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Abstract. With the increasing use of deep neural networks (DNNs) in
the safety-critical cyber-physical systems (CPS), such as autonomous
vehicles, providing guarantees about the safety properties of these sys-
tems becomes ever more important. Tools for reasoning about the safety
of DNN-based systems have started to emerge. In this paper, we show
that assurance cases can be used to argue about the safety of CPS with
DNNs by proposing assurance case patterns that are amenable to the
existing evidence generation tools for these systems. We use case studies
of two different autonomous driving scenarios to illustrate the use of the
proposed patterns for the construction of these assurance cases.

Keywords: DNNs · Safety-critical CPS · Safety properties ·
Assurance case

1 Introduction

With recent advances in machine learning, there is much interest in using deep
neural networks in safety-critical cyber-physical systems (CPS), such as self-
driving vehicles [5], aircraft collision avoidance [22], and medical diagnoses [10].
The black-box nature of neural networks (NNs) makes it difficult to interpret
their behavior on perturbed or even unseen inputs and therefore makes it chal-
lenging to provide safety guarantees about systems with NNs. To enable the use
of NNs in safety-critical CPS, it is therefore important to convincingly demon-
strate that CPS with NNs (CPSNN) are acceptably safe to use.

One way to argue about the safety of CPSNN is through assurance cases [1].
Systems developed for medical, transportation, infrastructure applications, etc.
that significantly impact life, property, or environment need to get the approval
of an independent entity such as a regulatory body. This approval process can
be viewed as the manufacturer making the case that their system meets the
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criteria for certification and the regulatory body assessing this case to arrive at a
certification decision. An assurance case provides a structure for making this case
by using arguments supported by evidence to justify the claim in a hierarchical
fashion. This hierarchical structure of the assurance case with explicit claims,
arguments, and evidence has favored its use in the certification process [30]. For
instance, the Food and Drug Administration (FDA) changed its approval process
to enable the use of assurance cases for demonstrating the safety of insulin
pumps [9] and the Federal Aviation Administration (FAA) accepts assurance
cases to approve the safety of aviation systems [11].

Assurance cases have been used to assure the safety of the traditional CPS
(CPS without NN components) in the past [3,12,26,35]. These cases analyze
the system’s specification by making use of the analytical techniques (such as
proofs [35]) build on model-based development [3,35], hazard mitigation [12] or
both [26]. The black-box nature of NNs makes it difficult to apply these analytical
techniques for reasoning about CPSNN and thus structuring their assurance case
in the way they are done for the traditional CPS.

Prior work has been done on proposing assurance case patterns for the safety-
critical CPSNN [7,25,28]. Some of these patterns argue about the safe function-
ality [25] or performance [28] of machine learning components in the CPS. Oth-
ers [7] argue about the acceptance of residual risk in these systems due to the
functional insufficiency of machine learning. All of these patterns are specific to
the assurance of the functional requirements (or features) of machine learning
components in the CPS and do not provide assurance about specifications of the
entire system. Also, the challenge of coming up with a provably exhaustive list
of requirements for machine learning components in CPSNN makes it difficult
to extend these patterns for the assurance of CPSNN.

We propose assurance case patterns for specifications of the closed-loop
behavior of CPSNN. The main challenge in building an assurance case for
CPSNN is the black-box nature of NNs, which makes it difficult to generate
the evidence required for the assurance of CPSNN. An assurance case built for
CPSNN should be structured in a way that is amenable to generating evidence
about the NN for the assurance of the larger system.

