
António Casimiro · Frank Ortmeier ·
Erwin Schoitsch · Friedemann Bitsch ·
Pedro Ferreira (Eds.)

LN
CS

 1
22

35

DECSoS 2020, DepDevOps 2020, USDAI 2020, and WAISE 2020
Lisbon, Portugal, September 15, 2020
Proceedings

Computer Safety,
Reliability, and Security
SAFECOMP 2020 Workshops

Lecture Notes in Computer Science 12235

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

António Casimiro • Frank Ortmeier •

Erwin Schoitsch • Friedemann Bitsch •

Pedro Ferreira (Eds.)

Computer Safety,
Reliability, and Security
SAFECOMP 2020 Workshops
DECSoS 2020, DepDevOps 2020, USDAI 2020, and WAISE 2020
Lisbon, Portugal, September 15, 2020
Proceedings

123

Editors
António Casimiro
University of Lisbon
Lisbon, Portugal

Frank Ortmeier
Otto-von-Guericke University
Magdeburg, Germany

Erwin Schoitsch
Austrian Institute of Technology
Vienna, Austria

Friedemann Bitsch
Thales Deutschland GmbH
Ditzingen, Germany

Pedro Ferreira
University of Lisbon
Lisbon, Portugal

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-55582-5 ISBN 978-3-030-55583-2 (eBook)
https://doi.org/10.1007/978-3-030-55583-2

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer Nature Switzerland AG 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-5522-5739
https://orcid.org/0000-0001-6186-4142
https://orcid.org/0000-0002-0335-5443
https://orcid.org/0000-0001-6152-4121
https://orcid.org/0000-0003-2369-0115
https://doi.org/10.1007/978-3-030-55583-2

Preface

The SAFECOMP workshop day has for many years preceded the SAFECOMP con-
ference, attracting additional participants. The SAFECOMP workshops have become
more attractive since they started generating their own proceedings in the
Springer LNCS series (Springer LNCS vol. 12235, the book in your hands; the main
conference proceedings are LNCS 12234). This meant adhering to Springer’s guide-
lines, i.e., the respective International Program Committee of each workshop had to
make sure that at least three independent reviewers reviewed the papers carefully. The
selection criteria were different from those for the main conference since authors were
encouraged to submit workshop papers, i.e., on work in progress and potentially
controversial topics. In total, 30 regular papers (out of 45) were accepted. One invited
paper was added (in the DECSoS workshop), and all workshops included an intro-
duction written by the chairs.

Two of the four workshops are sequels to earlier workshops, two are new in topics
and Organizing Committees:

• DECSoS 2020 – 15th Workshop on Dependable Smart Embedded and
Cyber-Physical Systems and Systems-of-Systems, chaired by Erwin Schoitsch and
Amund Skavhaug, and supported by ERCIM, EWICS, and ARTEMIS/ECSEL
projects.

• WAISE 2020 – Third International Workshop on Artificial Intelligence Safety
Engineering, chaired by Orlando Avila-García, Mauricio Castillo-Effen, Chih-Hong
Cheng, Zakaria Chihani, and Simos Gerasimou.

• DepDevOps 2020 – First International Workshop on Dependable
Development-Operation Continuum Methods for Dependable Cyber-Physical
Systems, chaired by Haris Isakovic, Miren Illarramendi, Aitor Arrieta, and Irune
Agirre.

• USDAI 2020 – First International Workshop on Underpinnings for Safe
Distributed AI, chaired by Morten Larsen and Alexandru Uta.

The workshops provide a truly international platform for academia and industry.
It has been a pleasure to work with the SAFECOMP chair Antonio Casimiro, with

the publication chairs, Friedemann Bitsch and Pedro Ferreira, the workshop chairs,
Program Committees, and the authors. Particular thanks goes to all partners who
reorganized SAFECOMP 2020 and all workshops as an online event in hard times
because of the COVID-19 crisis. Thank you all for your good cooperation and
excellent work!

September 2020 Erwin Schoitsch

Organization

Committees

EWICS TC7 Chair

Francesca Saglietti University of Erlangen-Nuremberg, Germany

General Chair

António Casimiro University of Lisbon, Portugal

Program Co-chairs

António Casimiro University of Lisbon, Portugal
Frank Ortmeier Otto-von-Guericke University, Germany

General Workshop Chair

Erwin Schoitsch AIT Austrian Institute of Technology, Austria

Publication Chairs

Friedemann Bitsch Thales Deutschland GmbH, Germany
Pedro Ferreira University of Lisbon, Portugal

Position Papers Chair

Jérémie Guiochet University of Toulouse III, France

Publicity Chair

Bernardo Ferreira University of Lisbon, Portugal

Local Organizing Committee

António Casimiro University of Lisbon, Portugal
Pedro Ferreira University of Lisbon, Portugal
Ibéria Medeiros University of Lisbon, Portugal

Workshop Chairs

DECSoS 2020

Erwin Schoitsch AIT Austrian Institute of Technology, Austria
Amund Skavhaug NTNU, Norway

DepDevOps 2020

Haris Isakovic TU Wien, Austria
Miren Illarramendi Mondragon University, Spain
Aitor Arrieta Mondragon University, Spain
Irune Agirre IKERLAN, Spain

USDAI 2020

Morten Larsen AnyWi Technologies, The Netherlands
Alexandru Uta Leiden Institute of Advanced Computer Science,

The Netherlands

WAISE 2020

Orlando Avila-García Atos, Spain
Mauricio Castillo-Effen Lockheed Martin, USA
Chih-Hong Cheng DENSO, Germany
Zakaria Chihani CEA LIST, France
Simos Gerasimou University of York, UK

viii Organization

Gold Sponsor

Intel

Silver Sponsor

Edge Case Research

Supporting Institutions

European Workshop on Industrial
Computer Systems – Reliability, Safety
and Security

Faculdade de Ciências da
Universidade de Lisboa

LASIGE Research Unit

Organization ix

AG Software Engineering,
Otto-von-Guericke-Universität Magdeburg

Austrian Institute of Technology

Thales Deutschland GmbH

Lecture Notes in Computer
Science (LNCS), Springer Science +
Business Media

European Network of Clubs for
Reliability and Safety
of Software-Intensive Systems

German Computer Society

x Organization

Informationstechnische Gesellschaft

Electronic Components and Systems
for European Leadership - Austria

ARTEMIS Industry Association

Verband österreichischer
Software Industrie

Austrian Computer Society

European Research Consortium
for Informatics and Mathematics

Organization xi

Contents

15th International Workshop on Dependable Smart
Cyber-Physical Systems and Systems-of-Systems (DECSoS 2020)

Supervisory Control Theory in System Safety Analysis 9
Yuvaraj Selvaraj, Zhennan Fei, and Martin Fabian

A Method to Support the Accountability of Safety Cases by Integrating
Safety Analysis and Model-Based Design . 23

Nobuaki Tanaka, Hisashi Yomiya, and Kiyoshi Ogawa

Collecting and Classifying Security and Privacy Design Patterns
for Connected Vehicles: SECREDAS Approach . 36

Nadja Marko, Alexandr Vasenev, and Christoph Striecks

Safety and Security Interference Analysis in the Design Stage 54
Jabier Martinez, Jean Godot, Alejandra Ruiz, Abel Balbis,
and Ricardo Ruiz Nolasco

Formalising the Impact of Security Attacks on IoT Safety 69
Ehsan Poorhadi, Elena Troubitysna, and György Dan

Assurance Case Patterns for Cyber-Physical Systems
with Deep Neural Networks . 82

Ramneet Kaur, Radoslav Ivanov, Matthew Cleaveland, Oleg Sokolsky,
and Insup Lee

Safety-Critical Software Development in C++. 98
Daniel Kästner, Christoph Cullmann, Gernot Gebhard, Sebastian Hahn,
Thomas Karos, Laurent Mauborgne, Stephan Wilhelm,
and Christian Ferdinand

An Instruction Filter for Time-Predictable Code Execution
on Standard Processors . 111

Michael Platzer and Peter Puschner

ISO/SAE DIS 21434 Automotive Cybersecurity Standard - In a Nutshell 123
Georg Macher, Christoph Schmittner, Omar Veledar,
and Eugen Brenner

WiCAR - Simulating Towards the Wireless Car . 136
Harrison Kurunathan, Ricardo Severino, Ênio Filho,
and Eduardo Tovar

Automated Right of Way for Emergency Vehicles in C-ITS:
An Analysis of Cyber-Security Risks. 148

Lucie Langer, Arndt Bonitz, Christoph Schmittner, and Stefan Ruehrup

Integrity Checking of Railway Interlocking Firmware 161
Ronny Bäckman, Ian Oliver, and Gabriela Limonta

LoRaWAN with HSM as a Security Improvement
for Agriculture Applications . 176

Reinhard Kloibhofer, Erwin Kristen, and Luca Davoli

1st International Workshop on Dependable Development-Operation
Continuum Methods for Dependable Cyber-Physical System
(DepDevOps 2020)

Multilevel Runtime Security and Safety Monitoring for Cyber Physical
Systems Using Model-Based Engineering. 193

Smitha Gautham, Athira V. Jayakumar, and Carl Elks

Towards a DevOps Approach in Cyber Physical Production Systems Using
Digital Twins . 205

Miriam Ugarte Querejeta, Leire Etxeberria, and Goiuria Sagardui

Leveraging Semi-formal Approaches for DepDevOps 217
Wanja Zaeske and Umut Durak

1st International Workshop on Underpinnings for Safe Distributed
Artificial Intelligence (USDAI 2020)

Towards Building Data Trust and Transparency in Data-Driven
Business Applications . 229

Annanda Rath, Wim Codenie, and Anna Hristoskova

Distributed AI for Special-Purpose Vehicles . 243
Kevin Van Vaerenbergh, Henrique Cabral, Pierre Dagnely,
and Tom Tourwé

Cynefin Framework, DevOps and Secure IoT: Understanding the Nature
of IoT Systems and Exploring Where in the DevOps Cycle Easy Gains Can
Be Made to Increase Their Security. 255

Franklin Selgert

xiv Contents

Creating It from SCRATCh: A Practical Approach for Enhancing
the Security of IoT-Systems in a DevOps-Enabled Software
Development Environment . 266

Simon D. Duque Anton, Daniel Fraunholz, Daniel Krohmer,
Daniel Reti, Hans D. Schotten, Franklin Selgert, Marcell Marosvölgyi,
Morten Larsen, Krishna Sudhakar, Tobias Koch, Till Witt,
and Cédric Bassem

3rd International Workshop on Artificial Intelligence Safety
Engineering (WAISE 2020)

Revisiting Neuron Coverage and Its Application to Test Generation 289
Stephanie Abrecht, Maram Akila, Sujan Sai Gannamaneni,
Konrad Groh, Christian Heinzemann, Sebastian Houben,
and Matthias Woehrle

A Principal Component Analysis Approach for Embedding Local
Symmetries into Deep Learning Algorithms . 302

Pierre-Yves Lagrave

A Framework for Building Uncertainty Wrappers for AI/ML-Based
Data-Driven Components . 315

Michael Kläs and Lisa Jöckel

Rule-Based Safety Evidence for Neural Networks . 328
Tewodros A. Beyene and Amit Sahu

Safety Concerns and Mitigation Approaches Regarding the Use of Deep
Learning in Safety-Critical Perception Tasks. 336

Oliver Willers, Sebastian Sudholt, Shervin Raafatnia,
and Stephanie Abrecht

Positive Trust Balance for Self-driving Car Deployment. 351
Philip Koopman and Michael Wagner

Integration of Formal Safety Models on System Level Using the Example
of Responsibility Sensitive Safety and CARLA Driving Simulator 358

Bernd Gassmann, Frederik Pasch, Fabian Oboril,
and Kay-Ulrich Scholl

A Safety Case Pattern for Systems with Machine Learning Components 370
Ernest Wozniak, Carmen Cârlan, Esra Acar-Celik, and Henrik J. Putzer

Contents xv

Structuring the Safety Argumentation for Deep Neural Network Based
Perception in Automotive Applications . 383

Gesina Schwalbe, Bernhard Knie, Timo Sämann, Timo Dobberphul,
Lydia Gauerhof, Shervin Raafatnia, and Vittorio Rocco

An Assurance Case Pattern for the Interpretability of Machine Learning
in Safety-Critical Systems . 395

Francis Rhys Ward and Ibrahim Habli

A Structured Argument for Assuring Safety of the Intended
Functionality (SOTIF) . 408

John Birch, David Blackburn, John Botham, Ibrahim Habli,
David Higham, Helen Monkhouse, Gareth Price, Norina Ratiu,
and Roger Rivett

Author Index . 415

xvi Contents

15th International Workshop on
Dependable Smart Cyber-Physical
Systems and Systems-of-Systems

(DECSoS 2020)

15th International Workshop on Dependable
Smart Cyber-Physical Systems and
Systems-of-Systems (DECSoS 2020)

European Research and Innovation Projects in the Field of Dependable Cyber-Physical
Systems and Systems-of-Systems

(supported by EWICS TC7, ERCIM and ARTEMIS/ECSEL projects)

Erwin Schoitsch1 and Amund Skavhaug2

1 Center for Digital Safety & Security,
AIT Austrian Institute of Technology GmbH, Vienna, Austria

Erwin.Schoitsch@ait.ac.at
2 Department of Mechanical and Industrial Engineering,

NTNU (The Norwegian University of Science and Technology),
Trondheim, Norway

Amund.Skavhaug@ntnu.no

1 Introduction

The DECSoS workshop at SAFECOMP follows already its own tradition since 2006.
In the past, it focussed on the conventional type of “dependable embedded systems”,
covering all dependability aspects as defined by Avizienis, Lapries, Kopetz, Voges and
others in IFIP WG 10.4. To put more emphasis on the relationship to physics,
mechatronics and the notion of interaction with an unpredictable environment, massive
deployment and highly interconnected systems of different type, the terminology
changed to “cyber-physical systems” (CPS) and “Systems-of-Systems” (SoS). The new
megatrend IoT (“Internet of Things”) as super-infrastructure for CPS as things added a
new dimension with enormous challenges. “Intelligence” as a new ability of systems
and components leads to a new paradigm, “Smart Systems”. Collaboration and co-
operation of these systems with each other and humans, and the interplay of safety,
cybersecurity, privacy, and reliability, together with cognitive decision making, are
leading to new challenges in verification, validation and certification/qualification, as
these systems operate in an unpredictable environment and are open, adaptive and even
(partly) autonomous. Examples are e.g. the smart power grid, highly automated
transport systems, advanced manufacturing systems (“Industry 4.0”), mobile co-
operating autonomous vehicles and robotic systems, smart health care, and smart
buildings up to smart cities.

Society depends more and more on CPS and SoS - thus it is important to consider
trustworthiness (dependability (safety, reliability, availability, security, maintainability,
etc.), privacy, resilience, robustness and sustainability, together with ethical aspects in a
holistic manner. These are targeted research areas in Horizon 2020 and public-private
partnerships such as the ECSEL JU (Joint Undertaking) (Electronic Components and

Systems for European Leadership), which integrated the former ARTEMIS (Advanced
Research and Technology for Embedded Intelligent Systems), ENIAC and EPoSS
efforts as “private partners”. The public part are the EC and the national public
authorities of the participating member states. Funding comes from the EC and the
national public authorities (“tri-partite funding”: EC, member states, project partners).
Besides ECSEL, other JTIs (Joint Technology Initiatives), who organize their own
research & innovation agenda and manage their work as separate legal entities
according to Article 187 of the Lisbon Treaty, are: Innovative Medicines Initiative
(IMI), Fuel Cells and Hydrogen (FCH), Clean Sky, Bio-Based Industries, Shift2Rail,
Single European Sky Air Traffic Management Research (SESAR).

Besides these Joint Undertakings there are many other so-called contractual PPPs,
where funding is completely from the EC (via the Horizon 2020 program), but the
work program and strategy are developed together with a private partner association,
e.g. Robotics cPPP SPARC with euRobotics as private partner. Others are e.g.
Factories of the Future (FoF), Energy-efficient Buildings (EeB), Sustainable Process
Industry (SPIRE), European Green Vehicles Initiative (EGVI), Photonics, High
Performance Computing (HPC), Advanced 5G Networks for the Future Internet (5G),
the Big Data Value PPP and the cPPP for Cybersecurity Industrial Research and
Innovation.

The period of Horizon 2020 Programme and the current PPPs ends with the current
EU budget period. The landscape of PPPs will be updated in the context of the next EC
Research Programme “HORIZON Europe” (2021-2027), where re-organized JUs are
planned (e.g. ECS-KDT (Electronic Components and Systems, Key Digital Tech-
nologies) for ECSEL, including additional key themes like photonics and software,
advanced computing technologies, biosensors and flexible electronics), besides new
PPPs. Due to the COVID-19 crises and other negotiations within the EC, the new
Programmes are delayed at the time of the writing of this text, and in any case need
approval of the European Parliament to become effective.

2 ECSEL: The European Cyber-Physical Systems Initiative

Some ECSEL Projects which have “co-hosted” the Workshop, in supporting partners
by funding the research, have been finished this year before Summer (see reports in last
year’s Springer Safecomp 2019 Workshop Proceedings, LNCS 11699). This year,
mainly H2020/ECSEL projects and a few nationally funded projects are “co-hosting”
the DECSOS Workshop via contributions from supported partners:

• AQUAS (“Aggregated Quality Assurance for Systems”, (https://aquas-project.eu/),
• SECREDAS (“Product Security for Cross Domain Reliable Dependable Automated

Systems”), (https://www.ecsel.eu/projects/secredas), contributing to ECSEL
Lighthouse Cluster “Mobility.E”).

• AFarCloud (“Aggregated Farming in the Cloud”) (http://www.afarcloud.eu/),
member of the ECSEL Lighthouse cluster Industry4.E.

• DRIVES project, ERASMUS Programme of the EC.

15th International Workshop on Dependable Smart Cyber-Physical Systems 3

https://aquas-project.eu/
https://www.ecsel.eu/projects/secredas
http://www.afarcloud.eu/

• Air Force Research Laboratory and the Defense Advanced Research Projects
Agency (DARPA), US.

• EVE (KIRAS Programme) and COMET K2 Competence Centers (Austria).
• National funding programmes from Sweden (VINNOVA), Portugal, Japan.

Results of these projects are partially reported in presentations at the DECSoS-
Workshop. Some presentations refer to work done within companies or institutes, not
referring to particular public project funding.

Other important ECSEL projects in the context of DECSOS are the two large
ECSEL “Lighthouse” projects for Mobility.E and for Industry4.E, which aim at pro-
viding synergies by cooperation with a group of related European projects in their area
of interest:

• AutoDrive (“Advancing fail-aware, fail-safe, and fail-operational electronic com-
ponents, systems, and architectures for fully automated driving to make future
mobility safer, affordable, and end-user acceptable”), (https://autodrive-project.eu/),
(leading project of the ECSEL Lighthouse Cluster “Mobility.E”).

• Productive 4.0 (“Electronics and ICT as enabler for digital industry and optimized
supply chain management covering the entire product lifecycle”), (https://
productive40.eu/), (Leading project of the ECSEL Lighthouse Cluster “Industry4.
E”).

• ARROWHEAD Tools (European investment in digitalization and automation
solutions for the European industry, which will close the tools’ gaps; https://
arrowhead.eu/arrowheadtools), close cooperation with Productive4.0 and member
of the Lighthouse cluster Industry4.E.

• iDev40 (“Integrated Development 4.0”, https://www.ecsel.eu/projects/idev40),
contributing to ECSEL Lighthouse Cluster “Industry4.E.

New H2020/ECSEL projects which started this or second half of last year, and may
be reported about next year at this workshop or SAFECOMP 2021, are e.g.

• Comp4Drones (Framework of key enabling technologies for safe and autonomous
drones’ applications, https://artemis-ia.eu/project/180-COMP4DRONES.html;
started October 2019).

Short descriptions of the projects, partners, structure and technical goals and
objectives are described on the project and the ECSEL websites, see also the
Acknowledgement at the end of this introduction and https://www.ecsel.eu/projects.

3 This Year’s Workshop

The workshop DECSoS 2020 provides some insight into an interesting set of topics to
enable fruitful discussions. The mixture of topics is hopefully well balanced, with a
certain focus on multi-concern assurance issues (cybersecurity & safety, plus privacy,
co-engineering), on safety and security analysis, and on critical systems development,
validation and applications. Presentations are mainly based on ECSEL, Horizon 2020,
and nationally funded projects mentioned above, and on industrial developments of

4 E. Schoitsch and Amund Skavhaug

https://autodrive-project.eu/
https://productive40.eu/
https://productive40.eu/
https://arrowhead.eu/arrowheadtools
https://arrowhead.eu/arrowheadtools
https://www.ecsel.eu/projects/idev40
https://artemis-ia.eu/project/180-COMP4DRONES.html
https://www.ecsel.eu/projects

partners’ companies and universities. In the following explanations the projects are
mentioned, which at least partially funded the work presented.

The session starts with an introduction and overview to the DECSOS Workshop,
setting the European Research and Innovation scene.

The first session on Model-based Safety Analysis comprises two presentations:

(1) Supervisory Control Theory in System Safety Analysis, by Yuvaraj Selvaraj,
Zhennan Fei and Martin Fabian.
The paper presents a model-based approach to overcome the limitations of
standard FTA using Supervisory Control Theory (project Automatically Assess-
ing Correctness of Autonomous Vehicles (Auto-CAV), FFI/VINNOVA,
Sweden).

(2) A method to support the accountability of safety cases by integrating safety
analysis and model-based design, by Nobuaki Tanaka, Hisashi Yomiya and
Kiyoshi Ogawa.
Based on FTA and FMEA analysis results and SysML diagrams, the method
described allows to visualize a hybrid failure chain to understand better the
artefacts of safety analysis.

The second session covers Safety/Security/Privacy Systems Co-Engineering
with three papers:

(1) Collecting and Classifying Security and Privacy Design Patterns for Connected
Vehicles, by Nadja Marko, Alexandr Vasenev and Christoph Striecks (invited).
To provide modular and reusable designs to solve, security, safety and privacy
issues in highly automated systems (particularly automotive), solutions are col-
lected as design patterns (ECSEL project SECREDAS)

(2) Safety and Security Interference Analysis in the Design Stage, by Jabier Martinez,
Jean Godot, Alejandra Ruiz, Abel Balbis and Ricardo Ruiz Nolasco.
Safety and security co-analysis as part of co-engineering is enriched in the design
stage to provide capabilities for interference analysis, discussed in context of two
use cases (ECSEL project AQUAS).

(3) Formalising the Impact of Security Attacks on IoT Safety, by Ehsan Poorhadi,
Elena Troubitsyna and György Dan.
Connected safety critical systems are susceptible to attacks. Using the Event-B
framework, the impact of security attacks on safety is formalized (supported by
Trafikverket, Sweden).

The third session is dedicated to Critical System Development and Validation:

(1) Assurance case patterns for cyber-physical systems with deep neural networks, by
Ramneet Kaur, Radoslav Ivanov, Matthew Cleaveland, Oleg Sokolsky and Insup
Lee.
The paper shows that an assurance case can be used to argue about DNN based
systems in two autonomous driving scenarios (DARPA project).

(2) Safety-Critical Software Development in C++, by Daniel Kästner, Christoph
Cullmann, Gernot Gebhard, Sebastian Hahn, Thomas Karos, Laurent
Mauborgne, Stephan Wilhelm and Christian Ferdinand.

15th International Workshop on Dependable Smart Cyber-Physical Systems 5

Inherent complexity of C++ as object-oriented language has severe implications
for testability, performance and other relevant properties for safety critical sys-
tems, including tool diversity and qualification. Requirements of different safety
standards are addressed.

(3) An Instruction Filter for Time-Predictable Code Execution on Standard
Processors, by Michael Platzer and Peter Puschner.
The paper presents a novel approach that adds support for fully predicated
execution to existing processor cores to facilitate timing analysis with a single
path filter, implemented on LEON3 and IBEX processors.

The last session “Applications’ Assurance of Security and Integrity” includes
two application-oriented papers coverin two particular aspects of safety and security
checking and improvement in railway interlocking and in agricultural automation:

(1) Integrity Checking of Railway Interlocking Firmware, by Ronny Backmann, Ian
Oliver and Gabriela Limonta.
Trusted systems are often assured by use of core and hardware roots of trust,
which is not familiar and used in Health- and Railway domains. The authors
constructed a simulation environment to provide a safe means for exploring trust
and integrity attacks in these domains (ECSEL project SECREDAS).

(2) LoRaWAN with HSM (Hardware Secure Module) as a Security Improvement for
Agriculture Applications, by Reinhard Kloibhofer, Erwin Kristen and Luca Davoli.
Digital transformation in the agricultural domain requires continuously monitor-
ing environmental data and recording of all work parameters which are used for
decision making and in-time missions. To guarantee data security and protection
of sensor nodes, a security improvement concept around LoRaWAN communi-
cation using a HSM is presented (ECSEL project AFarCloud).

As chairpersons of the workshop, we want to thank all authors and contributors
who submitted their work, Friedemann Bitsch and Pedro Ferreira, the SAFECOMP
Publication Chairs, and the members of the International Program Committee who
enabled a fair evaluation through reviews and considerable improvements in many
cases. We want to express our thanks to the SAFECOMP organizers, and their
chairperson Antonio Casimiro, who provided us the opportunity to organize the
workshop at SAFECOMP 2020 as an on-line event, despite the CoVID-19 crises,
which did not allow an international conference Face-to-Face in Lisbon, because of the
still possible travel restrictions being a high financial risk. Particularly we want to thank
the EC and national public funding authorities who made the work in the research
projects possible. We do not want to forget the continued support of our companies and
organizations, of ERCIM, the European Research Consortium for Informatics and
Mathematics with its Working Group on Dependable Embedded Software-intensive
Systems, and EWICS, the creator and main sponsor of SAFECOMP, with its working
groups, who always helped us to learn from their networks.

We hope that all participants will benefit from the workshop, enjoy the conference
and will join us again in the future!

Erwin Schoitsch
Amund Skavhaug

6 E. Schoitsch and Amund Skavhaug

Acknowledgements. Part of the work presented in the workshop received funding
from the EC (H2020/ECSEL Joint Undertaking) and the partners National Funding
Authorities (“tri-partite”) through the projects AQUAS (737475), Productive4.0
(737459), AutoDrive (737469), SECREDAS (783119), iDev40 (783163), AfarCloud
(783221), Comp4Drones (826610) and ARROWHEAD Tools (826452). Other EC
funded projects are e.g. in the ERASMUS Program (DRIVES project, 591988-EPP-1-
2017-1-CZ-EPPKA2-SSA-B). Some projects received national funding, e.g.
FFI/VINNOVA (2017-05519) in Sweden, COMET K2 Program and KIRAS Program
(project EVE) (Austria), DARPA (USA, FA8750-18-C-090), FT/MCTES (Portugal,
UIDB/04234/2020), and other national organizations (Trafikverket Sweden, Nagoya
City Japan).

International Program Committee 2020

Friedemann Bitsch Thales Transportation Systems GmbH (DE)
Jens Braband Siemens AG (DE)
Bettina Buth HAW Hamburg (DE)
Aida Causevic Mälardalen University (SE) (subreviewer)
Gerhard Chroust Johannes Kepler University Linz (AT)
Peter Daniel EWICS TC7 (UK)
Pedro Ferreira University of Lisbon (PT)
Francesco Flammini (IT) Ansaldo; University “Federico II” of Naples (IT)
Barbara Gallina Mälardalen University (SE)
Thomas Gruber AIT Austrian Institute of Technology (AT)
Hans Hansson Mälardalen University (SE)
Denis Hatebur University Duisburg-Essen (DE)
Maritta Heisel University of Duisburg-Essen (DE)
Miren Illarramendi Rezabal Modragon University (ES)
Haris Isakovic Vienna University of Technology (AT)
Willibald Krenn AIT Austrian Institute of Technology (AT)
Dejan Nickovic AIT Austrian Institute of Technology (AT)
Thomas Pfeiffenberger Salzburg Research (AT)
Peter Puschner Vienna University of Technology (AT)
Francesca Saglietti University of Erlangen-Nuremberg (DE)
Christoph Schmittner AIT Austrian Institute of Technology (AT)
Christoph Schmitz Zühlke Engineering AG (CH)
Daniel Schneider Fraunhofer IESE, Kaiserslautern (DE)
Erwin Schoitsch AIT Austrian Institute of Technology (AT)
Rolf Schumacher Schumacher Engineering (DE)
Lijun Shan Internet of Trust (FR)
Amund Skavhaug NTNU Trondheim (NO)
Lorenzo Strigini City University London (UK)
Mark-Alexander Sujan University of Warwick (UK)
Andrzej Wardzinski Gdansk university of Technology (PL)

15th International Workshop on Dependable Smart Cyber-Physical Systems 7

Supervisory Control Theory in System
Safety Analysis

Yuvaraj Selvaraj1,2(B), Zhennan Fei1, and Martin Fabian2

1 Zenuity AB, Gothenburg, Sweden
{yuvaraj.selvaraj,zhennan.fei}@zenuity.com

2 Chalmers University of Technology, Gothenburg, Sweden
fabian@chalmers.se

Abstract. Development of safety critical systems requires a risk man-
agement strategy to identify and analyse hazards, and apply necessary
actions to eliminate or control them as malfunctions could be catas-
trophic. Fault Tree Analysis (FTA) is one of the most widely used meth-
ods for safety analysis in industrial use. However, the standard FTA is
manual, informal, and limited to static analysis of systems. In this paper,
we present preliminary results from a model-based approach to address
these limitations using Supervisory Control Theory. Taking an example
from the Fault Tree Handbook, we present a systematic approach to
incrementally obtain formal models from a fault tree and verify them in
the tool Supremica. We present a method to calculate minimal cut sets
using our approach. These compositional techniques could potentially
be very beneficial in the safety analysis of highly complex safety critical
systems, where several components interact to solve different tasks.

Keywords: Fault tree analysis · Supervisory control theory · Formal
methods · System safety · Autonomous driving

1 Introduction

Software development in safety critical systems necessitates a risk management
strategy to identify and analyse risks, and to apply the necessary actions to
eliminate or control them. The objective of safety analyses, performed during
various development phases, is to ensure that the risk of safety violations due to
the occurrence of different faults is sufficiently low.

Fault Tree Analysis, FTA [16], is one of the most common methods for safety
analysis in various industries. While standard fault trees are simple and informa-
tive, they are not free from limitations [3]. Standard FTA is primarily a manual
process based on an informal model, i.e., the process relies on the system ana-
lysts and domain experts to systematically think about all risks and their possible
causes. The lack of formal semantics makes it difficult to verify the correctness of

Supported by FFI, VINNOVA under grant number 2017-05519, Automatically Assess-
ing Correctness of Autonomous Vehicles–Auto-CAV.

c© Springer Nature Switzerland AG 2020
A. Casimiro et al. (Eds.): SAFECOMP 2020 Workshops, LNCS 12235, pp. 9–22, 2020.
https://doi.org/10.1007/978-3-030-55583-2_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-55583-2_1&domain=pdf
https://doi.org/10.1007/978-3-030-55583-2_1

10 Y. Selvaraj et al.

the safety analysis, especially for rapidly evolving industries like the autonomous
driving industry where new edge cases are continuously identified. In complex
industrial software controlled systems, safety models must capture many pos-
sible interactions between system components, where different interleavings of
failure events can either result in a failure or operational state. Standard fault
trees are not suitable for modelling temporal, sequential and state dependencies
of events. Another notable shortcoming with standard FTA for large and com-
plex systems is the need for safety analyses to be intuitive and compositional.
This is crucial in projects where the system of interest comprises interacting
sub-systems, possibly delivered by different teams or suppliers.

