Chapter 15 )
Time Series Modelling of Non-stationary o
Vibration Signals for Gearbox Fault

Diagnosis

Yuejian Chen, Xihui Liang, and Ming J. Zuo

Abstract Gearboxes often operate under variable operating conditions, which lead
to non-stationary vibration. Vibration signal analysis is a widely used condition
monitoring technique. Time series model-based methods have been developed for
the study of non-stationary vibration signals, and subsequently, for fault diagnosis
of gearboxes under variable operating conditions. This chapter presented the latest
methodologies for gearbox fault diagnosis using time series model-based methods.
The main contents include widely used time-variant models, parameter estimation
and model structure selection methods, model validation criteria, and fault diagnostic
schemes based on either model residual signals or model parameters. Illustrative
examples are provided to show the applications of model residual-based fault diag-
nosis methods on an experimental dataset collected from a laboratory gearbox test
rig. Future research topics are pointed out at the end.

Keywords Gearboxes - Non-stationary * Time series models - Fault diagnosis -
Vibration analysis

15.1 Introduction

Gearbox fault diagnosis refers to fault detection, fault mode identification, and
severity assessment, which are critical for the prevention of sudden failures of gear-
boxes, enabling condition-based maintenance, and thus minimizing downtime and/or
maintenance costs. Vibration analysis is the most widely used technique for gearbox
fault diagnosis.
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In many industrial applications, gearboxes operate under variable speed condi-
tions. For instance, wind turbine gearboxes run under variable speed conditions due
to the randomness of wind [1]. The gearbox that drives the fans of demand ventila-
tion systems operates under variable speed conditions to reduce operating costs [2].
In railway systems, gearboxes experience run-up and coast-down conditions. The
varying speeds modulate the amplitude and frequency of vibration signals. There-
fore, the vibration signals become non-stationary. Effective non-stationary signal
analysis tools are needed for gearbox fault diagnosis.

Time series model-based methods (TSMBMs) were initially employed in the
structural health monitoring (SHM) field and have now drawn increased attention
for gearbox fault diagnosis [3—5]. TSMBMs use time series models to model the
vibration signals that are generated by gearbox systems. How to identify a time
series model can be regarded as a response-only system identification problem.

Modelling non-stationary vibration signals need time-variant time series models
that are realized by configuring the parameters of time-invariant models to be time
variant. In this chapter, we will describe four widely used time-variant time series
models. They are categorized based on how the parameters of time-invariant models
are configured as time variant.

A time series model is generally composed of autoregressive (AR) and moving
average (MA) terms. The MA terms are often ignored because (1) the AR terms can
approximate the MA terms and (2) the consideration of MA terms makes the model
identification more complex. Thus, in this chapter, we describe time-variant time
series models that are composed of the AR terms only. Meanwhile, for simplicity,
this chapter is limited to time series models for a single-channel vibration signal.

The materials in two of our earlier journal papers [3, 4] have been summarized
and included in this chapter. Note that this chapter has also described other methods
[5-10] to provide a comprehensive introduction of the latest TSMBM:s.

The rest of this chapter is organized as follows: Sect. 15.2 introduces four time-
variant time series models; Sect. 15.3 presents parameter estimation and model struc-
ture selection methods for the identification of time-variant time series models as
well as the criteria for model validation; Sect. 15.4 describes two schemes (i.e.
model residual-based scheme and model parameter-based scheme) for fault diag-
nosis; Sect. 15.5 presents the applications of the model residual-based fault diag-
nostic scheme on an experimental dataset collected from a laboratory gearbox test
rig; conclusion remarks are drawn in Sect. 15.6.

15.2 Time Series Models for Non-stationary Vibration
Signals

In this section, we present four time-variant AR models for representing non-
stationary vibration signals. The first one is the periodic AR (PAR) model [6]. The
PAR has AR parameters varying periodically with a specified period 7. The PAR
model has the following difference equation
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where y, and y,; denote the vibration at time ¢ and #-i, respectively; n, is the AR
model order; a; stands for the AR parameters, which are periodic with the same
period T; and ¢, is a zero-mean Gaussian white noise at time ¢. The PAR model is
useful for representing non-stationary vibration signals with periodic time-varying
characteristics. Wytomariska et al. [6] used the PAR model for fault diagnosis of a
gearbox in a bucket-wheel excavator that is a heavy-duty mining machine subjected
to cyclic load/speed variation due to the digging/excavating process. However, the
PAR model may not be applicable for representing non-stationary vibration signals
collected under non-periodic variable speed conditions, such as the random variable
speed condition that winds turbine gearbox experience.

