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Series Preface

With remarkable vision, Prof. Otto Hutzinger initiated The Handbook of Environ-
mental Chemistry in 1980 and became the founding Editor-in-Chief. At that time,

environmental chemistry was an emerging field, aiming at a complete description

of the Earth’s environment, encompassing the physical, chemical, biological, and

geological transformations of chemical substances occurring on a local as well as a

global scale. Environmental chemistry was intended to provide an account of the

impact of man’s activities on the natural environment by describing observed

changes.

While a considerable amount of knowledge has been accumulated over the last

four decades, as reflected in the more than 150 volumes of The Handbook of
Environmental Chemistry, there are still many scientific and policy challenges

ahead due to the complexity and interdisciplinary nature of the field. The series

will therefore continue to provide compilations of current knowledge. Contribu-

tions are written by leading experts with practical experience in their fields. The
Handbook of Environmental Chemistry grows with the increases in our scientific

understanding, and provides a valuable source not only for scientists but also for

environmental managers and decision-makers. Today, the series covers a broad

range of environmental topics from a chemical perspective, including methodolog-

ical advances in environmental analytical chemistry.

In recent years, there has been a growing tendency to include subject matter of

societal relevance in the broad view of environmental chemistry. Topics include

life cycle analysis, environmental management, sustainable development, and

socio-economic, legal and even political problems, among others. While these

topics are of great importance for the development and acceptance of The Hand-
book of Environmental Chemistry, the publisher and Editors-in-Chief have decided
to keep the handbook essentially a source of information on “hard sciences” with a

particular emphasis on chemistry, but also covering biology, geology, hydrology

and engineering as applied to environmental sciences.

The volumes of the series are written at an advanced level, addressing the needs

of both researchers and graduate students, as well as of people outside the field of

vii



“pure” chemistry, including those in industry, business, government, research

establishments, and public interest groups. It would be very satisfying to see

these volumes used as a basis for graduate courses in environmental chemistry.

With its high standards of scientific quality and clarity, The Handbook of Environ-
mental Chemistry provides a solid basis from which scientists can share their

knowledge on the different aspects of environmental problems, presenting a wide

spectrum of viewpoints and approaches.

The Handbook of Environmental Chemistry is available both in print and online

via www.springerlink.com/content/110354/. Articles are published online as soon

as they have been approved for publication. Authors, Volume Editors and

Editors-in-Chief are rewarded by the broad acceptance of The Handbook of Envi-
ronmental Chemistry by the scientific community, from whom suggestions for new

topics to the Editors-in-Chief are always very welcome.

Dami�a Barceló
Andrey G. Kostianoy

Series Editors

viii Series Preface
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Preface

The book on “Pyrethroid Insecticides” is based on the scientific developments and

results achieved along several years of research. Pyrethroid insecticides, introduced

in the late 1970s, actually represent 25% of global sales of insecticides. In the last

decades, they have increasingly replaced organochlorine pesticides due to their

relatively lower mammalian toxicity, selective insecticide activity and lower envi-

ronmental persistence. They are considered to be “safe” because they are converted

to non-toxic metabolites by oxidative metabolism in fish and by hydrolysis in

mammals. However, recent studies demonstrated their environmental ubiquity,

their bioaccumulation and their toxicity in different aquatic and terrestrial

organisms and even in humans.

This book aims to review and compile the main developments and knowledge

acquired over many years of study from a multidisciplinary way, including

analytical chemistry, environmental, biological and toxicological developments.

The book is structured in 12 different chapters, covering the state of the art of

analysis, fate and behaviour and toxicity of pyrethroid insecticides. Experts in the

field provide an overview of their physico-chemical properties and uses, the

advanced chemical analytical methods, the occurrence in environment and biota,

the isomeric and enantiomeric behaviour, the toxicological effects and the human

exposure. Finally, the last chapter concerns the main conclusions and future trends,

being the starting point to be taken in mind for the future studies in the field of

pyrethroid insecticides.

We hope the book will be of interest to a broad audience of scientific researchers

as well as for authorities and producers. Finally, I would like to thank all the

contributing authors of this book for their time and effort in preparing this com-

prehensive compilation of research papers.

Barcelona, Spain Ethel Eljarrat

January 2020
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Abstract During the 1920s, pyrethrin was studied because of its potential as a
precursor for synthetic organic pesticides. The first pyrethroid pesticide, allethrin,
was identified in 1949. It is a type I pyrethroid because of a carboxylic ester of
cyclopropane. Type II was created with the addition of a cyano group in α position.
Some phenylacetic 3-phenoxybenzyl esters missing the cyclopropane but with the
cyano group are also considered type II. In the 1970s, pyrethroids transitioned from
mere household products to pest control agents in agriculture. Later, pyrethroids
have replaced organophosphate pesticides in most of their applications the same way
the latter had replaced organochlorinated pesticides before. Works on the optimisa-
tion of pyrethroids has granted them better photostability without compromising
their biodegradability, as well as selective toxicity, metabolic routes of degradation
and more effectivity, translating into the use of smaller amounts. Most pyrethroids
present different isomers, each with different biological activity and, therefore,
different toxicity. Pyrethroids account for a quarter of the pesticides used nowadays.
Pyrethroids’ relative molecular mass is clearly above 300 gmol�1; they are highly
hydrophobic, photosensitive and get easily hydrolysed, with degradation times
below 60 days. They are not persistent and mammals can metabolise them.
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However, pyrethroids have been proven to bioaccumulate in marine mammals and
humans. Studies in mammals reported carcinogenic, neurotoxic and immunosup-
pressive properties and potential for reproductive toxicity mainly. Acceptable daily
intake values and no observed adverse effect level values have been established at
0.02–0.07mg (kg body weight)�1 day�1 and 1–7mg (kg body weight)�1 day�1.

Keywords Chemical structures, Metabolisation, Pest control, Pesticides,
Physicochemical properties, Pyrethroids, Toxicity

Abbreviations

ADI Acceptable daily intake
BAF Bioaccumulation factor
BCF Bioconcentration factor
DDT Dichlorodiphenyltrichloroethane
DT50 Degradation time for 50% of the substance
EFSA European Food Safety Authority
EPA Environmental Protection Agency
IC50 Half-maximal inhibitory concentration
Kow Octanol-water partition coefficient
LOD Limit of detection
LOEC Lowest observed effect concentration
Mr Relative molecular mass
MRL Maximum residue level
NOAEL No observed adverse effect level
NOEC No observed effect concentration
POP Persistent organic pollutant

1 History and Impact

During the 1920s, pyrethrin was studied because of its potential as a precursor for
synthetic organic pesticides. Pyrethrin was extracted from pyrethrum, a plant of the
family of chrysanthemums [1]. Research on synthetic organic pesticides increased in
the 1930s, and in 1939, dichlorodiphenyltrichloroethane (DDT) was synthesised.
It proved to be effective for many plagues. DDT was so effective that other
organochlorinated compounds were studied with the aim of obtaining cheap and
persistent pesticides.

At first, pesticides were not considered to affect health or the environment.
However, in 1962 Rachel Carson published Silent Spring, where she warned about
the effects of pesticides on the environment with the image of dead birds in her
garden.

2 Ò. Aznar-Alemany and E. Eljarrat



This field observation prompted several research studies about environmental and
mesocosm models focused on the assessment of pyrethroids and other pesticides
[1]. As a consequence, some regulation agencies came into existence. In 1970, the
Environmental Protection Agency (EPA) was founded. From that moment on, the
use of organochlorinated compounds was restricted or banned as they were consid-
ered toxic and contaminant [2, 3]. Nevertheless, they are still allowed to fight malaria
[4–6].

In the 1940s, it was discovered that many organophosphate compounds had
unique properties for the protection of plants – and that the most volatile and toxic
could be used as chemical weapons. However, not until the 1960s did organophos-
phate compounds become popular. At the end of the same decade, there was an
increasing interest in carbamate pesticides.

Organophosphates and carbamates had simple structures, and it was easy to
synthesise analogous derivatives. They also showed some advantages over
organochlorinated pesticides [1]. They were selectively toxic with different effects
depending on the species; they affected insects more than mammals [7]; the effects
on mammals occurred mostly after intense exposition rather than accumulation; they
were more biodegradable, therefore, less persistent, and they allowed the creation of
compounds that stay inside the plants for a few weeks and protect them. On the other
hand, regulations and bans on the use of organophosphates and carbamates emerged
as a consequence of new data on their actual toxicity [8]. Toxicology studies are a
key element of the development of new pesticides nowadays.

In the 1970s, pyrethroids stopped being mere household products to become pest
control agents in agriculture. Moreover, in the last couple of decades, pyrethroids
have replaced organophosphate pesticides in most of their applications the same way
the latter had replaced organochlorinated pesticides before [9, 10]. Pyrethroids were
very effective.

Works on the optimisation of these derivatives from pyrethrin had been going on
for decades, and several improvements were achieved [1]. Their photostability was
improved without compromising their biodegradability. They achieved a selective
toxicity and metabolic routes of degradation – that were different for cis and trans
isomers. They were produced as fumigants as well as soil pesticides. And they were
made more powerful so that smaller amounts would need to be used and environ-
mental contamination would be reduced.

The development of pyrethroids included some aspects that helped reduce the
impact of pesticides on the environment: higher effectiveness implying smaller
amounts of product needed, selective toxicity, concern on the occurrence of pesti-
cides in the environment and replacement of persistent compounds with degradable
compounds [1].

Introduction to Pyrethroid Insecticides: Chemical Structures, Properties, Mode. . . 3



2 The Compounds

The first pyrethroid pesticide, allethrin, was identified in 1949 [11]. It is a type I
pyrethroid because of the carboxylic ester of cyclopropane. Type II was created with
the addition of a cyano group in α position, which increased the pesticide effect of
pyrethroids (Figs. 1, 2 and 3).

Additionally, pesticide activity was detected in some phenylacetic
3-phenoxybenzyl esters that missed the cyclopropane but had the cyano group
[11]. These esters were still considered type II pyrethroids and originated com-
pounds such as fenvalerate.

Due to the cyclopropane and the cyano group, most pyrethroids present different
isomers, each with different biological activity and, therefore, different toxicity.
Type I pyrethroids have two chirality centres, hence two diastereoisomers or enan-
tiomeric pairs. Type II pyrethroids present three chirality centres, hence four diaste-
reoisomers. The bonds that are responsible for the existence of enantiomeric pairs
are represented with winding lines in Figs. 2 and 3. These diastereoisomers
present different properties [12]. More detailed information of pyrethroid stereo-
selectivity is presented in Chapter “Stereoselectivity and Environmental Behaviour
of Pyrethroids”.

Pyrethroids account for a quarter of the pesticides used nowadays [1, 13]. They
were believed to be the ideal pesticides because they are not persistent and were
thought to be metabolised and not bioaccumulate [14, 15]. Thus they replaced the
previously banned pesticides. Total organic pesticide production in the United States
increased from about 15 tons per year in 1945 to over 630 tons per year in 1976
[16]. In 2006 over 433 tons of pesticides were used worldwide, 400 tons in 2007
[17]. Pyrethroids account for about 25% of the pesticide use.

Pyrethroids have applications as pesticides in households, in commercial prod-
ucts and in medicine against scabies and lice (Table 1). In tropical countries,
mosquito nets are impregnated with solutions of deltamethrin, cyhalothrin or
cypermethrin to control malaria [11].

3 Properties

Pyrethroids present somewhat similar physicochemical properties among them
(Table 2). Their relative molecular mass (Mr) is clearly above 300 gmol�1. They
are highly hydrophobic, with logarithm of the octanol-water partition coefficient

Fig. 1 Pyrethroid types
according to their general
structure
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(Kow) between 4 and 7, and show low very low solubility in water of a few μg L�1.
Pyrethroids are photosensitive and get easily hydrolysed; therefore their degradation
time for 50% of the substance (DT50) – indicating persistence – is very low, below
60 days [21].

Organic contaminants include a wide variety of families. Some of them have been
considered persistent organic pollutants (POPs). The Stockholm Convention on
Persistent Organic Pollutants defined four factors that make a compound dangerous
and that qualify it as a POP [22]. These are the requirements a compound needs to
meet to be included in the list of the Stockholm Convention:
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Table 1 Pyrethroid applications [18–20]

Insects Crops Others

Ants, bedbugs, beetles, cater-
pillars, cockroaches, flies,
greenflies, lice, lobsters,
locusts, mites, mosquitoes,
moths, termites, wasps,
whiteflies

Alfalfa, apple, bean, beetroot,
cereal, citrus, coffee, cotton,
fig, grape, green bean, lettuce,
melon, olive, onion, pea, peach,
peanut, pear, potato, rice, seeds,
soy, sugarcane, sunflower, tea,
tobacco, tomato, walnut,
watermelon, wheat

Forests, gardens, grass,
greenhouses, households,
industries, ornaments, pets,
public health, shampoo,
shops, warehouses, wood

6 Ò. Aznar-Alemany and E. Eljarrat



1. To be persistent in the environment. POPs have half-lives greater than 2 months
in water or greater than 6 months in soil and sediment.

2. To bioaccumulate. POPs have bioconcentration factors (BCFs) or
bioaccumulation factors (BAFs) in aquatic species greater than 5,000 or, when
unknown, their log Kow is greater than 5.

3. To have potential for long-range transport. POPs are detected far from the
emission source; data show they have been transported via air (half-live in air
over 2 days), water or migratory species.

4. To have adverse effects. POPs are proved to have adverse effects on human
health or on the environment.

The original list of the Stockholm Convention included 12 POPs that were
banned or restricted. Eight of them were organochlorinated pesticides: aldrin, endrin,
dieldrin, chlordane, DDT, heptachlor, mirex and toxaphene. These pesticides were
considered safe when they first entered the market, but data proved them to cause
long-term adverse effects on human health and on the environment. New com-
pounds have been added to the list throughout the years.

Some other compounds, like pyrethroids, cannot be classified as POPs, but cause
concern in the scientific community due to their properties, sometimes close to those
of POPs. Pyrethroids have logarithms of Kow on the limit of POPs and affect
organisms by design. However, they are not persistent and thus cannot be
transported long distances and mammals can metabolise them [14, 23]. Conversely
they have been proved to bioaccumulate in marine mammals and humans [24, 25].

Table 2 Properties of pyrethroids [21]

Pyrethroid Type
Molecular
formula

Mr

(gmol�1)
log
Kow

Water solubility at
20�C (μg L�1)

DT50

(days)

Allethrin I C19H26O3 302.4 4.96 0.1 –

Bifenthrin I C23H22O2ClF3 422.9 6.6 1 26

Imiprothrin I C17H22N2O4 318.4 2.43 93,500 –

Kadethrin I C23H24O4S 396.5 6.29 14 –

Permethrin I C21H20O3Cl2 391.3 6.1 200 13

Phenothrin I C23H26O3 350.5 6.01 9.7 –

Prallethrin I C19H24O3 300.4 4.49 8,030 –

Resmethrin I C22H26O3 338.5 5.43 10 30

Tetramethrin I C19H25NO4 331.4 4.6 1,830 3

Transfluthrin I C15H12Cl2F4O2 371.2 5.46 57 7

Cyfluthrin II C22H18NO3Cl2F 434.3 6 6.6 33

Cyhalothrin II C23H19NO3ClF3 449.9 6.9 4 57

Cypermethrin II C22H19NO3Cl2 416.3 5.3 9 60

Deltamethrin II C22H19NO3Br2 505.2 4.6 0.2 13

Fenvalerate II C25H22NO3Cl 419.9 5.01 1 40

Flumethrin II C28H22Cl2FNO3 510.4 – – –

Fluvalinate II C26H22N2O3ClF3 502.9 3.85 2 7

Tralomethrin II C22H19NO3Br4 665.0 5 80 3
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More detailed information of bioaccumulation of pyrethroids in wildlife and
humans is presented in Chapter “Bioavailability and Bioaccumulation of Pyrethroid
Insecticides in Wildlife and Humans”.

The Water Framework Directive (Directive 2000/60/EC) named a group of pesti-
cides that could be toxic, persistent and bioaccumulate. Among them, cypermethrin
was listed. Due to their production volume and extensive application, pesticides such
as pyrethroids are always present in the environment despite not being persistent and
are therefore considered pseudo-persistent organic contaminants [26].

4 Metabolisation

The capacity of mammals of metabolising pyrethroids has been regarded as one of
the best qualities of these pesticides. The metabolisation route differs with the
organism. However, the routes are equivalent for many mammals, and the mecha-
nism in humans will serve as an example.

The liver is the main organ responsible for disintoxication in humans, although
other organs and tissues possess the required enzymes to treat xenobiotics. This
disintoxication usually proceeds in two steps [27]. The first step consists in increas-
ing the polarity of the xenobiotic molecular through processes like hydroxylation,
deamination or the N-oxidation. In the second step, the metabolite – which is more
polar than the original molecule – is combined with endogen products of the cell,
such as methyl or acetyl groups, monosaccharides or amino acids. This increases the
metabolite solubility making it easier for it to be excreted in urine. This is the reason
why exposition of humans to pyrethroids is studied through the analysis of their
metabolites in urine [28].

The first step of the metabolisation of pyrethroids in humans can occur through
two pathways. One is the breakdown of the ester to produce carboxylic acid and the
corresponding alcohol by the action of carboxylesterases [29]. Then, alcohol can be
oxidised to a benzoic acid (Fig. 4).

The carboxylesterases required for this metabolisation are found in the plasma of
mammals at higher concentrations than in fish or birds [30]. This could be a factor in
explaining the lower toxicity of pyrethroids in mammals.

On the other hand, carboxylesterases present isoenzymes that can be found in
different proportions in each individual depending on factors such as species, age or
gender [30]. Each isoenzyme can have a different activity on different isomers of
pyrethroids, thus making the capacity of metabolising these compounds change not
only among species, but also among individuals of different age and gender [31].

The second pathway for the first step of the metabolisation of pyrethroids in
humans is hydroxylation by monooxygenases. The process usually undergoes trans-
formation via both pathways producing secondary products such as 4-hydroxy-3-
phenoxybenzoyl and 4-hydroxy-3-phenoxylbenzaldehyde for permethrin. These
compounds can be stronger endocrine disruptors than their non-hydroxylated
analogues [32].
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However, it is important to note that despite the fact that mammals can metabolise
pyrethroids, studies have shown that they can also bioaccumulate these pesticides
[25, 33].

5 Toxicity

Exposition of organisms to pyrethroids causes concern due to the toxicity of the
pesticides [34]. Recent studies in mammals reported carcinogenic, neurotoxic and
immunosuppressive properties and potential for reproductive toxicity [12, 35,
36]. Type I pyrethroids cause tremors and reflex hyperexcitability, while type II
cause hyperexcitability, salivation, seizures and choreoathetosis [37].

The main action of pyrethroids is on the sodium channels and chloride channels,
which drive the ions through the cell membrane [1, 11, 13]. Pyrethroids lower the
threshold of the action potential of nerve cells and muscle cells and cause repeated
stimulation [7, 38]. At high concentrations, the entrance of sodium can prevent the
generation of the action potential, block conduction and cause paralysis. Small
amounts are sufficient to affect the sensitivity of nerve cells.

Type II pyrethroids also decrease the flux of chloride through the chloride
channels. Additionally, relatively high concentrations of type II pyrethroids can
affect the receptors of γ-aminobutyric acid and cause cataleptic attacks, which
have been documented in humans [11, 37].
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Pyrethroids are about 2,250 times more toxic for insects than mammals. Insects
have more sensitive sodium channels, smaller bodies and low body temperatures.
Moreover, the absorption through the skin in mammals is weak, and they can
metabolise them into non-toxic compounds fast [11].

Human exposition to pyrethroids has been documented studying their metabolites
in urine of German children and teenagers [28], in hair and blood of pregnant women
and meconium of babies [39], in plasma of pregnant women from rural areas of
South Africa [40] and in human milk [25, 33].

A few studies focused on marine organisms including different tissues of
Brazilian dolphins [24, 41], Mediterranean dolphins [42] and wild and edible fish
from Spanish rivers [43].

Seafood production has experimented a 3.2% yearly growth since 1961
[44]. Aquaculture is responsible for half of the seafood production worldwide, and
the world annual fish consumption per capita is about 20 kg. While concern about the
application of pyrethroids in fish farms against fish parasites exists, pyrethroid
ingestion has been reported to be below the accepted daily intake (ADI) [45].
More detailed information of effect of salmon industry in the marine environment
is presented in Chapter “Environmental Risks of Synthetic Pyrethroids Used by the
Salmon Industry in Chile”.

Most of the professional exposure is due to skin absorption. The main effect of
dermal exposition is paresthesia, probably caused by the hyperactivity of cutaneous
nerves, especially on the face. Paresthesia increases with stimuli such as heat,
sunlight, sweat or contact with water [11]. Paresthesia disappears in 12–24 h and
no special treatment is required. However, topical administration of vitamin E can
reduce its symptoms.

Ingestion of pyrethroids causes sore throat, nausea, vomit and abdominal pain in a
few minutes. Mouth ulcers, increased secretion or dysphagia may occur [11]. Inha-
lation is less important, but it increases when pyrethroids are used in closed spaces.
Systemic effects appear 4–48 h after exposition. The effects usually include dizzi-
ness, headache and tiredness. Less frequent effects are palpitations, chest oppression
and blurry sight.

Regarding long-term exposition to pyrethroids at low concentrations, a study in
humans concluded that chronic toxicity of pyrethroids does not cause any specific
symptoms. What could be detected were combinations and correlations of symptoms
caused by the accumulative effect of pyrethroids in nerve tissue such as brain
dysfunction, polyneuropathy, immunosuppression or motor problems due to multi-
ple sclerosis or Parkinson disease [46, 47]. It was also suggested that chronic toxicity
of pyrethroids affect fertility. This hypothesis was proved in rats being administered
small doses of permethrin for a maximum time period of 2 months [48].

On the other hand, these results have been criticised [49] because of the exper-
imental design [50], because pyrethroids were not believed to cause irreversible
effects according to studies on sodium channels [51] or because it was thought that
mammals did not bioaccumulate them [52].

Other studies researched the chronic toxicity of cis-bifenthrin in Daphnia magna
and its cytotoxicity in ovarian cells of Chinese hamster (Cricetulus griseus) and in
human cervical carcinoma cells [53]. The lowest observed effect concentration
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(LOEC) and the no observed effect concentration (NOEC) for daphnia were 0.02
and 0.01 μg L�1, respectively. The chronic value was 0.014 μg L�1. Half-maximal
inhibitory concentration (IC50) for hamster ovarian cells and human carcinoma
cells were 3.2 � 10�5 and 4.0 � 10�5mol L�1, respectively. These data proved
the chronic toxicity of cis-bifenthrin in both invertebrates and mammals.

Male Wistar rats were administered for a year a mixture of pyrethroids equivalent
to a 5th or a 25th of what is in cereals and vegetables consumed by an average Indian
adult [54]. Altered oxidant and antioxidant status; severe anatomical damage in the
caput, cauda, kidney, liver, lung, prostate and testis; and increased serum glutamate-
pyruvate transaminase, serum glutamic oxaloacetic transaminase and alkaline
phosphatase activity were clear for all the groups. Decreased levels of 3β- and
17β-hydroxy steroid dehydrogenase activity, litter size and impaired acrosome
reaction were detected in all the groups. Exposure to very low levels of pyrethroids
for longer periods may cause damage to important tissues and male reproductive
physiology [54]. Cypermethrin has been reported to cause adverse effects on the
immune system, fertility, the liver metabolism and cardiovascular and enzyme
activity in vertebrates, and a recent study suggests that it reduces the ovarian reserve
in mice via apoptosis in granulosa cells by mitochondrial-related pathways [55].

An important toxicological parameter for pyrethroids is their enantiomeric com-
position as different isomers can present different toxicities [56–58].

6 Legislation

No pesticide can be used in the European Union unless it has been proved to be
effective against pests and to be safe for the human health and the environment.

The European Union regulates the sustainable use of pesticides in order to
regulate their risks and impacts on human health and the environment [59]. Directive
2009/128/EC includes key points about national action plans, education for profes-
sional consumers and pesticide distributors, public information and awareness,
aerosol regulation, minimisation of use or ban of pesticides, revision of equipment
and integral management of pests with limitation of chemical products.

Pesticides leave residues in the treated products. The maximum residue level
(MRL) is the highest concentration of a pesticide allowed by the regulation. The
European Commission establishes MRLs at concentrations that are safe for the
consumers and as low as possible. The MRLs are available at the European Union
Pesticides database [60] (Tables 3 and 4).

MRLs have been set for about 1,100 compounds in over 300 fresh products and
for the same products after processing in order to take into account dilution or
concentration effects. When MRLs for a pesticide are not stated, the accepted default
value is 0.01 μg g�1, which usually corresponds to the limit of detection (LOD)
[59]. The European Food Safety Authority (EFSA) assesses the safety for every
consumer group – adults, kids, vegetarians, etc. – based on the pesticides’ toxicity
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and the maximum typical concentrations of pesticides in food from the different diets
around Europe.

Additionally, acceptable daily intake (ADI) values and no observed adverse effect
level (NOAEL) values have been established. ADI values for pyrethroids are
between 0.02 and 0.07mg kg�1 day�1 (mg of pyrethroid per kg of consumer’s
body weight per day), and NOAEL values are set between 1 and 7mg kg�1 day�1

[36] (Table 4).

Table 3 Maximum residue
levels for pyrethroids in
different products [60]

Product Limits (μg g�1)

1. Fruits and nuts 0.01–0.5

2. Vegetables 0.01–2

3. Pulses 0.01–1

4. Oilseeds and oilfruits 0.01–1

5. Cereals 0.02–2

6. Tea, coffee, infusions, cocoa and carobs 0.01–5

7. Hops 0.1–30

8. Spices 0.01–1

9. Sugar plants 0.01–0.5

10. Products of terrestrial animals 0.01–3

Tissue 0.02–3

(a) Swine 0.01–3

Fat
Liver

0.05–3
0.01–0.5

(b) Bovine 0.01–3

Fat
Liver

0.05–3
0.01–0.2

(c) Sheep 0.01–3

Fat
Liver

0.05–3
0.01–0.5

(d) Goat 0.01–3

Fat
Liver

0.05–3
0.01–0.5

(e) Equine 0.01–3

Fat
Liver

0.05–3
0.01–0.5

(f) Poultry 0.01–0.2

(g) Others 0.01–3

Fat
Liver

0.01–3
0.01–0.5

Milk 0.02–0.2

Bird eggs 0.01–0.1

Honey 0.01–0.05

Amphibians and reptiles 0.01–0.05

Terrestrial invertebrate animals 0.01–0.05

Wild terrestrial vertebrate animals 0.01–0.05
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Current relevant regulation for pyrethroids is:

• Regulation 283/2013/EU – Commission Regulation (EU) No 283/2013 of
1 March 2013 setting out the data requirements for active substances, in accor-
dance with Regulation (EC) No 1107/2009 of the European Parliament and of the
Council concerning the placing of plant protection products on the market.

• Regulation 284/2013/EU – Commission Regulation (EU) No 284/2013 of
1 March 2013 setting out the data requirements for plant protection products, in
accordance with Regulation (EC) No 1107/2009 of the European Parliament and
of the Council concerning the placing of plant protection products on the market.

• Regulation 1107/2009/EC – Regulation (EC) No 1107/2009 of the European
Parliament and of the Council of 21 October 2009 concerning the placing of plant
protection products on the market and repealing Council Directives 79/117/EEC
(ban on some active substances) and 91/414/EEC (commerce of phytosanitary
products).

• Directive 2009/128/EC – Directive 2009/128/EC of the European Parliament and
of the Council of 21 October 2009 establishing a framework for community
action to achieve the sustainable use of pesticides.
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Abstract In this chapter, an overview of different aspects of current analytical
methodologies such as sample preparation, extraction, purification, and instrumental
analysis for pyrethroids is discussed. Recent development in sample preparation and
extraction is presented. Regarding instrumental analysis, gas chromatography
(GC) coupled to electron capture detection or mass spectrometry (MS) including
tandem MS is generally preferred for analysis of pyrethroids. Although liquid
chromatography has been used as a possible solution to reduce isomerization of
pyrethroids that can occur at higher temperature, the advantages and disadvantages
of different instrumental techniques are discussed here.
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1 Introduction

Pyrethroid insecticides were developed to replace organophosphorus pesticides,
which were largely used in the past three decades and were demonstrated to have
potentially toxic effects on humans [1]. Pyrethroids are the synthetic analogues of
pyrethrins which were developed as pesticides from the extracts of dried and
powdered flower heads of Chrysanthemum cinerariaefolium. Because of the rapidly
decomposition of pyrethrins in the presence of light, pyrethroids were developed to
increase stability to light and residence time in the environment, maintaining the
effective insecticidal activity of the pyrethrins [2]. Pyrethroids are persistent com-
pounds with high hydrophobicity (log Kow 5.7–7.6) [3, 4] and very low water
solubility (a few lg/L), so they preferentially adsorbed to solid particles [5]. They can
persist in the environment for few months before being degraded [6, 7] and can be
bioaccumulated in aquatic organisms [8, 9] and humans [10, 11]. Aquatic organisms
such as invertebrates and fish are extremely sensitive to the neurotoxic effect of these
insecticides. In fish (e.g., bluegill and lake trout), LC50 values were estimated to be
less than 1 g/L [12]. Regarding their effects on humans, reversible symptoms of
poisoning and suppressive effects on the immune system have been reported
[13]. Moreover, pyrethroids have been included in a list of suspected endocrine-
disrupting chemicals [14]. The development of analytical methods for the analysis of
pyrethroid insecticides is very important, considering their large usage for domestic
and agricultural pest control applications and their presence in the environment and
in food and their capacity to be bioaccumulated by organisms. Table 1 shows a list of
pyrethroids usually determined in environmental, biological, and food samples. In
addition to conventional extraction methods (e.g., liquid-liquid extraction or solid-
phase extraction for liquid samples and sonication or pressurized liquid extraction
for solid samples), new methods simple and rapid with reduced reagent use
have been recently developed for the extraction of pyrethroids from environmental,
biological, and food samples. Examples of these are the liquid-liquid
microextraction based on solidification of floating organic droplet used for liquid
samples or QuEChERS (stands for quick, easy, cheap, effective, rugged, and safe)
method applied to solid samples. Following extraction and purification, the detection
and quantification of pyrethroids can be performed by gas chromatography
(GC) combined with electron capture detection (ECD) or mass spectrometry (MS),
as well as by liquid chromatography (LC). This chapter describes the various aspects
of sample preparation, extraction, purification, and instrumental analysis of synthetic
pyrethroids in different environmental and food matrices mainly focusing on the
development made in the last 15 years.

18 M. L. Feo
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2 Sample Preparation

Table 2 synthesizes the recent analytical techniques in terms of extraction,
purification, and instrumental analysis showing recoveries and method limit of
detection (MLOD) for determination of pyrethroids in environmental and food
matrices.

2.1 Extraction from Water Sample

Pyrethroid concentrations in water are generally low, as they are preferentially
sorbed to soil or sediment, due to their hydrophobic character. Thus, analytical
methods for determination of pyrethroids in water should include extraction and
pre-concentration to reach the required limits of detection. Liquid-liquid extraction
(LLE) is the most common extraction technique for water samples. Its main draw-
backs are the high solvent consumption and the long analysis time. For this reason,
alternative extraction methods in which solvent consumption and time of analysis
are reduced were introduced. Among these are solid-phase extraction (SPE), solid-
phase microextraction (SPME), and stir bar sorptive extraction (SBSE). Moreover,
recently, liquid-liquid microextraction (LLME) and LLME based on solidification of
floating organic droplet (LLME-SFO) have been developed. LLE of pyrethroids
from water uses nonpolar solvents such as dichloromethane [15] and hexane
[16]. After extraction, the sample is dried and redissolved in a small volume of
organic solvent ready to be injected into GC for analysis. Pyrethroid recoveries by
LLE were in the range 75–115% for unfiltered river samples with method limit of
detection (MLOD) of 1–3 ng/L [15] and 94–105% for aqueous solution [16]. Dis-
persive liquid-liquid microextraction (DLLME) assisted by ultrasound was devel-
oped by Yan et al. as a method for the pre-concentration and determination of six
pyrethroids in river water samples [17]. Tetrachloromethane was used as water-
immiscible extractant, and acetone was used as water-miscible dispersive solvent.
Ultrasonic treatment was performed to make the analytes fully extracted into the fine
droplets. The phase separation was performed by a rapid centrifugation. Recoveries
were ranging between 86 and 109%. MLODs were 0.1–0.30 μg/L [17]. A novel
LLME based on solidification of floating organic droplet (LLME-SFO) has been
recently developed by Khalili-Zanjani et al. which was based on the extraction of the
analytes by microliter volume of the extraction solvent (floated on the surface of the
aqueous sample) from the aqueous sample matrix [53]. In this method, small volume
of an organic solvent with a melting point near room temperature (in the range of
10–30�C, such as undecanol and 1-dedecanol) is floated on the surface of aqueous
solution. Transferring the sample in an ice bath, the organic solvent microdrop is
solidified and ready to be transferred into a conical vial where it melts immediately at
room temperature and thus is ready to be injected into a GC for analysis. The
advantages of the method are simplicity of operation, small amount of solvent

24 M. L. Feo
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used, good repeatability, low cost, and having very high pre-concentration factors.
Chang et al. analyzed eight pyrethroids in tap water, well water, and river water by
LLME using 1-dodecanol as extraction solvent. Recoveries were 79–114% and
MLOD 2.0–50 ng/L [18]. Ultrasound-assisted emulsification-extraction (UAEE) is
another environmentally friendly analytical methodology that can be applied for
extraction and pre-concentration of a wide range of pyrethroids prior to GC-MS
analysis. Feo et al. used chloroform (1 mL) as immiscible solvent for extraction of
pyrethroids from river water samples. Recoveries were of 63–100% and MLODs of
0.03–35.8 ng/L [29]. A novel green enrichment method for pyrethroid
pre-concentration was temperature-controlled ion liquid-dispersive liquid-phase
microextraction (TILDLME) which was developed by Zhou et al. [28]. An ionic
liquid is used as extraction solvent dispersing it in the aqueous solution under the
drive of temperature. The analytes will more easily migrate into the ionic liquid
phase because of the much larger contact area than that of conventional single drop
liquid microextraction. The method was validated on tap water, groundwater, river
water, and reservoir water samples filtered through 0.45 μm micropure membrane.
Recoveries were 77–136% and MLODs of 280–600 ng/L [28]. Pyrethroid extraction
by SPE was realized on an Oasis HLB cartridge with subsequent elution with
methanol (MeOH)/acetonitrile (ACN) (50/50 v/v) [19]. Recoveries were of
70–103% for pre-filtered (using 0.45 μm PTFE fiberglass filters) water samples
and claim MLODs of 5.0 � 10�4

–1.5 � 10�2 ng/L [19]. C18 cartridge was also
applied to pre-concentrate pesticide traces in both unfiltered groundwater and sea-
water samples adding organic modifiers (methanol or acetonitrile) to water and using
hexane as solvent [20]. Recoveries were of 80–115%, and MLODs were of
0.3–0.7 ng/L and 0.7–1.5 ng/L for seawater and groundwater samples, respectively
[20]. The major drawback of SPE is large sample volume (e.g., >500 mL) required.
For this reason, miniaturized methods (SPME and SBSE) which are simple, solvent-
less techniques were introduced [54, 55]. Parrilla Vazquez et al. developed a
procedure for SPME analysis of pyrethroids in unfiltered groundwater, using
polydimethylsiloxane/divinylbenzene (PDMS/ DVB 60 μm) as the most appropriate
fiber coating [21]. The sample solution was buffered to pH 3 using a phosphate
buffer, and the solution was kept at 65� 2�C for 30 min. Recoveries were 92–109%
with MLODs of 3–9 ng/L [21]. Bondarenko found analyzing sediment pore water
recoveries of 56–119% with similar MLODs (30 μm PDMS fiber; 20 min stirring at
600 rpm) [22]. Casas et al. studied the influences (e.g., temperature, fiber coating,
salting out effect, and sampling mode) on the efficiency of pyrethroid extraction
from unfiltered water samples [23]. The best conditions were found to be using
PDMS fibers, direct sampling (D-SPME), at 50�C with an exposure time of only
20 min and without adding salt. The recoveries were 81–125% with MLODs of
0.05–2.18 ng/L [23]. A novel solid-phase microextraction (SPME) fiber coated with
multiwalled carbon nanotubes/polypyrrole (MWCNTs/Ppy) was prepared with an
electrochemical method and used for the extraction of pyrethroids in natural water
samples. The results showed that the MWCNTs/Ppy-coated fiber was more effective
and superior to commercial PDMS and PDMS/DVD fibers in extracting pyrethroids
in natural water samples. Recoveries were of 83–112%, and MLODs were within the
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range 0.12–0.43 ng/mL [24]. A one-step microwave-assisted headspace solid-phase
microextraction (MA-HS-SPME) has been applied to be a pretreatment step in the
analysis of aqueous pyrethroid residuals by GC analysis [25]. Microwave heating
was applied to accelerate the vaporization of pyrethroids into the headspace and then
being absorbed directly on a SPME fiber under the controlled conditions. Extraction
of pyrethroids from aqueous (at pH 4) was achieved with the use of a 100 m PDMS
fiber, microwave irradiation of 157 W, and sampling at 30�C for 10 min. Recoveries
were between 88.5 and 115.5%, and MLODs were 0.2–2.6 ng/L [25]. The method
was applied to groundwater samples [25]. Van Hoeck et al. developed an SBSE
method for the enrichment of pyrethroids from unfiltered water samples [4]. The
method consists of adding the stir bar in the water sample (10 mL) together with
methanol to minimize wall adsorption. The SBSE method is followed to thermal
desorption (TD) in classical GC split/splitless inlet equipped with a flip top inlet
sealing system. The extraction was performed at room temperature, with stirring at
900 rpm. Recoveries were of 40–80% and MLODs of 0.02–1.4 ng/L [4]. Sequential
SBSE followed by thermal desorption (TD)-low thermal mass (LTM) gas chroma-
tography mass spectrometer (GC-MS) was developed by Ochai et al. [26, 27]. The
usage of dual SBE was to provide more uniform enrichment over the entire polarity/
volatility range for organic pollutants at ultra-trace levels in water. In a first exper-
iment, two stir bars were added to the unfiltered water, the extraction was performed
at room temperature, and then, pyrethroids were desorbed from the two stir bars
directly in the glass desorption liner. Recoveries were low (17–33%) and MLODs
were 3–100 ng/L [26]. In a second experiment, the authors first added one stir bar to
the sample without modifier and then a second stir bar to the same sample after
adding 30% NaCl. The first extraction with unmodified sample was mainly to target
for solutes with high Kow (log Kow> 4.0); and the second extraction with modified
sample solution (containing 30% NaCl) was targeted at solutes with low and
medium Kow (log Kow < 4.0). After the extraction, the two bars were placed in a
single glass desorption liner and were simultaneously desorbed. Recoveries were
82–113% with low MLODs (>10 ng/L) [27]. Molecularly imprinted solid-phase
extraction (MI-SPE) based on selective molecularly imprinted polymers (MIPs) has
been used for the isolation and cleanup of pyrethroid insecticides in aquaculture
seawater [30]. Recoveries were 86–96% and MLODs were 16.6–37.0 ng/L [30].

2.2 Extraction from Soil and Sediment Samples

The interaction between pyrethroids and soil/sediment matrix is much stronger than
it is in water due to the hydrophobic character of pyrethroids [5] and to the
consequently formation of bound residues in soil/sediment [56]. Thus, more exhaus-
tive extraction procedures are required to liberate pyrethroids from the solid matrix.
Conventional methods as Soxhlet extraction have been used for pyrethroid extrac-
tion from sediments although the method is time-consuming and requires a large
amount of solvents. Dichloromethane was used as solvent and by Florisil for the
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cleanup. Recoveries were of 90–135% and MLODs of 0.2–1.5 ng/g [31]. Sonication
has been also used for the extraction of pyrethroids from sediment samples. Xue
et al. used methanol/acetonitrile (50/50 volume/volume) as extraction solvent and
performed the cleanup of the extracts on a Florisil column using dichloromethane/
hexane (20/80 v/v) as eluent [19]. They found recoveries of 71–103% and MLODs
of 3.0 � 10�5

–1.5 � 10�3 ng/g [19]. However, Feo et al. used hexane/
dichloromethane (2:1) as extraction solvent in a sonicator for 15 min at room
temperature and performed the cleanup with Florisil cartridge (2 g/15 mL). Ethyl
acetate was used as eluent. Recoveries were of 51–105% and MLODs were of
2.6–62.4 pg/g [6]. In the last years, new extraction techniques have been developed
for solid samples (such as supercritical fluid extraction, solid-phase microextraction,
microwave-assisted extraction, pressurized fluid extraction) with the intent to reduce
the volume of the organic solvent used for the extraction and the time of the analysis.
Pressurized fluid extraction (PFE), which consists of using organic solvents, pumped
into an extraction cell containing the sample and brought to an elevated temperature
and pressure [57], has been used for extraction of pyrethroids from sediments
[15]. PFE was followed by cleanup with gel permeation (GP) (size exclusion), and
dichloromethane was used as eluent. Recoveries were 84–108% with 0.5–4 ng/g
MLODs [15]. Supercritical fluid extraction consists of using supercritical fluids
(normally water or carbon dioxide), as extraction agents. Supercritical fluids exhibit
a liquid-like density, while their viscosity and diffusivity remain between gas-like
and liquid-like values. Thus, supercritical fluids have lower viscosity and higher
diffusivity compared to organic solvents. The applicability of supercritical fluid
extraction (SFE) for multi-residue analysis was studied for soil samples. The best
efficiency was achieved at 400 bar using methanol as modifier at 60�C. Cleanup was
carried out using C18 cartridge and dichloromethane/hexane (50:50 v/v) as eluent.
Recoveries were 70–97% with MLODs <0.01 mg/kg [33]. A simple solvent-free
method based on headspace SPME (HS-SPME) was developed in order to determine
pyrethroids in agricultural soils [34]. Factors (e.g., extraction temperature, matrix
modification by addition of water, salt addition, and fiber coating) were considered
in optimizing the procedure. The results showed that temperature and fiber coating
were the most significant variables affecting extraction efficiency. Good sensitivity
for all investigated compounds was achieved at 100�C by extracting soil samples
wetted with 0.5 mL of ultrapure water (0% NaCl) employing a polyacrylate coating
fiber. Recoveries were 81–122% with MLODs less than 0.004–1.2 ng/g [34]. Micro-
wave-assisted extraction (MAE) was performed by Esteve et al. for the determina-
tion of synthetic pyrethroids in soil using toluene as extraction solvent and an
irradiation of 700 W for 9 min [32]. Cleanup was performed with 2 g of Florisil
and elution with 20 mL ethyl acetate/hexane 33% (v/v). Recoveries were of
97–106% and MLODs of 0.3–2 μg/L [32]. However, the author observed that
different chemical forms of pyrethroids respond differently at low irradiation
power (between 350 and 700 W) and irradiation time (between 3 and 12 min).
Thus, different extraction conditions are needed to be set for individual pyrethroids
during MAE. The stability of pyrethroids under MAE-optimized conditions still
needed further studies. QuEChERS method was used for the extraction of pesticides
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from different solid matrices including soil. It consists of extracting pesticide with an
aqueous-miscible solvent (e.g., acetonitrile) in the presence of high amounts of salts
(e.g., sodium chloride and magnesium sulfate) and/or buffering agents (e.g., citrate)
to induce liquid phase separation and stabilize acid and base-labile pesticides. Upon
shaking and centrifugation, an aliquot of the organic phase is subjected to further
cleanup using SPE. Then, the mixture is centrifuged, and the resulting supernatant
either can be analyzed directly or can be subjected to minor further treatment before
analysis. The method is simple, rapid, and inexpensive with reduced reagent use. Yu
et al. developed a multi-residue method for pesticides, including pyrethroids, in soil
using QuEChERS sample preparation method. 5 g of soil were extracted with 10 mL
acetonitrile with 1% acetic acid. 4 g anhydrous MgSO4 and 1 g sodium acetate
(NaOAc) were added, and the mixture was shaked [35]. Then, the supernatant was
treated with 900 mg MgSO4, and 150 mg PSA and 150 mg C18 were used as
sorbents. Recoveries were of 88–96% with MLODs 0.3–5 μg/kg [35].

2.3 Extraction from Air Samples

Pyrethroids were successfully extracted from air samples by SPE method with
Chromosorb 106 and Tenax TA as adsorbents and ethyl acetate as eluent [36]. Recov-
eries were 67% and 117% with both materials [36]. In indoor dust, pyrethroids were
extracted by microwave-assisted solvent extraction (MASE) followed by Florisil
cleanup. The aqueous phase was 1 M sulfuric acid solution containing ascorbic
acid, whereas the nonpolar organic phase was hexane. Recoveries were 84–101%
and MLODs 1–7 ng/g [37]. Sonication was also performed for extraction of pyre-
throids from house dust samples, followed by cleanup using SPE (C18 cartridge). The
recovery range was 51–101%withMLODs of 1–60 ng/g [38]. Amethod based on the
combination of SPE and SPME for the analysis of pyrethroids in indoor air was
developed [39]. First, air was pumped through a very small amount of Florisil
(60–100 μm mesh) to retain the target analytes. Then the adsorbent, enriched with
the target analytes, was transferred to a 10 mL glass vial in the presence of 100 μL of
acetone and sealed with a cap. The vial was placed into a water bath at 100�C. The
compounds retained by the adsorbent were extracted by exposing an SPME fiber to
the HS of the vial (HS-SPME) for a fixed period of time. The fiber was then inserted
into the injector port, and pyrethroids were desorbed into the GC for 5 min. Recov-
eries were of 77–111% with MLODs of 0.083–4.6 ng/m3 [39].

2.4 Extraction from Biological Samples

Deltamethrin was extracted from biological tissue (liver, kidney, and brain) by
mixing the tissue sample with acetonitrile, centrifuging, and injecting directly the
supernatant onto the LC column [40]. Recoveries from the liver, kidney, and brain
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were 95–114% (MLODs, 0.1 g/mL) [40]. Matrix solid-phase dispersion (MSPD)
extraction was performed for the determination of cypermethrin and deltamethrin in
porcine tissue [41]. Neutral alumina was used as MSPD dispersion adsorbent, and
diatomaceous earth was used as cleanup adsorbent, while n-hexane was the eluent
solvent (20 mL). For cypermethrin, the recoveries were 96–88%, 90–103%,
86–90%, and 98–94% at spiked levels of 0.5 μg/g and 0.2 μg/g for the liver, muscle,
heart, and kidney, respectively [41]. Closely, similar recoveries were found for
deltamethrin [41]. Tissue samples were also extracted by PFE with a Dionex ASE
200. Cleanup of extracts was accomplished using automated GP. The GPC column
was packed with 65 g Bio-Beads of 200–400 mesh size. The eluent was
dichloromethane at a flow rate of 5 mL/min. The sample was a 10 mL
dichloromethane extract [15]. Recoveries were 74–98% (MLODs, 1–3 ng/g)
[15]. The QuEChERS method was successfully applied for extraction of
cypermethrin and deltamethrin from fish product tissues (salmon, arctic char, trout,
mussels, oysters, shrimp, tilapia, and crab). Acetonitrile was the extraction solvent,
and MgSO4 and acetic acid and sodium acetate were added before centrifugation.
Recoveries were of 35–135% and MLODs of 0.3 ng/g [42]. A modified QuEChERS
approach was developed for fish sample by Jia et al. replacing the traditional
acetonitrile with isopropanol [43]. They found that isopropanol improved the extrac-
tion efficiency of the QuEChERS. For the pyrethroids in the protein-matrix samples,
the overall recoveries of 76–89% for the modified QuEChERS method are better
than those of 69–85% for the original QuEChERS method [43]. MLODs were of
0.008–0.014 μg/mL [43]. Pyrethroids were extracted from heparinized plasma by
SPE cartridges. Plasma samples were loaded on the cartridges, and these were
washed with 4 mL deionized water followed by 4 mL of 40% methanol in water
[44]. Elution was performed with 2 mL of toluene. Samples were reconstituted in
100 μL toluene, ready for GC analysis. Recoveries were of 37–84% and MLODs
were of 17–93 pg/mL [44].