Though several limitations exist, FTA is one of the widely used safety anal-
ysis methods. Different extensions to standard fault trees [10] have been pro-
posed to address some of the limitations. Research on using formal logic in
FTA [2,15,17] address the limitation of informal and manual FTA process.
Extensions like dynamic fault trees [1], state-event fault trees [4], and tempo-
ral fault trees [8] address inability of standard fault trees to model dynamic
behaviour. The most widely used extension to include temporal sequence infor-
mation is dynamic fault trees [1,10]. Over the years, research on the development
of model-based dependability analysis (MBDA) [12] techniques have enabled
automated dependability analysis. In [12], such emerging MBDA techniques are
classified into two paradigms. The first paradigm, termed failure logic synthesis
and analysis focuses on automatic construction of failure analyses and the sec-
ond paradigm, termed behavioural fault simulation focuses on formal verification
based techniques. Despite this research, challenges remain in addressing the lim-
itations with standard fault trees and safety analysis [10,12]. Thus any progress
in addressing these limitations is helpful. The preliminary results presented in
this paper is part of an ongoing endeavour to address the aforementioned limi-
tations by a model-based approach based on Supervisory Control Theory (SCT)
[9].

The formal models used in the SCT framework can describe dynamic
behaviour, which is often needed to analyse modern and complex safety crit-
ical systems. The compositional abstraction based algorithms used in SCT allow
automated synthesis and verification of safety models for large and complex sys-
tems. These features of the SCT framework makes it possible to define a complete
model-based safety analysis approach with automated analysis. To ensure suffi-
cient detail of explanation and some degree of familiarity, we do not present a
complex example in this paper; instead we describe our approach using a rather
simple example from the Fault Tree Handbook [16].

We make three main contributions in this paper. First, we address the issue
of informal description of standard fault tree analysis by presenting a systematic
approach to incrementally obtain formal models from a fault tree. Second, we
present a method to analyse the fault trees using the SCT tool Supremica [5].
Finally, we present a method to calculate minimal cut sets using our approach.
An advantage of our work is the compositional approach to modelling and veri-
fication that is beneficial in reasoning about large fault trees for highly complex

Supervisory Control Theory in System Safety Analysis 11

systems. To the best of our knowledge, SCT has not previously been used in the
context of fault tree analysis.

The paper begins with a brief introduction to FTA and SCT in Sect. 2 and
Sect. 3, respectively. Section 4 discusses modelling and analysis in Supremica with
an example from the Fault Tree Handbook [16]. The paper is concluded with a
brief discussion on future extensions in Sect. 5. Our work is successfully inte-
grated with a model-based systems engineering tool [14], that is widely used in
the automotive industry.

2 Fault Tree Analysis

Fault Tree Analysis (FTA) [16] is a top-down deductive safety analysis tech-
nique, where an undesired safety-critical failure of a system is specified, and
then analysed in the context of its operational environment to find all possible
ways in which the specified failure can occur.

A fault tree is a graphical model of various combinations of faults that cause
the safety critical failure, represented as a top level failure event at the root of the
fault tree. From this root event, the fault tree is constructed from a predefined
set of symbols [16], which results in a set of combinations of component failures
that can cause the top level failure. Note that the fault tree is not a model of
all possible causes for system failure, but given a particular failure it depicts the
possible combinations of basic component failures that lead to this failure. Since
FTA is primarily a manual process, the exhaustiveness of the analysis is left to
the assessment of the analyst.

Although several extensions of fault trees have been proposed [10], in this
paper we limit ourselves to the symbols described in the Fault Tree Hand-
book [16]. Broadly, the nodes in the fault tree can be classified into three types:
events, gates, and transfer symbols [16].

2.1 Pressure Tank System

The pressure tank system [16] in Fig. 1 describes a control system to regulate a
pump-motor that pumps fluid into the tank. Initially the system is considered to
be dormant and de-energized: switch S1 open, relays K1 and K2 open, and the
timer relay closed. The tank is assumed to be empty in this state and therefore
the pressure switch S is closed. It is also assumed that it takes 60 s to pressurize
the tank, and an outlet valve, which is not a pressure relief valve, is used to drain
the tank.

System operation is started by pressing switch S1. This closes and latches
relay K1, and subsequently relay K2 to start the pump. When threshold pressure
is reached, the pressure switch opens, causing K2 to open, and consequently the
pump motor to cease operation. The timer allows emergency shut-down in case
the pressure switch fails. Initially, the timer relay is closed and power is applied
to the timer as soon as K1 closes. If the clock in the timer registers 60 s of
continuous power, the timer relay opens and latches, thereby causing a system

12 Y. Selvaraj et al.

Fig. 1. Pressure tank system from [16], page VIII-1

shut-down. In normal operation, when pressure switch S opens, the timer resets
to 0 s. When the tank is empty, the pressure switch closes, and the cycle can be
repeated.

Figure 2 shows the basic fault tree from [16] (page VIII-13) for the pressure
tank system. Here, the hazard ‘rupture of pressure tank after start of pumping’ is
analysed and is represented by the top level failure event, E1. The basic events
denoted by circles represent the respective component failures and form the
leaves of the tree. The intermediate events, which are fault events that occur
due to one or more antecedent causes are denoted by rectangles. The process
of obtaining the fault tree following a top down analysis is out of scope of this
paper; we assume a FT is given. A complete description of the example and the
fault tree can be found in [16].

3 Supervisory Control Theory

The Supervisory Control Theory (SCT) [9] provides a framework to model, syn-
thesize and verify control functions for discrete event systems (DES), which are
dynamic systems characterised by the evolution of events causing the system
to transit from one discrete state to another. Given a model of the system to
control, a plant, and a specification describing the desired controlled behaviour,
the SCT provides methods to synthesise a supervisor that dynamically interacts
with the plant in a closed-loop, and restricts the event generation of the plant
such that the specification is satisfied. The supervisor thus ensures a safe control
of the plant by restricting the execution of certain events. However, only events
that are controllable can be restricted by the supervisor, while events that are
uncontrollable cannot be restricted. A dual problem that is of interest here, is

Supervisory Control Theory in System Safety Analysis 13

Fig. 2. Fault tree for pressure tank system in Fig. 1 from [16], page VIII-13

to given a model of a (controlled) plant and a specification, verify whether the
specification is fulfilled or not. So, in this paper we use ideas from SCT to for-
mally verify properties of the plant model, and do not focus on the synthesis of
supervisors.

14 Y. Selvaraj et al.

To model a fault tree as a DES, we use Extended Finite State Machines
(EFSM) [13], which are finite state machines extended with bounded discrete
variables, guards that are logical expressions over variables, and actions that
assign values to variables on transitions.

Definition 1. An Extended Finite State Machine (EFSM) is a tuple E =
〈Σ,V, L,→, li, Lm〉, where Σ is a finite set of events, V is a finite set of bounded
discrete variables, L is a finite set of locations, →⊆ L × Σ × G × A × L is the
conditional transition relation, where G and A are the respective sets of guards
and actions, li ∈ L is the initial location, and Lm ⊆ L is the set of marked
locations.

A state in an EFSM is given by its current location together with the current

values of the variables. The expression l0
σ:[g]a−−−→ l1 denotes a transition from

location l0 to l1 labelled by event σ ∈ Σ, with guard g ∈ G, and action a ∈ A. The
transition is enabled when g evaluates to true, and on its occurrence, the current
location of the EFSM changes from l0 to l1, while a updates some of the values
of the variables v ∈ V . EFSMs interact through shared events by synchronous
composition, denoted A1‖A2 for two interacting EFSM models, A1 and A2. In
synchronous composition, shared events occur simultaneously in all interacting
EFSMs, or not at all, while non-shared events occur independently. Transitions
on shared events with mutually exclusive guards, or conflicting actions will never
occur [13]. In an EFSM, active events are the events that label some transition,
while blocked events do not label any transition. In the synchronous composition
of two EFSMs, the blocked events of the synchronised EFSM, is the union of the
blocked events of the synchronised EFSMs. That is, transitions in one EFSM
labelled by events blocked by the other EFSM, will be removed.

3.1 Nonblocking Verification

Given a set of EFSMs A = {A1, . . . ,An}, the nonblocking property guarantees
that some marked state can always be reached from any reachable state in the
synchronous composition over all the components Ai. While the monolithic app-
roach to nonblocking verification is explicit, it is limited by the combinatorial
state-space explosion. The abstraction-based compositional verification [7] has
shown remarkable efficiency to handle systems of industrial complexity. This
approach employs conflict-preserving abstractions to iteratively remove redun-
dancy and keeps the abstracted system size manageable. Supremica [6], a tool
for modelling and analysis of DES models, implements the abstraction-based
compositional algorithms (and others) for verification of EFSMs.

4 FTA in Supremica

In this section, we describe how the fault tree in Fig. 2 is modelled into a number
of plant EFSMs. We demonstrate how the model can be validated by verifying

Supervisory Control Theory in System Safety Analysis 15

typical specifications in Supremica. This section also includes a brief discussion
about computing minimal cut sets using our approach. Both Supremica and the
models of this section are available online1.

4.1 Modelling

To make the best use of compositionality, we incrementally model different failure
events in a modular way. Given a fault tree, we first model the lowest level and
gradually proceed towards the top level event. For the higher levels, we only
consider the intermediate fault events from the lower levels and hide all other
inner details.

Consider the lowest level of the fault tree in Fig. 2. It consists of two basic
events as inputs to the lowest OR gate leading to the intermediate fault event,
E5. This forms the first level in our modelling hierarchy. Fault event E5 can occur
either due to a primary failure of K1 or a primary failure of R. This behaviour
is modelled in the EFSM as shown in Fig. 3a. The two events K1 and R denote
the corresponding primary failures and when either occurs, the EFSM transits
from its initial location, Ai

0 to location E5
2.

With E5 modelled, we proceed to the next level, the intermediate fault event
E4. From Fig. 2, we see that this can occur either due to a primary failure of
switch S1 or due to the occurrence of E5. This gives us a total of 7 possible
combinations that lead to E4. However, since we have modelled the analysis for
E5 as an EFSM on the previous level, we can use guards to capture this, and
model E4 with just 2 events as shown in Fig. 3b. The guard condition on the
event E5 ensures that the event is enabled only in a situation where the EFSM
in Fig. 3a is in location E5. Here, the guard [A0 == E5] represents that the
current location of the EFSM A0 in Fig. 3a, is E5.

Ai
0A0: E5

K1

R

(a) EFSM modelling E5

Ai
1A1: E4

E5 : [A0 == E5]

S1

(b) EFSM modelling E4

Fig. 3. EFSMs for intermediate failure events, E4 and E5 of the fault tree

The next level in our modular hierarchy is the output event of the only AND
gate in the fault tree, E3. The two inputs to the AND gate correspond to the
primary failure of the pressure switch S and the analysis resulting from the
intermediate fault E4. Figure 4 shows the model for this fault event E3. Since
the order of events do not matter in an AND gate, there are two possible ways
to reach the failure state as shown in Fig. 4.
1 https://supremica.org https://github.com/yuvrajselvam/FTA SCT.
2 In this paper, for a fault Ex in the FT, Ex denotes the corresponding event in the

EFSM and Ex denotes the location reached due to the occurrence of the fault.

https://supremica.org
https://github.com/yuvrajselvam/FTA_SCT

16 Y. Selvaraj et al.

Ai
2A2: A1

2

A2
2 E3

E4 : [A1 == E4]

S S

E4 : [A1 == E4]

Fig. 4. EFSM, A2 for the intermediate failure event E3

The final two levels of the fault tree corresponding to fault events E2 and E1
consist of OR gates and are modelled as already shown, see Fig. 5. Note that in
the plant models, the only unmarked location is the initial location in Fig. 5b,
and therefore in the synchronised plant model, which gives the complete fault
tree, the marked locations correspond to the top level failure event E1.

Ai
3A3: E2

E3 : [A2 == E3]

K2

(a) EFSM modelling E2

Ai
4A4: E1

E2 : [A3 == E2]

T

(b) EFSM modelling E1

Fig. 5. EFSM for intermediate failure events, E2 and E1 of the fault tree

For special cases of AND gates, like INHIBIT and PRIORITY-AND, the
models look slightly different. For an INHIBIT gate, where the output is deter-
mined by a single input together with some qualifying condition, we can use a
single event label together with the qualifying condition as a guard to model the
transition to the failure state. For a PRIORITY-AND gate, where the output
occurs only if all inputs occur in a specified ordered sequence, we can model
the specified sequence as a path from the initial state to the failure state. For
example if failure event E3 is at the output of a PRIORITY-AND with the order
specified as E4 before S, then we only have the path Ai

2 −→ A1
2 −→ E3 in Fig. 4

as the corresponding EFSM. This makes it possible to use EFSMs to model
sequential dependencies as required by the PRIORITY-AND gate.

The distinction between inclusive and exclusive-OR gates can be ignored in
the fault tree analysis when dealing with independent, low probability component
failures (see [16], page VII-7). Therefore we do not introduce special approaches
to differentiate them in our method. If a distinction is truly needed, additional
guards and transitions can be introduced on the model.

Algorithm 1 presents a systematic method to construct EFSMs in a modu-
lar way from a given fault tree. Note that the algorithm includes modelling of
two types of gates only, AND and OR. However, it can be extended to include
other types of gates like INHIBIT and PRIORITY-AND as discussed above.

Supervisory Control Theory in System Safety Analysis 17

In Algorithm 1, lines 9–18 describe the modelling of OR gates and lines 19–30
describe AND gates. The addition of guards on the transitions mentioned in
lines 16 and 28 describe the use of EFSM variables in guard conditions as shown
in Fig. 3b for the OR gate, and in Fig. 4 for the AND gate, respectively.

4.2 Verification

In software controlled complex systems, safety analysis plays a significant role
in formulating the safety requirements for the subsequent system design. Estab-
lishing confidence in the fault tree analysis is typically done manually. This is
a shortcoming as it is error prone and even intractable for large and complex
systems. An automated analysis method is very beneficial in providing sufficient
verification evidence for the safety analysis phase. In this section, we present
how typical specifications are modelled and verified using nonblocking verifica-
tion algorithms in Supremica.

When system operation is started in the pressure tank in Fig. 1, the pump
starts filling fluid into the tank. When the tank is full and the threshold pressure
is reached, pressure switch S opens, causing K2 to open, and consequently the
pump to stop. K2 failing to open would result in continuous pumping beyond the
threshold and may result in the rupture of the tank. Therefore K2 is critical for
safe operation and a primary failure of K2 may result in the top level failure event
E1. Ideally, this behaviour should be captured in our FTA and we can verify this.
Figure 6a shows the EFSM modelling this specification. K2 is the only active
event in this EFSM and the other basic events in the fault tree are blocked.
Recall that transitions labelled by blocked events are removed in the synchronous
composition of the specification and the plant models. Therefore, by blocking all
basic events but K2, we ensure that K2 is included in the marked language of the
EFSM whereas other basic events are not. A nonblocking verification performed
on the synchronised model of this specification together with the plant models,
shows that the system is nonblocking, thereby verifying that a primary failure
of K2 is sufficient to cause rupture of the tank, the failure event E1.

On the other hand, since we have the timer relay as a backup in the system,
only a failure of the pressure switch, S, should not lead to tank rupture. We can
model this as a specification shown in Fig. 6b. Since we are only interested in
the primary failure of pressure switch S, we block the remaining basic events
in the fault tree. A nonblocking verification of this specification synchronised
with the plant model results in a blocking state, thereby verifying that only S
occurring will not result in the top level failure event E1. However, if we also
include the failure of the timer relay R, we get the specification as shown in Fig. 7.
With this specification, we can verify that the system is indeed nonblocking, i.e.,
a failure of both components S and R will lead to the top level failure event
E1. Specifications to model the remaining causes leading to the top level event
and/or the intermediate events are done in a similar way as in Figs. 6 and 7.

18 Y. Selvaraj et al.

Algorithm 1: Modular fault tree modelling
Input: Fault Tree, FT
Output: EFSM set corresponding to the fault tree, FT

1Initialisation
2declare basic events set, BE
3declare variables, Q, curr node, child

4add root (FT) to Q // queue, Q contains elements to be processed

5BE:= getBasicEvents (FT)
6while Q �= Ø do
7curr node:= pop (Q) // get the oldest element in queue

8gate:= getGate (curr node) // retrieve connecting gate of node

9if gate is OR then
10create initial and terminal locations, l0 and ln
11foreach child ∈ getChildren (gate) do
12if child ∈ BE then // child is a basic event

13addTransition(l0, ln, child)
14else // child is an intermediate event

15addTransition(l0, ln, child)
16add guards using automaton variables on the respective transitions
17add child to Q

18markLocations(curr node, root (FT))

19else // node is an AND gate

20create initial and terminal locations, l0 and ln
21children:= getChildren (gate)
22create a set of strings, S, by permutation over children

// each string is a path from l0 to ln

23foreach string ∈ S do
24create transitions and locations correspondingly
25obtain the set of events, E
26foreach event ∈ E do
27if event /∈ BE then // it is intermediate event

28add guards using automaton variables on respective transitions
29add event to Q

30markLocations(curr node, root (FT))

31function markLocations(curr node, root (FT))
32if curr node == root (FT) then
33mark the terminal location, ln
34else
35mark all locations

36function addTransition(la,lb,event)
37add transition between la and lb
38label transition with event

Supervisory Control Theory in System Safety Analysis 19

Si
0S0:

S1
0

BLOCKED:
T
S
S1
K1
R

K2

(a) EFSM for K2 −→
E1

Si
1S1:

S1
1

BLOCKED:
T
S1
K1
K2
R

S

(b) EFSM for S −→ E1

Fig. 6. EFSM for specifications

Si
2S2: S1

2 S1
2

BLOCKED:
T
K2
K1
S1R

S

S

R

Fig. 7. EFSM for specification S ∧ R −→ E1

The type of specifications that we have seen so far are modelled to check
whether certain basic events or combinations of events lead to a failure event.
Given such a specification, SP, and fault tree, FT, Algorithm 2 presents how
EFSM models can be obtained from them.

4.3 Minimal Cut Sets

Our approach is not only useful for verification but also in calculating minimal
cut sets, one of the most prominent qualitative analysis techniques of standard
fault trees. A cut set is a set of component failure events that together lead to
the top level failure. Formally, a minimal cut set is a smallest combination of
component failures which, if they all occur, lead to the top level failure event.
It is smallest in the sense that all failures are needed for the top level event to
occur and if one of them in a cut set does not occur, then the top event will
not occur by that set. For example, the minimal cut sets for the pressure tank
system are {T}, {K2}, {S, S1}, {S, K1}, {S, R}.

In our modelling approach presented in Sect. 4.1, the marked locations in the
composed model correspond to the top level failure event. This makes it possible
to use the marked language of the plant EFSM to calculate the minimal cut sets.
In our case, a cut set is a set of events that lead to marked locations corresponding
to the top level failure event. Calculating minimal cut sets is then done by finding
the shortest paths in the synchronised plant EFSM from the initial location to
the marked locations, a task typically solved by variants of breadth-first search
algorithms. Algorithm 3 presents one such method to calculate minimal cut sets
by exploiting the marked language of the synchronised EFSM. Lines 11–13 of

20 Y. Selvaraj et al.

Algorithm 2: Modelling specifications
Input: Fault Tree, FT and Specification, SP
Output: EFSM modelling the specification

1Initialisation
2declare basic events set, BE
3declare active events set, AE
4declare blocked events set, BLOCKED

5BE:= getBasicEvents (FT)
6AE:= getBasicEvents (SP)
7create locations l0, l1, ..., lN with N = |AE|
8make l0 the initial location
9make lN the single marked location

10for every pair (li−1, li) with i ∈ {1, 2, ..., N} create N transitions
11label each transition uniquely from σ ∈ AE
12add blocked events, BLOCKED:= BE \ AE

the algorithm adds the basic events that can reach the marked location in the
synchronised EFSM to the output set. Lines 14 and 15 ensure that the same
events are not repeated.

Algorithm 3: Computation of Minimal Cut Sets
Input: EFSM1, . . . ,EFSMn modelling the considered FT
Output: Set of minimal cut sets, S

1Initialisation
2declare variable Q as queue with states to be processed
3declare synchronised EFSM A as EFSM1 || . . . || EFSMn

4declare basic event set, BE
5declare blocked events set, BLOCKED

6BE := getBasicEvents(A)
7while ∃e ∈ {σ | ∃s′ s.t. (si, σ, s′) ∈→A ∧ σ ∈ BE} do
8Q.put(si) // Enqueue the initial state si

9while Q �= ∅ do
10s := Q.get() // Dequeue state s from Q

11if ∃s′, ∃σ s.t. (s, σ, s′) ∈→A ∧ isMarked(s′) then
// Retrieve basic events labelling transitions from si to s

12Σc := getEvents(si, s
′) ∩ BE

// Σc is one minimal cut set, insert it into S

13S.put(Σc)
14create a single location (marked) EFSMsp with BLOCKED := Σc

// Update A by blocking all basic events in Σc

15A := A || EFSMsp

16break

17else
18forall the s′ s.t. (s, σ, s′) ∈→A do Q.put(s′)

Supervisory Control Theory in System Safety Analysis 21

5 Conclusion

We have shown how fault tree analysis can be formalised to be automatically
analysed by modelling techniques from Supervisory Control Theory (SCT) using
the tool Supremica. We present a systematic approach to incrementally obtain
formal models from a given standard fault tree, as summarised in Algorithm 1.
Algorithm 2 describes a method to automatically generate specifications for given
properties of the fault tree, so that these properties can be verified using non-
blocking verification. Finally, Algorithm3 presented a method to automatically
calculate minimal cut sets from the generated models.

Though our modelling approach can model complex systems with redundant
architectures and dynamic dependencies, we here limit ourselves to the stan-
dard symbols described in the Fault Tree Handbook . Our approach can indeed
be extended to use dynamic gates. The formal model obtained from the app-
roach discussed in this paper, considers only the fault behaviour of the system
as described by a given fault tree and nothing else. While we verify certain prop-
erties on the model to establish confidence in the system, we do not focus on
correctness of the construction of the fault tree in the context of the system’s
operational environment. In a behavioural approach, we would formally model
the complete behaviour of the system, i.e., including the nominal operational
behaviour and not only the fault behaviour. This presents a wide range of pos-
sibilities. One possible extension is to adopt a formal approach similar to model
checking [15]. Another notable extension of our work is to use the behavioural
system models and the supervisor synthesis framework provided by SCT to auto-
matically synthesize the fault behaviour. This falls in line with the model-based
dependability analysis [12] approach for safety analysis. In such extensions, the
system model becomes the plant models and the work in this paper can then
be used to obtain formal specifications from a given fault tree. This approach
makes it possible to use such formal models in several stages of a model-based
design process. The state based models that are created can be re-used during
the development of the software programs in the later stages. The work presented
in this paper can provide a solid basis for possible extensions in those areas.

A primary motivation for this work is our current focus on formal verification
of autonomous driving systems where SCT and Supremica have been used to
verify software for autonomous driving systems [11]. We believe our work in this
paper will strongly encourage the application of SCT and Supremica in different
stages of safety critical software development starting from safety analysis in
the early stages to synthesis and verification of the software in the end stages.
Our work in this paper is successfully integrated with a model-based systems
engineering tool [14], that is widely used in the automotive industry.

References

1. Dugan, J.B., Bavuso, S.J., Boyd, M.A.: Dynamic fault-tree models for fault-
tolerant computer systems. IEEE Trans. Reliab. 41(3), 363–377 (1992)

22 Y. Selvaraj et al.

2. Hansen, K.M., Ravn, A.P., Stavridou, V.: From safety analysis to software require-
ments. IEEE Trans. Softw. Eng. 24(7), 573–584 (1998)

3. Kabir, S.: An overview of fault tree analysis and its application in model based
dependability analysis. Expert Syst. Appl. 77, 114–135 (2017)

4. Kaiser, B., Gramlich, C., Förster, M.: State/event fault trees–a safety analysis
model for software-controlled systems. Reliab. Eng. Syst. Saf. 92(11), 1521–1537
(2007)

5. Malik, R.: Programming a fast explicit conflict checker. In: 2016 13th International
Workshop on Discrete Event Systems (WODES), pp. 438–443. IEEE (2016)

6. Malik, R., Akesson, K., Flordal, H., Fabian, M.: Supremica-an efficient tool for
large-scale discrete event systems. IFAC-PapersOnLine 50(1), 5794–5799 (2017).
https://doi.org/10.1016/j.ifacol.2017.08.427

7. Mohajerani, S., Malik, R., Fabian, M.: A framework for compositional nonblocking
verification of extended finite-state machines. Discrete Event Dyn. Syst. 26(1), 33–
84 (2015). https://doi.org/10.1007/s10626-015-0217-y

8. Palshikar, G.K.: Temporal fault trees. Inf. Softw. Technol. 44(3), 137–150 (2002)
9. Ramadge, P.J., Wonham, W.M.: Supervisory control of a class of discrete event

processes. SIAM J. Control Optim. 25(1), 206–230 (1987)
10. Ruijters, E., Stoelinga, M.: Fault tree analysis: a survey of the state-of-the-art in

modeling, analysis and tools. Comput. Sci. Rev. 15, 29–62 (2015)
11. Selvaraj, Y., Ahrendt, W., Fabian, M.: Verification of decision making software

in an autonomous vehicle: an industrial case study. In: Larsen, K.G., Willemse,
T. (eds.) Formal Methods for Industrial Critical Systems, pp. 143–159. Springer
International Publishing, Cham (2019). https://doi.org/10.1007/978-3-030-27008-
7 9

12. Sharvia, S., Kabir, S., Walker, M., Papadopoulos, Y.: Model-based dependabil-
ity analysis: state-of-the-art, challenges, and future outlook. In: Software Quality
Assurance, pp. 251–278. Elsevier (2016)

13. Skoldstam, M., Akesson, K., Fabian, M.: Modeling of discrete event systems using
finite automata with variables. In: 2007 46th IEEE Conference on Decision and
Control, pp. 3387–3392. IEEE (2007)

14. SYSTEMITE: Systemweaver. https://www.systemweaver.se/. Accessed 09 May
2020

15. Thums, A., Schellhorn, G.: Model checking FTA. In: Araki, K., Gnesi, S., Man-
drioli, D. (eds.) FME 2003. LNCS, vol. 2805, pp. 739–757. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-540-45236-2 40

16. Vesely, W.E., Goldberg, F.F., Roberts, N.H., Haasl, D.F.: Fault tree handbook.
Technical report, Nuclear Regulatory Commission Washington DC (1981)

17. Xiang, J., Ogata, K., Futatsugi, K.: Formal fault tree analysis of state transition
systems. In: Fifth International Conference on Quality Software (QSIC 2005), pp.
124–131. IEEE (2005)

https://doi.org/10.1016/j.ifacol.2017.08.427
https://doi.org/10.1007/s10626-015-0217-y
https://doi.org/10.1007/978-3-030-27008-7_9
https://doi.org/10.1007/978-3-030-27008-7_9
https://www.systemweaver.se/
https://doi.org/10.1007/978-3-540-45236-2_40

AMethod to Support the Accountability
of Safety Cases by Integrating Safety Analysis

and Model-Based Design

Nobuaki Tanaka1(B), Hisashi Yomiya2, and Kiyoshi Ogawa3

1 GAIO TECHNOLOGY Co., Ltd., Higashi-Shinagawa 2-2-4, Shinagawa, Tokyo, Japan
tanaka.n@gaio.co.jp

2 Toshiba Corporation, Komukai-Toshiba-Cho 1, Kawasaki, Kanagawa, Japan
hisashi.yomiya@toshiba.co.jp

3 Nagoya City Industrial Research Institute, Rokuban 3-4-11, Atsuta-Ku, Nagoya, Aichi, Japan
nagoya.kaizen@gmail.com

Abstract. In this paper, we describe a method of visualizing the behavior of
systems’ failures in order to improve the explanatory ability of safety analysis
artifacts. Increasingly complex in-vehicle systems are making traditional safety
analysis artifacts more difficult for reviewers to understand. One of the require-
ments for improvement is to provide more understandable explanations of failure
behaviors. TheAIAG/VDAFMEA (FailureMode and Effect Analysis) handbook,
published in 2019, introduced the FMEA-MSR (Supplemental FMEA for Moni-
toring and System Response) to explicitly describe the behavior of failures called
the Hybrid Failure Chain (e.g., chain of failure mode, failure cause, monitoring,
system response, and failure effects). For more precise explanations of the safety
analysis artifacts, we propose a method to integrate and visualize failure behav-
iors into architectural design diagrams using SysML. Based on FTA (Fault Tree
Analysis) and FMEA results, alongwith SysMLdiagrams (e.g., internal block dia-
grams), the proposed method imports represent FMEA and FTA data graphically
as Hybrid Failure Chains with a system model to improve information cohesion
in the safety analysis artifact. We found that the proposed method facilitates the
discovery or recognition of flaws and omissions in the fault model.

Keywords: MBSA (Model-Based Safety Analysis) · MBSE (Model-Based
Systems Engineering) · FTA · FMEA · Hybrid Failure Chain · Safety analysis ·
SysML

1 Introduction

The automotive industry is introducingMBSE to address the increasing complexity of in-
vehicle systems and functional safety standards for safety accountability. Those changes
have also affected safety analysis as seen in the AIAG/VDA FMEA handbook published
in 2019. A significant feature of AIAG/VDA FMEA is the analysis of safety mecha-
nisms, titled FMEA-MSR (Supplemental FMEA forMonitoring and System Response).

© Springer Nature Switzerland AG 2020
A. Casimiro et al. (Eds.): SAFECOMP 2020 Workshops, LNCS 12235, pp. 23–35, 2020.
https://doi.org/10.1007/978-3-030-55583-2_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-55583-2_2&domain=pdf
https://doi.org/10.1007/978-3-030-55583-2_2

24 N. Tanaka et al.

FMEA-MSRenhances the analysis target, from the effects and causes of failure toHybrid
Failure Chains, which contain the normal responses of safety mechanisms.

On the other hand, traditional safety analysis artifacts (such as FMEAsheet, FT chart)
are not able to fully explain the complex behavior of the failures and safety mechanisms
[1]. We think MBSA is a methodology that can effectively solve this problem by apply-
ing modeling technology to safety analysis. The Object Management Group (OMG)
recognizes the importance of safety and reliability in their standards and is developing
a profile for safety and reliability for SysML [2].

