
Leveraging Semi-formal Approaches
for DepDevOps

Wanja Zaeske1 and Umut Durak1,2(B)

1 Department of Informatics, Clausthal University of Technology,
Julius-Albert-Str. 4, 38678 Clausthal Zellerfeld, Germany

{wanja.zaeske,umut.durak}@tu-clausthal.de
2 Institute of Flight Systems, German Aerospace Center (DLR),

Lilienthalplatz 7, 38108 Braunschweig, Germany
umut.durak@dlr.de

Abstract. While formal methods have long been praised by the depend-
able Cyber-Physical System community, continuous software engineer-
ing practices are now employing or promoting semi-formal approaches
for achieving lean and agile processes. This paper is a discussion about
using Behaviour Driven Development, particularly Gherkin and RSpec
for DepDevOps, DevOps for dependable Cyber-Physical Systems.

Keywords: Semi-formal approaches · Dependable systems · Agile

1 Introduction

Software engineering is evolving towards removing disconnects among its activ-
ities with employing continuous practices to achieve agile processes. First,
Test-Driven Development (TDD) bridged the gap between implementation and
testing. Then, Continuous Integration (CI) and Continuous Deployment (CD)
attacked the disconnect between the development and deployment. Eventually
Behaviour-Driven Development (BDD) enhanced TDD with specification and
continuous acceptance testing. Now DevOps is connecting development and oper-
ations.

Continuity with streamlined and automated processes has long been studied
in software engineering to achieve agility. Not only iterative and incremental
development life-cycles but also inevitable software evolution during operation
have been asking for rapid feedback cycles between the developer and the user.
DevOps is defined as the set of practices for reducing the time between commit-
ting the code and using it in normal operation [3]. It connects two worlds: the
development and the operation. Accordingly it consists of two integrated cycles;
one for development and the other for operation. A Release starts an operation
cycle that is composed of Deploy, Operate and Monitor steps. Feedback from
monitoring starts the next development cycle that is composed of Plan, Design,
Build, Test and Release steps.

DevOps harmonizes the agile software engineering practices, from TDD
and BDD to CI and CD to realize a fast forward track. It further promotes
c© Springer Nature Switzerland AG 2020
A. Casimiro et al. (Eds.): SAFECOMP 2020 Workshops, LNCS 12235, pp. 217–222, 2020.
https://doi.org/10.1007/978-3-030-55583-2_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-55583-2_16&domain=pdf
https://doi.org/10.1007/978-3-030-55583-2_16

218 W. Zaeske and U. Durak

monitoring and logging mechanism for feedback loops. As stated by Ebert et
al. [8], “obviously, the achievable cycle time depends on the environmental con-
straints and deployment model”. Inspired from the other application domains,
Cyber-Physical Systems (CPS) users are now asking for on-the-fly software
updates, easy problem reporting, and frequent feature enhancements. While the
expectation is to have mobile-like driver-assistance or avionics applications, the
dependability constraints and embedded software deployment models are pre-
venting any cycle faster than years, deployed at the service centers by authorized
personal.

This paper concentrates on dependability constraints, knowing that embed-
ded software deployment is also an open research area for achieving full-fledged
DevOps for CPS. Dependability is a system property that describes its ability
to deliver services that can justifiably be trusted [1]. It is an integrated concept
for availability, reliability, safety, integrity, and maintainability. Formal meth-
ods are mathematical techniques for specifying and verifying systems [7]. They
have long been proposed and employed to tackle dependability challenges in gen-
eral [17,19] and safety challenges in particular [2,5,12,13]. The dependable CPS
community of the last decade has also praised formal methods as one of the key
techniques [11,18]. While there are many research efforts that aim at integrat-
ing formal methods and agile practices, such as [4,9,21], this paper brings the
semi-formal methods that are being practiced in DevOps world to the attention
of dependable CPS community. The methods of interest are executable specifi-
cation methods of BDD, Gherkin [22] and RSpec [6].