The second one is the adaptive AR model with its model parameters adaptively
(recursively) adjusted by recursive parameter estimation methods [7]. The adaptive
evolution of model parameters enables the AR model time variant, and thus, it can
track the non-stationary characteristics of vibration signals. Zhan et al. [7] and Shao
et al. [8] used the adaptive AR model for fault diagnosis of fixed-axis gearboxes. The
adaptive AR model requires a proper tuning of the convergence rate for its recursive
parameter estimation algorithm. Too high of a convergence rate results in overfitting,
and too low of a convergence rate causes underfitting.

The third one is the functional series time-dependent AR (FS-TAR) model [5,
10]. The FS-TAR model has a model difference equation the same as Eq. (15.1), but
a;(t) is no longer periodic. Instead, a;(¢) is represented by a function of time that is
expanded in functional series (basis expansion). Therefore, the FS-TAR model is not
limited to applications with cyclic load/speed variations. Reported basis functions
include discrete cosine transform functions, Legendre polynomials, Harr functions,
normalized B-spines, etc.[5]. Take the Legendre polynomials basis as an example.
The dependency a;(¢) is of the form:

P
a;(t) = Zai.jtj (15.2)
j=1

where a;; stands for the AR parameters of projection and p specifies the order of
functional spaces. The FS-TAR model has been widely used in the SHM field, such
as a pick-and-place mechanism [10].

The last one is the functional pooled AR (FP-AR) model [3, 4]. The FP-AR model
has the following model difference equation [3, 4, 11]

o= aik)yi-i +& (15.3)
i=1



340 Y. Chen et al.

where k, denotes the operating condition at time ¢ and a; is a function of k;. We can
see that the FP-AR model has the same model structure as the FS-TAR model, but
with its AR parameters dependent on operating condition variable ;. In the case
when k; is a vector, the FP-AR model is extended to the vector functional pooled
autoregressive (VFP-AR) model in which the AR parameters are functions of a
vector. Traditionally, the FP-AR models were identified to represent the vibrations
under different levels of operating conditions [12—14]. It has recently been shown
that the FP-AR model can be used to represent non-stationary signals which have
a continuous time-varying spectrum [3, 4]. Chen et al. [3] presented an FP-AR
model-based method for tooth crack fault detection of fixed-axis gearboxes under
variable speed conditions. Chen et al. [4] presented a VFP-AR model-based method
for tooth crack severity assessment of fixed-axis gearboxes under random variable
speed conditions.

15.3 Model Identification and Validation

Model identification refers to the estimation of time series models based on the
vibration data records y, (for t = 1, 2, ..., N, where N is the number of data points).
The identification of time series models includes parameter estimation and model
structure selection. Model structure selection refers to the selection of lagged terms
and/or functional basis. Once a time series model is identified, the model needs to be
validated to ensure its modelling accuracy. In this section, we will describe the most
widely employed methods for parameter estimation, model structure selection, and
model validation.

15.3.1 Parameter Estimation Methods

Typical parameter estimation methods include the least squares (LS) and maximum
likelihood (ML) [5]. The LS estimator can be used for PAR, FS-TAR, and FP-AR
models. The LS estimator of the model parameter vector 0 is based on minimizing
the squared summation of residuals e

0= argmin{|le||} = argmin{ lly — (I>T0||} (15.4)
where ll*ll denotes the [, norm, y = [yy, ..., yN]T denotes the observed time series,
and @ is a hat matrix that is constructed from k; and/or y,_1, ..., y,—,,, depending on

the time series model structure. The residual e means the one-step-ahead prediction
error. The above minimization problem yields the solution expressed as

b=[070] ' y (15.5)
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The recursive least squares (RLS) estimator [5, 15] computes the model parameter
vector 0 recursively by making use of the new data record at a given time instant
t. When RLS is employed for estimating the AR model, we can realize an adaptive
AR model (as introduced in Sect. 15.2) to represent non-stationary vibration signals.
Readers may refer to Refs [5, 15] for more details about RLS estimators.