2.5 Extraction from Food Samples

Dispersive liquid-liquid microextraction (DLLME) was developed for determination
of pyrethroids in fruit juice (apple, red grape, orange, kiwi, passion fruit, pomegran-
ate, and guava juice) samples combined with high-performance liquid chromatog-
raphy [47]. Methanol was used as dispersive solvent, while chloroform was used as
extraction solvent. Recoveries were of 84–94% and MLODs were of 2–5 μg/L
[47]. DLLME technique was also employed for the extraction of pyrethroids from
vegetable oil after a preliminary liquid-liquid extraction step. Initially, oil samples
were partitioned in a dimethylformamide (DMF)-hexane mixture, and then DMF
was removed and used as a disperser solvent in the following DLLME procedure in
which 1,1,2-trichloroethane was used as an extraction solvent [46]. Recoveries were
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of 85–109% and MLODs were of 0.02–0.16 mg/kg [46]. Ionic liquid-linked dual
magnetic microextraction (IL-DMME) was developed as novel and facile extraction
technique for determination of pyrethroids in honey samples [45]. The method
consists of a combination of dispersive liquid-liquid microextraction (DLLME)
and dispersive microsolid-phase extraction using an ionic liquid ([C6MIM]NTf2)
and no-modified magnetic nanoparticles (S-BaFe), respectively [45]. Pyrethroids
were firstly extracted by the ionic liquid, and then the no-modified magnetic
nanoparticle was used to retrieve the ionic liquid containing the pyrethroids. Finally,
pyrethroids were extracted from nanoparticles by sonication using acetonitrile as
solvents. Recoveries were of 87–92% with MLODs of 0.03–0.05 μg/L [45]. Mag-
netic nanoparticles (MNPs) exhibit high selectivity and, in small amounts, can
provide high recovery of analytes, even from large-volume samples. They also
allow easy, rapid isolation of analytes using an external magnetic field. A compet-
itive enzyme-linked immunosorbent assay (ELISA) method was employed for the
determination of cypermethrin and permethrin in agricultural products (wine, fruit,
and vegetable). No further cleanup was needed. Matrix interferences were mini-
mized by diluting with phosphate-buffered saline containing 40% methanol
[48]. Recoveries were 74–99% with MLODs of 5–10 μg/kg [48]. QuEChERS
method was employed for extraction of pyrethroid pesticide residue from rice
grain [49]. Extraction was performed using acetonitrile, MgSO4, and NaCl. Recov-
eries were of 87–117% and MLODs were of 1 μg/kg [49]. SPME was employed for
extraction of pyrethroids from cucumber and watermelon samples using high-
performance liquid chromatography combined with post-column photochemically
induced fluorimetry derivatization and fluorescence detector (HPLC-PIF-FD)
[50]. The optimum SPME conditions were extraction time 30 min, stirring rate
1,100 rpm, extraction temperature 65�C, sample pH 3, soaking time 7 min, desorp-
tion time 5 min, and acetonitrile content 25%. Recoveries were of 91–100% and
MLODs 1.3–5 μg/kg [50]. Liquid-liquid extraction of pyrethroids (cypermethrin and
deltamethrin) from pasteurized milk was performed using acetonitrile as extraction
solvent with cleanup by precipitation at low temperature without additional stages
for removal of fat interferences [51]. Recoveries were of 93% for cypermethrin and
84% for deltamethrin with MLODs of 7.5 ng/L [51]. From human breast milk,
pyrethroids were extracted by sonication with hexan/dichloromethane 2:1 and
cleanup with Florisil cartridge [10]. Eluent was ethyl acetate/dichloromethane 2:1
[10]. Recoveries were of 48–91% and MLODs of 3.1–1,100 pg/g lipid weight
(lw) [10]. Stir bar sorptive extraction (SBSE)-thermal desorption (TDU)-gas chro-
matography (GC) method was employed for the determination of pyrethroid resi-
dues in tea. As the tea samples were solid, a preliminary extraction with methanol
was implemented, and then the samples of methanol extraction were extracted by stir
bar sorptive extraction (SBSE) method [52]. Recoveries were of 93–105% and
MLODs were not reported [52].
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3 Instrumental Analysis

3.1 GC Methods

The most used capillary columns available for pyrethroid analysis are the nonpolar
stationary phase columns {e.g., 5%-phenyl-95% methylpolysiloxane (DB5, HP5%,
CP-Sil 8 BC, or similar)} [15, 19]. However, semipolar stationary phases {e.g., 35%
diphenyl 65% dimethylpolysiloxane (SPB-608) [16] and methyl 50% phenyl
polysiloxane (DB 17 MS, HP-608)} have been also successfully employed
[15, 33]. A more polar stationary phase (methyl 7%, cyanopropyl 7%, phenyl
polysiloxane, DB17-01) was used for the analysis of sediment pore water samples
[22]. Some authors have also proposed the use of short columns in order to reduce
analysis time (DB-5, 10 m � 0.18 mm � 0.18 lm) [26]. The chromatogram of
synthetic pyrethroids by multiple peaks due to the separation of diastereosimomers
(Fig. 1) [29, 56]. Pyrethroids are classified as type I or type II, depending on the
alcohol substituent. Type I pyrethroids (resmethrin, phenothrin, tetramethrin, per-
methrin) have two chiral centers on their cyclopropyl ring; thus, they are resolved in
two peaks corresponding to cis- and trans-isomers. However, type II pyrethroids
(cyfluthrin, cypermethrin, deltamethrin, fenvalerate, fluvalinate, fenpropathrin) con-
tain a third asymmetric center, and they are resolved into four peaks. Esfenvalerate is
a type II pyrethroid exception: it does not possess a cyclopril ring and has only two
diastereoisomers. It is not possible to distinguish esfenvalerate and fenvalerate by
GC methods, since esfenvalerate is one of the four isomers found in fenvalerate, and
it is the biologically active component of fenvalerate. Undergoing exposure to polar
solvent [58], heat [59], and light [58, 60], isomerization of pyrethroids can occur,
and additional peaks appear in the chromatogram. This happens, for example, during
the GC analysis of lambda-cyhalothrin and deltamethrin. Tralomethrin can be
transformed into deltamethrin in the injector port of the GC system [61]. Such
pyrethroid transformation can be avoided by using LC-MS instead of GC-MS.
With LC-MS, deltamethrin and the two diastereoisomers of tralomethrin were
separated and identified by Velverde et al. [61]. Another possible solution to
isomerization is reducing the residence time of the sample in the GC inlet where
isomerization occurs [62]. Therefore, injection techniques {e.g., pulsed splitless
injection [63, 64] and programmed temperature vaporization (PTV)} are
recommended to achieve this. Another solution to reduce pyrethroid isomerization
used apolar solvent as hexane in presence of an isomer-stabilizing agent (e.g., acetic
acid) [62]. GC is generally combined with electron capture detector or a mass
spectrometer. Although GC-ECD is robust and highly sensitive for these compounds
having halogenated atoms [37] as known, the selectivity of GC-MS is much better
than that of GC-ECD. During GC-MS analysis, negative chemical ionization mode
(NCI) is preferred to electron ionization (EI) because under EI conditions, pyre-
throids give low-mass ions, most of them with the same m/z ratios. Otherwise, NCI
reduces fragmentation, which is mainly due to the labile-ester linkage, generating
negative molecular ions. Bondarenko et al. found that the instrument response of
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GC-MS in the NCI mode was one order of magnitude higher than that of GC-ECD to
pyrethroid compounds, largely because of reduced inference from matrix back-
ground [22]. Methane was mainly used as moderating gas [27, 43], but Feo et al.
also found excellent results (instrumental limit of detection, ILOD, 0.02–1.88 pg
injected) when using ammonia as moderating gas [29]. TandemMS was used for the
determination of pyrethroids in chemical ionization (CI) [36, 38, 65]. Sichilingo
et al. found ILODs in the range 110–400 pg injected [38] operating with methane as
moderating gas, whereas Feo et al. found ILODs ranging between 0.11 and 450 pg
injected operating with ammonia as moderating agent [65].

3.2 LC Methods

Recently, liquid chromatography (LC) and high-performance liquid chromatogra-
phy (HPLC) technique have been increasingly employed for the determination of
pyrethroid residues in different matrices [36, 66, 67] with the main advantage of

Fig. 1 GC-NCI-MS chromatograms of 14 pyrethroids selected in the study of Feo et al. [29]
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avoiding pyrethroid isomerization. However, the sensitivity of LC is lower than that
of the GC, and this needs to be considered when working at residue levels. Thus,
pre-concentration and cleanup procedures are necessary to be applied to comply with
tolerance levels. LC separation has been performed on a 250 � 4.6 mm i.d. Water
symmetry C18 column (5 μm particle size) coupled by quadrupole MS with an
electrospray ionization (ESI) interface [20]. Acetonitrile was the solvent A and
ammonium formate 50 mM, 5% of acetonitrile, pH 3.5, the solvent B. ILODs
were found in the range 0.3–0.5 μg/L [20]. LC techniques have been used also
coupled to photochemically induced fluorimetry (PIF) for derivatization (pyrethroids
do not display native fluorescence; thus, they were photolyzed into strongly fluo-
rescent photoproducts) and a fluorescence detector (FD) [21, 50]. The FD is very
selective, overcoming matrix interference [68]. LC separation was performed on a
3.5 μm symmetry C18. Acetonitrile water was used as mobile phase
[21, 50]. Valverde et al. showed that in LC-ESI-MS (positive ion mode),
deltamethrin and the two diastereoisomers of tralomethrin were efficiently separated,
whereas, under GC conditions, both insecticides elute at the same retention time and
give the same mass spectra [61]. This is probably due to the transformation of the
two isomers of tralomethrin into deltamethrin in the GC injector port by elimination
of a molecule of bromine. The LC separation was carried out on LiChroCART
Superspher 100 RP-18 column using isocrated elution with acetonitrile/water
(80:20) as eluent [61]. For HPLC determination, the analytical column employed
was C18 stationary phase (150 � 4.6 mmI.D., 5.0 m), and the mobile phase was
water-methanol (20:80, v/v). The detection was performed with an UV-Vis detector
working at wavelength of 220 nm [17]. Liu et al. employed a Spursil C18 column
(5, 4.6, 250 mm) with a Spursil C18 Guard Cartridges (5, 2.1, 10 mm) [45]. The
mobile phase was an acetonitrile/water mixture (83/17, v/v). The detector was
variable wavelength detector (VWD) with wavelength set at 230 nm [45]. Parilla
Vazquez et al. performed liquid separation on a column of 250 � 4.6 mm id packed
with 3.5 μm Symmetry C18 [21, 50]. The mobile phase was a programmed gradient
with acetonitrile/water. The detector was PIF-FD operating with a programmed
excitation and emission wavelengths of 283 and 330 nm [21, 50].

4 Enantioselective Separation

Chiral pollutants as pyrethroids are receiving growing environmental concern due to
differential biological activities of their enantiomers. Liu et al. reported enantiomeric
separation of cis-bifenthrin, permethrin, cypermethrin, and cyfluthrin using LC with
variable wavelength UV detection for quantification and a laser polarimetric detec-
tion for the identification of the direction of optical rotation of the separated
stereoisomers [62, 69]. The separation of the stereoisomers of cis-bifenthrin, cis-
permethrin, and trans-permethrin was achieved on a 25 cm Sumichiral OA-2500-I
column using hexane/1,2-dichloroethane (500:1, v/v) as eluent, whereas isomer
separation for cypermethrin and cyfluthrin was obtained on two 25 cm Chirex
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00G3019-DO columns with hexane/1,2-dichloroethane/ethanol (500:10:0.05, v/v/v)
as eluent [62, 69]. Xu et al. worked on enantiomeric separation of lambda-
cyhalothrin by HPLC using the columns of Chiralpak AD (amylase tris
[3,5-dimethylphenyl carbamate]), Chiralpak AS (amylase tris[(S)-1-phenyl carba-
mate]), Chiralcel OD (cellulose tris[3,5-dimethylphenyl carbamate]), and Chiralcel
OJ (cellulose tris[4-methyl benzoate]) with different chiral stationary phases
[70]. The enantiomers of lambda-cyhalothrin were separated completely on all the
columns tested and detected by circular dichroism at 236 nm. In GC, Corcellas et al.
developed a method for simultaneous determination of the different enantiomers of
six pyrethroids (bifenthrin, cyhalothrin, cyfluthrin, cypermethrin, permethrin, and
tetramethrin) [71] using BGB-172 of 30 m� 0.25 mm and a column with 0.25 μm of
film thickness. Previously, the same column was used by Chamberlain et al. for
separation of the enantiomers of cypermethrin, cyfluthrin, cis-bifenthrin, and per-
methrin and also by Liu and Gan who showed that this chromatographic column was
the best one for the enantiomeric separation of pyrethroids [69, 72]. The chroma-
tography method proposed by Corcellas et al. allowed the separation of all cis-
enantiomers (two pairs, four peaks), but for trans-isomers, the enantiomeric separa-
tion was not possible, obtaining two peaks corresponding each one to each pair [71]
(Fig. 2).

5 Quantitative Methods

A complication in analyzing pyrethroids is that the concentration of each isomer of
an individual pyrethroid in the standard mixture is unknown. Generally, the techni-
cal standard mixtures of pyrethroids, which are generally used for quantification,
directly provide the sum of the concentrations of the individual isomers for each
pyrethroid. Thus, the concentration of each pyrethroid is determined by summing the
areas of the observed individual isomers. Moreover, pyrethroid-labeled standards are
scarce. Commercially available standards are trans-permethrin-d6 [4, 29] and trans-
cypermethrin-d6 [29] which are generally used as internal standards for an isotope
dilution quantification. Other standards used for pyrethroid quantification are
PCB-166, PCB-195 [37], and caffeine [36]. Dibromooctafluorobiphenyl has been
used as surrogate for aqueous samples and dibutylchlorendate for sediment and biota
samples [15].

6 Conclusion

Sample preparation and cleanup methods for pyrethroids are well established for
environmental and food samples. Recoveries are high, reproducibility is good, and
method limit of detection is adequate for the determination of levels of pyrethroids at
environmentally relevant concentrations. Recently, low-solvent consumption and
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time analysis extraction methods have been also successfully applied. The greatest
challenges in pyrethroid analysis are the complexity of the mixtures and the lack of
standards to enable quantification of individual diastereoisomers and enantiomers.
For quantification, several techniques are being applied to the analysis of pyrethroids
{e.g., GC-ECD, GC-NCI (methane or ammonia)-MS, and GC � GC-ToF-MS}. GC-
NCI-MS provides the highest selectivity and sensitivity. Regarding enantiomeric
separation, it is usually performed on a beta-cyclodextrin-based column because of
its excellent enantioselectivity. A major drawback of such a column is that the
enantiomers from the same trans diastereoisomer cannot be separated.
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Abstract Insecticides are natural and synthetic chemicals used to kill unwanted
pests. However, humans and insect share similar molecular targets, and thus,
insecticides are potentially hazardous to human health. Several health effects
might be observed in experimental animals following controlled exposure to insec-
ticides. Synthetic pyrethroids are still a relatively novel group of insecticides widely
used not only in agriculture but also in human and veterinary medicine, forestry, and
public health and for commercial pest control and residential consumer use. They
play a unique role in fighting against malaria in tropical areas, where the WHO
recommends pyrethroids among others for indoor residual spraying (IRS) and
impregnation of bed nets to prevent mosquito biting.
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Bearing in mind the widespread use of these substances around the world, one can
expect that the exposure of human population is common and may pose a potential
health risk. Human biomonitoring (HBM) is a scientific tool that allows to assess the
extent of exposure based on the measurement of a given chemical or its metabolites
in human body fluids or tissues.

The need to estimate the level of exposure in different populations has led to the
development of a methodology based on the measurement of urinary metabolites,
as synthetic pyrethroids are rapidly metabolized in humans and excreted mainly in
the urine. Human biomonitoring is used commonly in epidemiological studies and
provides valuable information on the aggregate exposure.

Numerous analytical methods have been developed for the determination of
metabolites of synthetic pyrethroids in human urine capable of detecting both
environmental and occupational exposure.

Here, in this chapter, we summarized recent achievements in the analysis of
metabolites of synthetic pyrethroids in human urine, with both separation and
non-separation methods and methods of sample preparation and some aspects of
instrumental analysis.

Keywords Analytical methods, Biomarkers of exposure, Human biomonitoring,
Synthetic pyrethroids

1 Human Biomonitoring

HBM is a scientific tool allowing to estimate the extent of exposure to environmental
xenobiotics. This assessment is possible based on the results of measurements of the
concentrations of substance in biological samples taken from human (e.g., blood,
saliva, urine, etc.). HBM is currently recognized as the gold standard in assessing
human exposure to chemicals. One of the basic advantages of HBM is that it allows
exposure assessment taking into account all exposure sources (e.g., air, water, food,
personal care products, etc.) and all exposure routes (e.g., dermal, respiratory, oral).
HBM studies conducted on large populations allow to identify particularly vulner-
able populations and to assess time trends.

The current state of knowledge does not allow however direct assessment of the
health risk resulting from the presence of a chemical in a biological fluid in a
specified concentration. However, the results of HBM studies can be a source of
valuable data on exposure to a specific chemical in epidemiological studies. To
properly conduct exposure assessment with the use of HBM, it is necessary to know
the biotransformation pathways of a given substance in humans, its toxicokinetics,
and it is necessary to develop analytical methods that allow measuring very low
concentrations of substances or their metabolites in very complex biological
matrices.
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2 Urinary Metabolites as Biomarkers of Exposure

2.1 Metabolism of Synthetic Pyrethroids

Chemical structure of pyrethroids in a large extent determines their biotransforma-
tion pathways. As esters they are easily hydrolyzed by human carboxylesterases to
form respective alcohol and acidic metabolites. Oxidation by cytochrome P-450 is
the second major reaction of pyrethroids in laboratory animals and humans [1]. Both
oxidation and hydrolysis are the first-phase reactions which are followed by second-
phase reactions – conjugation with endogenous substrates. The last process leads to
formation of glucuronides, sulfates, and amino acid conjugates – highly water-
soluble metabolites and in some cases lipophilic conjugates with cholesterol, bile
acids, and triglyceride. Hydrophilic metabolites of pyrethroids do not show accu-
mulation in human body and are rapidly and almost completely excreted into urine
within few days after oral exposure. Although pyrethroids undergo both oxidation
and hydrolysis reactions, practically only products of hydrolysis serve as urinary
biomarkers of exposure.

Urine as a major route of elimination of pyrethroid metabolites is thus considered
the most appropriate matrix for the assessment of aggregate exposure. The plasma
half-life for most pyrethroids is shorter than 8 h.

Significant differences occur in respect to cleavage of the ester bond between
trans and cis isomers. Trans isomers of pyrethroids possessing chrysanthemic acid
moiety are hydrolyzed more efficiently than their corresponding cis isomers. Fur-
thermore, cis isomers are more susceptible to oxidative metabolism than trans
isomers [2]. The range of human metabolites identified and used as biomarkers of
exposure to pyrethroids is presented in Table 1.

Several urinary metabolites were identified (Table 1) up-to-date, and they can
serve as a reliable biomarker of exposure. Besides of that, some biomarkers are more
frequently analyzed than others.

The first published methods for the quantitative determination of synthetic
metabolites of pyrethroids in human urine included the metabolites of the most
commonly used pyrethroids, namely, permethrin, cypermethrin, deltamethrin, and
cyfluthrin: cis and trans DCCA, DBCA, 3PBA, and 4F3PBA [3–7].

Of these, 3PBA is unique, because so far, most research is focused on this
biomarker. It is a common metabolite of many pyrethroids, and its concentrations
in urine are usually the highest and detectable in the largest number of samples in the
population. Finally, the highest availability of analytical methods exists for the
determination of this metabolite in the urine; both chromatographic methods and
high-throughput immunological methods are described in the literature.

In addition to 3PBA and the aforementioned metabolites, the remaining ones are
studied less often, although in recent years, several methods have been published
that enable the simultaneous, very sensitive assay of up to eight to nine individual
biomarkers in one chromatographic run [8, 9].
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Table 1 Human urinary metabolites of synthetic pyrethroids used for the assessment of exposure

Abbreviation Chemical structure Chemical name Parent pesticide

cis, trans
DCCA

3-(2,2-Dichlorovinyl)-2,2-
dimethyl-(1-cyclopropane) car-
boxylic acid

Cyfluthrin,
cypermethrin,
permethrin

3PBA 3-Phenoxybenzoic acid Permethrin,
cypermethrin,
deltamethrin,
esfenvalerate,
λ-cyhalothrin,
fenpropathrin,
flucythrinate,
fluvalinate,
phenothrin

DBCA 3-(2,2-Dibromovinyl)-2,2-
dimethyl-(1-cyclopropane) car-
boxylic acid

Deltamethrin

4F3PBA 4-Fluoro-3-phenoxybenzoic acid Cyfluthrin,
flumethrin

4OH3PBA 40-Hydroxy-3-phenoxybenzoic
acid

Permethrin,
cypermethrin,
deltamethrin,
esfenvalerate,
λ-cyhalothrin,
fenpropathrin,
flucythrinate,
fluvalinate,
phenothrin

CPBA 4-Chloro-α-isopropyl
benzeneacetic acid

Esfenvalerate

MPA 2-Methyl-3-phenylbenzoic acid Bifenthrin

ClF3CA 3-(2-Chloro-3,3,3-trifluoroprop-
1-enyl)-2,2-
dimethylcyclopropanecarboxylic
acid

λ-cyhalothrin,
bifenthrin

MTFBL 4-Methyl-2,3,5,6-
tetrafluorobenzyl alcohol

Profluthrin

(continued)
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Table 1 (continued)

Abbreviation Chemical structure Chemical name Parent pesticide

MMTFBL 4-Methoxymethyl-2,3,5,6-
tetrafluorobenzyl alcohol

Metofluthrin

TMCA 2,2,3,3-
Tetramethylcyclopropane-
carboxylic acid

Fenpropathrin

TFBA 2,3,5,6-Tetrafluorobenzoic acid Transfluthrin

MPCA 2,2-Dimethyl-3-(2-methylprop-
1-enyl)cyclopropanecarboxylic
acid

Tetramethrin

CXCA 3-(2-Carboxy-prop-1-enyl)-2,2-
dimethylcyclopropanecarboxylic
acid

Imiprothrin

HOCH2-FB-
Al

2,3,5,6-Tetrafluoro-1,4-
benzenedimethanol

Metofluthrin

FB-Al 2,3,5,6-Tetrafluorobenzyl alcohol Transfluthrin

MCA 2,2-Dimethyl-3-(1-propenyl)-
cyclopropane carboxylic acid

Metofluthrin

CDCA Chrysanthemum dicarboxylic
acid

Imiprothrin,
allethrin
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Sensitivity is one of the key parameters characterizing the analytical method
for the determination of synthetic pyrethroid metabolites in the general population
not exposed occupationally, since average concentrations are well below 1 ng/mL.
Metabolites other than 3PBA are detected much less frequently and even in lower
concentrations. In general, methods based on gas chromatography are more sensitive
than methods based on liquid chromatography. Chromatographic methods in com-
bination with mass spectrometry with different types of analyzers are used exclu-
sively in HBM, as only advanced systems allow reliable detection of low
concentrations resulting from environmental exposure.

3 Separation Techniques

3.1 Sample Preparation

From a practical point of view, the fewer the stages of sample preparation for the
analysis, the lower the probability of making a mistake, but also the smaller
workload and consequently the unit cost of the analysis. Very low levels of synthetic
pyrethroid metabolites that are found in urine samples from non-occupationally
exposed subjects require the use of analytical methods characterized by high sensi-
tivity of the instrument or advanced technique of extraction and purification of the
sample before instrumental analysis or the combination of both. Dilute-and-shoot
technique which is the simplest way of biological sample preparation for LC-MS/
MS was never used for the analysis of synthetic pyrethroid metabolites in human
urine.

In general, sample preparation steps include (a) internal standard addition,
(b) hydrolysis, (c) sample extraction and cleanup, (d) derivatization (only in GC-
MS-based methods), and (e) instrumental analysis.

The better sensitivity of GC-MS over LC-MS mentioned earlier is associated
however with a much greater effort at the stage of sample preparation for analysis,
whereas in the case of LC-MS, the hydrolyzed sample is only subjected to extraction
and possibly enrichment (solvent evaporation) before instrumental analysis. In the
case of GC-MS, the extracts are practically always subjected to additional cleanup,
concentration, and derivatization.

The vast majority of the immunological methods described do not require
advanced sample preparation for analysis. Usually, dilution of the urine sample or
simple SPE extraction is sufficient.

3.1.1 Hydrolysis

As mentioned earlier, all of the end products of pyrethroid metabolism when
excreted in urine are present as conjugates. No analytical method that was published
up to date dealt with determination of conjugated forms or only free form, but in all
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cases, metabolites were released from conjugates using different deconjugation
procedures before extraction from the matrix. Glucuronides and sulfates consist
over 90% of conjugates found in human urine. Considering this, measurement of
total concentration of metabolites has to be preceded by hydrolysis. Both acidic and
enzymatic hydrolyses can be performed for quantitative release of metabolites before
their isolation from urine.

The most significant disadvantage of enzymatic hydrolysis is time consumption
since it is usually performed overnight. On the other hand, this process does not need
personnel engagement; therefore, it is virtually costless. Enzymatic hydrolysis is
considered as a mild process because strong acids used for acidic hydrolysis might
destroy labile analytes. For example, it was shown that a common metabolite of
metofluthrin and profluthrin, i.e., 2,2-dimethyl-3-(1-propenyl)-cyclopropane carbox-
ylic acid (MCA), was significantly degraded during HCl hydrolysis [8].

Acidic hydrolysis is typically performed with concentrated hydrochloric acid
added at an average ratio of 0.2 mL per each mL of urine. Sample is then heated
at 90–100�C for 60–120 min [4, 6, 9–14].

Toshima et al. [15] observed some discrepancies between determined concentra-
tions of 3PBA from two laboratories during cross-validation study. Authors
observed significantly lower concentrations of 3PBA following enzymatic
deconjugation in some of the urine samples. The results suggested the presence of
other conjugated species of 3PBA than glucuronide and sulfate in human urine.
Although the overall agreement between the values obtained by the deconjugation
methods was fair, it appears that urine samples should be pretreated by acidic
deconjugation for the analysis in biological monitoring of pyrethroid exposure.

Different enzymes, such as β-glucuronidase type HP-1 from Helix pomatia [16],
type HP-2 [14, 15, 17, 18], glucuronidase arylsulfatase enzyme [19] and sulfatase
from Helix pomatia, type H-1, lyophilized powder [20, 21], were used for enzymatic
hydrolysis. Incubation time with enzyme in 0.2 M acetate buffer (pH 4.5–5.0) varied
between 5 and 17 h (overnight) at 37�C.

3.1.2 Extraction

Liquid-Liquid Extraction

Liquid-liquid extraction is the simplest extraction technique commonly used for
isolation of pyrethroid metabolites from human urine. After acidic hydrolysis of
urine, no pH adjustment is needed before extraction. In contrary, when enzymatic
hydrolysis is performed, the sample should be acidified before extraction. Analytes
are usually extracted to n-hexane [3, 6, 9, 11, 14, 22–24], dichloromethane [5, 25],
isopropanol-hexane (5:95) [26], tert-butyl-methyl-ether (MTBE) [8, 10], chloroform
[27], or toluene [20]. Due to the acidic character of metabolites, re-extraction from
organic solvent to alkaline solution might be later performed for sample cleanup.
Usually NaOH solution is utilized for this purpose [3, 9, 11, 14, 24, 27]. Liquid-
liquid extraction is considered as difficult to automate; however, Ueda et al. [8] used
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robotic system Extrahera™ (Biotage, Uppsala, Sweden) for automation of liquid-
liquid extraction on 24-well plates with MTBE as extraction solvent. Same authors
observed that conditions of evaporation of MTBE extract are essential for optimal
derivatization efficiency. Due to high volatility of fluorinated alcoholic metabolites,
significant loses were observed during evaporation at 40�C. Finally, satisfying
recoveries were obtained while vacuum evaporation at 4�C was employed. On the
other hand, acidic metabolites are not sensitive to overdrying even at 40�C.

The liquid-liquid extraction, however, has several disadvantages. First of all, it is
characterized by a very high consumption of organic solvents; in one case the use is
even over 50 mL per one sample [3]. In these methods, moreover, the solvents are
evaporated, resulting in a significant environmental burden.

The principles of green chemistry aimed at limiting the use of toxic and environ-
mentally harmful organic solvents have found application in two microextraction
methods. In both cases, a microporous membrane impregnated with 1-octanol (8 μL)
or dihexyl ether, respectively, was used as the extraction device. In the first case, a
microsyringe pre-filled with derivatizing agents and syringe needle connected to
solvent-impregnated hollow-fiber segment was used as LPME probe. Pyrethroid
metabolites were extracted and enriched simultaneously. After sampling, the
in-syringe derivatization (ISD) was performed, and the extract was subjected to
GC-ECD analysis [28]. In turn, Bartosz et al. [12] used polypropylene hollow-fiber
membrane tightly fitted onto Nylon rod and impregnated with dihexyl ether for
3PBA and 4OH3PBA extraction from human and rat urine. This disposable device
was first placed in acid-hydrolyzed urine for 120 min and then transferred into 0.1 M
NaOH for 120-min desorption. This extract was further analyzed by HPLC-DAD.
Limits of detection for 3PBA (15 ng/mL) and 4OH3PBA (15 ng/mL) were too
high to measure environmental exposure. Nevertheless, the general concept may be
used with more sensitive LC-MS/MS method to increase sample preparation
throughput [12].

Solid-Phase Extraction

Solid-phase extraction is devoid of certain disadvantages of liquid-liquid extraction.
It allows for smaller consumption of organic solvents and can be easily automated
to reduce human costs and improve reproducibility. In the case of biomonitoring
studies conducted on large populations, where the number of samples for analysis
reaches hundreds or even thousands, the unit cost of sample preparation plays a
significant role.

Different formats of SPE are available nowadays, and some of them were used for
isolation of pyrethroid metabolites from human urine. Standard SPE cartridges are
most commonly used, but 96-well plates were also successfully employed [16] as
well as microextraction by packed sorbent (MEPS) or SPE columns for online
sample preparation in combination with liquid chromatography.
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Oasis HLB being the polymeric sorbent with a hydrophilic-hydrophobic balance
is used usually in the form of cartridges [21, 29–31] as well as 96-well plate format
[16]. However, C18 sorbents are also suitable [6, 7, 32, 33].

Miniaturized format of SPE, named microextraction by packed sorbent (MEPS),
was used by Klimowska and Wielgomas to extract five metabolites from only
0.4 mL of human urine [17]. Extraction was carried out using a semiautomatic
syringe equipped with a needle with a bin filled with a small amount of C18 sorbent
(4 mg) – BIN (barrel insert and needle). The advantage of this technique is that the
sample flows through the bed twice, once when the sample is drawn into syringe and
the second time when the sample is dispensed. This technique is based on the SPE
principles, but thanks to miniaturization, it allows the extraction of very small
sample volumes and elution of analytes with microliter volume of solvent directly
to the injector. The authors, thanks to the use of large-volume injection (40 μL)
and GC-MS (LVI-GC-MS), could achieve limits of quantification in the range of
0.06–0.08 ng/mL [17].

3.1.3 Derivatization

Analytes while released during enzymatic or acidic hydrolysis and following extrac-
tion and cleanup might be directly analyzed by liquid chromatography or have to be
converted to more volatile and thermally stable products suitable for gas chroma-
tography. Hexafluoroisopropanol (HFIP) combined with diisocarboxyldiimide
(DIIC) is the most often used derivatization reagent. The major advantage of this
reagent is that the reaction is completed at room temperature in minutes, usually,
residue after organic solvent evaporation if treated with a mixture of HFIP/DIIC in
the presence of acetonitrile or isooctane. After a few minutes, the reaction mixture is
washed with NaHCO3 to remove excess of reagents.

Furthermore, Klimowska and Wielgomas [17] documented that hexafluoro-
isopropyl esters of acidic pyrethroid metabolites are formed on the solid support
(C18) during elution with hexane containing HFIP and DIIC. No byproducts, which
are harmful to GC injection liner, column, or MS detector, are formed.

Much less frequently, analytes were methylated to methyl esters by incubation
with a mixture of methanol and sulfuric acid [3, 6, 23].

Alcohol metabolites are less frequently analyzed in urine samples. Ueda et al. [8]
developed the GC-MS/MS method for determination of alcoholic metabolites
(HOCH2-FB-Al, CH3-FB-Al, CH3OCH2-FB-Al, and FB-Al) of fluorinated pyre-
throids: metofluthrin, profluthrin, tefluthrin, and transfluthrin. Unfortunately, metab-
olites mentioned above could not be derivatized sufficiently by the HFIP/DIIC
reagent even with any modification of reaction temperature and time. On the other
hand, these metabolites were derivatized by the reagents for trimethylsilylation such
as TMSI, TMSI-TMCS, MTBSTFA, BSTFA, and BSTFA-TMCS. Of these, only
BSTFA-TMCS (99:1) showed reactivity with all hydroxyl metabolites [8].

Schettgen et al. [9, 11] and Guo et al. [26] derivatized acidic metabolites with
MTBSTFA before GC-MS/MS analysis.
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Aprea et al. [5] used pentafluorobenzyl bromide (PFBBr) for transformation of
3PBA into pentafluorobenzyl ester, which was further determined by gas chroma-
tography with an intermediate polarity capillary column and an electron-capture
detector. PFBBr as a strong lachrymator should be handled with special care.

Yoshida et al. used N-trimethylsilylimidazole (TMSI) with trimethylchlorosilane
(TMCS) for derivatization of hydroxylated alcohols and N-(tert-butyldimethylsilyl)-
N-methyltrifluoroacetamide (MTBSTFA) for efficient derivatization of carboxylic
metabolites of several synthetic pyrethroids [20].

Recently, Schettgen et al. [9] modified and widened the scope of their original
method [11] by adding new metabolites, namely: ClF3CA (BIF), CPBA
(4-chloro-α-isopropyl benzene acetic acid), and MPB (2-methyl-3-phenylbenzoic
acid). Effective sample cleanup was achieved by extraction to hexane and
re-extraction to 0.1 M NaOH. Gas chromatography with tandem mass spectrometry
was used for separation and quantitative analysis. The limit of quantification for all
metabolites was 0.01 ng/mL when 10 mL of urine was processed.

3.2 Gas Chromatography

Gas chromatography (GC) methods were the first developed for determination of
synthetic pyrethroid metabolites in human urine. Up to now this technique domi-
nates over others for this group of analytes. Although acidic metabolites need to be
derivatized before gas chromatography separation, GC-MS remains the method of
choice when considering the determination of pyrethroid metabolites in urine. Due
to the high separation power, equipment availability, reasonable purchase, and
maintenance cost, GC-MS serves as a reliable method.

Typical nonpolar capillary columns, such as DB-5 ms (5%-phenyl-95%-
dimethylpolysiloxane, 30 m � 0.25 mm � 0.25 μm) [7, 20, 26], HP-5 ms
(60 m � 0.25 mm � 0.25 μm) [6, 9], VF-5 ms low-bleed column
(30 m � 0.25 mm � 0.25 μm) [24], XLB column (60 m � 0.25 mm � 0.25 μm
film thickness), [22, 25] as well as medium polarity HP-35 (cross-linked 35%
diphenyl-dimethylpolysiloxane, 60 m � 0.25 mm � 0.25 μm) [11], DB-608
(30 m � 0.25 mm � 0.25 μm) [28], and relatively polar column Rtx 65 (cross-
linked 65%-phenyl-35%-dimethylpolysiloxane 30 m� 0.25 mm� 1 μm) [10], were
used for separation of respective derivatives of synthetic pyrethroid metabolites.

In two published methods, electron-capture detector (ECD) was used
[5, 28]. High sensitivity of ECD toward halogen-containing molecules allows for
detection of hexafluoroisopropyl esters and pentafluorobenzyl esters of pyrethroid
metabolites. Despite the high sensitivity of the detector, these methods were not used
further in biomonitoring studies possibly due to the lack of specificity in comparison
to MS detection. Both quadrupole and ion-trap mass spectrometers operated in
single-ion mode (SIM), as well as multiple reaction monitoring (MRM), offered
sufficient sensitivity.
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3.3 Liquid Chromatography

The biggest advantage of LC is the ability to analyze metabolites without the need to
derivatize them. Unlike GC, there is no need for additional extract cleanup before
instrumental analysis. As in the case of gas chromatography, only highly specific and
sensitive methods, i.e., using mass spectrometry, are useful in biomonitoring studies.
The sample preparation process is simplified, but it comes at a price. LC-MS
methods are susceptible to ion suppression phenomenon which can strongly affect
both sensitivity and repeatability [14, 29].

Only two published methods used HPLC with spectrophotometric detection for
the determination of synthetic pyrethroid metabolites. Smith et al. [27] developed a
HPLC-UV method for the determination of 3PBA and MPA – a metabolite of
bifenthrin in the urine of people professionally exposed to this insecticide. Bartosz
et al. [12] in turn developed HF-LPME-HPLC-DAD method for determination of
3PBA and 4OH3PBA in rat and human urine. Both methods, due to high LOD and
LOQ values, are not suitable for the determination of metabolites in the urine of
non-occupationally exposed subjects.

Separation of analytes is carried out using HPLC, UPLC, and UHPLC coupled
with mass spectrometers with various types of analyzers: triple quadrupole ESI
[14, 16, 21, 29, 31, 34], turbo ion spray (TIS) [30], Q-TOF (ESI) [32, 35, 36], and
high-resolution Orbitrap [19, 37].

Sample preparation for LC-MS analysis included offline solid-phase extraction
[16, 21, 29–32, 34–36], liquid-liquid extraction [14], online SPE [37], and the
QuEChERS [19].

The popularity of the QuEChERS methodology stems from its unique simplicity
and applicability to almost any type of matrix. Therefore, an attempt was made to
apply this methodology to the preparation of a biological sample in order to quantify
the concentration of pesticide metabolites in human urine.

5 mL of urine was hydrolyzed enzymatically (1 mL of 0.2 M acetic buffer and
10 μL of β-glucuronidase aryl sulfatase) and then subjected to simplified
QuEChERS procedure by addition of 10 mL of acetonitrile and QuEChERS salt
packet. Acetonitrile layer was then evaporated at 37�C under a stream of nitrogen
and reconstituted in 200 μL of methanol/water (10:90, v:v) containing 0.1% of acetic
acid. Extract was analyzed with the use of UHPLC-HRMS system. Five pyrethroid
metabolites were monitored: cis-DCCA, trans-DCCA, DBCA, 3PBA, and 4F3PBA.
Additionally, Plackett-Burman design was used to optimize the parameters affecting
the analytical response [19]. Unfortunately, LOQs were in the range of 2–10 ng/mL.

López-García et al. [37] developed a method for simultaneous quantification
of selected organophosphate and pyrethroid metabolites in human urine and com-
pared three independent sample preparation protocols including offline SPE,
TurboFlow™, and online SPE. For TurboFlow™ and online SPE protocols, raw
urine sample (without hydrolysis) was filtered through a 0.2 μm nylon filter, and
0.5 mL was subjected to online extraction. The best peak shapes and recoveries
were obtained with TurboFlow™ methodology. This technique was the only one
enabling detection of cis-/trans-DCCA, since no signal was produced when offline
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or online SPE was performed. TurboFlow™ is recommended for matrices rich in
macromolecules like proteins. Using described method, LOQs for cis-/trans-DCCA,
3PBA, and 4F3PBA were 10, 5, and 1 ng/mL, respectively (Tables 2 and 3).

4 Non-separational Techniques

4.1 Immunoassays

Non-chromatographic methods could be a good alternative to expensive and time-
consuming chromatographic methods. A small sample volume, high throughput, and
sensitivity as well as simple detection systems are the advantages of immunoassays.
A number of immunoassay methods have been developed for the determination of
3PBA, cis-/trans-DCCA-glycine conjugate, and 3PBA-glycine conjugate in various
formats. Most methods are indirect competitive ELISA [38–45]; others are lumines-
cent paramagnetic particle-based immunoassay [46], direct competitive fluorescence
enzyme immunoassay [47], noncompetitive magnetic bead-based PHAIA (poly-
clonal antibody-based noncompetitive immunoassay) [48], noncompetitive PHAIA
real-time PCR [49], and quenching fluoroimmunoassay [50].

Depending on the method, 0.001–10 mL of the urine sample is required for one
assay. These methods are characterized by high sensitivity, since the limit of
quantification in the buffer is in the range of 0.01–0.25 ng/mL and 0.1–2.5 ng/mL
in the urine. Practically, the method with the limit quantification of 0.1 ng/mL can be
used to study exposure in the general population. Currently, however, no immuno-
assay for pyrethroid metabolites is commercially available. The main weakness of
immunoassays is cross-reactivity with other compounds with similar structure or
properties.

4.2 Other Methods

Recently, Pandey et al. [51] published a method for optical sensing 3PBA in urine
samples by surface imprinting polymer capped on manganese-doped zinc sulfide
quantum dots (QD). Developed sensor is highly stable and does not require any
sample pretreatment. However, quantitative analysis is not affordable with this
system (Table 4).

5 Quality Control

5.1 Intra- and Interlaboratory Quality Control

One of the key challenges of the HBM research methodology is the highest quality
of quantitative results. It is worth noting that the concentrations of synthetic
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at
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ra
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ra
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ie
s
(n

¼
29

5)

[2
2]

(c
on

tin
ue
d)

Analytical Methods for Determination Urinary Metabolites of Synthetic. . . 61



T
ab

le
2

(c
on

tin
ue
d)

A
na
ly
te
s
(L
O
D

ng
/m

L
;
L
O
Q

ng
/m

L
);

D
F

S
am

pl
e
vo

lu
m
e
(V

),
hy

dr
ol
ys
is
(H

),
ex
tr
ac
tio

n
(E
),
cl
ea
nu

p
(C
),

in
st
ru
m
en
t
(I
)

E
xt
ra
ct
io
n
an
d
cl
ea
nu

p
de
ta
ils

D
er
iv
at
iz
at
io
n

N
ot
ic
e

R
ef
.

D
B
C
A

(0
.8
33

;
2.
5)
;

D
F
,n

d
3P

B
A

(0
.0
08

;
0.
02

5)
;

D
F
,3

0–
35

%
4F

3P
B
A
(0
.0
17

;
0.
05

);
D
F
,2

0–
25

%

V
:
10

m
L

H
:
ac
id
ic

E
:
L
L
E

I:
G
C
-M

S
/M

S
(t
ri
pl
e

qu
ad
ru
po

le
)

L
L
E •
E
xt
ra
ct
io
n:

20
m
L

is
op

ro
pa
no

l-
he
xa
ne

(5
:9
5)

•
E
va
po

ra
tio

n
to

dr
yn

es
s

•
0.
5
m
L
to
lu
en
e
+
20

μL
M
T
B
S
T
F
A

(7
5�
C
,4

5
m
in
)

•
P
op

ul
at
io
n:

20
ad
ul
ts
an
d
20

ch
il-

dr
en

w
ith

ou
t
oc
cu
pa
-

tio
na
l
ex
po

su
re

(C
hi
na
)

[2
6]

ci
s-
D
C
C
A

(0
.1
;n

d)
;

D
F
,9

5.
3%

tr
an

s-
D
C
C
A

(0
.1
;

nd
);
D
F
,9

8.
3%

3P
B
A

(0
.1
;n

d)
;
D
F
,

98
.8
%

V
:
5
m
L

H
:
ac
id
ic
(1

m
L
H
C
l;
1
h,

90
� C

)
E
:
L
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ac
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e
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at
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l
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:
L
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L
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ra
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at
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:
L
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ra
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)
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m
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at
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ak
,

50
0
m
g,

w
at
er
s)

C
:
L
L
E

I:
G
C
-M

S
/M

S
(i
on

tr
ap
)

S
P
E
:
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L
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m
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at
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pyrethroid metabolites in general populations, not occupationally exposed, are low,
usually below 1 ng/mL, and therefore advanced methods of sample preparation for
analysis and proper and sensitive apparatus are required. However, even the most
modern and advanced equipment does not ensure reliable results. The laboratory
must follow the principles of good laboratory practice, and the quality assurance
system must necessarily work. Quality control procedure is a prerequisite for
obtaining credible results. Both internal and external quality controls should be
carried out in all laboratories specializing in HBM.

Internal quality control is realized by the purchase or in-house preparation of
appropriate quality control (QC) materials. The QC material should be human
biological material prepared at least at two different levels. The concentration levels
should be adjusted in respect to the expected levels of exposure in studied popula-
tion. At least one sample of each concentration level should be analyzed in each
analytical batch and the QC results interpreted with the use of quality control charts.

Usually in-house quality control (QC) material is prepared according to generic
procedure: urine is collected from multiple anonymous donors, combined, diluted
with water (1:1 v/v) to reduce endogenous concentrations of the analytes of interest,
and carefully mixed. Urine is filtered and divided into three pools. The first quality
control (QC) pool (low concentration) is spiked with the native standards to yield
low-concentration quality control (LQC) material. The second pool is spiked with
higher amount of native standards to yield the so-called high quality control (HQC)
material. The third pool is not spiked (blank urine) and is used later as a matrix
material for calibration standards and blanks. It is recommended to characterize each
pool by producing a minimum of 20 analytical runs over a period of 20 days.
Obtained results are used then to determine the 95 and 99% control limits by
which the QC sample results in each batch will be evaluated.

External quality control is carried out by analyzing samples obtained from
external laboratories within the intercomparison program. The most well-known
program that has been offering the assessment of the quality of methods for
determination synthetic pyrethroid metabolites for many years is the German exter-
nal quality control scheme (G-EQUAS,) organized and managed by the Institute and
the Outpatient Clinic for Occupational, Social and Environmental Medicine of the
University of Erlangen-Nuremberg (Erlangen, Germany). Scheme, evaluation, and
certification are based on the German Federal Medical Council (http://www.g-equas.
de/). As part of this program, it is possible to verify the suitability of the method for
the determination of five synthetic metabolites of pyrethroids: DBCA, cis-/trans-
DCCA, 3PBA, and 4F3PBA. The rounds of this program take place two times
a year.

6 Conclusions and Further Research

It seems that at the present time, analytical methods are available covering a fairly
broad spectrum of metabolites with sufficient sensitivity to assess environmental
exposure in global populations. Despite the much simpler sample preparation

76 B. Wielgomas et al.

http://www.g-equas.de/
http://www.g-equas.de/


procedure for LC-MS analysis and the use of very advanced mass spectrometers,
GC-MS-based methods are still the most sensitive methods available.

Despite the availability of numerous modern and miniaturized techniques of
extraction and purification of samples before instrumental analysis, in principle the
only valid techniques remain classical extraction techniques: liquid-liquid and solid-
phase extraction. The latter can be performed automatically by robotic systems both
in the format of cartridges and 96-well plates. Automation increases the precision of
determinations but also significantly reduces the labor cost, which is of great
importance in population studies with hundreds or thousands of samples.

Analytical methods are also being developed for the metabolite determination
of new pyrethroids and those less frequently used or hitherto not covered by
biomonitoring. The problem is the commercial availability of reference substances
and relevant isotopically labeled internal standards.

A very important tool that facilitates the achievement of reliable results by
analytical laboratories is the availability of interlaboratory comparison programs.
This type of harmonization of analytical methods makes it possible to compare the
results of human biomonitoring studies carried out in different countries by various
laboratories.
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Abstract As a consequence of their increasing use, pyrethroid insecticides are
recognized as a threat for nontarget species and ecosystem health. The present
chapter gives a state-of-art overview of individual pyrethroid occurrence in waters
and sediments worldwide, together with recent reports of their quantification in the
atmospheric gas and aerosol phases. Degradation rates, transport processes, and
partitioning of pyrethroids between environmental phases are reviewed. River flow
efficiently transports pyrethroids to river mouths and estuaries, while pyrethroid
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impact on the marine environment remains difficult to appraise due to lack of
comprehensive studies. Nevertheless, aquaculture arises as an important but poorly
understood environmental burden. Owing to their large organic carbon pool, sedi-
ments may act as a sink for pyrethroids and impair nontarget aquatic species.
Partitioning potential of pyrethroids is compared to that of other well-known legacy
pollutants in the light of their position in the phase space defined by key physico-
chemical properties (KOW and H0). The transport and partition of pyrethroids away
from their source are strongly dependent on their half-life, but their quasi constant
emissions in urban and agricultural area may compensate for their degradation,
therefore sustaining the occurrence and behavior of some individual pyrethroids as
“quasi persistent organic pollutants.”

Keywords Air, Freshwater, Marine, Partition, Pyrethroids, Sediment, Transport,
Water

1 Introduction

A major change in the use of pesticides over the last 20 years has been the gradual
replacement of organophosphate and organochlorine pesticides by synthetic pyre-
throids. The regulation and the ban of formerly used active agents have been
followed by an increased use of a wide variety of current-use pesticides such as
pyrethroids in agriculture and aquaculture [1]. Pyrethroids are also extensively used
in urban and industrial areas and livestock farms to control pests such as mosquitoes,
lice, and wood-destroying dwellers. In addition, synthetic pyrethroids have the
advantage of low cost, low mammalian toxicity, and shorter persistence in the
environment than other classes of pesticides [2].

The exposure mechanism leading to acute neuronal toxicity to insects and
crustaceans is through dissolved water in the water column and through pore water
in the sediments [3]. Other impacts have been reported and are related to trophic
transfer in food webs. Even though pyrethroids are degraded faster than other
pesticides, they have been shown to occur in water bodies, allowing their transfer
to the aquatic food webs [4]. Pyrethroids have hydrophobicities in the same range as
legacy organochlorine pesticides (log KOW from 4.8 to 7.0) and thus tend to sorb on
organic particles and sediments. Insecticides sorbed in particles may be consumed
by filter feeders and be transferred to higher trophic levels, or alternatively, particles
may consist in a reservoir for these pollutants, probably reducing their biodegrad-
ability in natural waters. As a result of biomagnification at high trophic levels,
negative impact of pyrethroids has been suggested causing immunity and estrogenic
disruption to mammalians [4].

The impact of pyrethroids is the result of both the exposure to dissolved pyre-
throids and to particle-associated ones. A comprehensive understanding of pyre-
throid impact to nontarget species starts with the understanding of pyrethroid
occurrence in the various environmental phases: dissolved water phase, particles,
and sediments. This chapter reviews the current knowledge on the occurrence of
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pyrethroids in water, particles and sediments of freshwater and marine
environments, and the underlying partition and transport processes between those
phases. Pyrethroids are often applied to water bodies, and after introduction to the
dissolved phase, they partition between the different environmental compartments,
being subjected to a number of sinks, particularly degradation. The elucidation of the
occurrence, partition, and sinks of pyrethroids will allow to identify research lines
that would help to better constraint the environmental risk associated to pyrethroids
and to orientate protection measures.

2 Pyrethroid Sources and Emissions in Surface and Marine
Water Bodies

Because of their wide spectrum of targets, pyrethroids are used in a variety of
applications; agriculture and urban householding pest control compose two of the
major market shares. Accurate estimates of their use are made difficult because
nonprofessional uses are often not reported and by off the counter sales. The use of
pyrethroids by aquaculture activities leads to important amounts of pyrethroids
directly released to the marine environment, which can be important in specific
marine areas [5, 6]. Overall, pyrethroids represent more than one third of the
insecticide market, with a worldwide annual use of active ingredients around
7,000 tons per year between 1990 and 2013 (with peaks above 12,000 tons in
1997 and 2012) [7].

Structural and householding usages constitute an important part of the pyrethroid
market. Several studies report that these compounds are not completely eliminated in
conventional wastewater treatment plants (WWTPs) [8, 9], and thus they can be
introduced into the environment through WWTPs effluents. Pyrethroids from urban
sources were identified as the cause of toxicity in 80% of river sediments in the
vicinity of the city of Salinas in Southern California [10].

3 Occurrence and Composition of Various Pyrethroids
in Water Ecosystems

In order to estimate the potential impact of pyrethroids on aquatic environments,
research projects and monitoring programs have surveyed pyrethroid occurrence
mostly in the vicinity of agricultural and urban areas concerned by pyrethroid
primary use. California is the world location from which more data are available
as a result of numerous monitoring programs setup at the municipal to state level
[11]. As a result of their affinity for organic matter, pyrethroids have been detected
both in the water phase and in the sediments. Table 1 reviews water concentrations of
pyrethroid in the current literature, and Table 2 reports their levels in sediments.
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Many studies reported pyrethroid concentrations in total water samples: the water
collected is directly adsorbed on a SPE cartridge or is directly solvent-extracted,
without previous filtration [12, 17, 22, 30]. Therefore, in these reports, both
dissolved and particle-bound pyrethroids are jointly extracted and reported. A
filtration step before pre-concentration was the preferred approach in some studies
[26, 28, 29, 31, 33, 48], and the concentrations reported herein are that of dissolved
pyrethroids, which includes the truly dissolved form and the colloidal-associated
pyrethroids as part of the dissolved organic carbon pool. Pollutants associated to
dissolved organic carbon are also retained in the adsorbents designed for sampling
truly dissolved pollutants, together with pollutants associated to colloids, as known
to occur for other hydrophobic chemicals [56]. Distinguishing concentrations of
dissolved active compounds from those of particulate ones is important because both
modes of occurrence are affected by distinct processes of transport and degradation
rates (see later), in turn shaping differently the ultimate fate of pesticides. A strong
recommendation for futures studies is to analyze separately the dissolved and
particulate phases [21], and in any case, to state clearly which phase is characterized.
The first part of Table 1 reviews dissolved and particle-bound pyrethroid concentra-
tion ranges. Whereas dissolved pesticides are bioavailable, it is not clear if the sorbed
pyrethroids are toxic through feeding intake or as a transient repository, being
desorbed later on and supporting the dissolved phase levels [31].

Pyrethroids dissolved in fresh and marine waters have been measured in a number
of studies worldwide with the objective to check whether their concentrations were
below thresholds of water quality guidelines. The dissolved form of pesticides is the
form that is bioavailable and represents a threat for arthropods and fish. Dissolved
pyrethroids were detected in agricultural drains, creeks, streams, and also in their
collecting large rivers downstream agricultural land (Table 1). For example, in seven
counties of California, 65–153 metric tons of pyrethroids were sold for licensed use
between 1999 and 2008 [52], and 422 tons for the whole California state in
2010 [18].

