
Chapter 10
Network Invariants and Their Use
in Performability Analysis

Ilya Gertsbakh and Yoseph Shpungin

Abstract Network-type systems with binary components have important structural
parameters known in literature as Signature, Internal Distribution, D-spectra and
BIM-spectra. The knowledge of these parameters allows obtaining the probabilistic
description of network behaviour in the process of their component failures, and
probabilistic description of such network parameters as resilience, component impor-
tance, system failure probability as a function of component failure probability q, and
the approximation to reliability if q tends to 0. When the network has many compo-
nents, the exact calculation of Signatures or D-spectra becomes a very complicated
issue. We suggest using efficient Monte Carlo procedures. All relevant calculations
are illustrated by examples of networks, including flow in random networks and
network structural comparison in the process of network gradual destruction process.

Keywords Network structure invariants · Network resilience · Shock model ·
Reliability approximation

10.1 Introduction

Reliability and availability [1] are two important probabilistic attributes of performa-
bility of any network or systemwith binary states. This chapter lays down discussion
of important structural parameters known as Signature, Internal Distribution, D-
spectra and BIM-spectra. Before we do that some definitions are provided to make
the discussion meaningful.
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10.1.1 Networks, Node and Edge Failures. Success Criteria

We meet networks every day and everywhere in our life. For the formal study of
network properties, we must operate with abstract models of networks. In further,
our principal network model will be a triple N = (V, E, T ), where V is the vertex
or node set, E is the edge or link set and T is a set of special nodes called terminals,
T ∈ V . In simplewords, a network is a collection of circles (nodes) and links (edges),
i.e. line segments connecting the nodes. Terminals are special nodes that do not fail
and they are represented as bold circles, like in Fig. 10.1.

Our expositionwill be centred aroundnetworkbehaviourwhen its elements (nodes
and/or links) fail.Wewill deal with so-called binary elements that can be in two states
up and down denoted by 1 and 0, respectively. When speaking about links, link i
failure means that this link is erased, i.e. it does not exist.

The state of link i, i = 1, . . . , n is denoted by binary variable xi . If xi = 1,
link i is up; if xi = 0, link i is down. xi is often called link indicator variable. In
some models, the elements subjected to failure are network nodes (vertices). If the
indicator variable of node j is y j = 0, i.e. node j is down, it means that all links
incident to node j are erased, but the node itself remains intact. By an agreement, the
terminals do not fail.

By network state, we mean the set of all its elements (nodes and edges) that are
in up state. We will distinguish network UP (operating) and DOWN (non-operating)
states according to a certain criterion.

Below we give several examples of different UP and DOWN criteria. All exam-
ples relate to the network are shown in Fig. 10.1. This network has two terminals:
1 and 6.

Terminal Connectivity Criterion. Nodes Unreliable, Edges Reliable
We say that the network is UP if each pair of terminals is connected by a path of
non-erased elements. Let node 2 is up, and nodes 3, 4, 5 are in the down state. Then
the network is UP, because the node 2 connects terminals 1 and 6. Let now nodes 2
and 4 are down, and nodes 3 and 5—up. Then the network is DOWN.

Terminal Connectivity Criterion. Edges Unreliable, Nodes Reliable
Suppose that edges (1,2), (2,5) and (5,6) are up, and all other edges are down. The
network is UP. Let now the edges (1,2) and (1,4) be down, and all other edges are
up. The network is DOWN.

Fig. 10.1 Network with six
nodes and nine edges. Nodes
1 and 6 are Terminals

1 2 3

4 5 6
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Max Component and Max Cluster Criteria. Nodes Unreliable
For this example, we need the definition of a component. A subset V1 ⊂ V is called
an isolated component of N if all nodes of V1 are connected to each other and there
are no edges of type e = (a, b), where a ∈ V1 and b ∈ V − V1. An isolated node
is considered as an isolated component. The size of a component is the number of
nodes in it.

We say that the network is in UP state if the maximal component has at least x
nodes, where x is some given number. Suppose that x = 3. Let the nodes 3 and 5
are up, and the rest of the nodes—down. Then the maximal component consisting of
nodes 3, 5, 6 and edges (3,6), and (5,6) is of size 3, and therefore N is UP. Let now
nodes 3 and 4 are up, and nodes 2, 5 are down. Obviously N is DOWN.