The maximum likelihood estimator can be used for PAR, FS-TAR, and FP-AR
models. The ML estimator of the model parameter vector 0 is based on maximizing
the log-likelihood function given as follows [5]

0= argmax L (0; ely) (15.6)

N
N 1 2[t, 0
L(0; ely) = —31n27r —3 E <lncr,2 + ¢ 1[72 ]> (15.7)
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where o, is the standard deviation of the residual, which is also dependent on the
model parameter vector 6. The standard deviation o, is estimated directly from the
residual sequence e using the sample standard deviation formula [5]. In Eq. (15.7),
it is assumed that g, follows the zero-mean Gaussian distribution with a standard
deviation o;.

Both LS and ML estimators are asymptotically Gaussian distributed with mean
coinciding to the true value. The ML estimator, however, achieves lower model
parameter estimation variance than the LS estimator [5]. On the other hand, the ML
estimator has a higher computational cost than the LS method.

15.3.2 Model Structure Selection

Typical methods for model structure selection include various information criteria
and regularization. The most widely used criteria are the Akaike Information
Criterion (AIC) and Bayesian Information Criterion (BIC). The AIC is of the form

AIC = NIn(RSS/N) + 24 (15.8)

where d is the number of model parameters and RSS is the training residual sum of
squares. The BIC is similar to the AIC, with a different penalty for the number of
parameters as follows

BIC = NIn(RSS/N) + dIn(N) (15.9)

Both AIC and BIC penalize the model structural complexity and thus avoid over-
fitting. Based on minimizing these criteria, model structure selection becomes an



342 Y. Chen et al.

integer optimization problem. Such an optimization problem can be solved via back-
ward and/or forward regression, genetic algorithm, particle swarm algorithm, etc.
It is important to note that these criteria-based methods require the assumption of
consecutive AR set (and identical sets of functional spaces for FS-TAR and FP-AR)
for the aforementioned four time-variant AR models to simplify the model struc-
ture selection procedure [14]. Without such an assumption, the integer optimization
problem will have 2¢ (d is usually greater than 100) different solutions, which is
computationally impossible to find the global minimiser.

The regularization (e.g., /-1 norm)-based method has recently been adopted for
model structure selection for the FP-AR model [3]. The regularization-based methods
are free from the assumptions of consecutive AR set and identical sets of functional
spaces, and, therefore, achieve higher modelling accuracy [3, 4]. With an initial (suffi-
cient large) n, and high dimension functional spaces, the least absolute shrinkage
and selection operator (LASSO) estimator is given as follows,

0 = argmin{|ly — ®70|} + A/6| (15.10)

where A > 0 is a tuning parameter and || denotes the /-Inorm. The selection of A
is critical. When A = 0, the LASSO will reduce to the LS estimator. Too large A
value will force too many coefficients to zero, whereas too small A value will force
a limited number of coefficients to zero. The A can be selected by either the K-fold
cross-validation [3] or validation set approach [4]. Other regularizations, such as [-2
norm and elastic net [15], are also options for time series model structure selection.

15.3.3 Model Validation

Model validation is mainly based on a validation signal. Upon the identification of
a time series model, the inverse filter is constructed and then applied to process the
validation signal. We refer to the residual obtained from the validation signal as
‘residual-of-validation’. Model accuracy can be judged by the mean squared error
(MSE) of the residual-of-validation, the randomness of the residual-of-validation,
and the frozen-time spectrum [3, 5]. First, a model with a lower MSE of the residual-
of-validation is more accurate in modelling the baseline vibration than those with
a higher MSE [36, Sect. 7]. Second, the more random the residual-of-validation is,
the more accurate the model is. Ljung—Box test [16] can be conducted to quantify
the randomness. Last, the frozen-time spectrum S(f, ¢) of time series models can be
obtained and compared with the non-parametric spectrum (e.g. short-time Fourier
transform) of non-stationary signals. An accurate time series model should give a
parametric spectrum in good agreement with the non-parametric one.
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15.4 Time Series Model-Based Fault Diagnosis

Fault diagnosis may be based on either model residuals or model parameters. In this
section, we introduce both model residual-based methods and model parameter-based
methods.