The occurrence of individual pyrethroids varies geographically and seasonally as
a response to agricultural use [19], and the consequent emission to the water, but
probably also to different seasonal and site degradation potential. In Hospital Creek,
a tributary of the San Joaquin River (Central California), bifenthrin was responsible
for the greatest part of the toxicity of particles, whereas cyhalothrin was the
prominent toxicant of particles in Ingram Creek, another tributary located less than
50 km away from the former [14]. Esfenvalerate and permethrin occurred in some
water samples of tributaries of the Sacramento River after storm events in 2003
[15]. In tributaries of the San Joaquin River, cyfluthrin and cyhalothrin were the most
frequent pyrethroids detected after winter storms, whereas bifenthrin and cyhalothrin
were only identified in samples collected in March [17]. In central California, several
surveys also reported bifenthrin as the main pyrethroid detected, its occurrence being
related to storm events [13, 14, 16], while cyhalothrin and esfenvalerate dominated
in the San Joaquin watershed [16]. Another study in Southern California sampled
San Diego River during storm events and showed that six pyrethroids were present
for 80% of the particle samples: bifenthrin, λ-cyhalothrin, permethrin, deltamethrin,
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cypermethrin, and cyfluthrin [21]. Even though the same compounds were also
detected in the dissolved phase, their relative abundance differed from that of the
particles. Comparison of the suspended/dissolved concentration ratio to the soil-
water partition constant showed that bifenthrin was not at equilibrium and in excess
in the particles [21]. In contrast, dissolved+particulate samples collected in two
others rivers of Southern California during low flow period showed much lower
concentrations, and only bifenthrin and permethrin were detected [20].

Generally, the past and on-going water survey programs setup in California have
yielded an important and valuable amount of data on the occurrence of pyrethroids.
These studies demonstrated that one or two pyrethroids were frequently present in
whole water samples, and that the dominant active compound differed in space and
time (both years and seasons), reflecting the distinct agricultural targets, shifts in
usages, and emissions from urban pest control [11, 19]. A metadata analysis gave the
integrated view that cyhalothrin and bifenthrin were the compounds most frequently
exceeding Regulatory Threshold Levels in surface freshwater of the USA and
reached higher maxima in concentration [2].

In developing countries, the impact of current-use pesticides on freshwater
quality is a growing concern, and an increasing literature documents pyrethroids in
Asian water bodies, whereas reports on Africa are still too scarce [34]. Together with
hundreds of other micro-pollutants, two pyrethroids were monitored in rivers and
canals flowing through Vietnamese large cities and showed occasionally very high
permethrin concentrations [23]. Cypermethrin and permethrin also dominated in the
dissolved phase and in suspended particles of an urban creek, close to Guangzhou
(Southern China, [25]). In GuanTin reservoir close to Beijing, deltamethrin was the
more frequently detected pyrethroid insecticide in spring [24]. In streams and rivers
of a rice cultivation area in the Philippines, cyhalothrin, cypermethrin, and
deltamethrin were frequently detected, at concentrations exceeding water quality
thresholds in half of the samples [48]. In Pakistan, deltamethrin and permethrin were
close to water quality threshold in winter samples [26].

In European Rivers, permethrin was detected in the UK [27], cyhalothrin and
cypermethrin in dissolved water and suspended particles of seven streams of Central
Germany, especially after rain events [31]. Cypermethrin was the most frequently
detected pyrethroid in the dissolved phase of the Ebro Delta (Spain), where rice is
cultivated [28, 29]. Cypermethrin and deltamethrin concentrations varied in space
and time, with peaks in concentration at the end of May followed by an apparent
removal within 3 weeks [28, 29]. This finding demonstrated, by in situ observations,
the fast degradation of pyrethroids in freshwater. In another Spanish rice paddy area,
cypermethrin, bifenthrin, esfenvalerate, and cyhalothrin were present in most surface
and groundwater total water samples analyzed [30], with the number of pyrethroids
detected and their concentrations exceeding those measured in the Ebro Delta. In
addition to broadcast on paddy fields, urban emissions through waste water treat-
ment plant emissaries were likely responsible for this contamination. Despite a more
restricted literature on European waters than for American ones, pyrethroid residues
occur in agricultural freshwater environments and their concentrations may exceed
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threshold values especially in suspended particles after rain events (in 80% of the
samples in Germany [31]).

Because pyrethroid pesticides have been quite often detected in streams, creeks,
and receiving rivers, they should also reach marine coastal waters. However,
research addressing the occurrence of pyrethroids in estuarine and marine environ-
ments is limited. Due to the dilution of river water into the sea, pesticides often fall
below detection limits. For instance, in seawater off Portugal, only two of the nine
targeted pyrethroids could be detected, and only one could be quantified, whereas
five were present in oysters [33]. Analytical difficulties may be a reason for the
scarcity of published data in seawater (Table 1).

A specific risk for the marine environment is associated with aquaculture treat-
ment of salmon against ectoparasites [5, 57]. Formulations used in aquaculture
contain deltamethrin or cypermethrin together with emulsifiers for bath treatment
of caged fish. Once the treatment is over, the bath water is released into the seawater,
where pyrethroids are diluted by currents. In a case study in Canada, the deltamethrin
plume could be detected up to 5.5 h after emission and the plume extended a few km
away from the cages [5]. In this study, deltamethrin was emitted as a dissolved
pesticide, and it was monitored both in the dissolved phase and in the suspended
particles. Interestingly, deltamethrin concentration in the particle phase was approx-
imately three to four times greater than in the aqueous phase, which demonstrates the
quick partition of pyrethroids to organic carbon in seawater and, thus, their affinity
for particles [5]. Variable responses of natural marine microbial communities to the
input of anti-lice pesticides have been evidenced in Southern Chile [58]. At some
locations and season, deltamethrin inputs resulted in an increase of carbon fixation
by photosynthesis, likely resulting from a decrease in arthropod grazing pressure;
however increase in carbon fixation was also observed at other sites and seasons. The
diverse responses observed evidenced complex relationships between environmental
factors (nutrient levels, zooplankton abundance, etc.) and pesticide impacts. These
responses of marine organisms, distinct from toxicity alone, need further research to
understand the overall impact of aquaculture and, more generally, of pyrethroid
emissions, on marine ecosystems. More detailed information on the effect of salmon
industry in the marine environment is presented elsewhere [6].

However difficult it is to detect pyrethroids in the marine environment, this task
should not be overlooked because marine crustaceans and fish have been reported to
be more susceptible to pyrethroids than freshwater ones [29, 34, 48].

4 Occurrence and Composition of Pyrethroids in Sediments

Table 2 documents pyrethroid occurrence in sediments. The solid phase of sediments
acts as a sorbent for pesticides and likely integrates over time water pyrethroid
concentrations in the overflowing water and also the accumulation of sinking
particles in sea and river beds. Because of their quick association to river sediment,
pyrethroid contamination of riverbed sediment has emerged as an important envi-
ronmental threat to benthic organisms, and the literature reporting sediment toxicity
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of pyrethroids has developed in the recent decade. Sediment toxicities toward the
benthic amphipod Hyalella azteca, toward the cladoceran Ceriodaphnia dubia, and
toward the midge of the Diptera Chironus dilutus are common tools to survey
environmental quality of freshwater sediments. When pesticides are also measured,
it allows to identify which toxicant causes the observed impairment [11, 38, 49, 59].

Recent monitoring studies document the occurrence of several pyrethroids in
riverbed sediments (Table 2) and have been reviewed at the global scale by Stehle
and Schulz [60]. Their residual occurrence in sediments is presently recognized as a
threat to diversity of sediment-dwelling invertebrates and also as the cause of a
decrease of diversity in aquatic environments at a global scale. Table 2 reports
sediment pyrethroid concentrations at sites covering several continents. In some
studies, sediment pore water concentrations are also given together with solid phase
sediment concentrations. The occurrence of pyrethroids in sediments evidences
clearly the propensity of pyrethroids to sorb onto and into particles. Owing to the
large organic carbon pool comprised in sediments, sediments have the potential to
act as a sink for pyrethroids. Organic carbon content, silt, and clay fractions are
sediment bulk characteristics that usually correlate with pesticide levels [11, 24].

The concern about pyrethroid sorption to sediments in Californian streams
exposed to agricultural and urban emissions led to the development of monitoring
programs addressing the benthic environment in addition to water-based surveys.
The considerable amount of data generated by those programs points to bifenthrin
being the most commonly found residues in the sediments (Table 2). In Del Puerto
Creek, a northern California stream flowing through agricultural land, it was the
main contributor to sediment toxicity, with a smaller contribution of cyhalothrin,
esfenvalerate, and cyfluthrin [37]. In sediments from the Santa Maria River (central
California), the pesticide chlorpyrifos was the main contributor to the toxicity to the
benthic amphipod Hyalella azteca, while cyhalothrin and permethrin also contrib-
uted to sediment toxicity in some locations in June 2002, but not in May 2003
[38]. In sediments collected in California from 2008 to 2012, the most frequent
pyrethroid detected was bifenthrin; the other active compounds cyfluthrin,
cyhalothrin, cypermethrin, deltamethrin, esfenvalerate/fenvalerate, fenpropathrin,
or permethrin, occurred in one fifth to one third of the samples [11]. Bifenthrin
was also the main pyrethroid in sediments of rivers alimenting Salton Sea in southern
California [41]. In an urban estuary of southern California (Ballona Creek, Los
Angeles), permethrin dominated over bifenthrin, while cypermethrin and cyfluthrin
were next in abundances [52]. In Minnesota, permethrin and bifenthrin were at the
top of pyrethroid sales, permethrin for animal care, structural applications, home and
garden holding, while bifenthrin was mostly used as crop chemical [44]. In this state,
33% of sediments of stormwater ponds contained permethrin and 20% bifenthrin;
this pattern was in line with results from other urban locations statewide as reviewed
by Crane [44]. Another nationwide study addressed metropolitan streams in the USA
and found bifenthrin detected in 47% of the bed sediments followed by cyhalothrin,
while permethrin, resmethrin, and cypermethrin occurred with much lower fre-
quency [43]. Recent observations in 99 streams across Midwest USA also found
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bifenthrin responsible for most of the toxicity in half of sediments and also attributed
urbanization rather than agriculture as responsible for its emission [59].

In Southern America (Argentina), cyhalothrin was the dominant pyrethroid in
sediments of rivers flowing through large monocultural horticultural fields [45]. The
percentage of detected herbicides and pesticides varied seasonally according to their
application, while pyrethroid residues were consistently detected in sediments,
attesting for an environmental risk for the benthic biota.

An increasing body of literature evidences pyrethroid occurrence in Asian river-
bed sediments and shows the prevalence of cypermethrin at many sites (Table 2). In
large cities of Vietnam, permethrin was the dominant pyrethroid, and its geograph-
ical repartition brings evidences that it is sourced by structural and householding
uses and disease vector controls rather than agricultural spraying [47]. Deltamethrin
was only detected once in this study but at very high levels from an undetermined
source. In Southern China, cypermethrin, cyhalothrin, permethrin, and deltamethrin
dominate over other pyrethroids in sediments of the Pearl River; their concentrations
may reach notably high values in small creek sediments collected upstream in the
river [49]. Cypermethrin and permethrin also dominate in sediments from an urban
creek, close to Guangzhou (Southern China, [25, 61]). In Beijing GuanTin reservoir,
fenvalerate and deltamethrin were the dominant pyrethroids [24]. In Pakistan
deltamethrin and permethrin were the dominant pyrethroids, with deltamethrin
present in all samples and reaching concentrations above environmental quality
thresholds (namely, NOEC of Hyalella azteca [26]).

Australia’s state Queensland has a low population and sugarcane and cotton
cultivation dominate its agricultural activities. Ametryn and prometryn were the
most frequent pyrethroids detected in sediments from irrigation drains and channels,
reaching high concentration levels, while bifenthrin occurred in only one cotton
production area [46].

In Europe, cyhalothrin and cypermethrin are ubiquitous at large river mouths,
whereas riverbed sediment also showed frequent amounts of bifenthrin and
tefluthrin, together with cypermethrin and cyfluthrin in some rivers of Italy and
France [62]. In sediments of the Ebro Delta (Spain), cypermethrin was detected in
some sediments, whereas deltamethrin, detected in the water, was below detection
limits in the sediments [28]. In contrast, cypermethrin, cyfluthrin, and esfenvalerate
were abundant in the paddy fields of Albufera de Valencia [30]. These paddy fields
are filled with water coming from a lake receiving agricultural and urban effluents,
and both surface water and groundwater contained high levels of dissolved phase
pyrethroids.

Similarly to the reports of seawater concentrations, pyrethroid abundances in
marine sediments are evaluated by a limited number of comprehensive studies. In an
intensely urbanized estuary in Southern California, bifenthrin and cyfluthrin were
the most frequently detected pyrethroids with their highest concentrations at 132 and
65 ng/g, respectively, at sites located near sources of runoff emissions from urban
watersheds. They accounted for a part of the toxicity of the sediments to a standard
amphipod Eohaustorius estuarius; however they were not the major toxicant at all
the studied stations [52]. Samples with the highest concentrations of pyrethroids
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were located in close proximity to river mouths and cities, whereas samples located
more offshore showed lower concentrations, or pyrethroids were below detection
limits. This distribution supports urban pyrethroid emissions. In another area of
Southern California, sediments from the Monterey continental shelf were analyzed
together with suspended solids in the three rivers flowing into this marine region.
Whereas pyrethroids were found in almost all rivers particles (sampled after rain
events), with bifenthrin and permethrin as the dominant pyrethroids, they could not
be detected in the estuary nor in the deeper sediments of the Monterey canyons (from
100 to 300 m depth). A similar situation was observed in marine coastal waters off
Portugal, whereas no pyrethroid could be detected in sediments, while cypermethrin
was detected in the dissolved phase and tetramethrin, bifenthrin, cyhalothrin,
fenvalerate, and permethrin occurred at low concentrations in some samples of
oysters collected in the same area [33]. In marine sediments, contaminated river
particles are diluted by the autochthonous marine particles and by older riverine
particles in which pyrethroids have had the time to be degraded. As a consequence of
dilution, pyrethroids are often below detection limits in marine sediments (Table 2).

A recent review documented the occurrence of pyrethroids in sediments world-
wide and showed significant correlations between pyrethroid occurrence and sedi-
ment toxicity [7]. The good correlations obtained proved that pyrethroids were the
main cause of toxicity and strongly suggested potential ecological risk to nontarget
aquatic species. Nevertheless, at some locations, such as in sediments from the Pearl
River Delta (China), other pollutants than pyrethroids likely contributed to the
overall toxicity of sediments. The authors concluded that the frequent occurrence
at high concentrations of pyrethroids in sediments from agricultural and residential
areas constitute a threat to freshwater ecosystems [7].

5 Pyrethroid Degradation

A characteristic feature of pyrethroid contamination in water and benthic ecosystems
is that a few compounds of the pyrethroid family may be present but not all the
series, in concentrations generally under the 100 ng/L range for water samples or
under the 100 ng/g range for sediments. Pyrethroid occurrence is highly variable in
time and space, so that samples from a given area may show detectable amounts of
one or several pyrethroids while others do not or comprise other active compounds.
This feature is much different from other ubiquitous pesticides classes and is a
consequence of their higher lability. The routes of degradation of pyrethroids may
be abiotic (hydrolysis, photolysis, and oxidation) or mediated by bacteria and fungi.
Pyrethroids degradation by microorganisms and fungi have been studied in soils
[63, 64]. Various carboxylesterases may induce the degradation of pyrethroids;
generally one gene exists in one pyrethroid-degrading microorganisms, with the
exception of Ochrobactrum anthropi, that possesses two pyrethroids degrading
genes [63]. Optimal conditions of pyrethroid biodegradation are between 30 and
35�C. Organic matter and clay content are also important parameters controlling
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pyrethroid bioavailability to microorganisms. Half-lives of bifenthrin, cypermethrin,
and permethrin in soils were 12–1,410, 14–106, and 5–55 days respectively, under
temperature conditions between 25 and 30�C (Table 2 in [63]). The biodegradation
rates in freshwater sediments have been seldom determined, and they are longer than
in soils [18]. Depending on conditions, long persistence was observed for bifenthrin
and permethrin. Under both aerobic and anaerobic conditions, and the half-life of
bifenthrin in sediment of drainage channels ranged from 8 to 17 months at 20�C,
while that of cis and trans permethrin varied between 2 to 13 months [65]. In liquid
media, bacteria (Bacillus, Brevibacillus, Ochrobactrum, Pseudomonas, Serratia,
and Sphingobium) and fungi (Cladosporium, Candida) degrade efficiently pyre-
throids. At temperatures ranging from 27 to 38�C, most strains degraded pyrethroids
within 5 days, with the fastest degradation observed for permethrin in 3 days
[63]. However, the experimental conditions at which the experiments were carried
out were not the same as natural field conditions, where lower temperatures and
lower bacteria or fungi abundance can be expected to increase half-life of
pyrethroids.

6 Pyrethroid Occurrence in the Atmosphere

Because of their relatively low vapor pressure, pyrethroids are assumed to have low
tendency to volatilize during application, as well to revolatilize from soils or water
bodies [7]. During application, 20–30% of the applied doses can be emitted as
aerosols and drift away from their source by atmospheric transport [66]. Post-
application emissions have also been reported to occur via volatilization [67]. For
deltamethrin, having one of the lowest Henry’s law constant values among pyre-
throids, it was experimentally demonstrated that 70% of deltamethrin sprayed on the
surface of the water was quickly emitted as aerosols [68]. Taken as a whole, these
evidences point to likely atmospheric emissions of pyrethroids, at least during and
shortly after application by spray broadcasting.

The widespread occurrence of pyrethroids in some areas also questions whether
their volatilization to the gas phase is possible, ensuing a likely atmospheric trans-
port to proximate or remote ecosystems (see Sect. 7). A few reports have recently
evidenced that pyrethroids were present in the atmosphere, both as aerosols and as
vapors in the gas phase. The particle-bound fraction is susceptible to be atmospher-
ically deposited or to be washed out by rain or snow whereas gas-phase pyrethroids
will be removed by photodegradation or air-soil, air-vegetation, or air-water diffu-
sive exchange, probably resulting in longer atmospheric residence times
[69]. Table 3 reviews the concentrations of pyrethroid insecticides bounds to aero-
sols or as vapors. The first report of pyrethroids in the gas phase of Brazilian alpine
reserves showed that cypermethrin was the second pesticide in abundance, whereas
gas phase concentrations of legacy pollutants, such as chlordane, chlorinated cyclo-
dienes and hexachlorobenzene, were around background levels [70]. In aerosols and
in the gas phase of Guangzhou (south China), eight pyrethroids were detected, and

Fate of Pyrethroids in Freshwater and Marine Environments 95



cypermethrin was the dominant one [71]. Concentrations of aerosol-bound
cypermethrin were comparable to those measured in a horticulture area in Malaysia
[72]. Li et al. measured allethrin and tetramethrin in higher proportions in the gas
phase whereas bifenthrin, cyhalothrin, permethrin, cyfluthrin, and cypermethrin
were predominantly associated with the aerosols [71]. Bifenthrin was also detected
in almost all samples of fine aerosols in Northern Brazil [73].

The recent recognition of pyrethroid occurrence in aerosols and in the gas phase
opens a challenging view of their biogeochemical cycle and prompts further research
to assess the relevance of atmospheric transport and occurrence of pyrethroid
insecticides.

7 Key Physicochemical Properties of Pyrethroids,
Transport Processes, and Modelling

Legacy pollutants like polychlorinated biphenyls (PCBs), chlorinated pesticides
such as p,p0-dichlorodiphenyltrichloroethane (DDT), lindane, and organophosphate
pesticides persist long enough in the environment to be transported by advective and
diffusive processes and undergo long-range transport far away from their primary
emission regions. Diffusive transport of pesticides results in an environmental
partitioning of these pollutants among the different environmental matrices, such
as water, particles, air, soils, biota, and sediments. For instance, water-particle
partitioning is the result of a net quantity of pesticides transferred from the dissolved
water phase to the organic part of the particles. Meanwhile the quantities of water, of
particles, and of organic carbon do not change concurrently when pesticides partition
among these phases. A change of any of these quantities would induce a
re-partitioning of the chemical. Other relevant diffusive processes are air-water
exchange, water-sediment partitioning, gas-aerosol partitioning, bioconcentration
in organisms at different trophic levels, etc. Organic carbon occurrence in water
stretches from truly dissolved organic carbon to particulate organic carbon, with a
continuum in particle sizes. The division of dissolved and particle phase is opera-
tional, usually the dissolved phase refers to the pesticides passing through the filter
cut-off size (e.g., 0.7 μm for a GF/F filter), but this dissolved phase can also include
the colloidal phase. In Fig. 1 relevant diffusive (partitioning) processes for pyre-
throids are represented by the wide gray arrows. Diffusive partitioning is always
driven by a fugacity gradient among the two phases and is always a bidirectional
process. In contrast to diffusive processes, an advective transport consists in the
movement or flux of the phase itself, transporting the pesticides which it contains.
Advective transport processes of pyrethroids in aquatic environments are
represented by the thin black arrows in Fig. 1. For example, the transfer of atmo-
spheric pesticides to soils or aquatic ecosystems can be by air-water exchange
(partitioning) or by wet and dry deposition, which are advection transport processes.
In dry deposition there is a settling of aerosol-bound pesticides, while in wet
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deposition by rain or snow, there is a scavenging of gas and aerosol phase pesticides
by the rain drops or snowflakes. In terms of primary sources, after pesticide
application on agriculture fields (rice, cotton, wineyard, etc.) by spraying, pyre-
throids may reach surface aquatic environments through edge of field runoff, which
is an advective soil to water input of irrigation water or rain water, entraining
dissolved pyrethroids and also pesticides bound to particles or that have
re-partitioned to the run-off water. Storm events after pesticide treatment have
been shown to release high amount of pyrethroids into freshwater streams in the
vicinity of fields [37]. Despite degradation and dilution processes, pyrethroids
sorbed to river suspensions are effectively transported to the lower stretches of rivers
[18, 63]. Particle vertical settling and sediment resuspension are advective processes
transporting pyrethroids between water and sediment, which transport chemicals in
parallel to the water-sediment diffusive partitioning. Nevertheless, the latter may
only be effective for sediment pore water and benthic waters, while settling of
organic carbon-bound pyrethroids is an advective flux affecting all the water
column. Soils may act as transient repositories for pyrethroids that may gradually
be desorbed into irrigation or rain water by leaching. In addition, sorption to soils,
particle, and sediment may lower their degradability and thus increase their persis-
tence in the environment [65]. Similarly to diffusive sediment-water exchange,
particle-water exchange (or partitioning) continuously occurs, with a distribution
of the chemical between organic carbon and the dissolved phase depending on
temperature and quality of the organic matter.

The key condition for pyrethroids to be transported away from their source is that
they persist long enough in the environment before being degraded. Their potential
for being transported is also dictated by their physicochemical properties. The
octanol-water partitioning coefficient, KOW, characterize the potential of compounds
for being absorbed into organic matter, either in sediments or in suspended particles.
Even though, conceptually, it does not take into account surface adsorption, it is a
common practice to use KOW as a surrogate for adsorption/absorption, as experi-
mentally it is very difficult to discern organic pollutants adsorbed or absorbed to
particulate organic carbon. Henry’s law constant (H) or the dimensionless Henry’s
law constant (H0 ¼ KAW¼H/RT) of a given pollutant characterizes its air-water
diffusive partitioning and thus its potential to accumulate in water or being volatil-
ized to the atmosphere facilitating their long-range transport. Each pyrethroid has
specific values for these physicochemical constants. Figure 2 shows the phase space
for organic chemicals and compares the values of both constants for pyrethroids to
the values of these partitioning constants for other pollutant classes which behavior
in the environment is better studied and understood. The phase space shown in Fig. 2
provides a simplified view of environmental partitioning and transport potential.
Compounds in the upper area of the plot space have a higher potential to partition to
the gas phase relatively to water than compounds on the bottom area of the plot.
Similarly, compounds plotted on the right area of the plot have a greater potential to
partition to organic carbon relatively to water than those plotted on the left side.
Permethrin is plotted very close to PCB 101, thus have the similar partition charac-
teristics than PCB101 and bifenthrin have an even higher KAW. Therefore, both
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compounds have a potential for long-range transport through grasshopping, that is,
successive volatilization and deposition steps. In the case of pyrethroids, the poten-
tial for long range transport is limited by their potential degradation in the environ-
ment. It has to be underlined that in the case of cold environments with snow
deposition events, even chemicals with high KAW partition coefficients can be
deposited due to the high sorption capacity of snow [74]. More importantly, the
physicochemical characteristics of the other pyrethroids are similar to that of high
molecular weight polycyclic aromatic hydrocarbons (PAHs), DDT and its
degradation products (DDE and DDD), and hexachlorobenzene; therefore pyre-
throids can be expected to have the same environmental behavior. In contrast,
organophosphosphate pesticides have a greater solubility in water (lower KAW)
and will behave more as “swimmers,” tending less to sorb on particles and with
limited atmospheric transport [75].

In the case of legacy persistent organic pollutants (POPs), their important emis-
sions combined to analytical progresses made it possible to quantify their
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Fig. 1 Scheme of the geochemical cycle of pyrethroids in the environment. Boxes represent the
environmental phases. The soil box represents both the solid phase of soils (plants and soil particles)
and the soil porous water. Arrows represent the fluxes between phases, thin black arrows stands for
fluxes of key transport (advective) processes and large gray arrow show key partition (diffusive)
fluxes. Gray stars symbolize pyrethroid direct emissions to the environment; A is the emission that
remains as aerosol during spray application, mostly to cropland; B is the emission that is deposited
on soils and plant during spray application. See text in Sect. 7 for more explanation
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abundances in water, suspended particles, sediments, atmospheric gas, and aerosols
phases from regional to a global scales. Scientific efforts addressing pollutant
detection in several environmental compartments brought quantitative appraisals
and understanding of transport fluxes between air, seawater, soils, etc. This holds
true for PCBs [76] and PAHs [77] but also for pesticides like lindane [78]. In contrast
to legacy pollutants, pyrethroids are current-use pesticides, and they have been used
and emitted to the environment for only the last few decades, and scientists have
been able to quantify pyrethroids at environmental levels only for a decade [79]. As a
consequence, the occurrence of pyrethroids in environmental phases relevant to the
understanding of their biogeochemical cycle is still incompletely understood.

A comprehensive assessment of pyrethroid cycle in an urban area of Southern
China used a fugacity-based model coupled to concentrations measured in different
environment phases to calculate the diffusive and advective fluxes [25]. Sinking of
suspended particles accounted for the higher fluxes, and resulted in water bed
sediments fluxes 1 or 2 order of magnitude higher than air-water diffusive exchange.
The higher fugacity of pyrethroid in water than in the gaseous atmosphere drove
volatilization fluxes from the water to the air, permethrin, and cypermethrin having
the higher fluxes. Despite this work, pyrethroids have received less attention in terms
of their fate, transport, and biogeochemistry, and how these processes ought to be
modelled. The comparison with other families of POPs with similar properties
provide clues of their environmental fate and point to potential research efforts to
be carried out in the future. Unless pyrethroids are efficiently degraded in the
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Fig. 2 Comparison of the partition behavior of current-use pyretroid insecticides and of other
legacy pollutants. KAW is the air-water partition coefficient, and KOW is the octanol-water partition
coefficient
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atmosphere, some of them have the potential for long range transport as
pentachorinated PCBs, 4–5 rings PAHs and DDD (Fig. 2). In comparison to those
legacy pollutants and hydrocarbons, current-use pesticides such as pyrethroids are
often reported in one environmental phase, chiefly dissolved freshwater phase or
riverine sediments. Both dissolved phase and suspended particles [31] or suspended
particles and sediments [14] or dissolved water phase and sediments [24, 27, 28, 33]
are considered jointly in order to assess combined risks for the water ecosystem and
for the benthic ecosystem. Future research efforts should address their multiphase
partitioning, including the atmosphere, to elucidate their capacity to affect proximate
or distant ecosystems from their primary sources. The advective transport of pyre-
throids has been largely addressed only in relation to their dispersion by river flow
notably during storm events. However, the partition between dissolved pyrethroids
and particles is specifically addressed by one study, showing that for this particular
site, a diffusive flux of bifenthrin existed from the particles toward the dissolved
water [21].

8 Future Research Integration

Because of their rapid decay, pyrethroids are reported above detection levels in areas
and at times closed to their point sources, and a global appraisal is still missing. It can
be foreseen that pyrethroids might threaten biodiversity in some geographical areas
where data is still lacking to date. Most croplands are indeed not studied for
pyrethroids (Africa, Brasil, etc., see review [62]). In African market, esfenvalerate
was the highest pesticide residue in fruits and vegetables, and allethrin was also
detected, attesting for their use [80–83]. Ukraine, Pakistan, Turkey, Paraguay, and
India registered the larger pyrethroid use while environmental informations on
pyrethroid occurrence are mainly lacking for those countries [7, 26].

Pyrethroids are degraded in the environment so that they are not conspicuously
detected, with the exception of some agricultural or urban areas. Their high degra-
dation rates with respect to legacy pollutants support the belief that they are unlikely
to persist in the environment. However, extension of cropland and of urbanized
space will likely result into an increase in pyrethroid uses and emissions, because
better alternatives to control pests are still lacking. In the case where the rate of
inputs of pyrethroids would compensate for their degradation, pyrethroid occurrence
may become more continuous and their behavior may then be assimilated to that of
“quasi persistent organic pollutants”, with secondary transport evading them away
from their application area. In California, past and current monitorings have dem-
onstrated that there is a persistent threat to aquatic ecosystems because of current-use
pesticides, with an increasing share by pyrethroids [19].

In conclusion, the shift to current-use pesticides demands a better understanding
of the occurrence of pyrethroids in developing countries where the market shares are
the highest. The partition, transport, and degradation fluxes of pyrethroids need to be
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better appraised locally, regionally, and globally, taking into account the so far
underestimated importance of atmospheric transport.

River flow efficiently transports pyrethroids to river mouths and estuaries. It is
difficult to detect pyrethroids in the marine environment because of dilution. How-
ever aquaculture is a locally direct source that likely constitutes an important
environmental burden for seawater, which it is very poorly surveyed and compre-
hensively understood.
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Abstract Pyrethroids are one of the most heavily used insecticide classes globally
because they have low mammalian toxicity. However, they are highly toxic to
arthropods. Pyrethroids are ubiquitous in the aquatic environment as a result of
urban (landscaping, structural pest control, home, and garden) and agricultural
runoff and spray drift, often at levels that exceed water quality benchmarks
established for the protection of aquatic life. Pyrethroids also enter the aquatic
compartment through direct application to treat crustacean parasites in commercial
fisheries. Here, we briefly review the acute and sublethal toxicities of pyrethroids
with a focus on aquatic invertebrates. Our primary focus is on evidence of the
evolution of adaptive pyrethroid resistance in aquatic invertebrates (sea lice
(Lepeophtheirus salmonis), mosquitoes (Anopheles gambiae and A. coluzzi) black
flies (Simulium spp.), and amphipods (Hyalella azteca)) driven by target and non-
target applications of pyrethroids in the aquatic environment. We explore the human
health, evolutionary, ecological, and risk assessment implications of the evolution of
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pyrethroid resistance and suggest using resistance in the model invertebrate H.
azteca to further our understanding of evolutionary toxicology in wild populations.

Keywords Adaptation, Evolutionary toxicology, Hyalella azteca, Mosquito,
Pyrethroid resistance

Definitions
Adaptation: Any heritable, genetically based tolerance mechanism. Adaptation
occurs at the level of the population.
Chemotherapeutant: Chemical agents or drugs that are selectively toxic to the
causative agent of a disease or infection.
Cytochrome P450: Genes that code for enzymes that are involved in the formation
(synthesis) and breakdown (metabolism) of various molecules and chemicals within
cells.
DNAMethylation: The addition of a methyl group to DNA, sometimes resulting in
the alteration of gene expression.
EC50: The concentration that produces the designated effect in 50% of the popula-
tion over a given period. Here, it is used primarily to describe an effect of immobi-
lization on the organism of interest (moribund + dead) as a response to pyrethroid
toxicity unless otherwise noted.
ET50:Median effective time, e.g., the time required until impaired swimming and/or
attachment behavior becomes apparent in 50% of the population.
Epigenetics: The study of mechanisms that facilitate phenotypic variation through
genotype-environment interactions.
Epimutation: Epigenetic alterations that are specific and heritable.
Evolutionary Toxicology: The study of the effects of pollution on the genetics of
wild populations.
Fitness: A measurement of the ability of an organism to survive, grow, and
reproduce in its environment.
KDT50: The time it takes to a produce a knockdown phenotype in 50% of the
population.
“Knockdown” Phenotype: Paralysis caused from acute pyrethroid exposure in
sensitive animals.
Kdr: A knockdown resistance mutation, attributed to a change in the target site that
reduces pyrethroid binding affinity, thereby conferring resistance to the typical
mechanism of action for pyrethroids.
LC50: The concentration that produces mortality in 50% of the population over a
given period.
Log Kow: The logarithm of the octanol-water partition coefficient; the higher the
Log Kow, the greater the potential of a chemical to partition into sediment, soil, and
organic matter.
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Maternal Effects: The influences of maternal environment, phenotype, and/or
genotype on offspring phenotypes, independently of offspring genotype.
Maternal Inheritance: When the inherited traits of the offspring are passed down
through extranuclear (i.e., mitochondrial) DNA in the egg.
Metabolic Resistance: Insecticide resistance conferred through modifications of the
systems responsible for xenobiotic metabolism.
Convergent Evolution: The independent evolution of the same features in different
groups.
Physiological Acclimation: Any coping mechanism that is governed by physiolog-
ical processes that are nonheritable. Acclimation occurs at the level of the organism.
Polygenic: Characterized by influence from multiple genes, particularly in the
context of a phenotype.
Resistance: A decrease in chemical sensitivity caused by an adaptive, genetic
change.
Selective Force: Anything that favors certain genotypes or phenotypes over others.
Single Nucleotide Polymorphism (SNP): A change to the DNA sequence caused
by a single base pair substitution.
Target Site Insensitivity: Insecticide resistance conferred through a modification of
the target site, leaving the insecticide unable to bind and elicit primary toxic action.
Tolerance: A decrease in chemical sensitivity from acclimatory mechanisms;
reversible, nonheritable.
Transgenerational Epigenetic Inheritance: Refers to the transmission of specific
epigenetic marks/processes across generations, via the germline.
Voltage-Gated Sodium Channel: The primary target site for pyrethroids, vgsc is
the abbreviation for the gene that codes for the channel; Vgsc is the abbreviation for
the protein channel.

1 Background

Pyrethroid pesticides, which are chemically enhanced derivatives of the natural
pyrethrin compounds produced by common flowers (Chrysanthemum
cinerariaefolium), are the fourth most prevalent insecticide class in use globally
[1, 2]. The first synthetic pyrethroid pesticides were developed in the late 1940s [3]
but were not stable or persistent enough for widespread agricultural use until the
1970s [4]. With modifications to increase their potency and persistence [5], the use
of pyrethroid pesticides has increased by an order of magnitude over the past
20 years, as organophosphate pesticides that are acutely neurotoxic to mammals
have been phased out [6]. Pyrethroids have several advantages over other classes of
pesticides including the organochlorines, organophosphates, and carbamates
because of their greater field stability, rapid metabolism and elimination in mam-
mals, and high insecticidal potency requiring lower inputs [7]. At present, pyre-
throids are important globally for food security and disease vector control [8].
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As neurotoxicants, pyrethroids elicit their primary toxic mode of action in insects
by acting on the voltage-gated sodium channel (Vgsc). In the central and peripheral
nervous system, pyrethroids prevent the Vgsc from closing, causing repeated firing
of the neurons, leading eventually to paralysis, known as the “knockdown” pheno-
type, and death. To a lesser extent, pyrethroids also interact with a variety of other
sites including voltage-sensitive calcium and chloride channels [9–13]. Based on
chemical structure and mammalian (rat, mouse) toxicity phenotypes, pyrethroids are
broadly classified into two types: Type I or Type II [14]. Type II pyrethroids
(deltamethrin, cismethrin, esfenvalerate, λ-cyhalothrin, cyfluthrin, fenpropathrin)
have an α-cyano-3-phenoxybenzyl moiety, while Type I pyrethroids (S-bioallethrin,
cypermethrin permethrin, tefluthrin, bifenthrin) do not [15]. In general, Type I
pyrethroids tend to be reserved for urban use, while Type II pyrethroids are used
in agriculture [2]. Type II pyrethroids also produce a distinctive convulsive pheno-
type in invertebrates [16] and cause prolonged channel opening compared to Type I
pyrethroids [17].

In soils, most pyrethroids have half-lives ranging between 30 and 100 days, and
their hydrolysis in the aquatic compartment occurs on the order of days to weeks
[18]. Pyrethroids have high n-octanol-water partition coefficients (Kow), with
log Kow values ranging from roughly 4 to 7.54, indicating that these chemicals are
much more likely to partition into the sediment and sorb to particulate organic matter
than to remain in the water column [19]. Despite being highly lipophilic, pyrethroids
may remain in the water column for days to weeks after introduction [20, 21] and are
soluble enough to produce biological and toxic effects at low dissolved concentra-
tions [11, 22]. Because they are lipophilic, pyrethroids bioaccumulate in both fishes
and marine mammals. A recent study conducted in Spain found pyrethroids in 100%
of tissue samples collected from riverine fish [23, 24]. These insecticides also adsorb
to and persist in sediments [25] and associate with other environmental compart-
ments such as algae [26].

Although they are still detected less frequently in the environment worldwide
than organochlorine- and organophosphate-based products [27], pyrethroids are
prevalent in aquatic ecosystems and are often found at levels sufficient to cause
toxicity to aquatic invertebrates [2, 6, 25, 28–31]. Pyrethroids are used ubiquitously
in agricultural and residential areas, primarily entering as runoff into the aquatic
compartment, but also through spray drift as well. Pyrethroids are also ubiquitous in
treated wastewater effluent, mostly due to high urban use for pest control in homes
[32, 33]. Historically, some pyrethroids were added to water directly as mosquito
and black fly larvicides [34–36], but their toxicity, hydrophobicity, and sediment
persistence have since been restricted their direct use in aquatic environments.
However, in aquaculture, pyrethroids are still added directly to the water as
chemotherapeutants to remove parasites from farmed fish [37] and shrimp [38].

While the relatively low mammalian toxicity of pyrethroids has fueled their
popularity and increased usage over the past few decades, pyrethroids are highly
toxic to fish and aquatic invertebrates at low part per billion or parts per trillion
concentrations. Toxicity to aquatic organisms is particularly problematic following
storm events, which transport residentially applied pyrethroids into local streams and

112 K. M. Major and S. M. Brander



other waterways, severely impairing invertebrate assemblages as well as causing
sublethal and sometimes lethal toxicity to fishes [1, 28, 39, 40]. Newer pyrethroids
(e.g., cypermethrin) are generally more toxic than older formulations, especially to
aquatic invertebrates that are physiologically most similar to the insects which these
chemicals are designed to target [6, 26, 41–43]. Cypermethrin, for example,
hydrolyzes more slowly than Type I pyrethroids such as permethrin, resulting in a
toxic potency up to 20-fold greater [41]. In fact, pyrethroids have often been
implicated in causing sediment toxicity to the amphipod Hyalella azteca commonly
used for bioassessments in urban and/or agricultural areas [44–48]. And while
pyrethroids used in agriculture still contribute to aquatic impairment, urban pyre-
throid inputs have been cited as a major source of pyrethroid contamination in the
environment. Bifenthrin, cyfluthrin, and cypermethrin cause the most concern in
waterways surrounded by residential and urban areas [49, 50]. Bifenthrin applied by
homeowners and structural pest control professionals has reached levels in the water
column during storm events that are sufficient to cause acute invertebrate toxicity
[25, 42]. In fact, for the period 2009–2015, bifenthrin has shown one of the highest
risk quotients in inland surface waters in the European Union [51].

For these numerous reasons, pyrethroids are ubiquitous in the aquatic environ-
ment. They have long been implicated as a strong selective pressure in the pest
species they are meant to control [52–55], and accumulating evidence now shows
they are capable of driving resistance in nontarget aquatic organisms exposed to
pyrethroids unintentionally [56–63]. In the present work, we briefly review the acute
and sublethal effects of pyrethroid exposure for invertebrates and insects in aquatic
ecosystems. We then focus on the evidence of increased tolerance to pyrethroids that
has been documented in pests that inhabit pyrethroid-laden aquatic environments
such as sea lice, as well as nontarget life stages of mosquitoes and black flies, and
nontarget aquatic invertebrates (cladocerans, amphipods), with an emphasis on
adaptive resistance (Fig. 1). In doing so, we describe the influence of pyrethroid
use in the environment in the context of evolutionary toxicology. Finally, we explore
the ecological and evolutionary implications of pyrethroids as a strong selective
pressure driving resistance in the aquatic environment and discuss impacts on
evolutionary processes, ecosystems, and risk assessment.

2 Acute Toxicity

A wealth of literature exists concerning the acute toxicity of pyrethroids to aquatic
organisms, and this topic is extensively reviewed elsewhere [6, 19, 64–67]. Acute
mortality has been documented far below the 1 μg L�1 range for fish, crustaceans,
and insects [6] with the amphipod H. azteca being among the most sensitive (Fig. 2),
having a 96 h LC50 (median lethal concentration) in the low ng L�1 range [6, 57, 58,
68]. Acute toxicity has even been documented at levels below 1 ng L�1 [43]. A
review by Mian and Milla [66] illustrated that that many nontarget aquatic insects
(Ephemeroptera, Odonata, Plecoptera, Hemiptera, Coleoptera, Trichoptera) and
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crustaceans (Cladocera, Ostracoda, Copepoda, Amphipoda, Isopoda, and Decapoda)
were more acutely sensitive to pyrethroids than other invertebrate groups (bivalves,
mollusks). Further, these sensitive groups had pyrethroid sensitivities in the range of
some pest species including midge, fly, and mosquito larvae, suggesting that aquatic
pesticide applications intended to eliminate these pest insects could be lethal to other
aquatic invertebrates [66]. At lethal doses, pyrethroid binding to the Vgsc target site
elicits a response which includes altered swimming behaviors, convulsions, and
eventually paralysis and death, and immobilization phenotypes are often irreversible
[69]. Acute toxicity is exacerbated by increased salinity and decreased temperatures
[70]. At higher salinities, pyrethroids are less soluble in water, rendering them more
likely to adsorb to the sediment or more prone to partitioning into lipid (within biota)
[70, 71].
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Fig. 1 Selection for adaptive pyrethroid resistance in nontarget aquatic populations is driven by
pyrethroid exposures from both urban and agricultural runoff. Sensitive individuals are removed
from populations by strong selective pressures, leading to adapted, pyrethroid-resistant populations
instead. Nontarget pyrethroid exposure drives selection in populations of the amphipod Hyalella
azteca as well as in larval mosquitoes and black flies
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3 Sublethal Effects

In addition to being acutely toxic at environmentally relevant concentrations, pyre-
throids cause a myriad of sublethal impacts in nontarget aquatic invertebrates
[6, 72]. Effects on invertebrate behavior are widely documented, including impaired
movement, resulting in the inability to respond to a simulated predator by swimming
away or by taking shelter [26, 43, 73]. Increased predation risk caused by sublethal
pyrethroid exposure can affect entire food webs or assemblages of lower trophic
level organisms integral to the diet of fishes and birds [28, 31]. Other commonly
observed effects include changes in the rate of development and growth, or effects
on reproduction [74–76], indicating that pyrethroids act as endocrine disruptors in
invertebrates. For example, midges (Chironomus riparius) exposed to cypermethrin
developed more slowly than controls, and the effect on male development was
more severe [75]. The aquatic oligochaete Lumbriculus variegatus had lowered
reproductive output following exposure to part per billion concentrations of
esfenvalerate [77]. Pyrethroids act as immunotoxicants in invertebrates, such as
mollusks [78], and cause oxidative stress in a wide variety of species including
crayfish, tiger shrimp, and the model invertebrate Daphnia magna [79–81]. More
sensitive sublethal endpoints, such as swimming performance, are exacerbated by
alterations in salinity and temperature [70]. The magnitude of fluctuations in these
abiotic parameters is expected to increase in magnitude as global climate change
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Fig. 2 The relative sensitivity (Hyalella equivalent LC50s) of crustaceans, insects, fish, amphib-
ians, and mollusks to pyrethroids, using data from tests with measured concentrations. Horizontal
lines in boxes indicate 25th, 50th (median), and 75th percentiles; vertical bars indicate 10th and 90th
percentiles (where data were sufficient to calculate); individual points are values above the 90th
percentile or below the 10th percentile. Data are normalized to Hyalella because they are the most
sensitive to pyrethroids. Reprinted with permission from Giddings et al. [68]
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progresses, potentially worsening sublethal responses to pesticide exposure
[82, 83]. In combination, the acute and chronic (sublethal) effects of pyrethroid
pesticides are reshaping aquatic ecosystems, altering the makeup of communities
and likely reducing biodiversity as less sensitive species and taxa are favored to
thrive and survive.

4 Resistance to Pyrethroid Pesticides

Toxic levels of chemicals such as pyrethroids in the environment leave organisms
with few options: move, die, or acclimate. To date, pesticide resistance has been
described in more than 500 arthropod species (https://www.pesticideresistance.org/,
[84]). Measurable evolved resistance to a new pesticide class is considered a
certainty within 10 years, and resistance has even been observed within the span
of a single year [85]. If the selective force is strong enough to cause mortality or other
fitness (survival, growth, and reproduction) costs, adaptation can occur at the
population level in response to pyrethroid presence. The distinction between accli-
mation and adaptation is important in the discussion of decreased chemical sensi-
tivity, largely because these two processes occur by different mechanisms that carry
with them different implications for affected populations. Physiological acclimation
refers to any coping mechanism that is governed by physiological processes that are
nonheritable. These mechanisms can include upregulation of detoxifying or seques-
tering enzymes and are characterized by an increased tolerance that is temporary
based on environmental conditions – when the stressor is removed, the tolerance
disappears over time. Adaptation refers to any heritable, genetically based tolerance
mechanism [86], such as the rise in frequency of a mutation conferring pyrethroid
target site insensitivity. Adaptive changes have the potential to be permanent and to
cause long lasting changes in populations [87]. The terms tolerance and resistance
have been used interchangeably in the literature to describe decreased chemical
sensitivity based on acclimation and/or adaptation. For clarity, we define tolerance
as a decreased sensitivity that is acclimatory or temporary in nature, occurring at the
organismal level, while resistance is a permanent change in sensitivity, conferred
through an adaptive mechanism (Fig. 3). Further we focus specifically on adaptive
responses to pyrethroid presence in the environment, and to be conservative, we
refer to decreased sensitivity caused by any mechanism (known or unknown) other
than an adaptive change as tolerance.

In general, acclimation and adaptation are sufficient to describe many ways that
the animals or populations respond to environmental conditions. Even in cases
where the phenotype of the offspring is determined by the genotype or environment
provided by the mother (maternal effects) [88], our understanding of individual or
population responses to the environment holds. Maternal effects caused by RNA or
protein transfer to the egg will fade in subsequent generations when the environment
of the mother is no longer relevant [89], qualifying these effects as a specific
subgroup of acclimation. Epigenetics can be broadly defined as the study of
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mechanisms that facilitate phenotypic variation through genotype-environment
interactions. Some environment-genotype interactions may create heritable changes
that can be passed down through germline cells (sperm or egg) referred to as
transgenerational epigenetic inheritance [90]. Epigenetic modifications (also some-
times termed epimutations) involve changes to the DNA structure that are not
reflected in the actual code itself. Epigenetic inheritance mechanisms include meth-
ylation, DNA or histone acetylation, self-perpetuating loops, noncoding RNAs, and
structural inheritance [90]. The effects and diversity of epigenetic changes are
complex and still being explored. DNA methylation, for example, in the promoter
region, can decrease gene expression but, in the gene body, may instead cause
increased expression or an increase in splice variants. DNA methylation can also
suppress transposable elements [91]. Epigenetic changes that occur in response to
environmental exposures produce alterations in the gene expression that would
generally qualify them as acclimatory responses, except for the evidence that is
building indicating these changes may sometimes persist transgenerationally in
subsequent unexposed generations [92, 93], suggesting that generations of animals
distantly removed from the environmental conditions that created a given epigenetic
change may be expressing a phenotype based on those changes. In fact, epigenetic
changes such as DNA methylation may provide a direct link between acclimation
and adaptation, since epimutations (methylation at specific locations) may in some
cases increase the likelihood for mutations to occur in a methylated region of DNA
[94]. A growing body of research is investigating whether and how epimutations
may contribute to acclimation and/or adaptation [95].

The emerging field of evolutionary toxicology focuses on the genetic impacts of
pollution on populations. Its relatively recent rise into focus can be attributed largely
to the refinement and expansion of genetic methods that make the study of pollution
effects on population genetics more accessible to researchers [96, 97]. Further,
although epigenetic mechanisms have not explicitly been included in the definition
of evolutionary toxicology, an epigenetic change that persists transgenerationally
would be considered to have an evolutionary significance and as such could fall
within the definition of an adaptive trait [98]. The existence of pollutant-adapted
populations in the wild has implications for human and animal health, evolution,
ecological processes, and risk assessment (see discussion below). However, evolved
pollution responses in wild populations have been historically difficult to character-
ize, especially in the face of complex mixtures acting on often unknown target sites
[99]. In contrast, as we will show below, pyrethroids’ potency, ubiquitous presence
in the environment, and known mode of action provide an opportunity to more easily
identify and study adaptive responses in populations in comparison to many other
chemical toxicants in the environment.

4.1 Resistance in Target Populations

The most prominent examples of resistance to pyrethroids come from the arthropod
populations these chemicals are designed to eliminate. As with all other classes of
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insecticides, widespread use of pyrethroids to target arthropod pests has resulted in
significant evolved resistance, increasingly rendering these chemicals ineffective as
treatments against pests that affect public health and food security. What is known
from the study of resistance in pest insects can be used to inform our understanding
of effects in nontarget invertebrates.

4.1.1 Pest Insects

A detailed review of pyrethroid resistance in pest insects is beyond the scope of the
present work but has been reviewed extensively elsewhere [52–55]. The strength of
the pesticide selective pressure is a function of dose and potency [100]. In general,
low level, sublethal pesticide exposures can drive a polygenic adaptation, potentially
involving adaptation in many genes of small effect to create a resistant phenotype.
Acute, lethal exposures instead drive adaptive responses outside the phenotypic
response range distribution of the population, much more likely to result in the
selection of small changes in genes of large effect (e.g., a single nucleotide poly-
morphism (SNP) leading to an amino acid base pair substitution that prevents
binding in the target site) [see Ffrench-Constant et al. [101] for a discussion]. It is
clear that pyrethroids are capable of acting as strong selective forces that drive
evolution in pests over short timescales. A variety of mechanisms underlie pesticide
resistance phenotypes, again related to dose and potency, but they can generally be
classified into two main groups: those that reduce the amount of the pesticide able to
reach the target site and those that modify the target site to reduce its sensitivity to the
pesticide [102]. Some of the most frequently described adaptive changes include
metabolic resistance (e.g., gene duplications, cis or trans gene mutations leading to
constitutive up- or downregulation of genes responsible for pesticide metabolism)
and target site insensitivity (mutations that prevent or reduce pyrethroid binding
affinity at the target site) [55]. Mutations that lead to target site insensitivity are also
sometimes referred to knockdown resistance (kdr) mutations, because they prevent
the “knockdown” phenotype by reducing target site binding affinity. Given that the
primary target site for pyrethroids (the Vgsc) is essential for arthropod nervous
systems, its functional constraints limit the non-synonymous base pair substitutions
that produce a sufficiently functional target protein while conferring resistance. Thus
it is even common to see the same target site mutations arise across many arthropod
species independently, providing examples of convergent evolution [103]. It is also
not uncommon to observe some adaptive mechanisms of resistance that confer cross-
resistance to a several different classes of insecticide at once. These types of
resistance are typically modulated by metabolic resistance mechanisms such as
cytochrome P450s, esterases, and glutathione S-transferases [104, 105]; target site
insensitivity can also confer cross-resistance if pesticide classes have the same target
sites (e.g., pyrethroids and DDT, organophosphates and carbamates) [106].

