on the result of IVC, mutates the source code to determine which parts
inside a line of code have an impact on the properties (killed mutants)
and which parts have no impact on the properties (survived mutants).
Furthermore, using the incremental feature present in modern SMT-
solvers, we observe that mutation can scale up to industrial models. We
demonstrate the metrics first on a simple example, then on a complex
industrial program and on the JKind benchmark.

Keywords: Formal verification · Model-based mutation · Incremental
inductive model checking · Model coverage · Symbolic model checking

1 Introduction

Today, most of the embedded application software in the automotive industry
is developed using model-based design tools such as Simulink or SCADE. This
paradigm of using a model brings a higher level of abstraction compared to the
code and has the possibility to automatically generate the final code. A system
designer creates a model by dragging and dropping blocks from a library and
simulates its behavior to check if it corresponds to what is expected.

For the development of critical systems, it has been argued that formal proof
should be applied to gain higher confidence than with testing only [17,20,23].
c© Springer Nature Switzerland AG 2020
R. Lee et al. (Eds.): NFM 2020, LNCS 12229, pp. 187–203, 2020.
https://doi.org/10.1007/978-3-030-55754-6_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-55754-6_11&domain=pdf
https://doi.org/10.1007/978-3-030-55754-6_11

188 V. Todorov et al.

Even if these tools can prove formal properties on the model, this feature is
not well understood and used by the designers. Actually, specifying properties
(based on the requirements specification) within the aforementioned tools is not
more complicated than designing the model itself because they are written with
the same library blocks as the model. However, there are two main problems:
the proof process does not always terminate, and when a property is proved to
be valid, no further information is provided about its coverage. For certification
of critical software, we should be able to measure quality and exhaustiveness of
the proved properties.

For the first problem, we worked on the improvement of the invariant gen-
eration used in most of the modern symbolic model checkers and implemented
it in JKind [11] to improve the provability of properties involving time. Actu-
ally, proving properties involving time is rather challenging when they involve
long durations and timers. These properties are generally not inductive and even
advanced techniques such as PDR/IC3 [5] are unable to handle them on pro-
duction models in reasonable time. We proposed an algorithm [26] and a new
methodology using physical types (speed, acceleration, etc.), which restricted
the number of candidates to only those that made sense and thus outperformed
the JKind and Kind2 model checkers.

The second problem is important in the sense that even if the model checker
has proved all the properties to be valid, we cannot answer the question about
whether our model contains features that are not covered by the properties.
Unlike testing, where we can follow the execution trace, the proof process uses the
whole model, but many parts of it may not be necessary to prove the properties.
This problem has been studied using the following approaches: mutation proof [7,
9,16,24] and inductive validity cores [2–4,12].

The mutation approach shown in Fig. 1 consists in mutating a model for
which safety properties were proved valid, and trying to prove the same proper-
ties on the mutated models (mutants) again. If they are proved to be valid (the
mutant has survived), the mutant reveals a part of the model that is not covered
by the properties. It can also be dead code that will never be accessed. The
algorithms used to compute coverage in the aforementioned papers can under-
approximate which parts of the model are necessary to prove the properties

Fig. 1. Mutation proof framework

Specification Quality Metrics Based on Mutation 189

and tend to be computationally very expensive because there are many mutated
models to be verified.

Inductive validity cores (IVCs) represent minimal sets of model elements nec-
essary to construct inductive proofs for the specified properties. The algorithms
proposed in the articles cited above are based on the Unsatisfiable Core support
built into current SMT solvers. They can efficiently generate over-approximated
inductive validity cores or exhaustively compute minimal ones. The authors show
that calculating IVCs is more efficient than classical state of the art mutation.
Calculating IVCs gives the coverage of properties in terms of lines of code of
the model, which is more precise than a simple syntactic slicing, but does not
look inside the lines of code and therefore does not consider the coverage of
elementary operations inside an equation.

In this paper, we propose to go further in the precision of the coverage and
zoom into the lines of code. Actually, a property can be covered by a line of
code but inside the line there may still be some code that has no impact on the
property. We argue that it is inside the lines of code that some subtle bugs can
still subsist, and it is useful to uncover them. We use mutation to mutate some
operators of the model, and symbolic model checking combined with induction-
based techniques (k -induction [25], IC3/PDR [5,10]), and take advantage of
the incremental query capabilities of modern SMT solvers. We observed that
mutation-based coverage for model checking is no longer out of reach, and this
technique scales with our industrial use cases. We implemented this algorithm in
the JKind open-source model checker [11], which is based on the Lustre [6] formal
language. Lustre is used as base language for SCADE, so we could transform a
SCADE model into Lustre. Simulink can also be transformed into Lustre using
the CoCoSim framework developed at NASA Ames1.

2 Preliminaries

In this section, we introduce the architecture of the industrial inductive model
checker JKind [11] which is representative of other model checkers such as Kind2
and PKind.

2.1 The JKind Model Checker

JKind is an open-source industrial infinite-state model checker for safety prop-
erties. Models and properties are written in Lustre, a synchronous data-flow
language, using theories of real and integer arithmetic. JKind uses SMT-solvers
(SMTInterpol, Z3, Yices, CVC4, MathSAT) to prove or falsify the properties.
It is structured as several parallel engines that cooperate to prove properties.
Some engines are directly responsible for proving properties, some contribute to
that effort by generating invariants, and others are for post-processing proofs
or counterexample results. Each engine can be enabled or disabled separately.
The architecture of JKind is shown in Fig. 2. At the center of this architecture
the Director allows any engine to broadcast information (invariants, valid and
invalid properties) to the other engines.
1 CoCoSim: https://ti.arc.nasa.gov/tech/rse/research/cocosim.

https://ti.arc.nasa.gov/tech/rse/research/cocosim

190 V. Todorov et al.

Fig. 2. The JKind model checker architecture

The Bounded Model Checking (BMC) engine performs a standard iter-
ative unrolling of the transition relation to find counterexamples or to serve as
the base case of k -induction. The BMC engine guarantees that any counterex-
ample it finds is minimal in the number of steps from the initial state. The
k-Induction engine performs the inductive step of k -induction, possibly using
invariants generated by other engines. The Invariant Generation engine uses
a template-based invariant generation technique [19] using its own k -induction
loop. The Property Directed Reachability (PDR) engine performs prop-
erty directed reachability [10] using the implicit abstraction technique [8]. Unlike
BMC and k -induction, each property is handled separately by a different PDR
sub-engine. The Advice engine saves invariants from previous runs of JKind
and reuses them for new proofs to decrease the verification time.

A great effort was done in JKind on the post-processing of the results. We can
cite the Smoothing counterexamples feature based on MaxSat which minimizes
the number of changes to input variables. The other important post-processing
feature is IVC.

Inductive Validity Cores (IVC). For a proven property, an inductive validity
core is a subset of Lustre equations from the input model for which the property
still holds [13,15]. An IVC is minimal when no equation can be removed without
breaking the provability. Depending on the model and property, there may exist
several IVCs with different sizes. A minimum IVC has the smallest number of
equations, and is not necessarily unique. Computing a minimum IVC is more
difficult than computing any IVC, because it involves an exhaustive search. The
IVC engine uses a heuristic algorithm to efficiently produce minimal IVCs but
not minimum ones. As a side-effect, the IVC algorithm also minimizes the set
of invariants used to prove a property, and shares this reduced set with other
engines (notably the Advice engine).

2.2 IVC Formalizations

In this section we re-use and adapt the formalization of IVC given by Ghassabani
et al. in [14] to compare IVC to our mutation proof using similar definitions of
coverage.

Specification Quality Metrics Based on Mutation 191

Models, Requirements and Provability. Given a state space U , a transition
system (I, T) consists of an initial state predicate I : U → bool and a transition
step predicate T : U × U → bool . A safety property P : U → bool is a state
predicate that holds on a transition system (I, T) when it satisfies the following
formulas:

∀u. I(u) ⇒ P (u)

∀u, u′. P (u) ∧ T (u, u′) ⇒ P (u′)

When this is the case, we write (I, T) � P .
Coming from the Lustre model that is a set of equations {eq1 . . . eqn},

the transition relation T has the structure of a top-level conjunction T =
t1 ∧ · · · ∧ tn where each ti is an equality corresponding to eqi. By further
abuse of notation, T is identified with the set of its top-level equalities. When
an equation is removed from the Lustre model, an equality ti is removed from
T and the transition relation becomes T \ {ti}.

Definition 1. Inductive Validity Core (IVC). S ⊆ T for (I, T) � P is an
Inductive Validity Core, iff (I, S) � P ∧ ∀ti ∈ S. (I, S \ {ti}) � P .

As defined here, we are only interested in minimal sets that satisfy a property
P . Note that given (I, T) � P , P always has at least one IVC, which is not
necessarily unique. For example, consider 2 boolean variables a and b initialized
to true, i.e. I = a ∧ b, and assigned true at each step T = (t1 : a = true) ∧ (t2 :
b = true). If P = a∨b then both {t1} and {t2} are IVC s. We note AIV C(P) the
set of all IVC s of P . Computing the AIV C for each property, one gets a clear
picture of all the model elements constrained by the property. The set AIV C for
all properties demonstrates a complete mapping from the requirements to the
design elements, which is called complete traceability [21].

Property and Model Coverage. The article by Ghassabani et al. [14] defines
the two following metrics of coverage.

Definition 2. (May-Cov): ti ∈ T is covered by P iff ti ∈ May-Cov(P), where
May-Cov(P) = {ti | ∃S ∈ AIV C(P) · ti ∈ S}.
Definition 3. (Must-Cov): ti ∈ T is covered by P iff ti ∈ Must-Cov(P),
where Must-Cov(P) = {ti | ∀S ∈ AIV C(P) · ti ∈ S}.
This categorization of coverage helps to identify the role and relevance of each
design element in satisfying a property. Must-Cov specifies the parts of the
model that are absolutely necessary for the property satisfaction. Any change
to these parts will affect the provability of the property. On the other hand,
May-Cov parts are relevant to the proof but may be modified without affecting
the satisfaction of P . The May-Cov heuristic leads to higher coverage scores,
because Must-Cov(P) ⊆ May-Cov(P).

In JKind, the IVC engine computes one IVC and avoids exploring all possible
ones. Therefore, it partially computes the May-Cov(P) and it does not handle
Must-Cov(P).

192 V. Todorov et al.

Mutation. A mutator is a function that mutates any transition predicate T
to a set of mutants {T 1

mut, . . . , T
m
mut}, where each mutant T i

mut is obtained by
applying a small change to T .

A very simple mutator is the one that simply removes an equality ti from
T , which amounts to removing the corresponding line of code from the Lustre
model. In our framework, we call this basic mutator eq remove (see Sect. 4). The
authors of [15] only consider this simple mutator and define the corresponding
coverage as follows:

Definition 4. Mutation coverage (Mut-Cov) ti ∈ T is covered by property P
iff ti ∈ Mut-Cov(P), where Mut-Cov(P) = {ti | (I, T) � P ∧ (I, T \ {ti}) �

P}.
An immediate corollary proved in [15] states that if an equation is covered

by such a mutation, it is also covered by all IVCs and conversely:

Corollary 1. Mut-Cov(P) = Must-Cov(P).

The Mut-Cov metrics can be generalized to more advanced mutators. In
Sect. 4, we will show how the Mut-Cov metrics can be improved to give a very
precise coverage inside each ti detected within Must-Cov or May-Cov.

3 Model Coverage Techniques

An important question for the certification of safety-critical systems is whether
the requirements and tests are covering the implementation. For example, in ISO
26262 [18], which is the functional safety standard for road vehicles, tests are
derived from requirements. An argumentation of why the performed tests give
sufficient coverage shall be provided. As the critical level increases, a more rigor-
ous method for test coverage (statement, branch, MC/DC) is required. If com-
plete coverage is not achieved, an analysis is performed to decide whether addi-
tional tests or/and requirements are needed to increase coverage. DO-178C [22]
with its supplement DO-333 (Formal Methods) go further in offering the pos-
sibility to use formal methods in replacement of all structural coverage objec-
tives (including heavyweight MC/DC), but arguments showing that coverage is
achieved by the formal proof should then be provided, see Table 1.

In this section, we present different techniques for model coverage, going pro-
gressively from coarse-grained coverage to fine-grained coverage. We consider
the application of these techniques to the domain of inductive symbolic model
checking. We propose to use mutation-based proof, taking advantage of the pos-
sibility to request SMT solvers in an incremental way, in order to look inside the
operators in a way MC/DC does for testing. We show that the performance of
this technique is equivalent to IVC and therefore quite faster than state of the
art mutation-based methods. To the best of our knowledge, this technique has
never been studied. The closest related work on mutation-based proof does not
use inductive model checking for software verification nor incremental SMT solv-
ing. The work of Chockler et al. [7] presents an algorithm to re-use previously

Specification Quality Metrics Based on Mutation 193

Table 1. DO-333 accepts replacing MC/DC coverage by formal proof coverage

DO-178C table A-7 objective DO-333 table FM.A-7 objective

1. Test procedures are correct FM1. Formal analysis cases and procedures are

correct

2. Test results are correct and discrepancies

explained

FM2. Formal analysis results are correct and

discrepancies explained

3. Test coverage of High Level Requirements

(HLRs) is achieved

FM3. Coverage of HLRs is achieved

4. Test coverage of Low Level Requirements

(LLRs) is achieved

FM4. Coverage of LLRs is achieved

5. Test coverage of software structure (modified

condition/decision coverage) is achieved

FM5 – FM8. Verification coverage of software

structure is achieved

6. Test coverage of software structure (decision

coverage) is achieved

(A single objective that replaces the four

structural coverage objectives in DO-178C)

7. Test coverage of software structure

(statement coverage) is achieved

8. Test coverage of software structure (data

coupling and control coupling) is achieved

9. A verification of additional code, that

cannot be traced to source code, is achieved

FM9. Verification of property preservation

between source and object code

N/A FM10. Formal method is correctly defined,

justified, and appropriate

computed inductive invariants and counterexamples to identify the parts of a
hardware system that are covered by a property. In [9], Claessen presents a cov-
erage analysis based on LTL that gives the possibility to have underconstrained
properties. In [16], the authors present an approach to estimate coverage in BMC
(Bounded Model Checking). They generate coverage properties for each impor-
tant signal for hardware verification purposes. Finally, in [24], Sayantan et al.
present a method for determining the coverage of a formal LTL specification
against a high-level fault model for hardware verification.

3.1 Simple Running Example

We use a simple running example to illustrate the difference between slicing,
IVC and mutation proof. Consider the SCADE model shown both graphically
and textually in Fig. 3. The property Prop1 we want to prove is the output of an
OR block which takes a constant input equal to true and its negation. Obviously
this property is always true. The Lustre code is obtained by using the SCADE
option “Convert to textual” and we just add the comment on line 11 to tell
JKind which output represents our safety property to be proved (invariant that
shall always be true).

3.2 Slicing

The backward static slicing (or slicing for short) is a coarse-grained technique
that allows to remove the parts of the code that do not affect the properties to

194 V. Todorov et al.

Fig. 3. A simple running example in Lustre

be proved. It works by simply calculating the dependency graph for the variables
used in the properties. Modern inductive model checkers use slicing to reduce
the size of the queries sent to the SAT/SMT solver. It is interesting to see how
much of the code is removed and to check if we really need this code or if our
properties are simply not complete enough. After slicing, d and L4 are removed
and we obtain the lines:

1 L1 = L2 or L3 ;
2 L2 = t r u e ;
3 L3 = not L2 ;
4 Prop1 = L1 ;

3.3 Inductive Validity Cores (IVCs)

IVCs are much smaller and more precise than static slicing. For our short exam-
ple, the IVC engine will either remove the equation of L3 because L1 does not
depend on it since L2 is true, or it will keep the equation of L3 and remove the
equation of L2 since the equation of L1 is a tautology when we consider the
equation of L3. When running IVC on Prop1, it turns out that we obtain the
first inductive validity core: {L1, L2}

1 L1 = L2 or L3 ;
2 L2 = t r u e ;

3.4 A Simple Mutator for Must-Cov: Equation Remover

We want to go further than IVC, so we propose to use a simple mutator called
“equation remover” which removes equations one by one and replays the proof

Specification Quality Metrics Based on Mutation 195

process in an incremental way (using the SMT-LIB [1] pop and push commands).
Our equation remover does not affect the properties because we want to mutate
only the model and not the specification. If after removing an equation the
properties are still proved (surviving mutant), it means that the removed equa-
tion has no impact on the proof. If the properties do not hold anymore (killed
mutant), this means that the removed equation is essential for the proof. This
mutator computes the minimum core defined as Must-Cov in Sect. 2, whereas
IVC is working in May-Cov mode. Using this technique, we obtain that only
the equation of L1 is essential for any proof of Prop1 :

1 L1 = L2 or L3 ;

3.5 Using Other Mutators for Deep Coverage

We propose to add other mutation operators to zoom inside a line of code/e-
quation and see what is covered by the properties. We explain these operators
in detail in Sect. 4. For the moment, we give an example to see the difference
between mutation and IVC. Our example is shown in Fig. 4.

Fig. 4. Example of inlined code and if-then-else operator mutations

This model takes two inputs a1 and a2, and depending on whether their
value is positive or negative, a1 or a2 is assigned to the output b. We have a
property Prop1 specifying that the output b should take the value of a1 or a2.
If slicing is applied to this model, it will remove nothing because Prop1 depends
statically on the entire model. However, applying IVC tells us that we should
only keep b to cover our property Prop1. It is more precise than slicing because
d is not necessary to prove that property (b is always equal to a1 or a2).

196 V. Todorov et al.

Now, let us apply some mutations such as: replacing the condition of the if
statement by true or false, replacing or by xor, replacing > by < etc. This leads
to 22 possible mutations.

For Prop1 we have 5 mutants killed out of 22. If we want to cover 100%
of the code, we need to kill all mutants. To achieve this coverage, we need to
strengthen our properties. We add a second property: Prop2 = ((a1 > 0) =>
b = a1). At this stage IVC covers 100% of the model as d is now necessary to
Prop2. However, only 14 mutants are killed out of 22, see Fig. 5. For example,
if the condition of the if statement at line 7 (Fig. 4) is replaced by true, Prop1
and Prop2 are proved valid. This means that the condition has no impact on
these properties. Let us add a third property: Prop3 = ((a2 < 0) => b = a1).
This time, we kill 16 mutants out of 22. Finally, we need a fourth property:
Prop4 = (((a1 <= 0) and (a2 >= 0)) => b = a2) to kill all 22 mutants.

Fig. 5. IVCs and mutation proof results on demo2 for properties Prop1 and Prop2

4 From Mutation Testing to Mutation Proof

Mutation testing is used to evaluate the quality of a test suite that is a set of
test cases. It consists in modifying the program under test in small ways. Each
mutated version of the program is called a mutant and test cases are replayed
on it to detect whether its behavior is different from the behavior of the orig-
inal version. This process is called ‘killing the mutant’. The more mutants are
killed, the better are the test cases. The quality of a test suite is measured as the
percentage of killed mutants. Mutants that are left can be killed by specifying
additional test cases or justified as equivalent to the original program. Mutators
are mutation operators used to generate mutants, and they tend to mimic stan-
dard programming errors. A mutation builds a mutant by applying a mutator

Specification Quality Metrics Based on Mutation 197

on some position in the code. Taking ideas from mutation testing, we developed
a mutation proof framework for standard inductive model checking using incre-
mental SMT solving. In this section, we present our mutators and describe our
mutation proof algorithm.

4.1 Mutators

Our mutators directly modify the Lustre code. We implemented classical muta-
tors, but more advanced ones may be easily added to our framework. We present
our mutators in Table 2.

Table 2. Mutators for deep coverage measurement

Mutator Description

or2xor OR is mutated to XOR

xor2implies XOR is mutated to =⇒
implies2and =⇒ is mutated to AND

and2or AND is mutated to OR

or2left X OR Y is mutated to X

or2right X OR Y is mutated to Y

and2left X AND Y is mutated to X

and2right X AND Y is mutated to Y

rm not NOT is removed

eq. 2neq = is mutated to �=
neq2eq �= is mutated to =

g2ge > is mutated to ≥
ge2g ≥ is mutated to >

l2le < is mutated to ≤
le2l ≤ is mutated to <

g2l > is mutated to <

l2g < is mutated to >

ge2le ≥ is mutated to ≤
le2ge ≤ is mutated to ≥
plus2minus + is mutated to −
minus2plus − is mutated to +

rm minus − is removed

ifthen IF condition is replaced by TRUE

ifelse IF condition is replaced by FALSE

ifelsethen THEN and ELSE statements are reversed

ConstantMutator Constant is replaced by 1

eq remove Removes an entire equation/line of code

198 V. Todorov et al.

Our first category of mutators are the boolean mutators. For example, the
and2or mutator transforms a AND b into a OR b. Then we have relational muta-
tors such as ge2le, which transforms a ≥ operator into ≤. We also have some
arithmetic mutators such as plus2minus, which replaces + by −. Branching
mutators act on if-then-else statements replacing the condition by TRUE or
FALSE or reversing the THEN and ELSE statements. Finally, we have the con-
stant mutator that replaces all constants by 1, and the equation remover mutator
that removes an entire line of code as seen before.

4.2 Our Contribution: Mutation Proof Algorithm

The main contribution of our paper is the mutation proof algorithm that can
be applied to modern inductive model checkers. It takes as input the proved
properties and the invariants found during the proof process. It uses BMC
and k-induction to retry the proof on mutants. Then, it returns a verdict:
KILLED (proof fails with a counterexample), SURVIVED (proof succeeds), or
UNKNOWN (proof fails with no counterexample). Our quality metrics is the
ratio of killed mutants over the total number of mutants. The more mutants are
killed, the better is the quality of the specification, because the better is the
coverage of the model by the properties in the specification.

Algorithm 1: Mutation proof algorithm
input : M,P
output: report

1 Prove P : {P0, P1 . . .} on M
2 Invs ← invariants from the proof of P on M
3 kproof ← maximum k-depth for proving P on M
4

5 foreach mutation LCM do
6 Mmut ← MUTATE(M,LCM)
7 if BMC((Mmut, ∅, ∅), P, kproof) = SAT then
8 MSAT ← getModel()
9 report += KILLED(mut:LCM, KillingProps:{Pi ∈ P | MSAT � ¬Pi})

10 else
11 SI ← FilterInvs(Invs,Mmut)
12 UP ← ∅
13 SP ← P
14 while KIND((Mmut, SI, ∅), SP, kproof) = SAT do
15 MSAT ← getModel()
16 UP = UP ∪ {Pi ∈ SP | MSAT � ¬Pi}
17 SP = P \ UP

18 if SP = P then
19 report += SURVIVED(mut:LCM)

20 else
21 if BMC((Mmut, SI, SP), UP, kkill) = SAT then
22 MSAT ← getModel()
23 report += KILLED(mut:LCM, KillingProps:{Pi ∈ UP |MSAT � ¬Pi})
24 else
25 report += UNKNOWN(mut:LCM, SurvivingProps:SP)

Specification Quality Metrics Based on Mutation 199

Before describing our algorithm, let us define its variables and functions: P
are the specification Properties, M is the original Model, Mmut is the current
mutated Model (Mutant), LCM represents a mutation in the form Line:Column
of code and Mutator, function MUTATE(M,LCM) returns the mutant Mmut

corresponding to LCM applied to M , KP are the Killing Properties, SI are the
Surviving Invariants, SP are the Surviving Properties, UP are the Unknown
Properties, kkill is a parameter for maximum k-depth to kill a mutant, func-
tions BMC((Model, Invariants, V alidProperties), P rop, k) and KIND(. . .)
run respectively BMC and K-INDuction on a model together with its invariants
and its valid properties to check new properties Prop at depth k and answer
UNSAT (all Prop are valid) or SAT (some of Prop are not valid). When the
answer is SAT , the function getModel() gives the counterexample. Finally, func-
tion FilterInvs(invariants,Mmut) filters the invariants of the original Model
M using BMC and k-induction to find the ones that survive the mutation and
are still invariants of the current mutant Mmut.

Starting from the proof of P on M which requires the generation of invariants
Invs and induction at depth kproof , our algorithm applies a mutation LCM at
each iteration to obtain a mutant Mmut and retries the proof of P on Mmut.
It runs first BMC at depth kproof to verify whether all properties in P hold on
Mmut for the first kproof steps. If it is not the case, the mutant Mmut is already
killed by some properties in P reported within the verdict KILLED. When all
properties in P hold, which means that the base step is valid, the algorithm
will try the k-induction step after filtering the invariants Invs of M to keep
only those that are still valid for Mmut. When the k-induction step succeeds
(UNSAT), all properties in SP are k-inductive and survive, otherwise we use
the counterexample model to find the properties that are not k-inductive, add
them to the unknown properties UP , and we try again the k-induction on the
remaining properties SP \ UP . We add the non k-inductive properties to UP
because they can be valid but may require a k-induction of a higher depth. The
verdict is SURV IV ED when the k-induction succeeds at the first iteration and
in this case all properties in P hold for Mmut (i.e. P = SP and UP is empty).
If UP is not empty, we run again BMC at maximum depth kkill to try to kill
the current mutant by any property from UP . If this last attempt to kill Mmut

fails, we return the verdict UNKNOWN .

5 Implementation and Initial Results

5.1 Implementation

We implemented our algorithm on a GitHub fork of JKind2. Our algorithm,
shown in Fig. 6, runs as a separate engine (module) of JKind and starts at the
end of the proof process. It retrieves the invariants and kproof used for proving
the properties and returns mutations verdicts.

2 JKind with Mutation on GitHub: https://github.com/v-todorov/jkind.

https://github.com/v-todorov/jkind

200 V. Todorov et al.

Fig. 6. Mutation engine implementation in JKind

5.2 Optimizations

Our implementation is very efficient because instead of submitting the entire
mutated model to the SMT-solver it works in an incremental way, using pop and
push only on the mutated lines. Furthermore, to take maximum advantage of
this incremental feature, we group the mutations of the same line of code and
run them all on the same SMT-solver instance.

We introduced two major optimizations as parameters in JKind: parallel-
Mutants and ivcMutation. Firstly, unlike IVC, which cannot be parallelized,
our mutation algorithm can run each mutation proof on a different thread. We
group mutations that affect a given line of code. Different groups can be exe-
cuted in parallel. The second optimization is intended for large models and runs
the mutation only over the resulting minimal core produced by IVC. Thus IVC
eliminates the unused part of the model, and mutation runs faster based on the
results of IVC. The designer should be informed of the unused part in order to
be able to write some additional properties about it.

5.3 Initial Results

We used the benchmark of JKind (from GitHub), which provides Lustre files
and properties to be proved. We selected 22 example Lustre files with only valid
properties, because it is not useful to analyze the coverage of invalid properties.
We used a laptop equipped with an Intel Xeon E-2176M CPU and 32GB RAM
to run the benchmarks. We applied IVC alone, Mutation with equation removing
only, and Mutation with all mutators activated. We activated the parallelMutants
option to use the 6 cores of our CPU and we did not activate IVC when running
Mutation. The results are shown in Fig. 7. On the left, we see the results that
compare Mutation with only the equation removing mutator (Mut-Eq) to IVC.
We notice that in 82% of the use cases we obtained equal times for calculating
IVC and Mut-Eq, in 9% of the cases mutation (Mut-Eq) was faster than IVC
and in another 9% it was slower. For Mutation using all mutators (Mut-All), we
had same execution times in 59% of the cases, mutation (Mut-All) was faster
than IVC in 5% of the cases, and it was slower in 36% of the cases.

The unsat cores given by most SMT solvers are not necessarily minimal,
IVC needs some backtracking to reduce them to minimal ones. The IVC imple-
mentation in JKind is sequential and requires calculation power. On the other
hand, our algorithm runs in parallel and uses incremental SMT solving. Thus, we

Specification Quality Metrics Based on Mutation 201

obtain a greater coverage precision thanks to the mutation, with an equivalent
performance most of the time.

Fig. 7. Comparison between equation remover mutation/full mutation and IVC

5.4 Industrial Use Case Results

We also used a representative industrial use case that is a cruise control func-
tion developed in SCADE (1250 lines of Lustre code), with some valid safety
properties coming from high level requirements [26]. Using IVC, as well as using
mutation with equation removing only, shows that all lines of code were cov-
ered and therefore necessary to the specification proof, but when running our
mutation proof framework with all mutators activated, we only obtained 39%
of killed mutations. This means that we need to strengthen the properties e.g.
by adding additional ones to kill the 61% surviving mutations. In particular, we
found some interesting mutations of if-then-else statements revealing branches
that were not covered by the original properties.

6 Conclusions and Future Work

In this paper we proposed a new coverage metrics for evaluating the quality of
properties (specification) that are proved valid using model checking on a given
model (program). The algorithm we used is particularly efficient unlike classical
mutation testing techniques. Its efficiency comes from the fact that instead of
submitting each mutant to the SMT solver, we only submit the original model
once and we iteratively remove (pop) an equation and push its mutated version
to check all mutants. The mutation process can also be run in parallel and thus
its performance is almost equivalent to IVC, another heuristic algorithm to find
the coverage of the properties on a model. The main advantage of our mutation
framework over IVC is that we can look inside the lines of code and see the effect
of mutating a constant, a variable or an operator.

As a future work, we will develop a link between invariant generation and
mutation proof. It consists in finding parts of the code that are not covered by

202 V. Todorov et al.

the automatically generated invariants and highlight them to give an immediate
feedback to the designer who will need to strengthen the specification on that
particular parts of the code. It will improve the provability of the specification
and its quality.

References

1. Barrett, C., et al.: The SMT-LIB Standard: Version 2.0. Technical report (2010)
2. Bend́ık, J., Ghassabani, E., Whalen, M., Černá, I.: Online enumeration of all min-

imal inductive validity cores. In: Johnsen, E.B., Schaefer, I. (eds.) SEFM 2018.
LNCS, vol. 10886, pp. 189–204. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-92970-5 12

3. Bend́ık, J., Černá, I., Beneš, N.: Recursive online enumeration of all minimal unsat-
isfiable subsets. In: Lahiri, S.K., Wang, C. (eds.) ATVA 2018. LNCS, vol. 11138,
pp. 143–159. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01090-4 9

4. Berryhill, R.: Chasing Minimal Inductive Validity Cores in Hardware Model Check-
ing, October 2019

5. Bradley, A.R., Manna, Z.: Property-directed incremental invariant generation. For-
mal Aspects Comput. 20, 379–405 (2008). https://doi.org/10.1007/s00165-008-
0080-9

6. Caspi, P., Pilaud, D., Halbwachs, N., Plaice, J.A.: LUSTRE: a declarative language
for real-time programming. In: POPL ’87, pp. 178–188. ACM (1987)

7. Chockler, H., Kupferman, O., Kurshan, R.P., Vardi, M.Y.: A practical approach
to coverage in model checking. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV
2001. LNCS, vol. 2102, pp. 66–78. Springer, Heidelberg (2001). https://doi.org/10.
1007/3-540-44585-4 7

8. Cimatti, A., Griggio, A., Mover, S., Tonetta, S.: IC3 Modulo Theories via Implicit
Predicate Abstraction. CoRR abs/1310.6847 (2013)

9. Claessen, K.: A coverage analysis for safety property lists. In: Formal Methods in
Computer Aided Design (FMCAD 2007), pp. 139–145, November 2007

10. Een, N., Mishchenko, A., Brayton, R.: Efficient implementation of property
directed reachability In: FMCAD ’11, Austin, pp. 125–134 (2011)

11. Gacek, A., Backes, J., Whalen, M., Wagner, L., Ghassabani, E.: The JKind model
checker. In: Chockler, H., Weissenbacher, G. (eds.) CAV 2018. LNCS, vol. 10982,
pp. 20–27. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96142-2 3

12. Ghassabani, E., Whalen, M., Gacek, A., Heimdahl, M.: Inductive validity cores.
IEEE Trans. Softw. Eng. 1–1 (2019)

13. Ghassabani, E., Gacek, A., Whalen, M.W.: Efficient generation of inductive valid-
ity cores for safety properties. In: Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering (FSE 2016), pp.
314–325. ACM, New York (2016)

14. Ghassabani, E., Gacek, A., Whalen, M.W., Heimdahl, M.P.E., Wagner, L.:
Proof-based coverage metrics for formal verification. In: Proceedings of the
32Nd IEEE/ACM International Conference on Automated Software Engineering,
November 2017, Urbana-Champaign, IL, USA, pp. 194–199. ASE: IEEE Press,
Piscataway (2017)

15. Ghassabani, E., Whalen, M., Gacek, A.: Efficient generation of all minimal induc-
tive validity cores. In: Proceedings of the 17th Conference on Formal Methods
in Computer-Aided Design (FMCAD 2017), Vienna, Austria, pp. 31–38. FMCAD
Inc., Austin, November 2017

https://doi.org/10.1007/978-3-319-92970-5_12
https://doi.org/10.1007/978-3-319-92970-5_12
https://doi.org/10.1007/978-3-030-01090-4_9
https://doi.org/10.1007/s00165-008-0080-9
https://doi.org/10.1007/s00165-008-0080-9
https://doi.org/10.1007/3-540-44585-4_7
https://doi.org/10.1007/3-540-44585-4_7
https://doi.org/10.1007/978-3-319-96142-2_3

Specification Quality Metrics Based on Mutation 203

16. Große, D., Kühne, U., Drechsler, R.: Estimating functional coverage in bounded
model checking. In: Proceedings of the Conference on Design, Automation and
Test in Europe (DATE 2007), Nice, France, pp. 1176–1181. EDA Consortium, San
Jose (2007)

17. Hardin, D., Hiratzka, T.D., Johnson, D.R., Wagner, L., Whalen, M.: Development
of security software: a high assurance methodology. In: Breitman, K., Cavalcanti,
A. (eds.) ICFEM 2009. LNCS, vol. 5885, pp. 266–285. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-10373-5 14

18. ISO: Road vehicles - Functional safety (2011)
19. Kahsai, T., Garoche, P.-L., Tinelli, C., Whalen, M.: Incremental verification with

mode variable invariants in state machines. In: Goodloe, A.E., Person, S. (eds.)
NFM 2012. LNCS, vol. 7226, pp. 388–402. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-28891-3 35

20. Miller, S.P., Whalen, M.W., Cofer, D.D.: Software model checking takes off. Com-
mun. ACM 53(2), 58–64 (2010)

21. Murugesan, A., Whalen, M.W., Ghassabani, E., Heimdahl, M.P.E.: Complete
traceability for requirements in satisfaction arguments. In: 2016 IEEE 24th Inter-
national Requirements Engineering Conference (RE), pp. 359–364 (2016)

22. RTCA DO-178C: Software Considerations in Airborne Systems and Equipment
Certification. Washington, DC, December 2011

23. Rushby, J.: Software verification and system assurance. In: 2009 Seventh IEEE
International Conference on Software Engineering and Formal Methods, pp. 3–10,
November 2009

24. Das, S., et al.: Formal methods for analyzing the completeness of an assertion suite
against a high-level fault model. In: 18th International Conference on VLSI Design
held jointly with 4th International Conference on Embedded Systems Design, pp.
201–206, January 2005

25. Sheeran, M., Singh, S., St̊almarck, G.: Checking safety properties using induction
and a SAT-solver. In: Hunt, W.A., Johnson, S.D. (eds.) FMCAD 2000. LNCS,
vol. 1954, pp. 127–144. Springer, Heidelberg (2000). https://doi.org/10.1007/3-
540-40922-X 8

26. Todorov, V., Taha, S., Boulanger, F., Hernandez, A.: Improved invariant generation
for industrial software model checking of time properties. In: Proceedings of the
19th IEEE International Conference on Software Quality, Reliability, and Security,
pp. 334–341. IEEE, Sofia, Bulgaria, October 2019

https://doi.org/10.1007/978-3-642-10373-5_14
https://doi.org/10.1007/978-3-642-28891-3_35
https://doi.org/10.1007/978-3-642-28891-3_35
https://doi.org/10.1007/3-540-40922-X_8
https://doi.org/10.1007/3-540-40922-X_8

Validation and Solvers

A Validation Methodology
for OCaml-to-PVS Translation

Xiaoxin An, Amer Tahat(B), and Binoy Ravindran

Virginia Tech, Blacksburg, VA 24061, USA
{xxan15,antahat,binoy}@vt.edu

Abstract. We present a methodology, called OPEV, to validate the
translation between OCaml and PVS, which supports non-executable
semantics. This validation occurs by generating large-scale tests for
OCaml implementations, generating test lemmas for PVS, and gener-
ating proofs that automatically discharge these lemmas. OPEV incorpo-
rates an intermediate type system that captures a large subset of OCaml
types, employing a variety of rules to generate test cases for each type. To
prove the PVS lemmas, we developed automatic proof strategies and dis-
charged the test lemmas using PVS Proof-Lite, a powerful proof scripting
utility of the PVS verification system. We demonstrated our approach
on two case studies that include two hundred and fifty-nine functions
selected from the Sail and Lem libraries. For each function, we gener-
ated thousands of test lemmas, all of which are automatically discharged.
The methodology contributes to a reliable translation between OCaml
and PVS.

Keywords: Translation validation · PVS · OCaml

1 Introduction

Verifying a “translator” that translates a specification written in one language to
another language is of fundamental interest in many settings, such as compilers,
assemblers, and interpreters. A rigorous methodology that can be used to verify
the translation is refinement proving. This method requires a translation into
a formal verification language to generate a formal certificate. The translated
model, whether it was generated manually or mechanically, must comply with
the intended meaning of the program being certified for the certificate to be valid.
For example, seL4’s formal certification used a translation from a subset of C
called C0 into Isabelle/HOL [1]. The conformance relationship was established
based on a refinement proof that required significant human effort [2].

However, the validation of translation between different languages is exac-
erbated when languages at either end of the “translation pipe” have no formal
semantics, which is the case in many settings. This precludes establishing a two-
way equivalence relationship between the source and the destination languages.
In such cases, a testing methodology is perhaps a more effective verification
c© Springer Nature Switzerland AG 2020
R. Lee et al. (Eds.): NFM 2020, LNCS 12229, pp. 207–221, 2020.
https://doi.org/10.1007/978-3-030-55754-6_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-55754-6_12&domain=pdf
https://doi.org/10.1007/978-3-030-55754-6_12

208 X. An et al.

strategy to establish equivalence between the two specifications. For example,
Lem [3] is a specification language that used to translate mathematically rigor-
ous models of multiple ISAs into different theorem provers and into OCaml. For
instance, Lem can be translated to OCaml for emulation of testing as well as
to Isabelle/HOL, Coq, HOL4, and other languages. The OCaml translation was
validated via predefined tests written in the Lem language [3].

Though translators can be validated by testing [4], this does not have the
same level of rigor as refinement proofs and does not require formal semantics
for the target languages. Testing requires that both languages are executable.
However, some specifications with formal semantics can be either executable
or non-executable, and the results of the non-executable specification cannot be
directly calculated. For example, in the Prototype Verification System (PVS) [5],
PVSio [6], the emulator utility in PVS, can only execute a subset of the functional
specifications in PVS. This is a limitation of many theorem provers, not just PVS
– their specification languages are designed to state and prove theorems, but
not execute. In fact, large subsets of many provers’ powerful specifications are
non-executable. This downside can be overcome by stating theorems on these
specifications that capture the intended behaviors and proving them, mostly
interactively – a highly labor-intensive effort. For example, validation of the
CompCert compiler [7] involved 100K lines of Coq proof.

Motivated by these concerns, we present a test-and-proof methodology to
validate the translation between two different languages with one of them sup-
porting non-executable semantics. Our methodology (Sect. 2), folded into a tool
called OPEV (for “OCaml-to-PVS Equivalence Validation”), takes an OCaml
program and a corresponding PVS implementation as input. From these inputs,
OPEV automatically generates large-scale test cases, which are directly executed
on the OCaml program and also used for constructing a large number of test
lemmas on the PVS specification. The test lemmas are proved automatically
using proof strategies. The results are compared to establish equivalence.

We demonstrate OPEV by using it to validate a manually implemented
OCaml-to-PVS translation and a Sail-to-PVS parser (Sect. 3.2) that we manu-
ally developed. This parser includes 2,763 LOC and was used to translate 7,542
LOC of Lem code to 10,990 LOC of PVS implementation. OPEV generated and
proved 458,247 test lemmas for these two case studies, and detected 11 errors
(Sect. 3). The development of OPEV took 3 person-months and the effort to
develop and validate the translator took 5 person-months.

This paper’s central contribution is the proposed, semi-automatic test-and-
proof methodology for validating translators supporting non-executable speci-
fications. In principle, the OPEV methodology can be applied to any pair of
target languages where one has non-executable semantics.

2 OPEV: OCaml-to-PVS Equivalence Validation

OPEV’s methodology increases the trust in the translated OCaml code into
PVS. The translation can be automatic (for a subset of OCaml) or manual.

A Validation Methodology for OCaml-to-PVS Translation 209

Moreover, OPEV enables proving auto-generated test cases from the target lan-
guage OCaml to PVS, where the inputs/ouputs have identical names and argu-
ments.

2.1 OPEV Workflow

Figure 1 shows the OPEV workflow. In OPEV, we have designed an intermedi-
ate type system, Subsect. 2.2, to capture the commonality of OCaml and PVS
types, which are restricted to a subset of the complete OCaml and PVS types.
OPEV parses the PVS and OCaml sources to construct the intermediate type
annotations for each function. With these annotations, OPEV generates random
test cases for every OCaml and PVS function. OPEV then runs the OCaml test
cases to obtain the test results, translates the OCaml test results to PVS, and
constructs PVS test lemmas using the PVS test cases and translated results.
The test lemmas are directly employed as test oracles, which can be automati-
cally verified using manually implemented, generic PVS proof strategies. If the
test lemmas are proved to be false, we know that there are mismatches in the
OCaml-to-PVS translation. Thus, we investigate the cases and try to detect the
reasons. The total codebase of OPEV is 3,783 LOC.

Fig. 1. The OPEV workflow.

210 X. An et al.

Extensibility. OPEV has already incorporated the semantics of a large subset
of OCaml and PVS for automatic test-generation. To ensure that OPEV can be
extended to incorporate more types in the future, we represent the generated
test cases and testing results in the string format to circumvent the real type
system of OCaml and PVS.

Listing 1.1. A sample PVS reverse function.

rev[A:TYPE](l:list[A]) : RECURSIVE list[A] =

CASES l OF

cons(x, xs): append(rev(xs), cons(x, null))

ELSE null

ENDCASES

MEASURE length(l)

For example, in Listing 1.1, suppose we randomly generate [1, 6, 8] as the test
value for the argument l of function rev. We then construct a string “let res =
rev [1; 6; 8];;” as the OCaml command and delegate it to the OCaml Toploop
library to execute the command. The result can be fetched from the res variable,
which has the value [8; 6; 1]. Then OPEV parses the result according to its type
and composes a PVS test lemma, such as th rev in Listing 1.2.

Listing 1.2. A sample of OPEV PVS test lemmas for rev function.

th_rev: LEMMA rev((: 1, 6, 8 :)) = ((: 8, 6, 1 :))

The lemma is also written in the string format. This string-format represen-
tation allows us to avoid writing various functions for different argument types
and simplifies the extension of OPEV.

Non-executable Semantics. We construct PVS test lemmas rather than
directly executing the PVS test cases because the semantics of some testing
functions are non-executable. That is, in PVS, functions with non-executable
semantics cannot be executed using the PVS ground evaluator and PVS built-
in strategies. For instance, most functions with set-theoretic semantics in PVS
are non-executable, including relational specifications, which are represented as
predicates on sets in PVS. For example, the semantics of the function filter,

Listing 1.3. A PVS function with non-executable semantics.

filter[A:TYPE](p:[A->bool])(s:set[A]):set[A]=

{x: A | member(x, s) AND p(x)}

shown in Listing 1.3, is non-executable. This is because the filter function
simply describes what kind of elements should be in the result set after the
execution of the function but does not specify the steps of how to execute the
function in PVS executable syntax. For instance, trying to execute this function
directly in PVSio will issue an error message that indicates the filter function
includes a non ground expression.

A Validation Methodology for OCaml-to-PVS Translation 211

2.2 Intermediate Type Classification

To generate tests for OCaml and PVS functions respectively, we have to deter-
mine the commonality and difference between the two languages. Therefore, we
design an intermediate type system to fill the gap between the type systems
of the two languages. Since the types of the two languages cannot be matched
with each other one-to-one, we classify the types of the two languages into five
different classes and design rules to handle them separately.

OPEV’s intermediate type system is categorized into 6 different classes:
PEmpty, PBasic, PComplex, PDef, PExt, and PSpec. In this classification, PEmpty
represents a dummy type that is used as a placeholder to occupy some blank
space in the type notation. The existing OCaml types are then grouped accord-
ing to the remaining five classes. Namely, basic built-in types such as bool, nat,
and int; complex data types such as string, tuple, and list; user-defined
types including datatype, record, and others; external library types; and types
requiring special treatment such as functional types.

For each intermediate type, we design a generating rule and parsing rule
according to the class of the type. Currently, OPEV only handles a subset of the
OCaml type system. To extend the current OPEV type system into new types,
one has to manually add specialized test generating heuristics in OPEV for the
new types.

2.3 Test Generation

Types in the PBasic and PComplex classes have corresponding built-in types in
OCaml and PVS. Thus, the test generating rules are simple and straightforward.
OPEV generates multiple values for every function argument according to its
type and then denotes the values to fit them into OCaml and PVS formats.

For example, for the int type, OPEV randomly generates an integer in a
predefined range ([−10, 10] by default). The integer follows a uniform distribu-
tion, and the predefined range can be modified by the user. For instance, for the
range [−5, 5], the corresponding command is as follows:

./opev --range -5 5 library_path

For types in the PDef, PExt, and PSpec classes, we develop more intricate
and complex rules to generate the test cases. For example, OPEV only generates
test cases for concrete types. Thus, for an arbitrary type, we define a rule that
each arbitrary type must be instantiated to bool or nat, following the built-in
test rules in the Lem source code.

Complex Data Types. For complex data types such as list and string, we
set a length parameter that constrains the maximum length of the type element:

./opev --length 16 library_path

212 X. An et al.

Since these complex data types have corresponding built-in definitions in
OCaml and PVS, we do not need to consider the termination problem for some
recursively defined data types because we design specific rules for each of these
data types.

For example, if the argument type is list, OPEV first randomly generates
an integer which is the length of the list, constrained by the predefined maximum
length parameter. Then OPEV generates elements for the list, following the rules
for the list type. The test value for the list is constructed for OCaml and PVS,
respectively, following their list representations. For instance, for a list of length
n, if the list elements are x0, x1, ..., and xn−1, OPEV composes an OCaml list
as [x0; x1; ...; xn−1] and a PVS list as (: x0, x1, ..., xn−1 :).

User-Defined Types. In OCaml, developers can apply the type keyword to
define a new type that represents a record or a datatype. The newly defined
type may have various fields, and each field is denoted with a specific constructor
and the corresponding type annotation. OPEV sequentially constructs test-cases
for each field of the user-defined type. However, this may cause an infinite loop
when there are recursive definitions in the user-defined type; thus, we set a
maximum limit of recursive times to prevent infinite construction. Additionally,
if the return type is a user-defined type, OPEV requires additional construction
rules to directly translate the return results from OCaml to PVS, which means
that, if a developer intends to use OPEV to generate tests for a new user-defined
type, he/she needs to implement the construction function in the source code of
OPEV.

External Types. To automatically generate test cases for the case studies
(Sect. 3), we define generation rules for some external types that are used in these
libraries. External types are the OCaml types imported from external libraries,
which means we do not know the detailed implementations of the interfaces
regarding these types. We have to manually design specific mapping functions
from the OPEV intermediate type to OCaml external types and PVS types.

For instance, in our case studies, a typical external type is Nat big num.num,
which is introduced in the library file nums.cma. This type is employed to handle
the situation where there are large integer operations. However, in PVS, there
are no limitations on the range of the default int and nat types. Thus, in PVS,
the test cases can be generated following the rules for int and nat. On the other
hand, in OCaml, we introduce a mapping function named Nat big num.of int,
which converts an integer into a Nat big num.num number.

Functional Types. The challenge of constructing a functional argument lies
in that the function domain and range are potentially infinite. We initially con-
sidered applying the methods in Haskell QuickCheck [8] to generate a functional
argument; however, the generated function might have different behaviors in
OCaml and PVS because they take random generation seeds. Since we have to

A Validation Methodology for OCaml-to-PVS Translation 213

generate equivalent functions for OCaml and PVS, we designed a comparatively
simple method to generate the functional argument.

First, we define multiple functions in PVS with some specific function pat-
terns. Then OPEV randomly selects a predefined function and applies the func-
tion name as the PVS argument. Meanwhile, the OCaml argument is the corre-
sponding function name related to the PVS one.

However, if there are no predefined PVS functions for certain patterns or
there are no matching OCaml functions, OPEV constructs a LAMBDA expression
to take symbolic arguments as the inputs and return a randomly generated con-
stant as the output. This LAMBDA expression directly serves as the PVS argument,
and a corresponding fun expression is built as the OCaml argument.

Dependent Types. The generation tactic for a dependent type is to construct
the arguments according to its supertype, complying with the constraints of
the dependent type. Right now, the supported constraints include arithmetic
and comparison operations. Aside from these types of constraints, OPEV will
directly generate test cases according to the supertype.

For example, a dependent type in PVS named word is defined as follows.
word is a subtype of nat, and the word type is constrained by the constant N.
OPEV uses the constraint to set up a new range for the natural number and
generate a natural number within the range as a word type argument.

word : TYPE = {i: nat | i < exp2(N)}

This test construction strategy does not support more complicated constraints
than arithmetic and comparison operations, as those would result in some redun-
dant test lemmas that OPEV would reject. Although such test lemmas do not
cause any inconsistency for the OCaml and PVS equivalence, they narrow the
test coverage for functions with arguments of these dependent types.

2.4 Proof Automation

For each PVS function, OPEV can automatically generate thousands of test
lemmas. It is impractical to manually prove all of them. To automate the proof
process, we prove 392 general theorems that support fundamental properties of
many translated functions, such as the commutativity and associativity of add
operations for bit-vectors with the same length, Listing 1.4.

Listing 1.4. A general PVS theorem.

minus_eq_plus_neg: LEMMA FORALL (n:nat, m:nat, bv1:bvec[n],

bv2:bvec[m]): m = n IMPLIES bv1 - bv2 = bv1 +

add_vec_range[m]((bv2), 1)

Then we implement generic PVS strategies using these general theorems accord-
ing to the patterns of the functions that are being tested.

214 X. An et al.

For example, in Listing 1.4, the theorem named minus eq plus neg proved
that the subtraction of two bit-vectors is equivalent to the addition of the first
bit-vector and the negation of the second bit-vector. With this theorem, testing
regarding bit-vector subtraction operation can be rewritten to addition operation
and negation operation.

With the pre-implemented PVS strategies, we then leverage a utility in PVS
called Proof-Lite [6] to prove the test lemmas on these functions. The strate-
gies will be able to instantiate these general theorems with concrete numbers
as need be in the test lemmas. Moreover, Proof-Lite verifies the test lemmas
sequentially. Therefore, we design a memory management algorithm to prove
the test lemmas concurrently while efficiently utilizing memory. In the memory
management algorithm, OPEV calls multiple processes to verify the test lem-
mas concurrently, monitors the status of the running machine, and automatically
adjusts the number of activated processes according to the memory usage of the
machine.

Automatic Proof Strategies. To automatically prove large-scale test lemmas
with non-executable semantics in PVS, we implement a set of generic PVS strate-
gies. To construct a generic PVS strategy for different functions, we start from a
single test lemma and prove it manually. During the manual proof procedure, we
extract a simple PVS strategy for this test lemma pattern. Then we try to prove
other tests with different patterns using this PVS strategy. If this strategy does
not work, we manually prove the new tests and get new PVS strategies. Then
we try to combine the PVS strategies for different test patterns together using
branching, backtracking, or feature extracting and summarizing. By repeatedly
carrying out this process, we synthesize the unified pattern behind the verifica-
tion of the test lemmas. We then construct a generic PVS strategy using the
unified pattern. (It is possible to automate this proof generation, possibly using
SMT solvers; we scope that out as future work.)

For instance, in the basic OCaml-to-PVS translation (Sect. 3.1) library, func-
tions mainly focus on bit-vector operations. The functions in this library involve
conversions between natural numbers and their corresponding bit-vector repre-
sentations. This conversion from natural number to bit-vector in PVS is defined
as follows (the source code is in [9]):

nat2bv(val: below(exp2(N))): {bv: bvec[N] | bv2nat(bv) = val}

The nat2bv function is non-executable since it just declares that it is the inverse
function of bv2nat, which defines the conversion from bit-vector to natural num-
ber. Meanwhile, most of the functions in the OPEV Value library call this nat2bv
function. Thus, we can exploit the relation between nat2bv and bv2nat to cir-
cumvent the execution of nat2bv function, which is non-executable, and to prove
test lemmas containing nat2bv function.

A Validation Methodology for OCaml-to-PVS Translation 215

For example, the case-split-strat strategy, as illustrated in Listing 1.5,
applies the injectivity and invariance properties of the nat2bv and bv2nat func-
tions. This PVS strategy can be grandly applied to test lemmas for functions in
the OPEV Value (Sect. 3.1) library.

Listing 1.5. A generic PVS strategy.

(defstep case-split-strat (fname &optional (fnum 1))

(let ((rewritestr1 (format nil "~a_inj" fname))

(rewritestr2 (format nil "~a_inv" fname)))

(branch (case-insert-fname fname fnum)

((then (rewrite rewritestr1)(grind)(eval-formula))

(then (hide 2)(rewrite rewritestr2)(grind)(eval-formula))

(then (grind)(eval-formula)))))

"" "")

After implementing the generic strategy, we apply Proof-Lite, augmented with
our memory management algorithm, and the PVS strategy to prove all the test
lemmas generated for the functions in the library. We are able to efficiently
prove hundreds of thousands of test lemmas automatically. The statistics are
illustrated in Sect. 3.

3 Case Studies

We now illustrate the application of OPEV on two case studies: a manually
implemented OCaml-to-PVS translation and a Sail-to-PVS parser. We detected
11 mismatches during the validation of these case studies. Documentation on
these errors is available in [10]. The verification was carried out on an AMD
Opteron server (2.3 GHz, 64 core, 128 GB).

3.1 Manually Implemented OCaml-to-PVS Translation

OPEV validated a manually implemented PVS library for which the source is a
single OCaml file in the Sail source code [11], which supplies Sail with definitions
and operations of bits and bit-vectors. Since the translation is done manually,
the translated PVS library is error-prone. It is desirable to increase the reliability
of the translation.

Table 1 illustrates the statistics for this validation. We verified ∼200K test
lemmas and found 6 mismatches. An example mismatch: in the implementa-
tion of add overflow vec bit signed function in PVS, if the second operand
is false, we then assume that there is no overflow and no carry bit for the addi-
tion operation. However, in one version of sail values.ml [11] (commit ce962ff),
overflow is set to true. Thus, there is a conflict in the two implementations and
the results parsed from the execution of the OCaml function cannot be verified
in the PVS test lemmas. OPEV detected this difference in intention as an error.

216 X. An et al.

Table 1. Statistics on validating the OCaml-to-PVS translation.

OCaml source code size 1,488 LOC

PVS destination code size 1,533 LOC

of validated functions 150

of manually proved generic lemmas 268

of auto-generated test lemmas 215,562

of missmatches found 6

3.2 Sail-to-PVS Parser

The Sail language [12], which is a first-order imperative language, has been used
to describe the semantics of ISAs such as x86, ARM, RISC-V, and PowerPC [12].
To facilitate the reasoning on these semantics, we implemented a Sail-to-PVS
Parser to expose the semantics of many ISAs and their multitudes of variants –
already available in Sail – to the community of PVS users.

The architecture of the parser is shown in Fig. 2. First, we rely on the Sail
compiler [11] to automatically translate Sail source code to Lem [13], which was
designed to serve as a semantic model that was mathematically rigorous [3] and
can be translated to OCaml for emulation of testing as well as to Isabelle/HOL,
Coq, HOL4, and other languages. Then we employ the Lem compiler to translate
the resulting Lem source code into a typed Abstract Syntax Tree (AST). Both
the Sail and Lem compilers are in our trusted computing base. (We argue that
trusting these two compilers is reasonable due to their small codebase. Besides,
they have undergone intensive unit testing in prior work [13].)

Fig. 2. Architecture of Sail-to-PVS parser.

A Validation Methodology for OCaml-to-PVS Translation 217

Our Sail-to-PVS parser takes this typed AST as input and implements two
independent parts: an embedded translator and a rewrite handler. The translator
is embedded in the Lem source and translates the typed AST into corresponding
PVS code using PVS syntax. The Lem type system does not support dependant
types and originally was designed to translate Sail specifications into theorem
provers that do not support dependant types, such as HOL4 and Isabelle [13]. In
addition to this challenge, at this stage, the generated PVS code is challenging
and error-prone due to other differences between PVS and Lem specification lan-
guages. For example, the method of reasoning about the termination of recursive
functions and various formats of pattern matching for different pattern types.
To solve the problems, we apply a rewrite handler, written in Python, to adjust
the problematic PVS code. The rewrite handler performs two tasks: rewrite the
pattern matching to ensure that the PVS code has consistent types and add
measure functions for all the recursive functions. The total LOC of the Sail-to-
PVS parser, including the embedded translator (1,730 lines of OCaml code) and
the rewrite handler (1,033 lines of Python code), is 2,763. However, with these
modifications Sail-to-PVS parser is still restricted to pure functions of Sail.

An important use case of the Sail-to-PVS parser is program verification at
the assembly level (using PVS). For such a use case, it is critically important
that the translation is provably correct. We automatically translate a Lem basic
library [13] respectively to PVS and OCaml using the Sail-to-PVS parser and
Sail’s built-in compiler. Although Sail and Lem are executable, the generated
PVS code would call some built-in PVS functions, some of which are non-
executable; however, all of them are pure. Since the generated OCaml code is
within the scope of OPEV’s OCaml subset, it enables us to validate the equiv-
alence between the generated OCaml and PVS code using OPEV. If the equiv-
alence is validated, our trust in that the Sail-to-PVS parser carries out similar
functionality as the Sail built-in compiler will increase significantly.

We generated small-scale test cases at the beginning, namely 10 test cases
for each function, and attempted to prove all the test lemmas by a default PVS
strategy called grind. For the test lemmas that cannot be proved, we designed
the PVS strategies by proving auxiliary lemmas or by combining multiple strate-
gies together according to the steps described in Sect. 2.4. Then we generated
large-scale test lemmas and verified them using the corresponding strategies.

Table 2. Statistics on validation of Sail-to-PVS parser.

Lem source code size 7,542 LOC

PVS destination code size 10,990 LOC

of validated functions 109

of manually proved generic lemmas 124

of auto-generated test lemmas 242,685

of missmatches found 5

218 X. An et al.

Table 2 shows the statistics for the library. OPEV determined multiple
unprovable test lemmas in the PVS implementation. In turn, we modified the
source code of the Sail-to-PVS parser, which generated the test lemmas reported
in the table. Due to the gap between the semantics of the Lem and PVS lan-
guages, OPEV detected 5 mismatches. Doing this translation validation is prac-
tically impossible to achieve manually without OPEV.

4 Past and Related Work

Significant literature exists on translation validation. In [14], the authors show
that the seL4 source code and its binary code have the same behavior. The
translation validation relies on refinement proofs. A refinement proof is possible
here due to formal semantics that was created for both the source and target
languages. However, the semantics of OCaml and PVS cannot be mapped to each
other one-to-one. Besides, refinement proofs, in general, are labor-expensive due
to the significant human intervention required. The seL4 refinement proof [1]
took 8 person-years; the seL4 total verification effort [1] is more significant and
took ∼20 person-years.

CompCert [7,15] uses a formally verified compiler to establish the correctness
of compilation from a subset of C to PowerPC, ARM, RISC-V, or x86 assembly
code. The compilation guarantees that the assembly code executes with the
behavior that was designated by the original C program [16]. However, the formal
proofs of CompCert did not cover the correctness of the formal specifications of
C and assembly [15]. In addition, it took six person-years of effort and involved
100,000 lines of Coq code [7].

In contrast with compiler verification and refinement proofs, OPEV is a light-
weight approach for the validation of a translation from a high-level language
into a theorem prover using random testing. OPEV is therefore significantly
less labor-expensive. Additionally, OPEV allows non-executable specifications
and proofs for generic theorems after translating the code for further verification.

OPEV also differs from some other test-based light-weight verification tech-
niques. For instance, Haskell’s QuickCheck mechanism [8] is designed to aid in
the verification of properties of a given function. The tests are randomly gener-
ated until either a counterexample is discovered in a given domain or a preset
threshold is reached. Likewise, AutoTest for Eiffel [17] checks program annota-
tions based on randomly generated test suites. Similar methods exist for theorem
provers. Besides, QuickCheck [18] and Nitpick [19] for Coq and Isabelle/HOL
uses random testing [20] to support counterexample discovery for a given conjec-
ture. These mechanisms work well with executable specifications. OPEV differs
from these efforts by its focus on validating the translation into a theorem prover
and the supporting of non-executable semantics. Additionally, our translation
into PVS allows the user to verify properties and specified conjectures for the
translated functions using PVS’s built-in test-generator [21] to assist in proving
these properties or reaching a counterexample once applicable. But like the other
built-in translations, it is restricted to generated PVS’s executable specifications
from our tool.

A Validation Methodology for OCaml-to-PVS Translation 219

The closest work to OPEV is MINERVA [22], which provides a practical
and rigorous general approach to produce high assurance software systems using
model animation on mirrored implementations for verified algorithms [22]. How-
ever, MINERVA is limited to the executable subset of PVS. OPEV can be viewed
as complementary to MINERVA when the specification is not executable.

5 Conclusions

In this paper, we presented a validation methodology, called OPEV, that pro-
vides a high assurance on the equivalence between OCaml and PVS specifica-
tions. OPEV employs an intermediate type system to capture the commonality
of the subset of OCaml and PVS and generate test cases for both OCaml and
PVS implementations. The reliability of the validation is ensured by execut-
ing large-scale stress tests and automatically proving test lemmas using generic
PVS strategies. OPEV tool generated more than three hundred thousand test
cases and proofs. We demonstrated the OPEV methodology on two case studies,
namely a manual OCaml-to-PVS translation and a Sail-to-PVS parser. OPEV
significantly increases our trust in the translations.

Currently, OPEV handles a subset of OCaml types and pure functions. In the
future, we aim to extend the functionality of OPEV and incorporate more test
generation rules for it. We also intend to increase automation in the proof process
of OPEV. These enhancements would allow us to translate multiple mainstream
instruction sets (ISA) specifications written in Sail into PVS, a necessary step to
reason about the binary code of these architectures in PVS [23]. For instance, the
methodology of [23] of lifting ARMv8 binaries into PVS7 based on translating
ARM specification language ASL [24] into PVS, is interesting to us to generalize
for other architectures. It allows the translation of system binary code of ARMv8
into PVS, based on PVS generic theories, theory parameters, and dependent
types, in place of monad theory. Therefore, our work would open the door for
more future research to verify the binary code of several mainstream instruction
sets based on translating Sail ISAs specifications into the prototype verification
system PVS.

Artifacts of the OPEV methodology are open-source and publicly available
at: https://ssrg-vt.github.io/Renee/.

Acknowledgements. This material is based upon work supported by the US Office
of Naval Research (ONR) under grant N00014-18-1-2665.

References

1. Klein, G., et al.: seL4: formal verification of an OS kernel. In: ACM Symposium
on Operating Systems Principles, pp. 207–220. ACM (2009)

2. Greenaway, D., Andronick, J., Klein, G.: Bridging the gap: automatic verified
abstraction of C. In: Beringer, L., Felty, A. (eds.) ITP 2012. LNCS, vol. 7406, pp.
99–115. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32347-8 8

https://ssrg-vt.github.io/Renee/
https://doi.org/10.1007/978-3-642-32347-8_8

220 X. An et al.

3. Mulligan, D.P., Owens, S., Gray, K.E., Ridge, T., Sewell, P.: Lem: reusable engi-
neering of real-world semantics. SIGPLAN Not. 49(9), 175–188 (2014). https://
doi.org/10.1145/2692915.2628143

4. Conrad, M.: Testing-based translation validation of generated code in the context
of IEC 61508. Formal Methods Syst. Des. 35(3), 389–401 (2009)

5. Owre, S., Rushby, J.M., Shankar, N.: PVS: a prototype verification system. In:
Kapur, D. (ed.) CADE 1992. LNCS, vol. 607, pp. 748–752. Springer, Heidelberg
(1992). https://doi.org/10.1007/3-540-55602-8 217

6. Munoz, C.: Batch proving and proof scripting in PVS. NIA-NASA Langley,
National Institute of Aerospace, Hampton, VA, Report NIA Report (2007–03)
(2007)

7. Kästner, D., et al.: Compcert: practical experience on integrating and qualifying
a formally verified optimizing compiler. In: ERTS2 2018-Embedded Real Time
Software and Systems (2018)

8. Claessen, K., Hughes, J.: Quickcheck: a lightweight tool for random testing of
Haskell programs. In: Proceedings of the Fifth ACM SIGPLAN International Con-
ference on Functional Programming (ICFP 2000), pp. 268–279. ACM, New York,
NY, USA (2000). https://doi.org/10.1145/351240.351266

9. PVS source code. http://www.csl.sri.com/users/owre/drop/pvs-snapshots/
10. OPEV bug report.OPEVBugReport
11. Sail project. https://github.com/rems-project/sail. Accessed 31 May 2019
12. Gray, K.E., Sewell, P., Pulte, C., Flur, S., Norton-Wright, R.: The sail instruction-

set semantics specification language (2017)
13. Lem project. https://github.com/rems-project/lem. Accessed 31 May 2019
14. Sewell, T.A.L., Myreen, M.O., Klein, G.: Translation validation for a verified

OS kernel. In: Proceedings of the 34th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI 2013), pp. 471–482. Association
for Computing Machinery, New York, NY, USA (2013). https://doi.org/10.1145/
2491956.2462183

15. Leroy, X., Blazy, S., Kästner, D., Schommer, B., Pister, M., Ferdinand, C.:
Compcert-a formally verified optimizing compiler. In: ERTS 2016: Embedded Real
Time Software and Systems, 8th European Congress (2016)

16. Kästner, D., Leroy, X., Blazy, S., Schommer, B., Schmidt, M., Ferdinand, C.: Clos-
ing the gap-the formally verified optimizing compiler compcert. In: Safety-critical
Systems Symposium 2017 (SSS 2017), pp. 163–180. CreateSpace (2017)

17. Ciupa, I., Pretschner, A., Oriol, M., Leitner, A., Meyer, B.: On the number and
nature of faults found by random testing. Softw. Test. Verif. Reliab. 21(1), 3–28
(2011). https://doi.org/10.1002/stvr.415

18. Tanter, É., Tabareau, N.: Gradual certified programming in coq. In: ACM SIG-
PLAN Notices, vol. 51, pp. 26–40. ACM (2015)

19. Blanchette, J.C., Nipkow, T.: Nitpick: a counterexample generator for higher-order
logic based on a relational model finder. In: Kaufmann, M., Paulson, L.C. (eds.)
ITP 2010. LNCS, vol. 6172, pp. 131–146. Springer, Heidelberg (2010). https://doi.
org/10.1007/978-3-642-14052-5 11

20. Wada, Y., Kusakabe, S.: Performance evaluation of a testing framework using
QuickCheck and Hadoop. JIP 20(2), 340–346 (2012). https://doi.org/10.2197/
ipsjjip.20.340

21. Crow, J., Owre, S., Rushby, J., Shankar, N., Stringer-Calvert, D.: Evaluating, test-
ing, and animating PVS specifications, March 2019

22. Narkawicz, A., Munoz, C.A., Dutle, A.M.: The MINERVA software development
process (2017)

https://doi.org/10.1145/2692915.2628143
https://doi.org/10.1145/2692915.2628143
https://doi.org/10.1007/3-540-55602-8_217
https://doi.org/10.1145/351240.351266
http://www.csl.sri.com/users/owre/drop/pvs-snapshots/
https://github.com/ssrg-vt/renee-artifacts/blob/master/NFM20/BugReport.pdf
https://github.com/rems-project/sail
https://github.com/rems-project/lem
https://doi.org/10.1145/2491956.2462183
https://doi.org/10.1145/2491956.2462183
https://doi.org/10.1002/stvr.415
https://doi.org/10.1007/978-3-642-14052-5_11
https://doi.org/10.1007/978-3-642-14052-5_11
https://doi.org/10.2197/ipsjjip.20.340
https://doi.org/10.2197/ipsjjip.20.340

A Validation Methodology for OCaml-to-PVS Translation 221

23. Tahat, A., Joshi, S.P., Goswami, P., Ravindran, B.: Scalable translation validation
of unverified legacy OS code. In: 2019 Formal Methods in Computer Aided Design
(FMCAD), pp. 1–9 (2019)

24. Trustworthy specifications of Arm v8-A and v8-M system level architecture.
In: Proceedings of Formal Methods in Computer-Aided Design (FMCAD 2016),
pp. 161–168, October 2016. https://alastairreid.github.io/papers/fmcad2016-
trustworthy.pdf

https://alastairreid.github.io/papers/fmcad2016-trustworthy.pdf
https://alastairreid.github.io/papers/fmcad2016-trustworthy.pdf

On the Usefulness of Clause
Strengthening in Parallel SAT Solving

Vincent Vallade1(B), Ludovic Le Frioux2, Souheib Baarir1,3, Julien Sopena1,4,
and Fabrice Kordon1

1 Sorbonne Université, CNRS, LIP6, UMR 7606, Paris, France
vincent.vallade@lip6.fr

2 LRDE, EPITA, Le Kremlin-Bicêtre, France
3 Université Paris Nanterre, Nanterre, France

4 Inria, DELYS Team, Paris, France

Abstract. In the context of parallel SATisfiability solving, this paper
presents an implementation and evaluation of a clause strengthening
algorithm. The developed component can be easily combined with (vir-
tually) any CDCL-like SAT solver. Our implementation is integrated as
a part of Painless, a generic and modular framework for building parallel
SAT solvers.

Keywords: Parallel satisfiability · Tool · Strengthening · Clause
sharing · Portfolio · Divide-and-conquer

1 Introduction

Modern CDCL SAT solvers [1,12] have been successfully used to solve a wide
variety of real-world problems, such as those issued from hardware and software
verification [4].

With the omnipresence of many-core machines, these solvers have been
adapted to become parallel [3]. In this context, a key feature in the efficiency
is information sharing. This is usually implemented as sets of new (learnt) lem-
mas that are exchanged between the different participants of the parallelization
solving strategy (i.e., the underling sequential solvers).

Besides, it is well admitted that the shorter the learnt lemmas the more
powerful they are. This explained the proposal of different techniques based
on resolution to shorten them [7,8,15,16]. A process known as strengthening.
Potentially as difficult as the SAT problem itself, the strengthening of those
learnt lemmas can benefit from parallelization [17].

This paper presents the implementation and evaluation of a parallel strength-
ening algorithm inspired from [17]. Our implementation is integrated as a part
of Painless [9], a framework for building parallel SAT solvers.

Paper Structure. Section 2 introduces some background. Strengthening is pre-
sented in Sect. 3. Its implementation is described in Sect. 4. Some experimental
results are depicted in Sect. 5. Section 6 concludes the paper.
c© Springer Nature Switzerland AG 2020
R. Lee et al. (Eds.): NFM 2020, LNCS 12229, pp. 222–229, 2020.
https://doi.org/10.1007/978-3-030-55754-6_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-55754-6_13&domain=pdf
https://doi.org/10.1007/978-3-030-55754-6_13

On the Usefulness of Clause Strengthening in Parallel SAT Solving 223

2 Background

This section introduces useful background used in the remaining of this paper.

Boolean Satisfiability. A propositional variable is a variable that has two
possible values: true or false. A literal is a propositional variable or its nega-
tion (NOT). A clause is a finite disjunction (OR) of literals. A clause with a
unique literal is called unit clause. A conjunctive normal form (CNF) formula
is a finite conjunction (AND) of clauses. In the rest of the paper clauses are
represented by the set of their literals, and formulas by the set of their clauses.
Let F be a formula, an assignment of variables of F is defined as a function
A : V → {true, false}, where V is the set of variables of F . A clause is satis-
fied when at least one of its literals is evaluated to true. A formula is satisfied
if all its clauses are evaluated to true. A formula is said to be satif there is
at least one assignment of its variables that makes it true; it is reported to be
unsatotherwise. The Boolean satisfiability (SAT) problem consists in determin-
ing if a given formula is sator unsat.

CDCL Algorithm. Conflict-driven clause learning algorithm [14,18] is used in
almost all (complete) modern SAT solvers. It enumerates assignments for the
given formula. Variables’ values are forced using unit propagation [5] (i.e.,fixing
recursively the values of variables in unit clauses). If an empty clause is generated
a conflict has been reached. The reasons are studied and a learnt clause is derived
and stored. The search backtracks and starts over. If unit propagation does
not generate a conflict, a guess is done (branching) to grow up the current
assignment. The search ends if a satisfying assignment has been found or if all
have been checked without finding solutions.

Let F be a formula, unit propagation can be iteratively applied for a given
partial assignment A: iterativeUnitPropagation(F,A) produces the set of
assignments implied by this operation. F |A returns the formula simplified by
the iterative unit propagations of A on F .

3 Strengthening Algorithm

The pseudo-code of the strengthening algorithm we implemented in our tool is
presented in Algorithm 1. The theoretical basics of this technique are presented
in [17]. This section only focuses on the technical details.

Algorithm 1 takes a clause Cin as input, and, potentially outputs a reduced
size (strengthened) clause, w.r.t. Cin, (lines 8 and 14). It considers an empty
assignment A (line 3), the knowledge of all the clauses of the problem F , and it
manages its own set of learnt clauses LR (line 4) empty at the beginning of the
program.

To achieve its strengthening task, Algorithm 1 iteratively assigns a false value
to each literal of the clause Cin, until it reaches a conflict or it assigns success-
fully all literals of the input clause. Therefore, there are two possible outputs,
respectively Cnew and Cout.

224 V. Vallade et al.

Algorithm 1: Strengthening algorithm
1 function strengthen(Cin: clause) : the strengthened clause
2 Cout := ∅
3 A := ∅
4 F ′ := F ∪ LR

5 for l ∈ (Cin \ Cout) s.t. ¬l /∈ iterativeUnitPropagation(F ′,A) do
6 if ∅ ∈ F ′|A then
7 (LR, Cnew) := analyze(F ′,A)
8 return Cnew

9 end
10 Cout = Cout ∪ {l}
11 A = A ∪ {¬l}
12 end
13 LR = LR ∪ {Cout}
14 return Cout

At each iteration, Algorithm 1 picks a literal whose complementary is not
implied by the current assignment (¬l /∈ iterativeUnitPropagation(F ′,A)).
This ensures the stripping of the input clause from all literals that are implied by
the rest of the clause. Then, it executes a unit propagation (line 5). If no conflict
is discovered, the literal is added to the output clause Cout and its negation is
added to the set of assignment A (line 10–11).

When a conflict is reached (line 6), function analyze() is then called (line 7):
it executes a sequence of backtracking, unit propagation, and conflict analysis
until getting out of the conflict or emptying the set A. During this phase, the
algorithm learns new clauses (that are added to LR). When analyze() reaches
a zone without conflict (while assuming A), it generates the clause Cnew that is
returned (line 8). This last is composed of the set of literals: {l|¬l ∈ A} ∪ {k},
k being some literal of Cout /∈ A.

If all the literal of Cin are assigned successfully, then the clause Cout is added
to LR and then returned (lines 13–14).

4 Implementation

Our implementation is based on Painless [9] which is a framework allowing the
implementation of parallel SAT solvers for many-core environments. The main
components of Painless are: working organization, clause sharing, and sequential
engines. For this work, we focused on the third component and implemented a
reducer solver that can be included in all Painless’ configurations.1

About the Painless Framework. The main idea of the framework is to
separate the technical components (e.g.,dedicated to concurrent programming

1 This version of Painless can be found at https://github.com/lip6/painless, branch
strengthening.

https://github.com/lip6/painless

On the Usefulness of Clause Strengthening in Parallel SAT Solving 225

aspects) from those implementing heuristics and optimizations embedded in a
parallel SAT solver. Three main components arise when treating parallel SAT
solvers: Sequential Engines, Parallelisation, and Sharing. These form the global
architecture of Painless. They can be instantiated independently to produce new
complete solvers.

The core element considered here is a sequential SAT solver. This can be
any CDCL-like solver. Technically, these engines are operated through a generic
SolverInterface providing basics of sequential solvers: solve, add clauses, etc.

To build a parallel solver using the aforementioned engines, one needs a par-
allelisation strategy (e.g.,s portfolio, divide-and-conquer). In Painless, a strategy
is represented by a tree-structure of arbitrary depth. The internal nodes of the
tree (WorkingStrategy) represent parallelisation strategies, and leaves are core
engines operated by a thread (SequentialWorker).

In Painless, solvers can export (import) clauses to (from) the others during
the resolution process. The sharing of these learnt clauses is dedicated to par-
ticular components called Sharers. Each Sharer is in charge of sets of producers
and consumers and its behaviour reduces to a loop of sleeping and exchange
phases w.r.t.to a given SharingStrategy.

Implementing Strengthening. This section presents the implementation of
strengthening we included into the Painless framework. The development of such
a component has been designed to be easily used in combination with all other
mechanisms provided by Painless.

The Reducer engine of Fig. 1 implements Algorithm 1. As it can be easily
observed, the main component of this algorithm are iterative unit propagation
and analysis (based on assumptions) procedures. These are also the usual com-
ponents provided by any CDCL-like SAT solver.

Therefore, we implemented the strengthening operation as a decorator of
SolverInterface. This decorator is a SolverInterface itself that uses, by delegation,
another SolverInterface to apply the strengthening (see Fig. 1).

Fig. 1. Parallel strengthening architecture

The CDCL solver needs to be able to solve a formula with a set of assump-
tions. Assumptions are literals with a predefined value that the solver must

226 V. Vallade et al.

accept as immutable. This is how we implemented the loop in Algorithm 1. We
give the negation of the learnt clause as assumptions to the solver, which stops
the resolution when a conflict is reached or when the solver has branched on
all the assumptions. The solver must also be able to express a conflict only in
terms of assumptions, i.e. the set of literals returned by the analysis contains
only literals present in the initial set of assumptions.

The Reducer is always at the root of a portfolio. For example, if one wants to
implement a divide-and-conquer solver complemented by a Reducer, they must
create a portfolio with a Reducer and a divide-and-conquer as workers. This is
extremely easy to do thanks to the composite nature of Painless’ Parallelisation
engine. The Reducer is both a consumer and a producer of the Sharer. It receives
clauses, strengthened them and shares them back after.

5 Empirical Study

To assess the performances of the developed component and study its impact
in different parallel solvers, we integrated our Reducer in several parallelisation
strategies. We then conducted a set of experiments to compare the results.

Solvers Description. All parallel solvers we constructed, but one, are based
on P-MCOMSPS [11]. It implements a portfolio strategy [6] (PF) and uses
MapleCOMSPS [13] as sequential engine. The solvers differ however by their shar-
ing strategies.

One of the main heuristics used in sharing strategies is the so-called Literal
Block Distance (LBD) measure: the LBD of a clause is the number of decision
levels represented in that clause. It is fairly admitted that the lower the LBD,
the better the clause [1]. In a parallel context, it is useful to share these low LBD
clauses.

