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This book’s initial title was “Tumor Microenvironment”. However, due to the 
current great interest in this topic, we were able to assemble more chapters 
than would fit in one book, covering tumor microenvironment biology from 
different perspectives. Therefore, the book was subdivided into several 
volumes.

This book Interleukins in the Tumor Microenvironment—Part B presents 
contributions by expert researchers and clinicians in the multidisciplinary 
areas of medical and biological research. The chapters provide timely detailed 
overviews of recent advances in the field. This book describes the major con-
tributions of different interleukins in the tumor microenvironment during 
cancer development. Further insights into these mechanisms will have impor-
tant implications for our understanding of cancer initiation, development, and 
progression. The authors focus on the modern methodologies and the lead-
ing-edge concepts in the field of cancer biology. In recent years, remarkable 
progress has been made in the identification and characterization of different 
components of the tumor microenvironment in several tissues using state-of-
the-art techniques. These advantages facilitated the identification of key tar-
gets and definition of the molecular basis of cancer progression within 
different organs. Thus, the present book is an attempt to describe the most 
recent developments in the area of tumor biology, which is one of the emer-
gent hot topics in the field of molecular and cellular biology today. Here, we 
present a selected collection of detailed chapters on what we know so far 
about the interleukins in the tumor microenvironment in various tissues. 
Eight chapters written by experts in the field summarize the present knowl-
edge about distinct interleukins during tumor development.

Zoran Culig from Medical University of Innsbruck describes interleukin-6 
function and targeting in prostate cancer. Małgorzata Krzystek-Korpacka and 
colleagues from Wroclaw Medical University discuss interleukin-7 signaling 
in the tumor microenvironment. Ramesh B.  Batchu and colleagues from 
Wayne State University School of Medicine address the importance of inter-
leukin-10 signaling in the tumor microenvironment of epithelial ovarian can-
cer. Gabriella Campadelli-Fiume and colleagues from the University of 
Bologna compile our understanding of targeted delivery of interleukin-12 
adjuvants by oncolytic viruses. Runqiu Jiang and Beicheng Sun from Nanjing 
University Medical School update us with what we know about interleu-
kin-22 signaling in the tumor microenvironment. Craig A. Elmets and col-
leagues from the University of Alabama at Birmingham summarize the 
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current knowledge on interleukin-23  in the tumor microenvironment. 
Rajagopal Ramesh and colleagues from the University of Oklahoma Health 
Sciences Center focus on how interleukin-24 reconfigures the tumor micro-
environment for eliciting antitumor responses. Finally, Alain H. Rook and 
colleagues from the University of Pennsylvania give an overview of interleu-
kin-31 and its role in the tumor microenvironment.

It is hoped that the articles published in this book will become a source of 
reference and inspiration for future research ideas. I would like to express my 
deep gratitude to my wife Veranika Ushakova and Mr. Murugesan Tamilsevan 
from Springer, who helped at every step of the execution of this project.

Belo Horizonte, Brazil Alexander Birbrair
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Interleukin-6 Function 
and Targeting in Prostate Cancer

Zoran Culig

Abstract

Interleukin-6 (IL-6) is a proinflammatory 
cytokine, which is involved in pathogenesis of 
several cancers. Its expression and function in 
prostate cancer have been extensively studied 
in cellular models and clinical specimens. 
High levels of IL-6 were detected in condi-
tioned media from cells which do not respond 
to androgens. Increased phosphorylation of 
signal transducer and activator of transcription 
(STAT)3 factor which is induced in response 
to IL-6 is one of the typical features of pros-
tate cancer. However, reports in the literature 
show regulation of neuroendocrine phenotype 
by IL-6. Effects of IL-6 on stimulation of pro-
liferation, migration, and invasion lead to the 
establishment of experimental and clinical 
approaches to target IL-6. In prostate cancer, 
anti-IL-6 antibodies were demonstrated to 
inhibit growth in vitro and in vivo. Clinically, 
application of anti-IL-6 therapies did not 
improve survival of patients with metastatic 
prostate cancer. However, clinical trial design 
in the future may include different treatment 
schedule and combinations with experimental 
and clinical therapies. Endogenous inhibitors 

of IL-6 such as suppressors of cytokine signal-
ing and protein inhibitors of activated STAT 
have variable effects on prostate cells, depend-
ing on presence or absence of the androgen 
receptor.

Keywords

Interleukin-6 · Prostate cancer · Tumor 
progression · Androgen receptor · 
Proliferation · Neuroendocrine phenotype · 
JANUS kinase · STAT factors · Stem cells · 
Epithelial to mesenchymal transition · 
Sensitivity · Anti-interleukin-6 antibodies · 
Galiellalactone · Clinical studies · 
Endogenous inhibitors of cytokine signaling

1.1  Factors That Regulate 
Interleukin-6 Expression 
in Prostate Cancer

Therapy approaches for non-localized prostate 
cancer (PCa) are based on inhibition of andro-
genic stimulation of PCa cell growth. In addition 
to inhibitors of androgen synthesis, blockers of 
androgen receptor (AR) are available. Previously, 
most clinical studies were focused on hydroxy-
flutamide and bicalutamide. Molecular biology 
studies have revealed that, during continued 
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treatment with antiandrogens, specific mutations 
in the ligand-binding domain of the AR may 
occur. Further improvement of antiandrogen 
therapy in PCa has been achieved with the next- 
generation drug, enzalutamide. However, there is 
substantial evidence that tumor progression also 
occurs in the presence of enzalutamide. One of 
the reasons may be AR mutations [1]. In addition, 
constitutively active AR have been described in 
conditions of therapy resistance [2].

Thus, inhibition of the androgen signaling 
pathway is not sufficient to prevent PCa progres-
sion. Novel targets have been described in 
tumors, in particular in clinical specimens 
obtained from metastatic lesions or in patient- 
derived xenografts. There is an increasing num-
ber of studies on interleukins (IL) and 
chemokines, which regulate proliferation, apop-
tosis, migration, and invasion in tumor cells. 
There is a particular interest in the proinflamma-
tory cytokine IL-6, which influences carcinogen-
esis and progression by regulation of immune 
response and intracellular signaling. Twille and 
associates were the first who measured elevated 
IL-6 levels in supernatants of AR-negative cell 
lines, whereas IL-6 levels were not detectable in 
conditioned media from androgen-sensitive 
LNCaP cells [3]. One explanation for the sup-
pression of IL-6 expression in PCa cells is nega-
tive effect of an androgen on nuclear factor (NF) 
kappa B, which is the main upstream regulator of 
IL-6 [4]. In addition to NF kappa B, transforming 
growth factor-beta and members of the activation 
protein-1 complex contribute to increased expres-
sion of IL-6 [5, 6]. In contrast, vitamin D 
decreases IL-6 expression in prostate cells [7]. It 
should be mentioned that vitamin D decreases 
PCa growth by multiple mechanisms including 
negative regulation of IL-6.

Immunohistochemical analyses in human tis-
sues revealed expression of IL-6 and its receptor 
in the majority of PCa tissues [8]. In general, it is 
believed that both autocrine and paracrine loops 
of IL-6/IL-6 receptor exist in PCa although some 
of the methodological approaches in morphology 
studies have been a subject of discussion [9] 
(Fig. 1.1). High levels of intracellular IL-6 have 
been measured in tissues from patients with 

localized PCa [10]. This finding may indicate 
oncogenic function of IL-6 during early stages of 
prostate carcinogenesis.

1.2  Interleukin-6 Activation 
of Signaling Pathways 
in Prostate Tumors

IL-6 receptor consists of the ligand-binding sub-
unit gp80 and the signal-transducing subunit 
gp130. Alterations of the receptor have not been 
reported in PCa. Binding of ligand to the receptor 
leads to activation of Janus kinases and signal 
transducer and activator of transcription (STAT) 
factor 3. In addition to STAT3, other STAT fac-
tors such as STAT5 have a documented role in 
PCa progression [11]. STAT5 is an important tar-
get in PCa therapy and is known to regulate cel-
lular plasticity.

It was proposed that IL-6 has a role in regula-
tion of cellular processes in pre-neoplastic 
lesions, such as prostate intraepithelial neoplasia 
[12]. It is, however, known that there is a limited 
number of cellular models for prostate 
 intraepithelial neoplasia available and more stud-
ies are needed to document the role of IL-6  in 
precursor lesions. The presence of activated 
STAT3 is considered a surrogate for malignancy, 
and STAT3 is targeted in multiple cancers. 
However, in case of LNCaP cells, activation of 
STAT3 in response to stromal-epithelial interac-
tions has also been described [13]. The report by 
Degeorges and associates is therefore consistent 
with the influence of IL-6 on neuroendocrine dif-
ferentiation in PCa [13, 14]. IL-6 may thus cause 
a growth arrest in a subgroup of prostate tumors 
as evidenced by upregulation of the cell cycle 
inhibitor p27 [15]. STAT3 may act in a subgroup 
of PCa patients as a tumor suppressor by induc-
ing cellular senescence through the ARF – Mdm2 
p53 tumor suppressor axis [16]. Further studies 
to determine the clinical significance of those 
findings in human PCa at different stages are 
needed.

In contrast to earlier studies in which the 
importance of neuroendocrine differentiation in 
clinical PCa was not recognized, recent research 
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highlighted the importance of neuroendocrine 
phenotype in different subgroups of PCa. The 
mechanism of IL-6 regulation of the neuroendo-
crine phenotype includes the Etk/Bmx kinase 
which is downstream to phosphatidylinositol 
3-kinase [17]. A constitutively active subunit of 
phosphatidylinositol 3-kinase (p110) induced 
neuroendocrine phenotype in absence of IL-6. 
Neuroendocrine cells themselves influence the 
proliferation of adjacent epithelial cells by secre-
tion of peptides that bind to specific receptors. In 
PCa cells, IL-6 was shown to induce the phos-
phatidylinositol 3-kinase pathway, thus inhibit-
ing apoptosis [18]. Induction of neuroendocrine 
phenotype by IL-6 is associated with suppression 
of RE-1 transcription factor (REST) [19]. One 
has to keep in mind that neuroendocrine differen-
tiation is regulated by multiple factors, mostly by 
second messengers and/or androgen ablation.

Evidence for oncogenic effects of STAT3 in 
PCa was obtained in several studies from the Gao 
laboratory. In some experimental approaches, the 
use of the signal transduction inhibitor AG 490 
with subsequent downregulation of phosphory-
lated STAT3 caused the growth-inhibitory effect 
[20]. Even more, overexpression of STAT3  in 
PCa cells promotes androgen-independent 
growth of cells, which express the AR [21]. 
STAT3 activation may be achieved by other 
growth factors such as epidermal growth factor or 
IL-11 [22].

Studies on IL-6 signaling in PCa are also 
focused on mitogen-activated protein kinase 
(MAPK), which are involved in the proliferative 
effect of IL-6 [23]. It is important to mention that, 
in cells treated with IL-6, the ErbB2 oncogene 
associates with the IL-6 receptor. These findings 
may provide some important explanations for reg-
ulation of proliferative responses and signaling 

Fig. 1.1 Cancer cells, benign cells, and adjacent stromal cells may be a source of IL-6. Multiple autocrine and para-
crine loops are described in the literature

1 Interleukin-6 Function and Targeting in Prostate Cancer
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pathways in different prostate cellular models and 
sublines. Different expression levels of ErbB2 
may be therefore responsible for a weaker or 
stronger effect of IL-6  in a PCa subline derived 
during tumor progression.

Clinically, activated STAT3 is observed in 
more than 80% of PCa cases [24]. STAT3 expres-
sion was also confirmed in the majority of PCa 
metastases [25]. Therefore, one could conclude 
that STAT3 is an oncogene although in a sub-
group of patients, it may act as a tumor suppres-
sor. Biomarkers are needed to identify patients 
who will benefit from targeting phosphorylated 
STAT3.

IL-6-related cytokines such as oncostatin M 
may also regulate cellular processes in PCa. Such 
effect was reported for oncostatin M in PC-3 
cells [26]. Additional experimental work is 
needed to clarify whether there is an upregulation 
of oncostatin M during PCa progression.

IL-6 effect on epithelial to mesenchymal tran-
sition is important for better understanding of 
therapy resistance [27]. It was documented that 
IL-6 effects during epithelial to mesenchymal 
transition are mediated by heat-shock protein 27. 
Heat-shock protein 27 is therefore recognized as 
a chaperone, which is a target in advanced PCa.

STAT3 activation is also of crucial importance 
for the generation of stem cells, which could not 
be targeted by conventional therapies [28]. These 
most primitive cells require STAT3 for survival 
and clonogenic ability. The process of generation 
of stem cells is supported by enhanced produc-
tion of reactive oxygen species [29]. Loss of AR 
expression is also causally related to generation 
of stem cells [30].

There is an interplay between signaling of 
IL-6 and interferon regulatory factor 9 (IRF9) in 
PCa [31]. The expression of IRF9 correlates with 
that of IL-6. On the other hand, IRF9 sensitizes 
the cells to the antiproliferative effect of inter-
feron alpha 2.

1.3  Interleukin-6 and Androgen 
Responsiveness in Prostate 
Cancer

Nonsteroidal activation of the AR may be impor-
tant in PCa progression, especially in conditions 
with low androgen concentrations. Functional 
AR have been described in several cellular mod-
els and patient-derived xenografts representing 
advanced PCa. For this reason, ligand- 
independent and synergistic AR activation have 
been in a focus of research interest. AR activation 
by a nonsteroidal compound (IL-6) is different 
from that achieved by a ligand. Importantly, the 
N-terminal region is mostly involved in AR acti-
vation by IL-6 through STAT3 and MAPK [32]. 
Lin and colleagues extended the initial results in 
which it was shown that IL-6 activates the AR 
and described positive effects of IL-6 on AR 
expression [33].

As mentioned before, STAT3 is involved in 
regulation of AR activity. It was also demon-
strated that androgenic hormones may have an 
effect on expression of STAT3 target genes [34].

In recent years, many studies have addressed 
the role of different coactivators in the process of 
steroid receptor activation. P300 and SRC-1 are 
involved in regulation of functional activity of 
multiple steroid receptors, including the AR. Both 
coactivators are necessary for the process of AR 
activation by IL-6, and their downregulation 
impairs the effect of IL-6 [35, 36]. In this context, 
targeting coactivators is considered a specific 
therapy option in metastatic PCa. This seems to 
be justified because of coactivator pro- 
tumorigenic activity and involvement in resis-
tance to endocrine therapies and chemotherapies 
in cancer. SRC-1 is also phosphorylated in 
response to IL-6 treatment of PCa cells. The 
involvement of the N-terminal of the AR in non-
steroidal activation opens the possibility to design 
more effective treatments targeting the variable 
N-terminal domain of the AR.

Z. Culig
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1.4  Changes in Sensitivity 
to Interleukin-6 During 
Prostate Cancer Progression

PCa is a slow-growing neoplasm and the expo-
sure of tumor cells to IL-6 may be investigated 
during a long-term period. Therefore, it was rea-
sonable to study IL-6 intracellular signaling at 
different stages of carcinogenesis. LNCaP cells 
are a good model for this type of experimental 
studies because they were initially inhibited by 
IL-6. We have observed a decrease of STAT3 
phosphorylation along with lack of inhibitory 
response to IL-6 during tumor progression [37]. 
Changes in cellular response to IL-6 were con-
firmed by Ge and colleagues [38]. The authors 
have observed that regulation of neuroendocrine 
differentiation by IL-6 is abolished during pro-
longed treatment with the cytokine.

1.5  Interleukin-6 and Prostate 
Cancer Therapy

On the basis of most of the experimental studies 
mentioned in this chapter, one could conclude 
that options for IL-6 inhibition should be 
explored. During many years, preclinical studies 
provided basis for clinical trials. There is an 
agreement that the results of preclinical studies 
imply that subgroups of PCa patients may benefit 
from this kind of therapy. However, it is also nec-
essary to consider appropriate timing of anti-IL-6 
therapy. Initial therapy studies were carried out in 
the PC-3 model, in which high levels of IL-6 
were measured [39]. Antibody (CNTO328, sil-
tuximab) treatment resulted in increased apopto-
sis in the absence or presence of etoposide. The 
antibody CNTO328 demonstrated the effect on 
preventing progression of the LAPC-4 xenograft 
[40]. This treatment has also anti-oncogenic 
effect on the coactivators p300 and CBP, which 
are upregulated after androgen ablation. This 
therapy also diminishes the expression of Mcl-1, 
which is highly expressed in cells subjected to 
androgen withdrawal [41]. Mcl-1 is an important 
mediator of the antiapoptotic action of IL-6.

Clinical studies with the anti-IL-6 antibody 
were performed in patients with castration 
therapy- resistant PCa [42, 43]. So far, there is no 
evidence that CNTO328 administration yields 
clinical improvement. Several questions may be 
asked in that context. One could expect that start-
ing treatment at an earlier time point may affect 
cellular stemness, thus leading to a more favor-
able clinical response.

Another possibility to enhance anti-STAT3 
therapy in PCa is the use of galiellalactone, which 
was described in PCa cell lines and explants [44]. 
This compound also inhibits AR signaling in 
PCa. Thus, combined anti-AR and anti-STAT3 in 
advanced PCa may have an impact on multiple 
target genes and signaling pathways and should 
be further investigated.

1.6  Endogenous Inhibitors 
of Interleukin-6 Signaling

Suppressors of cytokine signaling (SOCS) pre-
vent continuous activation of STAT factors. They 
act as a part of an important feedback mechanism 
also in nonmalignant conditions (Fig.  1.2). 
Interference with cytokine signaling is enhanced 
not only by the presence of SOCS, but also by 
protein inhibitors of activated STAT (PIAS). In 
case of SOCS-3, it seems that STAT3-dependent 
and -independent effects occur in cancer cells. In 
androgen-insensitive cancer cells, SOCS-3 inhib-
its programmed cell death [45]. The fact that 
SOCS-3 may influence proliferation and apopto-
sis in different directions is most probably 
responsible for lack of therapeutic SOCS-based 
therapy applications in prostate oncology. In 
addition to SOCS-3, SOCS-1 was investigated in 
PCa. There is also an evidence showing that 
SOCS-1 causes growth inhibition in PCa through 
preventing cell cycle progression [46]. PIAS1 
was found to be associated with PCa cell survival 
and chemotherapy resistance [47].

In summary, earlier studies on IL-6 in PCa 
have considerable translational importance. 
There is no definitive answer to the question 
whether there is a therapy option in which IL-6 
could be co-targeted in PCa. A more detailed 
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classification for prostate tumor microenviron-
ment may be helpful in order to characterize the 
role of IL-6  in stromal-to-epithelial interactions 
in angiogenesis. For example, the function of 
IL-6  in pericytes during prostate carcinogenesis 
may be a subject of major interest [48].

If further studies consider IL-6 impact on cel-
lular stemness and activation of multiple signal-
ing pathways, the anti-IL-6 therapy approach 
may be revisited.
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Abstract

Interleukin (IL)-7 plays an important immu-
noregulatory role in different types of cells. 
Therefore, it attracts researcher’s attention, 
but despite the fact, many aspects of its modu-
latory action, as well as other functionalities, 
are still poorly understood. The review sum-
marizes current knowledge on the interleukin-
 7 and its signaling cascade in context of cancer 
development. Moreover, it provides a cancer- 
type focused description of the involvement of 
IL-7 in solid tumors, as well as hematological 
malignancies.

The interleukin has been discovered as a 
growth factor crucial for the early lymphocyte 
development and supporting the growth of 
malignant cells in certain leukemias and lym-
phomas. Therefore, its targeting has been 
explored as a treatment modality in hemato-
logical malignancies, while the unique ability 
to expand lymphocyte populations selectively 
and without hyperinflammation has been used 
in experimental immunotherapies in patients 
with lymphopenia. Ever since the early 
research demonstrated a reduced growth of 

solid tumors in the presence of IL-7, the inter-
leukin application in boosting up the antican-
cer immunity has been investigated. However, 
a growing body of evidence indicative of IL-7 
upregulation in carcinomas, facilitating tumor 
growth and metastasis and aiding drug- 
resistance, is accumulating. It therefore 
becomes increasingly apparent that the 
response to the IL-7 stimulus strongly depends 
on cell type, their developmental stage, and 
microenvironmental context. The interleukin 
exerts its regulatory action mainly through 
phosphorylation events in JAK/STAT and 
PI3K/Akt pathways, while the significance of 
MAPK pathway seems to be limited to solid 
tumors. Given the unwavering interest in IL-7 
application in immunotherapy, a better under-
standing of interleukin role, source in tumor 
microenvironment, and signaling pathways, as 
well as the identification of cells that are likely 
to respond should be a research priority.

Keywords

Immunotherapy · Immunosurveillance · 
Lymphangiogenesis · Epithelial- 
mesenchymal transition (EMT) · Lymphoma · 
Leukemia · Carcinoma · Metastasis · 
Signaling pathway · Tumor microenviron-
ment · Apoptosis · Drug resistance

I. Bednarz-Misa · M. A. Bromke 
M. Krzystek- Korpacka (*) 
Department of Medical Biochemistry, Wroclaw 
Medical University, Wroclaw, Poland
e-mail: malgorzata.krzystek-korpacka@umed.wroc.pl

2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-55617-4_2&domain=pdf
https://doi.org/10.1007/978-3-030-55617-4_2#DOI
mailto:malgorzata.krzystek-korpacka@umed.wroc.pl


10

2.1  Introduction

Interleukin (IL)-7 has been discovered as a 
growth factor crucial for the early lymphocyte 
development, and thus supporting the growth of 
malignant cells in certain leukemias and lympho-
mas. Its targeting has been explored as a treat-
ment modality in hematological malignancies. In 
turn, its unique ability to expand lymphocyte 
populations selectively and without hyperinflam-
mation has been employed in experimental 
immunotherapies in patients with lymphopenia. 
Early research has shown a reduced growth of 
solid tumors in the presence of IL-7, accompa-
nied by tumor infiltration with cytotoxic lympho-
cytes. It has earned the cytokine a place among 
the “Top Agents with High Potential for Use in 
Treating Cancer” [1]. However, contradicting an 
advocated antitumor activity, the available clini-
cal data almost unanimously indicate IL-7 accu-
mulation [2–6] and/or IL-7R overexpression 
[7–10] in solid tumors.

The excellent reviews on IL-7 biology [11–
15] and the interleukin potential as an immuno-
therapeutic agent [16, 17] are available. The 
present article focuses on IL-7/IL-7R signaling in 
tumor milieu. We describe the potential sources 
of IL-7 in the environment of hematological can-
cers and solid tumors and present cells displaying 
the cytokine receptor on their surface. We enu-
merate factors affecting the expression of IL-7 
and its receptor and provide an overview of IL-7 
interaction with extracellular matrix and of main 
signal transduction pathways triggered by the 
interleukin. Moreover, we review what little is 
known about IL-7/IL-7R signaling in reference 
to loose interpretation of capabilities, the 
 acquiring of which determines successful cancer 
development as described by Hanahan and 
Weinberg [18]. Furthermore, we present the 
interleukin signaling from cancer type 
perspective.

2.2  Interleukin (IL)-7

The active form of human IL-7 is a 25 kD glyco-
protein consisting of 177 amino acids forming 
four α-helixes and a hydrophobic core. Murine 

interleukin shares 55% homology with human 
IL-7 and consists of 154 amino acids (reviewed 
in [11–15]). In addition to the canonical form, a 
functional alternative splice variant lacking exon 
5 (IL-7δ5) has been cloned from human cancer 
cell lines [19]. The IL-7 can act as a mitogen and 
a trophic, survival, and differentiation factor for 
various immune cells, particularly those of the 
lymphoid lineage. Whether the interleukin is nec-
essary and the type of function it performs depend 
on the type of cells and their stage of develop-
ment. It may differ between species as well. As 
an illustration, IL-7 is essential for T cells in mice 
and humans while its engagement in the develop-
ment of B and natural killer (NK) cells is indis-
pensable only in mice. It primarily supports early 
developmental stages of T and B cells, but it is 
required again for homeostasis and proper func-
tioning of mature T cells and for promoting sur-
vival of mature NK cells (reviewed in [11–15]). 
In case of the non-lymphoid lineages, IL-7 
increases populations of splenic myeloid cells in 
mice and raises the number of neutrophils and 
monocytes in circulation. However, the effect is 
rather indirect due to lack of the IL-7 receptor 
(IL-7R) on common myeloid progenitors, imma-
ture or mature neutrophils, or on the most of cell 
of myelomonocytic origin, except for bone mar-
row macrophages [20–22]. The IL-7 promotes 
the genesis of secondary lymphoid organs [23], 
lymphatic drainage [24], and lymph node remod-
eling [25]. Regarding cancer, IL-7 functionality 
may be beneficial for the host, mostly by eliciting 
antitumor immune responses, or unfavorable, by 
supporting the tumor growth. This may happen 
either directly or by modulating the tumor’s 
microenvironment. Moreover, IL-7 has an onco-
genic potential, and transgenic mice spontane-
ously develop T and B lymphomas [26, 27].

Surprisingly little is known about cellular ori-
gin and regulation of IL-7 expression. The IL-7 is 
considered a tissue-based interleukin, expressed 
mainly by stromal and epithelial cells, although 
the precise identity of IL7-secreting cells often 
remains unknown. In hematological malignan-
cies, potential sources of the interleukin in the 
thymus are subsets of epithelial cells [28–30] and 
fibroblasts [31]. In the bone marrow, IL-7 is 
expressed by sinusoidal endothelial cells, stromal 
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reticular cells [32, 33], mesenchymal stem and 
progenitor cells (MSCs) [32, 34], and by osteo-
blasts [35, 36]. In the secondary lymphoid organs, 
IL-7 is produced by fibroblastic reticular cells, 
follicular dendritic cells, and by epithelial and 
endothelial cells [37–39], including lymphatic 
endothelial cells [24]. Interestingly, all the stud-
ies employing IL-7 reporter bacterial artificial 
chromosome (BAC) transgenic mice have uni-
formly failed to confirm IL-7 expression in the 
spleen (reviewed in [13]). Lymphocytes T and B 
do not express IL-7, except for intestinal αβT 
cells [40]. In turn, IL-7 may be released by some 
subsets of dendritic cells [41, 42] and granulo-
cytes [43]. Potential source of the interleukin in 
solid tumors are fibroblasts [37], vascular endo-
thelial and smooth muscle cells [37, 38, 44], lym-
phatic endothelial cells [24], epithelial cells 
[44–47], keratinocytes [48], chondrocytes [49], 
normal neuronal progenitor cells [50], neurons 
[51], microglia [52], and astrocytes [52].

The ability to express detectable levels of IL-7 
seems to be associated with malignancy. 
Corroborating the notion, the interleukin has been 
found in melanoma cells, but not in normal mela-
nocytes [53] or in hepatocellular carcinoma cells, 
but not in normal hepatocytes [54–56]. Some of 
the cancer cells co-express IL-7 and its receptor, 
raising a possibility of an autocrine mode of 
action. The concomitant IL-7 and IL-7R expres-
sion has been reported in Hodgkin lymphoma 
[57], thyroid lymphoma [38], hepatocellular car-
cinoma [54], melanoma [53], glioma [4], and in 
prostate [47], breast [3], and non–small cell lung 
cancer [6, 58]. Noncancerous cells from tumor 
microenvironment, including  cancer- associated 
fibroblasts (CAFs) in Hodgkin’s lymphoma [57], 
epithelial cells in lymphoid stroma-rich Warthin’s 
tumor [59], and keratinocytes in patients with 
cutaneous T-cell lymphoma (CTCL) [60], express 
IL-7 and its receptor as well. Bone marrow 
 stromal cells may also express functional, albeit 
truncated, receptor [61, 62]. Moreover, the co-
expression of IL-7 and its receptor has been 
observed in lymphatic [24] and vascular [44] 
endothelial cells, macrophages [20, 63], chond-
rocytes [49], and in the intestinal epithelial cells 
[3, 64].

The synthesis of IL-7 was believed to be con-
stitutive, with the interleukin availability regu-
lated exclusively at the receptor level [65]. 
However, recent evidence has shown that IL-7 
expression in the specific hematopoietic stem cell 
niches of the bone marrow might be regulated by 
membrane-type 1 matrix metalloproteinase 
(MMP-14), facilitating cell fate decisions. The 
interleukin expression has been induced by 
hypoxia-inducible factor (HIF)-1α. Noteworthy, 
MMP-14 prevented the impairment of HIF-1α 
transcriptional activity by factor inhibiting HIF-1 
(FIH) [66]. In addition, also other transcription 
factors, such as nuclear factor (NF)-κB, inter-
feron regulatory factor (IRF)-1, and signal trans-
ducer and activator of transcription (STAT), play 
a role in regulating IL-7 transcription. They are 
activated by type I and II interferons (IFN), 
IL-12p70, IL-6, IL-1β, and by tumor necrosis 
factor alpha (TNFα), in a cell-specific and con-
textual manner [35, 36, 52, 67–71]. Moreover, 
keratinocyte growth factor (KGF), produced by 
mesenchymal cells and intraintestinal lympho-
cytes, stimulates IL-7 expression in colon adeno-
carcinoma cells by activating the STAT1/IRF-1, 
IRF-2 signaling pathway [72]. Transforming 
growth factor (TGF)-β, in turn, has been shown 
to downregulate IL-7 expression in normal stro-
mal cells [73]. However, it has an opposite effect 
on pancreatic cancer cells [74]. The upregulation 
of IL-7 mediated by TGF-β involves epigenetic 
mechanisms. Specifically, TGF-β activates GLI1, 
a C2-H2-type zinc finger transcription factor, 
which forms a complex with SMAD4 and histone 
acetyltransferase P300/CBP-associated factor 
(PCAF) [74]. Apart from TGF-β, type I IFNs 
may also act differently in cancer. They have 
been shown to downregulate IL-7 expression in 
tumor bed in murine model of breast cancer [75].

2.3  Interleukin 7 Receptor 
(IL-7R)

The IL-7 receptor consists of two transmembrane 
components—CD132 and CD127. Although 
expressed on the cell surface independently, both 
subunits are required for successful IL-7 signal-
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ing. The CD127 (IL-7Rα) is specific for IL-7, 
whereas CD132 is a gamma chain (γc), common 
for IL-2, IL-4, IL-9, IL-15, and IL-21 receptors. 
The IL-7 receptor is devoid of kinase activity and 
signals by activating various intracellular kinases 
upon the cytokine-induced dimerization. The 
cytoplasmic part of CD127 contains several dis-
tinct regions serving as docking domains. The 
region proximal to cell membrane contains box1 
and box2 domains, involved in transferring 
mitotic and survival signals by binding Janus 
kinase (JAK)-1. In turn, JAK3 kinase is physi-
cally associated with a C-terminal part of CD132. 
Further away from the membrane, a domain rich 
in acidic amino acids is located. It facilitates 
docking of Src kinases, including p53/56lyn, 
p59fyn, and p56lck. Members of the STAT-family, 
which are activated downstream of JAKs, bind to 
the phosphorylated tyrosine residue in the 
C-terminal receptor region. This region is also 
necessary for p85/PI3K activation and thus cru-
cial for conveying signals inducing cell prolifera-
tion, growth, and survival (reviewed in [12, 76]). 
The CD127 is present on hematopoietic cells, 
primarily of the lymphoid lineage, and its expres-
sion is strictly regulated to meet the specific 
needs associated with particular developmental 
stages (reviewed in [12]). It is abundantly present 
on precursor and developing immune cells, but 
only on subsets of mature cells [12, 21, 44, 77]. 
The responsiveness of malignant lymphocytes to 
IL-7 is positively correlated with CD127 expres-
sion [78]. Most of acute lymphoblastic leukemia 
(ALL) cells from children with initial and remit-
tent disease express the receptor, although the 
frequency of CD127+ cells differ by ALL sub-
group. It is the highest in pre-B ALL, followed by 
common ALL, and the least pronounced in pre-T- 
ALL [76]. Some authors have screened malig-
nant cell lines for IL-7 and/or CD127 expression 
[4, 71, 79, 80]. However, their findings regarding 
certain lines have been subsequently undermined 
[58, 81, 82].

The upregulated expression of CD127 can lead 
to neoplastic transformation. The AKR/J mice, 
overexpressing CD127, spontaneously develop 
thymoma [83]. In addition, combined mutations 
in CD127 and N-Ras genes have been demon-

strated to possess a transforming potential as well 
[84]. The CD127 promoter sequence contains 
consensus sites for Ikaros, P.U.1, GATA- binding 
protein, NF-κB, and Runt-related transcription 
factor 1 (RUNX1). Moreover, it binds interferon-
stimulated (ISRE) and glucocorticoid (GRE) 
response elements (reviewed in [65]). The IL-7 
stimulation triggers rapid CD127 endocytosis via 
clathrin-coated pits, characterized by decreased 
receptor recycling and accelerated degradation, 
involving both lysosome and proteasome-depen-
dent pathways. Importantly, this interleukin-
mediated negative regulation of CD127 is crucial 
for proper activation of JAK/STAT and PI3K/Akt 
pathways [85]. However, pre-B-ALL cells do not 
seem to respond to IL-7 stimulation with the 
receptor downregulation [86].

A number of polymorphisms in CD127 gene 
have been described (reviewed in [87]) and linked 
with increased cancer susceptibility [88]. Gain- 
of- function mutations in CD127, predominantly 
in exon 6, are found in about 9–12% of pediatric 
T-ALL [89, 90]. They occur also in adult T-ALL, 
childhood precursor B cell ALL (B-ALL), and 
adult acute myeloid leukemia (AML), albeit less 
frequently [90]. No such observations were made 
for childhood AML, multiple myeloma (MM), or 
non-Hodgins lymphomas (NHL) of both T and 
B-cell origin. In case of solid tumors, CD127 
mutations have been found in the colon and non–
small cell lung cancers. They were less frequent 
(<1%) and their nature differed, as they were 
mostly frameshift and missense mutations. In 
turn, no mutations have been found in other gas-
trointestinal tract cancers, in breast and prostate 
cancers, ovarian stromal tumors, soft tissue sar-
coma, or malignant meningioma [90].

Goodwin et al. [91] detected a soluble form of 
human IL-7Rα (sCD127), capable of IL-7 bind-
ing. Subsequently, Crawley et  al. [92] showed 
sCD127 to hamper IL-7/IL-7R signaling, as the 
activation of two main downstream pathways, 
JAK1/STAT5 and PI3K/Akt, has been reduced in 
its presence. A C > T polymorphism (rs6897932; 
Thr244Ile), favoring a soluble receptor form, has 
been found to increase susceptibility for breast 
cancer [88]. In addition, several alternatively 
spliced CD127 variants encoding truncated but 
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functional receptor have been detected in chil-
dren with ALL. The truncated receptor is missing 
domains conveying differential signals, thus pro-
moting mitogenic and survival functionality of 
the IL-7/IL-7R pathway [76]. Recently, a long 
noncoding RNA, named lnc-IL7R, has been dis-
covered. It overlaps with the sense strand of the 
CD127s 3′ untranslated region (3′UTR) [93–96]. 
The lnc-IL7R presence has been reported in nor-
mal peripheral blood mononuclear cells (PBMCs) 
and malignant monocytic cell line [93]. It has 
also been detected in oral squamous cell carci-
noma [95] and cervical cancer [96] and in 
fibroblast- like synoviocytes [94]. Noteworthy, 
despite a close physical relation and some shared 
functionalities [93–96], the lnc-IL7R has no 
effect on CD127 expression and seems to func-
tion independently [93].

2.4  IL-7/IL-7R Interaction 
with Extracellular Matrix 
(ECM)

The interaction with ECM partakes in regulating 
bioavailability and bioactivity of IL-7. The inter-
leukin preferentially binds to glycosoaminogly-
cans (GAGs) containing heparin and heparan 
sulfate [97]. Heparin is a carrier molecule, which 
additionally protects IL-7 from degradation and 
prevents accidental activation of random targets 
[98]. Cell surface GAGs on the interleukin- 
responsive cells cooperate with IL-7R in IL-7 
binding. Those on stromal cells act as weak 
 docking sites, facilitating cytokine positioning 
and compartmentalization [99]. Sequestration of 
secreted IL-7 is likely to contribute to the rela-
tively low concentrations of cytokine in circula-
tion (reviewed in [13]). Still, serum concentrations 
of IL-7 are reportedly higher in cancer patients 
with various malignancies [2, 5, 100–110] and 
increasing along with tumor progression [102, 
105, 107, 111, 112]. Elevated IL-7 is associated 
with higher risk for lung cancer [113], as well as 
with increased likelihood of colorectal adenomas 
[114] and their greater potential for malignancy 

[107]. However, the interleukin association with 
lymph node involvement [107, 115, 116] or 
patients’ survival [105, 117, 118] remains equiv-
ocal. Noteworthy, IL-7 concentration is also 
higher in aqueous humor from patients with reti-
noblastoma [119].

Changes in the tensional state of the ECM, 
with its stretching and folding, alternately hide 
and reveal binding sites for IL-7. It allows for 
continuing biological effects of the interleukin, 
even days after cessation of treatment [120]. The 
ECM-bound IL-7 is more potent than soluble 
interleukin, and stromal cell surface molecules 
might participate in IL-7 activity. As an illustra-
tion, biglycan and matrix glycoprotein sc1 have 
been shown to increase interleukin-dependent 
proliferation of pre-B cells [121]. The GAGs 
control the formation of pre-pro-B-cell growth- 
stimulating factor (PPBSF), a heterodimer con-
sisting of IL-7 and a β chain of hepatocyte 
growth factor (HGF). The PPBSF allows for 
complimentary signaling via IL-7R and HGF 
(c-Met) receptors in cells expressing low levels 
of CD127 [122]. The IL-7 increases the adhesive 
interactions of resting and activated T cells with 
ECM in an integrin-dependent manner, more 
efficiently if bound to ECM components, espe-
cially fibronectin [123]. Moreover, fibronectin 
induces IL-7 expression in chondrocytes [49]. 
The IL-7 activates integrins on lymphatic endo-
thelial cells [24] and T cells [124]. It also regu-
lates the expression of adhesion molecules and 
cadherins on various cancer cells [54, 82, 125, 
126], modulating cell-cell and cell-ECM interac-
tions. The interleukin relation with ECM is bidi-
rectional. The IL-7 affects ECM composition by 
negatively regulating the synthesis of collagen 
type I, fibronectin, and α-smooth muscle actin 
(α-SMA) by fibroblasts [127, 128]. In addition, 
IL-7 facilitates ECM degradation by upregulat-
ing MMP-13 [49, 129]. The ECM degradation 
and remodeling is a crucial step in cancer inva-
sion and metastasis. The interleukin, apart from 
an indirect MMP-13 upregulation, induces the 
expression of several other MMPs in various 
cancer cells [47, 54, 130].

2 Interleukin (IL)-7 Signaling in the Tumor Microenvironment
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2.5  Overview of IL-7/IL-7R 
Signaling

Our knowledge on IL-7/IL-7R signaling, even in 
the most extensively studied lymphocytes, 
remains fragmentary and the downstream path-
ways and their molecular end-points are still 
emerging. Moreover, the pathways are largely 
redundant and their contribution in particular 
molecular effect depends on cell type, develop-
mental stage, and context. The interleukin- 
activated pathways in solid tumors are mostly 
unknown. The JAK/STAT and PI3K/Akt are the 
two main signal transduction pathways activated 
by IL-7/IL-7R and implicated in the key cytokine 
functionalities. Some authors have also shown 
the activation of MEK/ERK pathway in response 
to IL-7/IL-7R signaling, but its significance is 
poorly understood. In addition, IL-7 has been 
shown to cooperate with other kinases, adaptor 
proteins, and transcription factors, for which 
upstream and/or downstream signaling elements 
remain to be determined. A simplified overview 
of IL-7/IL-7R axis is presented in Fig. 2.1. The 
detailed summary on known IL-7 targets and 
involved pathways is presented in Table 2.1 (ded-
icated to hematological cells), Table  2.2 (dedi-
cated to non-hematological cells), and Table 2.3 
(dedicated to antitumor immunomodulatory 
activity of IL-7).

