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Combining Domain-Independent
Methods and Domain-Specific
Knowledge to Achieve Effective Risk
and Uncertainty Reduction
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Abstract The common domain-specific approach to reliability improvement and
risk reduction created the false perception that effective risk reduction can be
successfully delivered solely by using methods offered by the specific domain.
In standard textbooks on mechanical engineering and design of machine compo-
nents, for example, there is no mention of general methods for improving relia-
bility and reducing the risk of failure of engineering products. Accordingly, the
chapter demonstrates the benefits from combining domain-independent methods
and domain-specific knowledge for achieving effective risk and uncertainty reduc-
tion. In this respect, the chapter focuses on the domain-independent methods for
reducing risk based on segmentation and algebraic inequalities and demonstrates
that combining these methods with domain-specific knowledge helps to identify
new simple and effective solutions in such mature fields like strength of compo-
nents, kinematic analysis of mechanisms and electrical engineering. The meaningful
interpretation of algebraic inequalities led to the discovery of new physical properties
of electrical circuits and mechanical assemblies. These properties have never been
suggested in standard textbooks and research literature covering the mature fields of
electrical and mechanical engineering which demonstrates that the lack of knowl-
edge of domain-independent methods for reducing risk and uncertainty made these
properties invisible to domain experts.
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30.1 Introduction

While reliability and risk assessment are truly domain-independent areas, this cannot
be stated about the equally important areas of reliability improvement and risk
reduction. For decades, the reliability and risk science failed to appreciate and
emphasise that reliability improvement, risk reduction and uncertainty reduction
are underpinned by general principles that work in many unrelated domains.

As a consequence, methods for measuring and assessing reliability, risk and
uncertainty were developed, not domain-independent methods for improving reli-
ability, reducing risk and uncertainty which could provide direct input to the
design process. Indeed, in standard textbooks on mechanical engineering and
design of machine components [1–10], for example, there is no mention of generic
(domain-independent) methods for reliability improvement and risk and uncertainty
reduction.

It needs to be pointed out that even the available methods for measuring and
assessing reliability and risk cannot always be fully implemented in the design for
the obvious reason that for new products and processes reliability data are simply
unavailable.

In the rare cases where reliability data for the components and parts building the
systems are available, they are relevant for a particular environment and duty cycle
and their mechanical application to another environment and duty cycle, as experi-
ence has shown, is of highly questionable value. The lack of predictive capability
of the existing reliability tools caused many engineers to lose faith in the tools and
discard them as not adding real value to their work.

Why is engineering design so slow in exploiting the achievements of the relia-
bility and risk science to improve reliability and reduce risk? This is certainly not
due to the complexity of the reliability improvement and risk reduction methods.
In this respect, the contrast with the complex generic mathematical methods for
stress analysis, kinematic and dynamic analysis of solid bodies and fluids is striking.
Thesemathematical modellingmethods are penetrating all aspects of the engineering
design.

The problem is that the current approach to reliability improvement and risk
reduction almost solely relies on knowledge from a specific domain and is conducted
exclusively by experts in that domain. This creates the incorrect perception that
effective risk reduction can be delivered solely by using methods offered by the
specific domain, without resorting to a general risk reductionmethods and principles.

This incorrect perception resulted in ineffective reliability improvement and risk
reduction across the entire industry, the loss of valuable opportunities for reducing
risk and ‘repeated reinvention of the wheel’. Current technology changes so fast
that the domain-specific knowledge related to reliability improvement and risk
reduction is outdated almost as soon as it is generated. In contrast, the domain-
independent methods for reliability improvement, risk and uncertainty reduction are
higher order methods that permit application in new, constantly changing situations
and circumstances.
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The development of the domain-specific, physics-of-failure approach for reli-
ability improvement [11] has been prompted by the deficiencies of the data-
driven approach. Although the physics-of-failure approach was very successful
in addressing the underlying causes of failure and eliminating failure modes, it
contributed to the widespread view among many reliability practitioners that only
physics-of-failure models can deliver real reliability improvement.