We therefore derived the following strategies: AI, only learnt clauses with
an LBD value less or equal than a threshold are shared. This threshold is addi-
tively increased if not enough clauses are exchanged [2]; Li shares only learnt
clauses with an LBD value ≤ i. Hence, we ended up by developing the solver
P-MCOMSPS-AI2, the solver P-MCOMSPS-L23 and the solver P-MCOMSPS-L4 (L4 is
a new untested yet strategy).

To complete the picture, we also developed a divide-and-conquer (DC) solver
that uses L4 sharing strategy. We call this solver DC-MCOMSPS-L4 [10].

For each of these solvers, we created its counterpart including the Reducer
component. We called them by extending their names by -REDUCE (e.g.,
P-MCOMSPS-L4-REDUCE). It is important to note that the we do not use a addi-
tional core for the Reducer, e.g., if we use 12 cores for P-MCOMSPS-L4, we also
use 12 cores for P-MCOMSPS-L4-REDUCE, one thread performs the strengthening
instead of the CDCL algorithm.

2 AI is the strategy used by the winner of the parallel track of 2018 SAT competition.
3 L2 is the strategy used by the second of the parallel track of 2018 SAT competition.

On the Usefulness of Clause Strengthening in Parallel SAT Solving 227

Table 1. Results of the different solvers on the SAT benchmark 2018

Parallelisation Solvers PAR-2 CTI UNSAT SAT SCR(400)

PF

P-MCOMSPS-L4 363h06 26h53 115 165 280

P-MCOMSPS-L4-REDUCE 342h33 21h47 121 168 289

P-MCOMSPS-L2 379h32 23h04 108 165 273

P-MCOMSPS-L2-REDUCE 371h53 20h45 115 163 278

P-MCOMSPS-AI 356h13 37h10 121 165 286

P-MCOMSPS-AI-REDUCE 342h36 32h15 125 167 292

DC
DC-MCOMSPS-L4 448h34 17h17 100 146 246

DC-MCOMSPS-L4-REDUCE 437h44 18h59 103 149 252

Experimental Results. For the evaluation we use the main benchmark of the
SAT competition 20184 which contains 400 instances. All jobs were run on an
Intel Xeon CPUs @ 2.40 GHz and 1.48 TB of RAM. Solvers have been launched
with 12 threads, a 150 GB memory limit, and a 5000 s timeout (the timeout is
the same as for the SAT competitions).

The performance of our solvers is evaluated using the following success met-
rics: penalized average runtime (PAR-2) sums the execution time of a solver and
penalizes the executions that exceed the timeout with a factor 2; solution-count
ranking (SCR) counts the number of problems solved by a solver; cumulative
time of the intersection (CTI) sums the execution time of a solver on the prob-
lems solved by all the solvers.

Table 1 presents the results of our experiments, where each solver is compared
to its counterpart (with a Reducer component). The shaded cells indicate which
one of the two solvers has the best results. We observe that in all metrics, but
two cases, the versions with a Reducer are better: more instances are solved and
better PAR-2 values are obtained in all cases. Only CTI of the DC version is not
as good as the other values. Also, the gains in the number of instances solved
appears to be greater in the unsatcategory, but the number of satinstances
also improves.

To go further in our evaluation, we measured the minimisation capabilities of
the Reducer on instances that each solver could actually solve, while discarding
those where the Reducer did not receive any clause (problem solved too quickly):
(1) P-MCOMSPS-L4-REDUCE (255 instances), 44.21% of the clauses treated by the
Reducer are actually shortened. The mean size of these clauses after strengthen-
ing is 25.45% less than the mean of their original size; (2) P-MCOMSPS-L2-REDUCE
(257 instances), treated 32.59% of the clauses and it lower their size by 23.67%;
(3) P-MCOMSPS-AI-REDUCE (258 instances) treated 34.79% clauses and reduced
by 27.75%; (4) DC-MCOMSPS-L4-REDUCE (245 instances) reduced 28.80% clauses
by 18.86%. In conclusion, the Reducer succeeded to reduce 1/3 of the clauses it
receives by 1/4 of their size.

4 http://sat2018.forsyte.tuwien.ac.at/benchmarks/Main.zip.

http://sat2018.forsyte.tuwien.ac.at/benchmarks/Main.zip

228 V. Vallade et al.

6 Conclusion

This paper presents an implementation of clause strengthening [17] which has
been integrated into Painless [9]. Thanks to the modularity of Painless, we were
able to test the efficiency of strengthening within different configurations of
parallel SAT solvers.

In this study, we used several sharing strategies and different parallelisation
paradigms (i.e.,portfolio and divide-and-conquer). Our experiments show that
having a core dedicated to strengthening improves the performance of our par-
allel solvers whatever the configuration is (including the winner configuration
from the SAT competition 2018).

References

1. Audemard, G., Simon, L.: Predicting learnt clauses quality in modern sat solvers.
In: Proceedings of the 21st International Joint Conferences on Artificial Intelligence
(IJCAI), pp. 399–404. AAAI Press (2009)

2. Balyo, T., Sanders, P., Sinz, C.: HordeSat: a massively parallel portfolio SAT solver.
In: Heule, M., Weaver, S. (eds.) SAT 2015. LNCS, vol. 9340, pp. 156–172. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-24318-4 12

3. Balyo, T., Sinz, C.: Parallel satisfiability. Handbook of Parallel Constraint Reason-
ing, pp. 3–29. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-63516-
3 1

4. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without
BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-49059-0 14

5. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving.
Communun. ACM 5(7), 394–397 (1962)

6. Hamadi, Y., Jabbour, S., Sais, L.: ManySAT: a parallel SAT solver. J. Satisf.
Boolean Model. Comput. 6(4), 245–262 (2009)

7. Han, H., Somenzi, F.: Alembic: an efficient algorithm for CNF preprocessing. In:
Proceedings of the 44th Annual Design Automation Conference. DAC 2007, pp.
582–587. Association for Computing Machinery, New York (2007). https://doi.org/
10.1145/1278480.1278628

8. Heule, M.J.H., Järvisalo, M., Biere, A.: Efficient CNF simplification based on
binary implication graphs. In: Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS,
vol. 6695, pp. 201–215. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-21581-0 17

9. Le Frioux, L., Baarir, S., Sopena, J., Kordon, F.: PaInleSS: a framework for parallel
SAT solving. In: Gaspers, S., Walsh, T. (eds.) SAT 2017. LNCS, vol. 10491, pp.
233–250. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66263-3 15

10. Le Frioux, L., Baarir, S., Sopena, J., Kordon, F.: Modular and efficient divide-
and-conquer SAT solver on top of the painless framework. In: Vojnar, T., Zhang,
L. (eds.) TACAS 2019. LNCS, vol. 11427, pp. 135–151. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-17462-0 8

11. Le Frioux, L., Metin, H., Baarir, S., Colange, M., Sopena, J., Kordon, F.: painless-
mcomsps and painless-mcomsps-sym. In: Proceedings of SAT Competition 2018:
Solver and Benchmark Descriptions, pp. 33–34. Department of Computer Science,
University of Helsinki, Finland (2018)

https://doi.org/10.1007/978-3-319-24318-4_12
https://doi.org/10.1007/978-3-319-63516-3_1
https://doi.org/10.1007/978-3-319-63516-3_1
https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1145/1278480.1278628
https://doi.org/10.1145/1278480.1278628
https://doi.org/10.1007/978-3-642-21581-0_17
https://doi.org/10.1007/978-3-642-21581-0_17
https://doi.org/10.1007/978-3-319-66263-3_15
https://doi.org/10.1007/978-3-030-17462-0_8

On the Usefulness of Clause Strengthening in Parallel SAT Solving 229

12. Liang, J.H., Ganesh, V., Poupart, P., Czarnecki, K.: Learning rate based branching
heuristic for SAT solvers. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS,
vol. 9710, pp. 123–140. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
40970-2 9

13. Liang, J.H., Oh, C., Ganesh, V., Czarnecki, K., Poupart, P.: MapleCOMSPS,
MapleCOMSPS LRB, MapleCOMSPS CHB. In: Proceedings of SAT Competi-
tion 2016: Solver and Benchmark Descriptions, p. 52. Department of Computer
Science, University of Helsinki, Finland (2016)

14. Marques-Silva, J.P., Sakallah, K.: GRASP: a search algorithm for propositional
satisfiability. IEEE Trans. Comput. 48(5), 506–521 (1999)

15. Piette, C., Hamadi, Y., Säıs, L.: Vivifying propositional clausal formulae. In: Pro-
ceedings of the 2008 Conference on ECAI 2008: 18th European Conference on
Artificial Intelligence, pp. 525–529. IOS Press, NLD (2008)

16. Sörensson, N., Biere, A.: Minimizing learned clauses. In: Kullmann, O. (ed.) SAT
2009. LNCS, vol. 5584, pp. 237–243. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-02777-2 23

17. Wieringa, S., Heljanko, K.: Concurrent clause strengthening. In: Järvisalo, M., Van
Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 116–132. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-39071-5 10

18. Zhang, L., Madigan, C.F., Moskewicz, M.H., Malik, S.: Efficient conflict driven
learning in a Boolean satisfiability solver. In: Proceedings of the 20th IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), pp. 279–285. IEEE
(2001)

https://doi.org/10.1007/978-3-319-40970-2_9
https://doi.org/10.1007/978-3-319-40970-2_9
https://doi.org/10.1007/978-3-642-02777-2_23
https://doi.org/10.1007/978-3-642-02777-2_23
https://doi.org/10.1007/978-3-642-39071-5_10

Solvers and Program Analysis

Verifying a Solver for Linear Mixed
Integer Arithmetic in Isabelle/HOL

Ralph Bottesch1(B), Max W. Haslbeck1 , Alban Reynaud2,
and René Thiemann1

1 University of Innsbruck, Innsbruck, Austria
ralph.bottesch@uibk.ac.at
2 ENS Lyon, Lyon, France

Abstract. We implement a decision procedure for linear mixed inte-
ger arithmetic and formally verify its soundness in Isabelle/HOL. We
further integrate this procedure into one application, namely into CeTA,
a formally verified certifier to check untrusted termination proofs. This
checking involves assertions of unsatisfiability of linear integer inequali-
ties; previously, only a sufficient criterion for such checks was supported.
To verify the soundness of the decision procedure, we first formalize the
proof that every satisfiable set of linear integer inequalities also has a
small solution, and give explicit upper bounds. To this end we mechanize
several important theorems on linear programming, including statements
on integrality and bounds. The procedure itself is then implemented as
a branch-and-bound algorithm, and is available in several languages via
Isabelle’s code generator. It internally relies upon an adapted version of
an existing verified incremental simplex algorithm.

Keywords: Branch-and-bound · Isabelle/HOL · Linear
programming · Polyhedra · Simplex algorithm

1 Introduction

The computational problem of deciding whether a system of linear inequalities
with integer coefficients has an integral solution arises in many practical situa-
tions. Since it is NP-complete, no currently known algorithm can in general avoid
searches of exponential length. Furthermore, while satisfiable instances always
have short solutions that can be efficiently checked, there need not be short,
efficiently-checkable proofs for the fact that an instance is unsatisfiable, unless
NP = co-NP. (Contrast this with the related problem of deciding whether a
system of linear inequalities with integer coefficients has a rational solution –
this problem is in P, and Farkas’ lemma provides a short and efficiently check-
able certificate that an unsatisfiable instance indeed has no solution.) Thus, if a

This research was supported by the Austrian Science Fund (FWF) project Y757.
The authors are listed in alphabetical order regardless of individual contributions or
seniority.

The original version of this chapter was revised: the paper has been made avail-
able open access at SpringerLink. The correction to this chapter is available at
https://doi.org/10.1007/978-3-030-55754-6 26

c© The Author(s) 2020, corrected publication 2020
R. Lee et al. (Eds.): NFM 2020, LNCS 12229, pp. 233–250, 2020.
https://doi.org/10.1007/978-3-030-55754-6_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-55754-6_14&domain=pdf
http://orcid.org/0000-0002-9900-5746
http://orcid.org/0000-0002-0323-8829
https://doi.org/10.1007/978-3-030-55754-6_26
https://doi.org/10.1007/978-3-030-55754-6_14

234 R. Bottesch et al.

solver declares that a given instance is unsatisfiable over the integers, the length
of any proof for this fact may be exponential in the size of the input instance,
in which case the computational effort required to check such a proof would be
exponential as well.

Instead of repeatedly performing certification tasks that require immense
amounts of data and computational effort, it may be more fruitful to formally
verify the soundness of a solver once, so that it can then be trusted without
instance-by-instance certification of its output. The implementation of such a
solver, together with a formal proof of its soundness, is the goal of the present
work. Specifically, we use Isabelle/HOL [19] to implement and prove the correct-
ness of a branch-and-bound algorithm [21, Chapter 24.1], and then use Isabelle’s
code generator [11] to obtain verified executable code. Along the way, we also give
the first formalized proofs for several important results on integer programming.

A concrete example of an application for our solver comes from termination
analysis, where a program is given as input to a termination tool that tries to
determine whether the given program terminates on all inputs. Since termination
tools get patched and improved repeatedly, maintaining an up-to-date formal
proof of soundness would be extremely difficult. Therefore, the approach that
is typically used is to have the (unverified) termination tool output a certificate
for its analysis, which can then be checked by a verified certificate checker. One
such certificate checker is CeTA [5,24]. It has been verified in Isabelle/HOL, so
that whenever it accepts a proof of termination for some program, the formal
proof of CeTA’s soundness ensures that the program does indeed terminate.

As an example, consider a program to compute the binary logarithm.

int log2(int x) {
int n := 0;
while (x > 0) {

x := x div 2;
n := n + 1;

}
return n;

}

This program can be translated into an integer transition system and termi-
nation can be proved by showing that the value of x is decreased by at least 1 in
every loop iteration. This property can be expressed in linear integer arithmetic
(LIA): it is equivalent to the validity of formula (1), where x′ and n′ represent
the new values of x and n, respectively, after an iteration of the loop.

x > 0 ∧ 2x′ � x ∧ x � 2x′ + 1 ∧ n′ = n + 1 −→ x � x′ + 1 (1)

Validity of (1) is equivalent to unsatisfiability of the negated formula, which
is simply a conjunction of linear inequalities:

x > 0 ∧ 2x′ � x ∧ x � 2x′ + 1 ∧ n′ = n + 1 ∧ x < x′ + 1 (2)

Verifying a Solver for Linear Mixed Integer Arithmetic in Isabelle/HOL 235

A sufficient condition for the unsatisfiability of (2) over the integers (LIA)
is the unsatisfiability of the same system over the rationals (LRA); the latter
can be shown, for instance, via the simplex algorithm [9]. Indeed, a verified
implementation [23] of the simplex algorithm is currently integrated into CeTA [5].
However, whereas (2) is unsatisfiable over the integers, it has a rational solution
x = n′ = 1, x′ = 1

2 , n = 0. For such examples, considering the problem over the
rationals may prohibit CeTA from detecting unsatisfiability over the integers.

Therefore, in this paper we develop a verified theory solver for LIA (in fact, for
linear mixed integer arithmetic, where only a user-specified part of the solution is
required to be integral). The verified solver takes a conjunction of strict and non-
strict linear inequalities as input, and decides whether they are simultaneously
solvable. We fully integrate the LIA solver into CeTA, so that the new version
can handle all instances that are unsatisfiable over the integers and not only
those that are unsatisfiable over the rationals as well. Of course, the LIA solver
can also be used as a stand-alone theory solver, e.g., to perform verified SMT
solving.

We verify our LIA solver in two major steps.

1. First, we show that for every set of LIA constraints it suffices to search for
small solutions. To this end, we formally verify an a priori bound in the style
of Papadimitriou [20]: If there is an integer solution to a set of LIA constraints,
then there is also one that is bounded by b := n(ma)2m+1, where n is the
number of variables, m the number of inequalities, and a the largest absolute
value of any number occurring in the inequalities. To be more precise, the
small solution satisfies |x| ≤ b for each variable x.
Our verified upper bound matches the one given in a textbook [21, Thm. 17.1]
(which is considerably lower than the one by Papadimitriou).1 Specifically,
we establish a bound of (n + 1)!an (with no dependence on m). To prove
this bound in Isabelle/HOL we mostly follow the textbook proofs and for-
malize several important results from linear programming, often with addi-
tional statements on bounds and integrality. These results include: the funda-
mental theorem of linear inequalities, the Farkas–Minkowski–Weyl theorem,
Carathéodory’s theorem, and the decomposition theorem for polyhedra. Note
that the bound on the size of solutions also implies the fact that the problem
of deciding satisfiability for linear integer inequalities is in NP.

2. Using the upper bound, we can decide satisfiability via a finite search. For
instance, for formula (2) we have n = 4, a = 2 and m = 6 (the equality counts
as two inequalities), and we know that if (2) is satisfiable, then there is an
integer solution with absolute values at most 1920.
To perform this search, we implement and verify a basic branch-and-bound
algorithm. It is based on an incremental version of the simplex algorithm by
Dutertre and de Moura [10], which is used to deliver candidate solutions and
to prune the search tree by detecting unsatisfiability in LRA. Although the
incremental simplex algorithm has recently been verified in Isabelle/HOL [3],

1 The textbook bound is somewhat more precise than ours, as it is phrased in terms
of sub-determinants, whereas we use a generic bound on sub-determinants.

236 R. Bottesch et al.

its integration into the branch-and-bound algorithm is not immediate: the
branch-and-bound algorithm requires frequent updates of bounds on vari-
ables, and this operation is not supported by the existing verified incremental
simplex algorithm.

Note that our verified LIA solver is missing several possible optimizations
[6,7,14], some of which might be integrated in future work. Therefore, it clearly
cannot compete with state-of-the-art (unverified) solvers. Still, our experimental
results show that there are some examples from SMT-LIB where our solver is
successful, but both CVC4 [2] and Z3 [16] fail.

Structure. We give some preliminaries on linear (integer) programming and
Isabelle in Sect. 2. Afterwards, we present our formalization of linear program-
ming and the mentioned bound in Sect. 3. The branch-and-bound algorithm with
the adaptation of the incremental simplex algorithm are covered in Sect. 4. We
provide experimental results in Sect. 5 and conclude in Sect. 6.

The collection of theorems on polyhedra and small solutions is available as
part of the archive of formal proofs (AFP) in the entry on linear inequalities [4],
and the branch-and-bound algorithm is part of IsaFoR/CeTA [24]. All of the the-
orems of this paper are linked to the formalization on an accompanying website.
It also provides details on the experiments.

http://cl-informatik.uibk.ac.at/software/ceta/experiments/lia/

Related Work. Allamigeon and Katz [1] have implemented the simplex algo-
rithm in Coq and used it to give constructive proofs of a number of important
theorems about convex polyhedra. The overlap between our work and [1] consists
of formalizations of basic facts concerning cones and polyhedra, the fundamen-
tal theorem of linear inequalities, and Farkas’ lemma. However, whereas in [1] a
simplex algorithm for optimization problems is implemented in order to be used
in constructive mathematical proofs, we formalize theorems concerning integer
programming, including bounds on the size of solutions, and use these together
with the previously Isabelle-verified simplex algorithm to obtain formally veri-
fied, yet efficient, software.

There is also a formalization of theorems about polyhedra in HOL Light, due
to Harrison [12], but it contains neither a formalization of the simplex algorithm
nor does it cover integer programming.

Cooper’s algorithm has been formalized by Nipkow [18] in Isabelle/HOL.
Although this algorithm also solves linear integer arithmetic, it internally works
completely differently and its formalization requires different proofs; therefore,
we do not see any overlap between the two works. We nevertheless consider the
verified version of Cooper’s algorithm in our experiments.

Finally, we mention two general-purpose verified solvers. Carlier et al. [8]
used Coq to implement and verify an algorithm for solving constraint satisfac-
tion problems over finite domains. As with [1], the resulting implementation
can be used in principle, but is not efficient enough to compete with unveri-
fied implementations of the same algorithm. Narkawicz and Muñoz [17] used

http://cl-informatik.uibk.ac.at/software/ceta/experiments/lia/

Verifying a Solver for Linear Mixed Integer Arithmetic in Isabelle/HOL 237

PVS to verify a general branch-and-bound algorithm; a C++ implementation of
this algorithm is described in [22]. In contrast to our work, this implementation
was not automatically generated from a formal, verified algorithm specification,
but was coded separately. Furthermore, in order to use the general branch-and-
bound algorithm, one must first tailor it to an application domain by specifying
a number of functions that must respect certain specifications, whereas every
part of our LIA solver (both branch-and-bound and simplex) has been formally
verified. Thus, while the algorithm we verify lacks the generality of the one in
[17], our implementation retains a higher degree of reliability than the one in
[22], due to being entirely generated from a formally verified algorithm, and it
is nevertheless reasonably efficient.

2 Preliminaries

We briefly review some linear programming and Isabelle background.

2.1 Linear Programming

We assume familiarity with vector spaces. Although our Isabelle theorems use a
more general type, here we present our results in the context of Euclidean spaces
(Rn). We denote the usual inner product in R

n by ‘·’.
A (non-strict) linear inequality is an inequality of the form a · x ≤ b, where

a, x ∈ R
n (a a row vector, x a column vector) and b ∈ R. A system of linear

inequalities can therefore be written as Ax ≤ b, with A ∈ R
m×n and b ∈ R

m a
column vector. A system of linear inequalities is a mixed integer system if, for
some I ⊆ {1, . . . , n}, it is required that xi ∈ Z for all i ∈ I. We also define strict
linear inequalities to be inequalities of the form ax < b, with a, x and b as before.

In this work we consider mixed integer systems of linear inequalities contain-
ing both non-strict and strict inequalities.

For reference, we collect below the definitions of several important concepts
from linear algebra that are needed in order to state the theorems that we
formalize. These definitions can be found in textbooks on linear programming
such as [21, Chapters 7.1–2 and 16.2].

Definition 1 (Half-spaces, hyperplanes, polyhedra). For c ∈ R
n \ {0n}

(a row vector) and d ∈ R, we say that the set H = {x | c · x ≤ d} is an affine
half-space, and that c is its normal vector. If d = 0, then H is called a linear
half-space (or just a half-space). The set {x | c · x = 0} is called a hyperplane
(of which c is a normal vector).

A set P ⊆ R
n is called a (convex) polyhedron if P = {x | Ax ≤ b}, for some

matrix A ∈ R
m×n and b ∈ R

m. In words, a polyhedron is the intersection of a
finite collection of affine half-spaces.

Definition 2 (Cones). A non-empty set C ⊆ R
n is a cone if, for all x, y ∈ C

and λ, μ ≥ 0, we have λx + μy ∈ C. A cone C is generated by the set of
vectors X if C = {λ1v1 + . . . + λmvm | λ1, . . . , λm ≥ 0, {v1, . . . , vm} ⊆ X}, and

238 R. Bottesch et al.

C is finitely generated if it is generated by a finite set of vectors. A cone is
polyhedral if it is the intersection of finitely many (linear) half-spaces.

Definition 3 (Convex hull, polytopes, integer hull). The convex hull of
a vector set X is the set of all convex linear combinations of vectors from X.
More precisely,

conv.hull X = {λ1v1 + ... + λmvm | λ1, ..., λm ≥ 0,
∑

λi = 1, {v1, ..., vm} ⊆ X}

The convex hull of a finite set of vectors is called a (convex) polytope.
Finally, if P is a polyhedron, then the integer hull of P , denoted PI , is the

convex hull of the set of integral vectors of P . (Integral vectors are vectors whose
coordinates with respect to the standard basis are integers.)

2.2 Isabelle

For our formalization work we use the theorem prover Isabelle. Knowledge of
Isabelle will be helpful, but is not necessary in order to read the paper, as we
have tried to make the formal source listings accessible even to a reader with a
purely mathematical background.

Nevertheless, we briefly explain the meaning of some important notation here.
First, we have carrier_vec n = R

n, carrier_mat m n = R
m×n, and denote the

zero-vector of dimension n by 0n. Often, the statement that a vector or a matrix
has a certain property will be expressed as membership in the set of all vectors
or matrices with that property: Bounded_vec bnd is the set of vectors (of finite
dimension) with entries bounded in absolute value by bnd (similarly Bounded_

mat bnd), indexed_Ints_vec I is the set of vectors v with vi ∈ Z for all i ∈ I,
and, finally, Zv is the set of vectors (of finite dimension) with integer entries
(similarly, Zm is a set of matrices). We also have a notation for sets defined by
some set of vectors or by a matrix: finite_cone X denotes the cone generated by
the finite set X; other examples are cone X , polyhedral_cone A and polyhedron

A b , all with the obvious meanings.

3 Mixed-Integer Linear Problems

3.1 The Main Formalized Theorems

We discuss our formalization of several results that are needed in order to for-
mally prove the soundness of a branch-and-bound-based solver for mixed-integer
linear systems of inequalities. The main theorem for this purpose states that if a
mixed integer system of linear inequalities can be described using only integers,
then it has a solution if and only if it also has a solution involving only numbers
of bounded size.

Theorem 4. small_mixed_integer_solution:

assumes A1 ∈ carrier_mat nr1 n and A2 ∈ . . . and ...

Verifying a Solver for Linear Mixed Integer Arithmetic in Isabelle/HOL 239

and Bnd ≥ 0

and {A1,A2} ⊆ Zm ∩ Bounded_mat Bnd

and {b1,b2} ⊆ Zv ∩ Bounded_vec Bnd

and x ∈ indexed_Ints_vec I

and A1x ≤ b1 and A2x < b2

shows ∃x. x ∈ carrier_vec n ∧ x ∈ indexed_Ints_vec I

∧ A1x ≤ b1 ∧ A2x < b2 ∧ x ∈ Bounded_vec (fact (n+1) * Bnd^n)

In order to derive this result, we require formalizations of several results
from the theory of linear inequalities, beginning with the fundamental theorem
of linear inequalities. This theorem states that for any finite set of vectors A
and vector b, either b is in the cone generated by a subset of A, or there exists a
hyperplane {x | c · x = 0} separating b from A and containing some number of
vectors of A.

Theorem 5. fundamental theorem of linear inequalities:2

assumes A ⊆ carrier vec n and finite A and b ∈ carrier vec n

shows (∃B. B ⊆ A ∧ b ∈ finite cone B ∧ lin indpt B) ←→
¬ (∃c B. c ∈ carrier vec n ∧ B ⊆ A ∧ |B|+1 = dim span (A ∪ {b}) ∧
lin indpt B ∧ (∀a ∈ B. c · a = 0) ∧ (∀a ∈ A. c · a ≥ 0) ∧ c · b < 0)

To prove the theorem, one first considers an algorithm that iteratively applies
a procedure that takes a subset of vectors from A and produces either the cone
containing b from the theorem statement, or the separating hyperplane, or a new
set of vectors from A. In case of the third outcome, the output set is used as the
input for the next iteration. Thus, starting from some valid set of vectors, the
above algorithm either never terminates (if the third outcome occurs in every
iteration), or it produces an object satisfying the theorem statement. The proof
is completed by showing that an infinite execution cannot occur.

The above argument could in principle be formalized in Isabelle by defining
a function that incorporates the algorithm, and then proving that the function
is well-defined (which implies the termination of the algorithm on all inputs).
However, we are really only interested in the algorithm’s termination; the fact
that some input is mapped to a certain output is irrelevant for the proof of the
theorem. Furthermore, we only need that the algorithm terminates when the set
of input vectors is valid (i.e., of the right cardinality and linearly independent),
but, due to the limitations of the Isabelle function-package [13], the domain of
a function cannot be restricted in this manner. Consequently, we formalize the
proof without modeling the algorithm as an Isabelle function. Instead, we define
a relation on pairs of valid subsets of A: The pair (J ′, J) is in the relation if
and only if, starting with J as input, one iteration of the algorithm produces
output J ′. In other words, the relation encodes all iterations of the algorithm
where the third outcome occurs. Since A is finite, termination is equivalent to
the fact that the above relation has no cycles. The latter fact is established by

2 The Isabelle statement given here matches the presentation of the theorem in [21];
in our formalization, the equivalence is written as an equality of sets.

240 R. Bottesch et al.

a proof by contradiction (here, our formalization closely follows the textbook
proof [21, Chapter 7.1]).

We also need to formalize three corollaries of Theorem 5. First, we have the
theorem of Carathéodory, which follows directly.

Theorem 6. Caratheodory_theorem: assumes A ⊆ carrier_vec n

shows cone A = ∪ {finite_cone B | B. B ⊆ A ∧ lin_indpt B}

Next, we have the Farkas-Minkowski-Weyl theorem, which states that a cone
is polyhedral if and only if it is finitely generated.

Theorem 7. farkas_minkowsky_weyl_theorem:

(∃X. X ⊆ carrier_vec n ∧ finite X ∧ P = cone X) ←→
(∃A nr. A ∈ carrier_mat nr n ∧ P = polyhedral_cone A)

The proofs of Theorems 7 and 5 in [21] contain some simplifying assumptions
that can be made without loss of generality. Of course, in Isabelle we must
provide the full details of every proof, which often entails a non-trivial amount
of additional formalization work. For example, the textbook proof of the “−→”-
implication of Theorem 7 only covers the case where X spans R

n. One way to
recover this part of the theorem in full generality is to identify the span of X
with R

m for some m < n, apply the “−→”-implication for dimension m, and
then extend the half-spaces (of span X) that define the polyhedral cone, into
R

n. In fact, this argument is essentially the justification for the wlog that is
given in the book. Unfortunately, the Isabelle vector/matrix library we use does
not support identifying an arbitrary proper subspace of R

n with a Euclidean
subspace of lower dimension: Even if we prove some statement for carrier_vec

m , we cannot apply it to some arbitrary m-dimensional subspace of R
n. Instead,

our formalization of the general case involves adding suitable dummy vectors
to X until the set spans all of R

n, so that we can apply the full-dimension
implication for carrier_vec n . This is one of several situations where filling in
the “obvious” steps of a proof in a way that can be formally expressed in Isabelle
requires some creativity.

The third corollary is the decomposition theorem for polyhedra, stating that
every polyhedron can be written as the sum of a polytope and a polyhedral cone:

Theorem 8. decomposition_theorem_polyhedra:

(∃A b nr. A ∈ carrier_mat nr n ∧
b ∈ carrier_vec nr ∧ P = polyhedron A b)

←→ (∃Q X. Q ∪ X ⊆ carrier_vec n ∧ finite (Q ∪ X) ∧
P = convex_hull Q + cone X)

For both Farkas-Minkowski-Weyl (Theorem7) and the decomposition theo-
rem, the fact that we used a set-based matrix/vector library proved to be ben-
eficial. To show the “−→”-implication of Theorem7, one defines a matrix, the
dimension of which is a function of X (and can therefore not be independently
fixed just by the type of X). Constructing matrices of dimensions that depend

Verifying a Solver for Linear Mixed Integer Arithmetic in Isabelle/HOL 241

on the value of some variable is easy when using carrier_mat , but would be very
difficult with matrix libraries which utilize Harrison’s encoding of dimensions in
types [12]. In the case of the decomposition theorem for polyhedra, the proof
involves adding a new component to each vector from a set of n-dimensional
vectors and then reasoning about the resulting set of (n + 1)-dimensional vec-
tors, while maintaining the correspondence between the two sets. Here, the use
of carrier_vec makes it possible to easily switch between dimensions and rea-
son about objects such as “the vector formed of the first n components of some
(n + 1)-dimensional vector”.

Since the set of (real) solutions of a system of linear inequalities is a polyhe-
dron, the decomposition theorem for polyhedra allows us to write any solution
vector x as y + z, with y an element of a polytope (and therefore bounded), and
z an element of a finitely generated cone. This suggests the following approach
to proving Theorem 4 (small_mixed_integer_solution): If x is such that xi ∈ Z

for all i ∈ I, we may try to replace z with a vector z′ of the same cone, with
bounded entries, such that (y + z′)i ∈ Z for all i ∈ I (thus, y + z′ would be
the desired bounded solution). This approach does in fact work, but it clearly
requires a more powerful version of the decomposition theorem, since the one
we have shown so far says nothing about bounds or integrality. The proof of
the new decomposition theorem also requires a bounded integer version of The-
orem 7. This latter theorem in turn is based on a modified version of Theorem5
which describes more precisely how separating hyperplanes can be computed so
that the normal vectors are integral and with components of bounded size.

Theorem 9. decomposition_theorem_polyhedra_1:

assumes A ∈ carrier_mat nr n

and b ∈ carrier_vec nr and P = polyhedron A b

shows ∃Q X. X ⊆ carrier_vec n ∧ Q ⊆ carrier_vec n ∧ finite (X ∪ Q)

∧ P = convex_hull Q + cone X ∧
(A ∈ Zm ∩ Bounded_mat Bnd −→ b ∈ Zv ∩ Bounded_vec Bnd −→
X ⊆ Zv ∩ Bounded_vec (. . .) ∧ Q ⊆ Bounded_vec (. . .))

The ‘−→’-implication of this stronger version of the decomposition theorem
for polyhedra states that if A and b have bounded integer entries, then the finite
sets Q and X can be chosen such that they contain only bounded vectors and,
furthermore, such that X contains only integral vectors. The integrality of the
vectors in X is the crucial ingredient necessary for constructing the vector z′ as
required and completing the proof of Theorem4.

In [21], only a weaker version of Theorem 4 is proved; it covers only the case of
non-strict linear inequalities with integral solutions. Although our result trivially
implies this weaker form, we have formalized the proof from the textbook as well,
for the sake of completeness.

This proof relies on a decomposition theorem for the integer hull of a polyhe-
dron, which also requires bounded integer versions of Theorem7 and the decom-
position theorem for polyhedra. Only a rough sketch is given in the book as
to how the bounded integer versions of these theorems can be obtained. When

242 R. Bottesch et al.

formalizing this part, however, we encounter the following issue: In the course
of a proof, it will be necessary to add new vectors to a set until it has a certain
property, or to add half-spaces to a collection until its intersection coincides with
some polyhedron. This suffices if we only wish to prove the existence of a set of
vectors with some property, or of a specific representation of a polyhedron, but
if we also need to prove bounds on the numbers needed to describe these objects,
it becomes crucial which vectors or half-spaces are chosen, because some choices,
while valid, will lead to results that do not respect the desired bounds.

For a concrete example, we return to the “−→”-implication of Theorem7
(Farkas-Minkowski-Weyl), this time in its bounded integer version:

Theorem 10. farkas_minkowsky_weyl_theorem_1:

assumes X ⊆ carrier_vec n and finite X

shows ∃nr A. A ∈ carrier_mat nr n ∧ cone X = polyhedral_cone A ∧
(X ⊆ Zv ∩ Bounded_vec Bnd −→ A ∈ Zm ∩ Bounded_mat (. . .))

As mentioned earlier in this section, this implication is proved for the case
where the span of X is R

n, which is then used to prove the general implication,
but the switch from the special to the general case involves adding vectors to
X until the set spans the entire space, and then applying the full-dimension
statement to obtain the half-spaces that define the polyhedral cone. Now, the
vectors that are added to X can affect the size of the entries of the resulting
matrix A, and the fact that these vectors can also be chosen in such a way that
the entries of A are bounded in terms of only Bnd and n, is not obvious, and
in fact requires a careful construction. Whereas such matters are simply glossed
over in the textbook, resolving the wlogs in the proof of the bounded version
of Theorem 5 and of Theorem 7 resulted in Isabelle proofs of 176 lines and 110
lines, respectively.

In the end, we achieve the following formalized version of the textbook the-
orem [21, Thm. 17.1].

Theorem 11. small_integer_solution_nonstrict_via_decomp:

assumes A ∈ carrier_mat nr n ∩ Zm ∩ Bounded_mat Bnd

and b ∈ carrier_vec nr ∩ Zv ∩ Bounded_vec Bnd

and x ∈ carrier_vec n ∩ Zv and Ax ≤ b

shows ∃y. y ∈ carrier_vec n ∩ Zv ∧ Ay ≤ b

∧ y ∈ Bounded_vec (fact (n+1) * (max 1 Bnd)^n)

3.2 Additional Formalized Theorems

In order to formalize the proofs of the main theorems, we collect a number
of basic lemmas concerning cones, convex hulls, integer hulls, normal vectors
and bases of vector spaces. On the one hand, these lemmas include very basic
statements that would not normally require separate proofs, but were needed
for the formalization, such as the fact that a set of vectors is a subset of the
cone it generates, or that a convex combination of two vectors of a cone belongs

Verifying a Solver for Linear Mixed Integer Arithmetic in Isabelle/HOL 243

to the cone. On the other hand, our supporting lemmas include statements that
appear in standard mathematical texts, such as the fact stated in Lemma12 that
any linearly independent set of vectors can be extended to a basis of the vector
space. We mention that we have proved all of these facts only for Euclidean
vector spaces, making heavy use of the fact that the dimension is finite, because
this case suffices for our application.

Lemma 12. expand_to_basis: assumes lin_indpt_list xs

shows ∃ys. set ys ⊆ set (unit_vecs n) ∧ lin_indpt_list (xs @ ys)

∧ length (xs @ ys) = n

We note that in Lemma 12, @ is list concatenation and unit_vecs n refers to
the standard basis of R

n. Of course, a linearly independent set can be extended
in many other ways, but we use vectors from the standard basis because they
allow us to obtain the same number bounds as for the original linearly indepen-
dent set. Adding the standard basis vectors is also the reason for using max 1

Bnd instead of Bnd in many theorems that mention upper bounds. Indeed, the
“max 1”-operation often cannot be dropped. For instance, consider the “←−”-
implication of Theorem 7 and the degenerate case where the matrix A is empty
or just contains zeros. Then the entries of A are bounded by 0 and the cone is
the whole space. Thus, for generating this cone one needs at least n non-zero
vectors, e.g., the unit vectors. And these do not have all their entries bounded
by 0, but by max 1 0 .

A notable exception, without “max 1”, is our main Theorem 4 (small_mixed_
integer_solution). This result is first proved with the “max 1” expression in the
bounds. The version without the max -operation is then established by proving
that the theorem also holds in all degenerate cases (where the bound is 0).

Aside from the main theorems and supporting lemmas, we also formally prove
two variants of Farkas’ lemma. We do not need these for our work on the verified
linear arithmetic solver, but obtaining them did not entail a prohibitively large
additional effort, and they may be useful for other formalizations.

Although there already exists an entry for Farkas’ lemma in the AFP, its proof
there is based not on the fundamental theorem of linear inequalities (Theorem5),
but on a separate formalization of the simplex algorithm (one that has been
formalized solely for rational numbers). Since here we use Theorem5, we obtain
a version of a lemma that allows for the use of a more general type than just
the rationals. (In Isabelle, type annotation is denoted by :: . Below, ′a is a type
variable that stands for the type of the entries of a matrix/vector; it can be any
type with the suitable algebraic properties.)

Lemma 13. Farkas_Lemma: fixes A :: ′a mat and b :: ′a vec

assumes A ∈ carrier_mat n nr and b ∈ carrier_vec n

shows (∃x. x ≥ 0nr ∧ Ax = b) ←→
(∀y. y ∈ carrier_vec n ∧ AT y ≥ 0nr −→ yb ≥ 0)

Lemma 14. Farkas_Lemma ′: fixes A :: ′a mat and b :: ′a vec

assumes A ∈ carrier_mat nr nc and b ∈ carrier_vec nr

244 R. Bottesch et al.

shows (∃x. x ∈ carrier_vec nc ∧ Ax ≤ b) ←→
(∀y. y ≥ 0nr ∧ AT y = 0nc −→ yb ≥ 0)

Finally, we remark that, while the first of the two variants of Farkas’ lemma
follows easily from Theorem 5, the second variant (which, in [21], has a three-line
proof that is based on the first variant) is somewhat more difficult to formalize.
This is because its proof involves concatenating matrices and deducing inequal-
ities involving the resulting matrix from facts about its components. Such oper-
ations require laborious low-level manipulations of vector inequalities, turning a
three-line textbook proof into 102 lines of Isabelle code.

4 A Verified Branch-and-Bound Algorithm

4.1 The Branch-and-Bound Algorithm

Algorithm 1 shows the Isabelle/HOL function bnb , which is our implementation
of a branch-and-bound algorithm for solving LIA problems. It takes as param-
eters a list of constraints cs , the list of variables Is that should get an integer
assignment and (total) functions lb and ub that map the variables in Is to their
lower and upper integer bounds. bnb returns either a satisfying assignment which
maps variables to rational numbers and all variables in Is to integers, or None , if
the mixed integer problem is unsatisfiable within the bounds lb and ub . bnb first
uses the simplex algorithm to find a rational solution of the constraints within
the bounds. If the constraints are already unsatisfiable in the rational numbers
or if the solution is already integral for all values in Is , then bnb terminates
accordingly. Otherwise, there exists an x ∈ Is where v x (the value assigned to
x in the rational solution v) is not an integer. We update the bounds on x once
in lb and once in ub and branch by running bnb with the new upper bound and
then with the new lower bound.

To verify bnb in Isabelle/HOL we have to show that it always terminates.
Note that in every recursive call, we either decrease one of the upper bounds ub

or increase one of the lower bounds lb . This fact is used to show that in every

function bnb :: constraint list ⇒ var list ⇒ (var⇒int) ⇒ (var⇒int)
⇒ (var⇒rat) option where

bnb cs Is lb ub =
case simplex (bounds_to_constraints Is lb ub @ cs) of

Unsat _ ⇒ None

| Sat v ⇒ case find (λx. v x /∈ ZZ) Is of

None ⇒ Some v

| Some x ⇒ case bnb cs Is lb (ub(x := �v x�)) of

Some sol ⇒ Some sol

| None ⇒ bnb cs Is (lb(x := �v x�)) ub

Algorithm1: A simple implementation of a branch-and-bound algorithm

Verifying a Solver for Linear Mixed Integer Arithmetic in Isabelle/HOL 245

recursive call, the range of possible values decreases for some x , and, hence,
so does the search space. Thus, we use the following measure (of the size of the
search space) to prove termination in Isabelle/HOL:

max

(
0,

∑

xi∈Is

(ub(xi) − lb(xi))

)

We then prove two theorems about bnb : any detected solution is valid, and
whenever bnb delivers None , no solution exists within the range that is specified
by the lower- and upper-bounds. The expression v |=mcs (set cs, set Is) means
that the solution v satisfies all of the constraints in cs and that all x ∈ Is are
assigned integer values by v .

lemma branch_and_bound_sat:

assumes bnb cs Is lb ub = Some v

shows v |=mcs (set cs, set Is)

lemma branch_and_bound_unsat:

assumes bnb c Is lb ub = None

and ∀ i ∈ set Is. lb i ≤ v i ∧ v i ≤ ub i

shows v |=mcs (set cs, set Is)

At this point we connect the branch-and-bound algorithm with the bounds from
Sect. 3 to obtain a decision procedure for linear (mixed) integer arithmetic:

definition branch_and_bound cs Is = (let B = compute_bound cs

in bnb cs Is (λ_. −B) (λ_. B))

Here, compute_bound is an algorithm that extracts the relevant parameters
(number of variables, maximal absolute value in constraints) and then calculates
the upper bound as in Sect. 3. One complication comes from the fact that there
are two different representations of constraints: the statements regarding bounds
have been proved for constraints given in matrix-vector form, Ax ≤ b or Ax < b
with integral matrix A and integral vector b, whereas the input to the branch-
and-bound algorithm is a set of constraints, where each constraint is represented
via a (sparse) linear polynomial with rational entries, e.g., x5 + 1

10x1041 ≤ 7
3 .

Hence, compute_bound internally also normalizes the constraints, e.g., by can-
celing fractions, and by renaming the variables so that the indices of variables
with non-zero coefficients form a contiguous block: x0, . . . , xn−1. The normalized
constraints can then easily be translated into matrix-vector-form, which enables
a lifting of Theorem 4 (small_mixed_integer_solution) to constraints that are
represented via sparse polynomials.

lemma compute_bound:

assumes v |=mcs (set cs, Is)

shows ∃ v. v |=mcs (set cs, Is) ∧ (∀ i ∈ Is. |v i| ≤ compute_bound cs)

At this point, it is easy to combine the results of bnb with compute_bound to
finally show that branch_and_bound is a complete and sound decision procedure.

246 R. Bottesch et al.

Either it returns some assignment, which is then a solution to the mixed integer
problem; or it returns None , and the mixed integer problem is unsatisfiable.

lemma branch_and_bound:

branch_and_bound cs Is = Some v =⇒ v |=mcs (set cs, set Is)

branch_and_bound cs Is = None =⇒ �v. v |=mcs (set cs, set Is)

4.2 Using the Incremental Version of Simplex

One problem of the branch-and-bound algorithm from the previous section is
in the way it invokes the simplex algorithm: although in every iteration only a
single constraint changes, the simplex algorithm is always started from scratch.

Therefore, in this section we optimize the branch-and-bound algorithm to use
an already existing verified incremental version of the simplex algorithm [3,15],
which returns a state instead of only returning a satisfying assignment or stating
unsatisfiability. The state contains for instance a tableau, i.e., a list of equations
which is essential for the simplex algorithm. By reusing the state, expensive
operations like creating the tableau can be avoided, making the incremental
simplex very attractive to be used within the branch-and-bound algorithm.

A complication arises, since the verified incremental simplex algorithm was
developed to be used in a DPLL(T)-solver, where all constraints are known
beforehand and the constraints are not changed throughout one DPLL(T) run.
Therefore, the incremental interface does not allow for changing constraints or
adding new ones. As a consequence, an integration of the incremental simplex
into the branch-and-bound algorithm is not immediate, since there the bounds
are changed in every iteration.

Our solution is a slight extension of the incremental simplex algorithm. To
be more precise, we write a function which changes exactly one constraint in the
state in a way that the relevant invariants of the incremental interface still hold.
This extension allows us to reuse all the existing soundness properties and proofs
of the incremental simplex algorithm without modifications. It is specifically
tailored for running the branch-and-bound algorithm. We choose this approach
instead of adding a feature to change arbitrary constraints in the incremental
simplex interface, since such a feature would require a major rewrite.

Since the algorithmic structure and the soundness statement of the modified
branch-and-bound algorithm is completely identical to the one of Sect. 4.1, we
just refer to the formalization for further details.

5 Benchmarking

We tested two versions of our solver (based on incremental/non-incremental sim-
plex) by comparing them with two well-established SMT-solvers, Z3 and CVC4.
Testing was done on a subset of the non-incremental3 QF LIA (quantifier-free
3 Here, “non-incremental” means that the tests are simply sets of constraints, as

opposed to constraints together with an assert/check script that a solver must
execute.

Verifying a Solver for Linear Mixed Integer Arithmetic in Isabelle/HOL 247

linear integer arithmetic)4 benchmark set from SMT-LIB. For this experiment
we had two goals in mind: 1. to see whether it is worthwhile to use the non-
incremental version of simplex as a sub-routine in the branch-and-bound algo-
rithm, and 2. to get an idea about the extent to which our verified, non-optimized
solver can handle practical examples.

We did not go through the effort of making our solver compliant with the
language of SMT-LIB, as we felt that for the above two goals, it would suf-
fice to write a simple converter that could handle a reasonable portion of the
QF LIA benchmarks. Thus, we obtained a dataset of 1192 benchmarks, com-
prising 18% of the 6489 benchmarks in QF LIA. (More specifically, the follow-
ing sub-folders were fully converted to a format that is readable by our solver:
20180326-Bromberger, miplib2003, pb2010, pidgeons, prime-cone, and slacks.)
All solvers were tested on this dataset, on the same hardware, with a 60s-timeout
per benchmark. Z3 version 4.4.0pre-2, CVC4 version 1.5-4, and the 2019-05-09
release of SMT-LIB were used.

The only other verified LIA solver that we are aware of is an Isabelle formal-
ization of Cooper’s algorithm in the AFP. This algorithm solves a more general
problem than linear integer arithmetic (namely linear arithmetic with arbitrary
quantifiers over integer variables). We obtained an implementation with minimal
changes to make code generation possible (just as we produced executables for
our own solver).

Table 1. Experimental results

Sat Unsat Total

Non-incremental bnb 245 131 376

Incremental bnb 314 131 445

CVC4 470 158 628

Z3 570 164 734

Verified Cooper 2 0 2

Evaluation. Our branch-and-bound implementation solves 37% of the dataset
with incremental simplex as a sub-routine, and 31% with non-incremental sim-
plex (Table 1). Since we have only implemented a naive branch-and-bound algo-
rithm, without any additional heuristics for pruning the search space, it is unsur-
prising that its performance cannot match that of more mature solvers. Some-
what surprising is the fact that some benchmarks are solved by our solvers but
not by Z3 or CVC4: of the benchmarks solved by incremental bnb, 28 are not
solved by Z3, 29 are not solved by CVC4, and 8 are solved by neither Z3 nor
CVC4.

4 QF LIRA (quantifier-free mixed integer real arithmetic) contains only 8 tests.

248 R. Bottesch et al.

Interestingly, the non-incremental simplex-based solver can handle a few
instances that the incremental simplex-based solver does not. Although using
an incremental simplex leads to better overall results, it appears that reusing
valuations from previous simplex runs can sometimes lead the search astray in
such a way that simple solutions are missed. The phenomenon of a search pro-
ceeding in the wrong direction and missing a simple solution may also be the
reason why some instances cannot be handled by either Z3 or CVC4, despite
being solved by our solver.

Cooper’s algorithm is known to have a very high asymptotic complexity,
which means that its performance is not a matter of optimizing an implemen-
tation. As such, the outcome of our experiments with regards to Cooper’s algo-
rithm is as expected, showing that this algorithm is not usable on medium-sized
examples in practice.

6 Conclusion and Future Work

We have developed a verified solver for linear mixed integer arithmetic, and have
formalized important results on linear integer programming that were needed in
order to prove the soundness of the solver. To the extent of our knowledge,
the main mathematical theorems of which we formalized proofs had not been
previously verified in any formal system, and our solver is the first verified LIA
solver that is also usable in practice. The two parts of our formalization amount
to 9813 lines of Isabelle code and took roughly 10 person-months to implement.

Currently, our solver is essentially “proof of concept” software, and there
are a number of known optimizations that could improve it, e.g., preprocessing
of constraints, integration of cutting planes, unit-cube-tests, etc. [6,7,14]. We
have also used run-time profiling in order to establish which sub-routines our
solver spends most time on, and have identified parts of the incremental simplex
algorithm that we could further modify in order to improve running times.

References

1. Allamigeon, X., Katz, R.D.: A formalization of convex polyhedra based on the
simplex method. In: Ayala-Rincón, M., Muñoz, C.A. (eds.) ITP 2017. LNCS,
vol. 10499, pp. 28–45. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
66107-0 3

2. Barrett, C., et al.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011.
LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22110-1 14

3. Bottesch, R., Haslbeck, M.W., Thiemann, R.: Verifying an incremental theory
solver for linear arithmetic in Isabelle/HOL. In: Herzig, A., Popescu, A. (eds.)
FroCoS 2019. LNCS (LNAI), vol. 11715, pp. 223–239. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-29007-8 13

4. Bottesch, R., Reynaud, A., Thiemann, R.: Linear inequalities. Archive of For-
mal Proofs, June 2019. http://isa-afp.org/entries/Linear Inequalities.html. Formal
proof development

https://doi.org/10.1007/978-3-319-66107-0_3
https://doi.org/10.1007/978-3-319-66107-0_3
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-030-29007-8_13
http://isa-afp.org/entries/Linear_Inequalities.html

Verifying a Solver for Linear Mixed Integer Arithmetic in Isabelle/HOL 249

5. Brockschmidt, M., Joosten, S.J.C., Thiemann, R., Yamada, A.: Certifying safety
and termination proofs for integer transition systems. In: de Moura, L. (ed.) CADE
2017. LNCS (LNAI), vol. 10395, pp. 454–471. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-63046-5 28

6. Bromberger, M.: A reduction from unbounded linear mixed arithmetic problems
into bounded problems. In: Galmiche, D., Schulz, S., Sebastiani, R. (eds.) IJCAR
2018. LNCS (LNAI), vol. 10900, pp. 329–345. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-94205-6 22

7. Bromberger, M., Weidenbach, C.: New techniques for linear arithmetic: cubes and
equalities. Form. Methods Syst. Des. 51(3), 433–461 (2017). https://doi.org/10.
1007/s10703-017-0278-7

8. Carlier, M., Dubois, C., Gotlieb, A.: A certified constraint solver over finite
domains. In: Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436,
pp. 116–131. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
32759-9 12

9. Dantzig, G.B.: Linear Programming and Extensions. Princeton University Press,
Princeton (1963)

10. Dutertre, B., de Moura, L.: A fast linear-arithmetic solver for DPLL(T). In: Ball,
T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg
(2006). https://doi.org/10.1007/11817963 11

11. Haftmann, F., Nipkow, T.: Code generation via higher-order rewrite systems.
In: Blume, M., Kobayashi, N., Vidal, G. (eds.) FLOPS 2010. LNCS, vol. 6009,
pp. 103–117. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-
12251-4 9

12. Harrison, J.: The HOL light theory of Euclidean space. J. Autom. Reasoning 50,
173–190 (2013). https://doi.org/10.1007/s10817-012-9250-9

13. Krauss, A.: Partial and nested recursive function definitions in higher-order logic.
J. Autom. Reasoning 44(4), 303–336 (2010). https://doi.org/10.1007/s10817-009-
9157-2

14. Marchand, H., Martin, A., Weismantel, R., Wolsey, L.A.: Cutting planes in integer
and mixed integer programming. Discrete Appl. Math. 123(1–3), 397–446 (2002).
https://doi.org/10.1016/S0166-218X(01)00348-1

15. Marić, F., Spasić, M., Thiemann, R.: An incremental simplex algorithm with unsat-
isfiable core generation. Archive of Formal Proofs, August 2018. http://isa-afp.org/
entries/Simplex.html. Formal proof development

16. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

17. Narkawicz, A., Muñoz, C.: A formally verified generic branching algorithm for
global optimization. In: Cohen, E., Rybalchenko, A. (eds.) VSTTE 2013. LNCS,
vol. 8164, pp. 326–343. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-642-54108-7 17

18. Nipkow, T.: Linear quantifier elimination. J. Autom. Reasoning 45(2), 189–212
(2010). https://doi.org/10.1007/s10817-010-9183-0

19. Nipkow, T., Wenzel, M., Paulson, L.C. (eds.): Isabelle/HOL – A Proof Assistant
for Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002). https://doi.
org/10.1007/3-540-45949-9

20. Papadimitriou, C.H.: On the complexity of integer programming. J. ACM 28(4),
765–768 (1981). https://doi.org/10.1145/322276.322287

21. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, Hoboken (1999)

https://doi.org/10.1007/978-3-319-63046-5_28
https://doi.org/10.1007/978-3-319-63046-5_28
https://doi.org/10.1007/978-3-319-94205-6_22
https://doi.org/10.1007/978-3-319-94205-6_22
https://doi.org/10.1007/s10703-017-0278-7
https://doi.org/10.1007/s10703-017-0278-7
https://doi.org/10.1007/978-3-642-32759-9_12
https://doi.org/10.1007/978-3-642-32759-9_12
https://doi.org/10.1007/11817963_11
https://doi.org/10.1007/978-3-642-12251-4_9
https://doi.org/10.1007/978-3-642-12251-4_9
https://doi.org/10.1007/s10817-012-9250-9
https://doi.org/10.1007/s10817-009-9157-2
https://doi.org/10.1007/s10817-009-9157-2
https://doi.org/10.1016/S0166-218X(01)00348-1
http://isa-afp.org/entries/Simplex.html
http://isa-afp.org/entries/Simplex.html
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-642-54108-7_17
https://doi.org/10.1007/978-3-642-54108-7_17
https://doi.org/10.1007/s10817-010-9183-0
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1145/322276.322287

250 R. Bottesch et al.

22. Smith, A., Muñoz, C., Narkawicz, A., Markevicius, M.: A rigorous generic branch
and bound solver for nonlinear problems. In: 2015 17th International Symposium
on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC), pp.
71–78. IEEE (2015). https://doi.org/10.1109/SYNASC.2015.20

23. Spasić, M., Marić, F.: Formalization of incremental simplex algorithm by stepwise
refinement. In: Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436,
pp. 434–449. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
32759-9 35

24. Thiemann, R., Sternagel, C.: Certification of termination proofs using CeTA. In:
Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS,
vol. 5674, pp. 452–468. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-03359-9 31

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1109/SYNASC.2015.20
https://doi.org/10.1007/978-3-642-32759-9_35
https://doi.org/10.1007/978-3-642-32759-9_35
https://doi.org/10.1007/978-3-642-03359-9_31
https://doi.org/10.1007/978-3-642-03359-9_31
http://creativecommons.org/licenses/by/4.0/

Constraint Caching Revisited

Jan Taljaard, Jaco Geldenhuys(B) , and Willem Visser

Stellenbosch University, Stellenbosch, South Africa
johannes.h.taljaard@gmail.com, {geld,visserw}@sun.ac.za

Abstract. Satisfiability Modulo Theories (SMT) solvers play a major
role in the success of symbolic execution as program analysis technique.
However, often they are still the main performance bottleneck. One app-
roach to improve SMT performance is to use caching. The key question
we consider here is whether caching strategies are still worthwhile given
the performance improvements in SMT solvers. Two main caching strate-
gies exist: either simple sat/unsat results are stored, or entire solutions
(=models) are stored for later reuse. We implement both approaches in
the Green framework and compare them with the popular Z3 constraint
solver. We focus on linear integer arithmetic constraints; this is typical for
symbolic execution, and both caching strategies and constraint solvers
work well in this domain. We use both classic symbolic and concolic
execution to see whether caching behaves differently in these settings.
We consider only time consumption; memory use is typically negligible.
Our results suggest that (1) the key to caching performance is factoring
constraints into independent parts, and this by itself is often sufficient,
(2) Z3’s incremental mode often outperforms caching; and (3) reusing
models fares better for concolic than for classic symbolic execution.

Keywords: SMT · Caching · Symbolic execution · Concolic execution

1 Introduction

Many program verification techniques produce propositional logic formulas with
linear integer arithmetic. Questions like whether a given formula is satisfiable,
what variable assignments (=models) satisfy it, and how many such models
exist [14], are typically generated. Many symbolic and concolic program analysis
techniques use Satisfiability Modulo Theories (SMT) solvers to verify properties
of programs. In recent years, the performance of SMT solvers have improved
dramatically, but more advances are needed to handle ever-increasing targets.
Although SMT solvers are powerful, large inputs still require long running times.

One way of tackling scalability is caching. SMT solvers can provide solu-
tions more quickly if they store their results. The logic behind caching is simple:
expensive solver invocations can potentially be avoided, as long as the overhead
of storing and retrieving results is low enough. To overcome the performance issue
of SMT solvers, different caching strategies have been developed. One of the first

c© Springer Nature Switzerland AG 2020
R. Lee et al. (Eds.): NFM 2020, LNCS 12229, pp. 251–266, 2020.
https://doi.org/10.1007/978-3-030-55754-6_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-55754-6_15&domain=pdf
http://orcid.org/0000-0002-5636-6656
http://orcid.org/0000-0002-0913-3091
https://doi.org/10.1007/978-3-030-55754-6_15

252 J. Taljaard et al.

general libraries for such caching is the Green framework [16]. It allows exten-
sive customisation, but basically it factorizes formulas into independent parts,
performs a canonisation step (e.g., renaming and reordering of variables) and
looks up results in a store. Recently an alternative approach [4,5] was proposed:
rather than storing sat/unsat results, it caches satisfying models and unsatisfi-
able cores. Stored results are reused to compute the result of new queries.

This paper evaluates various approaches for caching in the context of sym-
bolic and concolic execution. Reuse rates are high for many of the caching strate-
gies, but how fast are the strategies really? High reuse is of no use if the strategies
perform poorly. Our results shed new light on the true benefits and weaknesses
of the two respective approaches for caching (reusing models versus reusing sat-
isfiability results). This work makes the following contributions:

– A model-core reuse strategy implementation within the Green framework.
– An investigation of the performance of caching versus a simpler approach:

factorising constraints without any caching whatsoever.
– A comparison between caching during symbolic and concolic execution.

The rest of this paper provides background on the main technologies and
frameworks (Sect. 2), presents and interprets experimental results (Sect. 3),
describes related work (Sect. 4), and concludes with observations (Sect. 5).

2 Background

King [12] was one of the first to propose the use of symbolic execution for test
generation. The basic approach executes a program with symbolic rather than
concrete inputs. Path conditions that describe the constraints on the inputs are
collected from branching conditions during execution. Whenever a constraint is
added to the path condition, the result is checked for feasibility. If not feasi-
ble, the path is terminated and not analysed further. The feasibility check is
performed by external constraint solvers.

One can think of the analysis performed during symbolic execution as a search
for feasible execution paths in a tree where edges represent path conditions. At
any point during this search the current path condition must be feasible, and a
solution to the path condition will represent inputs that when used during exe-
cution will reach this location in the code. For example, if an assertion violated
is reached during analysis, any solution to the current path condition constitute
concrete inputs that produces an execution that leads to the violation.

2.1 Concolic Execution

Concolic is a portmanteau of concrete and symbolic. Concolic execution is
broadly similar to symbolic execution: the program is executed with concrete
inputs, but the analysis keeps track of the corresponding symbolic constraints
along the concrete path that is executed. When the end of a path is reached, the

Constraint Caching Revisited 253

path condition for this executed path is then manipulated and passed to an SMT
to generate new concrete inputs to explore a different path. This manipulation is
typically to negate the last constraint obtained to mimic a depth-first traversal
of the symbolic execution tree of the program. Unlike the classic symbolic exe-
cution approach (above), concolic execution does not make a solver call for each
encountered edge of the execution tree, but rather calls the solver only once at
the end of a path. Concolic execution typically starts with a single run of the
program with user-specified values of the variables.

2.2 Green

Green [2,16] is an open source project that provides a framework for users to con-
struct “pipelines” for a variety of constraint solving queries, such as constraint
simplification, satisfiability queries, finding satisfying models, and counting the
number of satisfying models. Each pipeline comprises a series of “services” that
processes a query sequentially. In addition to a standard set of services, the
framework allows users to easily add services of their own. The Green architec-
ture also supports the automatic concurrent execution of services and pipelines.

An important feature of Green is a store where the results of services are
recorded. By caching these results, it is possible to avoid expensive operations
and to thus improve the performance of query resolution. The store itself can
be configured in different ways: it can use combinations of in-memory and on-
disk databases, provide various levels of persistence, and various levels of sharing
among users. Results can be reused within a single run, across separate runs and
users and different type of applications (analyses).

A common pipeline targets linear integer arithmetic (LIA) constraints in
conjunctive normal form (CNF). This is shown on the left of Fig. 3:

Factorise: Breaks the input into independent sub-constraints. Two constraints
are independent if none of the variables in one constraint affects the solution
of the other. For CNF inputs, all factors must be satisfiable for the whole to
be satisfiable. Example: (a > 5) ∧ (b < 7) is factorised as a > 5 and b < 7.

Canonise: Converts the input to semi-canonical form [16]. This includes renam-
ing variables, rearranging inequalities, sorting clauses in lexicographic order,
and applying basic simplification rules. Example: (a > 5) ∧ (a = b) becomes
(−v0 + 6 ≤ 0) ∧ (v0 − v1 = 0).

Reuse: Checks if the now-canonised input constraint is already cached. If so,
the stored result is returned immediately.

Z3Translator: Converts the constraint from Green’s data structure to Z3’s
format and passes the query to the external solver. The result is stored and
then returned to the client.

Green uses Microsoft’s Z3 [9], released in 2007, and still regularly updated and
improved. Its settings include an incremental solving mode where constraints are
constructed clause by clause. This mirrors how symbolic execution works, and
many consider incremental solving to be most efficient for symbolic execution.

254 J. Taljaard et al.

2.3 Grulia

A novel approach to SMT caching was proposed by Aquino et al. [4,5]. Figure 1
shows the intuition behind the approach. The grey area represents all possible
variable assignments, or models. Constraints φ1, φ2, and φ3 are each satisfied
by a subset of models, and φ1 and φ2 happen to share some models. Instead of
invoking a potentially expensive SMT solver, a constraint can be shown to be
satisfiable if a satisfying model can be found quickly. To check if φ2 is satisfiable,
it suffices to check if models of “nearby” constraints happen to also satisfy φ2.

The pivotal trick is how distances between constraints are computed. A con-
straint is given a score known as its sat-delta value, by triangulating with respect
to reference models; in Fig. 1 the reference models are M = {M1,M2,M3}. (The
number and identities of the reference models are customizable but remain fixed
across a run.) The details of scoring is explained below, but in essence it cap-
tures aspects of the “behaviour” of constraints so that similar constraints that are
likely to share models are given similar scores. If the satisfiability of a constraint
cannot be resolved, it is passed to an external SMT solver, which generates a
model if possible, which is then stored for future use.

M1

M2

M3

φ1

φ2

φ3

Fig. 1. Intuition behind the idea of sat-delta calculation

SAT-Delta. It is important that sat-delta score calculation is fast and that it
reflects the notion of proximity between constraints. Fortunately, both criteria
are satisfied by the proposed approached. The sat-delta score of constraint φ is
computed as the average of its scores with respect to each reference model:

sat-delta(φ) =
1

|M |
∑

i

sat-delta′(φ,Mi)

Assuming that the constraint is in CNF, this second function is the sum of the
scores for each clause with respect to the reference model:

sat-delta′(φ = ψ1 ∧ ψ2 ∧ . . . ,M) =
∑

i

sat-delta′′(ψi,M)

Constraint Caching Revisited 255

Lastly, given a clause ψ = a ∼ b, its score is calculated as

sat-delta′′(a ∼ b,M) =

⎧
⎪⎨

⎪⎩

0 if aM ∼ bM

|aM − bM | if ∼ ∈ {≤,=,≥}
|aM − bM | + 1 if ∼ ∈ {<, �=, >}

where xM is expression x evaluated with the variable assignments of model M .

Example: Suppose that M1 : (x = 0, y = 0) and M2 : (x = 1, y = 1) and that
φ = (x > 5) ∧ (x = y − 1) ∧ (y ≤ 7). Then (sat-delta abbreviated as sd):

sd′′(x > 5,M1) = |0 − 5| + 1 = 6 sd′′(x > 5,M2) = |1 − 5| + 1 = 5
sd′′(x = y − 1,M1) = |0 + 1| + 1 = 2 sd′′(x = y − 1,M2) = |1 − 0| + 1 = 2

sd′′(y ≤ 7,M1) = 0 sd′′(y ≤ 7,M2) = 0

sd′(φ,M1) = 6 + 2 + 0 = 8 sd′(φ,M2) = 5 + 2 + 0 = 7

sd(φ) = (8 + 7)/2 = 7.5

Note that sat-delta′′(ψ,M) is either positive or zero (if M satisfies ψ), and
sat-delta′(φ,M) is exactly zero if and only if reference model M satisfies the
entire constraint φ. grulia detects this and returns the result immediately.

Otherwise, the sat-delta score is used as the key in the model cache. The ref-
erence models must therefore be chosen carefully to avoid too many constraints
from mapping to the same sat-delta score, but to also guarantee that similar
constraints are mapped to similar scores. In the experiments we use the refer-
ence models M1 : (vi = −10000), M2 : (vi = 0), and M3 : (vi = 100). All three
models assign a constant value to all the variables in an expression.

In this paper, the sat-delta calculation is used only for LIA constraints, but
the concept are easy to extend to other theories.

UNSAT-Cores. What about unsatisfiable constraints that do not have mod-
els? In this case, a infeasible subset of clauses (known as an unsatisfiable core or
just “unsat-core”) is computed and cached, just as above. The idea of com-
puting unsat-cores has been investigated under various formulations; it was
long considered too expensive to be practical, but recent advances has changed
this [6,8,10,13]. For example, the unsat-cores of (x < y) ∧ (x = y) ∧ (x > y)
include

(x < y) ∧ (x = y), (x > y) ∧ (x = y), and (x > y) ∧ (x < y).

Small subconstraints are preferable because they are faster to match against new
constraints and more likely to match a greater number of constraints. Within
the basic Green pipeline, the constraint is stored as the key and the value as
false, will produce only a store hit if a constraint with the exact same syntax is
queried. The unsat-core can be obtained from a solver such as Z3.

256 J. Taljaard et al.

Implementation. The explanation of grulia’s strategy is done with the assis-
tance of Fig. 2.

sat-delta: The approach starts by calculating the sat-delta value sd of the
input constraint with respect to a fixed set of reference models M (lines 6–
10). The value gives the average distance from satisfiability of the input
constraint from the models in M. If the calculated sat-delta for a constraint is
0, the function can return that the constraint is satisfiable (a reference model
satisfies the constraint).

SATstore.extract: Next, a fixed number of K models are retrieved from the
sat store (line 12). The value of K, just as M, is predetermined by the user,
and stays constant throughout the computation. The models are selected for
their proximity to sd.

satisfies: If any of the models satisfy the constraint, the function returns true
immediately (lines 13–14).

UNSATstore.extract: The same procedure is followed for the unsat-cores from
the unsat store (line 16).

sharesUnsatCore: If constraint contains any unsat-core, false is returned
immediately (lines 17–18).

SMTsolver: Once the algorithm reaches line 21, the answer has not been found in
the stores. An SMT solver is invoked to compute the result, and the answer
is stored and returned (lines 21–23).

Figure 3 represents in summary the two different caching tools that perform
pre-processing of constraints and provides a speed up to present solutions for
the analysis. For Green the pre-processing is factorisation and canonisation of
the constraints. Whereas grulia executes factorisation and a simple renaming
of the variables in the constraints. For simplicity the second factor (ψ) is ignored
in Fig. 3. Green’s caching layer checks for exact matches, whereupon sat/unsat
solutions are stored. The solutions are stored in a key-value store, with the
constraint as key and solution as value. grulia’s caching layer conducts an
approximate matching with sat-delta, where it gets the K closest matches to the
target’s sat-delta.

Then those matches are picked one at a time, and tested to see if a model
satisfies the constraints (in the sat case) or implicitly proves that the constraint
is unsat with an unsat-core (in the unsat case). grulia’s solving layer produces
a model or unsat-core for the target constraint. The solutions are stored in two
separate stores, with an entry having the sat-delta value as identifier and another
parameter referencing the solution. In Green’s solving layer, the sat/unsat is
computed. Z3 is an SMT solver, used in the solver layer by most solution caching
frameworks, to compute solutions for constraints.

The grulia pipeline is similar to that of Green, except that the Canoniser
component is replaced by a Renamer, and the basic reuse component is replaced
with the model-core reuse strategy (which the grulia service implements). Hav-
ing grulia as a service in Green, makes it helpful and more suitable to compare
the classic Green pipeline for satisfiability, with one that shares some of the
exact same components but also includes the grulia approach. For the Green

Constraint Caching Revisited 257

1 // M = a set of reference models

2 // K = bound on number of models/cores to extract

3
4 boolean solve(constraint):

5 total = 0

6 for m in M:

7 sdc = sat-delta(constraint, m)

8 if sdc == 0: return sat

9 else: total += sdc

10 sd = total / |M|

11
12 models = SATstore.extract(sd, K)

13 for m in models:

14 if satisfies(constraint, m): return true

15
16 cores = UNSATstore.extract(sd, K)

17 for c in cores:

18 if sharesUnsatCore(constraint, c): return false

19
20 sat = SMTsolver(constraint)

21 if sat: SATstore.store(sd, constraint.getModel())

22 else: UNSATstore.store(sd, constraint.getCore())

23 return sat

Fig. 2. Summary of the grulia strategy.

pipeline the Factoriser is first followed by the Canoniser and then the solver (Z3).
grulia’s pipeline consists of the Factoriser, Renamer then the grulia service
and lastly Z3. The Renamer service is a stripped down version of the Canoniser
service, with only the renaming feature. It is a light-weight service to accomplish
the renaming of variables in lexicographic order for constraints. The renaming
functionality is still needed for the model assignments (value substitution) for
the grulia service. Note that the Renamer and the sat-delta calculations in
grulia serve as an approximation for the canonisation step in Green, and one
of the important aspects of an evaluation of grulia is to see how well this works.

3 Evaluation

Taljaard showed that reuse rates are generally high for the Green and gru-
lia strategies [15]. Reuse rate refer to the fraction of cases where a result is
found in the cache. The questions addressed in this section is whether the over-
head of caching is greater than the cost of resolving constraints for repeated
queries. Consequently, all experiments focus on running time, not reuse rates.
Each experiment is repeated ten times and outliers (minimum and maximum
running times) are discarded before the average is computed. Sects. 3.2 and 3.3
discuss the results for symbolic and concolic execution, respectively.

258 J. Taljaard et al.

Solver

Analysis

φ : x > 0 ∧ ψ φ : x > 0 ∧ ψ

x > 0 and ψ ⇐= Factorise

−v0 + 1 ≤ 0 ⇐= Canonise

Reuse

Z3Translator

Query store

−v0 + 1 ≤ 0 : sat
−v0 − 5 ≤ 0 : sat

Green

Factorise =⇒ x > 0 and ψ

Rename =⇒ v0 > 0

Calculate sat-delta =⇒ sδ = 1

Share models

Share cores

Z3Translator

SATstore

UNSATstore

3: v0=10

9: v0 �=v0

grulia

Fig. 3. Green vs. grulia caching

3.1 Experimental Setting

Experiments run inside a Docker container based on Ubuntu 18.04 LTS with
16 Gb memory. The containers run on a server with 4 Intel Xeon(R) E5-2640v2
2.00 GHz CPUs, each with 8 cores and 16 threads.

The following configurations are used to run the programs in the experiments:

Z3Inc Z3 Green grulia Z3Fact Z3Cached Z3Model

Factoriser � � �
Canoniser �
Renamer �
Store � � �
Incremental �
SAT queries � � � � �
Model queries � �

Both SPF and COASTAL use the Java library distributed with Z3 to pass
queries and answers to and from the solver. The environment is set up with
Java 8, Z3 4.8.4, Jedis 2.9.0, and Redis 5.3.0.

Constraint Caching Revisited 259

3.2 Symbolic Execution Experiments

Caching for symbolic execution is evaluated with SPF and the following configu-
rations: Z3Inc, Z3, Green, grulia, Z3Fact, anf Z3Cached. The 23 programs are
taken from the SPF distribution (marked with a *) and from GitHub. Together,
these programs generate ∼3.9 million constraints.

Table 1 shows the results of the experimental runs. Column “#c” gives the
number of constraints for the program and column “#f/#c” reflects the effect
of factorization as the ratio of factors to constraints. The higher this ratio, the
greater the number of independent subconstraints. The rest of the columns show
running times. Those in column “Z3Inc” are measured in milliseconds; the other
times are given as ratios to the Z3Inc time. In other words, ratios below (above)
1.0 indicate that the configuration was faster (slower) than Z3Inc.

One of the core advantages of caching comes when results can be reused from
one analysis to the next. In order to evaluate this we focused on the absolute
best case, where an identical second run is executed. This might seem overly
optimistic, but it gives us a baseline, since if caching doesn’t help in this setting
then it is truly a waste of time. Note also that this setting is more realistic
than it might sound, since symbolic execution are nowadays run in continuous
integration settings where little or no changes are made to the constraints being
solved. We therefore enable a secondary persistent store and show the times in
the Run 2 columns.

Table 1 shows the number of input constraints per example under the column
#cstrs and the effect of the factorizing step in the #factors/#cstrs column.
For the latter, the higher the ratio the more independent sub-constraints were
found by the factorizer. The rest of the columns shows the ratio of time of that
tool taken over Z3Inc on its own (Z3 with incremental mode). The last two
columns are a sanity check, with Z3Cache and its persistent storage and second
run. Z3Cache doesn’t do any processing of the constraints and just passes it to
Z3, so it can only show a benefit in the second run. Note that the best timings
(i.e. lower ratios) of Green, grulia, Z3Fact and Z3Cache are highlighted in a
darker shade. Table 1 is sorted into three categories:

Intra-run: First eight examples where first run of one of the tools beats Z3Inc.
Across-runs: Next nine examples where only the second run beats Z3Inc.
Misc: Last six examples where none of the tools beat Z3Inc.

Each category is sorted from most to least number of constraints obtained from
the analysis. Keep in mind that the rest of the table show normalised values,
even though a large number of constraints are evaluated and the running time
is quite long, the normalised value can be small, for example in the case of Jadx.

The Intra-run grouping focuses on the first runs from the caching tools
that were the fastest. The second run being faster in this grouping should be a
given although a few outliers are present which will be discussed later. Z3Fact is
the fastest in all examples of this run, except for FlapController which achieved
similar reuse to Z3Cache yet is slower due to the overhead of the factoriser.
Note the interesting scenario where Jadx gives many constraints for evaluation

260 J. Taljaard et al.

T
a
b
le

1
.
N

o
rm

a
li
ze

d
S
P

F
ru

n
n
in

g
ti

m
es

(Z
3
In

c
in

m
se

c,
re

st
o
f
co

lu
m

n
s

a
s

ra
ti

o
s

to
Z
3
In

c)

P
ro
gr
am

#
c

#
f

#
c

Z
3I
nc

Z
3

G
re
en

g
ru

li
a

Z
3F

ac
t

Z
3C

ac
he

d

N
an

oX
M
L

87
15

80
5.
9

18
51

86
4.
92

0
0.
89

3
0.
89

8
1.
25

1
1.
23

6
0.
42

2
0.
41

6
–

–
Ja

dx
65

84
75

3.
0

49
65

31
1.
51

9
0.
41

3
0.
41

2
0.
49

0
0.
48

7
0.
22

9
0.
22

4
–

–
St
ri
ng

s
55

78
38

14
.4

11
70

00
4.
26

2
0.
54

8
0.
54

7
0.
56

7
0.
57

3
0.
27

5
0.
26

6
6.
86

6
0.
56

4
*S

or
te
dL

is
tI
nt

34
01

14
3.
9

76
80

4
3.
88

3
0.
58

8
0.
51

8
7.
45

8
10

.6
05

0.
31

2
0.
25

1
6.
19

0
0.
47

3
O
b
je
ct
R
ec

28
20

88
10

.5
31

24
7

5.
35

9
1.
08

0
1.
07

8
0.
99

2
1.
01

1
0.
61

7
0.
60

1
9.
49

3
1.
41

7
*S

ta
ck

13
10

70
11

.3
30

71
8

3.
23

4
0.
44

4
0.
45

2
0.
41

4
0.
40

3
0.
23

1
0.
22

2
5.
34

9
0.
48

3
*W

B
S

27
64

6
8.
2

62
31

2.
97

1
0.
54

7
0.
54

4
0.
52

8
0.
50

3
0.
32

4
0.
31

6
5.
04

9
0.
60

8
*F

la
pC

on
tr
ol
le
r

14
86

0
2.
0

37
22

1.
59

3
0.
27

1
0.
26

6
0.
30

7
0.
25

9
0.
17

3
0.
16

2
0.
11

0
0.
11

4

*T
re
eM

ap
15

19
44

6.
9

42
80

4
3.
32

8
1.
25

3
0.
58

2
11

.3
67

11
.9
88

1.
02

1
0.
33

8
5.
17

1
0.
41

3
M
ed

ia
n

10
39

50
1.
0

19
96

8
3.
78

8
6.
72

3
1.
16

1
30

.2
42

31
.0
66

5.
82

0
0.
78

4
5.
60

9
0.
59

5
B
ub

bl
eS

or
t

10
39

50
1.
0

20
04

9
3.
70

2
6.
59

6
1.
14

7
30

.2
74

30
.0
24

5.
88

0
0.
76

7
5.
60

6
0.
59

2
So

rt
in
g

80
63

8
1.
0

20
86

7
3.
28

8
6.
48

3
1.
00

5
21

.8
77

21
.5
52

4.
94

5
0.
59

7
4.
78

5
0.
44

5
B
in
om

ia
lH

ea
p

47
46

0
7.
7

78
64

4.
04

3
1.
72

1
1.
00

1
8.
81

3
8.
68

8
3.
53

0
0.
93

4
7.
16

1
0.
80

4
*B

in
T
re
e

15
22

6
5.
9

32
50

3.
29

0
1.
63

4
0.
93

2
14

.8
84

15
.6
43

2.
49

6
0.
82

0
4.
85

9
0.
74

1
D
ijk

st
ra

12
51

2
1.
0

38
20

3.
17

3
5.
23

1
1.
29

3
8.
69

5
4.
99

4
4.
48

5
0.
85

4
4.
42

2
0.
60

5
M
ag

ic
In
de

x
72

00
9.
9

21
57

3.
37

8
2.
23

5
1.
23

5
2.
97

5
0.
61

0
1.
73

6
0.
83

4
4.
01

2
0.
68

8
T
C
A
S

43
90

9.
6

79
6

4.
50

5
1.
49

4
1.
45

6
4.
16

5
2.
79

5
1.
03

0
0.
95

4
6.
57

4
1.
36

6

C
L
I

36
44

92
4.
9

47
96

7
6.
66

8
2.
44

0
2.
44

1
3.
50

9
3.
40

3
1.
56

8
1.
46

1
–

–
C
oi
nC

ha
ng

e
16

03
02

3.
8

86
32

7.
78

7
2.
53

6
2.
40

3
9.
46

9
7.
42

4
3.
05

7
1.
83

9
18

.7
88

2.
59

1
O
pe

ra
ti
on

s
15

61
8

2.
0

36
89

10
.6
05

6.
82

2
6.
15

0
12

.1
54

9.
85

7
6.
07

4
5.
16

6
16

.4
21

2.
15

0
T
ri
an

gl
e

22
06

1.
0

43
4

4.
62

7
1.
77

6
1.
47

5
6.
65

7
8.
14

5
1.
39

9
1.
18

4
4.
60

4
1.
53

0
F
lin

k
10

20
7.
1

77
9

16
.1
16

7.
35

6
7.
43

3
8.
55

2
7.
65

1
5.
63

3
4.
75

5
–

–
R
em

ai
nd

er
95

6
1.
0

71
8

6.
01

9
55

.9
01

52
.5
67

67
.8
48

58
.4
79

58
.2
42

51
.1
56

10
.7
94

3.
70

8

Constraint Caching Revisited 261

whereupon Green and grulia is faster than Z3Inc, but a smaller example like
BubbleSort they are significantly slower than Z3Inc. This is due to the fact
that the factoriser had no effect in this case, or any case where the ratio in
the second column is 1.0. Whenever the factoriser has no effect then
Z3Inc is always fastest. Further inspection for Jadx shows that 26% of the
grulia service running time is spent waiting for the solver solutions, 20% (30 s) is
the sat-delta computation, 35% is checking shared models and 12% of the time
is checking for shared unsat-cores. The breakdown is noted because in other
examples the other components take negligible time and most of the running
time is spent waiting for the solver solutions. Another outlier is SortedListInt
where grulia is much slower than Green in the first run, since the store is
populated with many solutions (with sat-delta values in close proximity) but
reusable solutions are not found. Note also that the second run here is much
slower than the first, this is due to the overhead of reloading the store for the
second run in grulia. With Jadx and ObjectRec Green performs quite close to
the second run, which is ascribed to the few solver calls that are made in the
first run and the rest of the running time is spent on the store especially the
communication with the persistent store in the second run. Recall that Green
follows the greedy approach with the persistent store, meaning in the worst-case
a call is made to Redis for each constraint to obtain the solution. This grouping
shows that reuse helps in 8 of 23 examples. Note that there are very few cases
where grulia is faster than Green in any of the examples.

