
Chapter 22
Reliability and Availability Analysis
in Practice

Kishor Trivedi and Andrea Bobbio

Abstract Reliability and availability are key attributes of technical systems.
Methods of quantifying these attributes are thus essential during all phases of system
lifecycle.Data (measurement)-drivenmethods are suitable for components or subsys-
tems but, for the system as a whole, model-driven methods are more desirable. Simu-
lative solution or analytic–numeric solution of the models are two major alternatives
for the model-driven approach. In this chapter, we explore model-driven methods
with analytic–numeric solution.Non-state-space, state-space, hierarchical, andfixed-
point iterative methods are explored using real-world examples. Challenges faced by
such modeling endeavors and potential solutions are described. Software package
SHARPE is used for such modeling exercises.

Keywords Availability · Reliability · Fault tree · Markov model · Non-state-space
model · State-space model · Hierarchical model · Fixed-point iteration technique

22.1 Introduction

This chapter discusses techniques that are found to be effective for reliability and
availability assessment of real systems. Modern life heavily relies on man-made
systems that are expected to be reliable. Many high-tech cybersystems are found
wanting since their failures are not so uncommon. Such failures and consequent
downtimes lead to economic losses, to a loss of reputation, and to even loss of lives.
To ameliorate the situation, methods have been developed that reduce failure occur-
rences and resultant downtimes. In order to gauge the effectiveness of these improve-
ment methods, scalable and high-fidelity techniques of reliability and availability
assessment are needed.
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Fig. 22.1 Reliability/availability assessment methods

This chapter discusses techniques that are found to be effective for reliability
and availability assessment in practice. Assessment methods can be divided into
measurement-driven (or data-driven) versusmodel-drivenmethods (Fig. 22.1). Data-
driven methods are suitable for small subsystems, while model-driven methods
are appropriate for large systems. Using model-driven methods, we can derive the
dynamic behavior of a system consisting of many components using first principles
(of probability theory) rather than from measurements.

In practice, these two approaches are combined together so that subsystem or
component behavior is derived using data-drivenmethods, while the system behavior
is derived using model-driven methods.

This chapter focuses on model-driven methods. Models can be solved using
discrete-event simulation or using analytic–numeric techniques. Some simplemodels
can be solved analytically to yield a closed-form formula while a much larger set of
models can be dealt with by a numerical solution of their underlying equations. The
latter approach is known as analytic–numeric solution. Distinction between analytic–
numeric solution versus discrete-event simulation-based solution ought to be noted.
We believe that simulative solution and analytic–numeric solutions should be judi-
ciously combined in order to solve complex system models. This chapter, however,
is on analytic–numeric methods, providing an overview of a recently published book
by the authors of this chapter [1].

Our approach to exposing the methods is example-based. Chosen examples are of
real systems that we have ourselves analyzed for some companies. Overall modeling
process is depicted in Fig. 22.2.

Non-state-space (or combinatorial) models can deal with large systems if based
on the drastic assumption of statistical independence among components. State-
space model types, specifically continuous-time Markov chains and Markov reward
models, are commonly utilized for higher fidelity.Multi-levelmodels that judiciously
combine non-state-space and state-space methods will be seen to have the scalability
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Fig. 22.2 The overall modeling process

and fidelity needed for capturing the dynamic behavior of real systems. Depending
on the application, a model may be solved for its long-term (steady-state) behavior
or its time-dependent (or transient) behavior. Solution types for such models are
classified in Fig. 22.3 [1, 2]. Software packages that are used in solving the examples
of this chapter are SHARPE [2, 3] and SPNP [4, 5].

Fig. 22.3 Solution techniques
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22.2 Non-state-Space Methods

Several traditional methods for the analysis of system reliability and availability can
be classified under the umbrella of non-state-space (sometimes called combinatorial)
methods:

• Reliability Block Diagrams (RBD)
• Network reliability or Reliability graphs (RelGraph)
• Fault Trees.