2 Behaviour Driven Development in DevOps

Chelimsky et al. [6] define BDD as “implementing an application by describing
its behavior from the perspective of its stakeholders” It builds upon TDD, and
promotes a semi-formal ubiquitous language for the specification of behaviours
that is accessible to all the stakeholders of the system. The ubiquitous language
idea is based on Evans [10], who stresses that the linguistic divide or the language
fracture between the domain expert and the technical team leads only to vaguely
described and vaguely understood requirements. The aim of BDD is to come up
with executable as well as a human readable specification of the system, in a
single representation [14].

BDD is structured around features which can be defined as the capabilities
provided by the system that create a benefit to its users. A feature is usually
described in BDD by a title, a brief narrative, and a number of scenarios that
serve as acceptance criteria. Scenarios are concrete examples to describe the
desired behaviours of the system. When the concrete examples are executable;
they turn the criteria to an acceptance test. BDD calls this automated acceptance
testing.

Gherkin is the common language to write features, particularly for the
Cucumber test automation framework [22]. While it is not a Turing Complete
language, it has a grammar enforced by a parser. It aims at human readability,
while enabling execution in Cucumber using its grammar. The basic Gherkin

Leveraging Semi-formal Approaches for DepDevOps 219

keywords to specify a scenario are Given, When and Then. Given is used to
describe the context of the system, the state of the system before an event.
When is used to specify the event(s) and eventually Then is used to give the
outcome(s).

Features that are written in Gherkin and executed in Cucumber are regarded
as outer cycle. They define the behaviour of a system. RSpec is the name given
to the language and the test automation framework that is used to specify the
behaviour of objects [6]. It is regarded as the inner cycle. The test code is struc-
tured using Describe, Context and It keywords. Describe is used to define an
example group. An example is a test case. Context is similar to Describe; it is
used to group examples with a certain context. It is used to specify an example.

Fig. 1. Behaviour driven development in DevOps (Adapted from [23])

Figure 1 extends Yackel’s ideas [23] about the integration of BDD in the devel-
opment cycle of DevOps. The Plan, Design, Build, Test, and Release steps can be
realized using a layered BDD approach with Cucumber and RSpec duo. Features
are specified in Planning step using Gherkin. At the Design step, following a high
level-design, required unit behaviour is specified using RSpec. Low-level design
and implementation followed by Build step end up with a system to be tested.
With every passing unit test in RSpec, system also undergoes acceptance tests
in Cucumber against the feature specifications in Gherkin. The inner cycle ends
when the outer cycle, namely the acceptance tests are successful and eventually
leads to the Release step.

3 Gherkin and RSpec for Dependable CPS

If we take avionics as an example dependable CPS domain, the DO-178C Soft-
ware Considerations in Airborne Systems and Equipment Certification [15] sets

220 W. Zaeske and U. Durak

the baseline for process requirements. It necessitates high-level requirements
specification that interprets the system requirements to the software item, and
low-level requirements that can be directly implemented without further infor-
mation. The authors would like to start a discussion about using Gherkin for
the specification of high-level requirements and RSpec for low-level requirements
with an example avionics application, Terrain Awareness and Warning System
(TAWS).

TAWS is an airborne equipment introduced in 1990’s for reducing the risk of
the Controlled Flight Into Terrain (CFIT) accidents. It produces aural and visual
warning for impending terrain with a forward looking capability and continued
operation in landing configuration [16]. There are three classes of TAWS. Class
A, being most stringent, are for large turbine powered aircraft with at least one
radio altimeter; Class B for smaller turbine powered aircraft which may not have
radio altimeter and Class C, being least stringent, for smaller general aviation
aircraft.

Class C TAWS features include Forward Looking Terrain Avoidance (FLTA),
Premature Descent Alerting (PDA), Excessive Rate of Descent (Mode 1), Nega-
tive Climb Rate or Altitude Loss After Take-Off or Go Around (Mode 3) and Five
Hundred Foot Callout. The authors are prototyping a Class C TAWS, namely
Open TAWS to demonstrate dependable DevOps concepts. Sample Gherkin and
RSpec specifications that will be introduced in the following sections can be
found at Open TAWS Git repository.1

DO-367 Minimum Operational Performance Standards (MOPS) for Terrain
Awareness and Warning Systems (TAWS) Airborne Equipment states that dur-
ing non-precision approaches Class C Equipment shall generate at least Five
Hundred Foot Callout within 1.3 s of descending through 500 foot above terrain
or the nearest runway, or the altitude Callout within 1.3 s of descending through
the pilot selected altitude when the altitude callouts are not inhibited [16].