15.4.1 Model Residual-Based Method

For fault detection, the model residual-based method relies on the identification of a
baseline time series model. Figure 15.1 shows the schematic of the model residual-
based method for fault detection [3]. A time series model is identified to represent
the baseline vibration signals. Then, the vibration signals collected under future
unknown health state are processed by an inverse filter constructed from the baseline
model. Any changes in the residual signals may indicate the occurrence of a fault.
Researchers have examined the whiteness [8], variance [17, 18], Gaussionality [7],
and impulsiveness [3, 8] to quantify the changes in residual signals.

For severity assessment or fault mode identification, the model residual-based
method relies on the identification of time series models under each severity level or
fault mode. Figure 15.2 shows the schematic of the model residual-based method for
severity assessment [4, 19]. The presented scheme can also be used for fault mode
identification by changing the fault severity states to fault modes. During the training
phase, the training signals collected under each fault severity level and a wide range
of the speed variation are used. Under each fault severity level, a time series model
is identified to represent the vibration signals of that state. We refer these time series
models as state models. During the testing phase, these trained state models are used
for severity assessment. Vibration signal y,, along with necessary operating condition
variables is collected under an unknown health state of the gearbox. Afterwards, the
inverse filters from each of the state models are applied to process the vibration
signals collected under the unknown health state and to obtain residuals of the state
models. The final health state is classified as the state with an inverse filter that gives
minimal residual MSE. Note that in industrial applications, it is not easy to obtain the
signals under known health states. This is the major challenge associated with this
model residual-based method for severity assessment or fault mode identification.

15.4.2 Model Parameter-Based Method

The model parameter-based method requires the identification of a model during
the testing stage. For fault detection, the model parameter-based method is based on
comparing the parameters of the current model with the parameters of the baseline
time series model. Figure 15.3 shows the schematic of the model parameter-based



344 Y. Chen et al.

" | Accelerometer

Healthy I Unknown health state Time
Baseline time Residual Residual analysis Healthy?
series model y Faulty?
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Fig. 15.2 Model residual-based severity assessment or mode identification method [4]
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Fig. 15.3 Model parameter-based fault detection method [21]
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method for fault detection [20, 21]. During the training stage, a time series model
is identified to represent the baseline vibration signals. During the testing stage,
another time series model is identified to represent the current vibration signals from
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an unknown health state. Fault detection is based on testing statistical differences
between the model parameters under the healthy state 8 and the model parameters
under the unknown health state 0, through the following hypotheses [20].

HO:05 -6, =0;H1;05 -0, #0 (15.11)

where HO denotes the null hypothesis and H1 denotes the alternative hypothesis. If
HO is valid, then the unknown health state is deemed healthy. Otherwise, the unknown
health state is detected as faulty.

For severity assessment or fault mode identification, the model parameter-based
method is based on comparing the parameters of the current model with the param-
eters of the trained state models [10]. Figure 15.4 shows the schematic of the model
parameter-based method for severity assessment or fault mode identification. During
the training stage, the state time series model is identified for each severity level or
each fault mode. During the testing stage, another time series model is identified
to represent the current vibration signals from an unknown health state. Severity
assessment or fault mode identification is based on testing statistical differences
between the model parameters obtained from the training stage (04, 01, ..., 0,,) and
the model parameters under the unknown health state 0, through hypotheses similar
to Eq. (15.11). The final health state is classified as the state with a valid null hypoth-
esis. Since the model parameter-based method requires the identification of a model
during the testing stage, it is generally not suitable for online applications.

Training phase

Speed k
Sel:f:or : > State models
Healthy 6
Vibration | V¢ J State #10,
Sensor .
Known crack states J State #M 0y,
v
ke
Ssng::r ] HO: 0, - 0= 0 valid? | Assessed
Current model | HO: 6, - 6, =0 valid? health state
Vibration | Vi 0, : L >
Sensor HO: 0, - 8,,= 0 valid?
Unknown crack state

Fig. 15.4 Schematic of the model parameter-based severity assessment method [11]
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15.5 Applications of Model Residual-Based Methods

This section presents the applications of the two model residual-based methods [3,
4] for fault detection and severity assessment of gear tooth crack. Section 15.5.1
will briefly describe the experimental dataset. Section 15.5.2 will present the appli-
cation of the sparse FP-AR model residual-based fault detection method [3] on
vibration signals different from the applications presented in ref.[3]. Section 15.5.3
will summarize the application of the sparse VFP-AR model residual-based fault
detection method, as reported in Ref.[4].