The simplest paradigm for reliability/availability is the (series–parallel) reliability
block diagram (RBD). These are commonly used in computer and communications
industry and are easy to use and assuming statistical independence, simple algorithms
are available to solve very large RBDs. Reliabilities (availabilities) multiply for
blocks in series, while unreliabilities (unavailabilities) multiply for blocks in parallel.
Efficient algorithms for k-out-of-n blocks are also available, both in the case of
statistically identical blocks and for non-identical blocks [1].

Besides system reliability at time t, systemmean time to failure, systemavailability
(steady-state and instantaneous), and importance measures can also be computed so
as to point out critical components (bottlenecks) [1].

High availability requirement in telecommunication systems is usually more
stringent than most other sectors of industry. The carrier-grade platform from Sun
Microsystems requires a “five nines and better” availability. From the availability
point of view, the top-level architecture of a typical carrier-grade platform was
modeled in [6] as a reliability block diagram consisting of series, parallel, and k-out-
of-n subsystems, as shown in Fig. 22.4. The SCSI series block is further expanded
as in the inset of Fig. 22.4.

Fig. 22.4 High availability platform from sun microsystems
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Series–parallel structure is often violated in practice. Non-series–parallel block
diagrams are often cast as s-t connectedness problems, also known as network relia-
bility problems or just relgraph in SHARPE. The price to be paid for this additional
modeling power is the increased complexity of solution methods. Known solution
methods are factoring (or conditioning), finding all minpaths followed by the use
of one of many sum-of-disjoint-product (SDP) algorithms, the use of binary deci-
sion diagrams (BDD), or the use of Monte Carlo simulation. SDP- and BDD-based
algorithms have been implemented in the SHARPE software package [2, 3]. Never-
theless, real systems pose a challenge to these algorithms. For instance, the reliability
of the current return network subsystem of Boeing 787 was modeled as a relgraph
shown in Fig. 22.5. However, the number of minpaths was estimated to be over 4.2
trillion.

To solve themodel, for the purpose of FAAcertification, a newbounding algorithm
was developed, patented, and published [7]. Table 22.1 reports the results showing
that the upper and lower bounds to the s-t reliability were close enough, with a very
small number of minpaths and mincuts selected for the computation. The computa-
tion time was very short for this otherwise intractable problem. This new bounding
algorithm is implemented in the SHARPE software package and continues to be

Fig. 22.5 Boeing relgraph example

Table 22.1 Unreliability
upper/lower bounds

Runtime 20 s 120 s 900 s

Up bound 1.146036 ×
10–8

1.081432 ×
10–8

1.025519 ×
10–8

Low bound 1.019995 ×
10–8

1.019995 ×
10–8

1.019995 ×
10–8

#minpaths 28 29 33

#mincuts 113 113 113
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used by Boeing (via their IRAP software package [8]) for the reliability assessment
of current return network of all Boeing commercial airplanes.

Table 22.2 shows a comparison of SDP and BDDmethods for various benchmark
networks of increasing complexity. The different BDD columns show the effect
of node ordering on the computational time [9]. The used benchmark networks are
shown inFig. 22.6 andwere inspired by the literature [10].Note also that the bounding
method is not utilized in the comparison table.

In the aerospace, chemical, and nuclear industries, engineers use fault trees (FT)
to capture the conditions under which system fails. These Boolean conditions are
encoded into a tree with AND gates, OR gates, and k-out-of-n gates as internal nodes,
while leaf nodes represent component failures and the top or root node indicates
system failure.

Fault trees without repeated events are equivalent to series–parallel RBDs, while
those with repeated events are more powerful [1, 2, 11]. Solution techniques for
fault trees with repeated events are the same as those for the network reliability
problem discussed in the previous paragraph [1]. Fault trees with several thousand
components can be solved with relative ease.

Figure 22.7 shows an FT for a GE Equipment Ventilation System. Notice that
leaves drawn as circles are basic events, while inverted triangles represent repeated
events. Assuming that all the events have a failure probability equal to q = 0.001,
the SHARPE input file and the SHARPE output file are shown in Fig. 22.8 on the
left-hand and on the right-hand side, respectively. In this example, SHARPE is asked
to compute the Top Event probability (QTE = 1.0945e−02) as well as the list of the
mincuts. We could ask for importance measures as well as a closed-form expression
of top event probability [1, 3]. By assigning failure rates for each event, we could ask
for the time-dependent failure probability of the system. Many other possibilities for
output measures exist.