2.5.1  JAK/STAT

The cross-phosphorylation of JAK1 and JAK3 is 
the first and mandatory step in IL-7/IL-7R signal-
ing. However, some cancer-related mutations 
facilitate receptor homodimerization and path-
way activation independently from γc-associated 
JAK3 and IL-7 stimulation [89, 131, 132]. They 
result in constitutive activation of proteins regu-
lating cell cycle progression, survival, and pro-
tein translation, as well as in transactivation of 
other pathways, namely, PI3K/Akt and MAPK 
[133]. The JAK kinases phosphorylate various 
STATs, facilitating their dimerization and nuclear 
translocation, and the type of activated STAT 
determines the response specificity. The IL-7/

IL-7R signaling via STAT1 has been demon-
strated in fibroblasts, in which it inhibited TGFβ 
synthesis [134] and in B-cell precursor acute 
lymphoblastic leukemia (BCP-ALL), supporting 
cell proliferation [135]. In the T-cells, robust 
STAT1 activation is suppressed by T-cell protein 
tyrosine phosphatase (PTPN2) [136]. The 
STAT3-mediated signaling participates in prosur-
vival activity of IL-7 in B-cell progenitors [137] 
and in the upregulation of IL-17 secretion by a 
subset of γδT cells [138]. However, IL-7 stimula-
tion preferentially induces the JAK-mediated 
activation of STAT5 [136]. The STAT5 is involved 
in conveying prosurvival, mitotic, trophic, and 
differential signals for non-transformed (reviewed 
in [12, 139]) and malignant lymphocytes T and B 
[135, 140–144]. However, the pathway relevance 
for particular functionalities seems to be highly 
cell-dependent and context-related. As an illus-
tration, IL-7/STAT5 has been claimed to be nec-
essary for T-cell proliferation, but not survival 
[145]; for differentiation, but not survival or pro-
liferation [146]; or for survival at the expense of 
proliferation [147, 148]. In addition, STAT5 
mediates IL-7 effect on T-cell cytotoxicity [147] 
and drug resistance [149, 150]. The STAT5- 
mediated gene regulation employs epigenetic 
mechanisms, as it increases chromatin accessibil-
ity at the promoter regions of target genes and 
possibly upregulates the expression of histone 
methyltransferase EZH2 [151–153]. The epigen-
etic regulation has been implicated in the 
interleukin- induced Th9 differentiation and IL-9 
expression [152], upregulation of Pim1 kinase in 
T-ALL [153], and in polyfunctionality and stem-
ness in CD4+ T cells [151]. Regarding solid 
tumors, the STAT5 activation induced by IL-7 
has been reported in prostate cancer [154].

The JAK/STAT and PI3K/Akt pathways may 
be interacting—the STAT5/Pim1 is required to 
induce and sustain Akt phosphorylation—in 
order to facilitate cell growth in normal [155] and 
malignant T cells [140]. The STAT5-mediated 
Pim1 activation participates also in B-cell devel-
opment [156]. The Pim serine/threonine kinases 
are frequently overexpressed in cancer, and their 
transcriptional activity promotes survival, cell 
cycle progression, and proliferation and mediates 
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bone destruction. Among direct Pim1 substrates 
are transcription factor Myc (activated) and pro-
apoptotic Bad (inactivated), as well as the cell 
cycle regulators: activator CDC25A/C (activated) 
and inhibitors p21CIP1 and p27KIP1 (inactivated) 
(reviewed in [157]). In addition to Pim1, also 
Pim2 is implicated in IL-7/IL-7R signaling, 
although its upstream activators have yet to be 

determined. The Pim2 partakes in IL7-induced 
osteoclastogenesis in MM by blocking expres-
sion of transcriptional targets of BMP2 via antag-
onizing SMAD1/5 and p38MAPK signaling 
[158].

The JAK1/STAT5/Pim-1 pathway [140] or a 
direct phosphorylation by JAK3 [159] activates 
NFAT2, a transcriptional factor forming com-

Fig. 2.1 Overview of IL-7/IL-7R signaling cascades. 
The binding of the IL-7 to the IL-7R elicits phosphoryla-
tion events in several signaling pathways. A cross- 
phosphorylation of JAK1 and JAK3 is the first step. The 
JAK kinases phosphorylate various STAT proteins, facili-
tating their dimerization, nuclear translocation, and regu-
lation of gene expression. In another signaling pathway, 
JAK kinases activate a phosphoinositide 3-kinase (PI3K), 
the product of which activates the protein kinase B (Akt). 

Cells stimulated by IL-7 may also activate ERK, JNK, and 
p38 kinases belonging to the MAPK pathway. 
Additionally, an IL7-induced activation of p56lck, p53/
p56lyn, p59fyn were observed. Various target- transcription 
factors phosphorylated in signaling pathway activate or 
repress gene expression of genes leading to many cellular 
processes. Main pathways induced by IL-7/IL-7R are 
marked in black, and the other in gray

2 Interleukin (IL)-7 Signaling in the Tumor Microenvironment
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Table 2.1 The effects of IL-7/IL-7R signaling on lymphoid and myeloid, normal and malignant cells

Target Act. Pathway Effects of IL-7 stimulation Cell type Refs.

↑IL2R P ↑Proliferation T/B-ALL, 
T/B-CLL AML

[209]

P ↑Proliferation Lamina propria 
lymphocytes

[64]

P Src kinases ↑p59fyn and p56lyn hT cells [183]

P RasGRP1-Ras- 
PI3K/Akt

Mix of IL-7, 2, and 9; 
relevance-nd

mT-ALL [176, 
214]

↑Pim1; ↑cyclin D2; 
↑Bcl-xL

P, S, 
C

STAT5 ↑Proliferation; ↑survival; 
restored differentiation

Pre and pro-B 
cells in TGM

[156]

↑IL-2Rα NFκB/Rel ↓IκBα; ↑p65 and p50 NF-κB/Rel 
subunits

hPB T cells [244]

P JAK/STAT1; 
STAT5

↑proliferation hBCP-ALL; 
mBAF3 cells

[135]

P, S mTORC/p70S6 ↑Proliferation; ↑survival; 
↑ph-p70 S6

preB-ALL [211]

↑Bcl-2; ↑Bax S ↓Apoptosis; ↑Bax (low and 
uncorrelated with apoptosis rate)

hT-ALL (primary) [196]

↑Bcl-2 S ↑Survival; (activation, 
cytotoxicity, IFNγ-na)

hCD56bright NK 
cells

[77]

↑Bcl-2; ↑cyclin A and 
D2; ↑cdk4 and cdk2; 
↓p27KIP1

C, S Abolished by 
rapamycin

↑Viability; hyperphosphorylation 
of Rb; cell cycle progression to 
the S and G2/M phase; (Bcl-xL, 
Bax, Bad-na)

hT-ALL (primary) [197]

↑Bcl-2; ↑ph-Rb; 
↓p27KIP1

; ↑GLUT-1
C, 
S, 
ME

PI3K/Akt ↑Viability; cell cycle 
progression; ↑glu uptake, 
maintained Δψm; ↑MEK/ERK 
(relevance-nd)

hT-ALL (primary); 
TAIL7

[180]

↓p27KIP1 C Skp2-dep.; 
PKCθ-dep. 
(dominant)

Posttrans. reg. via degradation- 
inducing phosphorylation

IL7–dep. 
thymocyte line 
D1; peripheral T 
cells

[208]

↑CK2; ↑Bcl-2; ↑cyclins 
A and E; ↓p27KIP1; mild 
↓cyclin D2; ↑CD71

P, 
C, 
S, G

Jak/STAT; 
PI3K/Akt

Mediated by CK2: ↑survival; 
↑proliferation; maintained Δψm; 
↑cell size

T-ALL (primary); 
TAIL7, HBP-ALL

[142]

↑ph-S6RP; ↓ph-p53; 
↓p27KIP1

P, S, 
C, 
G

PI3K/Akt/
mTOR

↑Proliferation (DNA synthesis); 
↓apoptosis; ↑cell size; ↓% of G1 
cells; (Cdk6 and Cdk2, cyclin 
D3-na)

hT-ALL (primary); 
TAIL7

[172]

↑Bcl-2; ↓p27KIP1; 
↑Ki-67

P, S, 
V

↑Expansion; ↑leukemia-related 
death; ↑proliferation; ↑survival; 
↑viability

TGM with 
hT-ALL

[198]

↑ROS V Positive loop 
btw ROS and 
PI3K/Akt/
mTOR

↑Intracellular ROS; maintained 
Δψm

hT-ALL (primary); 
TAIL7

[217]

↓p27KIP1; ↑CD71; 
↑Bcl2, ↑Bcl-XL, 
↑Mcl-1; ↑Pim1, 
↑IKZF4, ↑SOCS2, 
↑CISH, ↑OSM; ↓BCL6, 
↓IL-10

P, 
C, 
G, 
V

STAT5/Pim1 
PI3K/Akt

↑Cell growth; cell cycle 
progression; ↑proliferation; 
↓apoptosis; STAT5-mediated 
functions: cell growth and 
proliferation

T-ALL (primary); 
TAIL7, HBP-ALL

[140, 
153]

(continued)
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Table 2.1 (continued)

Target Act. Pathway Effects of IL-7 stimulation Cell type Refs.

↑GLUT1 G, 
ME

STAT5/
Pim1 → Akt

↑glu uptake; ↑GLUT1 surface 
trafficking

Naive and 
activated hT cells

[155]

G, 
ME

↑Cell size; ↑glycolytic rate B23 cells 
(immortalized mB 
cell progenitors)

[216]

↑Slc1a4, Slc1a5, Slc7a5 
and Slc7a6

G, 
ME

PI3K/mTOR ↑Cell size; ↑aa transporters (glu 
transporters: Slc2a1, Slc2a3, 
Slc2a9 and Slc5a2-na)

Naive mCD8+ T 
cells

[219]

↑Aquaporin 9 S, 
ME

↑Glycerol uptake; ↑TAG 
synthesis; ↑survival

Memory h/mT 
cells

[220]

↑Myc; ↑chol&aa 
metabolism; ↑E2F; 
↓neg. reg. cell cycle

G, 
ME, 
P, 
CY

IL-7R/mTOR; 
JAK/STAT5

↑Anabolism; ↑proliferation; 
↑DNA synthesis; ↑cell growth; 
↑cell cycle progression; 
↓cytoskeletal reorganization

proB cells; TGM 
(Myc-induced B 
cell lymphoma)

[143]

↑Crk; ↑STI1; ↑ATIC; 
↑hnRNPH; ↑Myc; 
↑lymphotoxin α; 
↑PKCη; ↑SOCS2; 
↓LAIR1; ↓Flt3

S, P, 
EM

STAT5 Crk-mediated: ↑cell survival; ↑ 
heterodimerization of Crk and 
STAT5

IL7–dep. 
thymocyte line 
D1; murine pro-B 
cells; hT cells

[166]

↑Bcl-2 S, G PI3K/Akt/
mTOR 
(atrophy)

↑Survival (via Bcl-2); prevented 
atrophy, maintaining cell size 
and metabolic rate (not by 
Bcl-2); (proliferation-na)

Naive mT cells [193]

↑Bcl-2; ↑Bcl-xL; 
↑NFATc3; ↑SOCS3; 
↑Tcf12, Tcf3, Rag1, 
Rag2 and Ptcra

S, D JAK3/NFAT2 Calcineurin-independent 
activation of NFAT2

Pre-TCR 
thymocytes

[159]

↑Bcl-2, ↑c-Myb S STAT5/ ↑ c-Myb DNA binding and 
expression (c-Myc-na); ↑STAT5 
binding to Bcl-2 promotor

CTCL cell line 
SeAx

[141]

↑Bcl-2; ↑Bcl-xL; ↓Bax S pH stabilization ↑Survival; (Bak, Bad-na); 
maintains Bax in cytosol

IL7–dep. 
thymocyte line D1

[194]

↑Bcl-2; ↓Bax S (of p53 and 
Fas/FasL -not 
involved)

↑Survival; (Bcl-xL, Bad, Bcl-w; 
proliferation-na)

Murine pro-T cells [195]

↑Bcl-2 S STAT5 ↑Survival; (Mcl-1, Bcl-xL-na) Murine recent 
thymic emigrants

[148]

↑IFNγ, FasL S STAT5 Continuous IL-7 stimulation 
leads to CICD

Naive CD8+ T 
cells

[205]

↑ICOS S NFκB NFκB as a negative regulator of 
IL-7 signaling

NKT cells [252]

↑ph-Pyk2 S JAK1 ↑Survival IL7–dep. 
thymocyte line D1

[191]

Bad↓ S PI3K/Akt Posttrans. reg. via ↑Bad 
phosphorylation-no 
mitochondrial translocation

IL7–dep. 
thymocyte line D1

[200]

↓Bim S Posttrans. reg. via ↑Bim 
phosphorylation-resulting in 
altered pI of BimEL isoform

IL7–dep. 
thymocyte line 
D1; peripheral T 
cells

[201]

↑Mcl-1 S Protein and mRNA expression Thymocytes or 
purified T cells

[199]

(continued)
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plexes with AP-1, GATA, Foxp3, or MEF, in a 
noncanonical, calcineurin-independent route. In 
addition, IL7-mediated activation of Akt, and 
subsequent GSK3 inhibition, might upregulate 
NFAT2 activity by preventing its translocation 
from the nucleus [160]. The potential NFAT2 tar-
gets include a wide panel of cytokines and growth 
factors with proinflammatory and angiogenic 
activity, prosurvival and pro-proliferative Mdm, 
cyclin D1, and Bcl-2, and transcription factors 
involved in metabolism regulation, such as 
c-Myc, HIF-α, and IRF4 [160]. Up-to-date, a 
stimulatory JAK3/NFAT2-mediated effect of 
IL-7/IL-7R on cell survival (via Bcl-2 and Bcl- 
xL) and differentiation (via Tcf12, Tcf3, Rag1, 
Rag2, and Ptcra), as well as on NFAT4 and 
SOCS3 has been demonstrated [159]. The NFAT2 
may also mediate IL7-induced expression of 
PD-1 on CD4+ and CD8+ T cells [161]. As NFAT2 
is commonly expressed in lymphoid cells, its 
aberrant activation in lymphomas/leukemias is to 

be expected. However, NFAT2 overexpression is 
associated also with pancreatic and colorectal 
cancer and linked with tumor invasion and metas-
tasis [160, 162]. The proposed mechanism of 
acquiring the ability to express NFAT2 is a fusion 
between tumor cells and NFAT2-expressing cells 
from tumor microenvironment, such as lympho-
cytes and myeloid cells, and trading of genetic 
material [163]. Indeed, the formation of such 
hybrid cells has been confirmed in vitro, as well 
as in vivo [164].

Apart from the canonical JAK/STAT activa-
tion, early studies have pointed at possible JAK3- 
mediated phosphorylation of p85 and activation 
of PI3K/Akt [165]. The notion has recently been 
corroborated by constitutive activation of the 
PI3K/Akt pathway in T-ALL cells harboring 
mutations in JAK3 gene [133].

The JAK/STAT pathway is inhibited by a fam-
ily of SOCS proteins. They are activated by IL-7/
IL-7R signaling, constituting a classic negative 

Table 2.1 (continued)

Target Act. Pathway Effects of IL-7 stimulation Cell type Refs.

↑CD47 IS Immune evasion by ↓phagocytic 
functions; (proliferation, 
apoptosis-na)

Sézary cells from 
PB

[263]

↑PD-1; ↑PD-L1 IS ↓T-cell effector functions: ↓IL-2 
and IFNγ expression; 
(proliferation, survival-na)

PBMCs, CD4+ and 
CD8+ T cells, 
monocytes/
macrophages

[257]

↑IL-6 DR, 
IS

↑clonogenic growth; ↓apoptosis; 
partially protects from 
doxorubicin cytotoxicity; 
costimulator for Tregs 
proliferation

Cultured H-RS 
cells, HL-derived 
fibroblasts

[57]

↑AUTS2; ↓MEF2C STAT5 Synergistic inputs of AUTS2 and 
MEF2C in lymphopoiesis and 
leukemia (de)regulating NKL 
homeobox gene MSX1

T-ALL [144]

↑ph-YB-1 DR ↑Survival in rapamycin-treated 
cells

BCP-ALL [181]

Act activity, Ref reference, h (prefix) human, m (prefix) murine, C cell cycle progression, CY cytoskeleton reorganization, 
D differentiation, DR drug resistance, EM epithelial-mesenchymal transition, G cell growth, IS immunosuppression, ME 
metabolism, P proliferation, S survival, V viability, T-ALL T-cell acute lymphoblastic leukemia, B-ALL B-cell acute 
lymphoblastic leukemia, T-CLL T-cell chronic lymphoblastic leukemia, B-CLL B-cell chronic lymphoblastic leukemia, 
AML acute myeloid leukemia, BCP-ALL B-cell precursor acute lymphoblastic leukemia, CTCL cutaneous T-cell lym-
phoma, H-RS cells Hodgkin and Reed/Sternberg cells, HL Hodgkin lymphoma, TGM transgenic mice, na not affected, 
nd not determined, PB peripheral blood, PBMCs peripheral blood mononuclear cells, dep. dependent, ph (prefix) phos-
phorylation, posttrans.reg. posttranslational regulation, CK2 casein kinase 2, Δψm mitochondrial membrane potential, 
glu glucose, aa amino acids, TAG triacylglycerols, CICD cytokine-induced cell death, neg. reg. negative regulators, btw 
between
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Table 2.2 The effects of IL-7/IL-7R signaling on non-hematological cells and on osteoblastogenesis and 
osteoclastogenesis

Target Act. Pathway Effects of IL-7 stimulation Cell type Refs.
– P PI3K; 

JAK3
↑Proliferation MDA MB231, 

MCF-7 (BC)
[46]

↑Cyclin D1 P, 
C

AP-1 
(c-Fos/c- 
Jun)

↑Proliferation; G1/S transition; ↑tumor 
growth; (cyclin C and E-na)

A549, LH7 (LC); 
XT

[210]

↑Cyclin D1; 
↓p27kip1

P, 
C

PI3K/Akt ↑Proliferation; ↓% cells in G1 and ↑% 
cells in G2/M phase

MDA MB231, 
MCF-7 (BC)

[174]

↓p21Cip1 C, 
I

– IL7R KO-induced G2 cell cycle arrest, 
↑p21, ↓wound healing capacity

HCE7, HCE4 
(ESCC)

[9]

↑MMP-9, ↑cyclin 
D1, ↑E-cadherin; 
↓vimentin, 
↓βcatenin

C, 
I, 
EM

Akt; JNK ↑Migration; ↑proliferation; ↓EMT; 
(STAT5-na)

HPV-transf. 
hepatoma

[54]

↑ZEB1/2, 
↑TWIST1, ↑SNAI, 
↑N-cadherin, 
↑vimentin; 
↓E-cadherin

I, 
EM

STAT5; 
PI3K/Akt; 
ERK

↑Wound-healing migration; ↑invasion; 
↑tumor sphere formation; ↑EMT 
markers; metastases less responsive; 
↑IL7R promotes bone metastasis; 
(proliferation-na; MMPs-na)

PC-3 (PC); bone/
liver metastases in 
XT

[154]

↑MMP-9, 
↑MMP-2; ↑p27KIP1

I, 
C

p21KIP1/
ERK1-2/
NFκB; 
AP1

↑Wound healing migration; ↑invasion; 
↑DNA binding by NFκB and AP1; 
(SP1-na; proliferation-na; other cell 
cycle proteins-na)

5637 (BlC) [130]

↑MMP-3, ↑MMP-7 I, 
M

Akt/NF-κB ↑Invasion; ↑migration; (viability-na) LNCap, PC-3, and 
DU-145 (PC); 
RPWE-1 (N)

[47]

↓COL1A1, 
↓COL3A1

EC – ↓ECM synthesis; ↑Smad7; ↓ph-PKCδ; 
↓TGFβ signaling

hPF [127]

↓TGFβ, ↓COL1A1, 
↓FN, ↓αSMA

EC, 
M

STAT ↓Migration; ↓ECM synthesis; ↑Smad7; 
↓ph-PKCδ; ↓TGFβ signaling

hSF [128]

↑MMP-13 EC Pyk2 ↑ECM degradation hCh [49]

↑MMP-13; 
↑S100A4

EC JAK/
STAT3

↑ECM degradation; 
↑S100A4 → ↑MMP13 (via RAGE)

hCh [129]

↑Bcl-2; ↓Bax, ↓p53 S p53 ↓Apoptosis in HBE and A549; 
(H1299-na, lack of p53)

A549, H1299 (LC); 
HBE (N)

[202]

↓E-cadherin; 
↑N-cadherin

EM PI3K/Akt ↑Scattered morphology; ↑invasion; 
↑EMT; ↑lung meta.; ↓overall survival

MCF-7, BT-20 
(BC); GT

[82]

↑VEGF-A AG – mTC-EC [228]

↑podoplanin, 
↑prox-1, ↑LYVE-1, 
↑VEGF-D, 
↑VEGFR3

L PI3K ↑Cell growth; ↑migration; ↑microtubule 
in vitro; ↑lymphatic tubule in vivo (vWF, 
VEGF-A, VEGFR1/2-na; little 
↑VEGF-C; JAK/STAT-na)

HECV; mice with 
HECV±IL-7

[175]

↑VEGF-D L – ↑Microtubule formation in vitro; 
↑formation of lymphatic LYVE-1+, but 
not vascular vW+, microtubules in vivo 
(VEGF-A/B/C-na; not in BT-483)

MDA MB231, 
MCF-7, BT-483 
(BC); GT/MDA 
MB231 ± IL-7

[230]

↑VEGF-D L AP-1 
(c-Fos/c- 
Jun)

↑ex: c-fos and c-jun; ↑ph: c-jun; 
↑dimerization; ↑AP-1 DNA binding; 
↑lymphatic tubules; (migration-na; 
VEGF-A/C-na)

A549, SPC-A1, 
LH7, SK-MES-1 
(LC); GT

[6, 
81]

(continued)
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feedback loop [140, 159, 166–168]. The SOCS 
proteins induce ubiquitination and proteasomal 
degradation of STATs. In addition, they might 
directly inhibit JAKs [169] and/or induce ubiqui-
tination and proteasomal degradation of CD127 
[167]. The SOCS proteins are frequently mutated 
and silenced in cancer, especially in hematologi-
cal malignancies [169].

2.5.2  PI3K/Akt

Upon IL-7/IL-7R stimulation of JAK1/3, the p85 
subunit of PI3K is phosphorylated, activating Akt 
kinase. The main downstream Akt targets rele-
vant for IL7-mediated signaling are GSK3 (inhib-
ited), FoxO (inhibited), and mTORC (activated). 
The interleukin-induced activation of PI3K/Akt 

promotes cell survival, proliferation, and growth 
by inhibiting Bad, Bim, Bax, p21CIP1, and p27KIP1, 
and activating Cdk2. The members of PI3K/Akt 
pathway, as well as its inhibitor—phosphatase 
and tensin homolog (PTEN), are frequently 
mutated in cancer, resulting in pathway 
 hyperactivity. The strongest level of activation is 
conferred by JAK1 mutations [170].

Malignant cells in T-ALL relay on PI3K/Akt 
for antiapoptotic, mitotic, and trophic stimuli. 
The rates of cell viability, survival, and prolifera-
tion are largely reduced by rapamycin, implying 
mTORC involvement [142, 170–172]. The path-
way seems to be more important for the develop-
ment of lymphocytes T than B.  In fact, global 
analysis of events triggered by IL-7/IL-7R sig-
naling in pro-B cells has shown mTORC1/Myc 
activation without PI3K/Akt involvement. 

Table 2.2 (continued)

Target Act. Pathway Effects of IL-7 stimulation Cell type Refs.

↓RUNX2/CBFA1 OB – ↓RUNX2/CBFA1 DNA; 
↓osteoblastogenesis

MMCs (IL-7)—
BMSC and preOBs 
cell line (RUNX2/
CBFA1)

[278]

↑Pim-2 OB – Pim-2 → ↓BMP-2; ↓osteoblastogenesis BMSC and pre-OBs [158]

↑Gfi1 OB – ↑Gfi1 protein; ↑nuclear 
location→↓Runx2; ↓OBs differentiation

MMCs [190]

↑RANKL, ↑M-CSF OC – ↑Osteoclasts formation hPBSCs [35]

↓OPG OC – ↓Transcriptional activity of Runx2/Cbfa1 ROS 17/2.8 (rOS) [277]

↑RANKL OC – ↑Osteoclastogenesis MMCs (IL-7)—T 
cells (RANKL)

[36]

↑TNFα OC – ↑Osteoclastogenesis PBMCs from cancer 
patients

[112]

↑IL-17A IS, 
T

– ↑Tumor growth; ↑lung meta.; ↑IL-17A 
in tumor; ↑tumor-infiltrating γδT cells

Murine BC [75]

↑IL-17 Is, 
T

STAT3 ↑Tumor growth; ↑MDSCs in tumors; 
↑IL17A+ γδT cells

GT/B16-F10 (Mel) [138]

– DR – ↑Cell growth; ↓apoptosis CP-gliomas [4]

↑Beclin-1 A – Beclin-1 suppression ↑PI3K/Akt/mTOR A549 (LC) [58]

↑ICAM – – – A375 (Mel); G361 
(N)

[126]

Act activity, Ref. reference, A autophagy, AG angiogenesis, C cell cycle progression, DR drug resistance, EC extracellular 
matrix, EM epithelial-mesenchymal transition, I invasion, IS immunosuppression, L lymphangiogenesis, M migration, 
OB osteoblastogenesis, OC osteoclastogenesis, P proliferation, S survival, na not-affected, KO knockout, BC breast 
cancer, GT tumors in mice from grafted cancer cells, ESCC esophageal squamous cell carcinoma, PC prostate cancer, 
BlC bladder cancer, mTC-EC murine thymic cortical epithelial cell line, HECV human endothelial cell line displaying 
characteristics of vascular and lymphatic endothelium, N normal, transf. transfected, meta. metastases, hPF human 
pulmonary fibroblasts, hSF human subconjunctival fibroblasts, BMSC bone marrow stromal cells, pre-OBs preosteo-
blasts, MMCs multiple myeloma cells, PBMCs peripheral blood mononuclear cells, hPBSCs peripheral blood stem 
cells, rOS rat osteosarcoma, Mel melanoma, CP cisplatin-treated, ex expression, ph phosphorylation, FN fibronectin, 
αSMA α-smooth muscle actin, hCh human chondrocytes
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Table 2.3 Antitumor activities of IL-7/IL-7R signaling

Mediators Effect of IL-7 stimulation Cell type Refs.

↑IL2R ↑Proliferation; phenotypical changes: 
↓CD56+, ↑CD3+ with CD4+ dominance

TILs from renal cell carcinoma [243]

↑CD8+ Tc; tumor rejection IL7+ murine glioma cells 
grafted to mice

[234]

↓Tumorigenicity; tumor rejection and 
resistance to re-challenge or retarded 
growth; ↑CD4+ and CD8+ Tc infiltration; 
↑cytotoxicity; ↑basophils, eosinophils

IL7+ murine fibrosarcoma 
grafted to mice

[237]

↑IFNγ ↑TILs growth and toxicity; ↑IL2-mediated 
LAK activity

TILs from renal cell carcinoma [240]

↓TGFβ Retarded tumor growth for M-24; 
↑lymphocyte cytotoxicity; (proliferation-na)

Human melanoma cell lines 
M-14 or M-24 (IL7+) grafted to 
mice

[56]

↓TGFβ Transcriptional regulation; ↓mRNA and 
secreted protein

Murine macrophages [253]

↓TGFβ ↓Immunosuppression: ↓inhibition of 
lymphocyte proliferation

IL7+ murine fibrosarcoma; 
splenic lymphocytes

[226]

↑Sensitivity to effector cells; (proliferation, 
cytokine secretome profile, ICAM, HLA 
class I and II—na)

Primary malignant melanoma 
(IL7+)

[227]

↑IFN-γ, IL-12, CXCL9, 
CXCL10;↓PGE2, 
VEGF-A, TGFβ (t,s)

DC + IL-7 potentiated IL-7 effects: ↑Th1 
and antiangiogenic responses; 
↓immunosuppressive mediators; ↓tumor 
burden; ↑survival

Spontaneous murine 
bronchoalveolar cell carcinoma 
(lung cancer model)

[231]

↑FasL ↑effector mechanisms; (TRAIL-na) Primary human NK cells [206]

↑ICAM; ↓TGFβ ↑Sensitivity to LAK cells, (proliferation, 
cell cycling, or apoptosis rate-na); ↓tumor 
growth and dissemination

Human ovarian carcinoma cell 
line, SKOV3 IL7+; xenograft 
tumors

[125]

↓Bim, ↓Foxp3, ↑SMAD7 
(Tc); ↑IFNγ, IL12, MIG, 
IP10 (t,s,ln);↓TGFβ and 
IL-10 (t,s)

↓tumor burden; ↑CD4+ and CD8+ Tc, ↓their 
apoptotic rate and ↑cytolytic act.; 
↓inhibitory act. of Tregs

Mice bearing established Lewis 
lung cancer

[203]

↑MIG, IP10, IFNγ, IL12; 
↓IL10 and TGFβ (t,s); 
↑IL12, iNOS but ↓IL10 
and arginase (m)

IL-7/IL-7Rα-Fc chimeric molecule: ↓tumor 
burden; ↑TAM-M1, NK, Tc frequency; 
↑cytotoxicity

Mice bearing established Lewis 
lung cancer

[248]

↑Tumor-free survival, ↑CD4+ and CD8+ Tc, 
↑CD19+ Bc, ↑necrotic areas in the tumor

Immune-competent mouse 
prostate cancer model; 
vaccination with IL7-producing 
whole cells

[251]

↓Tumor size Mice inoculated with N32 
glioma cells and grafted with 
MSCs transfected with IL-7, 
with or without additional IFNg 
peripheral immunotherapy

[238]

IL-7 + OXP: ↓tumor cell proliferation; 
↑tumor cell apoptosis; ↓metastatic nodules; 
↑tumor-infiltrating activated CD8+ Tc; 
↓splenic Tregs; (TAMs, TADCs, 
MDSCs—na)

Lung and abdomen metastasis 
models of murine colon cancer

[232]

(continued)
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Moreover, pathway activation was capable of 
inducing lymphoma in experimental animals 
[143]. Furthermore, PI3K/Akt suppression by 
PTEN is necessary for pro-B cell development. It 
rescues FoxO1-regulated CD127 expression and 
is required for the interleukin-mediated STAT5 
activation and expression of STAT5-regulated 
genes [143]. This novel IL-7/IL-7R signaling 
pathway is involved in cell proliferation and 
growth and in metabolism regulation, but dis-
pensable for survival. Its inhibition protects 
experimental animals from Myc-induced lym-
phoma [143].

The PI3K/Akt pathway is also implicated in 
drug resistance in T-ALL [173]. In solid tumors, 
pathway involvement in proliferation [46, 54, 
174], migration and invasion [47, 54, 82, 154], 
lymphangiogenesis [175], autophagy [58], and 
epithelial-mesenchymal transition (EMT) [54, 
82, 154] has been reported.

Stimulated by a mixture of IL-7, IL-2, and 
IL-9, the PI3K/Akt pathway may be activated by 
RasGRP1, a Ras activator, which typically 
induces Ras-Raf-MEK-ERK in response to TCR 

stimulation. The pathway usually involves PLCγ1 
activation and an increase in the concentration of 
intracellular calcium. However, basal levels of 
diacylglycerol are sufficient for Ras activation 
following IL-7 stimulation and PLCγ1 is not 
involved in this noncanonical RasGRP1-Ras- 
PI3K/Akt axis [176].

2.5.3  MAPK Pathway

Early studies in mice have shown that IL-7 in T 
cells activates the stress-activated protein kinase 
(SAPK)/c-Jun N-terminal kinase (JNK) and 
p38MAP kinases. The inhibition of MAPK- 
activating protein kinase-2, their downstream 
effector, has abrogated the interleukin-induced 
proliferation, but had no effect on c-Myc expres-
sion [177]. In turn, it has not affected Shc and 
p42MAP/Erk kinase, implying that the MEK/ERK 
pathway is not utilized by IL-7/IL-7R axis [178]. 
However, human primary CD8+ T cells [147] or 
B cells [156] do not respond to IL-7 with activa-
tion of any of MAPK pathways, although Fleming 

Table 2.3 (continued)

Mediators Effect of IL-7 stimulation Cell type Refs.

↑SMAD; ↓Foxp3;↑sIL6, 
sIFNγ; ↓sIL10, ↓sTGFβ

↓Tumor growth; ↑survival; ↑CD4+ and 
CD8+Tc; ↑cytotoxicity; ↑Th1/Tc1-type 
IFNγ-producing effector Tc; ↓Tregs 
(th,s,ln)

Meth A fibrosarcoma grafted to 
mice

[242]

↑IFN-γ ↓Tumor growth, ↑IFN-γ and ↑breast cancer 
cells-specific CTL cytotoxicity

Xenograft model of breast 
cancer

[241]

(1) ↑IP10, CCL3, CCL4, 
CCL5, IL-1β, IL-6, TNFα; 
(2) V-CAM

↑Infiltration of cervicovaginal tissue with 
CD4+ and CD8+ Tc, γδTc, DCs in response 
to IL-7fused with Fc; tumor suppression

(1) cervicovaginal epithelial 
cells; (2) vascular endothelial 
cells; orthotopic cervical cancer 
model

[249]

↑IFNγ, IL-2, TNFα, 
granzyme B

↑Proliferation and accumulation; 
↑polyfunctionality and stemness in 
CD4+Tc; ↑EZH2+CD4+Tc; ↑H3 acetylation; 
↑cytotoxicity; involves STAT5 and 
epigenetic regulation

Antigen-stimulated murine 
CD4+ Tc

[151]

↑IL-9 and IL-21 ↓Susceptibility to develop lung melanoma 
in vivo by ↑IL-9 expression (t); ↑CD4+ Tc 
differentiation into Th9 with ↑antitumor 
activity; ↑histone acetyltransferases; 
engaged PI3K/Akt/mTOR and STAT5

Tumor-specific CD4+ T helper 
9 (TH9) cells; B16-OVA 
melanoma cell lines grafted to 
mice (lung melanoma model)

[152]

Ref reference, Tc T-cells, Bc B-cells, TILs tumor infiltrating lymphocytes, na not affected, t in the tumor bed, s in the 
spleen, ln in the lymph nodes, m macrophages, th thymus, OXP oxaliplatin, TAMs tumor-associated macrophages, 
TADCs tumor-associated dendritic cells, MDSCs myeloid-derived suppressor cells, CTL cytotoxic lymphocytes T, 
TAM-M1 tumor-associated macrophages of M1 phenotype, act. activity, s (prefix) secreted
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et  al. [179] showed that ERK kinases are acti-
vated by concurrent IL-7R and pre-B cell recep-
tor (pBCR) stimulation. The mechanism is 
necessary for pBCR-mediated proliferation of 
pre-B cells at low IL-7 concentrations. Unlike in 
human primary T cells, IL-7/IL-7R signaling 
activates MEK/ERK in malignant lymphocytes. 
The MEK/ERK pathway may promote cell cycle 
progression and prevents apoptosis by regulating 
the expression of c-Myc, cyclin D1, p27KIP1, and 
p21CIP1. However, its relevance in T-ALL remains 
uncertain, as the pathway inhibition has no effect 
on cell viability or cell cycle progression [180]. 
Instead, the MEK/ERK is implicated in steroid 
resistance of T-ALLs, via downregulation of pro-
apoptotic Bim [173]. Correspondingly, IL-7 res-
cues BCP-ALLs from rapamycin-induced 
apoptosis, acting by upregulating MEK/ERK/
RSK2. Consequently, it leads to phosphorylation 
of YB-1, a marker of multidrug resistance [181]. 
Moreover, Martelli et al. [182] suggested a role 
of the interleukin-activated MER/ERK signaling 
in inducing eIF4B and protein translation. 
Regarding solid tumors, the IL-7/IL-7R axis acti-
vates JNK in hepatoma cells [54] and ERK in 
bladder [130] and prostate [154] cancer cells, 
possibly contributing to their migratory proper-
ties. The interleukin-induced ERK phosphoryla-
tion could be observed in murine model of lung 
melanoma as well, but its relevance has yet to be 
determined [152].

2.5.4  Other

The IL-7 activates Src kinases p56lck and p59fyn in 
unstimulated and stimulated human T cells, con-
tributing to their basal proliferation [183]. In can-
cer, the p56lck is overexpressed in murine [184] 
and some human [185] T-ALLs. Moreover, the 
animals constitutively expressing Src reproduc-
ibly develop thymic tumors [184]. The interleu-
kin induces p59fyn and p53/p56lyn activation in 
pre-B [186] and MM cells [187, 188]. In MM, the 
p53/p56lyn upregulates expression of MUC1 pro-
tein and respective mRNA.  The Lyn-mediated 
phosphorylation of MUC1 on Tyr-46 enhances 
MUC1 binding to β-catenin and facilitates 

nuclear translocation of the complex [187]. The 
MUC1 may also bind to NF-κB p65 and translo-
cate to the nucleus or associate with heat shock 
proteins and translocate to mitochondria. The 
effect of its activity is cell renewal and survival 
[189]. The cross talk between IL-7/IL-7R axis 
and Wnt/β-catenin pathway may contribute to 
cancer-promoting functionalities of IL-7, includ-
ing mitogenic activity (via Jun, c-Myc, and 
cyclinD-1) and inducing metabolic switch from 
oxidative phosphorylation to lactate-generating 
glycolysis. It may also mediate the interleukin’s 
effect on beclin-1 and autophagy, as β-catenin 
has been shown to inhibit both [190].

IL-7/IL-7R has been demonstrated to induce 
Pyk2 phosphorylation in a JAK1-dependent man-
ner in normal T cells and is required for their 
interleukin-mediated survival [191]. In chondro-
cytes, IL-7 is activating Pyk2, evoking catabolic 
processes in ECM [49].

2.6  Impact of IL-7/IL-7R 
Signaling on Cancer 
Development

2.6.1  IL-7/IL-7R Axis in Cell Survival

The inhibition of apoptosis seems to be the most 
critical role of IL-7/IL-7R signaling in cells from 
T-cell lineage, while for B lineage, it is rather 
proliferation and differentiation [192]. Survival- 
promoting activity of IL-7/IL-7R axis is mainly 
associated with the interleukin ability to modu-
late the expression, phosphorylation status, and 
location of the Bcl-2 family members—antiapop-
totic Bcl-2, Bcl-xL, and Mcl-1 and proapoptotic 
Bad, Bim, and Bax. The upregulation of Bcl-2 
has been consistently reported in nonmalignant 
[148, 159, 193–195] and malignant T cells [140–
142, 180, 196–198] and in mature NK cells [77]. 
In turn, the induction of Bcl-xL has been observed 
in normal pro-B cells [156], normal developing T 
cells [159, 194], and in T-ALL [140], although 
not unanimously [148, 195, 197]. Likewise, 
Mcl-1 has been seen either upregulated in T-ALL 
[140] and normal T cells [199] or not affected 
[140, 148]. The IL-7/IL-7R axis does not seem to 
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have an effect on Bak [194] and Bad [194, 195, 
197], although Li et  al. [200] reported Bad’s 
phosphorylation and retention in the cytoplasm 
in response to IL-7. The interleukin downregu-
lates Bim, claimed to be a major inducer of apop-
tosis in mature T cells [192]. The possible 
mechanism involves posttranslational modifica-
tion through subtle changes in protein isoelectric 
point [201]. Regarding Bax, contrary to T-ALL 
[197], the protein transcription is downregulated 
by IL-7  in nonmalignant T cells [195]. In addi-
tion, the IL-7/IL-7R axis might induce Bax inhi-
bition through maintaining the right pH. It would 
prevent the membrane-seeking domains of Bax 
from being exposed and, consequently, thwarting 
its translocation to mitochondria [194].

