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Abstract. Modern safety-critical systems become increasingly net-
worked and interconnected. Often the communication between the sys-
tem components utilises the protocols similar to the standard Internet
Protocol (IP). In particular, such protocols are used for communication
between smart sensors and controller. While offering advanced capabili-
ties such as remote diagnostics and maintenance, this also make safety-
critical systems susceptible to the attacks implementable against IP-
based systems. In this paper, we propose an approach to specifying a
generic IP-based networked control system and formalising its security
properties. We use the Event-B framework to formally analyse the impact
of security attacks on safety properties of the system.
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1 Introduction

Modern safety-critical systems become increasingly open and interconnected. In
particular, the use of smart sensors and Internet of Things (IoT) enable the
development of systems with advanced capabilities including remote diagnos-
tics and proactive maintenance. Often their communication rely on standard
or adapted versions of the Internet Protocol (IP). Hence, such systems become
susceptible to the security attacks typical for the IP-based systems.

Networked control systems and IoT rely on remote sensing and actuation in
providing their functions, including the safety-critical ones. Therefore, to ensure
system dependability, we need to analyse the impact of security attacks on sys-
tem safety and devise the measures for protecting the system against malicious
faults.

In this paper, we propose a formal approach to modelling safety-critical net-
worked systems and analysing the impact of the security attacks on system
safety. We demonstrate how to rigorously specify the behaviour of a control sys-
tem relying on a generic IP protocol for the communication with remote sensors.
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Fig. 1. Architecture of generic control system

The proposed approach supports a formal analysis of the impact of typical secu-
rity attacks on the data transmitted between components. We demonstrate how
to represent the results of a denial-of-service and tampering attacks by defining
the corresponding system-wide invariant properties. Such an approach allows us
to identify the impact that the deviations caused by the security attacks make
on system safety functions.

We rely on formal modelling in Event-B [1] to systematically specify and
verify both nominal and faulty system behaviour. Event-B is a rigorous approach
to correct-by-construction system development by refinement. While refining
the system model, we can gradually define the main stages of communication
between the system components and specify the effect of security attacks.

The stepwise Event-B refinement process allows us to systematically derive
the constraints and explicitly define the assumptions that should be fulfilled
to guarantee system safety in the presence of attacks. The Rodin platform [2]
provides an automated tool support for modelling and verification in Event-
B. It automatically generates the proof obligations required for demonstrating
correctness of specification and refinement and attempts to discharge them auto-
matically. The use of an automated tool support improves scalability of formal
verification and allows us to analyse the behaviour of complex networked sys-
tems. We believe that the proposed approach supports a systematic rigorous
analysis of the impact of security on system safety functions.

2 A Formal Analysis of Security Properties of Networked
Control Systems

2.1 Safety of a Generic Control System

In this paper, we focus on the analysis of a generic architecture of a networked
control system depicted in Fig. 1. The main goal of the system is to control a
certain physical process.

Without loss of generality, we assume that the state of the physical pro-
cess is represented by a certain parameter s. The value of s is measured by
the corresponding remote smart sensor. The sensor reading is transmitted by
the communication channel connecting the sensor and controller. Based on the
obtained sensor reading, the controller changes the state of the actuator, which,
in its turn, affects the state of the physical process. The behaviour of the system
is cyclic. At each cycle, the sensor performs the measurement of s and sends the
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corresponding data consisting of several packets to the controller. Based on the
received data, the controller assigns a new state of the actuator. In general, the
controller and actuator are also communicating over a network. However, since
the behaviour of sensor-controller and controller-actuator channels are similar,
we omit a detailed discussion of the latter.

Let us assume that the specification of the controller contains the operations
Setting Actuator high defined as follows

if input s ≤ low then actuator := increasing

and similarly Setting Actuator low:

if input s ≥ high then actuator := decreasing

These operations of the controller change the state of the actuator according
to the obtained data from the sensor. The operations are used to achieve the
desired functional behaviour of the control system.

An important non-functional requirement imposed on the system is to ensure
safety, i.e., guarantee that the value of the physical parameter s does not breach
certain safety threshold, i.e.,

s ∈ [low safe, high safe]

It is clear that the required safety property can be guaranteed only if input s
is marginally different from the actual physical value of s, i.e.,

|s − s input| ≤ δ

where δ < low − low safe (we assume that low − low safe = high safe−high)
Now let us investigate how the security attacks can violate these conditions.