In the Across-runs grouping encapsulate programs that produce constraints
that are structurally similar, resolving to high reuse and fast analysis upon a
second run. Furthermore cases like Dijkstra and BubbleSort obtained no or little
reuse, yet the analysis ran faster with Green compared to grulia. The outliers
of grulia and large ratios such as TreeMap and BubbleSort will be discussed
later, because it is a greater overarching phenomenon. The grouping shows that
reuse across runs helps in 17 of 23 examples.

In the Misc grouping Z3Fact is still the fastest in the second run among the
caching tools, although significantly slower than Z3Inc. CLI is an example where
grulia spends 50% of the service running time waiting for solver solutions, and
the other significant time consuming components are checking for shared models
and unsat-cores. With CoinChange both Z3Fact and Z3Cache runs slower than
Green in the first run but have a close running time in the second run. Green
runs faster than Z3Fact and Z3Cache in the first run of CoinChange, which
makes sense since it got better unsat reuse on an example that has majority
unsat constraints. Remainder is an example where pre-processing of constraints
are a hindrance and it can be better simply ignoring it and rather use a store
only. The group portrays, with 6 of 23, examples that sometimes caching and
reuse do not help and can simply run the solver alone.

Overarching Observations: Z3Cache shows that pre-processing might be
unnecessary if one works with constraint reuse across runs. Z3Cache is always
slower than the other tools in the first run over all examples except for Remain-

262 J. Taljaard et al.

der. In the first two groupings Z3Cache comes close to Z3Fact in the second
run, and in the last grouping it is faster than Green in the second run. Z3 is in
most cases slower than Z3Inc, except for small examples, yet in some cases basic
Z3 is still faster than some of the tools in a few cases for example BubbleSort,
CoinChange and Remainder. Again the column with average number of factors
server as a predictor, hinting that with an average greater than 3.0 Z3Fact will
perform well. An example constraint, from the one data sample, that explains
how the phenomenon of sharing models performs better than identical factors,
works as follows. Consider the following where the first constraint encountered is
φ1 : [v0 ≤ 349], followed later by φ2 : [v0 ≤ 348]. Green will consider both these
as different and will not be able to get any reuse, whereas the other tools will
reuse a solution, for example v0 = 0. This phenomenon indicates cases, such as
sorting where numerous comparisons (in the form of v ≤ k, where v is a variable
and k is a constant) are performed, where the model caching strategy can be
better suited for the analysis of a program. The effect is that for example the
model v = 0 continues to satisfy the constraints as k increases, whereas Green
will not find any matches. Conversely Green will excel in constraints of the form
v = k, since it does less computation compared to the model caching strategy.

3.3 Concolic Execution Experiments

For these experiments a subset of 13 of the examples from the previous section is
taken. The reason for the reduction is that COASTAL is not as mature as SPF
and cannot yet handle the bytecode instructions required for the additional cases.
Initially we also had the goal to compare runtimes for SPF and COASTAL, but
COASTAL was too slow. Unfortunately, it meant we had to reduce the input
domains for the COASTAL examples and thus in this set of experiments we
only had 37516 constraints. We hope to have resolved COASTAL’s performance
issues by the time of the final version to allow us to run larger experiments. Also
note that the running times, both in this section and the previous only pertains
to the time spent in the solving component and not in the actual running of SPF
and COASTAL.

The baseline for the COASTAL analysis is set using Z3 interfaced through
Green. Note that here we are not evaluating the performance of a second run,
hence there is no need to have a Z3Cache option.

In Table 2 the rows are grouped by the fastest tool (grulia, Green, Z3Fact,
and Z3, in this order). Within each grouping, the rows are sorted by increasing
running time. As in the previous table, the running time for Z3 is given in
milliseconds, while the other running times are normalized with respect to Z3.

The first thing to note is that grulia now outperforms Green in a num-
ber of cases. The main reason for this is that in the symbolic execution exper-
iments, in the case of Green, Z3 only had to answer sat/unsat queries, whereas
for grulia it had to answer the more expensive model queries. In the concolic
execution case, all the solver calls (for both Green and grulia) are model calls,
in other words, equally expensive. The difference in runtime between the solver

Constraint Caching Revisited 263

Table 2. Running times (normalised) of COASTAL analysis on programs

Program #c
#f
#c

Z3Model Green grulia Z3Fact

Stack 1023 6.8 7712 0.092 0.063 0.077

SortedListInt 347 2.6 2656 0.300 0.185 0.296

CoinChange 108 5.6 744 0.456 0.366 1.176

Sorting 719 1.0 5460 1.161 0.686 1.029

MagicIndex 200 5.8 1324 1.649 0.707 1.218

BinomialHeap 4982 6.5 21246 0.202 0.406 0.458

BinTree 7613 5.9 38631 0.429 0.859 0.957

ObjectRec 827 5.6 7131 0.072 0.164 0.053

WBS 1150 5.2 4444 0.117 0.209 0.103

Triangle 1103 1.0 5694 0.229 1.162 0.219

Operations 7809 2.0 62209 0.396 0.899 0.362

BubbleSort 11631 1.0 40884 0.967 1.554 0.694

Remainder 573 1.0 8514 1.152 3.015 1.202

timings can be seen by comparing the Z3 running time in Table 2 with Z3Inc
running time in Table 1.

Another observation is that, as before, Z3Fact competes with the other tools
in performance, displaying the strength of factorisation.

Maybe most importantly, for all but one of these concolic experiments we
see that one of the two caching strategies (Green or grulia) outperforms the
solver. As the cost of solver queries increases the better the caching
strategies perform. The exception is Remainder, that as in the symbolic cache
seems immune to factorisation and thus caching is slower than just calling the
solver directly. This example requires further investigation.

4 Related Work

Yang et al. [17] have performed initial work on memoised symbolic execution
using Tries. Recal is a caching tool [3] where a target constraint is simplified
based on a set of rules and is transformed into a matrix where the information
can be converted into a canonical form for better matching to previous solutions.
The tool is further improved with the version Recal+ where the tool looks at
the structural composition of the constraint for implied logical satisfiability with
solution reuse. GreenTrie [11] which is similar to Recal+, is an extension to
Green. Optimising constraint solving by introducing an assertion stack has been
tried by [18]. The aim here is to maintain a stack of formulas and declarations,
which is provided by the symbolic executor. Zou et al. [18] store each query result
of the stack for further reuse and avoiding redundant queries. Brennan et al. [7]
developed Cashew [1] which is built on top of Green, and is designed to process
and store constraint solutions in the theory of linear integers and strings.

264 J. Taljaard et al.

A comparative study [4,5] is done, where Green, GreenTrie, Recal, Recal+
and Julia (a caching framework that also implements the model-core reuse strat-
egy) are compared, and in which it is shown that Julia outperforms the other
caching tools.

5 Conclusion and Future Work

To the best of our knowledge this is the largest study to evaluate whether caching
is worth it, given the advances in solver technology. It not only considers standard
sat/unsat approaches as used in Green, but also considers the more recent app-
roach of caching models. In addition it also explores whether doing the caching
during symbolic or concolic execution makes a difference.

Some of the core results we found are summarised below:

– During symbolic execution rather do incremental solving (this is a well known
result, but here we show ample data to support it).

– Factorisation is fairly cheap and well worth doing in both the symbolic and
concolic case.

– The more advanced pre-processing steps in Green, most notably finding a
canonical form for LIA formulas, seems to not pay off in most cases.

– Model reuse starts to become viable for concolic execution, but is not worth
doing for the symbolic case. This is mostly due to the model queries being
slow in the solver.

– Caching becomes useful when the queries take longer to finish. This is obvi-
ous, and is even more pronounced when one performs model counting (as
supported by Green).

There are a number of weaknesses in our current study that we would like
to address in future work.

We focused on LIA constraints here, since they are the sweet-spot for sym-
bolic/concolic execution, but the picture will change considerably when more
complex domains are treated, for example floating point operations and opera-
tions over strings (where solving will be slower). However we are confident that
the observation that factorisation is the important step in caching, will still hold.

Even though this might be a large study, we should have even larger examples.
For instance we do need COASTAL to become more robust so that it can handle
all the examples that SPF can handle. It is unlikely that COASTAL will ever
be faster than SPF on a single path, but COASTAL can also run in a multi-
threaded mode where it should be much more competitive. Note, as an aside,
it is hard to parallelize a symbolic execution, but it is comparatively easy to do
for concolic since each run is completely independent. We will report on these
results in a final version.

The use of a persistent (across runs) store for grulia that doesn’t require
being loaded in upfront in the second run would make the reuse of models across
runs more efficient. This is just engineering, and it is not completely obvious
it is worth doing. What is worth doing, is incorporating an approach similar

Constraint Caching Revisited 265

to Z3Cache for all techniques, i.e. cache constraints results (sat/unsat) at the
highest level (i.e. before factorisation). This will have the drawback of using
more storage, but a hashing approach can be tried that will make the approach
more probabilistic (but with very small chance of a hash collision and thus an
incorrect sat/unsat result).

Symbolic analysis displayed the sweet spot for the solver, where the con-
straints are in the quantifier free integer domain and only produce a single value
solution (sat/unsat). The experiments showed that the caching tools have diffi-
culty to keep up with performance when the incremental solver is involved. The
difficulty of concolic execution is that it is not that obvious how to implement
an incremental solver for the analysis. The solver in its basic mode performed
immensely slow, therefore the caching tools display a greater relevancy. The
model-core reuse strategy shows advantage over the sat/unsat alternative. For
concolic analysis a model is required for the constraint, which is more expen-
sive to compute, therefore the caching strategies (and more so the model-core
approach) improved the analysis run time.

Take-Home Message. If you plan to do a single analysis (with symbolic exe-
cution), it can be faster to just run Z3 incremental mode. If you want to analyse
a program or different programs multiple times, it will definitely still be useful to
run a persistent storage. Regarding concolic execution, model/solution caching
offers benefit and it is up to the user to decide whether classical caching is the
approach or model reuse will be better suited for the analysis. Despite all that
said, at the very least, the recommendation will be to have a factorisation step to
reduce the constraint size – this gives the best trade-off between effective reuse
and not too much extra computation and time consumption.

Acknowledgements. Jan Taljaard’s work was supported in part by NRF (National
Research Foundation) of South Africa.

References

1. Cashew. https://cashew.vlab.cs.ucsb.edu/. Accessed Feb 2020
2. Green. https://github.com/GreenSolver/green/. Accessed Feb 2020
3. Aquino, A., Bianchi, F.A., Chen, M., Denaro, G., Pezzè, M.: Reusing constraint

proofs in program analysis. In: ISSTA 2015, pp. 305–315. ACM (2015). https://
doi.org/10.1145/2771783.2771802

4. Aquino, A., Denaro, G., Pezzè, M.: Heuristically matching solution spaces of
arithmetic formulas to efficiently reuse solutions. In: ICSE 2017, pp. 427–437.
IEEE/ACM (2017). https://doi.org/10.1109/ICSE.2017.46

5. Aquino, A., Denaro, G., Pezzè, M.: Reusing solutions modulo theories. IEEE Trans.
Softw. Eng. (Early access), 385–394 (2019). https://doi.org/10.1109/TSE.2019.
2898199

6. Bailey, J., Stuckey, P.J.: Discovery of minimal unsatisfiable subsets of constraints
using hitting set dualization. In: Hermenegildo, M.V., Cabeza, D. (eds.) PADL
2005. LNCS, vol. 3350, pp. 174–186. Springer, Heidelberg (2005). https://doi.org/
10.1007/978-3-540-30557-6 14

https://cashew.vlab.cs.ucsb.edu/
https://github.com/GreenSolver/green/
https://doi.org/10.1145/2771783.2771802
https://doi.org/10.1145/2771783.2771802
https://doi.org/10.1109/ICSE.2017.46
https://doi.org/10.1109/TSE.2019.2898199
https://doi.org/10.1109/TSE.2019.2898199
https://doi.org/10.1007/978-3-540-30557-6_14
https://doi.org/10.1007/978-3-540-30557-6_14

266 J. Taljaard et al.

7. Brennan, T., Tsiskaridze, N., Rosner, N., Aydin, A., Bultan, T.: Constraint nor-
malization and parameterized caching for quantitative program analysis. In: FSE
2017, pp. 535–546. ACM (2017). https://doi.org/10.1145/3106237.3106303

8. De la Banda, M.J.G., Stuckey, P.J., Wazny, J.: Finding all minimal unsatisfiable
subsets. In: PPDP 2003, pp. 32–43. ACM (2003). https://doi.org/10.1145/888251.
888256

9. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

10. Gleeson, J., Ryan, J.: Identifying minimally infeasible subsystems of inequalities.
INFORMS J. Comput. 2(1), 61–63 (1990). https://doi.org/10.1287/ijoc.2.1.61

11. Jia, X., Ghezzi, C., Ying, S.: Enhancing reuse of constraint solutions to improve
symbolic execution. In: ISSTA 2015, pp. 177–187. ACM (2015). https://doi.org/
10.1145/2771783.2771806

12. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385–
394 (1976). https://doi.org/10.1145/360248.360252

13. Liffiton, M.H., Malik, A.: Enumerating infeasibility: finding multiple MUSes
quickly. In: Gomes, C., Sellmann, M. (eds.) CPAIOR 2013. LNCS, vol. 7874, pp.
160–175. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38171-
3 11

14. Morgado, A., Matos, P., Manquinho, V., Marques-Silva, J.: Counting models in
integer domains. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp.
410–423. Springer, Heidelberg (2006). https://doi.org/10.1007/11814948 37

15. Taljaard, J.H.: Optimised constraint solving for real-world problems. Master’s the-
sis, Stellenbosch University (2019). https://doi.org/10019.1/107292

16. Visser, W., Geldenhuys, J., Dwyer, M.B.: Green: reducing, reusing and recycling
constraints in program analysis. In: FSE 2012, pp. 1–11. ACM (2012). https://doi.
org/10.1145/2393596.2393665

17. Yang, G., Păsăreanu, C.S., Khurshid, S.: Memoized symbolic execution. In: ISSTA
2012, pp. 144–154. ACM (2012). https://doi.org/10.1145/2338965.2336771

18. Zou, Q., An, J., Huang, W., Fan, W.: Integrating assertion stack and caching to
optimize constraint solving. In: ICCSNT 2015, pp. 397–401. IEEE (2015). https://
doi.org/10.1109/ICCSNT.2015.7490777

https://doi.org/10.1145/3106237.3106303
https://doi.org/10.1145/888251.888256
https://doi.org/10.1145/888251.888256
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1287/ijoc.2.1.61
https://doi.org/10.1145/2771783.2771806
https://doi.org/10.1145/2771783.2771806
https://doi.org/10.1145/360248.360252
https://doi.org/10.1007/978-3-642-38171-3_11
https://doi.org/10.1007/978-3-642-38171-3_11
https://doi.org/10.1007/11814948_37
https://doi.org/10019.1/107292
https://doi.org/10.1145/2393596.2393665
https://doi.org/10.1145/2393596.2393665
https://doi.org/10.1145/2338965.2336771
https://doi.org/10.1109/ICCSNT.2015.7490777
https://doi.org/10.1109/ICCSNT.2015.7490777

Per-Location Simulation

Liyi Li(B) and Elsa L. Gunter(B)

Department of Computer Science, University of Illinois at Urbana-Champaign,
Champaign, USA

{liyili2,egunter}@illinois.edu

Abstract. Simulation/bisimulation is one of the most widely used
frameworks for proving program equivalence/semantic preservation. In
this paper, we propose a new per-location simulation (PLS) relation that
is simple and suitable for proving that a compiled program semantically
preserves its original program under a CFG-based language with a real-
world, C/C++ like, weak memory model. To the best of our knowl-
edge, PLS is the first simulation framework weaker than the CompCert
[26]/CompCertTSO [47] one that is used for proving compiler correct-
ness. With a combination of PLS, the compiler proof-framework Mor-
pheus [34], and a language semantics with a weak memory model, we
are able to prove that programs are semantically preserved through a
transformation. All the definitions and proofs have been implemented in
Isabelle/HOL.

1 Introduction

When the preservation of concurrency behavior was being verified in the
CompCert compiler [26], the researchers found that it is not enough to tell
the whole story just to use a traditional bisimulation framework to prove the
program equivalence between a compiled program and its original one, so they
designed a new bisimulation framework by treating safe programs and programs
that might reach error states differently. CompCert’s concurrency model was
sequential consistency. The extent to which traditional bisimulation is inappro-
priate is even clearer when dealing with weak concurrency models. Weak concur-
rency models have been studied broadly for real world imperative programming
languages (C/C++/LLVM) [1,3,5,9,10,14,18,19,21–24,37,38,40,41,45]. When
using these models to prove compiler correctness, a problem arises. Historically,
the semantics of these languages has been determined by the behavior of their
compilers, so the behavioral effects of compiler optimizations also need to be
considered in the concurrency models. For example, in the program piece (b) in
Fig. 1, variables a and b can both read 1 if we consider the fact that a simple
optimization removes the Boolean guards in (b), transforming it as the pro-
gram piece (a). The well-known confusion about out-of-thin-air behaviors [8] is
a typical consequence of the problem.

Researchers [19,21,40,41] have tried to solve the thin-air problems by merg-
ing the extra behaviors caused by compiler optimizations into their concurrency
c© Springer Nature Switzerland AG 2020
R. Lee et al. (Eds.): NFM 2020, LNCS 12229, pp. 267–287, 2020.
https://doi.org/10.1007/978-3-030-55754-6_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-55754-6_16&domain=pdf
https://doi.org/10.1007/978-3-030-55754-6_16

268 L. Li and E. L. Gunter

Fig. 1. Motivating examples

models. These models have several problems. Vafeiadis et al. [42] has shown
that most of the compiler optimizations are invalid in these weak models. More-
over, Batty et al. [4] proved that it does not exists a candidate execution style
axiomatic C++ concurrency model to incooperate the thin-air problems raised
by (b) (Fig. 1). Additionally, these models are built upon a very limited set of
memory actions or language pieces, and provide correct compiler schemes gen-
erated from the models based on the limited set. It requires a great effort to
extend the schemes to prove a real-world compiler optimization preserving the
multi-threaded program semantics for a real-world language under a real-world
concurrency model. In some cases, even if the underlying language is extended a
little, these models failed to show all supposedly allowed behaviors. For example,
the promising model [21] is designed specifically to prove that the two reads in
(d) (Fig. 1) can both read 1, but it fails to prove that the variables a and b in
(f) can read any possible value from location z because z does not have a fixed
value in all possible executions. The IMM model [41] is able to prove that the
two reads in (a) can both read 1, but it fails to prove the two reads in (b) (Fig. 1)
can both read 1. PLS is able to handle all these cases.

In this paper, we propose a simulation framework, named Per-Location Sim-
ulation (PLS), that is able to prove semantic preservation between compiled
programs and their original programs under a language semantics with a weak
concurrency model. We focus on safe traces (traces not going wrong) here, and
assume that there is an outer layer on top of PLS to deal with reaching-error-state
traces the same as the forward simulation framework in defined by CompCert
[26]. As a main example, we provide a clear border for acceptable behaviors
and out-of-thin-air behaviors in a CFG-based language with a weak concurrency
model by using PLS to prove the semantic preservation of a simple optimization.
The border is summarized by the examples in Fig. 1, which can be divided into
two parts. The first is the PLS core part (Sect. 2.1). By the traditional simulation
framework, the example (c) cannot be proven to simulate (a) (meaning that (a)
semantically preserves (c)), because the memory trace (d) can be generated by
(a), but it cannot be observed from (c). By analyzing closely the output of the
two reads and two writes in both (a) and (c), all values that can be observed in
these reads and writes of (c) can also be observed in (a). Thus, we should have
a kind of similarity between (a) and (c). The PLS core produces such kind. It

Per-Location Simulation 269

filters traces of programs into sub-traces based on locations. Instead of compar-
ing the whole traces (as (d)), the PLS core compares the sub-traces of location x
(and y) in (a) and (c) to determine if (c) per-location simulates (a). The second
part is the full PLS definition (Sect. 2.3), which addresses the focal point of thin-
air problems. (b) (Fig. 1) is supposed to be proved to be semantically preserved
by (a), but (e) is not; because the two Boolean guards in (d) can be compiled
away, but such guards in (e) cannot be removed. There are traces appearing in
(a) but not appearing in (e). To validate the proof, we augment the PLS core
with additional equations that capture some very simple compiler optimization
syntactic dependencies. Instead of proving the simulation from (d) to (a), we
prove the simulation from an equivalent representative of (d) to (a). To the best
of our knowledge, PLS is the first simulation framework weaker than the one
in CompCert/CompCertTSO [47], and to be used to prove compiler correctness
under a CFG-based imperative language with a weak memory model, and is able
to correctly distinguish thin-air and correct behaviors.

2 The Per-Location Simulation Definition

This section provides an introduction of PLS. We first introduce PLS core, then
we provide an example language, and then we introduce the full PLS definition.

2.1 PLS Core

Fig. 2. Per-location simulation core definition

Here, we introduce the PLS core definition and utility examples. Figure 2 includes
the PLS core definition. We assume that there is a labeled transition system
(LTS) (Σ,A,

α−→), including a set of states (Σ), a set of labels (A), and a labeled
transition function (α−→). The transition system is parameterized by a set of loca-
tions Loc. Every label in the transition system has three properties: its value

270 L. Li and E. L. Gunter

(accessed by val), its type (at least having a τ type and normally having addi-
tional read and write types), and its memory location (be in the set Loc). For
simplicity, we assume that if the type of a label is τ , then the value and location
of the label are ⊥ in a given transition system. To best describe the PLS core
definition, we define some syntactic sugar on top of the transition system α−→ in
Fig. 2. We first describe a predicate PLSx defining PLS core on a single location
x. A relation �x is a PLS core relation on x over two labeled transition systems
(LTSΞ and LTSΣ in Fig. 2), if for any two states (ξ ∈ Ξ and σ ∈ Σ) in the
relation (ξ �x σ), ξ can transition by an x step (defined by α−→x), then σ can
also transition by an x step, where the two labels are equivalent (≡) and the
resulting states are again related by �x. A family of relations (�), one for each
location in Loc, is a PLS core relation if each indexed relation (�x) satisfies PLSx

for each x in Loc, where Loc is a finite set of memory locations.

(wr_a)
x :=rlx1
y :=rlx1
z :=rlx1

(wr_b)
y :=rlx1
x :=rlx1
z :=rlx1

(prop) x :=rlx1 ∧y :=rlx1 ∧z :=rlx1

We first discuss the single-threaded cases. The program pieces above ((wr_a)
and (wr_b)) describe two sequences of memory writes. Regarding the underlying
memory concurrency model, the outputs of the two program pieces should be the
same, i.e. to write 1 to the locations x, y, and z. However, (wr_a) and (wr_b)
cannot be proved to be similar with each other using the traditional simulation
framework under the assumption of sequential consistency. Only if we assume a
relaxed concurrency model can we prove that (wr_a) and (wr_b) are similar. In
PLS, both (wr_a) and (wr_b) are viewed as three sub-traces as shown in (prop)
(for simplicity, in each sub-trace, we only show instructions without mentioning
other state environments), each of which describes a write for a location; so that
we are able to prove that (wr_a) and (wr_b) are per-loc similar to each other.

We now discuss multi-threaded cases under a weak relaxed memory model
[24]. One of the example per-loc simulation relations that PLS enables is the
one between programs (a) and (c) in Fig. 1, whose execution diagrams are listed
as (a_dd) and (b_dd) above. An execution diagram is a graph representation
of the execution of a program (only listing memory instructions), with arrows
representing the memory instruction order that the execution must obey. In
(a_dd), W (or R) represents a write (or a read) instruction with the subscripts
(x or y) representing the memory locations (details are the Act type in Fig. 3).
The rf arrow between Ry and Wy in (a_dd) means that the read from y reads
the value written by the write, so the read must happen after the write. The
ctrl arrow in (b_dd) is a control dependency so that Ry must happen before
Wx in any valid execution of (c) (Fig. 1). This is the reason that program (c)
does not simulate program (a) by traditional simulation methods, i.e. because

Per-Location Simulation 271

the execution ((d) in Fig. 1) happens in (a) but never happens in (c). On the
other hand, PLS deals the two programs by first splitting all executions in both
programs into a sub-trace per-location like the one in (prop_a). Thus, (c) per-loc
simulates (a) ((a) semantically preserves (c)).

2.2 Example Language Syntax

Before we describe the full PLS definition, we first provide the example language
that we will use in the paper. We focus on the syntax here, and the operational
semantics in Sect. 3. The language is described in Fig. 3. In the figure, every
name in Chancery font is a type defined for a language component; everything in
tt font is a constructor or terminal in the language; and everything in Italics
is a variable representing a term. The figure also introduces ranging conventions
that will be employed throughout the paper.

Fig. 3. Example language syntax

The language contains a set of variables (Var), integer values (Val), and
memory locations (Loc). There are two kinds of memory orderings: one for read
instructions (Or), and the other for write instructions (Ow). The memory order-
ings are similar to the C++ memory orderings [24], but we only describe the
relaxed (rlx), acquire (acq), and release (rel) orderings in this paper. There are
two kinds of instructions: normal instructions and terminations. Normal instruc-
tions are in the LLVM style, where every instruction can produce no more than
one assignment definition. For example, the purpose of the instruction a:= &x is
to get the address of location x and put it in the variable a as an integer. Termi-
nations include a binary branching instruction (if), an unconditional branching
(br), and a control flow graph (CFG, type: CFG) exit instruction (exit). A
control flow graph (CFG) is a tuple (N,π0, λ, E) where N is a finite set of
nodes, π0 is the start node, λ is a labeling of each node having a basic block
that comprises a list of sequential instructions ended by a termination, and E
is a set of edges labeled seq, yes, or no such that, if snd(λ(n)) = br then there
is a unique out-edge from n labeled seq; if snd(λ(n)) = exit then there are no
out-edges from n; and otherwise there are exactly two out-edges, one labeled yes

272 L. Li and E. L. Gunter

and one labeled no. In a basic block (B), we assign each instruction a position
number (i), the sequential instructions their position in the list (starting from
0), and the termination the length of the list of sequential instructions, which is
one greater than the position number of the last instruction in the list. Programs
(Prog) is a function from a set of thread-IDs (Tid) to CFGs. All program piece
examples appearing in the paper are syntactic sugars of the programs in Fig. 3.
Memory actions (Act) are the core parts of the labels in the transition system
described in the beginning of the section, and are viewed as a way for threads
to communicate with the main memory.

2.3 Full PLS

The PLS core definition is suitable for building the per-loc simulation between (a)
and (c) in Fig. 2, but the relation between (a) and (b) (Fig. 2) cannot be handled
by the PLS core. To enhance the usability of PLS, we associate a reflexive relation
eq with the PLS core definition as the Full PLS definition (Fig. 4).

Fig. 4. Full per-location simulation definition

The eq relation is at least a reflexive relation describing program transfor-
mations and capturing the syntactic dependencies of program instructions that
are hard to be discovered by only the program concurrency semantics, such as
the example (b) in Fig. 1. eq including the identity relation (as �eq) relates two
systems LTSΣ and LTSΥ , such as the tuple (LTSΣ , LTSΥ ,�eq) in Fig. 4. PLSeqx can
be understood by the right diagram in Fig. 4. Assume that we have two systems
LTSΞ and LTSΣ . We want to show the per-loc simulation (�x) from LTSΞ to
LTSΣ by showing that for every transition ξ to ξ1, there exists a transition σ to
σ1, such that the two transition labels are equivalent (≡). However, we cannot
directly have a transition from σ to σ1 in some cases. Instead, through the eq
set, we find a relation �eq that relates LTSΣ with another system LTSΥ ; and the
transition from υ to υ1 is found in LTSΥ , where υ and υ1 are related to σ and
σ1 through �eq, respectively, and ξ1 and σ1 are also related by �x. PLSeqx is a
generalization of the PLSx predicate in Fig. 2, if we just select the tuple in eq as
(LTSΣ , LTSΣ ,=). By selecting such tuple, the two systems LTSΣ and LTSΥ are
the same. Finally, PLSeqLoc includes the functionality as PLSLoc, but it builds a
family of relations over the predicate PLSeqx .

Per-Location Simulation 273

Fig. 5. Example and Roach model

Figure 5a provides a partial definition of an example eq set. The set contains
equations to relate two labeled transition systems LTSΞ and LTSΣ by relating the
two program texts in any two states ξ and σ from the systems. The conditional
equations shown in Fig. 5a is to equate two CFGs for a thread in any two program
texts, i.e. two program texts μ and μ′ are equivalent, if for any thread tid in the
domain of μ/μ′, μ(tid) ∼=eq μ′(tid) (∼=eq means equivalence closed under the
conditional equations in Fig. 5a). The first two conditional equations in Fig. 5a
describe the equivalence relation that if a Boolean guard of a binary branching
is always evaluated to true or false statically (by the eval function), then the
CFG is related to the version formed by transforming the branching operation to
a unconditional branching operation. The third rule describes the relation that
if the outgoing edges of a branching block have the same target, then the CFG
can be rewritten as a version only going through one branch.

The following single-threaded programs ((pa_a), (pa_b), and (pa_c)) are
examples for which traditional simulation frameworks cannot provide satisfac-
tory explanations. Using a sequential consistency model, a traditional simulation
framework enables the proof of similarity between programs (pa_a) and (pa_b)
(let’s assume that the executions of a program generate an LTS), because an
execution of (pa_a) always executes a write to x, then a read from y, and then
a write to z, which is the same sequence as the one produced by (pa_b). The
problem is that we also want to show that (pa_a) and (pa_c) are similar, which
the traditional framework cannot enable.

(pa_a)

x :=rlx c
if (a=b ∧ b=c)

a :=rlx y
else
a :=rlx y

z :=rlx b

(pa_b)
x :=rlx c
a :=rlx y
z :=rlx b

(pa_c)
a :=rlx y
z :=rlx b
x :=rlx c

(prop_pa) x :=rlx c ∧ a :=rlx y ∧ z :=rlx b

Under a weak memory model, like RC11 [24], a transitional simulation
method enables the proof that (pa_c) simulates (pa_a) but not the opposite,
because the Boolean guard in (pa_a) contains the variables a and b, so it has
data dependency on the later instructions (read from y and write to z). Thus,

274 L. Li and E. L. Gunter

they cannot move to execute before the Boolean guard as well as the write to x.
Clearly, by using the full PLS, to prove that (pa_a) simulates (pa_c), we can
first find an equivalent program of (pa_a), which is exactly the one in (pa_b).
Then we prove that (pa_a) per-loc simulates (pa_c) by showing that (pa_b)
per-loc simulates (pa_c).

The simulation from (pa_a) to (pa_c) can also be proved by the PLS core
definition in Sect. 2.1. To understand the additional proving ability that the full
PLS brings us, the simulation from (b) to (a) in Fig. 1 provides a better hint.
The execution diagram of (a) is shown as (a_dd) above, while the diagram of
(b) is shown as (d_dd). In (d_dd), for every single thread, a control dependency
(ctrl) exists from the read to the write. If we observe that the two reads both
read 1, we have exactly two reads-from edges (rf) from writes to reads. Thus,
the diagram contains a cycle, which means that the execution of reading both as
1 is impossible if no optimization is applied to (b) (Fig. 1). Like the traditional
simulation frameworks, PLS core is unable to prove the per-loc simulation from
(b) to (a), which is the correct behavior in the sense that no optimization is
applied. the desired simulation between (b) and (a) must take into account some
resulting behaviors caused by optimizations. It is clear that the two ctrl edges in
(d_dd) can be removed by some very simple optimizations, so that (b) becomes
(a); and its execution diagram is the same as that of (a_dd). Then we can use the
PLS core to build the simulation relation as the one in Sect. 2.1. This is the main
content of the full PLS definition, which includes the optimization effects as the
equivalence relation eq, then proves the per-loc similarity from an equivalence
representative of (b) to (a) by using the PLS core.

If a traditional simulation framework would be parameterized with the eq
relation, it could prove the simulation from (b) to (a) in Fig. 1, but it is inade-
quate for the simulation from the (par) above to (a) (Fig. 1). For that, the full
power of PLS is required. To prove such a per-loc simulation, we first select an
equivalence representative of program (par) to be the program (par’). Then, we
prove the per-loc simulation from (par’) to (a) by the strategy for proving the
relation from (c) to (a) (Sect. 2.1).

We then need to answer the question: what kind of equations are allowed in
eq? The principle is described in the Roach Model of Manson et al. [35], and
systematically explained by Vafeiadis et al. [43]: the short answer is any equa-
tion that can preserve program meaning, especially, the meaning of the critical
section created by the acquire (acq) and release (rel) atomic memory oper-

Per-Location Simulation 275

ations. Essentially, the acquire/release atomics are C++ memory devices that
implement a weak version of the memory locking mechanism. Moving a memory
operation before an acquire atomic operation or after a release atomic opera-
tion violates the Roach Model principle that states: “shared memory accesses
can be moved in critical regions but not out of them” (Fig. 5b). In the paper
of Vafeiadis et al., several cases are mentioned of an optimization violating this
principle; each of them involves the removal or addition of read/write memory
operations. For simplicity in this paper, we provide the following observation
about a conservative construction of eq to preserve the Roach Model principle.
In it, LTS|tid means chopping the LTS to only execute single-threaded CFGs in
the thread tid.

Observation 1. Assume that we have a transition system LTSΣ , and a single-
ton relation set eq = {(LTSΣ , LTSΞ ,∼)}. We assume that for every thread tid,
we derive two single-threaded systems from LTSΣ and LTSΞ as LTSΣ |tid and
LTSΞ |tid, the ∼ relation (LTSσ|tid ∼ LTSσ|tid) has the property that LTSσ|tid is
bisimilar to LTSσ|tid. Then, for any relation �, such that PLSeqLoc(�), and any
state ξ in LTSΞ that does not transition (in LTSΞ) to a Roach-Model-violating
state (Fig. 5b), if σ � ξ, then σ does not transition (in LTSΣ) to a Roach-Model-
violating state.

3 Program Meaning Preservation

Morpheus is a a domain-specific language for formal specification of program
transformations. In previous papers about Morpheus [32,34], it was shown how
to combine a sequential memory model, the Morpheus framework, and an under-
lying instruction semantics for a programming language to prove the correctness
of a traditional compiler optimization (PRE). This section introduces a combi-
nation of PLS, Morpheus, and the program semantics for the language in Fig. 3
(based on a weak memory model) to prove an optimization semantically preserv-
ing the program meaning. We first introduce the Morpheus specification language
and examples of optimizations specified in Morpheus. Then, we introduce the
program semantics of the language in Fig. 3, which combines the instruction
semantics with a weak memory model. Given an optimization ζ and program μ,
we rewrite μ to μ′ by ζ. The proof is to build a PLS relation from a LTS, whose
states have the form (μ′, ω) for any environment state ω with a fixed format
(Fig. 8), to another LTS, whose states have the form (μ, ω).

3.1 Morpheus and Example Optimization Specifications

The Morpheus specification language [34] is enlightened by the Trans language
of Kalvala et al. [20]. Morpheus specifies an optimization as conditional com-
positions of rewrites on CFGs. Morpheus is split into three components: core
graph transformations, conditions given in First Order Computation Tree Logic

276 L. Li and E. L. Gunter

(FOCTL), and a strategy language for building complex transformations out of
component transformations and conditions. The details of the Morpheus syntax
are in the work [34] (and in the report [28]). Conceptually, for an optimization
specified in Morpheus, the rewrite portion expresses the local transformation to
be made, the condition characterizes the situations in which the optimization
should be applied, and the strategy language allows us to build a combination
of transformations out of collections of local ones. Morpheus is a special-purpose
language for the transformation of CFGs, and as such is parameterized by aspects
of CFGs, namely node names (π in Fig. 3), node contents (program basic block
B in Sect. 3), and edge labels marking control flow (l in Fig. 3). Transformation
specifications may mention aspects of CFGs concretely, but more generally, they
use pattern variables that will be instantiated with control flow graph compo-
nents in each specific application. We will use the term “expressions” to refer
to patterns built from both concrete entities and metavariables (which will be
instantiated with concrete entities when the transformation is applied). We use
the term metavariable (range: a and b) to refer to the variables in the pat-
terns and expressions in Morpheus transformations, as opposed to the concrete
programming variables and memory locations that will be found in Fig. 3.

Fig. 6. Examples of simple code motion optimizations

In this paper, we use two kinds of simple code motion (SCM) optimizations
as examples. The general strategies for them are shown as graphs in Fig. 6. Given
a CFG C for a thread in a program μ, the left optimization in Fig. 6 locates (by
a Morpheus condition expression) a basic block B of C, whose termination is
a binary branching instruction and the two outgoing edges pointing to the two
basic blocks B1 and B2 that have the same content and same outgoing edges.
Then the left optimization changes the binary branching instruction in B to a
non-conditional one, and also changes the edges of B to a single outgoing edge
with a label seq. This is done by a strategy code in Morpheus with a sequence
of graph transformations. Similarly, the right optimization first locates a basic
block B of C whose termination is a binary branching instruction whose Boolean
guard is always evaluated as true (by static rewriting). Then the optimization
changes the binary branching instruction to an unconditional branching one br,
and makes all of the outgoing edges of B point to the basic block indicated by
the true branching of B.

Per-Location Simulation 277

Fig. 7. Simple code motion transformations in Morpheus

Figure 7 contains the Morpheus formulas leftOpt and rightOpt defining
the left and right compiler optimizations from Fig. 6. The sameOutEdge formula
defines the predicate for checking if two statements are the same; and their chil-
dren have the same outgoing edges or statements. a and b are two metavariables
representing two nodes; the stmt(π) function gets the basic block represented by
node π, and the sameEdges predicate checks if a and b have the same out going
edges. leftOpt represents the left optimization in Fig. 6. It first searches a node
π that has a binary branching instruction with two out going edges (defined
by the SATISFIED_AT Morpheus strategy operation). The next function gets
the outgoing node of π with a fixed edge label (yes or no in leftOpt). It does
three actions: first, it replaces the termination of π with br (by the Morpheus
relabel_node action); second, it changes the no edge of π to π1 with the label
seq (by the Morpheus move_edge action), and finally it exchanges the yes edge
of π with the label seq (also by the Morpheus move_edge action). The insts
function gets the instruction list in the basic block of π. The rightOpt for-
mula implements the right optimization in Fig. 6. It is similar to leftOpt. The
only difference is that it checks if the binary branching instruction in the basic
block of node π has a Boolean guard that is always evaluated as true (by the
eval function). The termination is retrieved by the tem_inst function, and the
metavariable a represents the termination of π.

The semantics of Morpheus [32,34] is basically the implementation of a graph
rewrite algorithm over the FOCTL style conditions. Given an optimization for-
mula (like Fig. 7) and a program μ, for every CFG C for a thread in μ, the
algorithm generates a set of new CFGs. It first locates a basic block node sat-
isfying the condition ϕ defined in a SATISFIED_AT strategy operation; and then
it does a series of actions that change the structure of the CFG based on the
node, as with the relabel_node and move_edge actions in leftOpt.

Here, we have briefly introduced Morpheus and given examples of optimiza-
tions defined therein. We will introduce program semantics in the next section.

3.2 Example Language Semantics Under a Weak Memory Model

Here we discuss the operational program semantics for the language in Fig. 3
to support the proof in this section. The semantics is a bridge connecting sin-
gle instruction semantics and a multi-threaded weak memory model. Figure 8
provides a taste of the instruction semantics, memory concurrency model, and

278 L. Li and E. L. Gunter

Fig. 8. Language semantics with a weak memory model

operational semantics based on the language in Fig. 3. In Fig. 8, T is a downward
closed natural number set of time points without 0, each of whose elements
represent a “time” when an instruction executes in a program. We implement a
heap snapshot (γ) as a function from a location to a pair: the pair is the time
point of the most recent write to the location and the value in the location. In
Fig. 3, we introduced the concept of basic blocks, nodes are numbers identifying
basic blocks. We use a pair of natural numbers as a dynamic basic block num-
ber (Bn); the pair uniquely identify an executing basic block in a thread during
an execution. For a program μ : Tid → CFG , we have a family of dynamic
basic block numbers (Π), one for each thread. In Sect. 2.2, we introduced an
instruction number for each instruction in a basic block; it is represented by a
natural number. Here, we name an action-ID as the combination of a dynamic
block number π and an instruction number in the basic block indexed by the

Per-Location Simulation 279

second argument of π. Hence, it is clear that an action-ID can uniquely define
an executing instruction in a thread.

At the instruction level, there are three semantic functions. The eval function
(Fig. 8) is for evaluating an expression (Exp) in Fig. 3. It is a straight evaluation
of each term of the expression, so we omit the detailed implementation here. The
function ψ implements the semantics of an instruction (Inst in Fig. 3). It takes
an instruction, a register map (ϕ), and a heap snapshot (γ), and produces a
resulted register map and a memory action (Act) indicating the type of memory
communication the instruction could bring. We show three cases for ψ in Fig. 8:
the case when a normal assignment happens and ψ returns a τ action, the case
when a read happens and ψ returns a read action, and the case when a write
happens and ψ returns a write action. The function η implements the semantics
of terminations. It takes a termination and registers, and returns an edge label.
In Fig. 8, we show the semantics of a binary branching instruction.

The memory concurrency model is in the format of an axiomatic candidate
execution model [1]. Here, we use a subset of the ATRCM model [27], which has
been proved to be sound with respect to the C/C++ memory model defined by
Lahav et al. [24] and the IMM model [41]. The basis of the model is an exe-
cution with a pair of time points T and a function ρ mapping T to memory
events. By defining a set of binary relations and predicates on top of the pair,
the model selects a valid set of memory executions from a set of candidate exe-
cutions. If there is a pair (s, t) in one of the relations, the memory event ρ(s)
must happen before the event ρ(t) in the execution. In Fig. 3, we also intro-
duced actions (Act). A memory instruction produces a read/write action, while
other instructions/terminations produce a τ action. Here we combine an action,
thread-ID and action-ID, making a memory event (Ev). In the model in Fig. 8,
for an execution, we assume that a family (sbs) of sequenced-before relations
(sb) is given, one sb for each thread; and a family (dds) of data dependency
relations (dd) is also given, one dd for each thread. A straight-forward algorithm
for generating a sequenced-before relation for executing a CFG can be taken
from the program text order of the CFG; also, a data dependency relation for a
CFG execution can be produced by the traditional data-flow, alias, and control
dependency analysis algorithms. Here we omit the details of these algorithms.
In Fig. 8, we mainly introduce the single-threaded relations and predicates for
the model. More details are in the report [28]. In a single thread, we assume
that instructions can be executed out-of-order. We define a single-threaded pro-
gram order relation (po) for each thread to restrict the out-of-order execution,
to respect the program meaning. po is the union of the single-threaded data
dependency (dd) relation, acq relation for acquire (acq) reads, and rel relation
for release (rel) writes. In the definition of the relation for the acquire read
instruction, we require no instruction sequenced-after the acquire read can be
executed before the read; while in the relation for a release write instruction,
no instruction sequenced-before the release write can be executed after it. These
two relations can be better understood by the Roach Model in Fig. 5b. The
single_prop predicate represents all single-threaded behaviors that an execu-

280 L. Li and E. L. Gunter

tion must satisfy. The predicate requires that any single-threaded po relation
and the reads-from relation (rf) in an execution must not have a pair of time
points (s, t), for which t happens before s. The sat predicate is the collection of
all predicates that a valid execution must satisfy. It is detailed in the report [28],
and includes the single_prop predicate.

The operational transition semantics in Fig. 8 is a combination of the instruc-
tion level semantics and memory concurrency model. It is represented as a
labeled transition system whose states are pairs of programs (μ) and the state
environment (ω), and whose labels are memory events. A state environment is
a long tuple of a set of thread-IDs (Tid), a program order family (pos, one for
each thread), a sequenced-before relation family (sbs), a data dependency fam-
ily (dds), a current dynamic block number family (Π), a registers family (Φ),
a heap snapshot family (Γ) representing different views of the threads of the
main memory, a program pointer family (Θ) representing the current executing
instruction of each thread, a time point set (T), a ρ mapping, and a reads-from
relation (rf). We show the top-most rule of the transition system in Fig. 8. This
rule selects a thread tid, applies the one-step transition function trans to the
state environment of tid, checks the result of the one-step transition to see if
the accumulated result satisfies the predicate of the memory model (sat), and
then moves forward to a new step via the memory event label ρ′(max(T ′)). The
function max produces the maximum number in T ′. We can retrieve the mem-
ory event by the max function because the trans function always creates a map
entry in ρ from the maximum time point plus 1 to the current memory event.
The detailed implementation of the trans function is found in the report [28].
It needs to finish several tasks as a one step evaluation for a thread tid with a
CFG C. First, if its program pointer Θ(tid) points to the end of a basic block
(no instructions left for execution), it selects a new basic block according to the
edge information in C (applying function η to it with registers (Φ(tid)) to get
the edge label), and assigns a new dynamic basic block number with a new pro-
gram pointer pointing to the top of the new block. In this case, trans also adds
new relations of program order, sequenced-before, and data dependency to the
existing relation sets inside the new basic block. Second, if Θ(tid) indicates that
there are instructions in the basic block waiting for execution, an instruction is
non-deterministically selected for execution (applying function ψ to it with regis-
ters (Φ(tid)) and heap snapshot (Γ (tid))) if the instruction satisfies the program
order relation on the basic block. Third, for a step, trans also picks a new time
point (the maximum number of the time point set T plus 1) to add to the set
T , and assigns the new time point to a new memory event. The creation of the
event is to combine the thread-ID tid, a newly generated action-ID (the action-
ID is calculated by combining the dynamic block number with the instruction
number), and a memory action calculated from the function ψ (if the instruction
is a termination, we assume that the action is τ). Fourth, trans also generates
a new rf pair if the action is a read, and modifies the memory snapshot by
inserting the current time point and write value if the action is a write.

Per-Location Simulation 281

3.3 The PLS Proof over Morpheus Optimizations

We utilize the optimizations and the program semantics defined in the last two
sections to prove the correctness of a simple code motion optimization (SCM) as a
utility of PLS. We want to show that any compiler-optimized (by SCM) program
in the language (Fig. 3) per-loc simulates its original unoptimized program.

Fig. 9. Optimization proof with PLS

Figure 9 provides the structure of the optimization proof. In Sect. 2.1, we
described how the PLS framework is parameterized by transition systems.
Here we instantiate these systems with the same program transition system in
Sect. 3.2. We then instantiate the states (ξ, σ and υ in Fig. 4) as the form (μ, ω)
(Fig. 8). For any two states in a LTS (LTSΞ , LTSΣ , or LTSΥ), they have the same
program μ. We also map the labels (α, β, and κ) to memory events (Ev). Given a
label event ev, the property val is implemented as getting the value of the action
in ev only if the action is a read or write; if it is a τ event, then the val answers
⊥. type is implemented as a read for a read action in the event, as a write for a
write action, and as τ for a τ action. loc is implemented as getting the memory
location in the action of the event (if it is a τ event, then loc answers ⊥). We
keep the relation set eq the same as the one in Fig. 5a. Assume that a program
μ is given, by applying the Morpheus optimization algorithm of SCM, we can
rewrite μ as an optimized program μ′. For a fixed initial state ω, the PLS proof
is to show that the LTS (LTSΞ) with the initial state (μ′, ω) per-loc simulates
the LTS (LTSΣ) with the initial state (μ, ω), where there exists a per-loc sim-
ulation relation � for a finite set of locations Loc, such that (μ′, ω) � (μ, ω).
We formalize this result as Theorem 2, and the proof is done in Isabelle. The
approach of the proof is first to prove a lemma with a similar structure but for
only a single-threaded program with one CFG, and then prove Theorem 2 by
using induction on the number of threads in the domain of the program.

Theorem 2. Let (μ, ω)(x) (ξ(x) or σ(x)) be the value of location x at the ω’s
heap snapshot (Γ in Fig. 8) that belongs to the thread tid such that ρ(max(T)) =
(tid, aid, ac) (ρ and T are the elements in ω in Fig. 8). For any program μ in the
language in Fig. 3 with a finite domain (Tid has size n), for any π and any
tid ∈ Tid, let μ′(tid) ∈ leftOpt(π)(μ(tid)) (or μ′(tid) ∈ rightOpt(π)(μ(tid))).

Given a non-empty finite set of memory locations Loc and a given state
environment ω, there exists a per-loc simulation � that satisfies PLSeqLoc(�) and

282 L. Li and E. L. Gunter

(μ′, ω) �x (μ, ω) for all location x, and for all ξ and σ such that ξ �x σ for a
location x, ξ(x) = σ(x).

Isabelle Formalization. The PLS framework, the combination of PLS and
Morpheus, and the proof of the semantic preservation of a particular optimiza-
tion on a specific language are achieved through an elegant combination of differ-
ent locale structures [2] in Isabelle. An Isabelle locale structure is a polymorphic
theorem structure that is parameterized by a list of Isabelle terms with proper
types and a list of assumptions for these terms. Through a locale structure, a
collection of theorems can be defined for a list of polymorphic terms, provided
that the terms satisfies the assumptions defined for the terms. Users can later
instantiate the locale structure to a specific instance of terms by proving the
assumptions.

In the Isabelle Morpheus definition, we first define the syntax for the Mor-
pheus specification language. We then define a polymorphic CFG locale struc-
ture, named Flow_graph, with all necessary elements in a CFG, such as a set
of nodes, a set of edges, the start node and the exit node for the CFG with
several assumptions on the CFG well-formedness. The Morpheus specification
language semantics is also defined as a locale structure, named Morpheus_sem,
which is built on top of the Flow_graph locale. Based on the CFG structure
and assumptions provided by flow_graph, Morpheus_sem defines an inductive
relation capturing the graph rewriting semantics of Morpheus based on the poly-
morphic CFG structure (flow_graph).

Before we define PLS in Isabelle, we define an LTS locale for a polymorphic
labeled transition system (LTS) with four properties with some well-formedness
assumptions. Three of them are listed in Fig. 2. The other one is the program
text of the LTS described in Sect. 2.3. PLS is defined as a locale, named PLS,
with two LTSs and an equation set eq as the input terms. The two LTSs are
based on the LTS locale. In the PLS locale, we define a predicate as the one in
Fig. 4, which defines the full PLS. When using PLS to prove language properties,
one might be more interested in finding a PLS relation. To do that, we combine
the Morpheus_sem and the PLS locales, as a new locale Morpheus_com, to build
a PLS relation on top of the Morpheus semantics. In Morpheus_com, we build
a new predicate simeqx μ μ′ steprel n, where μ and μ′ are two programs (with
the same thread domain), and μ′ is the transformed program of μ through a
specific optimization defined as an input term of Morpheus_com. steprel is a
polymorphic function (defined as a term in a locale) to produce an LTS based on
a program by omitting the implementation details of the LTS but only producing
the four properties above. It takes in a program μ and a state ω, and outputs
a label ev and a new state ω′ transitioned from ω. The simeqx predicate is valid
if and only if the LTS with the program text μ, and an initial state ω (μ, ω),
per-loc simulates (with the equation set eq) the LTS with the program text μ,
and an initial state ω (μ, ω) in n steps.

As an example (in Isabelle) of defining the optimization in Fig. 7 and proving
Theorem 2 on a language in Fig. 3, we first define its instruction and CFG syntax
with a definition capturing the instruction level semantics of the language. We

Per-Location Simulation 283

also define a memory model as a locale structure capturing the relaxed concur-
rency behaviors described in Fig. 8 (and the report [28]). We then define the
program semantics as the LTS (−→) in Fig. 8 by instantiating the memory model
locale with the language (Fig. 3) and adding more structures (like the program
pointer family). Now, we instantiate the Morpheus_sem locale by the CFG syn-
tax in the language, the Steprel locale (for instantiating the function steprel)
by the LTS (−→), and the eq set as the one in Fig. 5a, and the compiler optimiza-
tion term in Morpheus_sem as the one in Fig. 7. The proof of Theorem 2 is then
turned to show that the predicate simeqx μ μ′ steprel n is valid for arbitrary
x in a location set Loc. We first show the case when n = 1 by proving for any
one-step transition defined by the LTS (−→) for arbitrary x; then, we lift the
proof inductively to arbitrary n step based on the one-step proof result.

4 Related Work

The PLS framework is a combination of three pieces of work: a simulation frame-
work, a compiler-verification framework, and a weak memory model. Simula-
tion/bisimulation were first introduced by Park [39]. Subsequently, much work
was published that defined and proved properties about simulations [6,11–13,46].
Verifying compilers is one of the top problems in computer science since the work
of McCarthy and Painter [36]. A good survey can be found in Dave’s work [17].
Recently, one of the most significant achievements in verifying large-language
compilers is Leroy’s CompCert compiler [7,26]. Chlipala built verified compilers
in Coq from λ-calculus to an idealized machine language [15] and from a small
functional language to the language [16]. Lochbihler verified a whole-program
compiler for multi-threaded Java [31]. Sevcik et al. built CompCertTSO [47],
which adapted CompCert’s correctness proofs to x86TSO to consider the com-
pilation of racy C code. Our domain-specific language for specifying compiler
optimizations in Sect. 3 is from Mansky and Gunter’s [33,34].

Defining weaker memory models for multi-threaded programs than sequential
consistency started with Lamport [25]. Batty et al. formalized the C11 model in
the axiomatic candidate-execution model format, which was described in depth
by Alglave et al. [1]. Vafeiadis et al. [44] found many other problems in Batty et
al.’s model and proposed fixes. Lahav et al. [22,24] defined a comprehensive C++
model (RC11) based on all previous models, with extra fixes on Batty et al.’s
model. Many previous papers [19,21,40] also proposed solutions for out-of-thin-
air problems, while Podkopaev et al. [41] proposed a weaker model than C/C++
concurrency model including these solutions for out-of-thin-air problems. As we
mentioned in Sect. 1, the distinguishing of out-of-thin-air behaviors in a pro-
gram is essentially discovering syntactic similarities between programs that are
semantically different. The solutions for out-of-thin-air problems can and should
be attained through a well-engineered simulation framework like PLS because
merging syntactically similar programs into a semantic memory model building
results in incompleteness. Moreover, these models provide correct compilation
schemes for a regular and small memory action and language set. It is non-trivial

284 L. Li and E. L. Gunter

to extend their work to prove a compiler optimization in a large language with a
weak concurrency model. Sometimes, extending their work to a little more fea-
tures is problematic, such as the failing in proving examples about the promising
memory model [21] and IMM memory model [41]; not to mention that some of
the work has been found to contain problems in their model [41].

The first framework to combine a sequential consistency memory model,
compiler proof framework, and bisimulation was CompCert [26]. There are two
kinds of simulations in CompCert: the forward and backward simulations, which
together describe the simulation relations between a program and its com-
piled/optimized program. It assumes that any execution of a program is clas-
sified into either an execution reaching an error state or a normal execution,
and defines simulation relations differently for these two cases. In a normal exe-
cution, every element of the execution sequence is either a memory event or a
program finishing point. In the framework, an execution sequence is neither split
into different sub-traces nor distinguished based on memory location informa-
tion. Moreover, CompCert’s simulation framework does not recognize syntactic
dependency on programs just like what PLS does with the eq set (Sect. 2.3).
CompCertTSO [47] inherited CompCert’s bisimulation framework. With minor
extensions, they use the framework to prove program semantic preservations in
a total store order memory model. Several studies proposed fixes to the bisim-
ulation framework on different topics, such as divergence preservation [30] and
creating a program-logic bisimulation framework for the termination-preserving
refinement of concurrent programs [29]. All these works enlighten our develop-
ment of PLS. PLS introduced in this paper is assumed to deal with the normal
executions described in CompCert’s simulation framework, and the error-state-
reaching executions are assumed to be dealt with by the same mechanism as
CompCert’s framework. The main development and advantage of PLS in prov-
ing program semantic preservation properties in weak memory model has been
introduced in Sect. 1 and 2.

5 Conclusion and Future Work

In this paper, we propose a new per-location simulation (PLS) relation that is
simple and suitable for proving a compiled program preserves its original pro-
gram semantics under a CFG-based programming language with a real-world,
C/C++ like, weak memory model. PLS can be divided into two parts (Sect. 2.1
and 2.3). Based on the small language in Fig. 3, the concurrency model (a sub-
set of weak memory model from C/C++ [22,24]) and program semantics in
Sect. 3.2, we have shown the utility of PLS by proving that program seman-
tics is preserved for a simple code motion optimization (defined in Sect. 3.1) for
all possible programs. In the future we will use the PLS framework to prove
program semantic preservation for complicated compiler optimizations with a
complete weak memory model and a large real-world programming language
like C/C++/LLVM.

Per-Location Simulation 285

References

1. Alglave, J., Maranget, L., Tautschnig, M.: Herding cats: modelling, simulation,
testing, and data mining for weak memory. ACM Trans. Program. Lang. Syst.
36(2), 7:1–7:74 (2014). https://doi.org/10.1145/2627752. http://doi.acm.org/10.
1145/2627752

2. Ballarin, C.: Tutorial to locales and locale interpretation. In: Contribuciones cien-
tíÂficas en honor de Mirian Andrés Gómez, 1 Januray 2010, pp. 123–140 (2010).
ISBN 978-84-96487-50-5

3. Batty, M., Donaldson, A.F., Wickerson, J.: Overhauling SC atomics in C11 and
OpenCL. SIGPLAN Not. 51(1), 634–648 (2016)

4. Batty, M., Memarian, K., Nienhuis, K., Pichon-Pharabod, J., Sewell, P.: The prob-
lem of programming language concurrency semantics. In: Vitek, J. (ed.) ESOP
2015. LNCS, vol. 9032, pp. 283–307. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-46669-8_12

5. Batty, M., Owens, S., Sarkar, S., Sewell, P., Weber, T.: Mathematizing C++ con-
currency. SIGPLAN Not. 46(1), 55–66 (2011). https://doi.org/10.1145/1925844.
1926394. http://doi.acm.org/10.1145/1925844.1926394

6. van Benthem, J.: Exploring Logical Dynamics. Center for the Study of Language
and Information, Stanford, CA, USA (1997)

7. Blazy, S., Leroy, X.: Mechanized semantics for the Clight subset of the C language.
J. Autom. Reason. 43(3), 263–288 (2009). https://doi.org/10.1007/s10817-009-
9148-3

8. Boehm, H.J.: Memory Model Rationales. http://www.open-std.org/jtc1/sc22/
wg21/docs/papers/2007/n2176.html. Accessed 9 Mar 2007

9. Boehm, H.J., Adve, S.V.: Foundations of the C++ concurrency memory model.
SIGPLAN Not. 43(6), 68–78 (2008)

10. Boehm, H.J., Demsky, B.: Outlawing ghosts: avoiding out-of-thin-air results. In:
Proceedings of the Workshop on Memory Systems Performance and Correctness,
MSPC 2014, pp. 7:1–7:6. ACM, New York, NY, USA (2014)

11. Burkart, O., Caucal, D., Steffen, B.: Bisimulation collapse and the process taxon-
omy. In: Montanari, U., Sassone, V. (eds.) CONCUR 1996. LNCS, vol. 1119, pp.
247–262. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61604-7_59

12. Caucal, D.: On the regular structure of prefix rewriting. In: Arnold, A. (ed.) CAAP
1990. LNCS, vol. 431, pp. 87–102. Springer, Heidelberg (1990). https://doi.org/10.
1007/3-540-52590-4_42

13. Caucal, D.: On infinite transition graphs having a decidable monadic theory. In:
Meyer, F., Monien, B. (eds.) ICALP 1996. LNCS, vol. 1099, pp. 194–205. Springer,
Heidelberg (1996). https://doi.org/10.1007/3-540-61440-0_128

14. Chakraborty, S., Vafeiadis, V.: Formalizing the concurrency semantics of an LLVM
fragment. In: Proceedings of the 2017 International Symposium on Code Genera-
tion and Optimization, CGO 2017, pp. 100–110. IEEE Press, Piscataway, NJ, USA
(2017). http://dl.acm.org/citation.cfm?id=3049832.3049844

15. Chlipala, A.: A certified type-preserving compiler from lambda calculus to assembly
language. SIGPLAN Not. 42(6), 54–65 (2007)

16. Chlipala, A.: A verified compiler for an impure functional language. SIGPLAN
Not. 45(1), 93–106 (2010)

17. Dave, M.A.: Compiler verification: a bibliography. SIGSOFT Softw. Eng. Notes
28(6), 2–2 (2003)

https://doi.org/10.1145/2627752
http://doi.acm.org/10.1145/2627752
http://doi.acm.org/10.1145/2627752
https://doi.org/10.1007/978-3-662-46669-8_12
https://doi.org/10.1007/978-3-662-46669-8_12
https://doi.org/10.1145/1925844.1926394
https://doi.org/10.1145/1925844.1926394
http://doi.acm.org/10.1145/1925844.1926394
https://doi.org/10.1007/s10817-009-9148-3
https://doi.org/10.1007/s10817-009-9148-3
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2176.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2176.html
https://doi.org/10.1007/3-540-61604-7_59
https://doi.org/10.1007/3-540-52590-4_42
https://doi.org/10.1007/3-540-52590-4_42
https://doi.org/10.1007/3-540-61440-0_128
http://dl.acm.org/citation.cfm?id=3049832.3049844

286 L. Li and E. L. Gunter

18. Dodds, M., Batty, M., Gotsman, A.: C/C++ causal cycles confound composition-
ality. TinyToCS 2 (2013). http://tinytocs.org/vol2/papers/tinytocs2-dodds.pdf

19. Jeffrey, A., Riely, J.: On thin air reads towards an event structures model
of relaxed memory. In: Proceedings of the 31st Annual ACM/IEEE Sympo-
sium on Logic in Computer Science, LICS 2016, pp. 759–767. ACM, New York,
NY, USA (2016). https://doi.org/10.1145/2933575.2934536. http://doi.acm.org/
10.1145/2933575.2934536

20. Kalvala, S., Warburton, R., Lacey, D.: Program transformations using temporal
logic side conditions. ACM Trans. Program. Lang. Syst. 31, 1–48 (2009). https://
doi.org/10.1145/1516507.1516509

21. Kang, J., Hur, C.K., Lahav, O., Vafeiadis, V., Dreyer, D.: A promising semantics
for relaxed-memory concurrency. SIGPLAN Not. 52(1), 175–189 (2017). https://
doi.org/10.1145/3093333.3009850. http://doi.acm.org/10.1145/3093333.3009850

22. Lahav, O., Giannarakis, N., Vafeiadis, V.: Taming release-acquire consistency.
SIGPLAN Not. 51(1), 649–662 (2016). https://doi.org/10.1145/2914770.2837643.
http://doi.acm.org/10.1145/2914770.2837643

23. Lahav, O., Vafeiadis, V.: Owicki-Gries reasoning for weak memory models. In:
Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015.
LNCS, vol. 9135, pp. 311–323. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-47666-6_25

24. Lahav, O., Vafeiadis, V., Kang, J., Hur, C.K., Dreyer, D.: Repairing sequential
consistency in C/C++ 11. SIGPLAN Not. 52(6), 618–632 (2017). https://doi.
org/10.1145/3140587.3062352. http://doi.acm.org/10.1145/3140587.3062352

25. Lamport, L.: How to make a multiprocessor computer that correctly executes mul-
tiprocess programs. IEEE Trans. Comput. 28(9), 690–691 (1979)

26. Leroy, X.: A formally verified compiler back-end. J. Autom. Reason. 43(4), 363–446
(2009). https://doi.org/10.1007/s10817-009-9155-4

27. Li, L., Gunter, E.: The axiomatic timed relaxed memory model (2019).https://
github.com/liyili2/timed-relaxed-memory-model

28. Li, L., Gunter, E.L.: Per-location simulation – appendix. Technical report, Depart-
ment of Computer Science, University of Illinois at Urbana-Champaign (2020).
https://github.com/liyili2/timed-relaxed-memory-model/PLS

29. Liang, H., Feng, X., Shao, Z.: Compositional verification of termination-preserving
refinement of concurrent programs. In: Proceedings of the Joint Meeting of the
Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and
the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science
(LICS), CSL-LICS ’14, pp. 65:1–65:10. ACM, New York, NY, USA (2014). https://
doi.org/10.1145/2603088.2603123. http://doi.acm.org/10.1145/2603088.2603123

30. Liu, X., Yu, T., Zhang, W.: Analyzing divergence in bisimulation semantics.
SIGPLAN Not. 52(1), 735–747 (2017). https://doi.org/10.1145/3093333.3009870.
http://doi.acm.org/10.1145/3093333.3009870

31. Lochbihler, A.: Mechanising a type-safe model of multithreaded java with a verified
compiler. J. Autom. Reason. 61(1), 243–332 (2018)

32. Mansky, W., Garbuzov, D., Zdancewic, S.: An axiomatic specification for sequen-
tial memory models. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS,
vol. 9207, pp. 413–428. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
21668-3_24

33. Mansky, W., Gunter, E.: A framework for formal verification of compiler optimiza-
tions. In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp.
371–386. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14052-
5_26

http://tinytocs.org/vol2/papers/tinytocs2-dodds.pdf
https://doi.org/10.1145/2933575.2934536
http://doi.acm.org/10.1145/2933575.2934536
http://doi.acm.org/10.1145/2933575.2934536
https://doi.org/10.1145/1516507.1516509
https://doi.org/10.1145/1516507.1516509
https://doi.org/10.1145/3093333.3009850
https://doi.org/10.1145/3093333.3009850
http://doi.acm.org/10.1145/3093333.3009850
https://doi.org/10.1145/2914770.2837643
http://doi.acm.org/10.1145/2914770.2837643
https://doi.org/10.1007/978-3-662-47666-6_25
https://doi.org/10.1007/978-3-662-47666-6_25
https://doi.org/10.1145/3140587.3062352
https://doi.org/10.1145/3140587.3062352
http://doi.acm.org/10.1145/3140587.3062352
https://doi.org/10.1007/s10817-009-9155-4
https://github.com/liyili2/timed-relaxed-memory-model
https://github.com/liyili2/timed-relaxed-memory-model
https://github.com/liyili2/timed-relaxed-memory-model/PLS
https://doi.org/10.1145/2603088.2603123
https://doi.org/10.1145/2603088.2603123
http://doi.acm.org/10.1145/2603088.2603123
https://doi.org/10.1145/3093333.3009870
http://doi.acm.org/10.1145/3093333.3009870
https://doi.org/10.1007/978-3-319-21668-3_24
https://doi.org/10.1007/978-3-319-21668-3_24
https://doi.org/10.1007/978-3-642-14052-5_26
https://doi.org/10.1007/978-3-642-14052-5_26

Per-Location Simulation 287

34. Mansky, W., Gunter, E.L., Griffith, D., Adams, M.D.: Specifying and executing
optimizations for generalized control flow graphs. Sci. Comput. Program. 130, 2–23
(2016). https://doi.org/10.1016/j.scico.2016.06.003

35. Manson, J., Pugh, W., Adve, S.V.: The java memory model. SIGPLAN Not. 40(1),
378–391 (2005). https://doi.org/10.1145/1047659.1040336

36. Mccarthy, J., Painter, J.: Correctness of a compiler for arithmetic expressions, pp.
33–41. American Mathematical Society (1967)

37. Meshman, Y., Rinetzky, N., Yahav, E.: Pattern-based synthesis of synchronization
for the C++ memory model. In: Proceedings of the 15th Conference on Formal
Methods in Computer-Aided Design. FMCAD 2015, pp. 120–127. FMCAD Inc.,
Austin, TX (2015)

38. Norris, B., Demsky, B.: Cdschecker: checking concurrent data structures written
with C/C++ atomics. SIGPLAN Not. 48(10), 131–150 (2013)

39. Park, D.: Concurrency and automata on infinite sequences. In: Deussen, P. (ed.)
GI-TCS 1981. LNCS, vol. 104, pp. 167–183. Springer, Heidelberg (1981). https://
doi.org/10.1007/BFb0017309

40. Pichon-Pharabod, J., Sewell, P.: A concurrency semantics for relaxed atomics that
permits optimisation and avoids thin-air executions. SIGPLAN Not. 51(1), 622–
633 (2016)

41. Podkopaev, A., Lahav, O., Vafeiadis, V.: Bridging the gap between program-
ming languages and hardware weak memory models. Proc. ACM Program. Lang.
3(POPL), 69:1–69:31 (2019). https://doi.org/10.1145/3290382. http://doi.acm.
org/10.1145/3290382

42. Vafeiadis, V., Balabonski, T., Chakraborty, S., Morisset, R., Nardelli, F.Z.: Com-
mon compiler optimisations are invalid in the C11 memory model and what we
can do about it. In: Rajamani, S.K., Walker, D. (eds.) Proceedings of the 42nd
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL 2015, Mumbai, India, 15–17 January 2015, pp. 209–220. ACM
(2015). https://doi.org/10.1145/2676726.2676995

43. Vafeiadis, V., Balabonski, T., Chakraborty, S., Morisset, R., Zappa Nardelli, F.:
Common compiler optimisations are invalid in the C11 memory model and what
we can do about it. SIGPLAN Not. 50(1), 209–220 (2015). https://doi.org/10.
1145/2775051.2676995. http://doi.acm.org/10.1145/2775051.2676995

44. Vafeiadis, V., Balabonski, T., Chakraborty, S., Morisset, R., Zappa Nardelli, F.:
Common compiler optimisations are invalid in the C11 memory model and what
we can do about it. SIGPLAN Not. 50(1), 209–220 (2015)

45. Vafeiadis, V., Narayan, C.: Relaxed separation logic: a program logic for C11
concurrency. SIGPLAN Not. 48(10), 867–884 (2013). https://doi.org/10.1145/
2544173.2509532. http://doi.acm.org/10.1145/2544173.2509532

46. Van Benthem, J.: Correspondence Theory, pp. 197–247. Springer, Netherlands
(1984). https://doi.org/10.1007/978-94-009-6259-0_4

47. Ševčík, J., Vafeiadis, V., Zappa Nardelli, F., Jagannathan, S., Sewell, P.: Com-
pCertTSO: A Verified Compiler for Relaxed-Memory Concurrency. J. ACM 60(3),
22:1–22:50 (2013). https://doi.org/10.1145/2487241.2487248. http://doi.acm.org/
10.1145/2487241.2487248

https://doi.org/10.1016/j.scico.2016.06.003
https://doi.org/10.1145/1047659.1040336
https://doi.org/10.1007/BFb0017309
https://doi.org/10.1007/BFb0017309
https://doi.org/10.1145/3290382
http://doi.acm.org/10.1145/3290382
http://doi.acm.org/10.1145/3290382
https://doi.org/10.1145/2676726.2676995
https://doi.org/10.1145/2775051.2676995
https://doi.org/10.1145/2775051.2676995
http://doi.acm.org/10.1145/2775051.2676995
https://doi.org/10.1145/2544173.2509532
https://doi.org/10.1145/2544173.2509532
http://doi.acm.org/10.1145/2544173.2509532
https://doi.org/10.1007/978-94-009-6259-0_4
https://doi.org/10.1145/2487241.2487248
http://doi.acm.org/10.1145/2487241.2487248
http://doi.acm.org/10.1145/2487241.2487248

Verification and Timed Systems

Sampling Distributed Schedulers
for Resilient Space Communication

Pedro R. D’Argenio1,2,3 , Juan A. Fraire1,2,3 , and Arnd Hartmanns4(B)

1 CONICET, Córdoba, Argentina
2 Saarland University, Saarbrücken, Germany

3 Universidad Nacional de Córdoba, Córdoba, Argentina
4 University of Twente, Enschede, The Netherlands

a.hartmanns@utwente.nl

Abstract. We consider routing in delay-tolerant networks like satellite
constellations with known but intermittent contacts, random message
loss, and resource-constrained nodes. Using a Markov decision process
model, we seek a forwarding strategy that maximises the probability
of delivering a message given a bound on the network-wide number of
message copies. Standard probabilistic model checking would compute
strategies that use global information, which are not implementable since
nodes can only act on local data. In this paper, we propose notions
of distributed schedulers and good-for-distributed-scheduling models to
formally describe an implementable and practically desirable class of
strategies. The schedulers consist of one sub-scheduler per node whose
input is limited to local information; good models additionally render
the ordering of independent steps irrelevant. We adapt the lightweight
scheduler sampling technique in statistical model checking to work for
distributed schedulers and evaluate the approach, implemented in the
Modest Toolset, on a realistic satellite constellation and contact plan.

1 Introduction

There is an increasing commercial and scientific interest in deploying large-scale
satellite networks in low-Earth orbit (LEO) to collect and distribute informa-
tion [4]. Real-time access to data is, however, only feasible when many satellites
align to form a chain of links between a (remote) destination source or destina-
tion and a ground station. This vision favours mega-constellations; e.g. SpaceX’s
Starlink is composed of 12,000 satellites [26]. A different and more sustainable
approach is to relax the real-time constraint and leverage the store-carry-and-
forward principle where nodes store received messages for later forwarding to
other nodes in the network, once a communication window—a contact—appears.
This gives rise to a delay-tolerant network (DTN) [19]. Originally intended for

The authors are listed alphabetically. This work was supported by ANPCyT PICT-
2017-3894 (RAFTSys), ERC grant 695614 (POWVER), NWO VENI grant no.
639.021.754, and SeCyT project 33620180100354CB (ARES).

c© Springer Nature Switzerland AG 2020
R. Lee et al. (Eds.): NFM 2020, LNCS 12229, pp. 291–310, 2020.
https://doi.org/10.1007/978-3-030-55754-6_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-55754-6_17&domain=pdf
http://orcid.org/0000-0002-8528-9215
http://orcid.org/0000-0001-9816-6989
http://orcid.org/0000-0003-3268-8674
https://doi.org/10.1007/978-3-030-55754-6_17

292 P. R. D’Argenio et al.

interplanetary networks [16], the DTN architecture has been identified as a dis-
ruptive approach for LEO constellations which allows for a better utilisation of
communication opportunities [17]. In DTN, there is no upper bound on the prop-
agation delay, and no expectation of continuous or bi-directional end-to-end con-
nectivity. While DTN satellite constellations do not work for e.g. voice services,
they can network Earth observation and high-latency data service missions. In
particular, they can utilise slower inter-satellite links by advance forwarding [28],
adapt transmission schedules to limited battery conditions [31], work with con-
strained spacecraft antennas and subsystem architectures [32], and tailor com-
munication resources to fit mission traffic and routes [33,34]. Ultimately, the
DTN approach enables sparse topologies of fewer and cheaper satellites [30].

Fig. 1. Abstract uncertain contact plan

A contact is the opportunity to
establish a temporal communication
link. As a DTN node’s network state
information may be inaccurate or
obsolete, traditional Internet routing
schemes cannot be used. Space DTN
routing approaches (both near-Earth
and deep-space) thus seek to exploit the
a priori knowledge of contacts: inter-
satellite and satellite-to-ground con-
tacts can be precomputed based on
the orbital elements and communica-
tion parameters. The result is a contact
plan [27]. We visualise a simple plan for
four satellites—nodes N1 through N4—
in Fig. 1. A bent vertical arrow indicates a contact from the arrow’s origin to its
target node. We abstract real time into discrete time slots T1 through T5; actual
contact plans would show actual time intervals of varying durations (and poten-
tially overlapping) with up to sub-second precision. Contact plans describe the
expected network connectivity over time. They are the input for centralised or
distributed DTN routing procedures. Existing solutions turn contact plans into
e.g. time-expanded graphs [53] or contact graphs [5] on which routing calcula-
tions can be performed efficiently. Contact graphs have notably been validated
by technological demonstrations in orbit [45,54].

In practice, the actual contacts may differ from the original plan due to fail-
ures or incomplete/inaccurate knowledge at the time the plan was computed.
Space DTN in particular face fault-prone nodes [29], interference-sensitive com-
munication links [52], and inaccurate orbit determination and station keeping
procedures [39]. We thus need uncertain contact plans where contacts may fail
for various reasons. Based on statistical data, we can annotate every contact
with its success probability. In Fig. 1, we use probabilities p1 through p5 for
illustration. Given an uncertain contact plan, we would then like to find a rout-
ing strategy that maximises the probability that the message is delivered to its
destination. To increase that probability, we can allow copies of the message that

Sampling Distributed Schedulers for Resilient Space Communication 293

propagate along different paths. However, as typical DTN satellites have limited
resources, we also want to bound the number of copies. Existing routing schemes
only perform well under perfectly known or fully unknown contact plans [29,49],
leaving significant room for improvement for uncertain contact plan routing.