In solid tumors, stimulatory effect of IL-7 on 
Bcl-2 and inhibitory on Bax and p53 have been 
demonstrated in lung cancer [202]. In turn, the 
downregulation of Bim in tumor-infiltrating lym-
phocytes contributes to antitumor immunomodu-
lating activities of IL-7 [203]. The 
interleukin-mediated inhibition of p53 phosphor-
ylation has also been seen in T-ALL [172]. The 
NKT cells are protected from apoptosis by the 
interleukin-induced ICOS expression. However, 
contrary to its declared prosurvival activity, IL-7 
has also enhanced steroids-induced death in one 
T-ALL line [204]. Moreover, Karawajew et  al. 
[196] observed a slow increase in proapoptotic 
Bax upon IL-7 stimulation in primary pediatric 
T-ALLs. Those observations may suggest that the 
relationship of the IL-7/IL-7R axis with  apoptosis 
is not as simple as previously believed. 
Accordingly, constitutive activation of IL-7/
IL-7R causes death of nonmalignant T cells, 
associated with increased FasL synthesis medi-
ated by STAT5. An inhibitory TCR signaling is 
required for the stimuli to be intermittent and 
advantageous [205]. Moreover, the upregulation 
of FasL by IL-7 enhances cytolytic activity of 
human NK cells [206].

Both PI3K/Akt [140, 148, 180, 197] and JAK/
STAT5 [141, 147, 148] are implicated in convey-
ing survival signals from IL-7/IL-7R. Their rele-
vance strongly depends on cell type, its 
developmental stage, and microenvironmental 
context. As an illustration, the PI3K/Akt activa-

tion is critical for the interleukin-mediated sur-
vival of T-ALL cells [140, 180, 197]. Still, the 
JAK/STAT5 is involved in protecting T-ALLs 
against death induced by steroids or histone 
deacetylase (HDAC) inhibitors [150]. In addi-
tion, direct JAK3 phosphorylation of NFAT2 has 
been shown to induce expression of antiapoptotic 
Bcl-2 and Bcl-xL [159]. The involvement of other 
mediators, downstream main pathways, has been 
documented as well, including Pim1 [156] and 
JunD activation of c-Myb in CTCL [141, 207].

2.6.2  IL-7/IL-7R Signaling in Cell 
Proliferation and Cell Cycle 
Progression

The mitogenic function of IL-7 is separate from 
its antiapoptotic activity. Accordingly, it has been 
demonstrated that Bcl-2 may replace the interleu-
kin during IL-7 withdrawal in providing survival, 
but not pro-proliferative, stimuli [208]. The inter-
leukin reportedly stimulates proliferation in acute 
and chronic lymphoblastic and myeloid leuke-
mias [209] and in the lung, breast, and liver can-
cers [46, 54, 174, 210], but not in prostate and 
bladder carcinomas [130, 154]. Unlike in T cells, 
the ensuring survival of solid tumor cells requires 
high interleukin concentrations [147]. The IL-7/
IL-7R increases proliferation by facilitating cell 
cycle progression through G1/S and G2/M check-
points [197]. It is achieved mainly by inhibiting 
cyclin kinase inhibitor p27KIP1, downregulated by 
IL-7 in T-ALL [140, 142, 172, 180, 197, 198] and 
in the breast [174] and esophageal cancers [9]. In 
hepatoma, IL-7 has been shown to downregulate 
also p21CIP1 [54]. The interleukin-mediated regu-
lation of p27KIP1 involves its decreased phosphor-
ylation by two distinct mechanisms: reduction of 
Skp2 and Cks1 protein levels and inhibition of 
PKCθ [208]. Interestingly, IL-7 has been shown 
to upregulate p27KIP1 in bladder cancer. However, 
p27KIP1 in this setting serves as an enhancer of 
NF-κB DNA binding, facilitating MMP-9 expres-
sion and cancer cell migration [130]. The IL-7 
has been observed to upregulate cyclin D2  in 
nonmalignant and malignant lymphocytes [156, 
197, 210] and cyclin D1 in solid tumors [54, 174, 
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210]. Noteworthy, a mild downregulation of 
cyclin D1 in T-ALL has been noted as well [142]. 
In addition, IL-7 induces cyclin A [142, 197] and 
E [142] and cyclin-dependent kinases cdk2 and 
cdk4. However, the interleukin affects more 
markedly their activity than expression [197]. 
The IL-7 leads to the hyperphosphorylation of 
retinoblastoma protein (Rb) and release of E2F 
transcription factors [197]. Only recently, the 
IL-7/IL-7R signaling has been shown to control 
over 800 genes, many of which are associated 
with proliferation, DNA synthesis, and RNA pro-
cessing [143]. In conveying mitogenic signals, 
both the JAK/STAT [135, 140, 142, 143, 166] and 
PI3K/Akt pathways [46, 54, 142, 172, 174, 180] 
are involved. The mediation of Src [183], Pim-1 
[140], mTORC1 [143, 197, 211], Crk-induced 
LARK1 receptor [166], JNK [54], AP1 [6, 130, 
210] mel-18 [212], bmi-1 [213], Skp2 and PKCθ 
[208], and of non-canonical RasGRP1-Ras- 
PI3K/Akt pathway [176, 214] has been impli-
cated as well.

2.6.3  IL-7/IL-7R Signaling in Cell 
Growth and Metabolism

The IL-7/IL-7R axis prevents death in neglected 
T cells by preserving the rates of glycolysis and 
respiration and not by regulating Bcl-2 family 
members. This trophic activity of IL-7 is separate 
from its antiapoptotic function and is fully depen-
dent on PI3K/Akt/mTOR [193]. The common 
characteristic feature of cancer cells and activated 
lymphocytes is their accelerated uptake of glu-
cose and the switch from oxidative phosphoryla-
tion to lactate-generating glycolysis, referred to 
as the Warburg effect. Among many proposed 
advantages of the phenomenon for cancer cells is 
the acidification of tumor environment, which 
enables their invasion and metastasis by facilitat-
ing ECM degradation [215]. The IL-7 has been 
shown to be a key regulator of glucose uptake by 
T cells. It enhances GLUT1 membrane traffick-
ing in a STAT5-dependent manner, followed by 
Pim and Act activation. Although delayed, Act 
induction and sustained activation are critical for 
IL-7 trophic role [155]. The interleukin controls 

cell size and glycolytic rate in B-cell progenitors 
as well [216]. In malignant T-ALL cells, IL-7 
additionally induces GLUT1 expression and 
increases mitochondrial potential and integrity. 
Both activities are dependent on PI3K/Akt path-
way [180]. Moreover, the IL-7/IL-7R signaling 
increases intracellular reactive oxygen species 
(ROS) in T-ALL, which is required to maintain 
mitochondrial membrane potential and thus is 
critical for the cell viability. The interleukin 
upregulates ROS generated by both NADPH oxi-
dase complex (NOX) and electron transport chain 
(ETC). However, only ETC-generated ROS are 
necessary for activation of PI3K/Akt/mTOR 
pathway. Upon activation, the pathway sustains 
ROS generation by ensuring constant uptake of 
glucose and by upregulating GLUT1 expression 
and cell membrane trafficking [217]. The poten-
tial effect of IL-7 on GLUT1 and glucose uptake 
in solid tumors has not been tested, although car-
cinomas also upregulate the transporter expres-
sion. The GLUT1 is mostly undetectable in 
normal epithelial cells, but its expression corre-
lates positively with cancer dedifferentiation, 
invasion and metastasis, and, consequently, with 
poor prognosis [215].

The activation of Akt inhibits FoxO1, a nega-
tive regulator of the expression of enzymes from 
glycolytic and pentose phosphate pathways 
(PPP) and lipogenesis. Additionally, Akt- 
mediated activation of mTORC1 induces HIF-1α 
and sterol regulatory element-binding protein 
(SREBP) 1c. The SREBP1c transcription factor 
controls the expression of glucose-utilizing 
enzymes and enhances protein translation [215]. 
Primarily, HIF-1α upregulates the expression of 
genes encoding glycolytic enzymes and 
SREBP1c—the expression of PPP enzymes and 
of those involved in the novo lipid synthesis 
[218]. The expression of glycolytic enzymes is 
regulated also by c-Myc, which is upregulated by 
IL-7 as well [166]. In addition to glycolysis, 
c-Myc also controls glutamine metabolism [218], 
providing an alternative substrate for Krebs cycle 
and NADPH synthesis. Moreover, the IL-7/
IL-7R signaling affects amino acid metabolism 
by controlling expression of their transporters 
Slc1a4, Slc1a5, Slc7a5, and Slc7a6 [219], as well 
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as of the enzymes involved in amino acid synthe-
sis [143]. Furthermore, the axis controls lipid 
metabolism by regulating glycerol uptake and 
triacylglycerol synthesis. It increases synthesis of 
aquaporin 9 [220], a glycerol membrane trans-
porter, and stimulates the expression of enzymes 
involved in cholesterol synthesis [143].

2.6.4  IL-7/IL-7R Signaling in Cancer 
Invasion and Metastasis: 
The Association 
with Epithelial-to- 
Mesenchymal Transition 
(EMT) and Mesenchymal-to- 
Epithelial Transition (MET)

The EMT is a change of cell phenotype from epi-
thelial to mesenchymal. It is involved in tumor 
progression, enabling invasion and metastasis, 
and in the generation of stem-like cells, facilitat-
ing resistance to anticancer treatment. The pro-
cess involves the disruption of cell-cell and 
cell-matrix adhesion, cell cytoskeleton remodel-
ing, and allows cancer cells to acquire migratory 
properties. At the molecular level, the EMT is 
characterized by the upregulated MMPs and a 
switch in gene expression, including decreased 
E-cadherin expression and elevated N-cadherin, 
fibronectin, and vimentin expression. The pro-
cess involves transcription regulators ZEB, 
SNAI, and TWIST.  The reversal route, MET, 
allows for establishing secondary tumors [221]. 
It is facilitated by heterogeneous nuclear ribonu-
clease H (hnRNPH), an enzyme involved in an 
alternative splicing and in suppressing the forma-
tion of the EMT-promoting ΔRON isoform 
[222].

The potential role of IL-7 in EMT/MET is 
unclear. Several lines of evidence seem to sup-
port an EMT-promoting role. In chondrocytes, 
IL-7 induces expression of S100A4, which pro-
motes EMC degradation by upregulating MMP- 
13 via an autocrine loop involving receptor for 
advanced glycation end-products (RAGE) [129]. 
The S100A4, secreted also by fibroblasts, 
immune and cancer cells, is a known EMT 
inducer. It has been shown to downregulate 

E-cadherin while upregulating MMPs, facilitat-
ing motility and adhesion of metastatic cancer 
cells [223]. The MMP-inducing activity is dis-
played also by oncostatin M, shown to be upregu-
lated by IL-7/IL-7R axis as well [140]. 
Accordingly, IL-7 induces MMP-9 [54, 130], 
MMP-2 [130], MMP-3, and MMP-7 [47] in can-
cer cells. Moreover, in a breast cancer model, the 
IL-7/IL-7R axis facilitates the acquiring of mes-
enchymal phenotype by downregulating 
E-cadherin while upregulating N-cadherin [82]. 
Furthermore, IL-7 induces EMT markers ZEBs, 
TWIST1, SNAI, N-cadherin, and vimentin in 
prostate cancer cells and decreases E-cadherin. It 
also enhances the formation of tumor spheres, 
but, at least in this cancer type, has no effect on 
MMP expression [154]. However, contrary to the 
aforementioned observations, IL-7/IL-7R in hep-
atoma favors epithelial phenotype by upregulat-
ing E-cadherin and downregulating vimentin and 
α-SMA [54]. Whether the opposite effects on 
E-cadherin expression are associated with a can-
cer type or downstream pathways involved 
(PI3K/Akt and JNK in hepatoma [54] and PI3K/
Akt in breast cancer [82])—need to be clarified. 
It might also be attributed to possible differences 
between canonical IL-7 [82] and its splicing vari-
ant, IL-7δ5, tested on hepatoma cells [54].

The IL-7 may be associated with EMT via 
Pim-1 or NFAT2 activation. The Pim-1 kinase has 
been shown to regulate, through eIF4B, the transla-
tion of c-Met and c-Met/hepatocyte growth factor 
(HGF) signaling, resulting in enhanced cell growth, 
survival, and motility. The upregulated activity of 
the pathway has been reported in a number of can-
cers and found to promote cancer cell growth, 
EMT, invasiveness, and metastasis [224]. The 
NFAT2 has been shown to downregulate the 
expression of E-cadherin in a TGFβ- independent 
manner, involving an upregulation of SNAI and 
ZEB transcriptional repressors. Moreover, NFAT2 
has been demonstrated to induce the expression of 
Tks5, responsible for the formation of circumfer-
ential podosomes/invadopodia and cell-cell fusion 
and cancer invasion [163]. Furthermore, CD127 
has been shown to be upregulated by ZEB2  in 
malignant lymphocytes [225]. On the other hand, 
however, IL-7/IL-7R is frequently shown to down-
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regulate the expression of TGFβ, an EMT pro-
moter, and to antagonize its signaling in cancer 
cells [56, 125, 226]. In fibroblasts, the interleukin 
has been observed to downregulate the expression 
of TGFβ [127, 128] and fibronectin [128]. It 
strengthens the cell-cell and cell-ECM adhesion by 
upregulating I-CAM expression on ovarian carci-
noma [125] and melanoma cells [126], although 
others have failed to confirm the latter observation 
[227]. The recently reported phosphorylation of 
hnRNPH may potentially contribute to the MET 
rather than EMT [166].

The IL-7 induces cancer cell migration in 
esophageal squamous cell carcinoma [9], hepa-
toma [54], and breast [82], bladder [130], and 
prostate [47, 154] cancers. In turn, it has no effect 
on motility of lung cancer cells [6] and inhibits 
the migratory properties of fibroblasts [128]. 
However, the expression of CD127 in lung can-
cer correlates positively with tumor budding, a 
phenomenon of cancer cell dissociation from 
tumor invasive front [8].

2.6.5  IL-7/IL-7R Signaling in Cancer 
Angio- 
and Lymphangiogenesis

The IL-7 has been shown to induce VEGF-A 
expression in murine thymic cortical epithelial 
cells [228]. In gastric cancer, out of 52 analyzed 
cytokines, IL7 was the most strongly correlated 
with VEGF-A [229]. However, in vitro studies on 
human endothelial cell line HECV, displaying 
characteristics of vascular and lymphatic endo-
thelium, do not confirm stimulatory effect of IL-7 
on VEGF-A or B or on their receptors VEGFR1 
and VEGFR2 [175]. The interleukin has been 
unable to stimulate VEGF-A and B in breast can-
cer cells as well [230]. Moreover, also in vivo, in 
murine cancer models, IL-7 does not increase the 
expression of vascular endothelial marker von 
Willebrand factor (vWF) and has no effect on 
microvessel density [81, 175]. On the contrary, 
immunotherapy with IL-7 decreases VEGF-A 
level at the tumor site while increasing an antian-
giogenic CXCL10 (IP-10) in spontaneous murine 
bronchoalveolar cell carcinoma [231].

Instead, IL-7 has been shown to induce the 
expression of lymphatic markers in HECV, 
including podoplanin, prospero-related homeo-
box gene-1 (prox-1), and lymphatic vessel endo-
thelial receptor-1 (LYVE-1). Moreover, the 
interleukin upregulates the expression of lym-
phangiogenic factor VEGF-D and its receptor 
VEGFR3. It also stimulates VEGF-C, albeit to a 
much lesser extent [175]. Furthermore, IL-7 
enhances cell growth and migration of HECVs in 
a manner mediated by VEGF-D and facilitates 
microtubule formation in  vitro and lymphatic 
tubule formation in vivo. As indicated by inhibi-
tion by Wortmannin, the lymphangiogenic activ-
ity of IL-7 involves PI3K, with probable 
downstream activation of HIF-1α [230]. The 
HECVs do not express IL-7, therefore the inter-
leukin must be provided by other cells. Cancer 
cells, if expressing IL-7, stromal cells, dendritic 
cells, and/or macrophages are potential sources 
of IL-7 in the microenvironment. Al-Rawi et al. 
[46] demonstrated that breast cancer cells do not 
synthesize IL-7 but, upon IL-7 stimulation, 
express VEGF-D, which may subsequently bind 
to VEGFR3 on endothelial cells. Still, Iolyeva 
et al. [24] reported the presence of both IL-7 and 
its receptor in primary dermal human lymphatic 
endothelial cells. Ming et  al. [6] and Jian et  al. 
[81] showed VEGF-D to be a major downstream 
gene of IL-7 in lung cancer cells and found AP-1 
(c-Fos/c-Jun) pathway to be involved [6]. The 
binding of AP-1 to VEGF-D promoter, triggered 
by IL-7, induces the formation of c-Fos and c-Jun 
heterodimers and enhances their DNA binding 
activity. In murine lung cancer models, IL-7 
increases the formation of lymphatic tubules 
[81]. In clinical samples, both IL-7 and VEGF-D 
expression is associated with lymph node metas-
tasis in non–small cell lung cancer [6].

2.6.6  IL-7/IL-7R Signaling 
and Autophagy

Only recently, IL-7 has been implicated in the 
inhibition of autophagy. Jian et al. [58] demon-
strated that IL-7 stimulation of lung adenocarci-
noma cells results in a drop in beclin-1 expression, 
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a positive regulator of autophagy, frequently 
deleted or reduced in certain cancers. 
Downregulation of beclin-1 rescues PI3K/Akt/
mTOR, which becomes phosphorylated and acti-
vated. The pathway leading from IL-7 to beclin-1 
downregulation has not been explored. However, 
β-catenin is known to suppress beclin-1 expres-
sion [190] and, at least in MM, IL-7 activates 
β-catenin by upregulating MUC1 [188]. 
Moreover, in T-ALL cells, PI3K/Akt/mTOR 
pathway is utilized by IL-7 to induce phosphori-
bosomal protein S6, a known inhibitor of autoph-
agy [172].

2.6.7  IL-7/IL-7R Signaling 
and the Effectiveness 
of Anticancer Therapy

The accounts regarding IL-7/IL-7R association 
with drug effectiveness are inconsistent. In 
murine model of colon cancer, the combination 
therapy of IL-7 and oxaliplatin, but not IL-7 
alone, has resulted in reduced proliferation and 
increased apoptosis of cancer cells, lowering the 
number of abdominal and lung metastatic nod-
ules. It has increased tumor infiltration with acti-
vated CD8+ T cells and reduced Treg count in the 
spleen, but had no effect on the counts of tumor- 
associated macrophages (TAMs), dendritic cells 
(TADCs), or myeloid-derived suppressor cells 
(MDSCs) [232]. In a line with a sensitizing role, 
the CD127 expression is reduced in pancreatic 
cancer cell lines resistant to the three typical che-
motherapeutics [233]. Others, however, have 
demonstrated that a gain of IL-7 was one of four 
unique aberrations associated with cisplatin 
resistance in a human glioma cell line, conferring 
protection against cisplatin-induced apoptosis 
[4]. Moreover, the overexpression of mutated 
CD127 induces resistance to steroids in T-ALLs. 
Mechanistically, steroid-resistance is associated 
with a strong activation of Akt and MEK/ERK 
pathways and transducers downstream of Akt, 
that is, p70-S6K, CREB, and NF-κB and with 
inhibition of GSK3β, resulting in an upregulated 
expression of Mcl-1 and Bcl-xL, and with MEK/
ERK-mediated downregulation of Bim [173]. 

The ability of IL-7 to confer protection against 
steroid-induced apoptosis was corroborated by 
Wuchter et  al. [204] in established T-ALL cell 
lines, as well as in patient-derived primary cul-
tures. It was also observed by Delgado-Martin 
et al. [150] in early T-cell precursor (ETP)-ALL 
and non-ETP-ALL.  In addition, IL-7 treatment 
antagonized HDAC inhibitor in ETP-ALL [150]. 
Moreover, IL-7 partially protects the malignant 
Hodgkin-Reed-Sternberg cells from doxorubicin- 
induced apoptosis [57]. The interleukin rescues 
also T-ALL primary cells while it is mostly inef-
fective in established cell lines. Two exceptions 
have been noted, in which IL-7 either inhibited 
apoptosis (KE-37 line) or, contrary, enhanced 
cell sensitivity to doxorubicin (MOLT-3 line), 
thus displaying a proapoptotic activity [204]. In 
chronic myeloid leukemia (CML), IL-7 derived 
from myeloid stem cells protects cancer cells 
from apoptosis induced by inhibitors of tyrosine 
kinases, imatinib or nilotinib, in a JAK1/STAT5- 
dependent manner [34, 149]. In preB-ALL and 
BCP-ALL, it protects malignant cells from 
rapamycin-induced cell death [181, 211].

2.6.8  Immunomodulatory Role 
of IL-7/IL-7R in Tumor 
Microenvironment

It has been repeatedly observed that IL7- 
transfected cancer cells display reduced tumori-
genicity and alleviate tumor-induced 
immunosuppression when grafted into mice [56, 
226, 227, 234–238], giving rationale for IL-7 
application in anticancer immunotherapy of solid 
tumors. Using various delivery systems, IL-7 has 
been shown to effectively reduce tumor burden, 
either as a single immunomodulator or in combi-
nation, either in its native or modified form 
(reviewed in [16, 17, 239]). The IL-7 is particu-
larly attractive as a therapeutic because it does 
not induce hyperinflammation. Moreover, it 
expands naïve and memory T cells selectively, 
without inducing proliferation of immunosup-
pressive Tregs. Apart from providing mitotic and 
survival stimuli, IL-7 enhances the cytotoxicity 
of cancer-specific cytotoxic T lymphocytes 
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(CTLs), monocytes, NKT, NK, and LAK cells. It 
induces perforin secretion by CTLs in a STAT5- 
dependent manner [147] and stimulates expres-
sion of IFNγ [203, 231, 240–242], IL-12, MIG, 
and IP-10 [203, 231]. In addition, IL-7 enhances 
IL2-mediated LAK activity [240] and induces 
IL-2R expression on T cells, potentially improv-
ing their responsiveness to IL-2 [243, 244]. Upon 
IL-7 stimulation, human peripheral monocytes 
release a number of cytokines including IL-6, 
IL-1α, IL-1β, TNFα, and MIP-1β, and their 
tumoricidal activity toward human melanoma 
cell line is enhanced [245, 246]. The TNFα pro-
duction is enhanced also in PBMCs [112]. The 
IFNγ, in the presence of TNFα, promotes polar-
ization of macrophages into M1 phenotype, dis-
playing proinflammatory and antitumor 
properties [247]. Accordingly, IL-7 has promoted 
M1-resembling phenotype in tumor macrophages 
in lung cancer model. The cells were character-
ized by upregulated expression of IL-12 and 
inducible nitric oxide synthase (iNOS) and 
downregulated IL-10 and arginase [248]. 
Moreover, the interleukin has been shown to 
induce secretion of proinflammatory cytokines 
IL-1β, IL-6, and TNFα, IFNγ, chemokines IP-10, 
MIP-1α and β, and RANTES from cervicovagi-
nal epithelial cells. The IL-7 has also been 
reported to upregulate the expression of adhesion 
molecule V-CAM on endothelial cells, facilitat-
ing the recruitment of immune cells from circula-
tion [249]. Proinflammatory environment is 
necessary for differentiation, maturation, and 
efficient activation of antigen presenting cells 
(APC) and thus for their ability to provide 
costimulatory signals for cytotoxic T cells. Host 
APCs are necessary for successful antigen pre-
sentation even in case of highly immunogenic 
tumors [250]. Furthermore, IL-7 not only 
increases the counts of CD4+ and CD8+ T cells, 
diminished at the tumor site [16, 242], but also 
enriches CD19+ B-cell population. This activity 
is unique for IL-7 and potentially facilitates 
antibody- dependent cell-mediated cytotoxicity 
[251]. The interleukin prompts the CD4+ T-cell 
differentiation into Th9 cells and increases their 
antitumor activity, dependent on IL7-induced, 
upregulated expression and secretion of IL-9 and 

IL-21 [152]. It may also impart polyfunctionality 
and stemness on CD4+ T cells in a STAT5- 
dependent manner, involving increased expres-
sion of EZH2, a histone methyltransferase. 
Subsequent histone H3 acetylation and increased 
chromatin accessibility in the promoter regions 
of IFNγ, IL-2, TNFα, and granzyme B allow for 
their concomitant synthesis. The ability to medi-
ate diverse effector functions is a characteristic 
feature of polyfunctional phenotype. The 
interleukin- induced polyfunctional CD4+ T cells 
have been further characterized by low expres-
sion of PD-1 and Foxp3 markers and IL-17A 
[151]. The IL-7 may also enhance cytolytic func-
tion of immune cells by increasing mRNA and 
membrane expression of FasL, as has been dem-
onstrated for NK cells [206] and CTLs [205]. In 
addition, the interleukin provides costimulatory 
signal for the interaction between cytotoxic lym-
phocytes and APC by increasing lymphocyte 
expression of ICOS [252].

Immunosuppressive character of tumor micro-
environment is associated with predominance of 
TAMs with M2 polarization characteristics, 
Tregs and Th2, MDSCs, and CAFs, which, sup-
ported by cancer cells, secrete immunoinhibitory 
IL-6, IL-10, and TGFβ. They block the function-
ality of CTLs and dendritic and NK cells, while 
further promoting trafficking and expansion of 
tumor-tolerant immune cells [16, 247]. In addi-
tion to CD4+ and CD8+ T cells, IL-7 treatment 
enriches tumor bed with Th1 (CD4+IFNγ+) and 
Tc1 (CD8+IFNγ+) T cells [242], basophils and 
eosinophils [237], γδT cells, and with conven-
tional and monocyte-derived DCs [249]. The 
IL-7 inhibits TGFβ production in fibroblasts 
[134], macrophages [253], and tumors [56, 125, 
203, 226, 231], engaging, at least in fibroblasts, 
the JAK1/STAT1 pathway [134]. Additionally, 
IL-7 interferes with TGFβ signaling by inducing 
SMAD7, a TGFβ suppressor [127, 128, 203, 
242]. The SMAD7 mediates IL-7 inhibitory 
effect on TGFβ fibrotic activity via downregulat-
ing PCKδ phosphorylation in fibroblasts [127, 
128]. It is also involved in the inhibition of Foxp3 
expression, which is a critical factor for the 
development and function of Tregs [203, 242]. 
Moreover, IL-7 decreases the production of other 
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mediators of immunosuppression in tumor and 
spleen, including IL-10, prostaglandin E2, and 
VEGF-A [203, 231, 242, 249].

However, IL-7 effect might depend on the 
context and the environment. Sin et al. [254] con-
firmed IL-7 ability to enhance the cytolytic activ-
ity of CTLs. Yet, the authors have shown that the 
cytokine eluded the classic Th1 and Th2 para-
digm. In splenocytes, it decreased the expression 
of IL-2 and IFNγ, classic Th1 cytokines, but 
increased that of IL-10, a classic Th2 cytokine. It 
also downregulates RANTES while upregulating 
MCP-1, a feature consistent with Th2 cytokine 
behavior [254]. Moreover, some of immunomod-
ulatory IL-7 activities might be viewed as immu-
nosuppressive and tumor-promoting. The 
interleukin stimulates IL-6 production in mono-
cytes [245], bone marrow stroma [61], and CAFs 
[57]. Lactate, a product of IL-7-accelerated gly-
colysis [155, 180, 216], is a metabolic trigger of 
immunosuppression, known to inhibit CTLs’ 
activation and promote metastasis [255]. The role 
of ICAM1, upregulated on cancer cells by IL-7 
[125, 126], is context-dependent. It may allow for 
T-cell attachment to the tumor cell via LFA-1 
receptor and enable a proper orientation of cyto-
toxic attack. Still, it may also benefit tumor, if 
ICAM binds to LFA-1 receptor on macrophages, 
initiating spheroid formation and facilitating 
metastasis [256]. Furthermore, IL-7 promotes the 
expression of programmed cell death 1 (PD-1), 
cell surface mediator of immunosuppression 
[255], on PBMCs and on purified CD4+ and 
CD8+ T cells (memory, memory-effector and 
effector subsets, but not on naive T cells). In 
addition, it induces PD-L1, a PD-1 ligand, on T 
cells and monocytes/macrophages [257]. Tumors 
frequently express PD-L1 and exploit the PD-1/
PD-L1 interaction to evade immunosurveillance. 
The consequence of PD-1/PD-L1 engagement is 
SMAD3-mediated differentiation of naïve T cells 
into Tregs, with concomitant inhibition of CTLs 
expansion and cytotoxicity. It is accompanied 
also by a reversed metabolic switch—from 
lactate- generating glycolysis to β-oxidation and 
oxidative phosphorylation, resembling the 
exhausted T-cell phenotype [258]. Kinter et  al. 
[257] showed that in case of IL7-stimulated PD-1 

expression, PD-L1 did not affect IL7-induced 
T-cell proliferation, survival or STAT5-mediated 
functionalities but significantly reduced the 
interleukin- dependent cytotoxicity. The impact 
on metabolism has not been explored. Still, 
Myklebust et al. [259] reported signaling deficits 
in STAT5 phosphorylation induced by IL-7  in 
PD-1high CD4+ T cells infiltrating follicular lym-
phoma tumors. Interestingly, high PD-1 expres-
sion on human tumor TILs has been linked with 
lack of CD127 [260]. Consistently, the focal 
point of anti-PD-1 therapy aimed at rejuvenating 
CD8+ T cell is the upregulation of CD127 expres-
sion on exhausted cells [261].

Other tumor-promoting immunomodulating 
activities of IL-7 have recently been discovered. 
IL-7 preferentially stimulates proliferation of 
IL17-producing subsets of γδT cells [75, 138, 
262], known for their proangiogenic and MDSCs- 
recruiting activity. Chen et al. [262] showed that 
the frequency of those cells, as well as number of 
co-localized IL7 transcripts, is significantly 
higher in lymph nodes from aged mice. Moreover, 
they have found that, upon tumor challenge, 
IL17-producing γδT cells migrated to the tumor 
bed and contributed to the immunosuppressive 
environment, facilitating growth of larger tumors 
than those developed in young mice. In addition, 
others have shown that IL-7 induced the expres-
sion of CD47, a “do not eat me” signal, on cancer 
cells, thus enabling evasion of host phagocytes 
[263]. An overview of immunomodulatory role 
of IL-7 in tumor microenvironment is depicted in 
Fig. 2.2.

2.7  IL-7/IL-7R Signaling 
and Cancer Type

2.7.1  Hematological Malignancies

The IL-7/IL-7R has been implicated in the devel-
opment of several human hematological malig-
nancies, namely, T- and B acute lymphoblastic 
leukemias, cutaneous T-cell lymphoma, multiple 
myeloma, chronic myeloid leukemia, and classic 
Hodgkin’s lymphoma. The IL-7/IL-7R signaling 
has been the most extensively studied in 
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T-ALL. As mentioned earlier, the responsiveness 
of malignant lymphocytes to IL-7 depends on the 
CD127 expression [76, 78]. Neoplastic cells of 
the T- or B-phenotype and of myeloid lineage, 
from chronic as well as from acute leukemias, 
proliferate in response to IL-7 in a dose- dependent 
manner [209]. While mostly unable to overcome 
a differentiation block in malignant lymphocytes 
[264], IL-7 stimulation has sporadically resulted 
in decreased DNA synthesis accompanied by 
expression of differential markers [265].

2.7.1.1  T-Cell Acute Lymphoblastic 
Leukemia (T-ALL)

In T-ALL, malignant T cells express high levels 
of CD127 [209, 266, 267], while the interleukin 
is released by thymic epithelial cells [30] and 
bone marrow stroma [33]. The IL-7/IL-7 signal-
ing plays a crucial role in T-ALL by being a 
transforming, mitogenic, antiapoptotic, and tro-
phic factor. It has been shown that IL-7 transgene 
is enough to promote neoplastic transformation 
[26], which can also occur in the presence of 

Fig. 2.2 Immunomodulatory role of IL-7 in tumor micro-
environment. IL-7 elicits several processes in the micro-
environment of a tumor. IL-7 activates natural killer cells 
(NK) and lymphokine-activated killer (LAK) cells. 
Stimulation with IL-7 leads to increased release of several 
cytokines such as perforin, interferon γ, IL-12, MIG, 
IP-10 cytotoxic T lymphocytes. Inflammatory monocytes 

release tumoricidal IL-6, IL-1α, IL-1β, TNFα, and 
MIP-1β. IL-7 attracts B cells and CD4+ / CD8+ T cells to 
the tumor’s microenvironment. IL-7 induces expression 
and presentation of the CD47, a “do not eat me” signal, 
thus enabling evasion of host phagocytes. IL-7 stimulates 
release of IFNγ and TNFα, which in turn promote transi-
tion of macrophages to M1 phenotype
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combined mutations in CD127 and N-Ras genes 
[84]. Except for gain-of-function mutations in 
CD127 [89], also genes encoding proteins down-
stream IL-7R are frequently mutated, resulting in 
the hyperactivity of IL-7/IL-7R pathway, with 
the strongest level of activation conferred by 
JAK1 mutations [268]. Moreover, the most fre-
quently mutated gene in T-ALL encodes NOTCH 
protein, known to transactivate IL-7/IL-7R sig-
naling [269, 270]. In addition, the frequent in 
ETP-ALL mutations in DNM2 gene, encoding 
cytoskeleton protein dynamin 2, impair clathrin- 
mediated CD127 endocytosis and enhance cell- 
surface expression of the receptor [271]. The 
IL-7/IL-7R signaling enhances survival of malig-
nant T cells preventing both spontaneous [196, 
197, 272] and drug-induced apoptosis [150, 204]. 
The upregulation of Bcl-2 [140, 196, 197] seems 
to be the major mechanism of IL7-induced sur-
vival. However, the interleukin has also been 
shown to slightly upregulate Bax [196] and 
downregulate p53 [172]. An increase in Mcl-1 
and Bcl-xL [140, 173] and decrease in Bim [173] 
have been implicated in the interleukin-mediated 
protection against drug-induced apoptosis. 
Activation of IL-7/IL-7R axis induces prolifera-
tion of malignant cells and allows for colony for-
mation by facilitating cell cycle progression [197, 
266]. Mechanistically, IL-7 triggers Rb 
 hyperphosphorylation [197] and upregulates the 
expression of cyclins D2 [197], A [197, 272], and 
E [272]. It also increases the expression and acti-
vation of cdk 4 and cdk2 [197] and downregu-
lates p21CIP1 [197] and p27KIP1, additionally 
interfering with its stability [140, 172, 197, 272]. 
The interleukin-mediated maintenance of mito-
chondrial membrane potential, crucial for cell 
viability, is dependent on intracellular ROS. The 
ROS generated by ETC are required for PI3K/
Akt/mTOR activation, which, subsequently, pro-
motes continuous upregulation of ROS produc-
tion by accelerating glucose uptake [217]. The 
IL-7 relevance for T-ALL survival, proliferation, 
and viability was corroborated in vivo by Silva 
et al. [198]. The IL-7/IL-7R signaling via STAT5 
has been implicated in inducing differentiation 
arrest in T-ALL cells by activating AUTS2, with 
subsequent expression of homeobox protein 
MSX1 [144].

Rapamycin, an mTOR pathway inhibitor, has 
abrogated mitogenic activity of IL-7, while 
affecting the prosurvival one only to a certain 
degree [197]. Still, PI3K activation is mandatory 
for the interleukin-induced upregulation of Bcl-2 
and downregulation of p27KIP1, hyperphosphory-
lation of Rb, and for trophic activity of IL-7 
toward T-ALL cells [172, 180]. Unlike in murine 
models, the development of human leukemias 
and lymphomas seem to rely more on PI3K/Akt 
than JAK/STAT pathway [180]. This, however, 
may depend on the developmental stage of malig-
nant cells. Accordingly, Maude et al. [78] demon-
strated that in all screened cases of ETP-ALL, 
and only a few of non-ETP T-ALL, the IL-7/
IL-7R activated JAK1/STAT5. The ETP-ALL 
cells depended on STAT5-mediated upregulation 
of Bcl-2 for survival. The IL-7/IL-7R signaling in 
ETP-ALL is distinct from that in non-ETP T-ALL 
also in terms of CD127 regulation. In ETP-ALL, 
the CD127 expression is driven by ZEB2, a target 
of activating mutations in ETP-ALL.  In turn, 
ZEB2 has no effect on CD127 expression in 
mature T-ALL [225]. However, moderating their 
earlier conclusions [171], Robeiro et  al. [140] 
demonstrated that PI3K/Akt activation is respon-
sible for IL7-induced cell cycle progression and 
cell growth, but cannot fully replace IL-7 in pro-
moting cell viability. The authors have shown the 
requirement also for STAT5  in providing mito-
genic signals and ensuring T-ALL cells viability. 
Yet, they have also noted the independence of 
Bcl-2 upregulation from STAT5 activation. In 
addition, Robeiro et  al. [140] reported STAT5- 
mediated activation of Pim1 kinase, which par-
take in IL7-induced T-ALLs proliferation. Apart 
from Pim1, IL-7 induced STAT5-mediated 
upregulation of genes encoding inhibitors of 
IL-7/IL-7R signaling pathway (CISH, SOCS2) 
and a CD127 repressor (Ikaros). It has also down-
regulated BCL6 and IL-10.

The MEK/ERK pathway is activated by 
IL-7  in T-ALL, but its relevance is not clear. 
However, it has been implicated in drug resis-
tance [173] and protein translation [182]. Ksionda 
et al. [176] demonstrated that IL-7 might contrib-
ute to the survival and proliferation of leukemic 
blasts by activating a non-canonical RasGRP1- 
Ras/PI3K/Akt pathway.
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Melao et al. [272] showed that in T-ALL, IL7- 
mediated cell viability depends on the interleukin 
activation of casein kinase 2 (CK2), which regu-
lates both PI3K/Akt, via deactivating PTEN, and 
JAK/STAT pathways. The CK2 seems to be cru-
cial for antiapoptotic (Bcl-2 upregulation), mito-
genic (cyclin E and A upregulation and p27KIP1 
downregulation), and trophic activity of IL-7 
(maintaining cell size and mitochondrial poten-
tial). The CK2 has mediated IL-7 activity in case 
of both wild type and mutant CD127 receptor.

2.7.1.2  Cutaneous T-Cell Lymphoma 
(CTCL)

Normal and CTCL-derived skin fragments have 
detectable expression of CD127 and IL-7, more 
prominent in cancer samples [60, 128]. The 
CD127 is present in basal keratinocytes and in 
skin-infiltrating lymphocytes [60], while IL-7 in 
keratinocytes [128, 273] and fibroblasts [128]. 
The CTCL-derived skin explants have induced 
the interleukin-mediated T-cell proliferation 
while normal skin has not [128]. Other study has 
pointed at keratinocytes as the IL7-producing 
cells, capable of supporting the growth of cancer 
cells [273]. Qin et al. showed IL-7 to stimulate 
DNA binding of JunD, which facilitated cell 
 transition from G1 to S phase. The authors have 
hypothesized that the activation of c-Myb and 
cyclin D1, known JunD transcriptional targets, 
might mediate the effect [207]. Apart from mito-
genic stimuli, IL-7 provided survival signals. It 
has been demonstrated that the cytokine upregu-
lated Bcl-2 expression, both by enhancing STAT5 
binding to Bcl-2 promoter and by activating 
c-Myb [141]. Recently, IL-7 has been shown to 
facilitate CTCL cells evasion of immune surveil-
lance by inducing cell surface expression of 
CD47, a “do not eat me” signal for phagocytes 
[263].

2.7.1.3  B-Cell Acute Lymphoblastic 
Leukemia (B-ALL)

The IL-7/IL-7R signaling participates in survival, 
proliferation, and differentiation of B-cell pro-
genitors (reviewed in [139]). Its transforming 
activity has been demonstrated as well [27]. In 
B-ALL, but not T-ALL, CD127 expression is 

upregulated by the mutations in IKZF1 gene, 
encoding for Ikaros, a negative regulator of 
CD127 transcription [274]. Receptor expression 
on malignant B cells depends on the disease stage 
[275] and is associated with widespread nodal 
dissemination [276]. Patients with pre-B-ALL, 
but not those with B-CLL or B-NHL, have higher 
frequency of CD127+ B-cell blasts than the fre-
quency of CD127+ CD19+ PBMCs in healthy 
individuals. Moreover, CD127+ preB-ALL cells 
have a greater proportion of Ki-67+Bcl-2high cells 
compared with CD127− counterparts, implying 
the involvement of IL-7/IL-7R signaling in 
B-ALL proliferation and survival [86]. In BCP- 
ALL, the impact of IL-7 on proliferation is medi-
ated by JAK/STAT1 and STAT5, although the 
formation of active STAT3 upon the interleukin 
stimulation has been also observed [135]. The 
IL-7 ensures proliferation and survival of preB- 
ALLs and can rescue those cells from rapamycin- 
induced apoptosis [211]. Recently, a cross-talk 
between IL-7/IL-7R signaling and Y-box-binding 
protein 1 (YB-1), a multi-drug resistance marker, 
has been reported. The interleukin induced the 
phosphorylation of YB-1 via MEK/ERK/RSK2
and mediated, in part, survival activity of IL-7 in 
rescuing BCP-ALL cells from rapamycin-
induced apoptosis [181].