It is necessary to point out that building accurate physics-of-failure models of
the time to failure is not always possible because of the complexity of the phys-
ical mechanisms underlying the failure modes, the complex nature of the environ-
ment and the operational stresses. Physics-of-failure modelling certainly helps, for
example, to increase the strength of a component by conducting research on the
link between microstructure and mechanical properties of the material. However,
this approach requires arduous and time-consuming research, special equipment
and human resource. More importantly, physics-of-failure models are not capable
of capturing principles and invariants underlying reliability improvement and risk
reduction in unrelated domains. Despite their success and popularity, physics-of-
failure models cannot transcend the narrow domains they serve and cannot be used
for improving reliability and reducing risk in unrelated domains.

A central theme in the new domain-independent approach for reliability improve-
ment and risk reduction introduced in [12] is the concept that risk reduction is under-
lined by common domain-independent principles which, combined with knowledge
from the specific domain, are capable of generating effective risk-reducing solutions.

The domain-independent methods do not rely on the availability of past failure
data or detailed knowledge of the underlying mechanisms of failure. As a result,
they are particularly well suited for developing new designs, with unknown failure
mechanisms and failure history. In many cases, these methods reduce risk at no extra
cost or at a relatively small cost.

Establishing universally accepted theoretical principles for risk assessment
requires a common definition of risk, valid in unrelated domains of human activity
[13]. Similarly, establishing universally accepted theoretical principles for risk and
uncertainty reduction goes through formulating domain-independent principles for
reducing risk and uncertainty, valid in unrelated domains of human activity. Estab-
lishing the risk research as a mainstream science requires solid and universally
accepted theoretical principles for the two fundamental components of risk manage-
ment: risk assessment and risk and uncertainty reduction. The domain-independent
principles and methods for risk and uncertainty reduction:

• Add value to decisions related to reliability improvement, risk and uncertainty
reduction.

• Provide key input to the design process by improving the reliability of the designed
product rather than measuring its performance only.

• Provide effective risk and uncertainty reduction across unrelated domains of
human activity. Avoid loss of opportunities for reducing risk and ‘reinvention
of the wheel’.
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• Deeply impact the current understanding of available methods and techniques for
risk and uncertainty reduction.

It is important to point out that the domain-independent methods for reliability
improvement and risk and uncertainty reduction are not a substitute for the domain-
specific approach for risk reduction. Combined with knowledge from the specific
domain, the domain-independent methods and principles help to obtain superior
solutions. Accordingly, this chapter demonstrates that combining domain-specific
knowledge fromdifferent areas of engineeringwith the domain-independentmethods
of the algebraic inequalities and segmentation leads to reliability improvement and
uncertainty reduction.

30.2 Method of Segmentation to Improve Reliability
and Develop Light-Weight Design

The underlying idea of the method of segmentation is to prevent failure modes and
reduce the vulnerability to a single failure, by dividing an entity into a number of
distinct parts. A large number of applications of the domain-independent method of
segmentation have already been presented in [12].

There are numerous cases where design-engineers have control over the points
of application of external loads. For the simply supported beam with length a in
Fig. 30.1a, the concentrated load F is applied in the middle and results in a bending
momentM(x). The maximum bending moment M1,max is attained at x = a/2 and is
equal to M1,max = Fa/4 (Fig. 30.1b). Segmenting the concentrated load F into two
loads with magnitude F/2 (Fig. 30.1c) reduces the maximum bending moment three
times, from M1,max = Fa/4 to M2,max = Fa/12 (Fig. 30.1d). The reduction of the
bending moment reduces the bending stress in the beam and increases its resistance
to overstress failure.

Fig. 30.1 Reducing the risk of overstress failure of a beam by segmenting the external concentrated
load F
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Fig. 30.2 Reducing the risk of overstress failure of a shaft by segmenting the external concentrated
torque T

In some design applications (e.g. in motorsport design), the focus is often on
obtaining a light-weight design, not on increasing the resistance to overstress failure.
A light-weight design translates directly into enhanced performance, reduced fuel
consumption and reduced emissions. As a result of the segmented external load and
the reduced tensile stresses from bending in Fig. 30.1, the cross section of the loaded
beam can be reduced which results in a light-weight design.