The routing problem in uncertain contact graphs with bounded copies
matches very well with the modelling capabilities of Markov decision pro-
cesses (MDP) [50]. They combine discrete probabilistic choices as in discrete-
time Markov chains, which can represent contact failures, with nondeterministic
choices as in Kripke structures [7], which can represent the routing options.
Given an MDP model, we can use probabilistic model checking (PMC) [6] to
determine the routing strategy (corresponding to the scheduler in PMC) with
the highest probability for eventual message delivery. Raverta et al. [51] recently
used this approach with optimisations that exploit the structure of the DTN
routing models. However, PMC computes global-information schedulers, which
take the local states of all nodes into account to make the optimal decision; they
are thus unimplementable.

Example 1. In the contact plan of Fig. 1, assume we can send one message per
slot. The highest-probability route from N1 to N4 is N1-N2-N3-N4 (in slots T1,
T2, and T4, with probability 0.405). The second-best is N1-N3-N4 (in T3 and
T4, p = 0.25). Sending directly from N1 to N4 is least reliable. If N1 starts with
two copies of the message, then the first should be sent to N2 in T1. In slot T3,
N1 can then either try to send the remaining copy to N3, or keep it for slot T5.
We will show in Sect. 2 that the best choice for node N1 computed by PMC is
to send in T3 iff node N3 does not already have a copy of the message, i.e. if
communication in slot T1 or T2 failed. In a space DTN, N1 cannot know this!

PMC is thus not well suited for space DTN routing. The underlying prob-
lem of applying PMC to distributed systems was recognised almost 20 years
ago [3,21,35], and led to the development of the notion of (strongly) distributed
schedulers [35,36] that only act on locally observable information. However,
depending on the exact formalism and definition used, PMC for these sched-
ulers is undecidable [35] in general, and NP-hard in the memoryless case [2,36].

In this paper, we propose to use statistical model checking (SMC) [44,56]
with lightweight scheduler sampling (LSS) [48] in place of PMC to obtain rout-
ing strategies with a high probability for message delivery. Our contributions
are (1) a modern and practical definition of distributed schedulers and models
(in Sect. 3) appropriate for the space DTN setting that matches the composi-
tional state-based modelling approach with undirected synchronisation common
to today’s probabilistic modelling languages [9,14,40,46] and tools [24,41,43,46];
(2) an adaptation and implementation of SMC with LSS for distributed sched-
ulers (in Sect. 4), and (3) a modelling pattern and SMC-based analysis toolchain
for routing in space DTN with uncertain contact plans (in Sect. 5). We start
(in Sect. 2) with a simplified but complete definition of the compositional MDP
formalism that underpins our approach, introducing a detailed model for Fig. 1
along the way. We end (in Sect. 5) with an experimental evaluation of our new
technique on a realistic satellite constellation model and contact plan.

294 P. R. D’Argenio et al.

2 Scheduling in Markov Decision Processes

Preliminaries. Z is the set of integer numbers. We write [a, b] for the real
interval {x ∈ R | a ≤ x ≤ b }. Given a set S, its powerset is 2S . A proba-
bility distribution over S is a function μ : S → [0, 1] with countable support
spt(μ) def= { s ∈ S | μ(s) > 0 } and

∑
s∈spt(μ) μ(s) = 1. Dist(S) is the set of all

probability distributions over S. We write {x1 �→ y1, . . . } for the function that
maps each xi to yi, and if necessary implicitly maps to 0 all other x. Thus we
can e.g. write { s �→ 1 } for the Dirac distribution that assigns probability 1 to s.
For a tuple t = 〈y1, . . . , yn〉, t[i] def= yi is its i-th component.

Definition 1. A Markov decision process (MDP) is a tuple M = 〈S, sI , A, T 〉
where S is a finite set of states with initial state sI ∈ S, A is a finite set of
actions, and T : S → 2A×Dist(S) is the transition function with T (s) �= ∅ for all
s ∈ S. The set of all transitions is Tr(M) def= ∪s∈ST (s); it must be finite.

s0 s1

s2

1
3

2
3

We also write s
a−→T μ for 〈a, μ〉 ∈ T (s), and may

omit the T subscript. An element of spt(μ) is a branch
of transition s

a−→T μ. To leave a state, we first choose
a transition, then select the next state probabilistically
among its branches. An MDP with ∀ s : |T (s)| = 1 is
a discrete-time Markov chain (DTMC). We draw MDP
as shown above on the right: this MDP has three states
with sI = s0, four transitions, and five branches. For transitions with a single
branch, we omit the dot and probability 1. We have s0

a−→ { s1 �→ 1
3 , s2 �→ 2

3 }.
Modelling with MDP directly is cumbersome; we instead use a higher-level

modelling language like Modest [9,40] that extends MDP with discrete variables
and parallel composition. Given a set of (integer-valued) variables X, let ValX

def=
X → Z be their valuations. Let BxpX and IxpX contain all Boolean and integer
expressions over the variables in X, respectively. We omit X subscripts if clear
from the context. For e ∈ Bxp (e ∈ Ixp), let v(e) ∈ { true, false } (v(e) ∈ Z) be
the value of e in v ∈ Val . Finally, let Upd def= X �→ Ixp be the set of updates that
map each variable to an expression determining the value assigned to it.

Definition 2. An MDP with variables (VMDP) is a tuple M =
〈Loc, �I , A,X, xI , E〉 where Loc is a set of locations with initial location �I ∈
Loc, A is a set of actions, X is a set of variables with initial values given by
xI ∈ Val, and E : Loc → 2Bxp×A×Dist(Upd×Loc) is the edge function. All sets
must be finite.

We write s
g,a−−→E ν for 〈g, a, ν〉 ∈ E(�), and may omit the E subscript. An

edge in a VMDP has a guard g that determines whether the edge is enabled.
A branch of an edge carries an update u that changes the variables’ values.
Formally:

Sampling Distributed Schedulers for Resilient Space Communication 295

Fig. 2. Four VMDP modelling the nodes of the example contact plan

Definition 3. Given a VMDP M = 〈Loc, �I , A,X, xI , E〉, its semantics is the
MDP [[M]] def= 〈Loc × Val , 〈�I , xI〉, A, T 〉 with T the smallest function satisfying

�
g,a−−→E ν ∧ v(g)

〈�, v〉 a−→T { 〈�′, v′〉 �→ ∑
{u|u∈Upd∧v′={x�→v(u(x))}} ν(〈u, �′〉) | �′ ∈ Loc, v′ ∈ Val }

We must restrict to VMDP whose semantics is finite and deadlock-free.

Example 2. Figure 2 shows four VMDP N1 through N4 that model the nodes
of Fig. 1. Every node has a variable ci to track the number of message copies
it owns. We write x�e for the mapping of variable x to value or expression e.
In every slot where a node Ni can send, it has a choice between two transitions
labelled nopi (do not send) and sndi (send one copy: decrement ci, set d to 1).
In a slot Tj where Ni can receive, it always tries to do so via action rcv; this
succeeds with probability pj as given in Fig. 1. If the sender decided not to
send, then a successful receive has no effect on ci because d is zero. The parallel
composition of these four VMDP models the entire contact plan, with the nodes
synchronising on shared action rcv and exchanging data via shared variable d.

Definition 4. Given two VMDP Mi = 〈Loci, �Ii , Ai,Xi, xIi , Ei〉, i ∈ { 1, 2 }, a
finite set A of actions, and a synchronisation relation

sync ⊆ (A1 {⊥}) × (A2 {⊥}) × A,

their parallel composition is
M1 ‖sync M2

def= 〈Loc1 × Loc2, 〈�I1 , �I2〉, A,X1 ∪ X2, xI1 ∪ xI2 , E〉

296 P. R. D’Argenio et al.

Fig. 3. Excerpt of the network of the node VMDP (left) and its semantics (right)

where E is the smallest function that satisfies the inference rules

�1
g1,a1−−−→E1 ν1 〈a1,⊥, a〉 ∈ sync

〈�1, �2〉 g1,a−−→E { 〈〈�′
1, �2〉, u1〉 �→ ν1(〈�′

1, u1〉) | 〈�′
1, u1〉 ∈ spt(ν1) }

(ind1),

�1
g1,a1−−−→E1 ν1 �2

g2,a2−−−→E2 ν2 〈a1, a2, a〉 ∈ sync

〈�1, �2〉 g1∧g2,a−−−−−→E { 〈〈�′
1, �

′
2〉, u1 ∪ u2〉 �→ ν1(〈�′

1, u1〉) · ν2(〈�′
2, u2〉) | . . . }

(syn),

plus a rule ind2 for M2 that is symmetric to ind1, with . . . in syn replaced by
〈�′

1, u1〉 ∈ spt(ν1) ∧ 〈�′
2, u2〉 ∈ spt(ν2) ∧ u1 ∪ u2 is a function.

Inference rules ind1 and ind2 allow the individual VMDP to proceed indepen-
dently if allowed by sync; rule syn covers the case where they synchronise on a
pair of actions. An element of sync is called a synchronisation vector ; we also
write 〈a1, a2〉 �→ a for vector 〈a1, a2, a〉. This flexible form of parallel composition
can be generalised to more than two VMDP with longer synchronisation vectors.
We refer to such a general parallel composition as a network of VMDP and
write e.g. ‖SV (M1,M2,M3) for the network of M1, M2, and M3, with the set of
synchronisation vectors SV . The case in syn where ν1(〈�′

1, u1〉) · ν2(〈�′
2, u2〉) �= 0

but u1 and u2 assign different expressions to a shared variable (s.t. u1 ∪u2 is not
a function) is a modelling error, and we do not consider networks of VMDP with
such inconsistent assignments, or with inconsistent initial valuations xI1 and xI2 .

Example 3. Figure 3 shows an initial fragment of the network of the node VMDP
N1 through N4 on the left. We omit location labels. Synchronisation vectors are

SV = { 〈rcv, rcv, rcv, rcv〉 �→ rcv, 〈snd1,⊥,⊥,⊥〉 �→ snd1, . . . }:
In every slot, the nodes first independently make their choices of whether to
send or not (sndi vs. nopi); then they synchronise on rcv to perform their

Sampling Distributed Schedulers for Resilient Space Communication 297

receive actions simultaneously. Updates are atomic, i.e. all right-hand sides are
evaluated first, thus there is no order dependency in e.g. {c3�c3+d, d�0}. On
the right of Fig. 3, we show a fragment of the network’s MDP semantics. We
write �.vd.vc1vc2vc3vc4 for state 〈〈. . . , �, . . .〉, { d �→ vd, c1 �→ vc1 , . . . }〉.
A path defines the behaviour of an MDP by resolving all nondeterminism and
probabilistic choices. A scheduler resolves the nondeterminism only.

Definition 5. Let M be an MDP as in Definition 1. A path π of M is an infinite
sequence π = s0 tr0 s1 . . . ∈ (S×Tr(M))ω such that, for all i ∈ { 0, . . . }, we have
tr i = 〈a, μ〉 ∈ T (si) and μ(si+1) > 0. Π(M) is the set of all paths of M . We
write Πfin(M) for the set of all path prefixes πfin ending in a state. The last
state of πfin is denoted last(πfin).

Definition 6. Let M be an MDP as above. A (randomised, history-dependent)
scheduler is a function σ : Πfin(M) → Dist(Tr(M)) such that ∀s ∈ S : σ(s) =
tr ⇒ tr ∈ T (s). We write S(M) for the set of all schedulers of M . A determinis-
tic scheduler is in Πfin(M) → Tr(M); a (deterministic) memoryless scheduler is
in S → Tr(M). A memoryless scheduler σml defines a corresponding determin-
istic scheduler σdet by σdet(πfin) = σml(last(πfin)) and a deterministic scheduler
σdet defines a scheduler σ by σ(πfin) = {σdet(πfin) �→ 1 }.

If we “apply” a scheduler σ to an MDP M , it removes all nondeterminism
and we obtain a DTMC M |σ, whose paths can be measured and assigned prob-
abilities according to the transitions’ distributions. Formally, these probability
measures over sets of paths are built via cylinder sets; we refer the interested
reader to e.g. [25] for details. Given a set of goal states G ⊆ S and a sched-
uler σ, we are interested in the probability of the measurable subset of paths of
Π(M |σ) including a state in G. We call the supremum (infimum) when ranging
over all schedulers σ ∈ S(M) the maximum (minimum) reachability probability.
There is always a memoryless scheduler that achieves the supremum respectively
infimum [8].

Example 4. For our example contact plan, we are interested in the maximum
probability to reach a state where N4 has at least one copy, and the corresponding
scheduler. Expanding the MDP of Example 3, we can calculate that probability
to be 0.493. The optimal choices are to send in slots T1 and T2; then in slot T3,

– if we are in state 3a.0.1000 (i.e. if the first copy was lost on the way from N1

via N2 to N3): send from N1 to N3, and send from N3 to N4 in T4;
– if we are in state 3a.0.1010 (i.e. the first copy made it to N3), do not send

from N1 to N3 (since N3 already has a copy and can only send to N4 once),
then send in both T4 and T5.

Thus the optimal choice of node N1 in slot T3 depends on whether node N3 has
a copy of the message or not. In a real distributed setting, N1 cannot know this.

298 P. R. D’Argenio et al.

3 Distributed Scheduling

Example 4 showed that a scheduler that maximises the probability for eventual
message delivery may need complete global information. In a distributed system
like a satellite constellation, such a scheduler cannot be implemented; the satel-
lites must decide whether to send based on their local state (here: their number
of message copies ci) only. This problem was initially studied with a focus on
aspects of compositionality [21], ignoring algorithms except for a simple partial-
information setting [2]. Giro et al. [35] defined distributed schedulers, for which
computing and approximating optimal probabilities is in general impossible [35].
The formalisms of [2] and [35] do not provide for scheduling the interleaving of
parallel components, i.e. deciding which component acts first in case both of
them have an enabled edge in the same state. This gap was filled in [36] along
with the introduction of strongly distributed schedulers. Though model checking
remains undecidable in general, [36] proved that for memoryless schedulers it is
“only” NP-hard. Consequently, no model checker as of today supports (strongly)
distributed schedulers. The only prototype [18] was restricted to time-bounded
reachability and suffered from exponential explosion in intermediate model sizes.
Other prototype tools only provide overapproximations [37,38]. Our formalism of
Sect. 2 is more expressive than those previously considered by allowing interleav-
ing and information exchange via both synchronisation and (shared) variables.

In this paper, we restrict to a memoryless deterministic variant of dis-
tributed schedulers adapted to our formalism (Sect. 3.1), and we define a desir-
able characteristic of models that makes scheduling decisions about interleav-
ings irrelevant (Sect. 3.2). We prefer memoryless distributed schedulers because
history-dependent ones need infinite memory (which is again unimplementable),
and using randomised schedulers would add additional unpredictability to the
behaviour of the system, which is undesirable from the practitioner’s point of
view.

3.1 Simple Distributed Schedulers

Definition 7. Given a network of VMDP M = ‖SV (M1, . . . ,Mn) and i ∈
{ 1, . . . , n }, let read(Mi) be the set of all variables that occur in the guards of
edges of Mi or on the right-hand sides of assignments in the updates in Mi.
A state in [[M]] = 〈S, sI , A, T 〉 has the form s = 〈〈�i, . . . , �n〉, v〉 where �i is
the current location of Mi and v ∈ Val∪iXi

. Then the Mi-projection of s is
s↓Mi

def= 〈�i, v↓read(Mi)〉 with v↓read(Mi)
def= {x �→ v(x) | x ∈ read(Mi) } ∈

Valread(Mi). Let S↓Mi

def= { s↓Mi
| s ∈ S } be the set of all projected states.

Every transition tr = s
a−→ s′ in [[M]] can be traced back to a unique (generalised)

synchronisation vector sv ∈ SV through the rules of Definitions 3 and 4. We
say that Mi is involved in tr if sv [i] �= ⊥. We write It(Mi) for the set of all
transitions Mi is involved in. For a transition tr, Ic(tr)

def= {Mi | tr ∈ It(Mi) }
is the set of all components involved in tr, and for a set of transitions TR,
Ic(TR) def=

⋃
tr∈TR Ic(tr).

Sampling Distributed Schedulers for Resilient Space Communication 299

Simple distributed schedulers now consist of an interleaving scheduler (to
select the component to perform the next transition) plus a local scheduler per
component that only sees the component’s projection of the current state:

Definition 8. A simple distributed scheduler for M as above is a tuple σsd =
〈σI , σ1, . . . , σn〉 of an interleaving scheduler σI : S → N and n local schedulers
σi : S → It(Mi) ∪ {⊥} for i ∈ { 1, . . . , n } s.t. σI(s) ∈ { i | T (s) ∩ It(Mi) �= ∅ },
σσI(s)(s) ∈ T (s) ∩ It(Mi), and s↓Mi

= s′↓Mi
⇒ σi(s) = σi(s′) for all s, s′ ∈ S,

i ∈ { 1, . . . n }. It defines a memoryless scheduler σ for [[M]] by σ(s) = σσI(s)(s).

Simple distributed schedulers differ from the partial-information setting
of [2], and from hidden Markov models or partially-observable MDP, by combin-
ing multiple projections in one scheduler. They also differ from the (strongly)
distributed schedulers of [35,36] by hiding information in states but not admit-
ting information disclosure via synchronisation (by virtue of being memoryless).
As such, they match the nowadays standard state-based approach to proba-
bilistic verification where transition labels are only used for synchronisation, as
embedded in e.g. the Jani [14], Modest [9,40], and Prism languages [46], and
implemented in e.g. Epmc [41], the Modest Toolset [43], Prism [46], and
Storm [24].

Unlike [18,36], our formalism does not partition actions into inputs and out-
puts; thus every component involved in one of our (undirected) transitions can
be chosen by the interleaving scheduler. Interleaving schedulers are problematic:
They may disclose global information by scheduling transitions in certain orders
(see [36]), the nondeterminism they deal with is in fact uncontrollable, and they
would again be unimplementable in fully distributed systems.

3.2 Good-for-Distribution Models

In [36], the problem of information disclosure by the interleaving scheduler was
solved by restricting to strongly distributed schedulers which do not reveal infor-
mation in this way by definition. Since this is not a constructive approach, and
since we cannot implement an interleaving scheduler anyway, we only create
models where the interleaving scheduler is by construction irrelevant.

Definition 9. A network of VMDP M = ‖SV (M1, . . . ,Mn) is good for dis-
tributed scheduling w.r.t. reachability of goal set G if in all states s ∈ S of
[[M]] = 〈S, sI , A, T 〉 where |T (s)| > 1 ∧ |{ i | T (s) ∩ I(Mi) �= 0 }| > 1 we have

∀ s
a−→ s′ : s ∈ G ⇔ s′ ∈ G ∨ ∀ s

a−→ s′ : s ∈ G ⇔ s′ /∈ G, (1)
∀ i ∈ { 1, . . . , n } : |It(Mi) ∩ T (s)| > 1 ⇒ Ic(It(Mi) ∩ T (s)) = {Mi }, (2)

and s
a−→ s′ ⇒ ∀Mc ∈ {M1, . . . ,Mn } \ Ic(s

a−→ s′) : s′↓Mc
= s′↓Mc

. (3)

In words, a network is good if in all states where the interleaving scheduler has
a nontrivial choice among multiple components, (1) it cannot influence whether
we directly move to a goal state, (2) no component has a local choice involving
at least one synchronising transition, and (3) no transition can change variables
that are visible to a component not involved in the transition.

300 P. R. D’Argenio et al.

Lemma 1. For a good-for-distributed-scheduling network of VMDP M , fair
interleaving schedulers σI1 and σI2 , and a set G of goal states, the maximum
(minimum) probability to reach a state in G under σI1 is the same as under σI2 .

An interleaving scheduler is fair if, on every cycle in [[M]], it chooses every
available component at least once. This is a reasonable assumption in practice.

Proof Sketch. The conditions of Definition 9 only apply to states where the inter-
leaving scheduler actually has a choice; in all others, σI1 and σI2 must coincide.
So let s be a state where σI1(s) �= σI2(s) and let TRi = T (s) ∩ It(MσIi

(s))
with tr i = s

ai−→ s′
i ∈ TRi for i ∈ { 1, 2 }. Then T (s′

1) ⊇ T (s) \ TRi and
T (s′

2) ⊇ T (s) \ TRi , i.e. the choice of the interleaving scheduler cannot disable
a non-local transition. This is because (a) condition 3 prevents the tr i from
changing the values of guards in non-involved components, and (b) condition 2
requires that, if more than one component is involved in tr i, then TRi = { tr i }.
The latter ensures that taking a synchronising transition cannot disable another
synchronising transition by taking away a needed “synchronisation partner” (a
transition with the same label as needed by the synchronisation vectors). Thus
the restriction of [[M]] induced by an interleaving scheduler together with con-
dition 1 and the fairness requirement is a (stronger) variant of a partial order
reduction using ample sets as in [37] (with condition A5’).

The fairness requirement is trivially satisfied for acyclic models (modulo self-
loops in leaf states) like our running example, or if we replace σI by σuni , the
randomised scheduler that picks a component uniformly at random every time.

Example 5. Our running example from Examples 2 and 3 is good for distributed
scheduling: in every state, either a single node internally decides between sndi

and nopi or all nodes synchronise on rcv. In the former states, the interleaving
scheduler has no choice, thus no conditions apply. In the latter states, conditions
2 and 3 are directly satisfied. The only way to move into a goal state is from a
state of the latter kind, thus condition 1 also holds.

While simple distributed schedulers restrict local schedulers from reading
certain variables, a good-for-distributed-scheduling model restricts component
edges from writing to certain variables. A model checker can easily determine
whether a model is good, but a precise syntactic check on the network-of-VMDP
level is not possible. We can still use syntactic overapproximations, e.g. by requir-
ing that locations with multiple outgoing edges have only internal edges not
writing to shared variables, and that a shared variable may only be updated
by synchronising edges involving all components that read the variable. Our
running example does not satisfy this syntactic restriction due to the writes
to d on sndi-labelled edges. We solve this (in Sect. 5.1) by using a feature of
Modest and Jani that allows to specify sequences of atomic updates, moving
the d-write assignments onto the rcv transitions and executing them before the
d-read assignments.

Sampling Distributed Schedulers for Resilient Space Communication 301

4 Lightweight Distributed Scheduler Sampling

Since PMC for distributed schedulers is undecidable or computationally infea-
sible, we propose a different approach to find useful high-probability strategies:
we combine statistical model checking (SMC) [44,56] with a new variant of
lightweight scheduler sampling (LSS) [48] that samples only simple distributed
schedulers. As our models are good for distributed scheduling by construction
(see Sect. 5.1), only the satellites’ local choices are relevant and we can replace
the interleaving scheduler by uniformly random choices.

SMC with LSS. SMC is Monte Carlo simulation with formal models: perform
several simulation runs using a pseudo-random number generator (PRNG) to
resolve probabilistic choices according to the model’s distributions, then return
a statistical estimate and confidence for the probability of interest. As-is, SMC
does not consider the optimisation problem over nondeterminism posed by MDP.
LSS is to date the only extension of SMC that takes scheduling into account
(in contrast to e.g. Prism or Uppaal smc [23], which always use the uniformly
random scheduler) and also preserves SMC’s constant memory usage (in contrast
to learning-based approaches like [11]). The basic idea of LSS is as follows:

1. Randomly select m 32-bit integers. Each of them is a scheduler identifier σ.
2. For each σ, perform standard SMC under the scheduler identified by σ.
3. Return the maximum (or minimum) result and the corresponding σ.

Due to the multiple tests, we need to adjust SMC’s statistical evaluation [22,48].
Within step 2, when there is a choice between n transitions from state s, LSS
concatenates the bit-vector representations of s and σ into s.σ, hashes the result
into a 32-bit number h = H(s.σ), and picks the h mod n-th transition. H is
deterministic so that σ defines a fixed memoryless scheduler. If H is also uniform
(w.r.t. all bits of s.σ), then LSS uniformly samples memoryless schedulers.

The result of SMC with LSS is an underapproximation (overapproximation)
of the maximum (minimum) probability. It can thus e.g. disprove safety, or show
schedulability—which is what we are interested in. Its efficiency—how large an
m we need to get a good approximation—is determined by the probability of
sampling a near-optimal scheduler, and thus strongly depends on the model at
hand.

LSS for Distributed Schedulers. In contrast to PMC, LSS is easy to adapt to dif-
ferent classes of schedulers by changing the input to H. In Algorithm 1, we show
pseudocode for our adaptation to simple deterministic schedulers for MDP. We
write U(μ) for the pseudo-random selection by PRNG U of a value from spt(μ)
according to the probabilities of μ. Line 5 implements the interleaving scheduler;
we assume good-for-distributed-scheduling models and thus use uniform random
resolution here, but could equally replace the line by i := H(σ.s) mod |Ti|. Line 7
implements the local scheduler, whose input is restricted to the chosen compo-
nent’s projection of the current state. In line 8, we use Upr to pseudo-randomly

302 P. R. D’Argenio et al.

Input: Network of VMDP M = ‖SV (M1, . . . , Mn) with [[M]] = 〈S, sI , A, T 〉,
goal set G ⊆ S, σ ∈ Z32, H uniform deterministic, PRNG Upr.

1 s := sI
2 while s /∈ G do // break on goal state

3 if ∀ s
a−→ μ : μ = { s 	→ 1 } then break // break on self-loops

4 C := { j | T (s) ∩ It(Mj) �= ∅ } // get active components
5 i := Upr({ j 	→ 1

|C| | j ∈ C }) // select component uniformly

6 Ti := T (s) ∩ It(Mi) // get component’s transitions
7 〈a, μ〉 := (H(σ.s↓Mi

) mod |Ti|)-th element of Ti // schedule local transition

8 s := Upr(μ) // select next state according to μ

9 return s ∈ G

Algorithm 1. Lightweight simple distributed scheduler sampling

select the successor state according to the distribution determined by the sched-
uled transition. Line 3 terminates the simulation negatively if we find a state
that only has deterministic self-loop transitions; this suffices for our space DTN
models, but could be replaced by smarter loop detection or methods like [47,55].

We have implemented Algorithm 1 in modes [12], the statistical model
checker of the Modest Toolset [43]. modes is implemented in C#, freely
available at modestchecker.net, runs on 64-bit Linux, macOS, and Windows,
and is faster than other current general-purpose SMC tools [13, Section 7.1].
Its input languages are Modest [9,40] and the tool-independent Jani model
exchange format [14]. It provides both variants of line 5 discussed above, and
implements corrected statistical tests as well as two-phase and smart sampling.

Fig. 4. Satellite DTN routing scheduling toolchain

5 Scheduling Satellite Communication

To apply our new LSS method of Sect. 4 to space DTN, we created the toolchain
shown in Fig. 4. We use the STK tool by AGI [1] and the Contact Plan Designer
plugin [27] to model the scenario and export the contact plan to a file in Inter-
planetary Overlay Network format (ION) [15]. This plan contains the precise
real-time communication windows; we developed the Python cp2modest tool
that, given such a plan, message source and destinations, and a bound on the
number of copies, (1) abstracts the plan into the form of Fig. 1 with discrete

http://www.modestchecker.net/

Sampling Distributed Schedulers for Resilient Space Communication 303

non-overlapping slots,1 and (2) creates a Modest model representing a network
of VMDP of the same structure as Example 2. We then run modes with LSS
for simple distributed schedulers to obtain a good scheduler and its probability.
Compared to the previous PMC-based work [51], we not only generate guaran-
teed implementable schedules, but also support multiple message copies.

5.1 Modelling Satellite DTN

The model of Fig. 1 given in Example 2 uses unidirectional unreliable communi-
cation: for every contact, one node is predetermined as sender; if communication
fails, the copy is lost. We also assumed that there is at most one contact and
we transmit at most one copy per slot. The models generated by cp2modest
keep the same structure, but assume bidirectional half-duplex communication,
support multiple contacts per slot (including one node having a contact with
multiple others; it then needs to choose with whom to communicate), allow
sending multiple copies (to one node in one slot), and use either unreliable or
acknowledgment-based communication. The latter allows the sender to deter-
mine whether a message was successfully received, thus in such models it will
keep the sent copies in case of failure. Unreliable communication is a natural
choice in deep-space networks, the original application of DTN, while acknowl-
edgment mechanisms are possible and typical in LEO constellations.

1 process Node1(int(0..COPIES) copies) {
2 alt { // slot 1: contact with node 2
3 :: nop1; rcv // do nothing in this slot
4 :: when(copies >= 1) snd1to2_1; // send one copy to node 2
5 rcv palt {
6 :0.9: {= data1 = 1, dest1 = 2, 2: copies -= ack2==1 ? 1 : 0 =}
7 :0.1: {= /∗ lost ∗/ =} }
8 :: when(copies >= 2) snd1to2_2; // send two copies to node 2
9 rcv palt {

10 :0.9: {= data1 = 2, dest1 = 2, 2: copies -= ack2==1 ? 2 : 0 =}
11 :0.1: {= /∗ lost ∗/ =} }
12 :: rcv2to1; // listen for communication from node 2
13 rcv {= 1: copies += dest2==1 ? data2 : 0, 1: ack1 = 2 =}
14 };
15 rcv; // slot 2: no contact
16 ... } // three more slots of the same pattern

Listing 1. Excerpt of the Modest code for node N1 with a bound of 2 copies

The models created by cp2modest consist of one process definition per node.
Listing 1 shows an excerpt of node N1 in the plan of Fig. 1, but with acknowledg-
ments and all mechanisms to support multiple contacts per slot in place. Like in
the VMDP of Example 2, in every slot in which a node has a contact, we have
a choice of action followed by a global synchronisation on action rcv. Here, in
T1, the choices are to (a) do nothing (line 3), (b) try to send one (line 4) or two

1 The abstraction underapproximates contacts (it may only remove or shorten commu-
nication opportunities), so a strategy for the abstract plan is always implementable.

304 P. R. D’Argenio et al.

copies (line 8) to N2, or (c) listen to N2 (line 12). We use distinct actions for
every choice to make it easier to trace the best scheduler’s decisions later on.
Global variable data1 takes the role of d of Example 2, but only for messages
sent by N1, and dest1 indicates the intended receiver—both of this is to support
multiple contacts per slot. As mentioned at the end of Sect. 3.2, we moved these
assignments onto the rcv edge to make the model syntactically good for dis-
tributed scheduling; assignments prefixed 2: are executed after prefix 1: which
follow those with no prefix. The acknowledgment mechanism uses global vari-
ables like ack2 indicating from whom node N2 successfully received a message.
The sending node then reduces its copies count by that number. In slots without
a contact, like slot T2 for N1, we just move to the next slot by a rcv together
with the other nodes (line 15). Note that nodes cannot create copies; this is
because they cannot know how many copies there are at other nodes and must
not violate the global bound; we can let the initial node create as many copies
as allowed w.l.o.g. since any number of copies can be transmitted in a slot.

5.2 The Walker Constellation

As a realistic case study, we propose a LEO satellite constellation in a Walker
formation of three orbital planes each with four equally separated satellites.
The constellation is thought to provide high-latency data service to ten isolated
ground nodes randomly distributed around the globe. A ground station located
in Córdoba, Argentina, provides an Internet gateway that the nodes access using
DTN protocols. The ranges from ground station to satellites are set to 2000 km
at a minimal elevation angle of 20◦ (mimicking a constrained antenna at the
satellite). In turn, satellites can reach ground terminals at a distance of 1500 km
at the same elevation angle. Figure 5 shows the ground track and a 3D visuali-
sation of the constellation. Ground nodes (user terminals) are shown in red, the
ground station in green, and satellites in cyan. The domes and cones over the
ground nodes and under the satellites illustrate the communication ranges. The
contact plan runs for 24 h from 01 Jul 2020 00:00:00.

5.3 Experiments

We applied our toolchain to the example contact plan of Fig. 1 and the Walker
constellation described above, both with at most 2 message copies in the network.
For the example contact plan with unreliable communication, we can easily
determine the best simple distributed scheduler and its transmission probability
by again expanding the MDP semantics of Fig. 3; the probability is 0.4645. Recall
from Example 4 that global-information schedulers achieve probability 0.493. We
can thus compare the probabilities computed by LSS with the actual values
for distributed schedulers on this example. The state space of our model of the
Walker constellation is still small enough for PMC, so we can compare the values
obtained via PMC and LSS for global-information schedulers at least, but not
for distributed schedulers due to the infeasibility of PMC in this case. Since the
effectiveness of LSS depends on the rarity of near-optimal schedulers, we expect

Sampling Distributed Schedulers for Resilient Space Communication 305

Fig. 5. Visualisation of the Walker constellation

to see a tradeoff between LSS for global-information and LSS for distributed
schedulers: There are many more global-information schedulers than distributed
ones. So even though the former may realise higher probabilities, LSS might only
rarely find any good global-information scheduler, whereas it may often find a
good distributed scheduler due to their more limited choices.

Our experiments ran on an Intel Core i7-4790 workstation (3.6–4.0 GHz, 4
cores) with 64-bit Ubuntu Linux 18.04. We used smart sampling [22] with a
fixed number of initial schedulers m0 equal to the per-iteration budget n0. In
iteration i, smart sampling performs � ni

mi
� simulation runs for each of the mi

schedulers, discards the “worst” half of the schedulers according to their current
probability estimate, and moves to iteration i + 1 with mi+1 = �mi

2 �. We can
thus cover a large number of schedulers with only ≈ log2(m0) · n0 simulation
runs in total. We show the results in Table 1. We used the Modest Toolset’s
mcsta model checker for PMC and modes as described in Sect. 4 for the SMC-
LSS-m0 runs. Due to the randomised nature of the experiments, we repeated

306 P. R. D’Argenio et al.

each three times and report the average and highest maximum probability over
the repetitions. Runtimes were at most 5 min, for the m0 = 100000 setting,
with distributed scheduler runs taking around 10% longer that those for global-
information schedulers. We use the adaptive method of [20, Section III] for the
statistical evaluation and request the probability for absolute error <0.0025 on
the example and <0.005 on the Walker case to be 95%.

Table 1. Experimental results: average (highest) max. probabilities over 3 repetitions

PMC SMC-LSS-1000 SMC-LSS-10000 SMC-LSS-100000

model global global distrib. global distrib. global distrib.

example/unrel. 0.493 0.48 (0.49) 0.46 (0.47) 0.49 (0.49) 0.46 (0.47) 0.49 (0.49) 0.46 (0.46)

example/acks 0.505 0.49 (0.50) 0.46 (0.48) 0.50 (0.50) 0.50 (0.50) 0.50 (0.50) 0.50 (0.51)

walker/unrel. 0.438 0.03 (0.06) 0.21 (0.30) 0.10 (0.16) 0.30 (0.37) 0.26 (0.33) 0.37 (0.38)

walker/acks 0.734 0.36 (0.38) 0.47 (0.48) 0.38 (0.40) 0.54 (0.60) 0.45 (0.47) 0.54 (0.56)

We see that, on the example, both variants of LSS find respective opti-
mal schedulers easily. With acknowledgment-based communication (“acks”), the
optimal distributed scheduler curiously realises the same probability as the global
one. We asked modes to print traces under this scheduler identifier, and found
that nodes N1 and N3 can collaborate to implement a strategy similar to the one
of Example 4: In slot T3, N1 always tries to send to N3. However, if N3 already has
a copy, it chooses nop3 in this slot; then N1 does not receive an acknowledgment
and gets to keep its copy for sending in T5. While “sneaky”, such behaviour could
clearly be implemented in satellites, and it being found validates the correctness
and applicability of our distributed LSS approach. On the Walker case study, the
tradeoff described earlier comes into play: distributed-scheduler LSS consistently
finds better schedulers, and more reliably finds them even for lower values of m0,
despite global-information schedulers being able to realise higher probabilities
in principle. In particular, our new version of LSS consistently finds schedulers
not too far from the maximum achievable with global information according to
PMC—but its schedulers are guaranteed implementable.

6 Conclusion

We have developed new theory and tools to tackle the challenge of computing
good and implementable routing strategies for satellite DTNs under uncertain
contact plans, using formal methods technology. We have proposed a new, mod-
ern notion of distributed schedulers appropriate for the application, extended the
LSS technique to work with this new notion, created a toolchain incorporating
the new theory and technology, and applied it to a realistic case study. While
LSS may be limited (e.g. by not being able to prove safety) in a general setting,

Sampling Distributed Schedulers for Resilient Space Communication 307

we showed that it works very well for this application—which particularly bene-
fits from the flexibility of LSS w.r.t. handling different scheduler classes. Once we
found a good scheduler, it can be implemented in a satellite by a program that
feeds its identifier, the current slot offset, and the number of local copies into
a reimplementation of modes’ hash function. We plan to adapt other methods
(e.g. [10]) to extract compact human-readable descriptions of the scheduler, too.

Data Availability. All data generated in our experimental evaluation
plus instructions to replicate the experiments are available at DOI
10.4121/uuid:6aa24e1a-3551-4073-b533-4ba6e408212d [42].

References

1. AGI Systems Tool Kit (STK). http://www.agi.com/STK
2. de Alfaro, L.: The verification of probabilistic systems under memory less par-

tial information policies is hard. In: 2nd International Workshop on Probabilistic
Methods in Verification, pp. 19–32. Technical report CSR-99-8, University of Birm-
ingham (1999)

3. de Alfaro, L., Henzinger, T.A., Jhala, R.: Compositional methods for probabilistic
systems. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154, pp.
351–365. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44685-0 24

4. Alvarez, J., Walls, B.: Constellations, clusters, and communication technology:
expanding small satellite access to space. In: 2016 IEEE Aerospace Conference,
pp. 1–11 (2016). https://doi.org/10.1109/AERO.2016.7500896

5. Araniti, G., et al.: Contact graph routing in DTN space networks: overview,
enhancements and performance. IEEE Commun. Mag. 53(3), 38–46 (2015).
https://doi.org/10.1109/MCOM.2015.7060480

6. Baier, C., de Alfaro, L., Forejt, V., Kwiatkowska, M.: Model checking probabilis-
tic systems. Handbook of Model Checking, pp. 963–999. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-10575-8 28

7. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

8. Bianco, A., de Alfaro, L.: Model checking of probabilistic and nondeterministic
systems. In: Thiagarajan, P.S. (ed.) FSTTCS 1995. LNCS, vol. 1026, pp. 499–513.
Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60692-0 70

9. Bohnenkamp, H.C., D’Argenio, P.R., Hermanns, H., Katoen, J.P.: MoDeST: a
compositional modeling formalism for hard and softly timed systems. IEEE Trans.
Soft. Eng. 32(10), 812–830 (2006). https://doi.org/10.1109/TSE.2006.104

10. Brázdil, T., Chatterjee, K., Chmeĺık, M., Fellner, A., Křet́ınský, J.: Counterex-
ample explanation by learning small strategies in Markov decision processes. In:
Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 158–177.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21690-4 10

11. Brázdil, T.: Verification of Markov decision processes using learning algorithms. In:
Cassez, F., Raskin, J.-F. (eds.) ATVA 2014. LNCS, vol. 8837, pp. 98–114. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-11936-6 8

12. Budde, C.E., D’Argenio, P.R., Hartmanns, A., Sedwards, S.: A statistical model
checker for nondeterminism and rare events. In: Beyer, D., Huisman, M. (eds.)
TACAS 2018. LNCS, vol. 10806, pp. 340–358. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-89963-3 20

https://doi.org/10.4121/uuid:6aa24e1a-3551-4073-b533-4ba6e408212d
http://www.agi.com/STK
https://doi.org/10.1007/3-540-44685-0_24
https://doi.org/10.1109/AERO.2016.7500896
https://doi.org/10.1109/MCOM.2015.7060480
https://doi.org/10.1007/978-3-319-10575-8_28
https://doi.org/10.1007/3-540-60692-0_70
https://doi.org/10.1109/TSE.2006.104
https://doi.org/10.1007/978-3-319-21690-4_10
https://doi.org/10.1007/978-3-319-11936-6_8
https://doi.org/10.1007/978-3-319-89963-3_20
https://doi.org/10.1007/978-3-319-89963-3_20

308 P. R. D’Argenio et al.

13. Budde, C.E., D’Argenio, P.R., Hartmanns, A., Sedwards, S.: An efficient statistical
model checker for nondeterminism and rare events. STTT (2020, under review).
http://www.modestchecker.net/Publications/PDF/BDHS20-prelim.pdf

14. Budde, C.E.: JANI: quantitative model and tool interaction. In: Legay, A., Mar-
garia, T. (eds.) TACAS 2017. LNCS, vol. 10206, pp. 151–168. Springer, Heidelberg
(2017). https://doi.org/10.1007/978-3-662-54580-5 9

15. Burleigh, S.: Interplanetary overlay network: an implementation of the DTN bundle
protocol. In: 4th IEEE Consumer Communications and Networking Conference,
pp. 222–226 (2007). https://doi.org/10.1109/CCNC.2007.51

16. Burleigh, S.: Delay-tolerant networking: an approach to interplanetary Internet.
IEEE Commun. Mag. 41(6), 128–136 (2003). https://doi.org/10.1109/MCOM.
2003.1204759

17. Caini, C., Firrincieli, R.: Application of contact graph routing to LEO satellite
DTN communications. In: 2012 IEEE International Conference on Communica-
tions (ICC), pp. 3301–3305 (2012). https://doi.org/10.1109/ICC.2012.6363686

18. Calin, G., Crouzen, P., D’Argenio, P.R., Hahn, E.M., Zhang, L.: Time-bounded
reachability in distributed input/output interactive probabilistic chains. In: van
de Pol, J., Weber, M. (eds.) SPIN 2010. LNCS, vol. 6349, pp. 193–211. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-16164-3 15

19. Cerf, V., et al.: Delay-tolerant networking architecture. RFC 4838, RFC Editor
(April 2007). http://www.rfc-editor.org/rfc/rfc4838.txt

20. Chen, J., Xu, J.: Sampling adaptively using the Massart inequality for scalable
learning. In: 12th International Conference on Machine Learning and Applications
(ICMLA), pp. 362–367. IEEE (2013). https://doi.org/10.1109/ICMLA.2013.149

21. Cheung, L., Lynch, N., Segala, R., Vaandrager, F.: Switched probabilistic i/o
automata. In: Liu, Z., Araki, K. (eds.) ICTAC 2004. LNCS, vol. 3407, pp. 494–510.
Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31862-0 35

22. D’Argenio, P., Legay, A., Sedwards, S., Traonouez, L.M.: Smart sampling for
lightweight verification of Markov decision processes. STTT 17(4), 469–484 (2015).
https://doi.org/10.1007/s10009-015-0383-0

23. David, A., Larsen, K.G., Legay, A., Mikucionis, M., Poulsen, D.B.: Uppaal SMC
tutorial. STTT 17(4), 397–415 (2015). https://doi.org/10.1007/s10009-014-0361-
y

24. Dehnert, C., Junges, S., Katoen, J.-P., Volk, M.: A Storm is coming: a modern prob-
abilistic model checker. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS,
vol. 10427, pp. 592–600. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-63390-9 31

25. Forejt, V., Kwiatkowska, M., Norman, G., Parker, D.: Automated verification tech-
niques for probabilistic systems. In: Bernardo, M., Issarny, V. (eds.) SFM 2011.
LNCS, vol. 6659, pp. 53–113. Springer, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-21455-4 3

26. Foust, J.: SpaceX’s space-Internet woes: despite technical glitches, the company
plans to launch the first of nearly 12,000 satellites in 2019. IEEE Spectr. 56(1),
50–51 (2019). https://doi.org/10.1109/MSPEC.2019.8594798

27. Fraire, J.A.: Introducing contact plan designer: a planning tool for DTN-based
space-terrestrial networks. In: 6th International Conference on Space Mission Chal-
lenges for Information Technology (SMC-IT), pp. 124–127 (2017). https://doi.org/
10.1109/SMC-IT.2017.28

28. Fraire, J.A., Burleigh, S., Finochietto, J.M.: Disruption-Tolerant Satellite Net-
works. ArtechHouse (2017)

http://www.modestchecker.net/Publications/PDF/BDHS20-prelim.pdf
https://doi.org/10.1007/978-3-662-54580-5_9
https://doi.org/10.1109/CCNC.2007.51
https://doi.org/10.1109/MCOM.2003.1204759
https://doi.org/10.1109/MCOM.2003.1204759
https://doi.org/10.1109/ICC.2012.6363686
https://doi.org/10.1007/978-3-642-16164-3_15
http://www.rfc-editor.org/rfc/rfc4838.txt
https://doi.org/10.1109/ICMLA.2013.149
https://doi.org/10.1007/978-3-540-31862-0_35
https://doi.org/10.1007/s10009-015-0383-0
https://doi.org/10.1007/s10009-014-0361-y
https://doi.org/10.1007/s10009-014-0361-y
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-642-21455-4_3
https://doi.org/10.1007/978-3-642-21455-4_3
https://doi.org/10.1109/MSPEC.2019.8594798
https://doi.org/10.1109/SMC-IT.2017.28
https://doi.org/10.1109/SMC-IT.2017.28

Sampling Distributed Schedulers for Resilient Space Communication 309

29. Fraire, J.A., et al.: Assessing contact graph routing performance and reliability in
distributed satellite constellations. Hindawi J. Comput. Netw. Commun. 2017, 18
p. (2017). Article ID 2830542. https://doi.org/10.1155/2017/2830542

30. Fraire, J.A., Madoery, P.G., Finochietto, J.M.: On the design and analysis of fair
contact plans in predictable delay-tolerant networks. IEEE Sens. J. 14(11), 3874–
3882 (2014). https://doi.org/10.1109/JSEN.2014.2348917

31. Fraire, J.A., Nies, G., Gerstacker, C., Hermanns, H., Bay, K., Bisgaard, M.:
Battery-aware contact plan design for LEO satellite constellations: the Ulloriaq
case study. IEEE Trans. Green Commun. Netw. (2019). https://doi.org/10.1109/
TGCN.2019.2954166

32. Fraire, J.A., Finochietto, J.M.: Design challenges in contact plans for disruption-
tolerant satellite networks. IEEE Commun. Mag. 53(5), 163–169 (2015). https://
doi.org/10.1109/MCOM.2015.7105656

33. Fraire, J.A., Finochietto, J.M.: Routing-aware fair contact plan design for pre-
dictable delay tolerant networks. Ad Hoc Netw. 25, 303–313 (2015). New Research
Challenges in Mobile, Opportunistic and Delay-Tolerant Networks Energy-Aware
Data Centers: Architecture, Infrastructure, and Communication. https://doi.org/
10.1016/j.adhoc.2014.07.006

34. Fraire, J.A., Madoery, P.G., Finochietto, J.M., Leguizamón, G.: An evolutionary
approach towards contact plan design for disruption-tolerant satellite networks.
Appl. Soft Comput. 52, 446–456 (2017). https://doi.org/10.1016/j.asoc.2016.10.
023

35. Giro, S., D’Argenio, P.R.: Quantitative model checking revisited: neither decidable
nor approximable. In: Raskin, J.-F., Thiagarajan, P.S. (eds.) FORMATS 2007.
LNCS, vol. 4763, pp. 179–194. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-75454-1 14

36. Giro, S., D’Argenio, P.R.: On the expressive power of schedulers in distributed
probabilistic systems. Electr. Notes Theor. Comput. Sci. 253(3), 45–71 (2009).
https://doi.org/10.1016/j.entcs.2009.10.005

37. Giro, S., D’Argenio, P.R., Ferrer Fioriti, L.M.: Partial order reduction for proba-
bilistic systems: a revision for distributed schedulers. In: Bravetti, M., Zavattaro, G.
(eds.) CONCUR 2009. LNCS, vol. 5710, pp. 338–353. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-04081-8 23

38. Giro, S., Rabe, M.N.: Verification of partial-information probabilistic systems using
counterexample-guided refinements. In: Chakraborty, S., Mukund, M. (eds.) ATVA
2012. LNCS, pp. 333–348. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-33386-6 26

39. Gottzein, E.: Challenges in the control and autonomy of communications satel-
lites. Control Eng. Pract. 8(4), 409–427 (2000). https://doi.org/10.1016/S0967-
0661(99)00171-9

40. Hahn, E.M., Hartmanns, A., Hermanns, H., Katoen, J.P.: A compositional mod-
elling and analysis framework for stochastic hybrid systems. Formal Meth. Syst.
Des. 43(2), 191–232 (2013). https://doi.org/10.1007/s10703-012-0167-z

41. Hahn, E.M., Li, Y., Schewe, S., Turrini, A., Zhang, L.: iscasMc: a web-based
probabilistic model checker. In: Jones, C., Pihlajasaari, P., Sun, J. (eds.) FM 2014.
LNCS, vol. 8442, pp. 312–317. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-06410-9 22

42. Hartmanns, A.: Sampling distributed schedulers for resilient space communication
(artifact). 4TU.Centre for Research Data (2020). https://doi.org/10.4121/uuid:
6aa24e1a-3551-4073-b533-4ba6e408212d

https://doi.org/10.1155/2017/2830542
https://doi.org/10.1109/JSEN.2014.2348917
https://doi.org/10.1109/TGCN.2019.2954166
https://doi.org/10.1109/TGCN.2019.2954166
https://doi.org/10.1109/MCOM.2015.7105656
https://doi.org/10.1109/MCOM.2015.7105656
https://doi.org/10.1016/j.adhoc.2014.07.006
https://doi.org/10.1016/j.adhoc.2014.07.006
https://doi.org/10.1016/j.asoc.2016.10.023
https://doi.org/10.1016/j.asoc.2016.10.023
https://doi.org/10.1007/978-3-540-75454-1_14
https://doi.org/10.1007/978-3-540-75454-1_14
https://doi.org/10.1016/j.entcs.2009.10.005
https://doi.org/10.1007/978-3-642-04081-8_23
https://doi.org/10.1007/978-3-642-33386-6_26
https://doi.org/10.1007/978-3-642-33386-6_26
https://doi.org/10.1016/S0967-0661(99)00171-9
https://doi.org/10.1016/S0967-0661(99)00171-9
https://doi.org/10.1007/s10703-012-0167-z
https://doi.org/10.1007/978-3-319-06410-9_22
https://doi.org/10.1007/978-3-319-06410-9_22
https://doi.org/10.4121/uuid:6aa24e1a-3551-4073-b533-4ba6e408212d
https://doi.org/10.4121/uuid:6aa24e1a-3551-4073-b533-4ba6e408212d

310 P. R. D’Argenio et al.

43. Hartmanns, A., Hermanns, H.: The Modest Toolset: an integrated environment
for quantitative modelling and verification. In: Ábrahám, E., Havelund, K. (eds.)
TACAS 2014. LNCS, vol. 8413, pp. 593–598. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-642-54862-8 51

44. Hérault, T., Lassaigne, R., Magniette, F., Peyronnet, S.: Approximate probabilistic
model checking. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp.
73–84. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24622-0 8

45. Jenkins, A., Kuzminsky, S., Gifford, K.K., Pitts, R.L., Nichols, K.: DTN: flight test
results from the international space station. In: 2010 IEEE Aerospace Conference,
pp. 1–8 (2010)

46. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1 47

47. Lassaigne, R., Peyronnet, S.: Probabilistic verification and approximation. Ann.
Pure Appl. Logic 152(1–3), 122–131 (2008). https://doi.org/10.1016/j.apal.2007.
11.006

48. Legay, A., Sedwards, S., Traonouez, L.-M.: Scalable verification of Markov decision
processes. In: Canal, C., Idani, A. (eds.) SEFM 2014. LNCS, vol. 8938, pp. 350–362.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15201-1 23

49. Madoery, P.G., Raverta, F.D., Fraire, J.A., Finochietto, J.M.: Routing in space
delay tolerant networks under uncertain contact plans. In: 2018 IEEE International
Conference on Communications (ICC), May 2018, pp. 1–6 (2018). https://doi.org/
10.1109/ICC.2018.8422917

50. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. Wiley Series in Probability and Mathematical Statistics: Applied Prob-
ability and Statistics. Wiley, Hoboken (1994)

51. Raverta, F.D., Demasi, R., Madoery, P.G., Fraire, J.A., Finochietto, J.M.,
D’Argenio, P.R.: A Markov decision process for routing in space DTNs with uncer-
tain contact plans. In: 6th IEEE International Conference on Wireless for Space
and Extreme Environments (WiSEE), pp. 189–194. IEEE (2018). https://doi.org/
10.1109/WiSEE.2018.8637330

52. Sahai, A., Tandra, R., Mishra, S.M., Hoven, N.: Fundamental design tradeoffs
in cognitive radio systems. In: Proceedings of the 1st International Workshop on
Technology and Policy for Accessing Spectrum, p. 2. ACM (2006)

53. Sheng, M., Xu, G., Fang, X.: The routing of interplanetary Internet. China Com-
mun. 3(6), 63–73 (2006)

54. Wyatt, J., Burleigh, S., Jones, R., Torgerson, L., Wissler, S.: Disruption tolerant
networking flight validation experiment on NASA’s EPOXI mission. In: First Inter-
national Conference on Advances in Satellite and Space Communications (SPA-
COMM), pp. 187–196 (2009). https://doi.org/10.1109/SPACOMM.2009.39

55. Younes, H.L.S., Clarke, E.M., Zuliani, P.: Statistical verification of probabilistic
properties with unbounded until. In: Davies, J., Silva, L., Simao, A. (eds.) SBMF
2010. LNCS, vol. 6527, pp. 144–160. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-19829-8 10

56. Younes, H.L.S., Simmons, R.G.: Probabilistic verification of discrete event systems
using acceptance sampling. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS,
vol. 2404, pp. 223–235. Springer, Heidelberg (2002). https://doi.org/10.1007/3-
540-45657-0 17

https://doi.org/10.1007/978-3-642-54862-8_51
https://doi.org/10.1007/978-3-642-54862-8_51
https://doi.org/10.1007/978-3-540-24622-0_8
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1016/j.apal.2007.11.006
https://doi.org/10.1016/j.apal.2007.11.006
https://doi.org/10.1007/978-3-319-15201-1_23
https://doi.org/10.1109/ICC.2018.8422917
https://doi.org/10.1109/ICC.2018.8422917
https://doi.org/10.1109/WiSEE.2018.8637330
https://doi.org/10.1109/WiSEE.2018.8637330
https://doi.org/10.1109/SPACOMM.2009.39
https://doi.org/10.1007/978-3-642-19829-8_10
https://doi.org/10.1007/978-3-642-19829-8_10
https://doi.org/10.1007/3-540-45657-0_17
https://doi.org/10.1007/3-540-45657-0_17

Model Checking Timed Hyperproperties
in Discrete-Time Systems

Borzoo Bonakdarpour1(B), Pavithra Prabhakar2, and César Sánchez3

1 Iowa State University, Ames, USA
borzoo@iastate.edu

2 Kansas State University, Manhattan, USA
pprabhakar@ksu.edu

3 IMDEA Software Institute, Pozuelo de Alarcón, Spain
cesar.sanchez@imdea.org

Abstract. Many important timed requirements of computing systems
cannot be described by the behavior of individual execution traces.
Examples include countermeasures to deal with side-channel timing
attacks and service-level agreements, which are examples of timed hyper-
properties. In this paper, we propose the temporal logic HyperMTL,
that extends MTL by allowing explicit and simultaneous quantifica-
tion over multiple timed traces in the point-wise semantics. We demon-
strate the application of HyperMTL in expressing important properties
in information-flow security and cyber-physical systems. We also intro-
duce a model checking algorithm for a nontrivial fragment of HyperMTL
by reducing the problem to model checking untimed hyperproperties.

1 Introduction

There has been tremendous progress in automated reasoning about trace prop-
erties in the past three decades. These properties were classified by Alpern and
Schneider [3] into safety and liveness properties. Temporal logics like LTL [31] and
CTL [11] were crafted to give formal syntax and semantics of trace properties, and
many verification algorithms and tools were developed to reason about these log-
ics (see [4,5,9–12,29,34]). However, many interesting requirements are not trace
properties. For example, information-flow security policies such as noninterfer-
ence [25] and observational determinism [35] cannot be expressed as properties
of individual execution traces. Also, service level agreement requirements (e.g.,
mean response time and percentage uptime) that use statistics across all execu-
tions of a system are not trace properties. Rather, they are properties of sets of
execution traces. These requirements are hyperproperties [14]. Temporal logics,
like HyperLTL and HyperCTL∗ [13], and probabilistic variants, like HyperPCTL [1],
have been proposed to reason about temporal hyperproperties.

This research has been partially supported by the United States NSF SaTC Award
1813388, NSF CAREER Award 1552668, ONR YIP Award N000141712577, and by
the Madrid Regional Government under project “S2018/TCS-4339 (BLOQUES-CM)”
by Spanish National Project “BOSCO (PGC2018-102210-B-100)”.

c© Springer Nature Switzerland AG 2020
R. Lee et al. (Eds.): NFM 2020, LNCS 12229, pp. 311–328, 2020.
https://doi.org/10.1007/978-3-030-55754-6_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-55754-6_18&domain=pdf
https://doi.org/10.1007/978-3-030-55754-6_18

312 B. Bonakdarpour et al.

L := 1;
for (i := 1 to H) {do something};
L := 2;

Fig. 1. Timing leak.

Hyperproperties can also be
timed, i.e., they explicitly stipu-
late the timing relation of inde-
pendent executions. An exam-
ple of a timed hyperproperty is
countermeasures against timing
channels. A timing channel is
one through which an attacker learns sensitive information by observing the
time at which publicly observable events occur. A timing leak is an information
leak through a timing channel. For instance, consider the program in Fig. 1,
where H and L denote “high” (i.e., secret) and “low” (i.e., public) security vari-
ables or channels confidentiality. By observing the timing of the public channel
L, an adversary can infer information about H. In order to prevent an attacker
to infer the value of H, a countermeasure is to make sure that in any given sys-
tem, the for-loop takes equal time for any two distinct values of H. This policy
to defend against timing leaks is a system property (as opposed to the property
of individual executions) and constitutes a timed hyperproperty. We propose
here the temporal logic HyperMTL to express timed hyperproperties. Designing
a temporal logic for timed hyperproperties has multiple challenges, and a trivial
extension of HyperLTL to a timed logic or lifting MTL to a hyper logic result in
a flawed or impractical framework. We discuss these issues next.

Dealing with Multiple Timed Traces. Timed traces of the same system may not
align. Consider the following timed traces σ1 and σ2 shown on the left:

σ1 = ({a}, 2)({b}, 5)({a, b}, 8) · · ·
σ2 = ({b}, 3)({a, b}, 4)({a}, 7) · · ·

σ′
1 = ({a}, 1)({a}, 3)({a}, 5) · · ·

σ′
2 = ({a}, 1)({a}, 2)({a}, 3)({a}, 4)({a}, 5) · · ·

These traces have no matching time stamps, which makes reasoning about them
simultaneously challenging. Another challenge is the speed of time progress in
different traces. Consider traces σ′

1 and σ′
2 above on the right, where σ′

1 reaches
time 5 in fewer steps than σ′

2, which has to be taken into account when reasoning
about σ′

1 and σ′
2 simultaneously. These two examples show why HyperLTL cannot

be trivially extended to a timed version, as the semantics of HyperLTL evaluates
a set of traces synchronously, that is, positions advance in a lock-step manner
(see Fig. 2 (left) for an example, where evaluation occurs at identical positions
of both traces).

σ

{a}

{a}

σ′ σ2

{a}{a}

{a}

σ1

Fig. 2. Synchronous semantics (left) vs asynchronous semantics (right).

Model Checking Timed Hyperproperties in Discrete-Time Systems 313

Decidability of Verification. In order to allow reasoning about traces with differ-
ent speeds, one has to allow asynchronous semantics, where one trace may make
progress while another stutters (see Fig. 2 (right)). However, the computation
power needed to reason about such a model of computation rises to the level
required to solve the post correspondance problem (PCP) [32], which is known
to be undecidable (the formal proof is out of the scope of this paper).
Our first contribution is the temporal logic HyperMTL with the following features:

– Timed Temporal Operators. HyperMTL generalizes HyperLTL by allowing
explicit timing constraints over temporal operators. For example, formula ϕ =
∀π.∀π′.◻[2,5] (aπ ↔ aπ′) means that any pair of traces π and π′ should agree
on the position of proposition a in all events within time period [2, 5]. In addi-
tion to explicit timing constraints, we augment the temporal operators with
features to express bounds on the difference in time elapse between traces. This
is essential to realistically capture policies such as countermeasures to timing
side-channels. For example, we enrich temporal operators to express properties
like◇[0,∞),[0,1](rπ ∧ rπ′) which requires that proposition r should hold in events
in trace π and π′ that are at most one time unit of each other.

– Two-Layered Design. In order to obtain a decidable model-checking problem,
HyperMTL is divided into two layers. The outer layer is interpreted with syn-
chronous semantics, that is, the operators are evaluated position by position in
a lock-step manner similar to HyperLTL (see Fig. 2 (left)). The inner layer allows
temporal operators to be interpreted by the asynchronous semantics, where eval-
uation of traces can be asynchronous (see Fig. 2 (right)). For example, formula
ϕ = ∀π.∃π′.◻[0,∞) A.(◇[3,6],[1,2](rπ ∧ rπ′)) means that for every trace π, there
is another trace π′, where it is (synchronously) always the case that eventually
(asynchronously) within interval [3, 6] proposition r is observed in the two traces
within interval [1, 2] of each other.

– Framing. Finally, the synchronous semantics can suffer from anomalies because
evaluation points of a formula may depend on its context. We fix this problem
by introducing the notion of formula framing. For instance, formulas true and
pπ ∨ ¬pπ are only equivalent when true is evaluated at the ticking instants of
π and therefore cannot be substituted as in an arbitrary context. Our solution
allows to “frame” true and pπ ∨ ¬pπ forcing their evaluation to consider π (and
only π) to regain substitutivity.

Our second contribution is to show the application of HyperMTL in different
areas of computing. We demonstrate how HyperMTL can express important (1)
security policies such as countermeasures to side-channel timing attacks and
insecure composition, (2) service level agreements, and (3) properties of cyber-
physical systems such as robustness, sensitivity, and overshoot observability.

Our third contribution is a model-checking algorithm for a fragment of Hyper-
MTL. We show that the fragment with bounded intervals for the asynchronous
operators and unrestricted synchronous operators the logic is decidable. This
fragment covers all interesting examples listed above. We obtain the decidability
result by reducing the model-checking problem for this fragment of HyperMTL

to the model-checking of HyperLTL [13,24].

314 B. Bonakdarpour et al.

Organization. The rest of the paper is organized as follows. In Sect. 2, we review
the preliminary concepts. Then, we present the syntax and semantics of Hyper-

MTL in Sect. 3, while its applications are discussed in Sect. 4. Our model checking
algorithm is presented in Sect. 5. We discuss related work in Sect. 6 and finally
conclude in Sect. 7.

2 Preliminaries

Let AP be a set of atomic propositions and Σ = 2AP be the alphabet. We call
each element of Σ a letter. A trace is an infinite sequence σ = a0a1 · · · of letters
from Σ. We use σ(i) for ai and σi for the suffix aiai+1 · · · . An indexed trace is a
pair (σ, p), where p ∈ N is a natural number (called the pointer). Indexed traces
are used to traverse a trace by moving the pointer. Given an indexed trace (σ, p)
and n > 0, we use (σ, p) + n to denote the resulting indexed trace (σ, p + n).

We fix the time domain to be non-negative integers Z≥0. An event is
a pair (a, t), where a ∈ Σ and t ∈ Z≥0. Given an event e = (a, t), we
use label(e) for a and time(e) for t. A timed trace is an infinite sequence
σ = (a0, t0)(a1, t1)(a2, t2) . . . , over (Σ × Z≥0), such that for all i ≥ 0, we have
ti < ti+1. Given an indexed timed trace (σ, p), we use time(σ, p) to denote
time(σ(p)).

2.1 HyperLTL

HyperLTL [13] is a temporal logic for hyperproperties, which allows reasoning
about multiple execution traces simultaneously. The syntax of HyperLTL is:

α ::= ∃π.α
∣
∣ ∀π.α

∣
∣ ϕ ϕ ::= aπ

∣
∣ ϕ ∨ ϕ

∣
∣ ¬ϕ

∣
∣ ◯ ϕ

∣
∣ ϕ U ϕ

where π is a trace variable from an infinite supply of trace variables. The intended
meaning of aπ is that proposition a ∈ Σ holds in the current time in trace
π. Trace quantifiers ∃π and ∀π allow reasoning simultaneously about different
traces of the computation. Atomic predicates aπ refer to a single trace π, and
can be combined with Boolean operators to build relational tests as well as
with temporal operators to construct temporal relational formulas. Informally,
HyperLTL allows to reason about properties of systems that require to reason
about the whole set of traces of the system at once, and not about each individual
trace at a time.

Given a HyperLTL formula ϕ, we use Var(α) for the set of trace variables
quantified in α. A formula α is well-formed if for all atoms aπ in α, π is quantified
in α (i.e., π ∈ Var(α)) and if no trace variable is quantified twice in α.

Given a set of traces W , the semantics of a HyperLTL formula α is defined
in terms of trace assignments, which is a (partial) map from trace variables to
indexed traces Π : Var(α) ⇀ (W ×N). We use Dom(Π) for the subset of Var(α)
for which Π is defined. Given a trace assignment Π, a trace variable π, a trace
σ and a pointer p, we denote by Π[π 	→ (σ, p)] the assignment that coincides

Model Checking Timed Hyperproperties in Discrete-Time Systems 315

with Π for every path variable except for π, which is mapped to (σ, p). Also, we
use Π + n to denote trace assignment Π ′ such that Π ′(π) = Π(π) + n for all
π ∈ Dom(Π) = Dom(Π ′). The semantics of HyperLTL is as follows:

(W,Π) |= ∃π.α iff for some σ ∈ W, (W,Π[π 	→ (σ, 0)]) |= α
(W,Π) |= ∀π.α iff for all σ ∈ W, (W,Π[π 	→ (σ, 0)]) |= α
(W,Π) |= ϕ iff Π |= ϕ

Π |= aπ iff a ∈ σ(p), where (σ, p) = Π(π)
Π |= ϕ1 ∨ ϕ2 iff Π |= ϕ1 or Π |= ϕ2

Π |= ¬ϕ iff Π �|= ϕ
Π |=◯ϕ iff (Π + 1) |= ϕ
Π |= ϕ1 U ϕ2 iff for some j ≥ 0 (Π + j) |= ϕ2

and for all 0 ≤ i < j, (Π + i) |= ϕ1

Note that quantifiers assign traces to trace variables and set the pointer to the
initial position 0. Also, the pointer in all trace assignments move in lock-step
(at the same speed) within the semantics of U (that is, like in Fig. 2 (left), all
pointers for different traces have the same value). Given a HyperLTL formula α
and a Kripke structure that can generate a set of traces W , the model-checking
problem for HyperLTL consists of deciding whether (W,Π∅) |= α, where Π∅ is the
trace assignment with Dom(Π∅) = ∅.

Example 1. The meaning of HyperLTL formula α = ∀π.∀π′.◻ (aπ ↔ aπ′) is that
any pair of traces should agree on the value of a at every position.

In Sect. 5, we will use a timed version of the U operator, so we define a derived
temporal operator UI that requires the satisfaction of the second argument in
the interval I, using repeated applications of the next operator. The operator
UI is formally defined as follows (◯i refers ◯ operator applied i times on the
argument):

ϕ1 U[a,b] ϕ2
def
=

∨

a≤i≤b

(◯iϕ2 ∧
∧

0≤j<i

◯
jϕ1), ϕ1 U[a,∞) ϕ2

def
=

∧

0≤i<a

◯
iϕ1 ∧◯aϕ1 U ϕ2

2.2 Kripke Structures

We model timed systems as timed Kripke structures with time elapse in the arcs.

Definition 1. A Kripke structure (KS) is a tuple M = (S, S0,→,AP, L), where

– S is a set of states, and S0 ⊆ S is a set of initial states;
– →⊆ S × Z≥0 × S is a set of transitions;
– AP is the set of atomic propostions; and
– L : S → 2AP is a labeling function that assigns a set of atomic propositions

to each state.

316 B. Bonakdarpour et al.

Fig. 3. Three timed Kripke structures: K1 (left) K2 (middle) and K3 (right).

We assume that every state has a successor, so each sink state s is equipped with
a self-loop of the form (s, 1, s). Note that untimed Kripke structures are simply
Kripke structures for which all edges are of the form (s, 1, s′).

A run of a Kripke structure (S, S0,→,AP, L) from a state s ∈ S is an infinite
sequence of the form γs = s0d0s1d1s2d2 · · · , where s0 = s and for each i ≥ 0, we
have (si, di, si+1) ∈→, for some di ∈ Z≥0. A trace of a run γs is a timed trace
of the form (L(s0), t0)(L(s1), t1)(L(s2), t2) · · · , such that t0 = 0 and for every
i > 0, ti+1 = ti +di, that is, we encode the delays from the actions of the Kripke
structure into time-stamps on the letters of the timed trace. The language of a
Kripke structure M (denoted L(M)) is the set of all traces corresponding to
runs of M.

Example 2. The untimed interpretation of the Kripke structure K1 shown in
Fig. 3 (left) satisfies HyperLTL formula α = ∀π.∀π′.◻ (aπ ↔ aπ′), whereas K2, in
Fig. 3 (middle), does not.

3 The Temporal Logic HyperMTL

In this section, we present the syntax and semantics of HyperMTL. In HyperMTL,
formulas are constructed in two layers using two kinds of temporal operators,
synchronous and asynchronous. This layering enables the construction of both
synchronous and asynchronous formulas, and a limited combination that still
guarantees decidability. Synchronous operators allow comparing traces at the
same point in time and reason about the time elapses. The evaluating time
instants are those where at least one of the traces involved contains an event.
If a trace σ does not contain an event at an evaluation time t then the closest
previous event is used (we assume all traces contain an event at the initial time
0). Consider for example, traces σ and σ′ shown on the right.

σ = (a0, 0) (a1, 1) (a24) (a3, 5) · · ·
σ′ = (b0, 0) (b1, 1) (b2, 3) (b3, 5) · · ·

The evaluation of {σ, σ′} at time
t = 3 considers event (a1, 1) for
σ and (b2, 3) for σ′. On the other
hand, asynchronous operators allow traces to proceed at different speeds and
also allow to reason about the difference in elapsing times between two traces.

We first present the syntax and then the semantics of each layer. Finally, we
show how the choice of the evaluation point in the synchronous semantics can

Model Checking Timed Hyperproperties in Discrete-Time Systems 317

lead to unexpected logical cases and propose a simple framing mechanism to fix
these anomalies.

3.1 Syntax

As with HyperLTL, the outermost layer (α formulas) introduces the trace quan-
tifiers that bind trace variables; then the synchronous layer (ϕ formulas) intro-
duces the synchronous temporal operators and the asynchronous layer (ψ for-
mulas) introduce the asynchronous temporal constructs:

α ::= ∃π.α
∣
∣ ∀π.α

∣
∣ ϕ

ϕ ::= true
∣
∣ aπ

∣
∣ ϕ ∨ ϕ

∣
∣ ¬ϕ

∣
∣ ϕ UI ϕ

∣
∣ A.ψ

ψ ::= true
∣
∣ aπ

∣
∣ ψ ∨ ψ

∣
∣ ¬ψ

∣
∣ ψ UI,J ψ

Here, a ∈ AP is an atomic proposition, and I and J are intervals of the form [l, u]
with l, u ∈ Z≥0 ∪ {∞} and l ≤ u. As for HyperLTL, the meaning of aπ is that a
holds in the trace assigned to trace variable π. The intended meaning of ϕ1UI ϕ2

is that there is an event at time t within an interval I, such that ϕ2 holds at
t and that ϕ1 holds at all events before t. The meaning of interval J = [l, u]
is that the difference in time elapse between any two traces must be between l
and u, when the obligation ϕ2 is fulfilled. As usual, we use the syntactic sugar
◇Iϕ

def= true UI ϕ and ◻Iϕ
def= ¬(◇I¬ϕ), and ◇I,Jϕ

def= true UI,J ϕ, etc.
Temporal operators in synchronous formulas allow time to flow according to

a global clock. The evolution of time in the evaluation of a formula proceeds
according to the time-stamps of events in any of the traces in the formula. In
case aπ is evaluated at a given time t, and the trace σ assigned to π does not
contain an event at t, then the most recent past event in σ is used. The operator
A (for (A)synchronous) denotes the evaluation of the subformula asynchronously,
and allows to reuse temporal and propositional symbols. The asynchronous layer
considers the possibility that traces proceed at different speeds which is captured
by the notion of trajectory, also called a time-flow, defined below.

3.2 Semantics

The Quantifier Layer. To define the semantics of synchronous HyperMTL, we
use pointed-timed trace assignments, that is, partial mappings Π : Var(α) ⇀
(Σ ×Z≥0)ω ×N, which are pointed assignments over timed traces. The intended
meaning of Π(π) = (σ, p) is that the event from timed trace σ at position p
is currently used in the evaluation of trace π. Given a subset of trace variables
π ⊆ Var(α), we use Π \ π for the map that removes from the domain of Π all
π ∈ π. As in the untimed case, Π[π 	→ (σ, p)] is the assignment that coincides
with Π for every trace variable except for π, which is mapped to (σ, p). The
satisfaction of a HyperMTL formula ϕ over a timed word assignment Π, and a
set W of timed words, denoted by (W,Π) |= ϕ, is defined as for HyperLTL:

318 B. Bonakdarpour et al.

(W,Π) |= ∃π.α iff (W,Π[π 	→ (σ, 0)]) |= α for some σ ∈ W
(W,Π) |= ∀π.α iff (W,Π[π 	→ (σ, 0)]) |= α for all σ ∈ W
(W,Π) |= ϕ iff Π |=s ϕ

where |=s is the semantics of the synchronous layer defined next.

The Synchronous Layer. We present first some preliminary definitions to
capture the passage of time, by defining the sequence of time ticks for a given
collection of traces. Intuitively speaking, this sequence contains the instants of
the events in the union of events in the traces. We start by defining the position
of trace σ at time t as the index of the latest event in σ whose time does not
surpass t:

pos(σ, t) def= i, such that time(σ(i)) ≤ t < time(σ(i + 1))

Recall that time(σ(i)) is the time-stamp of the i-th event in σ. The position
adjustment Π|t is an assignment (with Dom(Π|t) = Dom(Π)), which moves
the pointer to the position denoted by t. That is, for π ∈ Dom(Π), Π|t(π) =
(σ, pos(σ, t)) for (σ, p) = Π(π). Then, given Π, we define the current instant and
the next instant as follows:

now(Π) = max
π∈Dom(Π)

{

time(σ(p)) | for (σ, p) = Π(π)
}

next(Π) = min
π∈Dom(Π)

{

time(σ(p + 1)) | for (σ, p) = Π(π)
}

Finally, the synchronous successor of Π is succ(Π) = Π|next(Π). This can be
extended to succj+1(Π) = succj(succ(Π)). Note that, starting at time 0, succ
follows the union of the time-stamps of Dom(Π) in increasing order. We use
Π(j) as short for succj(Π). We are now ready to define the semantics |=s:

Π |=s true iff always holds
Π |=s aπ iff a ∈ label(σ(p)) for (σ, p) = Π(π)
Π |=s ϕ1 ∨ ϕ2 iff Π |=s ϕ1 or Π |=s ϕ2

Π |=s ¬ϕ iff Π �|=s ϕ
Π |=s ϕ1 UI ϕ2 iff for some i ≥ 0,

Π(i) |=s ϕ2 and (now(Π(i)) − now(Π)) ∈ I
and for all j < i, Π(j) |=s ϕ1

Π |=s A.ψ iff for some trajectory τ, (Π, τ) |=a ψ

The notion of a trajectory is related to the asynchronous layer, defined next.

Example 3. Consider the following HyperMTL formula with only synchronous
temporal operator α = ∀π.∀.π′.◻[1,2] (aπ ↔ aπ′). The Kripke structure K1 in
Fig. 3 (left) does not satisfy this formula, whereas K2 in Fig. 3 (middle) does.

Model Checking Timed Hyperproperties in Discrete-Time Systems 319

The Asynchronous Layer. The asynchronous layer allows traces to proceed
at different speeds. We start by the asynchronous semantics of intervals. Let α
be a formula, [l, u] be a time interval and Δ be a map from Var(α) ⇀ Z≥0 that
gives a time duration for each π in Dom(Δ). We write Δ |=I [l, u] whenever for
all π in Dom(Δ), Δ(π) ∈ [l, u]. We write Δ |=J [l, u] whenever for all distinct
π, π′ ∈ Dom(Δ), |Δ(π) − Δ(π′)| ∈ [l, u].

A trajectory encodes which traces move and which traces stay at a given
instant.

Definition 2. Let V be a set of trace variables. A trajectory is an infinite
sequence τ0τ1τ2 · · · of subsets of V , such that for every π ∈ V , there are infinitely
many i ∈ Z≥0 for which π ∈ τi.

For example, the trajectory depicted in Fig. 2 (right) is {σ1, σ2}{σ1}{σ1,
σ2} · · · . Similar to timed traces, by τ i, we mean the suffix τiτi+1 The asyn-
chronous successor of a pointed time trace assignment Π with respect to a trajec-
tory τ , denoted succa(Π, τ), is the pair (Π ′, τ1), where Π ′ is defined as follows.
First, Dom(Π ′) = Dom(Π); then for π ∈ Dom(π′), Π ′(π) = Π(π) + 1 if π ∈ τ0,
and Π ′(π) = Π(π) otherwise. Again, this definition can be extended to the j-th
successor by defining succj

a to be the function that applies j times the function
succa. We use (Π, τ)(j) as a short for succj

a(Π, τ).
Given two pointed time trace assignments Π and Π ′ with the same domain

Dom(Π) = Dom(Π ′) (as it is the case with successors) the passage of time is
defined as a map from Var(α) ⇀ Z≥0 that returns the passage of time for each
assignment as follows:

Δ(Π,Π ′)(π) def= time(Π ′(π)) − time(Π(π))

Finally, we define the time passage in j steps Δj(Π, τ) as the time passage
between the current evaluation instant and the evaluation instant obtained after
j steps, that is, Δj(Π, τ) = Δ(Π,Π ′), where (Π ′, τ ′) = (Π, τ)(j). We are finally
ready to define the semantics of the asynchronous layer:

(Π, τ) |=a true iff always holds
(Π, τ) |=a aπ iff a ∈ label(σ(p)) for (σ, p) = Π(π)
(Π, τ) |=a ψ1 ∨ ψ2 iff (Π, τ) |=a ψ1 or (Π, τ) |=a ψ2

(Π, τ) |=a ¬ψ iff (Π, τ) �|=a ψ
(Π, τ) |=a ψ1 UI,J ψ2 iff for some i > 0, (Π, τ)(i) |=a ψ2,

Δi(Π, τ) |=I I and Δi(Π, τ) |=J J, and
for all j < i, (Π, τ)(j) |=a ψ1

Essentially, the asynchronous until operator UI,J checks whether following the
trajectory τ the attempt ψ2 is met (also satisfying the temporal constraints I
and J) and the obligation ψ1 is fulfilled at all previous evaluation instants.

Example 4. The meaning of formula α = ∀π.∃π′.◻[0,∞)A.(◇[0,∞),[0,1](aπ∧aπ′))
is that for every trace, there exists another one, such that it is (synchronously)

320 B. Bonakdarpour et al.

always the case that proposition a is (asynchronously) observed in both traces
within one time unit of each other. For example, K3 in Fig. 3 (right) satisfies this
formula.