2.2 Modelling Security Attacks and Defense Against Them

In our modelling, we aim at representing the essence of the IP communication
and defining the security properties as the invariant properties over the state
of the input and output buffers of the communicating parties. We analyse the
sensor-controller communication.

In the IP-based systems, the components communicate with each other by
exchanging packets, which are assembled into the messages by the receiver.
Hence, we model the communication between the sensor and controller as a
packet exchange. Lets assume that a message to be sent by a sensor consists of n
packets. We assume that a packet has three parts: an integer number designating
the sequence number, the header containing the required networked information,
and the payload. Formally, a packet is a triple:

(i, h, p) ∈ N × Header × Payload,
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where Header and Payload are the abstract sets containing all possible values
in the header except the sequence number and payload. The following data
structure models a message:

message ∈ {1, ..., n} → Header × Payload. (1)

For simplicity, to analyse the payloads and headers separately, we define two
auxiliary functions message1 and message2 as follows:

message1 ∈ {1, ..., n} → Header, message2 ∈ {1, ..., n} → Payload,

∀ i. 1 ≤ i ≤ n ⇒ message(i) = (message1(i),message2(i)).

We assume that at each cycle the sensor and controller should first establish a
connection, i.e., open and close a session. After sending a message which initiates
a new session, the sensor waits for the acknowledgement from the controller.
Once the acknowledgement is received, the connection is established and the
sensor starts to send the packets with the measurement data. At the receiving
side, the controller stores the delivered packets in its input buffer. After the
predefined number of packets have been received, it assembles them into the
corresponding message by relying on the sequence number of each packet.

In our work, we focus on modelling an impact of security attacks on system
safety. Hence, we need to model how an attack affects the packets received by
the controller. Therefore, in general, the input buffer containing the packets to
be received by the controller can be different from the output buffer containing
the packets to be sent by the sensor. If a message can be represented by a total
function mapping the sequence number to the packet then the input buffer can
be represented by a similar but partial function.

The communication channel between the sensor and the controller is suscep-
tible to the attacks typical for the IP- based systems. Hence, the attacks can
affect both the availability and integrity of the inputs received by the controller.

Next we discuss two typical types of the attacks and formally define their
effect on the controller inputs.

Packet Tampering. As a result of man-in-the-middle attack, an attacker can
change the payload of some packets (the sequence number and header are
unchanged). If not detected, such an attack would result in the controller making
the decisions regarding the actuator state based on the incorrect input. Formally,
this threat can be formalized as follows:

message1(i) = delivery1(i) ∧ delivery2(i) 	= message2(i). (2)

where 1 ≤ i ≤ n and delivery represents the packet received by the controller.

DoS Attack. As a result of DoS attack, the receiver obtains a large number of
packets initiating a new connections. Eventually, it overflows the input buffer of
the controller and all the consequent packets are dropped. Formally, it can be
represented as follows:

message1(i) 	= delivery1(i)
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By defining such system-wide properties, we can formally specify the impact
of a security attack on the system. Hence, we obtain a formal ground for iden-
tifying the impact of the security control mechanisms as well as the effect of a
security attack on safety.

Let us specify a behaviour of such widely-used security control mechanisms as
a security gateway. We introduce the Detection function that maps each packet
to a boolean value:

Detection : {1, ..., n} × H × P → BOOL (3)

Mapping to the value TRUE denotes that an attack has been detected.
Therefore, we can ensure safety in the presence of an active attacker who only

tampers the payload of some packets if and only if we can prove the following
security properties.

Suppose that the security gateway receives the ith packet, then the following
property should hold.

detection(i, delivery1(i), delivery2(i)) = TRUE ⇔
message1(i) = deliveryr1(i) ∧ message2(i) 	= delivery2(i).

Obviously, once the attack is detected, the controller can no longer rely on
the data received from the sensor. Hence, to ensure that the system does not
breach safety when an attack is detected, the specification of the controller should
contain some fall-back operations. Such an operation can be, e.g., the use of the
last good value received by the controller. Such a mechanism would allow the
system to continue to function for a few cycles and might alleviate the impact of
a security attack in case it had a short duration. However, if the attack persists
the system should be shut down. Alternatively, the controller can directly put the
system in a safe but non-operational state upon detection of a security attack.