2.7.1.4  Multiple Myeloma (MM)
The MM develops mostly in bone marrow, 
destructing the bone structure by enhancing 
osteoclastogenesis and inhibiting osteoblasto-
genesis. The IL-7/IL-7R signaling has been 
implicated in both. Stromal bone marrow cells 
produce both IL-7 and CD127 [61], and bone 
marrow plasma from MM patients contains 
higher IL-7 concentrations than recorded in nor-
mal bone marrow [36]. In response to monocyte- 
derived proinflammatory IL-1β and TNFα, 
stromal cells and osteoblasts synthesize IL-7, 
which stimulates T cells to release osteoclasto-
genic factors—receptor activator of NF-κB 
ligand (RANKL) and macrophage colony- 
stimulating factor (M-CSF) [36, 277]. It also 
reduces synthesis of osteoprotegrin [277], a 
RANKL decoy receptor, by inhibiting Runx2/
Cbfa1 activity in human preosteoblasts [277, 
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278]. Others have shown that IL-7 can be also 
produced by MM cells [279], and MM-derived 
IL-7 induces the expression of Gfi1, a Runx2 
suppressor, in preosteoblasts. The Gif1-mediated 
Runx2 suppression involves the HDAC and 
blocks cell differentiation [279]. Hiasa et  al. 
[158] implicated Pim2 kinase in IL7-mediated 
osteoclastogenesis. Mechanistically, Pim2 inhib-
its BMP2-mediated upregulation of Osterix 
expression by antagonizing SMAD1/5 and 
p38MAPK signaling. In turn, the participation of 
HIF-1α activation in the stimulation of IL-7 
expression has been suggested [280]. In MM 
cells, but not normal B-cells, IL-7 induces MUC1 
expression and enhances its binding with 
β-catenin; however, the relevance for MUC1 
induction in MM has not been determined [188].

Apart from MM, the IL-7/IL-7R signaling has 
been implicated in the spontaneous osteoclasto-
genesis occurring in cancer patients with osteo-
lytic metastasis. However, the IL-7 involvement 
seems to relay rather on enhancing the activity of 
TNFα, as there is no interleukin-mediated change 
in RANKL [112].

2.7.1.5  Classic Hodgkin’s Lymphoma 
(cHL)

Both IL-7 and CD127 are expressed by malig-
nant cells in cHL and elevated IL-7 concentra-
tions, corresponding with the disease 
advancement, have been found in patients’ sera. 
The IL-7/IL-7-R signaling, in an autocrine and/or 
paracrine manner, is believed to provide a growth 
and survival support for malignant Hodgkin and 
Reed-Sternberg (H-RS) cells (reviewed in [281]). 
The cHL-derived CAFs not only secrete IL-7 and 
induce clonogenic growth of cHL cells, but also 
release IL-6, an important growth factor in cHL 
and a mediator of immune tolerance. As bone 
marrow stromal cells express CD127 [61], IL-7 
synthesized by malignant cHL cells has been 
shown to stimulate IL-6 production in CAFs 
[57].

2.7.1.6  Chronic Myeloid Leukemia 
(CML)

The CML originates from pluripotent hematopoi-
etic stem cells, in which CML-specific CTLs 

play a crucial role in immunosurveillance, pre-
venting the disease progression to the terminal 
blast phase. The CML-specific CTLs express 
high levels of CD127 and the granulocyte-derived 
IL-7 expression in spleen is higher in CML than 
normal mice, implying the role of IL-7/IL-7R 
signaling in the CD8+ T-cell-mediated immuno-
surveillance [43]. However, in the blastic crisis 
phase, MSCs-derived IL-7 seems to play an 
adverse role, rendering malignant cells resistant 
to imatinib or nilotinib, tyrosine kinase inhibi-
tors. Antiapoptotic activity of IL-7 is dependent 
on JAK1/STAT5 pathway and does not involve 
JAK3/STAT5 or PI3K/Akt [34, 149].

2.7.2  Solid Tumors

As a part of cancer immunosuppression, stromal 
cells in lymphoid organs of individuals with solid 
tumors may be reprogramed to downregulate 
IL-7/IL-7R activity. Indeed, Riedel et  al. [282] 
showed that in melanoma-inoculated mice, some 
unidentified tumor-released factors altered tran-
scriptional patterns of tumor-draining lymph 
nodes reducing IL-7 expression in fibroblastic 
reticular cells. Consequently, consistently with 
IL-7 function, the proliferation of T and B cells 
was reduced and the alterations in node immune 
composition occurred [282]. Others have shown 
that IL-7 might participate in thymic involution 
observed in tumor bearers. Experimental animals 
with mammary tumors had a shrunken thymus 
and downregulated thymic IL-7 expression. The 
organ volume could be partially restored by intra- 
thymic injection of recombinant interleukin 
[283]. Moreover, Mandal et  al. [284] demon-
strated that developing Ehrlich’s ascites carci-
noma (EAC) results in depletion of T-cell 
subpopulations in the thymus. Mechanistically, 
an unknown EAC-derived soluble factor induced 
CD127 downregulation, inhibited JAK3 and 
STAT5 phosphorylation, and decreased Bcl-2/
Bax ratio, resulting in thymocyte apoptosis and 
T-cell maturation block. As a result, the thymus 
atrophied, and T-cell subpopulations among 
PBMCs were depleted. On the other hand, how-
ever, a body of evidence is being gathered show-
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ing that IL-7 might be upregulated in cancer, both 
at the systemic and local level [2–10, 100–112], 
and support the growth of solid tumors. In the 
following paragraphs, what little is known about 
IL-7/IL-7R signaling in particular cancer types is 
presented.

2.7.2.1  Prostate Cancer
The IL-7 and its receptor are present at mRNA 
and protein level in normal prostatic epithelia and 
in endothelial cells, allowing for autocrine and 
paracrine mode of signaling. The CD127 has also 
been detected on intraepithelial and parafollicu-
lar T cells and on HeV-like vessels. The interleu-
kin presence in prostate seems to support T-cell 
survival rather than proliferation as has been evi-
denced by low proliferation rates but high Bcl-2 
expression [44]. However, neoplastic transforma-
tion dramatically decreases IL-7 content [44, 
285]. The phenomenon has been accompanied by 
diminished frequency of CD8+ T cells positive 
for Bcl-2, implying that IL-7  in prostate cancer 
plays an immunosurveillance function [44]. 
Correspondingly, lower expression of IL-7 and 
IL-7R is predictive of worse survival in prostate 
cancer patients [286], and IL-7 vaccination 
improves survival of animals challenged with 
prostatic cancer cells. Mechanistically, IL-7 
increases intratumoral necrosis by enhancing 
tumor infiltration with CD4+ and CD8+ T cells 
and with CD19+ B cells [251]. Others, however, 
have found IL-7 to be elevated in neoplastic pros-
tate tissue compared to benign hyperplasia 
already in stage I cancers [5]. The Gene Set 
Enrichment Analysis (GSEA) of 551 prostate 
cancer samples has confirmed IL-7 and CD127 
co-expression and showed their high positive 
correlation. Moreover, the GSEA has revealed 
that in patients stratified by the degree of IL-7/
IL-7R expression, those in the highest decile had 
upregulated expression of genes associated with 
stemness and metastasis. Therefore, a positive 
correlation between the expression of IL-7/IL-7R 
and metastasis and EMT in prostate cancer has 
been suggested. In addition, there has also been a 
positive correlation with IL-6/STAT3, TNF, 
NF-κB, EGF/PDGF, and Wnt signaling pathways 
[154]. The interleukin and its receptor seem to be 

expressed only by androgen receptor (AR)-
negative lines [5, 154], although others have 
reported their presence also in LNCaP, an 
AR-positive cell line [47, 70]. Saha et  al. [70] 
showed STAT3/NF-κB to be involved in the 
upregulation of IL7 transcripts. The IL-7/IL-7R 
signaling activated Akt/NF-κB pathway [47] and 
STAT5, Akt, and ERK [154]. The in  vitro data 
point at IL-7/IL-7R involvement in cell migration 
and invasion [47, 154]. However, while Qu et al. 
[47] demonstrated the involvement of MMP-3 
and MMP-7, upregulated by the interleukin, Seol 
et  al. [154] failed to confirm IL-7 effect on 
MMP1, MMP2, MMP7, MMP9, and MMP13 
transcripts or MMP-2 and MMP-9 activities. 
Instead, the authors have shown IL-7 to upregu-
late the mRNA and/or protein of EMT-promoting 
transcription factors ZEBs, TWIST1, and SNAI 
as well as to promote the switch from epithelial 
(E-cadherin) to mesenchymal markers 
(N-cadherin, vimentin). Moreover, they have 
demonstrated that IL-7 stimulation induced 
sphere formation in cancer cells [154]. The inter-
leukin association with metastasis in prostate 
cancer has been also manifested in clinical set-
ting by more markedly increased cytokine con-
centrations in patients with bone metastases 
[112].

2.7.2.2  Fibrosarcoma
The only available data concerning IL-7 associa-
tion with fibrosarcoma are those regarding inhib-
itory effect exerted on tumors in mice by 
recombinant IL-7 or by a genetically modified 
IL7-expressing fibrosarcoma cell lines. The inter-
leukin reduces tumor growth rates or causes their 
complete rejection. It also confers a resistance to 
re-challenge, contributes to less severe inhibition 
of lymphocyte proliferation with improved the 
CD4+:CD8+ ratio and cytotoxicity, and reduces 
synthesis of TGFβ [226, 237].

2.7.2.3  Esophageal Cancer
Tumor and tumor-adjacent normal tissue express 
IL-7 at both mRNA [287] and protein level [2], 
but only the interleukin protein content is higher 
in tumors. Tumor-to-normal ratio of IL-7 is 
increased in advanced cancers and those metasta-
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sizing to lymph nodes, due to decreased expres-
sion in tumor-adjacent tissue [2]. The mRNA for 
IL-7 has been detectable in five out of six 
screened cell lines [288]. The CD127 is overex-
pressed in esophageal squamous cell carcinoma 
(ESCC) and esophageal adenocarcinoma as com-
pared to normal esophagus as well and correlates 
with shorter disease-free survival [9]. Its expres-
sion in ESCC cell lines is controlled by FoxO1, 
which, if acetylated, acts as CD127 transcrip-
tional repressor. In cancer, FoxO1 is deacetylated 
due to HDAC overexpression. The IL-7 receptor 
in ESCC acts as an oncogene. Its knockout results 
in diminished cell migration and brief G2 cell 
cycle arrest, accompanied by p21CIP1 upregula-
tion [9].

2.7.2.4  Gastric Cancer
The IL-7 concentration in gastric tumors is higher 
than in surrounding macroscopically normal tis-
sue. Cancer advancement, particularly lymph 
node metastasis, is associated with a bigger dif-
ference in expression ratio between tumor and 
normal tissue. However, it results from a drop in 
IL-7 concentration in normal tissue in advanced 
and lymph node positive cancers [2]. The IL-7 
mRNA has been detected in primary tumors of 
gastric cancer [287, 289] but not in bone metasta-
ses [289]. Still, early studies have not shown 
cytokine expression in two screened gastric cell 
lines [71]. No studies concerning IL-7 signaling 
in gastric cancer seem to have been conducted, 
although CD127 expression has been shown in 
patient samples both at mRNA and protein levels 
[10, 287], positively reflecting lymph node 
involvement and cell dedifferentiation and pre-
dictive of poor prognosis and cancer recurrence 
[10]. Moreover, Helicobacter pylori infection, a 
risk factor for gastric cancer, is accompanied by 
elevated IL7 mRNA, proportionally to the sever-
ity of infection [290]. A genome-wide associa-
tion study (GWAS) has identified 16 genes from 
IL-7 pathway as associated with increased sus-
ceptibility to gastric cancer, of which NMI, an 
N-Myc and STAT interactor, has been upregu-
lated in tumors as compared to normal tissue 
[291].

2.7.2.5  Colorectal Cancer (CRC)
Interleukin concentrations in the colorectum, 
both in tumor and macroscopically normal 
tumor-adjacent tissue, are significantly higher 
than in the upper digestive tract. Like in esopha-
geal and gastric cancer, IL-7 concentration in 
colorectal tissue of CRC patients is affected by 
cancer stage only in tumor-adjacent tissue 
(decreased in advanced and lymph node meta-
static cancers) [2]. The IL7 transcripts have been 
detected in clinical samples, both in tumor and 
adjacent normal tissue, as well as in three out of 
four established cell lines [80]. Gou et al. [232] 
demonstrated that IL-7 enhanced antitumor activ-
ity of oxaliplatin by inhibiting the growth of lung 
and abdomen metastases in murine cancer model, 
which was associated with increased tumor infil-
tration with activated CD8+ T cells and reduced 
Tregs content in the spleen.

2.7.2.6  Lung Cancer
Lung cancer cells overexpress CD127 [202], and 
the receptor expression in stage I cancers is posi-
tively correlated with tumor budding [8], shorter 
recurrence-free and overall-survival, and with 
CD68+, a TAM marker [7, 58]. High IL-7 and 
CD127 expression has been associated with 
aggressive cancer phenotype: advanced stage, 
lymph node metastasis, VEGF-D expression, and 
higher lymphatic vessels density [6]. A protu-
morigenic activity of IL-7 in lung cancer is con-
firmed by in vitro findings. The IL-7/IL-7R has 
induced the expression of c-Fos, expression and 
phosphorylation of c-Jun, and enhanced AP-1 
binding with DNA.  It has also upregulated the 
expression of cyclin D, resulting in cell cycle 
progression and accelerated proliferation. 
Moreover, it has also increased expression of 
VEGF-D, without affecting VEGF-A and 
VEGF-C, and induced formation of lymphatic 
vessels and tumor growth in  vivo [6, 81, 210]. 
The IL-7/IL-7R axis seems to have no effect on 
cancer cell migration [81], but it has improved 
cell survival by activating p53 and inducing Bcl-2 
expression while downregulating Bax [202]. The 
pathway in lung cancer has being linked with pre-
vention of autophagy as it decreased beclin-1 
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expression, a positive autophagy regulator. 
Interestingly, it resulted also in the downstream 
activation of PI3K/Akt/mTOR pathway [58].

2.7.2.7  Renal Cell Carcinoma (RCC)
Renal cell carcinoma cells express and secrete 
IL-7, more so in response to IFNγ stimulation 
[71]. The interleukin, in turn, can induce IFNγ 
secretion from RCC-reactive TILs and potentiate 
their growth. It has also been shown to enhance 
IL2-mediated LAK activity, albeit to lesser extent 
[240]. Antitumor activity of IL-7  in RCC has 
been also demonstrated by Ditonno et  al. [243] 
and associated with enhanced proliferation of 
TILs, upregulated expression of IL-2R, and 
induction of phenotypical changes in lymphocyte 
populations with CD4+ T-cell dominance.

2.7.2.8  Bladder Cancer
The effects of IL-7/IL-7R signaling in bladder 
cancer have been analyzed on 5637 cell line by 
Park et al. [130], who demonstrated an induction 
of wound healing migration and invasion but no 
effect on proliferation. Upon IL-7 stimulation, 
the phosphorylation of ERK1/2, but not JNK and 
p38MAPK, has been observed. In line with the 
lack of mitogenic activity, IL-7 has not affected 
cyclin D1 or E, CDK2 or CDK4, p21CIP1 or p53. 
However, contrary to all other reports, IL-7 
induced p27KIT1 expression. Moreover, p27KIT1 
seemed to be required for ERK phosphorylation, 
as well as for subsequent enhanced binding of 
NF-κB and AP-1 to DNA, an upregulation of 
MMP-2 and MMP-9, and, finally, for cell migra-
tion and invasion.

2.7.2.9  Gynecological Cancers
In cervical cancer, an immunomodulatory role of 
IL-7, as an Fc-fused (IL7-Fc) interleukin to 
enhance its delivery across the genital epithelial 
barrier, has been examined [249]. The IL7-Fc has 
been successful in suppressing the growth of cer-
vicovaginal tumors in mice. It has been shown to 
induce secretion of proinflammatory cytokines 
IL-1β, IL-6, and TNFα, IFNγ, chemokines 
CXCL10 (IP-10), CCL3 (MIP-1α), CCL4 
(MIP-1β), and CCL5 (RANTES) from cervico-
vaginal epithelial cells, and stimulate endothelial 

V-CAM expression. The IL7-Fc has also 
enhanced infiltration of cervicovaginal tissue 
with CD4+ and CD8+, but their location differed. 
The CD4+cells preferentially localized in the sub-
mucosa and CD8+ in the epithelium. The popula-
tions of γδ T cells and of conventional and 
monocyte-derived DCs increased as well [249]. 
Others have examined lnc-IL7R and found it to 
be upregulated and correlate positively with 
tumor size, cancer stage, and lymph node metas-
tasis and to be indicative of poor prognosis and 
shorter overall survival. Mechanistically, lnc- 
IL7R has prevented apoptosis by upregulating 
Bcl-2 expression in tumor cells and induced 
tumor growth in vivo [96].

No IL-7 expression has been detected in epi-
thelial ovarian cancer cell lines [125], although in 
peritoneal fluid as well as at the systemic level, 
IL-7 has been elevated and indicative of shorter 
both disease-free and overall survival [105, 125]. 
Compared to plasma, IL-7 concentrations in 
cancer- associated ascites are decreased, and the 
ascites contain low count of CTLs. In addition, 
the ascites’ CTLs display a limited antitumor 
response [292].

Among genetic alterations in endometrial can-
cer, the targeted next-generation sequencing 
(NGS) has revealed a high frequency of muta-
tions in PTEN (50%), as well as mutations in 
genes encoding Akt2, PIK3R1, FoxO, RICTOR, 
MTOR, RPTOR, and TSC1. Taken together, 
those mutations translate into enhanced activity 
of IL-7/IL-7R signaling [293].

2.7.2.10  Melanoma
Melanoma cells have been reported to express 
both IL-7 and CD127, while normal melano-
cytes, only the receptor [53]. The established 
melanoma cell lines, as well as melanocytes, 
respond to IL-7 stimulation with increased 
expression of ICAM-1 [126]. In cell lines harbor-
ing BRAFV600E mutation, characterized by the 
constitutive activation of the MAPK signaling 
cascade, IL-7 expression is upregulated by 
MAPK activation and downregulated by the 
pathway inhibition [55]. In murine melanomas, 
the tumor growth is stimulated by IL-7, which 
increases the population of MDSCs 
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(CD11b+Gr-1+) and IL17-producing γδ27− cells. 
The effect is mediated by STAT3 and not by 
STAT5 or PI3K [138]. However, others have 
shown antitumor activity of IL-7. Primary cul-
tures of melanoma cells transfected with IL-7 
have improved sensitivity to immunologic effec-
tor cells [227]. In addition, human melanoma cell 
line, engineered to overexpress IL-7, has dis-
played substantial tumor growth retardation. 
Moreover, it has induced CTLs in mixed tumor- 
lymphocyte cultures and had markedly reduced 
expression of TGFβ [56]. Recently, Bi et al. [152] 
demonstrated that IL-7 reduces the number of 
lung metastases in murine lung melanoma model. 
The interleukin has stimulated expression of IL-9 
and IL-21 in tumor bed, specifically, in the tumor- 
infiltrating CD4+T cells. In isolated cells, IL-7 
induces Th9 differentiation by modifying chro-
matin structure. At the molecular level, the inter-
leukin increases the expression of histone 
acetyltransferases and associated proteins, GCN5 
and p300, which results in the acetylation of 
H3K9 at the IL-9 promoter locus. The signaling 
pathways activated by IL-7/IL-7R include PI3K/
Akt, STAT5, and ERK. Of those, the  PI3K/Akt/
mTOR contributed to the histone acetylation by 
increasing nuclear accumulation of FoxO1 and 
its binding with IL-9 promoter and by enhancing 
translocation of the inhibitory Foxp1 into cyto-
plasm [152].

2.7.2.11  Breast Cancer
In breast cancer, tumor cells express CD127, but 
not IL-7, implying a paracrine mode of activation 
[46, 230]. The interleukin expression in breast 
cancer tissue is upregulated, indicative of IL-7 
overexpression in stromal cells [3]. Also breast 
tumor interstitial fluid has higher IL-7 concentra-
tion than matched normal one [294]. The IL-7 
accelerates growth of breast cancer cells in a 
PI3K- and JAK3-dependent manner, as demon-
strated by pathway-specific inhibitors [46]. The 
interleukin induces VEGF-D expression at 
mRNA and protein level in human breast cancer 
cell lines [230]. In clinical samples, the expres-
sion of IL-7 and IL-7R is positively correlated 
with tumor dedifferentiation and cancer advance-
ment, particularly with lymph node involvement, 

and negatively with patients’ survival. 
Interestingly, nodal involvement seems to affect 
the signaling pathway triggered. The N2 cancers 
have significantly elevated expression of JAK3 
and PI3K, as compared to N0 cancers, but 
decreased expression of JAK1 and STAT5 [3]. 
Pan et al. [174] and Yang et al. [82] evaluated the 
effect of IL-7δ5 variant and found it to promote 
breast cancer cell proliferation and cell cycle pro-
gression, by increasing cycling D1 and decreas-
ing p27KIP1 expression. Both activities have been 
dependent on the activation of PI3K/Akt pathway 
[174]. The PI3K/Akt pathway is also involved in 
promoting IL-7δ5-mediated EMT. In breast can-
cer cell lines, the IL-7δ5 decreased E-cadherin 
and increased N-cadherin expression and induced 
scattered cell morphology. In xenograft tumors, 
IL-7δ5 promoted the development of lung metas-
tases and reduced the overall-survival of tumor- 
bearing mice by 40% [82]. The CD4+ and CD8+ T 
cells from breast cancer patients has lower 
expression of CD127 and are markedly less 
responsive to IL-7 stimulation than T cells from 
healthy individuals, contributing to the suppres-
sive immunological profile characteristic for 
patients with solid tumors [295]. In turn, IL-7 in 
breast cancer patients promotes intratumoral 
accumulation of CD3brightγδT17 cells, strongly 
expressing CD127, and enhances their synthesis 
of protumoral IL-17A, the action antagonized by 
type I IFN [75].

2.7.2.12  Hepatocellular Carcinoma 
(HCC)

Kong et al. [54] demonstrated that while CD127 
is present on both normal and malignant hepato-
cytes, IL-7 is expressed exclusively by cancer 
cells. The authors have shown that HBV infec-
tion increases CD127 expression. It involves acti-
vation of Notch1 and downstream NF-κB 
dependent on viral multifunctional nonstructural 
protein X (HBX). The HBX-activation of IL-7/
IL-7R pathway includes phosphorylation of Akt 
and JNK kinases, but not STAT5, and results in 
the upregulation of cyclin D and MMP-9, leading 
to accelerated cell proliferation and migration. 
Unexpectedly, the IL-7/IL-7R signaling has 
downregulated vimentin and β-catenin and 
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upregulated the expression of E-cadherin. In clin-
ical samples, CD127 expression has been lower 
in poorly differentiated tumors [296].

2.8  Conclusions 
and Perspectives

The functional studies have only started to 
uncover a protumorigenic activity of IL-7. Little 
to nothing is known about IL-7/IL-7R signaling 
in the microenvironment of solid tumors, and our 
understanding of the pathways involved in hema-
tological malignancies is far from complete. 
Surprisingly, even the cellular source of the cyto-
kine frequently remains obscure, and there are 
controversies concerning the ability of particular 
cell types to express IL-7 and/or its receptor. 
Nonetheless, the IL-7/IL-7R axis seems to sup-
port the development of hematological malignan-
cies by increasing cancer cell viability via 
mitogenic, trophic and antiapoptotic stimuli, 
relying mainly on PI3K/AKt and JAK/STAT5 
pathways. In solid tumors, apart from prosurvival 
signals for cancer cells, the IL-7/IL-7R pathway 
facilitates tumor invasion and metastasis, by 
enabling extracellular matrix remodeling, 
epithelial- mesenchymal transition, and lymphan-
giogenesis, for which it engages also MEK/ERK 
pathways. Given the unwavering interest in IL-7 
application in immunotherapy, based on its 
immunomodulatory activity, better understand-
ing of its signaling and the cells that are likely to 
respond should be a research priority.
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Abstract

Unlike other malignancies, ovarian cancer 
(OC) creates a complex tumor microenvi-

ronment with distinctive peritoneal ascites 
consisting of a mixture of several immuno-
suppressive cells which impair the ability of 
the patient’s immune system to fight the dis-
ease. The poor survival rates observed in 
advanced stage OC patients and the lack of 
effective conventional therapeutic options 
have been attributed in large part to the 
immature dendritic cells (DCs), IL-10 
secreting regulatory T cells, tumor-associ-
ated macrophages, myeloid-derived suppres-
sor cells, and cancer stem cells that secrete 
inhibitory cytokines. This review highlights 
the critical role played by the intraperitoneal 
presence of IL-10  in the generation of an 
immunosuppressive tumor microenviron-
ment. Further, the effect of antibody neutral-
ization of IL-10 on the efficacy of DC and 
chimeric antigen receptor T-cell vaccines 
will be discussed. Moreover, we will review 
the influence of IL-10  in the promotion of 
cancer stemness in concert with the NF-κB 
signaling pathway with regard to OC pro-
gression. Finally, understanding the role of 
IL-10 and its crosstalk with various cells in 
the ascitic fluid may contribute to the devel-
opment of novel immunotherapeutic 
approaches with the potential to kill drug-
resistant OC cells while minimizing toxic 
side effects.
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3.1  Introduction

Ovarian cancer (OC) remains the leading cause 
of mortality from gynecologic malignancies, 
with an estimated 22,530 new cases and 13,980 
deaths in the US in 2020 [1]. The majority of 
cases are advanced International Federation of 
Gynecology and Obstetrics stage III or IV at the 
time of diagnosis, thus precluding surgical deb-
ulking [2]. Accumulation of peritoneal ascites, a 
heterogeneous fluid that harbors a wide variety of 
cellular and soluble factors which promote sur-
vival pathways in tumor cells while inducing 
immunosuppression, is an important manifesta-
tion of advanced OC [3]. Although paclitaxel and 
platinum-based combinatorial chemotherapy in 
addition to surgical tumor debulking achieve an 
initial clinical response in the majority of patients, 
tumor relapse due to peritoneal accumulation of 
inflammatory ascites remains a major problem 
[4]. Peritoneal ascitic fluid is a complex mixture 
of cellular components and soluble growth fac-
tors, including but not limited to cytokines such 
as interleukin (IL)-10 and transforming growth 
factor (TGF)-β, creating an inflammatory micro-
environment that is conducive to the develop-
ment of chemo-resistance and tumor growth [3]. 
Along these lines, lack of effective treatment for 
OC can be in large part attributed to a poor under-
standing of the peritoneal ascites-associated 
tumor microenvironment.

The healthy immune system has professional 
antigen (Ag)-presenting cells, such as dendritic 
cells (DCs), that endocytose dying tumor cells, 
process them into peptides, and express the pep-
tides on their cell surface in conjunction with 
major histocompatibility (MHC) class I Ag. DCs 
then migrate to secondary lymphoid organs 
where they activate naïve CD8+ T cells against 
tumor peptides to generate cytotoxic T cells 
which lyse tumor cells [5, 6], a process termed 
immunosurveillance [7]. This ability of the 
healthy immune system to detect inflammatory 
pre-cancerous lesions and eliminate tumor cells 
is often known as the elimination phase [8].

Immunosurveillance is predominant in the ini-
tial stages of OC, before the composition of the 
immune infiltrate changes from an anti- to 
 pro- tumorigenic immunotolerant leukocyte pro-
file with the onset of tumor progression [9]. 
Immune checkpoints, such as programmed cell 
death 1 and cytotoxic T-lymphocyte-associated 
protein 4, are cellular hard-wired pathways that 
ward off autoimmunity during immune responses 
against various microbial agents [10]. However, 
the growing tumor’s ability to cause chronic 
inflammation and camouflage itself from immu-
nosurveillance co-opts these immune check-
points, further dampening the activity of both 
DCs and T cells [11]. At this stage, a significant 
upregulation of IL-10 expression is observed in 
OC patients [12]. This process results in the 
enhanced interplay of the patient’s immune sys-
tem with neoplastic cells in the peritoneal cavity 
leading to the development of an inhibitory 
microenvironment conducive to further growth 
and proliferation of OC cells, often called the 
equilibration phase [13].

The core of the proliferating tumor consists of 
cancer stem cells (CSCs), a subpopulation that 
has the capability for self-renewal and pluripo-
tency that promotes tumor recurrence and metas-
tasis [14]. At this stage, the tumor tissue starts 
developing a distinct but interdependent second 
compartment called the stroma that includes con-
nective tissue, blood vessels, extracellular matrix 
proteins, and various infiltrating immune cells. 
The infiltrates include immature DCs, tumor- 
associated macrophages, regulatory T cells, 
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myeloid-derived suppressor cells, and cancer- 
associated fibroblasts, among others [15]. Stem 
cells in OC are known to induce the M2 polariza-
tion of macrophages influenced by IL-10 secre-
tion [16]. CSCs and the corresponding stroma 
co-evolve over time, producing an environment 
conducive to more potent tumor growth while 
imposing a barrier to immunosurveillance [17]. 
Indeed, CSCs that escape chemotherapy are the 
main culprits for the spread of disease [18]. 
Various immunosuppressive bioactive com-
pounds such as polyamines, vascular endothelial 
growth factor, IL-10, and TGF-β are secreted into 
this tumor microenvironment [14]. At this stage, 
non-motile, epithelial OC cells gain 
mesenchymal- like migratory and invasive prop-
erties, a process known as epithelial-to- 
mesenchymal transition (EMT) which is a 
hallmark in OC progression. Cells break free 
from the primary tumor and spread to other 
organs via blood and lymphatic vessels, a meta-
static process often referred to as the escape 
phase [8, 19, 20].

Immunotherapies have had limited success in 
controlling OC due to its ability to create an 
immunosuppressive milieu within the peritoneal 
cavity which inhibits not only the intratumoral 
migration of cytotoxic T cells, but also allows 
substantial infiltration of inhibitory cellular and 
soluble factors [21]. Prominent among these are 
regulatory T cells and their secreted cytokines 
[22, 23]. The role of IL-10  in the formation of 
immunosuppressive peritoneal ascites and its 
contribution to ovarian carcinogenesis is still an 
active area of investigation [24–26]. Certainly, a 
better understanding of the role of IL-10  in the 
pathogenesis of OC would contribute to the 
development of effective cell-based therapies.

3.2  DCs, T Cells, and Cell- 
Mediated Immune 
Responses

DC- and T-cell-based cellular immunotherapies 
have improved patient survival; however, tumor 
relapse is common due to various immunosup-
pressive cytokines present in peritoneal ascites 

[27]. Two types of DC precursors, conventional/
myeloid, and plasmacytoid DCs have been iden-
tified. Upon activation, the former secretes high 
levels of IL-12 and stimulates naïve CD4+ T cells 
to differentiate into Th1 cells, which facilitate 
strong, cell-mediated immunity converting CD8+ 
naïve T cells into cytotoxic T cells. In contrast, 
the latter often present at the site of the tumor and 
produce low levels of IL-12 and induce the devel-
opment of Th2 cells which suppress cell- mediated 
immunity. IL-10 was also shown to promote the 
anti-apoptotic activity of malignant ascites [28, 
29], and its expression consistently correlates 
with a predominantly Th2 response in advanced 
stage OC [30, 31]. A host of other CD4+ Th sub-
sets such as Th17 have been identified that modu-
late CD8+ effector T-cell activity, but their exact 
role in the immune response is still being eluci-
dated [32].

3.3  Interleukins in the OC 
Microenvironment

Interleukins are small, signaling proteins which 
belong to a broad category of cytokines that also 
include chemokines, interferons (IFNs), and lym-
phokines [33]. Interleukins are synthesized by a 
majority of immune cells that are significant 
mediators of immunoregulatory pathways, initi-
ate signal transduction with their cell-surface 
receptor engagement, and are classified into pro- 
or anti-inflammatory subsets [33]. Multiple inter-
leukins are associated with OC pathogenesis, and 
the balance between pro- and anti-inflammatory 
cytokine profiles within the peritoneal stroma 
will determine the degree of proliferation and 
invasiveness of OC cells [34, 35].

3.4  IL-10 in the OC 
Microenvironment

IL-10 is a potent, anti-inflammatory cytokine ini-
tially referred to as cytokine synthesis inhibitory 
factor [36] and plays a significant role in the 
pathogenesis of OC [37]. It is secreted by a 
majority of innate immune cells, including mono-
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cytes, DCs, macrophages, and natural killer cells; 
adaptive immune cells, such as CD4+ T cells, 
CD8+ T cells, Th17 cells, and B cells; and OC 
cells themselves [23, 38, 39]. It is well estab-
lished that the role of IL-10 in the tumor microen-
vironment is to facilitate shielding from 
immunosurveillance [40, 41]. High levels of 
IL-10 are found in both the serum and peritoneal 
effusions of patients with serous OC, particularly 
those with advanced stage disease [23, 31, 42]. 
IL-10 is known to differentiate naïve CD4+ T 
cells into Th2 cells which suppress adaptive 
immunity [30]. Enhanced IL-10 secretion is also 
observed at the time of EMT, promoting the loss 
of E-cadherin and acquisition of N-cadherin 
which increases tumor cell motility [43, 44]. In 
fact, IL-10-neutralizing antibodies have been 
shown to markedly reverse this transition [45]. 
Further, a positive correlation of IL-10 expres-
sion with cell migration from the peritoneal cav-
ity has been reported, thus corroborating its role 
in EMT and promotion of metastasis [37].

Akin to its ligand, IL-10 receptor expression 
has been observed in macrophages, T cells, and 
DCs [40]. OC cells expressed higher levels of 
IL-10 receptor than the surrounding stroma, sug-
gesting that these receptors may be involved in 
the pathogenesis of the disease [23]. IL-10 gene 
expression is finely orchestrated by regulatory 
transcriptional networks (Fig. 3.1). Engagement 
of IL-10 with its receptor on the cell surface 
results in the recruitment and activation of Janus 
kinase 1 (JAK1) and tyrosine kinase 2 (TYK2) at 
the cytoplasmic end [46]. This complex then 
recruits and phosphorylates signal transducer and 
activator of transcription 3 (STAT3), facilitating 
its translocation into the nucleus [46]. This trans-
location leads to target gene expression of vari-
ous pro-tumorigenic and apoptosis resistance 
genes [47]. An important target gene of STAT3 is 
Twist, which is key in facilitating EMT and pro-
moting invasiveness and metastasis [48].

Anti-apoptotic 
activity

EMT 
Transition

Proinflammatory 
cytokines

Fig. 3.1 Schematic representation of the IL-10 signaling 
pathway: ligation of IL-10 with its receptor results in the 
JAK1/TYK2-mediated phosphorylation of STAT3 fol-
lowed by its nuclear translocation. This translocation 
leads to the expression of anti-apoptotic and pro- 

tumorigenic genes contributing to EMT. JAK1 Janus 
kinase 1, TYK2 Non-receptor tyrosine-protein kinase, 
STAT3 Signal transducer and activator of transcription 3, 
EMT epithelial-mesenchymal transition
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3.5  Cell-Based Immunotherapy 
for OC to Overcome 
the Inhibitory Tumor 
Microenvironment

Cell-based immunotherapy is a promising 
approach to OC [49] based on the strong positive 
correlation observed between tumor infiltrating 
lymphocytes and improved overall survival [50]. 
The rejection of metastatic tumors in patients fol-
lowing infusion of autologous, tumor-specific 
CD8+ cytotoxic T cells further strengthens this 
hypothesis [51]. Although the CD8+ adaptive arm 
of the immune response uses cytotoxic T cells as 
the main weapon to lyse tumor cells, CD4+ naïve 
T cells are required for optimal cytotoxic T-cell 
activity [52]. Despite successful demonstration 
of in vitro tumor cell killing by ex vivo generated 
DCs, clinically meaningful responses have been 
sparse in DC vaccine trials due to the inhibition 
of DC maturation and function by the recruit-
ment of immunosuppressive cells and cytokines 
into the tumor site in vivo [53]. One way to cir-
cumvent this is to generate DCs ex vivo, expose 
them to tumor-specific Ag, and subsequently 
administer this preparation to patients as a thera-
peutic cancer vaccine. DCs would then be 
expected to migrate to secondary lymphoid 
organs and induce robust cytotoxic T-cell 
responses. Cellular immunotherapies with tumor 
Ag-pulsed DCs and ex vivo activation of T cells 
for adoptive transfer improved patient survival 
[54, 55].

3.6  Influence of IL-10 
on DC-Mediated Immune 
Responses

Tumor cells themselves are potential immunogens 
but are generally not capable of initiating thera-
peutically useful immune responses [51]. DCs are 
central to shaping the adaptive immune response 
as professional Ag-presenting cells, and modulate 
the response against tumor Ags leading to clonal 
expansion of CD8+ naïve T cells into cytotoxic T 
cells [6]. DCs are found in most tumors and 
acquire tumor Ags either by ‘nibbling’ live or cap-

turing dying tumor cells. Tumor Ags are processed 
into peptides that are expressed on the cell surface 
of DCs in conjunction with MHC class I Ags. DCs 
then migrate to lymph  nodes, where they prime 
CD8+ naïve T cells for clonal expansion into cyto-
toxic T cells. This process requires interaction of 
the MHC class I-tumor peptide complex on DCs 
with the CD8+ T-cell receptor as well as the inter-
action of CD80/CD86 co-stimulatory molecules 
on DCs with CD8+ T cells. IL-10 production is 
also known to influence the percentage of DCs in 
OC patients [56].

Often, substantial numbers of DCs are 
observed in surrounding tissue, but their infiltra-
tion into the tumor bed is limited. Even when 
they make their way into the tumor, DCs and T 
cells do not function effectively due to tumor- 
induced immunosuppression [51]. Studies have 
revealed that the maturation and function of DCs 
are adversely affected by the IL-10-rich tumor 
microenvironment, causing the activation of the 
JAK-STAT3 pathway [57–59]. This pathway 
results in the loss of DC tumor Ag expression, 
thus limiting its presentation to T cells contribut-
ing to inhibition of cell-mediated immunity. This 
is one of the ways IL-10 is able to facilitate eva-
sion of OC cells from immune recognition, and 
studies have reported a similar IL-10-induced 
downregulation of MHC class I in OC cells [60, 
61]. Increased serum levels of IL-10 significantly 
correlated with not only numerical deficiencies 
of DCs, but also with increased circulation of 
immature phenotypes of circulating DC subsets 
as well as impairment of DC differentiation. 
IL-10 inhibited anti-tumor immunity by inducing 
regulatory T cells and inhibited DC tumor Ag 
presentation to impair activation of CD4+ helper 
and CD8+ cytotoxic T cells [62, 63]. In this 
regard, IL-10 has been implicated in blocking 
proliferation and cytokine production and is 
known to play a role in inducing T-cell anergy 
[64], thus shielding tumor cells from 
immunosurveillance.

In order to improve outcomes with DC-based 
therapeutic cancer vaccines, it is necessary to 
block the immunosuppressive environment while 
at the same time provide the means for effective 
cell-mediated cytotoxic immune responses 
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against tumor cells. Of several OC immunothera-
peutic approaches currently under development, 
we will focus on the ex vivo generation of DC 
vaccines [65–71] and chimeric antigen receptor 
(CAR) T-cell therapies [72–76] that are currently 
being studied in our laboratory.