In this paper,we propose amethod to utilizeMBSAwith an activitymodel to improve
the visibility of failures’ behavior. We expect that the similarity of the structures of the
activitymodel, theHybrid FailureChain, and the systemmodel can enhance the visibility
and facilitate the discovery of the defects and omissions in the safety analysis results.
The method builds the Hybrid Failure Chain from FTA and FMEA analysis results and
places their components on SysML diagrams (for example, internal block diagrams) to
increase the cohesion of the information in the safety analysis.

The FTA and FMEA results should be consistent and in sync, but in reality, they
may be inconsistent or out of sync, because they may be created by different teams with
different goals. The method described in this paper aims to facilitate the understanding
of such inconsistencies by the visualization.

The remainder of this paper is structured as follows: Sect. 2 handles related work.
In Sects. 3 and 4, we introduce our proposal for the notation of the fault model and
visualization techniques. Section 5 presents a case study. Section 6 presents an evaluation
of the proposed visualization method. In Sect. 7, we describe our considerations and
future work. We provide a conclusion about our current work and the planned future
work in Sect. 8.

2 Related Work

2.1 MBSA

Joshi et al. [3] proposed a method for describing the behavior of failures in the MAT-
LAB/Simulink models. The analysis is fully automated and based on the description
of failure’s behavior, but the author states that this technique is not scalable because
it requires an enormous effort to specify the behavior of a practical system’s failures
completely.

Aizpurua et al. [1] analyzed the problems of traditional safety analysis and MBSA,
stating that the advantage of MBSA is limited, but managing all safety analysis results
as a model facilitates consistency in the artifact. The paper proposes an efficient process
that combines automatic consistency checking with MBSA and manual safety analysis.

HiP-HOPS [4] is a safety analysis method that integrates results from FFA (Func-
tional Failure Analysis), IF-FMEA (Interface-Focused FMEA), and FMEA for each
component in order to assemble the safety analysis result of the whole system. HiP-
HOPS analyzes the behavior of interfaces using IF-FMEA with the formal expression
and combines the results of FFA and FMEA to assemble an overall analysis results
according to the results of IF-FMEA. HiP-HOPS is a comprehensive methodology of

A Method to Support the Accountability of Safety Cases 25

safety analysis, but it does not provide visualization for all the relevant information in
one diagram.

Nordmann et al. [5] proposed a method to create component fault trees (CFT) by
performing a safety analysis for each component and building a fault tree for the entire
system. This method constructs the CFT by combining the results of each component’s
FTA according to the semantics strictly described by the internal block and activity
diagrams of SysML. Thus, analysts and reviewers may miss any failure propagation or
cause that crosses component boundaries along with links that are not explicit in the
SysML model.

Clegg et al. [6] proposed a supplemental fault model notation for SysML that adopts
the fault tree model for the fault model. This method combines the fault model with the
system model, but the paper does not describe the integration of the system model and
the fault model in one diagram.

TimGonschorek [7] proposed amodeling language named SafeDeML that combines
the fault model with the system model, but no description expresses both models in one
diagram, as in [6].

2.2 Standards: AIAG/VDA FMEA Handbook and OMG

The AIAG/VDA FMEA handbook [8] introduced FMEA-MSR (Supplemental FMEA
forMonitoring and SystemResponse). Conventional DFMEAanalyzes the failure chain,
which is the chain between the cause and effect of failure mode. Additionally, FMEA-
MSR analyzes the Hybrid Failure Chain, which is a chain of failure mode, monitoring,
and system response.Monitoring involves checking for the failure cause or failure mode,
system response deals with themonitored failure, andmitigated failure effect is the result
of the handling of the failure (Fig. 1).

Geoffrey Biggs et al. [2] indicate that the standardization group in OMG will incor-
porate FTA and FMEA into the Safety and Reliability Analysis Profile. The diagrams in
the paper refer to the fault model as the fault tree model; they do not express the Hybrid
Failure Chain.

2.3 Consideration for Related Works

MBSA is an active research area, but based on our survey, it does not focus on improving
explanations of the behavior of failures. We propose integrating the fault model and
system model into one diagram to improve the cohesion of the safety analysis results.
We adopt the activity model to better comprehend the graphical representation of fault
models. System behavior at the time of failure can be easily understood by illustrating
the occurrence, detection, response of failures, and system design as an activity model
in a single diagram.

The explanation here refers to a correct communication, to the reviewer, of the
analyst’s idea of how the system will behave during a failure.

3 Structure of the Diagram to Describe Fault Models

We designed a metamodel of the system model and fault models as a basis for our
visualization method, as shown in Fig. 2.

26 N. Tanaka et al.

Fig. 1. Theoretical failure chain model DFMEA and FMEA-MSR (AIAG&VDA FMEA Hand-
book, 2019 [8])

3.1 Notation Requirement

To improve the explanatory ability of the notation, we defined the requirements below.

• Higher cohesion of safety analysis results in one diagram: Safety analysis arti-
facts should aggregate the contents into a single figure to facilitate the intuitive
understanding of the associations between elements.

• Adopting the activity model to visualize the Hybrid Failure Chain: The fault
model should adopt the activity model to improve its compatibility with the system
model’s structure. The fault tree model adopted in citations 3, 5, and 6 is suitable for
the derivation of minimal cut sets and for calculating failure rates, but the activity
model is ideal for visualizing the behavior of failures and safety mechanisms.

• Expression of horizontal propagation: Horizontal propagation is the transmission
of a failure from a child element in one parent element to another child element.
The notation should provide a model of horizontal propagation that expresses failure
propagation between components. The fault tree model is suitable for representing a
hierarchical structure of failures but is not convenient for showing the propagation of
the failures between components. Therefore, developers sometimes omit horizontal
propagations of failures in FT charts for concision.We think reviewers of current com-
plex safety-critical devices need to understand horizontal propagations and visualizing
horizontal propagations will improve the understandability of diagrams.

A Method to Support the Accountability of Safety Cases 27

Fig. 2. The metamodel of the notation (UML class diagram)

3.2 The Metamodel of the Notation

We derived the design of the metamodel of the system model and fault model from the
requirements described in the previous section as follows.

Expression of the System Model
From experience in [9], we adopted SysML to represent the system model to increase
the affinity between artifacts of safety analysis and MBSE. Figure 2 shows the logical
structure of the system model comprising items, elements, and functions ((1) in Fig. 2).
The proposedmethod allows the use of anySysMLdiagramand element if the diagramor
element is adequate for the expression of safety design. The system model also includes
measures to detect the failure ((7) in Fig. 2: Detection Measure) and to mitigate its effect
((8) in Fig. 2: Failure Mitigation Measure).

Expression of the Fault Model
The fault model includes failuremodes, detection of failure, system response, and failure
effect to describe failures’ behaviors ((3), (5), and (6) in Fig. 2).

Relationship Between the System Model and the Fault Model
The metamodel provides a relationship between function and failure mode to express
their relationship ((2) in Fig. 2). Similarly, the relationship between detection of failure

28 N. Tanaka et al.

and the failure detection mechanism ((5) in Fig. 2), and the relationship between system
response (handling of failure) and the failure handling mechanism ((6) in Fig. 2) are
associated.

Propagation of Failures
We represent the relationship between failures (cause and effect) by the link whose
stereotype is � causes � ((4) in Fig. 2).

4 Importing the Safety Analysis Results on SysML Diagrams

In this method, as shown in Fig. 3, the result of safety analysis and the relationship
between safety analysis and system design are imported into the SysML model.

Fig. 3. Procedure and data for importing safety analysis results

4.1 Correspondence Between Elements of Different Artifacts

We assume that the components of different safety analysis results and system designs
correspond, as shown in Table 1, and that the analyst must provide the relationship
between those components in each artifact. We assume that events in FTA and Failure
Modes in FMEA may correspond one-to-many rather than one-to-one; this is because
the FTA analysis results may have a coarser granularity and a higher level of abstraction
than the FMEA results.

In Table 1, we separated the events from the elements (including the function for
which the failure occurred). We only listed events in the FTA column because FT charts
only express events and their relationships.

A Method to Support the Accountability of Safety Cases 29

Table 1. Correspondence between system design and safety analysis results (when using IBD)

SysML(IBD) FMEA FTA
Part property or block Element (None)
Part property Function (None)
(None) Failure mode Event
(None) Failure effect Event
(None) Detection Event (lack of detection)
Part property Detection measure (None)
(None) System response Event (lack of system response)
Part property Mitigation measure (None)

4.2 Assumptions for FTA Results and Conversion of the Fault Tree Model

The FT charts of redundant systems have a similar shape. The system’s failure behavior
is represented by connecting the failures of multiple redundant elements with AND
gates. However, other detection mechanisms, such as sanity checks, are not commonly
represented.

Therefore, we defined the following rules for representing the behavior of fault-
detection and fault-handling mechanisms (system responses), such as sanity checks, in
FT charts, and associated them with FMEA and SysML components in standard-style
FT charts that adhere to these strict limitations.

• FT charts consist of failure events and logic gates. In our method, the FT chart is
configured to violate the safety objective only when a failure event coincides with a
failure of the safety mechanism (lack of protection).

• An FT chart expresses a safety mechanism failure (lack of protection) by a logical
sum (OR gate) of a lack of failure detections and a lack of System Response (lack of
failure handling).

• The events in FT charts have IDs that have prefixes according to event types, such as
a lack of failure detection or a lack of failure handling. We identify event types by the
prefixes.

• If the relationship between elements in FTA, FMEA, and SysML is available from
the traceability management tool, we can utilize the data to build the relations in the
model. If the relationship is not available, the analyst must provide the relationship as
data or by graphical operation on the SysML modeling tool after importing the safety
analysis results.

Our method adopts the activity model for the fault model. Still, the FT diagram is
based on the fault tree model, so this method converts the fault tree model to the activity
model, as shown in Fig. 4, under the assumption described in this section.

30 N. Tanaka et al.

Fig. 4. Conversion from the fault tree model to the activity model

5 Case Study

Weconducted a safety analysis for a simple control system shown in Fig. 5 and visualized
the result using the method described in this paper.

Fig. 5. Target system

Since this method assumes that safety analysis will be performed based on exist-
ing SysML models, we created the diagram as an ordinary IBD (internal block dia-
gram).To represent the relationship between theFTA/FMEAcomponents and theSysML
components, we attached IDs as the Tagged Value to the IBD components.

The system design was analyzed based on FMEA-MSR in the AIAG/VDA FMEA
handbook. After the analysis, we exportedMonitor, System Response, Function, Failure
Mode, Failure Effect, and their relationships from the FMEA sheet as CSV files.

A Method to Support the Accountability of Safety Cases 31

We conducted FTA under the strict restriction mentioned earlier. Also, as in the case
of SysML data, we assigned IDs to events and logic gates to manage the relationship
with SysML and FMEA results. FTA results are exported as CSV files.

In the case study, the analyst created additional tabular data to provide the relationship
between the FTA, FMEA, and SysML elements.

In the results of Step 5 (risk analysis) and Step 6 (optimization) of FMEA-
MSR (Table 2), it is necessary to give occurrence points separately for the following
components:

• Diagnostic Monitoring
• System Response
• Most Severe Failure Effect after System Response.

The occurrence points of other events (elements, functions, and failure modes) in
FMEA-MSR are specified in the structural analysis (Step 2), functional analysis (Step
3), and failure analysis (Step 4) in each hierarchy structure of those steps. Monitoring,
system response, and failure effect can occur in a component that is separate from its
function and failure mode. Therefore, the analyst or the designer needs to explicitly
indicate the occurrence points.

Table 2. Components that need to be explicitly given where they occur

Diag ID Diagnostic
monitoring action

SysResp ID System response FE ID Most severe failure
effect after system
response

DET-1 Comparator STR-1 Close valve FEF-1 Valve closed

DET-2 Sanity check for
calculation

STR-1 Close valve FEF-1 Valve closed

DET-3 Sanity check for
actuator

STR-1 Close valve FEF-1 Valve closed

After importing the FTA and FMEA data (CSV files) into the SysML model, the
reviewer places Hybrid Failure Chains (propagations of failures’ effects) on top of the
IBD. Since it is not practical to display many Hybrid Failure Chains in a system on one
diagram, the reviewer drawsmultiple diagrams, and each contains Hybrid Failure Chains
corresponding to the failure mode to be reviewed. The reviewer specifies the function
and failure mode to be reviewed on the diagram, and the tool recursively extracts the
failure effects that occur due to the effect of the failure mode and draws it on the IBD.

6 Effect of the Visualization

To obtain a comprehensive understanding of the method’s effect, we examined how this
visualization method facilitates the discovery of mistakes in the analysis results.

32 N. Tanaka et al.

Figure 6 illustrates the results of an intentionally mistaken analysis. “Valve opening
request sticks to zero” is a failure mode of the function “valve opening calculation.”
The analyst erroneously determined that this fault was detected by “Detect deviation.”
This failure cannot be detected by “sanity check for actuator” because it causes the same
deviation in the valve-opening request sent to the “sanity check for actuator.” There
could be a safety violation of the system if reviewers overlook this error and no safety
measures are taken against the failure of the valve-opening calculation.

If a reviewer sees the phrase “detect deviation” in the FMEA sheet, he or she may
mistakenly believe that the results of this analysis are correct. On the other hand, if the
reviewers look at Fig. 6, they can understand how the “sanity check” compares the valve
opening request with the valve opening detected by the sensor on the diagram, so it is
easier to find mistakes there than on the FMEA sheet.

Figures 7 and 8 show examples of the propagation of failures in a simplified or a
detailed safety analysis result (Figs. 7 and 8, respectively).

Fig. 6. Result of an intentionally mistaken analysis to explain the mismatch between failure
occurrence and failure detection.

Figure 7 shows the result of FMEA-MSR, omitting horizontal propagation for sim-
plicity, and the only direct relationship is drawn between the failure mode “no drive
current,” at the top center, and the detection, “detect deviation from reference.” The
reviewers can see the relationships between failure modes and safety mechanisms in
one diagram, which makes it easier to discover mismatches between the two.

A Method to Support the Accountability of Safety Cases 33

Figure 8 shows a more detailed relationship in the horizontal propagation, using
detailed information from the FTA results. Reviewers can understand the failure’s behav-
ior from this diagram. On the other hand, the analysis results that express the detailed
horizontal propagation aremore complex than ordinary artifacts and, thus, can be imprac-
tical. Our method visualizes the level of simplification or omission in the safety analysis
results and facilitates the analyst or reviewer’s judgment about the appropriateness of
the level.

Fig. 7. Fault model with simplified or omitted fault propagation

7 Future Work

7.1 Effectiveness When Applied to a Larger System

In our approach, the entire fault model is represented by many diagrams, each represent-
ing the effects of a single failure. In the small-scale case study, the failure propagations are
simple, and visualization is practical, but we should investigate the model’s practicality
in cases with a large number of failures.

7.2 Improvement for the Entire Safety Analysis Work

We focused on improving review activities through the growth of the visibility of safety
analysis artifacts by FTA and FMEA. However, we think the benefit of the notation

34 N. Tanaka et al.

Fig. 8. Fault model without simplification or omission of propagation of faults

and functionality described in this paper can improve other activities in safety analysis.
We should investigate how using the fault model within the SysML modeling tool can
facilitate the work compared with traditional safety analysis work.

7.3 Completeness of Correspondence Between Safety Analysis Artifacts

We modeled the results of FTA and FMEA by relating their components, but since FTA
and FMEA have different purposes and intentions, those components are not consistent
and synchronized during development. At the beginning of this study, we decided to
correlate and visualize the existing results of established safety analysis methods. How-
ever, in order to utilize multiple safety analysis methods in combination with modeling,
the cooperation method between the safety analysis methods should be examined.

8 Conclusion

In this paper, we proposed a method to visualize the propagation of failures using an
activity model and a diagram that integrates the results of FTA and FMEA and the
functional block diagram of SysML. Based on the analysis of the effect of the proposed
method, we found that the method facilitates understanding of flaws and omissions of
safety analysis results.

A Method to Support the Accountability of Safety Cases 35

The result of this study shows that the visualization of the behavior of failures
included in the results of the traditional safety analysis and expression of the fault model
by the activity model is effective in improving safety analysis.

References

1. Aizpurua, J.I., Muxika, E.: Model-based design of dependable systems: limitations and
evolution of analysis and verification approaches. Int. J. Adv. Secur. 6(1–2), 12–31 (2013)

2. Biggs, G., Juknevicius, T., Armonas, A., Post, K.: Integrating safety and reliability analysis into
MBSE: overview of the new proposed OMG standard. In: INCOSE International Symposium,
vol. 28, pp. 1322–1336, July 2018

3. Joshi, A., Miller, S.P., Whalen, M., Heimdahl, M.P.E.: A proposal for model-based safety
analysis. In: The 24th Digital Avionics Systems Conference, Washington, D.C., October 2005

4. Papadopoulos, Y., McDermid, J.A.: Hierarchically performed hazard origin and propagation
studies. In: Felici, M., Kanoun, K. (eds.) SAFECOMP 1999. LNCS, vol. 1698, pp. 139–152.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48249-0_13

5. Nordmann, A., Munk, P.: Lessons learned from model-based safety assessment with SysML
and component fault trees. In: MODELS 2018, 14–19 October 2018, Copenhagen, Denmark
(2018)

6. Clegg, K., Li, M., Stamp, D., Grigg, A., McDermid, J.: A SysML profile for fault trees—
linking safety models to system design. In: Romanovsky, A., Troubitsyna, E., Bitsch, F. (eds.)
SAFECOMP 2019. LNCS, vol. 11698, pp. 85–93. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-26601-1_6

7. Lane, H.C., D’Mello, S.K.: Uses of physiological monitoring in intelligent learning environ-
ments: a review of research, evidence, and technologies. In: Parsons, T.D., Lin, L., Cockerham,
D. (eds.) Mind, Brain and Technology. ECTII, pp. 67–86. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-02631-8_5

8. AIAG and VDA: AIAG&VDA FMEAHandbook, Automotive Industry Action Group (2019)
9. Tanaka, N., Ogawa, K.: Proposal of a graphical representation of safety analysis and a tool

with high affinity to design documents (in Japanese). In: Safety Engineering Symposium 2019
(2019)

https://doi.org/10.1007/3-540-48249-0_13
https://doi.org/10.1007/978-3-030-26601-1_6
https://doi.org/10.1007/978-3-030-02631-8_5

Collecting and Classifying Security
and Privacy Design Patterns

for Connected Vehicles: SECREDAS
Approach

Nadja Marko1(B), Alexandr Vasenev2, and Christoph Striecks3

1 VIRTUAL VEHICLE, Graz, Austria
nadja.marko@v2c2.at

2 Joint Innovation Centre ESI (TNO), Eindhoven, The Netherlands
alexandr.vasenev@tno.nl

3 AIT Austrian Institute of Technology, Vienna, Austria
christoph.striecks@ait.ac.at

Abstract. In the past several years, autonomous driving turned out to
be a target for many technical players. Automated driving requires new
and advanced mechanisms to provide safe functionality and the increased
communication makes automated vehicles more vulnerable to attacks.
Security is already well-established in some domains, such as the IT
sector, and now spills over to Automotive. In order to not reinvent the
wheel, existing security methods and tools can be evaluated and adapted
to be applicable in other domains, such as Automotive. In the European
H2020 ECSEL project SECREDAS, this approach is followed and exist-
ing methods, tools, protocols, best practices etc. are analyzed, combined
and improved to be applicable in the field of connected vehicles. To pro-
vide modular and reusable designs, solutions are collected in form of
design patterns. The SECREDAS design patterns describe solution tem-
plates to solve security, safety and privacy issues related to automated
systems. The grouping and classification of design patterns is important
to facilitate the selection process which is a challenging task and weak
classification schemes can be a reason for a sparse application of security
patterns, which represent a subgroup of design patterns. This work aims
to assist automotive software and systems engineers in adopting and
using technologies available on the market. The SECREDAS security
patterns are based on existing technologies, so-called Common Technol-
ogy Elements, and describe how and where to apply them in context
of connected vehicles by making a reference to a generic architecture.
This allows developers to easily find solutions to common problems and
reduces the development effort by providing concrete, trustworthy solu-
tions. The whole approach and classification scheme is illustrated based
on one example security pattern.

Keywords: Security · Safety · Privacy · Design patterns · Automated
systems · Connected vehicles

c© Springer Nature Switzerland AG 2020
A. Casimiro et al. (Eds.): SAFECOMP 2020 Workshops, LNCS 12235, pp. 36–53, 2020.
https://doi.org/10.1007/978-3-030-55583-2_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-55583-2_3&domain=pdf
https://doi.org/10.1007/978-3-030-55583-2_3

Security and Privacy Design Patterns for Connected Vehicles 37

1 Introduction

At the moment, security issues are rarely considered at the initial stages of
system development in Automotive. With the new software and communication
functionality required to make connected cars active, security gets more and
more important in the Automotive domain. With the integration of wireless
communication functionality into vehicles, new security threats appear, which
have to be considered in concept and design phases.

For providing security designs, security architects want to indicate which
specific security mechanisms are needed not focusing on the implementation.
Therefore, a set of security design patterns is needed, that define abstract secu-
rity mechanisms and specify its fundamental characteristics [10]. Security pat-
terns have been introduced around 20 years ago, inspired by design patterns [5]
and are intended to be used by non-security experts. The solution is security
patterns which serve as a means of bridging the gap between developers and
security experts.

While these security patterns, along with security solutions, such as encryp-
tion and secure network protocols, helped to improve many software systems, the
unique architecture of automotive systems require extended and adapted design
strategies. In Automotive, security needs differ from traditional computing-based
systems due to the specific performance constraints and requirements imposed
by a vehicle’s architecture and communication infrastructure [3]. Further, secu-
rity vulnerabilities often have consequences to safety where security exploits can
lead to hazardous consequences.

The European H2020 ECSEL project SECREDAS1 has the objective to
advance the development of autonomous systems by incorporating high secu-
rity and privacy protection while preserving functional-safety and operational
performance. The challenge in the project is that a lot of partners coming from
different domains provide extensive knowledge that has to be collected, harmo-
nized and made accessible. In order to efficiently provide solutions to advance
existing architectures with security and privacy mechanisms, in SECREDAS,
design patterns are used to describe security, privacy and safety design solutions
and best practices applicable for connected vehicles. However, the focus is on
security patterns, which represent the biggest subgroup of the developed design
patterns and are subject to discussion in this paper. Hence, the terms design
pattern and security pattern can be seen as identical in this work. The security
patterns are based on existing technologies, so-called Common Technology Ele-
ments (CTEs), that provide security functions. The idea is to use well-known
design solutions and existing tools and techniques rather than inventing solu-
tions from scratch, which would be risky because of the likelihood of design and
coding flaws. CTEs are for example firewalls, authentication and authorization
or transport layer security (TLS). The idea of CTEs is that they are known tech-
nologies already available in the market (starting from technology readiness level
(TRL) 7) that can be used and adapted to be usable in connected vehicles’ archi-

1 https://secredas.eu/.

https://secredas.eu/

38 N. Marko et al.

tecture. So for example, a firewall can be a security pattern but software that
implements this security pattern is already available at the market and we refer
to those existing technologies as security-related CTEs. In that sense, one might
think of the concept as “already industrialized” security patterns which extend
security patterns towards the industrial regime. The usage of CTEs in vehi-
cle architectures, where they are not frequently applied at the moment, are our
security patterns. This includes also combinations of several CTEs. For example,
a security pattern can describe how to use CTEs authentication, cryptographic
libraries and secure elements together to secure a Vehicle-2-X (V2X) communica-
tion, or a security pattern can be an authentication protocol for authentication of
mobile devices in vehicle architectures. All in all, these security patterns describe
best practices, protocol and design solutions or guidelines for the application of
CTEs in the context of autonomous systems. The basis for the design patterns
is the broad knowledge from the numerous SECREDAS partners and existing
security patterns. Over the last few years, the number of security patterns has
increased considerably. Although this situation is beneficial, it is now difficult to
select appropriate security patterns from the large pool of existing patterns and
to understand the consequences of its application, in particular, when choosing
between patterns that address the same problem [20]. Grouping design patterns
is important to facilitate the selection process. A classification organizes pat-
terns into groups of patterns that share common properties such as application
domain or a particular purpose [10]. Security patterns can be grouped into many
categories based on multiple classification techniques, such as life cycle phase or
the problem they are attempting to solve. In SECREDAS, the design patterns
are classified according to their applicability in context of connected vehicles.
Hence, the classification scheme is not applicable in general but supports solu-
tion architects for connected vehicles. In order to see the applicability of design
patterns, a generic reference architecture has been developed. Security patterns
are linked to this generic reference architecture to see for which systems and
components the design patterns can be applied. Our approach helps solution
architects to select security and privacy patterns as the link to a generic tech-
nical architecture describes where they can be applied. Further, an appropriate
organization scheme is needed to manage and apply the knowledge from partners
coming from various domains.

This work aims to assist automotive software and systems engineers in adopt-
ing and using technologies (nearly) available on the market. We structurally
depict how design patterns are related to essential elements of the complex auto-
motive context and the logic the users might follow when selecting the patterns.
In contrast to higher-level categorizations, we build on the familiarity of the
intended pattern users with the automotive industry context and typical use
cases of connected vehicles. To note, this familiarity is a facilitator to effectively
select the patterns, but is not a pre-requisite. The paper is structured as follows.
Section 2 summarizes related work regarding security patterns, their classifica-
tion and security patterns in the Automotive domain. In Sect. 3, our approach is
described including the concept of CTEs, the generic reference architecture and

Security and Privacy Design Patterns for Connected Vehicles 39

the security pattern template we use. Section 4 demonstrates the approach based
on an example design pattern. Finally, Sect. 5 summarizes the actual achieve-
ments and an outlook of the next steps.

2 Related Work

2.1 Security Pattern Catalogues

Several security pattern catalogs have emerged, and the security pattern com-
munity has produced significant contributions. There are various collections of
security design patterns including surveys and overviews about papers. In [11],
for example, the authors describes several security patterns differentiated by
structural and procedural patterns. The focus is on information security for web
applications. The collection of patterns is called security patterns repository and
consists of 26 patterns and 3 mini-patterns. Yoshioka et al. [21] provide a survey
of approaches to security patterns including representation, classification, secu-
rity pattern repositories, quality analysis and development methodology. The
authors state that guidance for developers is needed for selecting the appropri-
ate patterns. With the new requirements on privacy, also privacy design patterns
have been developed the last years. Privacy can be seen as one aspect of security
and also becomes important for the Automotive domain as there are many new
applications in which private data has to be protected (e.g. state of health appli-
cations). There are privacy design patterns for protecting privacy [7,14], provid-
ing privacy transparency [18], and privacy design strategies and survey [9]. In
[2], the authors propose a taxonomy of types of relationships that describe rela-
tionships between privacy patterns. The taxonomy is analyzed based on existing
privacy patterns. Therefore, the authors provide an overview of privacy design
pattern collections in their related work.

2.2 Organization of Security Patterns

A main contribution of this paper is the organization of security patterns and
providing an appropriate template in the context of connected vehicles. This
differs from other approaches that provide security patterns for various domains.
The basis for our security patterns are existing technologies. In [5], the authors
describe an approach for expressing security patterns, built on a set of reusable
and well-known security building blocks. They claim that “security patterns can
be improved by building them on top of recurring security building blocks”.
The building blocks differ from the SECREDAS CTEs (building blocks). In
SECREDAS, we use existing security mechanisms (e.g. firewall), whereas in this
paper the building blocks are data specific security building blocks (e.g. data
types, creation of data, data storage).

Proper organization of patterns is needed for users to find the appropriate
pattern for their design. One aspect of pattern organization is classification, i.e.
grouping the patterns into small, correlated sets. A good classification scheme

40 N. Marko et al.

facilitates selection of appropriate patterns as users can find a pattern that solves
their particular problem more easily [8]. In [20], the authors present a selection
approach for security patterns based on security requirements. Their formalized
approach is based on a goal-oriented requirements language and Prolog rules
and finds the most suitable security patterns based on requirements. In [12],
the authors survey major contributions in the field of security design patterns
and assesses their quality in the context of an established classification. They
authors define a set of desirable properties as well as a template for expressing
them. They propose a template based on existing templates. In [10], the authors
summarize different classification schemes for security patterns and propose a
new classification scheme based on Microsoft organizing table integrated with
performance, implementation cost and security degree. Hafiz et al. [8] describe
various classification schemes, analyze them and propose an alternative pattern
organization methodology based on threat model and application context. They
state that “there is no proper organization of security patterns. Several schemes
for organizing the patterns have been used so far, but all of these approaches fall
short of successfully organizing all the security patterns [8]”. In SECREDAS,
we follow this proposal and organize security patterns based on the application
context of system functions of connected vehicles. The system functions and its
extension with security patterns is illustrated based on a reference architecture.

2.3 Security Patterns in Automotive

Security patterns are well-known in some domains; however, in Automotive and
the field of connected cars security is rather new for developers and solution
architects. References regarding security patterns in this domain is rare. In [1],
security issues in connected cars are described. They describe that three areas
can be distinguished for security threats: the in-vehicle network and communi-
cation gateway, mobile device and the cloud infrastructure. All three areas are
represented in the SECREDAS technical reference architecture and are hence
part of the classification scheme. In [15], the NHTSA published security best
practices for modern vehicles. This includes general cybersecurity guidance for
the vehicle development process and documentation (e.g. ‘penetration testing
and documentation’, ‘limit access in production devices’) as well as some design
and implementation best practices, e.g. ‘log events’ or ‘control wireless inter-
faces’. Cheng et al. [3] summarize some security patterns and security principles
applicable for Automotive and introduces two security design patterns, namely
Signature based IDS and Blacklist. Further, the authors extended common fields
of design pattern templates with parameters specific for Automotive. McAfee
[13] published a white paper summarizing security best practices for Automo-
tive. They summarize some practices for hardware, software, network and cloud
security. Further, the security development lifecycle and supply chain security
are discussed. In [6], the European Union Agency for Cybersecurity (ENISA)
published a report for security practices for smart cars. This comprehensive
report contains threats and attack scenarios as well as security measures and

Security and Privacy Design Patterns for Connected Vehicles 41

good practices, both organizational and technical, and builds a good basis for
our security patterns.

3 Security Pattern Organization for Connected Vehicles

Some authors point to the lack of a good security pattern catalog and method-
ology as likely reasons not using security patterns [5]. Hence, the organization of
security patterns and the provided information is very important. We want to
assist automotive software and systems engineers in adopting and using available
technologies and structurally depict how design patterns are related to essential
elements of the complex automotive context and the logic the users might follow
when selecting the patterns. In addition to the technical requirements, we have
to consider some constraints of the project. One important requirement is the
management of knowledge from various partners coming from different domains.
Those partners have a wide range of knowledge, which has to be made accessible
to various partners having different background. Organizing security patterns
based on limited context helps to provide and to find the appropriate security
patterns. To enable contextualized choices, we relate patterns to the technical
contexts of connected cars. Positioning in the technical context helps to high-
light the functionality that design patterns address. Further, we plan to extend
the contextualization by providing also information of business and customer
context.