By assigning failure rates to components, system reliability at time t and the mean
time to system failure can be computed. Time-to-failure distribution other than expo-
nential (e.g., Weibull) can be used in such non-state-space models. Furthermore, by
assigning failure rate and repair rate to each component, steady-state and instanta-
neous availability can be computed (assuming independence in repair besides failure
independence).

FTs have been extended to non-coherent gates such as NOT gates, to multi-
state components [12], phased-mission systems [13], and with dynamic gates [14].
SHARPE fault trees allow NOT gate, multi-state components, and phased-mission
systems. Dynamic gates are not explicitly included in SHARPE but can easily be
implemented since (static) fault trees, Markov chains, and their combination via
hierarchical modeling are provided [1].
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Fig. 22.6 Benchmark networks

Fig. 22.7 Fault tree model equipment ventilation system
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Fig. 22.8 SHARPE input/output files for ventilation system

22.3 State-Space Methods

As stated in the last section, non-state-space models with thousands of components
can be solved without generating their underlying state space bymaking the indepen-
dence assumption. But in practice, dependencies do exist among components. We
then need to resort to state-space models such as (homogeneous) continuous-time
Markov chains (CTMC).

Markov models have been used to capture dynamic redundancy, imperfect
coverage (e.g., failure to failover or failure to detect, etc.), escalated levels
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Fig. 22.9 CTMC availability model of Linux OS

of recovery, concurrency, contention for resources, combined performance and
reliability/availability, and survivability [1, 15]. Markov availability model will have
no absorbing states (Fig. 22.9), while Markov reliability models will have one or
more absorbing states (Fig. 22.11). Markov models can be solved for steady-state,
transient, and cumulative transient behavior according to the following equations [1,
15]:

Steady-state π Q = 0 with
∑

π = 1

Transient dπ(t)/dt = π(t)Q given π(0)

Cumulative transient db(t)/dt = b(t) Q + π(0)

In the above formulas, Q is the infinitesimal generator matrix of the CTMC, π(t)
is the state probability vector at time t, π(0) is the initial state probability vector,
π = limt→∞ π(t) is the steady-state probability vector, and b(t) = ∫ t

0 π(u)du is the
vector of the expected state occupancy times in the interval from 0 to t. Derivatives of
thesemeasureswith respect to the input parameters can also be computed numerically
[1].

22.3.1 CTMC Availability Models

The system availability (or instantaneous, point, or transient availability) is defined
as the probability that at time t the system is in an up state:

A(t) = P{system working at t}

Steady-state availability (Ass) or just availability is the long-term probability that
the system is up:

Ass = lim
t→∞ A(t) = MTTF

MTTF + MTTR
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where MTTF is the system mean time to failure and MTTR is the system mean time
to recovery. When applied to a single component, the above equation holds without
any distributional assumptions. For a complex system with redundancy, the equation
holds if we use “equivalent” MTTF and “equivalent” MTTR [1].

The availability model of the Linux operating system used in IBM’s SIP imple-
mentation on WebSphere was presented in [16] and is shown in Fig. 22.9. From the
up state, the model enters the down state DN with failure rate λOS . After failure
detection, with a mean time of 1/δOS , the system enters the failure-detected state
DT.

The OS is then rebooted with the mean time to reboot given by 1/βOS . With
probability bOS the reboot is successful, and system returns to the UP state. However,
with probability 1 − bOS, the reboot is unsuccessful, and the system enters the
DW state where a repairperson is summoned. The travel time of the repairperson is
assumed to be exponentially distributed with rate αSP . The system then moves to
the state RP. The repair takes a mean time of 1/μOS , and after its completion, the
system returns to the UP state.

Solving the steady-state balance equations, a closed-form solution for the steady-
state availability of the OS is easily obtained in this case due to the simplicity of the
Markov chain.

