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Abstract. While uses of trusted computing have concentrated on the
boot process, system integrity and remote attestation of systems, lit-
tle has been made on the higher use cases - particularly safety related
domains - where integrity failures can have devastating consequences, eg:
StuxNet and Triton. Understanding trusted systems and exploring their
operation is complicated by the need for a core and hardware roots of
trust, such as TPM module. This can be problematical, if not impossible
to work with in some domains, such as Rail and Medicine, where such
hardware is still unfamiliar. We construct a simulation environment to
quickly prototype and explore trusted systems, as well as provide a safe
means for exploring trust and integrity attacks in these vertical domains.

1 Introduction

The increasing use and implementation of digitalisation technologies and infras-
tructures enabled by the use of 5G communications, edge and far-edge com-
puting into safety related and safety-critical verticals, such medical and rail,
is inevitable. This brings an increasingly larger attack surface for a wide (and
expanding) range of cybersecurity attacks. We can no longer rely upon network
or device isolation as mechanisms to provide security - indeed the authors here
argue that, except in some exceptional scenarios, there is no such thing as an
isolated network.

The European Railway Agency (ERA) launched a study in 2018 amongst 10
countries to get an overview of the existing Command, Control and Signaling
(CCS) systems. This was done to assist ERA with the deployment of European
Rail Traffic Management System (ERTMS). ERTMS aims at replacing the dif-
ferent national train control and command systems in Europe [5,11]. The EN
50126 standard [3] specifies the CCS-systems safety and functional safety in rail-
way applications. Key specifications are made for the development process [14].
While provision is made for maintenance, patching, update and system provi-
sioning, implementation is left solely to the vendor or contractor that is in charge
of maintenance [38]. These specifications furthermore do not touch upon the sub-
ject of platform trust, meaning integrity guarantees of hardware, firmware and
software during the mentioned processes.

The Railway CCS-systems have been in the past vendor specific imple-
mentations for specific applications, components and interfaces to comply with
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national specifications. This has made the systems hard to attack through from
cyberspace. With new interoperability specifications in Europe and the demand
to lower the cost of the old relay based systems, new standardized CCS-systems
will emerge [32]. While vendors have already implemented remote maintenance
on these systems, these are proprietary solutions that are protected by public
key infrastructure if at all [10].

This paper is split into the following parts. We first describe the use of trusted
computing technologies [28] to provide security and integrity guarantees and how
this technology can be scaled up from its firmware roots into a larger scale set
of trust services. We then describe how trusted computing can be utilised and
investigated through the use of a simulation environment [29] and how this sim-
ulation environment can be utilised to accurately describe a railway signalling
system. We then describe a simplified firmware or configuration attack upon
a railway system. We then conclude with a discussion of the role of trusted
computing and simulation in the railway environment and how it impacts how
cybersecurity is viewed and how it can be utilised to develop sound cybersecu-
rity procedures [15,16] with particular emphasis on the remote attestation and
firmware tampering case.

2 Trusted Computing Concepts

A trusted system [1,33] can be defined as one that provides trusted execution
environment (TEE) to the workload running on it and one where its integrity
can be determined. A trusted execution environment is defined through the
provisioning of one or more of the features listed below. We concentrate on
the first point in this paper that a trusted system is one where the system
and workload integrity can be checked and assured. Such facilities are usually
integrated into processing environment and Trusted Platform Module (TPM) [6,
7].

– integrity measurement
– secure storage
– execution isolation
– authentication
– attestation
– physical location

The use cases for such mechanisms are based around integrity checking of the
firmware, bootloader, operating system and application components as typically
seen in systems using a TPM [2]. Other use cases relate to secure data stor-
age, such as key management and disk encryption schemes. Further use cases
such as DRM also exist though mainly in more specific areas such as found
in embedded system software and mobile/telecommunications devices. In all of
these cases there is an underlying reliance on a core root of trust which is provi-
sioned typically through an initial set of measurement code and a measurement
mechanism.
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2.1 Platform Integrity and Boot

The x86 platform measured boot with legacy BIOS or UEFI is standardised
by the TCG. The crucial point for establishing trust in a platform starts from
the moment the platform is started. In the initial start up phase the first code to
run on the platform is a process called the Core Root of Trust for Measurement
(CRTM). The CRTM’s purpose is to start a chain of trust, to accomplish this it
needs to be able to control the environment of the platform in the initial phase.