We first collected the design patterns based on an agreed template (see
Sect. 3.3). To define an appropriate categorization that splits patterns into sets,
we classified patterns as a solution to a problem in a context. Therefore, the
design patterns are related to a generic reference architecture for connected vehi-
cles (cp. Sect. 3.2) to see for which systems and components the security patterns
can be applied. This represents the context of the security patterns. The relation
indicates the intended systems, components and communication channels that
can be extended with the design pattern functionality to make those parts more
secure or privacy enhanced. This categorization helps to find appropriate security
patterns from the pattern catalog. As the SECREDAS security patterns differ
from security patterns from related work by using existing technologies (CTEs),
the security pattern also has a relation to CTEs. In SECREDAS, a design pat-
tern describes the usage of CTEs (cp. Sect. 3.1) and the use and interaction with
domain specific technical solutions. This allows developers to easily find solutions
to common problems, which they can reuse and adapt to their specific needs.
The linkage of design patterns with CTEs will further reduce the development
effort due to the provision of concrete, trustworthy solutions, which have been
already applied in an industrial context. They include for example security and
privacy best practices, protocol and architecture specifications or guidelines for
the application of CTEs. The connection of security design patterns, CTEs and
reference architecture is shown in Fig. 1.

42 N. Marko et al.

Fig. 1. Security pattern organization

3.1 Common Technology Elements

SECREDAS design patterns use building blocks that are called Common Tech-
nology Elements (CTEs). One main objective in the project is the improvement
of a number of CTEs and thereby avoid redundancies and support cooperative
developments between the different domains addressed. This means that tech-
nical solutions solving similar problems in the different domains are gathered,
adapted and if necessary, adapted cooperatively by partners having their main
expertise in different industries. We define Common Technology Elements as
follows.

Common Technology Elements (CTEs) are domain independent technolo-
gies (implementations, mathematical models, specifications, processes, etc.) real-
ized in existing systems (starting from TRL 7). Within SECREDAS, CTEs
are related to safety, security, privacy protection. Examples are cryptographic
libraries, hardware anchors for secure key storage, communication networks and
protocols or existing security products like a firewall, trusted execution environ-
ments or blockchain. CTEs are the basis for CTE Improvements in SECREDAS.

CTE Improvements developed in SECREDAS are safety, security, privacy
solutions (starting from TRL 3, mostly TRL 3–5). These solutions can be eval-
uations, adaptations, or enhancements of CTEs for a different application or
domain.

The CTE description contains a definition of the CTE, technical aspects that
are covered with the CTE, an overview about the state-of-the-art including some
links to existing tools and specifications and a list of improvements that will be
done during the project to be applicable for connected vehicles. An overview
about the CTE structure, exemplified with CTE firewall, is shown in Fig. 2.

Security and Privacy Design Patterns for Connected Vehicles 43

Fig. 2. CTE structure

CTEs are not limited to concrete implementations but can also contain best
practices and protocol specifications. The CTEs are the starting point for the
development of design patterns in SECREDAS, where design principles and best
practices are combined and implementation recommendations for the correct use
of CTEs are given. The available CTEs within SECREDAS and their intended
fields of application will be gathered. Extensions and new developments are car-
ried out according to the functional requirements derived from their use in the
proposed design patterns. Those extensions will be constantly tracked, docu-
mented and linked to design patterns, where their application is described.

Based on the definition, design patterns are linked to CTEs and CTE
improvements. The differentiation enables that design patterns can be devel-
oped based on generic and already available technologies (e.g. SSH communi-
cation protocol). These design patterns mainly describe how existing CTEs can
be combined and applied in a new domain, i.e. connected vehicles. On the other
hand, the linking to CTE improvements refers to design patterns that describe
the application of CTE improvements developed in SECREDAS and also reflect
requirements to existing CTEs.

3.2 Reference Architecture: Technology Aspect

Design patterns can be interrelated and discussed using the SECREDAS generic
reference architecture, which is a type of architectural guidance to assist and
constrains the instantiation of multiple architectures [16]. Relating patterns to
high-level system functionalities aims to assist shared understanding of the pat-
terns’ scope and their interconnections. Empowered by the reference architec-
ture, solution architects can make informed choices which design patterns to
consider in their case. Figure 3 illustrates a technical view of the SECREDAS
reference architecture. At the core of it is a vehicle that interacts with trav-
elers (including the driver) and roadside infrastructure. Traveler(s) can have

44 N. Marko et al.

mobile devices, such as a smart phone. Roadside infrastructure consists of Road-
side Units (RSU) and Cooperative Intelligent Transport Systems (C-ITS). Sev-
eral communication channels can be established and used, including Vehicle-
to-Vehicle (V2V), Vehicle-to-Everything (V2X), Vehicle-to-Infrastructure (V2I)
and Infrastructure-to-Everything (I2X). Figure 3 also includes Other Systems
that can for example correspond to the OEM infrastructure to do over-the-air
updates. An example of such a system is described in [19].

Fig. 3. Technical reference architecture C-ITS: Cooperative Intelligent Transport Sys-
tems, RSU: Road Side Unit, HMI: Human-Machine Interface

Solution architects can consider design patterns in connection to their use
case and deploy needed security functionality. Figure 3 is an implementation-
agnostic figure that conceptualizes the relevant high-level functionality break-
down (sensing, processing, storing, communicating). Solution architects can
instantiate the technical reference architecture by reasoning along the follow-
ing lines:

– In a particular case, each system can occur 0, 1, or multiple times. As an
example, several external systems (Other systems), one or more vehicles and
no C-ITS clouds can be included.

– A functionality can be implemented in hardware or software; in one or mul-
tiple ECUs (Electronic Control Unit).

– Storage can be differentiated as tamper-resistant or not.
– Processing can take place in secure (or not) environments.
– Vehicle’s sensing can focus on: (1) the driver or (2) the outside world.

Some design patterns can benefit from an additional (but optional) functional
breakdown of the generalized functionality. Figure 4 provides such support. This
structure is not obligatory, as SECREDAS design patterns are not required to
describe the degrees of processing or explicitly consider a high-tech product
topology. (Delegated) processing can also be in one or several ECUs.

Security and Privacy Design Patterns for Connected Vehicles 45

Fig. 4. Functional breakdown of in-vehicle topology OBD: On-Board Diagnostics,
CAN: Controller Area Network, TCU: Telematics Control Unit, IVI: In-Vehicle Info-
tainment, ADAS: Advanced Driver-Assistance Systems, SE: Secure Element.

3.3 Security Design Pattern Organization

The design patterns are developed using a bottom-up and a top-down approach.
The bottom-up approach uses known CTEs as a basis and creates design pat-
terns describing their intended and most efficient application. In the top-down
approach, common problems, which have to be solved in one of the domains
in SECREDAS, are defined and potential technical solutions are described in
form of design patterns. These design patterns can provide suggestions for new
common or domain specific CTEs or improvements of existing ones, which allow
their efficient implementation.

Design Pattern Definition. SECREDAS design patterns have additional
properties, compared to software patterns for example, as they are tailored to
project requirements in the context of connected cars. More precisely, they are
defined as follows.

A design pattern is a best-practice solution template for a specific technical
challenge allowing its efficient realization and verification. In SECREDAS, a
design pattern has the following properties:

– providing a generic, reusable solution template for a commonly occurring secu-
rity, privacy or safety problem within a given context

– domain independence; it can for example include hardware and software
designs as well as concepts on system level

– providing a concept that is related to one or more CTEs

A design pattern is used as a guideline for

– solving a safety, security or privacy problem (top-down approach in
SECREDAS)

– using common technology elements (bottom-up approach in SECREDAS)

46 N. Marko et al.

Design Pattern Template. The design pattern template provides a guideline
for design pattern developers to support describing their patterns. The elements
of the template have been specified based on existing pattern templates, such as
[17], and the project requirements. The project requirements makes it necessary
to have a relation to the technical reference architecture and the used technolo-
gies (CTEs). It is planned to extend the template to provide further information
to the design patterns by including the missing template fields proposed in [17].
These extensions are the dynamics (describing the behaviour in more detail),
implementation guidelines and variants of the pattern. Further planned exten-
sions are described in more detail in Sect. 5.

Design Pattern Name. The design pattern name should reflect the main
purpose of the design pattern and should be memorable and useful as a new
vocabulary for engineers doing the design.

Context. The context describes the relation of the design pattern to the tech-
nical reference architecture. In this part, the components of the architecture,
which will be improved with the design pattern with regard to safety, security
or privacy, are marked. Hence, the marking indicates the design pattern user
which components can be improved when applying the design pattern. In Sect. 4
an example is shown. If needed, a short description about the context should be
given providing more details about the environment, at which level of develop-
ment the design pattern can be applied and the idea of the design pattern (e.g.
definition of an advanced communication protocol or validation of data input).

Purpose. The purpose describes the intent of the pattern, i.e. what can be
achieved with the application of the design pattern. It should answers questions
like: What security problem is solved with this pattern or what is the motivation
for applying this pattern. For example, a purpose could be improved authenti-
cation for multiple vehicles for V2X communication.

Safety/Security/Privacy. This field indicates whether the pattern is related
to safety, security, and/or privacy. It should also include a description of which
kind of attacks, hazards or privacy aspects can be detected, prevented and/or
mitigated.

Classification. The classification indicates whether the pattern describes a con-
cept, a system, a software or hardware solution. Examples are:

– Concept: a new architecture for safe sensor fusion
– System: adding a combination of hardware and software for authentication
– Software: application of advanced software algorithms for securing a commu-

nication
– Hardware: adding hardware to the system to protect a key

Related CTEs. In this part, the related CTEs are listed which are used when
the design pattern is applied. The relation of design pattern and CTEs has
already been described in more detail in the previous sections.

Security and Privacy Design Patterns for Connected Vehicles 47

Preconditions. The preconditions describe all constraints and prerequisites
that must be considered so that the pattern can be successfully applied. For
example, the security algorithm is based on a TCP connection or the user must
install an app on a phone. If these conditions are not fulfilled, the pattern is not
applicable.

Design. The design shows an architectural picture of the design pattern. If
applicable, the picture includes the applied CTEs and any further additional
components and their relations. This is not possible for all design patterns but
nevertheless, the application of the CTE should be clear.

Additional Components. Here, additional components that are needed to
apply the design pattern are described.

Required CTE Improvements. The required CTE improvements refer to
the CTE improvements, which have to be developed, either within the project
or outside, so that the pattern can be applied correctly.

Output. The outputs after the application of the design pattern are listed. This
field can be seen as post condition of the pattern usage. For example, secure
V2X communication or privacy guarantee for authentication data.

Description. The description part specifies the design pattern in more detail
and includes the usage of single CTEs or their combined use. With this descrip-
tion, it should become clear how the design pattern works (structure and
behaviour). As it should be applicable in different architectures, this part should
be generic, i.e. the description should be on a functional, tool independent level.

Example Application(s). Within this field, applications of the design pattern
are illustrated. This can include:

– descriptions of pattern usages in different domains or applications
– specific implementations describing how the pattern is realized for a specific

purpose
– descriptions of how the pattern is applied in SECREDAS

Further Comments. Further notes, comments that have not been described
elsewhere.

Design Pattern Classification. In the first iteration of design pattern devel-
opment, 30 design patterns for security, privacy and safety have been collected,
whereat the most are related to security. One security pattern is illustrated in
Sect. 4. Further examples of SECREDAS design patterns are:

– Automated Threat Detection and Vulnerability Management. This process is
mostly related to the collection of incidents and the correlation to common
vulnerabilities and exploits in order to execute various security tests.

– Cryptographic Erasure. This design pattern applies to data processors (Vehi-
cle, RSUs, etc.) to enable data sanitization across distributed data storages.

48 N. Marko et al.

– Digital Identity Management and Smart Profiling. This design pattern can
be applied to RSUs. The purpose is to manage digital identities through the
complete life cycle and to monitor access roles. This includes for example con-
trolling access privileges or to integrate password management across multiple
authentication resources.

– Health Data Exchange. This design pattern aims to provide reliable, secure
access to accurate healthcare information about the driver to be used for
fitness-to-drive check while considering privacy aspects.

– Mutual Authentication. The purpose of this security pattern is to establish
robust identification and authentication processes by enabling mandatory
mutual authentication for external communication channels (e.g. V2X).

– Secure Embedded Networks. The main goal is the supervision of an embedded
network system from a central instance using ’access tickets’ that allow flexible
design of the policy environment during the whole life cycle.

– End-to-End security for Constrained Devices. The purpose is to enable
resource-constrained devices to use certificate-based cryptography to secure
communication, notably with external 3rd-party clouds.

– In-vehicle Network Intrusion Detection. The goal of this security pattern is
to find attempts to tamper with the vehicle operation through manipulation
of the in-vehicle bus.

– Virtualized Embedded System. The usage of a virtual machine monitor,
or so-called hypervisor, enforces a stricter separation between individual
tasks/processes, as well as the access to the underlying hardware. This design
pattern improves safety and security aspects on embedded devices by using
hypervisor technologies.

Based on the design pattern collection, the patterns are grouped to help
pattern users to find the right pattern for their scope. The design patterns are
grouped as follows:

– Vehicle connectivity. Vehicle connectivity covers design patterns that improve
the external communication of vehicles and all other systems in the technical
reference architecture.

– In-vehicle network. Design patterns related to in-vehicle network cover in-
vehicle network including the internal communication, gateways as well as all
processing and storing components.

– Sensing. Design patterns related to sensing include RSU sensing, vehicle sens-
ing, driver-related sensing and traveler’s device sensing.

– Connected systems. This group includes design patterns that focus on improv-
ing the systems connected to vehicles. These systems are RSU, C-ITS cloud,
other systems and traveler’s device.

– Storing. Design patterns related to storing improve storages. They can be
related to a storage of one system, e.g. in-vehicle storages, or they can improve
storages in general, independent of the system.

– Processing. Processing design patterns improve processing units of all systems
in the technical reference architecture.

Security and Privacy Design Patterns for Connected Vehicles 49

Based on this structure, design patterns can be selected. For example, if
a user wants to improve the communication of a vehicle, the user can look
to the vehicle connectivity design patterns. For all design pattern groups, the
involved components in the technical reference architecture are marked. If a
design pattern improves more than one part of the architecture, it can be assigned
to several groups (e.g. vehicle connectivity and the in-vehicle network).

Having the first security pattern collection, the next steps are to harmonize
the patterns, extend the template, extend the list of design pattern and improve
patterns based on feedback and experiences with the application of the pattern.
More information regarding the next steps is given in Sect. 5 and an example
security pattern is illustrated in the next section.

4 Security Pattern: Separation of Networks

In this section, the approach described in Sect. 3 is illustrated with one security
pattern. On the one hand, this should help to understand the approach and on
the other hand, it can be seen what kind of design patterns are developed in
SECREDAS.

Name: DP18 Separation of networks

Context: This design pattern is applicable to in-vehicle networks. It can be
applied between processing components (controllers) that are connected with a
bus system. Figure 5 shows that the network for ‘assessing situation’ and ‘super-
vising’ is separated (marked with boxes around the components).

Fig. 5. Context of design pattern: separation of network

Purpose: Prevent security attacks to further components in case one component
is hacked.

Safety/Security/Privacy Protection: Prevention and mitigation of security
attacks. This pattern should prevent manipulation of information and denial of

50 N. Marko et al.

services attacks on critical functions (e.g. automated driving functions) in the
vehicle.

Classification: Software pattern.

Related CTEs: CTE-12 Firewall.

Preconditions: This design pattern can be applied if there are several con-
trollers connected with a bus system.

Design: The design is pictured in Fig. 6.

Fig. 6. Design pattern separation of network

Additional Components: No additional components needed.

Required CTE Improvements: Standard firewall mechanisms can be used.
However, the firewall functions have to be implemented for the appropriate oper-
ating system and bus system. Further, real-time requirements have to be con-
sidered.

Output: Secure critical controllers (e.g. driving controller) from attacks through
limitation of network access between controllers.

Description: Controllers are separated via a firewall so that no security attack
is possible to the components behind the firewall. This ensures if one controller
is hacked, other controllers are not automatically hacked as well (see Fig. 6).
This can be applied for example for separating high level controllers, that are
responsible for communication with other systems (e.g. RSU, C-ITS), and driv-
ing controllers, where an external control can have hazardous consequences.

Applied CTEs: CTE-12 Firewall: The firewall controls the data traffic and
based on defined rules, data packets are accepted or not. Not allowed data access
(e.g. from external sources) is prohibited.

Example Application(s): In order to secure the driving controller, in which
a security exploit can have hazardous consequences, a firewall is setup before
the driving controller. The firewall allows only communication from predefined
sources. Hence, only registered sensors and communication devices are allowed

Security and Privacy Design Patterns for Connected Vehicles 51

to send messages to the driving controller. This reduces the risk that the driving
controller is externally controlled by an attacker.

Further Comments: No further comments.

This security pattern shows how the design patterns are described in
SECREDAS. The relation to the CTEs describes how existing technologies can
be used for automated vehicles. The CTE can also be seen as variable part of
the design pattern which changes over time as tools and methods are improved.
In the pattern presented above, the CTE firewall is used. This CTE describes
different aspects of a firewall solution to be used for secure communication to
address threat detection, prevention and auditability of the on-board domain.
Aspects that are covered are Packet Filtering, Packet Inspection, Logging and
Intrusion Detection. There are several evaluations and improvements done for
this CTE to be applicable for automated systems and specially connected vehi-
cles. For example, shortcomings of existing firewall technologies are analyzed
and possible solutions are suggested. Challenges can for example be the real-
time requirement for safety related messages.

5 Conclusion

In this paper, the authors presented a work-in-progress approach for collecting
security design patterns for automated systems, specially connected cars. The
approach differs from other security pattern repositories in two main points.
First, the context of application is limited and hence, tailored for connected
vehicles. This enables to provide specialized design patterns for this context.
Second, the design patterns are based on existing technologies, called CTEs.
The linkage of design patterns with CTEs reduces the development effort by
providing concrete, trustworthy solutions. After the first iteration, a collection
of 30 security and privacy design patterns exists which will be extended until the
SECREDAS project ends. Further, the template is currently reworked to pro-
vide more information about the pattern. Mainly, the tradeoff of the patterns
should become more explicit and clear. It’s a challenge to find an appropriate
way for describing the benefits of a pattern, its liabilities and hence, its tradeoff.
For describing the benefits, the provided security should be outlined by inform-
ing about the reduced threats and attack potentials. In return, the costs (e.g.
implementation effort or material costs) to be expected represent the liabilities.
However, we plan to extend the template with the following fields.

– Principles. Principles denote a basic guideline for designing secure systems.
Security and privacy principles are part of the reference architecture and will
be connected to the design patterns.

– Customer context. The customer context indicates which stakeholders can
apply the pattern.

– Business architecture. The business architecture describes which types of com-
panies (e.g. OEM or service supplier) might apply the design pattern.

52 N. Marko et al.

– Provided security. This field describes the provided security based on several
factors. It is planned that Common Criteria [4] is used for the determination
of the security. Common Criteria defines five factors that have to be rated,
and based on the rated values a security class can be determined.

– Reduced threats. This field should provide information about the threats that
are reduced with the security pattern.

– Cost factor. The cost factor summarizes all efforts and costs that have to be
considered when applying the pattern.

– Status. This field indicates the status of the design pattern realization. Is this
pattern available only as concept or is also an implementation available that
can be evaluated? How far is the implementation?

– Related design patterns. Here, relations to other design patterns will be
described such as in [2] for privacy design patterns.

– Usage Guidelines. This field provides information about lessons learned by
applying the pattern. This can also include examples for incorrect application.

– Constraints. Constraints describe existing limitations for applying this pat-
tern. This can be timing constraints, environmental or technical constraints.

The next steps will be the definition of the new fields and the update of
the patterns according to the new template. Further, new design patterns will
be added to the pattern collection. The extended list of design pattern will be
harmonized and feedback of the applications will be considered for improving
the pattern catalog.

Acknowlegements. This work has been partially funded by EU ECSEL Project
SECREDAS. This project has received funding from the European Union’s Horizon
2020 research and innovation programme under grant agreement No 783119. The pub-
lication was written at VIRTUAL VEHICLE Research Center in Graz and partially
funded by the COMET K2 – Competence Centers for Excellent Technologies Pro-
gramme of the Federal Ministry for Transport, Innovation and Technology (bmvit), the
Federal Ministry for Digital, Business and Enterprise (bmdw), the Austrian Research
Promotion Agency (FFG), the Province of Styria and the Styrian Business Promotion
Agency (SFG). We are also grateful to Netherlands Organization for Applied Scientific
Research TNO for supporting this research.

References

1. Bécsi, T., Aradi, S., Gáspár, P.: Security issues and vulnerabilities in connected
car systems. In: 2015 International Conference on Models and Technologies for
Intelligent Transportation Systems (MT-ITS), pp. 477–482 (2015)

2. Caiza, J.C., Mart́ın, Y.S., Del Alamo, J.M., Guamán, D.S.: Organizing design
patterns for privacy: a taxonomy of types of relationships. In: Proceedings of the
22nd European Conference on Pattern Languages of Programs, pp. 1–11 (2017)

3. Cheng, B.H., Doherty, B., Polanco, N., Pasco, M.: Security patterns for automotive
systems. In: 2019 ACM/IEEE 22nd International Conference on Model Driven
Engineering Languages and Systems Companion (MODELS-C), pp. 54–63 (2019)

Security and Privacy Design Patterns for Connected Vehicles 53

4. Common Criteria Working Group: Common Methodology for Information Tech-
nology Security Evaluation (2017). https://www.commoncriteriaportal.org/files/
ccfiles/CEMV3.1R5.pdf, Version 3.1 Revision 5

5. van Den Berghe, A., Yskout, K., Joosen, W.: Security patterns 2.0: toward security
patterns based on security building blocks. In: 2018 IEEE/ACM 1st International
Workshop on Security Awareness from Design to Deployment (SEAD), pp. 45–48
(2018)

6. ENISA: ENISA good practices for security of smart cars. Report, European Union
Agency for Cybersecurity (2019)

7. Hafiz, M.: A collection of privacy design patterns. In: Proceedings of the 2006
Conference on Pattern Languages of Programs, PLoP 2006, pp. 1–13. Association
for Computing Machinery, New York (2006)

8. Hafiz, M., Adamczyk, P., Johnson, R.E.: Towards an organization of security pat-
terns. https://munawarhafiz.com/research/patterns/haj07-security-patterns.pdf.
Accessed 30 Jan 2020

9. Hoepman, J.-H.: Privacy design strategies. In: Cuppens-Boulahia, N., Cuppens,
F., Jajodia, S., Abou El Kalam, A., Sans, T. (eds.) SEC 2014. IAICT, vol. 428, pp.
446–459. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55415-
5 38

10. Hudaib, A., Edinat, A.: A survey on security patterns and their classification
schemes. Int. J. Sci. Eng. Res. 6, 79–90 (2019)

11. Kienzle, D.M., Elder, M.C., Tyree, D., Edwards-Hewitt, J.: Security patterns repos-
itory version 1.0. DARPA, Washington DC (2002)

12. Laverdiere, M., Mourad, A., Hanna, A., Debbabi, M.: Security design patterns:
survey and evaluation. In: 2006 Canadian Conference on Electrical and Computer
Engineering, pp. 1605–1608 (2006)

13. McAfee: Automotive Security Best Practices (2016). https://www.mcafee.com/
enterprise/en-us/assets/white-papers/wp-automotive-security.pdf, Accessed 30
Jan 2020

14. Munawar, H.S.: A pattern language for developing privacy enhancing technologies.
Softw.: Pract. Exp. 43(7), 769–787 (2013)

15. NHTSA: Cybersecurity Best Practices for Modern Vehicles. Report DOT HS 812
333, National Highway Traffic Safety Administration (2016)

16. van der Sanden, B., Vasenev, A.: Architectural guidance in automotive for privacy
and security: survey and classification. In: Annual IEEE International Systems
Conference (SysCon) (IEEE SysCon 2020) (2020, accepted)

17. Schumacher, M., Fernandez, E., Hybertson, D., Buschmann, F., Sommerlad, P.:
Security Patterns: Integrating Security and Systems Engineering. Wiley, Hoboken
(2006)

18. Siljee, J.: Privacy transparency patterns. In: Proceedings of the 20th European
Conference on Pattern Languages of Programs, pp. 1–11 (2015)

19. Vasenev, A., et al.: Practical security and privacy threat analysis in the automotive
domain: long term support scenario for over-the-air updates. In: Proceedings of
the 5th International Conference on Vehicle Technology and Intelligent Transport
Systems (VEHITS 2019), pp. 550–555 (2019)

20. Weiss, M., Mouratidis, H.: Selecting security patterns that fulfill security require-
ments. In: 2008 16th IEEE International Requirements Engineering Conference,
pp. 169–172 (2008)

21. Yoshioka, N., Washizaki, H., Maruyama, K.: A survey on security patterns. Prog.
Inform. 5(5), 35–47 (2008)

https://www.commoncriteriaportal.org/files/ccfiles/CEMV3.1R5.pdf
https://www.commoncriteriaportal.org/files/ccfiles/CEMV3.1R5.pdf
https://munawarhafiz.com/research/patterns/haj07-security-patterns.pdf
https://doi.org/10.1007/978-3-642-55415-5_38
https://doi.org/10.1007/978-3-642-55415-5_38
https://www.mcafee.com/enterprise/en-us/assets/white-papers/wp-automotive-security.pdf
https://www.mcafee.com/enterprise/en-us/assets/white-papers/wp-automotive-security.pdf

Safety and Security Interference Analysis
in the Design Stage

Jabier Martinez1(B), Jean Godot2, Alejandra Ruiz1, Abel Balbis3,
and Ricardo Ruiz Nolasco4

1 Tecnalia, BRTA (Basque Research and Technology Alliance), Derio, Spain
{jabier.martinez,alejandra.ruiz}@tecnalia.com

2 All4Tec, Laval, France
jean.godot@all4tec.net

3 Thales Alenia Space, Madrid, Spain
abel.balbis@thalesaleniaspace.com
4 RGB Medical Devices, Madrid, Spain

rruiznolasco@rgb-medical.com

Abstract. Safety and security engineering have been traditionally sep-
arated disciplines (e.g., different required knowledge and skills, terminol-
ogy, standards and life-cycles) and operated in quasi-silos of knowledge
and practices. However, the co-engineering of these two critical quali-
ties of a system is being largely investigated as it promises the removal
of redundant work and the detection of trade-offs in early stages of the
product development life-cycle. In this work, we enrich an existing safety-
security co-analysis method in the design stage providing capabilities for
interference analysis. Reports on interference analyses are crucial to trig-
ger co-engineering meetings leading to the trade-offs analyses and system
refinements. We detail our automatic approach for this interference anal-
ysis, performed through fault trees generated from safety and security
local analyses. We evaluate and discuss our approach from the perspec-
tive of two industrial case studies on the space and medical domains.

Keywords: Safety · Security · Co-engineering · Interference analysis ·
Fault tree analysis

1 Introduction

Several engineering disciplines are required to design and build the increasingly
complex critical systems present in industrial settings and public infrastructures.
Besides the different specialized disciplines related to designing and implement-
ing the software and hardware parts for the functional capabilities of the system,
there are experts on assuring the relevant non-functional properties. Safety is a
non-functional property which considers the mitigation measures to avoid neg-
ative impact on humans or the environment, while Security is the combination
of three criteria: confidentiality, the prevention of the unauthorized disclosure of

c© Springer Nature Switzerland AG 2020
A. Casimiro et al. (Eds.): SAFECOMP 2020 Workshops, LNCS 12235, pp. 54–68, 2020.
https://doi.org/10.1007/978-3-030-55583-2_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-55583-2_4&domain=pdf
https://doi.org/10.1007/978-3-030-55583-2_4

Safety and Security Interference Analysis in the Design Stage 55

information; integrity, the prevention of the unauthorized amendment or deletion
of information; and availability, the prevention of the unauthorized withholding
of information [2]. Thus, safety and security experts aim to reduce those risks
to acceptable values by integrating the needed barriers and measures within the
components of the system. However, preventing both safety and security could
cause contradictory situations [6] (e.g., the introduction of a security method
could cause a time delay which is in contradiction with a safety requirement).

Security is usually needed to ensure safety (security-informed safety) [21] and
therefore they are highly interrelated. However, current engineering practices
reveal that they are mostly faced independently because safety and security
teams have different highly specialized knowledge and skills. For instance, safety
experts and security experts tackle the analysis of feared events in different
ways [32]. Also, they are forced to show compliance to standards, jurisdictions,
and regulations focusing only on one aspect [25] which usually impose the life-
cycle, activities, methods, terminology conventions that they should follow, and
the expected artefacts that they should produce.

Co-engineering safety and security is still a challenge [13,24] affecting several
industrial scenarios such as medical devices, industrial automation, railway, air
traffic management or space [25]. Safety and security separation led to redun-
dant efforts [27] and, most importantly for this work, to late identification of
conflicts and trade-offs in safety and security requirements [25]. The costs of not
identifying issues related to safety and security concerns during early phases of
the product life-cycle can be very significant.

In this work, we focus on how to support the co-engineering process in the
design stage. We contribute with the integration of safety-security co-engineering
within mainstream practices. Concretely, we extend an existing method for the
combined analysis of safety and security by introducing an interference analysis
approach. Interference analysis refers to techniques analysing the mutual influ-
ence and inter-links of different quality attributes [5]. Notably, there is a debate
about what triggers trade-off meetings and interaction points [25]. They may
either be scheduled interaction points or interaction points triggered when a suf-
ficient critical mass of interference needs to be treated. It is the goal of our work
to define how this may be identified and measured. We propose a solution to
these measurements taking as input fault trees [14,17] automatically generated
from component local analyses of the combined safety-security analysis. Thus,
this interference analysis provides high-level reports on the interdependence of
safety and security using artefacts from the combined analysis. The objective of
these reports is to reveal and trigger the need of a co-engineering meeting and to
visualise the evolution of the safety and security interdependence. We also con-
tribute a qualitative evaluation of the presented approach from the perspective
of two industrial pilot projects: earth observation and medical devices.

This paper is structured as follows. Section 2 introduces the case studies
and Sect. 3 presents background information on relevant topics needed to better
understand this work and using the case studies context. Section 4 positions our
approach for the co-engineering method including the interference analysis part.

56 J. Martinez et al.

Section 5 presents the qualitative evaluation and a discussion. Finally, Sect. 6
presents the conclusions and future work.

2 Case Studies

The two case studies of this work stems from the AQUAS project (Aggregated
Quality Assurance for Systems) [25] which objective is to provide a holistic app-
roach to Safety/Security/Performance Co-Engineering. In the presented work,
we have focused only on the design stage of two diverse domains, earth observa-
tion and medical devices, that we introduce below.