Recently, epigenetic changes in resistant insects have also been increasingly
suggested as players in adaptive resistance [91]. Epigenetic control of a trait affect-
ing fitness may even allow for adaptation to occur at a quicker rate (see Oppold and
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Muller [107] and references therein). In the peach potato aphid (Myzus persicae),
resistance to organophosphates and carbamates is mediated via a genetically based
increase in copy number of carboxylesterases. DNA methylation controls whether or
not esterase copies are expressed, thereby providing a heritable epigenetic mecha-
nism that can silence esterase production in the absence of insecticide in the
environment [108, 109], potentially ameliorating fitness costs associated with
energy-intensive esterase production [110]. Altered global DNA methylation pat-
terns have been correlated with insecticide sensitivity in mosquitoes through the F2
generation [111]. For pyrethroids specifically, decreased global methylation was
apparent in pyrethroid-resistant mites, suggesting that epigenetic control mecha-
nisms may play a part in pyrethroid resistance [112], although the extent to which
those methylation changes are heritable has not been addressed. The evidence of
adaptive (genetic) and potentially adaptive (transgenerational epigenetic) features
associated with pesticide resistance is both abundant and rapidly expanding.

4.1.2 Sea Lice

In the aquatic environment, salmon fisheries have been employing pyrethroids, specif-
ically deltamethrin and cypermethrin, as delousing agents (chemotherapeutants) for
commercially raised fish since the 1990s [113, 114]. Sea lice are copepod ectoparasites
in the family Caligidae that feed on the mucous, blood, and tissue of host fish [115] to
the detriment of the fish, causing outcomes including decreased size/weight,
suppressed immune function, and increased morbidity and/or mortality
[116]. Lepeophtheirus salmonis is the most frequently reported parasite for salmonids,
while those in the genus Caligus are more generalist sea lice, with C. elongatus as one
of the most frequently cited pests in the Northern Hemisphere [117]. In the Southern
Hemisphere, C. rogercresseyi is the primary species that infects salmonids in Chile
[118]. The most common method for delousing fish is a bath treatment that involves
enclosing submerged fish cages with a tarpaulin, applying the pesticide at a
recommended dose for a specific duration of time (on the order of 30 min to 1 h) and
then removing the tarpaulin, allowing the pesticide to disperse in the surrounding water
[119]. An appropriate dose is high enough to be toxic to the sea lice without eliciting
toxicity to thefish. Pyrethroids have been administered as bath treatments to kill sea lice
in Canada, Chile, the Faroe Islands, Ireland, Norway, and Scotland with treatment
failures reported beginning in the early 2000s [120]. Resistance of sea lice to pyrethroid
(and other chemical) treatments has negatively impacted the aquaculture industry and
has generally required increased pyrethroid use over time [121], which in turn may
negatively impact host fish. To overcome treatment failures from pyrethroid resistance,
pyrethroids are even sometimes combined with other classes of pesticides such as
avermectins (added to fish feed), organophosphates, and/or hydrogen peroxide (both as
bath treatments).

By the early 2000s, it was clear that pyrethroid treatments were becoming
less effective among some sea louse populations from regions where bath
treatments were common. Decreased pyrethroid sensitivity has been documented
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in both L. salmonis (up to 140-fold) [122] and C. rogercresseyi (up to 13-fold)
[118]. Several studies have endeavored to quantify resistance levels among L.
salmonis as well as to identify genetic adaptive changes that are mechanistically
responsible for decreased pyrethroid sensitivity. In general, experiments to discern
resistance phenotypes from sensitive ones involve a time-to-impairment measure-
ment (ET50) with a discriminating dose of pyrethroid or the derivation of a concen-
tration (EC50) that elicits the desired effect (e.g., immobility, detachment from fish)
based on a dose-response [123]. In at least some populations, resistance has been
maintained stably for at least 3–4 years after bringing populations into a pyrethroid-
free laboratory setting, suggesting an adaptive response. The median effective
concentration (EC50) of deltamethrin needed to treat resistant and susceptible strains
of L. salmonis from Scotland sometimes differed by over 140-fold [124]. The high
magnitude of differential sensitivity between strains suggests an adaptive mecha-
nism (see Ffrench-Constant et al. [101]). To date, no single mechanism has been
identified to explain the stark differences in sensitivity among resistant and sensitive
strains of L. salmonis although several studies have identified nuclear [115, 125] and
mitochondrial [124, 126] markers that have been correlated with resistance, and a
resistant phenotype seems to result from a combination of both nuclear and mito-
chondrial changes. Fallang et al. [125] identified a novel point mutation in the
domain II (S5) region of the para-type Vgsc (LsNv1.1) that produced a glutamine-
to-arginine amino acid substitution at position 945 (Q945R, Musca domestica
numbering) that was prominent in L. salmonis populations with documented control
failures and absent from sensitive populations. However, that amino acid substitu-
tion was not documented in other resistant populations [115] nor had it been
previously documented in resistant pest insects, leaving its functional role in target
site insensitivity tenuous. Carmona-Antonanzas et al. [115] searched for potential
kdr-type mutations in three different L. salmonis sodium channel homologues. The
authors identified several non-synonymous base pair substitutions in one (LsNv1.3)
of the sodium channel homologues among two resistant sea lice populations,
sometimes at high frequencies (0.80). One mutation, an isoleucine-to-valine substi-
tution at position 936 (I936V;M. domestica numbering), was absent in two sensitive
populations of L. salmonis, supporting its role in conferring resistance (Fig. 4)
[115]. While evidence for the I936V playing a role in pyrethroid resistance is
limited, this mutation has been previously associated with pyrethroid resistance in
the corn earworm [127] and has shown a capacity to decrease pyrethroid binding
when mutant channels from Drosophila melanogaster were cloned into Xenopus
oocytes and subjected to voltage clamp analysis [128]. Interestingly, isoleucine at
this position is usually present in arthropods, while valine is typically present in
vertebrates, potentially providing evidence for lineage-specific differences in
sensitivity [129].

Two studies have demonstrated that pyrethroid resistance in L. salmonis has a
strong maternal component, potentially mediated through some form of
mitochondrial-based inheritance. Carmona-Antonanzas et al. [124] crossed the
resistant (140-fold) and sensitive strains of L. salmonis from Scotland and reared
offspring out to the third filial (F1 to F3) generation. When F2 organisms came from
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resistant dam and sensitive sire parentage, over 98% of animals were resistant when
acutely exposed to deltamethrin, and a resistance phenotype (34-fold) persisted into
the F3 generation. Conversely, resistant sire and sensitive dam parentage produced
only 16% of F2 animals that were resistant, and F3 animals had no increase in
resistance. It is important to note, however, that maternal inheritance (the inheri-
tance of mitochondrial DNA) did not fully explain resistance phenotype, suggesting
that a combination of nuclear and mitochondrial changes contribute to a resistance
[115]. In a similar breeding study, Bakke et al. [126] crossed a deltamethrin-resistant
strain of L. salmonis from Norway with a sensitive strain and found that resistant F2
progeny was only produced when the female of the parental generation was
deltamethrin-resistant. Both Bakke et al. [126] and Carmona-Antonanzas et al.
[124] found evidence of the same four amino acid substitutions in mitochondrial
proteins ((NADH dehydrogenase I (glycine-to-serine at position 251), NADH dehy-
drogenase 5 (leucine-to-serine at position 411), cytochrome C oxidase subunit
1 (leucine-to-serine at position 107), and cytochrome C oxidase subunit 3 (gly-
cine-to-glutamic acid at position 33) (numbering according to GenBank
AY625897.1) from Scottish and Norwegian resistant populations and not in sensi-
tive populations. The presence of the same SNPs in geographically isolated-resistant
populations provides evidence for their role in pyrethroid resistance. Carmona-
Antonanzas et al. [124] measured the ATP depletion in deltamethrin-exposed sea
lice and only found that ATP was depleted in sensitive animals. Bakke et al. [126]
found that deltamethrin-resistant sea lice experienced lower levels of skeletal muscle
apoptosis than their sensitive counterparts after deltamethrin treatment. Both studies
showed that deltamethrin resistance is maternally inherited, and they suggest that in

I II III IV
I936V/F

L925I/V
M918L L1014F/S

Q945R

H2N COOH

Fig. 4 Location of pyrethroid-associated resistance mutations in the target site for pyrethroids, the
voltage-gated sodium channel (Vgsc) identified in aquatic invertebrates resulting from either target
or nontarget applications of pyrethroids. The first letter represents the wild-type (sensitive) amino
acid, while the letter to the right of the position number represents the amino acid coded by the
resistance mutation. Filled circles represent those mutations that have been confirmed to reduce
pyrethroid sensitivity. Open circles are those that have not been confirmed but have been reported in
resistant aquatic populations. Filled circles with open circles at the center indicate that the primary
amino acid mutation has been verified to reduce pyrethroid sensitivity, but the secondary amino acid
has only been associated with resistant populations. The Vgsc has four repeat domains (I–IV) each
with six transmembrane segments (represented by cylinders). Position numbering is according to
Musca domestica para sodium channel
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sea lice, pyrethroids may have an additional target site encoded by the mitochondrial
genome. Maternally inherited, mitochondrially associated pesticide resistance
mechanisms have been infrequently documented, although they do exist [130] and
more work is required to fully understand the role of the mitochondrial encoded
genes in pyrethroid resistance conferral for L. salmonis.

It is important to note that maternal effects may play a role in resistance conferral,
via RNA or protein transferred from the mother to the eggs [126]. This suggestion
also leaves room for the possibility that transgenerational, environmentally induced
epigenetic changes may be contributing to resistance in salmon lice. One recent
study found that non-synonymous base pair substitutions were present in mitochon-
drial DNA in some pyrethroid-resistant honeybee mites (Varroa destructor) com-
pared with sensitive mites. Further, resistant mites had lower overall levels of DNA
methylation compared with sensitive animals, suggesting that pyrethroid resistance
in these populations may have epigenetic and mitochondrial components [112].

4.2 Resistance in Nontarget Populations

Pyrethroids are not specifically selective for pest insects – they remain toxic to
nontarget arthropods through the same mode of action (as reviewed by Palmquist
et al. [65]). Given that exposure to pyrethroids is the driver selecting for resistance in
a population, it follows that resistance could occur in other arthropods under
selective pressure from these chemicals in their environment. However, pyrethroid
resistance in nontarget populations is a phenomenon that remains more difficult to
quantify than in target populations for several reasons. With the ubiquitous use of
pyrethroid pesticides, it can be difficult to find appropriate control populations
against which to compare those that are suspected to be resistant. It can be difficult
to quantify pyrethroid exposure from terrestrial inputs that move into the aquatic
compartment through agricultural and urban runoff and spray drift. Populations
suspected of being resistant must be screened for phenotypic resistance in a con-
trolled setting, and a genetic marker or other adaptive mechanism of resistance must
also be documented to reasonably conclude that resistance is indeed adaptive rather
than acclimatory or due to maternal effects (Fig. 3). For example, one study induced
a pyrethroid-tolerant phenotype in the cladoceran D. magna by exposing 12 gener-
ations to acutely toxic levels of the pyrethroid cyfluthrin and monitoring sensitivity
for an additional 12 generations in the absence of the pyrethroid. D. magna devel-
oped a measurable decrease in sensitivity after only four generations (up to 4.8-fold),
which was then lost in 6–10 generations with the absence of exposure [131]. Tolerant
phenotypes were likely conferred via cytochrome P450 activity based on the loss of
resistance with the addition of the P450 inhibitor piperonyl butoxide (PBO). The
authors suggested that the gain and subsequent loss of tolerance were adaptive, but
without more research to determine the mechanistic basis of that tolerance conferral,
the gain and loss of tolerance in D. magna may actually have been caused by
acclimatory and/or maternal effects of cyfluthrin exposure mediated via P450
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detoxification. Finally it is worth noting that pyrethroid resistance in nontarget
organisms may be difficult to identify because not all populations will evolve due
to the genetic and functional constraints of variation within the population in
question, and further, not all populations will evolve in the same way [58]. Some
of the most pronounced evolved resistance results when insecticides select for
otherwise rare genotypes that confer resistance. Without the genetic background to
allow for adaptation, acutely affected populations may be likely to move or experi-
ence local extinction.

4.2.1 Mosquitoes

Evidence that pyrethroid application is capable of driving resistance in aquatic
environments comes somewhat surprisingly from studying resistance in pest species.
In Africa, where malaria is a prominent public health threat, decreased sensitivity to
pyrethroids in Anopheles gambiae s.l., the primary malaria vector, has been attrib-
uted to, in part, agricultural or urban pyrethroid applications not specifically
targeting mosquitoes. This is of particular concern because the World Health
Organization (WHO) relies heavily on the use of pyrethroid-treated bed nets to
reduce malaria transmission in humans, and if mosquitoes are becoming resistant
from nontarget exposures, it may render these bed nets less effective for protecting
human health. While it can be difficult to determine the relative contributions of
resistance drivers for pests that are targeted with pyrethroids for human health [132],
mosquito larvae taken from aquatic breeding grounds near agricultural fields and
some urban areas then reared and challenged with pyrethroids and other insecticides
in a controlled setting consistently exhibit increased pyrethroid resistance compared
to those from reference sites [56, 59, 63]. Most of these studies rely on the methods
of resistance screening recommended by the WHO. These methods involve chal-
lenging adult mosquitoes with insecticide-impregnated paper treated with a pre-
scribed amount of pesticide (e.g., 1% permethrin) and monitoring the time to
impairment (“knockdown”/immobilization) [133]. As a result, the resistance pheno-
types for mosquitoes are often reported in a time-to-knockdown phenotype (KDT50)
for 50% of the population or in mosquito survival or mortality after a 1 h insecticide-
impregnated filter paper exposure and subsequent 24 h recovery period.

The challenge in determining whether pyrethroids are responsible for adaptive
resistance in some populations of less sensitive mosquitoes is rooted in the use of
another pesticide, the organochlorine DDT, that also targets the Vgsc to elicit its
toxic action. Historically, DDT has been used in urban and agricultural settings in
much of Africa. However, its use has been restricted to necessary public health uses
when other insecticides are not available following a resolution by the United
Nations Stockholm Convention in 2001 [134]. Still, DDT presence or use in the
environment could potentially select for prominent adaptive resistance mechanisms
in pyrethroids, such as the leucine-to-phenylalanine amino acid substitution at
position 1014 (L1014F, M. domestica numbering) kdr mutation, located in the S6
transmembrane segment of the domain II of the para sodium channel (Fig. 4). This
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mutation has been associated with pyrethroid and DDT resistance in houseflies [135]
and was later identified in pyrethroid- resistant mosquitoes [136]. In addition to
recommending resistance screening with insecticide-impregnated papers, the WHO
also recommends screening for the L1014 resistance kdr mutations to aid in data
collection for documenting the extent of insecticide resistance in malaria vectors. As
a result, a majority of the studies that provide evidence of adaptive resistance to
pyrethroids (as we have defined it) cannot, with certainty, attribute that resistance
development to pyrethroid selective pressures alone, because these populations
harbor a resistance mutation that is common in DDT-resistant populations, and
would also result from selection pressures exerted by DDT in the environment.
Still, the evidence of adaptive pyrethroid resistance in larval mosquitoes receiving
nontarget insecticide input is discussed below.

Diabate and colleagues [56] collected An. gambiae s.l. as larvae from four
different types of field sites in Burkina Faso including near cotton-growing regions
where pyrethroids are common agrochemicals, near an urban area where pyrethroid
use is common, and reference sites where pyrethroid use is uncommon. The authors
kept the larvae in a laboratory setting until the emergence of adults, at which time
they were challenged with filter paper containing 1% permethrin, 0.05%
deltamethrin, or 4% DDT as recommended by WHO protocols and animals, was
also monitored for common kdr mutations. These collections and tests were
performed over 2 years (1999 and 2000) in both dry and rainy seasons to elucidate
temporal trends. The authors found an increase in resistance to permethrin KDT50

(threefold to fourfold) in cotton-growing and urban areas compared with reference
sites. In addition to pyrethroid resistance, DDT resistance (4- to 40-fold) was also
noted in cotton-growing and urban areas compared with reference sites. These
resistance phenotypes were associated with a marked increase in the leucine-to-
phenylalanine (L1014F; M. domestica) kdr allele frequencies in the vgsc (cotton-
growing ¼ 0.896, urban ¼ 0.956, control ¼ 0.18). Resistance in urban areas was
attributed to coil and bomb use, while the intensive agrochemical use in cotton areas
explained the resistance increase in cotton areas. Further, in the dry season when
fewer pesticides are used, An. gambiae populations from cotton-growing areas were
more sensitive than during the wet season, when selective pressures are greater.

In a study in Northern Benin, Yadouleton et al. [59] collected An. gambiae larvae
from cotton production areas with different pest control regimes: two that involved
pesticide use and a third that only involved biological control measures (e.g.,
Bacillus thuringiensis). Larvae were sampled and then reared to adulthood for
sensitivity screening with 0.75% permethrin, 0.05% deltamethrin, or 4% DDT
insecticide-impregnated papers. Animals from cotton-growing agricultural regions
that used insecticides had increased KDT50s (up to 3.2-fold) for permethrin com-
pared to those from cotton-growing regions with only biological control and the
reference laboratory population. A similar trend was noted with DDT (up to 2.5-fold
resistance), with elevated KDT50s from animals in sites with agricultural insecticide
use compared with biological control sites and control laboratory reference
populations. L1014F mutation frequencies were the highest among populations
from conventional pesticide use areas (0.51–0.78) and lowest (0.32–0.35) in
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populations from biological control cotton-growing sites. While DDT cannot be
ruled out as a selective pressure, the authors suggested that pyrethroids are likely to
be causing selection for pyrethroid and DDT-resistant An. gambiae populations
given that pyrethroids, not DDT, were the recommended insecticides for cotton
farming in West Africa. A recent structured survey of farmers in North-East Benin
confirmed that the most reported insecticides used were pyrethroids and
organophosphates [137].

Two studies have provided more evidence of pyrethroids as likely drivers of
resistance in larval mosquitoes by collecting and analyzing environmental media
(water, sediments) for pesticides in addition to tracking pyrethroid-resistant pheno-
types and kdr mutation frequencies in Anopheles mosquitoes. Hien et al. [63]
collected water and soil samples in pesticide-intensive cotton-growing agricultural
sites and biological control (or organic) cotton-growing sites in Burkina Faso. They
also collected larval mosquitoes from the same sites and subjected them to control
(spring water), biological cotton, or conventional cotton water samples to document
mortality at the larval stage. Larval mortality was the highest in conventional cotton
site waters (66.5%) and biological site waters (49.75%) and low in spring water
control (3%), indicating that agricultural site waters were toxic to larval mosquitoes.
Treatment with insecticide-impregnated filter papers (0.05% deltamethrin) for 1 h
followed by a 24 h recovery period showed that emergent adults were nominally
more resistant to deltamethrin at conventional cotton sites compared with biological
cotton sites (52.04% and 75.96% mortality, respectively), although that result was
not statistically significant. Importantly, the authors also documented that allele
frequencies of the L1014 kdr mutations were high (F ¼ 0.95, S ¼ 0.4) in resistant
populations. The L1014S mutation confers DDT and permethrin (Type I) resistance
based on voltage clamp analysis with modified Drosophila para Vgsc expressed in
Xenopus oocytes [138]. Soil samples taken at sites before seasonal pesticide treat-
ments revealed trace amounts of compounds including diuron, benzoyprop-ethyl,
and fungicides chloroneb, pyridate, allethrin, and bromacil, mostly at low concen-
trations. Water samples taken after pesticide application but before harvest at
conventional cotton sites revealed deltamethrin and lambda cyhalothrin at high
levels (0.0147 μg L�1 and 1.49 μg L�1, respectively), documenting a direct link
between agricultural pyrethroid use and selective pressure on larvae [63]. Notably,
the authors did not detect DDT in soil or water samples, suggesting that pyrethroids
are the primary drivers of resistance in these populations.

In a second study of larval mosquitoes, resistance mutations, and environmental
media, Kudom et al. [139] surveyed urban residential mosquito breeding sites in
Ghana and collected larval mosquitoes and water samples. Larval mosquitoes were
reared to adulthood and then challenged with pyrethroid-impregnated filter papers
containing either 0.05% deltamethrin, 0.75% permethrin, 0.15% cyfluthrin, or 0.5%
etofenprox for 1 h and allowed to recover for 24 h after which time mortality was
scored to determine resistance phenotype. Most mosquitoes were classified as
Anopheles coluzzii, with a minority being An. gambiae, and all resistant animals
were genotyped for L1014 resistance mutations. While water samples revealed that
pyrethroids, organochlorines, and organophosphates were present in most samples,
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pyrethroids (especially permethrin at 1.283 μg L�1 and deltamethrin at
0.370 μg L�1) were present at high levels above regulatory threshold levels for
surface waters [140]. Conversely, most organochlorine and organophosphates were
found at lower levels, considered to be within regulatory thresholds. This was true
for the organochlorines DDT and methoxychlor, which also target the Vgsc
[106]. Further, mosquitoes sampled from urban sites were highly resistant across
all four pyrethroids (0–16.7% mortality) and harbored high frequencies of the
L1014F kdr mutation (0.935). While these studies do not definitively demonstrate
that pyrethroid exposure alone is driving resistance in mosquitoes, they provide
evidence that pyrethroids are prevalent at toxic levels in urban and agricultural larval
breeding grounds, which suggests that pyrethroids play a role in driving adaptive
resistance.

Low frequencies of the L1014F kdr mutation of some less sensitive An. gambiae
mosquitoes collected adjacent to conventional agricultural activity as larvae in the
field and then screened for pyrethroid resistance suggest that metabolic resistance
also exists in some areas [141]. In fact, many of the studies discussed above fail to
test for other mechanisms that may be contributing to resistance or tolerance.
Further, most studies that have documented pyrethroid resistance in mosquitoes
near agricultural and urban areas rely on the collection and testing of mosquitoes
coming directly from the field, which means that differences in sensitivity between
resistant and sensitive populations may reflect mechanisms including physiological
acclimation, maternal affects, and/or adaptive resistance (Fig. 2). However, the
studies discussed herein also screen for the kdr target site mutation at locus L1014
in the Vgsc because it has been implicated in the conferral of pyrethroid resistance
elsewhere [135, 142]. It is important to realize that these studies provide key data that
nontarget pyrethroid exposure drives adaptive resistance in Anopheles. They docu-
ment (1) a pyrethroid-tolerant phenotype, (2) evidence of increased frequency of
well-documented resistance mutations in these populations near agricultural and
urban areas, and (3) a pyrethroid presence in acutely toxic levels in associated
environmental media.

4.2.2 Black Flies

Black flies (Simulium spp.) are another human health and livestock disease vector
and pest worldwide that have demonstrated decreased pyrethroid sensitivity attrib-
uted to nontarget exposure to agricultural spray drift and runoff. Larvae from fruit
production agricultural irrigation channels in Northern Patagonia (Argentina) have
demonstrated up to 400-fold decreased sensitivity to deltamethrin and fenvalerate
relative to field-reference larvae during controlled laboratory exposures [60, 62]. The
source of that decreased sensitivity has been suggested to be target site insensitivity
in the form of a kdr resistance mutation [62, 63] and/or increased esterase and
monooxygenase activity [60, 61]. In the first study, larval black flies were taken
from agricultural and reference areas and then subjected to 24-h water-only toxicity
challenges with organophosphates, carbamates, pyrethroids (cypermethrin,
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deltamethrin, or fenvalerate), or an organochlorine (DDT). Larvae from agricultural
areas were significantly more tolerant to fenvalerate (88.2-fold), deltamethrin (90.0-
fold), cypermethrin (22.9-fold), and DDT (59.2-fold) compared with reference site
larvae. Given the high levels of DDT and pyrethroid tolerance in larvae from
agricultural sites, the authors concluded that a kdr- type mutation was likely. Further,
the lack of tolerance to organophosphates and carbamates indicated a limited
contribution of detoxifying enzymes toward resistance phenotypes. The authors
concluded that tolerance was likely to be driven by pyrethroid exposure given that
pyrethroids were heavily used in that agricultural region at the time of the study,
while DDT had not been utilized for two decades in the same region [62]. In a
subsequent study, Montagna et al. [61] showed that the basis for increased Simulium
spp. tolerance to DDT and fenvalerate in some populations from an agricultural area
was likely to be more complex than a kdr mutation alone could explain. In larval
toxicity challenges with fenvalerate or DDT in the presence of synergists PBO
(which inhibits monooxygenases) and tribufos (which inhibits esterases), the authors
found reduced tolerance to both DDT and fenvalerate with pre-treatment with PBO,
indicating that tolerance likely involved monooxygenase activity. Pre-treatment with
tribufos only marginally reduced the resistance phenotype to fenvalerate, but ester-
ase activity in the tolerant population was nearly threefold higher than in the
sensitive population, indicating that esterase activity also played a role in the tolerant
phenotype. Despite the implication of metabolic enzymes in the tolerant phenotype,
a kdr-type mutation was still presumed to confer a portion of the tolerance, although
that mutation remained uncharacterized [61]. A third study on Simulium spp.
documented both pyrethroid (deltamethrin, 130–250-fold) and organophosphate
(azinphos methyl, 1.7–4.6-fold) tolerance in an agricultural population. Given that
pyrethroids had recently been replaced by organophosphates after nearly two
decades of consistent agricultural use, the authors highlighted the role of increased
esterases in the tolerant population as a mechanism of metabolic resistance that
confers resistance to both pyrethroids and organophosphates [60]. While the mech-
anism of increased tolerance to pyrethroids and DDT in black flies appears complex,
the high magnitude of resistance between agricultural and reference animals and the
inability of the metabolic enzymes to fully explain that tolerance suggests a kdr
mutation may be responsible for the partial loss in sensitivity. Further, the primary
use of pyrethroids in the agricultural region that harbors tolerant animals suggests
that pyrethroids have been responsible for driving that tolerance in some black fly
populations given that DDT had not been used in that region for two decades at the
time that tolerance was first documented. This suggests that DDT would have played
a minimal role in selecting for and then maintaining resistance in black flies. Given
that larval animals were taken directly from the field and challenged with toxicants,
their increased tolerance phenotypes could reflect a mixture of physiological accli-
mation, maternal effects, and adaptive resistance, which is supported by the complex
metabolic and potential kdr mutation tolerance mechanisms proposed to play a role
in resistance phenotypes [60–62]. While this marked decreased in Simulium spp.
sensitivity as a result of agricultural pesticide use cannot technically be termed
“resistance” by our strict definition, we conclude that increased tolerance in black
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flies is likely to involve adaptive resistance, given the lines of evidence listed
previously. Additional work would contribute more evidence toward resolving the
tolerance/resistance classification, including target site genotyping, testing with
multiple generations of laboratory reared animals, and environmental media mea-
surements (to relate pyrethroid concentrations to tolerance).

4.2.3 Amphipods

In the Central Valley of California, pyrethroid resistance has been documented in the
nontarget amphipodH. azteca. Unlike mosquitoes and black flies, members of theH.
azteca species complex have no history as pests and instead act as important
indicators of water quality in bioassessments as well as model laboratory organisms
in ecotoxicological studies. H. azteca have also been documented as a food source
for fish [143] and birds [144] in North America, confirming their role in aquatic food
webs. This species complex has been documented as one of the most sensitive
arthropods to pyrethroid pesticides [68], with LC50s consistently under 5 ng L�1

in cyfluthrin 96 h water only exposures [57, 58]. By exposing field-collected and
laboratory populations of H. azteca to the pyrethroid pesticides cyfluthrin and
bifenthrin in 96 h acute toxicity tests, the authors found up to 550-fold resistance
in some populations of H. azteca from waterways surrounded by agricultural and
urban land use. Although the populations screened for pyrethroid sensitivity spanned
six different species groups, laboratory-reared populations and wild populations in
waterways without pyrethroid pesticide inputs remained similarly sensitive to pyre-
throids, indicating that pyrethroid pre-exposure from nearby land use was responsi-
ble for the changes in sensitivity, rather than species group composition. Analysis of
sediment samples for commonly used pyrethroids (bifenthrin, cyfluthrin,
cyhalothrin, cypermethrin, deltamethrin, esfenvalerate, permethrin, and tefluthrin)
consistently showed levels of pyrethroids in agricultural and urban sites that were
sufficient to be acutely toxic to sensitive H. azteca during 10 d acute exposures,
while reference sites without predicted pyrethroid use did not have sediments with
acutely toxic levels of pyrethroids [57, 58]. Point mutations leading to single amino
acid substitutions (L925I or L925V and M918L, M. domestica nomenclature) in the
Vgsc were identified only in resistant (by tenfold or greater) populations, at high
frequencies (>0.8), and sometimes appearing to be fixed within the population
[58]. These mutations have been previously associated with resistance in target
pest species [145–147]. Further, given that multiple species of H. azteca harbored
resistance alleles, the phylogenetic structure of the species complex revealed that
pyrethroid-resistant alleles in H. azteca evolved independently a minimum of six
separate times, suggesting that pyrethroid selective pressures in urban and agricul-
tural waterways are sufficient enough to repeatedly lead to genetic convergent
evolution in impacted H. azteca spp. [58]. Interestingly, some pyrethroid-resistant
H. azteca also harbored a nonsynonymous base pair substitution at the same Vgsc
I936 locus as pyrethroid-resistant sea lice, although in H. azteca, the mutation was
documented as a change from isoleucine to phenylalanine (I936F instead of I936V).
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The I936F mutation was identified at low levels in a survey of genetic resistance
markers of the pyrethroid-resistant bed bugs (Cimex lectularius) in Israel
[148]. I936F has also been associated with d-allethrin-resistant populations of
bedbugs in Australia, although the authors noted that its function in pyrethroid
resistance is tentative and requires further investigation [149]. In addition to the
identification of target site mutations in H. azteca, Weston et al. [57] used a
microarray to detect gene expression differences between sensitive laboratory and
a highly resistant pyrethroid- resistant population (Grayson Creek) at each
population’s no observable effects concentration (NOEC ¼ 0.4 ng L�1 and
170 ng L�1, respectively). Differentially expressed genes in the sensitive laboratory
population were consistent with the mechanism of action of the pyrethroids – these
animals had differentially expressed genes related to neural function, while Grayson
Creek animals instead expressed stress response genes related to oxidation/reduction
(cytochrome P450s, glutathione S-transferases, other oxidases), heat shock proteins,
and metabolic enzymes. These results are consistent with a differential mode of toxic
action in sensitive versus resistant populations which can be explained by differen-
tial Vgsc amino acid sequences.

In contrast with the other cases of potential nontarget pyrethroid resistance in
aquatic invertebrates previously mentioned, H. azteca that have demonstrated pyre-
throid resistance and high frequencies of the L925I mutation appear to be more
sensitive to toxicant challenges with DDT. Regardless, there is no indication that
pyrethroid-resistant animals confer any resistance to DDT [150, 151]. DDT has been
banned in the United States since the early 1970s and therefore would have been
unlikely to contribute to the selection and maintenance of resistance alleles measured
inH. azteca nearly four decades later. Because field-collected H. aztecawere used to
screen for pyrethroid sensitivity, it is possible that some of the decreased sensitivity
to pyrethroids observed can be attributed to physiological acclimation and/or mater-
nal effects instead of exclusively adaptive resistance. However, three populations of
resistant H. azteca have been maintained in a pyrethroid-free laboratory setting
between 9 and 16 months, with a maximum of a 35% loss in tolerance to cyfluthrin
[151]. A decrease in tolerance during that time could be attributed to nonadaptive
resistance mechanisms that have not been explored in H. azteca, but the high
frequencies and substantial (62-fold) increase in tolerance compared to sensitive
populations still support the presence of an adaptive resistance mutation (L925I).
Another study showed a 50% decrease in pyrethroid resistance between field-
collected and laboratory-reared F1 animals in the absence of pyrethroids, but
again, that population still maintained a 40-fold greater tolerance than sensitive H.
azteca [150], supporting the existence of genetic, adaptive target site mutations in
the conferral of resistance in H. azteca.
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4.3 Implications of Pyrethroid Resistance in the Aquatic
Environment

Pyrethroid resistance in the aquatic environment can have far-reaching implications
that are important from a variety of different perspectives (human and animal health,
evolutionary, ecological, and risk assessment). Below we expand on the conse-
quences of pesticide resistance in aquatic ecosystems, with a particular focus on
the effects resulting from pyrethroid resistance driven by nontarget exposures.

4.3.1 Human and Animal Health Implications

Sea lice, mosquitoes, and black flies are disease vectors. Sea lice transfer salmon
anemia (ISA) between fish, apart from contributing to weakened fish immune
function so that infections are more likely [152]. ISA can cause extreme mortality
in heavily affected populations. One analysis estimated the cost of sea lice infesta-
tions on global salmon fisheries to be nearly US $335 million per year
[153]. Increased resistance to pyrethroids among sea lice populations may call for
an increased dosage of pyrethroids during bath treatments, potentially to the detri-
ment of the fish on a sublethal level [154, 155].

Mosquitos and black flies transfer disease to humans. In 2016, 445,000 human
mortalities were documented from malaria, mostly in sub-Saharan Africa [156]. An.
gambiae is a primary vector for Plasmodium parasites that transmit malaria to
humans and livestock in Africa [157]. Burkina Faso, Ghana, and Benin, the same
countries in which nontarget pyrethroid exposures are contributing to resistance
[56, 59, 63, 139], are at high risk for malaria, even in urban regions. Thus, nontarget,
aquatic exposures of larval mosquitoes in urban and agricultural areas pose a great
challenge to the WHO, which relies heavily on pyrethroid-treated bed nets for the
prevention of malaria [158]. Bed net failures have already been attributed to pyre-
throid resistance in Benin [159]. Further, selection for L1014F kdr mutations from
pyrethroid overuse also confers DDT resistance, decreasing the efficacy of emer-
gency DDT applications to fight malaria. Urban and agricultural overuse of pyre-
throids accelerates the development of pyrethroid (and DDT) resistance, which in
turn may increase the risk of contracting malaria.

Black flies act as disease vectors for Onchocerca volvulus – a nematode that
causes onchocerciasis (river blindness) in Africa and Central and South America
[36]. Nearly 1 million people currently suffer from blindness or visual impairment
due to this parasite [160], and resistance gained from agricultural spray drift and
runoff exposures of pyrethroids can potentially render recommended protective
measures, such as permethrin-treated clothing [156], far less protective. Increased
resistance to pyrethroids means that the prevalence of river blindness may increase.
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4.3.2 Evolutionary Implications

In pyrethroid-laden environments, pyrethroid resistance genotypes confer a fitness
advantage. In the absence of a pyrethroid selective pressure, classical theory predicts
that resistance genotypes come at a cost [161]. However, the fitness costs associated
with resistance are related to the specific mechanism underlying the resistance [162],
and fitness costs have only sometimes been measured in cases of adaptive resistance
(see Ffrench-Constant and Bass [163] for a discussion). Fitness costs associated with
resistance mutations of large effect can be ameliorated by subsequent mutations in
other genes (modifiers) [162], so that even resistance driven by an apparently simple
mutation can actually be the result of a complex genetic profile [99]. Still, pyrethroid
resistance has often been documented in other insects to come at an overall fitness
cost. Boivin et al. [164] documented fitness costs including decreased fecundity and
fertility, slower development, lower weight, and shorter lifespans in deltamethrin-
resistant codling moths (Cydia pomonella) compared with sensitive strains.
Konopka et al. [165] showed cost of fitness through developmental and reproductive
life history traits with a population of pyrethroid-resistant C. pomonella. One study
monitored the allele frequency of a kdr mutation in houseflies (M. domestica) in
pyrethroid-free environment for 15 generations, and found a significant decrease in
frequency over time, suggesting a strong cost of having the mutation in the absence
of pyrethroids [166]. In mosquitoes (Culex quinquefasciatus), kdr resistance muta-
tions were associated with a decreased chance of surviving to adulthood
[167]. Reduced overall fitness noted with some pyrethroid resistance mutations in
the Vgsc may be caused by reduced efficiency in mutant Vgsc or related metabolic
costs [168]. Fitness costs have been documented in homozygous recessive L1014F
mutant An. gambiae females [169]. In H. azteca, the L925I resistance mutation is
more common than the M918L mutation, suggesting that L925I is preferred, poten-
tially because of lower fitness costs [58, 129]. Several populations of H. azteca
appear to be functionally fixed for a resistance mutation at the L925 locus, including
the population studied for tolerance to other chemicals and fitness costs
[58, 150]. One population fixed for L925I showed lower reproductive capacity,
lower thermal tolerance, and trends toward increased sensitivity to other chemicals
including DDT, copper (II) sulfate, and sodium chloride, potentially indicating some
fitness costs associated with the L925I allele, although more work will be necessary
to determine that definitively [150].

If the selective pressure is sufficiently strong, population size can be reduced to
leave only a select group of founder genotypes to continue that population, poten-
tially leading to “genetic erosion” or a loss of genetic diversity [170]. Unlike
physiological acclimation, changes to the genetic structure of populations including
loss of sensitive genotypes and reductions in genetic diversity are permanent alter-
ations to the population in question [87]. Losses in genetic diversity also increase
vulnerability to extinction [171]. It is noteworthy that the populations that have
evolved resistance to pyrethroids are often also harboring evolved resistance to other
pesticides. For example, many populations of H. azteca that are resistant to pyre-
throids are also resistant to organophosphates through analogous target site
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mutations [40, 151, 172]. Salmon lice from Norway harbor organophosphate and
carbamate resistance alleles [173, 174]. Other populations of sea lice show a marked
reduction in sensitivity to emamectin benzoate, an avermectin [123]. An. gambiae
have demonstrated adaptive resistance to pyrethroids and organophosphates
[175]. Some populations of black flies (Simulium spp.) that are resistant to pyre-
throids are less sensitive to organophosphates [60]. These examples of evolution to
multiple classes of pesticides serve as evidence that these populations are under
potentially strong selective pressures from multiple chemicals. Concurrent, strong
selective pressures may leave populations even more vulnerable to extinction or
losses in genetic diversity. While concerns regarding the genetic diversity of pest
species (e.g., sea lice, mosquitoes, black flies, and sea lice) are rarely expressed,
these concerns are markedly more prominent when considering nontarget species
(like H. azteca) that are not disease vectors or pests. Evidence of decreased genetic
diversity caused by insecticide applications are suggested in the literature for insects.
Allelic richness was negatively correlated with deltamethrin resistance in mosqui-
toes (Aedes aegypti) harboring a Vgsc kdr mutation, potentially due to founder
effects from genetic bottlenecks caused by insecticide selective pressures
[176]. However, if gene flow is high, losses in genetic diversity are not always
apparent in pyrethroid-resistant insect populations [177]. H. azteca is a poor dis-
perser relative to the flying insects [178]. Thus, if selection for pyrethroid resistance
kdr alleles is capable of driving genetic bottlenecks in H. azteca, and if gene flow is
not sufficient to compensate for decreases in genetic diversity, resistant H. azteca
populations with kdr mutations at high frequencies may be particularly prone to
having low genetic diversity or being at a greater risk for genetic drift. The functional
fixation of resistance alleles at the L925 locus in six different populations of H.
azteca also suggests that genetic diversity may be reduced in those populations. As
mentioned previously, one L925I-fixed population of pyrethroid-resistant H. azteca
have already demonstrated a reduced tolerance to other stressors and increased
fitness costs compared to sensitive populations [150], potentially due to fitness
costs associated with the resistance mutation, or possibly from a loss in genetic
diversity associated with a past founder effect. Explicit studies of genetic diversity in
resistant populations of H. azteca have yet to be performed, but are essential to
building our understanding of the way that selection for kdr mutations is affecting
populations and their resilience to other environmental changes and stressors. These
studies may also serve to move the field of evolutionary toxicology forward as we
gain a better understanding of the evolutionary impact of strong selective pressures
on nontargets.

4.3.3 Ecological Implications

Adaptive pyrethroid resistance from target (sea lice) and nontarget (mosquitoes,
black flies, and amphipods) pyrethroid exposures may signal ecosystem-level pes-
ticide stress. If pyrethroids are present at levels sufficient to drive selection of target
site mutations of large effect in these populations, then they are likely causing acute
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and sublethal toxicity to other organisms in these environments. In the case of sea
lice, the pyrethroids from fish bath treatments are typically released into the sur-
rounding area after the prescribed therapeutic duration [179]. Several reviews have
considered the potential impacts of sea lice pesticide treatments on nontarget aquatic
biota [37, 180]. One study estimated that the concentration of deltamethrin at
approximately 100–350 m from the treatment area was sufficient to immobilize
the benthic marine amphipod Eohaustorius estuarius in as little as 1 h. Given its
tendency to sorb to particles instead of remaining in the water column, deltamethrin
release from sea lice treatments is likely to impact sediment dwelling organisms
more strongly than those in the water column [181]. A previous study using a similar
approach to track cypermethrin during a simulated bath treatment found
cypermethrin in the surrounding water between 2 and 5.5 h after tarp release, at
distances ranging from 900 to 3,000 m away from the pen at low ng L�1

concentrations – the same range of concentrations causing irreversible immobiliza-
tion in the E. estuarius population after 48 h of exposure [69]. Burridge et al. [179]
tested the acute, short-term toxicity of Alphamax® (active ingredient deltamethrin)
on several nontarget marine organisms including American lobsters (Homarus
americanus) at a variety of different life stages and shrimp (Crangon septemspinosa
and Mysid spp.) to determine toxicity over short- term exposures (1, 24 h) that may
realistically follow bath treatment chemical release. Deltamethrin concentrations
ranging from 3.4 to 18.8 ng L�1 caused lethality in 50% of animals after only 1 h,
with lobsters being the most sensitive. Concentrations ranging from 0.8 to 27 ng L�1

were sufficient to cause the same effects after only 24 h of exposure, with the earliest
life stages of lobsters being the most sensitive [179]. These findings are important
because they demonstrate that nontarget animals near fish pens being treated for sea
lice come in contact with pyrethroids at concentrations that cause acute toxicity on
ecologically relevant timescales. Further, they highlight that other important fisher-
ies such as the American lobster, sometimes located near salmon fisheries [179], are
likely to be impacted by sea lice treatments. It is likely that invertebrate assemblages
near sea lice treatment pens are experiencing toxicity from pyrethroids released after
treatment. Given the evidence of acute toxicity in some marine organisms at low
pyrethroid concentrations, it follows that these same assemblages may be experienc-
ing strong selective pressures from these nontarget pyrethroid exposures, potentially
contributing to mortality or the development of resistance in some populations.
These effects could also extend to other fisheries, such as shrimp farming in Central
Asia, which sometimes use pyrethroids to treat pests [38], but for which treatment
regimes and other exposure data are severely lacking. As the doses of pyrethroids in
sea lice treatments are increased to compensate for the development of resistance in
sea lice populations [121], effects on nontarget animals near salmon fisheries are
only likely to become more severe.

The arthropod taxa and life stages for which nontarget, adaptive resistance to
pyrethroids has been documented are among the most sensitive to pyrethroids in
comparison to other members of the aquatic community. The selection for and rise in
frequency of resistance mutations of large effect (Vgsc L1014F/S, M918L, L925I/V)
in these sensitive groups are consistent with exposure to acutely toxic concentrations
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of pyrethroids in the environment. However, other less sensitive taxa may still be
under substantial selective pressures from pyrethroids. Environmentally relevant
measurements of pyrethroids in water and sediment often exceed regulatory recom-
mendations [2]. A variety of other freshwater and marine crustaceans (Menippe
mercenaria, Gammarus lacustris, Crangonyx pseudogracilis, Gammarus
pseudolimnaeus, Americamysis bahia, Chaoborus sp.) have similar pyrethroid sen-
sitivities (2.6- to 9.3-fold lower) to H. azteca [68]. Potential impairment for other
important prey for fish including caddisfly (Hydropsyche spp.) have been
documented at environmentally relevant levels of bifenthrin [182]. The abundance
of sensitive invertebrate taxa, % Ephemeroptera-Plecoptera-Trichoptera (EPT), and
some mayfly taxa has been negatively correlated with bifenthrin sediment concen-
trations [28]. Further, a mesocosm experiment with bifenthrin-laden sediments has
documented reduced larval macroinvertebrate abundance, richness, and biomass at
concentrations 2.5 times lower than the recorded 10 d sediment LC50 for H. azteca
[31]. The same authors also predict altered emergence dynamics and trophic cas-
cades in some stream scenarios. Another mesocosm experiment showed impairment
of the majority of examined macroinvertebrate and zooplankton taxa in response to a
tertiary mixture of environmentally relevant concentrations of two pyrethroids and
an organophosphate. H. azteca and D. magna showed acute toxic responses, while
snails (Radix sp.) and copepods displayed chronic, sublethal responses [183]. Thus,
it is possible that other taxa are under substantial acutely toxic selective pressures
from pyrethroids, and at minimum, they are experiencing sublethal fitness costs from
pyrethroid presence. Even sublethal fitness costs incurred by aquatic populations
under pyrethroid stress may drive resistance to pyrethroids in affected populations,
although that adaptive resistance would most likely occur through complex pheno-
types caused by polygenic selection, which would be likely to carry with them their
own set of fitness costs [99]. In populations without sufficient standing genetic
variation on which evolution can act, or in taxa that have longer life cycles, evolution
may not be a feasible response to environmental stress. For example, H. azteca are
obligate aquatic invertebrates and have a generation time of 1 month under stan-
dardized laboratory conditions [184]. In contrast, some mayflies, for example,
remain nymphs for up to multiple years before emergence [185], and a longer
generation time may allow pyrethroids to impact population densities via acute or
sublethal toxicity to an extent that prevents evolved resistance to pyrethroids and
instead contributes to local extinctions.

Aside from the loss of sensitive taxa from ecosystems with toxic levels of
pyrethroids, potential fitness costs and decreased resilience to other environmental
stressors in some resistant H. azteca populations [150] may contribute to present or
future declines in densities, which could also impact the fish and other predators that
rely on them for food. In addition, pyrethroid-resistantH. azteca harbor higher levels
of these pesticides capable of causing sublethal toxicity to forage fishes and poten-
tially increasing the risk of bioaccumulation in piscivores or birds which may reach
farther up the aquatic food web [186]. The mosquito and blackfly populations that
are resistant to pyrethroids may also pose a higher risk for bioaccumulation in
predators (birds, fish, frogs, and other insects) that rely on these larval and adult
insects as a food source, although those studies have yet to be performed.
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4.3.4 Risk Assessment Implications

If the pyrethroid presence is strong enough, some populations of sensitive taxa may
evolve. However, relying on populations to have the genetic background population
size to evolve to resist pyrethroids is not a sufficient protective strategy for aquatic
ecosystems. Even when evolution is possible, it may not happen quickly enough in
wild populations and can come with fitness trade-offs [99]. In itself, the measure-
ment of genetic, adaptive resistance is an indicator that pyrethroids’ selective
pressures have removed sensitive individuals from the population. It may also signal
acute and/or sublethal toxicity for other members of the aquatic ecosystem, poten-
tially leading to the loss of other sensitive taxa. Regarding sea lice treatment with
pyrethroids, risk assessments should be undertaken in a fish farm site-specific
manner to prevent undue harm from pesticide treatments on nontarget life
[180]. The evolution of resistance in aquatic invertebrate nontargets in urban and
agricultural environments on a global scale suggests that pyrethroids are not being
adequately regulated to prevent undue harm in the aquatic environment. In the
United States, agricultural pyrethroid use is monitored, but urban use is not
[58]. In African countries, such as Ghana, pyrethroid use in general is poorly
regulated [139]. Without closer regulation of pyrethroid use, disease vectors and
other invertebrates will continue to experience strong selective pressures from
pyrethroids, perpetuating the human health, evolutionary, and ecological effects
described above.

Adequate protection for wild populations may not be achieved by utilizing
adapted populations to make risk assessment decisions [86], largely because sensi-
tive organisms have been removed from resistant populations. However, the genetic
adaptive pyrethroid resistance in some wild populations of H. azteca presents a
unique model system to incorporate the field of evolutionary toxicology directly into
risk assessment decisions. H. azteca are both sensitive to pyrethroids and amenable
to laboratory culture. As such, they are ideal candidates for bioassessment and
biomonitoring programs and an ideal laboratory surrogate for determining thresh-
olds for the protection of aquatic life. The stable pyrethroid resistance mutations in
one population of H. azteca have already been used as a type of biological toxicity
identification evaluation (TIE) tool to identify the source of toxicity in environmen-
tal samples [151]. The repeated, convergent evolution of the same resistance muta-
tions across different species groups within the H. azteca species complex suggests
that screening new populations for genetic changes in the target site (vgsc) may
provide evidence of pyrethroid impairment in new locations. Further, given that
other crustaceans are often similarly sensitive to pyrethroids [69], phenotype assays
and genetic screening for pyrethroid resistance could be developed for taxa that are
often used in regulatory decisions outside of the United States (e.g., Gammarus).
These methods may be able to refine which areas or regions are at the greatest risk for
impairment from pyrethroids.
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5 Conclusion

Pyrethroids are present in aquatic environments globally, from river, estuarine, and
marine sediments to irrigation channels, lakes, rural, and suburban waterways. They
have been identified in sediments in the United States, Great Britain, Spain, Viet-
nam, Norway, Thailand, Australia, Pakistan, Argentina, Paraguay, Brazil, and Nige-
ria (see Tang et al. [2] and references therein), often at levels that exceed regulatory
thresholds [140]. These compounds are widely implicated in causing acute
and sublethal effects in aquatic organisms at low, environmentally relevant
concentrations in water and sediment. Both target and nontarget applications of
pyrethroids drive adaptive pyrethroid resistance in a number of invertebrate taxa. We
present evidence that pyrethroids drive the evolution of resistance in nontarget
aquatic organisms on three continents [57, 58, 60–63]. Both urban and agricultural
pyrethroid use are responsible for the selection of genetic adaptive resistance in
vector (mosquitoes, black flies) and nonvector (H. azteca) populations. Resistance in
disease vectors threatens public health, while resistance in other nontarget inverte-
brates serves as an indicator of pyrethroid impairment in aquatic environments.
Further exploration of the evolutionary implications of pyrethroid resistance in
aquatic organisms is highly warranted. Taking full advantage of model systems
such as H. azteca and as well as incorporating the repeated evolution of genetic
resistance into risk assessment decisions will greatly expand our understanding of
the evolutionary processes that occur due to the presence of pyrethroids and other
chemical stressors in the environment.
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Abstract Pyrethroids are chiral insecticides due to the occurrence of up to three
asymmetric carbons. Each stereogenic centre generates two possible spatial config-
urations (R- or S-enantiomers), which are non-superimposable mirrored forms. Two
chiral carbons on the cyclopropane ring generate four enantiomers on Type I
pyrethroids, while a third chiral centre on Type II pyrethroids generates eight
enantiomers. The chiral nature of enzymatic sites favours specific insecticidal
activity only for some enantiomers in commercial formulations. On the other
hand, there is an overabundance of enantiomers with no desired activity or even
undesired side effects. In this sense, in addition to the previously described toxicity
of insecticide enantiomers to nontarget organisms, adverse effects, such as endocrine
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disruption, have been reported for enantiomers with low or no insecticidal action. In
addition, the different metabolic pathways of pyrethroid enantiomers have conse-
quences for their persistence and bioaccumulation profiles in biological systems.
Therefore, a stereochemical approach is required to better understand the undesired
impacts of pyrethroids on the environment and on human health, since the studies
point to patterns of toxicity and persistence at enantiomeric levels. The occurrence of
degradation/persistence patterns in environmental samples may be useful for under-
standing enantiomeric fate, contributing to more accurate risk assessments aimed
at preventing or mitigating the impacts of continuous pyrethroid release into the
environment.