A feasible approach to generating evidence for the assurance of CPSNN is to
make use of the computational tools that have been developed recently to pro-
vide formal guarantees about these systems. These tools can be broadly classified
into two categories. The first analyzes the NN separately from the rest of the sys-
tem. Existing tools analyzing the behavior of NNs characterize the correctness of
these networks based on robustness [6,24], safety guarantees [19,23] or proper-
ties [15,17] of these networks. These tools can generate evidence for NN-specific,
component-level claims in the assurance case of CPSNN. The second analyzes
the closed-loop behavior of CPSNN for both verification [21,32] and falsifica-
tion [14,33]. These tools can generate evidence for system-level claims made in
assurance cases for CPSNN. This classification of the evidence generation tools
for the assurance of CPSNN into two categories motivates us to propose two
assurance case patterns for CPSNN, one for each category.
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The first pattern is based on an assume/guarantee argument. The system
makes an assumption about some property of the NN. This assumption leaves
us with a much simpler model of the CPSNN to analyze, allowing us to scale
the existing verification [8] or falsification [13,16] techniques for the CPS to the
CPSNN. Arguments to guarantee the assumed property of the NN need to be
made and justified separately in this pattern. These guarantees are composed
with the claim about the system with the assumed property of the NN to provide
assurance about the CPSNN. Tools analyzing the behavior of NNs can be used
to generate evidence for the NN-specific claims made in this pattern. The second
pattern is based on a holistic approach to the assurance of CPSNN. This app-
roach relies on the analysis of the closed-loop behavior of the system and does
not require a separate specification for the NN. Tools analyzing the closed-loop
behavior of the CPSNN can be used to generate system-level evidence in this
pattern.

To evaluate the applicability of the proposed patterns, we consider two case
studies. The first case study is about the safety specification of the closed-loop
system from [20]. It consists of an NN-controlled F1/10 car [2] equipped with
LiDAR, running in a known hallway environment. We make use of the holistic
pattern to provide assurance about this system. The second case study is about
the safety specification of the closed-loop system from [14]. It consists of an
autonomous car with a perception-based NN and an emergency braking system
(AEBS) [31], driving on a highway with a stationary car in front of it. We make
use of the assume/guarantee pattern to provide assurance about this system.

Our contributions in this paper can be summarized as follows. First, we
propose two assurance case patterns based on the existing tools for generating
evidence for specifications of the closed-loop behavior of the CPSNN. Second,
we illustrate the applicability of the proposed patterns with the help of two case
studies. Third, we discuss directions for the development of new tools for the
assurance of CPSNN with the help of undeveloped claims in the case studies.

2 Background

Here, we first define the assurance case and its goal structuring notation. We then
describe the model-based assurance approach of the traditional CPS. Finally, we
classify the existing tools that can be used to generate evidence in the assurance
case of CPSNN into two categories with examples for each category.

2.1 Assurance Case and GSN

Assurance cases provide a structure for arguing about the safety of a system by
making arguments that are supported by evidence to justify the safety claims
about the system in a hierarchical fashion. It is defined as a “reasoned and
compelling argument, supported by a body of evidence, that a system, service
or organization will operate as intended for a defined application in a defined
environment” [18].
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Fig. 1. An example of the hierarchical structure of assurance case made in GSN

Fig. 2. Model-based approach for the assurance of CPS (left) and CPSNN (right)

Goal Structuring Notation (GSN) [18] is the most widely used graphical
notation for representing assurance cases. The principle symbols of GSN are
rectangles, parallelograms, circles, ovals with an ‘A’ at the bottom, rounded
rectangles and rectangles with a diamond at the bottom representing claim (or
goal), argument (or strategy), evidence (or solution), assumption, context and
undeveloped claim in the assurance case, respectively. An example of the hier-
archical structure of the assurance case made in GSN is shown in Fig. 1.

Claims, arguments and evidence (CAE) is another framework used to repre-
sent assurance cases. CAE leaves arguments as black boxes, while GSN makes
them explicit through strategies. We were interested in the details of arguments
and that is why we chose GSN over CAE.

2.2 Model-Based Approach for the Assurance of Traditional CPS

The model-based approach of building an assurance case targets the model-based
development process of real-world systems [3]. This approach has been used for
building assurance cases for the traditional CPS in the past [3,35]. The use of the
model-based approach for providing assurance about CPS is motivated by the
fact that most of the existing evidence for these systems is based on the models
of these systems [27]. Verification tools such as Flow* [8] and falsification tools
such as Breach [13] and S-TALIRO [16] are some examples of the existing tools
that can be used to generate evidence for the model of the traditional CPS.