The x86 platform boot and measurements are shown in Fig. 1. Measurements
are taken during the phases of the boot, through to starting the required oper-
ating system. These measurements are written to the Platform Configuration
Registers (PCRs) through a process of extension thus forming a simple Merkel
Tree-like structure: PCRnew := hash(PCRold||new). The measurements are a
mechanism to spot changes in the code and configuration of the firmware. Ref-
erence points need to be made of trusted states of these values by platform
manufacturers, OEMs, vendors and customers.

Fig. 1. Boot time measurements

2.2 Device Identity and Keys

The TPM provides key generation and storage features to provide unique keys
which cannot be extracted. Incorporated in the TPM there are different seeds,
which are multiple one-time programmable eFuses set during manufacturing
time. These are used to create keys inside the TPM. Keys are protected in
hierarchies as shown in Fig. 2 which can be locked during the manufacturing
and supply-chain in a process called provisioning.

This combination of prior-provided keys can be utilised to form part of a
device identity [4]. The TPM however provides two unique keys which themselves
form the basis of the device’s identity, these are known as the Endorsement (EK)
and Attestation Keys (AK) and are used in a number of processes: the EK is
effectively a root certificate and the AK - derived from this - is used in signing
cryptographic measurements from the TPM.
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Fig. 2. Certificate and key storage for provisioning and attestation

The TPM uses an attestation structure - known as a quote - that contains a
digest of one or more requested PCR measurements, certain device meta-data,
the name of the signing key as well as limited nonce and user supplied data.
This quote is also signed and verifiable against the TPM’s specific attestation
key further guaranteeing the provenance of the information.

2.3 Typical Integrity Attacks

Attacks against industrial control systems (ICS) can be described as cyber-
physical attacks and they involve more layers than every day criminal attacks [9,
36]. The layers can be divided into an IT layer which is used to spread the mal-
ware, the control system layer which is used to manipulate process control and,
finally, the physical layer where the actual damage is created.

Depending on the physical security of the system it can also be possible
to directly target the Industrial Control System layer without touching the IT
layer [37]. In railway systems the security of the control systems are not as high as
in private production facilities. This makes the attack vector against the control
system more compelling as has been seen with StuxNet and others [8,12,21,27].

One interesting approach to quantifying the amount of potential attacks
against railway systems has been the HoneyTrain project [20]1 which has utilised
a honey pot to simulate railway infrastructure [35]. While addressing a different
area of security, specifically API attacks and denial of service, this approach has
demonstrated clearly the amount of attacks (approximately 2.7 million individ-
ual attempts in one week in this study), the availability of attack vectors and
the ease by which they might be utilised to deliver a much more destructive
payload.
1 https://news.sophos.com/de-de/2015/09/17/projekt-honeytrain-hackerwork/.

https://news.sophos.com/de-de/2015/09/17/projekt-honeytrain-hackerwork/
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Combining attacks on the two lowest layers is also possible, especially if the
levels are not properly secured. Tampering or substitution of sensors can provide
useful outcomes when combined with tampered logic on the control level [39].
These attacks are many times possible due to lacking security protocols and
procedures in these systems. Securing interconnections, cryptographic identities,
configuration monitoring and signing are just a few things that always should
be implemented on these systems but have not formally been used.

3 Simulation Environment

Tampering with railway signalling needs to be done in a controlled environment.
We do not want real incidents to happen when testing. It is more secure, cost
friendly and safer to simulate the system. When tampering with firmware on real
devices there is a big risk that the system as a whole will not be recoverable. This
section introduces a simulation framework that is utilised in the experimentation
and attacking of the railway signalling system.

An overview of the framework can be seen in Fig. 3. Along with a management
environment, each docker container corresponds to a real-World device with the
addition of a set of tools to simulate the core root of trust, firmware and the
measured boot process.

Fig. 3. Overview of simulation environment.

While providing a mechanism to develop simulated devices, it is also neces-
sary for the simulation environment to provide two further services:

– Simulation Environment Management
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– Attestation Services

The first refers to the functionality used to configure the devices and their
communication (for rapid design, IP networking and MQTT message passing
is used) and is utilised by the person in the role of setting up a simulation
environment. The second contains the pre-built components specifically for the
provisioning and remote attestation of the simulated (or real) trusted devices.
These components are called by elements within the base containers automati-
cally by the simulation environment. The remote attestation facilities would be
presented to the users of the simulation as part of the cybersecurity forensics
and failure detection processes.