Keywords Chirality, Cypermethrin, Enantiomers, Environment, Isomerism,
Permethrin

1 Introduction

Chiral compounds are characterized by the presence of at least one asymmetric
molecular centre. Currently, approximately 30% of commercialized pesticides pre-
sent chirality [1, 2]. The need to increase the efficiency and economic viability of
new pesticides, as well as the evolution of knowledge about molecular interactions
in biological systems, favoured the development of more specific chiral active
ingredients [2]. In this context, the development of chiral molecules is aligned
with the strategy of achieving efficient and environmentally sustainable pesticides
[3]. Among the various molecular structures of pesticides, asymmetric centres can
occur on carbon, sulphur, nitrogen and phosphorus atoms [4]. In pyrethroids,
chirality is due to the presence of one to three stereogenic tetrahedral carbons. The
occurrence of a chiral centre (e.g. fenpropathrin) gives this structure optical isomer-
ism with two possible spatial configurations, which are non-superimposable mir-
rored forms of the same compound (R- and S-enantiomers). On typical Type I
pyrethroids (e.g. permethrin), the presence of two chiral carbons generates four
diastereomers, resulting in one pair of cis- and trans-enantiomers. On Type II
pyrethroids (e.g. cypermethrin), the inclusion of a third chiral carbon (alpha-
cyano) generates eight diastereomers, resulting in a second pair of each cis- and
trans-enantiomer.

Due to chirality at enzymatic sites, pyrethroid enantiomers may be related to
different toxicities and preferential metabolic pathways in biological systems
[5]. Furthermore, variation in the biochemical transformation patterns of these
compounds directly influences the persistence and preferential bioaccumulation
of stereoisomers [6]. Enantioselectivity is a determining factor for the occurrence
of isomeric patterns in the environment, including the different rates of
bioaccumulation observed in species living in the same ecosystem [7].
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Among commercial products containing pyrethroids, there is a predominance of
racemic formulations (equal proportions of enantiomers) and enriched isomers
[8]. Although single isomers (e.g. gamma-cyhalothrin and bioresmethrin) are more
efficient and environmentally safe due to their specific effect on target receptors,
their industrial-scale production is often limited by cost-efficient technologies
[2, 4]. On the other hand, only a few enantiomers in racemic formulations have
the desired action. For example, only one enantiomer of each pair of diastereomers
of permethrin (1R-cis and 1R-trans) and cypermethrin (1R-cis-αS and 1R-trans-αS)
has strong insecticidal activity. The remaining two enantiomers of permethrin and
six stereoisomers of cypermethrin are not as efficient or have no specific activity
[9]. Considering racemic permethrin, if only 50% of enantiomeric molecules are
efficient as insecticides, a greater environmental burden is expected due to the
expense of material resources and the need for greater volume of application. In
addition to the increased risk of contamination of urban and agricultural environ-
ments, possible impacts on nontarget organisms are expected for all permethrin
enantiomers, since toxic effects were reported for some insecticidal enantiomers,
and endocrine disruption and immunotoxicity are related to others [10–12].

Considering the widespread use of pyrethroids and their chemical complexity, it
is essential to consider their stereoisomerism to more accurately assess the persis-
tence, risk of bioaccumulation and possible undesired impacts of pyrethroids on
nontarget organisms. In this sense, an achiral analytical approach in environmental
and toxicological studies is able to only partially assess the potential adverse effects
of pyrethroids in biological systems [3].

Therefore, this chapter presents data with the aim of discussing the stereochem-
ical behaviour of pyrethroids in the environment. Relevant studies on the conse-
quences of pyrethroid toxicity to nontarget organisms, the potential bioaccumulation
of pyrethroids and their fate at isomeric levels and the use of isomeric profiles as
markers of environmental origin will be discussed.

2 Pyrethroid Structure Configuration

The synthesis of pyrethroids was modelled upon esters (pyrethrins) that constitute
approximately 25–50% of pyrethrum, a natural extract of Chrysanthemum spp.
flowers used for centuries as insecticide [13]. Among the six isolated esters of
pyrethrum responsible for its insecticidal activity, there are two related groups:
three esters similar to cyclopropanecarboxylic acid, also named chrysanthemic
acid, and three esters related to pyrethric acid [14]. Both acids occur esterified
with three alcohols (cinerolone, jasmolone and pyrethrolone), known generically
as rethrolones (Fig. 1a). The esterification of the chrysanthemic acid with each
rethrolone generates pyrethrins I, while the esterification of pyrethric acid with
rethrolones forms pyrethrins II [14].

Among these main structures found in pyrethrum extract, chrysanthemic acid
served as a model for the synthesis of pyrethroids. Chrysanthemic acid has two
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asymmetric carbons, resulting in four enantiomers. Pyrethric acid differs by a change
of the methoxy group for a carbomethoxy group at the double bond, and rethrolones
have a chiral carbon (C-4) and geometric isomerism due to their side-chain double
bond (Fig. 1a). Chiral carbons (C-1 and C-3) of chrysanthemic and pyrethric acid
occur only in the 1R,3R-configuration (Fig. 1b) [15].

The instability of exposure to light and heat of chrysanthemic acid was solved
with the inclusion of halogen atoms (at first chlorine) in substitution of the terminal
group at the double bond, giving rise to permethric acid (Fig. 2) [14]. The synthesis
of the current pyrethroids was completed with the esterification of the benzylic
alcohol (m-phenoxybenzyl alcohol) by the permethric acid giving rise to
permethrin – the first pyrethroid with photostability suitable for agricultural appli-
cation (Fig. 2) [13, 15]. Subsequently, another compound, cypermethrin, was syn-
thesized, with the esterification of racemic cyanohydrin (hydroxy group of
m-phenoxybenzyl cyanohydrin) with permethric acid giving rise to Type II pyre-
throids (Fig. 2).

Compared to Type I pyrethroids, Type II compounds have higher photostability,
higher insecticidal activity and a further asymmetric centre on alpha-cyano-3-
phenoxybenzyl alcohol (Fig. 2) [16, 17]. Aiming to further improve these features,
new molecules were synthesized with the inclusion of other halogen atoms (bromine
and fluorine), as well as changes in the number of carbons. Among Type I pyre-
throids, we can highlight bifenthrin, resmethrin and tefluthrin. Common examples of
Type II pyrethroids are cyfluthrin, cyhalothrin, fenvalerate (an acyclic compound)
and the single isomer deltamethrin (Fig. 3). The number of asymmetric carbons (n) is

Fig. 1 (a) Chrysanthemic acid, pyrethric acid and basic structure of rethrolones. Chiral carbons
(C-1, C-3 and C-4) are presented with their natural configuration; (b) possible spatial configurations
of chrysanthemic acid based on chiral carbons (C-1 and C-3) of the cyclopropane ring. Radicals R1
and R2 of the chrysanthemic acid are represented in the dashed frames of (a)
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related to the number of possible isomers in Type I (22 ¼ 4 diastereomers) and
Type II pyrethroids (23 ¼ 8 diastereomers).

The nomenclature of chiral carbons R (rectus) and S (sinister) based on the Cahn-
Ingold-Prelog (CIP) system [18, 19] is related to the priority (e.g. highest atomic
number and other rules) of bonded groups to an asymmetric atom or chiral centre.
According to this system, the least priority substituent is positioned at the greatest
distance from the observer, counting the three remaining substituents in descending
order, which can be clockwise (R) or counterclockwise (S) (Fig. 4).

Another written representation related to optical isomerism considers the molec-
ular property to divert the plane of polarized light to the right, dextrorotary (+), or to
the left, levorotary (�). There is no necessary correlation between the designation
(R) and (S), which is directly related to the molecular tridimensional structure and
the direction of rotation (�) of plane-polarized light, which is experimentally
determined [20].

Different ways of writing chiral carbon configurations can be found in the
literature [7, 21–23]. According to the International Union of Pure and Applied
Chemistry (IUPAC) recommendations, cis-enantiomers of Type I pyrethroids
should be written as 1R,3R and 1S,3S, and trans-enantiomers should be written as
1R,3S and 1S,3R. In Type II, cis-enantiomers should be written as 1R,3R,αR; 1S,3S,α
S; 1R,3R,αS; and 1S,3S,αR, and trans-enantiomers should be written as 1R,3S,αR;
1S,3R,αS; 1S,3R,αR; and 1R,3S,αS. However, as a way of shortening the nomencla-
ture, some authors fix the C-1 chiral configuration and state the geometric isomer-
ism, thereby establishing the chirality of the other. For example, Type I pyrethroids
cis-enantiomers are named 1R-cis and 1S-cis instead of 1R,3R and 1S,3S,

Fig. 2 Synthesis of permethrin (Type I pyrethroid) and cypermethrin (Type II pyrethroid) based on
esterification of permethric acid with hydroxy groups. �New chiral centre introduced upon
esterification
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respectively [22, 23]. This approach is useful, since the cis/trans nomenclature is
immediately associated with the spatial position of the substituents on the cyclopro-
pane ring. Thus, in this instance, we represent the carbon configuration with the
abbreviated nomenclature to simplify the writing and the tridimensional understand-
ing of beginners in this field.

Chiral R- and S-configurations of widely used pyrethroids and their isomeric
ratios in commercial formulations are presented in Table 1. Bold enantiomers have
higher insecticidal activity than other enantiomers.

3 Metabolic Pathways and Toxicity in Nontarget
Organisms

In biological systems, pyrethroids act with receptor-ligand interactions related to
molecular tridimensional arrangements. Stereoselectivity at enzymatic sites directly
influences binding to specific enantiomers with consequences on biotransformation
reactions, such as hydrolysis, reduction, oxidation and conjugation [20]. Therefore,
different responses to toxicity, bioaccumulation, biodegradability and adverse
effects of enantiomers are expected. Although commercial pyrethroid formulations
are a complex mixture of stereoisomers, only a few enantiomers have insecticidal
activity. Considering the stereoisomeric configuration, only the R-configuration of
C-1 chiral carbons (1R-cis and 1R-trans-isomers) presents the desired activity
(Fig. 5), whereas with a chiral carbon in the cyanohydrin group (Type II pyre-
throids), only the S-configuration at alpha-cyano-3-phenoxybenzyl ester presents
high insecticidal activity [15, 31].

Fig. 4 Nomenclature of R- and S-configuration based on the Cahn-Ingold-Prelog (CIP) system
related to the priority of bonded groups to chiral centres. In both spatial arrangements, with R- or S-
configuration, the order of priority is 1, 2, 3 and 4
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In recent decades, the wide occurrence of pyrethroids in different environmental
matrices, such as soil, surface waters and sediments, has driven further investigations
that characterize the major metabolic pathways in nontarget organisms [10, 32,
33]. In addition, stereoselective toxicity has stimulated studies to assess adverse
effects on diverse model organisms and mammalian cells, including human cell
lines. Table 2 presents in vivo and in vitro assays with nontarget organisms after
exposure to pyrethroid enantiomers.

3.1 Soil Organisms

Enantioselective degradation is expected in soils due to the presence of enzymes
capable of metabolizing pyrethroids in soil microbiota [43]. Among degradation
pathways in soils, the main routes occur through oxidation of the alkyl portion and
aromatic rings, as well as the cleavage of the ester linkage by hydrolysis [43, 44].

Previous studies addressing diastereomeric degradation in soils reported greater
persistence of cis-isomers [43–45]. At the enantiomeric level, the 1R-cis-αS enan-
tiomers of cypermethrin were less persistent in soils compared to their epimer
(1S-cis-αR) [46, 47]. These results are in agreement with the long half-life observed
for 1S-cis-αR enantiomers compared to 1R-cis-αS after application of alpha-
cypermethrin in edible plants (cabbage, cucumber, rape, tomato and pepper) [48].

Selective degradation was also observed for trans-enantiomers: 1S-trans-
permethrin and 1R-trans-αS enantiomers of cypermethrin and cyfluthrin [49]. The
authors emphasized that 1R-trans-αS enantiomers were least persistent in alkaline
and acid soils, although they have high insecticidal activity. Faster mineralization

Fig. 5 Permethrin enantiomers with noninsecticidal and insecticidal activity
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was also described for 1R-enantiomers of cis-/trans-permethrin, fenpropathrin and
lambda-cyhalothrin after soil incubation and by using a bacterial consortium isolated
from Brazilian savannah [50–52].

Considering the different groups of soil organisms, earthworms play an important
role in the dynamics of organic matter and in the maintenance of soil structure in
addition to ecological and environmental functions [17, 34]. Among the widely
occurring pyrethroids in soils, cypermethrin has been predominant [33]. In an acute
toxicity assay (filter paper contact) with earthworms Eisenia fetida exposed to alpha-
cypermethrin (1R-cis-αS and 1S-cis-αR enantiomers), high toxicity of 1R-cis-αS
enantiomer was observed with LC50 ¼ 49.5 ng cm�2 [34]. The toxicity was
approximately threefold higher compared to racemic alpha-cypermethrin and
33-fold higher compared to the 1S-cis-αR enantiomer (Table 2).

Although E. fetida and E. andrei are earthworm species widely used in toxico-
logical assessments, the preferential use of Eisenia spp. may underestimate impacts
to other worm species on the environment. In a study comparing the response
of enzymatic biomarkers with E. andrei and Lumbricus rubellus exposed to
deltamethrin (1R-cis-αS), a greater susceptibility of L. rubellus was observed
[35]. In addition, LC50 (48 h) ¼ 0.11 μg cm�2 to L. rubellus was fivefold lower
than observed in tests with E. andrei (Table 2). According to these studies,
cis-isomers with the same configuration (1R-cis-αS) were toxic to earthworms in a
concentration range between nanograms and micrograms per cm�2. Additionally,
the single isomer with cis-configuration esfenvalerate (2S-αS), which has a different
molecular structure (there is no cyclopropane ring) with a chiral centre on C-2, was
approximately fourfold more toxic to E. fetida than racemic fenvalerate (Table 2)
[28]. In the specific case of fenvalerate, its insecticidal activity is related to the 2-S
configuration, which is structurally compatible with the 1-R configuration of the
cyclopropane ring that also presents high insecticidal action [15, 53].

In addition to the differences between compounds, including their chemical
structures and their spatial arrangements, the soil matrix presents great variation
related to such physicochemical characteristics as pH, redox potential, soil moisture,
soil texture and organic matter content [44]. Among soil parameters, organic matter
content plays an important role in pyrethroid sorption on soils, which directly affects
their bioavailability and environmental fate [54]. Soil characteristics also influence
the diversity and abundance of soil microbiota, including its catabolic activity related
to important functions, such as nutrient cycling and pyrethroid biodegradation
[55, 56].

Although there is some progress in studies approaching enantioselectivity by soil
microbiota and earthworms, to the best of our knowledge, there is a lack of studies
considering other soil organisms, such as the enchytraeids Enchytraeus albidus and
Enchytraeus crypticus, and soil arthropods, such as the collembolans Folsomia
candida and Folsomia fimetaria, and the soil mite Hypoaspis aculeifer [57].

Considering the impacts on organisms of different trophic levels, such as
detritivore species (e.g. earthworms) and predators (e.g. Hypoaspis aculeifer), an
enantioselective approach will be an important step for more precise risk assess-
ments, aiming to protect and maintain soil functions.
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3.2 Aquatic Environments

Reports on pyrethroid occurrence in river sediments around the world point out a
relevant contribution of these compounds to contamination of aquatic ecosystems
[33, 58, 59]. Pyrethroids have high sorption potential in soils and can reach aquatic
environments mainly through spray drift and consequent via atmospheric deposition,
as well as rainfall and runoff events [43, 60–62].

Considering the effect of technical formulations, without an approach on single
stereoisomers, previous studies have noted the high toxicity of pyrethroids, mainly
to fish and aquatic arthropods [63]. On the other hand, chiral studies were performed
with Daphnia magna, a zooplanktonic crustacean with an important ecological role
as a food web base in freshwater aquatic environments [32]. In a chiral approach
with bifenthrin (10 μg L�1), D. magna presented a low capacity for metabolism
of cis-isomers [36]. Among stereoisomers, 1R-cis-bifenthrin presented a high
bioaccumulation ratio and higher toxic effects on fecundity and survival compared
to 1S-cis enantiomers (Table 2). High toxicity was also reported in tests with
Ceriodaphnia dubia (a microcrustacean) and Daphnia magna exposed to 1R-cis
enantiomers of bifenthrin and permethrin, confirming the stereoselectivity on metab-
olism, bioaccumulation and toxicity in these aquatic organisms [22].

In a study with adult zebrafish (Danio rerio), significant oxidative stress was
observed in liver and brain tissues due to exposure to beta-cypermethrin racemic
formulation and single isomers: 1R-cis-αS and 1R-trans-αS [38]. These same enan-
tiomers were more lethal in the acute toxicity test than their epimers 1S-cis-αR and
1S-trans-αR (Table 2).

The enantiomeric results of these studies are in agreement with the reported high
toxicity of 1R-cis (bifenthrin and permethrin), 1R-cis-αS and 1R-trans-αS enantio-
mers of cyhalothrin and cypermethrin in assays with species of different trophic
levels, such as microcrustaceans (Ceriodaphnia dubia and Daphnia magna)
[22, 36], shrimp [9], zebrafish [38], and tadpoles of anuran amphibian [40].

On the other hand, studies have shown that the S-configuration of C-1 at the
cyclopropane ring is associated with endocrine disruption in fishes (Table 2). The
enantiomer 1S-cis-bifenthrin (10 ng mL�1) induced 123-fold greater oestrogenicity
compared to the 1R-enantiomers in Japanese medaka Oryzias latipes [39]. Addition-
ally, 1S-cis enantiomers of permethrin induced significantly higher oestrogenic
activity compared to its epimer (1R-cis), as determined through assays performed
in vivo with Japanese medaka and in vitro with primary rainbow trout hepatocyte
[10]. Another study reported enantioselective oestrogenic effects in tests with
zebrafish exposed to 500 ng L�1 of permethrin. Levorotary (�)-trans-enantiomers
induced the greatest oestrogenic activity compared to other permethrin enantiomers
[11]. According to the authors, (�)-trans-permethrin induced an oestrogenic effect
fourfold higher than the oestrogen 17-beta-estradiol at 50 ng L�1. The greatest
oestrogenic effects of levorotary (�)-trans-permethrin are comparable to the greater
oestrogenic effects of the 1S configuration of bifenthrin and permethrin [10, 39],
suggesting that both nomenclatures are related to the same configuration.
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These previous studies with aquatic organisms demonstrated toxic effects derived
from insecticidal enantiomers 1R-cis/trans (Type I pyrethroids) and 1R-cis/trans-αS
(Type II pyrethroids), while endocrine disruption was induced by enantiomers with
low or no insecticidal activity (1S-cis/trans). In addition, the adverse effects shown
with zebrafish assays point to the need for further studies on the potential toxicity of
specific enantiomers in humans, since this organism has been used as a model of
human cellular metabolism [64, 65].

3.3 Mammals: In Vivo and In Vitro Tests

Among the cis-enantiomers of Type I pyrethroids, 1R-cis are more stable and
present toxicity to mammals, whereas among trans-enantiomers, 1R-trans does not
present toxicity in acute assays [8, 15, 66]. Exceptions to this rule occur with
1R-cis-phenothrin that do not present toxic effects to mammals and 1R-trans-
ethanomethrin, which present high neurotoxicity [53]. In Type II pyrethroids,
alpha-cyano carbon with the S-configuration presents greater neurotoxicity to
mammals than its epimer [15].

In mammals, the main route of detoxification of trans-isomers is through hydro-
lysis, while the major metabolic process of cis-isomers is oxidation [67]. In relation
to the acid group, ester hydrolysis greatly depends on the spatial configuration of C-1
and C-3 chiral carbons, with 1R-trans and 1S-trans enantiomers undergoing high
metabolization rates compared to 1R-cis and 1S-cis enantiomers. In the alcohol
portion of the molecule, hydrolysis of esters of primary alcohols (Type I pyrethroids)
is faster than esters of secondary alcohols (Type II pyrethroids) [68]. Hepatic
enzymes, such as carboxylesterases, are important in pyrethroid metabolism. Selec-
tive metabolization of trans-permethrin through human pyrethroid-hydrolysing
carboxylesterases (hCE-1 and hCE-2) was observed compared to the hydrolysis
rate of cis-permethrin [31].

In humans, permethrin oxidation occurs through metabolization by cytochrome
P450 enzymes (CYP450) and by alcohol and aldehyde dehydrogenases [69]. The
main metabolites from hydrolysis and oxidation reactions are cis-trans-3-(2,2
dichlorovinyl)-2,2-dimethyl-(1-cyclopropane) carboxylic acid (cis-trans-DCCA),
3-phenoxybenzyl alcohol (3-PBAlc), 3-phenoxybenzyl aldehyde (3-PBAld) and
3-phenoxybenzoic acid (3-PBA) [66, 69].

Pyrethroids have been associated with a wide range of toxicological effects upon
the reproductive function of mammals [70–72]. In assays with adult male mice
exposed by oral administration to permethrin, only the cis-isomers resulted in wide
reproductive adverse effects with reduction of epididymal sperm count, sperm
motility and testosterone levels in testes [73]. On the other hand, no adverse effects
on reproductive function were observed after trans-permethrin administration. In
addition, the presence of the urinary metabolite 3-PBA in trans-permethrin treatment
was up to sevenfold higher compared to a treatment by its isomeric pairs
(cis-isomers). Additionally, the hepatic microsomal hydrolase activity for the
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trans-permethrin in vitro assay was approximately 62-fold higher than with cis-
permethrin exposure.

In a study that assessed adverse effects on physiology, histopathology and gene
expression levels (T synthesis), cis-permethrin induced the greatest endocrine
disruption effects, resulting in reproductive toxicity in male mice during puberty
age [70]. In female mammals, adverse effects on reproductive function have
been reported after exposure to beta-cypermethrin, permethrin, fenvalerate and
deltamethrin, which include decreased fertility and inhibition of hormones affecting
the endocrine system [71, 72]. However, considering a chiral approach, studies on
potential adverse effects on the reproductive function of female mammals (e.g. mice)
are still scarce. This fact has relevance, since studies note possible adverse effects,
such as endocrine disruption, through the mother-foetus system (Table 2) [41, 74].

At the enantiomeric level, C-1 in the S-configuration of bifenthrin resulted in
greater effects as endocrine disruptors in assays performed in vivo and in vitro with
mammals [41, 74, 75]. For example, 1S-cis-bifenthrin induced 2.2-fold oestrogenic
activity compared to 1R-cis-enantiomers measured through the expression of bio-
marker genes in a breast cancer cell line (MCF-7) [12]. The authors also observed
enantioselective cytotoxicity in macrophage cells by 1S-cis-bifenthrin, indicating
possible adverse effects on the immunological system (Table 2). In another study
with bifenthrin, 1S-cis enantiomers also induced adverse effects with significant
accumulation of cellular triglycerides in human hepatoma cells (HepG2) compared
to their epimers [76]. Other in vitro studies reported that permethrin modifies lipid
metabolism, affecting the intracellular functions of adipocytes and glucose homeo-
stasis through the reduction of glucose uptake in myotubes [77, 78]. In addition,
epidemiological and in vivo studies contribute to evidence between exposure to
insecticides and the development of obesity and type 2 diabetes [79].

Pyrethroids undergo selective diastereomeric metabolization in mammals, being
more persistent cis-diastereomers [31, 73]. This fact deserves attention regarding the
possible impacts on human health, since cis-permethrin induced the greatest adverse
effects on the reproductive system, as well as endocrine disruption, as shown in
previous assays with mammals [70, 73].

In addition, endocrine disruption in mammalian assays by the 1S-configuration of
bifenthrin [41, 74, 75] was also observed in aquatic organisms by the same config-
uration of bifenthrin and permethrin [10, 39], suggesting a broad potential to affect
organisms from different environmental compartments, including humans.

3.4 Abiotic and Laboratory-Based Epimerization

In addition to the selectivity in biological systems, epimerization can occur by
photolytic isomerization in sunlight, during sample preparation and analysis with
polar solvents, and by heat [27, 51, 80]. Stereoisomer epimerization can decrease the
insecticidal activity of commercial formulations. This effect may lead to erroneous
analytical interpretation and may influence the results of bioassays, since polar
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solvents are used in these tests. Regarding photolytical isomerization, approximately
20–30% of single enantiomers of permethrin (1R-trans), cypermethrin and cyfluthrin
(1R-trans-αS) were epimerized to other enantiomers after 7 days of sunlight irradi-
ation [27]. However, epimerization occurred only in C-1 and C-3 carbons, while
alpha-carbons of cypermethrin and cyfluthrin remained in the S-configuration. On
the cyclopropane ring, the recombination of biradicals on carbon bonds occurs after
internal rotation, resulting in chiral carbons C-1 and C-3 epimerization [81]. Photo-
induced isomerization at diastereomeric or enantiomeric levels was also observed for
deltamethrin (including on alpha-carbon), tralomethrin and tralocythrin [81].

Epimerization induced during analysis procedures is only expected in the alpha-
cyano carbon present in Type II pyrethroids. This chiral carbon is unstable under
high temperature and protic solvents, such as primary alcohols [3, 82]. For example,
methanol, ethanol, n-propanol, 2-methyl-1-propanol and n-butanol induced alpha-
carbon epimerization of cypermethrin enantiomers 1R-cis-αR to 1R-cis-αS and
1R-trans-αR to 1R-trans-αS [83]. On the other hand, no epimerization was observed
on C-1 and C-3 during stability tests with sterile water and aprotic solvents (acetone,
n-hexane, ethyl acetate and dichloromethane) [81, 82].

In addition, the heated injector in gas chromatography analysis (GC) induced
some epimerization on the alpha-carbon of cypermethrin and cyfluthrin [80]. In
acidic solution (0.1% acetic acid) with n-hexane, chiral centres of pyrethroids
remained stable during GC analysis, and an almost twofold increase of peak intensity
was observed compared to non-acidified solvent [84].

In light of the above findings, it should be considered that stereoisomeric profiles
found in environmental samples are the result of several transformations, both biotic
and abiotic, on the commercial formulations used. In addition, it is crucial to avoid
analytical procedures that induce changes in chiral carbon configurations in studies
addressing pyrethroid stereoisomerism.

4 Stereoisomeric Profile and Environmental Dynamics
of Chiral Pollutants

Initially, the stereoselective behaviour of chiral pesticides in the environment,
such as organochlorines (e.g. cis- and trans-chlordane and alpha-
hexachlorocyclohexane – α-HCH), allowed the use of their degradation pattern as
a tracer of sources of contamination [85]. This approach is employed because
enantiomers present the same physicochemical characteristics (e.g. solubility in
water, vapour pressure, octanol-water partition coefficient). However, upon entering
the environment, the chiral compounds undergo selective enantiomeric degradation
in biological systems that may alter their initial isomeric pattern [86]. In this context,
the differentiation of a racemic profile of atmospheric contamination (primary
emissions from applied products) compared to a nonracemic contamination profile,
for example, from the revolatilization (secondary emission) of pesticides from
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contaminated soils, brought an important discussion about global transport dynamics
of persistent organic pollutants (POPs) [85–87]. This approach was proposed around
the 1990s in a period of increasing banning of organochlorine pesticides in indus-
trialized countries but with their continued use in tropical and subtropical countries
[85, 88]. The use of degradation profiles of chiral POPs as tracers of their sources is
still required for monitoring global contamination. There is evidence of increased
secondary emissions of POPs into the atmosphere, including industrial pollutants,
such as polychlorinated biphenyls (PCBs), due to rising temperatures and melting in
Arctic regions in the face of global climate change [86, 89].

As described for some organochlorines, pyrethroid stereoselectivity is potentially
suitable for environmental signature interpretation. Considering the greater toxicity
of specific enantiomers, the finding of contamination profiles in different environ-
mental compartments can be a fundamental tool for more accurate risk assessments.

4.1 Pyrethroid Stereoisomerism on Environmental Samples

Over the last several decades, pyrethroids have been increasingly used as an
alternative to more toxic and persistent pesticides, such as organochlorines, organ-
ophosphates and carbamates. However, reports on pyrethroid contamination in
aquatic mammals and atmospheric air from mountains of biosphere reserve of the
Atlantic Forest demonstrate their persistence in the environment and their long range
of contamination [90, 91].

Therefore, a more extensive investigation is required considering the fate and the
possible impacts of these compounds in the environment.

Pyrethroid stereoisomerism on environmental samples must be interpreted con-
sidering some relevant points: (1) the current limitation on the number of published
works, since in many studies, the results are presented only with the sum of isomers;
(2) the occurrence of different commercial formulations must be checked to avoid
misunderstandings regarding the profile found in the environment; and (3) the
multiple chiral centres in pyrethroids generate up to four peaks in an achiral
stationary phase and up to eight peaks in a chiral phase, which require an adequate
peak resolution during the analytical procedures for the subsequent profile
comparison.

Some previous studies have presented the enantiomeric factor (EF) as a means to
discuss the environmental dynamics of pyrethroids, which includes their degrada-
tion/persistence pattern in environmental samples [90, 92, 93]. Depending on the
analysis, EF can be calculated to compare enantiomeric pairs (cis- and trans-
diastereomers) or single enantiomers (R- and S-enantiomers). EF is calculated
through the equation (EF ¼ Asp/AT), where Asp is a specific stereoisomer chromato-
graphic peak area and AT is the sum of peak areas of all structurally related
stereoisomers present in the sample [90, 93]. In equal proportion, each diastereomer
of Type I pyrethroids is expressed as EF ¼ 0.5 or 50%. In Type II pyrethroids, an
equal proportion of each diastereomer is expressed as EF ¼ 0.25 or 25% due to the
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presence of four chromatographic peaks on an achiral separation analysis. Figure 6
presents the EF of permethrin in environmental samples from previous studies
[60, 62, 90–105]. This figure is based on measures of central tendency (means or
medians) of cis- and trans-isomer concentrations, since in most publications, the
area of the chromatographic peaks was not available.

The compiled data (Fig. 6) show a clear pattern of diastereomeric selectivity
between cis- and trans-permethrin in environmental samples. According to the
figure, there is a trend of higher contribution of trans-permethrin in atmospheric
air and indoor dust samples. Permethrin technical formulations have several cis/trans
isomer ratios (Table 1). However, formulations with a higher proportion of
trans-isomers are more common in the market [25, 26, 104]. Therefore, enriched
trans-permethrin in atmospheric air and indoor dust samples matches commercial
formulations, suggesting the maintenance of the original distribution of isomers in
these samples. These results are in line with the earlier assertion that indoor dust may
not only reflect the amount of insecticides applied by residents but may also maintain
the same profile for the components of commercial formulations [104].

As observed with permethrin, atmospheric air samples presented a similar profile
of cypermethrin commercial products [93] with the following diastereomer pro-
portions: cis1 (26%), cis2 (21%), trans1 (28%) and trans2 (25%) [91]. The results
show that cypermethrin measured in mountains (2,200 m a.s.l.) from a biosphere
reserve of the Atlantic Forest (Brazil) matches the commercial formulation, which
suggests a possible source of primary emission. Indeed, insecticide application is
common for urban vector control and agricultural production in regions surrounding
the protected area [91].

Fig. 6 Enantiomeric factor percentage (%EF) of permethrin in environmental samples; y-axis:
sample types (reference numbers in square brackets); x-axis: percentage of contribution (50–100%)
of cis or trans-permethrin calculated through equation %EFtrans ¼ (trans/cis + trans) � 100

166 C. E. T. Parente et al.



As observed in air and dust samples, a high contribution of trans-permethrin in
watershed river and sediment samples was observed after rains during the dry season
compared to the wet season [62]. According to the authors, extreme concentrations
of cis- and trans-permethrin (4,800 and 13,000 ng L�1, respectively) may be related
to application drift or product misuse.

Although sediment samples have a similar profile with a predominance of
trans-permethrin, Fig. 6 shows an atypical result (outlier) with a high contribution
of cis-permethrin in sediment samples carried with surface runoff from a commercial
nursery of plants [97]. According to the authors, permethrin is applied with the
planting mix material before seeding, and the required intensive irrigation results in a
heavy runoff. Therefore, the source of this sediment is from a contaminated soil,
which may explain the greater contribution of cis-permethrin in these sediment
samples, since a predominance of cis-isomers in soil samples has been described
[45, 96, 101]. Among sediment samples, trans-permethrin had the highest predom-
inance (%EFtrans ffi 100) in samples from Aiba Stream, Nigeria [98]. Although this
stream’s drainage basin is highly impacted by agricultural activities, according to the
authors, additional sources of pyrethroids may occur through their urban vector
control and domestic use and through untreated sewage discharge.

According to Fig. 6, cis-permethrin was predominant in biological samples, such
as human breast milk, dolphin tissues and commercial chicken eggs [90, 92, 93]. The
results are in agreement with the reported high degradation rate of trans-permethrin
in biological systems [15, 66]. Furthermore, a comparative study showed an increase
in the cis-cypermethrin epimers (1R-3R-αS and 1S-3S-αR) in human breast milk
samples compared to profiles found in commercial formulations [21]. Regarding the
above-mentioned findings, the main concern is the reported toxicity to mammals
related to the cis-enantiomers 1R-3R-permethrin and 1R-3R-αS-cypermethrin [15].

In wildlife, a great predominance of cis-isomers was also observed, such as in
bird egg samples (permethrin and cypermethrin) [99] and in river fish samples
(cypermethrin and cyfluthrin) [7]. However, for the specific compound tetramethrin,
commercial formulations have a much higher predominance (80:20 ratio) of 1R-
trans-enantiomers over 1R-cis-enantiomers [8]. According to the authors, it is
possible that the higher proportion of trans-tetramethrin in commercial formulations
has influenced the observed results [7, 99].

In a study of pyrethroid contamination in commercial chicken eggs [93], the
difference between the cypermethrin diastereomeric profile of a product applied
topically in chickens and that observed in egg samples from the same farm was
observed (Fig. 7a, b).

A higher percentage of cis-cypermethrin contribution was determined in the
egg sample (Fig. 7b) compared to the racemic formulation (Fig. 7a). The proportion
of the first cis-isomer (49%) compared to the total cypermethrin measured in the egg
sample is almost two times the proportion of the same isomer in the commercial
formulation (27%). Additionally, in a wide variety of contaminated food samples
(fish, beef, chicken and milk), a predominance of cis-cypermethrin [106] was
verified. However, the reference values for food safety – maximum residue limit
(MRL) and acceptable daily intake (ADI) – consider the sum of isomers
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[107]. Therefore, food samples that present different profiles of stereoselectivity,
which may include the most toxic and persistent isomers, should not be compared to
reference values based on racemic formulations, since they are not equivalent. In
this case, variation at enantiomeric levels found in food samples can result in an
imprecise comparison between their contamination profile and the established limits
for quality and food safety.

5 Conclusions and Trends

The desired effects attributed to pyrethroids are related to specific enantiomers. In
this sense, studies have shown higher acute toxicity of active insecticide enantiomers
to nontarget organisms, such as earthworms, zooplankton, fish and tadpoles. How-
ever, adverse effects, such as endocrine disruption and cytotoxicity, determined
through in vivo and in vitro assays with fish and mammals have been reported in
studies considering enantiomers with low or no insecticidal action.

Although previous studies point to a higher occurrence of cis-isomers in biolog-
ical systems, considerable research remains to be performed on the persistence of
pyrethroid enantiomers, their effects on sensitive organisms and the possible impacts
on complex environmental functions, such as the degradation of pollutants in soils
and at the base of the food chain in aquatic environments.

A possible action for minimizing environmental enantiomer overloads and the
expected impacts on environmental and human health was proposed in Regulation
(EC) No 1107/2009 from the European Community, which suggests the substitution
of agrochemicals applied to crops containing a significant proportion of non-specific
isomers [99]. In this direction, future policies aimed at sustainable innovation should
be considered for companies that propose enantiomerically pure, safe and less
persistent commercial formulations.

Although the persistence of pyrethroids is important for the maintenance of their
insecticidal action for an extended period, which can vary widely (from hours to
months) according to the compounds and the environmental conditions [8], the use
of less persistent formulations in domestic environments should also be considered.
However, studies are required to assess potential acute and chronic toxicity in a
scenario of increased human exposure to pyrethroid metabolites and their degrada-
tion products.

With regard to feeding safety, studies are required to address the stereoselective
behaviour of pyrethroids in food samples and the consequent dietary exposure to
more persistent and more toxic isomers. This approach should include the
established limits for food quality, as well as the behaviour and stability of these
chiral compounds during the preparation and cooking steps up to the industrial food
processing.
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Abstract Synthetic pyrethroids such as cypermethrin and deltamethrin have been
widely used in Chile to treat sea lice on salmon since 2007. The environmental risks
of aquaculture practices are evaluated through the use of several tools such as
fugacity-based models for predicting environmental dynamics and the fate of pyre-
throids after their release into the marine environment and the determination of
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pyrethroid occurrence in environmental samples (i.e., water and sediment). For
seawater, passive sampling devices (PSDs) are proposed as a good alternative for
field monitoring. Finally, by means of ecotoxicological bioassays, the effects of
pyrethroids on native biota were assessed. The results show that the application of
pyrethroids may trigger some unintended risks to nontarget organisms, particularly
copepods, since modeled and observed concentrations in water (dissolved phase) are
in the range of fractions of ng L�1, but higher cypermethrin and deltamethrin
concentrations in sediment in the range of 1,323 and 1,020 ng g�1, respectively,
have been observed. These measured concentrations were in the range of concen-
trations toxic to native invertebrate species in Chile. We conclude that a stricter
process should be followed when pyrethroids, particularly cypermethrin, are
recommended for use in combating sea lice in the Chilean salmon farming industry.
Risk assessment procedures and the establishment of stricter regulations on matters
such as the maximum allowable concentrations around the cages when these pesti-
cides are applied and recommended.

Keywords Aquaculture, Patagonia, Pyrethroids, Sea lice, Toxicity

1 Introduction

The salmon industry has become the driving force of aquaculture development in
Chile. The high volume of salmonids produced by Chilean aquaculture has posi-
tioned the industry as an important exporter in the international market. However,
salmon productivity in southern areas has been vulnerable to salmon lice infections
and other environmental issues [1]. The occurrence of ectoparasitic diseases caused
by sea lice called Caligus rogercresseyi [2] has forced to the industry to use
chemotherapeutic alternatives that contribute to the control and prevention of salmon
infections. In the 1990s, emamectin benzoate (Slice®) became the exclusive means
of treatment for salmonids; however, studies evidenced a loss of sensitivity in sea
lice [3–5]. Therefore, veterinary medicines have been required by the salmon
industry [6–8]. Currently, the synthetic pyrethroids cypermethrin (Betamax®) and
deltamethrin (AMX® and Deltafav®) are alternatives for treating ectoparasites of
salmon. Nevertheless, it has been suggested that these pyrethroids have adverse
consequences for marine biota that ought to be of concern (e.g., [9–13]). This
chapter presents an overview of the occurrence, behavior, and potential environ-
mental risks of pyrethroids currently used on salmon farms located in the northern
Chilean Patagonia.
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1.1 The Salmon Industry in Chile: An Overview

Due to the growing demand for protein for human consumption, aquaculture is
recognized as an important food source for the global population. Fish farming
accounts for the greatest share of aquaculture production, with Norway and Chile
considered the biggest farmed salmon producers in the world [14].

Salmon farming started on an experimental level in the 1960s and became
an industry in Norway in the 1980s, while in Chile it started in the 1990s. The
emergence of salmon farming since the 1970s has changed the rules of the
sea-farming sector, and Norway and Chile have been the main producers and
exporters since 1997.

Aquaculture in Chile has grown exponentially since the early 1990s. Farmed
salmon is the dominant species in terms of both harvest volume and export values.
Salmon production reached 842,700 tons in 2018, with Atlantic salmon (Salmo
salar) the most harvested species in the salmon industry, accounting for 75.1% of
the total, followed by coho salmon (Oncorhynchus kisutch) and rainbow trout
(Oncorhynchus mykiss), at 16.3% and 8.6%, respectively [15]. Salmon industry
activity takes place mainly in the southern Patagonia regions of Chile, namely,
Los Lagos and Aysén. Salmon farming is projected to expand into the most austral
areas of the Magallanes Region (Fig. 1), in which only rainbow trout harvests are
proposed. The Chilean National Fishery and Aquaculture Service (SERNAPESCA)
and Undersecretariat for Fisheries and Aquaculture (SUBPESCA) are the agencies
under the Ministry of Economy that establish the basis for regulating aquaculture
activity, but the veterinary medicine market is controlled by the Ministry of
Agriculture, specifically the Agricultural and Livestock Service (SAG), and the
Ministry of Defense through the General Directorate of the Maritime Territory and
Merchant Marine (DIRECTEMAR). The main function of DIRECTEMAR is to
establish aquatic pollution control regulations.

1.2 Sanitary Consequences: The Sea Lice Issue

The exponential growth of aquaculture has been socially and economically impacted
by the increased presence of sea lice on farmed salmon [16–19], which has required
the use of chemicals to control and mitigate adverse consequences for fish. The
action of ectoparasites on farms and wild fish has been widely described [20]. During
parasitic stages in marine environments, sea lice may cause visible skin damage,
hemorrhages, vulnerability to secondary infections, and stress-inducing mortality of
host species.

In Chile, it has been reported that there is a high infestation pressure of the sea lice
C. rogercresseyi [2] on production of the most harvested species, namely, S. salar
and O. mykiss. Meanwhile, the species O. kisutch has been described as less
susceptible to infection by ectoparasites [21–23]. Until 2007, emamectin benzoate
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Fig. 1 Salmon farm expansion from Los Lagos (a) and Aysén (b) regions toward Magallanes (c)
region, Chilean Patagonia
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was an effective alternative authorized in Chile for the treatment of salmonids, but its
effects were decreasing against sea lice. This brought Chilean authorities to choose
other chemical alternatives and implement strategic periods of coordinated treat-
ments using synthetic pyrethroids as the most effective means to prevent and control
sea lice [23].

1.2.1 Addressing the Caligus Problem: Use of Pyrethroid Pesticides
in the Salmon Industry

Synthetic pyrethroids are a group of antiparasitic drugs that are characterized as
being highly hydrophobic (log KOW > 5) and having low solubility in water
(0.002–0.004 mg L�1) and low volatility (Table 1). Their hydrophobic properties
allow pyrethroids to be absorbed into the organic matter available in the water
column and reach bottom sediment. In Chile, since 2007 cypermethrin and
deltamethrin have typically been applied to treat sea lice infections on salmon
farms, but these treatments were approved by authorities only in 2010 (SAG), due
to increased resistance to other antiparasitic chemicals [3, 4]. However, over the
years severe problems of ectoparasite resistance to pyrethroid treatments in Southern
Chile have been reported [25, 26], even during synchronized sea lice treatments (i.e.,
bath treatments coordinated among neighboring farms), with lower adult lice levels,
but juvenile stages less affected [27, 28]. There have been similar reports in Norway,
where increased sea lice resistance has triggered pyrethroid use by the salmon
farming industry [8, 29, 30].

Table 1 Physical–chemical properties of anti-sea lice pyrethroids

Propertiesa
Pyrethroids

Cypermethrin Deltamethrin

Chemical structure

CAS number 52315-07-8 52918-63-5

Chemical formula C23H19Cl2NO3 C22H19Br2NO3

Molecular weight (g mol�1) 416.297 505.199

Water solubility at 25�C (g m�3) 0.004–0.041 < 0.0002

Vapor pressure at 25�C (Pa) 1.9 � 10�7
–2.75 � 10�6 2.0 � 10�06

Henry’s law constant (Pa m3 mol�1) 0.0195–0.080 12.60

Log KOW 4.47–6.60 4.60–6.20

Log KOC 2.36–5.54 3.66–4.21
aData from Handbook of Physical-Chemical Properties and Environmental Fate for Organic
Chemicals [24]
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1.3 Synthetic Pyrethroids: Mode of Use

Currently, pyrethroids are applied through bath treatments using commercial product
doses of 0.3 mL m�3 (active principle dose of 15 μg L�1) for cypermethrin
(Betamax®) and between 0.2 mL m�3 (active principle dose of 2 μg L�1) (AMX®)
and 0.3 mL m�3 (active principle dose of 3 μg L�1) (Deltafav®) for deltamethrin in
water. Suspended tarpaulins are used for these bath treatments, in which the fishnet is
raised to a depth of no more than 4 m to subsequently apply the doses indicated
above. The salmon exposure time to cypermethrin (Betamax®) is 30 min, while for
deltamethrin it is between 30 and 40 min [31]. Once the treatments are released, their
main mechanism of action on organisms involves interference in the central nervous
system, generating an interruption in the transmission of nerve impulses between
cells [32, 33].

The recommended treatment regime for sea lice using pyrethroids consists of a
“relatively high concentration at the levels of micrograms per liter–short duration
bath exposure” within skirted net pens, after which treatment water is released to
disperse into the surrounding marine environment [34, 35]. While pyrethroids such
as deltamethrin are highly effective treatments for ectoparasites such as sea lice, the
implications for nontarget species such as migratory salmonids and other commer-
cial species that traverse multiple aquaculture areas are currently unclear.

2 Exposure Assessment: Approaches to Assess the Risk
of Pyrethroids in the Marine Ecosystem

The environmental fate of chemicals is determined by a combination of factors, of
which the most important are those related to the nature of the compound and the
environment. Physical and chemical properties define potential mobility and reac-
tivity, while environmental variables determine the extent to which these potentials
are manifested [36]. Under field conditions, environmental variables (e.g., temper-
ature, pH value, wavelength and radiation intensity, air–water exchange, turbulence,
organisms) are very complex to analyze and can produce significant changes in the
environmental behavior of chemicals. Therefore, the use of physical–mathematical
models is difficult in complex environmental chemistry, especially when a consid-
erable number of details are required to successfully simulate the environment.

An alternative approach consists of developing simple, appraisable models that
simulate environments, in which the environmental variables are standardized and
reduced to their essentials (evaluative models). Initially, evaluative models were
developed as a means to interpret and understand the trends that govern the move-
ment of chemical substances in the environment. Over time, this approach has
proved to be extremely reliable and versatile, to the extent that it has become
applicable not only in theoretical scenarios, but in local situations as well, providing
credible predictions at the actual-environment level. They tend to be very simple

182 F. Tucca and R. Barra



models that require only a reduced set of input data. Additionally, they are based
on conceptual outlines and easily understood, solvable algorithms, which produce
results that are easily handled and of simple, practical use, to the point that they have
been proposed for official procedures to evaluate chemical risks. Among the differ-
ent approaches that constitute the theoretical foundations of the multimedia partition
models, that derived from the fugacity concept has proved to be one of the most
effective. The use of multimedia fugacity-based models is an approach that allows
the estimation of the dynamics and fate of single pollutants in the environment [37–
39]. Fugacity is defined as the chemical activity of a gas and expresses the tendency
to escape from one compartment to another. In these thermodynamic models, the
different behaviors of various chemical agents principally depend on their physical–
chemical (intrinsic) properties, contributing to the development of a better interpre-
tation and understanding of the fate, transport, and degradation of pollutants released
into the ecosystem. Moreover, the use of this tool can be an important approach for
conducting risk assessment and improving chemical management [40–42], in which
predicting concentrations through multimedia fugacity-based models has proved to
be effective according to measured environmental concentrations (e.g., [43–45]).

On the other hand, one of the issues of a risk assessment of synthetic pyrethroids
in the marine environment is that they are used at very low concentrations that with
dilution in the marine environment reach very low levels, on the order of ng L�1

units, which are actually very difficult to measure using traditional sampling
methods (i.e., grab sampling). In this chapter a method based on passive sampling
is introduced as a cost-effective way to address the analytical challenge of detecting
hydrophobic chemicals in the aquatic environment for risk assessment purposes.
More details are presented below (see Sect. 2.2.1).

2.1 Salmon Farm Models

The most prominent route of entry of veterinary medicines into the environment is
direct discharge of aquaculture chemicals. Surprisingly, little attention has been paid
in the open literature to chemical-based modeling efforts for aquaculture chemicals.
Most physical-based models have been developed as tools to predict the distribution
of particulate waste from fish farm cages to the seabed. These predictive particulate
waste distribution models, through Geographic Information Systems (GIS), have
enabled temporal deposition zones and salmon cage impacts on benthic ecosystems
to be visualized [46, 47]. More sophisticated fish farm models such as the
DEPOMOD model have independently described particle tracking and
resuspension, benthic responses, and fish growth and biomass to assess the impact
of salmon cages on marine environments [48–52]. Additionally, the DEPOMOD
model has been validated to assess the deposition footprint of antiparasitic drugs
added to feed after treatment of fish. In Scotland, the Scottish Environmental
Protection Agency (SEPA) uses a regulatory DEPOMOD-based model
(AutoDEPOMOD) to predict the concentration of in-feed antiparasitic medicine
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residues in the sediment beneath fish farm zones [53]. In addition, this regulatory
agency has developed a dispersion model in order to simulate the dispersing plumes
of cypermethrin pyrethroid after multiple releases during bath treatments (BathAuto
v5) [54]. However, for aquaculture there are not yet models that provide a compre-
hensive representation of diffusive and non-diffusive fluxes and fates of organic
chemicals in multiple environmental compartments. Under field conditions, the
sampling and analysis of chemicals is challenging; therefore, it is advantageous to
describe the chemical dynamics in different environmental compartments using less
complex multimedia fugacity models [39]. In fact, fugacity-based models have been
widely used for chemical risk assessment purposes such as assessment of persistent
organic pollutants (POPs) and emerging contaminants [41, 42], playing a key role in
science [40]. Thus, such multimedia models could provide a good understanding of
key transport processes, fates, and sinks of synthetic pyrethroids used in aquaculture
after their release into the marine ecosystem. Ng et al. [55] reported a first approach,
developing a fugacity-based dynamic one-compartment mass balance model, which
was used to assess polybrominated diphenyl ether (PBDE) uptake on an individual
salmon farm during a complete sea-cage production period.

A primary objective in environmental fate studies is to predict the concentrations
of synthetic pyrethroids released into the environment, with respect to space and
time variables. Our knowledge of the behavior of antiparasitic pyrethroids can be
used to model the space and time domains once emissions are known or estimated.
Each of the levels in a fugacity-based model allows different kinds of information to
be obtained. Level I can indicate the major environmental compartments where the
chemical goes and Level II gives an indication of the main loss process occurring in
the chemical agent in the simulated environment and provides some insights into
persistence and residence time, since time is involved. Level III gives an indication
of the most important transfer process within the different environmental compart-
ments, since a non-equilibrium condition is imposed. For environmental risk pur-
poses, this chapter argues that multimedia fugacity-based models (Level III) could
play a key role in helping determine the potential effects of synthetic pyrethroids
within a risk assessment perspective.

2.1.1 Description Fugacity-Based Model

A multimedia fugacity-based box model for synthetic pyrethroids was developed to
predict the dynamics and fate of typical bath treatments for salmon. Our fugacity
model considers a distribution-based model incorporating all environmental
compartments of interest (water, sediment, and fish), based on steady-state and
non-equilibrium condition fluxes during treatments. Environmental data inputs and
typical characteristics of salmon farms located in the Southern Chile are shown in
Table 2.