An excerpt from the Gherkin specification of the Five Hundred Foot Callout
high-level requirement can be as follows:

Feature: Five Hundred Foot Callout
DO-367 TAWS_MOPS_292
Scenario: Aircraft less then 500 feet above the terrain

Given Aircraft is in non-precision approach
And Altitude callout is not inhibited
When Aircraft descends under 500 feet above the terrain
Then Within 1.3 seconds Five Hundred Foot Callout is given

Open TAWS is designed to have a terrain server, which needs to provide the
terrain query interface that returns the altitude of a point at a given geographical
position. Rust is selected as the programming language for Open TAWS due
to its promises in safety, performance and zero-cost abstractions and growing
embedded systems community [20]. An excerpt from the RSpec specification of

1 https://gitlab.tu-clausthal.de/aeronautical-informatics/otaws.

https://gitlab.tu-clausthal.de/aeronautical-informatics/otaws

Leveraging Semi-formal Approaches for DepDevOps 221

the low-level requirement for the altitude query interface using Rust-RSpec2 can
be as follows:

rspec::describe("Altitude query", environment, |ctx| {
ctx.specify("a position in geographical coordinates", |ctx| {

ctx.it("should return the altitude of the terrain
at that position", |env| {

assert_eq!(env.sut.altitude(env.position),
env.expected_altitude);

});
});

})

4 Outlook

The paper is a short discussion starter for employing semi-formal specification
approaches of Behaviour Driven Development; namely Gherkin and RSpec for
dependable CPS. The automated traceability and requirements-based test cov-
erage analysis using test automation tools supporting Gherkin and RSpec is a
promise of such an approach to support dependability and lean development.
On the other side, ubiquitous specification languages, and specification-as-code
approach enables both continuity and agility.

Both Cucumber and RSpec are written in the Ruby programming language,
and were originally used for Ruby. While Cucumber (and Gherkin) could spread
to various programming languages, RSpec is still almost exclusive to the Ruby
community. There are both Cucumber and RSpec implementations for Rust.
While Cucumber-Rust3 is feature rich, Rust-RSpec is relatively limited and
has not been maintained for a long time. Cucumber-Rust parses the human-
readable semi-formal feature specifications and provides an API for developing
test cases that implements them. However, limited API of Rust-RSpec almost
fails to enable writing readable specification; they rather look like basic unit test
code.

This paper reports the early experience from the example avionics applica-
tion. Future work includes demonstration of a full-fledged DepDevOps with an
extensive discussion about alternative tools and infrastructures.

References

1. Avizienis, A., Laprie, J.C., Randell, B., Landwehr, C.: Basic concepts and taxon-
omy of dependable and secure computing. IEEE Trans. Dependable Secure Com-
put. 1(1), 11–33 (2004)

2. Barroca, L.M., McDermid, J.A.: Formal methods: use and relevance for the devel-
opment of safety-critical systems. Comput. J. 35(6), 579–599 (1992)

2 https://github.com/rust-rspec/rspec.
3 https://github.com/bbqsrc/cucumber-rust.

https://github.com/rust-rspec/rspec
https://github.com/bbqsrc/cucumber-rust

222 W. Zaeske and U. Durak

3. Bass, L., Weber, I., Zhu, L.: DevOps: A Software Architect’s Perspective. Addison-
Wesley Professional, Boston (2015)

4. Black, S., Boca, P.P., Bowen, J.P., Gorman, J., Hinchey, M.: Formal versus agile:
survival of the fittest. Computer 42(9), 37–45 (2009)