Ass = πUP = 1

λOS

[
1

λOS
+ 1

δOS
+ 1

βOS
+ (1 − bOS)

(
1

αSP
+ 1

μOS

)]−1

We can alternatively obtain a numerical solution of the underlying equations by
using a software package such as SHARPE. Either graphical or textual input can be
employed. The SHARPE textual input file modeling the CTMC of Fig. 22.9 is shown
in Fig. 22.10. Noting that UP (labeled 1) is the only upstate, the steady-state avail-
ability is computed using the command expr prob (LinuxOS,1). With the assigned
numerical values for parameters (see Fig. 22.10), the result is Ass = 0.99963.

Fig. 22.10 SHARPE input file for the CTMC of Fig. 22.9
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Fig. 22.11 CTMC reliability model of Linux OS

22.3.2 CTMC Reliability Models

While CTMC availability models have no absorbing states, CTMC reliability models
have one or more absorbing states and the reliability at time t is defined as the
probability that the system is continuously working during the interval (0 − t].
Further, since in a reliability model the system down state is an absorbing state, the
MTTF can be calculated as the mean time to absorption in the corresponding CTMC
model [1, 2, 15].

The reliability model extracted from the availability model of the Linux operating
system used for IBM’s SIP application is shown in Fig. 22.11. The repair transition
from state RP to state UP and the transition from state DW are removed, that is,
the down state reached starting from the UP state is made an absorbing state. Note
that states DN and DT are down states but the sojourns in these states are likely to
be short enough to be considered as glitches that can be ignored while computing
system reliability and MTTF.

In this case, the model is simple enough so that a closed-form solution can be
obtained by hand (or using Mathematica) by setting up and solving the underlying
Kolmogorov differential equations. Alternatively, a numerical solution of the under-
lying equations can be obtained using SHARPE. The SHARPE textual input file for
the reliability model of Fig. 22.11 is shown in Fig. 22.12. Note that in this case, since
the CTMC is not irreducible, an initial probability vector must be specified.

The system reliability at time t is defined in this case as R(t) = πUP(t) and, in
the SHARPE input file of Fig. 22.11, is computed from t = 0 to t = 10,000 in steps
of 2000. As noted earlier, the MTTF is defined as the mean time to absorption and
is computed using the SHARPE command expr mean (LinuxOS). With the assigned
numerical values, the result is MTTF = 40,012 h.

The CTMC of a reliability model can be, but need not be, acyclic, as in the case
of Fig. 22.11. If there is no component level repair (recovery), then the CTMC will
be acyclic but if there is component level repair (but no repair after system failure)
then the CTMC will have cycles. However, the model will always have one or more
absorbing states.

Reliability modeling techniques have wide applications in different technical
fields and have been proposed to provide new frontiers in predicting healthcare
outcomes. With the rise in quantifiable approaches to health care, lessons from
reliability modeling may well provide new ways of improving patient healthcare.
Describing the development of conditions leading to organ system failure provides
motivation for quantifying disease progression. As an example, a simple model for
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Fig. 22.12 SHARPE input file for CTMC of Fig. 22.11

progressive kidney disease leading to renal failure is reported in Fig. 22.13 [17]
where five discrete conditions are enumerated in keeping with clinical classification
of kidney function.

The parameter values, used in solving the model of Fig. 22.13, are reported in
Table 22.3. These values are estimated for a 65-year-old Medicare patient and are

State meaning:
Healthy: Normal renal function,
CKD: Chronic Kidney Disease without renal failure,
ESRD: End-Stage Renal Disease
Transplant:  Patients who have received a transplant,
Deceased. 

Fig. 22.13 Markov model of renal disease

Table 22.3 Parameter values
for a 65-year-old medicare
patient

Description Symbol Value (event/year)

Decline δ 0.1887

Transplant τ 0.1786

Graft rejection γ 0.0050

Prognosis-healthy ω0 0.0645

Prognosis-CKD ω1 0.1013

Prognosis-ESRD ω2 0.2174

Prognosis-Transplant ωA 0.0775
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based on the latest available statistics from the United States Renal Data System
(USRDS) annual report [18].

The model of Fig. 22.13 is solved for the survival rate and expected cost incurred
by a patient in a 1-year interval [17].