Indeed, the bending stress σb in a beamwith a circular cross section with diameter
d is given by the well-known formula [14]: σb = 32M/(πd3) where M is the
bending moment acting in the particular section. Reducing the bending moment 3
times by preserving the bending stress σb, results in a significant reduction of the
cross-sectional diameter of the beam. From σb = 32M/(πd3) = 32(M/3)/(πd3

1 ),
the diameter of the light-weight design is evaluated to be d1 = 0.693 d, which, for a
uniform cross section, results in volume of the material per unit length of the beam
equal to π(0.693d)2/4 = 0.48× πd2/4. As a result, the light-weight design carries
the same bending stress σb with only 48% of the material of the original beam. The
weight saving from segmenting the loading force is impressive.

The load segmentation also improves reliability and results in light-weight designs
in the case of a concentrated external torque (Fig. 30.2a).

Segmenting the concentrated torque T into two torques of magnitude T /2 reduces
themaximum shear stress from τmax = 16T/(πd3) along the lengthAB in Fig. 30.2a,
to τmax,1 = 8T/(πd3) along the section CB in Fig. 30.2c. Similarly, preserving the
same shear stress τmax along the sections AC and CB yields the light-weight design
in Fig. 30.2e with reduced cross section along the section CB.

These simple solutions for reducing the stresses in loaded structures, based on
segmentation of external concentrated loads, have never been suggested in stan-
dard textbooks in the mature fields of stress analysis and strength of components
[1, 2, 5, 14–16].

A primary objective of the topology optimisation of structural design is removing
and redistributing a material in specified design spaces, for specified loads,
constraints and boundary conditions so that a light-weight design is attained while
preserving the required functionality. No solutions based on a segmentation of
external loads have been suggested in the literature related to topological optimi-
sation [17] despite that segmentation of external loads often leads to light-weight
designs.
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This shows that the lack of knowledge of the domain-independent method of
segmentation made it invisible to the domain experts that segmentation of external
loads can be used to reduce significantly the internal stresses in loaded structures
and develop light-weight designs.

30.2.1 Improvement of Reliability of Computations

The next application of chain-rule segmentation to reduce the risk of computational
errors is related to differentiating a very complex function f (t) with respect to the
parameter t.

The complex function f (t) is first presented as a composition of nested continuous
functions

f (t) = f (ϕ1(ϕ2(. . . ϕn(t))))

where f (ϕ1), ϕ1(ϕ2), ϕ2(ϕ3), . . . , ϕn(t) are simpler differentiable functions.
Consequently, the derivative d f (t)/dt can be found by applying the chain rule

for differentiation:

d f (t)

dt
= d f

dϕ1
× dϕ1

dϕ2
× . . . × dϕn

dt

The reduction of the risk of computational errors comes from the circumstance
that each of the derivatives, d f/dϕ1, dϕ1/dϕ2, . . . , dϕn/dt , is much easier to evaluate
than the derivative d f (t)/dt .

Consider an example from kinematics analysis of mechanisms. The mechanism
whose kinematics is to be analysed incorporates three sliders B, D and E (Fig. 30.3).
Sliders B andDmove along the x-axis while slider E moves along the axis ET, which

Fig. 30.3 A mechanism whose kinematics is analysed
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is perpendicular to the x-axis and at a distance d from the origin O of the coordinate
system Oxy.

The crank OA rotates in the clockwise direction, with a uniform angular velocity
of ω = 1.5 rad/s and subtends an angle ϕ with the horizontal x-axis which varies
within the interval [0, 2π ]. Note that the angle CDE is not fixed and varies as the
links CD and ED rotate around the pin joint D. The values of the parameters fully
specifying the mechanism are as follows: OA = r = 0.35m; AB = a = 0.65m;
AC = b = 0.50m; CD = m = 0.80m; DE = t = 0.75m and d = 1.3m.