4 Finnish Rail Traffic Management System

The Finnish rail traffic management system consists of four individual systems
that work together: the interlocking, automatic train protection (JKV2), track
vacancy monitor and the remote control system and is explained in [14].

The system uses track vacancy as the main safety criteria. A interlocking
device takes the vacancy inputs and restricts traffic according to a predefined
logic application. Trains are only allowed to move on tracks that are not occupied
while speed is controlled by the interlocking system, partly through signalling
and partly via track parameters.

There are two different methods for monitoring the track vacancy. The newer
method is able to count train and carriage axles: if a carriage is broken loose
from the train, the count between two sequential counters is not the same. The
interlocking system will protect the track section between the counters and not
let any trains pass. The older vacancy monitoring equipment depends on forming
a track circuit; it can only report if the track section is occupied or not.

The interlocking system takes the inputs from the vacancy control system
with the purpose to protect the railway environment by granting and prohibit-
ing access for trains on track sections. Granting access is done by reserving track
sections from the remote control system. A protective logic is implemented on
the interlocking system that protects the rail environment from dangerous reser-
vations. As an example it is not possible to reserve an already occupied track. It
is not possible to reserve a soon to be occupied section, if stopping an incoming
train is not possible.

Track switching is controlled by the interlocking system, so when a reserva-
tion is made and granted the track also switches to move the train to the desig-
nated endpoint. When the train moves on the reserved sections past vacancy con-
trol, track sections can be freed manually or even automatically. Track switches
always try to protect the movement in a fail-safe manner, for example, if a stop
signal is passed the train is routed to a free section.

The interlocking system is in charge of controlling all signals. The track side
signals have three different modes proceed, proceed 35 and stop3. These are shown
2 [Automattinen] Junan Kulunvalvonta.
3 The official Finnish terms are Aja, Aja35 and Seis.
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by green, yellow/green and red lights on the physical track-side signal posts. An
occupied track section is protected by a stop aspect, that section by a proceed 35
(warning) and that section by a proceed aspect. Other combinations are possible
based on track speeds, train type (express vs freight), braking distances etc.

The Finnish automatic train protection system (JKV) is a second or addi-
tional signalling system that is installed on the train. It communicates with track
side equipment, in this case a balise, which sends information to the train about
the signalling and track information. The JKV system can react to lack of driver
input and stop the train.

Safety is the sole purpose of the interlocking system, it takes the vacancy
input, grants access to a remote control request if a safe passage can be routed,
controls track side signals and data sent to the JKV system. Integrity of the
interlocking system and the implemented logic is of high importance. When
implementing an interlocking system it is tested, simulated and verified before
production use. After it is put into use the interlocking integrity is not actively
monitored.

5 Attacking the Trusted Railway Simulation

Attacking the firmware layer before the protective logic application can produce
issues as described in [17,32]. Hardware initialization is done during the boot
stage and this maps interfaces cards that produce outputs and take inputs from
track side equipment. These inputs/outputs are in many cases analog and there-
fore can be directly swapped on the interlocking device. A trusted system would
record the configuration measurements as cryptographic hashes of these com-
ponents and write these to the TPM for subsequent remote attestation before
admitting that device to the system.

For example a point device that controls the turnout of a train in a spe-
cific point could have 2 inputs and 2 outputs. The inputs tell the interlocking
device where the pointing device turnout is. This is a simple analog circuit, if the
circuit is closed the turnout is active. Through the outputs the turnout could
be controlled. Note, this is intentionally (and maybe grossly) simplified - real
systems rely upon multiple points within the interlocking to ensure functional
integrity [23]; however the point here is to demonstrate a detectable misconfig-
uration in a digitalised system.

Swapping the input and output could - in the worst case - derail a train or
cause a collision [34]. The interlocking device would believe that the turnout is
connected to the correct track according to the application logic. However the
input and output are swapped on firmware level, which of the application have
no control of.

Firmware changes require a reboot of the device to take effect. Simulating
device reboots with changes gives an opportunity to verify Traffic Management
procedures so that right mitigation can be done and failed integrity can be
corrected.