Chemical partitioning was described by the thermodynamic criterion of fugacity
( f ). Theoretically, fugacity is related to environmental concentration (C, mol m�3)
by the equation C ¼ ƒ Z, with Z the fugacity capacity of chemicals for each
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compartment (mol m�3 Pa�1). The diffusive fluxes (N, mol d�1) between compart-
ments are described by Eq. (1):

N ¼ D f i � f j
� � ð1Þ

where D is the transfer coefficient (mol h�1 Pa�1) and ƒi and ƒj are the fugacities of
compartments i and j, respectively. The differences between fugacities determine the
direction of diffusive fluxes of pyrethroids in the marine environment. Meanwhile,
non-diffusive transfer processes were calculated through Eq. (2):

N ¼ GC ¼ GZƒ ¼ Dƒ ð2Þ

where G is the volumetric flow rate (m3 h�1) of the transported material. Diffusive
and non-diffusive D values were summed for all transfer processes from

Table 2 Environmental data used in multimedia fugacity-based model for pyrethroids

Parametersa Units Value

Salmon farm scenario

Maximum production kg ~5,900,000

Number of salmon produced – 1,550,000

Salmon mortality rate (productive cycle) % 15

Salmon weight (e.g., Salmo salar) kg 4.5

Salmon lipid fraction % 10–15

Salmon excretion rate (kE) d�1 0.0025

Salmon growth rate (kC) d�1 0.003

Cages treated – 20

Salmon cage volume (with tarpaulin) m 30 � 30 � 7

Total salmon in 20 cages (salmon density)b – 964,678 (~16 kg/m3)

Environmental data

Water volume m3 61,000,000

Water density (seawater) kg m�3 1,027

Velocity current (average) cm s�1 6.2

Depth (average) m 61

Sediment volume m3 50,000

Sediment density kg m�3 1,500

Organic carbon fraction – 0.91

Suspended particle concentration (average) mg L�1 1.1

Suspended particle volume m3 45

Suspended particle density kg m�3 1,500

Suspended particle fraction – 7.3E-7

Resuspension rate m3 m�2 d�1 2.6E-7

Deposition rate m3 m�2 d�1 1.1E-6
aData collected from sampled salmon farms located in Southern Chile, Los Lagos Region
bThis parameter included the salmon mortality rate
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compartment i to j (Dij) and compartment j to i (Dji); the net flux from i to j then
becomes, as shown in Eq. (3):

N ¼ Dij ƒi � Djiƒj ð3Þ

Reaction processes (Dr) in a compartment were described by Eq. (4):

Dr ¼ kiVC ¼ kiViZiƒ ¼ Drƒ ð4Þ

where ki is the reaction rate constant (h�1), which was calculated from pyrethroid
half-life (t1/2) for a specific compartment through the equation ki ¼ 0.693/t1/2. Vi is
the defined volume for each compartment i (m3) in the area where the salmon farm is
located.

The fugacities were calculated from D values defined for each environmental
compartment [39]. Equations (5) to (7) were used to calculate fugacities in water
(subscript 1), sediment (subscript 2), and fish (subscript 3), respectively.

Water : Ga1Cb1 þ ƒ2 D21 þ f 3 D31 þ De3ð Þ ¼ ƒ1 D12 þ Dr2 þ Da2ð Þ ð5Þ
Sediment : E2 þ ƒ1 D12 ¼ ƒ2 D21 þ Dr2 þ Db2ð Þ ð6Þ
Fish : E3 þ f 1 D13 ¼ f 3 D31 þ Dr3 þ Dg3 þ De3

� � ð7Þ

where E is the emission rate (mol h�1),Ga is the advection inflow rate (m3 h�1), Cb is
the advection inflow concentration (mol m�3), and Dr, Da, Db, Dg, and De are the
reaction rate, advection outflow rate, sediment burial rate, fish growth rate, and fish
excretion rate, respectively (mol h�1). The model assumed bath treatments with
direct release of pyrethroids into a marine system.

Monte Carlo simulation was used to test the sensitivity and contribution to
variance in the multimedia model, in which the most influential parameters were
identified. The simulation was carried out to assess the uncertainty of predictions
based on the probability distributions for input parameters such as salmon density in
cages (15–17 kg m�3), current velocity (6.2 � 3.0 cm s�1), organic fraction in
sediment (0.03 � 0.54), concentration of suspended particles (4.7 � 2.3 mg L�1),
and depth of the study area (40–80 m). The simulations were run for 100,000 trials
using Crystal Ball 11.1.1 software [56].

2.1.2 Mass–Balance Model on Salmon Farms

The use of multimedia fugacity-based models has proven to be a good approach
according to measured environmental concentrations [44]. Figure 2 shows a com-
parison between predicted and measured concentrations in water and sediment
compartments. Our estimations show that predicted water concentrations
(4.5–8.8 ng L�1 and 2.5–5.9 ng L�1 for cypermethrin and deltamethrin,
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respectively) were consistent with pyrethroid concentrations measured after treat-
ment of salmon. Detected water concentrations around salmon cages were quantified
using an ethylene–vinyl acetate (EVA) copolymer passive sampler. Water concen-
trations ranged from 0.3 to 13.6 for cypermethrin and 0.1 to 4.3 for deltamethrin (see
Sect. 2.2.1).

In contrast, estimated sediment concentrations were slightly overestimated rela-
tive to measured concentrations under salmon cages; however, they were close to the
higher sediment levels detected in Southern Chile: 1,323 ng g�1 and 1,020 ng g�1

for cypermethrin and deltamethrin, respectively (see Sect. 2.2.2).
For all predicted water and sediment concentrations, the model always presented

a greater concentration than the measured concentration. This could suggest that the
model predicts the worst-case scenario, essential for assessing the environmental
risks of chemicals used in the salmon industry.

Predicted 
Measured 

Water cypermethrin 

Sediment cypermethrin 

Water deltamethrin 

Sediment deltamethrin 

Fig. 2 Measured and modeled concentrations of cypermethrin and deltamethrin used to treat
salmon
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The mass–balance model reported intercompartmental transport and reaction
rates for pyrethroid dominated by advective flux (Fig. 3). Once pyrethroids are
transported in the water column, because of their high affinity for suspended solids,
they are deposited in the bottom sediment, suggesting a little mobility in sediment
(i.e., low fugacity). However, in salmon synthetic pyrethroids appear to be rapidly
metabolized and thus eliminated by excretion [7, 8].

2.2 Sampling of Pyrethroids on Salmon Farms

From November to December 2014 (spring–summer) and April to July 2015
(autumn–winter), monitoring campaigns were carried out on four salmon farms
located in the northern Patagonia of Chile, specifically Chiloé Island (Fig. 4). For
each monitoring campaign, salmon farms were treated with specific synthetic pyre-
throids, and sediment samples were taken. More details on sampling and environ-
mental characteristics of salmon farms are shown in Table 3. In the study areas,
sediment samples were collected using a Van Veen Grab Sampler (462 cm2) at
distances of 0, 100, and 500 m in a cross design. Control samples without salmon
farm treatments were also collected. In addition, passive samplers in water were
deployed around salmon cages to detect the dissolved concentration of pyrethroids.
More details on water and sediment sampling around salmon cages are presented in
Sects. 2.2.1 and 2.2.2, respectively.

A B

Fig. 3 Estimated transport and reaction rates (mol h�1) of cypermethrin (a) and deltamethrin (b) to
be released into marine ecosystems. Fugacities in fish ( fb), water ( fw), and sediment ( fs) are also
reported in this multimedia fugacity-based model
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2.2.1 Passive Sampling in Water

Passive sampling devices (PSDs) in water may play a key role in regulatory
management as water quality monitoring tools [57, 58]. For decades many PSDs
have been designed to detect pollutants in water (e.g., [57, 59–62]), sediment (e.g.,
[63, 64]), and air (e.g., [65–67]), with these studies focusing on the detection of
legacy POPs and contaminants of emerging concern [68]. Time-integrative sampling
with PSDs deployed in the field may be a useful and cost-effective method to
determine the bioavailability of pollutants in different places [69, 70]. Some

Table 3 Environmental characteristics and specific pyrethroid treatments used by salmon farms
located in the northern Chilean Patagonia

Data

First campaign November–December
2014 Second campaign April–July 2015

Salmon farm
1 (SF-1)

Salmon farm
2 (SF-2)

Salmon farm
3 (SF-3)

Salmon farm
4 (SF-4)

Environmental conditions

Water tem-
perature (�C)

11.3 � 0.2 11.0 � 0.1 11.7 � 0.1 11.4 � 0.03

Salinity
(PSU)

31.8 � 3.1 32.5 � 0.1 33.5 � 0.03 32.3 � 0.06

Dissolved
oxygen
(mg L�1)

8.2 � 0.7 8.5 � 0.5 4.2 � 0.2 5.8 � 0.5

pH 8.4 � 0.03 8.4 � 0.02 8.0 � 0.01 9.7 � 0.0

Depth (m) 40 80 80 30

Current
velocity
(cm s�1)

7.6 � 2.9 8.1 � 6.4 2.9 � 1.4 9.0 � 3.8

Sediment
grain size

Very fine sand to fine
sand (62.5–250 μm)

Fine sand
(125–
250 μm)

Fine sand to
medium sand (125–
500 μm)

Medium sand
(250–500 μm)

Organic mat-
ter (%)

1.2 � 0.2 1.5 � 0.3 1.6 � 0.4 1.1 � 0.3

Salmon farming treatments

Location 42� 250 42.5400S
73� 370 19.0800W

42� 180

25.3600S
73� 180

25.6300W

42� 390 59.2300S 73�

370 50.1600W
41� 480 35.3200S
73� 090

56.9400W

Species
farmed

Atlantic salmon Atlantic
salmon

Coho salmon/rain-
bow trout

Atlantic salmon

Formulation
used

Deltafav® Betamax® Deltafav® Betamax®

Active
ingredient

Deltamethrin Cypermethrin Deltamethrin Cypermethrin

Doses
(μg L�1)

3 15 3 15
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hydrophobic organic pollutants are often hardly detected with conventional methods
such as grab sampling, making it difficult to detect trace levels of pollutants. Robust
data obtained from PSDs, with previous calibration and analytic methods performed
in the laboratory, allows trace levels to be determined. These procedures allow the
passive sampling method to be validated and increase confidence in the field
sampling.

In theory, passive samplers are devices that are based on the initial uptake of
dissolved pollutants (dissolved free fraction) to the receiver medium (passive sam-
pler), given the different concentrations in the water and sampler, called the kinetic
phase. The linear uptake continues until the curvilinear phase is reached. Finally, as
exposure time increases, the net flow of analytes from the water to the sampler
continues until equilibrium – called the equilibrium phase – is reached.

The kinetic exchange between the passive sampler and the sampled medium can
be described by a first-order Eq. (8):

Cs tð Þ ¼ CW KSW 1� e�k t
� � ð8Þ

where Cs(t) is the concentration of the chemical in the sampler at exposure time t, CW

is the chemical concentration in the aqueous phase, and KSW is the sampler–water
partition coefficient. Once the equilibrium between the sampler and water phases is
reached, CW is estimated by Eq. (9):

CW ¼ Cs

KEVA�W
ð9Þ

PSDs in the kinetic phase can be often affected by diverse environmental factors
during their exposure in water, interrupting the sampler’s contaminant uptake rate.
Environmental factors such as temperature, salinity, pH, hydrodynamics, and bio-
fouling may influence uptake and the equilibrium between the sampler and the
aquatic medium [60, 68, 71]. For instance, the presence of biofouling in the aquatic
system (bacterial and/or algal biofilm) could be critical in the uptake of the contam-
inants by the sampler. Biofouling could interrupt the uptake kinetics of organic
compounds to passive samplers due to (1) increased mass transfer resistance,
(2) increased thickness, or (3) damage to the passive sampler surface [60].

A good alternative for PSDs in water is the copolymer ethylene–vinyl acetate
(EVA). EVA has been identified as effective at measuring bioavailable pollutant
fractions and has been used to monitor different environmental matrices [63, 66, 72–
74]. It is a flexible thin-film copolymer, which can be easily processed in the
laboratory, as it is adapted to different substrates (e.g., glass fiber filters or glass
marbles). Additionally, it is resistant to high pressures, temperatures, and UV
radiation and is also waterproof, making it an efficient polymer for capturing
pollutants in the aquatic environment [72]. In Chile, few studies have used PSDs
to detect hydrophobic pollutants in marine ecosystems, one of which is our study on
the occurrence of cypermethrin after treatments in salmon cages [73].
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Pyrethroid Occurrence in Seawater

Based on the theory mentioned above and in order to ascertain the concentration of
the dissolved fraction of pyrethroids, a study using passive water samplers in the
field was carried out in Southern Chile. Thin-film (~7–10 μm) EVA samplers were
deployed (~4 m distance) around four different salmon farms located in the northern
Chilean Patagonia, as shown in Fig. 4. The study was based on the laboratory
methodology and field deployment strategy previously reported by Tucca et al.
[73]. As a first approach, EVA–water partition coefficients (KEVA-W) for
cypermethrin and deltamethrin were estimated according to the plot constructed by
St. George et al. [72], as shown in Eq. (10):

Log KEVA�W ¼ 1:04 Log KOW þ 0:22 ð10Þ

with this plot constructed under laboratory conditions. The EVA sampler presented a
good relationship with the octanol–water partition coefficient (KOW) using pesticides
and PCBs [72, 75]. The estimation of CW in the field was calculated using the
following Eq. (11):

N ¼ KEVA�W VEVA CW 1� exp
Rs t

KEVA�W VEVA

� �� �
ð11Þ

where N is the amount of pyrethroids in the sampler, VEVA is the volume of the EVA
copolymer, and RS is the sampling rate of the EVA for time t deployed in the field
(7 days). Based on laboratory calibration, an RS of 0.72 L d�1 was used in this study.
More adjustment conditions through in situ calibrations (i.e., flow, salinity, and
temperature conditions) should be considered for future studies to establish sampling
parameters for the EVA sampler [76].

The cypermethrin and deltamethrin concentrations in water detected by passive
samplers in salmon cages are shown in Table 4. Pyrethroid concentrations in
seawater ranged between 0.05 and 13.62 ng L�1. Deltamethrin means of 1.11

Table 4 Water concentrations of synthetic pyrethroids after treatments on salmon farms located in
Southern Chile

Salmon farm Treatment

Water concentration (ng L�1)

Mean SD (n) Range

SF-1 Deltamethrin 1.11 � 0.88 (5)
0.05–2.43

SF-2 Cypermethrin 3.40 � 4.75 (7)
0.33–13.62

SF-3 Deltamethrin 2.54 � 2.16 (3)
0.12–4.28

SF-4 Cypermethrin ND ND ND

ND not detected, SF salmon farm, n number of passive samplers with detected pyrethroids after
deployment in the field
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(�0.9) ng L�1 and 2.54 (�2.2) ng L�1 at salmon farms 1 and 2 were observed, while
a cypermethrin mean of 3.40 (�4.8) ng L�1 was recorded at salmon farm 3. No
cypermethrin concentration in seawater was detected at salmon farm 4. These levels
were within an order of magnitude (ng L�1) of those detected using grab sampling at
several times during cypermethrin and deltamethrin treatments on salmon farms
[8, 34, 35]. It has been reported – and was observed in this study – that pyrethroids
decrease rapidly once released from a cage site after treatment. Due to their low
water persistence and rapid dispersion in seawater, passive samplers may be useful
time-integrative tools to detect the dissolved fraction of organic chemicals bioavail-
able in seawater after treatment of fish.

2.2.2 Pyrethroid Occurrence in Sediment

The northern Chilean Patagonia (Los Lagos Region, 41� 280 1800S; 72� 560 1800W) is
characterized by the presence of active aquaculture. However, there are few reports
on the environmental occurrence of pyrethroids in the northern Chilean Patagonia
originating in the salmon farming industry [77, 78]. Tucca et al. [77] reported
cypermethrin concentrations in sediment (dry weight, d.w.) based on a sampling
strategy around salmon cages (radius <100 m) in accord with dominant currents
and tidal influences. Cypermethrin concentrations ranged between 18.0 and
1,323.7 ng g�1, while deltamethrin was not detected on the sampled salmon farm.
In addition, Placencia et al. [78] reported deltamethrin concentrations in surface
sediment samples collected on a cruise among 12 stations distributed throughout the
continuous waterways of the fjords–Chiloé inner sea. Detected deltamethrin con-
centrations in sediment (d.w.) proved to be higher than those reported around salmon
farms, with ranges between 390 and 1,020 ng g�1. These results suggest that
deltamethrin-accumulating areas are dominated by the hydrodynamics in the study
area, which act as a long-distance transport pathway for this antiparasitic medicine.

Pyrethroids in sediment samples (1 g, d.w.) were extracted using the methodol-
ogy described by Feo et al. [79]. Briefly, sediment mixed with powdered copper
(0.5 g) was extracted twice with n-hexane/dichloromethane (2:1, 20 mL) in an
ultrasonic bath for 15 min at room temperature. Then, extracts were cleaned using
a Florisil cartridge (2 g/15 mL). Previously, the cartridges were conditioned with
ethyl acetate/dichloromethane (2:1). The cartridges were eluted with 50 mL of ethyl
acetate until reaching full concentration. The samples were concentrated using a
rotary evaporator and reconstituted with 250 μL of ethyl acetate. Pyrethroids were
quantified by GC-NCI-MS [79].

Pyrethroid concentrations detected in the sediment of four salmon farms located
in the northern Chilean Patagonia are shown in Table 5. On salmon farms 1 (SF-1)
and 3 (SF-3), where deltamethrin was used as a treatment of fish, mean levels of 1.55
(�1.19, n ¼ 21) ng g�1 and 1.12 (�1.69, n ¼ 24) ng g�1, respectively, were found.
Lower levels of cypermethrin were observed, with mean concentrations of 0.70
(�1.06, n ¼ 15) and 0.08 (�0.09, n ¼ 18) on SF-2 and SF-4, respectively. Higher
concentrations of both pyrethroids were measured within a radius of 500 m, with the
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pyrethroid deposition under cages dominated mainly by the hydrodynamics of each
study site. These pyrethroid concentrations were comparable with those in previous
studies (Table 6), with cypermethrin ranges close to those reported in Scotland
[80, 81], but lower than those reported in Chile.

Table 5 Pyrethroid concentrations (ng g�1, d.w.) in sediment from the northern Chilean Patagonia

Farm Treatment Distance (m) Mean � SD (n) Range

SF-1 DE 0 2.15 � 1.21 (4) 1.16–3.83

100 2.23 � 1.56 (6) 0.46–4.67

500 0.96 � 0.59 (11) 0.37–2.41

0–500 1.55 � 1.19 0.37–4.67

SF-2 CP 0 1.48 � 2.28 (3) 0.13–4.11

100 0.52 � 0.77 (6) 0.13–2.09

500 0.49 � 0.12 (6) 0.36–0.71

0–500 0.70 � 1.06 0.13–4.11

SF-3 DE 0 0.72 � 0.78 (6) 0.07–2.04

100 0.71 � 0.65 (7) 0.09–1.98

500 1.60 � 2.35 (11) 0.15–6.24

0–500 1.12 � 1.69 0.07–6.24

SF-4 CP 0 0.06 � 0.05 (4) 0.02–0.13

100 0.06 � 0.04 (3) 0.03–0.10

500 0.10 � 0.11 (11) 0.02–0.37

0–500 0.08 � 0.09 0.02–0.37

Table 6 Comparative analysis of pyrethroid concentration levels detected in this study and those in
previous published reports

Pyrethroid Country Concentration (ng g�1, d.w.) Reference

Cypermethrin Scotland 0.03–7.20 [80, 81]

Norway <15.00 [29]

Chile 18.00 to 1,323.70 [77]

Chile 0.02–4.11 This study
Deltamethrin Norway <15.00 [29]

Chile <10.40 [77]

Chile 390.00–1,020.00 [78]

Chile 0.07–6.24 This study

Bold values are the data obtained in the frame of this research, while the other data are from the
literature search
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3 Effect Assessment: Nontarget Marine Species Sensitivity

3.1 Studies on the Effects of Pyrethroid Insecticides on Native
Organisms

Effects of pyrethroids on nontarget marine species have been widely reported in
literature (e.g., [7, 8, 13]), including lethal and chronic copepod [9, 10], crustacean
[12, 82], and bivalve responses [83, 84]. Furthermore, it is known that low doses of
pyrethroids can be highly effective on aquatic organisms, with crustaceans the group
that is most vulnerable to the action of these chemicals. Pyrethroids are recognized as
slightly toxic to birds and mammals [32]. Moreover, pyrethroids are unlikely to be
accumulated in fish and aquatic food chains since they are rapidly metabolized [7, 8].

Synthetic pyrethroids used as chemotherapeutic treatments on farmed fish can
lead to potential negative environmental effects and harm nontarget organisms (e.g.,
[7, 8, 12, 13, 77, 78]), including even commercially important crab species in larval
stages [82]. In Chile, there was a discussion on the impacts of pyrethroids on mussel
physiology, since salmon and shellfish farms are established in the same areas,
meaning that cultured shellfish are potential nontarget receptors of pyrethroid
treatments.

4 Risk Assessment

4.1 Assessing the Risks of the Use of Pyrethroids
in the Chilean Marine Environment

To conduct a risk assessment, two methodological schemes are proposed, the first a
deterministic approach, as required by Chilean authorities, and the second a proba-
bilistic approach. Risk assessment procedures basically consist of both an exposure
assessment, that is, a determination of the Predicted Environmental Concentrations
(PEC, predictive model) or Measured Environmental Concentration (MEC, experi-
mental field measurements) of pyrethroids and a comparison these data with eco-
toxicological thresholds such as the predicted no-effect concentration (PNEC) for
different species from different trophic levels by calculating a risk quotient
(RQ) shown in the following Eq. (12)

RQ ¼ PEC or MECð Þ
PNEC

ð12Þ

PNEC may be derived from the experimental no-observed effect concentration
divided by an application factor (AF). This AF depends on the quality of the
information used to predict the PNEC and is usually a value ranging from 10 to
1,000 [85]. If the RQ is higher than 1, there is environmental risk, while if it is
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below 1, there is no environmental risk. By tradition, the ecotoxicological threshold
used is the no-observed effect concentration (NOEC) value corresponding to the
species most sensitive to the assessed chemical based on laboratory tests.

A second approach that may be used is the probabilistic estimation of risk is based
on a species sensitivity distribution (SSD). In our view, this is a more robust
approach since it is based on the complete distribution of the sensitivity of different
species to the chemical and the calculation, within the distribution, of the concen-
tration impacting 5% of the total species considered in the analysis. Therefore, a new
way of calculating the risk quotient is the same as that in the Eq. (12), but here PNEC
is the predicted value affecting the 5% of the all species tested, including native
organisms. SSD follows a log logistic curve, as shown in Fig. 5. Meanwhile, Table 7
presents a comparison of the RQs calculated using the two methods for both
synthetic pyrethroids. It can be observed that the probabilistic method provides
higher-risk values (i.e., RQ > 1,000), but in both cases, risk is predicted for
nontarget marine organisms, especially invertebrates.

In Chile, there is no maximum allowable concentration (MAC) of these
antiparasitic chemicals used by salmon farms; therefore, the risk values estimated
with both methods have no regulatory effects. There is only a SAG requirement (i.e.,
SAG Decree 665, 2010) that field studies be conducted on a case-by-case basis when
the deterministic RQ presents values greater than or equal to 1,000.
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5 Concluding Remarks

While the principles of risk assessment have long been a part of international
environmental regulations, chemical risk assessment in Chile is still in its early
stages of development. Southern Chile is an area with an actively developing salmon
farming industry, and the country is the world’s second largest producer, after
Norway. One of the challenges posed by the rapid growth of the salmon farming
industry is the presence of diseases and parasites that affect salmon production such
as the copepod Caligus rogercresseyi, commonly known as “sea lice.” To combat
sea lice, a series of pesticide chemicals such as cypermethrin and deltamethrin
pyrethroids are used, which are applied through bath treatments. The use of
chemicals in salmon farming is subject to a risk assessment procedure based on
VICH regulations. This procedure must include the determination of a risk quotient
(RQ) between predicted environmental concentrations and no-observed effect con-
centrations (NOECs) for local marine species. Thus, a comprehensive approach
adapted to Chilean conditions for an adequate risk assessment of such chemicals is
required.
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Abstract Despite the initial assumption that pyrethroid insecticides are “ideal”
because they do not bioaccumulate and because they are able to be metabolized
by mammals, recent studies have showed the opposite. Based on desorption kinetics
from sediment, cyfluthrin has been reported as the most bioavailable compound,
while λ-cyhalothrin was the less bioavailable. Bioaccumulation has been
reported for several species. Franciscana dolphins from Brazil showed pyrethroid
levels of 7.04–68.4 ng/g lw. A trend of levels connected to the age of dolphins
was observed. Striped dolphins from the Spanish Mediterranean had a mean
total concentration of 300 � 932 ng/g lw. Pyrethroid levels in wild Iberian river
fish were 12–4,940 ng/g lw. Pyrethroid profiles possibly reflected the local use
of pesticides, and interspecies profile variation for fish was reported. While
bioavailability of pyrethroids seemed considerably lower than that of POPs,
concentrations of pyrethroids in striped dolphins and Iberian fish were comparable
or higher than those of some POPs such as flame retardants. Mean total pyrethroid
levels in unhatched eggs from wild birds collected in Spain were 1.93–162 ng/g lw,
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depending on the species and their feeding habits. Pyrethroid levels in human
milk samples were 87–1,200 ng/g lw for a rural area in Mozambique, where they
are used against the malaria vector, and 1.45–24.2 ng/g lw for urban and rural areas
of Colombia, Spain and Brazil. The contamination in milk decreased exponentially
with parity, supporting the hypothesis of maternal transfer of pyrethroids. The
maternal transfer of pyrethroids has been observed using several tissues from
mothers and foetuses of dolphins. Isomer-specific accumulation or metabolization
of pyrethroids has been assessed with somewhat consistent results, although
analysing environmental samples from the areas where biological samples are
collected would allow more accurate observations.

Keywords Bioaccumulation, Bioavailability, Maternal transfer, Metabolization,
Pesticides, Pyrethroids

Abbreviations

ADI Acceptable daily intake
DDT Dichlorodiphenyltrichloroetane
EDI Estimated daily intake
EF Enantiomeric factor
EPA Environmental Protection Agency
f/m Foetus-to-mother
HBB Hexabromobenzene
HBCD Hexabromocyclododecane
Kow Octanol-water partition coefficient
lw Lipid weight
OPFR Organophosphorus flame retardant
PAH Polycyclic aromatic hydrocarbon
PBDE Polybrominated diphenyl ether
PCB Polychlorinated biphenyl
POP Persistent organic pollutant
R Diastereoisomeric factor
WHO World Health Organization
ww Wet weight

1 Introduction

Pyrethroids are commonly and extensively used in agronomics, on pets and cattle,
as domestic insecticides and for health purposes against lice, scabies or vectors
of diseases such as typhus or malaria [1].
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Pyrethroids were the alternative to organochlorines and organophosphates
because of their low toxicity and persistence, usually lower than 90 days [2].
However, they are found in environmental samples, such as sediments and water
[3, 4], food [5, 6], mammals [7, 8] and humans [9, 10].

Agronomics should be an important source for the introduction of pyrethroids in
the environment. Conversely, it has been reported that the occurrence of pyrethroids
in rivers caused by agronomics fluctuates depending on their application [3].
Moreover, their use in agronomics has been banned in some countries with
legislation such as the Council Directive 91/414/EEC. On the other hand, they are
commonly used in industrial and domestic sectors. The United States Environmental
Protection Agency (EPA) Pesticides Industry Sales and Usage 2008–2012 Market
Estimates estimated that in 2012 between 450 and 1,360 t of pyrethroid active
ingredient were used only in the US home and garden market sector. Hence,
domestic and urban applications may be an important source [11].

Benthic organisms can be exposed to pyrethroids via ingestion or contact
with contaminated sediment particles or from interstitial water [7]. Fish can absorb
pyrethroids either through their gills due to their lipophilicity or through food webs.

All things considered, pyrethroids are still generally regarded as safe as fish
can oxidate them and mammals can hydrolyse them into non-toxic metabolites
[12, 13]. Most studies on exposure have been based on the analysis of these
metabolites in urine samples. This chapter reports data of the actual pyrethroids
accumulated in biota samples, including humans.

2 Bioavailability

Pyrethroids are applied for pest control in agricultural and urban areas. They are
easily adsorbed to sediment due to their very low water solubility (of a few μg/L)
and high hydrophobicity (with logarithms of their octanol-water partition coefficient
(Kow) ranging from 5.7 to 7.6) [14].

Bioavailability plays a key role in sediment toxicity [15, 16]. Desorption of
chemicals from sediment occurs in different kinetic stages [17, 18]. There is a simple
method to assess the availability of contaminants associated with sediment
and, therefore, the fraction of them that is bioavailable [19]. This method uses
Tenax, a polymeric sorbent, in solid-phase extraction to measure the rate of mass
transfer from the sediment to the Tenax. Tenax has been applied to determine
desorption of contaminants like dichlorodiphenyltrichloroethane (DDT), polycyclic
aromatic hydrocarbons (PAHs), polybrominated diphenyl ethers (PBDEs) and
polychlorinated biphenyls (PCBs) [20, 21].

Many publications report that bioaccumulation levels are not a good estimate
of bioavailability for organic compounds that can be metabolized [22]. Additionally,
toxic compounds would kill sensitive species after exposure [23, 24]; thus
toxicity endpoints have been used with sensitive species to assess the bioavailable
pyrethroids in sediment samples [25].
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A few studies have used Tenax to evaluate the bioavailability of pyrethroids
[25–27]. Pyrethroids were found not to be very bioavailable to sediment-dwelling
organisms such as Lumbriculus variegatus and to have a low toxicity to Hyalella
azteca. Additionally, ageing time showed no significant influence on bioavailability;
for instance, desorption decreased quickly over contact time meaning bioavailability
diminished accordingly. However, these studies were mostly limited to chemical
analyses. Combining Tenax desorption kinetics with toxicity response could shed
a light on the pyrethroid fraction that is bioavailable and can affect the organisms
[25, 28]. The toxicity of sampled sediments appears to be better predicted when
confronted with measured residue levels from Tenax extracts [25].

A different study evaluated the bioavailability of pyrethroids in sediments with
different organic carbon contents using Tenax extractions [29]. Toxicity experiments
were performed usingDaphnia magna, which is extremely sensitive to λ-cyhalothrin
and deltamethrin, as a surrogate sediment toxicity test organism [30, 31]. As a
planktonic organism that lives on the water column, Daphnia magna is exposed to
the bioavailable pyrethroid fraction in the water phase rather than the fraction bound
to sediment particles.

Two sediment samples free of pyrethroids were collected along the Ebro River
(north-east of Spain) far away from agricultural, industrial and highly urbanized
areas, and toxicity experiments were performed on sediment from a pristine water
reservoir located in Huesca (north-east of Spain) with no sources of pollution [29].
Rapid desorption took place in the first 30 h of desorption, while slow desorption
was observed from hour 72 to 432. The slow desorption would represent the
fraction of contaminant that is strongly bound to the sediment’s organic matter.
Bioavailability increased with the decrease in organic carbon content, which had
previously been reported for cypermethrin [32]. The percentage of desorption
was 10–20% for sediment I (5.8% of organic content) and 15–40% for sediment II
(2% of organic content). The percentages of desorption were ranged between
4 and 17% for cyfluthrin, cypermethrin, fluvalinate and phenothrin in sediment I
and between 7 and 36% in sediment II [29]. Furthermore, the kinetic constant
for the first 6 h of desorption was also greater for sediment II. Conversely, the
desorptions of bifenthrin, λ-cyhalothrin and deltamethrin were very similar for
both sediments, 3–22%.

Coincidentally, cyfluthrin, with the second highest log Kow of the selected
pyrethroids, was observed to be the most bioavailable compound, while λ-cyhalothrin,
with the lowest log Kow, was the less bioavailable of the assessed pyrethroids [29].
However, this correlation was not observed for the rest of the pyrethroids. The order
of the other pyrethroids was not the same in both sediments, but cypermethrin,
esfenvalerate and permethrin were always in the most bioavailable half, fenpropathrin
and fluvalinate were around the centre of the list, and bifenthrin and tetramethrin
were in the less bioavailable half.

Another publication reported that the Tenax method is better than using solid-
phase microextraction fibres because of its capacity to remove a larger fraction of
the contaminant from the matrix [33]. Their calculated percentages of desorption
were greater than those listed above as the organic carbon content of the sediment
was lower.
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The literature indicates that the bioavailability of pyrethroids is considerably
lower than that of persistent organic pollutants (POPs) such as PBDEs (5–85%
percentage of desorption), DDT (70–90%) and hexabromocyclododecane (HBCD)
(around 90%) [20].

3 Bioaccumulation

The capacity of mammals of metabolizing pyrethroids has been regarded as one
of the best qualities of these pesticides. However, evidence of their bioaccumulation
has been reported in several publications.

3.1 Aquatic Organisms

Evidence of bioaccumulation in marine mammals was first found in 23 liver samples
of male Franciscana dolphins (Pontoporia blainvillei) from the Brazilian coast: São
Paulo (SP), n ¼ 12, urban area, and Rio Grande do Sul (RS), n ¼ 11, agricultural
area [7]. In order to avoid the high variation in the levels of lipophilic pollutants of
females (see Sect. 4), only male dolphins were included to assess the concentrations
of pyrethroid in different locations and through the life cycle of the dolphins [34, 35].

All targeted pyrethroids but resmethrin were detected in liver samples [7].
Cyfluthrin, deltamethrin and tralomethrin were found in 73–83% of the samples.
In RS, λ-cyhalothrin and tetramethrin were found in 82% of the samples, and
bifenthrin and fluvalinate were found in 91%. Total pyrethroid concentrations
ranged from 7.04 ng/g lw (adult, SP) to 68.4 ng/g lw (calf, SP). Permethrin
showed the highest concentrations, from 4.48 ng/g lw (adult, SP) to 54.6 ng/g lw
(calf, SP). The other compounds in decreasing order of concentrations were
cypermethrin (<25 ng/g lw); tetramethrin (<16 ng/g lw); deltamethrin, fluvalinate
and λ-cyhalothrin (<6 ng/g lw); fenvalerate and cyfluthrin (<4 ng/g lw); and
bifenthrin (<3 ng/g lw).

Greater pyrethroid concentrations were reported in urban areas (SP). This was
also true for individual bifenthrin and permethrin. It had been previously observed
in California that the urban run-off supposed a greater pyrethroid input than the
irrigation run-off [11, 36]. Conversely, deltamethrin levels were significantly higher
in calves from RS. Deltamethrin had been used in RS since the 1980s to control
stored grain insects [37].

A trend of pyrethroid concentrations according to the dolphins’ length was
suggested (Fig. 1) [7]. High concentrations were found in calves due to pyrethroids
accumulated via maternal transfer. Concentrations could dilute with the dolphins
growth and rise again from dietary intake. Finally, when individuals reach maturity,
that is, for adult individuals, they would be able to metabolize pyrethroids decreasing
their concentration.
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A similar study was performed with dolphin liver (27 males and 10 females) of
striped dolphin (Stenella coeruleoalba) from the Mediterranean coast of southern
Spain [8]. Pyrethroids were detected in 87% of the samples, including bifenthrin,
cyhalothrin, deltamethrin, permethrin and tetramethrin. Mean total pyrethroid
concentration was 300 � 932 ng/g lw (range 2.70–5,200 ng/g lw).

While there were not enough samples for a life trend assessment, the results
were not dissimilar from the ones reported for the Brazilian dolphins. Concentrations
seemed to increase somewhat from calves to juveniles due to dietary intake. After
achieving sexual maturity, the levels stayed stable as metabolization of pyrethroids
would compete with further bioaccumulation.

No statistical differences were found with the Brazilian levels. Franciscana
dolphins are live in coastal waters, while striped dolphins are found further offshore.
The smaller size of the Mediterranean Sea, which is surrounded by human
population, as opposed to the big and open Atlantic Ocean, might compensate
for the distance of the striped dolphins to the source of contamination. Additionally,
the western Mediterranean Sea has been identified as a global PCB hotspot for
marine mammals [38], which might also be true for other pollutants like pyrethroids.

Other organic contaminants have been analysed in striped dolphin from the
Mediterranean Sea, including PBDEs, decloranes, hexabromobenzene (HBB),
PCBs and DDT (Fig. 2) [39–42]. Striped dolphins from the same area and years
showed a higher mean for PBDEs (940 ng/g lw) albeit in the lower half of the
reported pyrethroid range. Ranges of dechloranes and HBB in those dolphins
were detected in the same low area (<380 and <9 ng/g lw, respectively). In other
regions of the Mediterranean Sea, PCBs and DDT were present in striped dolphins
at much higher concentrations (2.1–170 and 1.1–260 μg/g lw, respectively),
whereas PBDEs (12–290 ng/g lw) and PAH (200 ng/g lw) were included in the
pyrethroid range.

Regarding fish, the bioaccumulation of pyrethroids in wild river fish was first
reported using 42 pooled edible fish samples from four Iberian river basins [43].
One of the sampling points corresponded to a reservoir. The selected species

Fig. 1 Concentration of pyrethroids in Franciscana dolphins according to dolphin length (adapted
from [7])
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included barbel and carp, when possible, or catfish, gudgeon or trout. Pyrethroids
were found in all the samples. Total concentrations ranged from 12 to 4,940 ng/g lw.
The most contaminated sample was reservoir trout. However, carp appeared to
be the species with a higher pyrethroid bioaccumulation capacity. Previously
reported levels in exposed rainbow trout were in the same order of magnitude:
30–40 ng/g wet weight (ww) of cis-cypermethrin, deltamethrin, fenvalerate and
cis-permethrin [44].

Bifenthrin, cyhalothrin and cypermethrin were quantifiable in all the Iberian fish
samples [43]. Fluvalinate, phenothrin and resmethrin were not detected. Fenvalerate,
tetramethrin, permethrin were present in 80–90% of the samples, cyfluthrin in 57%
of the samples and permethrin in 31% of them.

Permethrin dominated the pyrethroid profiles in the Ebro and Llobregat
river basins, while cypermethrin and tetramethrin dominated the profiles in the
Guadalquivir and Jucar basins. This could reflect the local use of pesticides as
the closest rivers, Ebro and Llobregat, showed similar profiles. The presence of
pyrethroids banned from agricultural uses by the Council Directive 91/414/EEC
(e.g. bifenthrin) supports the hypothesis that non-agrarian sectors are an important
source of pyrethroids in the environment. On the other hand, interspecies profile
variation was reported within a sampling point. The authors suggested different
bioaccumulations depending on the species due to differences in their metabolism or
dietary habits.

Fig. 2 Mean concentrations and range of organic contaminants in striped dolphins from the
Mediterranean Sea

Bioavailability and Bioaccumulation of Pyrethroid Insecticides in Wildlife and. . . 211



Flame retardants, personal care products, hormones and pharmaceuticals were
analysed in the same Iberian fish samples (Fig. 3). PBDEs and dechloranes showed
frequencies of detection close to the 100% observed for pyrethroids [45]. The other
contaminants occurred in less than 50% of the samples [46, 47]. Pyrethroid showed
the highest concentrations, followed by parabens (levels below a third of the
pyrethroids’ maximum) and organophosphorus flame retardants (OPFRs) (levels
below a sixth of the pyrethroids’ maximum).

Pyrethroids have also been reported to accumulate in salmon in a study on the
effects of the pyrethroid treatment against sea lice in fish farms [48]. The study
compared the pyrethroid levels and profiles from salmon farmed in several European
countries and the Pacific Ocean with wild salmon from Alaska. The pyrethroid
concentrations in farmed salmon (1.31 � 1.39 ng/g ww) were higher than in wild
salmon (0.02 � 0.03 ng/g ww), supposedly as a result of the pyrethroid baths. The
pyrethroid profiles supported this hypothesis as cypermethrin and deltamethrin,
the active ingredients of anti-lice formulations, contributed to 77% of the farmed
salmons’ profiles, whereas no individual pyrethroid showed predominance in the
wild salmon samples.

Fig. 3 Box plots of the concentrations of organic contaminants in wild fish from Iberian rivers
(adapted from [43])
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3.2 Terrestrial Organisms

A few studies have analysed pyrethroids in poultry eggs, which are not environ-
mentally representative [49, 50]. Low levels of λ-cyhalothrin [51], tefluthrin,
cyfluthrin and cypermethrin [52] have been reported in eggs and carcasses of
wild grey partridges.

A more in-depth study assessed the presence of pyrethroids in 123 unhatched
eggs from 16 species of wild birds from Doñana (nature reserve in southwestern
Spain) and surrounding areas [53]. Pyrethroids were detected in 93% of the eggs.
The highest mean values of contamination belonged to samples of black-headed
gull (162 ng/g lw), gull-billed tern (61.5 ng/g lw) and black kite (48.5 ng/g lw). The
lowest means were found for purple heron (1.49 ng/g lw), glossy ibis (1.59 ng/g lw)
and black-winged kite (1.93 ng/g lw). The total range was between not detected
and 324 ng/g lw. The many factors for this variation could include the feeding
habits, as previously described for other lipophilic contaminants [54, 55], body
condition, age, habitat and migratory behaviour [56].

Although comparing these levels to the studies on poultry eggs could be
far-fetched, it is interesting to notice the difference in the pyrethroid profiles.
Only bifenthrin or cypermethrin were detected in the poultry eggs [49, 50] as a
result of a specific pesticide treatment. However, wild bird eggs should reflect
the variety of pyrethroids in the environment. The samples from Doñana showed
12 individual pyrethroids [53], eggs of wild grey partridges contained λ-cyhalothrin
[51], and the carcasses of the same species contained cyfluthrin, cypermethrin
and tefluthrin [52].

The eggs from Doñana were also tested for halogenated flame retardants
[54]. Flame retardants were found in 100% of the samples, similar to the 93% for
pyrethroids. Unlike POPs, pyrethroids have low environmental persistence
(�90 days) [2], but their massive use makes them constantly present. PBDE and
dechlorane concentrations were in the same range as pyrethroids.

Fenpropathrin, fluvalinate and resmethrin were not detected in the eggs from
Doñana [53]. Cypermethrin, λ-cyhalothrin and bifenthrin were found in over 75%
of the samples. Tetramethrin, permethrin, fenvalerate and cyfluthrin occurred in
about half of the samples. Deltamethrin and phenothrin were detected in about a
quarter of them.

The species were divided into four categories according to their diet: terrestrial,
feeding from terrestrial ecosystems; anthropogenic, including a proportion of food
from human sources; aquatic, feeding from aquatic ecosystems; and herbivorous,
feeding on plants and algae [53]. Eggs of species with anthropogenic feeding habits
were more contaminated, followed by eggs of birds of the aquatic feeding category.
This suggests that dietary intake might play an important role in the bioaccumulation
of pyrethroids. It is also consistent with the higher contamination in urban areas
and the aquatic ecosystems being easily contaminated via run-off.
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3.3 Humans

A limited number of studies have considered the accumulation of pyrethroids in
human milk. In 2017, 206–258 million people were estimated to have contracted
malaria and 0.41 million died (94% in Africa and 67% children under 5 years) [57].
The World Health Organization (WHO) supports the use of specific pesticides for
malaria control. In tropical Africa, pyrethroids were used on mosquito nets and
as indoor sprays [58].

Pyrethroid exposure in a rural area at the south of Mozambique was assessed
using 22 breast milk samples from 2002 [59]. Indoor thatch samples were also
collected from walls to determine potential exposure. Permethrin and λ-cyhalothrin,
esfenvalerate, cypermethrin, tetramethrin and bifenthrin were found in 19 samples,
while cyfluthrin was detected in only 9 samples. Deltamethrin, phenothrin and
resmethrin were never detected. Individual concentrations went up to 36 pg/g lw
for bifenthrin; 160–230 pg/g lw for cypermethrin, esfenvalerate, tetramethrin,
cyfluthrin and permethrin; and 440 pg/g lw for λ-cyhalothrin. Total pyrethroid levels
were between 87 and 1,200 ng/g lw. The main contributor to the pyrethroid
profiles was λ-cyhalothrin (35%) followed by permethrin (21%) and cypermethrin,
esfenvalerate and tetramethrin (14%).

Pyrethroids had previously been found in human breast milk from Switzerland
with median total concentrations between 15 and 31 ng/g lw [60]. The difference to
the levels from Mozambique can be related to a more limited use for agricultural
and domestic applications in Switzerland [60].

Conversely, a mean value of 1,200 ng/g lw of permethrin and lower levels of
cypermethrin and cyfluthrin had been reported in samples from South Africa [61].
These pyrethroids were also detected in other samples from the same region at
14,500, 4,200 and 42,000 ng/l, respectively [9]. The authors suggested a domestic
source of contamination for the first group of samples and an agricultural source
for the latter. Converting these results according to their reported fat content of 4%,
total concentrations ranged from 110 to 1,050 ng/g lw, which is similar to the
milk samples from Mozambique.

The fact that mothers accumulate pyrethroids implies that they could be
transferred to their offspring through lactancy. Estimated daily intake (EDI) values
for the babies in Mozambique went from 0.12 μg/kg of body weight and per day
for cypermethrin to 3.4 μg/kg of body weight and per day for cyhalothrin [59].
The acceptable daily intake (ADI) values for individual pyrethroids are set between
10 and 50 μg/kg bw/day [62], which means that pyrethroid intake should not pose
a threat to the babies.

A bigger and more recent study included 56 human milk samples from Colombia,
Spain and Brazil, including urban and rural areas [10]. Pyrethroids occurred in all
the samples at concentrations from 1.45 to 24.2 ng/g lw in the three countries.
Their results were also similar to the ones reported for the Swiss samples [60].
Urban samples from Spain and Brazil showed a mean around 5 ng/g lw, and rural
samples from Brazil and Colombia had a mean value just above 9 ng/g lw.
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Cypermethrin, permethrin, λ-cyhalothrin and fenvalerate were detected in all or
almost all the samples. Cyfluthrin, fluvalinate, phenothrin and resmethrin were
never detected. Individual concentrations decreased from cypermethrin (up to
16.4 ng/g lw) through tetramethrin, λ-cyhalothrin, bifenthrin, permethrin, fenvalerate
to deltamethrin (up to 1.86 ng/g lw).

Pyrethroid profiles suggested usage of different pyrethroids in different areas.
For example, bifenthrin had a great contribution in the Brazilian samples, but
not so much in the others. Cypermethrin was the biggest contributor to the
Colombian profiles, which is consistent with the pesticide use in that country [10].
Finally, permethrin dominated the Spanish samples, which agrees with the results of
the aforementioned striped dolphin livers from southern Spain [8].

The authors reported no correlation between pyrethroid levels and the age
of the mother or between the domestic use of pesticides and levels in breast milk.
On the other hand, the contamination in milk decreased exponentially with parity
(number of children of a mother), supporting the hypothesis of maternal transfer of
pyrethroids. All samples presented EDI values below the ADI values. However,
cypermethrin was very close to its 50 μg/kg bw/day ADI with occasional EDI
values of 48.8 and 44.2 μg/kg bw/day for samples from 2003 to 2004, respectively.
Cypermethrin had been used to control dengue.

3.4 Isomer-Specific Accumulation

Pyrethroids have two or three chiral centres in their structures. This means that
they have two or four diastereomers and four or eight enantiomers. Many of
the works referenced in this chapter performed isomeric analysis with a chiral
chromatographic column after the corresponding quantitative analysis. The
enantiomeric factors (EF) for each enantiomeric pair were calculated dividing
the chromatographic area of the first eluting enantiomer by the sum of the areas
of both enantiomers [63]. A racemic mixture, containing equal amounts of each,
corresponds to EF¼ 0.5. As type I pyrethroids present a cis and a trans enantiomeric
pairs, EFcis and EFtrans are defined. Type II pyrethroids present two of each, defined
as EFcis1, EFcis2, EFtrans1 and EFtrans2. Diastereoisomeric factors (R) were also
calculated [63]. Rcis/trans represents the ratio between cis and trans isomers of
an individual pyrethroid; meaning cis1 + cis2 and trans1 + trans2 for type II
pyrethroids. Rcis1/cis2 and Rtrans1/trans2 were also assessed for type II pyrethroids.

These factors can help determine isomer-specific accumulation or metabolization
in mammals. R values for esfenvalerate, permethrin and cypermethrin for calves,
juvenile and adult Franciscana dolphins were calculated [7]. While esfenvalerate
and cypermethrin showed no differences with age group (Resfen ¼ 0.48–0.67,
Rcyp ¼ 0.28–0.49), some differences were reported for permethrin. The mean
Rperm value in calves was 0.84, showing a higher contribution of the first isomer.
However, the mean Rperm values for juveniles and adults were 0.60 and 0.69,
suggesting either a selective bioaccumulation of the trans isomer in the first years
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of life of the dolphins or a selective metabolization of the cis isomer after they reach
sexual maturity. An enrichment on the trans isomer of permethrin was also observed
in the samples of human milk from Mozambique [59].

The Mediterranean striped dolphins had EFcis ¼ 0.51 � 0.17 and
EFtrans ¼ 0.47 � 0.10 for tetramethrin [8]. These values, corresponding to
a racemic mixture, agreed with the values reported for household insecticides
purchased in Spanish supermarkets [63], indicating no enantiomer-specific
accumulation of tetramethrin in the liver of the individuals. However, the EFcis
for permethrin in dolphins was 0.42 � 0.05, which was statistically lower
than 0.35 � 0.04 in commercial pesticides, suggesting enantiomer-specific
bioaccumulation of (1S,3S)-permethrin rather than (1R,3R)-permethrin in dolphin
liver.

On the other hand, whereas the Rcis/trans values of permethrin in dolphins
and commercial pesticides were similar, tetramethrin showed higher values in
dolphin liver (1.88 � 0.52 > 0.32 � 0.09). These results suggest no selective
bioaccumulation of the permethrin enantiomers, contrary to what had been
reported for the Franciscana species in Brazil, and selective bioaccumulation of
cis-tetramethrin.

Moving on to fish, almost all the samples of Iberian river fish showed a
preference to bioaccumulate the cis isomers of pyrethroids, with maximum
Rcis/trans values of 30 for cypermethrin, 1.3 for cyfluthrin and 11 for permethrin
[43]. Conversely, tetramethrin showed the opposed trend. The authors argued
that commercial mixtures might be rich in trans-tetramethrin as its 1R,3S
isomer has a stronger pesticide activity. Thus a low Rcis/trans value could reflect
the environmental levels. The preference for cis-permethrin is a new situation
after seeing the preference for the trans isomer in Franciscana dolphins and
human milk from Mozambique and the lack of selectivity in the striped dolphins.
However, the cis preference was also reported for the samples of human milk [10].
Some studies on mice found that cis-permethrin was less metabolized than
trans-permethrin and more accumulative and toxic [64, 65].

It is important to note that commercial mixtures are rich in some cis isomers [63];
thus Rcis/trans > 1 might just represent the environmental contamination. That is
why analysing environmental samples from the areas where biological samples are
collected would allow more accurate observations.

The EFcis1 for cyfluthrin was always below 0.39. On the other hand, the EFcis1 for
cypermethrin was always below 0.5, except for the catfish samples [43]. This might
suggest that enantiomer-selective bioaccumulation could depend on species,
as catfish samples were collected in the same locations as the rest [63].

Permethrin EFcis values were very different among the Iberian fish samples and
the sampling points [43]. For example, samples of catfish and barbel presented
higher content of (1R,3R,αR)-cyhalothrin in the first cis enantiomeric pair, while
the second cis pair appeared as a racemic mixture. However, the gudgeon samples,
which were not collected in the same location, presented a racemic mixture for the
first cis pair, but higher accumulation of (1R,3R,αS)-cyhalothrin in the second pair.
These variations could support the hypothesis of species-specific selectivity or
indicate different uses of commercial mixtures in the targeted locations.
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The study on the effect of the pyrethroid treatment against sea lice in farmed
salmon reported no difference in the EF and R values obtained for a given species
farmed in several European countries and the Pacific Ocean [48]. However, Salmo
salar and Oncorhynchus mykiss showed selective bioaccumulation of the opposed
cis-cypermethrin enantiomer of the first cis pair eluted and different degrees of
preference for the same cis enantiomer of the second pair. These species also
showed opposing preferences for Rcis/trans and Rcis1/cis2. These data reinforce the
hypothesis of species-depending selectivity in fish.