In the next section, we give a brief overview of our formal modelling frame-
work Event-B and then demonstrate how to formally specify a networked control
system and its security properties in Event-B.

3 Event-B

Event-B is a state-based formal approach that promotes the correct-by-con-
struction development paradigm and formal verification by theorem proving [1].
In Event-B, a system model is specified as an abstract state machine. An abstract
state machine encapsulates the model state, represented as a collection of vari-
ables, and defines operations on the state, i.e., it describes the dynamic behaviour
of a modelled system. The variables are strongly typed by the constraining predi-
cates that, together with other important system properties, are defined as model
invariants. Usually, a machine has an accompanying component, called a con-
text, which includes user-defined sets, constants and their properties given as a
list of model axioms.
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The dynamic behaviour of the system is defined by a collection of atomic
events. Generally, an event has the following form:

e =̂ any a where Ge then Re end,

where e is the event’s name, a is the list of local variables, Ge is the event guard),
and Re is the event action.

The guard is a state predicate that defines the conditions under which
the action can be executed, i.e., when the event is enabled. If several events
are enabled at the same time, any of them can be chosen for execution non-
deterministically. If none of the events is enabled then the system deadlocks.
The occurrence of events represents the observable behaviour of the system.

In general, the action of an event is a parallel composition of deterministic
or non-deterministic assignments. In Event-B, this assignment is semantically
defined as the next-state relation Re. A deterministic assignment, x := E(x, y),
has the standard syntax and meaning. A non-deterministic assignment is denoted
either as x :∈ S, where S is a set of values, or x :| P (x, y, x′), where P is a
predicate relating initial values of x, y to some final value of x′. As a result
of such a non-deterministic assignment, x can get any value belonging to S or
according to P .

Event-B employs a top-down refinement-based approach to system develop-
ment. A development starts from an abstract specification that nondeterministi-
cally models most essential functional requirements. In a sequence of refinement
steps, we gradually reduce nondeterminism and introduce detailed design deci-
sions. The consistency of Event-B models, i.e., verification of well-formedness,
invariant preservation as well as correctness of refinement steps, is demonstrated
by proving the relevant verification theorems – proof obligations.

Proof obligations are expressed as logical sequences, ensuring that the trans-
formation is performed in a correctness-preserving way. For instance, invariant
preservation property for the given model invariant Ij is formulated as follows:

A(d, c), Ij(d, c, v), Ge(d, c, a, v), Re(d, c, a, v, v′) � Ij(d, c, v′) (INV)

where A are model axioms, Ge is the event guard, d are model sets, c are model
constants, a are the event local variables and v, v′ are the variable values before
and after the event execution.

Modelling, refinement and verification in Event-B is supported by an auto-
mated tool – Rodin platform [2]. The platform provides the designers with
an integrated modelling environment, supports automatic generation and prov-
ing of the necessary proof obligations. Moreover, various plug-ins created for
Rodin platform allow a modeller to transform models from one representation
to another. They also give access to various verification engines (theorem provers,
model checkers, SMT solvers).
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4 Formal Development of a Safety-Critical System with
Security Consideration

In this section, we demonstrate how to formally model a communication between
the sensor and controller in the presence of tampering and DoS attacks. We
create a formal model of a packet tampering and DoS attack and the introduce
a defense mechanism ensuring that safety can be maintained when the system
is attacked.

In our model, a control cycle starts from an attempt to establish a connection
between the sensor and the controller and finishes with the connection termi-
nation either with successfully completed transmission or aborted transmission
due to the detected security attack.

We start by explaining how the message transfer is modelled. Since we con-
sider an IP-based systems, to establish a connection, the sender – a smart sen-
sor – first sends a session invitation message to the receiver – the controller.
The controller replies with an acknowledgement and opens a connection. To
enable modelling of a security attack, we introduce a modelling abstraction – an
intermediate buffer. The intermediate buffer models a behaviour of a transmis-
sion channel. When the channel is not attacked then a packet transmitted by a
receiver is stored in the intermediate buffer unchanged and consequently copied
to the receiver’s input buffer.

When the system is under a tampering attack, the intermediate buffer allows
us to model an effect of an attack – the payload of the packet is changed in
the intermediate buffer. Consequently, the receiver obtains a packet, which is
different from the packet, which was sent by the sender. To model DoS attack,
we use the intermediate buffer to insert packets that have never been sent by
the sender. Let us observe, that such a modelling approach can also be easily
adapted to model a replay attack. We introduce a similar buffer to model a
communication in the reverse direction. The similar buffer is introduced to store
the acknowledgements sent by the controller to the sensor.