The mechanism for firmware updates typically requires a reboot of the system
- this means that the effects of tampering can be hidden to take effect later and
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not directly after a reboot changes in the firmware which are measured during
the measured boot are detectable and actionable once they have been reported
to the attestation mechanisms. Indeed some cases of malware [26] have included
secondary attacks embedded within these [13].

5.1 Attack Anatomy

An example scenario is seen in Fig. 4 which shows the user-interface to the rail-
way management system. In the simulator this interface is provided by its own
container and the track and signalling devices as well as the interlock(s) similarly
by their own containers.

Fig. 4. Example of track section under attack

In this case we have a train (T100) approaching a switch (V311) set to enter
track section (301). The signal protecting the switch (311) should display the
appropriate aspect to allow the train to progress, typically a proceed or caution.

The attack upon this system - obviously relying upon digital components - is
introduced by some vector as referenced earlier and need not be a direct attack
against that device but also via some other attack medium. The attack here
is designed to swap or misconfigure input and output signals. Figure 5 shows
the input and output signals that will be mapped to each other in the attack.
The delivery of the attack could further be made during normal maintenance
operations [18]. The effect of swapping the input and output lines here would
allow the train to cross the switch and enter the occupied section of track (302).

We introduce here three different attack triggers:

– Attacker triggers reboot after tampering.
– Passive reboot triggering waiting for maintenance reboot.
– Dynamic trigger activated a certain time after reboot.

As typical of firmware attacks, a reboot of the device is required to take
effect. Either the reboot is directly triggered by the tampered firmware or we
wait until a scheduled reboot is made.
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Fig. 5. Input-output signals that are flipped in the attack.

The first trigger would be activated directly after tampering the device
firmware. Due to fail safe procedures, which should be monitoring for certain
kinds of misconfiguration, every device connected to the interlocking device
would go into fail safe mode when active signals from the device are removed.
This assumes however that the particular misconfiguration is detectable and that
the incorrect configurations have been properly characterised.

Although it depends upon the implementation of the interlocking device
reboot, we can assume that most of the implementations would show a notice
of the reboot which should trigger reattestation. As reboots are indicative of
a potential reconfiguration detecting and accurately reporting on reboots and
being able to provide forensics of why a reboot took place is a critical part of
firmware integrity security.

From the traffic controllers perspective an interlocking device reboot would
be identified, if the reboot activity is monitored. Otherwise the reboot would
just show up/seem as a moment of downtime for the device. In our scenario it is
possible to discover a short disruption of the interlocking device service. This can
be discovered by every controlled track side device from that interlocking device
to go into fail safe for the rebooting time. Depending on traffic management
procedures mitigation would be done to resume normal operations.

Attacks could wait for a maintenance reboot from after which the configura-
tion change would be in place. More advanced attacks could also do a dynamic
mapping and implement a trigger for the swap to occur during normal operating
hours. This makes reboot monitoring not a full covered mitigation to discover
firmware tampering.

5.2 Measurement

Detecting firmware attacks depends upon the element being trustable and mea-
suring relevant parameters. In our railway elements as we have built in the
simulation we measure the firmware, the configuration of the firmware and then
finally the configuration and static software (or hardware) elements that make
up the configurable parts of the element. In this case we take cryptographic
measurements of the input and output port configurations and these are loaded
into the PCR registers on board the TPM.
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In all of the above cases the TPM provides information about device reboots
through monotonically increasing counters that indicate the amount of power
cycles. These counters are reported as metadata during the acquisition of a device
quote of its measured configuration. Further forensics are provided by the use of
a ‘safe’ counter which provides information whether the TPM embedded in that
device was cleanly shut down or not.

5.3 Mitigation

Controller software is mostly firmware that is upgraded by flashing after the
device is rebooted. So firstly we will see a reboot of a device when attacked.
If the devices are constantly monitored, there will be a short downtime off a
device if it is rebooted. The best practice would be to attest the device as soon
as possible after the reboot.

Attestation of a device can be made locally or remotely. In local attesta-
tion the device itself is responsible for checking the measurements made against
locally stored known good values. This was the default mechanism used in the
earlier TPM 1.2 devices which did not take into consideration larger, distributed
systems. This local attestation mechanism is now largely deprecated and not
used in TPM 2.0.