The point of interest is the velocity of slider E.
Denoting xD = OD yE = T E and applying trigonometry yields

sinψ = r sin ϕ/a (30.1)

cosψ =
√
1 − sin2 ψ (30.2)

xD = b cosψ − r cosϕ +
√
m2 − (a + b)2 sin2 ψ (30.3)

yE =
√
t2 − (d − xD)2 (30.4)

Substituting expressions (30.1) and (30.2) in (30.3), followed by substituting
expression (30.3) in (30.4) expresses yE as a function of the crank angle ϕ and
by using the relationship ϕ = ωt , yE can also be expressed as a function of the
time t. Once yE has been presented as a function of time, it can be differentiated to
obtain the velocity vE of slider E: vE = dyE (t)/dt . However, this approach requires
differentiating a very complex expression. During this process, the likelihood of
making an error is very high. The risk of computational error can be reduced greatly
if the method of segmentation is applied, by using the chain rule for differentiation.
As a result, the initial problem of determining vE = dyE (t)/dt is replaced by the
simpler problem of determining the three derivatives:

vE = [dyE/dxD] × [dxD/dϕ] × [dϕ/dt] (30.5)

Indeed,

dyE
dxD

= d − xD√
t2 − (d − xD)2

(30.6)

dxD
dϕ

= − br2 sin ϕ cosϕ

a2
√
1 − (r/a)2 sin2 ϕ

+ r sin ϕ

− (a + b)2r2 sin ϕ cosϕ

a2
√
m2 − (a + b)2(r/a)2 sin2 ϕ

(30.7)
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Fig. 30.4 Velocity vE
(Continuous line) and
displacement yE (Dashed
line) of point E on slider E

dϕ/dt = ω (30.8)

The velocity and displacement of slider E, as a function of the crank angle ϕ

in radians, are shown in Fig. 30.4 with a continuous and dashed line, respectively.
To test the chain-rule segmentation method, the velocity of slider E has also been
calculated by using numerical differentiation.

vE,i ≈ yE,i − yE,i−1

h
× ω (30.9)

where h = 0.001 rad is a small step of the crank angle, yE,i and yE,i−1 are the
displacements of point E corresponding to crank angles ϕi and ϕi−1, i = 1, . . . , n.

The velocity dependence obtained from the numerical differentiation and the
velocity dependence obtained from the chain-rule segmentation coincide.

In the literature related to kinematic analysis of mechanisms [18–20], no solu-
tions based on segmentation through the chain rule have been suggested, despite
that segmentation based on the chain rule clearly leads to a significantly reduced
likelihood of errors. The lack of knowledge of the domain-independent method of
segmentation made it invisible to domain experts in the mature field of kinematic
analysis of mechanisms that chain-rule segmentation yields a significantly reduced
likelihood of computational errors.
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30.3 Reducing Risk and Uncertainty by Using Algebraic
Inequalities

In textbooks on reliability engineering [21–25] and in papers related to risk, reliability
and uncertainty, there is a lack of discussion related to reducing risk and uncertainty
by using algebraic inequalities. This is a surprising omission considering the power
of algebraic inequalities in reducing risk and uncertainty and the existence of a
significant number of publications covering the theory of algebraic inequalities [26–
32]. It was only recently that some applications of the domain-independent method
of algebraic inequalities for reducing risk and uncertainty have been presented in
[12, 33].

A formidable advantage of the algebraic inequalities is their capacity to reduce
aleatory and epistemic uncertainty and produce tight upper and lower bounds related
to uncertain reliability-critical design parameters such as material properties, dimen-
sions, loads and component reliabilities.Algebraic inequalities are capable of ranking
systems, processes and decisions in terms of reliability in the absence of any knowl-
edge related to the values of the reliability-critical parameters. In addition, algebraic
inequalities can be interpreted in a meaningful way and this interpretation can be
attached to real systems and processes. This yields not only to uncertainty reduction
but also to the discovery of new fundamental properties of systems and processes.

By establishing tight bounds related to properties and parameters, algebraic
inequalities can be applied to improve the robustness of designs, by complying them
with the worst possible variation of the output parameters. As a result, a number of
failure modes can be avoided.

30.3.1 Ranking Systems with Unknown Reliability
of Components

Often, the reliabilities of the components building the system are unknown and the
epistemic uncertainty associated with the reliabilities of the components building the
system translates into epistemic uncertainty related to which system is superior.