By the definition, an isolated component of N is called a cluster if it contains at
least one terminal node. We say that the network is UP if it contains a cluster of size
at least x , where x is some given number. Let x = 4. If the nodes 2 and 5 are up and
3, 4 are down, then we have a cluster of size 4, and N is UP. If only nodes 3 and
5 are up then we have maximal cluster of size 3, and N is DOWN. (Recall that the
terminals are always up.)

Further we will use the notions cut and min-cut. Appropriate definition follows.

Definition 1 A subset of network unreliable elements (c1, c2, . . . , ck) is called a cut
if the following condition is satisfied:

If all these elements are in state down, then the network is also in state DOWN.
A cut is called minimal (min-cut) if after removing any element, the new subset

is no more a cut.

Consider for example, the network in Fig. 10.1 for the case when the nodes are
unreliable. The subset of nodes (2, 3, 5) is cut, but not a min-cut. Indeed, if node 3 is
removed, the remaining subset (2, 5) is still a cut. It is obvious that (2,5) is min-cut.

10.2 Destruction Spectrum and Network Reliability

10.2.1 D-Spectrum and CD-Spectrum

Definition 2 Let π = ei1 , ei2 , . . . , ein be a permutation of all unreliable elements
(edges or nodes). Start with a network with all elements being up and ‘erase’ the
elements in the order they appear in π , from left to right. Stop at the first element eir

when the network becomes DOWN. The ordinal number r of this element is called
the anchor of permutation π and denoted r(π).

Remark 1 Note that the anchor value for given π depends only on the network
structure and its DOWN definition. It is completely separated from the stochastic
mechanism that governs the node or edge failures in a real network destruction
process.
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Example 1 Consider the network shown in Fig. 10.1. In this network with two
terminals 1 and 6, the edges are reliable and nodes 2, 3, 4, 5 are unreliable. Consider
an arbitrary permutation π of node numbers, e.g. π = (3, 5, 2, 4). We start the
destruction process with all nodes in the up state. Erase one node after another in
the order prescribed by π , from the left to right. The network becomes DOWN after
erasing the third node, i.e. node 2. So we have r(π) = 3.

Definition 3 Let xi be the number of permutations such that their anchor equals i .
The set

D =
{

d1 = x1
n! , . . . , dn = xn

n!
}

(10.1)

is called the D-spectrum of the network.

Remark 2 ‘D’ in Definition 1 refers to the ‘destruction’ process of erasing network
elements from left to right in the permutation π . D-spectrum is distribution of the
anchor value, and obviously

∑n
i=1 di = 1. Numerically, the D-spectrum coincides

with the so-called Signature introduced first in (Samaniego 1985, see [2]). It was
proved there that if system elements fail independently and their lifetimes Xi have
identical continuous distribution function F(t), then the system lifetime distribution
FS(T ) = ∑n

i=1 di · Fi :n(t) where Fi :n(t) is the cumulative distribution function of
the i th order statistics in random sample X1, X2, . . . , Xn .

Example 1 (continued) Table 10.1 shows all 24 permutations of the nodes. The
nodes destruction of which caused the failure of the network are marked by asterisk.
Directly from this table we get x1 = 0, x2 = 8, x3 = 10, x4 = 6, and D-spectrum
of the network equals (d1 = 0, d2 = 1/3, d3 = 5/12, d4 = 1/4).

Definition 4 Let yb =
b∑

i=1
di , b = 1, 2, . . . , n. Then the set (y1, y2, . . . , yn) is called

the Cumulative D-spectrum (CD-spectrum).

Remark 3 Like an anchor, both spectra (D and CD) depend only on the network
structure and the definition of network DOWN state. That is, they are invariant with
respect to the up/down probabilities of the elements.

Table 10.1 All permutations
of nodes

Column 1 Column 2 Column 3 Column 4

2,3,4*,5 3,2,4*,5 4,2*,3,5 5,2*,3,4

2,3,5*,4 3,2,5*,4 4,2*,5,3 5,2*,4,3

2,4*,3,5 3,4,2*,5 4,3,2*,5 5,3,2*,4

2,4*,5,3 3,4,5,2* 4,3,5,2* 5,3,4,2*

2,5*,3,4 3,5,2*,4 4,5,2*,3 5,4,2*,3

2,5*,4,3 3,5,4,2* 4,5,3,2* 5,4,3,2*
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The following theorem establishes an important combinatorial property of the
CD-spectrum.

Theorem 1 Let C(i) be the number of cut sets of size i in the network. Then

C(i) = yi · n!
i !(n − i)! (10.2)

The proof of Theorem 1 can be found in the textbook [3].