Earth observation market is growing with its main application on mili-
tary settings followed by usage by civilians and enterprises. Earth observation
is in many cases mission-critical and the cyber-physical systems enabling these
services have strong requirements on safety, security and performance, notably
because of the stringent rules specified for space equipment design. In this work,
a simplified version of the AQUAS space case study [25] supports the technical
description. The original case study considered the more general Space multicore
case, applicable to both Telecom and earth observation payloads. Most of the
safety issues are related to the fact of using dual-core architectures (complex
resource sharing schemes and software design). It has been simplified because
of confidentiality issues but it also provides a more comprehensible presenta-
tion. We focused on a subsystem which architecture is illustrated in Fig. 1. The
mission-critical responsibility of this subsystem is taking pictures (Camera com-
ponent), packaging them before the transmission (Data packaging component)
and transmitting them to the ground station (Transmitter component).

Transmi�edSignalPackagedDataLight Picture

Input port Output port

Component

Fig. 1. Simplified system architecture of the space case study

Medical devices integrated in hospital settings and information systems
have strong safety, security and performance requirements. In the AQUAS
project, the development of a closed-loop controller for muscle relaxation is being
investigated with respect to co-engineering challenges [25]. The device consists
of a neuromuscular transmission monitor and an infusion pump system with sev-
eral pumps for different patients. Because of space limitations, the architecture
and more details can be found in a related publication [28].

Safety and Security Interference Analysis in the Design Stage 57

3 Background

This section provides details on safety and security engineering (Sect. 3.1) as well
as basic technical information on component local analysis (Sect. 3.3) and fault
and attack trees (Sect. 3.2) for a better understanding of this work.

3.1 Safety and Security Engineering

As mentioned in the introduction, safety and security are usually separated pro-
cesses. An industrial survey on safety and security aspects has shown that the
lack of communication between engineering disciplines and their different focus
and approaches are considered as a major issue [12]. However, some approaches
exist trying to support combined analyses. In the STAMP analysis [18] both
disciplines combine applying system engineering for accident cause analysis.
Other proposals are, for instance, Failure Modes Vulnerabilities and Effects
Analysis (FMVEA) [29], SAHARA (Security-aware Hazard Analysis and Risk
Assessment) [20], or the combination of Fault Tree Analysis (FTA) [14,17,26],
Stochastic Coloured Petri Net (SCPN) [11], Attack Trees Analysis (ATA) and
FMVEA [35]. Besides the safety-security combined analyses in the concept,
requirements [4], or risk analyses stages, other techniques are proposed for the
subsequent phases. Extensive list of examples of those techniques are available
[5,24] and a mapping of safety and security processes have been presented in
several application domains such as medical [28] or industrial automation sys-
tems [27]. In this work, we focus on the design stage where the architecture and
the components involved in the system are defined. This is a crucial stage before
the actual software, hardware and communications implementation. Thus, pre-
venting the late identification of issues that might have been avoided through
co-engineering in the design stage is of high interest.

3.2 Fault Trees and Attack Trees

Fault Tree Analysis, a widely adopted practice on reliability and safety engi-
neering [14,17,26], proposes a hierarchical structure of events, where the top
event is an undesired event or system state, and the rest of the tree are events
or gates describing the Boolean conditions which are sufficient to reach the top
event. Traditional usage includes probability analysis to asses if the risk is under
an acceptable threshold, and identification and analysis of the shortest or more
probable paths to reach the top event with the objective to refine the system
with the appropriate safety barriers. Besides that, diverse extensions to FTA
were proposed [26]. Fault trees quickly get complex in terms of size complicating
their human visualization and comprehension [19]. It is even more complicated
to reason on high-level concepts (e.g., safety, security) and their interactions by
just looking at the fault tree.

58 J. Martinez et al.

In the security engineering domain, a similar approach was used named attack
trees [30] for modelling security threats where the top events represent an attack
goal. Following the trend of safety-security co-engineering, approaches to con-
ciliate safety-related fault trees with security attack trees are proposed [32] and
industrial experiences of this mix are reported (e.g., railways domain [36]).

3.3 Component Local Analysis

In safety engineering, methods such as Failure Propagation and Transformation
Notation (FPTN) [9] or Interface Focused-FMEA (IF-FMEA) [23] have been
established to cope with the analysis of complex and large systems based on
abstraction and decomposition. Thus, the analysis is conducted locally on com-
ponents to identify and describe their failure behaviour. Technically, a compo-
nent local analysis can be represented with specific equation syntax [9], table [23]
or diagram [15]. The diagram solution is used in Safety Architect tool1 with a
notation based on Component Fault Trees [15] as depicted in Fig. 2. In the earth
observation case study, the Transmitter component design, with its input and
output ports (Fig. 1), is enriched with information about failure modes, feared
events, and how system or local events can lead to the latter through logic
expressed with Boolean gates. For instance, in the Transmitter component,
perturbations, internal errors of the transmission, or errors from upstream com-
ponents via the input port can lead to the feared event Erroneous transmitted
signal.

Component

Failure mode
(or func onal behaviour)

Input port

System event

Output port

Feared event

Local event OR gate

Fig. 2. Example of a safety component local analysis in Safety Architect

This local analysis is performed for single components of the system. How-
ever, given that this analysis is performed for each component in the system,
the potential of components triggering feared events are captured for the whole
system (i.e., the analysis span over components). Then, the enriched information
introduced through the system components architecture, can be used to gener-
ate a Failure Modes and Effects Analysis (FMEA); taking as input the local

1 Safety Architect: https://www.riskoversee.com/en/safety-architect-en/.

https://www.riskoversee.com/en/safety-architect-en/

Safety and Security Interference Analysis in the Design Stage 59

analyses of all system components, or, more importantly for this work, a global
system safety analysis such as, fault trees for feared events. Generated fault trees
for the whole system, gathering the local analyses, present even more challenges
for visualization and comprehension given their size and the technical details
included directly from the system design.

4 Enriching Safety-Security Co-analysis in the Design
Stage with Interference Analysis

We propose a reusable building block for safety-security co-engineering in
the design stage trying to integrate co-engineering into mainstream practices.
Figure 3 is a UML activity diagram representing the enriched safety-security
co-analysis approach that we propose. The parts tagged with 1 and 2 are
advanced but established techniques dealing separately with safety and security
aspects, and 3 is an advanced co-engineering technique. Then, 4 adds more
co-engineering support through advanced interference analysis.

The proposed method falls within the design stage of the development life-
cycle (see that the start and end UML symbols at Fig. 3 are within the design
stage). The main goal is to define the system architecture with the chosen tech-
nological solutions to cover the requirements. Then, several engineering domains
are involved such as hardware, software, safety, security or performance. These
specialist teams for each domain receive inputs including the results of the con-
cept phase: requirements and specification; and they are responsible for evolving
the initial system architecture under design. Each of these domains work with
their own processes, methods and tools, and progress in parallel during the devel-
opment life-cycle (e.g., 1 and 2).

As mentioned in Sect. 3.1, recent approaches propose to cross the result of
different engineering domains. Our goal is to reduce the number of iterations for
designing the system architecture that are usually required to tune the techni-
cal solutions and to find and solve potential trade-offs. The proposed method
is dedicated to the co-engineering between safety and security domains based
on a combined local analysis (3 and more explanations in Sect. 4.1). The co-
engineering interference analysis is supported by an automatic tagging method
applied on the fault trees and by high level reports that help to identify and set
the scope of the issues to be analysed (4 and details in Sect. 4.2). Co-engineering
meetings are triggered by issues or by an increase on the interference that should
be discussed. These moments in the product life cycle where experts from the
different disciplines met are called interaction points [25]. In case of trade-offs
and where design decisions need to be made, rationale representations [7,31]
(e.g., decision reports) are recommended.

The proposed method is associated with a fully integrated toolchain. Regard-
ing tool-support, all parts are supported by Safety Architect and Cyber Archi-
tect, and we add the interference analysis with a seamless integration of the
Concept-aware analysis library. The safety-security co-analysis and interference
analysis are explained in details in the following sub-sections.

60 J. Martinez et al.

Concept stage

Design stage

System
requirements

Safety
requirements

Security
requirements

System
architecture

Safety-Security combined analysis

Safety Engineering Security Engineering

Safety analysis:
Local analysis of each

component
(Safety Architect)

Security analysis:
Context, feared events,

threats, scenarios
(Cyber Architect)

Fault TreesSafety report

No No

Safety-Security co-analysis:
Extend local analysis of each

component with malicious events
(Safety Architect)

(Safety Security viewpoint)

Interference analysis through
fault tree events

(Concept-aware analysis tool)

Yes

No

Safety-Security interference
metrics and report

Co-Engineering mee ng

(Direct communica on)

Yes

Safety barriers

Yes

No

Safety-Security modeling

Interference analysis to iden fy
the need to trigger co-engineering mee ngs

Independent and focused analyses and modeling

YesYes

New safety barriers must be added?

A ack TreesSecurity report Security
measures

New security measures must be added?

Ra onale
representa on/
Decision report

Safety-Security
Fault Trees

Safety-Security
report

Safety-Security
barriers

A component need to be closely analysed
in terms of safety and security?

Requirements/specifica on or
Architecture should be changed?

1 2

3

4

Detected interference(s)
should be discussed?

Fig. 3. UML activity diagram representing the enriched safety-security co-analysis in
the design stage with interference analysis

Safety and Security Interference Analysis in the Design Stage 61

4.1 Safety-Security Co-analysis

As described in the background Sect. 3, the safety analysis can be decomposed
by local analysis of the system components to automatically generate fault trees,
FMEA or reports for the whole system. Security analysis has its own concepts
and methodology such as Ebios2010 [3] or ISO/IEC 27005 [1]. To propose a co-
engineering method, a shared conceptual framework should be defined. Figure 4
presents the mapping proposal between safety and security concepts enabling
the safety-security combined analysis (3 in Fig. 3).

Mode

Feared event

Cause

Feared event Feared event

Local event

System event

Failure mode Operating mode

Threat

SAFETY SECURITYPIVOT

Vulnerability

Threat source

TreatmentBarrier Countermeasure

Fig. 4. Mapping between safety and security concepts

Thanks to this mapping, it is possible to bring safety elements into security
analysis and vice-versa. Thus, in Safety Architect, a security threat scenario can
be displayed with the component local analysis syntax. Figure 5 shows an exam-
ple. In the Transmitter component, the external threat source of malevolent
people and internal vulnerabilities and threats can led to the feared event of
Spying.

Threat source

Threat

Vulnerability

Feared event

Operating mode

AND gate

Fig. 5. Example of a security component local analysis

Then a safety-security local analysis can be conducted on each of the com-
ponents that integrate safety and security concerns to represent their mutual
impact. For instance, if safety engineers require a new barrier to comply with
the safety goals, or conversely, the security engineers require a new countermea-
sure to reach the desired security level, an automatic analysis can be conducted

62 J. Martinez et al.

to identify if the addition of this element could impact or interfere on other
engineering domains.

In the first version of the earth observation case study, no security protection
was implemented as, traditionally, with the exception of commercial telecom-
munications missions, security mechanisms have not been widely employed on
civilian space missions. However, in recognition of increased threat, there has
been a steady migration towards the integration of security services and mech-
anisms [33]. Then, in the case study, security engineers require to integrate an
encryption module in the telecommunication space system. Thus, the previous
security analysis (Fig. 5) is updated with the proposal to add a Cipher to protect
the transmitted message as shown in Fig. 6.

Barrier/Countermeasure Failure Mode

Fig. 6. Example of a security barrier in a component local analysis

The safety-security view allows to overlay, in the same local analysis, the
safety and security one. Then, it is possible to analyse how the cipher module
impacts the safety-related elements. One of the problems common to all forms
of satellite encryption relates to signal degradation caused by different pertur-
bations: terrestrial weather, solar and cosmic radiation or many other forms of
electromagnetic noise. Depending on the encryption algorithm chosen, this situ-
ation can be particularly problematic because the entire encrypted message may
be lost if even a single bit of data is out of place [34]. Then, new propagation
links related to safety are added as part of the design of the solution to describe
that perturbations can conduct to the failure mode Absent (A) where the feared
event “Loss of the message” is associated. Thanks to the combined safety-security
local analysis, the safety analysis is updated with new links involving the cipher
and the perturbations, as depicted in Fig. 7. In this co-modelling step of the
component local analysis, the interference can be easily identified and treated,
however, we do not get system-level quantification of the interference.

4.2 Interference Analysis

From the combined safety-security local analyses, fault trees are automatically
generated. This is the input for 4 in Fig. 3. The combined fault trees describe
the combination of safety and security events (failure mode, vulnerability, threat)
that conduct to a safety or a security feared event. Figure 8 presents an illustrative
excerpt of a safety-security fault tree generated from the earth observation exam-
ple. The events are annotated with Safety and Security. However, this is not

Safety and Security Interference Analysis in the Design Stage 63

PackagedData_In Transmi�edSignal

New safety propaga�on caused by the integra�on of the security countermeasure

Func�onal behaviour

Fig. 7. Example of a safety-security component local analysis

visible in the tools. We added it for illustration purposes. In the example, because
of its small size, the identification of the interference of safety and security is easy
but in real projects it requires to deeply explore the generated safety-security trees
which can count hundreds of events making it time-consuming or impossible to
comprehend the safety-security interference.

AND

Loss_of_the_transmitted_message

. .

Perturbations [Cipher](EncryptedData)

{Space_UC}::Transmitter
[Cipher](Encrypted data)

{Transmitter}->[TransmitterFailure_-_Loss]

. {Space_UC}::Transmitter .

{Camera}->[CameraFailure_-_Loss]

. {Space_UC}::Camera .

{Data_packaging}->[DataPackagingFailure_-_Loss]

. {Main µC}::Data packaging .

Fig. 8. Excerpt of a safety-security tree example

In the use of the CyberArchitect and SafetyArchitect tools, events belong to
either safety or security concepts, we were able to export the fault tree models
using Open-PSA exchange format [22] with attributes to add this information for
each event. This information is seamlessly consumed by the tool named Concept-
aware which takes these attributes in the events and performs a propagation
mechanism of these tags. When an event is annotated with a tag (e.g., Safety),
this event is a Safety-related event but, at the same time, through the prop-
agation, all ancestors and descendants are events where this tag is potentially

64 J. Martinez et al.

involved. For example, Cipher,EncryptedData is a Security event and given
that Loss of the transmitted message is its ancestor, Security is involved
in Loss of transmitted message. This information of events and tags (direct
and propagated) are used to identify the interference. We automatically create a
formal context to perform a Formal Concept Analysis [10] (a wide-spread tech-
nique to create concept hierarchies and groups) where the objects are the events
and the properties are the tags. The Concept-aware tool uses the Galatea library
to perform this analysis [8]. The information of the obtained concept lattice [10]
is then used to create high-level reports and visualisations.

5

0

1

2

3

4

6

Fig. 9. Concept report and evolution report of the illustrative example

We provided a report consisting on a snapshot of the interference at a given
point in time, usually the latest version of the design, and another report on
the evolution of the interference given that the design evolve during the design
process and also during refinements caused by issues or improvements found in
later product life-cycle stages. Figure 9 shows an example of the reports gener-
ated from the illustrative example of the fault tree from Fig. 8. In the Concept

Safety and Security Interference Analysis in the Design Stage 65

size part on the left, we can observe how all events are involved in Safety and
two on Security. In the right side, we can observe the level of the interference of
Safety and Security in the system. In the evolution report we can compare the
increase of the interference from zero to two (the latter corresponds to the latest
version of the fault tree shown in Fig. 8).

5 Qualitative Evaluation and Discussion

Given the confidentiality of the case studies, we rely on a qualitative discussion
of the practitioners from the industrial companies involved in the pilots. To
show the characteristics of the pilots, Table 1 reports on the size of the modelled
sub-systems and Table 2 the size of the generated fault trees. As mentioned in
Sect. 3.2, we highlight the difficulty on visualising such large fault trees to infer
interferences between safety and security concerns. The following paragraphs are
based on feedback from the persons who applied the approach.

Table 1. Number of components (HW: Hardware, SW: Software) for the two pilots

Case study HW components SW components Total

Earth observation 2 8 10

Medical devices 17 30 47

Table 2. Elements in the fault trees (Tmtc: Tele-Metrics to TeleCommunication)

Feared event Events Gates Total

Earth observation Absent Tmtc out 24 67 91

Erroneous Tmtc out 17 49 66

Data spying 6 17 23

Medical devices Erroneous drug dose rate 43 188 231

Loss of integrity drug dose rate 2 16 18

Earth Observation Feedback: The high level reports on safety-security inter-
ference created through the proposed tool-supported process can help to make
“trade-offs” decisions at the design stage, specially in large projects, where inte-
gration of complex systems and the involvement of different teams make system
design decisions more difficult to be evaluated because of the lack of visibility of
the fine-grained details. Figure 10 shows the evolution report for a feared event.
We can observe how the design evolved taking only Safety into account and
then Security was integrated creating a significant interference. The interference
analysis report and the design should be analysed to check whether the elements

66 J. Martinez et al.

in the interference requires a decision, an action, or introduces a trade-off. As
mentioned before, the final objective of this interference analysis technique is to
potentially trigger a co-engineering meeting to discuss the implications of the
refinements of the design.

Fig. 10. Evolution report for a feared event of the earth observation case study

Medical Devices Feedback: The proposed co-engineering method is a struc-
tured method that can help refining the design and may led to improve signifi-
cantly the detection of interferences between safety and security requirements at
early stages of the design. This improvement will have a positive impact on the
reduction of cost and time required for designing a medical device. The cyber-
security is an increasingly important factor to consider for the design of medical
devices, so it is becoming highly regulated. Given the interlinks between safety
and security, that we already acknowledged in the product-life cycles of RGB
products [16], the proposed independent safety and security analyses followed
by the combined analysis, can provide evidences that issues related to this inter-
ference were considered, and eventually, discussed and treated. As a drawback,
RGB has experience on safety and security analysis using fault tree analysis,
but integrating these new methods and tools can represent a significant learning
curve.

6 Conclusion

We proposed a method for co-engineering in the design stage based on enriching
components’ local analyses and enabling interference analysis to avoid the later
identification of issues and conflicts between safety and security aspects. The
system-level reports on safety-security interference are possible through gener-
ated fault tree models. These high-level reports can help quantifying the inter-
ference at a given point in time as well as from the historic of changes. We used
our approach in two pilot projects. As further work, we aim to provide more
support for the interference analysis to rank or prioritize the interference events

Safety and Security Interference Analysis in the Design Stage 67

identified in fault tree analysis, and by supporting an integrated interference
analysis approach using other artefacts such as requirements.

Acknowledgments. The research leading to this paper has received funding from the
AQUAS project (H2020-ECSEL grant agreement 737475). The ECSEL Joint Undertak-
ing receives support from the European Union’s Horizon 2020 research and innovation
programme. It is a collaboration between Spain, France, United Kingdom, Austria,
Italy, Czech Republic and Germany.

References

1. ISO/IEC 27005:2018 - Information security risk management
2. Abdulkhaleq, A., Wagner, S., Lammering, D., Boehmert, H., Blueher, P.: Using

STPA in compliance with ISO 26262 for developing a safe architecture for fully
automated vehicles. In: Automotive-Safety and Security 2017, Stuttgart (2017)

3. ANSSI: Expression of Needs and Identification of Security Objectives - EBIOS
Security knowledge Base (2010). https://tinyurl.com/ebios2010

4. Apvrille, L., Li, L.W.: Harmonizing safety, security and performance requirements
in embedded systems. In: DATE 2019, pp. 1631–1636. IEEE (2019)

5. AQUAS project: D3: Combined Safety, Security and Performance Analysis and
Assessment Techniques (2019). https://aquas-project.eu/documents/

6. Avizienis, A., Laprie, J.C., Randell, B., Landwehr, C.: Basic concepts and taxon-
omy of dependable and secure computing. IEEE TDSC 1(1), 11–33 (2004)

7. Dutoit, A.H., McCall, R., Mistrik, I., Paech, B.: Rationale Management in Soft-
ware Engineering. Springer, Heidelberg (2006). https://doi.org/10.1007/978-3-
540-30998-7

8. Falleri, J.R.: Automatic Refactoring and Alignment of Class Models (Contributions
à l’IDM : reconstruction et alignement de modèles de classes). Ph.D. thesis (2009).
http://www.theses.fr/2009MON20103 and https://github.com/jrfaller/galatea

9. Fenelon, P., McDermid, J.A., Nicolson, M., Pumfrey, D.J.: Towards integrated
safety analysis and design. SIGAPP Appl. Comput. Rev. 2(1), 21–32 (1994)

10. Ganter, B., Wille, R., Franzke, C.: Formal Concept Analysis: Mathematical Foun-
dations, 1st edn. Springer, Heidelberg (1997). https://doi.org/10.1007/978-3-642-
59830-2

11. Gehlot, V., Nigro, C.: An introduction to systems modeling and simulation with
colored petri nets. In: Winter Simulation Conference, pp. 104–118 (2010)

12. ARC advisory group, Kaspersky, T.M.: The state of industrial cybersecurity
(2019). https://ics.kaspersky.com/media/2019 Kaspersky ARC ICS report.pdf

13. Gruber, T., Schmittner, C., Matschnig, M., Fischer, B.: Co-engineering-in-the-loop.
In: Gallina, B., Skavhaug, A., Schoitsch, E., Bitsch, F. (eds.) SAFECOMP 2018.
LNCS, vol. 11094, pp. 151–163. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-99229-7 14

14. IEC 61025: Fault Tree Analysis, 2nd edn. (2006)
15. Kaiser, B., et al.: Advances in component fault trees. In: ESREL (2018)
16. Larrucea, X., Nanclares, F., Santamaria, I., Nolasco, R.R.: Approach for enabling

security across PLC phases: an industrial use case. In: Larrucea, X., Santamaria, I.,
O’Connor, R.V., Messnarz, R. (eds.) EuroSPI 2018. CCIS, vol. 896, pp. 354–367.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-97925-0 29

https://tinyurl.com/ebios2010
https://aquas-project.eu/documents/
https://doi.org/10.1007/978-3-540-30998-7
https://doi.org/10.1007/978-3-540-30998-7
http://www.theses.fr/2009MON20103
https://github.com/jrfaller/galatea
https://doi.org/10.1007/978-3-642-59830-2
https://doi.org/10.1007/978-3-642-59830-2
https://ics.kaspersky.com/media/2019_Kaspersky_ARC_ICS_report.pdf
https://doi.org/10.1007/978-3-319-99229-7_14
https://doi.org/10.1007/978-3-319-99229-7_14
https://doi.org/10.1007/978-3-319-97925-0_29

68 J. Martinez et al.

17. Lee, W.S., Grosh, D.L., Tillman, F.A., Lie, C.H.: Fault tree analysis, methods, and
applications - a review. IEEE Trans. Reliab. R–34(3), 194–203 (1985)

18. Leveson, N.G.: Engineering a Safer World: Systems Thinking Applied to Safety.
The MIT Press, Cambridge (2012)

19. Maaskant, R.: Interactive visualization of fault trees (2016). https://fmt.ewi.
utwente.nl/media/169.pdf

20. Macher, G., Sporer, H., Berlach, R., Armengaud, E., Kreiner, C.: Sahara: a
security-aware hazard and risk analysis method. In: DATE (2015)

21. Netkachova, K., Bloomfield, R.E.: Security-informed safety. IEEE Comput. 49(6),
98–102 (2016)

22. Open-PSA: Fault tree exchange format. https://open-psa.github.io
23. Papadopoulos, Y., McDermid, J.A.: Hierarchically performed hazard origin and

propagation studies. In: Felici, M., Kanoun, K. (eds.) SAFECOMP 1999. LNCS,
vol. 1698, pp. 139–152. Springer, Heidelberg (1999). https://doi.org/10.1007/3-
540-48249-0 13

24. Paul, S., et al.: Recommendations for Security and Safety Co-engineering - Part
A. MERGE project (2016)

25. Pomante, L., et al.: The AQUAS ECSEL Project aggregated quality assurance
for systems: co-engineering inside and across the product life cycle. Microprocess.
Microsyst. 69, 54–67 (2019)

26. Ruijters, E., Stoelinga, M.: Fault tree analysis: a survey of the state-of-the-art in
modeling, analysis and tools. Comput. Sci. Rev. 15, 29–62 (2015)

27. Ruiz, A., Puelles, J., Martinez, J., Gruber, T., Matschnig, M., Fischer, B.: Prelimi-
nary safety-security co-engineering process in the industrial automation sector. In:
ERTS 2020, 10th European Congress on Embedded Real Time Systems (2020)

28. Sango, M., Godot, J., Gonzalez, A., Nolasco, R.R.: Model-based system, safety and
security co-engineering method and toolchain for medical devices design. In: 2019
Design of Medical Devices Conference (DMDC) (2019)

29. Schmittner, C., Gruber, T., Puschner, P., Schoitsch, E.: Security application of
failure mode and effect analysis (FMEA). In: Bondavalli, A., Di Giandomenico, F.
(eds.) SAFECOMP 2014. LNCS, vol. 8666, pp. 310–325. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-10506-2 21

30. Schneier, B.: Attack trees. Dr. Dobb’s J. 24(12), 21–29 (1999)
31. Shipman, F.M., McCall, R.J.: Integrating different perspectives on design rationale:

supporting the emergence of design rationale from design communication. AI Eng.
Des. Anal. Manuf. 11(2), 141–154 (1997)

32. Steiner, M.: Integrating Security Concerns into Safety Analysis of Embedded Sys-
tems Using Component Fault Trees. Ph.D. thesis, TU Kaiserslautern (2016)

33. The Consultative Committee for Space Data Systems: CCSDS Cryptographic
Algorithms, December 2014

34. Vacca, J.R.: Computer and Information Security Handbook, 3rd edn. Morgan
Kaufmann Publishers Inc., Burlington (2017)

35. Verma, S., Gruber, T., Schmittner, C., Puschner, P.: Combined approach for safety
and security. In: Romanovsky, A., Troubitsyna, E., Gashi, I., Schoitsch, E., Bitsch,
F. (eds.) SAFECOMP 2019. LNCS, vol. 11699, pp. 87–101. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-26250-1 7

36. Yi, S., Wang, H., Ma, Y., Xie, F., Zhang, P., Di, L.: A safety-security assessment
approach for communication-based train control (CBTC) systems based on the
extended fault tree. In: ICCCN (2018)

https://fmt.ewi.utwente.nl/media/169.pdf
https://fmt.ewi.utwente.nl/media/169.pdf
https://open-psa.github.io
https://doi.org/10.1007/3-540-48249-0_13
https://doi.org/10.1007/3-540-48249-0_13
https://doi.org/10.1007/978-3-319-10506-2_21
https://doi.org/10.1007/978-3-030-26250-1_7

Formalising the Impact of Security
Attacks on IoT Safety

Ehsan Poorhadi, Elena Troubitysna(B), and György Dan

KTH – Royal Institute of Technology, Stockholm, Sweden
{poorhadi,elenatro,gyuri}@kth.se

Abstract. Modern safety-critical systems become increasingly net-
worked and interconnected. Often the communication between the sys-
tem components utilises the protocols similar to the standard Internet
Protocol (IP). In particular, such protocols are used for communication
between smart sensors and controller. While offering advanced capabili-
ties such as remote diagnostics and maintenance, this also make safety-
critical systems susceptible to the attacks implementable against IP-
based systems. In this paper, we propose an approach to specifying a
generic IP-based networked control system and formalising its security
properties. We use the Event-B framework to formally analyse the impact
of security attacks on safety properties of the system.

Keywords: Formal modelling · Safety-critical systems · Security ·
Event-B · Refinement

1 Introduction

Modern safety-critical systems become increasingly open and interconnected. In
particular, the use of smart sensors and Internet of Things (IoT) enable the
development of systems with advanced capabilities including remote diagnos-
tics and proactive maintenance. Often their communication rely on standard
or adapted versions of the Internet Protocol (IP). Hence, such systems become
susceptible to the security attacks typical for the IP-based systems.

Networked control systems and IoT rely on remote sensing and actuation in
providing their functions, including the safety-critical ones. Therefore, to ensure
system dependability, we need to analyse the impact of security attacks on sys-
tem safety and devise the measures for protecting the system against malicious
faults.

In this paper, we propose a formal approach to modelling safety-critical net-
worked systems and analysing the impact of the security attacks on system
safety. We demonstrate how to rigorously specify the behaviour of a control sys-
tem relying on a generic IP protocol for the communication with remote sensors.

Supported by organization Trafikverket.

c© Springer Nature Switzerland AG 2020
A. Casimiro et al. (Eds.): SAFECOMP 2020 Workshops, LNCS 12235, pp. 69–81, 2020.
https://doi.org/10.1007/978-3-030-55583-2_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-55583-2_5&domain=pdf
https://doi.org/10.1007/978-3-030-55583-2_5

70 E. Poorhadi et al.

Actuator

Sensor

ControllerPhysical process

Fig. 1. Architecture of generic control system

The proposed approach supports a formal analysis of the impact of typical secu-
rity attacks on the data transmitted between components. We demonstrate how
to represent the results of a denial-of-service and tampering attacks by defining
the corresponding system-wide invariant properties. Such an approach allows us
to identify the impact that the deviations caused by the security attacks make
on system safety functions.

We rely on formal modelling in Event-B [1] to systematically specify and
verify both nominal and faulty system behaviour. Event-B is a rigorous approach
to correct-by-construction system development by refinement. While refining
the system model, we can gradually define the main stages of communication
between the system components and specify the effect of security attacks.

The stepwise Event-B refinement process allows us to systematically derive
the constraints and explicitly define the assumptions that should be fulfilled
to guarantee system safety in the presence of attacks. The Rodin platform [2]
provides an automated tool support for modelling and verification in Event-
B. It automatically generates the proof obligations required for demonstrating
correctness of specification and refinement and attempts to discharge them auto-
matically. The use of an automated tool support improves scalability of formal
verification and allows us to analyse the behaviour of complex networked sys-
tems. We believe that the proposed approach supports a systematic rigorous
analysis of the impact of security on system safety functions.

2 A Formal Analysis of Security Properties of Networked
Control Systems

2.1 Safety of a Generic Control System

In this paper, we focus on the analysis of a generic architecture of a networked
control system depicted in Fig. 1. The main goal of the system is to control a
certain physical process.

Without loss of generality, we assume that the state of the physical pro-
cess is represented by a certain parameter s. The value of s is measured by
the corresponding remote smart sensor. The sensor reading is transmitted by
the communication channel connecting the sensor and controller. Based on the
obtained sensor reading, the controller changes the state of the actuator, which,
in its turn, affects the state of the physical process. The behaviour of the system
is cyclic. At each cycle, the sensor performs the measurement of s and sends the

Formalising the Impact of Security Attacks on IoT Safety 71

corresponding data consisting of several packets to the controller. Based on the
received data, the controller assigns a new state of the actuator. In general, the
controller and actuator are also communicating over a network. However, since
the behaviour of sensor-controller and controller-actuator channels are similar,
we omit a detailed discussion of the latter.