15.5.1 Experimental Dataset

The experimental dataset was collected at the University of Pretoria, South Africa
[22, 23]. Readers can refer to refs [22, 23]. for the detailed experimental setup. Two
vibration sensors were equipped on this test rig. One vibration sensor is single axial
and is labelled as #7. The other vibration sensor is a triaxial accelerometer. The
experimental dataset contains 100 data files from a healthy gearbox and 1400 data
files from a run-to-failure experiment with 50% initial crack and duration of around
21 days of continuous running. Each data file contains data collected within 20 s.
The sampling frequency was f; = 25.6 kHz. These vibration signals were further
low passed using an FIR filter with a cut-off frequency of f. = 1.6 kHz and then
downsampled from f; = 25.6 kHz to f; = 3.2 kHz. When collecting each data file,
an electrical motor drove the transmission train such that the rotating speed of the
target gearbox followed a sinusoidal-like profile with a period equals to 10 s. The
alternator generated a load torque positively correlated to the speed.

15.5.2 FP-AR Model-Based Fault Detection

In this subsection, we present the application of the sparse FP-AR model residual-
based method [3] for gear tooth crack fault detection. In ref.[3], the method was
applied to the vibration signal collected from the sensor labelled as #7. They did not
analyze the vibration data collected from the triaxial accelerator. In this subsection,
we are to apply the method reported in ref [3] to the vibration signal collected from
the x-direction of the triaxial accelerometer (with a sensitivity of 100 mV/g). In other
words, a one-dimensional vibration data series from a different sensor of the same test
rig will be used to assess the effectiveness of the sparse FP-AR model residual-based
method [3].

The following configurations are the same as used in Ref. [3]: The signals from
a zebra-tape shaft encoder are used in this subsection to obtain the rotating speed



15 Time Series Modelling of Non-stationary ... 347

information. Training and validation data are arbitrarily selected from the 100 base-
line data files. The training data were 7.5 s in length, which was truncated from the
length of 20 s. The validation data also have a length of 7.5 s. During the sparse
FP-AR modelling, the initial set of functional spaces was configured as {1, wy, 2,
..., w,'}, where w; is the rotating speed. The candidate set for A was configured as
[0,1x1078,1x 1077, ..., 1 x 107'].

The following results are obtained when we apply the sparse FP-AR model
residual-based method to the vibration signal collected from the x-direction of the
triaxial accelerometer: The initial n, was determined as {1, 2, ..., 63} by BIC. When
A = 0, we achieved the minimum CVMSE. By increasing X, the CVMSE will get
bigger. We need to use a larger A value that does not have too big a CVMSE. When
A increases to 1 x 107>, the CVMSE is still within one standard deviation of the
minimum CVMSE [3]. Therefore, A = 1 x 107> is chosen. Table 15.1 lists the
modelling performance of the identified sparse FP-AR. From the table, we can see
that the residual-of-validation of the sparse FP-AR model has a p-value of 0.1509
from the Ljung—Box test. This p-value is significantly higher than the p-value of 0 of
the validation signal. This means that the randomness of the residual-of-validation
is much higher than the original validation signal.

Figure 15.5 shows the non-parametric spectrum (a) and the frozen-time spectrums
(b) obtained from the sparse FP-AR model. The frozen-time spectrum obtained
from the sparse FP-AR model aligns well with the non-parametric spectrum by
tracking the time-varying spectral contents. Given the above model validation criteria,

Table 15.1 Modelling performance of the sparse FP-AR model. Algorithms were coded in
MATLAB 2019a and implemented on a desktop with two Intel 2.4 GHz processors and 16 GB
of RAM

Ljung-Box test, Ljung-Box test, CPU time in training, | CPU time in testing,
p-value, of validation | p-value, of (min) (s)
signal residual-of-validation
0 0.1509 48 0.4
( a ) Amplitude ‘EﬂB] ( b) -
= 30 o)
Z 2
= 20 =
[ 2
g 5
2 10 5
g g 05
= 0 R
10 0
< 2 4 [{]
Time[s] Time[s]