3.3 Framing

Unfortunately, the semantics defined above has some unexpected drawbacks,
which we fix here with the notion of framing. Consider a formula α that contains
a synchronous sub-formula ϕ. The set of time instants at which ϕ is evaluated
depends on the events of all traces in Var(α) (which is a super-set of the traces
that actually appear as trace variables in ϕ). For example, consider the formula
∀π.∃π′.

(

◇[5,10]aπ ↔ ◇[4,10]aπ′
)

. The sub-formula ϕ1 = ◇[5,10]aπ only refers
to π while its enclosing formula refers to π and π′. Let σ and σ′ be the traces
assigned to π and π′. The semantics of the synchronous layer of HyperMTL evalu-
ates ϕ1 at the points at which either σ or σ′ contain an event and not only at the
points at which σ does. This evaluation causes semantic anomalies, illustrated
in the following examples.

Example 5. Consider ϕ =◇[1,3]true and W = {σ} for σ = (a, 0)(a, 2)(a, 4)
In this case (W,Π∅) �|= ϕ but (W,Π∅) |= ∃π.ϕ and (W,Π∅) |= ∀π.ϕ even though
π /∈ Var(ϕ).

In first-order logic, if a variable x does not appear in a formula P , P is equivalent
to ∃x.P and to ∀x.P , but the previous example illustrates that this is not the
case for HyperMTL. It is true in the asynchronous semantics, but not necessarily
for synchronous formulas due to the additional ticking instants.

Example 6. Consider formulas ϕ1 =◇[1,2]aπ1 and ϕ2 =◇[3,4]aπ2 and consider
timed words σ1 = (a, 0)(a, 4)(a, 8) . . . and σ2 = (a, 0)(a, 2)(a, 12) . . . In this case
(σ1, 0) �|= ϕ1 and (σ2, 0) �|= ϕ2, but ((σ1, σ2), 0) |= ϕ1 ∧ ϕ2. Even though σ1 is
the trace assigned to π1, the ticks in σ1 make ϕ2 true (even though ϕ2 does not
refer to π1 and hence “should not be affected” by the trace assigned to π1).

To fix these anomalies, we enrich the synchronous layer with a framing oper-
ator [ϕ]π that restricts the time-words that the semantics use, resulting in the
following syntax:

ϕ ::= true | aπ | ϕ ∨ ϕ | ¬ϕ | ϕ UI ϕ | A.ψ | [ϕ]π

To be well-formed we require that every sub-formula of the form [ϕ]π satisfies
that Var(ϕ) ⊆ π. We assume that every formula is well-formed. The semantics
for the synchronous layer is now extended so Π |=s [ϕ]π whenever Π[π] |=s ϕ.
Using this new definition we can prove that [true]π and [pπ ∨ ¬pπ]π are equiva-
lent, and can be substituted in every context (that includes π as a path).

Model Checking Timed Hyperproperties in Discrete-Time Systems 321

4 HyperMTL in Action

We first note that in all the applications explored in this section, explicit framing
was not necessary as the context of every sub-formula guarantee that it was
evaluated when necessary.

Side-Channel Timing Attacks. A timing attack is one that exploits the
time-dependent behavioral characteristics of the implementation of an algorithm
rather than other “functional” properties of the algorithm. For example, the
execution time for the square-and-multiply algorithm used in modular exponen-
tiation in encryption algorithms depends linearly on the number of ‘1’ bits in
the encryption key. While the number of ‘1’ bits alone is not nearly enough
information to make finding the key easily, repeated executions with the same
key and different inputs can be used to perform statistical correlation analysis
of timing information to recover the key completely, even by a passive attacker.
This is a practical attack against a number of encryption algorithms, including
RSA and ElGamal. In order to design a countermeasure against this attack,
one can require that in any given system, for any pairs of executions, it should
always be the case that, if the function is invoked in both executions, they both
return within close enough times. The corresponding HyperMTL formula is ϕtiming

in Fig. 4, where inv and ret denote invocation and return of a function, interval
[0, 10] is an upper bound on the execution time of the function, and interval [0, 1]
specifies how close the execution times should be in π and π′.

Fig. 4. Examples of properties expressed in HyperMTL.

Another example of timing leaks is related to composing secure components.
For example, secure multi-execution (SME) [16] removes insecurities (including
timing leaks) in any given process. To this end, it runs two copies, H (for secrets)
and L (for public channels), of a given program; feeding (a copy of) H and L input

322 B. Bonakdarpour et al.

to the H-copy, and dropping its L output; and feeding only L input to the L-copy,
and dropping its H output. Since the L-copy receives no H input, no information
can be leaked. In some implementations of SME inputs enter a queue, which is
serviced by first running the L-copy on the L projection of the next input, then
running the H-copy on the input. While this approach prevents leaks to output
values, the time at which the L-copy processes the next input depends on how
long it takes for the H-copy to finish processing previous inputs, which in turn,
opens a timing channel. In other words, a correct composition of two secure
components should satisfy ϕcompose in Fig. 4. where invH denotes invocation of
the H-copy and hcopy denotes that the execution is in the H-copy. Again, intervals
[0, 5] and [0, 2] are arbitrary.

Service Level Agreements. A service level agreement (SLA) specifies accept-
able performance of a system. These agreements often use statistics such as mean
response time, the mean time that elapses between a request and a response.
Other examples include time service factor, and percentage uptime. If these
statistics are used to define policies across all executions of a system, then they
are timed hyperproperties. Here, we consider a simple fair SLA policy, where
no execution can be discriminated. More specifically, we require that for any
execution with a particular response time, there has to exists another one with
a similar timing behavior, as show in ϕsla in Fig. 4, where req and res denote
request and response propositions, respectively, and intervals [0, 100] and [0, 1]
are arbitrary.

Cyber-Physical Systems. In cyber-physical systems, robustness is the abil-
ity of a computer system to cope with errors during execution and cope with
erroneous input. More specifically, we require that if the distance between two
different input values is bounded by some value c within some time interval I,
then the distance between outputs is also bounded by some value c′ within time
interval I ′, as shown in ϕrobust in Fig. 4, where x and y are input and output
variables, respectively. Note that by abuse of notation x and y refer to the value
of variables rather than atomic propositions.

Another feature in cyber-physical systems is overshoot observability. Here, we
require that (1) in one execution, if a signal steps, then for some time interval
I the input is bounded, (2) in another execution the signal steps and the input
overshoots, then (3) the distance between the output signals is greater than some
bound (i.e., the overshoot is observed in the output). This is shown in ϕovershoot

in Fig. 4.

5 Model Checking

The model-checking problem is the following: Given a Kripke structure K, whose
language is W , and a HyperMTL formula α decide whether (W,Π) |= α. In this
section, we show that the model-checking problem for HyperMTL is decidable for

Model Checking Timed Hyperproperties in Discrete-Time Systems 323

a fragment of HyperMTL, where the intervals in the asynchronous until opera-
tor UI,J are bounded. We will refer to this fragment as “bounded HyperMTL”.
Another fragment we will consider are formulas without the asynchronous sub-
formulas (those starting with A). We will refer to the fragment as the “syn-
chronous HyperMTL”. Our approach to show decidability consists of the follow-
ing:

– Step 1: Reduce the model-checking problem of bounded HyperMTL to that of
synchronous HyperMTL.

– Step 2: Reduce the model-checking problem of synchronous HyperMTL to that
of HyperLTL, which is known to be decidable [13].

We provide the details of these steps separately.

Bounded HyperMTL to Synchronous HyperMTL. Given a bounded Hyper-

MTL formula α, we provide an algorithm to construct an equivalent synchronous
HyperMTL formula α̂. The intuition is that an asynchronous formula A.ψ with
bounded until operators only depends on a finite interval of a timed trace. Hence,
the asynchronous formula can be replaced by a synchronous formula that encodes
all finite interval patterns satisfied by A.ψ.

First, we formalize when two timed traces σ and σ′ agree on certain intervals.
Given two timed traces σ and σ′, and natural numbers r, r′ and s, we say that σ
and σ′ are (r, r′, s)-conformant, if the timed trace σ starting from r and the timed
trace σ′ starting from r′ are the same for a duration of s, that is, for every i
such that r ≤ time(σ(i)) ≤ r + s, there is a j such that time(σ′(j)) − r′ =
time(σ(i)) − r and label(σ(i)) = label(σ′(j)) (and vice-versa for σ′ and σ).
The first time of an assignment defined as first(Π) = min

π∈Dom(Π)

{

time(σ(p)) |

for (σ, p) = Π(π)
}

. This allows us to define conformance between assignments.
Two assignments Π and Π ′ are s-conformant, if Dom(Π) = Dom(Π ′) and for all
π ∈ Dom(Π), label(σ(p)) = label(σ′(p′)) and σ and σ′ are (first(Π),first(Π ′), s)-
conformant, where Π(π) = (σ, p) and Π ′(π) = (σ′, p′).

Next, given a bounded asynchronous formula ψ we define the future time
period Tψ of a timed trace which has an effect on the satisfaction of ψ. Let
ub(I) be the least upper-bound of an interval I. Tψ is defined inductively as:
Ttrue = 0; Taπ

= 0; Tψ1∨ψ2 = max{Tψ1 , Tψ2}; T¬ψ = Tψ; Tψ1UI,Jψ2 = ub(I) +
ub(J) + max{Tψ1 , Tψ2}.

The next proposition formalizes the intuition that the satisfaction of a
bounded asynchronous formula depends on only a finite interval of an assignment
starting from the first time of the assignment.

Proposition 1. Let ψ be bounded asynchronous, and let Π and Π ′ be two Tψ-
conformant assignments. Then, for any τ , Π, τ |=a ψ if and only if Π ′, τ |=a ψ.

The proof proceeds by induction on the structure of ψ. For the case ψ = aπ the
result follows because labels match at the pointer indices in the two assignments.
For the until operator, ψ1UI,J ψ2, a witness for ψ2 happens at pointer values that

324 B. Bonakdarpour et al.

satisfy I and J , hence, the latest pointer values corresponding to the witness are
within ub(I) + ub(J) from the first(Π) and first(Π ′), respectively.

Next, we provide a construction for a synchronous formula that encodes all
the assignments that are conformant to a given assignment in a given interval.
Let ϕs,π

σ,r encode the pattern of σ in the interval [r, s]. More precisely, if σ =
(a0, t0)(a1, t1) · · · , then

ϕs,π
σ,r =

∧

i:r≤time(σ(i))≤r+s,a=label(σ(i))

true U[ti,ti] aπ

Given any assignment Π and a natural number s, we construct a synchronous
formula ϕs

Π such that Π ′ |=s ϕs
Π for every Π ′ that is s-conformant with Π.

ϕs
Π =

∧

π∈Dom(Π),Π(π)=(σ,p)

[

ϕ
s−(time(σ(p))−firstΠ),π
σ,time(σ(p))

]

π
.

Finally, we are ready to construct a synchronous formula ψ̂ that is equiv-
alent to a bounded synchronous formula A.ψ. From Proposition 1, the satis-
faction of ψ by an assignment Π only depends on the values in the interval
I = [first(Π),first(Π) + Tψ]. Given the values of an assignment Π in the inter-
val I, one can algorithmically check if Π |=s A.ψ. More precisely, there are only
finitely many τ ’s that are relevant within I, hence, by iterating over these τ ’s,
and using the semantics of |=a, one can effectively check Π, τ |=a ψ. Given a
natural number s, let Πs be the set of all assignments that are s-conformant with
Π. Note that s-conformance is an equivalence relation on the set of assignments
with finite index. Let Rep(Π, s) denote a finite set of representative assignments
for each equivalence class. Further, let Sat(ψ,Π, s) denote those elements of
Rep(Π, s) that correspond to satisfying assignments for ψ. Then ψ̂ is given by
the disjunction of ϕs

Π for all Π ∈ Sat(ψ,Π, s). Note that Sat(ψ,Π, s) is com-
putable, and hence, ψ̂ (which does not contain asynchronous sub-formulas) is
effectively constructible.

Lemma 1. Given a bounded asynchronous formula ψ and an assignment Π,
the Π |=s A.ψ if and only if Π |=s ψ̂.

Synchronous HyperMTL to HyperLTL. We show now how to transform a syn-
chronous HyperMTL formula α to a HyperLTL formula α̂ such that the set of
timed traces and timed assignments satisfying α is the same as the set of the
corresponding untimed traces and assignments satisfying α̂. Then we reduce the
model-checking problem of α with respect to a (timed) Kripke structure to that
of α̂ with respect to an untimed Kripke structure.

Given a timed trace, its untiming refers to a sequence that contains an event
at every time instant obtained by repeating an actual event until the next actual
event in the time trace. Given a letter a ∈ Σ, let ā be a fresh letter (not in Σ),
used in the filled events between two actual occurrences. We also use the fresh
special symbol ε �∈ Σ. Given a timed trace σ = (a0, t0)(a1, t1) · · · , we define

Model Checking Timed Hyperproperties in Discrete-Time Systems 325

untime(σ) to be the trace b0b1 · · · , where for each j ≥ 0, bj = ai if j = ti for
some i, and bj = āi if ti < j < ti+1, and bj = ε if 0 ≤ j < t0. For instance,
if σ = (a, 2)(b, 5)(b, 7)(a, 9) · · · , untime(σ) = εεaāābb̄bb̄a · · · . For a Π, we define
untime(Π) to be the trace assignment, where Dom(Π) = Dom(untime(Π)) and
for every π ∈ Dom(Π), untime(Π)(π) = (untime(σ),now(Π)), where Π(π) =
(σ, p).

Next, given a synchronous HyperMTL formula ϕ, we define a transformed
formula U(ϕ) inductively as follows. Here, Eventϕ corresponds to the occurrence
of an event, and is defined as Eventϕ =

∨

π∈Var(ϕ),a∈AP aπ.

U(true) = true U(aπ) = aπ ∨ āπ

U(ϕ1 ∨ ϕ2) = U(ϕ1) ∨ U(ϕ2) U(¬ϕ) = ¬U(ϕ)
U(ϕ1 UI ϕ2) = (Event → U(ϕ1)) UI (Event ∧ U(ϕ2)) U(Q.α) = Q.U(α)

Lemma 2. Given a synchronous formula α, a set of timed traces W and an
assignment Π, (W,Π) |= α if and only if (untime(W), untime(Π)) |= U(α).

The above lemma can be proved by induction on the structure of α.
Given a Kripke structure M and a synchronous HyperMTL formula α, our

objective is to check if L(M),Π∅ |= α. Lemma 2 states that it is equivalent to
checking untime(L(M)), untime(Π∅) |= U(α). It is straightforward to construct
an M̂ that generates untime(M) from M by replacing transitions in M, say,
from a state s to a state s′ with delay d, by sequence of d−1 intermediate states
whose labels are ā, where a is the label of s.

6 Related Work

There has been a lot of recent progress in automatically verifying [15,22–24]
and monitoring [2,7,8,20,21,26,33] HyperLTL specifications, including a growing
set of tools, like the model checker MCHyper [15,24], the satisfiability check-
ers EAHyper [19] and MGHyper [17], and the runtime monitoring tool RVHy-
per [20]. Synthesis techniques for HyperLTL has been studied in [18] and in [6].

Comparatively, much less attention has been put to timed hyperproperties.
The work in [30] introduces HyperSTL, which extends STL by allowing quantifica-
tion over real-valued signals, and proposes a monitoring algorithm for HyperSTL

formulas. The work in [27] introduces the temporal logic timed HyperLTL, which
adds one type of timing constraint to the until operator in the synchronous
semantics of HyperLTL. This covers some timed hyperproperties, but it falls short
in expressing requirements such as timing side-channels as presented in Sect. 4.
Our formulation allows the execution times in different traces to be similar
(i.e., ◇[0,∞),[0,1](rπ ∧ rπ′)), rather than just within a prescribed time bound
as in [27]). Also, the proposed logic operates only in the HyperLTL synchronous
semantics, meaning that all evaluations are conducted in the same trace posi-
tions.

Another recent work on timed hyperproperties is [28], which proposes an
alternative definition to HyperMTL also distinguishing synchronous and asyn-
chronous semantics, but there are fundamental differences. The synchronous

326 B. Bonakdarpour et al.

semantics is similar to that of the one proposed in [27], and forces all traces to
include events at the same instants, with the global time-stamp as an additional
value. The asynchronous semantics in [27] is similar to our synchronous seman-
tics, which keeps a global clock in the evaluation and proceeds in a total order.
In comparison, our asynchronous semantics is based on the existence of a trajec-
tory and allows to compare traces that evolve at different speeds, which cannot
be captured in [28]. Additionally, most of the fragments of the logic in [28] are
undecidable. Finally, the logic in [28] does not incorporate framing and suffers
from many logical anomalies. For example, ∀πb.(pπb

U qπb
) is not equivalent to

∀πa.∀πb.(pπb
U qπb

) in spite of πa not occurring in the inner formula (see [28] p.
16:6). Also, it is possible in the logic in [28] that for a given model M and for-
mula ϕ, neither M |= ϕ nor M |= ¬ϕ. All these anomalies are fixed by framing
introduced here, but the formal proof is out of the scope of this paper.

7 Conclusion and Future Work

We introduced the temporal logic HyperMTL for timed hyperproperties. Even
though our logic can be easily extended to richer models of time, we described
here a discrete-time domain that guarantees a decidable model-checking prob-
lem. We showed that HyperMTL can elegantly express important properties such
as countermeasures to a rich class of side-channel timing attacks, SLA, and
properties of CPS such as robustness and overshoot detectability. To automate
the verification task, we proposed a model checking algorithm by reducing the
problem to model checking HyperLTL. As future work, we plan to implement
our algorithm, build tools, and conduct case studies in the areas mentioned in
Sect. 4. Other important research directions include foundational problems such
as satisfiability, verification, monitoring, and synthesis for different fragments of
HyperMTL, as well as extensions to richer time domains.

References

1. Ábrahám, E., Bonakdarpour, B.: HyperPCTL: a temporal logic for probabilistic
hyperproperties. In: Proceedings of the 15th International Conference on Quanti-
tative Evaluation of Systems (QEST), pp. 20–35 (2018)

2. Agrawal, S., Bonakdarpour, B.: Runtime verification of k-safety hyperproperties
in HyperLTL. In: Proceedings of the IEEE 29th Computer Security Foundations
(CSF), pp. 239–252 (2016)

3. Alpern, B., Schneider, F.B.: Defining liveness. Inf. Process. Lett. 21, 181–185
(1985)

4. Alur, R., Dill, D.: A theory of timed automata. Theor. Comput. Sci. 126(2), 183–
235 (1994)

5. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without
BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-49059-0 14

6. Bonakdarpour, B., Finkbeiner, B.: Program repair for hyperproperties. In: Chen,
Y.-F., Cheng, C.-H., Esparza, J. (eds.) ATVA 2019. LNCS, vol. 11781, pp. 423–441.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-31784-3 25

https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1007/978-3-030-31784-3_25

Model Checking Timed Hyperproperties in Discrete-Time Systems 327

7. Bonakdarpour, B., Sanchez, C., Schneider, G.: Monitoring hyperproperties by com-
bining static analysis and runtime verification. In: Margaria, T., Steffen, B. (eds.)
ISoLA 2018. LNCS, vol. 11245, pp. 8–27. Springer, Cham (2018). https://doi.org/
10.1007/978-3-030-03421-4 2

8. Brett, N., Siddique, U., Bonakdarpour, B.: Rewriting-based runtime verification for
alternation-free HyperLTL. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS,
vol. 10206, pp. 77–93. Springer, Heidelberg (2017). https://doi.org/10.1007/978-
3-662-54580-5 5

9. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model
checking: 1020 states and beyond. Inf. Comput. 98(2), 142–170 (1992)

10. Cimatti, A., Clarke, E.M., Giunchiglia, F., Roveri, M.: NUSMV: a new symbolic
model checker. Soft. Tools Technol. Transf. (STTT) 2(4), 410–425 (2000)

11. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons
using branching time temporal logic. In: Kozen, D. (ed.) Logic of Programs 1981.
LNCS, vol. 131, pp. 52–71. Springer, Heidelberg (1982). https://doi.org/10.1007/
BFb0025774

12. Clarke, E.M., Filkorn, T., Jha, S.: Exploiting symmetry in temporal logic model
checking. In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 450–462.
Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-56922-7 37

13. Clarkson, M.R., Finkbeiner, B., Koleini, M., Micinski, K.K., Rabe, M.N., Sánchez,
C.: Temporal logics for hyperproperties. In: Abadi, M., Kremer, S. (eds.) POST
2014. LNCS, vol. 8414, pp. 265–284. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-54792-8 15

14. Clarkson, M.R., Schneider, F.B.: Hyperproperties. J. Comput. Secur. 18(6), 1157–
1210 (2010)

15. Coenen, N., Finkbeiner, B., Sánchez, C., Tentrup, L.: Verifying hyperliveness. In:
Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp. 121–139. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-25540-4 7

16. Devriese, D., Piessens, F.: Noninterference through secure multi-execution. In: Pro-
ceedings of the 31st IEEE Symposium on Security and Privacy, S&P, pp. 109–124
(2010)

17. Finkbeiner, B., Hahn, C., Hans, T.: MGHyper: checking satisfiability of HyperLTL
formulas beyond the ∃∗∀∗ fragment. In: Lahiri, S.K., Wang, C. (eds.) ATVA 2018.
LNCS, vol. 11138, pp. 521–527. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-01090-4 31

18. Finkbeiner, B., Hahn, C., Lukert, P., Stenger, M., Tentrup, L.: Synthesizing reac-
tive systems from hyperproperties. In: Chockler, H., Weissenbacher, G. (eds.) CAV
2018. LNCS, vol. 10981, pp. 289–306. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-96145-3 16

19. Finkbeiner, B., Hahn, C., Stenger, M.: EAHyper: satisfiability, implication, and
equivalence checking of hyperproperties. In: Majumdar, R., Kunčak, V. (eds.) CAV
2017. LNCS, vol. 10427, pp. 564–570. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-63390-9 29

20. Finkbeiner, B., Hahn, C., Stenger, M., Tentrup, L.: RVHyper: a runtime verifica-
tion tool for temporal hyperproperties. In: Beyer, D., Huisman, M. (eds.) TACAS
2018. LNCS, vol. 10806, pp. 194–200. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-89963-3 11

21. Finkbeiner, B., Hahn, C., Stenger, M., Tentrup, L.: Monitoring hyperproperties.
Formal Meth. Syst. Des. 54(3), 336–363 (2019). https://doi.org/10.1007/s10703-
019-00334-z

https://doi.org/10.1007/978-3-030-03421-4_2
https://doi.org/10.1007/978-3-030-03421-4_2
https://doi.org/10.1007/978-3-662-54580-5_5
https://doi.org/10.1007/978-3-662-54580-5_5
https://doi.org/10.1007/BFb0025774
https://doi.org/10.1007/BFb0025774
https://doi.org/10.1007/3-540-56922-7_37
https://doi.org/10.1007/978-3-642-54792-8_15
https://doi.org/10.1007/978-3-642-54792-8_15
https://doi.org/10.1007/978-3-030-25540-4_7
https://doi.org/10.1007/978-3-030-01090-4_31
https://doi.org/10.1007/978-3-030-01090-4_31
https://doi.org/10.1007/978-3-319-96145-3_16
https://doi.org/10.1007/978-3-319-96145-3_16
https://doi.org/10.1007/978-3-319-63390-9_29
https://doi.org/10.1007/978-3-319-63390-9_29
https://doi.org/10.1007/978-3-319-89963-3_11
https://doi.org/10.1007/978-3-319-89963-3_11
https://doi.org/10.1007/s10703-019-00334-z
https://doi.org/10.1007/s10703-019-00334-z

328 B. Bonakdarpour et al.

22. Finkbeiner, B., Hahn, C., Torfah, H.: Model checking quantitative hyperproperties.
In: Chockler, H., Weissenbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp. 144–
163. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96145-3 8

23. Finkbeiner, B., Müller, Ch., Seidl, H., Zalinescu, E.: Verifying security policies in
multi-agent workflows with loops. In: Proceedings of the 15th ACM Conference on
Computer and Communications Security (CCS) (2017)

24. Finkbeiner, B., Rabe, M.N., Sánchez, C.: Algorithms for model checking Hyper-
LTL and HyperCTL∗. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS,
vol. 9206, pp. 30–48. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
21690-4 3

25. Goguen, J.A., Meseguer, J.: Security policies and security models. In: IEEE Sym-
posium on Security and Privacy, pp. 11–20 (1982)

26. Hahn, C., Stenger, M., Tentrup, L.: Constraint-based monitoring of hyperproper-
ties. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11428, pp. 115–131.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17465-1 7

27. Heinen, J.: Model checking timed hyperproperties. Master’s thesis. Saarland Uni-
versity (2018)

28. Ho, H.-M., Zhou, R., Jones, T.M.: On verifying timed hyperproperties. In: Pro-
ceedings of the 26th International Symposium on Temporal Representation and
Reasoning (TIME), pp. 20:1–20:18 (2019)

29. Holzmann, G.: The model checker spin. IEEE Trans. Soft. Eng. 23(5), 279–295
(1997)

30. Nguyen, L.V., Kapinski, J., Jin, X., Deshmukh, J.V., Johnson, T.T.: Hyperprop-
erties of real-valued signals. In: Proceedings of the 15th ACM-IEEE International
Conference on Formal Methods and Models for System Design (MEMOCODE),
pp. 104–113 (2017)

31. Pnueli, A.: The temporal logic of programs. In: Symposium on Foundations of
Computer Science (FOCS), pp. 46–57 (1977)

32. Sipser, M.: Introduction to the Theory of Computation, 3rd edn. Cengage Learning
(2012)

33. Stucki, S., Sánchez, C., Schneider, G., Bonakdarpour, B.: Gray-box monitoring of
hyperproperties. In: ter Beek, M.H., McIver, A., Oliveira, J.N. (eds.) FM 2019.
LNCS, vol. 11800, pp. 406–424. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-30942-8 25

34. Vardi, M.Y., Wolper, P.: Automata theoretic techniques for modal logic of pro-
grams. J. Comput. Syst. Sci. 32, 183–221 (1986)

35. Zdancewic, S., Myers, A.C.: Observational determinism for concurrent program
security. In: Proceedings of the 16th IEEE Computer Security Foundations Work-
shop (CSFW), p. 29 (2003)

https://doi.org/10.1007/978-3-319-96145-3_8
https://doi.org/10.1007/978-3-319-21690-4_3
https://doi.org/10.1007/978-3-319-21690-4_3
https://doi.org/10.1007/978-3-030-17465-1_7
https://doi.org/10.1007/978-3-030-30942-8_25
https://doi.org/10.1007/978-3-030-30942-8_25

Verifying Band Convergence for Sampled
Control Systems

P. Ezudheen1, Zahra Rahimi Afzal2, Pavithra Prabhakar2,
Deepak D’Souza1(B), and Meenakshi D’Souza3

1 Indian Institute of Science, Bangalore, India
deepakd@iisc.ac.in

2 Kansas State University, Manhattan, USA
3 International Institute of Information Technology, Bangalore, India

Abstract. We present a method to verify transient and settling time
properties, called band convergence properties, of digitally controlled
continuous systems, wherein we consider a linear dynamical system
model for a plant and a PID controller. We consider the discrete-time
sampled behavior of the closed loop system, and verify band convergence
for the discrete-time behavior. The basic idea is to look for a box-shaped
invariant for the system which is adequate to ensure that the system
stays within the given band. We first give a technique to handle a gen-
eral discrete-time system, but with determinate matrix entries. We then
give a technique to handle discrete-time systems with matrices that lie
in a range which over-approximate the matrix exponentials (which arise
when we consider the discrete-time version of a continuous system), using
the notion of an abstract discrete-time system. We have implemented the
verification approach, and evaluate its efficacy on some popular Simulink
models.

1 Introduction

Modern control systems are deployed in safety critical environments with rigor-
ous real-time constraints. For instance, autonomous vehicles consist of controllers
that are required to respond in real-time to environmental uncertainties including
detection of pedestrians and changing weather and lighting conditions. Hence,
there is an increasing demand for rigorous analysis methods that can guaran-
tee that these control systems meet the real-time requirements. In this paper,
we focus on a fundamental real-time property expected of any control system
design, namely, that the controller drives the system output to a set-point. We
refer to the property as the band convergence property. More precisely, the prop-
erty specifies that the closed loop system behavior remains within some bound
of a set point between the rise time and settling time and remains close to the
set-point after the settling time, where rise time refers to the time required for
the output signal to reach from 10% to 90% of the set-point, and settling time
refers to time it takes the output signal to reach within 2% of the set-point. See
Fig. 1 for an illustration.
c© Springer Nature Switzerland AG 2020
R. Lee et al. (Eds.): NFM 2020, LNCS 12229, pp. 329–349, 2020.
https://doi.org/10.1007/978-3-030-55754-6_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-55754-6_19&domain=pdf
https://doi.org/10.1007/978-3-030-55754-6_19

330 P. Ezudheen et al.

Transient

Setpoint

Error Settling
Error

Rise Time Bound Settling Time Bound

Γ

γ

sr

Fig. 1. The band convergence property

The band convergence property can be conveniently modeled in Signal Tem-
poral Logic (STL) [1,2], that extends the classical linear temporal logic (LTL),
with predicates capturing properties about the system states and real-time con-
straints. While there has been extensive work on monitoring [3,4], trace gener-
ation [5], and model-checking over reach sequences [6], for STL properties, the
verification problem for STL properties is undecidable for most system mod-
els, including discrete systems. To verify continuous and hybrid system models
for STL properties, standard abstraction based approaches such as predicate
abstraction can be used that reduce the problem to LTL verification problem
on a finite state system. However, such an approach will quickly lead to a state-
space explosion as the number of predicates increases. In this paper, we focus
on a specific class of hybrid system models, namely, a linear dynamical system
model of a plant controlled by a digital proportional, integral and derivative
controller. This is a widely used class of systems and controllers. We consider a
specific, albeit important, subclass of STL properties, namely, band convergence
properties.

We first consider a discrete version of the problem, wherein we discretize the
continuous plant by observing the states at only certain sample times. While
exactly computing the discrete-time behavior at periodic sample times is com-
putationally infeasible due to the matrix exponential computations involved, we
consider an “approximate” discrete time problem for which we verify the band
convergence property.

Next we consider an abstract version of the problem. We define an abstract
system by providing two sets of system matrices capturing the lower and upper
bounds on the actual system matrices. We briefly sketch how to compute such
an abstract system for a continuous plant and a PID controller, such that all
the sampled behaviors of the original closed loop system are captured by this
abstract system.

Our solutions to these two problems are based on box invariants, that are
efficiently checkable. Initially, we present a sufficient condition to check that
the abstract system satisfies the band convergence property, by searching for a

Verifying Band Convergence for Sampled Control Systems 331

box invariant. Finally, we show that the solution for the abstract version of the
problem can be efficiently customized/tuned to solve the discrete version of the
band convergence problem.

2 Models of Control Systems and Band Convergence
Property

In this section we present various models of a control system comprising of a plant
and a controller, and define the band convergence property verification problem.
We begin with a continuous-time linear dynamical system model of a plant that is
controlled by a sampled-data PID (proportional, integral, derivative) controller.
We then focus on the behavior of the closed loop system at periodic sample
times, and model it as a discrete-time linear dynamical system and verify this
system against the band convergence property.

In the sequel we use N and R to denote the set of natural numbers and real
numbers respectively. For a matrix M , the matrix exponential eM denotes the
sum of the series 1+M + M2

2! + M3

3! · · · . We denote by Tk(M) the sum of the first
k terms of this series: i.e. Tk(M) =

∑k
j=0 M j/j!. For a real value α and m × n

matrix M we denote by αM the m×n matrix M ′ given by M ′(i, j) = α(M(i, j)).

2.1 Linear Dynamical System

A continuous-time linear dynamical system can be represented by a system of
equations as follows:

ẋ(t) = Acx(t) + Bcu(t) x(0) = x0 (1)
y(t) = Ccx(t) (2)

where Ac ∈ R
n×n, Bc ∈ R

n×d, and Cc ∈ R
m×n are system matrices, and for

every t, x(t) ∈ R
n, y(t) ∈ R

m and u(t) ∈ R
d, are the state, output and input at

time t, respectively, and x0 is the initial state of the system.
Given an input signal u(t), the solution of System (1) is unique and is given

by:

x(t) = eAct[x0 +
∫ t

0

e−AcτBcu(τ)dτ] (3)

A controller for the system provides the value of input u(t) at all times t.

2.2 Sampled-Data Control System

We consider a digital controller that senses the value of the state/output peri-
odically at intervals of size h, that is, at times 0, h, 2h, . . ., and computes a cor-
responding input based on the values of the state/output at these points, and
applies the computed input in the interval [ih, (i+1)h). That is, u(t) = g(y(ih)),

332 P. Ezudheen et al.

where ih represents the last sample time before t, and g is a state feedback con-
troller. Let us denote by xi, yi and ui the state, output and the input respectively,
at the i-th sample time ih, that is, xi = x(ih), yi = y(ih) and ui = u(ih) (in
fact, ui = u(t) for all t ∈ [ih, (i + 1)h)). By considering a constant input ui, and
the initial state x0 and state xi, and assuming Ac to be an invertible matrix, we
can rewrite Eqs. (3) and (2) as follows:

xi = eAchxi−1 + A−1
c (eAch − I)Bcui−1 (4)

yi = Ccxi (5)

2.3 Sampled-Data PID Control System

In this paper we focus on a state-feedback PID controller whose objective is to
drive the system output close to a set point y∗. A PID controller computes the
input ui based on the error ei between the observed output yi and the set point
y∗, an integral value ιi that accumulates the error, and a derivative value di

that measures the difference between successive errors. Hence, a PID controller
is specified as follows:

ui = KP ei + KIιi + KDdi (6)

where KP , KI and KD are scalar matrices referred to as the proportional, inte-
gral and derivative gains respectively, and ei, ιi and di are vectors corresponding
to the error, integral and derivative terms respectively, are defined as:

ei = y∗ − yi (7)
ιi = ιi−1 + ei (8)
di = ei − ei−1 (9)

Initial values e0, d0 and ι0 are taken to be 0. Note that once the initial state x0

is provided, all values of the variables xi, yi, ui, ei, ιi and di, for i = 0, 1, . . . are
uniquely defined. We refer to the system defined by Eqs. 4, 5, 6, 7, 8, and 9 as a
closed loop system Sc = (Ac, Bc, Cc,KP ,KI ,KD, y∗, x0), whose execution is the
sequence {xi}i∈N, and whose trace is the sequence {yi}i∈N. We refer to {ιi}i∈N

and {di}i∈N as the integral and derivative sequence of Sc respectively.

2.4 Discrete-Time Linear System

The behavior (execution and trace) of a closed loop system Sc can also be gen-
erated by a discrete-time linear system, which we present next.

Definition 1. A discrete-time system is of the form S = (A,B,C, y∗, z0). The
execution of the system S is the sequence {zi}i∈N, where for i ≥ 0, zi is induc-
tively defined as zi = Azi−1 + By∗. The trace of the system S is the sequence
{Czi}i∈N.

Verifying Band Convergence for Sampled Control Systems 333

The following proposition defines the discrete-time system S =
(A,B,C, y∗, z0) corresponding to the closed loop system Sc given by Eqs. 4, 5,
6, 7, 8, and 9.

Proposition 1. Consider a closed loop system Sc = (Ac, Bc, Cc,KP ,KI ,
KD, y∗, x0), and a discrete-time system S = (A,B,C, y∗, z0), where:

A =

⎡
⎣

A′ − B′(KP +KD)Cc B′KI −B′KD

Cc(B′(KP +KD)Cc − A′) I − CcB′KI CcB′KD

−Cc 0 0

⎤
⎦ , B =

⎡
⎣

B′(KP +KD)
I − CcB′(KP +KD)

I

⎤
⎦ ,

C =
[
Cc 0 0

]
, z0 =

⎡
⎣
x0

0
0

⎤
⎦ , A′ = eAch and B′ = A−1

c (eAch − I)Bc.

Let {xi}i∈N, {ιi}i∈N, and {ei−1}i∈N be the execution, integral and error
sequences of Sc, and {zi}i∈N the execution of S. Then the following hold:

– zi =
[
xi ιi ei−1

]
,

– The traces of Sc and S are the same; that is, Ccxi = Czi for all i.

Proof. The following derivation proves Proposition 1.

xi = A
′
xi−1 + B

′
ui−1 (10)

= A
′
xi−1 + B

′(KP ei−1 + KI ιi−1 + KDdi−1) (11)
= A

′
xi−1 + B

′(KP (y
∗ − yi−1) + KI ιi−1 + KD(y

∗ − yi−1 − ei−2)) (12)
= A

′
xi−1 + B

′(−KP yi−1 − KDyi−1 + KI ιi−1 − KDei−2 + KP y
∗ + KDy

∗) (13)
= A

′
xi−1 + B

′(−(KP + KD)yi−1 + KI ιi−1 − KDei−2 + (KP + KD)y
∗) (14)

= A
′
xi−1 − B

′(KP + KD)yi−1 + B
′
KI ιi−1 − B

′
KDei−2 + B

′(KP + KD)y
∗ (15)

= (A
′ − B

′(KP + KD)Cc)xi−1 + B
′
KI ιi−1 − B

′
KDei−2 + B

′(KP + KD)y
∗ (16)

ιi = ei + ιi−1 (17)
= −Ccxi + y

∗ + ιi−1 (18)
= −Cc((A

′ − B
′(KP + KD)Cc)xi−1 + B

′
KI ιi−1 − B

′
KDei−2 + B

′(KP + KD)y
∗) + y

∗ + ιi−1

(19)
= −Cc(A

′ − B
′(KP + KD)Cc)xi−1 − CcB

′
KI ιi−1 + CcB

′
KDei−2 − CcB

′(KP + KD)y
∗ + y

∗ + ιi−1

(20)
= Cc(B

′(KP + KD)Cc − A
′)xi−1 + (I − CcB

′
KI)ιi−1 + CcB

′
KDei−2 + (I − CcB

′(KP + KD))y
∗

(21)
ei−1 = −Ccxi−1 + y

∗ (22)

Equations (16), (21) and (22) essentially imply that zi = Azi−1 + By∗, where
zi =

[
xi ιi ei−1

]
.

Proposition 1 states that the trace of the closed loop system Sc is captured
exactly by the trace of the discrete system S, and the execution of Sc is captured
by the first component of the execution of S. Since S has fewer components than
Sc, we consider S for our analysis instead of Sc.

334 P. Ezudheen et al.

2.5 Band Convergence Property

We are interested in verifying a fundamental property of control systems, namely,
that the closed loop system “converges” to a given set-point, and remains close
to the set-point in an initial transient phase. We call this a “band convergence”
property. More precisely, we require that (1) the output of the system remains
within a Γ distance (called the transient error) from the set-point between the
rise time bound and the settling time bound, and (2) the output remains within a
smaller γ distance (called the settling error) from the set-point after the settling
time bound. Formally, a band convergence property is given by a tuple (Γ, γ, r, s),
where Γ > 0 denotes the transient error, γ > 0 the settling error, r ∈ N the
rise time, and s ∈ N the settling time. For ε > 0, let Bε(x) denote the set
{x′ | ‖x−x′‖ ≤ ε}, where ‖x′′‖ is the Euclidean norm of x′′. We say a discrete-time
system S = (A,B,C, y∗, z0) satisfies a band convergence property (Γ, γ, r, s) if
yi ∈ BΓ(y∗) ∀i ∈ [r, s], and yi ∈ Bγ(y∗) ∀i ∈ (s,∞), where {yi}i∈N is the trace
of S.

Problem 1. Given a discrete-time system S = (A,B,C, y∗, z0) and a band con-
vergence property (Γ, γ, r, s), check whether S satisfies band convergence with
respect to (Γ, γ, r, s).

2.6 Abstract System

Computing the execution and trace of a discrete system S obtained from the
given closed loop system Sc as given by Proposition 1 involves matrix exponen-
tials which are infeasible to compute exactly. Hence we cannot guarantee exact
computation of the matrices of S always. We propose the notion of an abstract
system that is intended to capture a “parameterized set” of linear systems and
define the corresponding band convergence problem. In the next subsection, we
show how to compute an abstract system Ŝ from Sc (or equivalently S) such
that the set of executions and traces of S are contained in the set of executions
and traces of Ŝ respectively.

For a matrix A, we use A(i, j) to refer to the entry at the i-th row
and j-th column of A. We write A > 0 to mean every element of A has
a positive value, and A ≤ B to mean A(i, j) ≤ B(i, j) for every i, j. For
a given set of matrices A1, A2, ..., An, the matrix operations min and max
are defined as min(A1, A2, ..., An)(i, j) = min(A1(i, j), A2(i, j), ..., An(i, j)) and
max(A1, A2, ..., An)(i, j) = max(A1(i, j), A2(i, j), ..., An(i, j)) for every i, j. For
a real value α, we use αm×n to denote a two dimension matrix such that every
element of this matrix is α, and we use Im to denote an identity matrix of
rank m.

Definition 2. An abstract system is of the form Ŝ = (Al, Au, Bl, Bu, C, y∗, z0),
where C, y∗ and z0 are as in Definition 1, Al and Au are matrices of similar
dimension to matrix A, and Bl and Bu are matrices of similar dimension to
matrix B of Definition 1. The execution of Ŝ is a sequence of sets of states
{Zi}i∈N given by Z0 = {z0}, and Zi = {Az + By∗ | z ∈ Zi−1, Al ≤ A ≤
Au, Bl ≤ B ≤ Bu}. The trace of Ŝ is given by {Yi}, where Yi = {Cz | z ∈ Zi}.

Verifying Band Convergence for Sampled Control Systems 335

Note that when Al = Au and Bl = Bu, Ŝ in fact represents a standard dis-
crete system, and the execution and trace will be a sequence of singleton sets,
representing the execution and trace, respectively, of the discrete system.

We say an abstract system Ŝ = (Al, Au, Bl, Bu, C, y∗, z0) with trace {Yi}i∈N

satisfies and a band convergence property (Γ, γ, r, s), if Yi ⊆ BΓ(y∗) ∀i ∈ [r, s],
and Yi ⊆ Bγ(y∗) ∀i ∈ (s,∞). Problem 1 can now be phrased analogously over
an abstract system as follows:

Problem 2. Given an abstract system Ŝ and a band convergence property
(Γ, γ, r, s), check whether Ŝ satisfies (Γ, γ, r, s).

We now formalize when an abstract system over-approximates a discrete
system, and how it preserves the band convergence property.

Proposition 2. Let S = (A,B,C, y∗, z0) be a discrete-time system and Ŝ =
(Al, Au, Bl, Bu, C, y∗, z0) be an abstract system such that Al ≤ A ≤ Au and
Bl ≤ B ≤ Bu. Let (Γ, γ, r, s) be the parameters of a band convergence property.
If Ŝ satisfies (Γ, γ, r, s), then S satisfies (Γ, γ, r, s).

If Al ≤ A ≤ Au and Bl ≤ B ≤ Bu, then we say that Ŝ over-approximates S.
The above proposition states that if the abstract system Ŝ over-approximates S
and the band convergence property is satisfied in the abstract system, then it
holds in the discrete system too. The proof follows from the fact that zi ∈ Zi, for
every i, where {zi}i∈N and {Zi}i∈N are the executions of S and Ŝ, respectively.

2.7 Computation of the Abstract System

Our objective in this section is to compute an abstract system Ŝ =
(Al, Au, Bl, Bu, Cc, y

∗, z0), which over-approximates the discrete system S =
(A,B,C, y∗, z0) which, in turn, is a simplified representation of the closed loop
system Sc as defined in Proposition 1. We essentially need to compute Al, Au, Bl

and Bu such that Al ≤ A ≤ Au and Bl ≤ B ≤ Bu. Proposition 2 then ensures
that if Ŝ satisfies the band convergence property (Γ, γ, r, s), then S satisfies it
as well. However, note that while we intend to over-approximate S, S is only
specified indirectly using Sc whose elements we assume are all rational.

In the rest of the section, we discuss the computation of Ŝ from Sc. We
observe from Proposition 1 that the matrices A, B and C are computed from
the matrices of Sc by computing matrix exponentials and inverses (at the base)
and then performing multiplications, additions and subtractions. While inverses,
multiplications, additions and subtractions of matrices with rational elements
can be computed precisely, the same is not true for exponentials. Our strategy is
to over-approximate a matrix exponential eM with two matrices Ml and Mu such
that Ml ≤ eM ≤ Mu. Though matrix exponentials are performed only on Ac in
Proposition 1, it is then used in the computation of A and B. Hence, we need to
provide a method to carry over the over-approximation of matrix exponentials
through addition, subtraction and multiplication to compute upper and lower
bounds on A and B. Proposition 3 shows how we can compute lower and upper

336 P. Ezudheen et al.

approximations of a matrix exponential, while Proposition 4 states how to carry
over the over-approximation through addition, subtraction and multiplication
operations.

Proposition 3 [7]. Let M be an m × n matrix. Suppose k is a posi-
tive integer and ε a positive real number such that ‖M‖/(k + 2) < 1 and(

‖M‖k+1

(k+1)!

)(

1
1−‖M‖/(k+2)

)

≤ ε. Then

Tk(M) − εm×n ≤ eM ≤ Tk(M) + εm×n.

Using this proposition we can obtain lower and upper approximations Nl

and Nu for eAch by choosing k such that ‖Ach‖/(k + 2) < 1 and ε =(
‖Ach‖k+1

(k+1)!

)(

1
1−‖Ach‖/(k+2)

)

, and taking Nl = Tk(Ach) − εn×n and Nu =

Tk(Ach) + εn×n.
Our next objective is to over-approximate A+B, A−B and AB given over-

approximations of A and B. Broadly, the upper and lower bounds correspond to
performing the corresponding interval arithmetic operations on interval matrices.
More precisely, given intervals [a, b] and [c, d], the interval arithmetic operations
corresponding to addition, subtraction and multiplication are given by [a, b] +
[c, d] = [a+ c, b+ d], [a, b]− [c, d] = [a− d, b − c] and [a, b] ∗ [c, d] = [min(a ∗ c, a ∗
d, b ∗ c, b ∗ d),max(a ∗ c, a ∗ d, b ∗ c, b ∗ d)]. Given two matrices A′ and B′, where
each element is an interval, A′ + B′, A′ − B′ and A′B′ are defined analogous
to that of real matrices, where the addition, subtraction and multiplication are
now replaced by the corresponding interval arithmetic operations as defined
above. Given matrices Ml ≤ Mu, let 〈Ml,Mu〉 denote the matrix whose (i, j)-
th element is the interval [Ml(i, j),Mu(i, j)]. Given a matrix M ′ with bounded
interval entries, [M ′]L and [M ′]U are matrices whose entries correspond to the
left and the right end points of the corresponding intervals in M ′.

Proposition 4. Given matrices Al, A,Au and Bl, B,Bu, if Al ≤ A ≤ Au and
Bl ≤ B ≤ Bu then

(a) [〈Al, Au〉〈Bl, Bu〉]L ≤ AB ≤ [〈Al, Au〉〈Bl, Bu〉]U
(b) [〈Al, Au〉 + 〈Bl, Bu〉]L ≤ A + B ≤ [〈Al, Au〉 + 〈Bl, Bu〉]U
(c) [〈Al, Au〉 − 〈Bl, Bu〉]L ≤ A − B ≤ [〈Al, Au〉 − 〈Bl, Bu〉]U
We observe that the last two inequalities simplify to Al +Bl ≤ A+B ≤ Au +Bu

and Al − Bu ≤ A − B ≤ Au − Bl.

Proposition 5. Given m× n matrices Al, A,Au and n× r matrices Bl, B,Bu

such that Al ≤ A ≤ Au and Bl ≤ B ≤ Bu, we can compute m× r matrices
[〈Al, Au〉〈Bl, Bu〉]L and [〈Al, Au〉〈Bl, Bu〉]U as follows.

1. [〈Al, Au〉〈Bl, Bu〉]L(i, j) =
∑n

k=1 min(Al(i, k) ∗ Bl(k, j), Al(i, k) ∗ Bu(k, j),
Au(i, k) ∗ Bl(k, j), Au(i, k) ∗ Bu(k, j))

Verifying Band Convergence for Sampled Control Systems 337

2. [〈Al, Au〉〈Bl, Bu〉]U (i, j) =
∑n

k=1 max(Al(i, k) ∗ Bl(k, j), Al(i, k) ∗ Bu(k, j),
Au(i, k) ∗ Bl(k, j), Au(i, k) ∗ Bu(k, j)).

Using the approximations Nl and Nu for eAch we can use Propositions 4 and 5
to compute lower and upper approximations Al and Au for A, and Bl and Bu

for B.

3 Example: Cruise Control System

We illustrate our problem using a cruise control in Fig. 2, listed as one of the
examples of control systems in [8]. Other examples are used as benchmarks in
Sect. 6. The plant here is the car along with its rolling resistance and air drag
which are proportional to the speed of the car. A PI controller periodically
senses the speed of the car and controls the throttle angle in order to maintain
the desired speed.

Fig. 2. Cruise control system

The dynamic behavior of the plant is represented using the following equations.
[
v̇
]

=
[−b

m

] [
v
]
+

[
1
m

] [
u
]
, v0 = 0 (23)

[
y
]

=
[
1
] [

v
]

(24)

The control input to the plant is computed using the equation

[
u
]

=
[
KP

] [
e
]
+

[
KI

] [
ι
]

(25)

where m = 1000 is the mass of the car, b = 50 is the friction constant, KP =
800, KI = 40 and v is the speed of the car. The parameters corresponding to
Problem 1 are y∗ = 120, r = 5, s = 20, γ = 2.4 and Γ = 12.

The components of the corresponding discrete-time system, S =
(A,B,C, y∗, z0) are given below. We have taken a truncated value of eAch.

A =

⎡
⎣

0.1709 0.0390165 0
−0.1709 0.960984 0

−1 0 0

⎤
⎦ , B =

⎡
⎣

0.780329
0.219671

1

⎤
⎦ , C =

⎡
⎣

1
0
0

⎤
⎦ and z0 =

⎡
⎣

0
0
0

⎤
⎦

338 P. Ezudheen et al.

4 Box Invariants

An invariant for a system is a set of states of the system such that the next step
successor of every state in the set is also inside the set. It ensures that if a system
starts within an invariant then all future states of the execution starting from
that state also remain within the invariant. The approach we will propose for
verifying that a system satisfies a band convergence property essentially looks for
a “box-shaped” invariant for the system whose outputs are within the allowed γ-
band of the set-point, and to see if the system eventually gets into this invariant
while satisfying the transient requirements upto this point. More formally, we
define an invariant for an abstract system as follows.

Definition 3. Let Ŝ = (Al, Au, Bl, Bu, C, y∗, z0) be an abstract system. A set of
states Z is an invariant for Ŝ if for every z,A,B such that z ∈ Z, Al ≤ A ≤ Au

and Bl ≤ B ≤ Bu, we have Az + By∗ ∈ Z.

We say an invariant Z for Ŝ is an adequate invariant for Ŝ with respect to a
settling error γ, if the output of the states in Z are contained in the set Bγ(y∗);
that is for each z ∈ Z, we have Cz ∈ Bγ(y∗).

A box invariant for Ŝ is an invariant for Ŝ which is specified by a pair of state
vectors zl and zu, representing the set of states {z | zl ≤ z ≤ zu}. We will use
the notation [zl, zu] to denote such a “box”.

In the rest of this paper we assume that the discrete-time system has a unique
equilibrium point, which corresponds to (I−A) being an invertible matrix, where
I is the identity matrix. An equilibrium point is a state of the system such that
the execution of the system from that state remains in that state. In particular,
if a system is in an equilibrium state, the next state of the system is the same
as the current state.

Definition 4. Let S = (A,B,C, y∗, z0) be a discrete-time system. Then ze is
an equilibrium point of S if Aze + By∗ = ze. If (I − A) is invertible, then the
unique equilibrium point is ze = (I − A)−1By∗.

Next we introduce a theorem which gives a necessary and sufficient condition
for a box to be an invariant of an abstract system. The theorem reduces the
invariant checking problem to checking the satisfiability of a logical formula.

Theorem 1. Let Ŝ = (Al, Au, Bl, Bu, C, y∗, z0) be an abstract system, and zl, zu

be state vectors. Consider the conditions C1 and C2 below:

C1 : [〈Al, Au〉〈zl, zu〉]U + [〈Bl, Bu〉〈y∗, y∗〉]U ≤ zu

C2 : zl ≤ [〈Al, Au〉〈zl, zu〉]L + [〈Bl, Bu〉〈y∗, y∗〉]L.

Then [zl, zu] is an invariant for Ŝ iff the conditions C1 and C2 hold. �
In a discrete system, where essentially Al = Au and Bl = Bu, Theorem 1

provides an efficient way to check if some box centered around the equilibrium
point is an invariant for the system. In the corollary below, for a vector p we
use the notation −p to mean the vector p′ of the same dimension as p with
p′[i] = −p[i].

Verifying Band Convergence for Sampled Control Systems 339

Corollary 1. Let S = (A,B,C, y∗, z0) be a discrete-time system with dimen-
sions as in Definition 1, such that (I − A) is invertible. Then for any n × 1
vector p > 0 the following conditions are equivalent:

(a) −p ≤ [〈A,A〉〈−p, p〉]L and [〈A,A〉〈−p, p〉]U ≤ p
(b) [ze − p, ze + p] is an invariant of S.

Let A be an m×n matrix. The infinity norm of A, denoted ‖A‖∞, is defined
to be the maximum of the sums of the absolute values of the rows of A. More
precisely, ‖A‖∞ = maxm

i=1

∑n
j=1 |A(i, j)|. Note that when ‖A‖∞ ≤ 1 the condi-

tion −p ≤ [〈A,A〉〈−p, p〉]L and [〈A,A〉〈−p, p〉]U ≤ p introduced in Corollary 1
will be satisfied by any p > 0.

4.1 Computation of an Adequate Box Invariant

Theorem 1 gives us a necessary and sufficient condition for a box [zl, zu] to be
an invariant of an abstract system Ŝ. This constraint is of the form

[〈Al, Au〉〈zl, zu〉]U +[〈Bl, Bu〉〈y∗, y∗〉]U ≤ zu)∧ (zl ≤ [〈Al, Au〉〈zl, zu〉]L+[〈Bl, Bu〉〈y∗, y∗〉]L,

where zl, zu are free variables (more precisely vectors of variables). One can add
a conjunct

y∗ − γ ≤ [〈C,C〉〈zl, zu〉]L ∧ [〈C,C〉〈zl, zu〉]U ≤ y∗ + γ

which asks for the invariant to be adequate w.r.t. a given tolerance γ. One can
now ask a solver like Z3 to find satisfying valuations for zl and zu. We note
here that we would like to maximize the size of the box [zl, zu] to reduce the
number of iterations in the final verification algorithm (Algorithm2 in the next
section). Hence we could also ask the solver to optimize the values of zl and
zu accordingly. As we report in our experimental results, this approach does
reasonably well on small dimension systems, but does not scale well for systems
with larger dimension.

In order to improve scalability we investigate a fixed point computation based
algorithm, which uses a combination of bounded-precision numerical computa-
tion and precise constraint solving. The general fixed point algorithm is described
in Algorithm 1. The algorithm takes three arguments: an abstract system Ŝ, an
initial box [zl0, zu0], and a settling error (γ). The algorithm returns a struc-
ture comprising a status bit (successfully computed the invariant or not) and an
adequate box invariant (if successfully computed).

The algorithm begins with the initial box, and iteratively computes the “clo-
sure” of this set of states under a single step of the abstract system. Lines 5
and 6 compute the lower and upper bounds respectively, of a single closure step.
The algorithm will terminate successfully (status bit b = True) if the lower and
upper bounds remain unchanged (Line 13). The algorithm will terminate unsuc-
cessfully (status bit b = False) if the number of iterations exceed the time-out
(TO) or the lower or upper bounds exceed the settling error (Line 8).

340 P. Ezudheen et al.

Algorithm 1. Computation of an adequate invariant for an abstract system
Require: Ŝ = (Al, Au, Bl, Bu, C, y∗, z0), [zl0, zu0], γ
Ensure: Return status bit b and box [zl, zu]. Whenever b = True, [zl, zu] is an ade-

quate invariant for Ŝ.
1: count ← 0
2: zl, wl ← zl0
3: zu, wu ← zu0
4: repeat
5: zl ← min (zl, wl)
6: zu ← max (zu, wu)
7: if [〈C, C〉〈zl, zu〉]L < y∗ − γ OR y∗ + γ < [〈C, C〉〈zl, zu〉]U OR count > TO

then
8: return False, [zl, zu]

9: wu ← [〈Al, Au〉〈zl, zu〉]U + [〈Bl, Bu〉〈y∗, y∗〉]U
10: wl ← [〈Al, Au〉〈zl, zu〉]L + [〈Bl, Bu〉〈y∗, y∗〉]L
11: count ← count + 1
12: until zl ≤ wl AND wu ≤ zu
13: return True, [zl, zu]

We would ideally like to implement Algorithm 1 with precise numerical com-
putation. A naive implementation in a programming language like C++ would
use bounded precision floating point numbers. While efficient, with such an
implementation the results of the algorithm may not be valid. We get around
this problem by storing the values of the variables like wl and wu as symbolic
expressions rather than evaluated values, and using a solver to evaluate con-
ditions over these expressions. We call this a symbolic implementation of the
algorithm.

However, as one may expect, such a symbolic execution leads to expressions
whose size increases exponentially with the number of iterations of the loop,
and at some point the solver will not be able to handle the queries. In order to
alleviate this problem, we first run a numerical implementation of the algorithm
in C++ to come up with a (potentially invalid) box invariant. We then run the
symbolic version of the algorithm, using this invariant as the initial box. This
two-phase approach, by combining the speed of numerical evaluation with the
precision of symbolic evaluation speeds up the invariant computation without
compromising on numerical correctness.

For the cruise control example we were able to compute an adequate box
invariant

[[117.6 139.488 −2.4]T , [122.4 160.512 2.4]T]

using this algorithm, with an initial box of the form [[120, 150, 0]T , [120,
150, 0]T], obtained as described in Sect. 6.

Verifying Band Convergence for Sampled Control Systems 341

5 Verification of Band Convergence Using Box Invariants

We now describe our main verification algorithm, Algorithm2, for checking
band convergence of an abstract system (Problem 2). The algorithm is given
an abstract system and an adequate box invariant for it, and all it does is to
“execute” the system one step at a time, till it finds the abstract state is con-
tained in the given invariant, while ensuring that until this point the system
state does not violate the transient band requirements.

Algorithm 2. Algorithm for checking band convergence for an abstract system
Require: Abstract system Ŝ = (Al, Au, Bl, Bu, C, y∗, z0), band convergence property

(γ, Γ, r, s), adequate invariant [zl, zu] for Ŝ w.r.t. γ.
Ensure: Whenever the algorithm returns True, Ŝ satisfies the property (γ, Γ, r, s).
1: i ← 0
2: wl ← z0
3: wu ← z0
4: while True do
5: yl ← [〈C, C〉〈wl, wu〉]L
6: yu ← [〈C, C〉〈wl, wu〉]U
7: if r ≤ i ≤ s AND (‖yl − y∗‖ > Γ OR ‖yu − y∗‖ > Γ) then
8: return Unknown
9: if i > s AND (‖yl − y∗‖ > γ OR ‖yu − y∗‖ > γ) then

10: return Unknown
11: if i > s AND [wl, wu] ⊆ [zl, zu] then
12: return True
13: vl ← [〈Al, Au〉〈wl, wu〉]L + [〈Bl, Bu〉〈y∗, y∗〉]L
14: vu ← [〈Al, Au〉〈wl, wu〉]U + [〈Bl, Bu〉〈y∗, y∗〉]U
15: wl ← vl
16: wu ← vu
17: i ← i + 1

The algorithm takes three arguments; an abstract system Ŝ, an adequate
invariant [zl, zu], and a band convergence property (γ,Γ, r, s). Whenever the
algorithm returns True, the system Ŝ satisfies the given band convergence prop-
erty. The algorithm executes the abstract system from the initial state z0 onwards
and verifies three logical formulas corresponding to the band convergence prop-
erties. We note that similar to Algorithm 1, this algorithm must be implemented
symbolically using an SMT solver, to ensure precision.

For a discrete-time system, where essentially Al = Au and Bl = Bu, we
can take an adequate box invariant of the form [ze − p, ze + p] (where ze is
the equilibrium point of the system), and Algorithm2 will provide an efficient
solution for Problem1. We note that there are many sampled-data PID control
systems which can be encoded into linear discrete-time systems without matrix
exponentials and the need for representation in the form of abstract systems.
For this specific subclass of systems, this version of Algorithm 2 can be useful.

342 P. Ezudheen et al.

6 Implementation and Results

We have implemented the entire verification procedure discussed in the sections
above. Our implementation has two different modes of operations. In the first
mode of operation, the tool verifies a closed loop system Sc. In the second mode
of operation it verifies a discrete-time system S. As discussed in the Sect. 5 there
are a few Simulink models which can be encoded into discrete-time systems
without need for abstraction. The second mode of operation is used to verify
these models.

As shown in the Fig. 3 our verification tool has five major components. The
first component named Generate Abstract System when given a closed loop sys-
tem Sc generates an abstract system Ŝ using the procedure outlined in Sect. 2.7.
We chose a uniform value of k = 20 for all our benchmarks.

The second component named Generate Approximate System when given Sc,
generates an approximate discrete-time system S = (A,B,C, y∗, z0) using the
procedure introduced in the Sect. 2.4 and a truncated value of eAch. The third
component named Compute Equilibrium Point ; computes an equilibrium point
ze for the approximate discrete-time system, which can be used as an initial box
for Algorithm 1.

The fourth component named Compute Adequate Box Invariant has two
sub-components. The first sub component implementats the constraint solving
approach for finding a maximal adequate box invariant for an abstract system,
using the Z3 solver, and we call this sub-component “Symbolic”. The second sub-
component is implementation of the Algorithm 1 which computes an adequate
box invariant for an abstract system, and we it “Numerical+Symbolic”. A note
about the initial box we use for Algorithm1: We use the equilibrium point ze

corresponding to approximate discrete-time system (generated by the second and
third components above) to generate an initial box [ze, ze] for Algorithm 1. In
case both the sub components successfully compute adequate box invariants, we
choose the maximal adequate box invariant.

Finally, the fifth component Verification of Abstract System implements
Algorithm 2. In the second mode of operation this component will be config-
ured to verify a discrete-time system.

6.1 Benchmarks

Our benchmark suite consists of six linear dynamical systems with varying
dimensions and system properties, listed in the Simulink Examples website main-
tained by University of Michigan [8].

A few of the examples have singular state matrices and a naive implemen-
tation cannot verify these systems. In order to overcome this we have alterna-
tively encoded few of the examples with non-singular matrices. For example the
dynamics of the Aircraft Pitch with singular state matrix is given as:

ẋ = Acx + Bcu and y = Ccx where,

Verifying Band Convergence for Sampled Control Systems 343

MAX

Generate Abstract System

Compute Equilibrium Point

Generate Approximate System

Compute Adequate Box Invariant

Successfully verified

Unable to verify

Symbolic

Numeric+Symbolic

γ

Sc

〈γ, Γ, r, s〉

Failed to compute an invariant

Sc, 〈γ, Γ, r, s〉

Verify Abstract System
[zl, zu]Ŝ

Rise-Time/Settling-Time/
TO violated

Fig. 3. Architecture of the verification tool

x =

⎡

⎣
α
q
θ

⎤

⎦ , Ac =

⎡

⎣
−0.313 56.7 0
−0.0139 −0.426 0

0 56.7 0

⎤

⎦ , Bc =

⎡

⎣
0.232
0.0203

0

⎤

⎦ and Cc =
[
0 0 1

]

We have encoded this dynamics without singular state matrices, while pre-
serving the behaviour, as follows:

ẋ = Acx + Bcu and ẏ = Ccx where,

x =
[
α
q

]

, Ac =
[−0.313 56.7
−0.0139 −0.426

]

, Bc =
[

0.232
0.0203

]

and Cc =
[
0 56.7

]

Three of the models (DC Motor Position, Inverted Pendulum, Aircraft
Pitch) have been encoded similarly. Two of the models (Cruise Control, DC
Motor Speed) have non-singular state matrices. One of the models (Ball & Beam)
has a singular and sparse state matrix and its dynamics is given as:

ẋ = Acx + Bcu and y = Ccx where,

x =

⎡

⎢
⎢
⎣

Υ

Υ̇
α
α̇

⎤

⎥
⎥
⎦ , Ac =

⎡

⎢
⎢
⎣

0 1 0 0
0 0 7 0
0 0 0 1
0 0 0 0

⎤

⎥
⎥
⎦ , Bc =

⎡

⎢
⎢
⎣

0
0
0
1

⎤

⎥
⎥
⎦ and Cc =

[
1 0 0 0

]

We have manually computed the discrete-time representation corresponding
to this model as follows:

xi = A′xi−1 + B′ui−1 and yi = Ccxi where,

xi =
[
Υi

αi

]

, A′ =
[
0 0
0 0

]

, B′ =
[

0.005
0.0000291666667

]

, Cc =
[
1 0

]
and h =

[
0.1 0
0 0.1

]

We note that this discretization process does not introduce any matrix expo-
nential, and we can use the second mode of our implementation to verify this
system.

344 P. Ezudheen et al.

Most of the examples have given band convergence parameters, as a percent-
age of the set-point. For a few that did not mention them, we took Γ = 10%y∗

and γ = 2%y∗.

6.2 Experimental Results

Our experimental setup comprises Ubuntu 18.04 LTS on a Intel Core i3-6006U
CPU @2.00 GHz× 4 Laptop. We use GCC v7.4.0 and Z3 v4.8.0. We have imple-
mented our algorithms using C++ for numerical computation and Z3:C++ APIs
to handle symbolic computation. We have implemented a few extra layers of APIs
to incorporate unbounded matrices and symbolic execution of matrix operations.

Table 1. Experimental Results. Times shown are in seconds.

Simulink

model

Symbolic Numerical+Symbolic

Invariant

computation

(Z3

optimization)

Verification

(Algo 2)

Total Invariant

computation

(Num+Symbolic

Algo 1)

Verification

(Algo 2)

Total

Cruise

control

0.85 5.65 6.50 0.19 96.94 97.13

DC motor

speed

25.04 1.21 26.25 0.19 3.36 3.55

Ball &

beam

Error - - 0.25 0.23 0.48

DC motor

position

93.73 TO - TO - -

Inverted

pendulum

No box inv

exists

- - Unknown - -

Aircraft

pitch

40.37 TO - 0.46 TO -

3D 538.61 9.35 547.96 0.26 20.96 21.22

4D TO - - 0.30 0.42 0.72

A summary of our analysis is given in Table 1. The first column shows the
list of benchmark programs. The first six are the Simulink models from [8] men-
tioned above. The last two are synthetic examples we came up with to evaluate
our algorithms on larger dimension systems. The next three columns show the
performance of our “Symbolic” approach which uses the constraint solving and
optimization approach to find an adequate box invariant. The first of these
columns shows the time taken for the solver to come up with such an invariant,
the second shows the time taken by Algorithm 2 with this invariant as input,
and the third column shows the sum of the the two times. The next set of three
columns shows similar details, but with using the “Numerical+Symbolic” version
of Algorithm 1. In the table, “Error” means that the solver was unable to come
up with a valid invariant. “No box inv exists” means that the solver was able

Verifying Band Convergence for Sampled Control Systems 345

to conclude that no solution exists for the given constraints. “TO” represents a
time out after 600 s. A “-” entry indicates that time taken is not applicable in
the absence of an adequate invariant in the first step. “Unknown” means that
Algorithm 2 terminates unsuccessfully before time out.

Observations. We note that while we could verify only 50% of the Simulink
models, we could find adequate box invariants for 5 out of the 6 models. The
repeated symbolic execution till we reach the invariant in the verification algo-
rithm consumes the majority of the verification time, and speeding up this step
using other techniques will be helpful. We also note that the invariant compu-
tation step using Algorithm1 is faster than Z3 in most cases. We guess that
Algorithm 1 benefits from knowledge about the shape of the invariant and the
symmetry of the invariant around the approximate equilibrium point. Finally,
since the Symbolic approach computes the maximal box invariant, the verifica-
tion algorithm runs faster than with an invariant computed using the Algorithm1
which may not be maximal. Symbolic execution in the verification algorithm
takes more number of steps to reach a narrow invariant than a wider one.

7 Related Work

We group related work according to two closely related properties, namely tem-
poral logics and stability, and verification of sampled control systems using rela-
tional abstractions. Our problem is also related to bounded model-checking and
invariant generation. We discuss all of these briefly.

Temporal Logic. Settling time properties can be naturally expressed in Signal
Temporal Logic (STL) [1,2]. While there has been extensive work on monitoring
[3,4], trace generation [5], and model-checking over reach sequences [6], for STL
properties, the verification problem for STL properties is undecidable for most
system models, including discrete systems. Belta, Yordanov and others [9,10]
address the problem of model-checking and controller synthesis for classical LTL
specifications. They use quotienting techniques to first obtain a finite discrete
system and then use standard LTL model-checking. However, in general such
quotienting techniques are not guaranteed to terminate.

Stability. Blondel et al. [11,12] study decidability of the problem of global con-
vergence properties like stability for discrete dynamical systems. In particular
the stability problem for saturated linear discrete dynamical systems is shown
to be undecidable. There is a great deal of work on using Lyapunov functions for
proving stability of systems and we refer the reader to the surveys [13–15]. Dug-
girala et al. [16,17] and Prabhakar et al. [18,19] consider abstraction refinement
and model-checking based techniques for proving Lyapunov and asymptotic sta-
bility of hybrid systems. Band convergence properties cannot directly be phrased
in terms of stability, though this is an interesting future direction to investigate.
Podelski and Wagner study region-based stability [20–22] where one requires
that trajectories starting from an initial state eventually enter a target region.

346 P. Ezudheen et al.

However settling time properties cannot readily be phrased in terms of region
stability due to the multiple bands and the bounded times to enter the bands.
Moreover their techniques rely on a sufficient condition involving the target
region being a strong attractor which does not necessarily hold in our case.

Sampled Data Control System Verification. In closely related work, Zutshi,
Sankarnarayanan and Tiwari [23] address the problem of verifying safety proper-
ties of sampled data control systems. The last two authors also study relational
invariants for dynamical and hybrid systems [24], with the aim of verifying safety
properties. Both these works use relational abstractions to construct discrete
transition systems which are then analyzed using model-checkers like SAL [25].
Our work differs from theirs in a couple of ways. To begin with the proper-
ties we consider require time-varying safety regions rather than a single safety
invariant. Secondly, while the above approach is limited to using techniques like
k-induction to check safety with respect to the given property, we focus on find-
ing adequate invariants to prove band convergence. Finally, there is work on
checking stability of digital controller implementations. For instance Bessa et al.
[26] consider issues like finite word length (FWL), uncertainty in sampling, delay
etc, where the controller is assumed to be asymptotically stable, and they use
bounded model-checking to verify that the implementation is internally stable.
In contrast we are addressing the correctness of the mathematical model of the
closed loop system.

Bounded Model-Checking and Invariant Generation. Our approach to band con-
vergence essentially consists of two steps, synthesizing an invariant and check-
ing that certain conditions hold until the invariant is reached. The latter can
be checked by a solving a series of bounded-model checking problems, which
can solve the problem of whether a set is reach within a given number of steps.
Bounded model-checking [27–29] has been investigated for dynamical and hybrid
systems using bounded error approximation techniques and reducing to delta-
decision procedures of SMT solver dReach,dReal,gao2013dreal. Soonho et al. [30]
introduced a bounded reachability analysis tool for nonlinear hybrid systems
named, dReach. It encodes bounded reachability problems of hybrid systems to
first-order formulas over real numbers, which are solved using the delta-decision
procedures of the SMT solver dReal [31]. However, repeated calls to a BMC
algorithm is inefficient compared to iterative reach computation proposed in the
paper.

8 Conclusion

In this paper we have investigated an approach based on finding adequate induc-
tive invariants to verify important band convergence properties, like transient
and settling time properties, of control systems. We also showed how to account
for numerical errors in the discretization procedure, by providing a sufficient
condition for verification of an abstract system that over-approximates all the
exact behaviors of the closed loop system.

Verifying Band Convergence for Sampled Control Systems 347

In future work we plan to explore the use of Lyapunov functions that are tra-
ditionally used for proving stability properties, for the band convergence prob-
lem. We also intend to explore methods for incorporating inter-sample behaviors
as well as more general dynamics of digitally controlled systems.

Acknowledgements. The authors acknowledge support from the Royal Academy of
Engineering, UK, and the Robert Bosch Center for Cyber-Physical Systems, India.
Pavithra Prabhakar was partially supported by NSF CAREER Award No. 1552668
and ONR YIP Award No. N000141712577.

References

1. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In:
Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT -2004. LNCS, vol. 3253, pp.
152–166. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30206-
3 12

2. Donzé, A., Maler, O., Bartocci, E., Nickovic, D., Grosu, R., Smolka, S.: On tem-
poral logic and signal processing. In: Chakraborty, S., Mukund, M. (eds.) ATVA
2012. LNCS, pp. 92–106. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-33386-6 9

3. Fainekos, G.E., Pappas, G.J.: Robustness of temporal logic specifications for
continuous-time signals. Theor. Comput. Sci. 410(42), 4262–4291 (2009)

4. Deshmukh, J.V., Donzé, A., Ghosh, S., Jin, X., Juniwal, G., Seshia, S.A.: Robust
online monitoring of signal temporal logic. Formal Meth. Syst. Des. 51(1), 5–30
(2017). https://doi.org/10.1007/s10703-017-0286-7

5. Prabhakar, P., Lal, R., Kapinski, J.: Automatic trace generation for signal tem-
poral logic. In: Proceedings of the IEEE Real-Time Systems Symposium (RTSS),
Nashville, USA, December 2018, pp. 208–217. IEEE Computer Society (2018)

6. Roehm, H., Oehlerking, J., Heinz, T., Althoff, M.: STL model checking of contin-
uous and hybrid systems. In: Artho, C., Legay, A., Peled, D. (eds.) ATVA 2016.
LNCS, vol. 9938, pp. 412–427. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-46520-3 26

7. Moler, C., Van Loan, C.: Nineteen dubious ways to compute the exponential of a
matrix, twenty-five years later. SIAM Rev. 45(1), 3–49 (2003)

8. Control Tutorials for MATLAB and Simulink. http://ctms.engin.umich.edu/
CTMS/

9. Yordanov, B., Belta, C.: Formal analysis of discrete-time piecewise affine systems.
IEEE Trans. Automat. Contr. 55(12), 2834–2840 (2010)

10. Yordanov, B., Tumova, J., Cerna, I., Barnat, J., Belta, C.: Temporal logic control
of discrete-time piecewise affine systems. IEEE Trans. Automat. Contr. 57(6),
1491–1504 (2012)

11. Blondel, V.D., Tsitsiklis, J.N.: Complexity of stability and controllability of ele-
mentary hybrid systems. Automatica 35(3), 479–489 (1999)

12. Blondel, V.D., Bournez, O., Koiran, P., Tsitsiklis, J.N.: The stability of saturated
linear dynamical systems is undecidable. J. Comput. Syst. Sci. 62(3), 442–462
(2001)

13. Branicky, M.S.: Multiple Lyapunov functions and other analysis tools for switched
and hybrid systems. IEEE Trans. Automat. Contr. 43(4), 3–17 (1998)

https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-642-33386-6_9
https://doi.org/10.1007/978-3-642-33386-6_9
https://doi.org/10.1007/s10703-017-0286-7
https://doi.org/10.1007/978-3-319-46520-3_26
https://doi.org/10.1007/978-3-319-46520-3_26
http://ctms.engin.umich.edu/CTMS/
http://ctms.engin.umich.edu/CTMS/

348 P. Ezudheen et al.

14. Davrazos, G., Koussoulas, N.T.: A review of stability results for switched and
hybrid systems. In: Proceedings of the Mediterranean Conference on Control (2001)

15. Lin, H., Antsaklis, P.J.: Stability and stabilizability of switched linear systems: a
survey of recent results. IEEE Trans. Automat. Contr. 54(2), 308–322 (2009)

16. Duggirala, P.S., Mitra, S.: Abstraction refinement for stability. In: Proceedings of
the IEEE/ACM Conference on Cyber-Physical Systems (ICCPS), Chicago, USA,
April 2011, pp. 22–31. IEEE Computer Society (2011)

17. Duggirala, P.S., Mitra, S.: Lyapunov abstractions for inevitability of hybrid sys-
tems. In: Proceedings of the 15th Conference on Hybrid Systems: Computation
and Control (HSCC), Beijing, China, April 2012, pp. 115–124. ACM (2012)

18. Prabhakar, P., Garcia Soto, M.: Abstraction based model-checking of stability of
hybrid systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp.
280–295. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-
8 20

19. Prabhakar, P., Soto, M.G.: Counterexample guided abstraction refinement for sta-
bility analysis. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9779, pp.
495–512. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41528-4 27

20. Podelski, A., Wagner, S.: Model checking of hybrid systems: from reachabil-
ity towards stability. In: Hespanha, J.P., Tiwari, A. (eds.) HSCC 2006. LNCS,
vol. 3927, pp. 507–521. Springer, Heidelberg (2006). https://doi.org/10.1007/
11730637 38

21. Podelski, A., Wagner, S.: Region stability proofs for hybrid systems. In: Raskin,
J.-F., Thiagarajan, P.S. (eds.) FORMATS 2007. LNCS, vol. 4763, pp. 320–335.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75454-1 23

22. Podelski, A., Wagner, S.: A sound and complete proof rule for region stability of
hybrid systems. In: Bemporad, A., Bicchi, A., Buttazzo, G. (eds.) HSCC 2007.
LNCS, vol. 4416, pp. 750–753. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-71493-4 76

23. Zutshi, A., Sankaranarayanan, S., Tiwari, A.: Timed relational abstractions for
sampled data control systems. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012.
LNCS, vol. 7358, pp. 343–361. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-31424-7 27

24. Sankaranarayanan, S., Tiwari, A.: Relational abstractions for continuous and
hybrid systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol.
6806, pp. 686–702. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-22110-1 56

25. Rushby, J., Lincoln, P., Owre, S., Shankar, N., Tiwari, A.: Symbolic Analysis Lab-
oratory (SAL), SRI, California. http://www.csl.sri.com/projects/sal/

26. Bessa, I., Ismail, H., Palhares, R.M., Cordeiro, L.C., Filho, J.E.C.: Formal non-
fragile stability verification of digital control systems with uncertainty. IEEE Trans.
Comput. 66(3), 545–552 (2017)

27. Lal, R., Prabhakar, P.: Bounded error flowpipe computation of parameterized linear
systems. In: 13th International Conference on Embedded Software (EMSOFT)
(2015)

28. Lal, R., Prabhakar, P.: Safety analysis using compositional bounded error approxi-
mations of communicating hybrid systems. In: Proceedings of the 56th IEEE Con-
ference on Decision and Control (CDC) (2017)

https://doi.org/10.1007/978-3-642-39799-8_20
https://doi.org/10.1007/978-3-642-39799-8_20
https://doi.org/10.1007/978-3-319-41528-4_27
https://doi.org/10.1007/11730637_38
https://doi.org/10.1007/11730637_38
https://doi.org/10.1007/978-3-540-75454-1_23
https://doi.org/10.1007/978-3-540-71493-4_76
https://doi.org/10.1007/978-3-540-71493-4_76
https://doi.org/10.1007/978-3-642-31424-7_27
https://doi.org/10.1007/978-3-642-31424-7_27
https://doi.org/10.1007/978-3-642-22110-1_56
https://doi.org/10.1007/978-3-642-22110-1_56
http://www.csl.sri.com/projects/sal/

Verifying Band Convergence for Sampled Control Systems 349

29. Lal, R., Prabhakar, P.: Compositional construction of bounded error over-
approximations of acyclic interconnected continuous dynamical systems. In: Pro-
ceedings of the 17th ACM-IEEE International Conference on Formal Methods and
Models for System Design, MEMOCODE 2019, La Jolla, CA, USA, 9–11 October
2019, pp. 12:1–12:5 (2019)

30. Kong, S., Gao, S., Chen, W., Clarke, E.: dReach: δ-reachability analysis for hybrid
systems. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 200–
205. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0 15

31. Gao, S., Kong, S., Clarke, E.M.: dReal: an SMT solver for nonlinear theories over
the reals. In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol. 7898, pp. 208–
214. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38574-2 14

https://doi.org/10.1007/978-3-662-46681-0_15
https://doi.org/10.1007/978-3-642-38574-2_14

Autonomy and Other Applications

Heterogeneous Verification of an
Autonomous Curiosity Rover

Rafael C. Cardoso(B), Marie Farrell, Matt Luckcuck, Angelo Ferrando,
and Michael Fisher

Department of Computer Science, University of Liverpool, Liverpool L69 3BX, UK
{rafael.cardoso,marie.farrell,m.luckcuck,
angelo.ferrando,mfisher}@liverpool.ac.uk

Abstract. The Curiosity rover is one of the most complex systems suc-
cessfully deployed in a planetary exploration mission to date. It was sent
by NASA to explore the surface of Mars and to identify potential signs
of life. Even though it has limited autonomy on-board, most of its deci-
sions are made by the ground control team. This hinders the speed at
which the Curiosity reacts to its environment, due to the communica-
tion delays between Earth and Mars. Depending on the orbital position
of both planets, it can take 4–24 min for a message to be transmitted
between Earth and Mars. If the Curiosity were controlled autonomously,
it would be able to perform its activities much faster and more flexi-
bly. However, one of the major barriers to increased use of autonomy in
such scenarios is the lack of assurances that the autonomous behaviour
will work as expected. In this paper, we use a Robot Operating Sys-
tem (ROS) model of the Curiosity that is simulated in Gazebo and add
an autonomous agent that is responsible for high-level decision-making.
Then, we use a mixture of formal and non-formal techniques to verify
the distinct system components (ROS nodes). This use of heterogeneous
verification techniques is essential to provide guarantees about the nodes
at different abstraction levels, and allows us to bring together relevant
verification evidence to provide overall assurance.

