
Turbulent Backward-Facing Step Flow:
Reliability Assessment of Large-Eddy
Simulation Using ILSA

Bernard J. Geurts, Amirreza Rouhi, and Ugo Piomelli

Abstract Reliability assessment of large-eddy simulation (LES) of turbulent flows
requires consideration of errors due to shortcomings in the modeling of sub-filter
scale dynamics and due to discretization of the governing filtered Navier-Stokes
equations. The Integral Length-Scale Approximation (ILSA) model is a pioneering
sub-filter parameterization that incorporates both these contributions to the total
simulation error, and provides user control over the desired accuracy of a simulation.
The performance of ILSA, implemented as eddy-viscosity models, for separated
turbulent flow over a backward-facing step is investigated here. We show excel-
lent agreement with experimental data and with predictions based on other, well-
established sub-filter models. The computational overhead is found to be close to
that of a basic Smagorinsky sub-filter model.
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1 Introduction

Large-eddy simulation (LES) of turbulent flow has a long and rich history. During
the 1960s first parameterizations, such as Smagorinsky’s eddy-viscosity model [1]
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were proposed to capture the effects of localized turbulent motions on the large
energy-carrying scales. The coarsening length-scale of choice was directly linked to
the mesh-size in the computational grid, often chosen as the cube-root of the volume
of a grid cell [2]. While coarsening is helpful in reducing the computational effort
required for a simulation of a particular flow, it also introduces uncertainty regarding
the accuracy of the results [3, 4]. Achieving a clear estimation and control of the level
of uncertainty in the coarsened predictions, is a crucial pacing item in LES research.
We review the recent ILSA proposal (Integral Length-Scale Approximation) which
is a first framework that can address dynamic error control systematically, closely
following [5, 6].

The computational grid for LES is often defined independent of the flow. Corre-
spondingly, also the grid-based local coarsening length-scale is decoupled from the
actual local flow. However, LES coarsening could in principle differ from location to
location and from time to time, in response to local turbulence levels and variations
in length- and time scales. Such would allow for lower resolution in regions of rather
quiescent flow and higher resolution where required by the locally more detailed
flow [7]. Recently, in Piomelli et al. [5] an alternative coarsening length-scale was
put forward for LES, based on flow physics rather than on the grid scale. This idea
was implemented in the form of an eddy-viscosity model based on the local integral
length-scale. The model coefficient is specified with reference to the concept of ‘sub-
filter activity’ as suggested in Geurts and Fröhlich [8]. The eddy-viscosity is such
that an a priori user-defined measure for the error level can be maintained. Effec-
tive model parameters that implement this sub-filter activity level can be inferred
computationally from exploratory coarser simulations, following the SIPI (Succes-
sive Inverse Polynomial Interpolation) error minimization [9]. Combined, ILSA is a
first, complete formulation in which the issue of LES reliability for a particular flow
is key.

In this paper we review the ILSA modeling strategy and discuss the development
and testing of the new model for flow over a backward-facing step, showing that
the new eddy-viscosity model compares closely with experimental data by Vogel
and Eaton [10]. ILSA does not require the introduction of any ad hoc user-defined
parameters, other than the target sub-filter activity, i.e., the desired level for the total
simulation error. The ILSA model allows to separate the problem of representing
small-scale turbulent motions in a coarsened flow model from that of achieving
accurate numerical resolution of the solution. The formulation supports the notion
of grid-independent LES, in which a prespecified reliability measure is used to deter-
mine the local coarsening length-scale. This is basic to achieving a priori error
control.

The organization of this paper is as follows. In Sect. 2 we briefly review reliability
issues in LES. Basic ILSA is presented in Sect. 3 in which the original ‘global’ ILSA
and the ‘local’ ILSA extension are discussed. Section 4 presents results for turbulent
backward-facing step flow, closely following [6]. Summarizing remarks are collected
in Sect. 5.
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2 Reliability Issues in Large-Eddy Simulation

In this section we briefly review the main components that make up the total simu-
lation error in LES and discuss the error-landscape approach to visualize interacting
error contributions. A standard formulation for LES assumes a spatial convolution
filter with an effective width �, coupling the unfiltered Navier-Stokes solution to
the filtered solution. In this paper we work with incompressible flows, governed by
conservation of mass and momentum respectively,