A third of the unhatched eggs from the wild birds from the Doñana region
were also analysed and showed Rcis/trans > 1 [53] agreeing with the already
mentioned results for river fish and some human milk from Spain, Colombia and
Brazil [10, 43]. However, tetramethrin contradicted this trend, also agreeing with
the other studies.

The study showed equal accumulation for both cis enantiomers of cyhalothrin,
cypermethrin, permethrin and tetramethrin [53]. Gadwall eggs were an exception
for cyhalothrin and cypermethrin, and black kites, black-headed gulls and glossy
ibis were exceptions for permethrin. The EFtrans of tetramethrin revealed selective
accumulation of trans-(1S,1R)-tetramethrin. This had also been observed in Spanish
human breast milk samples [63].

The analysis of human milk samples from Brazil, Colombia and Spain showed
higher accumulation of the cis isomer for esfenvalerate and permethrin and
the contrary for cyfluthrin, cypermethrin and tetramethrin [10]. It has already
been mentioned that the commercial mixtures available in Spanish markets
are usually rich in cis isomers [63]. This might imply that trans-cyfluthrin and
trans-cypermethrin were selectively accumulated in human milk. The cypermethrin
trend was stronger in the Brazilian and Spanish samples than in the Colombian ones,
indicating possible different exposures on those locations.

The human milk samples from Mozambique were compared to a commercial
mixture and the thatch material from indoor walls [59]. For permethrin, the
calculated EF values were 0.84 for commercial mixtures, 0.69 for thatch material
and 0.52 for human milk. This enrichment in trans-permethrin may reflect a
higher bioaccumulation of this isomer or a better metabolization of cis-permethrin.
This finding contradicts the distribution reported in the study of the previous
paragraph.

In 2009, seven human breast milk samples from the metropolitan area of
Barcelona (Spain), as well as eight domestic pesticides, one pet pesticide solution
and one human skin cream against crabs and scabies, were analysed [63].

The domestic pesticides contained racemic mixtures of the cis-tetramethrin pair,
the trans-tetramethrin pair and the cis-cypermethrin pair, while the cis-permethrin
pair was rich in (1S,3S)-permethrin (EFcis ¼ 0.35). The human milk samples
also showed a racemic mixture of cis-tetramethrin. However, they presented a
higher contribution, hence accumulation, of trans-tetramethrin (EFtrans ¼ 0.32)
and (1R,3R)-permethrin (EFcis ¼ 0.43) than the domestic pesticides. Human
samples showed greater contribution of (1S,3S,αR)-cyhalothrin than the pesticides
(EFcis2 ¼ 0.20). Although the first cis pair of cypermethrin was present as a racemic
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mixture, the second pair differed from this behaviour with a potential selective
accumulation of (1S,3S,αR)-cypermethrin (EFcis2 < 0.35) as the commercial
pesticides had racemic mixtures.

While Rcis/trans values for tetramethrin and cypermethrin were similar for
human milk and the commercial pesticides, suggesting no specific bioaccumulation,
cis-permethrin seemed to be selectively accumulated in human samples [63].
A great preference for the second cis isomer of cypermethrin eluted was also
observed when compared to the commercial pesticides.

4 Maternal Transfer

Maternal transfer occurs during gestation and lactation [66, 67]. Therefore, the
exposition of pregnant individuals to contaminants might threaten their offspring,
increasing their susceptibility to disease in adulthood [68, 69].

Samples of breast milk and placenta from three pregnant and lactating dead
Franciscana dolphins (Pontoporia blainvillei) were collected in Brazil and analysed
in a first attempt to study maternal transfer [7]. The placenta provides an indication
of prenatal exposure to pyrethroids, while breast milk indicates the postnatal
transfer to calves. Pyrethroids were found in both milk (2.5–4.8 ng/g lw) and
placenta (331–1812 ng/g lw), suggesting the maternal transfer of pyrethroids by
both gestational and lactation pathways.

The same authors added data to the literature with samples of several tissues from
five mother-foetus pairs of Franciscana dolphins and from three mother-foetus pairs
of Guiana dolphins (Sotalia guianensis) [70]. Muscle and blubber from mother
and foetus were taken from both species, as well as placenta, umbilical cord and
milk from Franciscana dolphins.

Pyrethroids were found in all the samples. Foetus-to-mother ratios (f/m) of total
pyrethroid concentrations in Franciscana dolphins were 1.43, 2.67, 4.13 and 19.5 in
blubber and 0.28 and 30 in muscle. A f/m value higher than 1 indicated higher
pyrethroid burden on the foetus than their mother. A higher bioaccumulation
in foetuses than mothers had already been observed for hexachlorobenzene in
long-finned pilot whales (Globicephala melas) from Australia and in beluga
whales (Delphinapterus leucas) from Alaska [71, 72]. A tendency to transfer
low-chlorinated contaminants and with lower log Kow from cetacean mothers to
foetuses had also been reported [68, 71]. Accordingly, the predominant pyrethroids
in foetal blubber of the Franciscana dolphins were two-chlorinated cypermethrin and
permethrin (log Kow 6.6 and 6.5), suggesting a tendency similar to low-chlorinated
pesticides [70].

The f/m values of total pyrethroid concentrations in Guiana dolphins were 0.42,
1.39 and 1.47 in blubber and 0.09, 0.12 and 0.35 in muscle. The two different tissues
showed different patterns, with a higher burden in the foetuses’ blubber, but higher
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burden in the mothers’ muscle. While the limited number of samples prevents an
in-depth argumentation for that, the evidence show that pyrethroids penetrated
the placental membrane and bioaccumulated in the developing foetus in every pair.

In a previous section of this chapter (Sect. 3.3), it has been shown that pyrethroids
are also found in human milk, thus transferred to lactating babies judging by what
has been proved for dolphins.

5 Final Remarks

Bioavailability is the first step to bioaccumulation. Based on desorption kinetic from
sediment, cyfluthrin was the most bioavailable compound, while λ-cyhalothrin was
the less bioavailable of the assessed pyrethroids [29]. Cypermethrin, esfenvalerate
and permethrin were in the most bioavailable half of the list, fenpropathrin and
fluvalinate were around the centre, and bifenthrin and tetramethrin were in the less
bioavailable half. The literature indicates that the bioavailability of pyrethroids,
with percentages of desorption between 9 and 36%, is considerably lower than
that of POPs such as PBDEs, DDT and HBCD, with values over 70%.

Bioaccumulation of pyrethroids had been disregarded in the past to
the mammalian capacity of metabolizing them. However, evidence of their
bioaccumulation has been reported in several publications. Evidence of
bioaccumulation in marine mammals was first found in samples of Franciscana
dolphins from Brazil [7]. Total pyrethroid concentrations ranged from 7.04
to 68.4 ng/g lw. Permethrin showed the highest concentrations, reaching up to
54.6 ng/g lw. The other compounds in decreasing order of concentrations were
cypermethrin, tetramethrin, deltamethrin, fluvalinate, λ-cyhalothrin, fenvalerate,
cyfluthrin and bifenthrin, the latter at levels below 3 ng/g lw.

A trend of pyrethroid concentrations according to the dolphins’ age was
suggested. High concentrations were found in calves due to pyrethroids accumulated
via maternal transfer. Concentrations could dilute with the dolphins growth
and rise again from dietary intake. Finally, adult individuals would metabolize
pyrethroids decreasing their concentration. Greater pyrethroid concentrations
were reported in urban areas, except for deltamethrin, which had been used
in rural areas to control stored grain insects.

A similar study with striped dolphins from the Spanish Mediterranean detected
bifenthrin, cyhalothrin, deltamethrin, permethrin and tetramethrin in most samples
[8]. Mean total pyrethroid concentration was 300� 932 ng/g lw. The environmental
differences between the Mediterranean Sea and the Atlantic Ocean might account
for the levels in striped dolphin compared to the Brazilian ones. The western
Mediterranean Sea had already been identified as a contamination hotspot for marine
mammals [38]. Concentrations of pyrethroids in Mediterranean striped dolphins
were comparable to those of PBDEs and PAH and higher than those of HBB and
dechloranes, but lower than PCB and DDT levels [39–42].
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Pyrethroids were found in all the samples of wild Iberian river fish at concentra-
tions ranging from 12 to 4,940 ng/g lw [43]. Bifenthrin, cyhalothrin, cypermethrin,
fenvalerate, tetramethrin and permethrin were present in all the samples, while
fluvalinate, phenothrin and resmethrin were not detected. Because of the similitudes
among samples from closer river basins, pyrethroid profiles possibly reflected
the local use of pesticides. On the other hand, interspecies profile variation was
reported within a sampling point. Comparted to the levels of flame retardants,
personal care products, hormones and pharmaceuticals in the same Iberian fish
samples, pyrethroids were found as frequently as PBDEs and dechloranes [45] and
more than twice as frequently as the rest [46, 47]. Pyrethroid showed the highest
concentrations, followed by parabens and OPFRs. Pyrethroids have also been
reported to accumulate in farmed salmon [48].

Pyrethroids were detected in most unhatched eggs from wild birds from Doñana
(Spain), with mean total values from 1.93 to 162 ng/g lw depending on the species
[53]. The many factors for this variation could include the feeding habits, body
condition, age, habitat and migratory behaviour. Fenpropathrin, fluvalinate and
resmethrin were not detected. Cypermethrin, λ-cyhalothrin and bifenthrin were
found in over 75% of the samples. Eggs of species with anthropogenic feeding
habits were more contaminated, followed by eggs of birds of the aquatic feeding
category. This suggests that dietary intake might play an important role in the
bioaccumulation of pyrethroids. It is also consistent with the higher contamination
in urban areas and the aquatic ecosystems being easily contaminated via run-off.

A limited number of studies have considered the accumulation of pyrethroids
in human milk. Permethrin, λ-cyhalothrin, esfenvalerate, cypermethrin, tetramethrin
and bifenthrin were found in most milk samples from a rural area in Mozambique
[59]. Total pyrethroid levels were between 87 and 1,200 ng/g lw. The main
contributor to the pyrethroid profiles was λ-cyhalothrin, followed by permethrin
and then cypermethrin, esfenvalerate and tetramethrin. The difference with the levels
previously found in human breast milk from Switzerland (median 15–31 ng/g lw)
can be related to a more limited use for agricultural and domestic applications
in Switzerland [60]. Conversely, levels of pyrethroids similar to the samples from
Mozambique had been found in South Africa [9, 61]. The authors suggested a
domestic source of contamination for the Swiss samples and an agricultural
source for the South African ones.

A bigger and more recent study including human milk samples from urban
and rural areas of Colombia, Spain and Brazil reported concentrations from 1.45
to 24.2 ng/g lw [10]. These results were similar to the ones reported for the
Swiss samples. Individual concentrations decreased from cypermethrin (up to
16.4 ng/g lw) through tetramethrin, λ-cyhalothrin, bifenthrin, permethrin, fenvalerate
to deltamethrin (up to 1.86 ng/g lw). As reported in several studies with animal
samples, the pyrethroid profiles suggested usage of different pyrethroids in
different areas, supported by knowledge of local usage (cypermethrin in Colombia)
[10] or agreement with other studies (permethrin in striped dolphins from southern
Spain) [8]. The contamination in milk decreased exponentially with parity,
supporting the hypothesis of maternal transfer of pyrethroids.
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Many of the cited works performed isomeric analysis to assess the isomer-specific
accumulation or metabolization in mammals. The Franciscana dolphins seemed
to either bioaccumulate trans-permethrin selectively in their first years of life
or metabolize cis isomer better after they reached sexual maturity [7]. An
enrichment on the trans isomer of permethrin was also observed in the samples of
human milk from Mozambique [59]. The isomeric data of Mediterranean striped
dolphins [8] showed no enantiomer-specific accumulation of tetramethrin. However,
enantiomer-specific accumulation of (1S,3S)-permethrin over (1R,3R)-permethrin
was suggested.

Almost all the samples of Iberian river fish showed a preference to bioaccumulate
the cis isomers of pyrethroids, with only tetramethrin opposing that trend [43].
The authors argued that this could mirror the environmental contamination
as commercial mixtures might be rich in trans-tetramethrin and a dominance of
cis-permethrin was also observed for the samples of Spanish human milk [10]
and the unhatched eggs from Doñana [53]. Isomer-selective bioaccumulation
depending on fish species was also hinted at in this study [43] and on the one on
farmed salmon [48].

The analysis of human milk samples from Brazil, Colombia and Spain
showed higher accumulation of the cis isomer for esfenvalerate and permethrin
and the contrary for cyfluthrin, cypermethrin and tetramethrin [10]. Cyfluthrin and
cypermethrin disagree with the cis-dominating trend of other studies, which might
imply that their trans isomers were selectively accumulated in human milk. The
human milk samples from Mozambique contradicted the cis-dominating trend
for permethrin, which might reflect a higher bioaccumulation of the trans isomer
or a better metabolization of cis-permethrin [59].

Analysing environmental samples from the areas where biological samples are
collected would allow more accurate observations regarding isomer selectivity.

Related to breast milk, lactation and gestation result in the maternal transfer
of contaminants [66, 67]. The maternal transfer of pyrethroids has been observed
using samples of breast milk and placenta from pregnant and lactating Franciscana
dolphins [7] and several tissues from mother-foetus pairs of Franciscana dolphins
and Guiana dolphins [70]. Foetuses showed a higher pyrethroid burden in blubber
than their mothers, but the contrary happened for muscle tissue. As pyrethroids are
also found in human milk, they must be transferred to lactating babies; however,
the EDI values reported by the corresponding studies for each pyrethroid were below
their corresponding ADI [10].
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Abstract Pyrethroids are used throughout the world in agricultural settings and
inside and outside of residences to control pests. This has resulted in their increase in
air concentration leading to inhalation, and to a lesser extent dermal, exposures to
applicators, their families, and the general public. Applicators need to wear appro-
priate personal protection equipment (PPE) to avoid high exposures during or after
spraying of crops. The various uses of the pyrethroids and pyrethrins are regulated
and education often mandated to minimize potential exposures. Outdoor levels are
predominantly influenced by agricultural applications which can result in drift of the
pesticides to the surrounding residential communities. Drift contributions decrease
with distance from application and depend upon wind conditions, temperature, and
precipitation. Only a limited number of studies have directly measured pyrethroid air
concentrations due to the effort involved. Rather, air concentrations and the resulting
exposure estimates rely on mathematical modeling to predict the transport and
distribution of pyrethroids and on biomarker measurements to determine uptake in
individuals. Urinary metabolites are the most common biomarkers. However, most
of the metabolites are not specific to individual pyrethroids; rather, they provide
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evidence that an individual or population were exposed to one or more pyrethroid
pesticide. Recently, silicone bracelets have been deployed to evaluate relative
personal inhalation exposures to pyrethroids as part of a scan for multiple semi-
volatile organic compounds. When pyrethroids are sprayed indoors, they are
absorbed onto surfaces and by house dust. The absorbed pyrethroids subsequently
equilibrate with the indoor air and are distributed throughout the home resulting in
multiple exposures over an extended time period. Inhalation of pyrethroids usually
contributes only a small portion (<10%) of the total exposure in the general
population, with ingestion of foods grown or stored with pesticides to increase
crop yield having the largest contribution. Inhalation exposures can be significant
though following the use pesticide application devices that release larger amounts
into the air or if individuals enter a treated area without adequate ventilation or prior
to the pyrethroid air concentration declining sufficiently.

Keywords Chromatography, Metabolites, Reapplication timing, Silicone
wristband, Volatilization

1 Introduction

Insecticide use extends beyond the agricultural settings into residential houses and
gardens for pest control, with 82 million households in the USA applying insecti-
cides annually [1]. Pyrethroids and pyrethrins are among the most frequently used
insecticides in the USA and globally [2, 5]. Their use contaminates the personal air
of applicators and causes elevated air concentrations, both indoors and outdoors,
exposing the general public to these compounds. Pyrethrins are derived from
chrysanthemum flowers. Pyrethroids are synthetic chemical insecticides whose
chemical structure is based on pyrethrins. Pyrethroids’ chemical structures have
been modified from the naturally occurring pyrethrins to increase their stability in
sunlight while retaining similar effects on the nerve functions of the target insect
pests. These insecticides are effective against a wide range of insect pests including
ants, mosquitoes, flies, fleas, and moths, which has led to their widespread use and
presence in a variety of commercial and consumer products that are sprayed or
released into the air. Pyrethroids affect the neurological system of the insect rapidly
(within minutes) after contact leading to a knockdown of the insect, though the effect
may not always be fatal. Their usage has increased extensively over the last several
decades. According to the US EPA [6], approximately 1–3 million pounds of
permethrin, a commonly used pyrethroid, is applied annually to residential homes
and garden sites. Studies in Northern California involving 259 residential house-
holds found that 77% of the insecticides used were pyrethroids [7]. There are over
3,500 registered products that contain at least one pyrethroid as an active ingredient,
many of which are formulated for use in and around households, on pets, in treated
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clothing, for mosquito control, and in agricultural settings. The formulations include
products that have a direct application on the skin of pets for lice treatment,
impregnation of cloth, in sprays, and as part of aerosolizing devices for treatments
of larger areas. Since many pyrethroids are semi-volatile compounds, even applica-
tions onto surfaces can result in elevated air concentrations as they volatilize.
Whether these products are used by professionals or purchased for direct use by
the consumer, the result is the same: elevated air concentrations, both indoors and
outdoors, exposing a wide section of the population [8, 9].

A growing application of pyrethroid use is as a mosquito repellent, which can be
applied topically but also released into the air from mosquito coils, electric vapor-
izers, or aerosol sprays resulting in elevated air levels [10, 11]. These devices, along
with other applications, such as foggers implemented to kill swarming flying insects,
can produce transient high indoor air concentrations (μg/m3) during their applica-
tion. Many formulations of pyrethrins also include agents that act as synergists, such
as piperonyl butoxide, piperonyl sulfoxide, and sesamex, whose role is to interfere
with the insects’ enzymatic system by degrading pyrethrins, thereby improving the
pyrethroid or permethrin’s effectiveness.

2 Regulation of Pyrethroids

The production and use of pyrethroids, as well as all pesticides, in the USA are
regulated by the US EPA Office of Pesticide Programs under the Federal Insecticide,
Fungicide, and Rodenticide Act (FIFRA) and the Food Quality Protection Act
(FQPA). Within Europe regulation of pesticides, also referred to as plant protection
products (PPP), can be regulated by the European Union and for food by the
European Food Safety Authority. Regulation can also be implemented through
individual countries that are part of the European Union. Countries and regions
throughout the world have generally developed regulations for pesticide use and
acceptable residual amounts [12]. The regulations are designed to minimize harmful
exposure through the air and other exposure routes by providing direction on
(1) where and how a pesticide can be used and (2) what specific details need to be
included on their labels for their use, storage, and disposal. The label provides
guidance to professional applicators to protect themselves and the general public.
Labels are also required for consumer products to indicate how they can be used
safely. Pyrethroids are permitted pesticides for multiple applications in agricultural
and residential settings. Regulations are based on human health risk assessments and
ecological risk assessments and have been released or are in draft form for many
pyrethroids (i.e., allethrins, bifenthrin, cyfluthrins, cypermethrin, cyphenothrin,
d-phenothrin, deltamethrin, esfenvalerate, etofenprox, fenpropathrin, flumethrin,
gamma-cyhalothrin, imiprothrin, lambda-cyhalothrin, momfluorothrin, permethrin,
prallethrin, pyrethrins, resmethrin, tau-fluvalinate, tefluthrin, tetramethrin, and
tralomethrin and for two synergists often added to the pesticide formulation
piperonyl butoxide and MGK-264) [9]. The regulation for each pyrethroid provides
information on its type (e.g., synthetic pyrethroid, knockdown agent), target
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organism, mode of action, permissible/expected use site (e.g., agricultural setting,
home, institutional sites, nonfood or food plant, indoors, outdoors, on pets), use
classification (e.g., general use or pest control operators only), formation type
(liquids, concentrates, coils, mats), application method (e.g., power, mechanical,
commercial spray, aerosol can, fogger), application rate (includes percent active
agent), and application timing (e.g., reapplication timing) [13].

3 Pyrethroids Associated with Agricultural Activities

Pyrethroids are currently among the most commonly used pesticides in agricultural
settings to control insects on crops; in forestry, horticulture, and gardens; and for
flying insects on livestock and pets [14]. They can be sprayed aerially, from trucks,
tractors, or handheld devices onto crops, all of which potentially increase outdoor air
concentrations and expose applicators, farm workers in the fields, and residents in
nearby homes. Most recent studies of exposure to workers and to individuals
exposed to drift from agricultural applications have evaluated urinary levels of
pyrethroid metabolites rather than measuring air concentrations to assess inhalation
exposures [14]. Thus, few recent studies have reported worker’s exposure to air
concentrations. The current US occupational exposure limit for pyrethroids for an
8-h workday, 40-h workweek is 5 mg per cubic meter (mg/m3) [14]. The most
extensive study of exposure to pesticides in the USA is the Agricultural Health
Study, initiated in 1993 when the participants used chlorinated and organophosphate
insecticides. More recently, pyrethroid exposures are being examined in a subset of
the participants in the Biomarkers of Exposure and Effect in Agriculture (BEEA)
study [6] with cyfluthrin and permethrin being reported to be used in 2010 by 13%
and 12%, respectively, of the 1,223 participants. While the applicator is expected to
encounter the highest air concentrations, workers are supposed to be supplied with
personal protective equipment (PPE), which if properly used reduces the inhaled
pesticide levels and skin contact [15, 16]. The use of PPE is part of the EPA’s
Agricultural Worker Protection Standard (WPS) [17]. The WPS provides guidance
on procedures to reduce worker exposure to pesticides and therefore the risk of
pesticide poisoning and injury among over the two million agricultural workers,
pesticide handlers, and their families in the United States. This is done through
informing (safety training, written safety information, labeling, notification about
treated areas to avoid), protecting (avoiding treated areas, suspending application
when others are near, reentry guidelines, monitoring, proper personal protective
equipment – including respirators), and mitigation of adverse events (availability of
decontamination supplies – routinely and for emergencies, emergency transportation
to medical facilities) [17].
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4 Spray Drift Contribution of Air Concentrations

The spraying of crops is often done over large areas and uses significant amounts of
pyrethroids which can result in spray (aerosol) drift or vapor phase (volatilization)
transport of the pyrethroids reaching residences several hundred meters or more
away [18]. The degree that the spray drift may impact air concentrations at sur-
rounding residences is dependent upon the distance from the application to the
receptor residence, the meteorological conditions (e.g., wind speed, wind direction,
temperature, precipitation), application method, nozzle type, and the height the spray
is released from [19]. Field measurements of spray drift can be difficult and
expensive. Therefore, mathematical modeling of the drift has been used to predict
the extent of the impacted areas and the concentration gradient for different scenar-
ios, which can help guide the US EPA minimize the impact of spray applications on
the surrounding environment and residences [20]. Recently, remote sensing instru-
ments have been deployed to estimate the relative amount of deposition and spatial/
temporal air concentrations and are used for model evaluation [21, 22]. Drift has
been found to occur during every application and can account for approximately
2–25% of the pesticide loss during application with the drift spreading from a few
yards to several hundred miles [23]. Various mathematical models of the drift have
been developed. One computational fluid dynamic (CFD) model of spray droplets
suggests that the air pesticide droplet concentration would decrease by two orders
magnitude from 100 to 1 μg/L (1,000 μg/m3) over a 200 m distance from its release
[24]. A study based on samples collected between 1995 and 2015 looking at the
variations in pesticide levels in house dust with distance from agricultural fields in
North America showed, that the amount of pesticide drift decreased sharply and
nonlinearly with distance from the source [25]. They reported that the geometric
mean pesticide dust levels were 64% lower in homes 250 m from fields compared to
homes only 23 m away and that homes near farms in which the pesticides were
applied more recently or frequently were 2.3 higher than other homes near fields
without recent pesticide applications.

5 Outdoor Air Levels

Few recent studies that have measured outdoor or personal worker pyrethroid air
concentrations. This is due to sampling and analytical challenges and the need to
evaluate the exchange between the vapor and particle phase for the semi-volatile
pyrethroids. Current studies more commonly use biomarker measurements to assess
exposure rather than air monitoring. As discussed below, biomarkers do not differ-
entiate inhalation exposure from other exposure routes, and several biomarkers are
non-specific, reflecting exposures to multiple pyrethroids and pyrethrins. A method
developed within the last few years measures semi-volatile organic compounds
(SVOCs) by having participants wear a silicone wristband for several days which
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passively collects SVOCs including pyrethroids [26]. The silicone wristband is
extracted and analyzed by gas chromatography/mass spectrometry or by gas chro-
matography/electron capture detection for the pyrethroids. The latter, while not
positively confirming the compound’s identity, often has a lower detection limit.
The silicone wristband has the benefit of requiring little field effort and wearing it
presents relatively low participant burden that is often acceptable to individuals
across both genders and over a wide range of ages and ethnic groups. However, the
amount collected on the wristband may have contributions from dermal contact and
is dependent upon the compound’s diffusion rate which varies based on if the
wristband is opened to the air or covered by clothing and the time period it is
worn. Therefore, the amount collected does not readily translate to average personal
air concentrations [27] but rather provides a relative measure of the air concentration
encountered and provides confirmation that inhalation exposure occurred. Table 1
lists a number of studies conducted in different countries using this method and the
pyrethroids detected along with the mass collected on the silicone wristband. In
addition to detecting several pyrethroids in multiple settings, piperonyl butoxide, a
synergist added to pyrethroid application mixtures, was found in wristbands for
more than half of the participants.

6 Indoor Air Levels

While the quantity of pesticides sprayed outdoors during a single application in
agricultural settings is typically much higher than the amount sprayed indoors, indoor
pyrethroid air concentrations and the associated exposures can be higher than out-
doors. Spraying indoors may occur in close proximity to individuals not wearing
personal protective equipment (PPE) such as a respirator or gloves. Further, spraying
indoors is done within a confined space, while spraying outdoors has significantly
more dilution due to the open area and wind. A variety of factors that degrade
pyrethroid residue outdoors, e.g., sunshine, precipitation, and temperature extremes,
are either not present or less extreme indoors extending their residence time in indoor
settings compared to outdoors [32]. Elevated pyrethroid air concentrations can also
occur indoors from the redistribution of these compounds from sprayed surfaces
when the pyrethroids volatilize, redistribute onto dust, and become resuspended
[33]. Pyrethroid pesticides are SVOCs with low vapor pressures and high octanol/
water and water/organic carbon partitioning coefficients facilitating their absorption
onto the organic component of house dust. House dust has been shown to be a
reservoir for many SVOCs, including pesticides [34]. An additional concern for
pyrethroids present in indoor air is that they are breathed by a range of individuals,
including those potentially more sensitive to adverse health effects than the healthy
workers including children, the elderly, and individuals with preexisting health
conditions. Further, the amount of time that people spend indoors (>90%) exceeds
that spent outdoors, which for the general population is <10% and for workers
20–50% (35–40 h/week). This results in more exposure to indoor contaminants.
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Table 1 Personal air samples collected using silicone wristbands

Study and location Pyrethroids measured
Amount per band and frequency of
detection

Donald et al. [28] (West Africa)
n ¼ 70

Deltamethrin 530 ng per ng band (frequency
99%)

Cypermethrin 293 ng per ng band (frequency
94%)

Esfenvalerate 14.6 ng per ng band (frequency
40%)

trans-Permethrin 48.8 ng per ng band (frequency
27%)

cis-Permethrin 19.5 ng per ng band (frequency
17%)

Bergmann et al. [29] (Peru)
n ¼ 65

Cypermethrin 77–7,700 ng per ng band
(frequency 71%)

Bioallethrin Only in single sample
Cyhalothrin gamma Only in single sample
Cyhalothrin lambda Only in single sample
Cypermethrin I Only in single sample [28]
Cypermethrin II Only in three samples
Cypermethrin III Only in single sample 7
cis-Cyphenothrin Only in single sample
trans-Cyphenothrin Only in single sample
Fipronil Only in single sample
cis-Permethrin Only in two samples
trans-Permethrin Only in single sample
Piperonyl butoxide Only in nine samples

Harley et al. [30] (California,
USA) n ¼ 97

Only frequency reported
Cypermethrin 56%
trans-Permethrin 52%
cis-Permethrin 49%
Esfenvalerate 41%
Piperonyl butoxide 19%
Fipronil 10%
Fipronil sulfide (breakdown
product)

87%

Fipronil sulfone (breakdown
product)

45%

Aerts et al. [31] (Belgium) n ¼ 30 Fipronil 0.8–90 ng per ng band (frequency
33%)

Fipronil-desulfinyl 0.4–47 ng per ng band (frequency
10%)

Fipronil sulfone 0.4–2.0 ng per ng band (frequency
27%)

Mepanipyrim 0.8 ng per ng band (frequency
3.3%)

Pyrimethanil 2.9–8.7 ng per ng band (frequency
10%)

Pyriproxyfen 3 ng per ng band (frequency 3.3%)
Piperonyl butoxide 0.9–55 ng per ng band (frequency

63%)
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Pyrethroid sources to indoor air include applications by exterminators and resi-
dents within buildings, penetration of pyrethroids from outdoors associated with
drift from agricultural settings and treatment of surrounding outdoor settings or
neighboring apartments/buildings, and resuspension of dust that absorbed pyre-
throids or volatilization from dust and indoor surfaces. Indoor pesticide application
equipment that directly increases air concentrations include ready-to-use products
with a trigger pump spray, pressurized aerosol cans, compressed air sprayers,
broadcast applications, coils, and vaporizers.

Li et al. [10] evaluated the indoor air levels during and post-application for a
series of controlled mosquito control applications using four different application
methods (mosquito coil, liquid vaporizer, vaporizing mat, and aerosol spray). They
measured sub-μg/m3 levels of several pyrethroids during the application with air
concentrations decreasing 1–2 orders of magnitude within 12 h following the
application (Table 2). They also observed lower air levels when windows were
opened as opposed to closed, which is consistent with higher ventilation rates
reducing air concentrations. The percentage of pyrethroids in the particulate phase
varied from 40 to >95% for dimefluthrin, allethrin, cypermethrin, and tetramethrin,
with compounds having lower vapor pressure being more associated with the
particulate phase [10]. An older study quoted by Li et al. reported ppm air concen-
trations of various pyrethroids in residue over very short-time intervals of minutes
[40]. Li et al. suggested that the apparent higher levels measured previously reflected
the timing between the application and the sample collection and the sampling
duration [41]. Multiple sample collection indicates, not surprisingly, that the peak
air concentrations are during the pyrethroid application. To avoid unnecessary
pesticide exposure, typical labels caution against vulnerable individuals, such as
children, being in the room when spraying is done, and the sprayed area should be
adequately ventilated before it is reoccupied. Nazimek et al. measured 1.3–5.2 μg/m3

of transfluthrin in the indoor air after application of gel and liquid formulas in an
electro-vaporizer application, though the levels were below detection 18–24 h after
the application [41]. An evaluation of multiple pyrethroids in residences in South
Korea found that the air concentration of the sum of pyrethroids present (Table 3)
was inversely related to the time since it was last sprayed but not to frequency of use,
room sprayed, or if products were stored indoors [44]. Vesin et al. [46] used a high
sensitivity proton-transfer-reaction mass spectrometer (HS-PTRMS) to measure
time-resolved gas-phase air concentrations of transfluthrin emitted during an electric
vaporizer application and reported a constant increase until the unit was unplugged,
then reaching 4.9 μg/m3 after 8 h at a room air exchange rate (AER) of 0.35 h�1 and
8.5 μg/m3 at an AER of 0.14 h�1. Once the vaporizer was unplugged, the air
concentration decreased exponentially at a rate based on the AER. They also
reported that the air concentrations continued to rise reaching a steady-state concen-
tration of 16 μg/m3 after 33 h for the lowest AER (0.14 h�1) examined.

Pyrethroid exposure of children and pregnant women is of particular concern
since pyrethroids can affect the neurological system and potentially other organs
[47–49]. Ingestion of food contaminated with pyrethroids and inadvertent ingestion
of household dust in treated residences are generally larger exposure routes than
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Table 2 Outdoor pyrethroid air concentrations

Study and location Pyrethroids measured
Range detected and frequency of
detection

Blanchard et al. [35] (France) Bifenthrin ND–2.9 ng/m3

cis-Permethrin ND–8.0 ng/m3

Morgan et al. [36] (Ohio, USA) Permethrin In 18% of samples >1 ng ng/m3

Li et al. [10] (China) Cypermethrin particles 0.218 � 0.369 ng/m3 (1.3 max)

Cypermethrin vapor 0.010 � 0.003 ng/m3 (0.015 max)

Total pyrethroid
particulate

0.352 � 0.443 ng/m3 (1.8 max)

Total pyrethroid vapor 0.061 � 0.051 ng/m3 (0.1 max)

Bradman et al. [37] (CA, USA) cis-Allethrin <21

trans-Allethrin <2

Bifenthrin <1

Cyfluthrin <100

λ-Cyhalothrin <10

Cypermethrin <100

Deltamethrin <50

Esfenvalerate <25

cis-Permethrin ND–8.0 ng/m3 (frequency 30%)

trans-Permethrin <2

Resmethrin <2

Sumithrin <2

Tetramethrin <4

Morgan [38] (North Carolina,
USA)

Cyfluthrin ND

cis-Permethrin ND–1.62 ng/m3 (frequency 16%)

trans-Permethrin ND–1.01 ng/m3 (frequency 16%)

Cyfluthrin ND

cis-Permethrin ND–0.45 ng/m3 (frequency 39%)

trans-Permethrin ND–0.34 ng/m3 (frequency 39%)

Tulve et al. [39] (USA) cis-Allethrin ND

trans-Allethrin ND

Bifenthrin ND

λ-Cyhalothrin ND

Cyfluthrin ND

Cypermethrin ND–19 ng/m3 (frequency 22%)

Deltamethrin ND

Esfenvalerate ND

cis-Permethrin ND–2.3 ng/m3 (frequency 100%)

trans-Permethrin ND–10 ng/m3 (frequency 100%)

Pyrethrin I ND

Pyrethrin II ND

Sumithrin ND

Tetramethrin ND–0.15 ng/m3 (frequency 33%)

Piperonyl butoxide ND–3.1 ng/m3 (frequency 100%)
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Table 3 Indoor pyrethroid air concentrations

Study and location Pyrethroids measured
Range detected and frequency of
detection

Yoshida et al. [42] (Japan) Sampled after mosquito
clothes repellent used
Empenthrin 2.3 ng/m3

Profluthrin 1 ng/m3

Sampled after mosquito
electrical repellent used

Day Night

Prallethrin 34 ng/m3 37 ng/m3

Furamethrin 39 ng/m3 24 ng/m3

Allethrin 148 ng/m3 122 ng/m3

Furamethrin 5 ng/m3 4.1 ng/m3

Transfluthrin 12 ng/m3 9.2 ng/m3

Prallethrin 69 ng/m3 23 ng/m3

Metofluthrin 0.24 ng/m3 0.15 ng/m3

Leng et al. [43] (Germany) Cypermethrin ND–934 ng/m3 (frequency
9.4%)

Bradman et al. [37]
(California, USA)

cis-Allethrin <21–63 ng/m3 (frequency 15%)
trans-Allethrin <2–61 ng/m3 (frequency 15%)
Bifenthrin 1–3.1 ng/m3 (frequency 5%)
Cyfluthrin <100
λ-Cyhalothrin <10
Cypermethrin <100–310 ng/m3 (frequency

5%)
Deltamethrin <50
Esfenvalerate <25
cis-Permethrin <2–8.2 ng/m3 (frequency 40%)
trans-Permethrin <2–11 ng/m3 (frequency 16%)
Resmethrin <2
Sumithrin <2–96 ng/m3 (frequency 10%)
Tetramethrin <4

Le et al. [10] (Korea) After mosquito coil used During
application

12 h post

Dimefluthrin windows open 503–549 ng/m3 0.1–1. Ng/m3

Dimefluthrin windows closed 454–781 ng/m3 34–46 ng/m3

After mosquito liquid
vaporizer
Dimefluthrin 193–346 ng/m3 116–181 ng/

m3

After mosquito vaporizing mat
Allethrin 15,100–

24,300 ng/m3
310–1,570 ng/
m3

After mosquito aerosol spray
Allethrin 170–270 ng/m3 21–74 ng/m3

Cypermethrin 21.7–36 ng/m3 0.5–0.6 ng/m3

Transfluthrin 16.5–48.3 ng/
m3

3.5–9.5 ng/m3

(continued)
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Table 3 (continued)

Study and location Pyrethroids measured
Range detected and frequency of
detection

Blanchard et al. [35]
(France)

Particles
Cypermethrin <0.2–0.28 ng/m3 (frequency

3%)
Permethrin <0.002–1.5 ng/m3 (frequency

40%)
Tetramethrin <0.002–85.0 ng/m3 (frequency

27%)
Vapor phase <0.6 ng/m3 (not
detected)

Nazimek et al. [41]
(Poland)

Transfluthrin 1.3–2.4 ng/m3 gel formulation
3.8–5.2 ng/m3 liquid formulation
ND 28–18 h later

Pentamwa et al. [44]
(Bangkok, Thailand)

Sum pyrethroids
Home sprayed 1 per week 0.09–2.0 ng/m3

Home sprayed 1 per month 0.01–0.04 ng/m3

Home sprayed 1 per 6 months ND
Wyatt et al. [45] (New York
City, USA)

Indoor air Personal air
Piperonyl butoxide <0.2–608 ng/

m3 (46%)
0.2–98.2 ng/
m3 (61%)

trans-Permethrin <0.1–164 ng/
m3 (14%)

<0.1–7.5 ng/
m3 (15%)

cis-Permethrin <0.4–125 ng/
m3 (17%)

<0.4–9.4 ng/
m3 (13%)

Tulve et al. [39] (USA) cis-Allethrin ND–74 ng/m3 (frequency 33%)
trans-Allethrin ND–38 ng/m3 (frequency 33%)
Bifenthrin ND–4 ng/m3 (frequency 11%)
λ-Cyhalothrin ND–5.5 ng/m3 (frequency 11%)
Cyfluthrin ND
Cypermethrin ND–100 ng/m3 (frequency 22%)
Deltamethrin ND
Esfenvalerate ND–0.32
cis-Permethrin ND–92 ng/m3 (frequency 89%-

median 2.0)
trans-Permethrin ND–130 ng/m3 (frequency 89%-

median 3.1)
Pyrethrin I ND–12 ng/m3 (frequency 44%)
Pyrethrin II ND–0.91 ng/m3 (frequency

11%)
Sumithrin (d-phenothrin) ND–4.2 ng/m3 (frequency 11%)
Tetramethrin ND–63 ng/m3 (frequency 22%)
Piperonyl butoxide ND–378 ng/m3 (frequency 89%-

median 7.4)
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inhalation exposure at typical air levels, with inhalation contributing 5–10% of the
total exposure [50]. Pyrethroid air concentration is in steady state with household
dust levels. Bradman et al. measured air concentrations indoors and outdoors along
with house dust levels in the homes of 20 children and only found measurable levels
of cis-permethrin in the air, while several other pyrethroids were present in the house
dust [37]. Tulve et al. measured indoor and outdoor air, wipe samples from play
areas, levels on socks, and in food for 14 pyrethroids, piperonyl butoxide, and
2 other pesticides in the homes of 9 children (Table 3) [39]. Most pyrethroids
were detected more frequently in indoor air than outdoor air, and the median and
maximum concentrations were higher [39] in the indoor air samples. They also
found correlations between the wipe samples and the indoor air levels for multiple
pyrethroids across the homes.

Since dust can be resuspended by movement in a home, Zhou et al. used a robot to
simulate a toddler’s movement and observed that the movement increased particu-
late pyrethroid air concentrations [51]. They measured twice the permethrin air
concentrations near the moving robot at a toddler’s breathing zone height compared
to levels at an indoor stationary sampler collected simultaneously. They also found
differences in the air concentration when the robot resuspended dust from a vinyl
floor (65 and 143 ng/m3, stationary and robot sample, respectively) compared to a
carpeted floor (34 and 61 ng/m3, stationary and robot sample, respectively). This
study demonstrated the need for caution when using indoor air concentrations rather
than personal air concentration measurements to estimate pyrethroid inhalation
exposure.

7 Urinary Metabolites of Pyrethroids

Once inhaled, pyrethroids are metabolized in the body and excreted with many
compounds having half-lives of just hours. A list of common pyrethroids and their
metabolites is given in Table 4 [48, 52]. Several pyrethroids have the same metab-
olites, e.g., 3-BPA, cis-DCCA, and trans-DCCA, so while the presence of these
metabolites in urine indicates that there was likely an exposure to a pyrethroid, it
does not confirm which specific pyrethroid was present nor the exposure route. The
metabolites are predominantly excreted as sulfate and glucuronide conjugates in the
urine. The urinary metabolite levels have been used to evaluate exposure models.
Several studies have used the US EPA Stochastic Human Exposure and Dose
Simulation (SHEDS)-Multimedia model to predict the relative contributions of
pyrethroid exposures across all routes and compare the results to urinary 3-PBA
levels [50, 53, 54]. While there was a strong correlation between the total exposure
predicted and the urinary 3-PBA levels, only a small percentage of the cumulative
exposure was calculated to be via inhalation, and the inhalation exposure was not
correlated to the urinary levels across the entire population studies.

Time series changes in urinary levels of trans-DCAA and 3-PBA were shown to
be related application of permethrin in an agricultural settings to workers exposed
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through inhalation and dermally and provided information on the kinetics of
permethrin and its metabolites [55]. Physiologically based pharmacokinetic
(PBPK) models predict how a compound is taken up, distributed, metabolized,
and excreted by the body. PBPK models have been used to evaluate urinary
metabolite data and to estimate the corresponding inhalation exposure and other
exposure routes and back-calculate the pyrethroid air concentrations associated with
the measured urinary metabolite levels [56–59]. These studies have also suggested
that for typical household indoor air concentration, and the corresponding inhalation
exposure is not the major source of pyrethroids exposures to individuals. However,
estimates related to peak, shorter-term exposures that can occur during pesticide
applications and corresponding health effects have not been adequately evaluated
using PBPK modeling.

Table 4 Selected metabolites of commonly used pyrethroids and pyrethrins

Pyrethroid 3-Phenoxybenzoic acid (3-PBA)

Allethrin 3-Phenoxybenzoic acid (3-PBA)

Cypermethrin 3-Phenoxybenzoic acid (3-PBA)
cis-3-(2,2-Dichlorovinyl)-2,2-dimethyl-cyclopropanecarboxylic acid (cis-
DCCA)
trans-3-(2,2-Dichlorovinyl)-2,2-dimethyl-cyclopropanecarboxylic acid (trans-
DCCA)

Cyfluthrin cis-3-(2,2-Dichlorovinyl)-2,2-dimethyl-cyclopropanecarboxylic acid (cis-
DCCA)
trans-3-(2,2-dichlorovinyl)-2,2-dimethyl-cyclopropanecarboxylic acid (trans-
DCCA)
4-Fluoro-3-phenoxybenzoic acid (FPBA)

λ-Cyhalothrin 3-Phenoxybenzoic acid (3-PBA)
cis-3-(2-Chloro-3,3,3-trifluoroprop-1-en-1-yl)-2,2-dimethylcyclopropane
carboxylic acid (CFMP)

Deltamethrin 3-Phenoxybenzoic acid (3-PBA)
cis-3-(2,2-Dibromovinyl)-2,2-dimethyl-cyclopropane carboxylic acid (cis-
DBCA)

Esfenvalerate 3-Phenoxybenzoic acid (3-PBA)
20-(40-Hydroxyphenoxy)-benzoic acid or 30-(40-Hydroxyphenoxy)-benzoic acid

Fenvalerate 3-Phenoxybenzoic acid (3-PBA)

Flumethrin 3-(2-Chloro-2-(4-chlorophenyl)ethenyl)-2,2-dimethylcyclopropanecarboxylic
acid (flumethrin acid)
4-Fluoro-3-phenoxybenzoic acid (FPB acid), 40-OH-FPB acid

Permethrin 3-Phenoxybenzoic acid (3-PBA)
cis-3-(2,2-Dichlorovinyl)-2,2-dimethyl-cyclopropanecarboxylic acid (cis-
DCCA)
trans-3-(2,2-Dichlorovinyl)-2,2-dimethyl-cyclopropanecarboxylic acid (trans-
DCCA)

Phenothrin 3-Phenoxybenzoic acid (3-PBA)

Resmethrin 3-Phenoxybenzoic acid (3-PBA)

Tetramethrin 3-Hydroxy-cyclohexane-1,2-dicarboximide
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8 Summary

Peak pyrethroid air concentrations can occur during application of pesticides both
outdoors and indoors. Professional applicators should be deploying appropriate
personal protective equipment to reduce their internal pyrethroid exposure and
protect their health. Further, pyrethroids should not be sprayed when it may cause
others to encounter elevated air levels. Indoor pyrethroid air concentration is
impacted by drift from agricultural uses, exterior spraying of nearby areas, spraying
indoors, and resuspension or volatilization of pyrethroids on house dust. Indoor
pyrethroid air concentrations can exceed outdoor levels and expose vulnerable
populations. Current studies typically measure urinary metabolites of pyrethroids
rather than air concentrations to evaluate exposure to these compounds and have
found that for cumulative exposure inhalation of air generally contributes <10% of
the total dose that is received to the general population. Air concentration present
during or shortly after applications such as spraying, use of mosquito repellent coil
or vaporizers and foggers can result in higher air concentration and more significant
inhalation exposures if proper precautions are not taken.
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Abstract For decades, the global demand for food has been increasing as a result of
population growth and changes in diets. Together with this demand, the ample use of
pesticides and insecticides in every step of the production chain has grown. Pyre-
throids are systemic pesticides widely used in both agriculture and veterinary. They
are often found on the surface of fruits and leafy vegetables or deposited on the lipid
bilayer in products of animal origin. Considering the high use of pyrethroids all
around the world, the potential risks of human exposure to residues in food products
are a matter of great concern. Risk assessment is the scientific basis for risk
management according to various international agencies. The vast majority of
pesticide residue risk assessments in food are based on the toxicological evaluation
of individual compounds, but assessments of cumulative exposure to multiple
residues have gained notoriety. The evaluation of the “daily intake” is of great
importance for human and environment safety.
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According to Paracelsus, pioneer of the medical revolution of the sixteenth century,
“Poison is in everything, and no thing is without poison. The dosage makes it either a
poison or a remedy.” Paracelsus’ quote remains valid nowadays. Humans are
subjected to high chemical daily exposure levels, thus making risk assessment of
the utmost importance. Food safety is an important means to promote public health,
emerging as an extremely relevant research area. Still, the dissemination of scientific
information regarding food safety is not widely explored, leading us to further
investigate its specifics and preferred methods of assessment. For decades, the global
demand for food has been increasing as a result of population growth and changes in
diets. Land for agriculture and storage options are scarce, justifying the ample use of
pesticides and insecticides in every step of the production chain.

Pyrethroids constitute the majority of agricultural and veterinary pesticides and
commercial household insecticides. Residues of pyrethroids are the main source of
agricultural pollution and are potentially hazardous, becoming a public health
concern [1].

Pyrethroids are systemic pesticides with a regulated use in food products, live-
stock, and livestock feed. They are often found on the surface of fruits and leafy
vegetables [2] or deposited on the lipid bilayer in products of animal origin [3]. In
this chapter, we will explore topics concerning the potential risks of human exposure
to pyrethroid residues in food products, considering the role of population’s diet in
the risk assessment.

Risk assessment is the scientific basis for risk management according to various
international agencies. The US Environmental Protection Agency defines the eval-
uation of potential outcomes of pesticides in food products through human health
risk assessment as the process to estimate the nature and probability of adverse
health effects in humans who may be exposed to chemicals in contaminated envi-
ronmental media, now or in the future (https://www.epa.gov/pesticide-science-and-
assessing-pesticide-risks/overview-risk-assessment-pesticide-program). Risk
assessment is also the basis of the Codex Alimentarius Commission, which through
the Joint Expert Committee on Food Additives (JECFA) and the Joint FAO/WHO
Meeting on Pesticide Residues (JMPR) establishes international guidelines for
pesticide residues in specific food items [4].

Most international environmental protection agencies use a four-step process for
human health risk assessments:

1. Hazard identification – aims to analyze available data on toxicity and mode of
action of agents present in a particular food or group of foods which are capable
of causing adverse health effects. Hazard identification is traditionally performed
through observation of the effects of pesticide residues in humans and animals
(domesticated and laboratory) and in vitro and structure-activity relationship
analyses.

2. Hazard characterization – is the description of the relationship between levels or
dose of the consumed residue of pesticide and the probability of development and
severity of an adverse health outcome. Hazard characterization of threshold toxic
effects usually constitutes reference data, such as the acceptable daily intake
(ADI), for example, for a residue of a pesticide in food products.
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3. Exposure assessment – examines the levels of pesticides in human diet, analyzing
frequency and timing of contact with or consumption of food products with
residues of pesticides. It estimates various factors such as age, gender, and
pre-existing health conditions.

4. Risk characterization – examines the nature and extent of human health risks
from exposure to pesticides. It indicates the overall degree of confidence in the
assessment and information about populations more likely to be susceptible to
pesticides.

The vast majority of pesticide residue risk assessments in food are based on the
toxicological evaluation of individual compounds, but assessments of cumulative
exposure to multiple residues have gained notoriety [5].

1 Human Exposure to Pyrethroids

Exposure to pyrethroids can be either occupational or nonoccupational and can
occur in several ways, such as inhalation and oral and dermal routes. The majority
of the population is not substantially exposed to pyrethroids via inhalation and
dermal routes, as the uptake is mostly caused by manipulation of household products
with pyrethroids in their formula. On the other hand, they are the major routes of
exposure for agriculturists working with pesticides. Oral exposure is the primary
contamination route in general population due to ingestion of food products
containing pyrethroid residues [1, 6].

Ingestion of food products of vegetal origin such as fruits and vegetables usually
causes more human health damage since their consumption is in a raw or a semi-
processed form. Conversely, cereals and animal products are heavily processed,
oftentimes through high-temperature and pasteurization processes, leading to deg-
radation of pyrethroids [7].

Deterministic and probabilistic approaches are often employed to analyze data on
food consumption and to quantitatively assess exposure [8, 9]. The deterministic
model utilizes available data and does not require evaluation of uncertainty compo-
nents, expressing results which can be easily elucidated. Based on results from
previous studies (REFs) performed in Spain in 2016, Quijano et al. [7] a mean-
estimated chronic cumulative risk assessment determined by multiplying the mean
pesticide concentration in a food product by the mean or the 95th percentile of the food
consumption, thus defining lower-bound and upper-bound scenarios, respectively.

The probabilistic approach quantifies variation and uncertainty, representing the
data as a distribution instead of fixed values, including variance parameters.
Parameters such as food consumption data, pesticide levels, body weight, and
susceptible population groups (infants, expecting and breastfeeding mothers, indi-
viduals with kidney or liver disorders) are used in the probabilistic approach for
higher accuracy. Monte Carlo simulation is the most commonly used approach to
estimate exposure, taking into account probability distributions. Risk assessment
requires an exact and systematic quantitative data analysis model, particularly
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when the calculated risk exceeds the acceptable values. Thus, the probabilistic
model is expected to surpass the deterministic model in the near future [10]
(https://www.epa.gov/expobox/exposure-assessment-tools-tiers-and-types-determin
istic-and-probabilistic-assessments. Accessed 18 Apr 2019).