An important way of using inequalities to improve reliability and reduce risk is to
derive and prove an algebraic inequality which ranks systems performance. For two
competing systems (a) and (b), built on components whose reliabilities are unknown,
the steps for establishing which system is superior can be summarised as follows.

• For each of the competing systems, build the reliability network from its functional
diagram.

• By using methods from system reliability analysis, determine the reliabilities Ra

and Rb of the systems or the probabilities of system failure Fa ,Fb.
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Fig. 30.5 Two competing
systems with different
topology, built with the same
type of components

Fig. 30.6 The reliability
networks of the systems
from Fig. 30.5

• Subtract the reliabilities of the competing systems or the probabilities of system
failure and prove any of the inequalities: Ra −Rb > 0, Ra −Rb < 0, Fa −Fb > 0,
Fa − Fb < 0.

• Select the system with superior reliability or the system with the smaller
probability of failure.

Consider two systems with different topologies, including the same type of valves
(denoted by X, Y and Z) shown in Fig. 30.5. The valves are working independently
from one another and all of them are initially open. The question of interest is which
system is more reliable with respect to the function ‘stopping the flow of fluid in the
pipeline’. The signal for closing is issued to all valves simultaneously.

Figures 30.6a and b represent the reliability networks of the systems from
Fig. 30.5a and b, correspondingly. The reliability values x, y and z characterising the
separate valves are unknown. The only available information about the reliabilities
of the valves are the obvious constraints: 0 < x < 1; 0 < y < 1; 0 < z < 1.

Expressing the probabilities of failure characterising the competing systems as a
function of the unknown reliabilities of the valves yields

Fa(x, y, z) = (1 − x2)(1 − y2)(1 − z2) and Fb(x, y, z) = (1 − xyz)2

Ranking the systems’ performance consists of proving Fa(x, y, z)−Fb(x, y, z) <

0 or Fa(x, y, z) − Fb(x, y, z) > 0. Proving Fa(x, y, z) − Fb(x, y, z) < 0, for
example, is equivalent to proving the inequality

(1 − x2)(1 − y2)(1 − z2) < (1 − xyz)2 (30.10)

To prove inequality (30.10), it suffices to prove the inequality√
(1 − x2)(1 − y2)(1 − z2) < (1 − xyz) or the equivalent inequality
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√
(1 − x2)(1 − y2)(1 − z2) + xyz < 1 (30.11)

Indeed, if inequality (30.11) is true, inequality (30.10) follows from it by squaring
both sides of the inequality

√
(1 − x2)(1 − y2)(1 − z2) < 1 − xyz. The squaring

operation will not change the direction of the inequality because 0 < x < 1; 0 <

y < 1; 0 < z < 1, and the following quantities are positive: (1 − xyz) > 0,
(1 − x2)(1 − y2)(1 − z2) > 0 .

To prove inequality (30.11), a combination of a substitution technique and a
technique based on proving a simpler, intermediate inequality will be used.

Because the reliability ri of a component is a number between zero and unity, the
trigonometric substitutions ri = sin αi where αi ∈ (0, π/2) are appropriate. Making
the substitutions: x = sin α; y = sin β and z = sin γ for the reliabilities of the
components, transforms the left side of inequality (30.11) into

√
(1 − x2)(1 − y2)(1 − z2) + xyz = cosα × cosβ

× cos γ + sin α × sin β × sin γ (30.12)

Next, the positive quantity cosα×cosβ×cos γ +sin α×sin β×sin γ is replaced
by the larger quantity cosα × cosβ + sin α × sin β. Indeed, because 0 < cos γ < 1
and 0 < sin γ < 1, the inequality

cosα × cosβ × cos γ + sin α × sin β

× sin γ < cosα × cosβ + sin α × sin β (30.13)

holds. If the intermediate inequality cosα×cosβ + sin α× sin β ≤ 1 can be proved,
this will imply the inequality

cosα × cosβ × cos γ + sin α × sin β × sin γ < 1 (30.14)