The structure of the assurance case for CPS based on the model-based argu-
ment was proposed in [35]. This structure is shown in the Fig. 2. It reflects the
fact that the model-based evidence for a real-system is only as useful as the
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Fig. 3. Closed-loop of a traditional CPS (left) and its corresponding model (right)

model that is used to represent the system. Thus, in addition to the claim about
the model of the CPS (G2), another claim about the validity of the model with
respect to the real CPS (G3) needs to be made and justified.

2.3 Existing Tool-Based Evidence for the Assurance of CPSNN

The uninterpretable nature of NNs restricts the use of the traditional analytical
methods to provide guarantees about CPSNN [25]. This motivates the use of
computational tools based on techniques such as verification, falsification, and
optimization to generate evidence about these systems. Existing tools based on
these techniques that can be utilized to generate evidence for CPSNN can be
classified into the following two categories.

Tools Analyzing the Component-Level Behavior of CPSNN. Work has
been done in developing tools that analyze the behavior of NNs. These tools can
be used to generate evidence for the NN-specific component-level claims made
in the assurance case for CPSNN. Some examples of these tools are as follows.
Verification tools such as Reluplex [23] and DLV(Deep Learning Verification) [19]
can be used to provide evidence for the verification of the safety properties of
NNs. Guarantees about the robustness of NNs can be generated with the help
of the tools such as CNN-Cert [6] and POPQORN [24]. Other tools such as
Sherlock [15] and LipSDP [17] can be used to assure tight bounds on the output
set and global Lipschitz constant for NNs, respectively.

Tools Analyzing the System-Level Behavior of CPSNN. Verification
tools for properties of the CPSNN with NN controllers have been developed
recently [21,32]. System-level verification has been so far applied to only these
types of CPSNN. CPSNN with perception-based NNs do not lend themselves to
these verification techniques due to the high dimensionality of their input space.
This has led to the development of falsification tools [14,33] for analyzing the
closed-loop of CPSNN with perception-based NNs. The absence of counterexam-
ples from these falsification techniques provides evidence of the correct behavior
of CPSNN with respect to its specification.

3 Assurance Case Patterns for CPSNN

We propose two assurance case patterns for the safety specifications of CPSNN.
These patterns are built on the model-based approach for assurance.
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Fig. 4. An example of the closed-loop of a CPSNN (left) and the corresponding model
of its CPSNN/NN composed with the NN (right)

Fig. 5. Modular (left) and Holistic (right) patterns for the assurance of G2 in the
model-based approach for CPSNN

Figure 3 shows the closed-loop structure of a traditional CPS and its corre-
sponding model used in the model-based assurance approach for CPS [35]. The
plant in this system is a physical object such as a vehicle or robot. Sensors collect
information about the state of the plant and objects in the plant’s environment.
This sensory information is used by a controller to produce control actions, which
are actuated by actuators on the plant. The model of a traditional CPS is the
composition of the models of the individual components of the real-system.

The proposed patterns reflect the model-based assurance approach of the
traditional CPS by modeling the sub-system of a traditional CPS present in a
CPSNN. Figure 4 shows an example of the closed-loop structure of a CPSNN,
where the controller in the traditional CPS is replaced by an NN in the CPSNN.
We call a CPSNN without its NN components a CPSNN/NN. The model of a
CPSNN/NN is equivalent to the model of the sub-system of CPS present in the
CPSNN. This model is composed with the NN to close the loop in the system.

The Fig. 2 shows the model-based approach for the assurance of CPSNN.
Assurance about the CPSNN is provided on the model of the CPSNN/NN com-
posed together with the NN component via claim G2. Since assurance about
CPSNN is provided on a system that approximates (via model) the CPSNN/NN
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in the CPSNN, an additional claim, G3, is made about the validity of this approx-
imation.