3.7  Efficient Tumor Ag Delivery 
and Inhibitory Tumor 
Microenvironment: Key 
Factors that Influence DC 
Immunotherapy

Immunotherapy is a particularly appealing 
approach due to its potential for eliminating 
tumor cells that are often unreachable by conven-
tional therapies with negligible side effects. 
Despite successful elimination of tumor cells 
in  vitro, clinically meaningful responses in DC 
vaccine trials have been sparse, due to both the 
suboptimal intracellular bioavailability of tumor 
Ag as well as the inhibitory tumor microenviron-
ment. Melanoma associated antigen A3 
(MAGE-A3) is a tumor-specific Ag that belongs 
to the family of cancer testis Ags that are restricted 
to tumor cells and immune-privileged gonadal 
germ cells. It has attracted particular attention as 
a potential target for immunotherapy since it is 
more highly expressed in advanced cancer stages 
and its presence is associated with a poorer prog-
nosis. MAGE-A3 expression has been observed 
in various OC cell lines [77] and is positively cor-
related with disease status in a large number of 
OC specimens [78]. Efficient intracellular tumor 
Ag delivery to access MHC class I molecules in 
the cytoplasm is essential in order to generate 
robust cell-mediated responses and produce 
tumor cell lysis.

3.8  Efficient Tumor Ag Delivery 
with Cell-Penetrating 
Domains (CPDs)

First-generation immunotherapies loading DCs 
with tumor-associated antigens, tumor lysates, 
tumor RNA, or tumor peptides all showed limited 

success due to the impervious nature of the DC 
cell membrane to large tumor protein Ag, result-
ing in poor presentation of peptides to human 
leukocyte antigen (HLA) class I molecules [55]. 
However, various synthetic cell penetrating 
domains (CPDs) are known to ferry covalently 
linked heterologous Ags to the intracellular com-
partment by traversing the plasma membrane 
[70, 79, 80], a process known as protein transduc-
tion [81].  CPDs are non-immunogenic, short 
amino-acid motifs based on the sequence identi-
fied in HIV-1 transactivator of transcription pro-
tein. Tumor Ag expressed in-frame with CPD can 
penetrate through the plasma membrane to 
directly enter the cytosol, thus gaining access to 
the HLA class I pathway [81, 82].

We cloned and purified MAGE-A3 in-frame 
with CPD and documented enhanced cytosolic 
bioavailability in DCs without altering cell 
 functionality [71] when compared with existing 
MAGE-A3 protein alone [83] and peptide vac-
cines [84]. We observed very little fluorescent 
staining in MAGE-A3-pulsed DCs even after 2 h, 
but in contrast, CPD-MAGE-A3 penetrated the 
DCs within 5  min after pulsing [65]. Studies 
using deconvolution and confocal microscopy 
confirmed that CPD-MAGE-A3 was localized to 
the DC cytosol, clearly demonstrating a rapid and 
efficient way to introduce tumor Ag into the cyto-
plasm [70, 71] with more effective anti-tumor 
cell-mediated responses [65].

3.9  Efficient Tumor Ag Delivery 
with Recombinant Adeno- 
Associated Viral (rAAV) 
Vectors

Bioengineered recombinant adeno-associated 
viral (rAAV) vectors represent another approach 
to effectively present tumor Ag intracellularly to 
DCs, and are promising for human gene therapy 
because of their excellent safety profile, includ-
ing a modest frequency of integration, minimal 
generation of immune responses, and lack of 
association with human disease [85]. Along these 
lines, rAAV-2 vectors have been shown to trans-
duce DCs efficiently followed by tumor cell lysis 
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[86]. Further, rAAV-2 pseudo-typed virus with an 
adeno-associated virus type 6 (AAV-6) capsid 
exhibited a high degree of tropism for DCs [87], 
resulting in enhanced generation of cytotoxic 
T-lymphocytes [88]. We demonstrated enhanced 
DC cytosolic bioavailability of MAGE-A3 with 
targeted killing of OC with MAGE-A3 cytotoxic 
T cells by two different approaches. Our results 
indicate that DCs can elicit effective antitumor 
responses against MAGE-A3-expressing OC cell 
lines, and provide a basis for potential translation 
to the clinical arena [69].

3.10  Use of Human OC Cell Line 
SKOV-3-Conditioned 
Medium to Simulate 
Peritoneal Malignant Ascites

Although inadequate cytoplasmic expression of 
tumor Ag can be addressed by using CPDs, 
rAAV anti-tumor immunity is substantially 
impaired by inhibitor cytokines such as TGF-β 
and IL-10 in the tumor microenvironment. Since 
OC spreads primarily via the peritoneal cavity, 
malignant ascites may be an ideal fluid in which 
to unravel the effects of the tumor microenviron-
ment on cell-mediated immunity. Malignant 
ascites impairs DC functionality in a variety of 
ways, such as inducing morphological changes 
of short and reduced dendrites, decreasing 
expression of co-stimulatory molecules, and 
inducing Ag-specific anergy of cytotoxic T cells 
[89–94]. Understanding the immunosuppression 
mediated by malignant ascites may facilitate the 
development of effective DC immunotherapy. 
Along these lines, we have used conditioned 
medium from the human OC cell line SKOV-3 to 
simulate malignant ascites [66, 68, 72, 75]. The 
SKOV-3 culture medium was replaced with 
serum-free medium at approximately 60% con-
fluency and the tumor-conditioned medium was 
harvested after 48 h. DCs were generated from 
the adherent fraction of peripheral blood mono-
nuclear cells to study the effects of the tumor 
microenvironment.

We observed that typical mature DCs morpho-
logically displayed large sizes and irregular 
shapes with dendrites protruding from the cells 
[65, 67, 71]. These DCs had high expression of 
HLA-DR, CD40, CD80 (B7.1), and CD86 
(B7.2), which are T-cell co-stimulatory mole-
cules required for the activation of specific effec-
tor CD4+ and CD8+ T cells against cancer cells. 
Along these lines, shorter and fewer dendrites 
were observed in our morphologic studies of 
ex vivo generated DCs treated with conditioned 
medium thereby restricting dendritic interaction 
with naïve T cells (Fig.  3.2). Advanced OC is 
manifested by the decreased expression of DC 
co-stimulatory molecules (e.g., CD80, CD83, 
and CD86) with Ag-specific anergy of cytotoxic 
T cells [95–97]. Corroborating these reports, we 
observed downmodulation of DC co-stimulatory 
molecules CD80 and CD86 when DCs were 
exposed to OC-conditioned medium (Fig. 3.3).

3.11  Influence of Malignant 
Ascites on DC Migration

Chemokine networks play a crucial role in the 
homing of DCs and T cells as well as in regulat-
ing the spread of cancer cells to distant organs. 
Chemokine receptor (CCR) 7 normally facilitates 
the migration of mature DCs toward chemokine 
ligands (CCL) such as CCL19, CCL5, and 
CCL21 on naïve T cells in secondary lymphoid 
organs, an important event for cell-mediated 
immune response with cytotoxic T-cell genera-
tion [98]. In fact, advanced OC is also character-
ized by the downmodulation of chemokine 
molecules (e.g., CCR7, CCL21) necessary to 
direct the traffic of DCs to lymph  nodes [99, 
100]. We documented that DCs exposed to 
OC-conditioned medium showed reduced expres-
sion of CCR7 by flow cytometric and reverse 
transcriptase polymerase chain reaction 
(RT-PCR) analysis (Fig.  3.4a, b). Addition of 
OC-conditioned medium resulted in a 40% inhi-
bition of DC migration toward CCL21 as well as 
downregulation of CCR7 expression levels 
(Fig. 3.5a) [67].
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Fig. 3.2 Altered morphology and dendrites of DC in 
OC-conditioned medium: dendrites characteristic of 
mature DC are apparent in controls (A, B) but shorter and 

fewer in OC cell line (SKOV-3)-conditioned medium (C, 
D). A and C, 40x; B and D: 200x magnification. Arrows 
pointing dendrites
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CD86: reduced levels of 
both CD80 and CD86 
were observed in the 
presence of OC cell line 
(SKOV-3)-conditioned 
medium

105

104

103

102

0 104 105102 1030

CCR7 FITC

SKOV-3
conditioned

104 105103

105

104

103

102

0 102
0

CCR7 FITC

Control

Lo
g 

Fl
uo

re
sc

en
ce

 

Lo
g 

Fl
uo

re
sc

en
ce

 

CCR7

β actin

BA

Fig. 3.4 Expression of CCR7  in OC-conditioned 
medium: (A) Flow cytometric analysis of CCR7 on the 
cell surface using CCR7 antibody labeled with FITC. (B) 

RT-PCR analysis of CCR7 mRNA expression in DCs. 
mRNA from DCs was isolated followed by first-strand 
cDNA synthesis and agarose gel analysis
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3.12  IL-10 Blockade Reverses 
Immune Inhibitory Effects 
of the Tumor 
Microenvironment on DCs

IL-10 potently inhibits the production of pro- 
inflammatory cytokines such as IFN-γ, tumor 
necrosis factor (TNF)-α, and IL-12 in DCs with a 
significant reduction in the expression of MHC 
class II molecules [101]. Further, IL-10 blocks 
the upregulation of these molecules, thus impair-
ing the ability of DCs to stimulate T-cell responses 
and further inducing a state of Ag-specific toler-
ance. Earlier studies indicated IL-10-mediated 
inhibition of DC maturation and function via 
reduced expression of MHC and co-stimulatory 
molecules (e.g., CD40, CD80, and CD86) [102, 
103]. Indeed, we observed upregulation of IL-10 
when DCs were cultured in OC-conditioned 
medium (Fig. 3.5b).

IL-10 decreases the production of pro- 
inflammatory cytokines and has been shown to 
inhibit the expression of CCR7 [101]. Along 
these lines, IL-10-mediated increase of the 
 pro- inflammatory potential of CCL5 in the tumor 
microenvironment has been observed via sensory 

nerves [104]. In fact, cancer progression is inhib-
ited by the innervation of sensory nerves within 
the tumor microenvironment [105]. These results 
corroborate earlier observations that intratumoral 
administration of CCL21 reduced the growth of 
distant metastases by enhancing immune cell 
infiltration into the tumor bed [106].

Studies from our laboratory and others sug-
gest that inhibition of IL-10 may enhance the 
immune response and clinical benefit derived 
from DC vaccination in OC patients [56, 68, 102, 
107, 108]. We observed that blocking IL-10 and 
TGF-β with specific-antibody restored expres-
sion levels of DC co-stimulatory molecules and 
migration toward the CCL21 chemokine in trans- 
well experiments with tumor-conditioned 
medium [67, 68]. We made similar observations 
in DCs generated with rAAV delivery of 
MAGE-A3 tumor-specific Ag, where anti-tumor 
T-cell responses in tumor-conditioned medium 
were enhanced by blocking IL-10 and TGF-β 
in  vitro [68, 69]. Significant reversal of tumor- 
derived immunosuppression may be achieved by 
blocking IL-10 and TGF-β in the microenviron-
ment of OC and pancreatic cancer [68], poten-
tially allowing for development of more effective 
vaccines.
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Fig. 3.5 Migration of DCs and expression of IL-10  in 
OC-conditioned medium: (A)  DC migration toward 
CCL19  in Boyden chamber experiments compared with 
control (*p < 0.05). Error bars represent mean ± SD for 

three separate experiments. (B) RT-PCR analysis of CCR7 
mRNA expression in DCs. mRNA from DCs was isolated 
followed by first-strand cDNA synthesis and agarose gel 
analysis
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3.13  OC Tumor 
Microenvironment-Induced 
Modulation of the NF-κB 
Signaling Pathway in DCs 
and T-Cell Interactions

Nuclear factor (NF)-κB, a heterodimer of p50 
and p65 subunits, is a natural part of the immune 
defense that provides survival signals for DCs 
and T cells. However, OC cells subvert the NF-κB 
signaling pathway to orchestrate chemo- 
resistance, metastasis, immune evasion, and 
tumor progression. IL-10 is known to promote 
cancer stemness via the NF-κB pathway contrib-
uting to metastasis [109]. The activation of 
canonical NF-κB signaling has been well estab-
lished in anti-apoptotic and immunomodulatory 
functions in response to the tumor microenviron-
ment, while the non-canonical pathway is impor-
tant in cancer stem cell maintenance and tumor 
re-initiation [110, 111]. NF-κB activity in OC 
helps to create an immune-evasive environment 
and enhance expression of tumor-promoting 
cytokines [110]. We examined the NF-κB 
 pathway in the OC-induced microenvironment in 
order to delineate strategies for restoring immu-
nocompetence, thereby enhancing cancer cell 
killing.

NF-κB is bound to and sequestered by the 
inhibitor IκBα in the cytosol, but phosphorylation 
by IκBα kinase (IKK) at the Ser32 residue of IκBα 
renders it inactive and releases NF-κB. The IKK 
complex, in turn, must first be activated by phos-
phorylation at its Ser176 residue. NF-κB then 
translocates into the nucleus with enhanced tran-
scriptional activity. Our laboratory further exam-
ined the role of the NF-κB pathway in the 
OC-induced microenvironment. Addition of 
OC-conditioned medium decreased expression of 
both of IKKα and IKKβ in DC and T-cell co- 
cultures (Fig.  3.6A). Further, we observed a 
decrease in the phosphorylation of the IKK com-
plex at Ser176, indicating its inactivation. 
Moreover, expression of IκBα was increased along 
with a concomitant reduction in Ser32 phosphory-
lation, correlating with both IKK inactivation and 
decreased expression of the NF-κB p65 subunit 
(Fig. 3.6B). Thus, using OC-conditioned medium, 
we demonstrated increased presence of active 
IκBα which binds and sequesters NF-κB, prevent-
ing its translocation into the nucleus ultimately 
inhibiting DC activation [66]. Knowledge of this 
NF-κB pathway may prove useful in the subse-
quent design of DC immunotherapeutic protocols 
to counter the immunosuppressive nature of the 
tumor microenvironment.
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Fig. 3.6 Expression and phosphorylation of whole cell 
lysates of mock- and SKOV-3 conditioned DCs were 
immunoblotted with monoclonal antibody for indicated 

proteins upstream of (A) and downstream from (B) the 
NF-kB signaling pathway. β actin was used as the loading 
control
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3.14  CAR T-Cell Therapy 
to Overcome 
Immunosuppression

CAR T-cell therapy is considered a radical depar-
ture from existing treatments since it bypasses 
DC processing and presentation of tumor Ag in 
conjunction with MHC, which is often dysfunc-
tional in tumors, and combines antibody specific-
ity to recognize tumors. Thus, CAR T-cell therapy 
improves upon earlier cell-based cancer immu-
notherapies in that it overcomes the negative 
effects of the immunosuppressive tumor micro-
environment. CARs are comprised of an extracel-
lular single-chain fragment variable derived from 
antibody against tumor-specific Ag and con-
nected to intracellular co-stimulatory and activa-
tion domains.

We isolated human T cells from blood drawn 
from healthy individuals and transduced them 
with third-generation mesothelin-CAR lentiviral 
vector to generate mesothelin CAR T cells. 
Mesothelin CAR T cells, upon contact with 
SKOV-3 cells in vitro, induced secretion of gran-
zyme B and IFN-γ, both of which are crucial for 
rapid initiation of cytotoxicity with an efficient 
lysis of OC cells [76]. Addition of tumor- 
conditioned medium simulating the tumor micro-
environment significantly inhibited IFN-γ and 
granzyme B secretion. Their levels were partially 
restored to baseline when tumor-conditioned 
medium was IL-10 depleted. We also observed a 
reduction in the cytotoxicity of mesothelin CAR 
T cells against SKOV-3 cells in the presence of 
conditioned medium and blunting of this effect 
with IL-10 depletion. Our observations indicate 
that a significant reversal of tumor-derived immu-
nosuppression may be achieved by blocking 
IL-10  in the local microenvironment, allowing 
for more effective cytotoxicity of mesothelin- 
engrafted CAR T cells [74].

Although lentiviral-mediated generation of 
CAR T cells is convenient, these vectors pose 
safety concerns. We incorporated Sleeping 
Beauty and mini-circle design enhancements into 
IL-2-secreting natural NK-92MI cells to elimi-
nate both bacterial and viral components and 
address inhibition by the tumor microenviron-

ment. The hybrid Sleeping Beauty and mini- 
circle technologies provided increased 
engraftment and cytotoxicity in  vitro [73]. We 
observed a significant reversal of tumor 
microenvironment- mediated inhibition of 
mesothelin- CAR T-cell activity either by deplet-
ing IL-10 in autologous T cells or by providing 
IL-2. The ability of IL-2 addition to kill OC cells 
was further enhanced by depleting IL-10 from 
the tumor microenvironment [72].

In summary, the limited success of prior 
immunotherapeutic approaches has been attrib-
uted primarily to co-opting of immune 
 checkpoints with increased secretion of immuno-
suppressive cytokines via modulation of NF-κB 
inflammatory signaling pathways [112]. We posit 
that blocking either regulator T cells or their 
secretion of immune inhibitory cytokines such as 
IL-10 in the OC microenvironment will allow for 
more effective translation of potential immuno-
therapies into the clinical setting.
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Abstract

The great hopes raised by the discovery of the 
immunoregulatory cytokine interleukin 12 
(IL-12) as an anticancer agent were marred 
during early clinical experimentation because 
of severe adverse effects, which prompted a 
search for alternative formulations and routes 
of administration. Onco-immunotherapeutic 
viruses (OIVs) are wild-type or genetically 
engineered viruses that exert antitumor activ-
ity by causing death of the tumor cells they 
infect and by overcoming a variety of immu-
nosuppressive mechanisms put in place by the 
tumors. OIVs have renewed the interest in 
IL-12, as they offer the opportunity to encode 
the cytokine transgenically from the viral 
genome and to produce it at high concentra-
tions in the tumor bed. A large body of evi-
dence indicates that IL-12 serves as a potent 
adjuvant for the immunotherapeutic response 
elicited by OIVs in murine tumor models. The 
list of OIVs includes onco- immunotherapeutic 
herpes simplex, adeno, measles, Newcastle 
disease, and Maraba viruses, among others. 

The large increase in IL-12-mediated adjuvan-
ticity was invariably observed for all the OIVs 
analyzed. Indirect evidence suggests that 
locally delivered IL-12 may also increase 
tumor antigenicity. Importantly, the OIV/
IL-12 treatment was not accompanied by 
adverse effects and elicited a long-lasting 
immune response capable of halting the 
growth of distant tumors. Thus, OIVs provide 
an avenue for reducing the clinical toxicity 
associated with systemic IL-12 therapy, by 
concentrating the cytokine at the site of dis-
ease. The changes to the tumor microenviron-
ment induced by the IL-12-armed OIVs 
primed the tumors to an improved response to 
the checkpoint blockade therapy, suggesting 
that the triple combination is worth pursuing 
in the future. The highly encouraging results 
in preclinical models have prompted transla-
tion to the clinic. How well the IL-12–OIV–
checkpoint inhibitors’ combination will 
perform in humans remains to be fully 
investigated.
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cytokines · Adjuvanticity · Antigenicity · CP 
blockade · CPI combination

4.1  IL-12, Basic Features

Interleukin 12 (IL-12) is a proinflammatory and 
immunoregulatory cytokine discovered indepen-
dently by two laboratories 30 years ago [1–3]. 
Structurally, IL-12 (p70) is a disulfide-linked het-
erodimer of IL-12A (p35) and IL-12B (p40) sub-
units, shared with two additional members of the 
IL-12 family, IL-35 and IL-23, respectively [4]. 
IL-12 is expressed and secreted by activated mac-
rophages, dendritic cells (DCs), microglia, 
monocytes, neutrophils, and B cells in response 
to microbial infections and malignancies [5]. 
IL-12 binds the IL-12 receptor (IL-12R), a beta1- 
beta2 heterodimer type I cytokine receptor 
expressed by a number of cells, including natural 
killer (NK), activated T, and natural killer T 
(NKT) cells, DCs, B cells, and macrophages [6–
9]. Each of these cells responds to IL-12 through 
specific signaling pathways and responses. 
Shortly after the IL-12 discovery, it was recog-
nized that IL-12 exerts a strong adjuvant effect 
with antipathogens [10] and anticancer vaccines 
[11, 12]. This cytokine promotes the secretion of 
interferon gamma (IFNγ) by NK, T, and B cells 
[13] and additional proinflammatory cytokines, 
including tumor necrosis factor alpha (TNFα) 
and granulocyte-macrophage colony-stimulating 
factor (GM-CSF). In turn, these molecules target, 
recruit, and activate effector cells of the innate 
immune response, and, together, they make IL-12 
a master regulator. Importantly, IL-12 provides a 
link between the activation of innate and adaptive 
responses by priming Th1 cells for activation. 
The latter is a key part of the anticancer response, 
as it promotes the reactivation of memory CD4+ 
T cells and their repolarization from tumor- 
permissive Th2 to antitumor Th1 cells [14]. IL-12 
also triggers NK and CD8+ T-cell activation, pro-
liferation, and differentiation [15], leading to the 
generation of cytotoxic T cells (CTLs). 
Specifically, the cytokine primes macrophages 
for antigen presentation [8] and their M2 to M1 

repolarization [16] promotes DC maturation and 
activity [17] and induces B-cell proliferation, dif-
ferentiation, and an IgE to IgG1 shift [6].

IL-12 also affects the nonimmune cells of the 
tumor microenvironment (TME), including stro-
mal cells and blood vessels that feed the tumor 
and sustain carcinogenesis [18]. Mechanistically, 
IL-12 downregulates the proangiogenic cyto-
kines CCL2, CCL6, IL-6, VEGF, and other fac-
tors, and upregulates angiostatic and 
antiangiogenic factors, including TNFα, IFNα, 
IFNβ, IFNγ, CXCL9, and CXCL10 [19, 20]. 
Finally, the cytokine facilitates immune cells’ 
recruitment and lymphocyte localization to the 
tumor through IFNγ-dependent cascades and 
upregulation of immune-attractants [21]. 
Globally, IL-12 reprograms the tumor TME from 
a protumoral hospitable alcove to an antitumor 
environment.

The potent anticancer effects elicited by sys-
temically administered IL-12 were well docu-
mented in preclinical models (reviewed in [22]). 
However, early studies in humans were marred 
by limited efficacy and generalized toxicity. The 
severe to lethal effects included hematopoietic 
suppression and gastrointestinal, muscular, pul-
monary and liver toxicity, and dysfunction [23–
26]. These side effects prompted the search for 
novel formulations and for new administration 
strategies capable of achieving higher local IL-12 
concentrations. A promising approach consisted 
in intratumoral delivery by nonreplicating adeno-
viruses (AdVs) [27, 28]. Additional approaches 
include subcutaneous injections of the recombi-
nant protein, fine-tunable expression systems 
[29], delivery of IL-12-encoding plasmid in the 
tumor bed, coupling of the cytokine with a tumor- 
targeting antibody (Ab) [30, 31], and transgenic 
expression by engineered tumor-specific CAR-T, 
autologous immune or cancer cells [32, 33]. The 
Clinicaltrials.gov website lists 84 active clinical 
trials for the evaluation of IL-12 treatments for a 
variety of solid tumors, including pancreatic, 
prostatic, colorectal, ovarian, breast, and liver 
cancers. IL-12 is administered as a recombinant 
protein (38), as a fusion protein with cancer- 
specific antibodies (2), is expressed by a plasmid 
(23), is vectored by bacteria (1), by viruses (15), 
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or by cells, including CAR-Ts (2), or engineered 
autologous cells (3).

4.2  From Oncolytic to Onco- 
immunotherapeutic Viruses, 
a Paradigm Shift

Oncolytic viruses (OVs) are replication- 
competent wild-type (wt) or engineered viruses 
that selectively replicate in tumor cells and/or in 
cells in the TME.  The intrinsic properties of 
tumors are immune tolerance and immune eva-
sion, which, together with defects in innate 
immune responses, greatly favor virus suscepti-
bility and replication. Early preclinical studies on 
human cancer cells implanted in nude mice high-
lighted the antitumor efficacy exerted by OVs, 
mainly as a consequence of lysis of the infected 
cells by immunogenic cell death mechanisms, 
including necroptosis [34]. When preclinical 
models were shifted to immunocompetent mouse 
models, it became apparent that, in addition to 
tumor cell lysis, tumor infection by oncolytic 
viruses resulted in the tolerance breakdown, the 
induction of an innate response to the tumor and, 
ultimately, to immune control of tumor growth. 
The current resurgence of interest in OVs is the 
result of an array of effects, among which are the 
secretion of type I and II interferons and other 
proinflammatory cytokines, the infiltration of 
tumors by NK cells and T-lymphocytes, the acti-
vation of these cells, and an overall reprogram-
ming of the TME that enhances the adaptive 
systemic antitumor response. In brief, OVs con-
vert immunologically cold tumors into immuno-
logically hot ones [35]. Through these 
modifications, OV-infected tumor cells serve as 
antigen agnostic antitumor vaccines [36–38]. 
These OVs can be renamed as onco- 
immunotherapeutic viruses (OIVs).

The OIV-mediated immunotherapeutic effects 
observed in preclinical models were documented 
in humans, in particular with talimogene laher-
parepvec (T-Vec), a mildly attenuated oHSV that 
expresses GM-CSF to increase macrophage, DC, 
and neutrophil responses. In cutaneous mela-
noma patients, the intratumoral administration of 

T-Vec in some of the lesions resulted in the 
shrinkage of distant untreated lesions, even 
though the reduction was not as large as that 
observed in the treated lesions [39]. The distant 
response is attributed to an abscopal immune 
effect, caused by the adaptive immune response 
to the tumor.

The immunotherapy of cancer has been 
recently revolutionized by checkpoint inhibitors 
(CPIs). Unfortunately, their activity is exerted 
only toward a subset of cancers and to a fraction 
of patients, and is limited by severe adverse 
effects. Making tumors immunologically hot by 
OIVs confers CPI susceptibility to tumors that 
are otherwise resistant [40]. Thus, OIVs repre-
sent the ideal partners for checkpoint blockade 
[40–43]. Today, OIVs are considered as most 
promising tools to increase the efficacy and 
broaden the spectrum of CPIs.

The ability of OIVs to unleash immune sup-
pression and to elicit an innate response to 
tumors, even in highly immune suppressive 
tumors, renders OIVs the ideal companions for 
IL-12. Furthermore, the IL-12 gene can be 
expressed transgenically from the viral genome 
in the tumor bed, so as to prevent systemic toxic-
ity of the cytokine. By exerting its adjuvant 
effect, IL-12 promotes the shift from an innate 
response to the virus toward an adaptive long- 
term memory response to the tumor [44, 45] (Fig. 
4.1).

The list of IL-12-expressing OIVs and the 
beneficial effects of OIV-delivered IL-12  in the 
tumor bed has been documented by numerous 
studies. Here, we review some select examples.

4.3  oHSVs

In a highly innovative, seminal study, Martuza, 
Rabkin, and coworkers recognized the ability of 
oHSVs to confer protection not only in the 
treated tumor through lysis of the infected can-
cer cells—the dominant paradigm at that time—
but also through elicitation of the host immune 
response [46]. They employed the oHSV named 
G207 as a helper virus to generate dvIL12/G207, 
a defective HSV vector expressing IL-12 [46]. 
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Fig. 4.1 Schematic summary of how IL-12 contributes to 
antitumor immunity and main effects elicited by IL-12- 
expressing OIVs as compared with those elicited by 
unarmed OIVs. The IL-12 cassette is engineered in the 
OIV genome so that IL-12 is transgenically expressed by 
the OIVs in the infected cells, i.e., the cancerous cells 
and – in some cases – cells of the TME.  Infection pro-
vokes cell death. When present, IL-12 induces expression 
of pro-inflammatory cytokines, IFNγ, TNFα, and 
GM-CSF, among others. These (1) recruit antitumoral 
immune cells to the tumor and activate them, (2) reshape 

the immunosuppressive TME to a proinflammatory and 
anticancer setting, (3) contrast tumor angiogenesis by 
reducing proangiogenic and increasing antiangiogenic 
factors. As a consequent of the combined effects of OIVs 
and the IL-12-induced immune modifications to the TME, 
treatment with IL-12-expressing OIVs results in higher 
inhibition of tumor growth relative to treatment with 
unarmed versions of OIVs. The administration of IL-12 
expressing OIVs also results in higher abscopal protection 
than the administration of unarmed OVs, and primes for 
the CP blockade

G207 and its derivatives harbor deletions in 
UL39 (ICP6) and both copies of the γ134.5 gene; 
hence, they are highly safe yet attenuated. 
Remarkably, the intralesionally treated tumors 
responded to the therapy and exhibited reduced 
growth; 33% of the mice were tumor free (TF). 
Moreover, the treatment reduced the growth of 
untreated contralateral tumors; i.e., elicited a 
long-term in situ vaccination effect [46] depen-
dent on the systemic T-cell response. To improve 
the antigen presentation, the IL-12 gene was 
engineered in the G207- derived G47Δ back-
bone, which additionally harbors the US12 (α47) 
deletion (G47Δ-mIL12 virus) [47]. This oHSV 
was used against murine glioblastoma and 

showed T-cell-dependent reduced tumor growth, 
reduced intratumoral Treg levels, and inhibition 
of angiogenesis [47].

Fong and coworkers focused on the develop-
ment of an IL-12 oHSV for the treatment of squa-
mous cell carcinoma and colorectal and liver 
cancers [48–50]. The NV1042 viral genome car-
ried multiple deletions, namely, US10, US11, 
and α47 genes and one copy of the γ134.5, α0, α4 
genes. Initially, the authors compared the effects 
of the transgenic expression of IL-12 to that of 
GM-CSF and found that the IL-12 virus was 
superior in various models [50–52]. The produc-
tion of the α-promoter-driven IL-12 ranged from 
1 to 35  ng/mL at 24–72  h post infection per 
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5 × 104 cells infected at one plaque-forming unit 
(PFU) per cell [48]. Although the virus was over-
all attenuated, a single injection reduced the 
growth of CT26 murine colorectal cancers; a few 
mice were completely cured [48]. The local 
immune stimulation provided by IL-12 resulted 
in the control of hepatic challenge tumors upon 
resection of the primary tumor [49]. In a 
 pulmonary metastatic model, the immunothera-
peutic effect of IL-12 virus was shown to involve 
CD4+ and CD8+ T cells [53, 54]. In a model of 
squamous cell carcinoma, it was also verified that 
treatment with IL-12-expressing NV1042 
resulted in anti-angiogenic effects [53, 54]. The 
same virus also proved effective upon systemic 
administration against the pulmonary metastases 
of squamous cell carcinoma [53, 54], liver metas-
tases of colorectal cancer [55], and of poorly 
immunogenic prostate adenocarcinoma and met-
astatic prostatic cancers [51, 52, 56].

Markert and coworkers engineered the IL-12 
gene in a less attenuated oHSV, named M002, 
initially designed for glioblastoma treatment. 
M002 carries the replacement of both copies of 
the γ134.5 gene with IL-12 and no other virus 
genome modification. The two copies of mIL-12 
were placed under the murine egr-1 promoter. In 
vitro, the extent of IL-12 expression was in the 
range of 0.8–3.2 ng/mL per 5 × 105 cells infected 
at 1 PFU/cell, at 24  h after infection [57]. 
Importantly, the M002 treatment resulted in a 
significant increase in mouse survival [57]. The 
same virus was also effective in preclinical mod-
els of breast cancer metastases to the brain [58], 
glioma [59], neuroblastoma [60], rhabdomyosar-
coma [61], undifferentiated sarcoma [62], and in 
pediatric high-grade brain tumor and medullo-
blastoma xenografts [63, 64]. M002 and its cog-
nate M032, an identical recombinant virus 
expressing hIL-12  in place of mIL-12, have 
undergone detailed safety analyses in mice and in 
Aotus primates [65, 66]. A phase 1 clinical trial 
for glioblastoma multiforme treatment is recruit-
ing participants [67].

Altogether, the three series of studies high-
light the superior effects of IL-12-armed oHSVs 
against murine primary tumors as well as distant 
T-cell-based immune protection.

A general notion that permeates the OIV field, 
and particularly the oHSV field, is that the initial 
safety concerns led to viruses that exhibited a 
very high safety profile in mice as well as in 
humans and are effective against murine tumor 
models but not as effective against human tumors. 
These considerations led to calls for “safe-and- 
robust” oHSVs that are more effective than those 
that are now in clinical practice or trials. To this 
end, our laboratory engineered tropism- retargeted 
oHSVs whose safety rests on cancer-specific tro-
pisms, rather than on the cancer-selective replica-
tion typical of the oHSVs that are attenuated to 
varying degrees. The principle of tropism retar-
geting hinges on two series of modifications, 
namely, the ablation of HSV tropism for the natu-
ral receptors nectin1 and herpesvirus entry medi-
ator (HVEM), and the readdress of the tropism 
(retargeting) to a cancer-specific receptor of 
choice. Retargeting was obtained by engineering 
a single chain Ab (or a ligand) in the receptor- 
binding glycoprotein, gD [68–70]. The cancer 
receptor we have chosen is the human epithelial 
growth factor receptor 2 (HER2), expressed in a 
subset of breast, gastric, gastroesophageal, lung, 
and other types of cancers [71, 72]. The HER2- 
retargeted R-LM113 recombinant virus was then 
armed with IL-12 to generate R-115 [68, 73]. 
These viruses carry no deletion or mutation in 
any gene other than the glycoprotein D gene; 
hence, they are “fully virulent” to their targeted 
HER2-positive cancer cells. A direct comparison 
showed that the IL-12-expressing R-115 virus 
was more efficacious against Lewis lung carci-
noma 1 cells expressing human HER2 (LLC-1- 
HER2) than was the unarmed R-LM113 and 
conferred distant long-lasting immune protection 
against challenge tumors [73]. To obtain mecha-
nistic insight into how IL-12 expressed in the 
tumor bed contributed to the immune therapeutic 
effect, we compared the tumor-infiltrating lym-
phocytes and key immune proteins in tumors 
from mice treated with IL-12-armed or unarmed 
retargeted oHSVs. In the R-115-treated group, 
the tumors from responder mice were infiltrated 
with CD4+ and CD8+ T cells and their activated 
CD69+ subpopulation, with CD335+ NK cells 
and their activated CD69+ subpopulation, and 
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with CD141+ DC cells. The tumors were addi-
tionally characterized by a decrease in CD11b+ 
monocytes/macrophages and an increase in the 
proinflammatory factors IFNγ, IL-2, TNFα, and 
t-bet [73]. Intriguingly, in the same tumors (from 
R-115-treated responder mice), there was an 
increase in anti-inflammatory factors, such as 
Tregs, tumor PD-L1, and IL-10. The 
 R-LM113- treated mice which underwent tumor 
reduction recapitulated these responses but to a 
lesser extent. Altogether, in the LLC-1 model, the 
immune heating of the tumors and the simultane-
ous increase in immune-suppressive factors were 
primed for check point blockade. Thus, the co- 
administration of R-115 with anti-PD-1 increased 
the proportion of cured mice from 20 (virus 
alone) to 60%. The further addition of anti- 
CTLA- 4 cured 100% of the mice (our unpub-
lished results). A notable effect of the treatment 
with the IL-12-expressing R-115 was an increase 
in the reactivity of splenocytes and antibodies to 
tumor cells. The increase was even higher in the 
mice treated with the combination of R-115 and 
anti-PD-1. The results suggest that IL-12 boosted 
not only the adaptive response but also aug-
mented the repertoire of T and B cells that were 
reactive to tumor-specific antigens. They raise 
the possibility that IL-12 expression in the tumor 
bed also increased tumor antigenicity.

These findings were confirmed and extended 
in a highly immunosuppressive, transplantable 
glioblastoma model that recapitulated human 
glioblastoma [74]. A single orthotopic injection 
of 106 PFU of the IL-12-armed R-115 adminis-
tered to well-established tumors immediately 
before the appearance of symptoms caused tumor 
regression and spared approximately 25% of the 
mice. The tumor specimens showed CD4+ and 
CD8+ lymphocytes deeply infiltrating into tumor 
masses [74]. Thus, HER2-retargeted fully viru-
lent oHSVs emerge as professional igniters of 
antitumor immunity and IL-12 was their optimal 
partner.

To summarize, among all the oHSVs ana-
lyzed—whether attenuated to varying degrees or 
not—and in any tumor model tested, IL-12 
greatly augmented the OIV-mediated protection 
against the primary tumor, favored conspicuous 

immune modifications to the immunosuppressive 
microenvironment, and contributed to distant 
abscopal protection; i.e., they had an antigen 
agnostic vaccination effect. These effects can be 
interpreted as the result of increased adjuvantic-
ity and, possibly, of increased antigenicity.

4.4  Adenoviruses

First-generation oncolytic adenoviruses (oAdV) 
consisted of replication-incompetent viruses, the 
cancer selectivity of which depended on attenua-
tion provided by knocking out the E1 and E3 
genes. E1 is an essential gene; its deletion allows 
for only one round of replication and prevents 
uncontrolled virus replication in host tissues. 
Deletion of the nonessential E3 gene abrogates 
the major immune-escape mechanisms; the virus 
becomes unable to counteract the antiviral 
responses of the infected cells, and its replication 
is restricted to tumor cells defective in the innate 
response [75]. The insertion of transgenes in the 
viral backbone enabled their expression in the 
infected cancer cells and restricted their accumu-
lation to the tumor bed. Among the engineered 
cargos were genes encoding cytokines, antigens, 
tumor suppressors, and suicide proteins [76]. In a 
comparative study with IL-2 and HSV-1 thymi-
dine kinase (TK), IL-12 emerged clearly as a 
superior payload [27]. Specifically, a single intra-
tumoral injection of the IL-12-encoding AdV 
into liver metastatic colon carcinoma and breast 
cancer cells significantly reduced tumor growth 
and improved mouse survival [27, 77]. The 
unarmed virus showed no therapeutic effect. The 
enhanced efficacy conferred by IL-12 was con-
firmed in a number of tumor models [78]. In mice 
bearing CT-26 colon carcinomas, tumor growth 
was reduced and most of the mice were tumor- 
free after a single intratumoral treatment. 
Importantly, a systemic response was elicited, 
measured as protection from distant untreated 
tumors and reactive antitumor lymphocytes [79]. 
When employed against poorly immunogenic 
tumors, i.e., glioma, prostatic, and thyroid can-
cers, AdV-IL-12 caused a significant reduction in 
primary tumor growth; some mice were com-
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pletely cured; CD4+ and CD8+ T-cell infiltrated 
tumor masses, and long-lasting protection was 
established in an IL-12-dependent fashion 
[80–83].

Second-generation oAdVs consisted of 
replication- competent viruses that harbored 
smaller deletions in the E1 and E3 genes; hence, 
they were still partially attenuated. [84–86]. 
Because the viral load in the tumor bed increased 
over time, the level of IL-12 also increased. In 
vitro, the concentrations were on the order of 
4–10  μg/106 cells 48  h after infection, i.e., 
80–200-fold higher than those observed with 
replication-deficient AdV-IL-12 vectors [81, 87]. 
Replication-competent AdVs proved highly 
effective as antitumor agents and completely pro-
tected 50% of the mice [84]. The reduction in 
efficiency upon immune cell depletion implied 
that CD4+/CD8+ T cells [79, 88] and NK cells 
[81, 87, 89] were the immune populations which 
contributed more to the anticancer response.

These encouraging results prompted the 
search for numerous improvements. Thus, for 
safety and efficacy purposes, a tunable form of 
IL-12 was obtained by placing the IL-12 gene 
under a conditionally activated promoter 
(Ad-RTS-IL-12) [29, 90, 91]. In an alternative 
approach, IL-12 was engineered as a nonsecreted 
form [92] or as a p35-p40 fusion protein, named 
FIL-12 [87, 93]. Both modifications resulted in 
higher therapeutic activity. Another approach 
was based on the notion that IL-12 synergizes 
with a variety of antitumor factors. AdV vectors 
for combinatorial expression included the proin-
flammatory factors IL-23, IL-18, GM-CSF, 
CD80, and 4-1BBL [86, 88, 94–99]; anti- 
immunosuppressive factors, such as shVEGF, 
decorin, and anti-PD-L1 [100–103]; and suicidal 
genes, such as cytosine deaminase (yCD) and 
HSV-1 thymidine kinase (TK) [87]. An example 
is Ad5-yCD/mutTKSR39rep-hIL12, which 
encodes IL-12, yCD, and a mutant form of 
TK. The enzymes convert systemically adminis-
tered prodrugs to their active forms, which in turn 
inhibit DNA synthesis in infected cells. When 
administered to mice bearing TRAMP-C2 pros-
tate adenocarcinoma as monotherapy, the virus 
elicited NK and T-cell responses, and cured 40% 

of the mice. In combination with the yCD- and 
TK-activated prodrugs the virus cured 70–80% 
of the mice [87]. In preclinical studies, 
replication- competent AdV coexpressing IL-12/
IL-18, IL-12/IL-23, or IL-12/4-1BBL caused a 
complete response in mice harboring poorly 
immunogenic B16-F10 melanoma [86, 94, 95]. 
In the same model, the combination of IL-12 
with GM-CSF or shVEGF led to complete 
response in 90 and 60% of the mice, respectively 
[88, 100]. The IL-12/decorin combination proved 
effective in weakly immunogenic 4  T1 tumors 
that are refractory to IL-12 as a consequence of 
high intratumoral TGF-β levels and Treg infiltra-
tion [101].