We model this cyclic behavior as a sequence of phases.

... MSG ⇒ Start ⇒ Established ⇒ CPLT or SecPro ⇒ MSG ....

In our abstract specification, outlined in Fig. 2 the sender and receiver share
the state space. Hence, the successful transmission of a packet can be represented
as a simple assignment of the buffer of the sender to the buffer of the receiver.

In the abstract specification, a variable process models the different phases
of communication.

In the phase MSG, the sensors generates a message message to be sent.
In phase Start, the transmission process begins. When process is equal to
Established, the sensor and controller are exchanging packets. In the abstract
specification, the controller receives the whole message at once. At the end of
this phase, process can be in phases CPLT if an attack is detected or in SecPro
otherwise.
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Fig. 2. The structure of abstract specification

In this level, we can prove the following invariant to show the message is sent
successfully:

process = CPLT ⇒ AbsDelivery = message.

The first refinement step aims at decomposing a message into a number of
packets and modelling their step-by-step transmission. We introduce a the new
event receive, which models receiving a packet by the controller. The controller
keeps track of the received packets and after all the packets have been received,
composes them into a message. We define the following invariant to model the
fact that for a message to be successfully received all its packets should be
delivered successfully.

delivery = (1..(c − 1)) � message

where � stands for a domain restriction.
Our next refinement step focuses on separating state spaces of the sender –

the sensor – and receiver – the controller and introducing an intermediate buffer
between them to model the affect of an attack. However, at this level, the sensor
can still access the state of the controller, i.e., our security properties are yet not
defined in an entirely distributed way.

The intermediate buffer is modeled by two variables denoted by BufCounter
and BufData.

BufCounter ∈ (0..n) ∧ BufData ∈ Header × Payload.

We define a new event send to add (i.e., assign) a new packet to the intermediate
buffer. Correspondingly, we refine the event receive to model the fact that the
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packets received by the controller are transmitted via a communication channel,
i.e., are first stored (an modified, in case of an attack) in the intermediate buffer.

In the previous refinement step, the sensor could still read the variable of the
controller. In this specification, we remove this modelling abstraction. Namely,
we model the behaviour of the sensor waiting for an acknowledgment before
starting to send a new packet.

To model this, we define a variable SensorRcv of type Boolean. It specifies
the conditions defining whether the sensor should send a new packet, i.e., has
received the acknowledgement for the previously sent packet. We also introduce
the intermediate buffer AckCh for the controller-sensor communication and two
new events modelling sending and receiving the acknowledgments. When the
controller receives a packet, it changes the value of AckCh to indicate that the
previous packet has been delivered successfully.

At this point of the formal development, we have completed modeling the
communication between the sender – the smart sensor – and a receiver – the
controller. The system model is distributed, i.e., the state spaces of the commu-
nicating components are disjoint. All the invariant properties are defined over
the distributed state space of the system. Now we are ready to model an effect
of an attack on the system behaviour.

In the fourth refinement step, we model the attacker’s behavior and security
control mechanisms. To achieve this, we introduce the events tampering and
injection defined as follows:

tampering =̂
when process = Established ∧ BufCounter = c
then CBufData2 :∈ Payload.

injection =̂
when process = Established ∧ BufCounter = c
then BufData22 :∈ Payload ∧ BufData21 :∈ Header

∧ BufCounter2 := c.

The events become enabled after the sensor sends a new packet. The tam-
pering event results in changing the payload of the packet. The payload is
changed to any arbitrary value in the set Payload. The injection event results
in generating an new packet that is stored in the intermediate buffer.

To model a security control mechanism, we introduce a variable validity ∈
{Checked,Nchecked}. The variable is modified by the controller. It models the
outcome of integrity verification for the last packet stored in delivery, i.e., rep-
resent the fact that the packet has either passed the security verification or not.
Whenever a new packet arrives to the controller side, the controller verifies its
integrity, which is abstractly modelled by an event gateway, which assigns a
new value to the variable validity. If the packet is valid then the variable validity
receives the value Checked and the controller sends the corresponding acknowl-
edgement to the sensor. If the verification fails then the system terminates the
connection and process becomes SecPro.