Let us assume that the specification of the controller contains the operations
Setting Actuator high defined as follows

if input s ≤ low then actuator := increasing

and similarly Setting Actuator low:

if input s ≥ high then actuator := decreasing

These operations of the controller change the state of the actuator according
to the obtained data from the sensor. The operations are used to achieve the
desired functional behaviour of the control system.

An important non-functional requirement imposed on the system is to ensure
safety, i.e., guarantee that the value of the physical parameter s does not breach
certain safety threshold, i.e.,

s ∈ [low safe, high safe]

It is clear that the required safety property can be guaranteed only if input s
is marginally different from the actual physical value of s, i.e.,

|s − s input| ≤ δ

where δ < low − low safe (we assume that low − low safe = high safe−high)
Now let us investigate how the security attacks can violate these conditions.

2.2 Modelling Security Attacks and Defense Against Them

In our modelling, we aim at representing the essence of the IP communication
and defining the security properties as the invariant properties over the state
of the input and output buffers of the communicating parties. We analyse the
sensor-controller communication.

In the IP-based systems, the components communicate with each other by
exchanging packets, which are assembled into the messages by the receiver.
Hence, we model the communication between the sensor and controller as a
packet exchange. Lets assume that a message to be sent by a sensor consists of n
packets. We assume that a packet has three parts: an integer number designating
the sequence number, the header containing the required networked information,
and the payload. Formally, a packet is a triple:

(i, h, p) ∈ N × Header × Payload,

72 E. Poorhadi et al.

where Header and Payload are the abstract sets containing all possible values
in the header except the sequence number and payload. The following data
structure models a message:

message ∈ {1, ..., n} → Header × Payload. (1)

For simplicity, to analyse the payloads and headers separately, we define two
auxiliary functions message1 and message2 as follows:

message1 ∈ {1, ..., n} → Header, message2 ∈ {1, ..., n} → Payload,

∀ i. 1 ≤ i ≤ n ⇒ message(i) = (message1(i),message2(i)).

We assume that at each cycle the sensor and controller should first establish a
connection, i.e., open and close a session. After sending a message which initiates
a new session, the sensor waits for the acknowledgement from the controller.
Once the acknowledgement is received, the connection is established and the
sensor starts to send the packets with the measurement data. At the receiving
side, the controller stores the delivered packets in its input buffer. After the
predefined number of packets have been received, it assembles them into the
corresponding message by relying on the sequence number of each packet.

In our work, we focus on modelling an impact of security attacks on system
safety. Hence, we need to model how an attack affects the packets received by
the controller. Therefore, in general, the input buffer containing the packets to
be received by the controller can be different from the output buffer containing
the packets to be sent by the sensor. If a message can be represented by a total
function mapping the sequence number to the packet then the input buffer can
be represented by a similar but partial function.

The communication channel between the sensor and the controller is suscep-
tible to the attacks typical for the IP- based systems. Hence, the attacks can
affect both the availability and integrity of the inputs received by the controller.

Next we discuss two typical types of the attacks and formally define their
effect on the controller inputs.

Packet Tampering. As a result of man-in-the-middle attack, an attacker can
change the payload of some packets (the sequence number and header are
unchanged). If not detected, such an attack would result in the controller making
the decisions regarding the actuator state based on the incorrect input. Formally,
this threat can be formalized as follows:

message1(i) = delivery1(i) ∧ delivery2(i) 	= message2(i). (2)

where 1 ≤ i ≤ n and delivery represents the packet received by the controller.

DoS Attack. As a result of DoS attack, the receiver obtains a large number of
packets initiating a new connections. Eventually, it overflows the input buffer of
the controller and all the consequent packets are dropped. Formally, it can be
represented as follows:

message1(i) 	= delivery1(i)

Formalising the Impact of Security Attacks on IoT Safety 73

By defining such system-wide properties, we can formally specify the impact
of a security attack on the system. Hence, we obtain a formal ground for iden-
tifying the impact of the security control mechanisms as well as the effect of a
security attack on safety.

Let us specify a behaviour of such widely-used security control mechanisms as
a security gateway. We introduce the Detection function that maps each packet
to a boolean value:

Detection : {1, ..., n} × H × P → BOOL (3)

Mapping to the value TRUE denotes that an attack has been detected.
Therefore, we can ensure safety in the presence of an active attacker who only

tampers the payload of some packets if and only if we can prove the following
security properties.

Suppose that the security gateway receives the ith packet, then the following
property should hold.

detection(i, delivery1(i), delivery2(i)) = TRUE ⇔
message1(i) = deliveryr1(i) ∧ message2(i) 	= delivery2(i).

Obviously, once the attack is detected, the controller can no longer rely on
the data received from the sensor. Hence, to ensure that the system does not
breach safety when an attack is detected, the specification of the controller should
contain some fall-back operations. Such an operation can be, e.g., the use of the
last good value received by the controller. Such a mechanism would allow the
system to continue to function for a few cycles and might alleviate the impact of
a security attack in case it had a short duration. However, if the attack persists
the system should be shut down. Alternatively, the controller can directly put the
system in a safe but non-operational state upon detection of a security attack.

In the next section, we give a brief overview of our formal modelling frame-
work Event-B and then demonstrate how to formally specify a networked control
system and its security properties in Event-B.

3 Event-B

Event-B is a state-based formal approach that promotes the correct-by-con-
struction development paradigm and formal verification by theorem proving [1].
In Event-B, a system model is specified as an abstract state machine. An abstract
state machine encapsulates the model state, represented as a collection of vari-
ables, and defines operations on the state, i.e., it describes the dynamic behaviour
of a modelled system. The variables are strongly typed by the constraining predi-
cates that, together with other important system properties, are defined as model
invariants. Usually, a machine has an accompanying component, called a con-
text, which includes user-defined sets, constants and their properties given as a
list of model axioms.

74 E. Poorhadi et al.

The dynamic behaviour of the system is defined by a collection of atomic
events. Generally, an event has the following form:

e =̂ any a where Ge then Re end,

where e is the event’s name, a is the list of local variables, Ge is the event guard),
and Re is the event action.

The guard is a state predicate that defines the conditions under which
the action can be executed, i.e., when the event is enabled. If several events
are enabled at the same time, any of them can be chosen for execution non-
deterministically. If none of the events is enabled then the system deadlocks.
The occurrence of events represents the observable behaviour of the system.

In general, the action of an event is a parallel composition of deterministic
or non-deterministic assignments. In Event-B, this assignment is semantically
defined as the next-state relation Re. A deterministic assignment, x := E(x, y),
has the standard syntax and meaning. A non-deterministic assignment is denoted
either as x :∈ S, where S is a set of values, or x :| P (x, y, x′), where P is a
predicate relating initial values of x, y to some final value of x′. As a result
of such a non-deterministic assignment, x can get any value belonging to S or
according to P .

Event-B employs a top-down refinement-based approach to system develop-
ment. A development starts from an abstract specification that nondeterministi-
cally models most essential functional requirements. In a sequence of refinement
steps, we gradually reduce nondeterminism and introduce detailed design deci-
sions. The consistency of Event-B models, i.e., verification of well-formedness,
invariant preservation as well as correctness of refinement steps, is demonstrated
by proving the relevant verification theorems – proof obligations.

Proof obligations are expressed as logical sequences, ensuring that the trans-
formation is performed in a correctness-preserving way. For instance, invariant
preservation property for the given model invariant Ij is formulated as follows:

A(d, c), Ij(d, c, v), Ge(d, c, a, v), Re(d, c, a, v, v′) � Ij(d, c, v′) (INV)

where A are model axioms, Ge is the event guard, d are model sets, c are model
constants, a are the event local variables and v, v′ are the variable values before
and after the event execution.

Modelling, refinement and verification in Event-B is supported by an auto-
mated tool – Rodin platform [2]. The platform provides the designers with
an integrated modelling environment, supports automatic generation and prov-
ing of the necessary proof obligations. Moreover, various plug-ins created for
Rodin platform allow a modeller to transform models from one representation
to another. They also give access to various verification engines (theorem provers,
model checkers, SMT solvers).

Formalising the Impact of Security Attacks on IoT Safety 75

4 Formal Development of a Safety-Critical System with
Security Consideration

In this section, we demonstrate how to formally model a communication between
the sensor and controller in the presence of tampering and DoS attacks. We
create a formal model of a packet tampering and DoS attack and the introduce
a defense mechanism ensuring that safety can be maintained when the system
is attacked.

In our model, a control cycle starts from an attempt to establish a connection
between the sensor and the controller and finishes with the connection termi-
nation either with successfully completed transmission or aborted transmission
due to the detected security attack.

We start by explaining how the message transfer is modelled. Since we con-
sider an IP-based systems, to establish a connection, the sender – a smart sen-
sor – first sends a session invitation message to the receiver – the controller.
The controller replies with an acknowledgement and opens a connection. To
enable modelling of a security attack, we introduce a modelling abstraction – an
intermediate buffer. The intermediate buffer models a behaviour of a transmis-
sion channel. When the channel is not attacked then a packet transmitted by a
receiver is stored in the intermediate buffer unchanged and consequently copied
to the receiver’s input buffer.

When the system is under a tampering attack, the intermediate buffer allows
us to model an effect of an attack – the payload of the packet is changed in
the intermediate buffer. Consequently, the receiver obtains a packet, which is
different from the packet, which was sent by the sender. To model DoS attack,
we use the intermediate buffer to insert packets that have never been sent by
the sender. Let us observe, that such a modelling approach can also be easily
adapted to model a replay attack. We introduce a similar buffer to model a
communication in the reverse direction. The similar buffer is introduced to store
the acknowledgements sent by the controller to the sensor.

We model this cyclic behavior as a sequence of phases.

... MSG ⇒ Start ⇒ Established ⇒ CPLT or SecPro ⇒ MSG

In our abstract specification, outlined in Fig. 2 the sender and receiver share
the state space. Hence, the successful transmission of a packet can be represented
as a simple assignment of the buffer of the sender to the buffer of the receiver.

In the abstract specification, a variable process models the different phases
of communication.

In the phase MSG, the sensors generates a message message to be sent.
In phase Start, the transmission process begins. When process is equal to
Established, the sensor and controller are exchanging packets. In the abstract
specification, the controller receives the whole message at once. At the end of
this phase, process can be in phases CPLT if an attack is detected or in SecPro
otherwise.

76 E. Poorhadi et al.

Fig. 2. The structure of abstract specification

In this level, we can prove the following invariant to show the message is sent
successfully:

process = CPLT ⇒ AbsDelivery = message.

The first refinement step aims at decomposing a message into a number of
packets and modelling their step-by-step transmission. We introduce a the new
event receive, which models receiving a packet by the controller. The controller
keeps track of the received packets and after all the packets have been received,
composes them into a message. We define the following invariant to model the
fact that for a message to be successfully received all its packets should be
delivered successfully.

delivery = (1..(c − 1)) � message

where � stands for a domain restriction.
Our next refinement step focuses on separating state spaces of the sender –

the sensor – and receiver – the controller and introducing an intermediate buffer
between them to model the affect of an attack. However, at this level, the sensor
can still access the state of the controller, i.e., our security properties are yet not
defined in an entirely distributed way.

The intermediate buffer is modeled by two variables denoted by BufCounter
and BufData.

BufCounter ∈ (0..n) ∧ BufData ∈ Header × Payload.

We define a new event send to add (i.e., assign) a new packet to the intermediate
buffer. Correspondingly, we refine the event receive to model the fact that the

Formalising the Impact of Security Attacks on IoT Safety 77

packets received by the controller are transmitted via a communication channel,
i.e., are first stored (an modified, in case of an attack) in the intermediate buffer.

In the previous refinement step, the sensor could still read the variable of the
controller. In this specification, we remove this modelling abstraction. Namely,
we model the behaviour of the sensor waiting for an acknowledgment before
starting to send a new packet.

To model this, we define a variable SensorRcv of type Boolean. It specifies
the conditions defining whether the sensor should send a new packet, i.e., has
received the acknowledgement for the previously sent packet. We also introduce
the intermediate buffer AckCh for the controller-sensor communication and two
new events modelling sending and receiving the acknowledgments. When the
controller receives a packet, it changes the value of AckCh to indicate that the
previous packet has been delivered successfully.

At this point of the formal development, we have completed modeling the
communication between the sender – the smart sensor – and a receiver – the
controller. The system model is distributed, i.e., the state spaces of the commu-
nicating components are disjoint. All the invariant properties are defined over
the distributed state space of the system. Now we are ready to model an effect
of an attack on the system behaviour.

In the fourth refinement step, we model the attacker’s behavior and security
control mechanisms. To achieve this, we introduce the events tampering and
injection defined as follows:

tampering =̂
when process = Established ∧ BufCounter = c
then CBufData2 :∈ Payload.

injection =̂
when process = Established ∧ BufCounter = c
then BufData22 :∈ Payload ∧ BufData21 :∈ Header

∧ BufCounter2 := c.

The events become enabled after the sensor sends a new packet. The tam-
pering event results in changing the payload of the packet. The payload is
changed to any arbitrary value in the set Payload. The injection event results
in generating an new packet that is stored in the intermediate buffer.

To model a security control mechanism, we introduce a variable validity ∈
{Checked,Nchecked}. The variable is modified by the controller. It models the
outcome of integrity verification for the last packet stored in delivery, i.e., rep-
resent the fact that the packet has either passed the security verification or not.
Whenever a new packet arrives to the controller side, the controller verifies its
integrity, which is abstractly modelled by an event gateway, which assigns a
new value to the variable validity. If the packet is valid then the variable validity
receives the value Checked and the controller sends the corresponding acknowl-
edgement to the sensor. If the verification fails then the system terminates the
connection and process becomes SecPro.

78 E. Poorhadi et al.

Now we can prove the general security property defined in Sect. 2.

validity = Checked ⇒
detection(c − 1, delivery1(c − 1), delivery2(c − 1)) = TRUE ⇔
message1(c − 1) = delivery1(c − 1) ∧ message2(c − 1) 	= delivery2(c − 1).

The introduction of the security protection mechanism – the secure gate-
way – allows us to ensure that the tampered or injected messages would not
be accepted by the controller as an input. Hence, we can guarantee that the
controller input would remain sufficiently close to the real physical value of the
controlled parameter. Otherwise, if the secure gateway does establish message
validity, i.e., the message is suspected to be tampered or injected, the controller
can rely on its own fault tolerance mechanisms to ensure safety.

4.1 Discussion of Development

While modelling, we have adopted an implicit discrete model of time. Namely,
we define the abstract function representing the change in the dynamics of the
controlled process as well as the constraints relating the components behaviour in
the successive iterations. Such an approach is based on our previous experience in
modelling control systems, e.g., [11]. Such an approach allows us to define system
invariant properties in relation to a particular phase of control loop execution
or a communication progress. An alternative way to approach the problem of
modelling time could be to rely on real-time extension of Event-B [17]. In such
a way, we could also express the time-related properties of data transmission as
well as define time explicitly the time-stamps of the packets.

Another abstraction, in which we relied in our modelling, is a representa-
tion of a networked architecture. In the proposed chain of refinements, we have
gradually moved from modelling a centralised architecture to separating state
space of communicating components. However, formally, the behaviour of the
components is modelled within a single monolithic specification. To address this
issue and explicitly represent each component separately, we can rely on the
modularisation approach [12–14], which supports compositional reasoning and
specification patterns [15].

5 Related Work and Conclusions

The problem of safety and security interactions has recently received a significant
research attention. It has been recognised that there is a clear need for the
approaches facilitating an integrated analysis of safety and security [4,8,9].

This issue has been addressed by several techniques demonstrating how to
adapt traditional safety techniques like FMECA and fault trees to perform a
security-informed safety analysis [5,8]. The techniques aim at providing the engi-
neers with a structured way to discover and analyse security vulnerabilities that
have safety implications. Since the use of such techniques facilitate a system-
atic analysis of failure modes and results in discovering important safety and

Formalising the Impact of Security Attacks on IoT Safety 79

security requirements, the proposed approaches provide a valuable input for our
modelling.

There are several works that address formal analysis of safety and security
requirements interactions [6,10]. Majority of these works demonstrate how to
find conflicts between them. A typical scenario used to demonstrate this is a
contradiction between the access control rules and safety measure. In our app-
roach, we treat the problem of safety-security interplay at a more detailed level.
Namely, we model the data transmission in an IP-based system and demonstrate
how a security attack affects system behaviour on the level of packet transmission
and as a result can jeopardise safety.

The distributed MILS approach [3,7] employs a number of advanced mod-
elling techniques to create a platform for a formal architectural analysis of safety
and security. The approach supports a powerful analysis of the properties of the
data flow using model checking and facilitates derivation of security contracts.
Since our approach enables incremental construction of complex distributed
architectures, it would be interesting to combine these techniques to support
an integrated safety-security analysis throughout the entire formal model-based
system development.

An explicit reasoning about communication between decentralised compo-
nents in Event-B has been discussed in [16]. In the similar way, the behaviour of
components and data is represented via the corresponding buffers. However, this
work does not consider an effect of security attacks on the transferred packets
and focuses on another communication protocol.

A formal development of safety-security interplay has been carried out in a
number of recent works [18–21]. In these approaches, a more high-level analysis of
security impact has been undertaken. These works focus on modelling data-flow
related properties as well as integration of different safety analysis techniques
to identify the impact of security attacks on safety. Despite of sharing many
common modelling solutions, in this paper, we focused on a different aspect
– modelling of an IP-based system and analysis of the impact of the typical
IP-related attacks on safety.

In this paper, we have presented a formal approach to modelling a security
attacks in an IP-based system and their impact of safety. Our approach considers
the detailed data transmission process between the sensor and the controller. It
allowed us to explicitly model the actions of the attackers and their impact on
the transmitted messages. As a result, we were able to formally demonstrate
that an introduction of a security control mechanism allows us to guarantee
preservation of safety.

As a future work, we are planning to continue to study different types of
attacks at a detailed level and validate our approach by large-scale case studies.

References

1. Abrial, J.-R.: Modeling in Event-B. Cambridge University Press, Cambridge (2010)
2. Rodin: Event-B platform. http://www.event-b.org

http://www.event-b.org

80 E. Poorhadi et al.

3. Bytschkow, D., Quilbeuf, J., Igna, G., Ruess, H.: Distributed MILS architectural
approach for secure smart grids. In: Cuellar, J. (ed.) SmartGridSec 2014. LNCS,
vol. 8448, pp. 16–29. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
10329-7 2

4. Young, W., Leveson, N.G.: An integrated approach to safety and security based
on systems theory. Commun. ACM 57—-2, 31–35 (2014)

5. Fovino, I.N., Masera, M., De Cian, A.: Integrating cyber attacks within fault trees.
Rel. Eng. Syst. Saf. 94—-9, 1394–1402 (2009)

6. Kriaa, S., Bouissou, M., Colin, F., Halgand, Y., Pietre-Cambacedes, L.: Safety
and security interactions modeling using the BDMP formalism: case study of a
pipeline. In: Bondavalli, A., Di Giandomenico, F. (eds.) SAFECOMP 2014. LNCS,
vol. 8666, pp. 326–341. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
10506-2 22

7. Cimatti, A., DeLong, R., Marcantonio, D., Tonetta, S.: Combining MILS with
contract-based design for safety and security requirements. In: Koornneef, F., van
Gulijk, C. (eds.) SAFECOMP 2015. LNCS, vol. 9338, pp. 264–276. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-24249-1 23

8. Schmittner, C., Gruber, T., Puschner, P., Schoitsch, E.: Security application of
failure mode and effect analysis (FMEA). In: Bondavalli, A., Di Giandomenico, F.
(eds.) SAFECOMP 2014. LNCS, vol. 8666, pp. 310–325. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-10506-2 21

9. Steiner, M., Liggesmeyer, P.: Combination of safety and security analysis - finding
security problems that threaten the safety of a system. In: SAFECOMP 2013 -
Workshop DECS-2013, HAL (2013)

10. Troubitsyna, E., Laibinis, L., Pereverzeva, I., Kuismin, T., Ilic, D., Latvala, T.:
Towards security-explicit formal modelling of safety-critical systems. In: Skavhaug,
A., Guiochet, J., Bitsch, F. (eds.) SAFECOMP 2016. LNCS, vol. 9922, pp. 213–
225. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45477-1 17

11. Laibinis, L., Troubitsyna, E.: Refinement of fault tolerant control systems in B.
In: Heisel, M., Liggesmeyer, P., Wittmann, S. (eds.) SAFECOMP 2004. LNCS,
vol. 3219, pp. 254–268. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-30138-7 22

12. Iliasov, A., et al.: Supporting reuse in event B development: modularisation app-
roach. In: Frappier, M., Glässer, U., Khurshid, S., Laleau, R., Reeves, S. (eds.)
ABZ 2010. LNCS, vol. 5977, pp. 174–188. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-11811-1 14

13. Iliasov, A., et al.: Developing mode-rich satellite software by refinement in Event-B.
Sci. Comput. Program. 18(7), 884–905 (2013)

14. Iliasov, A., Troubitsyna, E., Laibinis, L., Romanovsky, A., Varpaaniemi, K.,
Väisänen, P., Ilic, D., Latvala, T.: Verifying mode consistency for on-board satellite
software. In: Schoitsch, E. (ed.) SAFECOMP 2010. LNCS, vol. 6351, pp. 126–141.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15651-9 10

15. Iliasov, A., Troubitsyna, E., Laibinis, L., Romanovsky, A.: Patterns for refine-
ment automation. In: de Boer, F.S., Bonsangue, M.M., Hallerstede, S., Leuschel,
M. (eds.) FMCO 2009. LNCS, vol. 6286, pp. 70–88. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-17071-3 4

16. Iliasov, A., Laibinis, L., Troubitsyna, E., Romanovsky, A.: Formal derivation of a
distributed program in event B. In: Qin, S., Qiu, Z. (eds.) ICFEM 2011. LNCS,
vol. 6991, pp. 420–436. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-24559-6 29

https://doi.org/10.1007/978-3-319-10329-7_2
https://doi.org/10.1007/978-3-319-10329-7_2
https://doi.org/10.1007/978-3-319-10506-2_22
https://doi.org/10.1007/978-3-319-10506-2_22
https://doi.org/10.1007/978-3-319-24249-1_23
https://doi.org/10.1007/978-3-319-10506-2_21
https://doi.org/10.1007/978-3-319-45477-1_17
https://doi.org/10.1007/978-3-540-30138-7_22
https://doi.org/10.1007/978-3-540-30138-7_22
https://doi.org/10.1007/978-3-642-11811-1_14
https://doi.org/10.1007/978-3-642-11811-1_14
https://doi.org/10.1007/978-3-642-15651-9_10
https://doi.org/10.1007/978-3-642-17071-3_4
https://doi.org/10.1007/978-3-642-24559-6_29
https://doi.org/10.1007/978-3-642-24559-6_29

Formalising the Impact of Security Attacks on IoT Safety 81

17. Iliasov, A., Romanovsky, A., Laibinis, L., Troubitsyna, E., Latvala, T.: Augmenting
Event-B modelling with real-time verification. In: FormSERA 2012, pp. 51–57.
IEEE (2012)

18. Vistbakka, I., Troubitsyna, E., Kuismin, T., Latvala, T.: Co-engineering safety
and security in industrial control systems: a formal outlook. In: Romanovsky, A.,
Troubitsyna, E.A. (eds.) SERENE 2017. LNCS, vol. 10479, pp. 96–114. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-65948-0 7

19. Vistbakka, I., Troubitsyna, E.: Towards a formal approach to analysing security of
safety-critical systems. In: EDCC 2018, pp. 182–189. IEEE (2018)

20. Troubitsyna, E., Vistbakka, I.: Deriving and formalising safety and security require-
ments for control systems. In: Gallina, B., Skavhaug, A., Bitsch, F. (eds.) SAFE-
COMP 2018. LNCS, vol. 11093, pp. 107–122. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-99130-6 8

21. Vistbakka, I., Troubitsyna, E.: Pattern-based formal approach to analyse security
and safety of control systems. In: Papadopoulos, Y., Aslansefat, K., Katsaros, P.,
Bozzano, M. (eds.) IMBSA 2019. LNCS, vol. 11842, pp. 363–378. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-32872-6 24

https://doi.org/10.1007/978-3-319-65948-0_7
https://doi.org/10.1007/978-3-319-99130-6_8
https://doi.org/10.1007/978-3-319-99130-6_8
https://doi.org/10.1007/978-3-030-32872-6_24

Assurance Case Patterns
for Cyber-Physical Systems with Deep

Neural Networks

Ramneet Kaur(B), Radoslav Ivanov, Matthew Cleaveland, Oleg Sokolsky,
and Insup Lee

PRECISE Center, University of Pennsylvania, Philadelphia, USA
{ramneetk,rivanov,mcleav,sokolsky,lee}@seas.upenn.edu

Abstract. With the increasing use of deep neural networks (DNNs) in
the safety-critical cyber-physical systems (CPS), such as autonomous
vehicles, providing guarantees about the safety properties of these sys-
tems becomes ever more important. Tools for reasoning about the safety
of DNN-based systems have started to emerge. In this paper, we show
that assurance cases can be used to argue about the safety of CPS with
DNNs by proposing assurance case patterns that are amenable to the
existing evidence generation tools for these systems. We use case studies
of two different autonomous driving scenarios to illustrate the use of the
proposed patterns for the construction of these assurance cases.

Keywords: DNNs · Safety-critical CPS · Safety properties ·
Assurance case

1 Introduction

With recent advances in machine learning, there is much interest in using deep
neural networks in safety-critical cyber-physical systems (CPS), such as self-
driving vehicles [5], aircraft collision avoidance [22], and medical diagnoses [10].
The black-box nature of neural networks (NNs) makes it difficult to interpret
their behavior on perturbed or even unseen inputs and therefore makes it chal-
lenging to provide safety guarantees about systems with NNs. To enable the use
of NNs in safety-critical CPS, it is therefore important to convincingly demon-
strate that CPS with NNs (CPSNN) are acceptably safe to use.

One way to argue about the safety of CPSNN is through assurance cases [1].
Systems developed for medical, transportation, infrastructure applications, etc.
that significantly impact life, property, or environment need to get the approval
of an independent entity such as a regulatory body. This approval process can
be viewed as the manufacturer making the case that their system meets the

This work is supported in part by the Air Force Research Laboratory and the Defense
Advanced Research Projects Agency as part of the Assured Autonomy program under
Contract No. FA8750-18-C-0090.

c© Springer Nature Switzerland AG 2020
A. Casimiro et al. (Eds.): SAFECOMP 2020 Workshops, LNCS 12235, pp. 82–97, 2020.
https://doi.org/10.1007/978-3-030-55583-2_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-55583-2_6&domain=pdf
https://doi.org/10.1007/978-3-030-55583-2_6

Assurance Case Patterns for CPSNN 83

criteria for certification and the regulatory body assessing this case to arrive at a
certification decision. An assurance case provides a structure for making this case
by using arguments supported by evidence to justify the claim in a hierarchical
fashion. This hierarchical structure of the assurance case with explicit claims,
arguments, and evidence has favored its use in the certification process [30]. For
instance, the Food and Drug Administration (FDA) changed its approval process
to enable the use of assurance cases for demonstrating the safety of insulin
pumps [9] and the Federal Aviation Administration (FAA) accepts assurance
cases to approve the safety of aviation systems [11].

Assurance cases have been used to assure the safety of the traditional CPS
(CPS without NN components) in the past [3,12,26,35]. These cases analyze
the system’s specification by making use of the analytical techniques (such as
proofs [35]) build on model-based development [3,35], hazard mitigation [12] or
both [26]. The black-box nature of NNs makes it difficult to apply these analytical
techniques for reasoning about CPSNN and thus structuring their assurance case
in the way they are done for the traditional CPS.

Prior work has been done on proposing assurance case patterns for the safety-
critical CPSNN [7,25,28]. Some of these patterns argue about the safe function-
ality [25] or performance [28] of machine learning components in the CPS. Oth-
ers [7] argue about the acceptance of residual risk in these systems due to the
functional insufficiency of machine learning. All of these patterns are specific to
the assurance of the functional requirements (or features) of machine learning
components in the CPS and do not provide assurance about specifications of the
entire system. Also, the challenge of coming up with a provably exhaustive list
of requirements for machine learning components in CPSNN makes it difficult
to extend these patterns for the assurance of CPSNN.

We propose assurance case patterns for specifications of the closed-loop
behavior of CPSNN. The main challenge in building an assurance case for
CPSNN is the black-box nature of NNs, which makes it difficult to generate
the evidence required for the assurance of CPSNN. An assurance case built for
CPSNN should be structured in a way that is amenable to generating evidence
about the NN for the assurance of the larger system.

A feasible approach to generating evidence for the assurance of CPSNN is to
make use of the computational tools that have been developed recently to pro-
vide formal guarantees about these systems. These tools can be broadly classified
into two categories. The first analyzes the NN separately from the rest of the sys-
tem. Existing tools analyzing the behavior of NNs characterize the correctness of
these networks based on robustness [6,24], safety guarantees [19,23] or proper-
ties [15,17] of these networks. These tools can generate evidence for NN-specific,
component-level claims in the assurance case of CPSNN. The second analyzes
the closed-loop behavior of CPSNN for both verification [21,32] and falsifica-
tion [14,33]. These tools can generate evidence for system-level claims made in
assurance cases for CPSNN. This classification of the evidence generation tools
for the assurance of CPSNN into two categories motivates us to propose two
assurance case patterns for CPSNN, one for each category.

84 R. Kaur et al.

The first pattern is based on an assume/guarantee argument. The system
makes an assumption about some property of the NN. This assumption leaves
us with a much simpler model of the CPSNN to analyze, allowing us to scale
the existing verification [8] or falsification [13,16] techniques for the CPS to the
CPSNN. Arguments to guarantee the assumed property of the NN need to be
made and justified separately in this pattern. These guarantees are composed
with the claim about the system with the assumed property of the NN to provide
assurance about the CPSNN. Tools analyzing the behavior of NNs can be used
to generate evidence for the NN-specific claims made in this pattern. The second
pattern is based on a holistic approach to the assurance of CPSNN. This app-
roach relies on the analysis of the closed-loop behavior of the system and does
not require a separate specification for the NN. Tools analyzing the closed-loop
behavior of the CPSNN can be used to generate system-level evidence in this
pattern.

To evaluate the applicability of the proposed patterns, we consider two case
studies. The first case study is about the safety specification of the closed-loop
system from [20]. It consists of an NN-controlled F1/10 car [2] equipped with
LiDAR, running in a known hallway environment. We make use of the holistic
pattern to provide assurance about this system. The second case study is about
the safety specification of the closed-loop system from [14]. It consists of an
autonomous car with a perception-based NN and an emergency braking system
(AEBS) [31], driving on a highway with a stationary car in front of it. We make
use of the assume/guarantee pattern to provide assurance about this system.

Our contributions in this paper can be summarized as follows. First, we
propose two assurance case patterns based on the existing tools for generating
evidence for specifications of the closed-loop behavior of the CPSNN. Second,
we illustrate the applicability of the proposed patterns with the help of two case
studies. Third, we discuss directions for the development of new tools for the
assurance of CPSNN with the help of undeveloped claims in the case studies.