In other developments, oAdVs were adminis-
tered together with therapies such as radiation, 
DC infusion, and CAR-T [96, 99, 102, 103]. All 
approaches resulted in effective therapeutic 
responses. In head and neck squamous cell carci-
noma (HNSCC), local treatment with AdV coex-
pressing IL-12 and anti-PD-L1 was primed for 
systemic CAR-T-cell therapy and significantly 
improved mouse survival [102, 103]. Finally, in a 
sarcoma model, recombinant AdV was employed 
to enable IL-12 expression from DCs with the 
aim of enhancing cross-priming of tumor-specific 
CD8+ T cells and tumor rejection [104].

A large body of preclinical studies has made 
AdV the most frequently investigated OIV in 
clinical trials (#200), about one-half of which are 
ongoing or recruiting patients. Of these trials, 13 
investigated oAdVs armed with IL-12 and 
included Ad-hIL12 (constitutive IL-12) (#6), 
Ad-RTS-hIL12 (tunable IL-12) (#6), and Ad5- 
yCD/mutTKSR39rep-hIL12 (combinatorial) 
(#1) against pancreatic, breast, prostatic, and 
pediatric tumors, glioma, glioblastoma, and mel-
anoma. A completed trial with Ad-IL12 against 
liver, colorectal, and pancreatic human cancers 
showed a high safety profile, an increase in tumor 
infiltration by effector immune cells, yet overall 
mild antitumor effects [105]. Preliminary results 
of an ongoing trial with Ad-RTS-hIL12/veledi-
mex (the cytokine inducer) against recurrent 
high-grade glioma showed the safety and tolera-
bility of the treatment and demonstrated that 
oAdV elicited a sustained intratumoral immune 
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response. The median overall survival (mOS) 
was higher in patients treated with the armed 
virus [90].

4.5  oMeV

An interesting example of the benefits provided 
by targeted IL-12 delivery through OIVs is 
offered by the oncolytic measles virus (oMeV). 
Ungerechts, Engeland, and coworkers engineered 
a fusion version of murine IL-12 in the virus and 
named it FmIL-12 MeVac [106]. The backbone 
was a vaccine strain of MeV (MeVac). In vitro, 
the infected cells produced large amounts of 
FmIL-12, up to 2000 ng/mL.  In vivo, FmIL-12 
MeVac and unarmed MeVac conferred 90 and 
40% protection against MC38CEA tumors, 
respectively. The antitumor efficacy of the IL-12 
virus was also superior to that of MeVac express-
ing anti-PD-L1. The intratumoral administration 
of FmIL-12 MeVac elicited local and systemic 
immune responses, documented mainly as intra-
tumoral increases in activated CD8+ T and NK 
cells, increases in IFNγ and TNFα, splenocyte 
reactivity to tumor cells, and immune protection 
from a distant challenge tumor. The unarmed ver-
sion conferred less protection from a challenge 
tumor and a very modest or negligible capacity to 
induce tumor immune-heating. The same authors 
carried out an interesting comparison of the ben-
efits offered by FmIL-12 MeVac relative to those 
provided by FmIL-15 MeVac, a virus expressing 
IL-15 and the sushi-activating portion of its 
receptor. The former virus was superior in terms 
of efficacy against primary tumors, even though 
the two viruses were similar overall with respect 
to the increase in intratumoral CD8+ T cells and 
NK cells [107].

4.6  NDV

NDV is an oncolytic virus of bird origin. It repli-
cates in human tumor cells and fails to substan-
tially replicate in noncancerous human cells. An 
advantage of OIVs of animal origin is the absence 
of prior immunity in humans, which could neu-

tralize the spread of the OIV, particularly upon 
systemic OIV administration. NDVs also infect 
dendritic cells [108]. It was initially recognized 
that an unarmed version of NDV could overcome 
the immunosuppressive nature of the TME, at 
least in part, through the induction of IL-12, IFNγ 
and additional cytokines, and driving a Th1 
response [108, 109].

Various groups have independently investi-
gated the benefits of delivering IL-12 intratumor-
ally with the aid of recombinant NDV in murine 
tumor models [110–112]. In all cases, the IL-12- 
armed versions were superior to their unarmed 
NDV counterparts, as assayed in 4 T1 breast can-
cer, B16 melanoma, and hepatoma models.

Of particular interest is the possibility of 
encoding both IL-12 and checkpoint inhibitors 
from the genome of an oncolytic virus to limit the 
severe adverse effects caused by the systemic 
administration of immune modulators. An ele-
gant example of this possibility was recently 
shown with recombinant versions of NVD 
expressing neutralizing single-chain antibodies 
(scFvs) against PD-1, PD-L1, or agonistic scFv 
to the costimulatory CD28 as proteins alone or as 
fusion proteins with IL-12 (the combination was 
named checkpoint inhibitor immunocytokines) 
[112]. The recombinant NDVs were adminis-
tered to mice bearing B16 melanoma tumors, 
alone or in combination with systemic anti- 
CTLA- 4. The NDVs expressing the checkpoint 
inhibitors fused to IL-12 were invariably more 
potent than their counterparts without IL-12. The 
IL-12 adjuvant effect converted the highly immu-
nosuppressive and nonresponsive B16 melanoma 
tumors into immunologically hot tumors, such 
that the checkpoint inhibitor-immune cytokine 
synergized with the systemic administration of 
anti-CTLA-4. Interestingly, these combinations 
elicited a strong immunotherapeutic effect, high-
lighted as an abscopal antitumor effect observed 
on a distant untreated challenge tumor. At pres-
ent, the strategy of expressing multiple immune- 
modulatory payloads is being pursued for 
numerous OIVs [86, 94, 100, 113–116] and by 
companies, such as Oncorus, Replimune, 
Turnstone Biologics, Immvira and others, are 
developing multiply armed OIVs.
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4.7  Maraba Virus

Maraba virus (MRB), an oncolytic rhabdovirus 
of animal origin, selectively infects human tumor 
cells. MG1 is an IFN-sensitive mutant selected 
for safety reasons [117]. The major effect of 
MRBs consists of their ability to elicit antitumor 
immunity and exert abscopal protection, which 
makes them among the most effective oncolytic 
vectors for antitumor vaccination. MRBs are 
being employed in a prime-boost modality with 
AdV [118]. Currently, four first-in-human trials 
are ongoing or recruiting for patients with 
advanced/metastatic solid tumors, including mel-
anoma, squamous cell skin carcinoma, non- 
small- cell lung cancer for testing the effect of 
MRB as a monotherapy or in combination with 
CPI or adenovirus vaccination.

An IL-12-armed version of MRB MG1 was 
employed to infect ex  vivo autologous tumor 
cells, which were subsequently administered 
intraperitoneally as an infected cell vaccine 
against peritoneal carcinomatosis caused by mel-
anoma B16 or colon carcinoma CT-26 cells in 
models of metastatic tumors. The treatment pro-
moted the recruitment and activation of NK cells 
to the peritoneal cavity, causing a reduction in 
tumor burden and overall improved survival, 
including complete protection [119].

4.8  Concluding Remarks. If There 
Were No IL-12, Someone 
Would Need to Invent it

Compelling evidence indicates that IL-12 serves 
as a potent adjuvant of the immunotherapeutic 
response elicited by OIVs in murine models of 
tumors. The adjuvant effect was invariably 
observed for all the OIVs analyzed. OIVs offered 
the opportunity to encode IL-12 as a transgene 
and thus to express the cytokine—be it wt or as 
recombinant fusion form—at high concentra-
tions in the tumor bed, without most of the 
adverse side effects and toxicities that have ham-
pered the systemic application of IL-12  in past 
human trials. In some studies, it was shown that 
the changes to the TME induced by the IL-12- 

armed OIVs primed the tumor for the checkpoint 
blockade therapy, paving the way for the com-
bined IL-12/OIV/checkpoint blockade treatment. 
Some features of the IL-12-mediated response 
support the possibility that IL-12 not only quanti-
tatively boosts the immune response but also 
increases the antigenic repertoire of B and T 
cells; this mechanism remains to be analyzed in 
detail. The highly encouraging results in preclini-
cal models have fueled the translation to the 
clinic. The extent to which the IL-12/OIV combi-
nation holds promise in humans remains to be 
fully investigated.
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Abstract

Interleukin (IL)-22 belongs to the IL-10 cyto-
kine family which performs biological func-
tions by binding to heterodimer receptors 
comprising a type 1 receptor chain (R1) and a 
type 2 receptor chain (R2). IL-22 is mainly 
derived from CD4+ helper T cells, CD8+ 
cytotoxic T cells, innate lymphocytes, and 
natural killer T cells. It can activate down-
stream signaling pathways such as signal 
transducer and activator of transcription 
(STAT)1/3/5, nuclear factor kappa-light- 
chain-enhancer of activated B cells (NF-κB), 
mitogen-activated protein kinase (MAPK), 
and phosphoinositide 3-kinase (PI3K)-protein 
kinase B (AKT)-mammalian target of rapamy-
cin (mTOR) through these heterodimer recep-
tors. Although IL-22 is produced by immune 
cells, its specific receptor IL-22R1 is selec-

tively expressed in nonimmune cells, such as 
hepatocytes, colonic epithelial cells, and pan-
creatic epithelial cells (Jiang et al. Hepatology 
54(3):900–9, 2011; Jiang et al. BMC Cancer 
13:59, 2013; Curd et  al. Clin Exp Immunol 
168(2):192–9, 2012). Immune cells do not 
respond to IL-22 stimulation directly within 
tumors, reports from different groups have 
revealed that IL-22 can indirectly regulate the 
tumor microenvironment (TME). In the pres-
ent chapter, we discuss the roles of IL-22  in 
malignant cells and immunocytes within the 
TME, meanwhile, the potential roles of IL-22 
as a target for drug discovery will be 
discussed.

Keywords
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Interleukin (IL)-22 belongs to the IL-10 cytokine 
family, including IL-10, IL-19, IL-20, IL-22, 
IL-24, IL-26, IL-28 (α and β), and IL-29 [1]. 
These cytokines share similarities in their gene 

R. Jiang
Department of Hepatobiliary Surgery, The Affiliated 
Drum Tower Hospital of Nanjing University Medical 
School, Nanjing, People’s Republic of China

Medical School of Nanjing University, Nanjing, 
People’s Republic of China

B. Sun (*) 
Department of Hepatobiliary Surgery, The Affiliated 
Drum Tower Hospital of Nanjing University Medical 
School, Nanjing, People’s Republic of China
e-mail: sunbc@nju.edu.cn

5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-55617-4_5&domain=pdf
https://doi.org/10.1007/978-3-030-55617-4_5#DOI
mailto:sunbc@nju.edu.cn


82

sequences, protein structures, and receptors. 
Cytokines belonging to the IL-10 family perform 
biological functions by binding to heterodimer 
receptors, which are transmembrane receptor 
complexes comprising a type 1 receptor chain 
(R1) and a type 2 receptor chain (R2). Since there 
are only four types of R1 receptors and two types 
of R2 receptors, cytokines in the IL-10 family 
share receptor chains [2]. For instance, the 
IL-10R2 receptor chain is a shared receptor for 
IL-10, IL-22, IL-26, IL-28, and IL-29. More 
interestingly, not only can these cytokines share a 
single receptor, some cytokines in the IL-10 fam-
ily even share the same receptor complex. For 
example, the receptor complex composed of 
IL-20R1 and IL-20R2 simultaneously mediates 
signal transduction of IL-19, IL-20, and IL-24 [3]. 
Although the IL-10 family cytokines share similar 
receptors, their biological roles are distinct [4, 5].

Endogenous IL-22 is mainly derived from 
CD4+ helper T cells, CD8+ cytotoxic T cells, 
innate lymphocytes, and natural killer T cells [6, 
7]. It can activate downstream signaling path-
ways such as signal transducer and activator of 
transcription (STAT)1/3/5, nuclear factor kappa- 
light- chain-enhancer of activated B cells (NF- 
κB), mitogen-activated protein kinase (MAPK), 
and phosphoinositide 3-kinase (PI3K)-protein 
kinase B (AKT)-mammalian target of rapamycin 
(mTOR) through these heterodimer receptors, 
including IL-22R1 and IL-10R2 [8, 9]. Among 
these signaling pathways, IL-22/STAT3 is par-
ticularly pronounced because of its various bio-
logical functions, including inflammation, 
mitosis, and promotion of cell proliferation, but 
inhibition of apoptosis [10]. Thus, IL-22 has been 
defined as a tumor-promoting cytokine. Although 
IL-22 is produced by immune cells, its specific 
receptor IL-22R1 is selectively expressed in non-
immune cells, such as hepatocytes, colonic epi-
thelial cells, and pancreatic epithelial cells 
[11–13]. Immune cells do not respond to IL-22 
stimulation directly within tumors; reports from 
different groups have revealed that IL-22 can 
indirectly regulate the tumor microenvironment 
(TME). In the present chapter, we discuss the role 
of IL-22  in malignant cells and immunocytes 
within the TME.

5.1  IL-22 and Immunocytes 
Within the TME

Although the IL-22 receptor is strictly expressed 
on the surface of epithelial cells and cannot 
directly mediate the immune system, it is inevi-
table that IL-22 affects the immune system as an 
important immune regulator, mainly via two 
manners. First, by stimulating epithelial or tumor 
cells to produce cytokines that directly modulate 
immune cells, IL-22 promotes immune escape by 
inducing production of immunosuppressive cyto-
kines. For example, IL-22 can enhance the pro-
duction and secretion of IL-6 and IL-8, which are 
two important inflammatory factors in the TME 
[14]. IL-22 enhances transforming growth factor 
beta (TGF-β) (TGF-) and IL-10 production from 
pancreatic cancer cells to maintain immunosup-
pression by further inhibiting interferon-gamma 
(IFN-γ) production in T cells [13]. Second, IL-22 
regulates adaptive immunity by binding to its 
receptors on lymphoepithelial cells. IL-22 can 
promote the proliferation and survival of lym-
phoepithelial cells, thus playing an important 
role in thymic injury regeneration and T-cell 
development [15]. However, there are few reports 
on the direct effect of IL-22 on the immune cells 
in the TME, which may be a direction of future 
research. More studies have focused on the 
effects of IL-22 on tumor cells (Fig. 5.1).

5.2  IL-22 and Malignant Cells

IL-22 promotes tumorigenesis by inducing cell 
proliferation, migration, angiogenesis, dyspla-
sia, and oxidative stress [16]. The overexpres-
sion of IL-22 plays a very important role in many 
tumors, suggesting that IL-22 may become an 
important target for tumor treatment. However, 
the expression of IL-22 at different stages of 
tumor progression may have significantly differ-
ent results. In the precancerous stage, overex-
pression of IL-22 is a physiological response 
that can effectively prevent the occurrence of 
tumors by enhancing host defense, eliminating 
bacteria and virus replication, and promoting tis-
sue regeneration by IL-22, inducing proliferative 
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and antiapoptotic signaling pathways [16]. 
However, once a tumor is formed, the overex-
pression of IL-22 is a pathological response that 
has tumor-promoting effects by proliferative and 
antiapoptotic signaling pathways. However, the 
role of IL-22 is tissue- specific. Therefore, we 
summarize the roles of IL-22  in different 
malignancies.

5.3  Liver Cancer

Our research revealed that IL-22 expression was 
excessive in human hepatocellular carcinoma 
(HCC), and was mainly secreted by T cells and 
macrophages. HCC with poor differentiation has 
a stronger IL-22-containing TME [11]. Moreover, 
the high serum IL-22 levels in post-surgery HCC 

Fig. 5.1 The oncogenic roles of IL-22 within tumor 
microenvironment. IL-22 can be triggered by many stimu-
lus within TME including IL-22, TGF-β, IL-27, IL-25, 
and IL-38 etc., mainly secreted from T helper and cyto-
toxic T cells as the response for the transcriptional factors 

such as RORγt and T-bet. Excessive IL-22  in turn pro-
motes inflammation, proliferation, stemness, and anti-
apoptosis by means of activation downstream signaling 
involving AKT, p38MAPK, ERK1/2, and JNK etc.
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patients are significantly associated with poor 
prognosis [17]. Strong IL-23 and IL-22RA1 
expression in human HCC provides evidence of 
both upstream and downstream signaling in an 
excessive IL-22-related TME.  IL-22 has 
proliferation- promoting and antiapoptotic effects 
in different animal models. These two pro-tumor 
effects are mainly due to activation of STAT3 
[11]. However, there is almost no evidence indi-
cating that IL-22 has any effect on inflammation. 
This is due to strong evidence that liver-specific 
IL-22 transgenic (IL-22TG) mice develop nor-
mally without obvious adverse phenotypes or 
evidence of chronic inflammation (except for a 
slightly thicker epidermis and minor inflamma-
tion of the skin) compared to wild-type mice. In a 
classical diethylnitrosamine-induced mouse 
HCC model, two independent groups show a sig-
nificant role of IL-22 in the development of liver 
cancer using either IL-22 KO or IL-22 TG mice, 
which is specifically dependent on the activation 
of STAT3 [11, 18]. IL-22 is also an ideal target 
for experimental HCC treatment. Oral metformin 
administration leads to a significant reduction in 
tumor growth, which is accompanied by 
decreased IL-22, IL-22-induced STAT3 phos-
phorylation, and inhibition of the upregulation of 
the downstream genes Bcl-2 and cyclin D1 [19]. 
At the cellular level, metformin attenuated Th1- 
and Th17-derived IL-22 production. Furthermore, 
metformin inhibits de novo generation of Th1 
and Th17 cells from naive CD4+ cells [19]. In 
addition, STAT3 and IL-22 were revealed as mul-
tiple targets, and hepatocytes overexpressing 
IL-22 revealed a set of regulated antioxidants, 
mitogenic, and acute phase genes compared to 
wild-type mice. Hence, IL-22 blocked hepatic 
oxidative stress and its associated stress kinases 
via the induction of metallothionein, one of the 
most potent antioxidant proteins. Moreover, 
although it does not target immune cells, IL-22 
treatment attenuates the inflammatory functions 
of hepatocyte-derived, mitochondrial DNA- 
enriched extracellular vesicles, thereby suppress-
ing liver inflammation in nonalcoholic 
steatohepatitis, which is another cause of hepato-
carcinogenesis [20, 21].

5.4  Colorectal Cancer

IL-22 was also significantly upregulated in both 
ulcerative colitis (UC) tissues and colon cancer 
tumor-infiltrated innate lymphoid cells. 
Moreover, our findings demonstrated that IL-22 
expression was significantly higher in colon can-
cer tissues than in normal colon tissues. Both 
IL-22 receptor alpha 1 (IL-22RA1) and IL-23 are 
highly expressed in colorectal cancer (CC) and 
UC tissues compared to normal controls [12]. 
The downstream signaling of IL-22 is similar to 
other cancer types, mainly including STAT3, 
AKT, NF-κB, and MAPK kinases, which have 
antiapoptotic effects exerted by downstream 
genes, including B-cell lymphoma-extra large 
(Bcl-XL), Cyclin D1, deleted in malignant brain 
tumors 1 (DMBT1) [22], and vascular endothe-
lial growth factor (VEGF). In addition to its anti-
apoptotic effects, IL-22 can also affect epigenetics 
of colon cancer stem cells by affecting the expres-
sion of the histone 3 lysine 79 (H3K79) methyl-
transferase DOT1L, and maintaining the stemness 
and tumorigenesis of cancer stem cells by upreg-
ulating NANOG, SOX2, and Pou5F1 [23]. IL-22 
is also a metabolism-related gene, which 
enhances glucose consumption and lactate pro-
duction via c-Myc- and STAT3-regulated hexoki-
nase- 2 [24]. Interestingly, IL-22 can be regulated 
by certain metabolites. Metabolites of glucosino-
lates upregulated IL-22 in type 3 innate lymphoid 
cells (ILC3) and gamma delta T cells via the aryl 
hydrocarbon receptor (AhR), which enhances the 
genome integrity of IL-22-producing cells and 
target cells, directly regulating components of the 
DNA damage response in epithelial stem cells 
[25]. IL-22 can also be triggered by intestinal 
microbes, such as Helicobacter hepaticus (Hh) 
[26] and Lactobacillus [27]. Hh enhances the 
production of IL-22 within crypt epithelial cells, 
which is associated with Hh-induced DNA dam-
age and the development of dysplasia by promot-
ing the production of inducible nitric oxide 
synthase [26]. Lactobacillus triggering IL-22 
may potentially be a useful mucosal therapeutic 
agent for the treatment of graft versus host dis-
ease, provided that chromosomal integration of 
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the IL-22 expression cassettes can be achieved 
[27].

5.5  Pancreatic Cancer (PC)

High levels of IL-22 have been detected in pan-
creatic tumor tissues and peripheral blood. IL-22 
regulates the production of VEGF and the anti-
apoptotic factor Bcl-XL in IL-22R-positive PC 
cells [13]. In addition, IL-22 promotes immuno-
suppressive cytokines, including IL-10 and TGF- 
β1, thus downregulating intratumoral 
inflammation induced by natural killer (NK) cells 
[13, 28]. Other reports reveal that IL-22 origi-
nates from ILC3s in human PC, and IL-22R lev-
els are increased in PC cells to ensure its 
downstream signaling, including STAT3 and 
AKT [29].

5.6  Gastric Cancer (GC)

IL-22 was reported to be associated with anti- 
Helicobacter pylori (Hp) responses in human 
GC. Synergistically with IL-17A, IL-22 enhances 
the anti-Hp ability of gastric epithelial cells 
(GECs), both in vitro and in vivo, by enhancing 
the production of antimicrobials and chemokines, 
such as IL-8, components of calprotectin (CP), 
lipocalin (LCN), and some beta-defensins in both 
human and primary mouse GECs and gastroids 
[30]. This report suggests that IL-22 is a protec-
tive cytokine in human GC development. 
However, the frequency of IL-22-positive T cells 
increased in tumor tissues compared to tumor- 
draining lymph nodes, non-tumor, and peritu-
moral tissues. Moreover, higher intratumoral 
IL-22+ CD4+ T-cell and Th22-cell percentages 
are found in patients with advanced 
 tumor-node- metastasis stage and reduced overall 
survival [31]. Cancer-associated fibroblasts 
(CAFs) derived from IL-22 have also been 
reported in human GC, which can promote GC 
cell invasion via STAT3 and extracellular signal-
regulated kinase (ERK) signaling [32]. 
Interestingly, IL-22 levels were elevated in the 
serum of elderly GC patients compared to healthy 

elderly and young healthy controls. Peripheral 
IL-22 levels increase with age and are used as 
prognostic markers for identifying GC in elderly 
patients [33].

5.7  Lung Cancer

IL-22 is highly expressed in primary tumor tis-
sue, malignant pleural effusion, and serum of 
patients with small- and large-cell lung carci-
noma [34]. IL-22 also has an antiapoptotic role in 
human non-small cell lung cancers (NSCLCs), 
including serum starvation-induced and chemo-
therapeutic drug-induced apoptosis via activation 
of STAT3 and its downstream antiapoptotic pro-
teins, such as Bcl-2 and Bcl-XL and inactivation 
of ERK 1/2. The internal signal transduction of 
IL-22 is also provided by overexpression of its 
receptor IL-22R1, both in human NSCLC cancer 
tissues and cell lines. However, the upregulation 
of IL-22R1 was associated with chemotherapy 
resistance to cisplatin-induced apoptosis, but not 
carboplatin-induced apoptosis, indicating differ-
ent molecular mechanisms of chemotherapy 
resistance [35, 36]. Serum IL-22 combined with 
hepatocyte growth factor (HGF) and IL-20- 
inducible hepatocyte growth factor (iHGF) may 
be a prognostic factor for NSCLC progression 
before chemotherapy [37]. The cellular secretory 
sources of IL-22 in human lung cancer are varied, 
including myeloid, mixed T helper cell popula-
tions composed of Th1, Th17, and Th22 cells 
[38], and CAFs [39]. Naturally, the mechanism 
of IL-22  in human lung cancer also varies 
depending on its secretory source.

5.8  Breast Cancer

Using a mouse spontaneous breast cancer model, 
IL-22 was specifically upregulated in the TME 
during malignant transformation, and deletion of 
IL-22 blocked malignant transition, which 
reveals a role of IL-22  in the tumorigenesis of 
breast cancer [40]. IL-22  in breast cancer has 
been reported to be produced by the regulation of 
IL-1β/NOD-, LRR-, and pyrin domain- containing 
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protein 3 (NLRP3) signaling; blockage of IL-1β 
by its antagonist anakinra abrogated IL-22 pro-
duction and reduced tumor growth in a murine 
breast cancer model [38]. The important role of 
IL-22 has also been shown in clinical samples. 
The prevalence of IL-22-producing T cells grad-
ually increases in normal, peritumoral, and tumor 
tissues [41]. Tumor IL-22 levels are associated 
with an aggressive phenotype in breast cancer 
[40]. Mechanistic studies indicate that IL-22 pro-
motes human breast cancer through the Janus 
kinase (JAK)-STAT3/MAPKs/AKT [41], PI3K- 
AKT- mTOR [42], ERK1/2 [43], and c-Jun 
N-terminal kinase (JNK)/c-Jun [44] signaling 
pathways, promoting breast cancer cell prolifera-
tion and invasion. Administration of recombinant- 
IL- 22  in the TME does not influence in  vivo 
tumor initiation and proliferation, but only pro-
motes malignant transformation of cancer cells 
[40].

5.9  Leukemia and Lymphoma

IL-22 and downstream signaling also play essen-
tial roles in the development and progression of 
leukemia or lymphoma. The IL-22-related auto-
crine stimulatory loop contributes to STAT3 acti-
vation and tumorigenicity of anaplastic large-cell 
lymphoma (ALCL) and anaplastic lymphoma 
kinase-positive (ALK (+)) ALCL.  The IL-22 
receptor is expressed in all ALK (+) ALCL cell 
lines and tumor tissues [45]. In addition, the 
fusion oncoprotein nucleophosmin (NPM)-ALK 
directly contributes to the aberrant expression of 
IL-22R1 and NPM-ALK overexpression in 
Jurkat cells with induced IL-22R1 expression 
and IL-22-mediated STAT3 activation [45]. 
Another study provided similar results in ALCL; 
IL-22 also originates from tumor cells, which is 
mediated by the tyrosine kinase 2 (TYK2)/
STAT1/myeloid cell leukemia 1 (MCL1) axis 
[46]. Besides ALCL, IL-22 is also elevated in 
patients with clinical lymphocytic leukemia [47] 
and chronic myeloid leukemia [48], which sug-
gests an oncogenic role of IL-22 in chronic leu-
kemia. However, the function of IL-22 is varied 
in acute leukemia, overexpression of IL-22 is 

reported by two independent groups [49, 50], 
while other research indicates that Th22 cells and 
IL-22 are significantly decreased in newly diag-
nosed patients compared to complete-remission 
acute myeloid leukemia patients or controls [51].

5.10  IL-22 Is a Target for Drug 
Discovery

As mentioned above, IL-22 promotes cell prolif-
eration, angiogenesis, and dysplasia, and its 
receptor, IL-22R1, is mainly distributed in epi-
thelial or tumor cells. Therefore, antitumor ther-
apy targeting the IL-22 signaling pathway may 
be a feasible approach [9, 16]. IL-22 neutralizing 
antibodies, such as ILV-094 have been registered 
for phase II clinical trials for psoriasis and rheu-
matoid arthritis (NCT01941537, http://clinical-
trials.gov/) [52, 53]. Neutralization of IL-22 
might reduce metastasis, chemotherapy resis-
tance, and tumor-related inflammation to effec-
tively control tumor progression and improve the 
quality of life of patients with end-stage malig-
nancies [9]. IL-22 binding protein (IL-22BP) is a 
special natural IL-22 antagonist; therefore, it 
might be an ideal target for anti-IL-22 therapy 
[54]. In addition, compared to specific anti-IL-22 
drugs, some antitumor drugs targeting other mol-
ecules approved by the FDA can also effectively 
regulate the expression of IL-22 [9]. Treatment 
with tumor necrosis factor alpha (TNF-α) anti-
body, including adalimumab, etanercept, and inf-
liximab temporarily reduced the expression of 
IL-22 because the differentiation of Th22 cells 
depends on the stimulation of TNF-α. The IL-6 
antibody, tocilizumab, also inhibits Th17 and 
Th22 cell differentiation. In addition, a neutral-
izing antibody against IL-12p40, reduces the 
expression of IL-12 and IL-23; prevents the dif-
ferentiation of Th1, Th17, and Th22 cells; and 
blocks the production of IL-22 [9]. However, it 
should be noted that blocking both TNF-α and 
IL-12p40 signaling pathways will cause serious 
side effects in the biological function of immune 
cells, comprehensively inhibit cytokines, and 
may facilitate tumor growth. STAT3 is an impor-
tant part of the downstream signaling pathway of 
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IL-22, carrying out most tumor-promoting 
effects; therefore, a STAT3 inhibitor might be a 
reasonable adjuvant combination therapy of anti- 
IL- 22 therapy. However, there are many prob-
lems. Because there is a highly consistent domain 
between STAT3 and STAT1, simply blocking 
STAT3 signaling might also disrupt STAT1- 
dependent apoptosis and innate immunity [55]. 
In general, any treatment regimen for IL-22 
should be based on the principle of effective con-
trol of the tumor and minimization of extensive 
inflammatory responses and organ damage.

In summary, many studies have demonstrated 
that IL-22 promotes the development of various 
tumors. With regard to the exploration of IL-22 
functions, balancing tissue repair and tumor- 
promoting roles of IL-22 might be a new 
direction.
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Abstract

The tumor microenvironment (TME), which 
assists in the development, progression, and 
metastasis of malignant cells, is instrumental 
in virtually every step of tumor development. 
While a healthy TME can protect against 
malignancy, in an unhealthy state, it can result 
in aberrant cellular behavior and augment 
tumor progression. Cytokines are one compo-
nent of the TME, therefore, understanding the 
composition of the cytokine milieu in the 
tumor microenvironment is critical to under-
stand the biology of malignant transformation. 
One cytokine, interleukin (IL)-23, has received 
particular scrutiny in cancer research because 
of its ability to manipulate host immune 
responses, its role in modulating the cells in 
TME, and its capacity to directly affect a vari-
ety of premalignant and malignant tumors. 
IL-23 belongs to the IL-12 cytokine family, 
which is produced by activated dendritic cells 
(DC) and macrophages. IL-23 acts by binding 
to its receptor consisting of two distinct sub-
units, IL-12Rβ1 and IL-23R.  This, in turn, 

leads to janus kinase (JAK) activation and sig-
nal transducer and activator of transcription 
(STAT) 3/4 phosphorylation. There have been 
contradictory reports of pro- and antitumor 
effects of IL-23, which likely depend on the 
genetic background, the type of tumor, the 
causative agent, and the critical balance of 
STAT3 signaling in both the tumor itself and 
the TME. Clinical trials of IL-12/23 inhibitors 
that are used to treat patients with psoriasis, 
have been scrutinized for reports of malig-
nancy, the most common being nonmelanoma 
skin cancers (NMSCs). Continued investiga-
tion into the relationship of IL-23 and its 
downstream pathways holds promise in iden-
tifying novel targets for the management of 
cancer and other diseases.
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6.1  Introduction

The tumor microenvironment (TME), which 
assists in the development, progression, and 
metastasis of malignant cells, is comprised of 
cellular components and an extracellular matrix. 
The extracellular matrix (ECM) consists of col-
lagen, elastin, proteoglycans, and hyaluronic 
acid. Fibroblasts, myofibroblasts, neuroendo-
crine (NE) cells, adipose cells, immune- 
inflammatory cells, and the blood and lymphatic 
vascular networks comprise the cellular compo-
nent [1, 2]. The TME is instrumental in virtually 
every step of tumor pathogenesis. It is akin to the 
concept of “seed” and the “soil” in which the 
TME (soil) plays an important role in the growth 
and development of mutant cells (seed) and their 
evolution to clinically apparent malignancy and 
metastases. While a healthy TME can deter 
malignancy, and help protect against invasion in 
an unhealthy state, it can result in aberrant cellu-
lar behavior and progression to advanced 
malignancy.

Cytokines are one component of the 
TME.  They are protein mediators controlling 
autocrine or paracrine communications involved 
in many biologic processes. The cytokine net-
work controls innate and adaptive immune 
responses, cell growth, survival, inflammation, 
and differentiation. Cytokines play a myriad of 
positive and negative roles in tumorigenesis 
including regulation of leukocyte infiltration into 
tumors, stimulation of neovascularization and 
manipulation of the host immune response to 
tumor cells [2]. Therefore, understanding the 
composition of the cytokine milieu in the tumor 
microenvironment is fundamental to understand-
ing of the biology of malignant transformation.

One cytokine, IL-23, has received particular 
scrutiny in cancer research because of its ability 
to manipulate host immune responses, its role in 
modulating the activities of cells and molecules 
in the tumor microenvironment, and its capacity 
to directly affect a variety of premalignant and 
malignant tumors. Interleukin-23 (IL-23) belongs 
to the IL-12 cytokine family, which includes 
IL-12, IL-23, IL-27, and IL-35 [3, 4]. It is a 
dimeric peptide molecule comprised of a p40 

subunit, which it shares with IL-12, and a p19 
subunit, which is unique to IL-23. Both IL-12 
and IL-23 signal through heterodimeric recep-
tors, with a common IL-12 receptor β1 
(IL-12Rβ1), which is coupled with IL-12Rβ2 to 
form the IL-12 receptor and with IL-23R to form 
the IL-23 receptor (Fig. 6.1).

The IL-12 family of cytokines is produced by 
activated dendritic cells (DC) and macrophages 
that are stimulated by microbial and chemical 
pathogens, CD40L, and toll-like receptor (TLR) 
ligands [4]. IL-12 and IL-23 play important roles 
in the development of immune responses in vari-
ous disease conditions (Fig. 6.2).

They act as a link between the innate and 
adaptive immune system. IL-23 contributes to the 
differentiation of naïve T cells into T-helper 
(Th)17 cells that produce IL-17; IL-12 facilitates 
the development of Th1 cells that produce inter-
feron gamma (IFNγ). IL-12 and IL-23 also par-
ticipate in the functions of different effector cell 
types. For example, IL-23 has been shown to sup-
press natural killer (NK) cell-mediated control of 
lung metastases by a perforin and IFNγ depen-
dent mechanism. IL-23 is thought to suppress 
natural or cytokine-induced innate immunity, 
exerting a pro-tumor effect, independent of 
IL-17A. Downstream signaling occurs via the 
Janus kinase–signal transducers and activators of 
transcription (JAK-STAT) pathway. IL-23 
involves both STAT3 and STAT4 signaling. In 
contrast, IL-12 utilizes STAT4 (Fig. 6.2).

The local balance between IL-12 and IL-23 
has repeatedly been shown to play an important 
role in determining whether a pro- or antitumor 
immune response develops. The role of IL-12 in 
promoting antitumor immunity by mediating 
immune surveillance of tumors is well- recognized 
[5, 6]. On the other hand, there are contradictory 
reports of pro- and antitumor effects of IL-23 and 
its receptor IL-23R. Whether IL-23 acts in a pro- 
or anticarcinogenic manner may depend on the 
genetic background, the type of tumor, the cause 
(i.e., ultraviolet (UV) radiation, chemical, virus, 
etc.) and the critical balance of STAT3 signaling 
in both the tumor and the tumor cell microenvi-
ronment. For example, in mice subjected to a 
two-stage skin tumorigenesis protocol using 
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IL-12Rβ1 IL-12Rβ2 IL-23R

Fig. 6.1 IL-12 and IL-23 cytokines. IL-12 is composed 
of IL-12p40 and p35 subunits that bind to IL-12Rβ1 and 
IL-12Rβ2, respectively. IL-23 is a heterodimeric cytokine 
composed of p40 and p19 submits that bind to the 
IL-12βR1 and the IL-23 receptor (IL-23R), respectively. 
IL-12Rβ1 binds the JAK family member tyrosine kinase 

(TYK)2, whereas IL-12Rβ2 and IL-23R associate with 
JAK2. IL-23 stimulation activates the JAKs and STATs, 
but STAT3 and not STAT4, appears to be the predominant 
STAT-activated. IL interleukin, JAK Janus kinase, TYK2 
tyrosine kinase 2, STAT signal transducer and activator of 
transcription

IL-23R

Pathogens, 
CD40L, TLR 
ligands

IL-23

IL-12
IL-12R

IL-23R

IL-1

TNF-α
IL-6 IL-6

IL-17

Endothelial Cells, 
Stromal Cells, Epithelial 
Cells, Fibroblasts

Th1

Th17

Dendri�c cell Macrophage
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IL-1, IL-6, IL-8 
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Fig. 6.2 IL-12 and 
IL-23 activate the 
innate and adaptive 
immune responses. 
Activated DC and 
macrophages that are 
stimulated by microbial 
pathogens and 
chemicals, CD40L, and 
TLR ligands produce the 
IL-12 family of 
cytokines. IL-23 
contributes to the 
differentiation of naïve T 
cells into Th17 cells that 
produce IL-17; IL-12 
facilitates the 
development of Th1 
cells that produce IFNγ. 
IL-12 and IL-23 also 
participate in the 
functions of different 
cell types. DC dendritic 
cells, TLR toll-like 
receptors, Th T-helper, 
IFN interferon, TNF 
tumor necrosis factor
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7,12-dimethylbenz (a) anthracene (DMBA) 
and12-O-tetradecanoylphorbol-13-acetate 
(TPA), IL-23 knockout (KO) mice were found to 
be resistant to skin tumor development, and 
IL-12-mediated immunotherapy was more effec-
tive in the absence of IL-23p19 [7]. On the other 
hand, IL-23 deficiency blocked tumor develop-
ment in a murine model of photocarcinogenesis 
despite the fact that it enhanced keratinocyte 
tumors in the same animals [8] (Fig. 6.3).

6.2  Non-immunological Effects 
of IL-23

While most attention on IL-23 has been on its 
role to facilitate activation of the Th17/IL-17 
pathway, IL-23 has a number of other activities, 

which may impact tumorigenesis. It interferes 
with the antitumor function of NK cells by block-
ing the IFNγ and perforin-mediated effects. It 
also supports neoangiogenesis and inhibits CD8 
T-cell infiltration into the tumor tissue. IL-23 also 
activates DNA repair pathways, an activity which 
occurs via an immune-independent pathway. 
Under physiologic situations, IL-23 favors high 
bone mass by reducing bone resorption. In con-
trast, in pathological circumstances, it has a stim-
ulatory effect on osteoclast formation, mainly via 
the induction of receptor activator of nuclear fac-
tor kappa-B (RANKL) by T cells and IL-17 pro-
duction [9]. In human studies, increased IL-23 
levels have been found to correlate with vascular 
endothelial growth factor (VEGF) levels in 
colorectal carcinoma [10]. Sheng et al. found that 
IL-23 signaling upregulated proteins that were 

P40
P19
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TYK2 JAK2 TYK2 JAK2
STAT4 STAT4 STAT3 STAT4

P35

IL-12 IL-23

IFN- γ ac�va�on TNF-α mediated effects

CD8+cytotoxic T-cell 
mediated effects

Induc�on of na�ve CD4+ 
CD45 Rbhgh  and memory 
CD4+ CD45 Rblow T-cells

An�tumor, an�-
metasta�c

Maintenance of Th17 
prevents shi� to Treg

phenotype

An�tumor

IL-12Rβ1 IL-12Rβ2 IL-23R

Fig. 6.3 IL-12 and IL-23 activate the JAK-STAT 
pathway. IL-12 is composed of IL-12p40 and p35 sub-
units that bind to IL-12Rβ1 and IL-12Rβ2, respectively. 
Ligand binding brings the receptor chains and associated 
JAKs (JAK2 and TYK2) in close proximity, resulting in 
JAK transphosphorylation and subsequent phosphoryla-
tion of the receptor chains by activated JAKs. IL-12Rβ2 is 
phosphorylated and serves as a docking site for STAT4. 
STAT4 binds to the receptor chain and is itself phosphory-
lated. STAT4 homodimers shuttle into the nucleus where 

they bind to STAT-binding sites in the interferon (IFN)-γ 
promoter, and induce transcription of the IFN-γ gene. 
IFN-γ activation can activate CD8+ cytotoxic T cells, 
induce naïve and memory T cells, and can inhibit tumor 
growth and metastasis. IL-23 can have pro- or anticarcino-
genic effects depending on the critical balance of STAT3 
signaling in the tumor and tumor cell microenvironment. 
IL interleukin, JAK Janus kinase, TYK2 tyrosine kinase 2, 
STAT signal transducer and activator of transcription, IFN 
interferon

S. Subhadarshani et al.



93

correlated with proliferation and survival of 
breast cancer cells [11]. IL-23 also promotes 
tumor angiogenesis [12]. It is reasonable to spec-
ulate that IL-23 has an effect on type-2 pericytes, 
which have an important role in tumor angiogen-
esis as well [13].