Fig. 15.5 Time—frequency spectrums: a non-parametric spectrum of the validation signal obtained
by MATLAB spectrogram function; b Frozen-time spectrum obtained from the sparse FP-AR
model. Z-axis scales are the same
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we can conclude that the sparse FP-AR model has good modelling accuracy when
representing the baseline vibration signal collected from the x-direction of the triaxial
accelerometer. The sparse FP-AR model used about 48 min in the training stage and
0.4 s in the testing stage. Since this training process is completed offline, the length
of time required is not very critical [3]. The computational time in the testing stage
is more critical as it determines whether the TSMBM based on the sparse FP-AR
model is practically useful or not [3]. In many applications where incipient faults do
not immediately lead to a catastrophic failure of the gearbox system, updating the
fault detection information every second is acceptable and thus requiring about 0.4 s
in testing is acceptable [23].

The identified sparse FP-AR model was used for detecting the gear tooth crack
faults. Each of the 99 baseline data files (the 100 baseline data files exclude the one
used for training the sparse FP-AR model) and 1400 run-to-failure data files are
truncated to have the speed profile the same as the validation signal. Figure 15.6
shows the normalized periodic modulation intensity (NPMI) [3] calculated from
both the raw data and the residuals obtained from the identified sparse FP-AR model
for each data file. The NPMI is the periodic modulation intensity (PMI) value of
the residual divided by the PMI of the residual of baseline vibration, where the
PMI represents the energy ratio between tooth crack-induced impulses and other
components. Figure 15.6a shows the baseline case, whereas Fig. 15.6b shows the
damaged case. It is clear that for the NPMI obtained from the raw signals, they are
of similar magnitude for both the healthy data files and faulty data files. On the other
hand, the NPMIs from the residuals of the sparse FP-AR model for the faulty data
files are obviously higher than those for the healthy data files. This means that using
the solid blue plots, we are able to detect the faults.

(a) (b)

the residual case
the raw data case

NPMI

0 : ; 3
0 50 100 0 200 400 600 800 1000 1200 1400
datafiles datafiles

Fig. 15.6 Normalized PMI for detecting the tooth crack fault. a Healthy data files; b faulty data
files
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15.5.3 VFP-AR Model-Based Severity Assessment

In this subsection, we summarize the application of the sparse VFP-AR model-based
method for gear tooth crack severity assessment, as reported in ref.[4].

Four discrete health states, namely, healthy (H), initial crack (F1), intermediate
crack (F2), and missing tooth (F3) were considered. The F1 state corresponds to the
gear with the initial 50% tooth crack. The F2 state corresponds to the gear that had
run 17 days after the initial 50% tooth crack. The F3 state corresponds to the gear
that ran right before the end of the run-to-failure experiment.

Under each health state, training, validation, and testing signals were prepared and
preprocessed. In total, 43 data files under each health state were used in which one
served for training (training signal), two for validation (one for model identification
and the other for measuring modelling accuracy), and the rest 40 for testing severity
assessment performance. The inverse filter constructed by the baseline sparse FP-AR
model identified in Sect. 15.5.2 was used to preprocess these signals and to obtain
residual signals.

For the training and validation signals, the first half (10 s) of the vibration signal
in a data file was used. Such a vibration signal experienced a full cycle of the speed
variation. On the other hand, the 40 segments of testing signals only lasted 5 s with
a starting point p; randomly sampled from [0, 0.25, 0.5, ..., 10]s.

For the identification of the sparse VFP-AR models, Legendre polynomial basis
functions were used for G(w,) and the refined B-splines for G(6,) [4] where 0, is
the rotating phase. The G(w,) was configured as {1, w;, w2, ..., w,}. As for the
refined B-splines,  was configured as 3 and K as 40 (i.e. the number of teeth 37
plus » = 3). Two parameters k and n were further determined by estimating a sparse
VFP-AR model with a small n, = 5 and examining the occurrence of periodic B-
spline bases. The k and n were determined as (24, 1) for F1 state; (24, 2) for F2 state;
(24, 3) for F3 state. Since the vibration signal under the H state did not have crack
induced impulses, its corresponding sparse VFP-AR model did not need to consider
the phase. In other words, the sparse VFP-AR model for the H state reduced to a
sparse FP-AR model. Afterwards, the n, was to be determined after obtaining the k
and n via the validation set approach. The n, was determined to be (50, 40, 35, 35)
for health states (H, F1, F2, F3), respectively.