Example 1 (continued)
We get the following CD-spectrum of our network: (y1 = 0, y2 = 1/3, y3 =

3/4, y4 = 1).
Using formula (10.2), we get: C(1) = 0, C(2) = 2, C(3) = 3, C(4) = 1.

10.2.2 Network Reliability and CD-Spectrum Monte Carlo

The following theorem gives an expression of network reliability using
CD - spectrum.

Theorem 2 If all pi = p, then network static reliability R(N ) can be expressed in
the following form:

R(N ) = 1 −
n∑

i=1

yi · n!qi pn−i

i !(n − i)! (10.3)

It is clear that even for relatively small networks, the exact calculation of network
CD-spectrum is extremely difficult. Below we present Monte Carlo algorithm for
estimating the CD spectrum.

Algorithm 1: Evaluation of CD-spectrum

1. Initialize all ai to be zero, i = 1, . . . , n.
2. Simulate permutation π of all elements.
3. Find out the anchor r(π).
4. Put ar = ar + 1.
5. Put r = r + 1. If r ≤ n GOTO 4.
6. Repeat 2–5 M times.
7. Estimate yi via ŷi = ai

M .

Figure 10.2 shows a networkwith 32unreliable nodes and60 reliable edges.Nodes
4, 13, 27, 30 are terminals. Table 10.2 showsCD-spectrum for grid networkwith unre-
liable nodes and for terminal connectivity criterion. Table 10.3 shows CD-spectrum
for the same network, but with unreliable edges and maximal cluster criterion (x =
25). Both spectra were obtained using algorithm 1 with M = 10,000.
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Fig. 10.2 Grid network with 32 unreliable nodes and 60 reliable edges. Nodes 4, 13, 27, 30 are
terminals

Table 10.2 Grid CD-spectrum. Nodes unreliable. Terminals T = (4, 13, 27, 30) terminal
connectivity criterion

i yi i yi i yi i yi

1 0 9 .2069 17 .9664 25 1

2 0 10 .3188 18 .9824 26 1

3 .0011 11 .4490 19 .9924 27 1

4 .0046 12 .5838 20 .9967 28 1

5 .0137 13 .7070 21 .9986 29 1

6 .0352 14 .8078 22 .9996 30 1

7 .0677 15 .8811 23 1 31 1

8 .1210 16 .9322 24 1 32 1

Remark 4 Using CD-Monte Carlo for calculating network reliability has several
advantages over other methods, including the following two.

1. Since CD-spectrum is an invariant, once estimated it, we can calculate network
reliability for any values of p.

2. Using this method, we avoid the so-called rare event phenomenon [3].
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Table 10.3 Grid CD-spectrum. Edges unreliable. Terminals T = (4, 13, 27, 30). Maximal cluster
criterion, x = 25

i yi i yi i yi i yi i yi

1 0 9 .0001 17 .0089 25 .2642 33 .9660

2 0 10 .0002 18 .0147 26 .3500 34 .9881

3 0 11 .0002 19 .0227 27 .4510 35 .9971

4 0 12 .0002 20 .0370 28 .5641 36 .9996

5 0 13 .0004 21 .0593 29 .6757 37 1

6 0 14 .0013 22 .0899 30 .7791 38 1

7 0 15 .0026 23 .1321 31 .8657 39 1

8 0 16 .0044 24 .1891 32 .9291 40-60 1

10.2.3 Two Alternative Methods for Evaluating Network
Reliability

Method 1: Crude Monte Carlo

A common method for evaluating network reliability is the Crude Monte Carlo
(CMC) method. We present below the corresponding algorithm.

Algorithm 2: CMC

1. Set Y = 0
2. For each element i , Simulate its state with probability pi

3. Check the network state in accordance with given criterion
4. If the network state is UP Then Y := Y + 1
5. Repeat steps 2, 3, 4 M times.
6. Estimate R̂ as R̂ = Y

M

In many cases, using CMC gives good results, but unlike the CD-Monte Carlo, it
has some drawbacks, including the following two.

1. For each p value, it is necessary to restart the simulation process.
2. The main disadvantage of CMC is the presence of a rare event phenomenon.

That is, if p → 1, then the relative error r.e.(CMC) → ∞. Therefore CMC is
not suitable for evaluating very reliable networks, which is actually an important
practical case.

Method 2: Burtin–Pittel Approximation
Burtin–Pittel approximation provides rather accurate network reliability estimates for
the case of a highly reliable network and independent and equal element unreliability
qi = q.