∂ j u j = 0

∂t ui + ∂ j (uiu j ) + ∂i p − 1

Re
∂ j j ui = −∂ j (uiu j − uiu j )

where the overbar denotes the filtered variable. Here, we use Einstein’s summation
convention and use p for the pressure and u for the velocity field. Time is denoted
by t and partial differentiation with respect to the jth coordinate by the subscript j.
Relevant length (L) and velocity (U) scales, and the constant density and kinematic
viscosity (ν) are used to make the equations dimensionless and define the Reynolds
number Re = UL/ν. On the left-hand side we observe the incompressible Navier-
Stokes formulation in terms of the filtered variables. On the right hand side the
filtered momentum equation has a non-zero contribution expressed in terms of the
divergence of the sub-filter stress tensor

τi j = uiu j − uiu j

The sub-filter tensor expresses the central ‘closure problem’ in LES, as it requires
both the filtered as well as the unfiltered representation of the solution. Since only
the filtered solution is available in LES, the next step in modeling the coarsened
turbulent flow is to propose a sub-filter model M in terms of the filtered solution
only. Numerous sub-filter models have been proposed for LES, among which eddy-
viscosity models [3, 11] regularization models [12] and similarity models [13]. In
this paper we restrict ourselves to eddy-viscosity models, in which the anisotropic
part of sub-filter stress tensor is given by, where Sij denotes the rate of strain tensor
of the filtered velocity field, i.e., the symmetric part of the velocity gradient, and νsfs

is the sub-filter scale eddy viscosity.
A central premise of numerical simulation asserts that the solution to a given PDE

problem should be obtained accurately and efficiently, while simultaneously, a close
upper-bound for the error should be estimated. In the context of LES this not only
implies a study of the effects of numerical discretization errors on the dynamics of
the simulated solution, but also includes the role of the model for the sub-filter stress
tensor as well as the interaction between these two basic sources of error [14–16].
However, in practice the computational costs of simulating a flow on N3 grid points,
using an explicit time-stepping method, scales ∼ N 4 with N the number of grid
points along a coordinate direction. This cost implies a large role of the numerical
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Fig. 1 Error landscape for LES based on the Smagorinskymodel applied to decaying homogeneous
isotropic turbulence at a Taylor Reynolds number of 100. The error in the resolved enstrophy,
relative to the DNS prediction, is shown as function of the spatial resolutionN and the Smagorinsky
coefficient—reproduced with permission from Meyers et al. [18]. Each dot on the error-surface
corresponds to a particular LES

method in capturing the actual LES solution [17].Hence, at practically feasible, likely
marginal resolution, both the selected sub-filter model as well as the adopted spatial
discretization method can have a significant influence on the simulated dynamics.
Together, these influences give rise to the total simulation error.

Since the modeling and discretization error effects can partially counteract each
other [19–23] it is not straightforward to assess the overall simulation error in a given
flow property. Instead, one can resort to a computational assessment of the simulation
error for selected cases [24, 25]. This is known as the error-landscape approach. In
Fig. 1we showsuch an error-landscape forLESof homogeneous isotropic turbulence,
based on the Smagorinsky model. The error is based on the relative deviation of the
turbulent kinetic energy between, on the one hand, a particular LES (at given spatial
resolution N and value of the Smagorinsky coefficient CS) and, on the other hand,
the underlying direct numerical simulation. Each dot on the error-landscape surface
denotes the error in a particular LES. At zero Smagorinsky coefficient, e.g., the
LES corresponds to a ‘no-model’ or under-resolved simulation. We observe that the
error decreases rapidly and smoothly with increasing spatial resolution, indicating
convergence toward DNS predictions at high enough spatial resolution. Moreover,
we notice that at fixed, coarse, spatial resolution N and sufficiently large values
of the Smagorinsky coefficients, also rather large errors arise. In between the ‘no
model’ case and a very large CS there appears a minimum in which possible partial
cancellation of modeling and discretization error effects is achieved optimally at that
value of grid resolution N. This would yield the lowest total simulation error at the
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corresponding computational cost. The optimal refinement strategy can be inferred
by determining these minima as function ofN. Knowledge about such error behavior
can be used to classify errors due to numerical dissipation and sub-filter contributions
[26]. Strictly speaking, the optimal refinement strategy can be inferred only after a
database of LESs is collected—the optimal Smagorinsky coefficient at given spatial
resolution is a quantity that currently cannot be predicted in advance theoretically
[27].