1 Introduction

We present a case study with a simulation of the Curiosity rover undertaking
an exploration mission. Crucially, we have equipped the rover with decision-
making capabilities so that it does not rely on human teleoperation. As a result
of the added autonomous behaviour, it is important to provide safety assurances
about critical components in the system. Usually, components in such systems
are modular and each individual component often requires a different verification
technique(s) [6,9,13]. We have applied distinct verification techniques to various

Work supported by UK Research and Innovation, and EPSRC Hubs for “Robotics
and AI in Hazardous Environments”: EP/R026092 (FAIR-SPACE) and EP/R026084
(RAIN).

c© Springer Nature Switzerland AG 2020
R. Lee et al. (Eds.): NFM 2020, LNCS 12229, pp. 353–360, 2020.
https://doi.org/10.1007/978-3-030-55754-6_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-55754-6_20&domain=pdf
https://doi.org/10.1007/978-3-030-55754-6_20

354 R. C. Cardoso et al.

o A

B

C

Windy

Radiation

Fig. 1. The Curiosity begins at the origin, o, and then visits the waypoints A, B and
C in whichever order is safe. We indicate waypoints with high levels of wind (grey)
and radiation (yellow) (Color figure online).

critical components and at different abstraction levels to ensure the correctness
of the overall system. All of the artefacts (source code, videos, etc.) discussed in
this paper are available in our online repository.1

2 Mission Description, Simulation and Autonomy

Mission Description: We simulate an inspection mission, where the Curiosity
patrols a topological map of the surface of Mars. We assume that the map is
known prior to this mission, and in this paper we only consider a small subset
of the map (i.e. the agent has map coordinates for each waypoint in the map).
Specifically, we consider four different waypoints (o, A, B, and C) that are
spread across the Martian terrain. Low-level movement is achieved through a
dead reckoning or feedback control.

We begin with the deployment of the Curiosity and a startup period where
it initialises all three of its control modules (wheels, arms, and mast). After
the agent receives confirmation that the modules are ready, it autonomously
controls the Curiosity to move between the waypoints in the following order:
(o → A → B → C → A → . . .), as shown in Fig. 1. This is the ideal scenario,
however, if one of the waypoints is experiencing high levels of radiation then
the rover should skip it until the radiation has reduced to a safe level. For data
collection, the mast and arm should be open, however, it is unsafe to do so in
windy conditions. We do not model battery power. Instead, we assume that the
rover has sufficient battery power to traverse the waypoints and operate the
equipment.

Simulation: We obtained a Robot Operating System (ROS) [10] version of the
Curiosity from a ROS teaching website2 which uses official data and 3D models
of the Curiosity and Martian terrain which have been made public by NASA.
This ROS simulation runs in Gazebo,3 a 3D simulator.

Most of the Curiosity’s effectors are included in the simulation. It has the
complete chassis of the rover with all six wheels and the suspension system, a
1 https://github.com/autonomy-and-verification-uol/curiosity-NFM2020.
2 https://bitbucket.org/theconstructcore/curiosity mars rover/src/master/.
3 http://gazebosim.org/.

https://github.com/autonomy-and-verification-uol/curiosity-NFM2020
https://bitbucket.org/theconstructcore/curiosity_mars_rover/src/master/
http://gazebosim.org/

Heterogeneous Verification of an Autonomous Curiosity Rover 355

retractable arm with four joints, and a retractable mast with two joints and a
camera (Mastcam) on top. Some of the sensors are missing, e.g. MAHLI (Mars
Hand Lens Imager), as these would require simulated sensor data.

In the original configuration, the standard control method of the Curiosity
was implemented using ROS services and it was controlled via teleoperation.
ROS services are defined as a pair of request and reply messages that are provided
by ROS nodes. In our simulation, we re-implemented the control method through
action libraries, which follow a client-server model that is similar to ROS services.
Both can receive a request to perform some task and then generate a reply. The
difference in using action libraries is that the client can cancel the action, as well
as receive feedback about the task execution. Thus, action libraries are more
suited for use with decision-making agents since they allow more fine-grained
control.

We developed three action libraries: one each for the wheels, arm, and mast.
The wheels client receives high-level action commands to move forward, back-
ward, left, and right; or a waypoint from the topological map (using the move
base library for path planning). Based on the command received, the server
controls each of the six wheels and publishes speed commands to the appropri-
ate wheels depending on the direction or topological waypoint requested in the
action. If a direction command is given, then the server expects three parame-
ters: direction of movement, speed, and distance. After a movement action, the
server always calls a stop action that sets the speed of all wheels to zero. The
arm and mast action libraries control the joints of their respective effectors so
that they can be positioned correctly for use.

Enabling Autonomous Decision-Making: We use the GWENDOLEN [4] agent
programming language to implement the high-level control and autonomous
decision-making behaviour of the Curiosity. Agent programming languages
abstract the environment and other external sources, focusing on high-level
autonomous control, resulting in smaller and more modular code than other
languages. Due to the agent’s reasoning cycle an execution trace can clearly
show how the agent came to a decision, thus providing us with explainability.
Using GWENDOLEN allows us to verify properties of the agent’s reasoning,
allowing the safeguard of critical behaviours.

GWENDOLEN agents follow the Belief-Desire-Intention (BDI) model [11].
Beliefs, desires, and intentions represent respectively the information, motiva-
tional, and deliberative states of the agent. We developed a GWENDOLEN
environment that communicates with ROS through the rosbridge library. When
the agent executes an action in the environment, the action is processed and
published to the action’s associated ROS topic. The environment creates sub-
scribers that listen to specific topics so that necessary perceptions are created
and sent to the agent.

In the Curiosity simulation, the GWENDOLEN agent has four high-level
actions. The action control wheels has three parameters: direction of movement
(forward, backward, left, or right), speed (an integer with sign to indicate direc-
tion), and distance (in seconds). The move to waypoint action contains one

356 R. C. Cardoso et al.

Environment
Interface

Agent

Rosbridge

Arm Client Mast Client Wheels Client

Arm Server Mast Server Wheels Server

Robot State
Publisher

Gazebo Rviz

Fig. 2. Overview of the system. Arrows indicate data flow between the nodes.

parameter with a waypoint from the topological map. The actions, control arm
and control mast, both have one parameter whose possible values are either open
or close.

Figure 2 illustrates a high-level system diagram with the communication
paths between the nodes in the simulation. We have verified distinct components
of this simulation using different methods. Specifically, we verify the autonomous
agent using the AJPF program model checker; the interface that this agent has
with the environment using Dafny; a CSP specification of the action library
nodes using FDR4; and we use each of these formal models to guide the genera-
tion of runtime monitors. This combination of simulation-based testing, and the
use of multiple formal methods at different levels of abstraction, gives us a basis
for providing assurances about the use of autonomous decision-making in this
extreme environment mission scenario, and could be transferred and applied to
other similar case studies as shown in [6,9,13].

3 Verification

This section describes our verification of four critical areas of our simulation of
an autonomous Curiosity rover. We verify properties of this system at different
levels of abstraction. We begin by describing how we verify that the agent, which
is fundamentally controlling the system, makes the correct decisions about which
waypoint to visit next.

Next, we discuss our use of an automated theorem prover to verify that the
information that the agent receives from the environment sensors is interpreted
and acted upon correctly. Then, we outline how we verified that the communi-
cation between the client and server action library nodes (as shown in Fig. 2)
functions correctly. Finally, we outline our runtime verification of design-time

Heterogeneous Verification of an Autonomous Curiosity Rover 357

assumptions about the environment. Interestingly, we used the preceding formal
models as a way to focus these runtime checks on appropriate properties.

Verifying the Agent using AJPF: Model-checking [2] exhaustively examines the
state space to check if some desired property holds. This can be applied to either
a formal model of the system, encoded in some specification language, or directly
to the implementation. The property to be verified is usually specified in a logic-
based language. For example, we may want to verify that the Curiosity will not
move its arm while collecting soil and rock data, in order to protect the sample.

Agent Java PathFinder (AJPF) [5], an extension of Java PathFinder
(JPF) [12], is a model-checker that works directly on Java program code. This
extension facilitates formal verification of BDI-based agent programs by pro-
viding a property specification language based on Linear-time Temporal Logic
(LTL) that supports the description of terms usually found in BDI agents.

For example, some of the properties that we verified of the implementation
of our agent were as follows:

�(Arovermove to waypoint(A) → ♦Brover (at(A)))
�(Arovermove to waypoint(B) → ♦Brover (at(B)))
�(Arovermove to waypoint(C) → ♦Brover (at(C))

These properties state that it is always the case (�) that if the rover agent
executes the action move to waypoint (to either A, B, or C), then eventually (♦)
the rover agent will believe that it is currently located in that waypoint.

The syntax of the AJPF specification language is limited to expressing agent
related properties, such as beliefs, goals, actions, and intentions of a specific
agent that was written in GWENDOLEN. Moreover, properties specified in
AJPF must be ground (i.e. cannot be parameterised). For verifying the interface
between the agent and the environment, we employ the Dafny program verifier.

Verifying the Agent-Environment Interface: Dafny facilitates the use of specifica-
tion constructs e.g. pre-/post-conditions, loop invariants and variants [8]. Dafny
is used in the static verification of functional program correctness. Programs are
translated into the Boogie intermediate verification language [1] and then the
Z3 automated theorem prover discharges the associated proof obligations [3].

Our Dafny model centres on the decisions made by the agent in response to
the input that it receives from the environment. In this simple model, we verify
an important safety property that the rover will not select any actions if the
arm, mast or wheels have not been initialised yet. This is specified as follows:
ensures (wheelsready && armready && mastready) == false ==> actions ==[];

Here, wheelsready, armready and mastready are boolean flags that are toggled
by the associated modules, and actions is the sequence of returned actions.

Our Dafny model has functions for accessing the environmental conditions
at a given waypoint e.g. getEnvironment() and getWind(). This allows us to
verify properties about the how the environmental conditions affect where the
rover goes. The getEnvironment() method then checks the wind and radiation

358 R. C. Cardoso et al.

at a particular waypoint and we verify that the following condition is met where
e is a variable that represents the current status of the environment:

ensures windspeed < 5 && radiation < 5 ==> e == Fine;

In this way, our Dafny model allows us to verify conditions about the safety of the
agent and also that the information coming from the environment is interpreted
correctly by the agent. We provide other verified methods including getRad()
which is a high-level implementation of how the radiation at waypoint B decays
over time. Our loop invariant in the CuriosityAgent() also ensures that the
rover can’t be at waypoint B when the radiation is too high:

invariant !(current == B && env == Radiation);

We included radiation at B in the Dafny implementation to examine how the
rover reacts to radiation at a particular waypoint, as per the mission description
(Sect. 2). Next, we verify the action library client and server nodes using CSP.

Verifying Action Library Communication: We verify the communication between
the pairs of action library client–server nodes that interface between the soft-
ware and hardware (arm, mast, and wheels). Each client accepts instructions
from the agent (via rosbridge) which it then sends to the relevant server node as
a goal (task to complete). Since the AJPF model checker can only check agent-
programs, we decided to use Communicating Sequential Processes (CSP) to ver-
ify this critical link. CSP processes describe sequences of events; a ⇒ b ⇒ Skip
is the process where events a and b occur sequentially, then terminates (Skip).

The CSP model is constructed from the Curiosity ROS code, capturing both
the program-specific and the generic action library behaviour. Each of the client–
server pairs is modelled by one CSP file, with one further file modelling the
generic behaviour of an action library server. We use the FDR4 model-checker [7]
to check three properties: (1) when a client sends a goal, it will begin execution
on the correct server, (2) when a client sends a goal, eventually it receives a
result from the server, and (3) when the agent instructs a client node to perform
an action, the server informs the agent that it is ready and then eventually the
agent receives a result. Here we give an example of (2), where we check that if
the arm client sends a goal then eventually it will receive a result:

send goal arm? → executeGoal.arm → SKIP

Runtime Verification: It is achieved by examining the current execution of the
system at runtime against a formal specification. Since runtime monitors only
observe the current system execution, the resulting approach is not exhaustive in
the sense that model-checking is (which examines the entire state space). How-
ever, monitor implementations are usually extremely efficient since they do not
consider all possible system executions and they can remain as safeguards after
deployment. In this way, a monitor helps to ensure correct system behaviour.

ROSMonitoring4 (ROSMon) is a flexible and formalism-agnostic Runtime
Verification (RV) framework for ROS. ROSMon creates gaps in the communica-
tion between nodes in the system. These gaps are then filled by monitors which
4 https://github.com/autonomy-and-verification-uol/ROSMonitoring.

https://github.com/autonomy-and-verification-uol/ROSMonitoring

Heterogeneous Verification of an Autonomous Curiosity Rover 359

are automatically synthesised by ROSMon. In this way, the messages of interest
are forced to pass through the monitors and are checked against a corresponding
formal specification. We applied ROSMon to our simulation to check properties
at runtime. For example, using Dafny, we verify the agent-environment interface;
ROSMon bridges the gap between the Dafny model and the real environment
by checking at runtime if the assumptions used in the Dafny model are satisfied
by the real system.

We used a property, written in Runtime Monitoring Language (RML), to
synthesise a monitor to check the constraint used in the Dafny getEnvironment
method. Here, we check that the wind speed and radiation are always positive,
and if the wind speed and radiation are less than 5 each, then the environment
is “Fine”. This is (partially) written as follows:

Main = (GetEnvironmentConstraints /\ (wind_speed(_) >> wind_speed_at_least(0)*) /\
(radiation_units(_) >> radiation_units_at_least(0)*));

GetEnvironmentConstraints =
wind_speed_up_to(4) GetEnvironmentConstraints1
\/ radiation_units_up_to(4) GetEnvironmentConstraints2
\/ any GetEnvironmentConstraints;

...

In this way, we used abstract formal system models to guide the development
of corresponding runtime monitors to examine these properties at runtime.

4 Discussion

This paper has reported on our case study of using multiple verification tech-
niques to provide assurance for an autonomous Curiosity rover undertaking an
exploration/sampling mission. We used the GWENDOLEN agent program-
ming language to implement an autonomous agent in a ROS-based simulation
of the Curiosity. We verified this agent using AJPF, how it responds to discrete
input from its environment using Dafny, the message passing between the action
library nodes using CSP, and we synthesised runtime monitors using ROSMon.

We employed a myriad of verification techniques to verify the behaviour of
distinct aspect(s) of the system. Our aim was to streamline the process of veri-
fying the system by verifying each system component using a suitable technique,
rather than attempting to verify everything using only one technique. For exam-
ple, we use an agent programming language for the agent and CSP for message
passing. The tool used to verify the agent program is not appropriate (and would
generally not work) to verify message passing.

Our use of RV is of particular interest here since the system is implemented
in C++ or Python for which formal verification at code level is not currently
feasible/possible. However, the tools and techniques that were chosen are not
necessarily the only ones that were suitable for any specific component and
certainly other choices could have been made. Future work includes investigating
these alternatives.

Our use of heterogeneous techniques for various critical components of the
system was motivated by the work done in [6,9,13]. Our case study exhibits how

360 R. C. Cardoso et al.

heterogeneous verification techniques can be applied to various components of an
autonomous robotic system at different levels of abstraction. Future work seeks
to link the results of these heterogeneous techniques in a holistic framework so
that they might inform one another.

References

1. Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: a
modular reusable verifier for object-oriented programs. In: de Boer, F.S., Bon-
sangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp.
364–387. Springer, Heidelberg (2006). https://doi.org/10.1007/11804192 17

2. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge
(1999)

3. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

4. Dennis, L.A., Farwer, B.: Gwendolen: A BDI language for verifiable agents. In:
Logic and the Simulation of Interaction and Reasoning. AISB, Aberdeen (2008)

5. Dennis, L.A., Fisher, M., Webster, M.P., Bordini, R.H.: Model checking agent
programming languages. Autom. Soft. Eng. 19(1), 5–63 (2012)

6. Farrell, M., Luckcuck, M., Fisher, M.: Robotics and integrated formal methods:
necessity meets opportunity. In: Furia, C.A., Winter, K. (eds.) IFM 2018. LNCS,
vol. 11023, pp. 161–171. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-98938-9 10

7. Gibson-Robinson, T., Armstrong, P., Boulgakov, A., Roscoe, A.W.: FDR3 — a
modern refinement checker for CSP. In: Ábrahám, E., Havelund, K. (eds.) TACAS
2014. LNCS, vol. 8413, pp. 187–201. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-54862-8 13

8. Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness.
In: Clarke, E.M., Voronkov, A. (eds.) LPAR 2010. LNCS (LNAI), vol. 6355, pp.
348–370. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17511-
4 20

9. Luckcuck, M., Farrell, M., Dennis, L.A., Dixon, C., Fisher, M.: Formal specification
and verification of autonomous robotic systems: a survey. ACM Comput. Surv.
(CSUR) 52(5), 100 (2019)

10. Quigley, M., et al.: ROS: an open-source robot operating system. In: Workshop on
Open Source Software at the International Conference on Robotics and Automa-
tion. IEEE, Japan (2009)

11. Rao, A.S., Georgeff, M.: BDI agents: from theory to practice. In: International
Conference on Multi-agent Systems, pp. 312–319. AAAI (1995)

12. Visser, W., Havelund, K., Brat, G., Park, S.J., Lerda, F.: Model checking programs.
Autom. Soft. Eng. 10(2), 3–11 (2002)

13. Webster, M., et al.: A corroborative approach to verification and validation of
human-robot teams. Int. J. Robot. Res. 39(1), 73–99 (2020)

https://doi.org/10.1007/11804192_17
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-319-98938-9_10
https://doi.org/10.1007/978-3-319-98938-9_10
https://doi.org/10.1007/978-3-642-54862-8_13
https://doi.org/10.1007/978-3-642-54862-8_13
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20

Run-Time Assurance
for Learning-Enabled Systems

Darren Cofer1(B), Isaac Amundson1, Ramachandra Sattigeri1, Arjun Passi1,
Christopher Boggs1, Eric Smith2, Limei Gilham2, Taejoon Byun3,

and Sanjai Rayadurgam3

1 Collins Aerospace, Minneapolis, MN, USA
darren.cofer@collins.com

2 Kestrel Institute, Palo Alto, CA, USA
3 Department of Computer Science, University of Minnesota, Minneapolis, MN, USA

Abstract. There has been much publicity surrounding the use of
machine learning technologies in self-driving cars and the challenges this
presents for guaranteeing safety. These technologies are also being inves-
tigated for use in manned and unmanned aircraft. However, systems
that include “learning-enabled components” (LECs) and their software
implementations are not amenable to verification and certification using
current methods. We have produced a demonstration of a run-time assur-
ance architecture based on a neural network aircraft taxiing application
that shows how several advanced technologies could be used to ensure
safe operation. The demonstration system includes a safety architecture
based on the ASTM F3269-17 standard for bounded behavior of com-
plex systems, diverse run-time monitors of system safety, and formal
synthesis of critical high-assurance components. The enhanced system
demonstrates the ability of the run-time assurance architecture to main-
tain system safety in the presence of defects in the underlying LEC.

1 Introduction

Significant advances are being made in the development of autonomous sys-
tems that employ learning and adaptation algorithms. It is therefore inevitable
that learning-enabled components (LEC) will begin to find their way into safety-
critical applications, including manned and unmanned vehicles. However, the
technologies being applied – machine learning, deep neural networks, probabilis-
tic languages – are not amenable to verification using traditional methods. This
essentially precludes use of these technologies in many safety-critical aerospace
applications. Our team is developing technologies to overcome these limitations,
thus expanding opportunities for autonomous systems to be safely deployed in
critical environments.

Aircraft systems have legal requirements for airworthiness certification that
present barriers to the use of LECs. In a typical LEC, much of the complexity
and design information resides in its training data rather than in the actual code
produced. For example, one of the key principles of avionics software certification
c© Springer Nature Switzerland AG 2020
R. Lee et al. (Eds.): NFM 2020, LNCS 12229, pp. 361–368, 2020.
https://doi.org/10.1007/978-3-030-55754-6_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-55754-6_21&domain=pdf
https://doi.org/10.1007/978-3-030-55754-6_21

362 D. Cofer et al.

(covered in DO-178C [9]) is the use of requirements-based testing along with
structural coverage metrics. These objectives not only demonstrate compliance
with functional requirements, but are intended to show the absence of unintended
functionality. However, complete structural coverage can be achieved for a typical
neural network with a single test case, providing almost no confidence in its
correctness. Showing that a component or system is correct and does no harm
through behaviors that were unintended by designers or unexpected by operators
is a critical aspect of the certification process.

Since it is difficult to demonstrate assurance by examining the LEC itself
(as is assumed by existing certification processes) other approaches are needed.
In this paper we report on the use of a run-time assurance architecture based
on the ASTM F3269-17 standard for bounded behavior of complex systems [1],
also known as a simplex architecture [10]. The standard provides guidance for
mitigating unintended functionality (such as may be present in a LEC) through
the use of run-time monitors. When a violation of system safety properties or
an unsafe LEC output is detected, the architecture switches to a verified backup
controller to continue safe operation. The main idea is that system performance
is provided by the complex system or LEC while system safety is guaranteed by
high-assurance components (though with lower performance). Our implementa-
tion of the standard includes:

– System architecture modeled using the Architecture Analysis and Design Lan-
guage (AADL) [6]

– Formal verification of system behaviors using the Assume Guarantee Reason-
ing Environment (AGREE) [11]

– Architecture-based assurance case for showing correct implementation using
Resolute [5]

– Diverse run-time monitors for system safety, integrity, and availability
– Synthesis from formal specifications with proof of correctness for critical high-

assurance components

The purpose of this paper is to show the effectiveness of a run-time assurance
architecture for bounding the behavior of an autonomous system to maintain its
safety requirements. In this example, surface movement of a general aviation
class aircraft is controlled during taxi based on a position estimate computed by
an LEC. Our work illustrates the general effectiveness of the run-time assurance
approach and demonstrates some of the tools and methods that can be applied in
a real system. However, each specific application will require different monitors
and backup safety functions, depending on requirements and variables that can
be monitored. We discuss some of the challenges and limitations in Sect. 4.

2 Demonstration

The “TaxiNet” demonstration system is shown in Fig. 1. The bottom row of
boxes in the figure show the baseline system, consisting of the aircraft (or sim-
ulation), the guidance LEC, a controller for steering the aircraft, and the Vehi-
cle Management System (VMS) which manages actuators on the aircraft and

Run-Time Assurance for Learning-Enabled Systems 363

Fig. 1. TaxiNet demonstration system with run-time assurance architecture

integrates other autonomy functionality. The LEC is implemented as a deep
neural network (DNN) trained to estimate the cross-track error (CTE) of the
aircraft (position left or right of the runway centerline) based on images from
a forward-looking camera on the aircraft. An equivalent high-fidelity simulation
environment is also available for testing and demonstrations. Six different LECs
trained in various lighting and weather conditions are available. This allows
faulty behaviors to be simulated by operating an LEC in conditions other than
those for which it was trained. This autonomy framework was developed by the
Boeing Research and Technology (BR&T) organization and is being used as a
demonstration platform in DARPA’s Assured Autonomy program [3].

The run-time assurance architecture adds components in the top row of
Fig. 1. This includes four different run-time monitors (three for system safety,
one for LEC confidence), a Monitor Selector for choosing which monitor to use
at any time, and a Contingency Manager that determines when intervention is
needed to maintain safety and what action should be taken. In this example,
the safety actions available (via the VMS) are to reduce the commanded aircraft
speed or to use the brakes to halt the aircraft.

The goal of the run-time assurance architecture is to ensure that the LEC
does not result in violation of aircraft safety requirements. While the LEC is
responsible for performance (tracking the center line), the safety requirements
for this application are to ensure that 1) the aircraft does not deviate too far
from the center line and leave the runway and 2) unnecessary stopping on the
runway is minimized. In the baseline system, the LEC cannot be verified using
traditional means and is considered the complex or untrusted component in the
architecture. The run-time safety monitors, PID controller, and the VMS are
either based on existing verified algorithms or have been developed using tra-
ditional methods compatible with DO-178C. The Monitor Selector and Contin-
gency Manager are high-assurance components that are synthesized and verified
using formal methods.

364 D. Cofer et al.

3 Approach

The three elements of our run-time assurance approach are the architecture
itself, the run-time monitors, and the safety components that manage switching
of behaviors.

3.1 Architecture

The assurance architecture has been modeled using AADL. AADL is targeted
at distributed, real-time-embedded systems and provides sufficiently rigorous
semantics to support formal analysis of system safety properties. We use an
extension of AADL called AGREE to annotate the model with formal assume-
guarantee contracts for components and subsystems. AGREE uses k-induction
model checking to verify the top-level contracts of the system using a compo-
sitional approach [11]. Verification of the safety property in our demonstration
system relies on the correctness of the monitors and other safety components,
and establishes system safety for each state of the architecture.

The AADL model also includes an assurance case embedded in the archi-
tecture using the Resolute language [5]. Resolute assurance cases are linked to
architectural components and formal evidence produced by other tools, and can
be continuously re-evaluated during system development to check for errors. We
have used Resolute to produce an assurance case showing that the run-time
assurance architecture has been used correctly and has not been compromised
by other elements of the system design. It also addresses the goal of minimiz-
ing unnecessary stopping through the use of independent monitors to maximize
availability.

In other projects we have demonstrated how the implementation can be built
from the verified AADL model for execution on the formally verified seL4 kernel
[2]. While outside the scope of the current project, the isolation provided by seL4
adds assurance that a malfunctioning LEC does not have any computational side
effects (memory or execution time) on the rest of the system.

3.2 Run-Time Monitors

The assurance architecture includes three independent monitors of system safety
and one monitor that assesses confidence in the current operation of the LEC.

The first monitor uses global positioning system (GPS) signals to compute
the aircraft position relative to a virtual runway centerline. This provides the
primary estimate of CTE (with an error bound) to assess aircraft safety. Starting
from a known position, the monitor integrates GPS velocity signals (delta range)
to estimate the current position. It executes with low overhead and makes use
of existing code and verification techniques.

The second monitor processes camera images and detects the runway center-
line using traditional computer vision (CV) algorithms. It provides a secondary
estimate of CTE in case the GPS monitor becomes unavailable or its error bound
grows too large. The CV monitor can also be used to reset the GPS initial

Run-Time Assurance for Learning-Enabled Systems 365

position when it has a lower error bound. It uses an edge detection algorithm
to identify the strongest lines in the image. It also uses a pattern identification
algorithm to detect the dashed center-line. Finally, the detected center-line is
transformed to the aircraft frame of reference to compute CTE. This monitor
makes use of existing algorithms, but requires fairly large computing overhead,
making full use of two CPU cores.

The third monitor uses high-integrity inertial reference system (IRS) mea-
surements to compute aircraft position. It provides coverage when both the GPS
and CV monitors are unavailable. This monitor uses acceleration data from IRS
to propagate the last CTE estimate and error bound from the GPS or CV mon-
itors. It also make use of existing code and traditional verification techniques,
and executes with low overhead.

The final monitor is used to determine if the LEC is operating in a region
of competence relative to its training data. It is not a trusted component and
is therefore not used to enforce system safety, but only as an additional check
on LEC performance. It uses a Variational Autoencoder (VAE), a pair of neural
networks that are learned in an unsupervised way to capture the complicated
distribution of the training dataset in a compact representation space. The pair
of neural networks—an encoder and a decoder—maps the input data to and
from the representation. When an input deviates from the training data dis-
tribution, the encoder cannot find an accurate representation, and the decoder
consequently fails to reconstruct the input faithfully. The monitor then captures
the magnitude of reconstruction error as a signal for a lack of confidence [4]. We
used this monitor to allow the Contingency Manager to recover from a transient
SLOW or HALT action if the current safety monitor output returns to normal
and the LEC appears to be in its region of competence. The monitor is relatively
expensive, requiring time from both the CPU and GPU.

3.3 Safety Components

The Monitor Selector and Contingency Manager are critical for safe operation
(single instance, no backup) and so have been implemented as high-assurance
components using formal synthesis. They provide inputs to the VMS that deter-
mine the control action to be taken to guarantee system safety.

The Monitor Selector must choose which of the three safety monitors should
be used at each time step. If GPS and CV are both available, it chooses the one
with the smallest error bound (subject to minimum switching time). If neither
GPS nor CV is available, it uses the IRS monitor. If no monitor is available, this
will cause the Contingency Manager to trigger a halt.

The Contingency Manager determines whether control should be based on
LEC outputs (NORMAL) or one of the contingency actions (SLOW or HALT).
SLOW is selected if the current CTE exceeds the ‘slow’ threshold or the predicted
stopping position based on the current speed is too close to the runway edge.
HALT is selected if the current CTE exceeds ‘halt’ threshold or the predicted
stopping position is too close to runway edge. Recovery from SLOW or HALT

366 D. Cofer et al.

is allowed if the LEC confidence monitor output is above its threshold and a
specified time limit has not been exceeded.

Both the Monitor Selector and the Contingency Manager are synthesized
with proof of correctness from formal tabular specifications in ACL2 using the
Automated Program Transformations (APT) toolkit [7]. A table specifies the
behavior of a component declaratively as a set of cases corresponding to the
columns of the table. Each case specifies the outputs and next state as a function
of the inputs and current state. Proofs checked by ACL2 ensure that each table
is complete and unambiguous (in every input scenario, exactly one case applies).
A generic function to apply the table is specialized by the APT simplify trans-
formation to create by partial evaluation a large, provably-equivalent set of if-
then-else expressions. These conditional expressions are quite fast to execute
but would be tedious and error prone to define by hand. The proofs done by
the simplify transformation ensure that it correctly encodes the decision logic
specified declaratively in the table.

4 Results

To evaluate performance of the run-time assurance architecture, testing was per-
formed using all six LEC variants in a variety of environmental conditions with
and without the assurance architecture components. Faulty LECs were simu-
lated by operating in conditions outside of the LEC training data set. In all we
evaluated 46 different scenarios. This allowed us to assess baseline performance,
intervention of the assurance architecture in the presence of LEC errors, and
absence of unnecessary intervention (false alarms). A screenshot of the demon-
stration video including the synoptic display of the monitor outputs is shown in
Fig. 2.

We found that the architecture performed in accordance with expectations in
all scenarios. In every case where the faulty LEC caused the aircraft to deviate
from the required center-line tracking performance, the assurance architecture
detected the condition and slowed or halted the aircraft. At no time was the
aircraft allowed to depart from the paved runway. Furthermore, the architecture
never intervened when the aircraft was performing within requirements.

For example, in one scenario the LEC trained with morning-only data is
tested in clear conditions at 1600. This leads to the aircraft departing from the
runway after approximately two minutes. When the scenario is repeated with
the run-time assurance architecture active, the aircraft is first slowed when it
begins to deviate from the centerline, then briefly halted, and then allowed to
resume normal operation using the LEC guidance. Later, at a runway crossing,
the aircraft deviates more severely and is halted to prevent it from leaving the
runway. AADL models for the run-time assurance architecture, the Resolute
assurance case, and videos of the demonstration are available at the project
website [8].

Run-Time Assurance for Learning-Enabled Systems 367

Fig. 2. Simulation results and display

5 Conclusion

In this project we have explored run-time monitors that observe LEC inputs,
outputs, and internal state, and also monitors that directly observe system safety
(as shown here in the TaxiNet demo). The run-time assurance approach works
best when it is possible to clearly distinguish requirements for system safety and
performance, and the functions responsible for each. For example, a complex
planning system may be used to compute a desired vehicle trajectory, but if
safety is defined by staying within a prescribed geofence, this is simple to mon-
itor using GPS. However, it is not always possible to monitor the variables or
conditions needed to detect safety violations. And in some cases it is not obvious
how to create a safe backup function that is less complex (and easier to verify)
than the complex function to be bounded. But where the necessary conditions
are satisfied, run-time assurance architectures based on ASTM F3269-17 can be
a useful means for safely bounding LEC behavior.

Acknowledgments. The authors wish to thank our colleagues James Paunicka,
Matthew Moser, Alex Chen, and Dragos Margineantu for their support during integra-
tion and testing on the BR&T autonomy platform. This work was funded by DARPA
contract FA8750-18-C-0099. The views, opinions and/or findings expressed are those
of the author and should not be interpreted as representing the official views or policies
of the Department of Defense or the U.S. Government.

References

1. ASTM F3269–17: Standard practice for methods to safely bound flight behavior
of unmanned aircraft systems containing complex functions (2017)

368 D. Cofer et al.

2. Cofer, D., et al.: A formal approach to constructing secure air vehicle software.
IEEE Comput. Mag. 51, 14–23 (2018)

3. DARPA: Assured Autonomy. https://www.darpa.mil/program/assured-autonomy
4. Denouden, T., Salay, R., Czarnecki, K., Abdelzad, V., Phan, B., Vernekar, S.:

Improving reconstruction autoencoder out-of-distribution detection with maha-
lanobis distance (2018). CoRR, abs/1812.02765

5. Gacek, A., et al.: Resolute: an assurance case language for architecture models. In:
HILT 2014, pp. 19–28. ACM, New York, NY, USA (2014)

6. Feiler, P.H., Gluch, D.P.: Model-Based Engineering with AADL: An Introduction
to the SAE Architecture Analysis and Design Language, 1st edn. Addison-Wesley
Professional, Boston (2012)

7. Kestrel Institute: APT: Automated Program Transformations (2019). https://
www.kestrel.edu/home/projects/apt/

8. Loonwerks: AAHAA: Architecture and Analysis for High-Assurance Autonomy.
http://loonwerks.com/projects/aahaa.html

9. RTCA DO-178C: Software considerations in airborne systems and equipment cer-
tification (2011)

10. Sha, L.: Using simplicity to control complexity. IEEE Softw. 18(4), 20–28 (2001)
11. Whalen, M.W., Gacek, A., Cofer, D., Murugesan, A., Heimdahl, M.P., Rayadurgam,

S.: Your “what” is my “how”: iteration and hierarchy in system design. IEEE Softw.
30(2), 54–60 (2013)

https://www.darpa.mil/program/assured-autonomy
https://www.kestrel.edu/home/projects/apt/
https://www.kestrel.edu/home/projects/apt/
http://loonwerks.com/projects/aahaa.html

hpnmg: A C++ Tool for Model Checking
Hybrid Petri Nets with General

Transitions

Jannik Hüls, Henner Niehaus, and Anne Remke(B)

Westfälische Wilhelms-Universität, 48149 Münster, Germany
{jannik.huels,henner.niehaus,anne.remke}@uni-muenster.de

Abstract. hpnmg is a tool for model checking Hybrid Petri nets with an
arbitrary but finite number of general transition firings against specifica-
tions formulated in STL. The tool efficiently implements and combines
algorithms for state space creation, transformation to a geometric rep-
resentation, model checking a potentially nested STL formula and inte-
grating over the resulting satisfaction set to yield the probability that
the specification holds at a specific time.

Keywords: Stochastic hybrid systems · Model checking · C++ tool

1 Introduction

We present the tool hpnmg for the automated verification of Hybrid Petri nets
with general transitions (HPnG) [15]. HPnGs extend Hybrid Petri nets [1] by
adding general transitions with a randomly distributed delay. They provide a
high-level formalism for a restricted class of stochastic hybrid systems, where
the continuous behaviour is piece-wise linear without resets and the inherent
non-determinism is resolved probabilistically. Hybrid Petri nets have shown to
be useful for evaluating e.g. the survivability of critical infrastructures [14,23] via
model checking properties specified using Stochastic Time Logic (STL), which
closely resembles MITL [2] or the temporal layer of STL/PSL [25].

The evolution of the state space over time of a HPnG can be partitioned into
sets of states with similar behavior. This is done by conditioning their evolution
on the firing times of the general transitions, either as locations, organized in
a Parametric Location Tree (PLT) [19] or using a geometric representation as
convex polytopes (so-called regions) [21]. The idea of a polyhedra based repre-
sentation has been explored before, e.g., for (flowpipe) approximations [11,12]
and to abstract uncountable-state stochastic processes [30,31]. Our approach
includes the stochastic behaviour over time symbolically into the state repre-
sentation; every stochastic firing adds a dimension to the state space. Model
checking then identifies all realizations of the random variables, which satisfy a
given STL formula. Based on the computed satisfaction sets, multi-dimensional

c© Springer Nature Switzerland AG 2020
R. Lee et al. (Eds.): NFM 2020, LNCS 12229, pp. 369–378, 2020.
https://doi.org/10.1007/978-3-030-55754-6_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-55754-6_22&domain=pdf
https://doi.org/10.1007/978-3-030-55754-6_22

370 J. Hüls et al.

integration computes the probability that the STL formula holds, using the joint
probability distribution of all stochastic firings.

The development of efficient and automated model checking techniques for
HPnGs has been limited in the number of stochastic firings mainly due to the
lack of libraries that can solve the hyperplane arrangement problem in arbitrary
dimensions. Recently vertex enumeration was proposed [29] to circumvent this
problem by first constructing the tree-based representation, which can then be
turned into a geometric representation for model checking. The current imple-
mentation of hpnmg features the library HyPro [29], which offers efficient imple-
mentations for operations on convex polytopes [33] in higher dimensions. The
advantage of HyPro e.g. with respect to [3,32], is the clean interface and the
options to directly import their flowpipe construction. Technically, hpnmg is a
complete redevelopment, integrating new and existing implementations into a
fully coherent tool, which also allows model checking in parallel. The satisfac-
tion sets are returned by the model checker as arbitrary convex polytopes and
their representation is then adapted for the computation of the corresponding
probabilities using multi-dimensional integration.

Many different tools exist for the simulation and analysis of (stochastic)
timed and hybrid systems. Oris [4] is a tool for modeling and analysis of reac-
tive timed systems, based on various classes of Petri nets. CPN Tools [22] is a
toolset for simulating and analysing Colored Petri nets, for which extensions to
stochastic and dynamic CPNs exist [9]. Both tools implement quantitative eval-
uation and qualitative verification for systems with a discrete notion of state.
StocHy[6] is a simulator for the quantitative evaluation of discrete-time stochas-
tic hybrid systems. Formal abstractions of possibly possibly non-deterministic
discrete-time Markov processes over a continuous state space into finite-state
Markov chains or Markov decision processes are provided by the tool FAUST2

[31]. Möbius [8] supports modeling formalisms like Stochastic Petri Nets (SPNs),
Stochastic Automata Networks (SANs) and Markov Chains and mainly imple-
ments discrete-event simulation. The Modest toolset [17] provides an extensible
and comprehensive toolset for analytical and statistical model checking. It allows
numerous model formalisms and in contrast to hpnmg can also deal with nonde-
terminsm. Möbius and modes [5] rely on simulation for stochastic hybrid models.
A limited overapproximating model checker for stochastic hybrid automata has
also been released as part of Modest [16]. SpaceX [13] and Flow* [7] provide
reachability analysis for non-linear hybrid automata without stochasticity. Also
constraint solvers have been proposed for the automated analysis of probabilis-
tic hybrid automata [10]. HYPEG [27] implements statistical model checking with
various confidence intervals and hypothesis tests for HPnGs.

The paper is further organized as follows: Sect. 2 presents the architecture
and implementation details of hpnmg, Sect. 3 shows results for a feasibility study
and Sect. 4 concludes the paper.

The Tool hpnmg 371

2 Architecture and Implementation

The tool hpnmg is implemented in C++ and runs on Linux and Mac OS X. The
architecture of hpnmg follows the unix philosophy on minimalist, modular soft-
ware development [28] and builds on a set of other libraries. An extensive test
suite has been created using the C++ googletest framework1. The Boost2 pro-
gram options are used to provide a user friendly command line interface. The
tool hpnmg allows to create HPnG models in both a graphical user interface
and an xml-based language and to specify corresponding STL formulas for auto-
mated model checking. The presented tool unifies implementations of previous
contributions on the following aspects of model checking HPnGs:

– Automated generation of the state-space of a given HPnG as PLT, as in [19].
– Efficient conversion of locations into convex polytopes, as proposed in [21].
– Efficient and full-fledged STL model checking, as in [20], which has addition-

ally been parallelized for better performance.
– Triangulation of convex polytopes and transformation to standard simplices.
– Multi-dimensional Monte-Carlo integration over these standard simplices to

compute probabilities corresponding to the satisfaction sets [19,20].

Model description in xml
format.

Model specification

Formula description in xml
format.

Formula specification

Parsing of the xml model
description to create a

HybridPetrinet

datastructure.

HybridPetrinetReader

Parsing of the xml formula
description to create a

STLFormula datastructure.

FormulaReader

Creating the
ParametricLocationTree

datastructure.

PLTBuilder RegionModelChecker

Creating representation of

states STDPolytope as

convex polytopes.

Performing geometric

operations to compute the

satisfaction set.

Computing the final

probability.

ProbabilityCalculator

∀locactions at checktime t′
stdout

File output

hpnmg

Fig. 1. Tasks of the tool hpnmg to analyse a formal model w.r.t. a property of interest.

Figure 1 depicts a high-level overview of the different parts of the tool. hpnmg
takes as input a HPnG model and an STL formula as XML file and transforms
them into the appropriate data structures HybridPetrinet and STLFormula
using the HybridPetrinetReader and FormulaReader classes which imple-
ment the Xerces-C++ XML Parser3.

A HPnG is defined as a tuple H = (P, T ,A,M0, Φ). The set of places P,
contains discrete and continuous places. The initial marking M0 describes the
1 https://github.com/google/googletest.
2 https://www.boost.org/.
3 https://xerces.apache.org/xerces-c/.

https://github.com/google/googletest
https://www.boost.org/
https://xerces.apache.org/xerces-c/

372 J. Hüls et al.

initial number of tokens in each discrete place and the amount of fluid in each
continuous place. Transitions change the content of places upon firing. The set
of transitions T holds immediate, deterministic, general and continuous tran-
sitions. All but continuous transitions are denoted discrete transitions. Arcs A
connect places and transitions. Discrete transitions change the discrete mark-
ing of connected places upon firing. A deterministic transition fires after being
enabled for a predefined amount of time. Immediate transitions fire after zero
time. The random firing delay of a general transition is distributed according to
an arbitrary unique cumulative distribution function (CDF). A general transi-
tion may fire at any point in time, if enabled. Continuous transitions change the
fluid level of continuous places with a constant nominal rate. Φ is a vector of
parameter functions such as priorities of transitions e.g. used to resolve conflicts
between transitions of equal type.

The evolution of a HPnG results in uncountably many states, when con-
sidering a state to contain the marking, information on the general transition
firings, as well the evolution time. Hence, we use a symbolic representation of
states called Parametric Location Tree (PLT) [19]. Nodes are parametric loca-
tions and symbolically represent a state. Branching to new locations happens
by the occurrence of events, e.g. a continuous place reaching its boundary or an
enabled discrete transition fires. The PLTBuilder implements the generation
of the PLT for an arbitrary amount of stochastic firings up to a maximum time.
The presence of many random variables requires the introduction of a strict total
order on the stochastic firings, as proposed in [19], which then simplifies the com-
putation of the child locations to solving linear inequalities using a variant of
Fourier-Motzkin elimination.

Model checking verifies whether the system meets a property at a point in
time t′ and is the core feature of the tool hpnmg. The logic STL [20] compares the
discrete and continuous marking to constants, allows conjunction and negation,
as well as the until operator to express reachability over time. All states that
satisfy a STL formula are collected in a satisfaction set.

As presented in [21] each parametric location can be translated into a closed
convex polytope for which the RegionModelChecker implements model check-
ing using geometric operations. The transformation into convex polytopes and
the geometric operations for model checking are implemented using the library
HyPro [29]. First all locations in which the system can be at t′ are identified.
Model checking is then performed on a STDPolytope along the parse tree of the
STLFormula and the satisfaction set SatR(Φ) is returned as a set of polytopes.

Since the representation in terms of polytopes is not closed under negation,
the current implementation may result in a set of not necessarily disjoint poly-
topes. We implement inclusion-exclusion to integrate overlapping areas exactly
once. As described in [20], the overall complexity of the model checking routine
is O(|R|2 × |L| × |HP |3) with the number of regions in the PLT |R|, the number
of operators in the STL formula |L| and the number of halfspaces |HP |. Since
the PLT is independent of the STL specification, model checking is performed

The Tool hpnmg 373

Fig. 2. Model of a plug-in electric vehicle charging process.

for each location separately, allowing for parallel execution via the OpenMP appli-
cation programming interface, thereby improving the computation time [26].

Integrating the joint probability distribution of all stochastic firings over the
convex polytopes of SatR(Φ) results in the probability that the STL formula Φ
is satisfied in R. Each random variable s ∈ s is assigned a unique probability
density function and together with the previously defined order on the stochastic
firings, the ProbabilityCalculator implements the d-dimensional Delauney
Triangulation of the library CGAL [18] to create simplices of random polytopes.
The ordered integration bounds are then obtained from an affine transformation
of these simplices. To calculate the actual value of the integral, for now, Monte
Carlo methods [24] of the GSL library4 by GNU are used. This approximate
method could also be used on arbitrary polytopes, however the ordered sequence
of intervals also allows to substitute the concrete integration method.

3 Experimental Results

We compute results for a HPnG model of a plug-in electric vehicle (pev) charging
station, as shown in Fig. 2. The model has a continuous part modeling the battery
and its (dis-)charging process, as well as a discrete part, which models the status
of the power grid and whether a car is available for charging. The continuous
place ev models the battery, where the level xev represents the current state of
charge. The continuous transition base charge defines the baseline charging rate
rbase for the pev. The discrete place in lot initially contains one token modeling
the presence of the pev. The guard arc between place ev and transition base
charge ensures that the pev is only charged if connected. The client retrieves the
vehicle after a random delay defined by the general transition client return,
whose firing removes the token from place in lot.

The pev is initially charged with full rate, as indicated by a token in place
regular price which enables the continuous transition full charge. When-
ever the energy price increases, the operators decrease the charging rate to reduce
the operating cost of the charging station. This is represented in the model by

4 https://www.gnu.org/software/gsl/doc/html/montecarlo.html.

https://www.gnu.org/software/gsl/doc/html/montecarlo.html

374 J. Hüls et al.

moving the token from place regular price to place high price, which dis-
ables the continuous transition full charge. The time at which the token is
moved is determined by the general transition price increase, hence, it follows
a stochastic distribution. We assume that the market adapts predictably to price
fluctuations and model the price decrease by the deterministic transition price
decrease. Hence, the token is moved back to place regular price, which re-
enables transition full charge, after a fixed time has passed. The discrete place
policy charge scales the number of price cycles, limiting the random variables
present in the system. The deterministic transition disaster brings the model
into a state where the grid suddenly has to support a high load, represented
by a token in place unstable grid. By deterministically chosing the point in
time at which the grid fails allows us to verify the influence of failure at different
points in time. A disaster decreases the rate at which the battery is charged by
enabling the continuous transition charge penalty. The token is moved back to
place stable grid, which again disables the transition charge penalty, when
firing the general transition repair. Hence, the repair time follows a stochastic
distribution. Also the place policy discharge is used to determine the number
of time the general transition repair may fire. Note that, in the current marking
of the model, i.e. one token in place policy discharge and zero token in place
policy charge, every general transition can fire at most once.

All experiments were conducted on an Intel Core i7 with 2.5 GHz and 16 GB
RAM running Mac OS X. An artefact to reproduce the following experiments
is available online.5 The general transitions are all set to a folded normal distri-
bution, with values μ = 9 and σ = 1 for client return, μ = 4, σ = 2 for price
increase and μ = 0.25 and σ = 0.5 for repair. We evaluate the following STL
properties: (a) Φ1 := xev ≥ 30, (b) Φ2 := (min lot = 1) ∨ (xev ≥ 30) and (c)
Φ3 := (min lot = 1) U [t′,t′+20] ((min lot = 0) ∧ (xev ≥ 30)). Φ1 compares the state
of charge to a constant, Φ2 states that either the state of charge is larger or equal
to thirty, or the pev should currently be connected. Φ3 ensures that the pev is
connected until the state of charge reaches at least thirty.

Recall that model checking requires first converting parametric locations into
convex polytopes, then computes the satisfaction sets for each region and finally
integrates the joint probability density over these sets. The current implemen-
tation of the tool allows for model checking in parallel and Fig. 3 compares the
serial and parallel computation times for the STL properties Φ1, Φ2 and Φ3.

Serial model checking requires between 2 and 120 s, depending on the for-
mula and the chosen time point. The execution in four parallel threads achieved
a speedup factor of two. For later time points the number of candidate loca-
tions grows with the depth of the tree. Only for property (c) computation times
decrease with later time points, since goal states are reached more quickly. Inte-
gration forms the bottleneck of the current implementation (cf. Fig. 3). However,
the computation times seem reasonable, especially when considering that the
results are computed without approximation or abstraction.

5 https://uni-muenster.sciebo.de/s/IFEzCBfiY4ItIu8.

https://uni-muenster.sciebo.de/s/IFEzCBfiY4ItIu8

The Tool hpnmg 375

0 2 4 6 8 10
0

1

2

3

4

5
·104

Checktime

T
im

e
(m

s)
Serial geom. op.
Serial integration

Parallel model checking

(a)

0 2 4 6 8 10
0

1

2

3

4

5
·104

Checktime

T
im

e
(m

s)

Serial geom. op.
Serial integration

Parallel model checking

(b)

0 2 4 6 8 10
0

0.5

1

1.5
·105

Checktime

T
im

e
(m

s)

Serial geom. op.
Serial integration

Parallel model checking

(c)

Fig. 3. Serial and parallel model checking (a) Φ1 := xev ≥ 30, (b) Φ2 := (min lot =

1) ∨ (xev ≥ 30) and (c) Φ3 := (min lot = 1) U [t′,t′+20] ((min lot = 0) ∧ (xev ≥ 30)).

Table 1. Robustness computed for different values of (esoc) by HYPEG and hpnmg. The
confidence interval (CI) in HYPEG is computed for a confidence level of 0.99.

esoc 40 50 60 70 80 90

HYPEG Probability 0.9999 0.8884 0.6897 0.4254 0.1896 0.0569

CI ±0.0003

Comp. time 10 s 663 s 1397 s 1646 s 1066 s 378 s

hpnmg Probability 0.9999 0.8883 0.6890 0.4258 0.1901 0.0563

Error ±3.09e−4 ±3.09e−4 ±3.09e−4 ±3.07e−4 ±3.00e−4 2.90e−4

Time 35 s 45 s 46 s 46 s 85 s 97 s

In the following we evaluate the robustness of the presented system. Robust-
ness is defined as the probability that the plug-in electric vehicle is charged, at
least up to an expected state of charge (esoc), upon the return of the client:

robustness = (min lot = 1) U [0,15] ((min lot = 0) ∧ (xev ≥ esoc)),

The robustness computed by hpnmg for different values of esoc is compared
to results obtained from the statistical model checker HYPEG [27] for validation
purposes. Table 1 shows that the results match nicely. Note that the computation
times strongly depend on the number of simulation runs required for HYPEG
and the number of polytopes handled by hpnmg and especially the required
accuracy of the integration. The computation times above have mainly been
included to indicate that hpnmg is competitive. We refer to [19] and [20] for
further more detailed studies of computation times for state space creation and
model checking, respectively.

4 Conclusion

We present a tool for model checking HPnGs with an arbitrary but finite num-
ber of stochastic firings against the logic STL. Different algorithms necessary for
the procedure have been published before: [19] for state space generation, [21]

376 J. Hüls et al.

for switching to a geometric representation, and [20] for model checking. How-
ever, the tool hpnmg for the first time presents a coherent tool, which efficiently
implements and combines the steps necessary and automatically computes the
probability that a specific STL formula holds at a given time. The tool heav-
ily relies on the library HyPro for efficiently performing geometric operations,
on the library CGAL for performing Delauney transformation, and on the GNU
library for Monte Carlo integration. OpenMP has been used for parallelization.

References

1. Alla, H., David, R.: Continuous and hybrid Petri nets. J. Circuits Syst. Comput.
8(01), 159–188 (1998)

2. Alur, R., Feder, T., Henzinger, T.A.: The benefits of relaxing punctuality. Technical
report, Cornell University (1994)

3. Bagnara, R., Hill, P.M., Zaffanella, E.: The Parma Polyhedra library: toward a
complete set of numerical abstractions for the analysis and verification of hardware
and software systems. Sci. Comput. Program. 72(1–2), 3–21 (2008)

4. Bucci, G., Carnevali, L., Ridi, L., Vicario, E.: Oris: a tool for modeling, verification
and evaluation of real-time systems. Int. J. Softw. Tools Technol. Transfer 12(5),
391–403 (2010)

5. Budde, C.E., D’Argenio, P.R., Hartmanns, A., Sedwards, S.: A statistical model
checker for nondeterminism and rare events. In: Beyer, D., Huisman, M. (eds.)
TACAS 2018. LNCS, vol. 10806, pp. 340–358. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-89963-3 20

6. Cauchi, N., Abate, A.: StocHy: automated verification and synthesis of stochastic
processes. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11428, pp.
247–264. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17465-1 14

7. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: an analyzer for non-linear
hybrid systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp.
258–263. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-
8 18

8. Deavours, D.D., et al.: The Mobius framework and its implementation. IEEE Trans.
Softw. Eng. 28(10), 956–969 (2002)

9. Everdij, M.H., Blom, H.A.: Hybrid state Petri nets which have the analysis power
of stochastic hybrid systems and the formal verification power of automata. In:
Petri Nets, chapter 12. IntechOpen (2010)

10. Fränzle, M., Teige, T., Eggers, A.: Engineering constraint solvers for automatic
analysis of probabilistic hybrid automata. J. Logic Algebraic Program. 79(7), 436–
466 (2010)

11. Frehse, G., Han, Z., Krogh, B.: Assume-guarantee reasoning for hybrid I/O-
automata by over-approximation of continuous interaction. In: 43rd IEEE Con-
ference on Decision and Control, pp. 479–484 (2004)

12. Frehse, G., Kateja, R., Le Guernic, C.: Flowpipe approximation and clustering in
space-time. In: 16th International Conference on Hybrid Systems: Computation
and Control, pp. 203–212. ACM (2013)

13. Frehse, G., et al.: SpaceEx: scalable verification of hybrid systems. In: Gopalakr-
ishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1 30

https://doi.org/10.1007/978-3-319-89963-3_20
https://doi.org/10.1007/978-3-319-89963-3_20
https://doi.org/10.1007/978-3-030-17465-1_14
https://doi.org/10.1007/978-3-642-39799-8_18
https://doi.org/10.1007/978-3-642-39799-8_18
https://doi.org/10.1007/978-3-642-22110-1_30

The Tool hpnmg 377

14. Ghasemieh, H., Remke, A., Haverkort, B.: Analysis of a sewage treatment facility
using hybrid Petri nets. In: 7th EAI International Conference on Performance
Evaluation Methodologies and Tools, pp. 165–174. ACM (2013)

15. Gribaudo, M., Remke, A.: Hybrid Petri nets with general one-shot transitions.
Perform. Eval. 105, 22–50 (2016)

16. Hahn, E.M., Hartmanns, A., Hermanns, H., Katoen, J.P.: A compositional mod-
elling and analysis framework for stochastic hybrid systems. Formal Methods Syst.
Des. 43(2), 191–232 (2013)

17. Hartmanns, A., Hermanns, H.: The modest toolset: an integrated environment
for quantitative modelling and verification. In: Ábrahám, E., Havelund, K. (eds.)
TACAS 2014. LNCS, vol. 8413, pp. 593–598. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-642-54862-8 51

18. Hert, S., Seel, M.: dD convex hulls and delaunay triangulations. In: CGAL User
and Reference Manual. CGAL Editorial Board, 4.14 edn. (2019)

19. Hüls, J., Pilch, C., Schinke, P., Delicaris, J., Remke, A.: State-space construction
of hybrid petri nets with multiple stochastic firings. In: Parker, D., Wolf, V. (eds.)
QEST 2019. LNCS, vol. 11785, pp. 182–199. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-30281-8 11

20. Hüls, J., Remke, A.: Model checking HPnGs in multiple dimensions: representing
state sets as convex polytopes. In: Pérez, J.A., Yoshida, N. (eds.) FORTE 2019.
LNCS, vol. 11535, pp. 148–166. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-21759-4 9

21. Hüls, J., Schupp, S., Remke, A., Ábrahám, E.: Analyzing hybrid Petri nets with
multiple stochastic firings using HyPro. In: 11th EAI International Confrence on
Performance Evaluation Methodologies and Tools, pp. 178–185. ACM (2017)

22. Jensen, K., Kristensen, L.M.: Coloured Petri Nets: Modelling and Validation of
Concurrent Systems. Springer, Heidelberg (2009). https://doi.org/10.1007/b95112

23. Jongerden, M.R., Hüls, J., Remke, A., Haverkort, B.R.: Does your domestic pho-
tovoltaic energy system survive grid outages? Energies 9(9), 736 (2016)

24. Lepage, G.P.: A new algorithm for adaptive multidimensional integration. J. Com-
put. Phys. 27(2), 192–203 (1978)

25. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In:
Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT -2004. LNCS, vol. 3253, pp.
152–166. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30206-
3 12

26. OpenMP Architecture Review Board: OpenMP Application Program Interface
Version 5.0, May 2018

27. Pilch, C., Edenfeld, F., Remke, A.: HYPEG: statistical model checking for hybrid
Petri nets: tool paper. In: Proceedings of the 11th EAI International Conference
on Performance Evaluation Methodologies and Tools, pp. 186–191. ACM (2017)

28. Raymond, E.S.: The Art of Unix Programming. Addison-Wesley Professional,
Boston (2003)

29. Schupp, S., Ábrahám, E., Makhlouf, I.B., Kowalewski, S.: HyPro: A C++ library of
state set representations for hybrid systems reachability analysis. In: Barrett, C.,
Davies, M., Kahsai, T. (eds.) NFM 2017. LNCS, vol. 10227, pp. 288–294. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-57288-8 20

30. Soudjani, S.E.Z., Abate, A.: Adaptive and sequential gridding procedures for the
abstraction and verification of stochastic processes. SIAM J. Appl. Dyn. Syst.
12(2), 921–956 (2013)

https://doi.org/10.1007/978-3-642-54862-8_51
https://doi.org/10.1007/978-3-642-54862-8_51
https://doi.org/10.1007/978-3-030-30281-8_11
https://doi.org/10.1007/978-3-030-30281-8_11
https://doi.org/10.1007/978-3-030-21759-4_9
https://doi.org/10.1007/978-3-030-21759-4_9
https://doi.org/10.1007/b95112
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-319-57288-8_20

378 J. Hüls et al.

31. Soudjani, S.E.Z., Gevaerts, C., Abate, A.: FAUST2: formal abstractions of
uncountable-STate STochastic processes. In: Baier, C., Tinelli, C. (eds.) TACAS
2015. LNCS, vol. 9035, pp. 272–286. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-46681-0 23

32. The CGAL Project: CGAL user and reference manual. In: CGAL Editorial Board,
4.10 edn. (2017)

33. Ziegler, G.M.: Lectures on Polytopes, vol. 152. Springer, New York (2012). https://
doi.org/10.1007/978-1-4613-8431-1

https://doi.org/10.1007/978-3-662-46681-0_23
https://doi.org/10.1007/978-3-662-46681-0_23
https://doi.org/10.1007/978-1-4613-8431-1
https://doi.org/10.1007/978-1-4613-8431-1

Hybrid and Cyber-Physical Systems

A Transformation of Hybrid Petri Nets
with Stochastic Firings into a Subclass

of Stochastic Hybrid Automata

Carina Pilch1(B), Maurice Krause1, Anne Remke1, and Erika Ábrahám2

1 Westfälische Wilhelms-Universität, Münster, Germany
{carina.pilch,maurice.krause,anne.remke}@uni-muenster.de

2 RWTH Aachen University,Aachen, Germany
abraham@informatik.rwth-aachen.de

Abstract. We present a transformation of Hybrid Petri nets extended
with stochastic firings (HPnGs) into a subclass of Stochastic Hybrid
Automata (SHA), thereby making HPnGs amenable to techniques from
that domain. While (non-stochastic) Hybrid Petri nets have previously
been transformed into Hybrid Automata, we consider also stochastic
aspects and transform HPnGs into Singular Automata, which are Hybrid
Automata restricted to piecewise constant derivatives for continuous
variables, extended by random clocks. We implemented our transfor-
mation and show its usefulness by comparing results for time-bounded
reachability for HPnGs extended with non-determinism on the one hand,
and for the transformed SHAs using the ProHVer tool on the other hand.

1 Introduction

Hybrid Petri nets, as proposed by David and Alla [7], have been extended by
stochastic firings to Hybrid Petri nets with general transitions (HPnGs) [13]. The
construct of general transitions supports the modeling of random time delays,
like time-to-repair or time-to-failure, in dependability models of critical infras-
tructures such as water sewage systems and smart homes [12,20].

Previous works [1,7] have shown that Hybrid Petri nets can be transformed to
Hybrid Automata (HA), allowing the usage of HA analysis tools for the analysis
of Hybrid Petri nets. In contrast, recent work on analysis techniques for HPnGs
rather focused on the development of dedicated techniques for state-space con-
struction and model checking [18,19]. Instead of dedicated analysis techniques
for HPnGs, in this paper we propose a transformation of HPnGs into a sub-
class of Stochastic Hybrid Automata for which tool support is available for their
analysis. Using the transformation presented in this work allows to use existing
analysis tools for Stochastic Hybrid Automata also for Hybrid Petri nets.

The main restrictions in the modeling power of HPnGs lie in the piecewise-
constant derivatives of continuous variables, conditions that must not compare
continuous variables to each other, and the exclusion of non-determinism as an
explicit modeling feature. Note that there is an intrinsic non-determinism in
c© Springer Nature Switzerland AG 2020
R. Lee et al. (Eds.): NFM 2020, LNCS 12229, pp. 381–400, 2020.
https://doi.org/10.1007/978-3-030-55754-6_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-55754-6_23&domain=pdf
https://doi.org/10.1007/978-3-030-55754-6_23

382 C. Pilch et al.

Hybrid Petri nets, which is traditionally resolved probabilistically, but which
can also be resolved by a (non-)prophetic scheduler, as proposed in [25].

Due to these syntactical restrictions, we can transform HPnGs into so-called
Singular Automata extended with random clocks. Singular Automata are Hybrid
Automata with only constant derivatives and rectangular sets for conditions and
resets. To cover the stochastic aspects of HPnGs, we extend Singular Automata
with random clocks [6] to model the firings of general transitions. Whenever a
general transition in the HPnG is freshly enabled (for the first time or after a
previous firing), the corresponding random clock in the Singular Automaton is
sampled from the probability distribution assigned to the general transition. The
transformation is based on the construction of a symbolic computation tree for
a given HPnG, which we can compute only for a given time horizon, therefore
the above transformation is exact only up to this time bound. We discuss the
details of the transformation, however a formal correctness proof exceeds the
scope of this paper. The feasibility of our transformation is demonstrated in
a small case study on a battery (dis-)charging model, which we also use as a
running example throughout this work. We compute time-bounded reachability,
using the approach presented in [15] which discretizes probability distributions
for the Singular Automaton.

Related Work. For Generalised Stochastic Petri nets (GSPNs), which do not
include continuous variables and whose stochastic variables are restricted to neg-
ative exponential distributions, a Markov Automata semantics has been defined
in [9], maintaining their intrinsic non-determinism. In the presence of continuous
variables, David and Alla presented a transformation of Hybrid Petri nets into
HA in [7]. They do not further discuss the resulting subclass of HA and do not
include stochastic extensions in the transformation. The expressivity of (non-
stochastic) multisingular Hybrid Petri nets has been compared to HA in [24].

Hybrid Automata are so expressive that reachability is undecidable in gen-
eral [16]. Only for certain strongly restricted subclasses, like initialized rectan-
gular automata, unbounded reachability is still decidable [17]. Reachability by
a bounded number of discrete steps is decidable for rectangular automata also
without initialization [2,10]. Different approaches extend HA e.g. with proba-
bilistic jumps or random delays. Timed Automata have been extended by proba-
bilistic discrete jumps [22,23] and by continuous probability distributions [3,14].

Other formalisms, e.g., Piecewise Deterministic Markov Processes [8], allow
initialized jumps to take place at random times. For (restricted) extensions
of decidable classes of HA, reachability is decidable [29]. For more general
classes, incomplete approximative approaches are available [21,27]. CEGAR-
style abstraction allows the application of model checking methods for HA [30].

The tool Faust2 generates abstractions for uncountable-state discrete-time
stochastic processes for verifying reachability. It supports Stochastic Hybrid
Systems (SHS) with a single mode and finite actions [28]. A recent extension
[5] features formal abstraction to interval Markov Decision Processes. Different
approaches exist for overapproximating reachability probabilities for SHS: [11]
present a safe overapproximation for SHS with non-determinism and continuous

Transformation of HPnGs into SHA 383

probability distributions in discrete jumps, and [15] discretize the support of
random variables and present a reduction to Markov Decision Processes.

Outline. Section 2 defines HPnGs and their evolution. Section 3 presents Singular
Automata with random clocks as the SHA subclass that we use for the trans-
formation. A semantics for HPnGs in terms of Singular Automata with random
clocks is introduced in Sect. 4. Section 5 presents the corresponding transforma-
tion algorithm. Section 6 reports on a feasibility experiment for a battery case
study, before Sect. 7 concludes the paper.

2 Hybrid Petri Nets with General Transitions

First we introduce HPnGs in Sect. 2.1, before capturing their evolution by Para-
metric Location Trees (PLTs) in Sect. 2.2.

2.1 Hybrid Petri Nets with General Transitions

HPnGs, as defined in [13], extend traditional Petri nets with continuous vari-
ables, which have piecewise-linear evolution, and stochastic variables that follow
arbitrary probability distributions.

Definition 1. A Hybrid Petri net with general transitions (HPnG) is a tuple
H = (P, T ,A,M0, Φ) with the following components:

– P = Pdisc ∪ Pcont is a finite set of places, partitioned into disjoint sets of
discrete and continuous places.

– T = T imm ∪T det ∪T gen ∪T cont is a finite set of transitions, partitioned into
disjoint sets of immediate, deterministic, general and continuous transitions.

– A = Adisc ∪ Acont ∪ Atest ∪ Ainh is a finite set of arcs, partitioned into
disjoint sets of discrete, continuous, test and inhibitor arcs. Every arc con-
nects one place and one transition. Discrete arcs in Adisc ⊆ (Pdisc × (T \
T cont)) ∪ ((T \ T cont) × Pdisc) connect discrete places and non-continuous
transitions. Continuous arcs in Acont ⊆ (Pcont ×T cont)∪(T cont ×Pcont) con-
nect continuous places and continuous transitions. Test and inhibitor arcs in
Atest ,Ainh ⊆ (Pdisc ×T)∪(Pcont ×(T \T cont)) connect places to transitions,
excluding the combination of continuous places and continuous transitions.

– M0 = (m0,x0) is an initial marking with m0 = (m1, . . . ,m|Pdisc |) ∈ N
|Pdisc |
0

and x0 = (x1, . . . , x|Pcont |) ∈ R|Pcont |
≥0 .

– Φ = (ΦP
b , ΦT

d , ΦT
g , ΦT

c , ΦA
w , ΦA

s , ΦA
p) is a tuple of parameter functions with:

ΦP
b : Pcont → (R>0 ∪ ∞), ΦT

d : T det → R>0, ΦT
g : T gen → (f : R>0 → [0, 1]),

ΦT
c : T cont → R>0, ΦA

w : A → R>0, ΦA
s : Acont → R>0, ΦA

p : Acont → N.

Let in the following H = (P, T ,A,M0, Φ) be an HPnG as defined above. In
each state of H, discrete places hold a number of tokens and continuous places
hold an amount of fluid. The initial marking M0 = (m0,x0) defines the initial

384 C. Pilch et al.

Fig. 1. HPnG of a battery (dis-)charging process with non-deterministic choice.

number of tokens m0 and fluid levels x0. Continuous places have upper bounds
defined by ΦP

b ; lower bounds for all places are zero.
Markings can be changed by the firing of transitions. Immediate transitions

in T imm fire as soon as they get enabled. Deterministic transitions in T det fire
after being enabled for a deterministic time period defined by ΦT

d ; the firing times
are preemptive resume, meaning that the transition needs to be enabled for this
amount of time since its last firing in total, but not necessarily continuously. For
general transitions in T gen , the firing time is a random variable, which follows
a continuous probability distribution function defined by ΦT

g .
Non-continuous transitions are enabled when their input places match the

weight ΦA
w of their connecting arcs. Whenever multiple non-continuous transi-

tions are supposed to fire at the same time, there is naturally a non-deterministic
choice between those transitions in conflict. Continuous transitions in T cont have
an inflow and an outflow and fire continuously if enabled, i.e. all connected input
places hold fluid. The nominal firing rates of continuous transitions are defined
by ΦT

c and adapted in case a boundary is reached according to share (ΦA
s) and

priority (ΦA
p). Note that test and inhibitor arcs further control the enabling of

transitions, requiring that the marking of the connected place exceeds ΦA
w .

Running Example. Fig. 1 presents the HPnG of a (dis-)charging process of a (lin-
ear) battery model, which non-deterministically chooses between two charging
rates, after the battery has been drained to a random state of charge. Note that
all weights, priorities and shares that are not shown in the figure equal 1. The
battery is modeled by the continuous place P c

battery (depicted as double-outline
circle), which has a capacity of 100 and an initial charge of 90. It is discharged
by the transition TC

discharge (double-outline bar) with a rate of 10 per hour as
long as the discrete place P d

start (solid circle) holds a token (connected via a test
arc, double arrow). This token is moved to place P d

choose when the general tran-
sition TG

switch (single-outline bar) fires after a uniformly distributed amount of

Transformation of HPnGs into SHA 385

time. After this firing, the two immediate transitions T I
choose high and T I

choose low

(solid black bars) become enabled, such that a non-deterministic conflict arises.
If T I

choose low fires, the continuous transition TC
low becomes enabled (via place

P d
low rate) and charges P c

battery with a rate of 5 per hour. The token in P d
low rate

is removed after 10 hours by the firing of the deterministic transition TD
stop low

(grey filled bar). If instead T I
choose high fires, P c

battery is charged with a rate of
10 per hour, until the token in P d

high rate is removed by the firing of the gen-
eral transition TG

stop high. Note that the inhibitor arcs (circle arrows) between
P c
battery and TD

stop low resp. TG
stop high prevent the transitions from firing when

the battery has reached its capacity. This is done only to reduce the size of the
state space and transformed automaton by eliminating unnecessary additional
events.

Next we define the notion of a state for HPnGs, following [26].

Definition 2. A state of H is a tuple Γ = (m,x, c,d,g, e) with discrete mark-
ings m ∈ N

|Pdisc |
0 , continuous markings x ∈ R|Pcont |

≥0 , enabling times c ∈ R|T det |
≥0

(clocks) for deterministic transitions, drifts d ∈ R
|Pcont | for the current change

of fluid level per time unit in continuous places, enabling times g ∈ R|T gen |
≥0 for

general transitions and enabling status e ∈ {0, 1}|T | for all transitions.

The set of all states is denoted S, the initial state Γ0 = (m0,x0,0,d0,0, e0). By
Γ.m we refer to the component m of Γ , and similarly for other components and
tuples. During evolution, events may change a state if either a fluid marking
boundary is reached, or a transition fires, or an arc condition changes [26]. We
adopt concession and enabling rules, the definition of the evolution of continuous
variables, clocks and enabling times as well as the concept for fluid share and rate
adaption from [13] and do not explicitly state them in this work. The behavior
of general transitions is additionally adopted from [26].

Definition 3. An event (Γ,Δτ, ε, Γ ′) in H changes the state Γ to another state
Γ ′ at time Δτ ∈ R≥0 after entering the state Γ , caused by ε ∈ Pcont ∪ (T \
T cont) ∪ Atest ∪ Ainh .

We use E to denote the set of all events, E(Γ) those starting in state Γ , and
E(Γ, Γ ′) for those that start in Γ and end in Γ ′. We write (Γ, Γ ′) ∈ E if there
exists some Δτ and ε such that (Γ,Δτ, ε, Γ ′) ∈ E .

Definition 4. We define the set of events with minimum remaining time in
state Γ as Emin(Γ) = {(Γ,Δτ ′, ε′, Γ ′) ∈ E(Γ) | ∀(Γ,Δτ ′′, ε′′, Γ ′′) ∈ E(Γ). Δτ ′ ≤
Δτ ′′}. Having (Γ,Δτ ′, ε′, Γ ′) ∈ Emin(Γ), the continuous evolution from Γ to Γ ′

visits the states S(Γ, Γ ′) = {Γ ′′ ∈ S | ∃Δτ ′′ ∈ R≥0. 0 ≤ Δτ ′′ < Δτ ′ ∧ Γ ′′.m =
Γ.m ∧ Γ ′′.x = Γ.x+Γ.d ·Δτ ′′ ∧ Γ ′′.c = Γ.c +Δτ ′′ ∧ Γ ′′.d = Γ.d ∧ Γ ′′.g =
Γ.g + Δτ ′′ ∧ Γ ′′.e = Γ.e}.

Note that the set of events with minimum remaining time is always finite. The
definition of finite paths is based on events [26], where cycles of instantaneous
immediate or general transition firings are prohibited to prevent Zeno-behavior.

386 C. Pilch et al.

Definition 5. A (finite) path of the HPnG H is a sequence σ = Γ0
(Δτ0,ε0)−−−−−→

Γ1
(Δτ1,ε1)−−−−−→ . . . Γn with (Γi,Δτi, εi, Γi+1) ∈ Emin(Γi) for every i ∈ N0, i < n,

and Δτi is the time spent in states from S(Γi, Γi+1) before the event occurs.
We denote by γ(σ, t) the state that the path σ reaches at time point t, which
is a state from S(Γi, Γi+1) with i = min{j ∈ N | t ≤

∑
0≤l≤j Δτl}, and define

Δτ(γ(σ, t)) = t −
∑

0≤l≤i−1 Δτl.
Let further Paths(Γ0) denote the set of all paths which start from the initial

state Γ0, and let its subset of paths up to time t (starting from Γ0) be denoted

by Paths(Γ0, t) = {σ = Γ0
(Δτ0,ε0)−−−−−→ Γ1

(Δτ1,ε1)−−−−−→ . . . Γk | ∃σ
(Δτk,εk)−−−−−−→ Γk+1 ∈

Paths(Γ0).
∑k−1

i=0 Δτi ≤ t <
∑k

i=0 Δτi}.

Let Confl(Γn) ⊂ T \T cont consist of those transitions of H that are in conflict
in state Γn. One way to resolve non-determinism is using priorities and weights
as in [13]. Here we follow [25] for a more general approach using schedulers. We
will need the notion of a discrete probability distribution over a set D, which is a
function μ : D → [0, 1] ⊆ R such that support(μ) = {d ∈ D | μ(d) > 0} is count-
able and

∑
d∈support(μ) μ(d) = 1. Let Dist(D) be the set of discrete probability

distributions over D.

Definition 6. A scheduler for the HPnG H with initial state Γ0 is a function
s : Paths(Γ0) → Dist(T \ T cont) that assigns to every path σ starting in Γ0 and
ending in Γn a distribution with support(s(σ)) ⊆ Confl(Γn). We denote the set
of all schedulers for H as S.

We are interested in time-bounded reachability, which is the problem to deter-
mine the probability of entering certain states within a certain time limit tmax

in an HPnG H. As the solution depends on the resolution of non-deterministic
conflicts, every scheduler induces a fully stochastic version of H. For a formal
definition of time-bounded reachability under a given scheduler, we refer to [25].

2.2 The Parametric Location Tree

Previous work has defined an evolution graph for Hybrid Petri nets to describe
their behaviour over time [1,7]. Similarly, previous work has defined the (time-
bounded) evolution of HPnGs in terms of parametric location trees (PLTs), which
abstract from concrete probabilities [13,18].

Every node in a PLT, called parametric location, symbolically represents a set
of states with common discrete marking, drift and enabling status. The discrete
state is changed due to a source event that leads to a child node in the PLT.
The evolution of the continuous variables might depend on the firing times of the
general transition, such that different firing times may lead to different successor
nodes in the PLT. Recall that every firing time of a general transition is a random
variable which is distributed according to its continuous probability distribution.
The PLT symbolically describes the stochastic behaviour of an HPnG in terms of
random variables s1, s2, . . . , sn, where n equals the number of already occurred

Transformation of HPnGs into SHA 387

general transition firings plus the number of currently enabled general transitions
[19]. The deterministic evolution is described by linear functions in those random
variables that correspond to past firings. This allows a symbolic representation
that is independent of the probability distributions.

The definition of a PLT in [18] includes so-called potential domains in each
parametric location, which collect all values of random variables that can lead
to this location. Since these are not required for the proposed transformation,
we provide a simplified definition as follows.

Definition 7. Let H = (P, T ,A,M0, Φ) be an HPnG and tmax ∈ R≥0 a
time bound. The parametric location tree (PLT) of H is a tree (V,E,v0)
with nodes V and edges E. Every node vi ∈ V is related to a paramet-
ric location Λi = (IDi, ti, Γi) with unique identifier IDi, a state Γi of H, and
an entry time ti that is either a constant from R≥0 or a linear function
a0 + a1 · s1 + a2 · s2 + · · · + an · sn of the random variables s1, s2, . . . , sn which
are present in the HPnG with coefficients aj ∈ R for j = 0, . . . , n. An edge
(vj ,vk) ∈ E exists for vj ,vk ∈ V if an event from state Γj to state Γk exists.
The root node of the PLT is v0 whose state component is the initial state of H.