Since cosα ×cosβ + sin α × sin β = cos(α −β), and cos(α −β) ≤ 1, we finally
get

cosα × cosβ × cos γ + sin α × sin β × sin γ < cosα × cosβ

+ sin α × sin β = cos(α − β) ≤ 1

from which inequality (30.11) follows.
Inequality (30.11) has been proved and from it, inequality (30.10) follows. The

system in Fig. 30.5a is characterised by a smaller probability of failure compared
to the system in Fig. 30.5b, therefore, the system in Fig. 30.5a is the more reliable
system.
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30.3.2 Inequality of Negatively Correlated Random Events

There is another, alternative way of using algebraic inequalities for risk and uncer-
tainty reduction which consists of moving in the opposite direction: starting from
existing abstract inequality and moving towards the real system or a process. An
important step in this process is creating relevant meaning for the variables entering
the algebraic inequality, followed by ameaningful interpretation of the different parts
of the inequality which links it with a real physical system or process.

Consider m independent events A1, A2, . . . , Am that are not mutually exclusive.
This means that there are at least two events Ai and A j for which P(Ai ∩ A j ) �= ∅.
It is known with certainty, that if any particular event Ak of the set of events does not
occur (k = 1, . . . ,m), then at least one of the other events occurs. In other words,
the relationship

P(A1 ∪ . . . ∪ Āk ∪ . . . ∪ Am) = 1

holds for the set of m events.
Under these assumptions, it can be shown that the following inequality holds

P(A1) + P(A2) + . . . + P(Am) > 1 (30.15)

This inequality will be referred to as the inequality of negatively correlated events.
To prove this inequality, consider the number of outcomes n1, n2, . . . , nm leading

to the separate events A1, A2, . . . , Am , correspondingly. Letndenote the total number
of possible outcomes. From the definition of inversely correlated events, it follows
that any of the n possible outcomes corresponds to the occurrence of at least one
event Ai . Since at least two events Ai and A j can occur simultaneously, the sum of
the outcomes leading to the separate events A1, A2, . . . , Am is greater than the total
number of outcomes n:

n1 + n2 + . . . + nm > n (30.16)

This is because of the condition that at least two events Ai and A j can occur
simultaneously. Then, at least one outcome must be counted twice: once for event
Ai and once for event A j . Dividing both sides of (30.16) by the positive value n does
not alter the direction of inequality (30.16) and the result is the inequality

n1/n + n2/n + . . . + nm/n > 1 (30.17)

which is inequality (30.15).
Consider the reliability networks in Fig. 30.7, of two systems. Despite the deep

uncertainty related to the components building the systems, the reliabilities of the
systems can still be ranked, by a meaningful interpretation of the inequality of
negatively correlated events.
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Fig. 30.7 Ranking the
reliabilities of two systems
with unknown reliability of
components

The power of the simple inequality (30.15) can be demonstrated even if only two
events A1 ≡ A and A2 ≡ B̄ are considered. Event A1 ≡ A stands for ‘system (a) is
working at the end of a specified time interval’ while event A2 ≡ B̄ stands for ‘system
(b) is not working at the end of the specified time interval’ (P(B̄) + P(B) = 1)
(Fig. 30.7). The conditions of inequality (30.15) are fulfilled for events A and B̄
related to the systems in Fig. 30.7.

Indeed, if event B̄ does not occur, this means that system (b) is working. This can
happen only if all components 4, 5 and 6 in Fig. 30.7b are working, which means
that system (a) is working. As a result, if event B̄ does not occur then event A occurs.
Conversely, if event A does not occur then at least one of the components 4, 5, 6 in
Fig. 30.7a does not work, which means that system (b) does not work (the event B̄
occurs). At the same time, both events can occur simultaneously (P(A ∩ B̄) �= 0).
This is, for example, the case if components 1, 2, 3 are in working state at the end of
the time interval (0, t) and component 5 is in a failed state.

The conditions of inequality (30.15) are fulfilled, therefore

P(A) + P(B̄) > 1 (30.18)

holds, which is equivalent to

P(A) > 1 − P(B̄) = P(B)

As a result, it follows that P(A) > P(B) irrespective of the reliabilities
r1, r2, r3, r4, r5, r6 of components (1–6) building the systems. The meaningful inter-
pretation of the inequality of negatively correlated events helped to reveal the intrinsic
reliability of competing design solutions and rank these in terms of reliability, in the
absence of knowledge related to the reliabilities of their building parts.