The proposed patterns are amenable to the existing evidence generation com-
putational tools for the assurance of the claim G2 in the model-based assurance
approach for CPSNN. These patterns differ from each other in their approach
to generate this evidence. The first pattern analyzes the NN separately from
the model of the CPSNN/NN for the assurance of G2 and makes use of the
component-level tools for the assurance of CPSNN. The second pattern ana-
lyzes the closed-loop behavior of the CPSNN/NN model composed with the NN
and does not require a separate claim about the NN in the system. This pat-
tern makes use of the system-level tools for the assurance of CPSNN. Next, we
describe the two assurance case patterns as shown in Fig. 5, in detail.

3.1 Pattern 1: Modular Pattern
The first pattern is based on the assume/guarantee approach for providing assur-
ance about the claim G2 in the model-based assurance approach for CPSNN.
Here, an abstraction of the NN, NNabs, satisfying a property ϕ is considered.
The assurance about the claim made in G2 is provided on the closed-loop of the
model of CPSNN/NN composed with NNabs, via claim G5 in this pattern. This
abstraction of the NN leaves us with a much simpler closed-loop model of the
CPSNN/NN composed with NNabs to analyze. This analysis can be performed
with the existing verification or falsification techniques for the traditional CPS.

Since G2 is assured on the model of CPSNN/NN composed with an abstrac-
tion of the NN satisfying ϕ, an additional claim, G4, about the satisfaction of ϕ
by the NN needs to be made separately in this pattern. Tools analyzing NNs in
terms of the safety guarantees [19,23], robustness [6,24] or properties [15,17] can
be used to provide evidence for the guaranteed property of the NN. We call this
pattern the modular pattern because the system-level assurance is generated by
composing assurance claims about the modules, CPSNN/NN and NN, of the
system in this pattern.

An example of instantiation of the modular pattern is the assurance about the
safe reachable set of states of a NN controlled linear time-invariant dynamical
plant under bounded perturbations. Bounded models for both the plant and
measurements comprise the model of the CPSNN/NN in this system. This model
composed with an NNabs can be used to argue about the reachable (and hence
safe) state by the plant with the help of the evidence of Theorem 1 from [34].
NNabs is the abstraction of the NN satisfying the property of a bounded output
for a given set of bounded input. This property of the NN can be verified by the
existing tools [15,17] for providing NN specific evidence in this pattern.

3.2 Pattern 2: Holistic Pattern

The second assurance case pattern for the CPSNN is based on analyzing the
whole system without decomposing it down into its modules. Therefore, we call
this pattern as the holistic pattern. The evidence for the claim G2 about the
closed-loop behavior of the model of CPSNN/NN composed with NN is generated
by the existing system-level tools for CPSNN [14,21,32,33] in this pattern.
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Fig. 6. Closed-loop system, S1, of the CPSNN considered for the case study of the
holistic pattern (left) and the corresponding model of its CPSNN/NN composed with
the NN-controller in the system (right) [20]

An example of instantiation of this pattern is the assurance about the safe
distance between two cars, where the follower car is equipped with an NN-based
adaptive cruise control and a radar to measure the distance to the lead car. The
dynamics model for the two cars traveling on a straight road together with the
measurement model of the radar comprises the model of the CPSNN/NN, which
when composed with the NN-controller can be used to argue about the safety of
the system with the help of evidence generated by the verification tool from [32].

4 Case Studies

We provide case studies to illustrate the applicability of the proposed patterns.

4.1 Case Study for the Holistic Pattern

System Description and the Model of Its CPSNN/NN Composed with
the NN in the System. We consider a CPS with an NN-controller from [20] for
this case study. This system, S1, is shown in Fig. 6. It consists of an autonomous
F1/10 car [2] running at a constant throttle and low speed ([0, 5] m/s) in an
empty hallway. The car is equipped with a LiDAR to provide distance mea-
surements from the hallway walls. These distance measurements are fed into an
NN-controller which gives front steering commands to the car, thereby control-
ling the heading of the car. The NN is a small fully connected network with
smooth activation functions. The safety property of interest for S1 is that the
car navigates the hallway without hitting its walls.