2 Background

Here, we first define the assurance case and its goal structuring notation. We then
describe the model-based assurance approach of the traditional CPS. Finally, we
classify the existing tools that can be used to generate evidence in the assurance
case of CPSNN into two categories with examples for each category.

2.1 Assurance Case and GSN

Assurance cases provide a structure for arguing about the safety of a system by
making arguments that are supported by evidence to justify the safety claims
about the system in a hierarchical fashion. It is defined as a “reasoned and
compelling argument, supported by a body of evidence, that a system, service
or organization will operate as intended for a defined application in a defined
environment” [18].

Assurance Case Patterns for CPSNN 85

Fig. 1. An example of the hierarchical structure of assurance case made in GSN

Fig. 2. Model-based approach for the assurance of CPS (left) and CPSNN (right)

Goal Structuring Notation (GSN) [18] is the most widely used graphical
notation for representing assurance cases. The principle symbols of GSN are
rectangles, parallelograms, circles, ovals with an ‘A’ at the bottom, rounded
rectangles and rectangles with a diamond at the bottom representing claim (or
goal), argument (or strategy), evidence (or solution), assumption, context and
undeveloped claim in the assurance case, respectively. An example of the hier-
archical structure of the assurance case made in GSN is shown in Fig. 1.

Claims, arguments and evidence (CAE) is another framework used to repre-
sent assurance cases. CAE leaves arguments as black boxes, while GSN makes
them explicit through strategies. We were interested in the details of arguments
and that is why we chose GSN over CAE.

2.2 Model-Based Approach for the Assurance of Traditional CPS

The model-based approach of building an assurance case targets the model-based
development process of real-world systems [3]. This approach has been used for
building assurance cases for the traditional CPS in the past [3,35]. The use of the
model-based approach for providing assurance about CPS is motivated by the
fact that most of the existing evidence for these systems is based on the models
of these systems [27]. Verification tools such as Flow* [8] and falsification tools
such as Breach [13] and S-TALIRO [16] are some examples of the existing tools
that can be used to generate evidence for the model of the traditional CPS.

The structure of the assurance case for CPS based on the model-based argu-
ment was proposed in [35]. This structure is shown in the Fig. 2. It reflects the
fact that the model-based evidence for a real-system is only as useful as the

86 R. Kaur et al.

Fig. 3. Closed-loop of a traditional CPS (left) and its corresponding model (right)

model that is used to represent the system. Thus, in addition to the claim about
the model of the CPS (G2), another claim about the validity of the model with
respect to the real CPS (G3) needs to be made and justified.

2.3 Existing Tool-Based Evidence for the Assurance of CPSNN

The uninterpretable nature of NNs restricts the use of the traditional analytical
methods to provide guarantees about CPSNN [25]. This motivates the use of
computational tools based on techniques such as verification, falsification, and
optimization to generate evidence about these systems. Existing tools based on
these techniques that can be utilized to generate evidence for CPSNN can be
classified into the following two categories.

Tools Analyzing the Component-Level Behavior of CPSNN. Work has
been done in developing tools that analyze the behavior of NNs. These tools can
be used to generate evidence for the NN-specific component-level claims made
in the assurance case for CPSNN. Some examples of these tools are as follows.
Verification tools such as Reluplex [23] and DLV(Deep Learning Verification) [19]
can be used to provide evidence for the verification of the safety properties of
NNs. Guarantees about the robustness of NNs can be generated with the help
of the tools such as CNN-Cert [6] and POPQORN [24]. Other tools such as
Sherlock [15] and LipSDP [17] can be used to assure tight bounds on the output
set and global Lipschitz constant for NNs, respectively.

Tools Analyzing the System-Level Behavior of CPSNN. Verification
tools for properties of the CPSNN with NN controllers have been developed
recently [21,32]. System-level verification has been so far applied to only these
types of CPSNN. CPSNN with perception-based NNs do not lend themselves to
these verification techniques due to the high dimensionality of their input space.
This has led to the development of falsification tools [14,33] for analyzing the
closed-loop of CPSNN with perception-based NNs. The absence of counterexam-
ples from these falsification techniques provides evidence of the correct behavior
of CPSNN with respect to its specification.

3 Assurance Case Patterns for CPSNN

We propose two assurance case patterns for the safety specifications of CPSNN.
These patterns are built on the model-based approach for assurance.

Assurance Case Patterns for CPSNN 87

Fig. 4. An example of the closed-loop of a CPSNN (left) and the corresponding model
of its CPSNN/NN composed with the NN (right)

Fig. 5. Modular (left) and Holistic (right) patterns for the assurance of G2 in the
model-based approach for CPSNN

Figure 3 shows the closed-loop structure of a traditional CPS and its corre-
sponding model used in the model-based assurance approach for CPS [35]. The
plant in this system is a physical object such as a vehicle or robot. Sensors collect
information about the state of the plant and objects in the plant’s environment.
This sensory information is used by a controller to produce control actions, which
are actuated by actuators on the plant. The model of a traditional CPS is the
composition of the models of the individual components of the real-system.

The proposed patterns reflect the model-based assurance approach of the
traditional CPS by modeling the sub-system of a traditional CPS present in a
CPSNN. Figure 4 shows an example of the closed-loop structure of a CPSNN,
where the controller in the traditional CPS is replaced by an NN in the CPSNN.
We call a CPSNN without its NN components a CPSNN/NN. The model of a
CPSNN/NN is equivalent to the model of the sub-system of CPS present in the
CPSNN. This model is composed with the NN to close the loop in the system.

The Fig. 2 shows the model-based approach for the assurance of CPSNN.
Assurance about the CPSNN is provided on the model of the CPSNN/NN com-
posed together with the NN component via claim G2. Since assurance about
CPSNN is provided on a system that approximates (via model) the CPSNN/NN

88 R. Kaur et al.

in the CPSNN, an additional claim, G3, is made about the validity of this approx-
imation.

The proposed patterns are amenable to the existing evidence generation com-
putational tools for the assurance of the claim G2 in the model-based assurance
approach for CPSNN. These patterns differ from each other in their approach
to generate this evidence. The first pattern analyzes the NN separately from
the model of the CPSNN/NN for the assurance of G2 and makes use of the
component-level tools for the assurance of CPSNN. The second pattern ana-
lyzes the closed-loop behavior of the CPSNN/NN model composed with the NN
and does not require a separate claim about the NN in the system. This pat-
tern makes use of the system-level tools for the assurance of CPSNN. Next, we
describe the two assurance case patterns as shown in Fig. 5, in detail.

3.1 Pattern 1: Modular Pattern
The first pattern is based on the assume/guarantee approach for providing assur-
ance about the claim G2 in the model-based assurance approach for CPSNN.
Here, an abstraction of the NN, NNabs, satisfying a property ϕ is considered.
The assurance about the claim made in G2 is provided on the closed-loop of the
model of CPSNN/NN composed with NNabs, via claim G5 in this pattern. This
abstraction of the NN leaves us with a much simpler closed-loop model of the
CPSNN/NN composed with NNabs to analyze. This analysis can be performed
with the existing verification or falsification techniques for the traditional CPS.

Since G2 is assured on the model of CPSNN/NN composed with an abstrac-
tion of the NN satisfying ϕ, an additional claim, G4, about the satisfaction of ϕ
by the NN needs to be made separately in this pattern. Tools analyzing NNs in
terms of the safety guarantees [19,23], robustness [6,24] or properties [15,17] can
be used to provide evidence for the guaranteed property of the NN. We call this
pattern the modular pattern because the system-level assurance is generated by
composing assurance claims about the modules, CPSNN/NN and NN, of the
system in this pattern.

An example of instantiation of the modular pattern is the assurance about the
safe reachable set of states of a NN controlled linear time-invariant dynamical
plant under bounded perturbations. Bounded models for both the plant and
measurements comprise the model of the CPSNN/NN in this system. This model
composed with an NNabs can be used to argue about the reachable (and hence
safe) state by the plant with the help of the evidence of Theorem 1 from [34].
NNabs is the abstraction of the NN satisfying the property of a bounded output
for a given set of bounded input. This property of the NN can be verified by the
existing tools [15,17] for providing NN specific evidence in this pattern.

3.2 Pattern 2: Holistic Pattern

The second assurance case pattern for the CPSNN is based on analyzing the
whole system without decomposing it down into its modules. Therefore, we call
this pattern as the holistic pattern. The evidence for the claim G2 about the
closed-loop behavior of the model of CPSNN/NN composed with NN is generated
by the existing system-level tools for CPSNN [14,21,32,33] in this pattern.

Assurance Case Patterns for CPSNN 89

Fig. 6. Closed-loop system, S1, of the CPSNN considered for the case study of the
holistic pattern (left) and the corresponding model of its CPSNN/NN composed with
the NN-controller in the system (right) [20]

An example of instantiation of this pattern is the assurance about the safe
distance between two cars, where the follower car is equipped with an NN-based
adaptive cruise control and a radar to measure the distance to the lead car. The
dynamics model for the two cars traveling on a straight road together with the
measurement model of the radar comprises the model of the CPSNN/NN, which
when composed with the NN-controller can be used to argue about the safety of
the system with the help of evidence generated by the verification tool from [32].

4 Case Studies

We provide case studies to illustrate the applicability of the proposed patterns.

4.1 Case Study for the Holistic Pattern

System Description and the Model of Its CPSNN/NN Composed with
the NN in the System. We consider a CPS with an NN-controller from [20] for
this case study. This system, S1, is shown in Fig. 6. It consists of an autonomous
F1/10 car [2] running at a constant throttle and low speed ([0, 5] m/s) in an
empty hallway. The car is equipped with a LiDAR to provide distance mea-
surements from the hallway walls. These distance measurements are fed into an
NN-controller which gives front steering commands to the car, thereby control-
ling the heading of the car. The NN is a small fully connected network with
smooth activation functions. The safety property of interest for S1 is that the
car navigates the hallway without hitting its walls.

The model of the CPSNN/NN in S1 composed with the NN-controller in
the system is shown in Fig. 6. It contains three main components. First, the
behavior of the car is captured by a continuous-time dynamical system that uses
a control signal generated by the NN-controller as input and contains differential
equations that represent the evolution of the system state. A Kinematic bicycle
model, which is known to work well for front-steering cars at low speeds [29], is

90 R. Kaur et al.

Fig. 7. Hallway divided into three regions depending on number of walls reachable by
LiDAR [20]

used to represent the dynamics of the F1/10 car by the following equations:

ẋ = vcos(θ + β), ẏ = vsin(θ + β), v̇ = −cav + cacm(u − ch)

θ̇ =
V cos(β)
lf + lr

tan(δ), β = tan−1

(
lrtan(δ)
lf + lr

)
,

(1)

where v, θ, β and (x and y) is the car’s linear velocity, orientation, slip angle
and position respectively. u is the throttle input, δ is the heading input. ca is an
acceleration constant, cm is a motor constant, ch is a hysteresis constant. lf and
lr are the distances from the car’s centroid to the front and rear, respectively.

Second, the observation model captures how measurements supplied by the
LiDAR are produced, based on the heading of the car relative to the walls and
its position in the hallway. The behavior of the LiDAR at turns is different from
the straight sections of the hallway. To accurately capture the dynamics of mea-
surements, the hallway is therefore divided into three regions and a measurement
model of LiDAR is provided for each region, as shown in Fig. 7. The measure-
ment model of the LiDAR scan with 1081 rays for Region 2 (other regions are
special case of region 2) is as described by the following equations:

yi
k =

⎧⎪⎪⎨
⎪⎪⎩

drk/cos(90 + θk + αi) if θk + αi ≤ θr
dbk/cos(180 + θk + αi) if θr < θk + αi ≤ −90
dtk/cos(θk + αi) if − 90 < θk + αi ≤ θl
dlk/cos(90 − θk − αi) if θl < θk + αi,

(2)

where k is the sampling step, dtk, d
b
k, d

l
k, d

r
k are distances to the four walls.

α1, .., α1081 are the relative angles for rays in the LiDAR scan with respect to
the car’s heading. θl and θr are the relative angles to the two corners of the turn.

The third component that closes the loop is the NN-controller used in S1 to
control the heading of the car.

Existing Techniques that can be Used to Provide Assurance About the
Model of CPSNN/NN in S1 Composed with the NN in the System.
The NN used as a controller in S1 is well suited for the closed-loop verification
of NN-controlled systems, supported by recent tools [21,32]. Verisig [21] is used

Assurance Case Patterns for CPSNN 91

here to obtain the system-level evidence in the holistic pattern. Verisig operates
directly on the NNs without approximating it some other function. This allows
us to compose the model of CPSNN/NN in S1 with its NN-controller and use
Verisig to verify this composition for the safety specification of S1.

Construction of Assurance Case for S1 Based on Holistic Pattern. The
assurance case for the safety specification of S1 based on the holistic pattern is
shown in Fig. 8. The top-level assurance claim, G1, states that “∀i ∈ I, ∀t ∈ Ti,
the distance of the car from the hallway walls in S1 is always greater than zero”.
Here, ‘I’ is a set of initialization positions of the car in the hallway and for some
i ∈ I, ‘Ti’ is a set of discretized time instants spent by the car on its trajectory
starting from i. G1 is assured on the model of the CPSNN/NN in S1 composed
with the NN-controller in the system via claim G2 in the assurance case. This
model-based assurance approach for S1 requires an additional claim, G3, about
the validity of the model used to represent the CPSNN/NN in S1. Both G2 and
G3 together imply the top-level safety claim G1 in this case.

G2 states that “∀i ∈ I, ∀t ∈ Ti, the distance of the car from the hallway
walls in the model of CPSNN/NN in S1 composed with the NN-controller in
the system is always greater than zero”. It is a reachability property that can
be checked by a verification tool. Thus, this branch of the argument follows the
holistic approach to generate evidence for G2, which comes from the verification
result obtained by Verisig as shown in Fig. 8.

The argument used for the assurance of the model validation claim, G3,
is about the choice of the individual components that make the model of
CPSNN/NN in S1. Sub-claims G4 and G5 about the accuracy of the obser-
vation and the dynamics model, respectively, together provide assurance about
the accuracy of the model of the CPSNN/NN in S1. Characteristics of the F1/10
car in S1 (it is a front steering car and its speed lies in [0, 5] m/s) makes it a suit-
able candidate for the kinematics bicycle model. The observation model is based
on the ideal (noiseless) LiDAR operation in the known geometry of the hallway.
Validating observation models is challenging in general due to the complex and
uncertain behavior of the environment. This is one of the main directions for
future work, as discussed in the discussion section.

4.2 Case Study for the Modular Pattern

System Description and the Model of Its CPSNN/NN Composed with
the NN in the System. We consider the CPS with a perception-based NN
from [14] for the case study of the modular pattern. This system, S2, is shown
in Fig. 9. It consists of an autonomous car (ego vehicle) driving on a highway
through a desert with a stationary car in front of it. The vehicle is equipped
with an automatic emergency braking system (AEBS) for avoiding collisions
with preceding obstacles. The AEBS uses a perception-based NN and radar to
get information about the preceding obstacles. It relies on the radar for obstacles
at a distance less than or equal to 30 m from the vehicle. For obstacles farther
than 30 m from the vehicle, the AEBS relies solely on the NN for detection. In

92 R. Kaur et al.

Fig. 8. Assurance case for the safety specification of S1

Fig. 9. Closed-loop system, S2, of the CPSNN considered for the case study of the
modular pattern (left) and the corresponding model of its CPSNN/NN composed with
the perception-based NN in the system (right)

the event that an obstacle is detected, the AEBS issues a full braking command
to the car. The input to the NN is provided by a camera that generates RGB
images of size 1000 × 600. The safety property of interest for this system is that
no collision happens between the vehicle and the stationary car.

A general model of the CPSNN/NN in S2 composed with the perception-
based NN as shown in Fig. 9 is described as follows. It contains four compo-
nents. First, the dynamics model represents the behavior of the ego vehicle on
the highway. Second, a simulator captures how observations of the environment
supplied by the camera and radar are produced, based on the position of the
ego vehicle. Third, the AEBS algorithm used as it is. The last component is the
perception-based NN in S2 that closes the loop in the system.

Existing Techniques that can be Used to Provide Assurance About
S2. Since the input dimension for the NN in S2 is very large, verifying S2 for
its specification is challenging. Most of the existing tools for the assurance of
CPSNN with perception-based NN are based on falsification techniques [14,33].
We consider the falsification tool developed for the perception-based NN in [14]

Assurance Case Patterns for CPSNN 93

to generate the NN-specific evidence in the modular pattern for the assurance of
S2. This tool approximates the NN to a lower-dimensional input function f̃ and
finds falsifying examples for the NN from this lower-dimensional input space.
The idea is to explore only realistic modifications in the input space of the
NN, instead of exploring the high-dimensional input space for finding falsifying
examples for the NN. The input space of f̃ is analyzed to find misclassifications
by f̃ . These misclassifications are then concretized back into the input images
for NN to check for misclassifications by the NN.

Fig. 10. Model-based approach for the assurance of S2

Fig. 11. Assurance of the claim G2 for S2 by assume/guarantee approach

Construction of Assurance Case for S2 Based on the Modular Pat-
tern. The assurance case for the safety specification of S2 based on the modular
pattern is described as follows. The safety claim, G1, about S2 is that “if the ini-
tialization distance between the two cars is greater than the ego vehicle’s braking

94 R. Kaur et al.

distance, then the vehicle always maintains a distance greater than zero from
the stationary car”. We assume that the environment of S2 can vary only in the
2-dimensional position of the stationary car. As shown in Fig. 10, G1 is assured
on the model of the CPSNN/NN in S2 composed with the perception-based NN
in the system, via claim G2 in the assurance case. The claim G3 about the accu-
racy of the model of CPSNN/NN in S2, required in addition to the claim G2
for completing the model-based argument for the assurance of G1 is marked as
an undeveloped claim here. It can be developed by making arguments about the
choice of the individual components composing the model of CPSNN/NN in S2

as done for the justification of the model validation claim for assurance of S1.
Figure 11 shows the assume/guarantee assurance approach for the claim G2

about the model of the CPSNN/NN in S2 composed with the perception-based
NN. An abstraction of the NN, NNabs, satisfying the property ϕ of no misclas-
sifications of the stationary car by the network, is considered here. NNabs is
composed with the model of the CPSNN/NN in S2 to provide assurance about
G2 via falsification claim G4 in the assurance case. The evidence for G4 is gen-
erated by Breach, a falsification tool for traditional CPS.

Since G2 is assured on the model of CPSNN/NN composed with an abstrac-
tion of the NN satisfying ϕ, an additional claim about the guaranteed satisfaction
of ϕ by the NN is required to be justified to complete the assume/guarantee argu-
ment for the assurance of G2. Claims G5 and G6 together provide this guarantee
by making use of the falsification tool for the perception-based NNs from [14].
The NN is approximated by a 2-dimensional input function f̃ . The input to f̃ is
the position of the stationary car in the 2D plane.

G5 states that the NN does not misclassify any of the concretized images from
the set S of misclassification by f̃ . The testing-based approach is used to sample
the input space of f̃ for finding S. A claim supported by testing argument is only
as good as the coverage by testing. So, we need to argue about the sufficiency
of the sampling method used to cover the input set of f̃ , via claim G7 in this
case. The sufficiency of the sampling methods used to generate inputs for testing
either in terms of high coverage or coverage of the corner cases could be used to
generate evidence for G7. In addition to G7, a claim about no misclassifications
by NN on concretized images of S is required to complete the argument for the
assurance of G5. This is done via claim G8 supported by testing results.

Since G5 is the assurance of ϕ on the set S of misclassifications by f̃ , an
additional claim about the set of misclassifications by the NN as a subset of
concretized S needs to be made. This is done via undeveloped claim G6 in the
assurance case. G6 reflects the safety of the approximation function f̃ for the
NN. By safe approximation in the context of falsification, we mean that any
element in the input space of f̃ lying outside its set of misclassifications is not a
concretized misclassification by NN. We propose the development of techniques
that can be used to generate evidence about this claim as it will enable the
reduction of misclassification space of the NN and enhance the use of falsification
for providing assurance about systems with high-dimensional input space of NN.

Assurance Case Patterns for CPSNN 95

5 Discussion and Conclusion

In this paper, we proposed two model-based assurance case patterns for the safety
specifications of CPSNN. These patterns are amenable to the existing tools for
generating evidence for the assurance of CPSNN. We used two case studies, one
for each pattern, to illustrate the applicability of the proposed patterns. We
note that the two case studies are no more than illustrations and our goal is not
to try and convince the reader that these systems are, in fact, safe. Therefore,
we did not try to fully elaborate the arguments, nor tried to uncover assurance
deficits in each of the systems. Instead, we aimed to consider development and
analysis technologies available in the literature to see how suitable they would be
to supply evidence for arguments following each of the patterns. These patterns
are designed to help expose challenges involved with the evidence generated
from the existing tools. The undeveloped claims in the case studies, for instance,
attempt to formulate these challenges as requirements of new (or enhancement
of existing) tools for the system-level assurance of the CPSNN. This is different
from the approach proposed in a recent work [4] to identify component-level gaps
in the assurance of the CPSNN.

One of the main challenges in the model-based assurance argument that
needs to be addressed is the assurance about the accuracy of the observation
(or simulation) model used to capture measurements (or observations) in the
environment. The complex and uncertain nature of the environment makes it
difficult to precisely capture it in a model. Improving the scalability of the exist-
ing system-level verification tools for CPSNN is another challenge that needs to
be addressed to strengthen the evidence for the holistic pattern. Formalization
of requirements for the perception-based NNs is required to help develop tools
for the assurance of these NNs in the modular pattern. Addressing these chal-
lenges form one of the directions of future research for us. Another promising
direction to extend this work is to extend the proposed design-time patterns
with arguments to include safety monitoring and runtime adaptation tools for
assurance.

References

1. Adelard: ASCAD - the Adelard Safety Case Development (ASCAD) Manual (1998)
2. F1tenth. http://f1tenth.org/
3. Ayoub, A., Kim, B.G., Lee, I., Sokolsky, O.: A safety case pattern for model-based

development approach. In: Goodloe, A.E., Person, S. (eds.) NFM 2012. LNCS,
vol. 7226, pp. 141–146. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-28891-3 14

4. Bloomfield, R., Khlaaf, H., Conmy, P.R., Fletcher, G.: Disruptive innovations and
disruptive assurance: assuring machine learning and autonomy. Computer 52(9),
82–89 (2019)

5. Bojarski, M., et al.: End to end learning for self-driving cars. arXiv preprint
arXiv:1604.07316 (2016)

http://f1tenth.org/
https://doi.org/10.1007/978-3-642-28891-3_14
https://doi.org/10.1007/978-3-642-28891-3_14
http://arxiv.org/abs/1604.07316

96 R. Kaur et al.

6. Boopathy, A., Weng, T.W., Chen, P.Y., Liu, S., Daniel, L.: CNN-Cert: an efficient
framework for certifying robustness of convolutional neural networks. In: Proceed-
ings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 3240–3247 (2019)

7. Burton, S., Gauerhof, L., Heinzemann, C.: Making the case for safety of machine
learning in highly automated driving. In: Tonetta, S., Schoitsch, E., Bitsch, F.
(eds.) SAFECOMP 2017. LNCS, vol. 10489, pp. 5–16. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-66284-8 1

8. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: an analyzer for non-linear
hybrid systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp.
258–263. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-
8 18

9. Chen, Y., Lawford, M., Wang, H., Wassyng, A.: Insulin pump software certification.
In: Gibbons, J., MacCaull, W. (eds.) FHIES 2013. LNCS, vol. 8315, pp. 87–106.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-53956-5 7

10. De Fauw, J., et al.: Clinically applicable deep learning for diagnosis and referral in
retinal disease. Nat. Med. 24(9), 1342–1350 (2018)

11. Denney, E., Pai, G.: Safety considerations for UAS ground-based detect and avoid.
In: 2016 IEEE/AIAA 35th Digital Avionics Systems Conference, pp. 1–10 (2016)

12. Denney, E., Pai, G., Habli, I.: Towards measurement of confidence in safety cases.
In: 2011 International Symposium on Empirical Software Engineering and Mea-
surement, pp. 380–383. IEEE (2011)

13. Donzé, A.: Breach, a toolbox for verification and parameter synthesis of hybrid
systems. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp.
167–170. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-
6 17

14. Dreossi, T., Donzé, A., Seshia, S.A.: Compositional falsification of cyber-physical
systems with machine learning components. In: Barrett, C., Davies, M., Kahsai, T.
(eds.) NFM 2017. LNCS, vol. 10227, pp. 357–372. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-57288-8 26

15. Dutta, S., Chen, X., Jha, S., Sankaranarayanan, S., Tiwari, A.: Sherlock-a tool for
verification of neural network feedback systems: demo abstract. In: Proceedings
of the 22nd ACM International Conference on Hybrid Systems: Computation and
Control, pp. 262–263 (2019)

16. Fainekos, G.E., Sankaranarayanan, S., Ueda, K., Yazarel, H.: Verification of auto-
motive control applications using S-TaLiRo. In: 2012 American Control Conference
(ACC), pp. 3567–3572. IEEE (2012)

17. Fazlyab, M., Robey, A., Hassani, H., Morari, M., Pappas, G.: Efficient and accurate
estimation of Lipschitz constants for deep neural networks. In: Advances in Neural
Information Processing Systems, pp. 11423–11434 (2019)

18. Group, A.C.W., et al.: Goal structuring notation community standard (2018)
19. Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural

networks. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp.
3–29. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9 1

20. Ivanov, R., Carpenter, T.J., Weimer, J., Alur, R., Pappas, G.J., Lee, I.: Case study:
verifying the safety of an autonomous racing car with a neural network controller.
arXiv preprint arXiv:1910.11309 (2019)

21. Ivanov, R., Weimer, J., Alur, R., Pappas, G.J., Lee, I.: Verisig: verifying safety
properties of hybrid systems with neural network controllers. In: Proceedings of
the 22nd ACM International Conference on Hybrid Systems: Computation and
Control, pp. 169–178. ACM (2019)

https://doi.org/10.1007/978-3-319-66284-8_1
https://doi.org/10.1007/978-3-642-39799-8_18
https://doi.org/10.1007/978-3-642-39799-8_18
https://doi.org/10.1007/978-3-642-53956-5_7
https://doi.org/10.1007/978-3-642-14295-6_17
https://doi.org/10.1007/978-3-642-14295-6_17
https://doi.org/10.1007/978-3-319-57288-8_26
https://doi.org/10.1007/978-3-319-57288-8_26
https://doi.org/10.1007/978-3-319-63387-9_1
http://arxiv.org/abs/1910.11309

Assurance Case Patterns for CPSNN 97

22. Julian, K.D., Kochenderfer, M.J.: Neural network guidance for UAVs. In: AIAA
Guidance, Navigation, and Control Conference, p. 1743 (2017)

23. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an
efficient SMT solver for verifying deep neural networks. In: Majumdar, R., Kunčak,
V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 97–117. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63387-9 5

24. Ko, C.Y., Lyu, Z., Weng, T.W., Daniel, L., Wong, N., Lin, D.: POPQORN: quan-
tifying robustness of recurrent neural networks. arXiv preprint:1905.07387 (2019)

25. Kurd, Z., Kelly, T., Austin, J.: Developing artificial neural networks for safety
critical systems. Neural Comput. Appl. 16(1), 11–19 (2007)

26. Lin, C.L., Shen, W.: Applying safety case pattern to generate assurance cases
for safety-critical systems. In: 2015 IEEE 16th International Symposium on High
Assurance Systems Engineering, pp. 255–262. IEEE (2015)

27. Nicolescu, G., Mosterman, P.J.: Model-Based Design for Embedded Systems. CRC
Press, Boca Raton (2009)

28. Picardi, C., Hawkins, R., Paterson, C., Habli, I.: A pattern for arguing the
assurance of machine learning in medical diagnosis systems. In: Romanovsky, A.,
Troubitsyna, E., Bitsch, F. (eds.) SAFECOMP 2019. LNCS, vol. 11698, pp. 165–
179. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26601-1 12

29. Polack, P., Altché, F., d’Andréa Novel, B., de La Fortelle, A.: The kinematic bicy-
cle model: a consistent model for planning feasible trajectories for autonomous
vehicles? In: Intelligent Vehicles Symposium (IV), pp. 812–818. IEEE (2017)

30. Rushby, J.: The interpretation and evaluation of assurance cases. Comp. Science
Laboratory, SRI International, Technical report, SRI-CSL-15-01 (2015)

31. Taeyoung, L., Kyongsu, Y., Jangseop, K., Jaewan, L.: Development and evaluations
of advanced emergency braking system algorithm for the commercial vehicle. In:
Enhanced Safety of Vehicles Conference, ESV, pp. 11–0290 (2011)

32. Tran, H.D., Cai, F., Diego, M.L., Musau, P., Johnson, T.T., Koutsoukos, X.: Safety
verification of cyber-physical systems with reinforcement learning control. ACM
Trans. Embed. Comput. Syst. (TECS) 18(5s), 1–22 (2019)

33. Tuncali, C.E., Fainekos, G., Ito, H., Kapinski, J.: Simulation-based adversarial test
generation for autonomous vehicles with machine learning components. In: 2018
IEEE Intelligent Vehicles Symposium (IV), pp. 1555–1562. IEEE (2018)

34. Wang, Y.S., Weng, T.W., Daniel, L.: Verification of neural network control policy
under persistent adversarial perturbation. arXiv preprint arXiv:1908.06353 (2019)

35. Weimer, J., Sokolsky, O., Bezzo, N., Lee, I.: Towards assurance cases for resilient
control systems. In: 2014 IEEE International Conference on Cyber-Physical Sys-
tems, Networks, and Applications, pp. 1–6. IEEE (2014)

https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-030-26601-1_12
http://arxiv.org/abs/1908.06353

Safety-Critical Software Development
in C++

Daniel Kästner(B), Christoph Cullmann, Gernot Gebhard, Sebastian Hahn,
Thomas Karos, Laurent Mauborgne, Stephan Wilhelm,

and Christian Ferdinand

AbsInt GmbH., Science Park 1, 66123 Saarbrücken, Germany
kaestner@absint.com

Abstract. The choice of the programming language is a fundamental
decision to be made when defining a safety-oriented software develop-
ment process. It has significant impact on code quality and performance,
but also on the achievable level of safety, the development and verification
effort, and on the cost of tool qualification. Traditionally, safety-critical
systems have been programmed in C or ADA. In recent years, also C++
has entered into the discussion. C++ enables elegant programming, but
its inherent language complexity is much higher compared to C. This has
implications for testability, structural coverage, performance, and code
analysis. Further issues to be considered are tool chain diversity, the role
of the standard library, and tool qualification for compilers, analyzers
and other development tools. This article summarizes the requirements
of different safety norms, illustrates development and verification chal-
lenges and addresses tool qualification.