5. Bowen, J.P., Stavridou, V.: Formal methods and software safety. In: 1992 Safety
of Computer Control Systems (SAFECOMP 1992), pp. 93–98. Elsevier (1992)

6. Chelimsky, D., Astels, D., Helmkamp, B., North, D., Dennis, Z., Hellesoy, A.: The
RSpec Book: Behaviour Driven Development with Rspec. Cucumber, and Friends,
Pragmatic Bookshelf 3, 25 (2010)

7. Clarke, E.M., Wing, J.M.: Formal methods: state of the art and future directions.
ACM Comput. Surv. (CSUR) 28(4), 626–643 (1996)

8. Ebert, C., Gallardo, G., Hernantes, J., Serrano, N.: DevOps. IEEE Softw. 33(3),
94–100 (2016)

9. Eleftherakis, G., Cowling, A.J.: An agile formal development methodology. In:
Proceedings of the 1st South-East European Workshop on Formal Methods, pp.
36–47 (2003)

10. Evans, E.: Domain-Driven Design: Tackling Complexity in the Heart of Software.
Addison-Wesley Professional, Boston (2004)

11. Fitzgerald, J., Gamble, C., Larsen, P.G., Pierce, K., Woodcock, J.: Cyber-Physical
Systems design: formal foundations, methods and integrated tool chains. In: 2015
IEEE/ACM 3rd FME Workshop on Formal Methods in Software Engineering, pp.
40–46. IEEE (2015)

12. Gerhart, S., Craigen, D., Ralston, T.: Experience with formal methods in critical
systems. IEEE Softw. 11(1), 21–28 (1994)

13. McDermid, J.A.: Formal methods: use and relevance for the development of safety-
critical systems. In: Safety Aspects of Computer Control, pp. 96–153. Elsevier
(1993)

14. Okolnychyi, A., Fögen, K.: A study of tools for behavior-driven development.
In: Full-Scale Software Engineering/Current Trends in Release Engineering, p. 7
(2016)

15. RTCA: DO-178C software considerations in airborne systems and equipment cer-
tification. RTCA (2011)

16. RTCA: DO-367 minimum operational performance standards (MOPS) for terrain
awareness and warning systems (TAWS) airborne equipment. RTCA (2017)

17. Rushby, J., Underst, F.B.S., Stankovic, J.A.: Formal methods for dependable real-
time systems (1992)

18. Seshia, S.A.: New frontiers in formal methods: learning, cyber-physical systems,
education, and beyond. CSI J. Comput. 2(4), R1 (2015)

19. Thomas, M.: The role of formal methods in achieving dependable software. Reliab.
Eng. Syst. Saf. 43(2), 129–134 (1994)

20. Uzlu, T., Şaykol, E.: On utilizing rust programming language for Internet of Things.
In: 2017 9th International Conference on Computational Intelligence and Commu-
nication Networks (CICN), pp. 93–96, September 2017. https://doi.org/10.1109/
CICN.2017.8319363

21. Wolff, S.: Scrum goes formal: agile methods for safety-critical systems. In: 2012
First International Workshop on Formal Methods in Software Engineering: Rigor-
ous and Agile Approaches (FormSERA), pp. 23–29. IEEE (2012)

22. Wynne, M., Hellesoy, A., Tooke, S.: The Cucumber Book: Behaviour-Driven Devel-
opment for Testers and Developers. Pragmatic Bookshelf (2017)

23. Yackel, R.: BDD in DevOps: an example of BDD in continuous integra-
tion. https://www.qasymphony.com/blog/bdd-devops-example-bdd-continuous-
integration/. Accessed 20 May 2020

https://doi.org/10.1109/CICN.2017.8319363
https://doi.org/10.1109/CICN.2017.8319363
https://www.qasymphony.com/blog/bdd-devops-example-bdd-continuous-integration/
https://www.qasymphony.com/blog/bdd-devops-example-bdd-continuous-integration/

	Leveraging Semi-formal Approaches for DepDevOps
	1 Introduction
	2 Behaviour Driven Development in DevOps
	3 Gherkin and RSpec for Dependable CPS
	4 Outlook
	References