6.3  Keratinocyte Carcinomas

Langowski et al. were the first to study the role of 
IL-23 in carcinogenesis using the mouse two- 
step skin carcinogenesis model, in which mice 
were initially treated with a single application of 
the carcinogen DMBA followed by repeated 
exposure of the treatment area to TPA [14]. When 
experiments were conducted in IL-23p19- 
deficient mice, they found an increase in infiltrat-
ing CD8+ T cells and reduced levels of IL-17, 
matrix metallopeptidase 9 (MMP9) and CD31 
expression in carcinogen-treated skin compared 
to controls. This coincided with a reduction in 
cutaneous tumors compared to wild-type mice 
treated in the same manner. They concluded that 
IL-23 promoted the development of skin cancer 
by inducing expression of MMP9 and other genes 
involved in angiogenesis while reducing the infil-
tration of CD8+ T cells into skin tumors [14]. 
(Fig. 6.4).

In contrast to that seen in chemical skin carci-
nogenesis, in a murine model of photocarcino-
genesis, IL-23p19 KO mice had an increase in 
UV-induced tumors. In this study, C57BL/6 mice 
lacking either p35 (IL-12p35) or p19 (IL-23p19) 
were subjected to a chronic UV photocarcino-
genesis protocol. Mice lacking IL-23p19 devel-
oped significantly more tumors than wild-type 
mice. The opposite was observed in IL-12p35 KO 
mice. This study concluded that loss of IL-23, but 
not of IL-12, enhances the development of UVR- 
induced skin tumors, indicating that IL-23, but 
not IL-12, may counteract photocarcinogenesis. 
They also observed that non-epithelial tumors 
developed significantly earlier in IL-23 KO mice 
than in controls.

UVB-induced cyclobutane pyrimidine dimer 
(CPD) photoproducts cause mutations in tumor 
suppressor genes leading to photocarcinogenesis. 

CPDs are removed by nucleotide excision repair 
(NER). Both IL-12 and IL-23 are capable of pro-
moting removal of CPD by NER.  In an experi-
ment with p19, p35, and p40  KO mice, an 
increased risk of UV-induced skin cancer was 
seen in IL-23 p19 and IL-12/23p40 KO mice but 
not p35 KO  mice, which suggest that loss of 
IL-12 seems to be compensated by IL-23 but not 
vice versa.

6.4  Melanoma

Nasti et  al. [15] studied mice deficient in 
IL-23p19, IL-12p35, and IL-12/23 p40 using a 
two-stage melanoma genesis protocol they had 
developed in which DMBA and TPA were 
applied to the skin of C3H/HeN mice [15]. They 
found that mice deficient in IL-23p19 developed 
70% more nevi, which grew 40% larger than the 
nevi of wild-type mice. Surprisingly, IL-23p35KO 
mice displayed a reduction in the number and 
growth of nevi. They also observed that melano-
cytic cell lines established from IL-12p35 KO 
mice possessed fewer H-ras mutations compared 
with cell lines derived from IL 23p19 KO and 
wild-type mice. In that study, the level of nuclear 
DNA damage post-DMBA treatment was studied 
using gamma H2AX red immunofluorescence. 
They observed that DNA repair was augmented 
in IL-12p35 KO mice. In contrast, IL-23p19 KO 
mice demonstrated high positivity for gamma 
H2AX indicating poor DNA repair. Also, addi-
tion of recombinant IL-23 in the culture medium 
promoted DNA repair in melanocytes.

6.5  Breast Cancer

Sheng et al. [11] studied the IL-23/IL-23R axis in 
breast cancer patients and found that IL-23- 
mediated responses were crucial for tumor pro-
gression [11]. IL-23/IL-23R gene expression 
levels were markedly higher in tumors than in 
adjacent tissues and showed a positive correla-
tion with patients’ tumor size, TNM stage and 
metastasis, suggesting that IL-23 might be a 
potential prognostic marker and treatment target. 

6 IL-23 and the Tumor Microenvironment
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The JAK2/STAT3 signal transduction pathway 
are downstream mediators of IL-23 signaling. 
JAK2/STAT3 activation was associated with 
poorer outcomes in metastatic breast cancer 
patients. In other studies, IL-23 inhibited apopto-
sis of breast cancer cells [16]. However, there 
was no significant difference in IL-23 levels 
among patients based on biomolecular character-
istics, the different subtypes, or the presence of 
metastatic disease.

Shino et  al. reported a case of breast cancer 
metastasis in the skin with increased levels of 
IL-23 and IL-17 [17]. They found that IL-23 and 
chemokine (C–C) ligand 20 (CCL20) were pro-
duced by tumor cells. IL-17-producing cells and 
CD163+ tumor-associated macrophages (TAMs) 
were found microscopically around tumor nod-
ules consistent with the concept that IL-23 

orchestrates an immunosuppressive tumor micro-
environment at the site of breast cancer metasta-
ses. In other studies, evaluating the role of 
IL-23 in breast cancer, it has been found to facili-
tate angiogenesis, production of immunosuppres-
sive cytokines, and infiltration of M2 macrophages 
and neutrophils, while at the same time suppress-
ing antitumor immune responses through a 
reduction of CD4+ and CD8+ T cells [18].

6.6  Multiple Myeloma

The IL-23 receptor is present on normal plasma 
cells and on multiple myeloma (MM) cells [9]. 
Increased levels of IL-23 have been observed in 
the serum and bone marrow of MM patients com-
pared to healthy controls. However, it does not 

IL-23

Tumor growth and 
development

Neoaongiogenesis IL-6 MMP9

Th17

IL-17

Inhibi�on of CD8+ 
cell infiltra�on

P19
P40

IL-12Rβ2 IL-23R

Fig. 6.4 IL-23 has an impact on tumorigenesis. IL-23 
interferes with the antitumor function of NK cells by 
blocking the IFNγ and perforin-mediated effects. It also 
supports neoangiogenesis and inhibits CD8 T-cell infiltra-
tion into the tumor tissue. IL-23 has a stimulatory effect 

on IL-17 production. IL-23 also promotes tumor angio-
genesis. IL interleukin, JAK Janus kinase, TYK2 tyrosine 
kinase 2, STAT signal transducer and activator of tran-
scription, MMP matrix metalloproteinase
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appear to influence the proliferation of myeloma 
cells, nor does it stimulate apoptosis, inflamma-
tory cell chemotaxis, or angiogenesis.

Kasamatu et al. observed that the IL-23R HH 
genotype was significantly associated with poor 
survival compared with the QH and HH geno-
types in multiple myeloma patients [19].

6.7  Pediatric B-Acute 
Lymphocytic Leukemia 
(B-ALL)

IL-23 has been found to have antitumor actions 
in pediatric B-ALL [20]. In vitro studies and ani-
mal models have shown that IL-23 inhibits pro-
liferation and augments apoptosis of malignant 
cells. This occurs through downregulation of 
cyclin D1 and Bcl-2. Interestingly, the effect is 
mediated by mir-15a [21].

6.8  Colorectal Cancer

A variety of studies implicate IL-23 and its recep-
tor in colorectal cancer (CRC) growth and devel-
opment [10, 19, 22, 23]. There is a significant 
increase in the serum level of the cytokine IL-23 
in CRC patients as compared to healthy controls 
[10, 19]. Research has also shown a highly sig-
nificant increase of serum levels of IL-23 with 
advanced TNM stages of CRC [19]. Increased 
levels of IL-23 have been found to correlate with 
the expression of VEGF and histological grades 
[10]. In addition, IL 23 has been found to play a 
pivotal role in the pathogenesis of inflammatory 
bowel disease (IBD) and colitis-associated colon 
cancer [22].

Basic leucine zipper ATF-like transcription 
factor (BATF) is a transcription factor that in 
ulcerative colitis, but not Crohn’s disease, is 
 elevated and the level of increase correlates with 
the levels of IL-23. In CRC, BATF correlates 
with both with IL-23 and IL-23R [23]. This has 
been investigated further in animal models in 
which BATF was deleted. Those animals had low 
levels of IL-23. Since BATF is a transcription 
factor for Th17 differentiation, the findings have 

been interpreted as suggesting that BATF 
decreases Th17 cell differentiation which in turn 
leads to reduced levels of IL-23. Suzuki et  al. 
studied the IL-23R expression in human colorec-
tal cancer tissue samples. They found that all of 
the TNM stage IV patients were positive for 
IL-23R and that IL-23R was relatively high at the 
deepest point of invasion in some cases. In tissue 
culture, the proliferative and invasive activities 
and/or transforming growth factor beta (TGF-β) 
production were increased with IL-23 stimula-
tion. This suggests that an autocrine mechanism 
via TGF-β has a pro-tumorigenic effect on 
CRC.  IL-23 may therefore be a potential target 
for CRC immunotherapy.

In contrast to the pro-tumorigenic effect of 
IL-23 in colon cancer, some studies have found 
that IL-23 has an antitumor and antimetastatic 
role in this disease. In 2006, Shan et al. suggested 
that there is role for Th1 and dendritic cells in 
IL-23-mediated antitumor activity in murine ade-
nocarcinoma cells [24]. The effect of IL-23 on 
tumor growth was also evaluated by Lo et al. in 
2003 [25]. They observed that CD8+ T cells, but 
not CD4+ T cells or NK cells, were crucial for 
the antitumor activity of IL-23. In their study, 
murine colon adenocarcinoma cells were trans-
duced with vectors so that they released single- 
chain IL-23 (scIL-23). The transduced cells were 
observed to have significantly greater antitumor 
activity than empty vector-treated cells. The anti-
tumor effect was mediated by CD8+ T cells; nei-
ther CD4+ T cells nor NK cells were required. 
Wang et  al. confirmed the role of cytotoxic T 
cells in the antitumor effects in an IL-23 trans-
duced colon cancer cell model and went on to 
show that the antitumor effects in this model sys-
tem were mediated by interferon-gamma produc-
ing CD8+ T cells [26].

6.9  Esophageal Cancer

There is evidence that IL-23 has a deleterious 
effect on esophageal cancer. When esophageal 
tissue was stained for IL-23 expression by immu-
nohistochemistry, increased areas of IL-23 stain-
ing could be found in tissue from primary tumors 
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of metastatic patients compared to primary 
tumors of nonmetastatic cancers or the precan-
cerous lesions [27]. Incubation of esophageal 
carcinoma cell lines with IL-23 caused an 
increase in biomarkers associated with epithelial- 
mesenchymal transition as well as MMP9 and 
VEGF.  These effects were mediated by IL-23 
actions on the Wnt/beta-catenin pathway [27]. 
Consistent with a role for IL-23 in esophageal 
cancer, Chu et al. reported two potentially func-
tional genetic single-nucleotide polymorphisms 
in IL-23R (SNPs; IL-23R rs6682925 T > C and 
rs1884444 T  >  G), which increase the risk of 
esophageal cancer [28].

6.10  Implication for Anti-IL-23 
in Therapeutics

6.10.1  Anti IL-12/23p40

Ustekinumab and briakinumab (anti IL-12/23p40) 
have been used in treatments of psoriasis, psori-
atic arthritis, inflammatory bowel disease and 
other immune-mediated conditions. Ustekinumab 
is approved by the Food and Drug Administration 
(FDA); briakinumab development was discontin-
ued prior to FDA approval. Clinical trials of 
IL-12/23 inhibitors have been scrutinized for 
reports of malignancy, the most common being 
nonmelanoma skin cancers (NMSCs).

The prescribing information (PI) for 
ustekinumab contains a general warning that it 
“may increase risk of malignancy.” This is based 
on the following observations from post- 
marketing safety data: (1) among patients treated 
with ustekinumab (3.2 years’ median follow-up), 
Non-melanoma skin cancers (NMSCs) were 
reported in 1.5% of patients and malignancies 
excluding NMSCs were reported in 1.7% of 
patients; (2) aside from NMSCs, the most 
 frequently observed malignancies were prostate, 
melanoma, colorectal, and breast. However, the 
profile was similar to the general population as 
adjusted for age, gender, and race; and (3) in 
post-marketing surveillance data of patients tak-
ing ustekinumab, there have been reports of rapid 
appearance of multiple cutaneous squamous cell 

carcinomas (SCCs) in those who had preexisting 
risk factors for NMSC.(Janssen Biotech Inc. 
Stelara® (ustekinumab) prescribing information, 
https://www.stelarainfo.com/pdf/prescribingin-
formation.) In a pooled analysis, the risk of SCC 
was similar to the risk of basal cell carcinoma 
(BCC) in patients treated with briakinumab, but 
patients were only taking the medication for rela-
tively short periods of time [29]. In trials of 
ustekinumab for psoriasis, the proportion of 
BCCs was higher than that of SCCs which is 
similar to the general population [30].

6.10.2  Anti-IL-23p19

Several different IL-23p19-specific antibodies 
have obtained Food and Drug Administration 
(FDA) approval for moderate-to-severe psoriasis. 
Guselkumab was the first IL-23p19 antibody to 
be approved. Recently, the IL-23-specific inhibi-
tors tildrakizumab and risankizumab have also 
been approved, and mirikizumab (LY3074828) 
has completed phase 2 studies. All have shown 
excellent efficacy in plaque psoriasis. There is 
limited data on malignancy risk, although 
NMSCs have been reported in some trials [31, 
32].

6.11  Conclusions

IL-23 acts by binding to its receptor consisting of 
two distinct subunits, IL-12Rβ1 and IL-23R. This, 
in turn, leads to JAK activation and STAT3/4 
phosphorylation. Although various studies in the 
last decade have implicated IL-23 in tumorigen-
esis of various tissues, its exact mechanism in the 
TME is still elusive. There have been contradic-
tory reports of pro- and antitumor effects of 
IL-23, which likely depend on the genetic back-
ground, the type of tumor, the causative agent, 
and the critical balance of STAT3 signaling in 
both the tumor itself and the TME. The pro-tumor 
functions may involve a downstream IL-17- 
mediated signaling or act via an IL-17- 
independent pathway. The latter includes 
promotion of VEGF-mediated neoangiogenesis 
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and MMP9 activation, inhibition of apoptosis 
and modulation of NK and T-cell function. 
Continued investigation into the relationship of 
IL-23 and its downstream pathways holds prom-
ise in identifying novel targets for cancer 
therapy.
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Abstract

Interleukin (IL)-24 is a member of the IL-10 
family of cytokines. Due to its unique ability 
to function as both a tumor suppressor and 
cytokine, IL-24-based cancer therapy has 
been developed for treating a broad spectrum 
of human cancers. Majority of the studies 
reported to date have focused on establishing 
IL-24 as a cancer therapeutic by primarily 

focusing on tumor cell killing. However, the 
ability of IL-24 treatment on modulating the 
tumor microenvironment and immune 
response is underinvestigated. In this article, 
we summarize the biological and functional 
properties of IL-24 and the benefits of apply-
ing IL-24-based therapy for cancer.
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siRNA Small interfering RNA
STAT-3 Signal transducer and activator of 

transcription 3
TME Tumor microenvironment
TSG Tumor suppressor gene
VEGF Vascular endothelial growth factor

7.1  Introduction

Interleukin-(IL)-24, previously referred to as 
melanoma differentiation-associated gene- 
(MDA)-7, is a member of the IL-10 cytokine 
family [1–3]. Its family members include IL-10, 
IL-19, IL-20, IL-22, and IL-26 [4–7]. IL-24 is 
located on chromosome 1 at 1q32 [3]. The IL-24 
cDNA encodes an evolutionarily conserved pro-
tein of 206 amino acids with a predicted size of 
23.8 kDa [8, 9]. IL-24 protein sequence predicted 
three glycosylation sites and five phosphoryla-
tion sites [10, 11]. Further, the presence of a 
secretory signal sequence in the cDNA enables 
the secretion of IL-24 protein and its ability to 
operate intracellularly and extracellularly in an 
autocrine and paracrine fashion [12, 13]. Finally, 
ubiquitination of IL-24 protein facilitating its 
intracellular half-life and function has been 
reported using lung tumor model [14]. The results 
from these studies indicated that IL-24 is suscep-
tible to post-translational modification (PTM) 
and that the nature of PTM likely dictates the 
function of IL-24 to operate either as a tumor 
suppressor gene (TSG) or as a cytokine. 
Molecular and biochemical studies subsequently 
reported the identification of receptors for IL-24. 

Studies showed IL-24 utilized two heterodimer 
receptor complexes, namely IL-20R1/IL-20R2 
and IL-22R1/IL-20R2 complex [15, 16]. mRNA 
and protein expression analysis showed IL-24 
mRNA but not the protein is detected in human 
cancer cell lines and tissues. Further, occurrence 
of IL-24 gene mutation or polymorphism has not 
been reported to date. Thus, the mechanism of 
IL-24 regulation in various cell types especially 
in human cancer cells remains to be elucidated.

The unique and distinct features of IL-24 sep-
arate it from other family members that has 
allowed its testing as a cancer therapeutic against 
a broad spectrum of human cancers both in the 
laboratory and in the clinic. Herein, we discuss 
the tumor suppressor and cytokine properties of 
IL-24  in reconfiguring the tumor microenviron-
ment (TME) and the benefits in testing IL-24 as a 
cancer therapeutic.

7.2  IL-24 as a Tumor Suppressor 
and Inducer of Cell Death

The first report on IL-24 (mda-7) was made by 
Jiang et al. [8]. In that study, the authors identi-
fied induction of mda-7 expression in human 
melanoma cells made to differentiate with inter-
feron gamma. Expression of mda-7 resulted in 
differentiation and cell cycle arrest. Based on this 
study, IL-24 was tested as a therapeutic in a breast 
cancer model. Overexpression of IL-24 resulted 
in induction of apoptosis and inhibition of tumor 
cell growth both in vitro and in vivo [17]. Analysis 
for IL-24 protein expression in human melanoma 
tissue samples showed its expression was 
detected in nevi and primary melanoma and pro-
gressively decreased with disease stage and was 
completely lost in metastatic melanoma [18]. In 
human lung cancer, IL-24 protein expression was 
detected in primary tumor tissues and loss of its 
expression correlated with poor clinical outcome 
[19]. Delivery of IL-24 using an adenoviral vec-
tor (Ad-mda7) in human lung tumor cell lines, in 
vitro, induced G1 phase cell-cycle arrest and 
apoptosis thereby resulting in suppression of 
tumor cell proliferation [20]. Furthermore, inhi-
bition of tumor cell migration and invasion was 
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observed in Ad-mda7-treated tumor cell lines. 
Finally, Ad-mda7 killed tumor cells but not nor-
mal cells demonstrating tumor cell selectivity, a 
feature preferred in cancer therapy. In vivo stud-
ies showed intratumoral (i.t.) administration of 
Ad-mda7 into lung tumors established in nude 
mice significantly suppressed tumor growth that 
was accompanied by apoptosis and reduced 
tumor vasculature as evidenced by reduction in 
CD31 positive staining [21]. In the same study, 
Ad-mda7 was shown to inhibit endothelial tube 
formation, a phenomenon reflective of potential 
antiangiogenic activity. Based on this observa-
tion, the authors of the study speculated for the 
first time that Ad-mda7 apart from having antitu-
mor activity likely has antiangiogenic activity as 
well. All of these studies clearly established 
IL-24 as a TSG that resulted in testing of IL-24 as 
a cancer gene therapeutic in several laboratories.

Introduction of IL-24 using viral and non- 
viral vectors in a broad spectrum of human can-
cer cell lines resulted in inhibition of growth and 
induction of cell death [22–30]. Exogenous 
expression of IL-24 using mesenchymal stem 
cells (MSCs) was shown to inhibit the growth of 
glioma and melanoma [31, 32]. While all of the 
above-described studies demonstrated the antitu-
mor activity of IL-24, the molecular mechanism 
by which IL-24 induced tumor cell death varied 
and was shown to be cell type-dependent. Pataer 
et al. [33] reported IL-24-mediated cell death in 
lung cancer cells occurred by activation of pro-
tein kinase R (PKR). In human ovarian cancer 
cells, the Fas signaling pathway was shown to be 
involved in IL-24-mediated cell killing [34]. 
Activation of the JNK pathway was observed in 
Ad-mda7-treated glioma cells [22]. In human 
melanoma, an inverse correlation between IL-24 
and inducible nitric oxide synthase (iNOS) was 
observed and treatment of melanoma cell lines 
with Ad-mda7 or IL-24 protein suppressed iNOS 
[35]. Regulation of the beta-catenin/Wnt signal-
ing pathway was reported in Ad-mda7-treated 
pancreatic, breast, and lung cancer cells [36, 37]. 
Panneerselvam et  al. [38] showed phosphoryla-
tion of IL-24 is a prerequisite for IL-24-mediated 
antitumor activity. More recently, suppression of 
the oncogenic GLI1-hedgehog signaling was 

reported in IL-24 overexpressing lung cancer 
cells [39]. While the upstream signaling mecha-
nism for IL-24-mediated killing differs among 
various cancer cell lines, the signals converge 
downstream at the mitochondria leading to acti-
vation of caspase-mediated apoptosis [40].

Apart from apoptotic-mediated cell death, 
involvement of autophagy in Ad-mda7-treated 
cells has also been reported [41–43]. In glioma, 
Ad-mda7 treatment activated protein kinase 
R-like endoplasmic reticulum kinase (PERK) 
leading to autophagy [44]. Further, combining 
Ad-mda7 with OSU-03012, an inducer of 
autophagy, increased ER stress and autophagy 
resulting in enhanced antitumor activity in glio-
mas [45]. Conversely, inhibition of autophagy 
using 3-methyl adenine (3-MA) enhanced IL-24- 
mediated cell death in human oral squamous cell 
carcinoma cell lines [46]. All of these studies 
show that both, autophagy and apoptotic cell 
death, are involved in IL-24 treatment.

7.2.1  Intracellular and Extracellular 
Protein-Mediated Cell Death

Since IL-24 protein has a secretory signal and is 
shown to be secreted into the extracellular envi-
ronment, the role of its receptors in the mode of 
cell killing has been interrogated. Blocking IL-24 
secretion did not abrogate tumor cell killing indi-
cating intracellular protein expression is suffi-
cient to exert the antitumor activity [47]. 
Intracellular accumulation of the IL-24 protein 
resulted in unfolded protein response (UPR) 
leading to endoplasmic reticulum (ER) stress cul-
minating in cell death [47, 48]. In a separate 
study, involvement of both intra- and extra- 
cellular- mediated killing was reported in 
Ad-mda7-treated tumor cells [49]. Involvement 
of IL-20 receptor-mediated Ad-IL-24 cell killing 
was observed in melanoma and breast cancer 
cells [50, 51]. These studies showed that secreted 
IL-24 protein, upon binding to IL-20 receptor 
(IL-20R), activated signal transducer and trans-
activation (STAT-3) signaling. However, cell kill-
ing occurred independent of STAT-3 as inhibiting 
STAT-3 did not abrogate Ad-IL-24-mediated cell 

7 Interleukin (IL)-24: Reconfiguring the Tumor Microenvironment for Eliciting Antitumor Response



102

killing. In a separate study, addition of soluble 
IL-24 protein to human umbilical vein endothe-
lial cells (HUVEC) and human microvascular 
endothelial cells (HMVEC) was shown to inhibit 
capillary tube formation [52]. Molecular studies 
showed IL-24 protein bound to its receptors to 
exert the inhibitory activity on capillary tube 
formation.

This demonstrates that extracellularly secreted 
IL-24 protein can exert its antitumor activity uti-
lizing either of the two receptors (IL-20R and 
IL-22R) expressed by tumor and tumor- 
associated endothelial cells. The results from all 
of the studies described above showed that IL-24 
potently exerts its antitumor activity by utilizing 
both intracellular and extracellular signaling 
mechanisms, in an autocrine and paracrine 
manner.

7.2.2  Combinatorial Therapy 
Enhances Tumor Cell Death

While early studies focused on testing IL-24 as 
monotherapy, it is imperative to test combinato-
rial therapies to reflect clinical relevance [53]. 
Combining Ad-IL-24 with geftinib and trastu-
zumab, inhibitors of epidermal growth factor 
receptor (EGFR) and Her2-neu receptor, respec-
tively, demonstrated enhanced antitumor activity 
in lung and breast cancer models [54–56]. 
Similarly, combination therapy of Ad-mda7 with 
the anti-vascular endothelial growth factor 
(VEGF) antibody, bevacizumab, synergistically 
inhibited lung tumor growth both in vitro and in 
vivo [57]. Ad-mda7 when combined with the 
non-steroidal anti-inflammatory drug, sulindac, 
displayed synergistic antitumor activity against 
lung tumor cells [58]. Shanker et al. also demon-
strated that vitamin E succinate upon combina-
tion with Ad-mda7 produced a pronounced 
anticancer activity against ovarian cancer cells 
[59]. Similarly, an additive to synergistic efficacy 
was produced when Ad-mda-7/IL-24 was com-
bined with inhibitors against NFκB, Mcl1, and 
heat shock protein-90 (Hsp-90) [60–62]. 
Combined treatment of histone deacetylase 
(HDAC) inhibitors with Ad-mda7 produced 

greater antitumor activity against pancreatic can-
cer cells and glioma [63, 64]. Combining conven-
tional chemotherapeutics such as doxorubicin 
and temozolomide with Ad-mda7 also improved 
the antitumor efficacy against osteosarcoma and 
melanoma [65, 66]. Finally, radiation therapy in 
combination with Ad-mda7 not only increased 
DNA damage and greater antitumor activity but 
also inhibited angiogenesis and reverted drug- 
resistant tumor cells to temozolomide treatment 
[67, 68].

7.3  IL-24 as an Inhibitor 
of Tumor Angiogenesis

The initial report on the anti-angiogenic activity 
of IL-24 stemmed from the reduced CD31- 
positive endothelial vessel staining in Ad-mda7- 
treated lung tumor tissue and inhibition of 
endothelial cells to form capillary tubes in vitro 
[19]. This led to the testing of the antiangiogenic 
activity of Ad-mda7 in in vitro [52, 69] as well as 
in in vivo studies [52, 57, 67]. Ad-mda7 treat-
ment of prostate tumor cells reduced vascular 
endothelial growth factor (VEGF) expression by 
inhibiting the Src kinase activity [69]. Concurring 
with these results was the report by Nishikawa 
et  al. who showed Ad-mda7 reduced VEGF-
mediated angiogenesis when combined with 
radiation therapy [67]. In a follow-up study, com-
bining Ad-mda7 with the anti-VEGF inhibitor, 
bevacizumab, almost completely abolished 
VEGF in the extracellular environment and sig-
nificantly suppressed tumor growth in vivo [57]. 
However, the key evidence for the anti-angio-
genic activity of IL-24 was revealed using solu-
ble IL-24 protein in in vitro and in vivo studies 
[52]. In vitro, addition of soluble IL-24 protein to 
HUVEC and HMVEC inhibited VEGF and basic 
fibroblast growth factor (bFGF)-induced endo-
thelial cell differentiation to form capillary tubes, 
and cell migration in a dose-dependent manner. 
The antiangiogenic activity exerted by IL-24 was 
found to be more potent than known antiangio-
genic agents such as endostatin, interferon 
gamma (IFN-γ), and IFN-inducible protein-10 
(IP-10). That the inhibitory activity occurred via 
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the IL-22 receptor was demonstrated using an 
anti-IL-22 antibody that abrogated the inhibitory 
activity of IL-24 on HUVEC capillary tube for-
mation. In vivo, subcutaneous (s.c.) implantation 
of a co- mixture of A549 tumor cells (which 
express low levels of IL-24 receptors) with 
human embryonic kidney-293 (HEK293) stably 
transfected with human IL-24 cDNA and produc-
ing soluble IL-24, not only suppressed tumor 
growth established in the lower right flank of 
nude mice, but also suppressed the growth of the 
contralateral tumor established on the left lower 
flank of mice. Note, the contralateral tumor com-
prised of only A549 lung tumor cells. This result 
indicated that soluble IL-24 protein detected in 
the circulating blood was produced from the right 
flank tumor and inhibited the contralateral tumor 
by suppressing tumor angiogenesis. This was the 
first study that demonstrated the direct antiangio-
genic activity for IL-24.

7.4  IL-24 as an Inhibitor of Cell 
Invasion and Metastasis

Establishment of tumor metastasis in a different 
location of the same organ (e.g., contralateral 
lobes of the lung) or at a distant site in a different 
organ (e.g., lung tumor metastasizing to the 
brain) requires tumor cell extravasation and 
intravasation and involves a series of finely 
orchestrated cellular and molecular processes. 
Key to these processes includes tumor cell migra-
tion and invasion. Studies showed Ad-mda7 
treatment reduced focal adhesion kinase (FAK) 
activity resulting in significant inhibition of lung 
tumor cell migration and invasion in vitro [70]. In 
a follow-up study, Panneerselvam et  al. [71] 
using a doxycycline-inducible system showed 
that induction of IL-24 protein inhibited cell 
migration of lung cancer cells by disrupting the 
chemokine receptor-4 (CXCR-4)/stromal- 
derived factor (SDF) axis. In the same study, the 
authors showed that incorporating CXCR4 inhib-
itors such as AMD3100 and SJA5 greatly 
enhanced the suppressive activity of IL-24 on 
tumor cell migration. Molecular studies showed 
IL-24 post-transcriptionally reduced the half-life 

CXCR4 mRNA resulting in decreased protein 
expression. These important observations pro-
vide opportunities for testing new combinatorial 
therapies with IL-24-therapy for eliminating the 
metastatic properties of tumor cells thereby offer-
ing improved treatment outcomes and increased 
survival benefits.

7.5  IL-24 as an Inhibitor 
of Cancer Stem Cells

The presence of cancer stem cells (CSCs) or can-
cer stem-like cells, albeit low in number, within 
an actively growing tumor pose challenges in 
cancer treatment. CSCs are relatively resistant to 
conventional therapies and are hard to detect and 
eliminate resulting in their contribution in drug 
resistance, disease relapse, metastasis, and death. 
Therefore, availability of therapeutics that can 
effectively eliminate CSCs will reduce disease 
relapse and help to achieve better treatment out-
comes. In this context, IL-24 has been tested for 
its cytotoxicity against CSCs. The first report on 
the ability of IL-24 to kill CSCs was demon-
strated in a breast cancer model [72] in which 
proliferation of CSCs was suppressed by 
Ad-mda7, in vitro, by inhibiting the beta-catenin/
Wnt signaling. Furthermore, in  vivo studies 
showed growth of tumors generated from CSCs 
was effectively controlled upon Ad-mda7 treat-
ment. The results from this study were subse-
quently validated in two additional, but separate 
set of studies, using prostate and laryngeal cancer 
models [73, 74]. In the prostate cancer model, 
IL-24 expression reduced the stemness of pros-
tate cancer cells and sensitized the tumor cells to 
chemotherapy [73]. In the laryngeal tumor model, 
IL-24 reduced the CD133+ cells indicative of 
suppression of CSC or tumor initiating cell pro-
liferation [74]. While additional validation of 
these study results is warranted, it is nevertheless 
evident that IL-24 does exert an inhibitory effect 
on CSCs, an important and hard to eradicate cell 
population present within the tumor 
microenvironment.
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7.6  IL-24 as an Activator 
of Immune Cell Function

The first evidence for IL-24 possessing cytokine 
function was reported in 2002 by Caudell et al. 
[75]. The authors could detect IL-24 protein 
expression in human peripheral blood mononu-
clear cells (PBMC) primarily in CD19+ B cells 
and CD56+ natural killer (NK) cells. Further, 
treatment of PBMC with lipopolysaccharide 
(LPS) or phytohemagglutinin (PHA) resulted in 
increased IL-24 protein expression in the CD9+ 
and CD56+ subset of lymphocytes. Addition of 
soluble IL-24 protein to PBMCs resulted in the 
production and secretion of proinflammatory 
cytokines such as tumor necrosis factor-alpha 
(TNFα), interleukin 6 (IL-6), and interferon 
gamma (IFN-γ). Additionally, secretion of IL-12 
and GMCSF was also noted albeit less than 
TNFα, IL-6, and IFN-γ. The cytokine-activating 
effect of IL-24 on PBMCs, however, was com-
pletely abrogated in the presence of IL-10 protein 
thereby resulting in a loss of TNFα, IFN-γ, IL-12, 
and GMCSF. Loss of IL-6 and IL-1β, however, 
was observed to be partial. These data indicated 
that although both IL-24 and IL-10 belong to the 
same cytokine family, they have opposing effects 
and operate as type 1 (Th1) and type 2  (Th2) 
cytokines respectively. This study, while estab-
lishing the cytokine function of IL-24, did not 
conduct any experiments to demonstrate the abil-
ity of IL-24 to elicit immune cell-mediated tumor 
cell cytotoxicity.

The real test of IL-24’s ability to function and 
elicit T-cell-mediated tumor cell cytotoxicity was 
conducted by Miyahara et al. [76]. In their study, 
treatment of murine UV2237m fibrosarcoma 
established in an immunocompetent syngeneic 
mouse model with Ad-mda7 not only suppressed 
tumor growth but completely eradicated tumors 
in few treated mice. Challenging these tumor- 
free mice with a second dose of tumor cells com-
pletely rejected tumor growth indicating the 
involvement of antitumor immunity. Furthermore, 
splenocytes isolated from vaccinated mice and 
tumor-free mice had higher proliferative rate and 
increased Th1 cytokine (TNFα, IL-1, IFN-γ, 
IL-12) expression compared to splenocytes from 

non-vaccinated mice or those that had progres-
sive tumor growth. Finally, phenotypic character-
ization of T-cell subsets from splenocytes of 
Ad-mda7-treated mice revealed an increase in the 
number of CD3+/CD8+ T cells indicating activa-
tion of cytotoxic CD8+ T cells, important for 
eradicating actively growing tumor. This study 
clearly established the ability of IL-24 to func-
tion as a Th1 cytokine and activate memory T 
cells required for effectively eradicating residual 
disease. Finally, this study showed that IL-24 
functions as an anticancer vaccine thereby paving 
the way for further characterization and testing of 
IL-24 as a cancer therapeutic.

In two independent follow-up studies con-
ducted using colon cancer model, IL-24 was 
reported to function as a Th1 cytokine and acti-
vate the host immune response resulting in sup-
pression of tumor growth [77, 78]. Ma et al. [77] 
showed recombinant GST-IL-24 fusion protein 
treatment altered the tumor microenvironment 
into a robust immune-activated environment that 
resulted in heightened number of CD4+ and 
CD8+ T-cell population in CT-24-colon tumor- 
bearing mice. Additionally, increased IFN pro-
duction was observed in CD8+ T cells isolated 
from the splenocytes of GST-IL-24-treated 
tumor-bearing mice. Analysis of tumor infiltrat-
ing lymphocytes (TILs) showed GST-IL-24 
reduced FoxP3+ T-regulatory cells (TRegs) while 
concomitantly increasing CD45+/CD4+ and 
CD45+/CD8+ T cells. In vitro cytotoxicity T-cell 
assay showed CD8+ T cells but not CD4+ cells 
effectively killed tumor cells. Intravenous (i.v.) 
administration of GST-IL24 protein to CT26 
colon tumor-bearing mice showed slowing of 
tumor growth compared to untreated control 
mice. Depletion of CD8+ and CD4+ cells from 
the tumor-bearing mice prior to GST-IL-24 treat-
ment showed loss of tumor-suppressive activity 
in CD8+ depleted mice but not in CD4+ depleted 
mice clearly indicating that CD8+ T cells are 
required for IL-24-mediated immune activity. 
Finally, colon cancer patients showed a strong 
correlation between IL-24 expression, CD4+/
CD8+ T-cell population, and tumor burden. Loss 
or reduced IL-24 expression correlated with a 
higher number of Fox3P+ T cells and higher 
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grade of colon cancer. Inversely, high IL-24 
expression correlated with higher CD4+/CD8+ 
population and lower tumor burden and better 
survival outcomes.

Similar observation was made by Zhang et al. 
[78], who compared blood and tissue samples 
from 29 patients diagnosed with colon cancer 
and 15 normal healthy individuals. mRNA 
expression for IL-24 was decreased in colon can-
cer tissues. In contrast, no difference in IL-24 
receptor expression was observed between colon 
cancer patients and healthy individuals. TILs iso-
lated from the tumors and treated with low con-
centration of IL-24 protein suppressed CD4+ 
proliferation and reduced cytokine production. In 
contrast, treatment of TILs with higher concen-
tration of IL-24 protein activated CD4+ cell pro-
liferation and increased cytokine production 
along with a concomitant decrease in Fox3P+ 
TReg cell population. Finally, high IL-24 protein 
concentration boosted the cytotoxic activity of 
CD8+ T cells while lower IL-24 protein concen-
tration had no effect demonstrating the need for a 
critical amount of IL-24 to be present within the 
tumor microenvironment to elicit a robust antitu-
mor immune response.

Further, a phase I clinical study was conducted 
to test Ad-mda7 for the treatment of solid tumors. 
Intratumoral (i.t.) injection of Ad.5-mda-7 
(INGN-241) was found to be safe and exhibited 
significant clinical efficacy in approximately 
44% of the cancer patients treated with multiple 
doses of Ad-mda7 [79, 80]. Analysis of pre- and 
post-treatment tumor tissue samples post 
Ad-mda7 treatment showed IL-24 protein expres-
sion and induction of tumor cell apoptosis as 
measured by TUNEL staining. Furthermore, 
change in cytokine profile and CD4+/CD8+ cell 
population was observed following Ad-mda7 
treatment. The results from this clinical study 
convincingly demonstrated Ad-mda7 operated 
both, as a tumor suppressor and a Th1 cytokine, 
inducing apoptotic cell death and stimulating a 
strong antitumor immune response [81].

In summary, IL-24 has multifunctional (anti-
tumor, antiangiogenic, antimetastatic, and proim-
mune) properties (Fig.  7.1) that warrant its 

development as an anticancer drug for treating 
cancer patients.