The model of the CPSNN/NN in S1 composed with the NN-controller in
the system is shown in Fig. 6. It contains three main components. First, the
behavior of the car is captured by a continuous-time dynamical system that uses
a control signal generated by the NN-controller as input and contains differential
equations that represent the evolution of the system state. A Kinematic bicycle
model, which is known to work well for front-steering cars at low speeds [29], is
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Fig. 7. Hallway divided into three regions depending on number of walls reachable by
LiDAR [20]

used to represent the dynamics of the F1/10 car by the following equations:

ẋ = vcos(θ + β), ẏ = vsin(θ + β), v̇ = −cav + cacm(u − ch)

θ̇ =
V cos(β)
lf + lr

tan(δ), β = tan−1

(
lrtan(δ)
lf + lr

)
,

(1)

where v, θ, β and (x and y) is the car’s linear velocity, orientation, slip angle
and position respectively. u is the throttle input, δ is the heading input. ca is an
acceleration constant, cm is a motor constant, ch is a hysteresis constant. lf and
lr are the distances from the car’s centroid to the front and rear, respectively.

Second, the observation model captures how measurements supplied by the
LiDAR are produced, based on the heading of the car relative to the walls and
its position in the hallway. The behavior of the LiDAR at turns is different from
the straight sections of the hallway. To accurately capture the dynamics of mea-
surements, the hallway is therefore divided into three regions and a measurement
model of LiDAR is provided for each region, as shown in Fig. 7. The measure-
ment model of the LiDAR scan with 1081 rays for Region 2 (other regions are
special case of region 2) is as described by the following equations:

yi
k =

⎧⎪⎪⎨
⎪⎪⎩

drk/cos(90 + θk + αi) if θk + αi ≤ θr
dbk/cos(180 + θk + αi) if θr < θk + αi ≤ −90
dtk/cos(θk + αi) if − 90 < θk + αi ≤ θl
dlk/cos(90 − θk − αi) if θl < θk + αi,

(2)

where k is the sampling step, dtk, d
b
k, d

l
k, d

r
k are distances to the four walls.

α1, .., α1081 are the relative angles for rays in the LiDAR scan with respect to
the car’s heading. θl and θr are the relative angles to the two corners of the turn.

The third component that closes the loop is the NN-controller used in S1 to
control the heading of the car.

Existing Techniques that can be Used to Provide Assurance About the
Model of CPSNN/NN in S1 Composed with the NN in the System.
The NN used as a controller in S1 is well suited for the closed-loop verification
of NN-controlled systems, supported by recent tools [21,32]. Verisig [21] is used
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here to obtain the system-level evidence in the holistic pattern. Verisig operates
directly on the NNs without approximating it some other function. This allows
us to compose the model of CPSNN/NN in S1 with its NN-controller and use
Verisig to verify this composition for the safety specification of S1.

Construction of Assurance Case for S1 Based on Holistic Pattern. The
assurance case for the safety specification of S1 based on the holistic pattern is
shown in Fig. 8. The top-level assurance claim, G1, states that “∀i ∈ I, ∀t ∈ Ti,
the distance of the car from the hallway walls in S1 is always greater than zero”.
Here, ‘I’ is a set of initialization positions of the car in the hallway and for some
i ∈ I, ‘Ti’ is a set of discretized time instants spent by the car on its trajectory
starting from i. G1 is assured on the model of the CPSNN/NN in S1 composed
with the NN-controller in the system via claim G2 in the assurance case. This
model-based assurance approach for S1 requires an additional claim, G3, about
the validity of the model used to represent the CPSNN/NN in S1. Both G2 and
G3 together imply the top-level safety claim G1 in this case.

G2 states that “∀i ∈ I, ∀t ∈ Ti, the distance of the car from the hallway
walls in the model of CPSNN/NN in S1 composed with the NN-controller in
the system is always greater than zero”. It is a reachability property that can
be checked by a verification tool. Thus, this branch of the argument follows the
holistic approach to generate evidence for G2, which comes from the verification
result obtained by Verisig as shown in Fig. 8.