78 E. Poorhadi et al.

Now we can prove the general security property defined in Sect. 2.

validity = Checked ⇒
detection(c − 1, delivery1(c − 1), delivery2(c − 1)) = TRUE ⇔
message1(c − 1) = delivery1(c − 1) ∧ message2(c − 1) 	= delivery2(c − 1).

The introduction of the security protection mechanism – the secure gate-
way – allows us to ensure that the tampered or injected messages would not
be accepted by the controller as an input. Hence, we can guarantee that the
controller input would remain sufficiently close to the real physical value of the
controlled parameter. Otherwise, if the secure gateway does establish message
validity, i.e., the message is suspected to be tampered or injected, the controller
can rely on its own fault tolerance mechanisms to ensure safety.

4.1 Discussion of Development

While modelling, we have adopted an implicit discrete model of time. Namely,
we define the abstract function representing the change in the dynamics of the
controlled process as well as the constraints relating the components behaviour in
the successive iterations. Such an approach is based on our previous experience in
modelling control systems, e.g., [11]. Such an approach allows us to define system
invariant properties in relation to a particular phase of control loop execution
or a communication progress. An alternative way to approach the problem of
modelling time could be to rely on real-time extension of Event-B [17]. In such
a way, we could also express the time-related properties of data transmission as
well as define time explicitly the time-stamps of the packets.

Another abstraction, in which we relied in our modelling, is a representa-
tion of a networked architecture. In the proposed chain of refinements, we have
gradually moved from modelling a centralised architecture to separating state
space of communicating components. However, formally, the behaviour of the
components is modelled within a single monolithic specification. To address this
issue and explicitly represent each component separately, we can rely on the
modularisation approach [12–14], which supports compositional reasoning and
specification patterns [15].

5 Related Work and Conclusions

The problem of safety and security interactions has recently received a significant
research attention. It has been recognised that there is a clear need for the
approaches facilitating an integrated analysis of safety and security [4,8,9].

This issue has been addressed by several techniques demonstrating how to
adapt traditional safety techniques like FMECA and fault trees to perform a
security-informed safety analysis [5,8]. The techniques aim at providing the engi-
neers with a structured way to discover and analyse security vulnerabilities that
have safety implications. Since the use of such techniques facilitate a system-
atic analysis of failure modes and results in discovering important safety and
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security requirements, the proposed approaches provide a valuable input for our
modelling.

There are several works that address formal analysis of safety and security
requirements interactions [6,10]. Majority of these works demonstrate how to
find conflicts between them. A typical scenario used to demonstrate this is a
contradiction between the access control rules and safety measure. In our app-
roach, we treat the problem of safety-security interplay at a more detailed level.
Namely, we model the data transmission in an IP-based system and demonstrate
how a security attack affects system behaviour on the level of packet transmission
and as a result can jeopardise safety.

The distributed MILS approach [3,7] employs a number of advanced mod-
elling techniques to create a platform for a formal architectural analysis of safety
and security. The approach supports a powerful analysis of the properties of the
data flow using model checking and facilitates derivation of security contracts.
Since our approach enables incremental construction of complex distributed
architectures, it would be interesting to combine these techniques to support
an integrated safety-security analysis throughout the entire formal model-based
system development.

An explicit reasoning about communication between decentralised compo-
nents in Event-B has been discussed in [16]. In the similar way, the behaviour of
components and data is represented via the corresponding buffers. However, this
work does not consider an effect of security attacks on the transferred packets
and focuses on another communication protocol.

A formal development of safety-security interplay has been carried out in a
number of recent works [18–21]. In these approaches, a more high-level analysis of
security impact has been undertaken. These works focus on modelling data-flow
related properties as well as integration of different safety analysis techniques
to identify the impact of security attacks on safety. Despite of sharing many
common modelling solutions, in this paper, we focused on a different aspect
– modelling of an IP-based system and analysis of the impact of the typical
IP-related attacks on safety.

In this paper, we have presented a formal approach to modelling a security
attacks in an IP-based system and their impact of safety. Our approach considers
the detailed data transmission process between the sensor and the controller. It
allowed us to explicitly model the actions of the attackers and their impact on
the transmitted messages. As a result, we were able to formally demonstrate
that an introduction of a security control mechanism allows us to guarantee
preservation of safety.

As a future work, we are planning to continue to study different types of
attacks at a detailed level and validate our approach by large-scale case studies.
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