Upon the identification of both the sparse VFP-AR models, the inverse filter was
constructed and then applied to process the validation signals for measuring the
modelling accuracy. Table 15.2 lists the MSE and the randomness of both residuals
and the validation signals (i.e. the residual of the baseline sparse FP-AR model). The
p-values from the Ljung—Box tests were reported, which means the probability of
being random. From this table, we can see that the sparse VFP-AR models return a
residual with reduced MSE and a higher probability of being random compared with
the validation signals.

Computational costs were evaluated and listed in Table 15.2 as well. The training
data points were 32,000. For four sparse VFP-AR models, the time required for
training was around 17.9 h. Since this training process was completed offline, the



350 Y. Chen et al.

Table 15.2 Modelling accuracy and computational cost of sparse VFP-AR models [4]

Health state H F1 F2 F3

MSE of residual(normalized m/s?) 0.881 1.172 1.114 | 1.191

MSE of validation signal (normalized m/s?) | 1.008 1.347 1.271 |1.369
Randomness of residual (p-value) 1.55 x 1073 | 1.56 x 1073 [0.0034 | 6.93 x 1073
Randomness of validation signal (p-value) |0 0 0 0

Time in training (h) 1.5 4.9 5.2 6.3

Time in testing (s) 2.2 2.4 24 2.6

length of time needed was not very critical [3, 4]. The computational time in the
testing stage is more critical to determine whether the method is practical or not
[3]. The inverse filter constructed by the four sparse VFP-AR models used less than
9.6 s. Again, in many applications where incipient faults do not immediately lead to
a catastrophic failure of the gearbox system, updating the fault detection information
every 10 s is acceptable.

Figure 15.7 shows the non-parametric spectrum (a, b, ¢, d) of the validation signals
as well as the frozen-time spectrums of the sparse VFP-AR models (e, f, g, h). We can
see the tooth crack-induced impulses as vertical lines in these spectrums. The vertical
lines in the frozen-time spectrums of sparse VFP-AR models behave discretely, which
are in good agreement with the discrete lines in non-parametric spectrums. The tooth
crack-induced impulses can be represented using sparse VFP-AR models.

Figure 15.7 shows the non-parametric spectrum (a, b, ¢, d) of the validation signals
as well as the frozen-time spectrums of the sparse VFP-AR models (e, f, g, h). We can
see the tooth crack-induced impulses as vertical lines in these spectrums. The vertical
lines in the frozen-time spectrums of sparse VFP-AR models behave discretely, which
are in good agreement with the discrete lines in non-parametric spectrums. The tooth
crack-induced impulses can be represented using sparse VFP-AR models.

The sparse VFP-AR models under known health state were applied to testing
signals for the severity assessment. For each testing signal, four model residuals
were obtained, and their MSE values were calculated. The health state was classified
as the state with an inverse filter that gave minimal residual MSE. Figure 15.8 shows
the classification results when processing the 40 testing signals under each health
state. The classification accuracy was reported to be 93.8%. The results showed the
effectiveness of the sparse VFP-AR model-based method.

15.6 Summary and Conclusion

This chapter presented the latest methodologies related to the time series model-
based techniques for gearbox fault diagnosis. We described four most widely used
time-variant time series models, typical parameter estimation and model structure
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Fig. 15.7 Time—frequency spectrums: a ~d STFT spectrum of the validation signal; e ~ h Frozen-
time spectrum of sparse VFP-AR models. Z-axis scales are the same for all spectrums [4]
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selection methods for model identification, model validation criteria, and fault diag-
nosis schemes based on either model residual or model parameters. Finally, this
chapter gave two examples to illustrate the applications of the model residual-based
fault diagnosis method on a lab gearbox. The following aspects may be further inves-
tigated in future studies: (a) various regularization techniques, such as /-2 norm and
elastic net, for the structure selection of time-variant time series models; (b) the
consideration of more than two operating condition variables in a VFP-AR model,
such as temperature, rotating speed, and load torque; and (c) the account of uncer-
tainties of operating condition variables when identifying a time-variant time series
model.
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