Assume that q → 0, that is the network is highly reliable. Let the number of
min-cuts of a minimal size r is equal to s.
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Table 10.4 Grid network
reliability by CMC,
Destruction Monte Carlo
(DMC) and Burtin–Pittel
approximation (B–P)

p/Algorithm CMC DMC B–P

0.7 0.6786 0.678619 0.865

0.8 0.9126 0.909937 0.96

0.9 0.9922 0.991761 0.995

0.95 0.9995 0.999185 0.999375

0.99 1 0.9999944 0.999995

Then by Burtin-Pittel approximation

Q(N ) = 1 − R(N ) ≈ s · qr . (10.4)

Note that this approximation was first suggested in a more general form by Burtin
and Pittel (see [4]).

We explain this approximation using the example of the network in Fig. 10.1.
As we have seen in the above example, the unreliability of this network is Q(N ) =
1− R(N ) = 2q2 p2+3q3 p+q4. The main term here (when q → 0) is 2q2 p2, where
2 is the number of min-cuts of minimal size. Clearly that 2q2 p2 = 2q2(1 + o(1)) as
q → 0.

Consider now the grid network in Fig. 10.2. Obviously, the minimal size of the
min-cuts is 3. All min-cuts of size 3 are as follows: (3,5,10), (7,14,19), (24,29,36),
(24,29,34), (24,29,35). So in this case, we get 1 − R(N ) ≈ 5 · q3.

Table 10.4 presents grid network reliability for different values of p, calculated
using CMC, Destruction Monte Carlo (DMC), both with M = 10,000, and also
Burtin-Pittel approximation (B-P). Comparing CMC and DMCwe see a good corre-
spondence up to p = 0.95. However, starting from p = 0.99 reliability values
obtained using CMC with M = 10,000 will be 1.

Note that here we see the rare event phenomenon.
For example, we want to estimate the reliability of the order of 0.99999 with

relative error at least 10%. (Note that rel.arr. (CMC) =
√

R√
M ·(1−R)

.) Then we get M =
10,000,000.

A more detailed comparison of these methods can be found in [5].
As for B-Pmethod, we see that it gives good approximation starting from p = 0.9.

10.3 Network Resilience

One of the important concepts in the analysis of the network behaviour under random
attack on its elements is network resilience.

Definition 5 Probabilistic resilience [6] Assume that network element failures
appear in random order, i.e. all n! orderings are equally probable.
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Let N be a network with n elements. The probabilistic resilience respr(N ;β) is
the largest number of element failures such that N is still UP with probability 1− β.
Formally,

respr(N , β) = max

{
I :

I∑
i=1

P(N , i) ≤ β

}
.#

The concepts of resilience and CD-spectrum are closely related. From the CD-
spectrum, we can get the network resilience for any β.

Consider, for example, CD-spectrum shown in Table 10.2, and let β = 0.01, 0.05,
0.1, 0.3, 0.5. Then we get:

respr2(N , 0.01) = 2, respr(N , 0.05) = 6,

respr(N , 0.1) = 7, respr(N , 0.3) = 9,

respr(N , 0.5) = 11.

Consider now CD-spectrum shown in Table 10.3. We get:

respr2(N , 0.01) = 17, respr(N , 0.05) = 20,

respr(N , 0.1) = 22, respr(N , 0.3) = 25,

respr(N , 0.5) = 27.

Note that resilience is also an invariant of the network, since it depends solely on
the network topology and criterion UP/DOWN.

10.4 Birnbaum Importance Measure (BIM)
and BIM-Spectrum

In this section, we introduce the Birnbaum Importance Measure (BIM) [3, 7] of
network element j , j = 1, 2, . . . , k. Let network reliability R(p1, p2, . . . , pk) be a
function of element reliability pi . Then BIM of element j is defined as

BIM j = ∂ R(p1, p2, . . . , pn)

∂p j
= R

(
p1, p2, . . . , 1 j , . . . , pn

)

− R
(

p1, p2, . . . , 0 j , . . . , pn
)

(10.5)

BIM has a transparent probabilistic meaning: it is the gain in network reliability
received from replacing a down element j by an absolutely reliable one. BIM j gives
the approximation to the network reliability δR resulted from element j reliability
increment by δp j .
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Table 10.5 BIM-spectrum for network in Fig. 10.1

i zi2 zi3 zi4 zi5

1 0 0 0 0

2 1/3 0 1/6 1/6

3 3/4 1/2 1/2 1/2

4 1 1 1 1

The use of BIM in practice is limited since usually the reliability function
R(p1, p2, . . . , pk) is not available in explicit form. However the BIM-spectrum that
we define below allows to estimate the element BIM’s without knowing the analytic
form of the reliability function [3].