In the newer TPM 2.0 standard we either utilise remote attestation system
and rely upon the attestation integrating with other parts of the system to report
trust failures, or, we can seal certain information in the TPM’s non-volatile
RAM that can only be obtained if a correct configuration is measured. In reality
both mechanisms need to be used though with more of a focus on the remote
attestation occurs for reliability and relatively ease of use and configuration.

We have constructed a remote attestation and integrated that with the simu-
lation environment for railway signalling described here. This has been adapted
from an earlier system targeted towards telecommunication systems [22,29–31].
Each device reports its immutable identity (via its EK and AK keys) and its
configuration to the remote attestation service. Figure 6 shows the attestation
server and the basic device identity information.

Upon reboot of a device, the remote attestation server would communicate
with the device and report that the device has failed the correct system mea-
surements as shown in Fig. 7. This is achieved using the quoting mechanism
described earlier. Here we can also see that the device still has a valid signature
and that the quote returned by the TPM is both syntactically and semantically
valid.

The remeasurement of a device may be triggered in a number of ways. Firstly
the reboot might have been triggered by some other system and the attestation
server notified to take measurements. The device itself may also trigger attesta-
tion by reporting explicitly its reboot. Depending upon the nature of the envi-
ronment, communication and real-time properties either or both systems might
be utilised.

In Fig. 7 we see that the device has failed its expected measurements test
which is indicative of some change to the configuration. As we have mentioned
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Fig. 6. Device identity

Fig. 7. Device showing configuration trust failure/error
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other tests has passed successfully so we can be sure that the correct device is
present.

Once we have identified a change in some measurements we proceed with the
initial forensics where we examine the particular PCRs reported by the TPM as
shown in Fig. 8. In this case we see that there has been a change in PCR1 which
depending upon the semantics of the PCRs, at least on an x86 system, would
indicate a change in the actual firmware itself.

Fig. 8. TPM forensics using PCR listing

Further forensics can now start, for example examining the TPM boot logs
exposed by the UEFI firmware on x86 machines. Similar mechanisms would have
to be developed for other architectures, such as ARM, where this has not been
standardised.

6 Conclusion

The work here has presented an attack on the integrity of a railway interlocking
environment using the firmware and configuration of those systems in such a way
- through simulation - that it causes changes in the measurable - in a trusted
sense - aspects of the system. This allows us to safely understand the role of
trusted computing in the firmware attack scenarios and develop techniques and
plans to deal with such incidents.
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This has been developed as the case study for a larger simulation environment
for trusted systems. This provides us therefore with an educational environment
where - in this case - railway signallers and control role operators can explore
their reactions and develop mechanisms for the successful diagnosis and recovery.

Future work includes developing the scenarios shown in conjunction with
trusted hardware and remote attestation specifically designed for safety-critical
systems. It must be pointed out that dealing with trust failures is relatively
novel and an unexplored area. Beyond preliminary investigations into root cause
analysis there is currently no mechanism for trust failure forensics, analysis and
recovery - especially in the case of safety critical systems [24].

A number of aspects have come out of this work so far which require more
discussion. Firstly the response to a failure in a safety-critical system can not
be a reboot/reinstall or taking that element out of usage [19]; instead a more
sophisticated mechanism of managed degradation of functionality put in place.
In the signalling case this might require manual intervention and imposition of
procedures such as ‘drive on sight.’

The real-time characteristics and data transmission restrictions also come
into play. The size of a TPM quote is around 1000 bytes, but the time to gen-
erate, sign and check a quote might take a number of seconds [25]. So while
the reporting of attestation information is well within specifications such as the
EuroBalise data transmission specification, the real-time properties present sig-
nificant problems to the obtaining of timely information. If a quote take 3 s to
generate and check, then a high speed train at 300 kmh will travel approximately
250 m during that time. Even at slower speeds this might prove to be a significant
obstacle especially when mitigation mechanisms need to put into place.

Finally handling of trust failures needs to be properly developed. While inte-
gration of cybersecurity procedures into normal railway signalling procedures is
starting to happen, trust failure forensics and management is undeveloped. We
have examined how root cause analysis can be integrated and automated with
the remote attestation at least in the telecommunications server environment.
Extending this into rail and other safety-critical domain use cases is ongoing.
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