For HPnGs with n stochastic firings, the resulting PLT up to time tmax is
finite due to Definition 4, defining the set of next events, and can be constructed
in O(n2 × |

⋃
Λi∈Λ Emin(Λi.Γ)|) according to [18]. We denote the corresponding

set of parametric locations as Λ = {Λi | ∃vi ∈ V}.
The PLT of the example model in Fig. 1 is made available in the appendix

of this paper, including a description.

3 Related Hybrid Automata Formalisms

The following definition of Hybrid Automata follows [2], however ommitting
labels of automata, as they are not required in the context of this work.

Definition 8. A Hybrid Automaton is a tuple (Loc,Var ,Edg ,Act , Inv , Init).
Loc is the finite set of locations (drawn as circles) and Var is a set of real-
valued variables. A valuation v : Var → R assigns a real-value to each variable
and we denote the set of all valuations as V .

The set Edg ⊆ Loc × 2V
2 × Loc is the finite set of transitions (drawn as

arrows). Every transition (l, μ, l′) ∈ Edg consists of a source location l ∈ Loc, a
transition relation μ ⊆ V 2 and a target location l′ ∈ Loc.

The function Act : Loc → (f : R≥0 → V) assigns a set of activities to each
location. Activities are time-invariant functions, which means that for l ∈ Loc,
f ∈ Act(l) implies (f + t) ∈ Act(l), where (f + t)(t′) = f(t+ t′) for all t′ ∈ R≥0.
The function Inv : Loc → 2V assigns an invariant Inv(l) ⊆ V to each location
l ∈ Loc. A state is a tuple (l, v) which consists of a location l ∈ Loc and valuation
v ∈ V . Init ⊆ Loc × V is the set of initial states.

388 C. Pilch et al.

The state of a Hybrid Automaton can change in two ways: Either time passes
or a transition is taken. A time delay only changes the values of the variables,
but not the location. The values evolve according to the activities, i.e. in a state
(l, v), Act(l) assigns a new valuation to every time delay t ∈ R≥0. In particular,
Act(l)(0) = v and Act(l)(t′) ∈ Inv(l) have to hold for all 0 ≤ t′ ≤ t. Hence, the
system can only be in states (l, v), in which the values of the variables satisfy
the invariant of the location. A transition (l, μ, l′) ∈ Edg can only be taken in a
state (l, v) if (v , v ′) ∈ μ for some valuation v ′ ∈ V and further v ∈ Inv(l) and
v ′ ∈ Inv(l ′). Taking this transitions then leads to the new state (l′, v ′). For the
complete semantics of Hybrid Automata, we refer to [2].

In this work, we mainly consider a subclass of Hybrid Automata, which is
called Singular Automata, defined according to [16,17].

Definition 9. Let R be the set of all intervals in R with rational or infinite
endpoints and let d ∈ N. A subset of R

d is rectangular if it is a Cartesian
product of intervals, i.e. if it is from Rd. A rectangular set is a singleton if each
of its intervals is a singleton, i.e. a set with exactly one element.

A Hybrid Automaton, in which the activities, initial states, invariants and
the transition relations are restricted to rectangular sets, is called a Rectangular
Automaton. A Singular Automaton is however a Rectangular Automaton, in
which the activities are further restricted to a singleton.

Definition 10. A Singular Automaton is a HA (Loc,Var ,Edg , Act , Inv , Init)
where the set of transitions is restricted to Edg ⊆ Loc × (R|Var | × R|Var | ×
2{1,...,|Var |})×Loc, the invariant function is Inv : Loc → R|Var |, the initital states
are in Init ⊆ Loc × R|Var | and the activities are singletons Act : Loc → R

|Var |.

The derivatives of all variables in a location l ∈ Loc are deterministically
given by Act(l). A transition (l, (pre, post , jump), l′) ∈ Edg in a Singular Automa-
ton may only be taken in a state (l, v) if the valuation v ∈ V lies in pre. When
the transition is taken, the value of every variable yi ∈ Var is updated as fol-
lows: If i /∈ jump, yi is not changed and must lie in post i and if i ∈ jump, yi is
non-deterministically set to a new value in post i.

Definition 11. A Singular Automaton with random clocks (Loc,Var ,Edg ,Act ,
Inv , Init ,F) is a Singular Automaton extended by a set C ⊂ Var and a function
F : C → (f : R+ → [0, 1]), which associates a continuous probability distribution
function to each clock in C, such that the following holds:

1. ∀l ∈ Loc : xi ∈ C ⇒ Act(l)i ∈ {0,−1} ,
2. For each (l, (pre, post , jump), l′) ∈ Edg and for all xi ∈ C holds that if i ∈

jump, then v(xi) is set to a random value, for which we write v(xi) = F (xi).

4 Singular Automaton Semantics for HPnGs

The deterministic evolution of an HPnG can be described by means of a Hybrid
Automaton, as will be explained in the following: A parametric location in the

Transformation of HPnGs into SHA 389

PLT of an HPnG represents a set of states with the same discrete marking.
The evolution of the continuous state in a parametric location can be described
by an automaton location. Consequently, transitions between locations in the
automaton correspond to events between parametric locations in the PLT. The
continuous variables (i.e. the fluid level of the continuous places) in an HPnG
further relate to continuous variables in the corresponding automata.

The PLT describes the stochastic behavior of an HPnG only symbolically
in terms of random variables that are added for every (potential) firing of a
general transition in the PLT, modeling the firing time. Each random variable
is translated to a random clock, such that the firing of the general transition
corresponds to the expiration of the random clock in the automaton.

The piecewise linear evolution of continuous variables in HPnGs translates
to locations with constant derivatives for continuous variables, i.e. singletons.
Further test and inhibitor arcs only compare continuous variables to constants
and not to each other, which again results in rectangular sets. The capacities
of continuous places translate to rectangular invariant sets. The clocks of deter-
ministic transitions are translated to continuous variables which are reset to the
constant firing time of the transition and evolve with derivative −1 if enabled
and 0 otherwise. Their expiration also leads to constant invariant and pre-guard
bounds for the corresponding clocks. Hence, the transformation of HPnGs leads
to a Singular Automaton with random clocks.

Let H = (P, T ,A,M0, Φ) be an HPnG and (V,E,v0) the corresponding
parametric location tree up to a time bound tmax, with the set of parametric
locations Λ and n general transition firings. Let TG

k ∈ T gen denote the general
transition whose firing corresponds to random variable sk.

Definition 12. The set Λim ⊂ Λ is the set of parametric locations, where
at least one immediate transition is enabled, i.e. ∀Λi ∈ Λim : ∃Tj ∈
T imm : Λi.Γ.ej = 1. For every parametric location Λp ∈ Λ, we define the set
of child locations Λc(Λp) = {Λc ∈ Λ | ∃(Λp.Γ, ·, ·, Λc.Γ) ∈ Emin(Λp.Γ)} and
further the set of next-delayed locations Λd(Λp) as:

Λd(Λp) =

{
{Λp} if Λp /∈ Λim
⋃

Λc∈Λc(Λp)
Λd(Λc) otherwise.

The set of next-delayed locations is defined recursively and contains the loca-
tion itself if it is delayed, i.e. no immediate transition is enabled, and otherwise
recursively collects all delayed children. Note that Λim is called the set of vanish-
ing parametric locations. Definition 13 provides the core of our transformation
approach as it gives the basic Singular Automaton semantics for HPnGs includ-
ing random clocks.

Definition 13. For an HPnG H, the corresponding Singular Automaton with
random clocks up to time tmax is given by (Loc,Var ,Edg ,Act , Inv , Init ,F),
where

a) Loc = Λ\Λim is the set of parametric locations, excluding vanishing locations,

390 C. Pilch et al.

b) Var = X ∪ D ∪ G unites the sets of variables describing (i) the continuous
marking X = {xk ∈ R

+
0 | k ∈ N∧0 ≤ k ≤ |Pcont |}, (ii) the remaining time to

fire of the deterministic transitions D = {ck ∈ R
+
0 | k ∈ N ∧ 0 ≤ k ≤ |T det |}

and (iii) of general transition firings G = {sk ∈ R
+
0 | k ∈ N ∧ 0 ≤ k ≤ n},

which equals the set of random clocks. The function m : V ar → Pcont ∪T det ∪
T gen maps every variable to the corresponding place or transition.

c) Edg collects transitions (Λi, (pre, post , jump),Λj) for every (delayed) event
(Λi.Γ,Δτi, εi, Λi+1.Γ) where Λi ∈ Loc, and Λj ∈ Λd(Λi+1). For every yk ∈
Var, we define prek and postk:
(i)

prek =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 if
(
εi = m(yk) = T ∈ T det ∪ T gen

)

∨
(
εi = m(yk) = P c

j ∈ Pcont ∧ Λi.Γ.dj < 0
)
,

ΦP
b (P c

j) if εi = m(yk) = P c
j ∈ Pcont ∧ Λi.Γ.dj > 0,

ΦA
w(〈P c

j , T 〉) if εi = 〈P c
j , T 〉 ∈ Atest ∪ Ainh ∧ m(yk) = P c

j ∈ Pcont ,

[−∞, ∞] otherwise,

(ii) k ∈ jump, only if
(
m(yk) = TD

j ∈ T det ∧ Λi.Γ.cj = 0 ∧ Λi+1.Γ.ej = 1
)

∨
(
m(yk) = TG

j ∈ T gen ∧ Λi.Γ.gj = 0 ∧ Λi+1.Γ.ej = 1
)
, and

postk =

⎧
⎪⎨

⎪⎩

ΦT
d (TD

j) if k ∈ jump ∧ m(yk) = TD
j ∈ T det ,

F (yk)) if k ∈ jump ∧ m(yk) ∈ T gen ,

[−∞,∞] otherwise,

d) Act : Loc → R
|Var | defines the derivatives for every location Λi ∈ Loc and for

every variable yk ∈ Var:

Act(Λi)k =

⎧
⎪⎨

⎪⎩

Λi.Γ.dj if m(yk) = P c
j ∈ Pcont ,

−1 if m(yk) = Tj ∈ T ∧ Λi.Γ.ej = 1,

0 otherwise,

e) Inv : Loc → R|Var | defines invariants for every location Λi ∈ Loc, such that
for every event (Λi.Γ, Λi+1.Γ,Δτi, εi) ∈ Emin(Λi.Γ) and for every variable
yk ∈ Var holds:

Inv(Λi)k =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[0, ∞] if
(
εi = m(yk) = T ∈ T det ∪ T gen

)

∨
(
εi = m(yk) = P c

j ∈ Pcont ∧ Λi.Γ.dj < 0
)
,

[−∞, ΦP
b (P c

j)] if εi = m(yk) = P c
j ∈ Pcont ∧ Λi.Γ.dj > 0,

[−∞, ΦA
w(〈P c

j , T 〉)] if εi = 〈P c
j , T 〉 ∈ Atest ∪ Ainh ∧ m(yk) = P c

j

∈ Pcont ∧ Λi.Γ.xj < ΦA
w (〈P c

j , T 〉)
[ΦA

w (〈P c
j , T 〉), ∞] if εi = 〈P c

j , T 〉 ∈ Atest ∪ Ainh ∧ m(yk) = P c
j

∈ Pcont ∧ Λi.Γ.xj > ΦA
w (〈P c

j , T 〉)
[−∞, ∞] otherwise,

Transformation of HPnGs into SHA 391

f) Init ⊆ Loc × V collects each initial state (Λi, v) with Λi ∈ Loc and v ∈ V ,
for which holds that Λi.t = 0 and ∀yk ∈ Var :

v(yk) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Λi.Γ.xj if m(yk) = P c
j ∈ Pcont ,

ΦT
d (TD

k) if m(yk) = TD
j ∈ T det ∧ Λi+1.Γ.ej = 1,

F (yk) if m(yk) = TG
j ∈ T gen ∧ Λi+1.Γ.ej = 1,

0 otherwise,

g) F assigns a probability distribution to every random clock yk with m(yk) =
TG

j ∈ T gen , such that F (yk) = ΦT
g (TG

j).

According to Definition 13 a), the set of automaton locations Loc relates to
the set of non-vanishing parametric locations in the PLT, by directly moving to
the next-delayed location in case of a vanishing location. The set of variables con-
tains one variable for each continuous place describing its marking, one variable
for each deterministic transition describing its clock and one random clock for
each general transition firing describing the remaining time to fire (Definition 13
b)). To ease notation, we introduce a mapping m from variables to corresponding
places and transitions.

For the sake of clarity we first describe Definition 13 d): all continuous vari-
ables evolve with a constant flow per location. For variables related to continuous
places, the derivative equals the drift of the place. For variables describing the
clocks of deterministic or general transitions, the derivative equals −1 if the
corresponding transition is enabled and 0 otherwise.

Part c) defines transitions for every delayed event: the automaton contains
one transition for delayed target location, and potentially multiple transitions,
otherwise, depending on the size of the set of next-delayed parametric locations.

Parts c) and e) combine pre-guards with invariants of source locations, such
that transitions are urgent, i.e., they have to be taken as soon as the guard
is satisfied. The firing of a deterministic or general transition relates to the
expiration of the corresponding clock. The resulting automaton transition hence
contains the pre-guard, which compares the value of the clock to zero. The
invariant of the source location is chosen accordingly. For guard arcs connected to
continuous places, the value of the corresponding continuous variable is compared
to the weight of the arc in a similar way. Upper and lower place boundaries are
also translated into invariants and pre-guards, which compare the continuous
variable to the upper boundary or to zero (depending on the sign of its current
derivative). Note that rate adaption, as included in the PLT, prevents time locks
in the automaton by recomputing adapted rates whenever a boundary is hit.

Part c)(ii) defines the jump set and post-guards for transitions in Edg . Vari-
ables that relate to transition clocks are reset whenever the transition is freshly
enabled (for the first time or after a previous firing). Clocks of deterministic
transitions are set to their firing time and random clocks are set according to
their probability distribution. As their derivative is set to zero when disabled,
the preemptive resume policy is preserved for all clocks, as in the PLT.

392 C. Pilch et al.

Fig. 2. Relations between Hybrid Petri nets and Singular Automata classes

Fig. 3. Singular Automaton with random clocks modeling battery (dis-)charging.

Initially, the continuous variables equal the initial marking. Clocks are ini-
tialized to firing time if the transition is initially enabled. Random clocks for
initially enabled general transitions are set according to their probability distri-
bution (Part g)). All disabled clocks and random clocks are set to zero (Part f)).
In case that multiple immediate transitions are initially enabled and hence, in
conflict, the automaton has multiple initial locations (Part f)). Accordingly, non-
determinism from transition conflicts in the HPnG is maintained in the semantic.

Note that the PLT is built only up to time tmax. As the semantics of Def-
inition 13 is based on the PLT, the evolution of the corresponding Singular
Automaton may exceed this time bound. However, the evolution of the automa-
ton beyond tmax can possibly differ from the evolution of the HPnG. Hence, we
can only guarantee that the given semantics holds up to tmax. Recall that Zeno
behavior has been excluded in the PLT by prohibiting cycles of (immediate and
general) transition firings and hence does also not arise in the automaton.

Figure 2 illustrates the relations between those four model classes, where the
arrows demonstrate extending a class by stochastic variables and the inclusions
indicate proper sub-class relations. The resulting automaton from Definition 13
only contains singular sets for pre-guards, invariants, post-guards and initial val-
ues, where Singular Automata usually allow rectangular sets. Hence, we obtain a
strict subclass of Singular automaton with random clocks and urgent transitions.

Example (continued). Fig. 3 presents the resulting Singular Automaton with
random clocks for the running example. Note that all derivatives that are not
shown in the model equal zero. The resulting Singular Automaton only has six
locations (after merging identical ones), while the PLT has fifteen parametric

Transformation of HPnGs into SHA 393

locations (see appendix). The variable x with derivative ẋ models the fluid level
of P c

battery. Since clocks are running backwards, c models the remaining time for
TD
stop low to fire. Similarly, s1 and s2 represent the remaining time until firing for

the general transitions TG
switch resp. TG

stop high.

5 Transformation of HPnGs into SHA

We now present an algorithm which transforms HPnGs into Singular Automata
with random clocks, according to the semantics introduced above. First, the PLT
needs to be constructed, as described in [18] and is then processed by pre-order
depth-first traversal. For every parametric location, a new location is added to
the automaton and its source event is turned into a transition that connects the
new location to the location that corresponds to its parent node in the PLT.
However, in case that the event is the firing of an immediate transition, the
latter is instead removed and all affected transitions are updated to bypass the
removed location, according to Definition 13.

Due to its tree structure, the PLT cannot contain cycles. In contrast,
automata allow a cyclic structure and hence, identical locations with identical
outgoing transitions can be merged in the resulting automaton without changing
system behaviour. Note that this is possible as the automaton locations have no
restrictions on the values of continuous variables, clocks, random clocks or on
the time, in contrast to parametric locations in the PLT. To obtain automata
without redundant locations, we therefore perform cycle detection and merge
identical locations after translating the PLT into the Singular Automaton.

Algorithm 1 describes the transformation of an HPnG into a Singular
Automaton with random clocks. The PLT is constructed first by the func-
tion constructParametricLocationTree(), as described in [18] (Line 1). The
automaton is created afterwards with a set of variables and function F , as defined
in Definition 13b) and g), but with empty sets for locations, labels and transi-
tions (Line 2). Next, all initial and delayed parametric locations are determined
according to Definition 13f) by the function determineInitialLocations()
(Line 3). Each of these locations is translated into an automaton location

Algorithm 1 . transformIntoSingularAutomaton(hpng , tmax)
1: plt = constructParametricLocationTree(hpng , tmax);

2: automaton = new Automaton(plt);
3: initialParametricLocations = determineInitialLocations(plt);
4: for (initialPL : InitialParametricLocations) do

5: initialLocation = generateLocation(initialPL);
6: automaton.add(initialLocation);
7: traverseChildren(plt, automaton, initialPL, initialLocation);
8: end for

9: mergeIdenticalLocations(automaton);
10: return (automaton);

394 C. Pilch et al.

Algorithm 2 . traverseChildren(plt , automaton, parentPL, sourceLocation)
1: delete = false;

2: for (childPL : parentPL.children) do

3: childLocation = generateLocation(childPL);
4: automaton.add(childLocation);
5: event = childLocation.sourceEvent;
6: if (isImmediateTransitionFiring(event)) then

7: delete = true;

8: else

9: transition = generateTransition(event , sourceLocation, childLocation);
10: automaton.add(transition);
11: sourceLocation.addInvariants(event);
12: end if

13: traverseChildren(plt, automaton, childPL, childLocation);
14: end for

15: if (delete == true) then

16: automaton.adaptAllTransitions(sourceLocation, parentPL);
17: automaton.remove(sourceLocation)
18: end if

by generateLocation(), which takes any parametric location and creates an
automaton location with activities as defined in Definition 13e) and f) (Line 5).
Note that also vanishing parametric locations are processed, but removed later,
when the next delayed parametric location is processed, as discussed in the fol-
lowing. The location is then added to the automaton (Line 6). Finally all child
locations are traversed recursively by the function traverseChildren() (Line
7). After all initial locations have been processed, identical locations are merged
by mergeIdenticalLocations() (Line 9), before the transformed automaton is
returned (Line 11).

Algorithm 2 recursively traverses over all parametric locations in the PLT
(Lines 2–14) and adds automaton locations for each of them (Lines 3–4). If
the source event of a child parametric location is the firing of an immediate
transition, a boolean delete is set to true (Lines 6–7). Otherwise, a transition is
generated by the function generateTransition(), according to Definition 13d),
and invariants of the source locations are updated (Line 11), according to Def-
inition 13f). Next, traverseChildren() is recursively called for the currently
considered child location (Line 13). Afterwards, all child locations have been tra-
versed. If delete equals true, all incoming and outgoing transitions are adapted to
bypass the source location, which is then removed from the automaton (Lines 15–
18),

Concluding, Algorithm1 iterates through all initial parametric locations and
recursively traverses all child nodes. We assume that generateLocation() and
generateTransition() create automaton locations and transitions according to
Definition 13 b)-e), assigning probability distributions according to Definition 13
g). Since vanishing locations are removed from the automaton in Algorithm2,
the resulting set of locations corresponds to Definition 13 a) and f).

Transformation of HPnGs into SHA 395

Table 1. Feasibility study results

Scenario ProHVer Δp = 0.01 ProHVerΔp = 0.005 hpnmg

no. ΦT
g (TG

switch) ΦT
g (T gen

stop high) pmax time pmax time pmax error time

1 u[1h,7h] u[0h,8h] 0.597502 336.1 s 0.595700 7236.3 s 0.593743 ±5.75E−6 859.4 s

2 u[1h,7h] n(4h,1h) 0.517995 359.4 s 0.515875 6756.4 s 0.513885 ±9.31E−8 649.6 s

3 u[1h,7h] n(6h,4h) 0.709199 382.6 s 0.707403 6531.7 s 0.704827 ±1.40E−6 640.0 s

4 n(6h,1h) u[0h,8h] 0.158263 358.1 s 0.152848 5875.4 s 0.148484 ±1.37E−5 492.7 s

5 n(6h,1h) n(4h,1h) 0.047712 371.4 s 0.039319 6006.4 s 0.033465 ±6.85E−8 662.5 s

6 n(6h,1h) n(6h,4h) 0.343163 359.2 s 0.337639 5683.9 s 0.327344 ±5.12E−6 572.3 s

The worst case complexity of the transformation, including the construc-
tion of the PLT, is in O

((
|Pcont | + |T det | + n2

)
× |

⋃
Λi∈Λ Emin(Λi.Γ)|

)
for n

stochastic variables.

6 Feasibility Study

We implemented the transformation of HPnGs into Singular Automata as an
addition to our existing analysis tool hpnmg1[18] where the resulting automaton
is saved in the JANI file format for stochastic hybrid systems [4]. JANI files
can be loaded into the tool ProHVer [15], which is part of the Modest Toolset2.
ProHVer discretizes the probability distributions of an SHA to obtain a Proba-
bilistic Hybrid Automaton, transforms it into a non-probabilistic HA and then
uses PHAVER3 to overapproximate the maximum probability for time bounded
reachability by reduction on a Markov Decision Process [15]. The obtained results
are compared to time-bounded reachability under a prophetic scheduler com-
puted by the hpnmg tool, as proposed in [25].

We investigate the (dis-)charging process of a (linear) battery model of Fig. 1.
Charging at the higher rate terminates after a random time delay, while charging
at the lower rate continues for a deterministic amount of time. We evaluate the
model for different probability distributions for the time periods of (i) discharging
and (ii) charging at high rate and compute the probability that the battery is
fully recharged within 24 h.

We present results for six scenarios where the general transitions follow dif-
ferent probability distributions. In the first three scenarios, the firing time of
TG
switch is uniformly distribution between 1 h and 7 h. In Scenario 4 to 6, the

firing time of TG
switch is normally distributed with a mean of 6 h and a variance

of 1 h. The firing time of TG
stop high follows a uniform distribution with bounds 0h

and 8h in Scenario 1 and 4 and it follows normal distributions in the remaining
scenarios: with a mean of 4 h and a variance of 1 h in Scenario 2 and 5, and with
a mean of 6 h and a variance of 4 h in Scenario 3 and 6.

1 https://github.com/jannikhuels/hpnmg.
2 http://www.modestchecker.net.
3 http://www-verimag.imag.fr/%7Efrehse/phaver web/index.html.

https://github.com/jannikhuels/hpnmg
http://www.modestchecker.net
http://www-verimag.imag.fr/%7Efrehse/phaver_web/index.html

396 C. Pilch et al.

The ProHVer flags no-cheap-contain-return-others and no-partition-
check-time-relevance-during have been set to false and all given probabil-
ity distributions have been discretized into intervals, such that every interval
covers a probability mass Δp of either 0.01 or 0.005. For the hpnmg tool, we
run the computation of the prophetic scheduler, as described in [25]. Building
the PLT took 5.63 ms, the transformation took 16.77 ms and writing the JANI
output another 0.72 ms. All computations have been performed on a macOS
Mojave system (2.7 GHz Intel Core i5, 8 GB RAM), with ProHVer executed on
a VirtualBox running Ubuntu 18.04.

Table 1 presents the probability that the battery is fully recharged within 24 h
for different scenarios. The error estimate stems from the numerical integration
method used to compute probabilities [25]. The maximum probabilities of Pro-
HVer lie slightly above the probabilities computed by the hpnmg tool, which is
due to the discretization and overapproximation performed by ProHVer.

Comparing the probabilities computed by ProHVer for different discretiza-
tions, the approximation error is mostly bounded by the value of 2 · Δp: For
both, Δp = 0.01 and Δp = 0.005, one can see that the difference between the
results obtained by ProHVer and by hpnmg exceeds 2 · Δp only slightly in Sce-
nario 6 for Δp = 0.005. We assume that the factor 2 results from the number of
general transition firings, whose probability distributions both require separate
discretizations. ProHVer consistently overapproximates the hpnmg results for
prophetic scheduling. ProHVer discretizes the support of the random variables
before PHAVER optimizes the MDP reachability for a fixed (interval) value of
the random variables, which implies prophetic scheduling. Reachability proba-
bilities for the HPnG battery model could hence be matched by ProHVer for
a Singular Automaton with random clocks, after transformation with the algo-
rithm proposed in this paper. Depending on the discretization factor, ProHVer
takes more time than hpnmg. This is due to the fact that the hpnmg tool has
been developed for this restricted class of models, whereas ProHVer is able to
deal with more general stochastic hybrid models. Hence, the presented transfor-
mation can also be used to enrich Hybrid Petri net with more modeling features.

7 Conclusion

We introduced a semantics for HPnGs in terms of Singular Automata extended
with random clocks and presented an algorithm for their transformation. This
allows making use of existing techniques for the reachability analysis of Stochas-
tic Hybrid Automata. The feasability of this transformation was demonstrated
for a battery (dis-) charging process, for which we were able to compute match-
ing results using the tools ProHVer and hpnmg. The size of the approximation
error in ProHVer is consistent with the chosen discretization, however hpnmg
was able to compute more accurate results in shorter time for this model.

Future work will investigate how e.g. flow-pipe construction can be efficiently
used for the analysis of Singular Automata with random clocks. Furthermore, we
will investigate the approximation error of ProHVer in the context of subclasses
of Stochastic Hybrid Automata.

Transformation of HPnGs into SHA 397

Appendix

Parametric Location Tree

Fig. 4. Parametric location tree for the feasibility study example

Figure 4 shows the Parametric Location Tree for the model of the feasibility
study (r.t. Sect. 6). t is the entry time into each parametric location, x denotes

398 C. Pilch et al.

the fluid level of the continuous place P c
battery and ẋ its drift upon entry. Fur-

ther s0 denotes the random variable, which describes the firing of TG
switch, and

similarly s1 denotes the one of TG
stop high. Every node shows how many discrete

places contain one token each and which non-continuous transitions are enabled.
The restrictions on the random variables describe the values which the random
variables need to take to get into the specific parametric location.

The PLT is split right at its root (Λ1) into two sub-trees, depending on
whether TG

switch fires before or after P c
battery reaches zero. If it fires within 9

time units, this leads us to Λ2 and otherwise to Λ6, via Λ3. From there, in
both sub-trees the non-deterministic choice is taken, further splitting the tree. If
T I
choose high is chosen (Λ4 and Λ11), TG

stop high becomes enabled and either it fires
(Λ7, Λ13) or P c

battery reaches its upper boundary (Λ8, Λ14). If instead T I
choose low

is chosen (Λ5, Λ12), TD
stop low becomes enabled and is might fire (Λ9, Λ15). Only if

P c
battery has not been empty before (Λ5), it can reach its upper boundary before

TD
stop low fires (Λ10).

References

1. Allam, M., Alla, H.: Modelling production systems by hybrid automata and hybrid
petri nets. IFAC Proc. Vol. 30(6), 343–348 (1997)

2. Alur, R., et al.: The algorithmic analysis of hybrid systems. Theor. Comput. Sci.
138(1), 3–34 (1995)

3. Bohnenkamp, H., D’Argenio, P.R., Hermanns, H., Katoen, J.P.: MODEST: a com-
positional modeling formalism for hard and softly timed systems. IEEE Trans.
Softw. Eng. 32(10), 812–830 (2006)

4. Budde, C.E., Dehnert, C., Hahn, E.M., Hartmanns, A., Junges, S., Turrini, A.:
JANI: quantitative model and tool interaction. In: Legay, A., Margaria, T. (eds.)
TACAS 2017. LNCS, vol. 10206, pp. 151–168. Springer, Heidelberg (2017). https://
doi.org/10.1007/978-3-662-54580-5 9

5. Cauchi, N., Abate, A.: StocHy: automated verification and synthesis of stochastic
processes. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11428, pp.
247–264. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17465-1 14

6. D’Argenio, P.R., Katoen, J.P.: A theory of stochastic systems part I: stochastic
automata. Inf. Comput. 203(1), 1–38 (2005)

7. David, R., Alla, H.: On hybrid petri nets. Discrete Event Dyn. Syst. 11(1), 9–40
(2001)

8. Davis, M.: Piecewise-deterministic Markov processes: a general class of non-
diffusion stochastic models. J. Roy. Stat. Soc. Ser. B (Methodol.) 46(3), 353–388
(1984)

9. Eisentraut, C., Hermanns, H., Katoen, J.-P., Zhang, L.: A semantics for every
GSPN. In: Colom, J.-M., Desel, J. (eds.) PETRI NETS 2013. LNCS, vol. 7927, pp.
90–109. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38697-8 6

10. Frehse, G.: PHAVer: algorithmic verification of hybrid systems past HyTech. In:
Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 258–273. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-31954-2 17

https://doi.org/10.1007/978-3-662-54580-5_9
https://doi.org/10.1007/978-3-662-54580-5_9
https://doi.org/10.1007/978-3-030-17465-1_14
https://doi.org/10.1007/978-3-642-38697-8_6
https://doi.org/10.1007/978-3-540-31954-2_17

Transformation of HPnGs into SHA 399

11. Fränzle, M., Hahn, E.M., Hermanns, H., Wolovick, N., Zhang, L.: Measurability
and safety verification for stochastic hybrid systems. In: 14th ACM International
Conference on Hybrid Systems: Computation and Control. HSCC 2011, pp. 43–52.
ACM, New York (2011)

12. Ghasemieh, H., Remke, A., Haverkort, B.: Analysis of a sewage treatment facil-
ity using hybrid petri nets. In: 7th EAI International Conference on Performance
Evaluation Methodologies and Tools, VALUETOOLS 2013. pp. 165–174. ICST
(2013)

13. Gribaudo, M., Remke, A.: Hybrid Petri nets with general one-shot transitions.
Perform. Eval. 105, 22–50 (2016)

14. Hahn, E.M., Hartmanns, A., Hermanns, H.: Reachability and reward checking for
stochastic timed automata. ECEASST 70 (2014)

15. Hahn, E.M., Hartmanns, A., Hermanns, H., Katoen, J.P.: A compositional mod-
elling and analysis framework for stochastic hybrid systems. Formal Meth. Syst.
Des. 43(2), 191–232 (2013)

16. Henzinger, T.A.: The theory of hybrid automata. In: Inan, M.K., Kurshan, R.P.
(eds.) Verification of Digital and Hybrid systems, NATO ASI Series, vol. 170, pp.
265–292. Springer, Berlin, Heidelberg (2000)

17. Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decidable about
hybrid automata? J. Comput. Syst. Sci. 57(1), 94–124 (1998)

18. Hüls, J., Pilch, C., Schinke, P., Delicaris, J., Remke, A.: State-space construction
of hybrid petri nets with multiple stochastic firings. In: Parker, D., Wolf, V. (eds.)
QEST 2019. LNCS, vol. 11785, pp. 182–199. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-30281-8 11

19. Hüls, J., Remke, A.: Model checking HPnGs in multiple dimensions: representing
state sets as convex polytopes. In: Pérez, J.A., Yoshida, N. (eds.) FORTE 2019.
LNCS, vol. 11535, pp. 148–166. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-21759-4 9

20. Jongerden, M., Hüls, J., Haverkort, B., Remke, A.: Assessing the cost of energy
independence. In: 2016 IEEE International Energy Conference, ENERGYCON,
pp. 1–6. IEEE (2016)

21. Koutsoukos, X.D., Riley, D.: Computational methods for verification of stochastic
hybrid systems. IEEE Trans. Syst. Man Cybern. Part A Syst. Humans 38(2),
385–396 (2008)

22. Kwiatkowska, M., Norman, G., Segala, R., Sproston, J.: Automatic verification
of real-time systems with discrete probability distributions. Theor. Comput. Sci.
282(1), 101–150 (2002)

23. Kwiatkowska, M.Z., Norman, G., Parker, D., Sproston, J.: Performance analysis of
probabilistic timed automata using digital clocks. Formal Meth. Syst. Des. 29(1),
33–78 (2006)

24. Motallebi, H., Azgomi, M.A.: Modeling and verification of hybrid dynamic systems
using multisingular hybrid Petri nets. Theor. Comput. Sci. 446, 48–74 (2012)

25. Pilch, C., Hartmanns, A., Remke, A.: Classic and non-prophetic model checking for
hybrid petri nets with stochastic firings. In: 23rd ACM International Conference on
Hybrid Systems: Computation and Control, HSCC 2020. ACM, New York (2020)

26. Pilch, C., Remke, A.: Statistical model checking for hybrid petri nets with multi-
ple general transitions. In: 47th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks, DSN 2017, pp. 475–486. IEEE (2017)

https://doi.org/10.1007/978-3-030-30281-8_11
https://doi.org/10.1007/978-3-030-30281-8_11
https://doi.org/10.1007/978-3-030-21759-4_9
https://doi.org/10.1007/978-3-030-21759-4_9

400 C. Pilch et al.

27. Prandini, M., Hu, J.: A stochastic approximation method for reachability compu-
tations. In: Blom, H., Lygeros, J. (eds.) Stochastic Hybrid Systems: Theory and
Safety Critical Applications, LNCIS, vol. 337, pp. 107–139. Springer, Berlin, Hei-
delberg (2006). https://doi.org/10.1007/11587392 4

28. Soudjani, S.E.Z., Gevaerts, C., Abate, A.: FAUST2: Formal Abstractions of
Uncountable-STate STochastic processes. In: Baier, C., Tinelli, C. (eds.) TACAS
2015. LNCS, vol. 9035, pp. 272–286. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-46681-0 23

29. Sproston, J.: Decidable model checking of probabilistic hybrid automata. In:
Joseph, M. (ed.) FTRTFT 2000. LNCS, vol. 1926, pp. 31–45. Springer, Heidel-
berg (2000). https://doi.org/10.1007/3-540-45352-0 5

30. Zhang, L., She, Z., Ratschan, S., Hermanns, H., Hahn, E.M.: Safety verification
for probabilistic hybrid systems. Eur. J. Control 18(6), 572–587 (2012)

https://doi.org/10.1007/11587392_4
https://doi.org/10.1007/978-3-662-46681-0_23
https://doi.org/10.1007/978-3-662-46681-0_23
https://doi.org/10.1007/3-540-45352-0_5

Constraining Counterexamples in Hybrid
System Falsification: Penalty-Based

Approaches

Zhenya Zhang1,2,3(B) , Paolo Arcaini1 , and Ichiro Hasuo1,2

1 National Institute of Informatics, Tokyo, Japan
{zhangzy,arcaini,hasuo}@nii.ac.jp

2 SOKENDAI (The Graduate University for Advanced Studies), Hayama, Japan
3 JSPS Research Fellow, Tokyo, Japan

Abstract. Falsification of hybrid systems is attracting ever-growing
attention in quality assurance of Cyber-Physical Systems (CPS) as a
practical alternative to exhaustive formal verification. In falsification,
one searches for a falsifying input that drives a given black-box model
to output an undesired signal. In this paper, we identify input con-
straints—such as the constraint “the throttle and brake pedals should
not be pressed simultaneously” for an automotive powertrain model—as
a key factor for the practical value of falsification methods. We pro-
pose three approaches for systematically addressing input constraints in
optimization-based falsification, two among which come from the lexi-
cographic method studied in the context of constrained multi-objective
optimization. Our experiments show the approaches’ effectiveness.

Keywords: Hybrid system falsification · Signal temporal logic ·
Constraints · Penalty · Lexicographic methods

1 Introduction

Cyber-physical systems (CPS) combine physical systems with digital controllers:
while the former are characterized by continuous dynamics, the latter are inher-
ently discrete. Such a combination is usually named as hybrid systems. The
continuous dynamics of hybrid systems leads to infinite search spaces, and this
makes their formal verification—especially automated methods—almost impos-
sible. Therefore, research has followed a more pragmatic approach by pursuing
the falsification of the system: since checking whether all inputs satisfy the spec-
ification is not feasible, falsification considers the opposite problem and looks for
an input that violates it. Formally, given a model M that takes an input signal
u and outputs a signal M(u), and a specification ϕ (a temporal formula), the

The authors are supported by ERATO HASUO Metamathematics for Systems Design
Project (No. JPMJER1603), JST; Zhenya Zhang is supported by Grant-in-Aid for
JSPS Fellows No. 19J15218.

c© Springer Nature Switzerland AG 2020
R. Lee et al. (Eds.): NFM 2020, LNCS 12229, pp. 401–419, 2020.
https://doi.org/10.1007/978-3-030-55754-6_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-55754-6_24&domain=pdf
http://orcid.org/0000-0002-3854-9846
http://orcid.org/0000-0002-6253-4062
http://orcid.org/0000-0002-8300-4650
https://doi.org/10.1007/978-3-030-55754-6_24

402 Z. Zhang et al.

falsification problem consists in finding a falsifying input, i.e., an input signal u
such that the corresponding output M(u) violates ϕ.

State-of-the-art falsification approaches see the falsification problem as an
optimization problem. This is possible thanks to the robust semantics of tempo-
ral formulas [16,22]; instead of the classical Boolean satisfaction relation v |= ϕ,
robust semantics assigns a value �v, ϕ� ∈ R ∪ {∞,−∞} that assesses not only
whether ϕ is satisfied or violated (by the sign), but also how robustly the for-
mula is satisfied or violated. Falsification algorithms exploit this fact by itera-
tively generating inputs in the direction of decreasing robustness, with the aim
of finding an input with negative robustness (i.e., a falsifying input). Different
optimization-based falsification algorithms have been developed [2,5,6,13,15–
17,21,22,29,33–36]. See [27] for a survey. Moreover, also tools have been devel-
oped, as Breach [15], S-Taliro [6], and FalStar [34], that work with Simulink
models.

In real scenarios, there usually exist some (input) constraints ψ over input
signals. For example, in an automotive system, one usually assumes that throttle
and brake should not be positive at the same time. Descriptions of CPS some-
times report constraints on the system inputs, e.g., [11,26]. Therefore, when gen-
erating inputs for the falsification problem, we should also guarantee that those
inputs respect the constraints; otherwise, there is the risk that the resulting
falsifying input is unrealistic and thus useless. However, not too many research
efforts have been spent on this problem in the falsification community. To the
best of our knowledge, explicit attempts to consider input constraints in falsifi-
cation have been made only in [10]. In [10], constraints are represented in terms
of a timed automaton, and inputs to be used for falsification are sampled from
the accepted words of the automaton. The main drawback of this approach is
that it can only rely on sampling for falsification, and cannot take advantage of
more efficient optimization-based techniques.

Contribution. In this paper we propose three approaches in which input con-
straints are addressed explicitly in the falsification problem, and that still benefit
from optimization-based techniques. The general idea of the three approaches
is to add a penalty factor to the objective function for the inputs that do not
satisfy the input constraints.

The first proposed approach consists in modifying the specification under
falsification in ψ → ϕ: the only way to falsify the whole formula is to satisfy
the input constraint ψ and falsify the specification ϕ. The penalty factor for the
violation of the input constraints is directly given by the STL robustness.

Our second approach employs the lexicographic method, a method developed
in multi-objective optimization [12]. In our adaptation of the method, the satis-
faction of the input constraints is embedded in a global cost function that must
be minimized: if the input constraints are not satisfied, the cost function is prin-
cipally determined by the degree of violation of the input constraints. In contrast,
if the input constraints are satisfied, the cost function value is only determined
by the robustness of the specification (as in the classical unconstrained falsifica-
tion setting). The advantage of the approach is that the satisfaction of the input

Constraining Counterexamples in Hybrid System Falsification 403

constraints is prioritized w.r.t. the falsification of the specification: indeed, it is
useless to find a falsifying input that does not respect the constraints.

The third approach tries to improve the second approach by simulating the
model only when the input constraints are satisfied. Although this can reduce
the accuracy of the search, it can also speed up the falsification process.

The three approaches have been experimented over 3 Simulink models and 17
specifications that are used in falsification competitions [20]; for each model, we
experimented the approaches using several input constraints of different com-
plexity. Experimental results show that the approaches can effectively handle
the constraints. In terms of falsification capability, no approach is strictly better
than the others, although lexicographic methods seem better on average.

Paper structure. Section 2 introduces some necessary background on the kind of
models, specifications, and algorithms used in falsification. Then, Sect. 3 presents
our proposed approach, and Sect. 4 describes some experiments we performed to
evaluate it. Finally, Sect. 5 reviews some related work, and Sect. 6 concludes the
paper.

2 Background

In this section, we review the widely-accepted method of hill-climbing
optimization-based falsification. The core of making use of hill-climbing opti-
mization is the introduction of robust semantics of temporal formulas.

2.1 Robust Semantics for STL

Our definitions here are taken from [16,22].

Definition 1 ((Time-bounded) signal). Let T ∈ R+ be a positive real. An
M -dimensional signal with a time horizon T is a function w : [0, T] → R

M .
Let w : [0, T] → R

M and w′ : [0, T ′] → R
M be M -dimensional signals. Their

concatenation w · w′ : [0, T + T ′] → R
M is the M -dimensional signal defined by

(w · w′)(t) = w(t) if t ∈ [0, T], and (w · w′)(t) = w′(t − T) if t ∈ (T, T + T ′].
Let 0 < T1 < T2 ≤ T . The restriction w|[T1,T2] : [0, T2 − T1] → R

M of
w : [0, T] → R

M to the interval [T1, T2] is defined by (w|[T1,T2])(t) = w(T1 + t).

We treat the system model as a black box, i.e., the system behaviors are only
observed from inputs and their corresponding outputs. We therefore simply
define the system model as a function.

Definition 2 (System model M). A system model, with M -dimensional input
and N -dimensional output, is a function M that takes an input signal u : [0, T] →
R

M and returns a signal M(u) : [0, T] → R
N . Here the common time horizon

T ∈ R+ is arbitrary. Furthermore, we impose the following causality condition

404 Z. Zhang et al.

on M: for any time-bounded signals u : [0, T] → R
M and u′ : [0, T ′] → R

M , we
require that M(u · u′)

∣
∣
[0,T]

= M(u).

Definition 3 (STL syntax). We fix a set Var of variables. In STL, atomic
propositions and formulas are defined as follows, respectively: α ::≡ f(x1, . . . ,
xN) > 0, and ϕ ::≡ α | ⊥ | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ UI ϕ. Here f is an N -ary
function f : RN → R, x1, . . . , xN ∈ Var, and I is a closed non-singular interval
in R≥0, i.e. I = [a, b] or [a,∞) where a, b ∈ R and a < b.

We omit subscripts I for temporal operators if I = [0,∞). Other common con-
nectives such as →,�, �I (always) and ♦I (eventually), are introduced as abbre-
viations: ϕ1 → ϕ2 ≡ ¬ϕ1 ∨ ϕ2, ♦Iϕ ≡ � UI ϕ and �Iϕ ≡ ¬♦I¬ϕ. An atomic
formula f(x) ≤ c, where c ∈ R, is accommodated using ¬ and the function
f ′(x) := f(x) − c.

Definition 4 (Robust semantics [16]). Let w : [0, T] → R
N be an N -

dimensional signal, and t ∈ [0, T). The t-shift of w, denoted by wt, is the
time-bounded signal wt : [0, T − t] → R

N defined by wt(t′) := w(t + t′).
Let w : [0, T] → R

|Var| be a signal, and ϕ be an STL formula. We define the
robustness �w, ϕ� ∈ R ∪ {∞,−∞} as follows, by induction on the construction
of formulas. Here

�
and

⊔
denote infimums and supremums of real numbers,

respectively. Their binary version � and denote minimum and maximum.

�w, f(x1, · · · , xn) > 0� := f
(

w(0)(x1), · · · ,w(0)(xn)
)

�w,⊥� := −∞ �w,¬ϕ� := −�w, ϕ�

�w, ϕ1 ∧ ϕ2� := �w, ϕ1� � �w, ϕ2� �w, ϕ1 ∨ ϕ2� := �w, ϕ1� �w, ϕ2�

�w, ϕ1 UI ϕ2� :=
⊔

t∈I∩[0,T]

(

�wt, ϕ2� � �
t′∈[0,t)�w

t′
, ϕ1�

)

For atomic formulas, �w, f(x) > c� stands for the vertical margin f(x) − c
for the signal w at time 0. A negative robustness value indicates how far the
formula is from being true. It follows from the definition that the robustness for
the eventually modality is given by �w,♦[a,b](x > 0)� =

⊔

t∈[a,b]∩[0,T]w(t)(x).
The above robustness notion taken from [16] is therefore spatial. Other

robustness notions take temporal aspects into account, too, such as “how long
before the deadline the required event occurs.” See e.g. [3,16]. Our choice of
spatial robustness in this paper is for the sake of simplicity, and is thus not
essential.

The original semantics of STL is Boolean, given as usual by a binary relation
|= between signals and formulas. The robust semantics refines the Boolean one in
the following sense: �w, ϕ� > 0 implies w |= ϕ, and �w, ϕ� < 0 implies w �|= ϕ,
see [22, Proposition 16]. Optimization-based falsification via robust semantics
hinges on this refinement.

Constraining Counterexamples in Hybrid System Falsification 405

2.2 Hill Climbing-Guided Falsification

For the falsification problem, hill-climbing optimization is the main applied tech-
nique [2,4,6,13,15–18,27,29,33,35], and different tools exist, as Breach [15],
S-Taliro [6], and FalStar [34]. We here formulate the falsification problem.

Definition 5 (Falsifying input). Let M be a system model, and ϕ be an
STL formula. A signal u : [0, T] → R

|Var| is a falsifying input if �M(u), ϕ� < 0;
the latter implies M(u) �|= ϕ.

Definition 6 (Unconstrained falsification problem). The technique for
solving a falsification problem is via transforming it into an optimization prob-
lem, shown as follows:

minimize
u

�M(u), ϕ�

subject to u ∈ Ω
(1)

In practice, the system input signal u is represented with a finite set of variables
defined over the search space Ω (a hyperrectangle)1. The use of quantitative
robust semantics �M(u), ϕ� ∈ R ∪ {∞,−∞} in the above problem enables the
use of hill-climbing optimization. Hill climbing is a family of metaheuristics-
based optimization algorithms, which is usually used for handling black-box
optimization. The hill-climbing optimization scheme is shown in Fig. 1.

Fig. 1. Hill-climbing optimization

The algorithm is iterative: in every loop,
it takes some samplings and computes the
fitness of them. Globally, the sampling pro-
cess is divided into two stages: random ini-
tial samplings and the sequent samplings
based on the observation of sampling his-
tory in order to minimize the objective func-
tion. The most expensive step in each loop is
given by the computation of the fitness that
requires to simulate the system. Hill-climbing
includes various implementations of stochastic
optimization algorithms. Examples are CMA-
ES [8] (used in our experiments), SA, and
GNM [30].

3 Penalty-Based Approaches for Handling Input
Constraints

The problem setting of falsification introduced in Definition 6 does not take
into consideration possible constraints over the input signals, which limits the

1 Although the problem has a simple form of constraints, we prefer to name it uncon-
strained to distinguish it from the constrained setting we introduce later.

406 Z. Zhang et al.

practicality of the falsification techniques in real contexts. Indeed, some
works [11,26] report that input constraints do exist in CPS.

In this paper, we tackle the problem of handling input constraints in
optimization-based falsification.

Definition 7 (Constrained falsification problem). The constrained falsifi-
cation problem can be stated as follows, where ψ are input constraints, expressed
in STL, over the input signals u.

minimize
u

�M(u), ϕ�

subject to u |= ψ

u ∈ Ω

In our approach, input constraints ψ are assumed to be expressible in STL.
More generally, constraints in optimization solutions have been studied in

the field of optimization: see [23] for an overview. For example, the death penalty
method [9] discards all the solutions that violate the constraints; while this
method can work well when the feasible search space is convex, it does not
work well in general, and particularly in our context where the constraints can
be arbitrarily complex. Other more advanced methods (static penalty, dynamic
penalty, and adaptive penalty) add a penalty factor to the objective function [23],
so that solutions violating the constraints are penalized during the search.

In this work, we follow this second line of research in which we add, to the
objective function of falsification, a penalty related to the non-satisfaction of
the input constraints. We propose three approaches: a simple approach based on
the modification of the specification under study is presented in Sect. 3.1, while
two more advanced approaches based on lexicographic methods are proposed in
Sect. 3.2 and Sect. 3.3.

3.1 Constraint Embedding Approach

A straightforward penalty-based approach to the constrained falsification prob-
lem consists in embedding the input constraints ψ as a prerequisite of the system
specification ϕ. In this way, we obtain the STL formula ψ → ϕ as a new falsifi-
cation goal.

The constrained problem of Definition 7 can be stated as the following uncon-
strained problem.

minimize
u

�〈u,M(u)〉, ψ → ϕ�

u ∈ Ω

The falsification approach must now evaluate the robustness of a formula
that predicates both over the input and output signals, formally denoted as
〈u,M(u)〉.

The soundness of the approach is given by Theorem1.

Constraining Counterexamples in Hybrid System Falsification 407

Theorem 1 (Soundness and completeness of the Constraint Embed-
ding Approach). For all input signals u, �〈u,M(u)〉, ψ → ϕ� < 0 if and only
if the input constraints ψ are satisfied and the specification ϕ is falsified.

The proof directly comes from the robustness definition of STL and the
semantics of the implication.

3.2 Lexicographic Method Approach

While the constraint embedding approach can be effective in some cases, it does
not dictate a search algorithm to first satisfy input constraints ψ and then falsify
the specification ϕ. We here propose a method that imposes a strict prioritiza-
tion between the satisfaction of the input constraints and the optimization of
the objective function for falsification. This method is based on the use of a
lexicographic method [12] for defining the fitness function of the optimization
problem.

A lexicographic method [12] can be applied for a multi-objective optimization
problem that aims at minimizing objective functions f1, . . . , fN , and for which
there exists a preference order in the optimization of the objective functions, i.e.,
functions with higher priorities must be optimized first. Formally, there exists a
total order of priorities p1, . . . , pN , where pk = N − k for each k ∈ {1, . . . , N};
the larger pk is, the higher priority fk has.

minimize
x

f1(x), . . . , fN (x)

subject to x ∈ Ω (2)

The method defines a global cost function GCF in the following way:

GCF (x) =
N∑

k=1

Bpk�(B − 1)Tk

(

fk(x)
)� (3)

where B ∈ R+ with B > 1 is a base number, �� is the regular ceiling operator, and
each Tk is a transformation function. Note that �(B −1)Tk

(

fk(x)
)� is needed to

map the transformed value of the objective function fk in B quantization levels.
Such a quantization is required by the lexicographic method to maintain the
total order of the inputs [19] w.r.t. the priorities of the objective functions, i.e.,
the fitness value of a unachieved function with higher priority always dominates
the fitness values of functions of lower priority. Note that the value of B can have
an effect on the efficiency of the search [19], as also noted during the application
of the lexicographic methods in other contexts [32]. In the experiments, we will
evaluate such effect using different values for B.

The definition of a Tk is specific to the type of optimization problem; for
example, we will see later how to define it for the constraint satisfaction problem
and the falsification problem. In any case, the definition of a Tk must at least
satisfy the monotonicity property, i.e., given two values v1 ≤ v2, then Tk(v1) ≤
Tk(v2). Usually, a transformation function Tk is implemented as a normalization

408 Z. Zhang et al.

function between [0,1]: in such a case, the values of fk that are mapped to 0 are
those that achieve the objective.2

We apply the lexicographic method to the constrained falsification problem
introduced in Definition 7. To do this, we first turn the constrained falsification
problem in a unconstrained multi-objective problem as follows.

minimize
u

�u,¬ψ� (4)

minimize
u

�M(u), ϕ� (5)

subject to u ∈ Ω

The constraint satisfaction problem has been turned into an optimization
problem by exploiting the robust semantics of STL (recall that also the input
constraints are expressed in STL). Since in a lexicographic method all objective
functions must be minimized (see Eq. 2), we consider the negation of the input
constraints (negative robustness of ¬ψ corresponds to positive robustness of ψ).

We can now combine the two objectives (Eq. 4 and Eq. 5) into a single global
cost function, following Eq. 3. Since we want to prioritize the satisfaction of the
input constraints, we take �u,¬ψ� as f1, and �M(u), ϕ� as f2. The definition of
the global cost function is as follows.

Definition 8 (Lexicographic fitness function GCF fal for falsification).
Let f1(u) := �u,¬ψ�, and f2(u) := �M(u), ϕ�. The definition of the global cost
function for the constrained falsification problem is as follows:

GCF fal(u) = B�(B − 1)T1(f1(u))� + (B − 1)T2(f2(u))

As explained before, the definition of a transformation function Tk is specific
to the kind of optimization problem. In our context, the transformation function
T1 considers values r given by the robustness evaluation of the input constraints:
for any negative value of the robustness, the input constraints are satisfied,
while positive values indicate the degree of violation of the input constraints ψ.
Therefore, T1 is defined as a normalization function as follows:

T1(r) =

{
0 r < 0

r

Rψ
max

otherwise (6)

where Rψ
max is the possible maximum value of r. The identification of a correct

Rψ
max requires minimum effort by sampling the input space. We will present how

we come up with Rψ
max later in Sect. 4.

The transformation function T2, instead, considers values r given by the
robustness evaluation of the specification ϕ. Also in this case, negative values
of the robustness mean that the objective is achieved (i.e., the specification is

2 Note that, in general, it is not always possible to specify when an objective func-
tion is “achieved”. However, the lexicographic methods require that for functions
f1, . . . , fN−1, this is possible, and this is applicable in our context.

Constraining Counterexamples in Hybrid System Falsification 409

falsified). Therefore, the definition of the transformation function for T2 is as
follows:

T2(r) =

⎧

⎪⎨

⎪⎩

0 r < 0
ε r = 0

r

Rϕ
max

otherwise
(7)

where Rϕ
max is the possible maximum value of r, and ε is an arbitarily small

positive number3. We will also explain later in Sect. 4 how we select a proper
Rϕ

max .
Considering the definitions of the two transformation functions, we can now

analyse the behaviour of function GCF fal (see Definition 8). Given an input sig-
nal u, if the input constraints ψ are satisfied, the first operand of the sum will
be 0 (due to the transformation function T1 in Eq. 6), and therefore the value of
GCF fal will only depend on the robustness value of the temporal specification
(i.e., the second operand). On the other hand, if the input constraints are not
satisfied, the first operand will be positive and guaranteed to be larger than
the second one (so driving the search towards the satisfaction of the input con-
straints).

Note that in the definition of GCF fal, we do not apply the ceiling operator
to the robustness evaluation of the specification ϕ (i.e., f2). It is indeed known
that the ceiling operator is not really needed by the lexicographic method for the
last operand of the sum [12,32], and we take advantage of this. Therefore, since
f2 corresponds to the falsification algorithm, we prefer to remove the ceiling in
order to preserve as much information as possible regarding the specification
robustness that could be helpful for driving the search. Indeed, removing the
ceiling avoids the quantization effect that in general is adversarial for the hill-
climbing search.

Theorem 2 (Soundness of the GCF fal fitness function). If there exists an
input signal u such that GCF fal(u) = 0, then the input constraints ψ are satisfied
and the specification ϕ is falsified.

The proof directly comes from the definitions of GCF fal, T1, and T2, and the
robustness definition of STL.

3.3 Partially Simulation Free Lexicographic Method Approach

In this section, we present a variation of the plain application of the lexicographic
method presented in Sect. 3.2. The current technique takes into account a par-
ticular feature of our problem: regarding the two objective functions in Eq. 4 and
Eq. 5, the computation of �u,¬ψ� does not need system simulation, while com-
putation of �M(u), ϕ� does. Since system simulation is the most time-consuming
process (as we have already observed in Sect. 2.2), we adapt the GCF fal function
into a partially simulation free version GCF fal sf that avoids running simulations
when ψ is not satisfied, so saving time.
3 Note that this is needed to distinguish inputs having robustness 0 (not falsifying)

from those having negative robustness (falsifying).

410 Z. Zhang et al.

Definition 9 (Lexicographic fitness function GCF fal sf for falsification).
Let f1(u) := �u,¬ψ�, and f2(u) := �M(u), ϕ�. The definition of the partially
simulation free global cost function for the constrained falsification problem is
as follows:

GCF fal sf(u) =
{

B�(B − 1)T1(f1(u))� if f1(u) > 0
(B − 1)T2(f2(u)) otherwise

Note that the only difference between Definition 8 and Definition 9 is when
the input constraints ψ are not satisfied (first case): in this case, Definition 9
ignores the system specification in Eq. 5 (so, no system simulation is performed),
and thus GCF fal sf(u) is only decided by the robustness of the input constraints,
i.e., �u,¬ψ�; otherwise, it is the same as Definition 8. In the second case, we do
not report the first operand of the sum that is 0 because the input constraints
are satisfied.

Note that the definition of GCF fal sf still guarantees the priorities between
the two objective functions, i.e., inputs violating the input constraints still have
higher fitness values than those satisfying them.

The soundness of the approach still holds, as stated in Theorem3.

Theorem 3 (Soundness of the GCF fal sf fitness function). If there exists
an input signal u such that GCF fal sf(u) = 0, then the input constraints ψ are
satisfied and the specification ϕ is falsified.

The proof is similar to that of Theorem2.

4 Experimental Evaluation

In order to evaluate the proposed techniques, we show their application to the
benchmarks commonly used in the falsification community [20]. Specifically, we
experimented them on 3 Simulink models, and 17 specifications to achieve com-
prehensive and reliable evaluation results. Note that the documents reporting the
original Simulink models and temporal specifications do not provide any input
constraints. Therefore, for each model, we identified some input constraints of
different kinds, by using different logical and relational operators, and consider-
ing different input signals. The 3 Simulink models and their specifications are
reported in Table 1a. The input constraints are reported in Table 1b.

In the following, we provide a detailed description of the benchmarks.
The Automatic Transmission (AT) model [25] is a typical benchmark model

in falsification. It has two input signals, throttle ∈ [0, 100] and brake ∈ [0, 325],
and several output signals including speed , rpm, gear , etc. Specifications AT1,
. . . , AT13 mainly concern safety of the system in different aspects. In the exper-
iments, we consider 5 different input constraints, by considering both throttle
and brake, or only throttle.

The Abstract Fuel Control (AFC) model [26] takes two input signals,
Pedal Angle and Engine Speed , and outputs the controller mode subject to

Constraining Counterexamples in Hybrid System Falsification 411

Table 1. Benchmarks of temporal specifications and input constraints in STL. Here,
wt represents the t-shift of w (see Definition 4) and Δt(w) represents wt − w

(a) Temporal specifications ϕ

Model Spec. ID Temporal specification in STL

AT AT1 �[0,30] (speed < 120)

AT2 �[0,30] (gear = 3 → speed ≥ 19)

AT3 �[0,30] (gear = 4 → speed ≥ 35)

AT4 ¬(�[10,30]((50 < speed) ∧ (speed < 60)))

AT5 ¬(�[10,30]((53 < speed) ∧ (speed < 57)))

AT6 �[0,29](speed < 100) ∨ �[29,30](speed > 75)

AT7 �[0,29](speed < 100) ∨ �[29,30](speed > 70)

AT8 �[0,30](rpm < 4770 ∨ �[0,1](rpm > 1000))

AT9 �[0,30](rpm < 4770 ∨ �[0,1](rpm > 700))

AT10 �[0,30](rpm < 3000) → �[0,20](speed < 65)

AT11 �[0,10] (speed < 50) ∨ ♦[0,30] (rpm > 2520)

AT12 �[0,26](Δ4(speed) > 40 → Δ4(gear) > 0)

AT13 �[0,27](Δ3(speed) > 30 → Δ3(gear) > 0)

AFC AFC1 �[11,50](μ < 0.22)

AFC2 �[11,50](♦[0,10](|μ| < 0.05))

NN NN req ≡ �[0,16](¬close ref → reach ref in tau)

close ref ≡ |Pos − Ref | ≤ α1 + α2 · |Ref |
reach ref in tau ≡ ♦[0,2](�[0,1](close ref))

NN1 NN req with α1 = 0.003, α2 = 0.04

NN2 NN req with α1 = 0.01, α2 = 0.03

(b) Input Constraints ψ

Model Constr. ID Constraint in STL

AT AT con1 �[0,30](throttle = 0 ∨ brake = 0)

AT con2 �[0,30](throttle ≤ 20 ∨ brake ≤ 50)

AT con3 �[0,30](throttle > 3 · brake ∨ brake > 3 · throttle)
AT con4 �[0,24](throttle > 70 → throttle6 < 10)

AT con5 �[6,30](throttle = 0 ∨ brake = 0) ∧ �[0,6](brake = 0)

AFC AFC con1 �[0,50](Pedal Angle ≥ 50 → Engine Speed > 1000)

AFC con2 �[0,20](Δ10(Pedal Angle) ≥ 0)

NN NN con1 �[0,12](Δ6(Ref) ≥ 0)

NN con2 ♦[0,18](Ref > 2.5)

Pedal Angle, and a ratio μ reflecting the deviation of air-fuel-ratio from its
reference value. In our experiment, we set the range of Pedal Angle ∈ [8.8, 70]
to keep the model in a normal mode, and Engine Speed ∈ [900, 1100] consistent

412 Z. Zhang et al.

with [26]. Specifications AFC1 and AFC2 reason about the related safety prop-
erties. We created two different input constraints, one constraining the value
Engine Speed w.r.t. the value of Pedal Angle, and another one constraining the
value of Pedal Angle over time.

The third benchmark model is based on MathWork’s Neural Network con-
troller (NN) for a magnet system. Specifications NN1 and NN2 formalize the
safety requirement about the position Pos of the magnet w.r.t. its reference
value Ref , which ranges over [1, 3]. Since Ref is the only input signal, we cannot
reason about input constraints over different signals. Therefore, we just specified
two input constraints over Ref : the first one requiring Ref to be non-decreasing,
and the second one requiring Ref to be larger of 2.5 in at least one time point.

In the lexicographic method-based approaches proposed in Sect. 3.2 and
Sect. 3.3, we need to choose a proper base number B and transformation func-
tions T1 and T2 for the global cost function. Regarding B, we performed a
preliminary experiment by comparing the performance of the approaches using
different values of B: from the experiment described in RQ3, B = 10 resulted
to be one of two best settings (see Table 4). Therefore, for the main experiments
of the paper reported in Table 3, we used 10 as base number B. As for transfor-
mation functions T1 and T2, we need to determine Rψ

max and Rϕ
max in each case

(see Sect. 3.2). We handle this problem as follows. We take a small set of sam-
plings of the input space and compute their robustness values (both for the input
constraint and the specification). Then, for the input constraints, we determine
Rψ

max by multiplying the maximum value of the obtained robustness values by
a reasonable factor, namely 1.5. For the specification, we determine Rϕ

max in a
similar way.

In our experiments we use CMA-ES [8], one of the state-of-the-art stochastic
optimization algorithms for black box, as an implementation of hill-climbing
optimization.

The experiments use Breach version 1.2.13 on an Amazon EC2 c4.2xlarge
instance (2.9 GHz Intel Xeon E5-2666 v3 Processor, 15 GB main memory).

4.1 Evaluation

In order to evaluate our proposed approaches, we first check the performances of
a state-of-the-art falsification tool (Breach) that does not consider input con-
straints during falsification; we name such unconstrained approach as Baseline
Approach (BA). We run falsification using BA over all the specifications reported
in Table 1 with a timeout budget of 600 secs. In order to account for random
variation of the approach, each experiment has been performed 30 times, by
following guidelines of reporting results for randomized algorithms [7]. Table 2
reports the experimental results. For each specification, it reports the falsifi-
cation rate (FR) as the number of experiments for which a falsifying input has
been found, and the average execution time over the successful executions. More-
over, for each input constraint ψ reported in Table 1b, we also check whether the
found falsifying input satisfies (by chance) ψ: the Constraint Satisfaction Rate
(CSR) reports the number and percentage of falsifying inputs that also satisfy

Constraining Counterexamples in Hybrid System Falsification 413

Table 2. Results of falsification without considering the input constraints (FR: Falsifi-
cation Rate (out of 30) – CSR: Constraint Satisfaction Rate (out of falsifying inputs))

(a) Automatic Transmission

CSR
AT con1 AT con2 AT con3 AT con4 AT con5

FR (/30) time (s) # % # % # % # % # %

AT1 30 27.06 1 3.3% 1 3.3% 1 3.3% 0 0 0 0
AT2 20 29.3 1 5% 7 35% 0 0 20 100% 0 0
AT3 12 25.36 0 0 2 16.7% 1 8.3% 10 83.3% 0 0
AT4 30 41.06 1 3.3% 3 10% 1 3.3% 26 86.7% 1 3.3%
AT5 28 157.09 0 0 2 7.1% 2 7.1% 25 89.3% 0 0
AT6 20 96.3 0 0 0 0 0 0 0 0 0 0
AT7 18 87.09 0 0 0 0 0 0 0 0 0 0
AT8 13 58.88 0 0 1 7.6% 0 0 0 0 0 0
AT9 13 131.27 0 0 0 0 0 0 0 0 0 0
AT10 30 46.04 0 0 3 10% 1 3.3% 30 100% 0 0
AT11 23 227.32 0 0 0 0 0 0 23 100% 0 0
AT12 6 50.6 0 0 1 16.7% 0 0 0 0 0 0
AT13 21 23.15 0 0 1 4.8% 0 0 0 0 0 0

(b) Abstract Fuel Control

CSR
AFC con1 AFC con2

FR (/30) time (s) # % # %

AFC1 30 44.79 8 26.7% 1 3.3%
AFC2 6 211.82 0 0 0 0

(c) Neural Network controller

CSR
NN con1 NN con2

FR (/30) time (s) # % # %

NN1 20 163.57 0 0 8 40%
NN2 27 26.43 1 3.7% 7 25.9%

the input constraints. FR informs us about the complexity of the falsification
problem, and we will use it later in the experiments to see how handling the
input constraints affects the falsification problem. Regarding CSR, we observe
that, most of the times, the falsifying input violates the input constraint: in
such a case, the falsifying area of the input space is not strictly contained in the
feasible area satisfying the input constraints. In few cases, the input constraints
are satisfied with a high percentage, meaning that there is a big overlap (if not
proper inclusion in case of 100%) between the falsifiable area and the feasible
area.

Then, we run the three approaches proposed in the paper over all the
benchmarks.4 We name as CE the Constraint Embedding approach presented
in Sect. 3.1, as LM the approach based on Lexicographic Method presented in
Sect. 3.2, and as LMsf its modification presented in Sect. 3.3. Also in this case,
all the experiments have been performed 30 times.

4 Technically, we modified the fitness evaluation of Breach to use the 3 new fitness
functions.

414 Z. Zhang et al.

Table 3. Experimental results (FR: Falsification Rate)

(a) Automatic Transmission

AT con1 AT con2 AT con3 AT con4 AT con5
FR (/30) time (s) FR (/30) time (s) FR (/30) time (s) FR (/30) time (s) FR (/30) time (s)

AT1
CE 18 78.62 26 64.05 14 88.43 13 367.26 15 114.72
LM 2 378.25 19 138.01 3 178.62 14 350.78 16 303.89
LMsf 0 - 15 89.22 3 169.69 19 316.92 9 125.93

AT2
CE 5 85.19 18 44.91 23 62.21 22 24.7 10 59.57
LM 10 33.75 10 56.63 25 49.82 21 47.47 0 -
LMsf 10 9.29 11 17.71 21 19.53 26 25.7 0 -

AT3
CE 2 126.5 6 34.38 11 60.46 17 28.28 9 64.35
LM 6 38.05 5 49.92 11 83.93 16 15.81 0 -
LMsf 6 26.49 7 24.72 14 29 17 27.24 0 -

AT4
CE 23 136.14 30 73.7 9 80.81 30 35.37 23 143.71
LM 11 273.27 28 70.69 28 137.06 30 42.73 30 183.5
LMsf 12 132.63 28 175.28 26 86.96 30 42.98 23 74.72

AT5
CE 21 260.97 28 195.83 8 278.95 30 156.36 13 259.86
LM 3 332.99 28 173.75 21 286.24 30 174.9 14 326.72
LMsf 5 239.26 28 175.28 25 180.69 30 134.08 17 243.24

AT6
CE 5 406.83 13 263.15 4 203.02 1 421.7 4 470.8
LM 1 594.79 5 405.46 5 317.91 1 395.75 0 -
LMsf 0 - 5 229.01 5 197.38 0 - 0 -

AT7
CE 0 - 0 - 0 - 4 465.65 0 -
LM 0 - 0 - 5 351.57 2 528.73 0 -
LMsf 0 - 0 - 2 203.09 2 395.26 0 -

AT8
CE 7 362.45 8 241.13 1 450.03 0 - 10 372.02
LM 7 184.5 6 86.59 1 176.33 0 - 4 211.28
LMsf 5 99.62 9 72.49 1 26.84 0 - 3 103.04

AT9
CE 7 401.25 6 356.97 0 - 0 - 7 385.24
LM 10 182.46 9 70.64 1 105.46 0 - 4 172.34
LMsf 3 75.76 12 72.27 0 - 0 - 5 108.18

AT10
CE 15 186.41 29 117.35 18 201.62 30 36.56 24 167.23
LM 7 133.63 25 149.34 25 182.6 30 28.28 17 81.18
LMsf 8 63.62 27 97.33 24 147.82 30 32.67 19 155.15

AT11
CE 10 234.12 22 223.15 3 307.46 26 264.61 13 261.85
LM 2 184.39 22 220.04 1 554.55 21 260.33 1 51.71
LMsf 2 404.31 25 178.26 4 203.27 21 253.18 13 261.84

AT12
CE 8 103.62 7 62.48 4 141.61 2 190.71 2 159.95
LM 9 147.38 15 89.01 11 118.55 1 166.02 8 149.39
LMsf 4 87.93 12 63.96 13 80.96 1 183.14 4 120.75

AT13
CE 8 97.34 15 37.02 8 67.82 5 149.97 8 123.05
LM 16 147 15 61.32 15 116.86 10 74.4 7 108.82
LMsf 16 45.97 15 49.92 13 53.4 7 63.53 7 30.95

(b) Abstract Fuel Control

AFC con1 AFC con2
FR (/30) time (s) FR (/30) time (s)

AFC1
CE 25 120.17 23 356.78
LM 29 56.32 29 53.55
LMsf 29 49.03 29 46.89

AFC2
CE 10 312.48 5 284.98
LM 11 350.47 10 139.01
LMsf 9 160.95 11 197.00

(c) Neural Network controller

NN con1 NN con2
FR (/30) time (s) FR (/30) time (s)

NN1
CE 11 152.26 26 192.28
LM 16 181.65 24 139.79
LMsf 15 210.55 19 217.30

NN2
CE 23 82.01 29 84.09
LM 19 66.45 30 67.99
LMsf 17 51.73 22 68.35

Table 3 reports the experimental results. Note that, by definition, all the
approaches return falsifying inputs that respect the input constraints, i.e., CSR
is always 100% and so it is not reported. The table only reports FR and time.

We analyse the results using 3 research questions.

RQ1. Does constraint handling affect the falsifiability rate?

Constraining Counterexamples in Hybrid System Falsification 415

First of all, we want to observe that, in most of the cases, FR of the three
approaches is diminished w.r.t. that of BA (i.e., Breach without constraint han-
dling). This is expected, because almost all the falsifying inputs found by BA do
not satisfy the input constraints, and so our approaches correctly focus only on
the feasible area. Note that, in the few cases in which also BA had 100% CSR
(e.g., AT2 with input constraint AT con4), the falsification rate of the proposed
approaches is the same as that of BA, and sometimes even better. This holds
also for cases in which CSR was high but not 100% for BA (e.g., AT3 with input
constraint AT con4).

RQ2. How do the three proposed approaches perform?

We are here interested in comparing the performance of the three proposed
approaches. Regarding FR, in 11 out of 73 cases, the performances of the three
approaches are the same. For the remaining 62 experiments, in 28 cases CE is
strictly better or equal than the other two approaches. Although quite simple,
CE can be effective in some cases. However, the lexicographic methods seem to
be better on average.

Regarding LM and LMsf, in 28 cases they have the same FR, while in 24 cases
LM is better than LMsf, and in 21 cases the other way round. This means that the
optimization implemented by LMsf of not simulating the inputs that violate the
input constraint, has a positive effect in some cases; however, when simulation
is skipped, the objective function does not receive any contribution related to
the robustness of the specification, and this may weaken the falsification ability
of the approach.

Regarding the computation time when a falsifying input is found, LMsf is
faster than LM in 47 cases out 61 (in which both approaches find a falsifying
input). This confirms that LMsf does indeed speed up the process. However,
there are some notable exceptions. For AT11 with input constraint AT con5,
LMsf is much slower, but it has a much better falsification rate: this may be due
to the fact that the time saved is used for exploring other inputs that turned out
to be falsifiable and feasible (while LM, in 29/30 cases, timeouts without finding
any falsifying input).

RQ3. Is there any influence in using different values for the base parameter
in the lexicographic methods?

In Sect. 3.2, we have described that the global cost function of a lexicographic
method requires to define a base number B, that it is only required to be larger
than 1. However, literature shows that different values of B can affect the perfor-
mance of the underlying optimization problems [12,32]. In this RQ, we investi-
gate which is the effect of the choice of B in our approaches. We selected 3 spec-
ifications of the AT benchmark (AT2, AT5, and AT13), and 2 input constraints
(AT con2 and AT con3). For the six combinations, we run the two lexicographic
methods LM and LMsf using 4 values for B, namely 5, 10, 100, and 1000. Results
are reported in Table 4. We observe that there seems to be an effect on the fal-
sification results. The two extreme cases of B equal to 5 and to 1000 almost

416 Z. Zhang et al.

Table 4. Comparison of different values for base B (FR: falsification rate)

base
AT con2 AT con3

base
AT con2 AT con3

base
AT con2 AT con3

FR (/30) time (s) FR (/30) time (s) FR (/30) time (s) FR (/30) time (s) FR (/30) time (s) FR (/30) time (s)

AT2

LM

5 9 45.44 26 41.04

AT5

LM

5 25 247.24 23 257.94

AT13

LM

5 13 63.51 14 68.09
10 10 56.63 25 49.82 10 28 173.75 21 286.24 10 15 61.32 15 116.86
100 15 34.78 22 43.22 100 26 180.92 27 252.89 100 16 53.73 10 133.94
1000 13 33.33 20 46.38 1000 25 261.10 25 267.52 1000 11 90.65 6 182.43

LMsf

5 9 16.16 24 13.49

LMsf

5 28 189.06 14 241.07

LMsf

5 11 34.06 13 51.13
10 11 17.71 21 19.53 10 28 175.28 25 180.69 10 15 49.92 13 53.40
100 16 26.07 25 20.80 100 24 181.10 24 199.52 100 14 46.60 12 84.43
1000 13 30.07 24 26.53 1000 26 174.37 28 191.11 1000 10 72.59 10 117.91

always produce the worst results, while the best results are distributed between
the cases in which B is 10 or 100. This is expected, as low values of B produce
more areas having flat robustness values (due to the combined use of the ceiling
operator and B) for the input constraints and the specification: therefore, in
this case, the search may not find the right direction. On the other hand, high
values of B generate a global cost function that prioritizes “too much” the first
objective related to the input constraints, and a modification of the robustness
of the specification has less effect on the global cost function (given a same value
for the robustness of the input constraints).

5 Related Work

Stochastic optimization-based falsification technique has drawn great many
research attentions in recent years [2,5,6,13,15–17,21,22,28,29,31,33–35], and
becomes one of the most effective approaches to quality assurance of CPS prod-
ucts. Most of research efforts focus on developing or improving search techniques,
and a lot of techniques were proposed to handle the “exploration and exploita-
tion” trade-off, which is a core problem in search-based testing. Notably some
recent works [5,14,34] introduce advanced machine learning techniques into fal-
sification, improving the effectiveness and efficiency substantially. A comparison
of the state-of-the-art tools is given in [20].

Our work bridges the gap between effectiveness and practicality of falsifica-
tion, as few works consider the meaningfulness of falsifying results. This problem
was studied in [10], where they use timed automata to formalize the input con-
straints and generate meaningful samplings. However, the proposed framework
cannot be integrated into the state-of-the-art hill-climbing optimization-based
falsification framework. Other examples include [26], in which they mentioned
an approach similar to our Constraint Embedding approach to handle an input
profile. Earlier works [31] use sampling techniques so they can handle input con-
straints more complicated than bound constraints.

The constrained optimization problem is one of the major research directions
in the optimization community. However, a large amount of the research is based
on white-box model. Techniques on black-box models are more challenging as no
derivative information is given. Genetic algorithm (GA) (or more generally, evo-
lutionary algorithm (EA)) is a big branch of such techniques. A comprehensive
list of literatures on handling constraints in GA is maintained [1].

Constraining Counterexamples in Hybrid System Falsification 417

The constraint embedding approach builds a specification that predicates
over both input and output signals. The approach in [24] is tailored for handling
safety properties having this combination of signals. However, that approach is
not applicable to the constraint embedding approach which considers a different
class of properties.

6 Conclusion and Future Work

The paper presented three approaches for handling the input constraints in
optimization-based falsification of hybrid systems. They implement, in different
ways, a penalty method that adds a penalty factor to the fitness function that
penalizes inputs that violate the input constraints. Experiments showed that
each of the three approaches performs better in some cases. We believe that this
depends on the relationship between the feasible area and the falsifying area
of the input space. As future work, we plan to perform more detailed experi-
ments in this direction to better characterize the strengths and weaknesses of
the three approaches. In particular, we want to identify which constraints and/or
specifications are better handled by a given method.