Global exposure to pyrethroids through food consumption is reaching alarming
levels. Several studies performed in different countries reveal cases in which pyre-
throids were found in food products: Dallegrave et al. [3] analyzed the presence of
pyrethroid residues in food products of animal origin, finding approximately 10% of
milk samples contaminated with at least five different pyrethroids. Lehmann et al. [11]
analyzed food products of vegetal origin, and 8.5% of the samples had residue levels
higher than the MRL for lambda-cyhalothrin, and even the acute hazard quotient
(HQacute) was greater than 1, indicating risk. Quijano et al. [7] detected lambda-
cyhalothrin, cypermethrin, and bifenthrin in 9, 5 and 4% of the vegetal food product
samples, respectively. Zhixia Li et al. [12] reported that 30% of food products of
vegetal origin showed 2, 3 or 4 different pyrethroid residues, 3% in levels higher than
the MRLs. The authors also identified cypermethrin, bifenthrin, and lambda-
cyhalothrin with the highest acute and chronic hazard index values (Fig. 1).

2 In Vivo Toxicity

Pyrethroids are classified in two distinct groups according to the absence (type I) or
presence (type II) of a cyano group bound to the alpha-carbon in the molecule.
Figure 2 depicts structures of the main type I and type II pyrethroids.

Samples: tomato, cucumber, sorrel, okra and eggplant.
Positive results for lambda-cyhalothrin and cypermethrin.

Samples: apple, banana, beans, grape, lettuce, peach, pear, pepper,
spinach and tomato.
Positive results for fluvanilate, lambda-cyhalothrin, bifenthrin,
cypermethrin, deltamerthrin, esfenvarelate and cyfluthrin.

Samples: apple, pear, peach and grape.
Positive results for lambda-cyhalothrin, 
bifenthrin, cypermethrin, deltamethrin, 

fenvarelate, fenpropathrin and cyfluthrin.

Samples: fish, chicken, eggs, beef and milk.
Positive results for cis-bifenthrin, cyhalothrin, cypermethrin,
deltamethrin and permethrin.

1
2

3
4

Fig. 1 Detection of pyrethroid residues in food from several continents: 1 South America [3],
2 Africa [11], 3 Europe [7] and 4 Asia [12]
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Toxicity tests in laboratory animals revealed the occurrence of two syndromes,
namely, T and CS syndromes, related to type I and type II pyrethroids, respectively.
Neurotoxic symptoms caused by type I pyrethroids include shivering, irritability,
high fever, comatosis, and death. Type II pyrethroids may cause salivation, invol-
untary movements, violent trembling, comatosis, and death. Exposure to certain
pyrethroids, e.g., fempropatrin and esfenvalerate, leads to both T and CS syndromes.
Mammalian toxicity is low, and specific enzymatic systems allow mammals to
recover from contamination by pyrethroids in 24–48 h. Conversely, such degrada-
tion route is not present in insects, causing a higher insect toxicity [13].
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Fig. 2 Chemical structure of the type I pyrethroids (bifenthrin, permethrin, transfluthrin, and
tetramethrin) and type II pyrethroids (cypermethrin, cyfluthrin, cyhalothrin, and deltamethrin)
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3 Human Contamination

Recent research unanimously identifies ingestion of contaminated food products as
the most relevant factor of human health damages caused by pyrethroids. When
ingested, pyrethroids are immediately metabolized via hydrolysis of the ester,
forming the corresponding carboxylic acids, oxidation and glucuronidation, and
expelled in urine as conjugates. The main metabolites of pyrethroids in urine are
the cis- and trans-isomers of 2,2-dichlorovinyl-2,2-dimethylcyclopropane-1-carbox-
ylic acid (cis-DCCA and trans-DCCA) and 3-phenoxybenzoic acid (3-PBA). 3-PBA
is a metabolite of various pyrethroids including fenvalerate, sumithrin, deltamethrin,
permethrin, cyhalothrin, and cypermethrin. DCCA is a metabolite of permethrin,
cyfluthrin, and cypermethrin. DBCA (cis-dibromo dimethyl vinyl cyclopropane
carboxylic acid) is a metabolite of deltamethrin. 4F3PBA (4-fluoro-3-
phenoxybenzoic acid) is a metabolite of cyfluthrin [14–16]. Structures of those
metabolites are depicted in Fig. 3. The rapid metabolism prevents the accumulation
of intact pyrethroids in plasma and blood serum; therefore, urine samples are
preferred for intoxication monitoring.

Analysis of metabolites of pyrethroids in human urine has been widely used to
assess the real human exposure to pyrethroids. Several studies reported the presence
of metabolites of pyrethroids in human urine: 3-BPA and cis- and trans-DCCA were
found in the urine of children in China [17], 3-BPA, cis- and trans-DCCA, and
DBCA were found in the urine of children in Poland [18] and in Japan [19], and
3-BPA was found in the urine of children and expectant mothers in the USA [20],
which was also found in the urine of expectant mothers in Japan [21].

Despite the fact that pyrethroids undergo a rapid metabolism in humans, due to its
lipophilic nature, it is possible to find non-metabolized pyrethroids in breast milk.
Corcellas et al. [22] reported tetramethrin, bifenthrin, λ-cyhalothrin, deltamethrin,
fenvalerate, permethrin, and cypermethrin in breast milk samples in Brazil,
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Colombia, and Spain. The presence of pyrethroids in breast milk samples is an
alarming evidence of the harmful effects of pyrethroids to human health. Newborn
children are the most affected by the exposure to pyrethroids due to the high dosage/
body weight ratio and developing immunological system.

4 Pyrethroids and Human Health

Human health effects caused by pyrethroids can be classified as local or systemic,
depending on the route of contamination and levels of exposure. Acute symptoms
may include irritation of the respiratory tract (coughing and lung irritation due to
inhalation of dust or aerosol particles), vertigo and headaches, nausea and vomiting,
eye irritation and inflammation, and paresthesia. Studies on chronic symptoms are
still very limited and oftentimes controversial [1, 14].

Epidemiological studies in men showed the impacts in male fertility related to
quality the DNA of sperm and reproductive hormones. Ji et al. [23] analyzed urine
and semen samples of 240 males and observed a correlation between 3-BPA
metabolite levels, low concentration of sperm, and DNA damage. Toshima et al.
[24] inspected urine and sperm samples of 42 males, finding a correlation between
the presence of the 3-BPA metabolite and low sperm mobility. Jurewicz et al. [25]
found a positive association between cis-DCCA and DNA damage, as well as a
correlation between 3-BPA levels and sperm DNA damage in urine and semen
samples of 286 males.

In women, epidemiological studies analyzed pyrethroid exposure during preg-
nancy. Shelton et al. [26] correlated exposure to pyrethroids during pregnancy and
neurobehavioral disorders, such as autism spectrum disorders in children. Reardon
et al. [27] suggested there could be an association between respiratory problems in
infants and exposure of mothers to pyrethroids during pregnancy.

Research on the correlation between pyrethroid exposure and cancer are still in its
infancy, and current data is still inconclusive. Nonetheless, the US EPA classified
permethrin, a common insecticide and insect repellent, also used to treat lice, as
“probably cancerogenic to humans”when ingested, and the International Agency for
Research on Cancer (IARC) recognized potential cancerogenic risks, including
permethrin, in a high-priority review list for the 2015–2019 review period (https://
monographs.iarc.fr/wp-content/uploads/2018/08/14-002.pdf. Accessed 3Mar 2019).

5 Pyrethroid Risk Assessment

The presence of pyrethroid residues on food products is a substantial risk to human
health. Therefore, the levels of pesticide residues are established according to
parameters such as the MRL, maximum residue limit; the ADI, acceptable daily
intake; and the ARfD, acute reference dose. Those limits are determined by national
and international regulatory agencies and vary according to those agencies. The
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Codex Alimentarius (WHO/FAO), the US Environmental Protection Agency
(US EPA), European pesticides database, Japan Food Chemical Research Founda-
tion (JFCRF), and Agência Nacional de Vigilância Sanitária (ANVISA) are the main
pesticide regulatory agencies worldwide; however, a unanimous decision regarding
acceptable pesticide levels has not been reached yet. The MRL values for bifenthrin
in tomatoes can range from 0.02 to 0.5 mg kg�1; according to the regulatory
agencies, Codex Alimentarius and European pesticides database, MRL is
0.3 mg kg�1, JFCRF is 0.5 mg kg�1, ANVISA is 0.02 mg kg�1, and EPA is
0.15 mg kg�1.

For decades, developed countries have been monitoring the levels of pesticide
residues on food products. Conversely, such effort is practically nonexistent in
developing countries, mainly because of the high cost involved in the analysis.
Analysis of pesticide residues in food produced in Togo (Africa) [28], in Ghana
(Africa) [29], and in Bolívia (América do Sul) [30] reported data on pesticide
residues exceeding the MRL and ADI values, increasing the potential risks to
consumers, and thus confirming the urgency on guaranteeing food safety through
effective pesticide monitoring programs [11].

ADI values are estimate according to Eq. (1)

EDIx
¼ P

Cxy � FCyð Þ
bw

ð1Þ

in which

• EDIx is the estimated daily intake of pesticide x
• Cxy is the concentration of pesticide x on food item y
• bw is the body weight of the individual
• FCy is the food processing factor of food item y, as utilized by Lehman et al.

[11]. The significance of FCy depends on the combination of pesticides, crops,
and processes.

Diet plays an important role in pesticide risk assessment. In order to assess
pesticide risks to human health, a dietary assessment method factoring history and
frequency of ingestion of certain food items should be used. Moreover, regional and
cultural factors should be taken into account, particularly when using national
averages to estimate exposure in large countries. A wide variety of dietary survey
methods exists, with each one presenting a series of advantages and disadvantages
The 24-h recall method proposed by Gibson and Ferguson in 1999 [31] is an
example of dietary assessment method which quantifies all food items and drinks
ingested during a period of 24 h prior to the interview. Quality of data thus depends
on both good memory and cooperation of the interviewee, as well as the inter-
viewer’s ability to maintain an open communication channel. The 24-h recall
method is noninvasive, quick, and practical for both interviewer and interviewee.

Acute and chronic pesticide risks can be evaluated using a hazard quotient –
HQ. In the case of exposure to pesticides, an HQ is defined as the ratio of the amount
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of pesticide ingested and the ADI or ARfD for acute and chronic risks, respectively,
as shown in Eqs. (2) and (3).

HQacute ¼ EDI
ARfD

ð2Þ

HQchronic ¼ EDI
ADI

ð3Þ

Since ADI and ARfD express the level at which no adverse effects are expected
following ingestion of pesticide residues, if HQ is calculated to be less than 1, then
no adverse health effects are expected as a result of exposure.

The vast majority of the studies performed in the last decade only consider
individual data, to the detriment of the understanding of cumulative risks of pesti-
cides. Daily exposure is not limited to one specific pesticide. On the contrary, people
are exposed to a variety of pesticide residues via ingestion of multiple food items
containing a combination of pesticide residues. Dallegrave et al. [3] found several
pyrethroid residues in samples of milk, eggs, fish, chicken, and beef. In milk, there
were found as many as five different pyrethroid residues. Li et al. [12] analyzed
1,450 samples of fruit, including apples, grapes, pears, and peaches. At least two and
as many as four different pyrethroids of the same chemical class were detected on
approximately 30% of the samples. In those cases, a simultaneous assessment
including cumulative risk would therefore be preferred [7].

Pyrethroid residues of the same chemical class present similar mechanisms of
action. Thus, the exposure effects and human health risks are cumulative, and a
cumulative risk approach is crucial [7, 10]. Current reports referring to cumulative
risk assessment of pesticide residue mostly focus on two methods, the HI and the
RPF methods. Boobis et al. [32] reported data utilizing the hazard index (HI) (Eq. 4)
defined by Teuschler and Hertzberg [33] as is the sum of HQs of pesticides of similar
toxic effects.

HI ¼
Xn

i
HQi ð4Þ

As HI values are dependent on HQ values, HIs larger than 1.0 are not considered
acceptable.

In the relative potency factor (RPF) approach, the toxic potency of each pesticide
residue in the mixture is compared to that of an index chemical generating a relative
measure of potency for each residue. For pyrethroids, the RPF approach is usually
combined to dose additivity (when the effect of the combination is the effect
expected from the equivalent dose of an index chemical) as pyrethroid, carbamate,
and organophosphate pesticides present similar neurotoxicity [10, 34]. Thus, the
cumulative risk is assessed as an equivalent dose or the sum of pesticide residue
doses scaled by their potency relative to the index chemical [35]. The equivalent
dose is then compared to reference values for ADI and ARfD. Those methods are
used to assess cumulative risks related to ingestion of a food product containing
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residues of different pesticides, ingestion of different food items containing residues
of one specific pesticide, or ingestion of several food items containing residues of
different pesticides. Other approaches can estimate cumulative risk, such as margin
of exposure (MoE), the ratio of no-observed-adverse-effect level (NOAEL) obtained
from animal toxicology studies to the predicted and estimated exposure dose, and
cumulative risk index (CRI), the reciprocal of the HI because both are based on
reference values [5, 32, 36].

Evans et al. [36] calculated cumulative risk HIs and individual risk HQs of
67 pesticides in 5-year cumulative data provided by the Joint FAO/WHO Meeting
on Pesticide Residues (JMPR) for 13 different regions (Global Environment Mon-
itoring System – Food Contamination and Assessment Programme) [37]. Presence
of isomers was considered. Individual risk assessment showed an HQ larger than
1 twice only for chlorpyrifos-methyl. Cumulative risk assessment showed HIs larger
than 1 for all regions. Region B, comprising Africa, Europe, and Middle East,
showed a surprising HI larger than 10. Calculated HIs suggest a great contamination
risk and call for broader collection and more refined treatment of data. When HI
values exceed 1, HQ distributions can help in identifying the compounds with more
significance to the cumulative risk and how the risk assessment model can be
adjusted to incorporate those effects [36].

The European Food Safety Authority (EFSA) devised a methodology to classify
pesticides into cumulative assessment groups, or CAGs. The methodology rests on
the assumption that pesticides causing the same specific effects can produce cumu-
lative toxicity – even if they do not have similar modes of action. CAGs are defined
according to pesticides’ chemical structure, toxicity mechanisms in mammals, and
common toxic effects [38]. Cumulative risk assessment is then defined from CAG
data based on hazard identification (effects specific to vulnerable populations and
effects from stressor interactions) for further determination of the dose-response
assessment (dose-response for sensitive populations, toxicological interactions, and
combined doses of multiple stressors) and exposure assessment (multiple exposure
routes and pathways, social, cultural, and economic factors that influence exposure)
concluding with risk characterization (uncertainties associated with combining risks
and qualitative factors affecting risk outcomes) [38]. The US Environmental Protec-
tion Agency (EPA) defined the CRA for five different classes of pesticides: organ-
ophosphates, N-methylcarbamates, s-triazines, chloroacetanilides, and pyrethrins/
pyrethroids. The most recent CRA regarding pyrethroids was published in 2011 and
includes a class of pyrethroids which trigger neurotoxicological effects via voltage-
gated sodium ion channel through the cell membrane. All pyrethroids were classified
under only one CAG, with deltamethrin as index compound (IC). The IC is selected
to model the associated risk and extrapolate the estimated exposure levels in the
population, thus decreasing errors and uncertainties in the risk assessment estimates.
Pyrethroids with toxic potential significantly lower than IC and those with no
detectable residues in monitoring were disregarded.

According to the EFSA, pesticides may cause toxic effects at multiple sites by a
single mode of action. Therefore, substances can be grouped in more than one CAG.
The effects considered for the establishment of reference values (ADI and ARfD) are
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not necessarily representative for the CAGs, i.e., an effect observed at higher dose
levels may be the specific effect relevant for grouping.

Risk assessment should consider vulnerability factors such as genetics, lifestyle,
differential exposure to pesticides (including diet and distance from place of appli-
cation), manufacturing processes, and recovering capacity. Moreover, food products
are exposed to a myriad of pesticides and chemicals, not only to pyrethroids. For that
reason, a more complete analysis employing the mixture risk assessment (MRA)
approach is necessary. Even though there might be a consensus regarding cumula-
tive risks and exposure to pesticides, the pathway to the formulation of an adequate
regulation is still vague.

6 Uncertainties Associated with Exposure Assessment

Dietary exposure assessment methods are strongly affected by scientific uncer-
tainties related to the sampling procedure which should be taken into account
when interpreting the results, for example, duration of exposure, sampling sites,
body weight, concentration of pyrethroid in food samples and uncertainty of the
analytical techniques utilized, whether a food item or a food group has been
sampled, and food processing levels. Moreover, specific characteristics of the
population, such as pregnancy, breastfeeding, age, kidney or liver disorders, and
hypersensibility to pesticides, are extremely important and should be carefully
considered when deciding on a sampling procedure [12].

7 Perspectives

Future research efforts on the assessment of the risks related with the exposure to
pesticides should focus on the analysis of total cumulative intake, considering the
specifics of different population groups. The constitution of a dependable database
on pesticide residues in food, water, and air is crucial to the human health and
environment risk assessment. Through dietary habits, the entryway of pesticide
residues into the human body, we are exposed to multiple harmful chemical sub-
stances. It is imperative that a thorough cumulative risk assessment of mixtures of
pesticides is performed, providing reliable data.
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Abstract The aim of this review is to provide a broad summary of the latest state of
knowledge about the potential long-term adverse effects of pyrethroids on human
health. The oldest and recent epidemiological studies mainly addressed respiratory,
neurological, hormonal, and reproductive outcomes in adults after environmental
and occupational exposures. Although several of these studies have suggested
negative effects, especially on male hormonal and sperm parameters, findings
were often equivocal or inconsistent across studies, and no firm and reliable con-
clusions can be reached yet. Regarding developmental outcomes, there is increasing
evidence that fetal exposure to pyrethroids may be associated with poorer children’s
neurodevelopment. Prevention measures should be considered to reduce exposure of
pregnant women and children to these widely used insecticides.
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1 Introduction

The pyrethroid insecticides are widely and increasingly used worldwide, and their
metabolites were omnipresent in the urine samples collected from the general
population across different countries [1]. The general population is primarily
exposed to pyrethroids by ingestion of contaminated food (e.g., residues on fruits
and vegetables) and dust particles. Inhalation and dermal intakes can also occur via
residential and/or occupational indoor and/or outdoor application for pest control.
The possibility of adverse health effects of pyrethroids after short- or long-term
exposure has emerged as a major public health concern. A number of human studies
have suggested genotoxic, hormonal, and reproductive effects of pyrethroids in male
adults [1, 2]. Prenatal and childhood exposures have also been associated to
neurodevelopmental effects and different adverse birth outcomes in a few human
studies. During the last years, the body of research has grown and the possible long-
term effects of pyrethroids deserve further evaluation. The purpose of the present
review is to evaluate the weight of evidence complied since earlier reviews on the
relationship between pyrethroid exposure and health effects.

2 Materials and Methods

As previous reviews included epidemiological studies up to about 2014, we
conducted an electronic search for recent articles published in peer-reviewed
journals using PubMed, starting from 2014 to March 2019. As a first step, all articles
containing the words pyreth�, permethrin, cypermethrin, fenvalerate, cyfluthrin,
deltamethrin, and cyhalothrin in combination with any of the following, endocrin�,
reprod�, pregnan�, thyroid, hormone, genotox�, tumor, cancer, immun�, resp�, and
neuro�, in their title or abstract or as a keyword were collected. The references cited
in identified publications were also searched to locate additional articles. Studies
included in this paper were those written in English, pertaining to occupational or
environmental exposure to a specific pyrethroid or to the class of pyrethroids in
association with human health outcomes, and presenting original results. Because
there is a limited body of research, and to better identify the potential areas of
concern related to human pyrethroid exposure, all studies that met the above-
described criteria were included in this review, regardless of reporting quality.
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3 Results

The recent epidemiological studies on the influence of chronic exposure of adults to
pyrethroids have mainly focused on four areas of health effects, providing new
information on reproductive-, thyroid-, respiratory-, and neurological-related out-
comes. In addition, a great and increasing number of studies have investigated the
possible association between prenatal and/or postnatal childhood exposures and
child health, especially neurodevelopment. Exposures could be occupational or
environmental, and most studies analyzed many pesticides and/or insecticides at
once (e.g., organophosphate and pyrethroid classes). Exposure assessment relied on
survey data (e.g., residential proximity to pesticides agricultural applications using
Californian Pesticide Use Reports-CPU), self-reported exposure mostly with a
dichotomous answer (e.g., user/no user in occupational settings), or measurement
of biomarkers, allowing possible evaluations of exposure-response patterns (e.g., by
stratifying exposures into a few levels). The most commonly used biomarkers were
pyrethroid urinary metabolites, primarily 3-phenoxybenzoic acid (3-PBA). It is a
general metabolite of several pyrethroids, and associations with 3-PBA implied
more the pyrethroid class than a specific parent chemical. Its detection frequency
in urine was generally in a range from 70 to 100% of the studied populations.

3.1 Respiratory Outcomes

All identified studies on respiratory health used cross-sectional analyses (Table 1).
Respiratory symptoms were assessed in agricultural or farm workers and their
families following occupational exposures to specific or different subclasses of
pesticides, including pyrethroid insecticides. They essentially consisted in self-
reported rhinitis, wheeze, and asthma. Two large-scale studies have been conducted
in the USA. In an updated analysis of the Agricultural Health Study data, Hoppin
et al. [5] reported a slight increase in wheezing with exposure to three individual
pyrethroids. Of the 22,134 male applicators who had been interviewed, 6% had both
wheeze and allergy and 18% reported wheeze only. In the Farm and Ranch Safety
Survey, 30.8% of an estimated 2.1 million farm operators reported lifetime allergic
rhinitis, and 5.1% had current asthma [4]. A positive association was found between
lifetime allergic rhinitis and pyrethroids and other insecticides. However, in both
studies, pesticide uses and outcomes were self-reported. The potential relationship
between asthma and the pyrethroid class has not been specifically analyzed [4].

Information on the impact of non-occupational exposure to pyrethroids on respi-
ratory health is scarce. Lung function was examined in a single study which
suggested association between urinary concentrations of pyrethroid metabolites
and changes in lung functions in children and adolescents from the Canadian general
population [10]. No association with respiratory symptoms and diseases was
observed in this population-based study.
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3.2 Thyroid Function

The relationships between farm-related exposures to different classes of pesticides
and thyroid disease and/or thyroid hormone disruption have been examined in a
series of recent studies using the cohort of the US Agricultural Health Survey
(Table 2) [13–16, 18]. Weak association between long-term use of permethrin
applied to crops and an increased risk of hypothyroidism was found among female
spouses of farmers aged over 60 years [14]. No significant effect was found for
permethrin applicators. Although they were conducted with large sample sizes over
long time periods, these studies presented several limitations, including self-report of
pesticide uses and lack of doctor diagnosis confirmation.

Regarding environmental exposures, no association was found between thyroid
hormone levels and the urinary pyrethroid metabolite 3-PBA, in a representative
sample of individuals from the US National Health and Nutrition Examination
Survey [17], and in Japanese pregnant women [19] and prenatally exposed
neonates [18].

3.3 Reproductive Effects

Several cross-sectional studies have evaluated the impact of environmental exposure
to pyrethroids on male reproductive health (Table 3). In all studies, assessment relied
on a single semen or blood sample and on the single measure of one (3-PBA) or
several pyrethroid metabolites in urine. A series of studies conducted in men
recruited in fertility clinics showed associations between pyrethroid urinary metab-
olites (3-PBA, cis-DCCA, and/or trans-DCCA) and sperm quality [31], DNA
damages [27–29], and testosterone levels [31]. However, it is not clear if these
results may apply to the general population. In contrast to these findings, urinary
concentrations of 3-PBA were not found to be associated with sexual hormones and
semen parameters in men from the Japanese general population [30, 32] and/or
occupationally exposed to pyrethroids [25].

Comparatively, a relatively small number of epidemiological studies have been
published on the possible association of pyrethroid exposure and female reproduc-
tive health. Biomarkers of pyrethroids were primarily used to confirm exposure. A
variety of outcomes of interest has been evaluated in single studies (Table 3).
Although limited, data available suggest that more attention should be paid to time
to pregnancy [21], female reproductive hormones [22], and girl puberty [23],
especially at higher levels of pyrethroid exposure.
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3.4 Prenatal Exposure and Outcomes at Birth
and in Childhood

Several birth cohort studies and a small number of large case-control studies have
assessed the relationship between pyrethroid exposure during pregnancy and com-
mon outcomes at birth, i.e., gestation duration, preterm birth, birth weight and
height, and head circumference (Table 4). They mainly provided no or modest
evidence of potential effects on non-occupationally exposed populations. To notice,
one of the largest case-control studies suggested that exposure to two or more
pyrethroids during the first or second trimester of pregnancy may increase the risk
of spontaneous preterm birth [36]. Pesticide exposure was based on the proximity of
mother’s residence with pesticide application sites. This finding was not replicated in
a similar case-control study also based on California birth records [37]. In the
VHEMBE South Africa birth cohort (Venda Health Examination of Mothers, Babies
and their Environment), two urinary metabolites of pyrethroids (i.e., cis-DCCA and
DBCA) measured at delivery were negatively associated with body weight and body
mass index (BMI) in boys at 1 and 2 years of age [34]. Possible contribution of
exposure to pyrethroids and other environmental factors during childhood (e.g.,
pesticide spray at home) was not controlled. Moreover, no effect was observed on
these outcomes at birth [33, 35].

A few case-control studies, mostly by the same team, have examined potential
association between risk of selected birth defects and residential proximity with
agricultural pyrethroid applications during early pregnancy (Table 4). No association
was found with the pyrethroid group, but there were elevated odd ratios for two
specific pyrethroids, cyfluthrin (craniosynostosis) and lambda-cyhalothrin (heart
defects) [39–41]. The authors considered that their studies added to the scant
literature on this topic but that further verification and inquiry were needed before
firm conclusions on individual chemicals teratogenicity.

3.5 Neurological Outcomes (Adult Exposure)

Several cross-sectional studies have examined the neurologic effects of long-term
occupational exposure to pyrethroids in agricultural workers or pesticide applicators
(Table 5). A broad spectrum of symptoms and functions has been assessed with
different tools and indicators (e.g., medical diagnosis of symptoms, performance in
neurobehavioral tests). Pyrethroid exposure was ascertained by history exposure
questionnaires, except from one study which relied on urinary biomarkers [52]. Inter-
pretation is limited due to the paucity of data and the small sample size in a number
of these studies.
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3.6 Neurodevelopment After Prenatal and/or Childhood
Exposure

Many of the epidemiological studies recently published pertain to children
neurodevelopment after in utero or postnatal pyrethroid exposure (Table 6). All
studies related to prenatal exposures were longitudinal birth cohort studies, while a
cross-sectional design was used in all studies related to postnatal exposures. Cogni-
tive, behavioral, and motor functions were examined in children and adolescents by
using questionnaires filled by parents or health professionals and/or by individual or
batteries of standardized and generally well-validated tests (e.g., Bayley Scales of
Infant Development, Wechsler Intelligence Scale for Children). Most studies found
evidence of an association between adverse neurodevelopmental outcomes in chil-
dren (e.g., various early behavioral problems) and maternal urinary pyrethroid
metabolites during pregnancy (i.e., 3-PBA, cis- and/or trans-DCCA). Age- and
sex-specific associations were reported [53, 60]. However, there was no clear pattern
of effects. This may be due to differences in the study designs, for example, in the
exposure period (i.e., trimester of pregnancy) and the control of potential
confounding variables (e.g., current child exposure to pyrethroids and other envi-
ronmental agents such as neurodevelopmental toxic pesticides), as well as in the
timing (3 months to 7 years of age), endpoints, and techniques/practices of child
assessment. In addition, there was substantial variability in the urinary levels of the
pyrethroid metabolites across studies (e.g., median 3-PBA level of 0.39 μg/L in [57]
vs less than the limit of detection of 0.008 μg/L in [58]). On the other hand, the few
studies available showed no consistent relationship between neurodevelopment and
pyrethroid exposure during childhood, as assessed by metabolite measurements in
the child urine.

Contrasting results have been reported regarding the association between child-
hood urinary 3-PBA and attention-deficit/hyperactivity disorder (ADHD) in subsets
of the US NHANES cohort (National Health and Nutrition Survey) (Table 6).
Methodological heterogeneity may have accounted for these differences (e.g., pri-
mary outcome definition, use of continuous 3-PBA levels vs dichotomized catego-
rization detected/non-detected).

A couple of studies have focused on autism spectrum disorders (ASDs) and
developmental delays, including two retrospective case-control studies from the
Childhood Autism Risks from Genetics and Environment (CHARGE) [70, 73]
(Table 6). They have established a link between ASDs risk and residential proximity
to pyrethroid application, especially during the preconception and gestational
periods. This suggested that exposure to these pesticides during critical periods of
development may be a contributing factor to the likelihood of developing ASDs
[74, 75].
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3.7 Other Effects

Recent systematic reviews and meta-analyses have associated prenatal or childhood
indoor exposure to insecticides, assessed as a class, to an increased risk of leukemia
and brain tumors in children [76–82]. Possible association between the use of the
common pyrethroid insecticide, permethrin, and various types of cancer has been
more particularly evaluated in several epidemiological studies, mostly based on the
US Agricultural Health Study cohort. Negative or inconclusive results were reported
[77, 83–88]. Pooled analysis of large agricultural worker cohorts from France, the
USA, and Norway found moderate association between chronic use of deltamethrin
and elevations in risks of non-Hodgkin lymphoid malignancies (subtypes) [89].

The consequences of pyrethroid exposure on coronary heart disease [90], body
mass index [91, 92], hematological parameters [93], genetic damage [94–97],
rheumatoid arthritis [98], and prediabetes [99, 100] were infrequently examined.

4 Conclusions

A growing number of epidemiological studies have been carried out to investigate
the health impact of long-term environmental and occupational exposures to
pyrethroids.

Suggestive association between pyrethroid exposure and various respiratory and
neurologic effects has been reported in adults in a few recent studies. Most of them
addressed occupational exposures (e.g., agricultural workers), with self-reported
uses. These exposure conditions may be specific and may not be readily generaliz-
able to chronic environmental exposures of the adult population at relatively low
levels. In addition, neurological findings were not consistent across studies and
overall evidence remains limited yet. Regarding the thyroid function, no or weak
changes in relation with pyrethroid exposure have been reported in the studies
conducted so far.

Numerous earlier epidemiological studies have focused on the male endocrine
and reproductive system, and some of them have suggested that pyrethroids may
have potential deleterious effects on different male sexual characteristics [1, 101,
102]. In line with this hypothesis, several cross-sectional studies published in the last
few years found an association between environmental pyrethroid exposure and
decreased sperm quality and sperm DNA damages. However, the inconsistencies
across all results available still prevent strong conclusions.

A great deal of attention has also been devoted to the consequences of environ-
mental exposure to pyrethroids during pregnancy. Most existing studies, of which
those currently reviewed, found weak evidence of adverse effects on general birth
outcomes including birth weight and length and gestational age. Past and present
studies on child neurodevelopment and behavior (i.e., infants to grade schoolers)
were relatively consistent. The negative effects related to prenatal pyrethroid
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exposure previously reported were further supported by a majority of the recent
studies. Nevertheless, harmonization of the study designs would contribute to
upgrade the confidence level of the evidence and identify the biological mechanisms
potentially involved in the reported associations. There were fewer investigations on
the risk of neurodevelopmental deficits following exposure to pyrethroids during
childhood. The data were contradictory and evidence on a causal relationship is
currently insufficient.

A major shortcoming of the available epidemiologic data is the lack of a detailed
and consistent exposure assessment, capturing all the various sources and routes of
pyrethroid exposure over long time periods. Many studies used urinary levels of
nonspecific metabolites to quantitatively estimate individual pyrethroid exposure.
When use and outcome were frequent enough, they could provide valuable
exposure-response information, particularly regarding the lower environmental
levels encountered by the general public. However, pyrethroids are nonpersistent
chemicals which are rapidly metabolized and excreted, and a single measure of their
urinary metabolites may only reflect current or recent exposures. Furthermore, the
use of cross-sectional data in a majority of studies may not account for peak or
duration of exposures. Characterization of extended and integrated exposure might
be improved by combining reiterate urine sampling and specific pyrethroid bio-
marker measurements with other relevant information, for example, other indicators
of long-term exposure (e.g., residential address history), occupational and domestic
uses of pesticide compounds (e.g., frequency, intensity, duration, life period), use of
protective equipment, diet and possible supplements intake, and occurrence of
co-exposures [30, 51, 56, 70, 103].

In most studies statistical analyses included common potential confounding
factors linked to the parameter of interest (e.g., maternal race/ethnicity, age, and
smoking). Pesticides are often used as complex mixtures of chemicals belonging to
the same or different classes (e.g., pyrethroid and organophosphate insecticides or
pyrethroid and the synergist piperonyl butoxide). Workers and the general adult and
child population are potentially exposed to multiple chemicals, with temporal and
spatial variations. Co-exposure or use of pyrethroids with other pesticides was
controlled in several studies (e.g., [61]). Although challenging, the possibility of
join effects and interactions would deserve more consideration in future large
epidemiological studies with longitudinal data collection [34, 43].

In conclusion, there is accumulating evidence that chronic exposure to the
pyrethroids may have potential negative effects on human health, especially during
pregnancy. Despite constant knowledge enhancement, this review also highlights
the critical need of valid epidemiological studies for a broader and more reliable
assessment of the risks associated with pyrethroids.
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Abstract This chapter summarizes the main conclusions drawn from the
11 different chapters of this book, as well as the future trends in the field of
research on pyrethroid insecticides. The chapter is divided into five sections.
First of all, we discuss the different pyrethroid insecticides produced and used
regularly, their various applications, and their physicochemical properties, with
special attention to their stereochemistry, evaluating the different isomers
and enantiomers for each pyrethroid. After that, we present the developments in
analytical methodologies for pyrethroid determinations in environmental and food
matrices, as well as the analysis of urinary metabolites. Then, the environmental
fate in aquatic ecosystems, with special attention to salmon industry, was presented,
as well as pyrethroid presence in other environmental compartments such as soil
or air. Bioavailabilty and bioaccumulation in terrestrial and aquatic wildlife are also
discussed. And finally, the human exposure to pyrethroid insecticides through
inhalation and food ingestion and the risk associated to the long-term exposure are
summarized.
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1 Pyrethroid Insecticides

Chapter “Introduction to Pyrethroid Insecticides: Chemical Structures, Properties,
Mode of Action and Use” summarizes information related to the chemical structures,
properties, mode of action, and use of pyrethroid insecticides. They have been used
worldwide since the 1980s because of their high level of effectiveness and low
toxicity compared to other insecticides, such as organochlorine, organophosphorus,
and carbamic ester compounds. Pyrethroids are the most widely used insecticides
worldwide, accounting for about 25% of the pesticide use, and they are applied
in households, in commercial products, and in medicine. Several desirable
characteristics contribute to the commercial success of pyrethroids, including
their efficacy against a broad range of insect pests and mites, low mammalian
and avian toxicities, low potential to contaminate ground water, and relatively low
application rates. They were believed to be the ideal pesticides, since they are
not persistent and were thought to be metabolized and not bioaccumulated.
In soils, most pyrethroids have half-lives ranging between 30 and 100 days, and
their hydrolysis in the aquatic compartment occurs on the order of days to weeks [1].
The routes of degradation may be abiotic, hydrolysis, photolysis and oxidation,
or mediated by bacteria and fungi. Therefore, they do not meet the requirements to
be considered persistent organic pollutants (POPs). However, the continuous use of
these insecticides in the different applications for which they are described makes
them ubiquitous in the different environmental compartments. That because they are
considered pseudo-POPs. In addition, different studies in both aquatic and terrestrial
biota have shown the presence of pyrethroids in different tissues and at not negligible
levels of concentration. Therefore, it is necessary to determine the relationship
between pyrethroid metabolization and bioaccumulation. Something similar has
been observed for humans. Finally, we must not forget the studies indicating the
diverse toxicity of these compounds. All these data suggests reconsidering
the theory that pyrethroids are the ideal insecticides (Fig. 1).

It is important to note that when we use the term pyrethroid insecticides, we
are encompassing a large number of different compounds that, despite having a
similar chemical structure, they have different physicochemical properties and, more
important, different toxicological effects. As can be seen throughout the different
chapters of this book, most studies focus on the same pyrethroids, such as bifenthrin,
cyfluthrin, cyhalothrin, cypermethrin, deltamethrin, esfenvalerate, or permethrin.
However, other pyrethroids such as allethrin, fluvalinate, imiprothrin, prallethrin,
or resmethrin have been less studied, and it would be convenient to have more
information also for these compounds.

The study of the different behavior of isomers and enantiomers of each
pyrethroid is also crucial, as reflected throughout chapter “Stereoselectivity and
Environmental Behaviour of Pyrethroids”. A stereochemical approach is required
to better understand the impacts of pyrethroids on the environment and on human
health. Upon entering the environment, the chiral pyrethroids undergo selective
enantiomeric bioaccumulation and degradation. And, as different toxicity has been
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reported for specific enantiomers, an enantiomeric risk assessment is the way to
obtain a more accurate and real evaluations. An achiral approach is able to only
partially assess the potential adverse effects of pyrethroids in biological systems.
Chiral approach is not the commonly used in published works. However, for future
studies our recommendation would be to adopt a chiral approach in order to obtain
more realistic and concise results.

2 Analytical Approaches

The continuous progress in analytical techniques has improved the capability
of detecting chemicals and recognizing new substances and extended the list of
detectable contaminants widespread in all environmental compartments by human
activities. In the case of pyrethroid insecticides, these advances have been
very useful for the detection of different pyrethroids in various matrices, both
environmental and biological. However, analytical challenges include not only
the analysis of pyrethroids, but also the determination of their metabolites in
biological samples, as this gives important information about human exposure
to these pollutants.

Chapter “Analytical Methods for Determining Pyrethroid Insecticides in Envi-
ronmental and Food Matrices” compiles the different analytical approaches for the
determination and quantification of pyrethroid insecticides in various matrices under
study. Sample preparation procedure plays a fundamental role in developing
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analytical methodologies. Extraction and cleanup steps have presented a high
improved, especially in terms of automation reducing the sample manipulation and
the time of analysis. Sample preparation methods for pyrethroids are well established
for environmental and food samples, with acceptable recoveries and good
reproducibilities. Regarding instrumental determination, developed methodologies
are based on the use of gas chromatography (GC) coupled to mass spectrometry
(MS). However, in order to achieve limits of detection adequate for the
determination at environmentally relevant concentrations, the use of tandem
mass spectrometry (MS-MS) seems mandatory. Moreover, it is important to
guarantee the quality of analytical data in the analysis of pollutants, such as
pyrethroids, in complex matrices. These quality parameters must be tested through
the performance of interlaboratory tests and combined, if it is possible and
available, with the use of reference materials. However, these have not yet been
treated in the case of pyrethroids, and future works must be done in this sense.

Regarding enantiomeric separation, beta-cyclodextrin-based columns were
usually applied due to its excellent enantioselectivity. However, the enantiomeric
analysis is a complicated task. Different works achieved the separation of some
enantiomeric pairs, especially for cis enantiomers. However, the separation of trans
enantiomers still remains an unsolved task. Research is necessary into development
of new chiral columns able to achieve this separation between trans enantiomers.
Another challenge in chiral analysis is the lack of standards to enable quantification
of individual enantiomers.

Chapter “Analytical Methods for Determination Urinary Metabolites of Synthetic
Pyrethroids” summarizes the analytical work carried out for the analysis of
pyrethroid metabolites in human samples. Urine, as a major route of elimination
of pyrethroid metabolites, is considered the most appropriate matrix for the
assessment of pyrethroid exposure. In general, sample preparation steps include
a hydrolysis step before sample extraction. This step could be an acidic or an
enzymatic hydrolysis. However, enzymatic hydrolysis has some disadvantages: is
time consuming since it is usually performed overnight, and sample should be
acidified before extraction. In contrast, after acidic hydrolysis, no pH adjustment
is needed before extraction. New research is focused on the development of
analytical methods for the metabolite determination of new pyrethroids and
those less frequently used. The main problem is the lack of commercial availability
of reference substances and relevant isotopically labeled internal standards.

The market of MS is extremely dynamic and manufacturers invest into
the development of new technologies. Actually, ultrahigh resolving power analyzers
(>100,000), such as Orbitrap-type systems, are increasing their use to identify
non-target compounds. This opens the opportunity for the identification of new
pyrethroids as well as their metabolites that are not currently included in traditional
target methodologies. The analysis strategy is based on a “scan” in full-scan mode
in an integrated (non-specific) way and with the help of software, such as SIEVE and
ExactFinder, to identify the presence of potential unknowns. Once identified,
and if commercial analytical standards are available, a definitive and unambiguous
confirmation of the compounds could be done, as well as their quantitative analysis.
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3 Environmental Fate

Environmental fate of pyrethroid insecticides occurs in different compartments,
water, soil, and air. They have been widely detected at the global scale, with most
reports being from China and the United States. In general, concentrations in soils
and sediment are higher than those of air and water, being pyrethroid levels two
orders of magnitude lower in water than in both soils and sediments [2]. In this
book there are different chapters dealing with this topic. “Fate of Pyrethroids in
Freshwater and Marine Environments”, “The Ecological and Evolutionary Implica-
tions of Pyrethroid Exposure: A New Perspective on Aquatic Ecotoxicity” and
“Environmental Risks of Synthetic Pyrethroids Used by the Salmon Industry in
Chile” were more focused on the water-soil system, whereas chapter “Indoor and
Outdoor Pyrethroid Air Concentrations” evaluates the impact in air.

Pyrethroids have high n-octanol-water partition coefficients (Kow), with log
Kow values ranging from 4 to 7.5, indicating that these chemicals are much more
likely to partition into the sediment and sorb to particulate organic matter than to
remain in the water column [3]. However, and despite being highly lipophilic,
pyrethroids may remain in the water column for days to weeks and can produce
toxic effects at low concentrations. Generally, concentrations are under the 100 ng/L
range for water samples, being cyhalothrin and bifenthrin those reaching the highest
levels and also those more frequently exceeding regulatory threshold levels in
surface freshwater. Acute mortality has been documented far below 1 μg/L range
for fish and crustaceans [4], and acute toxicity has even been documented at levels
below 1 ng/L [5]. The potential combined acute and chronic effects on aquatic
ecosystems must be taken into account. It is also important to evaluate the possible
synergistic or antisinergic effects between different pyrethroid insecticides, as well
as among other different pollutants also present in aquatic ecosystems. Only taking
these effects into account, we will be able to correctly assess the real effects of these
compounds in aquatic media.

Most pyrethroids will be transported into sediments after entering water
bodies, while some will evaporate into the atmosphere or enter the ocean. A recent
review documented the occurrence of pyrethroids in sediments worldwide [6].
As expected and due to their lipophilicity, sediment concentration levels are higher
than those found in water samples, being generally under the 100 ng/g range.
Moreover, pyrethroid occurrence showed significant correlations with sediment
toxicity. The frequent occurrence at high concentrations of pyrethroids in sediments
from agricultural and residential areas constitutes a threat to freshwater ecosystems.

Historically, some pyrethroids were added to water directly as mosquito and
black fly larvicides, but their toxicity, hydrophobicity, and sediment persistence
have restricted their direct use in aquatic environments. However, in aquaculture,
pyrethroids are still added directly to the water to remove parasites from farmed
fish. Aquaculture is a locally direct source that likely constitutes an important
environmental burden for seawater, which it is very poorly surveyed.
Chapter “Environmental Risks of Synthetic Pyrethroids Used by the Salmon Indus-
try in Chile” summarizes the effects of these applications, specifically the sea lice
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treatments in salmon industry, in the marine environment. To combat sea lice, a
series of pesticides such as cypermethrin and deltamethrin are used, which are
applied by bath treatments. Concentration levels in marine waters around the fish
farms are in the range of ng/L, but higher cypermethrin and deltamethrin concen-
trations in sediments were observed, reaching values in the range of 1,000 ng/g
(1 μg/g). These levels are in the range of concentrations toxic to marine species, such
as invertebrates. Given this high pollution as well as the increase in number of
fish farms according to the fish world consumption, it is necessary to closely
follow the pyrethroid treatment practices. Risk assessment studies must be done,
and stricter regulations must include maximum concentration values allowed
around the fish farms when these insecticides are applied.

Another very important consideration is the pyrethroid resistance in the aquatic
environment. This fact can have far reaching implications that are important
from a variety of different perspectives: human and animal health, ecological,
evolutionary, and risk assessment. If the presence of pyrethroids is strong
enough, some populations of sensitive taxa may evolve to resist pyrethroids.
In addition, resistance in disease vectors can also threatens public health.
Pyrethroid-impregnated mosquito nets have caused considerable reductions in
morbidity and mortality associated with malaria in Africa. However, the
intense selection pressure exerted by mosquito nets has precipitated widespread
and increasing resistance to pyrethroids in African Anopheles populations,
threatening to reverse the gains obtained from malaria control. A very recent
study [7] shows pyrethroid resistance to Anopheles gambiae.

Since many pyrethroids are semi-volatile compounds even applications onto
surfaces can result in elevated air concentrations as they volatilize. The recent
recognition of pyrethroid occurrence in aerosols and in the gas phase opens
a challenging view of their biogeochemical cycle and prompts further research
to assess the relevance of atmospheric transport. Chapter “Indoor and Outdoor
Pyrethroid Air Concentrations” summarizes scientific research done in this area.

4 Bioaccumulation in Wildlife

After entering the natural environment, pyrethroids circulate among the three phase
of solid, liquid, and gas and enter organisms through food chains, resulting in
substantial health risks. Pyrethroids are biotransformed easily by mammals through
hydrolytic (esterase) and oxidative (cytochrome P450s) reactions. Therefore, they
are less toxic to them. However, fish lack hydrolase and metabolize synthetic
pyrethroids through oxidative (cytochrome P450s) reaction only. Therefore, they
are highly toxic to fish and other aquatic organisms.

For many years, the scientific community ignored studies of pyrethroid
accumulation in tissues of living beings and especially in mammals. This was due
to the fact that mammals are able to metabolize pyrethroids, and, consequently,
such contaminants would not be accumulated in the tissues but would be excreted.
However, in recent years various studies have been published showing its presence
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in tissues of different living things. Chapter “Bioavailability and Bioaccumulation of
Pyrethroid Insecticides in Wildlife and Humans” shows a summary of these works.
Currently, there are data of pyrethroids accumulated in aquatic biota, in different
species of river fish, as well as in marine mammals such as dolphins. But pollution
also occurs in terrestrial biota. Pyrethroids are detected in eggs of a large variety
of birds. And finally, we must not forget that there are also studies in which
the presence of pyrethroids accumulated in human breast milk is reported. Based
on these new data, it is now necessary to evaluate the degrees of metabolization and
accumulation in tissues. There are no studies in this sense, and it would be important
to assess whether the degree of accumulation is important or can be considered
negligible. In any case, the concentration values of accumulated pyrethroids
in different organisms are similar to those found for other emerging pollutants. In
addition, the detection frequency is also very high, with a detection percentage
between 90 and 100%. All these remark the importance of including pyrethroids
in environmental quality and monitoring studies, given that, even at nonlethal
doses, pyrethroids are known as stressors and that the accumulation of pyrethroids
in living tissues deserves further studies.

In any case, the study carried out by Alonso et al. [8] indicates that, in
the case of marine mammals, pyrethroid metabolism could occur only when the
individual reach sexual maturity. That means that throughout the early period of
life, when growth and development is crucial, dolphins would be exposed to the
accumulation of pyrethroids in their organisms. Taking into account the potential
toxic effects of pyrethroids and the exposure to these pollutants in an early period of
life, the need for further studies related to exposure to these compounds becomes
clear. Likewise, the maternal transfer of pyrethroid insecticides has been also
observed by both gestational and lactation pathways. Therefore, it would also
be necessary to evaluate the impact of these pyrethroids during the development
of the fetus.

5 Human Exposure

The use of pyrethroids has increased over the past three decades and correspondingly
the opportunity for human exposure. Pyrethroids can enter the human body in
different ways: food ingestion, residential environment, and various environmental
media containing pyrethroid pesticides. Chapter “Indoor and Outdoor Pyrethroid Air
Concentrations” is focused on indoor and outdoor pyrethroid levels and human
exposure through inhalation, whereas chapter “Risk Assessment of Human Expo-
sure to Pyrethroids Through Food” evaluates human exposure through food intake.
Finally, chapter “Human Risk Associated with Long-term Exposure to Pyrethroid
Insecticides” summarizes the human risk associated with long-term exposure to
pyrethroid insecticides.

The evaluation of the exposure to environmentally significant and health-
relevant compounds in indoor environments becomes a growing issue of concern
since people spend on average more than 80% of their time indoors. Moreover,
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pyrethroids are widely used indoors, accounting for more than 80% of the total
market of public health insecticides. And, degradation rates of pyrethroids are
much lower in indoor than outdoor environments, that is because pyrethroids
have been detected at high levels in the indoor environments, with levels between
the range of low ng/m3 and low μg/m3. Outdoor pyrethroid concentrations
were much lower, with values between pg/m3 and low ng/m3 range. In indoor
environments we must not forget either the contamination of house dust.
Pyrethroids are semi-volatile compounds with low vapor pressures and high
octanol/water and water/organic carbon partitioning coefficients facilitating their
absorption onto the organic component of house dust.

Some studies carried out in different areas of the world showed the presence of
pyrethroid insecticides in food products. The positive detection ranged between
10 and 30% of the samples analyzed and with the detection of between 2 and
5 different pyrethroids. In addition, in several cases the levels found exceed
the established maximum residue limits (MRLs). Thus, exposure to pyrethroids
through food consumption is reaching alarming levels. In any case, ingestion of
food and household dust are generally larger exposure routes than inhalation,
which contributes between 5 and 10% to the total exposure [9].

Numerous epidemiology studies have evaluated the association between health
outcomes in humans and pyrethroid exposure. Absorbed pyrethroids are quickly
metabolized and excreted, being the plasma half-life of pyrethroids in general less
than 8 h [10]. Many studies used urinary levels of metabolites to quantitatively
estimate pyrethroid exposure. However, pyrethroids are rapidly metabolized and
excreted, and a single measure of their urinary metabolites may only reflect current
or recent exposures, with misclassification of past exposures. In order to provide
more robust data on potential health outcomes from exposure to pyrethroids,
future epidemiological studies should quantify exposure over time.

Given the suspected effects of pesticides on the development of the fetus,
exposure to pyrethroids during pregnancy is a major public health concern.
Some studies suggest that environmental exposure to pyrethroids have adverse
effects on pregnancy outcomes and infant health, including birth size, immune
system, and neurodevelopment. One of the largest case-control studies suggested
that exposure to two or more pyrethroids during the first or second trimester of
pregnancy may increase the risk of spontaneous preterm birth [11]. Moreover,
in case-control studies in China, the geometric mean concentrations of urinary
pyrethroid metabolites of patients were higher than those of healthy children,
indicating that exposure to pyrethroids may be associated with an increased risk
of childhood brain tumors, childhood acute lymphocytic leukemia, and coronary
heart disease [12–14].

Human contact to one or more pyrethroid insecticides is likely. That because
future research works on risk assessment related with the exposure to pesticides
should focus on the analysis of total cumulative intake.
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