Efficient algorithms are available for solving Markov chains with several million
states [19–21] both in the steady-state and in the transient regime. Furthermore,
measures of interest such as reliability, availability, performability, survivability, etc.
can be computed by means of reward rate assignments to the states of the CTMC [1,
15].Derivatives (sensitivity functions) of themeasures of interestwith respect to input
parameters can also be computed to help detect bottlenecks [22–24]. Nevertheless,
the generation, storage, and solution of real-life-system Markov models still pose
challenges. Higher level formalisms such as those based on stochastic Petri nets
(SPNs) and their variants [4, 15, 25–27] have been used to automate the generation,
storage, and the solution of large state-space Markov models [26]. Our own version
of SPN is known as stochastic reward nets (SRN). SRNs extend SPN formalism in
several useful ways besides allowing specification of reward rates at the net level.
This enables more concise description of real-world problems and an easier way to
get the output measures [4].

An example of the use of stochastic reward nets to model the availability of an
Infrastructure-as-a-Service (IaaS) cloud is shown in Fig. 22.14 [28]. To reduce power
usage costs, physical machines (PMs) are divided into three pools: Hot pool (high
performance and high power usage), warm pool (medium performance and medium
power usage), and cold pool (lowest performance and lowest power usage). PMs
may fail and get repaired. A minimum number of operational hot PMs are required
for the system to function but PMs in other pools may temporarily be assigned to
the hot pool in order to maintain system operation. Upon repair, PMs migrate back
to their original pool. Migration creates dependencies among the pools.

A monolithic CTMC is too large to construct by hand. We use our high-level
formalismofStochasticRewardNet (SRN) [26].AnSRNmodel can be automatically
converted into an underlying Markov (reward) model that is solved numerically
for the measures of interest such as expected downtime, steady-state availability,
reliability, power consumption, performability, and sensitivities of these measures.

In Fig. 22.14, place Ph initially contains nh tokens (PMs of the hot pool), Pw
contains nw tokens (PMs of the warm pool), and Pc contains nc tokens (PMs of the
cold pool). Assuming the number of PMs in each pool is identical and equal to n, the
number of states for the monolithic model of Fig. 22.14, is reported in the second
column of Table 22.4. From this table, it is clear that this approach based merely on
a higher formalism such as SRN, which we call largeness tolerance, soon reaches its
limits as the time needed for the generation and storage of the state space becomes
prohibitively large for real systems.
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Fig. 22.14 SRN availability model of IaaS cloud

Table 22.4 Comparison of
monolithic versus
decomposed model

n Monolithic model Interacting sub-model

#states #states

3 10,272 196

4 67,075 491

5 334,948 1,100

6 1,371,436 2,262

7 4,816,252 3,770

8 Memory overflow 6,939

10 – 20,460

20 – 21,273

40 – 271,543

60 – 1,270,813

80 – 3,859,083

100 – 9,196,353

n is the initial #PM in each pool
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22.4 Hierarchy and Fixed-Point Iteration

In order to avoid large models as is the case in a monolithic Markov (or generally
state space) model, we advocate the use of multi-level models in which the modeling
power of state-space models and efficiency of non-state-space models are combined
together (Fig. 22.15).

Since a single monolithic model is never generated and stored in this approach,
this is largeness avoidance in contrast with the use of largeness tolerance (recall
stochastic Petri nets, SRNs, and relatedmodeling paradigms) wherein the underlying
large model is generated and stored. In multi-level modeling, each of the models
is solved and results are conveyed to other relevant models to use as their input
parameters. This transmission of results of one sub-model as input parameters to
other sub-models is depicted as a graph that we have called an import graph [29].

Consider, for instance, the availability model of the SUN Microsystem whose
top-level RBD availability model is shown in Fig. 22.4. Each block of the RBD of
Fig. 22.4 is a complex subsystem that was modeled separately using the appropriate
formalism in order to compute the steady-state availability of that subsystem. In
the present case, the subsystems were modeled as Markov chains to cater to the
dependencies within each subsystem.