References

1. List of references on constraint-handling techniques used with evolutionary algo-
rithms. https://www.cs.cinvestav.mx/∼constraint/

2. Adimoolam, A., Dang, T., Donzé, A., Kapinski, J., Jin, X.: Classification and
coverage-based falsification for embedded control systems. In: Majumdar, R.,
Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 483–503. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-63387-9 24

3. Akazaki, T., Hasuo, I.: Time robustness in MTL and expressivity in hybrid system
falsification. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9207,
pp. 356–374. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21668-
3 21

4. Akazaki, T., Kumazawa, Y., Hasuo, I.: Causality-aided falsification. In: Proceed-
ings First Workshop on Formal Verification of Autonomous Vehicles, FVAV@iFM
2017, Turin, Italy, 19th September 2017, vol. 257, pp. 3–18. EPTCS (2017)

5. Akazaki, T., Liu, S., Yamagata, Y., Duan, Y., Hao, J.: Falsification of cyber-
physical systems using deep reinforcement learning. In: Havelund, K., Peleska, J.,
Roscoe, B., de Vink, E. (eds.) FM 2018. LNCS, vol. 10951, pp. 456–465. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-95582-7 27

6. Annapureddy, Y., Liu, C., Fainekos, G., Sankaranarayanan, S.: S-Taliro: a tool
for temporal logic falsification for hybrid systems. In: Abdulla, P.A., Leino, K.,
Rustan, M. (eds.) TACAS 2011/ETAPS 2011, pp. 254–257. Springer-Verlag, Berlin,
Heidelberg (2011)

7. Arcuri, A., Briand, L.: A practical guide for using statistical tests to assess random-
ized algorithms in software engineering. In: Proceedings of the 33rd International
Conference on Software Engineering, ICSE 2011, New York, NY, USA, pp. 1–10.
ACM (2011)

8. Auger, A., Hansen, N.: A restart CMA evolution strategy with increasing popu-
lation size. In: Proceedings of the IEEE Congress on Evolutionary Computation,
CEC 2005, pp. 1769–1776. IEEE (2005)

https://www.cs.cinvestav.mx/~constraint/
https://doi.org/10.1007/978-3-319-63387-9_24
https://doi.org/10.1007/978-3-319-21668-3_21
https://doi.org/10.1007/978-3-319-21668-3_21
https://doi.org/10.1007/978-3-319-95582-7_27

418 Z. Zhang et al.

9. Bäck, T., Hoffmeister, F., Schwefel, H.: A survey of evolution strategies. In: Belew,
R.K., Booker, L.B., (eds.) Proceedings of the 4th International Conference on
Genetic Algorithms, San Diego, CA, USA, July 1991, pp. 2–9 (1991)

10. Barbot, B., Basset, N., Dang, T.: Generation of signals under temporal constraints
for CPS testing. In: Badger, J.M., Rozier, K.Y. (eds.) NASA Formal Methods. pp,
pp. 54–70. Springer International Publishing, Cham (2019)

11. Ben Abdessalem, R., Nejati, S., Briand, L.C., Stifter, T.: Testing vision-based
control systems using learnable evolutionary algorithms. In: Proceedings of the
40th International Conference on Software Engineering, ICSE 2018, New York,
NY, USA, pp. 1016–1026. ACM (2018)

12. Chang, K.-H.: Chapter 19 - multiobjective optimization and advanced topics. In:
Chang, K.-H. (ed.) e-Design, pp. 1105–1173. Academic Press, Boston (2015)

13. Deshmukh, J., Jin, X., Kapinski, J., Maler, O.: Stochastic local search for falsifi-
cation of hybrid systems. In: Finkbeiner, B., Pu, G., Zhang, L. (eds.) ATVA 2015.
LNCS, vol. 9364, pp. 500–517. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-24953-7 35

14. Deshmukh, J.V., Horvat, M., Jin, X., Majumdar, R., Prabhu, V.S.: Testing cyber-
physical systems through Bayesian optimization. ACM Trans. Embed. Comput.
Syst. 16(5), 170:1–170:18 (2017)

15. Donzé, A.: Breach, a toolbox for verification and parameter synthesis of hybrid
systems. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp.
167–170. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-
6 17

16. Donzé, A., Maler, O.: Robust satisfaction of temporal logic over real-valued signals.
In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp.
92–106. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15297-9 9

17. Dreossi, T., Dang, T., Donzé, A., Kapinski, J., Jin, X., Deshmukh, J.V.: Effi-
cient guiding strategies for testing of temporal properties of hybrid systems. In:
Havelund, K., Holzmann, G., Joshi, R. (eds.) NFM 2015. LNCS, vol. 9058, pp.
127–142. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-17524-9 10

18. Dreossi, T., Donzé, A., Seshia, S.A.: Compositional falsification of cyber-physical
systems with machine learning components. In: Bobaru, M., Havelund, K., Holz-
mann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-20398-5

19. Ehrgott, M.: Multicriteria Optimization. Springer-Verlag, Berlin (2005)
20. Ernst, G., Arcaini, P., Donzé, A., Fainekos, G., Mathesen, L., Pedrielli, G.,

Yaghoubi, S., Yamagata, Y., Zhang, Z.: ARCH-COMP 2019 category report: fal-
sification. In: Frehse, G., Althoff, M., (eds.) ARCH19. 6th International Workshop
on Applied Verification of Continuous and Hybrid Systems. EPiC Series in Com-
puting, vol. 61, pp. 129–140. EasyChair (2019)

21. Ernst, G., Sedwards, S., Zhang, Z., Hasuo, I.: Fast falsification of hybrid systems
using probabilistically adaptive input. In: Parker, D., Wolf, V. (eds.) Quantitative
Evaluation of Systems. pp, pp. 165–181. Springer International Publishing, Cham
(2019)

22. Fainekos, G.E., Pappas, G.J.: Robustness of temporal logic specifications for
continuous-time signals. Theor. Comput. Sci. 410(42), 4262–4291 (2009)

23. Fan, Z., Fang, Y., Li, W., Lu, J., Cai, X., Wei, C.: A comparative study of con-
strained multi-objective evolutionary algorithms on constrained multi-objective
optimization problems. In: 2017 IEEE Congress on Evolutionary Computation,
CEC 2017, pp. 209–216. IEEE (2017)

https://doi.org/10.1007/978-3-319-24953-7_35
https://doi.org/10.1007/978-3-319-24953-7_35
https://doi.org/10.1007/978-3-642-14295-6_17
https://doi.org/10.1007/978-3-642-14295-6_17
https://doi.org/10.1007/978-3-642-15297-9_9
https://doi.org/10.1007/978-3-319-17524-9_10
https://doi.org/10.1007/978-3-642-20398-5

Constraining Counterexamples in Hybrid System Falsification 419

24. Ferrère, T., Nickovic, D., Donzé, A., Ito, H., Kapinski, J.: Interface-aware signal
temporal logic. In: Ozay, N., Prabhakar, P., (eds.) Proceedings of the 22nd ACM
International Conference on Hybrid Systems: Computation and Control, HSCC
2019, Montreal, QC, Canada, 16–18 April 2019, pp. 57–66. ACM (2019)

25. Hoxha, B., Abbas, H., Fainekos, G.E.: Benchmarks for temporal logic require-
ments for automotive systems. In: Frehse, G., Althoff, M., (eds.) 1st and 2nd
International Workshop on Applied veRification for Continuous and Hybrid Sys-
tems, ARCH@CPSWeek 2014, Berlin, Germany, 14 April 2014/ARCH@CPSWeek
2015, Seattle, USA, 13 April 2015. EPiC Series in Computing, vol. 34, pp. 25–30.
EasyChair (2014)

26. Jin, X., Deshmukh, J.V., Kapinski, J., Ueda, K., Butts, K.: Powertrain control
verification benchmark. In: Proceedings of the 17th International Conference on
Hybrid Systems: Computation and Control, HSCC 2014, NY, USA, pp. 253–262.
ACM (2014)

27. Kapinski, J., Deshmukh, J.V., Jin, X., Ito, H., Butts, K.: Simulation-based
approaches for verification of embedded control systems: an overview of traditional
and advanced modeling, testing, and verification techniques. IEEE Control Syst.
36(6), 45–64 (2016)

28. Kato, K., Ishikawa, F.: Learning-based falsification for model families of cyber-
physical systems. In: 2019 IEEE 24th Pacific Rim International Symposium on
Dependable Computing (PRDC), pp. 236–245, December 2019

29. Kuřátko, J., Ratschan, S.: Combined global and local search for the falsification of
hybrid systems. In: Legay, A., Bozga, M. (eds.) FORMATS 2014. LNCS, vol. 8711,
pp. 146–160. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10512-
3 11

30. Luersen, M.A., Le Riche, R.: Globalized Nelder-Mead method for engineering opti-
mization. Comput. Struct. 82(23), 2251–2260 (2004)

31. Nghiem, T., Sankaranarayanan, S., Fainekos, G., Ivancić, F., Gupta, A., Pappas,
G.J.: Monte-carlo techniques for falsification of temporal properties of non-linear
hybrid systems. In: Proceedings of the 13th ACM International Conference on
Hybrid Systems: Computation and Control, HSCC 2010, NY, USA, pp. 211–220.
ACM (2010)

32. Pinchera, D., Perna, S., Migliore, M.D.: A lexicographic approach for multi-
objective optimization in antenna array design. Prog. Electromagn. Res. 59, 85–102
(2017)

33. Silvetti, S., Policriti, A., Bortolussi, L.: An active learning approach to the fal-
sification of black box cyber-physical systems. In: Polikarpova, N., Schneider, S.
(eds.) IFM 2017. LNCS, vol. 10510, pp. 3–17. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-66845-1 1

34. Zhang, Z., Ernst, G., Sedwards, S., Arcaini, P., Hasuo, I.: Two-layered falsification
of hybrid systems guided by monte carlo tree search. IEEE Trans. Comput. Aided
Des. Integr. Circuits Syst. 37(11), 2894–2905 (2018)

35. Zutshi, A., Deshmukh, J.V., Sankaranarayanan, S., Kapinski, J.: Multiple shooting,
cegar-based falsification for hybrid systems. In: 2014 International Conference on
Embedded Software, EMSOFT 2014, New Delhi, India, 12–17 October 2014, pp.
5:1–5:10. ACM (2014)

36. Zutshi, A., Sankaranarayanan, S., Deshmukh, J.V., Kapinski, J., Jin, X.: Falsi-
fication of safety properties for closed loop control systems. In: Proceedings of
the 18th International Conference on Hybrid Systems: Computation and Control,
HSCC 2015, Seattle, WA, USA, 14–16 April 2015, pp. 299–300 (2015)

https://doi.org/10.1007/978-3-319-10512-3_11
https://doi.org/10.1007/978-3-319-10512-3_11
https://doi.org/10.1007/978-3-319-66845-1_1
https://doi.org/10.1007/978-3-319-66845-1_1

Falsification of Cyber-Physical Systems
with Constrained Signal Spaces

Benôıt Barbot1, Nicolas Basset2, Thao Dang2(B), Alexandre Donzé3,
James Kapinski5, and Tomoya Yamaguchi4

1 Univ Paris Est Creteil, LACL, 94010 Creteil, France
2 VERIMAG/CNRS, Université Grenoble Alpes, Grenoble, France

thao.dang@univ-grenoble-alpes.fr
3 Decyphir SAS, Moirans, France

4 Toyota Motors North America R&D, Saline, USA
5 Gardena, USA

Falsification has garnered much interest recently as a way to validate com-
plex CPS designs with respect to a specification expressed via temporal logics.
Using their quantitative semantics, the falsification problem can be formulated
as a robustness minimization problem. To make this infinite-dimensional prob-
lem tractable, a common approach is to restrict to classes of signals that can
be defined using a finite number of parameters, such as piecewise-constant or
piecewise-linear signals with fixed time intervals. A drawback of this approach is
that when the input signals must satisfy non-trivial temporal constraints, encod-
ing these constraints into bounded domains for parameters can be difficult. In
this work, to better capture temporal constraints on the input signal space, we
use timed automata (TA) and make use of a transformation that allows sampling
TA traces by sampling points in the unit box. We exploit this transformation to
efficiently encode constrained CPS signals in the robustness minimization prob-
lem. This transformation also allows us to define an effective coverage measure
for the constrained signal space so as to provide quantitative guarantees when
no falsifying behaviour is found. Additionally, the coverage measure is used to
improve the black-box optimisation performance by detecting situations where
the search is stuck near a local optimum. The approach is demonstrated on a ΔΣ
modulator and a model of a car automatic transmission subject to constraints
that describe usual driving patterns.

1 Introduction

Cyber-physical systems (CPS) are found in many safety-critical applications,
like aircraft, medical devices, and automobiles, hence it is vital that they behave
in a manner consistent with their design expectations. CPS models are growing
rapidly in complexity and size and are often beyond the scalability of formal
verification techniques. As of today, industrial validation is carried out mostly
by sampling a finite number of input stimuli and checking the corresponding
behaviors obtained by model simulation or system execution.

Another approach to CPS validation is requirement falsification using black-
box optimization. Falsification can be thought of as testing where requirements

c© Springer Nature Switzerland AG 2020
R. Lee et al. (Eds.): NFM 2020, LNCS 12229, pp. 420–439, 2020.
https://doi.org/10.1007/978-3-030-55754-6_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-55754-6_25&domain=pdf
https://doi.org/10.1007/978-3-030-55754-6_25

Falsification of Cyber-Physical Systems 421

are expressed in a formal specification language such as metric temporal logic
(MTL) or signal temporal logic (STL) [32,35], which are appropriate for specify-
ing behaviors defined using real-valued signals over dense time. A key feature of
such logics is that they are equipped with quantitative semantics, and for a given
behavior, a real value, called the robustness, quantifies the property satisfaction
level of the behavior [20,24]. Using such semantics, the falsification problem can
be formulated as a robustness minimization problem, so as to automatically find
behaviors that violate (falsify) the property. Falsification techniques have been
applied to many CPS systems and are finding applications in industry (see a
recent survey [10]), by way of tools like S-TaLiRo and Breach [4,18].

The optimization-based approach is faced with several challenges. First, exist-
ing optimization solvers expect decision variables in a space of finite dimension,
whereas the search space for CPS falsification problems can be of infinite dimen-
sion, as they include continuous-time input signals. This gives rise to the problem
of encoding CPS signal spaces. To address this, a common practice (initiated in
[18,37]) is to restrict to classes of signals that can be defined using a finite number
of parameters. A second challenge is that, for cases where the inputs must sat-
isfy non-trivial temporal constraints, encoding these constraints into bounded
domains for parameters can be difficult. Ad hoc rejection sampling methods
become inefficient when the portion of signals satisfying the constraints is small.
Lastly, it is difficult to define meaningful coverage measures for CPS falsification
problems. When the input signals are subject to complex temporal constraints,
the resulting constrained signal space may be difficult to encode and measure.

In this paper we address the above challenges by introducing the follow-
ing into the optimization-based falsification framework: (1) a new encoding of
input signal spaces that are subject to temporal constraints specified using timed
automata [3]; (2) a new coverage measure for constrained signal spaces that is
based on this encoding, which we use to improve the efficiency of an iterative
black-box optimization procedure. For clarity of explanation, before describing
our contributions and comparing them with the current state of the art, we
provide an overview of the existing approaches and their limitations.

2 Requirement Falsification Problem

CPS Models and Specification. We model the behaviors of a CPS using the
following input-output mapping:

y = F(u), (1)

where u ∈ U is a function of time that represents the input signals to the system,
that is u : I → U , where I is an interval of the form [0, T] with T ∈ R>0,
and U is some metric space of finite dimension. Note that initial conditions as
well as other parameters (some finite set of variables influencing the system’s
behavior) can be captured as constant input signals. Similarly, we assume that
each output signal y ∈ Y is a function I → Y , where Y is some metric space of
finite dimension. To specify the correct or expected behaviors for the system (1)
in an unambiguous form that can be efficiently measured and quantified, we use
the Signal Temporal Logic (STL) language [35].

422 B. Barbot et al.

Overview of STL. An STL formula ϕ consists of atomic predicates along with
logical and temporal connectives. Atomic predicates are defined over signal val-
ues and have the form f(y(t)) ∼ 0, where f is a scalar-valued function over the
signal y evaluated at time t, and ∼∈ {<, ≤, >, ≥, =, �=}. Temporal operators
“always” (�), “eventually” (♦), and “until” (U) have the usual meaning and
are scoped using intervals of the form (a, b), (a, b], [a, b), [a, b], or (a,∞), where
a, b ∈ R≥0 and a < b. If I is a time interval, the following grammar defines the
STL language.

ϕ := 	 | f(y(t)) ∼ 0 | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1UIϕ2 : ∼∈ {<, ≤, >, ≥, =, �=} (2)

The ♦ operator is defined as ♦Iϕ � 	UIϕ, and the � operator is defined as
�Iϕ � ¬(♦I¬ϕ). When omitted, the interval I is taken to be [0,∞). Given
a signal y and an STL formula ϕ, we use the quantitative semantics for STL,
which is defined formally in [20]. The quantitative semantics defines a function
ρ such that when ρ(ϕ, y, t) is positive it indicates that (y, t) satisfies ϕ, and its
absolute value estimates the robustness of this satisfaction. If ϕ is an inequality
of the form f(y) > b, then its robustness is ρ(ϕ, y, t) = f(y(t)) − b. When t
is omitted, we assume t = 0 (i.e., ρ(ϕ, y) = ρ(ϕ, y, 0)). For the conjunction of
two formulas ϕ := ϕ1 ∧ ϕ2, we have ρ(ϕ, y) = min (ρ(ϕ1, y), ρ(ϕ2, y)), while for
the disjunction ϕ := ϕ1 ∨ ϕ2, we have ρ(ϕ, y) = max (ρ(ϕ1, y), ρ(ϕ2, y)). For
a formula with until operator as ϕ := ϕ1UIϕ2, the robustness is computed as
ρ(ϕ, y, t) = maxt′∈I

(
min

(
ρ(ϕ2, y, t′),mint′′∈[t,t′] (ρ(ϕ1, y, t′′))

))
.

Falsification Problem. Given a system model such as (1) and a requirement ϕ
specified as an STL formula, we want to find an input u ∈ U such that y = F(u)
does not satisfy ϕ, denoted y �|= ϕ. Such a behavior y is called a counter-example,
which is identified when ρ(ϕ, y) < 0. This is usually solved by formulating the
following optimization problem:

min
u∈U

ρ(ϕ, y) s.t. y = F(u) (3)

This formulation has been the focus of numerous research efforts [10]. We next
discuss the challenges in solving this optimization problem and some existing
approaches.

Input Signal Encoding. The input signals are taken from an infinite-dimensional
space (i.e., they can be a partial function over a continuous time-domain); one
thus needs a finite encoding of the signals. As mentioned earlier, most of the
existing approaches restrict to classes of input signals that are finitely param-
eterizable—that is, input signals u can be uniquely characterized by a finite
set of parameters. Therefore, the infinite-dimensional optimization problem (3)
becomes finite-dimensional. For example, a right-continuous piecewise constant
input signal u with discontinuities occurring at monotonically increasing instants
t1, . . . , tm where 0 = t1 < tm < T , can be uniquely characterised by m values
vi = u(ti). By fixing the number m of time intervals, the time points t1, . . . , tm
and the corresponding signal values are the decision variables for the search.

Falsification of Cyber-Physical Systems 423

Minimizing the Robustness. Fixing an input signal parametrization, the opti-
mization problem (3) becomes finite-dimensional but is still challenging for a
number of reasons. First, the input-output mapping F is not specified explicitly;
rather, it enforces that y is the output signal of the dynamical system model F ,
given the input signal u. For cases where F is a nonlinear hybrid system modelled
using heterogenous formalisms (such as Simulink R©/Stateflow R©), the output y
can only be determined approximately using numerical simulation. This also
gives rise to the hard problem of determining the gradients of the cost function,
often required by traditional continuous optimization techniques. Additionally,
the cost function ρ is often non-convex and contains discontinuities. For such
problems, in general there are no algorithms that can guarantee to find a global
optimum [26]. Hence, the robustness minimization step is often done using a
black-box optimization approach because it does not require derivative informa-
tion [38]. This approach relies on search techniques called metaheuristics [21],
which aim to combine the strengths of existing algorithms for discrete and contin-
uous domains. Such a search consists of a sequence of moves from one candidate
solution to another. In each move if the candidate satisfies the falsification goal,
a counter-example is found, otherwise, the candidate is updated. The updating
heuristics in general perform well for simple search spaces, for instance, multi-
dimensional boxes, or linear algebraic constraints [38]. This is one reason why
in practice the input signal parametrization is often chosen such that the search
space is essentially a box. The essential ideas related to black-box optimization
using a metaheuristic are summarized by the following abstract algorithm.

Algorithm 1. Optimization-based Falsification Algorithm
k = 1, ρm = +∞
Select a set Us ⊂ U of input signals
repeat

ρm = min{ρm, minu∈Us{ρ(ϕ, y) | y = F(u)}}
if ρm < 0 then

Report the falsifying behavior. Exit
end if
k = k + 1
Us = Update(Us) � (using black-box optimization)

until k = Kmax

No falsifying behavior found.

Quantitative Guarantees. When no falsifying behavior is found, it is of great
interest to provide a quantitative guarantee expressed by a measure of the set of
behaviors that was tested. Such a ‘coverage’ measure was proposed only for point
spaces (see related work on coverage measures in Sect. 5), which are appropriate
only for properties defined over the system states (such as, safety). It is thus
useful to use a more general notion of signal/function space coverage, which is
a problem we address in this work.

424 B. Barbot et al.

Limitations of the Existing Solutions and Our Approach. Concerning signal
encoding: using fixed parametrizations restricts the searchable space, and the fal-
sification performance depends on the selected parametrizations, which requires
validation engineers to use intuition to select the number of intervals and their
duration. Furthermore, as mentioned in the introduction, input signals in prac-
tical applications are often subject to constraints imposed by their generators.
Examples of such signals include noises from specific environments or controls
from under-actuated controllers. In these cases the input signals must satisfy
non-trivial temporal constraints, and encoding these constraints in forms that
can be efficiently handled by existing optimizers can be difficult; the optimizers
often treat such constraints using ad hoc methods, such as using rejection sam-
pling. Little attention has been given to these considerations in the falsification-
related literature, but [17,39] propose some strategies that involve incrementally
increasing the number of time intervals. If these constraints are not taken into
account, there are two consequences. First the optimizers can come up with triv-
ial non-realistic solutions, such as Zeno behaviors switching between extreme
values. Second, the unconstrained search space may be too conservative com-
pared to the valid search space, which makes rejection sampling inefficient, as
we will show in an example involving a rather intuitive temporal constraint.

In this work, to capture temporal constraints on the input signal space, we
use timed automata (TA) [3]. Such constraints are previously considered in a
procedure to uniformly generate random signals [7], which relies on the calcula-
tion of a transformation from the unit box to timed polytopes (allowing sampling
timed words of a TA by sampling points in the unit box) [6]. We extend this
transformation to encode constrained input signal spaces, which constitutes a
crucial ingredient in the optimization process. Unlike the work [7] where the
falsification process is based on a given set of uniformly sampled timed words,
in this work we perform optimization in a search space that satisfies both signal
timed pattern and value constraints. In other words, this encoding allows us not
only to consider signals uniformly but also to perform best-case search strategies
according to an objective function, which enhances the falsification performance
as shown by the experimental results. This transformation also allows us to define
an effective coverage measure of the constrained signal space in order to provide
quantitative guarantees. In addition, this coverage will be used to improve the
black-box optimization performance by detecting situations where the search is
trapped near a local optimum and to make online decisions about when and how
to switch from one optimization strategy to another.

The remainder of the paper is organized as follows. In Sect. 3 we briefly
recall timed automata [3] and the transformation from the unit box to timed
polytopes [6,7]. We then show how this transformation can be used to encode
constrained signals and to define coverage measures for the space of such signals.
Section 5 describes the falsification algorithm and Sect. 6 presents our experimen-
tal results. Section 7 concludes and Sect. 8 describe with more technical details
the transformation from the unit box to timed polytopes and the sampling.

Falsification of Cyber-Physical Systems 425

3 Preliminaries on Timed Automata and Timed Word
Generation

3.1 Timed Automata

A timed automaton A = (Q,X,Σ,Δ, Inv, i0) is a tuple where Q is a finite set
of locations with i0 as initial location; X is a finite set of clocks which values
are assumed bounded by a constant M ∈ N; Δ is a finite set of transitions.
Each transition is the form δ = (q, ψ, a, r, q′) where q, q′ ∈ Q are the source and
destination locations; ψ is the guard, which is a conjunction of clock constraints
of the form xi ∼ c or xi ∼ xj + c with xi, xj ∈ X, ∼∈ {<, ≤, =, ≥, >}; c an
integer in [−M ;M] and a ∈ Σ is a label; r is the reset map; Inv associates
with each location q a conjunction of clock constraints, called the invariant of
q. A state of A is a pair (q,x) where q ∈ Q and x is a clock valuation1. The
transitions of the automaton are of two types: timed transitions and discrete
transitions. Timed transitions correspond to the evolution of the clocks within
a location as long as the clock valuation satisfies the invariant of the location.
Concerning discrete transitions, if the transition δ = (q, ψ, a, r, q′) is enabled at
the state (q,x) (that is x satisfies the guard ψ), the discrete transition from
q to q′ can take place (if the clock valuation after applying the reset map r
satisfies the invariant Invq′ of q′). The reset map r is determined by a sub-
set of clocks B ⊆ X and this transition resets to 0 all the clocks in B and
does not modify the other clocks. The initial state of A is (i0,0). A trace is
an alternating sequence (i0,x0)

a1,τ1−−−→ (q1,x1) . . .
an,τm−−−−→ (qm,xm) of states and

timed transitions with the following updating rules: qi is the successors of qi−1

by transition δi = (qi−1, ψi, ai, ri, qi), the vector (xi−1 + (τi, . . . , τi)) must sat-
isfy the guard ψi and applying the reset map ri to it gives xi. This trace is
labelled by the timed word γ = (τ1, a1), . . . , (τm, am) where ai are transition
labels and τi are time delays between two consecutive transitions, (τ1, . . . , τm)
is called a timed vector and (a1, . . . , am) a discrete pattern. Given a discrete
path α = δ1, . . . , δn of A the set of timed vectors (t1, . . . , tn) ∈ [0,M]n such

that (i0,0)
t1,δ1−−−→ (q1, t1) . . .

tn,δn−−−→ (qn, tn) is called the timed polytope associ-
ated with the path α. The set of timed words that label all the traces from the
initial state is called the timed language of A. As an example, we consider the
TA in Fig. 1, which will be used in our experiments. This automaton models a
quasi-periodic pattern of signals with uncertain period ranging between 8 and
12. It has the property that after entering the cycle the time lapse between 4
consecutive transitions is contained in the interval [8, 12]. Intuitively, the traces
of this automaton are loosely periodic as transitions cannot be taken too early or
too late. Moreover the global invariant condition x < 4 (not depicted in Fig. 1)
ensures that each duration is bounded from above by 4. An example of timed
word in the timed language is (3.4, b)(3.6, c)(1.1, d)(2.3, a)(3.3, b).

1 A clock valuation, denoted by the letter x in bold, is a vector of clock values, while
xi denotes the ith clock of the automaton, as in Fig. 1.

426 B. Barbot et al.

q4

q5

q6

q3q2q1q0

b,
x1 > 8
x1 := 0

c,
x2 > 8
x2 := 0d,

x3 > 8
x3 := 0

a,
x4 > 8
x4 := 0

b, x1 := 0 c, x2 := 0 d, x3 := 0

Fig. 1. A timed automaton used in our experiments. To avoid overloading the figure, a
global clock x (reset to 0 at each transition) and the global invariants x1, x2, x3, x4 < 12
and x < 4 hold for each guard and are not depicted.

3.2 Transformation from the Unit Box to a Timed Polytope

We want that the exploration within the domains of optimization variables
reflects the exploration within the timed language, in terms of coverage. To this
end, we will use a volume-preserving transformation developed in [6,7], which
we summarize in the Appendix (Sect. 8).

From a timed automaton A, we can define inductively volume functions vn

so that vn(q,x) is the volume of the language of words of length n starting from
the state (q,x) accepted by A [5,6]. Based on such volume functions we define
cumulative distribution functions (CDFs) that we use to sequentially sample
each transition and time delay via the inverse sampling method. These CDFs
give us a transformation from the unit box [0, 1]2n to the set of timed words of
length n recognized by the automaton.

In previous work [7] three tools were used to perform the sampling: Prism [34]
for computing the zone graph, SageMath [42] for computing distributions and
Cosmos [8] for the sampling. In the present work, the tool WordGen [9] combining
the three steps has been developed, which greatly increases the usability of the
method.

4 Encoding Constrained Signal Space in the Optimization
Problem

A timed automaton can naturally provide a qualitative description, annotated
with timing information, for a class of CPS signals of interest. In addition, we
can consider quantitative constraints on signal values by associating them with
the transition labels of the automaton. More concretely, each transition label a
is associated with a predicate of the form πa(v) ≤ 0 where v ∈ R is the signal
value.

To perform optimization over the space of such signals, we need an efficient
representation of this space. For simplicity of explanation, we focus only on the
signals corresponding to the timed words of A having a single discrete pattern
α = (a1, · · · , am). The timed polytope Pτ , defined by the delays τ between
the transitions that are subject to the clock constraints (imposed by the guards,
resets and invariants along the transition sequence), is the search space for timed
words with the fixed pattern α. To couple it with the search space for signal

Falsification of Cyber-Physical Systems 427

values, we couple Pτ with the set of signal values satisfying the associated pred-
icates: Pv = {v | ∀i ∈ {1, . . . , m}, πai

(v) ≤ 0}. In this work, we assume that
each πai

is an interval predicate2, and the set Pv is thus a box, called a valued
box. Hence, this coupling of time and value constraints leads to a polytope in
R2m: Π = {(τ, v) | τ ∈ Pτ ∧ v ∈ Pv}, called a timed-valued polytope. The signal
constructed from any point (τ, v) in Π is guaranteed to satisfy the constraints
specified by the timed automaton A and its associated predicates. Thus the
constrained signal space in question is encoded by this timed-valued polytope.

To generate candidate solutions from a timed-valued polytope, as mentioned
earlier, we make use of the transformation that maps the unit box to this timed
polytope and extend it to a timed-valued polytope, in order to reduce the search
space to a box domain (instead of complex polytopic domains). Indeed, since a
timed-valued polytope Π is the product of a timed polytope Pτ and a valued
box Pv, it is not hard to see that the transformation for Π, denoted by S, is
composed of Sτ for the timed polytope Pτ and Sv for the valued box Pv. Note
that Sv is simply an affine function transforming Pv to the unit box [0, 1]m. In
short, using the transformation S, the initial search domain, which is a timed-
valued polytope, becomes the unit box [0, 1]2m. We consider this the product of
two unit boxes, Bτ × Bv.

This transformation was implemented in the tool WordGen to generate a
timed word from a point in the unit box Bτ . Then, to construct CPS signals
corresponding to a given timed word, we use the tool Breach [19]. This tool is
also used to simulate the system behaviours and evaluate their robustness. To
recap, the input signal construction is done as follows:

1. Pick a point pτ in the unit box Bτ . Pick a point pv in the unit box Bv.
2. Use WordGen to generate a timed word w from pτ .
3. Use Breach to generate a signal u from w and pv.

Note that the above first step is done by the procedure of updating candidate
input signals. This procedure is based on a combination of metaheuristics that
we discuss in the sequel.

5 Guided Combination of Metaheuristics

One natural strategy for updating candidate solutions is to use methods related
to gradient descent, wherein new points are selected based on some estimate
of the gradient of the cost function near promising previously evaluated points.
Such a descent strategy may not lead to a global optimum, leaving the search
stuck around a local optimum. When this occurs, it is possible to restart the
search from a new set of candidate solutions, but this can become expensive
when there are many local optima. Metaheuristics [21] are one way to go about
this problem, by accepting from time to time candidates that do not improve the
2 Using more general predicates, such as linear predicates, leads to a more complicated

problem of defining the transformation from the unit box, which we plan to consider
in future work. This is indeed related to the problem of uniform sampling within a
convex polytope.

428 B. Barbot et al.

cost function value. In this work we propose a method for combining a number
of well-known metaheuristics. The method switches between two different types
of solvers or search algorithms that, borrowing the terminology from [12,21], are
called exploitation-driven and exploration-driven.

The exploitation-driven algorithms try to make greedy changes (often small)
around the current candidate. We make use of a number of well-known solvers
in this type3, namely Simulated Annealing [31], Global Nelder-Mead algorithms
[2,36], and CMAES (Covariance Matrix Adaptation Evolution Strategy) [28].
This type of solver is used to explore locally around promising candidates. On the
other hand, the exploration-driven solvers explore the parameter space widely,
and thus quickly enlarge the exploration space. Such solvers are particularly
useful to help the search escape a local optimum, where the cost value has
stagnated. The exploration-driven solver we use in this work is based on the
low-discrepancy and uniform sampling method in [7].

It is of great interest to be able to synergize exploration and exploitation by
adaptive switching between the two strategies using appropriate measures for
exploitation and exploration performance. The trade-offs between exploitation
and exploration have been explored for the purposes of falsification for CPS [33].
Exploitation performance can be measured by the reduction in the cost value
(that is the robustness value). Exploration performance can be measured using
the notion of search space coverage. For our framework, we introduce in the
subsequent section a signal space coverage measure.

5.1 Signal Space Coverage Measure

We define a signal space coverage measure based on a partition of the vari-
able domains, called cell occupancy. A similar measure was already used in our
previous work [1] but was restricted to the parameter space corresponding to
the space of signal values over fixed time parameterizations. Equipped with the
transformation from the unit box, we can now extend it to a more general class
of signals. Let G be a partition of the unit box [0, 1]2m into Nt rectangular cells
with equal side length. Cell occupancy is based on the ratio between the number
No of cells occupied by points and the total number Nt of cells. Then, the cell

occupancy measure is given as
log No

log Nt
. Logarithm functions are used because

the total number of cells could be very large as compared to the number of
occupied cells. A major advantage of the cell-occupancy measure is that it is
easy to compute; however, it is clear that when the cell size is large this measure
does not reflect levels of uniformity or equi-distributivity, as provided by the
Kolmogorov-Smirnov statistic [7].

Related Work on Coverage Measures. In the context of CPS, a signal space cov-
erage measure should be defined over continuous-time signals, such as the input
signal space or the system behaviour space. The latter option is more difficult
3 The exploitation-driven and exploration-driven characterization refers only to the

behaviors of the solvers seen on a global level, since the above-mentioned meta-
heuristics contain both exploitation-driven and exploration-driven aspects.

Falsification of Cyber-Physical Systems 429

because the space of all possible system behaviours is in general unknown. When
an input signal space is finitely parameterized, a point coverage measure can be
defined on its associated parameter space. Measures like dispersion try to cap-
ture the size of the empty space between points that have been explored [23]. A
related and simple measure, partitions the search space into cells and measures
the proportion of cells that are occupied by explored points [41]. This method
is related to the combinatorial entropy notion from the domain of physics to
measure the degree of randomness in a distribution of points [27]. The star
discrepancy measure is a measure of the degree to which a set of points are
equidistributed [29]; it was also used for measuring the coverage of reachable
states [1,16,22]. In this work, where the specification imposes on the input sig-
nals complex temporal constraints, the resulting parameter space is difficult to
define; however, using the above-described volume preserving transformation,
any point coverage can be defined over the unit box and carried over to the
signal space. Hence, we can use in principle any existing point coverage. In this
work, we choose to use the cell occupancy measure, since it can be efficiently
computed for the high dimensional search spaces encountered in our case studies.

5.2 Algorithm for Guided Combination of Metaheuristics

We describe our algorithm for guided combination of metaheuristics, summarized
in Algorithm 2. The search strategy is based on the robustness and coverage
measures.

Algorithm 2. Abstract Algorithm for Combining Metaheuristics
� s: solver index; Sρ: set of exploitation-driven solvers; G: set of visited states; ρ∗

and c: sequences such that ρ∗[k] and c[k] are respectively the best robustness value
and the coverage value up to iteration k

k = 1
while k ≤ kmax do

{ρ∗, G} = Exploitation(Sρ, G) � run all the exploitation-driven solvers
c = updateCoverage(c, G)
blocking = DetectBlocking(c, ρ∗) � based on coverage and robustness
if (blocking) then

s = Rand
(ρ∗, G) = Run(s, Ts) � run a sampling-based solver for Ts time

end if
k + +

end while

The algorithm is organized in iterations, and in each iteration the solvers
(or metaheuristics) are sequentially called, based on the current search results.
Throughout the search process, we maintain a set G of intermediate visited states.
By ‘visited state’, we mean the pair (p, ρ) where p is a candidate point—in the
search domain, which is the unit box—and ρ is its associated cost value, and by

430 B. Barbot et al.

‘intermediate’ we mean the points successively computed by the solver scheme.
The procedure starts with Exploitation, which runs each of the exploitation-
driven solvers and updates the set G of visited states. Then updateCoverage
updates the coverage c of G (using the cell-occupancy measure). Next, the pro-
cedure DetectBlocking determines whether the search has entered a blocking
situation. If it has, the exploration-based search Rand, using quasi-random (that
is, low-discrepancy) or uniform methods, is run for Ts seconds.

Switching to Exploration to Escape a Local Minimum. The search is said to
be blocking, if it does not improve the cost value after some execution time
limit, without increasing the coverage. Such a blocking situation often indicates
a local optimum, and an exploration-driven solver, either the uniform or low-
discrepancy sampling methods, is used to escape it. We monitor the coverage and
robustness evolution, to detect if they do not increase and decrease respectively
by some predefined amounts, for a predefined number of iterations. Due to the
monotonicity of the coverage and robustness evolution with respect to the num-
ber of visited points, the detection can be done by comparing the coverage and
the robustness values of the current iteration to those of the previous iteration.

Exploitation to Improve Best Candidates. An exploitation-driven solver with
index s runs from a set P of initial points for Ts time (see Algorithm 2). The
corresponding best cost value is stored in ρ∗. The reason we store the visited
states is that they can reflect the relation between the cost function and the
decision variables and can thus indicate promising regions, so as to derive good
initializations for subsequent solvers.

Solver Initialization. We select initial points for a solver using the following
heuristics:

– Select an initial point or a population of initial points from the best points
obtained from previous iterations.

– Pick initial points according to a distribution that is dynamically updated
based on the previous results, as inspired by the population based methods
such as the CMAES. As described above, after each iteration we keep the
points visited in the previous iterations. We select a set of best points, the
robustness values of which are below some threshold, and use them to define
the sampling distribution for new candidates. Let p be a parameter point and
pi denote its ith coordinate. For any point p in G, let [p

i
, pi] be the bound-

ing interval such that each coordinate pi ∈ [p
i
, pi]. In the kth iteration, the

sampling distribution of pi can be a normal distribution N (pk
i , σk

i), where the
mean pk

i is one of the most promising candidates from the previous iteration,
selected based on the robustness value. The standard deviation σk

i in the kth

iteration can be determined by σk
i = (pi − p

i
)(1

Nk)k/n, which decreases iter-
ation after iteration. The number Nk of candidates can vary, being large at
the beginning and decreasing gradually. In the first iteration where no infor-
mation is available, we can sample candidate points according to the uniform
distribution.

Falsification of Cyber-Physical Systems 431

6 Experimentation

We use two case studies to evaluate our algorithms: a model of a ΔΣ modula-
tor and an automatic transmission control system. We demonstrate the efficiency
gained by encoding the constrained signal spaces and evaluate the advantage of
combining different metaheuristics. The combination algorithm is implemented
in MATLAB R© and uses 4 metaheuristics (integrated in Breach [19]): Simulated
Annealing (SA) [31], CMAES [28], a globalized version of the Nelder Mead
algorithm proposed by Luersen and Le Richec [2] abbreaviated by LRNM, and
another globalized version of the Nelder Mead algorithm combining the classical
Nelder Mead algorithm [36] with some corner searches, abbreaviated by GNM.
The tool Breach [19] also provides robustness evaluation and signal construction
from timed words. The generation of timed words from points in the unit box
is done by the tool WordGen. Our experiments were performed on a computer
with a 1.4 GHz processor with 4GB RAM, running MATLAB R© R2015a 64-bit
version.

ΔΣ Modulator. We illustrate the application of our method of encoding con-
strained signal space with a ΔΣ modulator, which is an important component
of analog-to-digital converters. Practical quantizers have limited input and out-
put ranges, which may lead them to saturation, and we want to check whether
the output ever saturates. We use a behavioral model of a second-order mod-
ulator specified using Simulink R©, which takes into account most non-idealities
[13], including sampling jitter, integrator noise, and op-amp parameters (finite
gain, finite bandwidth, slew-rate and saturation voltages). There exist simpli-
fied discrete-time ΔΣ modulator models without non-idealities, for which it is
possible to derive its dynamic equations and thus can be analyzed using opti-
mization [15] and statistical model-checking [14]; however, this Simulink model
is heterogeneous, including embedded MATLAB code and a mix of discrete-time
and continuous-time components. Therefore, it is too complex for existing for-
mal verification tools. We consider the falsification of the absence of saturation
of some quantizer signal Out under a certain class of nearly oscillatory inputs
In. Formally In and Out must satisfy for some ts ≥ 0 and ∀t ≥ 0,

|Out(t)| < 2 (4)
∃T ∈ [8ts, 12ts] such that In(t + T) = In(T) (5)

Encoding (4) as an STL formula is trivial: ϕ¬sat = �|Out| < psat. However,
enforcing that In satisfies (5) is not so simple. For instance, unbounded peri-
odic properties are known to be beyond STL expressivity [35], and this is
before considering that periods may be uncertain. We consider two approaches:
one based on the above-described TA framework and another using only
STL formulas. In both approaches, we use a signal generator interpolating
the signal values between points of a periodic discrete sequence of the form:
u0 τ0 u1 τ1 u2 τ2 u3 τ3 u0 τ4 u1 τ5 u2 τ6 u3 τ7 u0 τN uN̂ . . .

The value In(t) is obtained by finding k such that
∑k

0 τi ≤ t <
∑k+1

0 τi

and interpolating between uk and uk+1 where k is the remainder of k/4.
Since the discrete sequence ui is periodic, the resulting signal satisfies (5) iff

432 B. Barbot et al.

∀i, 8ts ≤ τi + τi+1 + τi+2 + τi+3 ≤ 12ts. Note that this constraint is satisfied
by the delays of the timed words of our TA of Fig. 1. Hence by using WordGen
to generate timed words and mapping labels a, b, c, d to values u0, u1, u2, u3

we obtain the desired signals. To cross-validate this approach, we used a simple
formula: ϕper = ♦[0,tend](up → upnext) ∧ ♦[0,tend](down → downnext), where
up = In1[t] > 1.9 and upnext = �[7.5∗ts,12.5∗ts](up), and down and downnext
are defined similarly. We then defined the falsification problem as

Fig. 2. Example traces for the ΔΣ modulator output (bottom) using inputs signals
with random timings (top) and timings based on timed words from the TA of Fig. 1
(middle).

min
v

ρ(ϕ¬sat,Out(v)) (6)

s.t. In(v) |= ϕper. (7)

where v is a parameter vector. In the TA based approach, v ∈ Pv (as described
in Sect. 4); whereas in the TA-free approach, v encodes directly delays between
the specified signal values: v ∈ {(τ0, . . . , τN) | τi ∈ [0, 4ts]}. In the latter case,
the solver is responsible for the satisfaction of constraint (7). Breach imple-
ments a simple “optimized rejection” strategy where the constrained optimiza-
tion problem (6–7) is basically replaced by an unconstrained minv(J(v)) where
J(v) = ρ(ϕ¬sat,Out(v)) if ϕper is satisfied and J(v) = −ρ(ϕper, In(v)) otherwise.
In other words, when in an infeasible region, Breach actively tries to satisfy
ϕper with the current optimization strategy. This is a rejection strategy in the
sense that when ϕper is not satisfied, v is not used, meaning Out(v) is not com-
puted to avoid useless simulations. With these settings, we could confirm that
the TA-based approach indeed generated only inputs satisfying ϕper, for arbi-
trarily long inputs. In addition, the optimized rejection approach only works for
short horizons. For instance, we considered simulations of duration 1e−6 s with

Falsification of Cyber-Physical Systems 433

ts = 1e−8 s. To be able to satisfy ϕper we had to set the horizon tend to 3e−7 s,
which considers only about 3 periods. Longer horizons would result in the solver
rejecting most of considered inputs, which can be explained by a small ratio
of the volume of the language of valid inputs w.r.t. that of the language of all
inputs (Fig. 2).

For the saturation threshold psat = 2 used in the model [13], the property
ϕ¬sat was easily falsified in our optimization setting. In addition, we could com-
pare the performance of different metaheuristics by continuing the optimization
after falsification. Using our previous algorithm [7] based purely on a set of 10,000
uniformly generated signals, the highest absolute output value is 2.32032. How-
ever, using the combined metaheuristics after exploring only 826 signals, a higher
value, 2.322586, is found. More concretely, we fixed the saturation threshold psat

to be 2.325 in ϕ¬sat and ran the metaheuristics with the option of stopping at
the first falsifying trace that is found. With some fixed seed4 (100 in this case),
all the stand-alone metaheuristics could not falsify the property, but the com-
bined metaheuristics could (see Table 1). The combined metaheuristics first used
Simulated Annealing and then LR Nelder Mead, which got stuck in a blocking
situation where the robustness is not improved and the coverage does not increase
significantly. It then switched to the CMAES metaheuristics but used the points
explored by the previous metaheuristics to estimate a good initial distribution for
this CMAES solver, which could then falsify the property. The CMAES method
seemed to have the best performance for this example, among the stand-alone
metaheuristics; we thus compared it with the combined metaheuristics using
different seeds. The comparison results are summarized in Table 2, which indi-
cates that the combined metaheuristics algorithm outperformed the stand-alone
CMAES for seeds 1,000 and 10,000, but the results were mixed for seed 5,000.
This shows how initializations can affect the performance of the metaheuristics,
and the combination guided by coverage and robustness can be thought of as a
heuristic (on top of the metaheuristics) that tries to use the information gained
through the search to lead it towards promising initializations.

Table 1. Using the different methods on the ΔΣ model with seed 100.

Search method Min robustness; Max (|Out|) Nb fct eval Comp time (s)

CMAES 0.003746; 2.321254 10,000 6,103.282974

SA 0.027244; 2.297756 10,000 8,036.702422

GNM 0.031889; 2.293111 10,000 6,763.065164

Uniform Rand 0.00338031; 2.32161969 10,000 4,539.560286

LRNM 0.07562901; 2.24937099 10,000 4,854.569456

Combined Meta −0.002414; 2.327414 826 431.434701

4 The seed here refers to the index for a sequence of random numbers in MATLAB.

434 B. Barbot et al.

Table 2. Comparing the combined metaheuristics and the CMAES with different seeds.

Search method Seed Min robustness; Max (|Out|) Nb fct eval Comp time (s)

CMAES 1,000 0.002282; 2.322718 10,000 6,430.215422

Combined Meta 1,000 −0.00323532; 2.32823532 936 489.150343

CMAES 5,000 −0.00164623; 2.32664623 1,081 463.796410

Combined Meta 5,000 −0.00201822; 2.32701822 1,100 536.904802

CMAES 10,000 0.00226337; 2.32273663 10,000 7,747.896409

Combined Meta 10,000 −0.000305395; 2.324694605 766 310.282428

s0 acceleration s1 coasting

s2 brakings3 coasting

2 < y, {x, y}

1 < y, {x, y}

1 < y, {x, y}

2 < y, {x, y} 1 < y < 2, {y}

1 < y < 2, {y}1 < y ∧ 3 < x < 10,
{x, y}

1 < y ∧ 3 < x < 10, {x, y}

Fig. 3. timed automaton describing the driving patterns of interest. A global invariant
y < 15 (meaning that the location changes within at most 15 s) is not depicted.

Automatic Transmission Control. This model [30] has been used as a bench-
mark for evaluating hybrid systems validation techniques5. Here we extend it to
capture constraints on the input signals that reflect usual driving patterns, based
on the data from the study in [40]. The system has two inputs: throttle α and
brake β, and two outputs: the engine speed w (RPM) and the vehicle speed v
(mph). We consider the input signals that satisfy the constraints of the timed
automaton with two clocks x and y in Fig. 3. ‘Coasting’ means that both the
brake and acceleration pedals are not pressed, that is the two inputs are 0. The
loop consisting of locations s0, s3 describes accelerating behaviors with coasting.
At the location ‘acceleration’, braking can happen after accelerating for at least
2 and not more than 19 s, indicated by the transition from ‘acceleration’ to ‘brak-
ing’. The loop between ‘braking’ and ‘coasting’ models the fact that the driver
can push and release the brake pedal successively a number of times to adjust the
vehicle speed. The clock x, which is not reset in the transitions between ‘brak-
ing’ and ‘coasting’, measures the time the system remains in this loop before
returning to ‘acceleration’ by one of the two transitions both guarded by x > 3.
In other words, the driver must stay in the braking-coasting (s1–s2) loop for at
least 3 s. The transition labels are associated with the following range constraints
on the input signal values: s0 to s3 (acceleration to coasting), α = 0, β = 0; s3 to
s2 (coasting to brake) α = 0, β = [100, 325]; s3 to s0 (coasting to acceleration)
α = (0, 500], β = [100, 325]; s0 to s2 (acceleration to braking) α = 0, β = 0; s1 to
s2 (coasting to brake) α = 0, β = [100, 325]; s2 to s1 (brake to coasting) α = 0,
β = 0; s2 to s0 (brake to acceleration) α = (0, 500], β = 0; s1 to s0 (coasting to

5 See http://cps-vo.org/node/12116.

http://cps-vo.org/node/12116

Falsification of Cyber-Physical Systems 435

Fig. 4. A falsifying trace of the automatic transmission control system found by the
combined metaheuristics algorithm. The (red) cross on the last plots indicates the
instant of worst violation as computed by the diagnostics algorithm of [25] which
allows ignoring quantitative information from the gear signal to focus on the speed
signal only, which explains why robustness is not plotted in certain intervals. (Color
figure online)

acceleration) α = (0, 500], β = 0. In terms of values, we use piece-wise constant
signals satisfying the ranges associated to the transition labels. The property to
check states that if the gear is 3 the vehicle speed should not be too slow, which
is described by a STL formula: φ = �[20,100]¬((gear = 3)∧ (v < vmin)). We seek
a driving behavior (that is the input signals of throttle and brake) that leads to
a violation of this property. For vmin = 19.76 (mph) the combined metaheuris-
tics algorithm falsified it after 326 s, while GNM alone took 974 s and CMAES
took 650 s to falsify. This experiment shows that these metaheuristics, when used
alone, spent much time around local optima (Figs. 3 and 4).

7 Conclusion

We presented a new falsification algorithm based on a method for encoding input
signals subject to timed automaton constraints. We defined a coverage measure
for such constrained signal spaces. We also proposed a combination of different
metaheuristics to exploit their complementary properties. Switching between the
metaheuristics, based on the coverage information, allows escaping local opti-
mum situations. We successfully demonstrated the efficacy and advantage of the
new algorithms through two case studies. Ongoing work includes considering the
usage of other coverage measures, such as combinatorial entropy. Furthermore,
the metaheuristic switching currently depends on global coverage and robustness
improvement thresholds determining blocking situations, and a biased switching

436 B. Barbot et al.

can be defined using local coverage measures based on multi-resolution parti-
tions. We also plan to use ideas from the racing algorithms [11] for identifying
and dropping inferior candidates during the search.

8 Appendix – Timed Language Volume and Uniform
Generation of Timed Words

From a timed automaton A we can define inductively the volume of the language
of words of length n accepted by the automaton from the state (q,x)x:

v0() = 1;

v
(q,ψ,a,r,q′)
n (x) =

∫
+∞

t=0
1x+(t,...,t)|=ψ vn−1 (q′, r(x + (t, . . . , t), r)) dt;

vn(q,x) =
∑

δ∈Δq

vδ
n(x) where Δq is the set of transitions starting from q.

(8)

Fig. 5. On the left (a) a simple quasi-periodic automaton, and on the right (b) the
stochastic process used for sampling its timed words. The states are labelled by the
invariants on the clocks. To explain the labels associated to the transitions, let us
consider the transition from location s0 to s3. This transition is labelled by b (action
name), {x} (set of clocks to reset), [0, 1] (guard on the delay τ (waiting time)); 17

6

(weight to define the probability of taking the transition); 2t + t2 − t3

6
(cumulative

probability distribution for sampling the delay τ).

The function r produces a new clock valuation by setting to 0 the values of the
clocks to be reset and keeping the others unchanged. The function v

(q,ψ,a,r,q′)
n (x)

is the volume of the set of timed words starting at x which are generated by
the transition (q, ψ, a, r, q′). The function vn(q,x) is the volume of the set of
timed words starting at (q,x) that are generated by all possible transitions
from q. Note that the above volume definition is not operational in this form,
since the integral bounds contain max/min functions. We show in [6] that by
decomposing the automaton into a zone graph with additional constraints to
ensure that the resulting bounds are linear so that the integrals can be effec-
tively computed. Using this decomposition, the volume vn can be computed
efficiently in polynomial time and can be written as polynomials functions of

Falsification of Cyber-Physical Systems 437

clock valuations. Next the transformation is defined as the cumulative proba-
bility distributions (CDF) for sequentially sampling each transition and time
delay as follows: in state (q,x) the next transition δ is chosen with probabil-
ity ptrans(δ|q,x) = vδ

n(q,x)/vn(q,x). Once the transition is chosen, the delay
t is distributed according to the following cumulative probability distribution:
pdelay(t|δ, q,x) = 1 − vδ

n(x + (t, . . . , t))/vδ
n(x). In other words, these distribu-

tions define the inverse of the transformation from the timed polytope of a given
discrete pattern to the unit box. Indeed, to generate a timed word of length n,
one starts with a sequence (ui)2n

i=1 ∈ [0, 1] of real values, which corresponds to
a point in the unit box of dimension 2n. Starting from the initial state of the
automaton and the clock valuation equal to 0, the transition and the delay at
step i are chosen using the inverse transform method applied to the distribution
ptrans and pdelay with the reals u2i and u2i+1.

References

1. Adimoolam, A., Dang, T., Donzé, A., Kapinski, J., Jin, X.: Classification and
coverage-based falsification for embedded control systems. In: Majumdar, R.,
Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 483–503. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-63387-9 24

2. Luersen, M.A., Le Richec, R.: Globalized Nelder-mead method for engineering
optimization. Comput. Struct. 82(23), 2251–2260 (2004)

3. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994)

4. Annapureddy, Y., Liu, C., Fainekos, G.E., Sankaranarayanan, S.: S-TaLiRo: a tool
for temporal logic falsification for hybrid systems. In: TACAS, pp. 254–257 (2011)

5. Asarin, E., Basset, N., Degorre, A.: Entropy of regular timed languages. Inf. Com-
put. 241, 142–176 (2015)

6. Barbot, B., Basset, N., Beunardeau, M., Kwiatkowska, M.: Uniform sampling for
timed automata with application to language inclusion measurement. In: Agha, G.,
Van Houdt, B. (eds.) QEST 2016. LNCS, vol. 9826, pp. 175–190. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-43425-4 13

7. Barbot, B., Basset, N., Dang, T.: Generation of signals under temporal constraints
for CPS testing. In: Badger, J.M., Rozier, K.Y. (eds.) NFM 2019. LNCS, vol. 11460,
pp. 54–70. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20652-9 4

8. Barbot, B., Bérard, B., Duplouy, Y., Haddad, S.: Integrating simulink models into
the model checker cosmos. In: Khomenko, V., Roux, O.H. (eds.) PETRI NETS
2018. LNCS, vol. 10877, pp. 363–373. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-91268-4 19

9. Benôıt Barbot. WordGen (2019). https://git.lacl.fr/barbot/wordgen
10. Bartocci, E., Deshmukh, J., Donzé, A., Fainekos, G., Maler, O., Ničković, D.,

Sankaranarayanan, S.: Specification-based monitoring of cyber-physical systems:
a survey on theory, tools and applications. In: Bartocci, E., Falcone, Y. (eds.)
Lectures on Runtime Verification. LNCS, vol. 10457, pp. 135–175. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-75632-5 5

11. Birattari, M., Stützle, T., Paquete, L., Varrentrapp, K.: A racing algorithm for con-
figuring metaheuristics. In: Proceedings of the 4th Annual Conference on Genetic
and Evolutionary Computation, GECCO 2002, San Francisco, CA, USA, pp. 11–
18. Morgan Kaufmann Publishers Inc. (2002)

https://doi.org/10.1007/978-3-319-63387-9_24
https://doi.org/10.1007/978-3-319-43425-4_13
https://doi.org/10.1007/978-3-030-20652-9_4
https://doi.org/10.1007/978-3-319-91268-4_19
https://doi.org/10.1007/978-3-319-91268-4_19
https://git.lacl.fr/barbot/wordgen
https://doi.org/10.1007/978-3-319-75632-5_5

438 B. Barbot et al.

12. Blum, C., Roli, A.: Metaheuristics in combinatorial optimization: overview and
conceptual comparison. ACM Comput. Surv. 35(3), 268–308 (2003)

13. Brigati, S., Francesconi, F., Malcovati, P., Tonietto, D., Baschirotto, A., Maloberti,
F.: Modeling sigma-delta modulator non-idealities in simulink. In: ISCAS 1999.
Proceedings of the 1999 IEEE International Symposium on Circuits and Systems
VLSI, May 1999, vol. 2, pp. 384–387 (1999)

14. Clarke, E.M., Donzé, A., Legay, A.: On simulation-based probabilistic model check-
ing of mixed-analog circuits. Formal Method Syst. Des. 36(2), 97–113 (2010)

15. Dang, T., Donzé, A., Maler, O.: Verification of analog and mixed-signal circuits
using hybrid system techniques. In: Hu, A.J., Martin, A.K. (eds.) FMCAD 2004.
LNCS, vol. 3312, pp. 21–36. Springer, Heidelberg (2004). https://doi.org/10.1007/
978-3-540-30494-4 3

16. Dang, T., Nahhal, T.: Coverage-guided test generation for continuous and hybrid
systems. Formal Method Syst. Des. 34(2), 183–213 (2009)

17. Deshmukh, J., Jin, X., Kapinski, J., Maler, O.: Stochastic local search for falsifi-
cation of hybrid systems. In: Finkbeiner, B., Pu, G., Zhang, L. (eds.) ATVA 2015.
LNCS, vol. 9364, pp. 500–517. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-24953-7 35

18. Donzé, A.: Breach, a toolbox for verification and parameter synthesis of hybrid
systems. In: CAV, pp. 167–170 (2010)

19. Donzé, A.: Breach, a toolbox for verification and parameter synthesis of hybrid
systems. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp.
167–170. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-
6 17

20. Donzé, A., Maler, O.: Robust satisfaction of temporal logic over real-valued signals.
In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp.
92–106. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15297-9 9

21. Dreo, J., Siarry, P., Petrowski, A., Taillard, E.: Metaheuristics for Hard Optimiza-
tion: Methods and Case Studies. Springer, Berlin (2006). https://doi.org/10.1007/
3-540-30966-7

22. Dreossi, T., Dang, T., Donzé, A., Kapinski, J., Jin, X., Deshmukh, J.V.: Effi-
cient guiding strategies for testing of temporal properties of hybrid systems. In:
Havelund, K., Holzmann, G., Joshi, R. (eds.) NFM 2015. LNCS, vol. 9058, pp.
127–142. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-17524-9 10

23. Esposito, J.M., Kim, J., Kumar, V.: Adaptive RRTs for validating hybrid robotic
control systems. In: WAFR (2004)

24. Fainekos, G.E., Pappas, G.J.: Robustness of temporal logic specifications. In:
Havelund, K., Núñez, M., Roşu, G., Wolff, B. (eds.) FATES/RV -2006. LNCS,
vol. 4262, pp. 178–192. Springer, Heidelberg (2006). https://doi.org/10.1007/
11940197 12

25. Ferrère, T., Nickovic, D., Donzé, A., Ito, H., Kapinski, J.: Interface-aware signal
temporal logic. In: HSCC, pp. 57–66. ACM (2019)

26. Floudas, C.A., Pardalos, P.M. (eds.): Encyclopedia of Optimization, 2nd edn.
Springer, New York (2009)

27. Gabbay, D.M., Thagard, P., Woods, J., Butterfield, J., Earman, J.: Philosophy
of Physics: Handbook of the Philosophy of Science. Elsevier Science, Amsterdam
(2006)

28. Hansen, N.: The CMA evolution strategy: a comparing review. In: Lozano, J.A.,
Larranaga, P., Inza, I., Bengoetxea, E. (eds.) Towards a New Evolutionary Com-
putation. Studies in Fuzziness and Soft Computing, vol. 192, pp. 75–102. Springer,
Heidelberg (2006). https://doi.org/10.1007/3-540-32494-1 4

https://doi.org/10.1007/978-3-540-30494-4_3
https://doi.org/10.1007/978-3-540-30494-4_3
https://doi.org/10.1007/978-3-319-24953-7_35
https://doi.org/10.1007/978-3-319-24953-7_35
https://doi.org/10.1007/978-3-642-14295-6_17
https://doi.org/10.1007/978-3-642-14295-6_17
https://doi.org/10.1007/978-3-642-15297-9_9
https://doi.org/10.1007/3-540-30966-7
https://doi.org/10.1007/3-540-30966-7
https://doi.org/10.1007/978-3-319-17524-9_10
https://doi.org/10.1007/11940197_12
https://doi.org/10.1007/11940197_12
https://doi.org/10.1007/3-540-32494-1_4

Falsification of Cyber-Physical Systems 439

29. Heinrich, S.: Some open problems concerning the star-discrepancy. J. Complex.
19(3), 416–419 (2003). Oberwolfach Special Issue

30. Hoxha, B., Abbas, H., Fainekos, G.E.: Benchmarks for temporal logic requirements
for automotive systems. In: 1st and 2nd International Workshop on Applied veRi-
fication for Continuous and Hybrid Systems, ARCH@CPSWeek 2014, Berlin, Ger-
many, 14 April 2014/ARCH@CPSWeek 2015, Seattle, WA, USA, 13 April 2015,
pp. 25–30 (2014)

31. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing.
Science 220(4598), 671–680 (1983)

32. Koymans, R.: Specifying real-time properties with metric temporal logic. Real
Time Syst. 2(4), 255–299 (1990)

33. Kuřátko, J., Ratschan, S.: Combined global and local search for the falsification of
hybrid systems. In: Legay, A., Bozga, M. (eds.) FORMATS 2014. LNCS, vol. 8711,
pp. 146–160. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10512-
3 11

34. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Proceedings of CAV 2011 (2011)

35. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In:
FORMATS/FTRTFT, pp. 152–166 (2004)

36. Nelder, J.A., Mead, R.: A simplex method for function minimization. Comput. J.
7, 308–313 (1965)

37. Nghiem, T., Sankaranarayanan, S., Fainekos, G., Ivanciec, F., Gupta, A., Pappas,
G.J.: Monte-Carlo techniques for falsification of temporal properties of non-linear
hybrid systems. In: HSCC 2010 - Proceedings of the 13th ACM International Con-
ference on Hybrid Systems: Computation and Control, pp. 211–220 (2010)

38. Rios, L.M., Sahinidis, N.V.: Derivative-free optimization: a review of algorithms
and comparison of software implementations. J. Global Optim. 56(3), 1247–1293
(2013)

39. Silvetti, S., Policriti, A., Bortolussi, L.: An active learning approach to the fal-
sification of black box cyber-physical systems. In: Polikarpova, N., Schneider, S.
(eds.) IFM 2017. LNCS, vol. 10510, pp. 3–17. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-66845-1 1

40. Sim, G., Ahn, S., Park, I., Youn, J., Yoo, S., Min, k.: Automatic longitudinal
regenerative control of EVS based on a driver characteristics-oriented deceleration
model. World Electr. Veh. J. 10, 58 (2019)

41. Skruch, P.: A coverage metric to evaluate tests for continuous-time dynamic sys-
tems. Central Eur. J. Eng. 1(2), 174–180 (2011)

42. Stein, W.A., et al.: Sage Mathematics Software (Version 6.9). The Sage Develop-
ment Team (2015). http://www.sagemath.org

https://doi.org/10.1007/978-3-319-10512-3_11
https://doi.org/10.1007/978-3-319-10512-3_11
https://doi.org/10.1007/978-3-319-66845-1_1
https://doi.org/10.1007/978-3-319-66845-1_1
http://www.sagemath.org

Correction to: NASA Formal Methods

Ritchie Lee , Susmit Jha , Anastasia Mavridou ,
and Dimitra Giannakopoulou

Correction to:
R. Lee et al. (Eds.): NASA Formal Methods, LNCS 12229,
https://doi.org/10.1007/978-3-030-55754-6

The original versions of this book and Chapter 14 were revised. The following was
corrected:

Dimitra Giannakopoulou, the General Chair of the NFM 2020 conference, was inad-
vertently forgotten and, therefore, added as a volume editor.

Chapter 14 was retrospectively made available open access under a CC BY 4.0 license
at link.springer.com.

The updated version of the book can be found at
https://doi.org/10.1007/978-3-030-55754-6_14
https://doi.org/10.1007/978-3-030-55754-6

© The Author(s) 2020
R. Lee et al. (Eds.): NFM 2020, LNCS 12229, p. C1, 2020.
https://doi.org/10.1007/978-3-030-55754-6_26

https://orcid.org/0000-0002-8881-4863
https://orcid.org/0000-0001-5983-9095
https://orcid.org/0000-0002-3943-9753
https://doi.org/10.1007/978-3-030-55754-6
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-55754-6_26&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-55754-6_26&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-55754-6_26&domain=pdf
https://doi.org/10.1007/978-3-030-55754-6_14
https://doi.org/10.1007/978-3-030-55754-6
https://doi.org/10.1007/978-3-030-55754-6_26

Author Index

Ábrahám, Erika 381
Afzal, Zahra Rahimi 329
Aichernig, Bernhard K. 3
Amundson, Isaac 361
An, Xiaoxin 207
Arcaini, Paolo 401
Ayers, Edward W. 63

Baarir, Souheib 222
Barbot, Benoît 420
Barrett, Clark 85
Basset, Nicolas 420
Becker, Bernd 115
Berger, Philipp 133
Boggs, Christopher 361
Bonakdarpour, Borzoo 311
Bottesch, Ralph 233
Boulanger, Frédéric 187
Brim, Luboš 41
Byun, Taejoon 361

Cardoso, Rafael C. 353
Cofer, Darren 361

D’Argenio, Pedro R. 291
D’Souza, Deepak 329
D’Souza, Meenakshi 329
Dang, Thao 420
Donzé, Alexandre 420

Eiras, Francisco 63
Ezudheen, P. 329

Farrell, Marie 353
Feldsher, Alexander 85
Ferrando, Angelo 353
Fisher, Michael 353
Fraire, Juan A. 291

Geldenhuys, Jaco 251
Gilham, Limei 361

Gokulanathan, Sumathi 85
Grosu, Radu 97
Gunter, Elsa L. 267

Hartmanns, Arnd 291
Haslbeck, Max W. 233
Hasuo, Ichiro 401
Hawasly, Majd 63
Huisman, Marieke 170
Hüls, Jannik 369

Jansen, Nils 97, 115
Joosten, Sebastiaan 170

Kapinski, James 420
Katoen, Joost-Pieter 133
Katz, Guy 85
Kordon, Fabrice 222
Krause, Maurice 381

Le Frioux, Ludovic 222
Li, Liyi 267
Liu, Si 22
Luckcuck, Matt 353

Malca, Adi 85
Mertová, Lukrécia 41
Meseguer, José 22

Narizzano, Massimo 153
Niehaus, Henner 369

Ölveczky, Peter Csaba 22
Oortwijn, Wytse 170

Paoletti, Nicola 97
Passi, Arjun 361
Pferscher, Andrea 3
Phan, Dung T. 97
Pilch, Carina 381

Prabhakar, Pavithra 311, 329
Pulina, Luca 153

Ravindran, Binoy 207
Rayadurgam, Sanjai 361
Remke, Anne 369, 381
Reynaud, Alban 233

Safari, Mohsen 170
Šafránek, David 41
Sánchez, César 311
Sandur, Atul 22
Sattigeri, Ramachandra 361
Smith, Eric 361
Smolka, Scott A. 97
Sopena, Julien 222
Stoller, Scott D. 97

Tacchella, Armando 153
Taha, Safouan 187

Tahat, Amer 207
Taljaard, Jan 251
Tappler, Martin 3
Thiemann, René 233
Todorov, Vassil 187
Troják, Matej 41

Vallade, Vincent 222
Visser, Willem 251
Vuotto, Simone 153

Wang, Qi 22
Westhofen, Lukas 133
Whiteside, Iain 63
Wimmer, Ralf 115
Winterer, Leonore 115

Yamaguchi, Tomoya 420

Zhang, Zhenya 401

442 Author Index

	Preface
	Organization
	Abstracts of Invited Talks
	Automated Reasoning at Amazon
	A Formal Verifier for the Libra Blockchain Move Language
	Improving Design Assurance Through Accident/Incident Lessons Learned
	Verified Artificial Intelligence and Autonomy
	Operable NASA Robots on Mars and Beyond
	Evolving Airspace Regulations and Systems to Enable Large Scale, Highly Automated Operations in the Stratosphere
	Contents
	I Learning and Formal Synthesis
	From Passive to Active: Learning Timed Automata Efficiently
	1 Introduction
	2 Preliminaries
	2.1 Timed Automata
	2.2 Genetic Programming
	2.3 Genetic Programming for Timed Automata
	2.4 Active Automata Learning

	3 Active Learning via Genetic Programming
	3.1 Basic Procedure
	3.2 Timed Trace Selection for Learning
	3.3 Timed Trace Generation

	4 Implementation
	5 Case Studies
	6 Conclusion
	References

	Generating Correct-by-Construction Distributed Implementations from Formal Maude Designs
	1 Introduction
	2 Preliminaries
	3 The D Transformation
	3.1 The MMDdi Transformation
	3.2 Distributed Initial States
	3.3 Communicating with Foreign Objects
	3.4 Deployment

	4 Correctness Preservation
	4.1 The Model D0(M, init, di)
	4.2 D0(M, init, di) and M are Stuttering Bisimilar

	5 Prototype and Experiments
	5.1 Experimental Setup
	5.2 Case Study I: Lock-Based Distributed Transactions
	5.3 Case Study II: The ROLA Transaction System

	6 Related Work
	7 Conclusions
	References

	Parameter Synthesis and Robustness Analysis of Rule-Based Models
	1 Introduction
	1.1 Related Work

	2 Preliminaries
	3 Quantitative Biochemical Space Language
	3.1 Example
	3.2 Semantics
	3.3 Example (Continued)

	4 Model Analysis
	4.1 Parameter Synthesis
	4.2 Robustness Analysis

	5 Case Study
	6 Conclusions
	A Tumour Growth
	References

	I Formal Methods for DNNs
	PaRoT: A Practical Framework for Robust Deep Neural Network Training
	1 Introduction
	2 Background
	2.1 Abstract Interpretation
	2.2 Abstract Domains for DNNs
	2.3 Hybrid Zonotope Transformers for DNNs
	2.4 Robust Training

	3 PaRoT System Description
	3.1 Automatic Transformer Generation
	3.2 Robustness Properties
	3.3 Robust Training Using PaRoT

	4 Experiments
	4.1 DiffAI Comparison
	4.2 Re-training Models
	4.3 Custom Robustness Properties: Case Study

	5 Related Work
	6 Conclusion and Future Work
	References

	Simplifying Neural Networks Using Formal Verification
	1 Introduction
	2 Background: DNNs, Verification and Simplification
	3 Simplification Using Verification
	4 Evaluation
	5 Conclusion
	References

	I High Assurance Systems
	Neural Simplex Architecture
	1 Introduction
	2 Background
	3 Neural Simplex Architecture
	4 Safe Reinforcement Learning with Penalized Unrecoverable Continuous Actions
	5 Case Studies
	5.1 Rover Navigation
	5.2 Artificial Pancreas

	6 Related Work
	7 Conclusions
	References

	Strengthening Deterministic Policies for POMDPs
	1 Introduction
	2 Preliminaries
	3 Solving POMDPs as MILPs
	3.1 Maximum Reachability Probabilities
	3.2 Maximum Expected Discounted Rewards
	3.3 Randomization

	4 Splitting Observations and States
	4.1 Observation Splitting
	4.2 State Splitting

	5 Implementation
	6 Experiments
	7 Conclusion
	References

	Benchmarking Software Model Checkers on Automotive Code
	1 Introduction
	2 Preliminaries
	2.1 The Automotive Benchmarks
	2.2 The Software Model Checkers
	2.3 A Simple, Tailored Variant of CBMC
	2.4 Experimental Setup

	3 Comparing the Open-Source Verifiers
	4 Benchmarking Against BTC EmbeddedValidator
	4.1 BTC EmbeddedValidator Verification Results
	4.2 Scores Assuming Correct Results by BTC EmbeddedValidator

	5 Encountered Issues
	6 Epilogue
	References

	I Requirement Specification and Testing
	Automated Requirements-Based Testing of Black-Box Reactive Systems
	1 Introduction
	2 Preliminaries and Related Work
	2.1 Non Deterministic Büchi Automa
	2.2 LTL Syntax and Semantics
	2.3 Monitor
	2.4 Related Work

	3 Automatic Test Case Generation from LTL Specification
	3.1 Requirements and Automata Processing
	3.2 Test Oracle
	3.3 Input Generator

	4 Experimental Analysis
	4.1 Syntcomp Benchmarks
	4.2 Adaptive Cruise Control
	4.3 Robotic Manipulator

	5 Conclusions
	References

	Formal Verification of Parallel Prefix Sum
	1 Introduction
	2 Background
	2.1 VerCors
	2.2 Prefix Sum Algorithms

	3 Verification of Blelloch's Algorithm
	3.1 Data Race-Freedom
	3.2 Functional Correctness

	4 Verification of Kogge-Stone's Algorithm
	4.1 Data Race-Freedom
	4.2 Functional Correctness

	5 Related Work
	6 Conclusion
	References

	Specification Quality Metrics Based on Mutation and Inductive Incremental Model Checking
	1 Introduction
	2 Preliminaries
	2.1 The JKind Model Checker
	2.2 IVC Formalizations

	3 Model Coverage Techniques
	3.1 Simple Running Example
	3.2 Slicing
	3.3 Inductive Validity Cores (IVCs)
	3.4 A Simple Mutator for Must-Cov: Equation Remover
	3.5 Using Other Mutators for Deep Coverage

	4 From Mutation Testing to Mutation Proof
	4.1 Mutators
	4.2 Our Contribution: Mutation Proof Algorithm

	5 Implementation and Initial Results
	5.1 Implementation
	5.2 Optimizations
	5.3 Initial Results
	5.4 Industrial Use Case Results

	6 Conclusions and Future Work
	References

	I Validation and Solvers
	A Validation Methodology for OCaml-to-PVS Translation
	1 Introduction
	2 OPEV: OCaml-to-PVS Equivalence Validation
	2.1 OPEV Workflow
	2.2 Intermediate Type Classification
	2.3 Test Generation
	2.4 Proof Automation

	3 Case Studies
	3.1 Manually Implemented OCaml-to-PVS Translation
	3.2 Sail-to-PVS Parser

	4 Past and Related Work
	5 Conclusions
	References

	On the Usefulness of Clause Strengthening in Parallel SAT Solving
	1 Introduction
	2 Background
	3 Strengthening Algorithm
	4 Implementation
	5 Empirical Study
	6 Conclusion
	References

	I Solvers and Program Analysis
	Verifying a Solver for Linear Mixed Integer Arithmetic in Isabelle/HOL
	1 Introduction
	2 Preliminaries
	2.1 Linear Programming
	2.2 Isabelle

	3 Mixed-Integer Linear Problems
	3.1 The Main Formalized Theorems
	3.2 Additional Formalized Theorems

	4 A Verified Branch-and-Bound Algorithm
	4.1 The Branch-and-Bound Algorithm
	4.2 Using the Incremental Version of Simplex

	5 Benchmarking
	6 Conclusion and Future Work
	References

	Constraint Caching Revisited
	1 Introduction
	2 Background
	2.1 Concolic Execution
	2.2 Green
	2.3 Grulia

	3 Evaluation
	3.1 Experimental Setting
	3.2 Symbolic Execution Experiments
	3.3 Concolic Execution Experiments

	4 Related Work
	5 Conclusion and Future Work
	References

	Per-Location Simulation
	1 Introduction
	2 The Per-Location Simulation Definition
	2.1 PLS Core
	2.2 Example Language Syntax
	2.3 Full PLS

	3 Program Meaning Preservation
	3.1 Morpheus and Example Optimization Specifications
	3.2 Example Language Semantics Under a Weak Memory Model
	3.3 The PLS Proof over Morpheus Optimizations

	4 Related Work
	5 Conclusion and Future Work
	References

	I Verification and Timed Systems
	Sampling Distributed Schedulers for Resilient Space Communication
	1 Introduction
	2 Scheduling in Markov Decision Processes
	3 Distributed Scheduling
	3.1 Simple Distributed Schedulers
	3.2 Good-for-Distribution Models

	4 Lightweight Distributed Scheduler Sampling
	5 Scheduling Satellite Communication
	5.1 Modelling Satellite DTN
	5.2 The Walker Constellation
	5.3 Experiments

	6 Conclusion
	References

	Model Checking Timed Hyperproperties in Discrete-Time Systems
	1 Introduction
	2 Preliminaries
	2.1 HyperLTL
	2.2 Kripke Structures

	3 The Temporal Logic HyperMTL
	3.1 Syntax
	3.2 Semantics
	3.3 Framing

	4 HyperMTL in Action
	5 Model Checking
	6 Related Work
	7 Conclusion and Future Work
	References

	Verifying Band Convergence for Sampled Control Systems
	1 Introduction
	2 Models of Control Systems and Band Convergence Property
	2.1 Linear Dynamical System
	2.2 Sampled-Data Control System
	2.3 Sampled-Data PID Control System
	2.4 Discrete-Time Linear System
	2.5 Band Convergence Property
	2.6 Abstract System
	2.7 Computation of the Abstract System

	3 Example: Cruise Control System
	4 Box Invariants
	4.1 Computation of an Adequate Box Invariant

	5 Verification of Band Convergence Using Box Invariants
	6 Implementation and Results
	6.1 Benchmarks
	6.2 Experimental Results

	7 Related Work
	8 Conclusion
	References

	I Autonomy and Other Applications
	Heterogeneous Verification of an Autonomous Curiosity Rover
	1 Introduction
	2 Mission Description, Simulation and Autonomy
	3 Verification
	4 Discussion
	References

	Run-Time Assurance for Learning-Enabled Systems
	1 Introduction
	2 Demonstration
	3 Approach
	3.1 Architecture
	3.2 Run-Time Monitors
	3.3 Safety Components

	4 Results
	5 Conclusion
	References

	hpnmg: A C++ Tool for Model Checking Hybrid Petri Nets with General Transitions
	1 Introduction
	2 Architecture and Implementation
	3 Experimental Results
	4 Conclusion
	References

	I Hybrid and Cyber-Physical Systems
	A Transformation of Hybrid Petri Nets with Stochastic Firings into a Subclass of Stochastic Hybrid Automata
	1 Introduction
	2 Hybrid Petri Nets with General Transitions
	2.1 Hybrid Petri Nets with General Transitions
	2.2 The Parametric Location Tree

	3 Related Hybrid Automata Formalisms
	4 Singular Automaton Semantics for HPnGs
	5 Transformation of HPnGs into SHA
	6 Feasibility Study
	7 Conclusion
	References

	Constraining Counterexamples in Hybrid System Falsification: Penalty-Based Approaches
	1 Introduction
	2 Background
	2.1 Robust Semantics for STL
	2.2 Hill Climbing-Guided Falsification

	3 Penalty-Based Approaches for Handling Input Constraints
	3.1 Constraint Embedding Approach
	3.2 Lexicographic Method Approach
	3.3 Partially Simulation Free Lexicographic Method Approach

	4 Experimental Evaluation
	4.1 Evaluation

	5 Related Work
	6 Conclusion and Future Work
	References

	Falsification of Cyber-Physical Systems with Constrained Signal Spaces
	1 Introduction
	2 Requirement Falsification Problem
	3 Preliminaries on Timed Automata and Timed Word Generation
	3.1 Timed Automata
	3.2 Transformation from the Unit Box to a Timed Polytope

	4 Encoding Constrained Signal Space in the Optimization Problem
	5 Guided Combination of Metaheuristics
	5.1 Signal Space Coverage Measure
	5.2 Algorithm for Guided Combination of Metaheuristics

	6 Experimentation
	7 Conclusion
	8 Appendix – Timed Language Volume and Uniform Generation of Timed Words
	References

	Correction to: NASA Formal Methods
	Correction to: R. Lee et al. (Eds.): NASA Formal Methods, LNCS 12229, https://doi.org/10.1007/978-3-030-55754-6

	Author Index