Definition 6 Denote by Zi j the number of permutations satisfying the following two
conditions:

(1) If the first i elements in the permutation are down, then the network is DOWN.
(2) Element j is among the first i elements of the permutation.

The collection of zi j = Zi j/k! values, i = 1, . . . , k; j = 1, . . . , k, is called
BIM-spectrum of the network. The set of zi j values for fixed j and i = 1, . . . , k is
called BIM j -spectrum, or the importance spectrum of element j .

Example 2 Let us return to the network in Fig. 10.1, and using Table 10.1 calculate
one of the Zi j values, say Z42. The permutations that satisfy the condition of the
above definition are the following: (2,4,3,5), (2,4,5,3), (4,2,3,5), (4,3,5,3). Table 10.5
presents the BIM-spectrum for our network.

The columns in this table are the BIM j spectra.
The following theorem [3] demonstrates how BIM j can be calculated without

using the reliability function.

Theorem 3 BIM j , j = 1, . . . , k, equals,

BIM j =
n∑

i=1

n!(zi, j · qi−1 pn−i − (
yi − zi, j

)
qi pn−i−1

i !(n − i)! (10.6)

Note that yk − zk j = 0, which means that in the second term of the numerator of
(10.6) one can assume that index i changes from 1 to k − 1.

Remark 5 BIM-spectrum depends only on the network structure and the defini-
tion of network DOWN state. That is, this is invariant with respect to the up/down
probabilities of the elements.

The exact calculation of BIM-spectra is a formidable task, but we can estimate the
spectra usingMonte Carlo approach. An appropriate algorithm [3, 5] simultaneously
estimates the CD-spectrum and the BIM-spectra for all network elements.



10 Network Invariants and Their Use in Performability Analysis 239

Sometimes in the problems of analysis and design of networks, we do not need
to know the values of the importance of the elements. We want to know how the
elements are ranked by importance. The following theorem [3, 5] allows us to
compare elements without calculating their BIM’s.

Theorem 4 Suppose the BIM’s for the network are given. Let us fix two indices α and
β, α 	= β, and the corresponding Zi,α and Zi,β values. Then if for all i, i = 1, . . . , k,
Zi,α ≥ Zi,β , then BIMα ≥ BIMβ for all p values.

For the network in Fig. 10.1, comparing the columns in Table 10.5 we get:

BIM2 > BIM4 = BIM5 > BIM3

Additional information on BIM’s can be found in [8].

10.5 Border States

10.5.1 Border States and Reliability Gradient

In this section, we introduce the so-called network border states that are closely
related to the reliability gradient.

Definition 7 Reliability gradient vector ∇ R is defined as,

∇ R =
[

∂ R

∂p1
, . . . ,

∂ R

∂pk

]
(10.7)

In words: component i of ∇ R is BIMi .

For the following definition, it is more convenient for us to determine the state
of the network as a vector of element indicator variables, i.e. state x = (x1, . . . , xk),
where xi = 1, if element i is up, and xi = 0 otherwise.

Definition 8 Network state x = (x1, . . . , xk) ∈ DOWN is called the neighbour of
the state y = (y1, . . . , yk) if x differs from y in exactly one position. If y ∈ U P then
we call the x border state. The set of all border states is called the border set and
denoted as DN∗.

Remark 6 It is clear from the definition 8 that the border state and also the border
set are network invariants.

Example 3 Consider the network in Fig. 10.1. Its state is determined by the
vector of nodes indicators (x2, x3, x4, x5). (Recall that nodes 1 and 6 are termi-
nals.) For example (x2 = 0, x3 = 0, x4 = 1, x5 = 0) ∈ DOWN is the neigh-
bour of (x2 = 1, x3 = 0, x4 = 1, x5 = 0) ∈ UP (and also the neighbour of
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(x2 = 0, x3 = 0, x4 = 1, x5 = 1) ∈ UP). So x is a border state. The border set for
our network is

DN∗ ={v1 = (0, 0, 0, 0), v2 = (0, 1, 0, 0), v3 = (0, 0, 1, 0),

v4 = (0, 0, 0, 1), v5 = (0, 1, 1, 0), v6 = (0, 1, 0, 1).}

To clarify the connection between border states and gradient, we introduce an
artificial evolution process [3, 9] on network elements.