A computational estimate of the optimal Smagorinsky coefficient at given spatial
resolution can be obtained at modest additional cost using the SIPI method (Succes-
sive Inverse Polynomial Interpolation) [9]. At given N this method takes error levels
at three prior simulations using different CS values, and, via quadratic interpolation,
progresses to converge CS to achieve the error minimum. Since the dependence of
the optimal Smagorinsky coefficient on the spatial resolution is quite modest, one
may proceed in two steps. First, at coarse resolution the optimal Smagorinsky coef-
ficient is determined. Subsequently, at finer resolution, production simulations can
be executed with this optimal coarse grid value. This approach is also basic to the
original ILSA model to which we turn next.

3 ILSA—Integral Length-Scale Approximation

We review the length-scale definition for LES based on the resolved turbulent kinetic
energy (TKE) and its dissipation. Rather thanworkingwith a grid-based length-scale,
as in traditional LES, referring to sub-grid scales, we propose a flow-specific length-
scale distribution defining the filter-width and hence refer to the LES approach as
modelling the sub-filter scales.

The global ILSAmodel is an eddy-viscositymodel inwhich the anisotropic part of
the sub-filter stress tensor is given by τ a

i j = −2νs f s Si j with turbulent eddy-viscosity
defined as

νs f s = (Cm�)2
∣
∣S

∣
∣ ≡ (CmC�L)2

∣
∣S

∣
∣ ≡ (CkL)2

∣
∣S

∣
∣

where Ck = CmC� is referred to as the ‘effective model coefficient’, and the filter-
width � is expressed as a fraction of the local integral length-scale, � = C�L ,
inferred from

L = 〈Kres〉
〈εtot 〉

where the resolved turbulent kinetic energy (TKE) and total dissipation rate are given
by
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Kres = 1

2
u′
i u

′
i ; εtot = 2

(

ν + νs f s
)

S
′
i j S

′
i j

in terms of resolved velocity fluctuations and the corresponding rate-of-strain tensor.
Using the resolved TKE rather than the total one does not affect the estimated length-
scale significantly [5, 28]. The choice to use the integral length scale L implies that
the local LES resolution adapts itself dynamically to the turbulence characteristics of
the flow. The local grid resolution h should at least resolve the integral length scale L,
i.e., L/h >> 1. By selecting h appropriately, an approximately grid-independent LES
prediction may be obtained. Moreover, variations in L automatically can be used
to generate (adaptive) non-uniform grids on which to simulate the turbulent flow at
hand [7].

Aside from the local integral length-scale L, a key ingredient toward the ILSA
model is that adaptations in the effective model coefficient are made consistent with
a measure toward explicit error control. This way, the effective model coefficient Ck

should be obtained in response to the local flow characteristics. For this purpose the
concept of sub-filter activity [8] is used. This approach is conceptually related to the
famous ‘Pope 80% rule’ [3] in which it is put forward that accurate LES requires
the local filter-width to be such that the resolved turbulent kinetic energy is at least
80% of the total turbulent kinetic energy. Likewise, requiring a bounded sub-filter
activity, we inherit a dynamic model response compliant with a desired level of error
control.

The local ILSAmodel uses invariants of the sub-filter stresses directly. Following
Rouhi et al. [6] we introduce

sτ =
⎛

⎝

〈

τ a
i jτ

a
i j

〉

〈(

τ a
i j + Ra

i j

)(

τ a
i j + Ra

i j

)〉

⎞

⎠

1/2

where the anisotropic part of the sub-filter tensor is denoted by τ a
i j and the anisotropic

part of the resolved stress tensor by Ra
i j = u′

i u
′
j − u′

ku
′
kδi j/3. In case of an eddy-

viscosity model the anisotropic sub-filter tensor τ a
i j = −2νs f s Si j with νs f s =

(

CkL2
)∣
∣S

∣
∣. This model implies

〈

τ a
i jτ

a
i j

〉 = 4
〈

νs f s Si j Si j
〉 = 〈

2L4|S|4〉C4
k ≡ χ1C

4
k

〈

τ a
i j R

a
i j

〉 = 〈−2νs f s Si j R
a
i j

〉 = −〈

2L2|S|Si j Ra
i j

〉

C2
k ≡ χ2C

4
k

If we denote in addition
〈

Ra
i j R

a
i j

〉

≡ χ3 then we infer a fourth order polynomial

equation governing the effective model coefficient as

χ1

(

1 − 1

s2τ

)

C4
k + 2χ2C

2
k + χ3 = 0
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from which the unknown coefficient Ck can be obtained once the desired sub-filter
activity is set to an appropriate value.