The argument used for the assurance of the model validation claim, G3,
is about the choice of the individual components that make the model of
CPSNN/NN in S1. Sub-claims G4 and G5 about the accuracy of the obser-
vation and the dynamics model, respectively, together provide assurance about
the accuracy of the model of the CPSNN/NN in S1. Characteristics of the F1/10
car in S1 (it is a front steering car and its speed lies in [0, 5] m/s) makes it a suit-
able candidate for the kinematics bicycle model. The observation model is based
on the ideal (noiseless) LiDAR operation in the known geometry of the hallway.
Validating observation models is challenging in general due to the complex and
uncertain behavior of the environment. This is one of the main directions for
future work, as discussed in the discussion section.

4.2 Case Study for the Modular Pattern

System Description and the Model of Its CPSNN/NN Composed with
the NN in the System. We consider the CPS with a perception-based NN
from [14] for the case study of the modular pattern. This system, S2, is shown
in Fig. 9. It consists of an autonomous car (ego vehicle) driving on a highway
through a desert with a stationary car in front of it. The vehicle is equipped
with an automatic emergency braking system (AEBS) for avoiding collisions
with preceding obstacles. The AEBS uses a perception-based NN and radar to
get information about the preceding obstacles. It relies on the radar for obstacles
at a distance less than or equal to 30 m from the vehicle. For obstacles farther
than 30 m from the vehicle, the AEBS relies solely on the NN for detection. In
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Fig. 8. Assurance case for the safety specification of S1

Fig. 9. Closed-loop system, S2, of the CPSNN considered for the case study of the
modular pattern (left) and the corresponding model of its CPSNN/NN composed with
the perception-based NN in the system (right)

the event that an obstacle is detected, the AEBS issues a full braking command
to the car. The input to the NN is provided by a camera that generates RGB
images of size 1000 × 600. The safety property of interest for this system is that
no collision happens between the vehicle and the stationary car.

A general model of the CPSNN/NN in S2 composed with the perception-
based NN as shown in Fig. 9 is described as follows. It contains four compo-
nents. First, the dynamics model represents the behavior of the ego vehicle on
the highway. Second, a simulator captures how observations of the environment
supplied by the camera and radar are produced, based on the position of the
ego vehicle. Third, the AEBS algorithm used as it is. The last component is the
perception-based NN in S2 that closes the loop in the system.

Existing Techniques that can be Used to Provide Assurance About
S2. Since the input dimension for the NN in S2 is very large, verifying S2 for
its specification is challenging. Most of the existing tools for the assurance of
CPSNN with perception-based NN are based on falsification techniques [14,33].
We consider the falsification tool developed for the perception-based NN in [14]
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to generate the NN-specific evidence in the modular pattern for the assurance of
S2. This tool approximates the NN to a lower-dimensional input function f̃ and
finds falsifying examples for the NN from this lower-dimensional input space.
The idea is to explore only realistic modifications in the input space of the
NN, instead of exploring the high-dimensional input space for finding falsifying
examples for the NN. The input space of f̃ is analyzed to find misclassifications
by f̃ . These misclassifications are then concretized back into the input images
for NN to check for misclassifications by the NN.

Fig. 10. Model-based approach for the assurance of S2

Fig. 11. Assurance of the claim G2 for S2 by assume/guarantee approach

Construction of Assurance Case for S2 Based on the Modular Pat-
tern. The assurance case for the safety specification of S2 based on the modular
pattern is described as follows. The safety claim, G1, about S2 is that “if the ini-
tialization distance between the two cars is greater than the ego vehicle’s braking
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distance, then the vehicle always maintains a distance greater than zero from
the stationary car”. We assume that the environment of S2 can vary only in the
2-dimensional position of the stationary car. As shown in Fig. 10, G1 is assured
on the model of the CPSNN/NN in S2 composed with the perception-based NN
in the system, via claim G2 in the assurance case. The claim G3 about the accu-
racy of the model of CPSNN/NN in S2, required in addition to the claim G2
for completing the model-based argument for the assurance of G1 is marked as
an undeveloped claim here. It can be developed by making arguments about the
choice of the individual components composing the model of CPSNN/NN in S2

as done for the justification of the model validation claim for assurance of S1.
Figure 11 shows the assume/guarantee assurance approach for the claim G2

about the model of the CPSNN/NN in S2 composed with the perception-based
NN. An abstraction of the NN, NNabs, satisfying the property ϕ of no misclas-
sifications of the stationary car by the network, is considered here. NNabs is
composed with the model of the CPSNN/NN in S2 to provide assurance about
G2 via falsification claim G4 in the assurance case. The evidence for G4 is gen-
erated by Breach, a falsification tool for traditional CPS.