Assume that at t = 0 each element is down. Element i is born after random time
τi ∼ exp(μi ). After the ‘birth’, the element remains up ‘forever’. Note that for fixed
time t0, P(τi > t0) = qi = e−μi t0 .

The following theorem [3, 9] opens the way to calculating the reliability gradient.

Theorem 5 Let P(v; t) be the probability that the network is in state v at
time t. Denote by �(v) the sum of μi over all set of indices i such that v +
(0, . . . 1i , 0, . . . 0) ∈ UP. Formally

Γ (v) =
∑

v∈DN ∗,v+(0,...,1i ,0,...,0)∈UP
μi (10.8)

Then the following equation holds:

∇ R • {q1μ1, . . . , qkμk} =
∑

v∈DN ∗
P(v; t)�(v), (10.9)

where by • denoted scalar profuct.
We see from the last equation, that knowing the probabilities of border states,

we can calculate the reliability gradient. In most cases, the explicit expression of
these probabilities is not available. However, formula 10.9 makes possible using the
well-known Lomonosov’s algorithm [3, 9] for estimating P(v; t) and ∇ R.

Here we restrict ourselves to a brief description of the idea of the Monte Carlo
algorithm of estimation the gradient.

First of all, we introduce an evolutionary process on network elements, as
described above. We recall that for fixed time t0 element i is in the state up with
probability pi . Now consider a sequence in an evolution process. This sequence
starts from a zero state w0. Let π = (i1, i2, . . . , ik) be some permutation of the
network elements, so that i1 has a minimum birth time, i2 was born the second, and
so on. We associate with this permutation a sequence of network states: a state w1 in
which only i1 is up, a state w2 with two elements in up, and so on, up to the first state
UP. This sequence of states we call the trajectory w = (w0, w1, . . . , ws). Consider,
for example, the network with unreliable nodes is shown in Fig. 10.1. Suppose node
4 is born first, node 5 is born next and node 3 is born third. Then we get the following
trajectory:

w = {w0 = (x2 = 0, x3 = 0, x4 = 0, x5 = 0),
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w1 = (x2 = 0, x3 = 0, x4 = 1, x5 = 0),

w2 = (x2 = 0, x3 = 0, x4 = 1, x5 = 1),

w3 = (x2 = 0, x3 = 1, x4 = 1, x5 = 1) ∈ U P}

Note that w2 is one of the border states.
The following is a simplified algorithm for estimating the gradient.

Algorithm 3: Evaluation of Gradient

1. Put ∂ R
∂p1

= 0, i = 1, . . . , n.
2. Generate trajectory w = (w0, w1, . . . , ws).
3. Find the first j so that w j is a border state.
4. Calculate convolution Conv = P

(
τ
(
w j

) ≤ t0
) − P

(
τ
(
w j+1

) ≤ t0
)
,

where τ
(
w j

)
and τ

(
w j+1

)
are the birth time of w j and w j+1, respectively.

For each xi ∈ �
(
w j

)
calculate ∂ R

∂p1
= ∂ R

∂p1
+ Conv.

5. Put j = j + 1. If j < s Goto 4.
6. Repeat 2–5 M times.
7. For each i = 1, . . . , n put ∂ R

∂pi
= ∂ R

∂pi
/M · qi .

Detailed explanation of the algorithm as well as an analytical expression for
calculating the convolution of exponentials are given in [3].

10.5.2 Border States and Availability

Let us now consider the following dynamic model. Each network element, indepen-
dently of others, alternates between two states: up and down. When element i is up,
it has failure rate λi . if it is down, it has repair rate μi . In equilibrium element i is up
with probability pi = μi/(μi + λi ). Let TU and TD be the average UP and DOWN
periods of the network in equilibrium. Our goal is to find these periods.

It is known [4] that the network availability Av(N ) can be expressed as follows:

Av(N ) = R(p1, p2, . . . , pk) = TU

TU + TD
(10.10)

The value ρ = 1
TU +TD

is called network DOWN → UP transition rate. The
following theorem shows the relationship between the transition rate and the border
states.
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Theorem 6 It can be shown in [3, 9],

ρ =
∑

v∈DN ∗
P(v)�(v) (10.11)

Example 4 Consider the network in Fig. 10.1. Assume that node i has failure rate
λi and repair rate μi . Rewrite the network border set obtained above.

DN ∗ = {v1 = (0, 0, 0, 0), v2 = (0, 1, 0, 0), v3 = (0, 0, 1, 0),

v4 = (0, 0, 0, 1), v5 = (0, 1, 1, 0), v6 = (0, 1, 0, 1)}.