4 Local ILSA for Flow Over a Backward-Facing Step

In this section we illustrate the performance of the local ILSA model for turbulent
flow over a backward-facing step at Rec = Uchs/ν = 28,000 based on the centerline
velocity Uc at the inlet (x = 0) and step height hs. We compare results with the
Lagrangian dynamic model [29], and show close agreement of local ILSA with
experimental reference data by Vogel and Eaton [10]. We analyze the induced eddy-
viscosity model on the computational grid and argue better numerical behavior in
the ILSAmodel, contributing to the overall model performance. Figure 2: Structured
grid for the backward-facing step flow on a coarse grid of 256× 100× 64 grid points,
clustered at characteristic locations in the domain, i.e., near the boundaries and shear
layers inside the domain. All scales are normalized by the step height.

In Fig. 2 we show the computational grid used for the backward-facing step
simulations. The height of the inflow channel is 4 step heights and the spanwise
width is 3 step heights. The inflow length of the channel is 32 step heights and the
velocity field at x = −5hs is recycled to the inflow located at x = −32hs to generate
a well-developed turbulent inflow. At the outflow at 20hs a convective boundary
condition was adopted.

In Fig. 3 the mean flow statistics are shown at three spatial resolutions, comparing
local ILSA with the Lagrangian dynamic model, with ‘no model’ and with experi-
mental data. The LES results agree closely with each other and with the experimental
data—only on the coarsest grid there is a slight difference between the local ILSA and
Lagrangian dynamic model. This difference is most notable in the recovery region
after the reattachment. The ‘no model’ option shows that the inclusion of a sub-filter
model is beneficial for the accuracy of predictions.

The central model parameters of the local ILSAmodel are illustrated in Fig. 4.We
compare the standard definition of the filter width (Fig. 4a)with the estimated integral
scale L (Fig. 4b). The local integral length-scale decreases considerably where the

Fig. 2 Structured grid for the backward-facing step flow on a coarse grid of 256 × 100 × 64 grid
points, clustered at characteristic locations in the domain, i.e., near the boundaries and intense shear
layers inside the domain. All scales are normalized by the hs step height
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Fig. 3 Mean velocity normalized by the centerline velocity at the inlet, determined at a number
of locations downstream of the step on different grids: a 256 × 100 × 64 points, b 384 × 150 ×
96 points, c 512 × 200 × 128 points. Experimental data [10] shown with full circles, Lagrangian
dynamic model in dash-dot, no-model in dashed line and local ILSA in solid line (reproduced with
permission from Rouhi et al. [6])

Fig. 4 SFS quantities for the backward-facing step flow. a Filter size; b integral scale; c eddy
viscosity, local ILSA model; d eddy viscosity, dynamic Lagrangian model. Intermediate grid, 384
× 150 × 96 points

flow has small scale features, i.e., in the boundary layers and near the shear layers.
Away from these locations, L increases as the typical scales that need resolving
become larger. The structured character of the grid implies that a refined mesh is
used in regions where the turbulent eddies are not small, for instance downstream of
the step, x/hs � 5–10 and y/hs � 1. As a consequence, the Lagrangian eddy viscosity
has an unphysical sharpness along the regionwhere the grid is refined (Fig. 4d),which
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is not observed when the local ILSAmodel is used (Fig. 4c). Such large variations in
the local filter-width are linked to commutator errors [30, 31]. By allowing a smooth
variation of the eddy-viscosity/filter-width, these commutator errors can largely be
removed [32, 33].

5 Concluding Remarks

We discussed recent progress in the assessment of the reliability of LES predictions.
The basic limitation in LES quality stems from an interplay between on the one hand
effects of discretization errors and on the other hand modeling error. This can be
clarified comprehensively in terms of a computed error-landscape in which the total
simulation error is computed as function of spatial resolution and model coefficient.
A key concept in dynamic error control for LES is ‘sub-filter activity’. Adhering to
a description that keeps the measure for the sub-filter activity near a pre-specified
target value, allows some level of control over the dominant LES errors.

The ILSA model requires little extra computational overhead and yields close
agreement with DNS and experimental reference material for backward-facing step
flow. The main model innovation, implies using the local integral length scale to
represent changes in the local flow physics. Much of the non-uniform variations in
the turbulence properties is already reflected in changes in the integral length scale—
the rest of the eddy-viscosity definition is less sensitive to flow details and was found
to yield a natural adaptation of the sub-filter model to the flow.

The local ILSA model holds promise to be effective in LES also for wider classes
of turbulent flow. Further studies to underpin this should include stronger variations
in flow properties, including re-laminarization. Moreover, investigating the role of
the target value for the sub-filter activity level on the reliability of the LES predictions
and the convergence with spatial resolution are items of ongoing research toward a
genuine error-bar for CFD.
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