Since G2 is assured on the model of CPSNN/NN composed with an abstrac-
tion of the NN satisfying ϕ, an additional claim about the guaranteed satisfaction
of ϕ by the NN is required to be justified to complete the assume/guarantee argu-
ment for the assurance of G2. Claims G5 and G6 together provide this guarantee
by making use of the falsification tool for the perception-based NNs from [14].
The NN is approximated by a 2-dimensional input function f̃ . The input to f̃ is
the position of the stationary car in the 2D plane.

G5 states that the NN does not misclassify any of the concretized images from
the set S of misclassification by f̃ . The testing-based approach is used to sample
the input space of f̃ for finding S. A claim supported by testing argument is only
as good as the coverage by testing. So, we need to argue about the sufficiency
of the sampling method used to cover the input set of f̃ , via claim G7 in this
case. The sufficiency of the sampling methods used to generate inputs for testing
either in terms of high coverage or coverage of the corner cases could be used to
generate evidence for G7. In addition to G7, a claim about no misclassifications
by NN on concretized images of S is required to complete the argument for the
assurance of G5. This is done via claim G8 supported by testing results.

Since G5 is the assurance of ϕ on the set S of misclassifications by f̃ , an
additional claim about the set of misclassifications by the NN as a subset of
concretized S needs to be made. This is done via undeveloped claim G6 in the
assurance case. G6 reflects the safety of the approximation function f̃ for the
NN. By safe approximation in the context of falsification, we mean that any
element in the input space of f̃ lying outside its set of misclassifications is not a
concretized misclassification by NN. We propose the development of techniques
that can be used to generate evidence about this claim as it will enable the
reduction of misclassification space of the NN and enhance the use of falsification
for providing assurance about systems with high-dimensional input space of NN.
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5 Discussion and Conclusion

In this paper, we proposed two model-based assurance case patterns for the safety
specifications of CPSNN. These patterns are amenable to the existing tools for
generating evidence for the assurance of CPSNN. We used two case studies, one
for each pattern, to illustrate the applicability of the proposed patterns. We
note that the two case studies are no more than illustrations and our goal is not
to try and convince the reader that these systems are, in fact, safe. Therefore,
we did not try to fully elaborate the arguments, nor tried to uncover assurance
deficits in each of the systems. Instead, we aimed to consider development and
analysis technologies available in the literature to see how suitable they would be
to supply evidence for arguments following each of the patterns. These patterns
are designed to help expose challenges involved with the evidence generated
from the existing tools. The undeveloped claims in the case studies, for instance,
attempt to formulate these challenges as requirements of new (or enhancement
of existing) tools for the system-level assurance of the CPSNN. This is different
from the approach proposed in a recent work [4] to identify component-level gaps
in the assurance of the CPSNN.

One of the main challenges in the model-based assurance argument that
needs to be addressed is the assurance about the accuracy of the observation
(or simulation) model used to capture measurements (or observations) in the
environment. The complex and uncertain nature of the environment makes it
difficult to precisely capture it in a model. Improving the scalability of the exist-
ing system-level verification tools for CPSNN is another challenge that needs to
be addressed to strengthen the evidence for the holistic pattern. Formalization
of requirements for the perception-based NNs is required to help develop tools
for the assurance of these NNs in the modular pattern. Addressing these chal-
lenges form one of the directions of future research for us. Another promising
direction to extend this work is to extend the proposed design-time patterns
with arguments to include safety monitoring and runtime adaptation tools for
assurance.
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