In other cases, knowledge about the age of the components is available which can
be used in proving the inequalities related to the system reliabilities. For example, it
is known that the functional diagrams of the competing systems are built with three
valves (A, B and C) with different ages. Valve A is a new valve, followed by valve
B with an intermediate age and valve C which is an old valve. If the reliabilities of
the valves are denoted by a, b and c, the reliabilities of the valves can be ranked:
a > b > c and this ranking can be used in proving the inequalities related to the
reliabilities of the competing systems [12].
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30.3.2.1 Meaningful Interpretation of an Abstract Algebraic Inequality

While the proof of an algebraic inequality does not normally pose problems, the
meaningful interpretation of an inequality is not a straightforward process. Such an
interpretation usually brings deep insights, some of which stand at the level of a new
physical property/law.

Consider the abstract algebraic inequality

(x1 + x2 + . . . + xn) ≥ n2
(

1

1/x1 + 1/x2 + . . . + 1/xn

)
, (30.19)

which is valid for any set of n non-negative quantities xi .
A proof of Inequality (30.19) can be obtained by transforming the inequality to

the classical Cauchy–Schwarz inequality

(a1b1 + a2b2 + . . . + anbn)
2 ≤ (a21 + a22 + . . . + a2n)(b

2
1 + b22 + . . . + b2n)

(30.20)

which is valid for any two sequences of real numbers a1, a2, . . . , an and
b1, b2, . . . , bn .

Note that the transformation ai = √
xi (i = 1, . . . , n) and bi = 1/

√
xi (i =

1, . . . , n), substituted in the Cauchy–Schwarz inequality (30.20) leads to inequality
(30.19).

Appropriate meaning can now be attached to the variables entering inequality
(30.19) and the two sides of the inequality can be interpreted in various meaningful
ways.

A relevant meaning for the variables in the inequality can be created, for example,
if each xi stands for ‘electrical resistance of element i’. The equivalent resistances
Re,s and Re,p of n elements arranged in series and parallel are given by [34]

Re,s = x1 + x2 + . . . + xn (30.21)

Re,p = 1

1/x1 + 1/x2 + . . . + 1/xn
(30.22)

where xi is the resistance of the ith element (i = 1, . . . , n). In this case, expression
(30.21) on the left side of the inequality (30.19) can be meaningfully interpreted as
the equivalent resistance of n elements arranged in series. The expression (30.22), on
the right side of inequality (30.19), can be meaningfully interpreted as the equivalent
resistance of n elements arranged in parallel. Inequality (30.19) now expresses a new
physical property: the equivalent resistance of n elements arranged in parallel is at
least n2 times smaller than the equivalent resistance of the same elements arranged
in series, irrespective of the individual resistance values of the elements. Equality is
attained for x1 = x2 = . . . = xn .
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It needs to be pointed out that for resistors of equal values, the fact that the equiv-
alent resistance in parallel is exactly n2 times smaller than the equivalent resistance
of the resistors in series is a trivial result, easily derived and known for a long period
of time [35].

Indeed, For the resistanceofn resistors arranged in series x1 = x2 = . . . = xn = r ,
the value nr is obtained from Eq. (30.21), while for the same n resistors arranged
in parallel, the value r/n is obtained from Eq. (30.22). As can be seen, the value
r/n is exactly n2 times smaller than the value nr . However, the bound provided by
inequality (30.19) is a much deeper result. It is valid for any possible values of the
resistances.The bound given by inequality (30.19) does not require equal resistances.

The meaning created for the variables xi in inequality (30.19) is not unique and
can be altered. Suppose that xi in inequality (30.19) stands for electrical capacity.
The equivalent capacitances Ce,p,Ce,s of n capacitors arranged in parallel and series
are given by [34]:

Ce,p = x1 + x2 + . . . + xn (30.23)

and

Ce,s = 1

1/x1 + 1/x2 + . . . + 1/xn
(30.24)

correspondingly, where xi is the capacitance of the ith capacitor (i = 1, . . . , n).
The expression (30.23) on the left side of inequality (30.19) can now be meaning-
fully interpreted as the equivalent capacitance of n capacitors arranged in parallel.
The expression (30.24) on the right side of inequality (30.19) can be meaningfully
interpreted as the equivalent capacitance Ce,s of n capacitors arranged in series.
Inequality (30.19) now expresses another physical property: the equivalent capaci-
tance of n capacitors arranged in parallel is at least n2 times larger than the equivalent
capacitance of the same capacitors arranged in series, irrespective of the values of
the individual capacitors.