Now by (10.11) we get:

ρ = P(v1)μ2 + P(v2)μ2 + P(v3)(μ2 + μ5)

+ P(v4)(μ2 + μ4) + P(v5)(μ2 + μ5) + P(v6)(μ2 + μ4).

For convenience, let μi = μ, λi = λ, for all i = 2, 3, 4, 5. Suppose that
μ = 4, λ = 1. Then p = 0.8, q = 0.2. Using a little arithmetics, we get ρ =
μ

(
q4 + 5pq3 + 4p2q2

) = 0.544. Now, easy to get R(N ) = p + p2 − p3 = 0.928.
Finally using (10.10) and (10.11), we obtain: TU = 1.706, TD = 0.132.

In the case of a large network, the Lomonosov’s algorithm adapted for this purpose
is used.

Let � be the set of all trajectories. We can rewrite (10.11) in the following form:

ρ =
∑
w∈�

(w)P(v|w)�(v),

where Pr(w) is the probability of the trajectory w (see [3], Chap. 9), and v is the
border state determinedby the trajectoryw.Now, simulating the trajectories andusing
the corresponding variant of the Lomonosov’s algorithm we obtain the availability
estimate.

Remark 7 An extremely efficient Lomonosov’s algorithm is based on inge-
nious graph-theoretic construction known as an evolution process on so-called
Lomonosov’s ‘turnip’ [3], Chap. 9. This algorithm has a number of useful properties.
Let us mention some of them.

1. The algorithm is a highly effective tool for calculating the reliability of monotone
systems, for any criteria UP, and for arbitrary (not necessarily equal) element
probabilities up.

2. The algorithm avoids the occurrence of a rare event phenomenon. Indeed, a
distinctive feature of a rare event is that the relative error in estimating the prob-
ability of this event tends to infinity. In the Lomonosov’s algorithm, the random



10 Network Invariants and Their Use in Performability Analysis 243

choice of the trajectories does not depend on the probabilities of the elements
and this explains the absence of this phenomenon.

3. It can be used to evaluate the mean stationary UP and DOWN periods.
4. It can be used to evaluate reliability gradient ∇ R.

Detailed description of the algorithm and its applications can be found in the book
[3], Chap. 9.

10.6 Examples

In this section, we present several examples of using the network invariants described
above.

10.6.1 Network Reliability Improvement

Consider the network with unreliable nodes in Fig. 10.2. Assume that all nodes are
in state up with probability p = 0.7. The network reliability (see Table 10.4) equals
then R = 0.6786. Our goal is to increase network reliability to R∗ = 0.8. Suppose it
is possible to replace several nodes with more reliable ones, say with up probability
p∗ = 0.9, and we are interested in doing minimal number of such replacements. A
good heuristic approach to solve this problem is the following.

First, rank all the nodes in descending order of their BIM’s. Next, successively
replace the nodes with more reliable ones until we get the required reliability.

The calculations performed show that all the nodes can be divided into several
groups according to their importance. In particular, the first group consists of one
node—29, the second group consists of four nodes: 10, 14, 24 and 28. We write it
for clarity as follows:

BIM29 > (BIM10 = BIM14 = BIM24 = BIM28)

This conclusion is based on the analysis of the network BIM-spectra.
Further, replacing the nodes 29, 10, 14, 24 with more reliable ones, we achieve

the desired reliability R∗ = 0.8169.
Partially, the BIM-spectrum data for the nodes 1, 10, 14, 24, 28, 29 are presented

in Table 10.6.
Spectrum values in the range of 20–32 are not shown. These values are almost the

same, since the probability of network failure starting from step 20 is very close to
1, and at step 23 is already equal to 1. From the table, we see that the BIM spectrum
values of node 29 are greater than those of the other nodes. Spectrum values for
nodes 10, 14, 24, 28 are close and intertwined. Node 1 does not belong to the first
two groups.
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Table 10.6 Grid Network BIM-spectrum. Nodes unreliable. Terminals T = (4,13,27,30)

i 1 3 5 7 10 13 15 17 19

Z1 0 0 .0010 .0101 .0810 .2144 .3990 .5089 .5923

Z10 0 .0002 .0046 .0230 .1185 .3102 .4280 .5187 .5953

Z14 0 .0002 .0040 .0201 .1217 .3155 .4378 .5266 .5968

Z24 0 .0008 .0069 .0264 .1217 .2965 .4150 .5131 .5899

Z28 0 0 .0020 .0156 .1136 .3103 .4235 .5167 .5928

Z29 0 .0008 .0073 .0274 .1291 .3225 .4394 .5270 .5945

Remark 8 It should be noted that the problem described above can also be solved
taking into account the cost of replacing elements. More information on network
analysis and optimal network design can be found in [3, 6].