The subsystem availability is then rolled up to the higher level RBD model to
compute the system steady-state availability. The import graph for this systemmodel
is shown in Fig. 22.16. Specification, solution, and passing parameters for suchmulti-
levelmodels are facilitated by theSHARPEsoftware package [2, 3]. The import graph
in this case is acyclic. We can then carry out a topological sort of the graph resulting
in a linear order specifying the order in which the sub-models are to be solved and
the results rolled up in the hierarchy.

As the next example, we return to the IaaS cloud availability model and improve
its scalability. The monolithic SRN model of Fig. 22.14 is decomposed into three
sub-models to describe separately the behavior of the three pools [28, 29] while
taking into account their mutual dependencies by means of parameter passing. The
three sub-models are shown in Fig. 22.17.

Its import graph is shown in Fig. 22.18, indicating the output measures and input
parameters that are exchanged among sub-models to obtain the overall model solu-
tion. Import graphs such as the one shown in Fig. 22.18 are not acyclic, and hence the

Fig. 22.15 Analytic
modeling taxonomy
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Fig. 22.16 Import graph for high availability platform from Sun Microsystems [6]

Fig. 22.17 Decomposed SRN availability model of IaaS cloud

Fig. 22.18 Import graph
describing sub-model
interactions
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solution to the overall problem can be set up as a fixed-point problem. Such problems
can be solved iteratively by successive substitution with some initial starting point.
Many mathematical issues arise such as the existence of the fixed point, the unique-
ness of the fixed-point, the rate of convergence, accuracy, and scalability. Except
for the existence of the fixed point [30], all other issues are open for investigation.
Nevertheless, the method has been successfully utilized on many real problems [1].

Table 22.4 shows the effect of the decomposition/fixed-point iteration method
(which is also known as interacting sub-models method), comparing the number of
states of the monolithic model (column 2) with the number of states of the interacting
sub-model case (column 3).

Many more examples of this type of multi-level models can be found in the
literature [1, 2, 16, 29–35]. A particular example is the implementation of the Session
Initiation Protocol (SIP) by IBM on itsWebSphere. A hierarchical availability model
of that system is described in detail in [16].

22.5 Relaxing the Exponential Assumption

One standard complaint about the use of homogeneous continuous-time Markov
chains is the ubiquitous assumption of all event times being exponentially distributed.
There are several known paradigms that can remove this assumption: non-
homogeneous Markov chain, semi-Markov and Markov regenerative process, and
the use of phase-type expansions. All these techniques have been used, and many
examples are illustrated in [1].

Nevertheless, there is additional complexity in using non-exponential techniques
in practice, partly because the analytical–numeric solution is more complex but also
because of additional information about the non-exponential distributions which is
then needed and is often hard to come by.

A flowchart comparing the modeling power of the different state-space model
types is shown in Fig. 22.19 [1], and in Fig. 22.20, we provide a classification of the
modeling formalisms considered in [1].

22.6 Conclusions

We have tried to provide an overview of known modeling techniques for the relia-
bility and availability of complex systems. We believe that techniques and tools do
exist to capture the behavior of current-day systems of moderate complexity. Never-
theless, higher and higher complexity is being designed into systems, and hence the
techniques must continue to evolve. Together with the largeness problem, the need
for higher fidelity will require increasing use of non-exponential distributions, the
need to properly combine performance, power, and other measures of system effec-
tiveness together with failure and recovery. Parameterization and validation of the
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Fig. 22.19 Flow chart comparing the modeling power of the different state space model types [1]

models need to be further emphasized and aided. Tighter connection between data-
driven andmodel-drivenmethods on the one hand, and combining simulative solution
with analytic–numeric solution on the other hand, is desired. Validated models need
to be maintained throughout the life of a system so that they can be used for tuning
at operational time as well. Besides system-oriented measures such as reliability
and availability, user-perceived measures need to be explored [34–36]. Uncertainty
in model parameters, so-called epistemic uncertainty, as opposed to aleatory uncer-
tainty already incorporated in themodels discussed here, needs to be accounted for in
a high-fidelity assessment of reliability and availability [37]. For further discussion
on these topics, see [1].
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Fig. 22.20 Modeling formalisms
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