Suppose that another meaning for the variables xi in Inequality (30.19) is created,
for example, each xi now stands for the stiffness of the elastic element i(i = 1, . . . , n)

Consider the equivalent stiffness ke,s of n elastic elements in series and the equivalent
stiffness ke,p of n elastic elements in parallel. The stiffness values of the separate
elastic elements, denoted by x1, x2, . . . , xn , are unknown. The equivalent stiffness
of n elastic elements in series is given by the well-known relationship:

ke,s = 1

1/x1 + 1/x2 + . . . + 1/xn
(30.25)

and for the same elastic elements in parallel, the equivalent stiffness is

ke,p = x1 + x2 + . . . + xn (30.26)
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Now, the two sides of inequality (30.19) can be meaningfully interpreted in
the following way. The expression (30.25) on the right-hand side of the inequality
(30.19) can be interpreted as the equivalent stiffness of n elastic elements arranged
in series. The left side of inequality (30.19) can be interpreted as the equivalent
stiffness of n elastic elements arranged in parallel. The inequality now expresses a
different physical property: the equivalent stiffness of n elastic elements arranged in
parallel is at least n2 times larger than the equivalent stiffness of the same elements
arranged in series, irrespective of the individual stiffness values characterising the
separate elements. These are examples of different physical properties derived from
a meaningful interpretation of a single abstract algebraic inequality.

The considered examples illustrate new physical properties predicted from inter-
preting a correct algebraic inequality which give the basis for the principle of non-
contradiction: If a correct algebraic inequality permits meaningful interpretation
that can be related to a real process, the process realization yields results that do not
contradict the algebraic inequality.

Further details regarding the principle of non-contradiction will be presented
elsewhere.

Inequality (30.19) is domain-independent. It provides tight bounds for electrical
and mechanical properties. At the same time, the uncertainty associated with the
relationship between the equivalent parameters characterising elements arranged in
series and parallel (due to the epistemic uncertainty related to the values of the
building elements) is reduced.

These properties have never been suggested in standard textbooks and research
literature covering the mature fields of mechanical and electrical engineering, which
demonstrates that the lack of knowledge of the domain-independent method of
algebraic inequalities made these properties invisible to the domain experts.

30.4 Conclusions

1. The benefit from combining the domain-independent method of segmentation
with domain-specific knowledge in strength of components was demonstrated in
reducing the risk of overstress failure by segmenting concentrated external loads.
It was demonstrated that the domain-independent method of segmentation also
achieves light-weight design.

2. The capability of the chain-rule segmentation to reduce the risk of computa-
tional errors has been demonstrated in the area of kinematic analysis of complex
mechanisms.

3. The domain-independent method of algebraic inequalities has been used to
reduce uncertainty, reveal the intrinsic reliability of competing designs and rank
these in terms of reliability, in the absence of knowledge related to the reliabilities
of their building parts.

4. The meaningful interpretation of an algebraic inequality led to the discovery of
new physical properties.
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Thus, the equivalent resistance of n elements arranged in parallel is at least n2

smaller than the equivalent resistance of the same elements arranged in series,
irrespective of the resistances of the elements.
Another physical property discovered by a meaningful interpretation of an alge-
braic inequality is that the equivalent capacity of n capacitors arranged in series
is at least n2 times smaller than the equivalent capacity of the same capacitors
arranged in parallel, irrespective of the actual capacities of the separate capacitors.

5. The inequality of negatively correlated random events was introduced and its
meaningful interpretation was used to reveal the intrinsic reliability of competing
design solutions and to rank them in the absence of knowledge related to the
reliabilities of the building parts.

6. The domain-independent method of segmentation and the domain-independent
method based on algebraic inequalities combined with knowledge from specific
domains achieved effective risk reduction solutions.
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