10.6.2 Resilience of Flow Network

In this section, we consider the flow network. These networks are important in many
applications. By the definition, flow network is a directed network, where each edge
(a, b) has a flow capacity c(a, b). The flow delivered from a to b cannot exceed
c(a, b). Denote by s and t the source and sink nodes of the network. Denote by
Maxflow the maximal flow from s to t when all edges are up. We say that the
network is in DOWN state if its maximal flow is below some fixed level . (Note
that there exists an extensive literature with several fast algorithms for finding the
maximum flow in networks.)

Let us consider now the network shown in Fig. 10.3. It has 16 reliable nodes
and 30 unreliable and directed edges. The nodes 1 and 16 are the source and sink,

Fig. 10.3 Flow network
with 16 reliable nodes and 30
unreliable edges

  1 2 3 4

5 6 7 8

9 1 0 11 12

    13 14 15 16
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respectively. The corresponding capacities are given in Table 10.7. The calculated
value of Maxflow equals 26.

Table 10.8 presents 14 values of the network spectra for  = 10 and  = 15.
Based on these spectra, we can obtain the network resilience for different values of
.  = 10 and  = 15. Table 10.9 shows resilience for  = 10 and  = 15, for
some values of α.

Remark 9 More detailed information on resilience of flow networks can be found
in [10]. Note also that in [5] an example of comparing the resilience of networks
with the same number of nodes and edges but with different topological structures
is given.

Table 10.7 Edge capacities

(i, j) c(i, j) (i, j) c(i, j) (i, j) c(i, j)

(1, 2) 10 (6, 2) 9 (10, 14) 7

(1, 5) 9 (6, 7) 7 (11, 10) 7

(1, 6) 10 (6, 10) 8 (11, 12) 8

(2, 3) 7 (7, 8) 6 (11, 15) 7

(3, 4) 6 (7, 10) 8 (11, 16) 11

(3, 7) 8 (7, 11) 9 (12, 16) 9

(4, 8) 7 (8, 12) 8 (13, 14) 8

(5, 6) 8 (9, 10) 8 (14, 11) 7

(5, 9) 9 (9, 13) 6 (14, 15) 7

(5, 10) 8 (10, 13) 8 (15, 16) 10

Table 10.8 Flow network CD-spectrum for  = 10 and  = 15

i yi ( =10) yi ( =15) i yi ( = 10) yi ( = 15)

1 0 0 8 .5463 .8656

2 .0073 .0550 9 .6739 .9293

3 .0357 .1659 10 .7786 .9678

4 .0923 .3130 11 .8594 .9869

5 .1749 .4865 12 .9147 .9958

6 .2843 .6484 13 .9544 .9989

7 .4130 .7708 14 .9753 .9997

Table 10.9 Comparing resilience of flow network for  = 10 and  = 15

α 0.05 0.1 0.2 0.3 0.4 0.5 0.6

 = 10
 = 15

3
1

4
2

5
3

6
3

6
4

7
5

8
5
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10.7 Concluding Remarks

Analysing the text above and the example section, we see that network sustainability
analysis involves two types of information. Type A information is of non-stochastic
nature and is based on network graph description, node, edge, terminal definitions
and UP/DOWN definition of network states.

Four structural invariants have been defined in this paper (Signatures or Internal
Distributions), CD-spectrum, BIM -spectrum and Border States) representing type
A information.

All further analysis of network performance is done by combining structural
invariants with information on the stochastic behaviour of network components
subject to failure (edges or nodes), in static or dynamic situations. This informa-
tion we call of type B. A typical example of combining A and B types of information
is given in Sect. 10.6.1 on network reliability improvement.

A special ‘artificial’ variant of B-type informationwas an assumption that network
components subject to failure fail in random and equiprobable manner imitating
an external ‘shock’ situation. This shock model allows defining network resilience
parameter and compares networks resilience for various versions of their structure.

In conclusion, let us note that this chapter is based on ‘binary’ approach to network
structure. The book [11] goes further and introduces networks with several DOWN
states. This leads to multi-dimensional invariants. Moreover, also the binary nature
of failing edges or nodes can also be generalised, see [11] where in addition to up and
down states of failed components, an intermediate third ‘mid’ state has been added.
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