7.7  Concluding Remarks

From the time of its discovery and the first report 
about its antitumor activity in early 1990s, there 
has been tremendous interest to investigate and 
develop IL-24 as a bio-therapeutic for cancer 
treatment. While results from preclinical studies 
have led to the testing of the antitumor activity of 
IL-24  in a phase I clinical trial, gaps in knowl-
edge about its mode of action exist. For example, 
how endogenous IL-24 expression is regulated in 
normal and tumor cells remains to be explored. 
Though the antitumor activity of IL-24 is well- 
studied, its function as a tumor suppressor and a 
cytokine and the signaling mechanisms it 
employs to separate the two biological functions 
are unknown. While the IL-24-mediated antian-
giogenic activity has been documented using 
endothelial cells as a model, the impact of IL-24 
on pericytes especially of the type 2 phenotype is 
unknown [82]. Similarly, testing of IL-24 in the 
context of immune-based studies is limited. 
Finally, testing and advancing IL-24 protein- 
based cancer therapy will be beneficial for clini-
cal application. Addressing these questions will 
unfold new and exciting information that will 
enable scientists to successfully reconfigure the 
tumor microenvironment to elicit a strong antitu-
mor immune response and improve IL-24-based 
cancer therapy.
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Abstract

Substantial new information has emerged sup-
porting the fundamental role of the cytokine 
interleukin-31 (IL-31) in the genesis of 
chronic pruritus in a broad array of clinical 
conditions. These include inflammatory con-
ditions, such as atopic dermatitis and chronic 
urticaria, to autoimmune conditions such as 
dermatomyositis and bullous pemphigoid, to 
the lymphoproliferative disorders of 
Hodgkin’s disease and cutaneous T-cell lym-
phoma. IL-31 is produced in greatest quantity 
by T-helper type 2 (Th2) cells and upon 
release, interacts with a cascade of other cyto-
kines and chemokines to lead to pruritus and 
to a proinflammatory environment, particu-
larly within the skin. Antibodies which neu-
tralize IL-31 or which block the IL-31 receptor 
may reduce or eliminate pruritus and may 

diminish the manifestations of chronic cutane-
ous conditions associated with elevated IL-31. 
The role of IL-31 in these various conditions 
will be reviewed.
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Since its discovery more than 15 years ago, inter-
leukin- 31 (IL-31) has been implicated in the 
pathogenesis of a variety of immune-mediated 
conditions. Recent results suggest significant 
interactions of IL-31 with other type 2 (Th2) 
cytokines and chemokines in processes as diverse 
as cutaneous T-cell lymphoma (CTCL), follicular 
B-cell lymphoma, dermatomyositis, and atopic 
dermatitis. Importantly, the prominent role of 
IL-31 in causing pruritus has produced efforts to 
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target IL-31 directly as a strategy to ameliorate 
chronic pruritus. These topics will be briefly 
summarized in this chapter.

8.1  Introduction

IL-31 is a short-chain four-helix bundle cytokine 
that is produced by a variety of immune cell 
types, particularly by skin-homing CD4+ T cells. 
The initial discovery by Dillon and colleagues 
[1], through a functional cloning approach in 
cells co-expressing the heterodimeric IL-31 
receptors, IL31RA and OSMRβ, supported 
observations that IL-31 was an important media-
tor in inflammatory skin disease, and, in particu-
lar, in the etiology of pruritus (Fig.  8.1). When 
overexpressed in transgenic mice, it was found to 
cause dermatitis, alopecia, and pruritus [1], with 
nearly incessant scratching behavior among the 
mice. These observations have served to stimu-
late significant investigation of the role of 
IL-31 in the pathogenesis of pruritus in numerous 
disease states which are inflammatory in nature 
as well as in malignancies associated with gener-
alized pruritus.

8.2  Cellular Production of IL-31

Various cell types, particularly those of the 
immune system, have been observed to produce 
IL-31. Early work suggested that IL-31 was pre-
dominantly produced by CD4+/CD45RO+ T 
cells [2]. More recently, CD4+ skin-trafficking T 
cells have been found to be important sources of 
IL-31, which is highly relevant to cutaneous 
inflammatory conditions as well as to cutaneous 
lymphoproliferative processes mediated by 
malignant CD4+ T cells [3].

Many of the clinical conditions in which IL-31 
has been found to play a role in the pathogenesis 
of pruritus and inflammation have been consid-
ered primarily Th2-driven immunologic pro-
cesses. In this regard, IL-31 appears to be 
produced predominantly by Th2 T cells [1, 2]. 
However, Th1 T-cell clones can be induced 
in vitro to produce IL-31 in the presence of IL-4 

demonstrating the important influence that the 
latter Th2 cytokine exerts on IL-31 production 
[4]. Included among the disorders with a Th2 bias 
is atopic dermatitis, which is considered a classic 
Th2-driven disease in which IL-4 and IL-13 are 
important mediators of the pathologic responses 
observed in the skin. Recent studies have sug-
gested that IL-4 is a key stimulator of IL-31 pro-
duction [4]. As discussed below, IL-31 is 
considered to play a critical role in the intense 
pruritus typically observed in severe atopic der-
matitis [5]. Pruritic atopic patients treated with an 
IL-31 receptor-blocking antibody experience a 
significant reduction in pruritus, leading to 
reduced scratching behavior and improved dis-
ease manifestations [6]. These observations 
strongly support the importance of IL-31 in the 
symptoms and clinical manifestations of atopic 
dermatitis.

In addition, leukemic forms of CTCL, consid-
ered to be predominantly a malignancy of 
 skin- trafficking CD4+/CLA+/CCR4+ T cells 
manifesting a Th2 bias, are also associated with 
elevated IL-31 protein in serum and IL-31 mRNA 
in skin lesions of patients with pruritus [7]. 
Improvement in pruritus with treatment of CTCL 
has been associated with reduced IL-31 levels at 
various disease sites, further indicating the 
importance of IL-31 in the genesis of generalized 
pruritus [3]. The importance of the malignant T 
cells in contributing to increased production of 
IL-31 is discussed further below.

It has been demonstrated that, in addition to 
CD4+ T cells, CD8+ T cells may also produce 
IL-31, but typically at lower levels in compari-
son to CD4+ T cells [7]. Other cell types that are 
involved in inflammatory reactions, such as mast 
cells, eosinophils, basophils, macrophages, and 
dendritic cells, may also release IL-31 [8, 9]. 
Moreover, keratinocytes and dermal fibroblasts 
have also been proposed as possible sources of 
IL-31 [10]. In the neoplastic setting, malignant 
CD4+ T cells obtained from patients with CTCL 
have the capacity to produce IL-31 with levels 
correlating with the degree of pruritus in 
advanced disease [7]. In another lymphoprolif-
erative malignancy, follicular B-cell lymphoma, 
lymph node germinal centers of patients with 
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active disease have also been observed to be a 
source of IL-31 at levels greater than in normal 
germinal centers [11].

The role of type 2 innate immune cells, 
referred to as ILC2s, which are critical for the 
regulation of Th2 T cells, are also likely impor-
tant in regard to effects on IL-31 production 
[12]. These cells may be found in the circulation 

and at higher levels within the skin. Although it 
is presently uncertain whether ILC2s directly 
produce IL-31, they do produce IL-4 and IL-13, 
which play a critical role in the activation, dif-
ferentiation, and growth of Th2 cells [13]. 
Moreover, it is these very cytokines, as men-
tioned below, that may activate various cell types 
to produce IL-31 and enhance its release.

Fig. 8.1 The interaction between IL-31 and its receptor 
activates signaling pathways that induce pruritus. The 
IL-31 receptor consists of a heterodimeric receptor com-
posed of IL-31RA and OSMRβ. The receptor is expressed 
on keratinocytes, dendritic cells, and sensory neurons 
conducting the itch signal, among other cell types. 
Binding of IL-31 to its receptor activates the JAK/STAT, 
PI3K/AKT, and MAPK pathways, through which down-
stream signaling induces pruritus. The IL-31 receptor is 

upregulated in response to IL-4 and IL-13. Abbreviations: 
CD cluster of differentiation, Th2 T helper 2, IL interleu-
kin, IL-31RA interleukin-31 receptor-alpha, OSMRβ 
oncostatin-M specific receptor subunit beta, JAK Janus 
kinase, STAT signal transducer and activator of transcrip-
tion, SHP-2 Src homology region 2 domain-containing 
phosphatase-2, PI3K phosphoinositide 3-kinase, AKT 
protein kinase B, MAPK mitogen-activated protein kinase
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8.3  IL-31 Interactions with Other 
Cytokines and Chemokines

IL-31 has significant regulatory interactions with 
other T-cell-derived cytokines, as well as cyto-
kines produced by innate immune cells. As 
alluded to previously, IL-31 is produced predom-
inantly by Th2 T cells and has been considered to 
be a member of the Th2 family of cytokines, with 
the greatest production by circulating CD4+ Th2 
cells. Evidence for the Th2 nature of IL-31 is 
demonstrated by the clear association of this 
cytokine with the pathogenesis of Th2-type 
inflammatory disorders including atopic dermati-
tis and allergic asthma [14], as well as with 
CTCL, which tends to have a Th2 bias [7].

ILC2s are important regulators of Th2 T-cell 
activation and differentiation, and, as such, likely 
have significant effects on IL-31 production by 
Th2 cells (Fig. 8.2). ILC2s are regulated by IL-25, 
which is produced by a variety of hematopoietic 
cells, cells of the immune system, and epithelial 
cells, and by IL-33, which can be produced by 
keratinocytes and other epithelial cells [15]. 
Furthermore, IL-33 can be rapidly released by 
keratinocytes in response to cutaneous microbial 
agents, such as Staphylococcus aureus, or by 
agents that inflict damage to the skin, such as 
ultraviolet light and scratching [16]. Thus, IL-33 
functions as an alarmin with rapid release in 
response to danger signals leading to innate and 
adaptive immune responses [17]. In addition, 
IL-31 may directly induce release of certain cuta-
neous antimicrobial peptides, including beta- 
defensins which can further amplify the 
production of IL-31 through downstream stimula-
tion of IL-33. Both IL-25 and IL-33 are critical in 
the activation and growth of ILC2s, which in turn 
are potent producers of IL-4 and IL-13, likely 
leading to the paracrine enhancement of Th2 
cells. Moreover, IL-33 enhances the expression of 
GATA3, a critical transcription factor for the pro-
motion of Th2 responses leading ultimately to 
IL-4, IL-5, and IL-13 enhancement [18].

Upon induction of ILC2 cells, IL-4 produced 
by these cells and, in turn, by Th2 T cells, 
appears to be an essential factor in promoting 
IL-31 production by Th2 cells [4]. Moreover, 

other cell types under the influence of IL-4, 
including mast cells, may also demonstrate 
IL-31 production [19]. Furthermore, there 
appears to be collaboration between multiple 
cytokines leading to enhanced IL-31 production. 
One example is the combined effect of IL-33 
with IL-4 to yield increased IL-31 production 
from mast cells [19]. This effect may be further 
magnified by IgE on the surface of mast cells 
and by other local stimuli such as cutaneous 

Fig. 8.2 The role of type 2 innate immune cells (ILC2s) 
in inducing IL-31 production by CD4+ Th2 cells. Type 2 
innate immune cells produce IL-4 and IL-13, which play 
an integral role in the activation, differentiation, and 
growth of Th2 cells. ILC2s are regulated by IL-25, pro-
duced by various hematopoietic and immune cells, and 
IL-33, produced by keratinocytes in response to cutaneous 
microbes, ultraviolet light, and scratching. Both IL-25 and 
IL-33 promote the activation and growth of ILC2s, which 
in turn produce IL-4 and IL-13, inducing IL-31 produc-
tion by CD4+ Th2 cells. Abbreviations: IL interleukin, CD 
cluster of differentiation, Th2 T helper 2, ILC2s type 2 
innate lymphoid cells, UV ultraviolet
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beta-defensins, which are released during trauma 
or infection [20]. In addition, a combination of 
IL-4 with IL-33 may synergistically enhance 
IL-31 production by Th2 T cells [21].

Another example of the linked effects of cyto-
kines and chemokines to augment IL-31 produc-
tion, and therefore pruritus within the cutaneous 
milieu, involves the association between IL-31 
and chemokines that are essential for recruitment 
of CD4+ skin-trafficking T cells, particularly Th2 
cells with the capacity to produce additional IL-4 
and IL-31. Notably, IL-31 can induce the release 
of the chemokines CCL17 and CCL22 from kera-
tinocytes and dendritic cells [22]. CCL17 and 
CCL22 are ligands for the chemokine receptor 
CCR4, which is expressed on CD4+/CLA+ skin- 
trafficking T cells and is critical for recruitment 
of and for homeostasis of T cells in the skin, par-
ticularly in response to inflammatory stimuli. 
Therefore, cutaneous chemokines induced by 
IL-31 participate in the recruitment of CCR4+/
CD4+ skin-trafficking T cells, which are the very 
cells with the capacity to produce IL-31, subse-
quently leading to further amplification of the 
pruritic response. It is also apparent that scratch-
ing may release skin defensins from the cutane-
ous environment leading to enhanced IL-33 
production, which can also augment IL-31 pro-
duction in the local milieu, leading to a repetitive 
itch-scratch cycle [20].

Another interaction between immune cells 
and chemokines leading to enhanced potential 
for pruritus is the observation that local eosino-
phils may induce the production of CCL17 and 
CCL22, leading to recruitment of skin-trafficking 
T cells into the skin [23, 24] (Fig. 8.3). Because 
the skin-trafficking T cells in this setting are typi-
cally Th2 cells that produce IL-5, this cytokine 
has the potential to amplify the itch response by 
stimulating the growth of cutaneous eosinophils 
with further production of CCL17 and CCL22, as 
well as release of IL-31 from endogenous 
eosinophils.

Basophils have also been demonstrated to be a 
source of IL-31 [8]. IL-31 can then induce the 
release of CCL2 from immune cells which can 
contribute to basophil recruitment. Basophils 
have the capacity to release IL-31 in response to 

IgE-dependent stimulation. Patients with chronic 
spontaneous urticaria manifest increased skin 
infiltration with basophils and have increased 
serum levels of IL-31. Treatment of this condi-
tion with omalizumab, which directly binds free 
IgE, and therefore inhibits IgE binding to both 
mast cells and basophils, results in clinical 
improvement with reduced serum levels of IL-31 
and thus decreased pruritus [25].

8.4  IL-31 Receptor Expression

The IL-31 receptor is a heterodimeric receptor 
composed of IL-31 receptor-alpha (IL-31RA) 
and oncostatin M receptor beta (OSMRβ) [26]. 
The heterodimeric receptor has been found to be 
expressed on keratinocytes and on sensory neu-
rons that conduct the itch signal, as well as on 
multiple other cell types including macrophages 
and colonic epithelial cells [27]. Binding of IL-31 
to its receptor results in the phosphorylation and 
activation of the JAK/STAT, PI3K/AKT, and 
MAPK signaling pathways [28]. Blocking of the 
receptor inhibits downstream signaling within 
these tissues and can reduce IL-31-mediated pru-
ritus [29]. The receptor appears to be upregulated 
in response to IL-4 and IL-13, indicating that in 
clinical conditions manifesting a Th2 bias, there 
is an increased opportunity to trigger the receptor 
in response to IL-31, leading to an enhanced state 
of pruritus. In regard to CTCL, which in advanced 
forms is clearly associated with a Th2 bias, our 
collaborative work has demonstrated higher lev-
els of expression of the heterodimeric receptor 
within the skin of pruritic patients compared to 
non-pruritic patients with CTCL or within the 
skin of healthy volunteers [30]. Although the lev-
els of expression were observed to correlate with 
degree of pruritus among this patient population, 
they did not correlate with stage of CTCL [30].

Recent evidence from Perrigoue and col-
leagues involving a murine model of helminth 
infection has suggested a regulatory circuit 
between Th2 cytokine expression and expression 
of the IL-31 receptor [31]. IL-31RA is constitu-
tively expressed in the colon and exposure to 
Trichuris induced the expression of IL-31  in 
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CD4+ T cells. In response to Trichuris infection, 
IL-31RA−/− knockout mice exhibited increased 
Th2 cytokine responses in the mesenteric lymph 
nodes as well as elevated serum IgE and IgG1 
levels compared with wild type IL-31RA express-
ing mice. Therefore, the expression of the IL-31 
receptor appears to mediate a counter-regulatory 
effect to induce negative feedback on Th2 cyto-
kine release.

8.5  Disease States and IL-31

8.5.1  Atopic Dermatitis

Emerging evidence currently supports the integral 
role of IL-31 in the pathogenesis of chronic pruri-
tus in numerous inflammatory, autoimmune, and 
malignant disorders. This concept is particularly 
apparent among patients with atopic dermatitis and 

Fig. 8.3 The role of eosinophils and basophils in mediat-
ing IL-31 production. (a) Eosinophils release IL-31 endog-
enously in addition to inducing eosinophils to produce 
CCL17 and CCL22, which are ligands for the chemokine 
receptor CCR4 on skin-trafficking Th2 cells, recruiting 
these Th2 cells into the skin. These T cells then produce 
IL-5, stimulating the growth of eosinophils and further pro-
duction of IL-31, CCL17, and CCL22. IL-31 also stimu-
lates keratinocytes and dendritic cells to release CCL17 and 

CCL22. (b) Basophils release IL-31  in response to IgE-
dependent stimulation. IL-31, in turn, induces the release of 
CCL2, which promotes basophil recruitment. IL-31 also 
leads to production of CCL26, a chemotactic factor for both 
eosinophils and basophils, which then amplify the local 
inflammatory reaction with further IL-31 production. 
Abbreviations: CCR C-C motif chemokine receptor, CD 
cluster of differentiation, Th2 T helper 2, IL interleukin, 
CCL C-C motif ligand, Ig immunoglobulin
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pruritus. Atopic dermatitis is a common chronic 
inflammatory skin condition present in up to 15% 
of children and a smaller percentage of adults [32]. 
Th2 cytokines, including IL-4, IL-5, and IL-13, are 
markedly elevated in the skin of atopic patients 
with acute lesions [33, 34]. However, it must be 
stressed that other cytokines, including increased 
IL-22, may also play a role in the pathogenesis of 
atopic dermatitis [35]. Moreover, during the 
chronic phase of atopic dermatitis, interferon 
gamma may also play a role in perpetuating inflam-
mation, although some studies have suggested a 
benefit of treatment with interferon gamma.

In concert with elevated Th2 cytokines, ILC2 
cells are also increased in the skin of patients 
with atopic dermatitis [36]. As mentioned, 
enhanced production of the epithelial cytokines, 
IL-25 and IL-33, likely plays a role in the 
enhanced growth of the ILC2 cells. Increased 
ILC2 cells with production of Th2 cytokines and 
other factors leading to Th2 T-cell growth and 
activation can further magnify the Th2 bias in 
atopic dermatitis.

The augmented growth of ILC2 cells along 
with Th2 cells would be expected to further 
enhance IL-31 production in the skin of atopic 
patients. It is noteworthy that IL-31 levels in the 
skin and serum of patients with atopic dermatitis 
have been observed to be elevated in comparison 
to normal volunteers [5, 37]. Furthermore, CD4+/
CLA+ skin-trafficking T cells isolated from the 
peripheral blood of patients with atopic dermati-
tis have been shown to be capable of producing 
higher levels of IL-31 in comparison to this cel-
lular population isolated from healthy donors or 
from patients with psoriasis [1].

The importance of the IL-31 receptor in atopic 
dermatitis has also been demonstrated. IL-31 
receptor levels are clearly elevated on the kerati-
nocytes of individuals with atopic dermatitis 
[38]. Although levels of IL-31 have been elevated 
in the serum of atopic patients, a consistent rela-
tionship between extent of pruritus and absolute 
levels of IL-31 has not been observed.

A significant clinical experience has been 
developed using cytokine-blocking agents in an 
effort to treat the inflammatory and pruritic 
signs and symptoms among patients with atopic 

dermatitis. Dupilumab, a frequently used mono-
clonal antibody that blocks the IL4α receptor, 
inhibits cytokine signaling by both IL-4 and 
IL-13. This therapeutic agent, which is espe-
cially well-tolerated among all age groups, can 
yield profound improvement in disease mani-
festations in the majority of treated patients 
[39]. Importantly, pruritus may be completely 
eliminated, even among those with the most 
severe symptoms. Dupilumab, by virtue of 
blocking IL-4 signaling, may also reduce pro-
duction of IL-31 (AH Rook; unpublished obser-
vations), which then secondarily would lead to 
reduced pruritus.

Antibodies that neutralize IL-13 have also 
been used in clinical trials for atopic dermatitis. 
Both tralokinumab and lebrikizumab have pro-
duced significant improvement in the clinical 
manifestations of atopic dermatitis [40, 41]. It is 
not clear whether any of the beneficial effects 
were mediated through an effect on IL-31 
production.

Nemolizumab is a humanized monoclonal 
antibody against the IL-31α receptor [6]. In sev-
eral clinical trials for atopic dermatitis, this anti-
body resulted in improvement in dermatitis 
scores compared to placebo in randomized, 
blinded studies. Importantly, significant improve-
ments in pruritus were observed and maintained 
throughout a 52-week period during which 
patients received the antibody every 4 weeks 
[42].

8.5.2  Autoimmune 
and Autoinflammatory 
Diseases

A number of autoimmune and autoinflammatory 
conditions affecting the skin can be associated with 
significant degrees of pruritus (Table  8.1). These 
conditions include bullous pemphigoid, psoriasis, 
and dermatomyositis. Among pruritic patients hav-
ing any of these three clinical conditions, elevated 
IL-31 levels at sites of cutaneous lesions have been 
observed [47]. Psoriasis is considered to be a Th17-
driven systemic inflammatory disease with variable 
degrees of skin involvement characterized by scaly 
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patches and plaques involving the skin surface. 
Nevertheless, at least one group has detected ele-
vated levels of IL-31 in pruritic psoriatic skin [43]. 
However, another group failed to observe any cor-
relation between severity of pruritus in psoriasis 
and serum levels of IL-31 [44]. Thus, levels of 
IL-31 within the inflamed skin in proximity to sen-
sory nerves that can be activated by IL-31 may be 
most responsible for increased pruritus.

Dermatomyositis is an autoimmune disorder 
involving multiple tissues with inflammation pre-
dominantly involving skin and muscle. Many 
patients with this disorder complain of pruritus. 
In this regard, Kim and colleagues detected 
increased IL-31 mRNA within active skin lesions 
compared to clinically uninvolved skin [45]. 
Moreover, levels of IL-31 mRNA positively cor-
related with itch score. In addition, increased 
expression of the IL-31 receptor was detected 
within active skin lesions on immunofluores-
cence studies [45]. Examination of immune cells 
isolated from skin lesions demonstrated a variety 
of cell types producing IL-31, including CD4+ T 
cells, CD8+ T cells, and dendritic cells. CD4+ T 
cells appeared to produce the highest amounts of 
IL-31 upon activation [45].

Bullous pemphigoid is another autoimmune 
disorder accompanied by significant pruritus. 
Bullous pemphigoid is characterized by IgG 
autoantibody-mediated subepidermal skin blis-
tering with the presence of numerous eosinophils 

within the skin and within the blister fluid. Active 
skin lesions are typically associated with marked 
pruritus. Notably, IL-31 levels have been found 
to be remarkably elevated within skin blister fluid 
[9]. Eosinophils within lesions represent the most 
significant source of IL-31 production [9]. 
Moreover, eosinophils isolated from the circula-
tion have been observed to be producing increased 
IL-31. It is also noteworthy that IL-31 may 
induce the production of CCL26 from eosino-
phils, serving as a chemotactic agent for eosino-
phils and basophils that can then further amplify 
the local inflammatory reaction with additional 
IL-31 production [46].

8.5.3  Malignancy-Associated 
Pruritus: A Focus on CTCL

Chronic generalized pruritus is considered to be a 
sign of possible malignancy. This symptom is 
particularly associated with lymphomas, both 
Hodgkin lymphoma as well as non-Hodgkin 
lymphoma. In that regard, evidence has sup-
ported the role of IL-31  in the pathogenesis of 
pruritus in various lymphomas. The most exten-
sive work has been performed on CTCL, upon 
which we will focus.

CTCL is a heterogeneous group of non- 
Hodgkin T-cell lymphomas associated with malig-
nant skin-trafficking lymphocytes [48]. The most 

Table 8.1 Current evidence on IL-31 in the skin and serum and its major cellular sources in various dermatologic 
diseases in humans

Disease Current evidence Cellular sources References
Atopic dermatitis Increased IL-31 in skin and 

serum
Increased IL-31R in skin

Th2 cells, ILC2s Cornelissen et al. [38]
Meng et al. [37]
Nobbe et al. [5]
Salimi et al. [36]

Psoriasis Increased IL-31 in skin Unknown Nattkemper et al. [43]
Czarnecka-Operacz et al. 
[44]

Dermatomyositis Increased IL-31 in skin
Increased IL-31R in skin

CD4+ T cells Kim et al. [45]

Bullous pemphigoid Increased IL-31 in skin Eosinophils Kunsleben et al. [46]
Rüdrich et al. [9]

Cutaneous T-cell 
lymphoma

Increased IL-31 in skin and 
serum

Th2 
cells, CD4 + CD26- cells

Singer et al. [7]
Cedeno-Laurent et al. [3]

Abbreviations: IL-31 interleukin-31, IL-31R interleukin-31 receptor, Th2 T helper 2, ILC2s type 2 innate lymphoid 
cells, CD cluster of differentiation
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common forms of CTCL are mycosis fungoides, 
characterized by cutaneous macules, patches, 
plaques and tumors, and Sézary syndrome (SS), 
characterized by erythroderma, circulating malig-
nant T cells and, often lymphadenopathy [49]. The 
pathogenic cells are typically CD4+/CLA+/
CCR4+ skin-trafficking T cells exhibiting a Th2 
bias [50]. A small percentage of cases exhibit a 
CD8+ phenotype.

Patients with advanced disease often experi-
ence severe pruritus, particularly among patients 
with erythroderma associated with SS, in which 
pruritus may be especially unrelenting and intrac-
table [51, 52]. Afflicted patients are often unable 
to sleep and their ability to concentrate in the 
workplace can be significantly limited. The skin is 
typically heavily infiltrated with malignant T 
cells. These cells, which can be isolated from the 
skin and blood of erythrodermic patients, exhibit 
a Th2 profile with increased IL-4 and IL-13 [53], 
and in many cases, increased IL-5 [54]. 
Furthermore, Singer and colleagues demonstrated 
significant perturbations in IL-31 production in 
both the skin and the blood as well as accompany-
ing significant pruritus in patients with SS [7]. 
Skin biopsies and peripheral blood cells from pru-
ritic patients demonstrated increased IL-31 
mRNA expression (Fig.  8.4). Serum levels of 
IL-31 protein were also elevated among patients 
with pruritus in comparison to patients without 
pruritus or healthy volunteers [7].

It is important to note that during treatment of 
SS with immunomodulatory therapy—including 
either interferon alpha or interferon gamma, 
along with extracorporeal photopheresis and the 
retinoid bexarotene—IL-31 levels declined in the 
serum as the degree of pruritus improved [7]. A 
surprising observation made in several patients 
was that IL-31 serum levels declined with 
improvement in pruritus, despite no change in the 
overall absolute numbers of circulating malig-
nant T cells, which initially suggested that 
another cell type might be implicated in IL-31 
production. Additional studies focused on the 
isolated, purified malignant T cells, distinguished 
from non-malignant T cells by either their domi-
nant V beta T-cell receptor, or upon the expres-
sion of the well-recognized malignant phenotype 

of CD4+/CD26- T cells [7] (Fig. 8.5). When the 
malignant cells were examined directly, it became 
clear that these cells were the highest producers 
of IL-31 among all peripheral blood mononuclear 
cells isolated from SS patients. Notably, in con-
cert with improvements in the degree of pruritus, 
reduced IL-31 production on an individual malig-
nant T-cell basis was observed. Thus, although 
the overall numbers of circulating malignant T 
cells might not have significantly changed, on an 
individual malignant cell basis, the cells produc-
ing IL-31 declined as did the overall serum levels 
of IL-31.

In addition to interferons and photopheresis, 
other therapies for CTCL can ameliorate pruritus 
and disease manifestations. Two FDA-approved 
histone deacetylase inhibitors, vorinostat and 
romidepsin, are notable for their ability to pro-
duce significant improvement in generalized pru-
ritus. The studies of Cedeno-Laurent and 
colleagues demonstrated a reduction in IL-31 
mRNA in peripheral blood T cells in parallel with 
a reduction in pruritus during romidepsin therapy 
[3] (Fig. 8.6). In another study, culture of patients’ 
peripheral blood lymphocytes with vorinostat 
also resulted in the inhibited IL-31 production [3] 
(Fig. 8.7).

Systemic corticosteroids are also known to 
diminish pruritus among patients with advanced 
CTCL.  To examine whether corticosteroids 
diminish IL-31 from malignant T cells, Cedeno- 
Laurent and colleagues cultured patients’ lym-
phocytes with dexamethasone. In the majority of 
samples tested, dexamethasone significantly 
inhibited production of IL-31 [3].

Because the malignant CD4+ T cells in the skin 
and blood of pruritic patients with CTCL are 
responsible for producing increased levels of 
IL-31, therapeutic agents that directly target the 
malignant population would be expected to reduce 
IL-31 secretion, and, therefore, pruritus. In that 
regard, mogamulizumab is an anti-CCR4 mono-
clonal antibody that directly binds to the CCR4 
molecule that is typically upregulated on the sur-
face of the malignant population within the periph-
eral blood [45]. Once bound, the antibody works 
to eradicate the malignant population through 
antibody-dependent cell-mediated cytotoxicity. 
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Reduction in the circulating population of malig-
nant T cells by mogamulizumab is typically asso-
ciated with improvement in clinical signs and 
symptoms of disease, including improvement in 
pruritus [45]. In fact, mogamulizumab has been 
shown to reduce the percentage of IL-31-producing 
T cells [3] (Fig. 8.8).

The ability to reduce the IL-31 production in 
advanced CTCL is, therefore, a highly favorable 
goal with the expectation that the remarkably 
 disturbing symptom of pruritus would be reduced. 
It is anticipated that eliminating chronic scratch-
ing behavior would follow the reduction in IL-31 
levels, leading to improved skin findings. As 
mentioned above, reduced scratching would be 
expected to curb release of IL-33 from keratino-
cytes, and, therefore, less IL-33-stimulated IL-31 
production. Because IL-31 stimulates the release 
of CCL17 and CCL22, chemokines that recruit 
Th2 T cells into the skin, reduced IL-31 may also 
diminish the release of these chemokines consid-
ered to be important cofactors for the skin 

 recruitment of the very cells that are IL-31-
producing cells. Furthermore, reduced IL-31 
would also lead to a decrease in CCL2 and 
CCL26, leading to diminished recruitment of 
eosinophils and basophils within the skin. 
Therefore, therapeutic approaches that directly 
eliminate IL-31 may inhibit the many synergistic 
mechanisms that are in play in advanced CTCL, 
leading to reduced cutaneous inflammation.

8.6  Lessons from Veterinary 
Medicine

Veterinary medicine has advanced more rapidly 
than human medicine in the development of 
newly approved therapeutics for the treatment of 
pruritic conditions, primarily for allergic derma-
titis, in canines. In fact, atopic dermatitis is the 
most common dermatologic disease treated in 
canine patients. The discovery that IL-31 also 
played a role in the canine form of this disease 

Fig. 8.4 PBMC IL-31 mRNA and serum IL-31 correlates 
with marked pruritic symptoms in CTCL patients. (a) 
PBMCs were stimulated with PMA/ionomycin. Increased 
IL-31 mRNA was detected by quantitative RT-PCR from 
PBMCs of CTCL patients with marked pruritus versus 
those with decreasing or absent pruritus, P = 0.006. Note 
that all CTCL patient mRNA values were standardized 
relative to the average values from a selected pool of 13 
aged-matched, normal controls. Error bars: mean ± SEM 
(n: decreasing/absent pruritus = 16; marked pruritus = 13). 
(b) Elevated serum IL-31 levels in CTCL patients with 
pruritus versus those without pruritus, P = 0.0083. Error 

bars: mean ± SEM (n: no pruritus = 14; pruritus = 26). 
Note that the linear range of the assay was 7.8 pg/mL and 
that all samples with a value below 7.8 pg/mL or those 
without any detectable IL-31 were assigned a value of 
7.8  pg/mL and are colored in red; thus, non-pruritic 
patients appear to have a median approaching 7.8  pg. 
Abbreviations: PBMC peripheral blood mononuclear cell, 
IL interleukin, mRNA messenger RNA, CTCL cutaneous 
T-cell lymphoma, PMA phorbol 12-myristate 13-acetate, 
RT-PCR reverse transcription polymerase chain reaction, 
SEM standard error of the mean, pg picograms, ml 
milliliters
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led to the initial development of the Janus kinase 
I (JAK1) inhibitor oclacitinib. Since multiple Th2 
cytokines, including IL-4, IL-13, and IL-31 sig-
nal through JAK1, the downstream effects of 
these cytokines are blocked by oclacitinib, yield-
ing additional effects on the underlying patho-
genesis of atopy in these patients [55]. When 
administered to atopic canines, oclacitinib rap-
idly reduces pruritic behaviors in a significant 

percentage of patients [55]. While administration 
of oclacitinib has markedly improved the clinical 
symptoms of many canines with atopic dermati-
tis, about one-third of patients do not experience 
improvement in their pruritus. Furthermore, there 
is a small risk of adverse effects, including the 
development of demodicosis in young patients 
and benign cutaneous histiocytomas in older 
canines.

Fig. 8.5 Malignant CD4+ CD26-/CD4+ Vβ  +  CTCL 
cells produce IL-31 after stimulation. CD4 T cells, stimu-
lated with PMA/ionomycin, were assessed for intracellu-
lar expression of IL-31 by flow cytometry in 15 CTCL 
patients. (a) Representative plots of IL-31 expression 
from cells without (left) and with (right) stimulation show 
stimulation of the cells is necessary, leading to production 
of IL-31 by a small population of T cells. (b) Representative 

plot of IL-31 expression from CD4+ Vβ + CTCL cells. 
Approximately 6.3% of the stimulated CD4+/CD26- T 
cells from a highly pruritic patient with stage IVA CTCL 
were demonstrated to produce IL-31. T cells of non- 
pruritic patients failed to produce detectable IL-31 (data 
not shown). Abbreviations: CD cluster of differentiation, 
CTCL cutaneous T-cell lymphoma, IL interleukin, PMA 
phorbol 12-myristate 13-acetate
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A second medication, and the first monoclonal 
antibody approved for use in veterinary medi-
cine, lokivetmab, is an agent that directly targets 
IL-31. A significant number of canine patients 
show a rapid decrease in pruritus after receiving 
lokivetmab [56]. Lokivetmab has very few 
reported adverse effects and is safe to use in 
young patients, making it an excellent choice for 

those who are pruritic with minimal inflamma-
tory skin changes.

The above therapeutics have been demon-
strated to have significant benefit for canine 
atopic dermatitis. As in humans, this inflamma-
tory condition appears to be associated with 
abnormal Th2 pathophysiology resulting in 
increased production of IL-13 and IL-31. 

Fig. 8.6 Reduced pruritus and lower IL-31 expression are 
observed in a CTCL patient after treatment with romidep-
sin. PBMCs from pruritic advanced-stage CTCL patients 
were obtained before and after their first infusion of 
romidepsin. A representative sample was analyzed for 
IL-31 mRNA by (a) quantitative RT-PCR and (b) flow 

cytometry. IL-31 mRNA was no longer detectable at the 
time pruritus resolved during romidepsin therapy. 
Abbreviations: IL-31 interleukin-31, mRNA messenger 
RNA, CTCL cutaneous T-cell lymphoma, RT-PCR reverse 
transcription polymerase chain reaction
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Fig. 8.7 Reduced IL-31 expression with in  vitro dexa-
methasone and vorinostat in samples from CTCL patients. 
PBMCs from pruritic advanced-stage CTCL patients were 
treated with 100 nM dexamethasone (n = 4) or 1 μM vori-
nostat (n = 4) or their corresponding diluent controls for 
12 h. Cells were then stimulated with PMA/ionomycin/
brefeldin A for a total of 5 h, stained with fluorophore- 
conjugated monoclonal antibodies against surface-bound 
CD3, CD8, CD26, and intracellular IL-31 and were fur-

ther analyzed by flow cytometry. Representative plots 
show pre-gated cells on CD3+/CD8-. There was a signifi-
cant reduction in malignant T cells producing IL-31 after 
culture with dexamethasone (6.32–0.82%) and vorinostat 
(2.7–0.271%). Abbreviations: CD cluster of differentia-
tion, IL interleukin, nM nanomoles, μM micromoles, 
CTCL cutaneous T-cell lymphoma, PMA phorbol 
12-myristate 13-acetate
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Therefore, it is unsurprising that lokivetmab, a 
caninized IL-31 neutralizing antibody, can pro-
duce significant reductions in pruritus. As in 
humans, decreased scratching leads to clinical 
improvements through reduced inflammatory 
manifestations in the skin as well as a decreased 

risk of developing secondary staphylococcal and 
Malassezia skin infections. Importantly, the find-
ing that administration of lokivetmab can delay 
the onset of an acute atopic flare further high-
lights the important role of IL-31 in the clinical 
manifestations of canine atopic dermatitis.

Fig. 8.8 Reduction in the number of CCR4+ T cells via 
mogamulizumab correlates with decreased numbers of 
IL-31-expressing T cells. PBMCs from pruritic advanced 
CTCL samples were obtained before and after the first 
infusion of mogamulizumab. PBMCs were then stained 
with fluorophore-conjugated monoclonal antibodies 
against surface-bound CD3, CD8, CD26, CCR4, and 
intracellular IL-31 and were further analyzed by flow 

cytometry. Representative plots show pre-gated cells on 
CD3+/CD8-. There was a significant reduction in CCR4+ 
T cells (72.1–39.3%) and in malignant CD26- T cells pro-
ducing IL-31 (4.73–1.5%) after culture with mogamuli-
zumab. Abbreviations: CD cluster of differentiation, CCR 
C-C motif chemokine receptor, IL interleukin, PBMC 
peripheral blood mononuclear cell, CTCL cutaneous 
T-cell lymphoma

A. H. Rook et al.



125

8.7  IL-31 in the Tumor 
Microenvironment

While immunological consequences of increased 
IL-31 on the local milieu within lesions of CTCL, 
or other malignant conditions, have not been 
fully elucidated, recent evidence suggests that 
raised levels of this cytokine may confound the 
ability to generate adequate antitumor immunity. 
One essential ingredient of antitumor immunity 
is the generation of interferon gamma by Th1 
cells leading to the recruitment of cytotoxic T 
cells and other critical antitumor cells. This effect 
is mediated via the release of interferon gamma- 
induced chemokines. In this regard, the studies of 
Feld and colleagues [57] have demonstrated that 
culture of microvascular endothelial cells with 
interferon gamma upregulates the expression of 
the IL-31 receptor components on the endothelial 
cells. The subsequent triggering of the IL-31 
receptor by this cytokine can then lead to reduced 
production of the important interferon gamma- 
induced chemokine, Mig, and possibly other pro-
teins critical for recruitment of Th1-mediated 
antitumor cellular elements [57]. Thus, paradoxi-
cally, within the tumor milieu associated with 
high levels of IL-31, this cytokine may actually 
lead to a negative feedback interplay with inter-
feron gamma on the ability to generate an 
immune response against the cancer. The net 
effect of the cytokine interplay on the host 
immune response may depend upon the relative 
levels of the Th1 cytokine interferon gamma and 
the Th2 cytokine IL-31.

Reducing IL-31 levels within CTCL skin 
lesions may produce beneficial effects that could 
be quite evident. It would be anticipated that the 
initial effect of reducing IL-31 would be the elim-
ination of chronic scratching behavior leading to 
improved skin findings on clinical examination. 
As mentioned above, reduced scratching would 
be expected to lead to reduced trauma to keratino-
cytes and thus a decline in the release of IL-33 
from keratinocytes. This effect almost certainly 
would diminish IL-33-stimulated IL-31 produc-
tion. Because IL-31 stimulates the release of 
CCL17 and CCL22, chemokines that recruit Th2 
T cells into the skin, reducing IL-31 might also 

diminish the release of these chemokines, which 
are considered important cofactors for the recruit-
ment of the very T cells, Th2 cells, that are IL-31-
producing cells, into the skin. Th2 cells are also 
responsible for the production of a constellation 
of cytokines, including IL-4, IL-5, and IL-13, that 
may play a critical role in enabling the malignant 
T cells to circumvent Th-1-mediated host antitu-
mor immunity by virtue of suppression of inter-
feron gamma by these cytokines. Furthermore, a 
reduction in IL-31 would also lead to decreased 
induction of CCL2 and CCL26, leading to 
decreased recruitment of eosinophils and baso-
phils into the skin. These cells also contribute pro-
inflammatory effects with further release of IL-31. 
Therefore, it would be beneficial to diminish their 
recruitment into the skin in the setting of 
CTCL. Thus, therapeutic approaches that directly 
eliminate IL-31 could directly ameliorate the 
many synergistic mechanisms that are in play in 
advanced CTCL that hamper the ability of the 
host immune response to generate an adequate 
Th1-driven antitumor cell-mediated immune 
response.
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