1 Introduction

During the past years the size and complexity of embedded software has sharply
increased, in particular in the automotive domain. Contributing factors have
been the trend to higher levels of automation, cost reduction by shifting function-
ality from hardware to software, and generic interfaces imposed by standardiza-
tion frameworks such as AUTOSAR (AUTomotive OpenSystem ARchitecture)
or Adaptive AUTOSAR.

A significant part of embedded software deals with safety-relevant function-
ality. A failure of a safety-critical system may cause high costs or even endanger
human beings. Furthermore, due to increasing connectivity requirements (cloud-
based services, device-to-device communication, over-the-air updates, etc.), more
and more security issues are arising in safety-critical software as well.

Traditionally, safety-critical software is written in C or Ada. In recent years,
also C++ is being in discussion, mainly because of its object-oriented language
and abstraction features and its compatibility with C. Object-oriented program-
ming can enable well-encapsulated programming, but also has drawbacks, as,
e.g., a very implicit control flow structure. In the case of C++ there are also

c© Springer Nature Switzerland AG 2020
A. Casimiro et al. (Eds.): SAFECOMP 2020 Workshops, LNCS 12235, pp. 98–110, 2020.
https://doi.org/10.1007/978-3-030-55583-2_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-55583-2_7&domain=pdf
https://doi.org/10.1007/978-3-030-55583-2_7

Safety-Critical Software Development in C++ 99

other language properties which can make its use in safety applications haz-
ardous unless the language is reduced to a safety-compatible subset and great
care is taken.

Obviously, the safety of a system must be established whichever programming
language is used, so safety-relevant C++ programs must satisfy the same safety
and quality requirements as C or ADA programs. The selection of an appropriate
programming language is a fundamental part of the definition of the software
development process, and is one aspect in the definition of compliant software
development life cycles and processes imposed by contemporary safety norms,
including DO-178C, IEC-61508, ISO-26262, or EN-50128. That also includes the
definition of appropriate coding guidelines to ensure safety-compliant use of a
programming language. In addition, all relevant safety standards also require to
identify potential hazards and to demonstrate that the software does not violate
the relevant safety goals. The process of demonstrating that the requirements
are satisfied is typically termed verification. Software tools used in such a safety
process have to be appropriately qualified.

As of 2020, the discussion which C++ language features should be admit-
ted to which extent for safety-critical software projects, is in full swing, and
there is no clear consensus yet. This article attempts to give an overview: we
address considerations to be taken into account when writing safety-critical C++
programs and discuss the implications of the programming language design on
development, verification, analyzability, and tool qualification.

2 The C++ Language

In 1979, Bjarne Stroustrup started his work on extending the procedural pro-
gramming language C with object-oriented features. Nowadays, after several
revisions and extensions, C++ is a multi-paradigm language that supports not
only procedural and object-oriented, but also generic as well as functional pro-
gramming. Similar to C, C++ still supports low-level system programming but
also appeals to high-level application programmers by offering a high degree
of abstraction. The C++ language has been standardized first in 1998 by the
International Organization for Standardization (ISO). Since then, it encoun-
tered revisions in 2011, 2014, and 2017, and the next revision C++2020 has
been announced.

The C++ standard library covers useful infrastructure that is implemented in
but not part of the core language itself. The language support library includes
basic support for the run-time type information, dynamic memory allocation,
and exception handling. The string library defines support for creating and
manipulating sequences of characters while the input/output library provides
utilities for communication with the outside world. The standard library defines
a variety of containers to hold and manipulate data, e.g., vectors and arrays,
including a standardized way of iterating these containers. The algorithm library
maintains a collection of useful generic algorithm, e.g., to process containers. In
later C++ versions, the standard library was significantly extended, e.g., by

100 D. Kästner et al.

introducing unordered hash containers, a library for handling and using regular
expressions, smart pointers, and support for multi-threading as well as atomic
operations on shared data, parallel versions of many algorithm in the library,
new types such as optional and variant, etc.

3 A Safety Standard’s Perspective

The supplement DO-332 (“Object-Oriented Technology and Related Tech-
niques”) to DO-178C refines and extends the DO-178C objectives for usage
of object-oriented technology. In particular, it lists language features of object-
oriented programming that need to be taken into account when considering
software safety, such as inheritance, parametric polymorphism, overloading, type
conversion, exception management, and dynamic memory management. All these
concepts are part of the C++ language, so these considerations immediately
apply to safety-critical software development in C++. The DO-332 gives a def-
inition of the relevant features, discusses their safety vulnerabilities and formu-
lates dedicated verification objectives. It also lists generic issues for safety which
always have to be taken into account and which might be negatively impacted
by object-oriented language features. In the following we will summarize the
overview of safety-relevant language features of the DO-332.

Inheritance. Classes can be considered as user-defined types, a subclass derived
from a superclass then is a subtype. An important rule is that any subtype of a
given type should be usable wherever the given type is required, otherwise the
type system becomes unsafe. This is formally defined by the Liskov Substitution
Principle (LSP): “Let q(x) be a property provable about objects x of type T .
Then q(y) should be true for objects y of type S where S is a subtype of T”.
In particular that means that for all methods of a subclass which overload a
superclass method the following requirements must be satisfied: preconditions
may not be strengthened, postconditions may not be weakened, and invariants
may not be weakened. The DO-332 requires the LSP to be demonstrated.

A derived class inherits properties from its parent class. In case the sub-
class may have several parent classes this is called multiple inheritance, other-
wise single inheritance. With interface inheritance, the derived class shares only
the complete signatures of the methods of its parents without the underlying
implementation. With implementation inheritance, the inheriting class shares
the implementation as well as the complete method signatures of the parent.

Method dispatch can be done statically based on the declared type of the
object, or it can be done dynamically based on the actual type of the object. In
C++ static dispatch happens on procedure calls, or when prefixing the invoca-
tion of a method m with a class type (base_class::m()). When a subtype
of the static type redefines the method being called, the method of the static
type is still called. When a method call is dynamic dispatched, the mapping of
a specific implementation is performed at runtime. Each method is associated
with an offset in the method table for the class of the object, so dispatching is
an indirect procedure call. Vulnerabilities may be introduced by:

Safety-Critical Software Development in C++ 101

– Substitutability: When a method is overridden in a subclass such that it is
functionally incompatible with the original definition, the LSP is violated and
class substitution can cause an application to behave incorrectly.

– Method implementation inheritance: When a subclass has an additional
attribute and a method which would need to update that attribute is not
overwritten, a call to that method could result in an improper object state
and unexpected behavior.

– Unused code: When a method of a superclass is overridden by the subclass
and the superclass is not instantiated, the code will be unreachable; on the
other hand, removing the method at the superclass may break its integrity.

– Dispatching: When static dispatch is used with method overriding, i.e., when
the subclass overrides method m, the actual type is the subclass, and the
method implementation of the superclass is invoked (base_class::m()),
incorrect behavior, or state inconsistency might result.

– Multiple inheritance: Inheriting from two different classes with incompatible
intentions may lead to unexpected behavior.

Polymorphism. Parametric polymorphism is a feature where a function takes
one or several types as arguments treating the types uniformly, i.e., the func-
tion does the same kind of work independently of the type of its arguments. In
C++ parametric polymorphism is realized via templates. Ad-hoc polymorphism
means that the same function name (symbol) can be used for functions that have
different implementations. In C++ ad-hoc polymorphism exists in the form of
method overloading and method overriding. Overloading (static polymorphism)
means that multiple methods have the same name but different types of argu-
ments. Calls to overloaded methods are resolved at compile-time based on the
type of call arguments. Overriding (dynamic polymorphism) means redefining
a virtual method in a subclass. Calls to overridden methods are resolved at
run-time based on the dynamic type of the object on which the call is invoked.

The parametric polymorphic operations that act on the generic data (tem-
plate) may not be consistent with the substituted data. Also, source code to
object code traceability is more difficult. In C++, one template class will be
expanded into a different versions of the code for each type used. Overloading
ambiguity occurs when a compiler performs implicit type conversions on param-
eters in order to select an acceptable match. This implicit type conversion could
lead to an unintended method being called.

Type Conversions. 0l5A narrowing conversion is structural change in which the
destination data element cannot fully represent the source data. A downcast is
a change of view from supertype to subtype. A type conversion is called implicit
if it is an automatic type conversion performed by the compiler. Although lan-
guages and compiler typically have strict implicit conversion rules, a lack of
familiarity with these rules, or ignorance of the conversion taking place are often
the cause of coding problems. With a narrowing type conversion, data may be
lost. A downcast may result in data corruption of the object itself or its neighbors
in memory, incorrect behavior, or a run-time exception being thrown.

102 D. Kästner et al.

Exception Management. Exception handling, i.e., the ability to throw exceptions
within a method and to handle exceptions in calling methods, is a common
feature of object-oriented languages. Exception handling is used for conditions
that deviate from the normal flow of execution. When an exception is raised
the execution will transfer to the nearest enclosing handler. In case of checked
exceptions the subprogram signature lists all exceptions that can be thrown by
the subprogram, and there are compile-time checks that corresponding handlers
exist. Unchecked exceptions are not part of the subprogram signature so there
can be no assurance that they will be handled.

Potential vulnerabilities include that an exception may not be handled, that
either no action or inappropriate actions may be performed when the exception is
caught (handled), or that operations are unexpectedly interrupted by exceptions.
Exception handling can cause unexpected delays.

Dynamic Memory Management. With dynamic memory management, objects
can be created on-demand during run-time. The deletion of such objects after
their use is either performed explicitly using a program statement or automati-
cally by a runtime system. The most important techniques are memory pooling,
stack- and heap-based memory management. Dynamic memory allocation, typ-
ically stack and heap usage, can lead to free memory exhaustion and improper
behavior can lead to memory corruption. The DO-332 lists the following poten-
tial vulnerabilities:

– Ambiguous references: An allocator returns a reference to live memory, e.g.,
an object that is still reachable from program code, allowing the program to
use this memory in an unintended manner.

– Fragmentation starvation: An allocation request can fail due to insufficient
logically contiguous free memory available.

– Deallocation starvation: An allocation request can fail due to insufficient
reclamation of unreferenced memory, or lost references.

– Heap memory exhaustion: The size of the available memory could be
exceeded.

– Premature deallocation: A memory fragment could be reclaimed while a live
reference exists.

– Lost update and stale reference: In a system where objects are moved to avoid
fragmentation of memory, e.g., an old copy might be accessed after the new
copy has been created and is in use.

– Time-bound allocation or deallocation: Dynamic memory management could
cause unexpected delays.

In particular for heap-based memory management, all vulnerabilities have to be
addressed.

Structural Coverage. Structural coverage analysis provides evidence to which
degree requirements-based testing exercised the code structure. It covers code
coverage (statement coverage vs. decision coverage vs. MC/DC coverage), source
code to object code traceability, control coupling and data coupling.

Safety-Critical Software Development in C++ 103

Object-oriented languages use control coupling to minimize data coupling
by introducing control coupling via dynamic dispatching. Almost all object-
oriented language features complicate determining the degree of structural cov-
erage, inheritance, method overriding, dynamic dispatch, subprogram overriding
with static dispatch and parametric polymorphism. In particular, code coverage
itself does not take data and control coupling into account, e.g., covering a
method in the context of the superclass or subclass alone may not exercise all
possible execution conditions. To judge the extend of structural coverage reached
by testing, sound static analysis can to be applied beforehand to determine class
structure, inheritance hierarchy, and the maximal possible data and control cou-
pling.

4 Coding Guidelines for C++

Many C software development projects are developed according to coding guide-
lines, such as MISRA C, SEI CERT C, or CWE (Common Weakness Enumera-
tion), aiming at a programming style that improves clarity and reduces the risk
of introducing bugs. In particular in safety-critical software projects, obeying
suitable coding guidelines can be considered mandatory as this is strongly rec-
ommended by all current safety standards, including DO-178B/DO-178C, IEC
61508, ISO 26262, and EN 50128.

Safety norms do not enforce compliance to a particular coding guideline,
but define properties to be checked by the coding standards applied. As an
example, the ISO 26262 gives a list of topics to be covered by modelling and
coding guidelines, including enforcement of low complexity, enforcing usage of a
language subset, enforcing strong typing, and use of well-trusted design principles
(cf. ISO 26262 2018, Part 6, Table 1). The language subset to be enforced should
exclude, e.g., ambiguously defined language constructs, language constructs that
could result in unhandled runtime errors, and language constructs known to be
error-prone. Table 6 of ISO 26262:6 2018 lists some principles for software unit
design that can be addressed by coding guidelines, such as having one entry and
one exit point in functions, and avoiding dynamic objects/variables, multiple use
of variable names, implicit type conversions, hidden data flow or control flow,
and recursions. Similar requirements are imposed by IEC-61508 and DO-178C.
In the following we list the most prominent C++ coding guidelines, and give a
brief comparison focusing on safety-related requirements.

The MISRA C++:2008 coding guidelines [15] were released in 2008. The
guidelines explicitly demand for a single point of function exit (Rule 6-6-5),
ban any kind of heap memory allocation (Rule 18-4-1), require any variable to
be initialized before use (Rule 8-5-1) and forbid recursion of any kind (Rule
7-5-4). Further rules impose restrictions on the use and uniqueness of entity
names (including types, variables and scoping), and on the use of pointers, con-
cerning among others (unsafe) pointer conversions, pointer arithmetic and the
use of invalid pointers. Dangerous implicit type conversions are forbidden, e.g.,
downcasts (Rule 5-2-3) and implicit change of signedness (Rule 5-0-4). Simi-
larly, the use of inheritance is further restricted, e.g. virtual inheritance shall be

104 D. Kästner et al.

avoided in general (Rule 10-1-1) and only used if required in diamond hierar-
chies (Rule 10-1-2). Polymorphism in form of templates is regulated by another
10 rules addressing name lookup, instantiation and more. MISRA allows the use
of exceptions, but restricts it to error handling (Rule 15-0-1) and gives further
prerequisites that need to be fulfilled.

In 2018, the AUTOSAR consortium has released a set of guidelines for
C++14 [1] aiming at complementing MISRA C++:2008 with respect to new
language features. The guidelines cover new language features, but also relax
some restrictions of MISRA C++:2008. In particular, dynamic memory alloca-
tion is allowed, though heavily restricted and bound to the use of C++’s memory
management facilities (such as managed pointers). Exceptions can be used but
their use is constrained by a set of 30 dedicated rules.

The Joint Strike Fighter Air Vehicle C++ Coding Standards [14] were
released in 2005 and thus do not incorporate C++11 or later versions of the
standard. A single point of exit per function is enforced (AV Rule 113), heap
memory allocation is mostly forbidden (AV Rule 206) as well as recursion (AV
Rule 119). The use of templates is restricted, e.g., tied to a dedicated code review
(AV Rule 101) and exhaustive testing (AV Rule 102). The use of inheritance is
also highly restricted by a set of 13 rules. The most notable difference with
respect to the MISRA and AUTOSAR guidelines is that the use of exceptions
is strictly forbidden (AV Rule 208), independently of the purpose.

Outside the domain of safety-critical systems many other coding guidelines
have been proposed for C++. Most of them aim at reducing common weaknesses
associated with certain language features and more or less strictly regulate their
use. The use of exceptions is forbidden by the LLVM Coding Standards as well
as the Google C++ Style Guide [5], while the SEI CERT C++ Coding Stan-
dard and C++ Core Guidelines [2] do not. Dynamic objects and resources are
usually tied to the ownership concept and/or smart pointers. The Google C++
Style Guide also bans implicit conversions and restricts the use of inheritance,
advocating the use of members/compositions instead where appropriate.

5 Analyzability

In this section we give an overview of static analysis as a standard verification
technique recommended by all safety norms, and also summarize verification
obligations that can be addressed by static analysis. However, the analyzabil-
ity considerations described in the following sections also apply to other static
verification techniques.

One application of static analysis is checking compliance to coding standards.
Purely syntactical methods can be applied to check syntactical coding rules.
Safety norms also require to demonstrate the absence of critical programming
defects, such as runtime errors, stack overflows, or deadline violations. To find
such defects – which to some degree can be covered by semantical coding rules
–, semantics-based static analysis can be applied. Semantical analyzers can be
further grouped into unsound vs. sound approaches, the essential difference being

Safety-Critical Software Development in C++ 105

that in sound methods there are no false negatives, i.e., no defect will be missed
(from the class of defects under consideration). Sound analyzers are based on
a mathematically rigorous formal method for semantics-based static program
analysis, called abstract interpretation [4].

Runtime errors due to undefined or unspecified behaviors of the programming
language used are a particularly dangerous class of software errors. Examples
are faulty pointer manipulations, numerical errors such as arithmetic overflows
and division by zero, data races, and synchronization errors in concurrent soft-
ware. Such errors can cause software crashes, invalidate separation mechanisms
in mixed-criticality software, and are a frequent cause of errors in concurrent and
multi-core applications. At the same time, these defects also constitute security
vulnerabilities, and have been at the root of a multitude of cybersecurity attacks,
in particular buffer overflows, dangling pointers, or race conditions [9].

In safety-critical C programs, the run-time stack (often just called “the
stack”) typically is the only dynamically allocated memory area. It is used during
program execution to keep track of the currently active procedures and facilitate
the evaluation of expressions. When the stack area is too small, a stack overflow
occurs: memory cells from the stacks of different tasks or other memory areas
are overwritten. This can cause crashes due to memory protection violations and
can trigger arbitrary erroneous program behavior, if return addresses or other
parts of the execution state are modified.

In real-time systems the overall correctness depends on the correct timing
behavior: each real-time task has to finish before its deadline. Providing evidence
that no deadlines are violated requires the worst-case execution time (WCET)
of all real-time tasks to be determined.

Sound static analysis is often perceived as a technique for source code analysis
at the programming language level. Run-time error analysis deals with unspeci-
fied and undefined behavior in the programming language semantics and there-
fore works at the source code level. However, sound static analysis can also be
applied at the binary machine code level. In that case it does not compute an
approximation of a programming language semantics, but an approximation of
the semantics of the machine code of the microprocessor. Worst-case execution
time analysis and worst-case stack usage analysis are performed at the binary
level, because they have to take the instruction set and hardware architecture
into account. In runtime error analysis, soundness means that the analyzer never
omits to signal an error that can appear in some execution environment. In
WCET and stack usage analysis soundness means that the computed WCET/s-
tack bound holds for any possible program execution.

Nowadays, abstract interpretation-based static analyzers that can compute
safe upper bounds on the maximal stack usage and on the worst-case execution
time [8,10], and that can prove the absence of runtime errors and data races [11]
are widely used for developing and verifying safety-critical software.

The complexity and precision of semantical analysis depends on the language
semantics and the relevant language subset. For C++ code, the analyzability
may be reduced due to certain language features discussed in the following.

106 D. Kästner et al.

6 C++ Challenges

All safety vulnerabilities presented in Sect. 3 are relevant for safety-critical C++
programs. In this section we revisit some of them and discuss additional topics,
putting a particular focus on analyzability by static analysis tools. Differences
in the impact to source- and binary-level analysis will also be discussed.

Rapid Language Evolution. Unlike in the older phases of the C++ language
standardization, where more than a decade passed between two versions of the
standard (e.g. C++98 to C++11), the evolution now happens at a much faster
pace. The C++ standardization committee settled on a three-year cadence for
new standard versions. This has led to the succession of the C++14, C++17 and
soon C++20 standard. Each of the new versions of the standard incorporates
both, new core language features and library extensions. Unlike other languages
like C, for which new standard versions often only add minor changes, each of
the C++ standard revisions is a rather large change. Compilers, analyzers and
other development tools must keep up with the fast pace of this evolution.

Complex Language Frontend. Unlike the C language, the C++ language requires
a highly complex frontend to support all current language features, e.g., to sup-
port template resolution. A C frontend is comparatively easy to implement and
validate, and there is a plethora of different C frontends in use. In contrast,
there is only a small set of frontends available that support modern C++, to
our knowledge GCC/clang/MSCV/EDG. Qualifying such a frontend for safety-
critical systems can be a challenge.

Compilation. Based on a formal executable semantics of C [12], the formally
verified CompCert compiler has been developed. CompCert has been proven,
using machine-assisted mathematical proofs, to be exempt from miscompilation
issues: the executable code it produces is proved to behave exactly as specified by
the semantics of the source C program [13]. The article [7] describes the qualifi-
cation strategy used to successfully qualify CompCert for use in a highly critical
control system from the nuclear power domain, compliant with IEC60880 and
IEC61508 (SCL3). There is also a DO-178C-compliant Qualification Support
Kit, that exhaustively maps the ISO C99 standard to functional tool require-
ments and, by a combination of formal proof and test cases, demonstrates 100%
requirement coverage, which cannot be achieved for other existing compilers.

To the best of our knowledge no formal semantics for C++ has been proposed
yet, which means that no comparable confidence in compiler correctness can be
established.

The Standard Library. The C++ standard library provides abundant function-
ality. There is only a small number of library implementations available which
cover the full functionality as required by the latest C++ standard.

Safety-Critical Software Development in C++ 107

From the perspective of the programmer, the high level of abstraction eases
development and increases productivity. The underlying complexity is not appar-
ent in the application code, but it can lead to negative effects for the ana-
lyzability of the resulting software. Many parts of currently available standard
libraries hide dynamic memory allocation, creating the danger of complex allo-
cation scenarios which are hard to analyze, and of unintentionally using dynam-
ically allocated objects. The container parts of the standard library provide
many conveniently usable data structures like associative maps (both ordered
and unordered). Whereas the use is intuitive, the underlying data structures
(highly dynamic pointer-based trees and hash tables) are sophisticated and make
the analysis complex.

The commonly used standard libraries have not been developed according to
safety standard requirements and are highly complex, e.g., the LLVM standard
library consists of more than 800.000 lines of C++ code.

Library code is part of the safety-critical system and has either has to be
developed with the same criticality level than the most critical component it is
used in, or appropriately qualified (cf. DO-178C Sec. 12.1, ISO 26262:8).

Dynamic Memory Allocation. It is essential that for safety-critical systems ade-
quate memory, processor and network resources are available to complete the
tasks in a timely manner. Stack memory usage is well understood and can be
efficiently and precisely handled by binary-level static analysis. With heap mem-
ory, the life range of an allocated object is not bound by the activity or the scope
of the subprogram in which it was initially allocated. In consequence, its deallo-
cation, in general, is not performed in the same context in which it was allocated,
making its correct implementation a significantly greater problem than that of
stack memory allocation and deallocation (DO-332, Sec. OO.D.2.4.2). It is nec-
essary to determine the lifespan of each object, which is intractable, since exact
lifespans depend on the data the program receives from its environment. Hence,
manual allocation and reclamation of heap memory is error-prone, frequently
leading to memory corruption through dangling pointers, and to memory leaks.

Dynamic heap memory allocation can also have impact on execution time,
and sometimes also on the scheduling of time-critical tasks. The worst-case exe-
cution time often depends on the concrete addresses and their alignment on the
target. For dynamically allocated data structures such properties are hard to
derive. To the best of our knowledge, providing safe upper bounds for the time
needed to allocate and free objects is an unsolved problem.

Even when the scope of dynamically allocated memory is well known, static
analysis is challenging: the analysis problem becomes much harder to solve when
the size of the state space cannot be precisely determined. The first difficulty is
to keep the size of states representation finite (and small enough). In addition,
because of approximations, the analyzer may consider more potential memory
being allocated than is actually requested by the program during its executions,
leading either to intractable memory consumption or further approximations
on the allocated memories. Another aspect is that dynamic memory allocation
makes using complex data structures, such as lists, trees or graphs, much easier

108 D. Kästner et al.

for the programmer, which naturally tends to use them more. Such data struc-
tures are in themselves challenging to analyze, witnessed by the very active and
abundant research on the subject of shape analysis [6].

Dynamic Polymorphism. The increased control coupling of dynamic dispatch
means that the control flow is more dependent on the data flow in a program. In
consequence, accurate information from data flow analysis has to be obtained to
supplement control flow analysis (cf. DO-332, Sec. OO.D.2.4.1). The time needed
to traverse method tables to find the correct method to invoke is relevant for
WCET analysis.

The analysis is complicated by the need to determine at each dispatch point
the set of methods inherited from a superclass or redefined by a subclass which
might be invoked at that dispatch point. At the source level, even in case of
non-perfect knowledge, the C++ type system will provide enough information
to at least detect some super-set of the potentially called functions for function
pointers and virtual functions. At the binary level however, identifying a virtual
call site and its call targets needs additional information about the accessed
object’s base class type, and the called virtual member function including its
signature. Determining this information typically requires debug information,
and an explicit mapping from source code analysis to the binary level analysis,
which, depending on the compiler optimization level, can be a challenge.

Exception Handling. C++ provides exceptions as one standard way for error
handling, in addition to functions returning error codes. The C++ standard
library use a mixture of exception handling and returning error codes. This
renders uniform error handling difficult.

C++ exceptions are not checked by the compiler and there is no guarantee
that an exception will be handled by the calling code. There is even no guarantee
that throwing an exception succeeds: most C++ compilers generate code that
indirectly invokes malloc in order to allocate heap memory for the exception
object. If dynamic memory allocation fails, program execution is aborted by a
call to std::terminate. An exception also may lead to unexpected program
termination before reaching its handler, if the exception is raised in the scope of
a destructor or in a method declared with the noexcept specifier.

Similarly to overloading, exception handling also massively increases the con-
trol coupling, as there is an additional implicit control path from every program
point to all exception handlers in scope. For static analyzers this is particularly
harmful, since analysis imprecision may cause additional over-approximations
on calls to cleanup paths in case of an exception thrown. This, in turn, increases
the complexity of the analysis and further reduces analysis precision.

At the binary code level, exceptions are hard to analyze at all, as the required
stack unwinding is often handled via complex state machines that use extra
information stored in debug sections (e.g., cf. [3]).

Extensions and/or modifications to the exception handling facilities of C++
are currently discussed in the C++ working group (WG21). More details can be
found in [16], which proposes a model where functions have to declare that they

Safety-Critical Software Development in C++ 109

throw a statically defined exception type by value, thereby making exception
handling deterministic and avoiding dynamic or non-local overheads.

7 Summary

C++ has evolved to a complex multi-paradigm language which enables high pro-
gramming productivity, in particular due to its powerful language abstractions.
Object-oriented features like the C++ classes support well-structured programs,
e.g., providing for encapsulation and reducing data coupling between compo-
nents. However, for safety-critical programming the underlying concepts have to
be well understood, since they typically have safety implications which have to
be taken into account. Also, while supporting well-structured programs, the very
same concepts may introduce safety defects when improperly used, cause hidden
complexity in other aspects like an increased control coupling, or cause additional
effort in other development stages, e.g., for achieving structural coverage. The
expressiveness and complexity of the standard library constitutes a challenge for
providing safety-compliant implementations, while rapid language evolution and
frontend complexity represent challenges for tool chain qualification.

In this article en in DO-332, we have discussed language features which might
have implications for software safety, in particular, inheritance, parametric poly-
morphism, overloading, type conversion, exception handling, and a higher temp-
tation to use dynamic memory management. We also addressed C++ specific
aspects, like its rapid language evolution, the central role of the standard library,
and its frontend complexity. We have given an overview of the most important
coding standards for C++, and shown that for some language features, in par-
ticular exceptions, there are significant differences in whether or to which extend
their usage should be allowed. We discussed analyzability by static analysis tools,
and showed that some language concepts can significantly increase analysis com-
plexity and reduce the achievable confidence in the absence of defects.

References

1. AUTOSAR. Guidelines for the use of the C++14 language in critical and safety-
related systems (2018)

2. Bjarne Stroustrup, H.S.: C++ Core Guidelines. https://isocpp.github.io/
CppCoreGuidelines/CppCoreGuidelines. Accessed Jan 2020

3. C++ ABI for Itanium: Exception Handling. https://refspecs.linuxbase.org/abi-eh-
1.21.html. Accessed Jan 2020

4. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: 4th POPL,
pp. 238–252. ACM Press, Los Angeles (1977)

5. Google C++ Style Guide. https://google.github.io/styleguide/cppguide.html.
Accessed January 2020

6. Illous, H., Lemerre, M., Rival, X.: A relational shape abstract domain. In: Bar-
rett, C., Davies, M., Kahsai, T. (eds.) NFM 2017. LNCS, vol. 10227, pp. 212–229.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57288-8_15

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
https://refspecs.linuxbase.org/abi-eh-1.21.html
https://refspecs.linuxbase.org/abi-eh-1.21.html
https://google.github.io/styleguide/cppguide.html
https://doi.org/10.1007/978-3-319-57288-8_15

110 D. Kästner et al.

7. Kästner, D., et al.: CompCert: practical experience on integrating and qualifying
a formally verified optimizing compiler. In ERTS2: Embedded Real Time Software
and Systems, Toulouse, France, p. 2018 (2018)

8. Kästner, D., Ferdinand, C.: Proving the absence of stack overflows. In: Bondavalli,
A., Di Giandomenico, F. (eds.) SAFECOMP 2014. LNCS, vol. 8666, pp. 202–213.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10506-2_14

9. Kästner, D., Mauborgne, L., Ferdinand, C.: Detecting safety- and security-relevant
programming defects by sound static analysis. In: Rainer Falk, J.-C.B., Chan, S.
(eds.) The Second International Conference on Cyber-Technologies and Cyber-
Systems (CYBER 2017), volume 2 of IARIA Conferences, pp. 26–31. IARIA XPS
Press (2017)

10. Kästner, D., Pister, M., Gebhard, G., Schlickling, M., Ferdinand, C.: Confidence
in timing. In: Safecomp 2013 Workshop: Next Generation of System Assurance
Approaches for Safety-Critical Systems (SASSUR), September 2013

11. Kästner, D., Schmidt, B., Schlund, M., Mauborgne, L., Wilhelm, S., Ferdinand, C.:
Analyze this! sound static analysis for integration verification of large-scale auto-
motive software. In: Proceedings of the SAE World Congress 2019 (SAE Technical
Paper). SAE International (2019)

12. Krebbers, R., Leroy, X., Wiedijk, F.: Formal C semantics: CompCert and the C
standard. In: Klein, G., Gamboa, R. (eds.) ITP 2014. LNCS, vol. 8558, pp. 543–548.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08970-6_36

13. Leroy, X., Blazy, S., Kästner, D., Schommer, B., Pister, M., Ferdinand, C.: Com-
pCert - a formally verified optimizing compiler. In: ERTS: Embedded Real Time
Software and Systems, 8th European Congress, Toulouse, France, p. 2016, January
2016

14. Martin, L.: Joint strike fighter air vehicle C++ coding standards for the system
development and demonstration program (2005)

15. MISRA (Motor Industry Software Reliability Association) Working Group. MISRA
C++:2008 Guidelines for the use of the C++ language in critical systems (2008)

16. Sutter, H.: Zero-overhead deterministic exceptions: throwing values. Technical
report P0709 R0, SG14, May 2018

https://doi.org/10.1007/978-3-319-10506-2_14
https://doi.org/10.1007/978-3-319-08970-6_36

An Instruction Filter
for Time-Predictable Code Execution

on Standard Processors

Michael Platzer(B) and Peter Puschner

Institute of Computer Engineering, TU Wien, Vienna, Austria
michael.platzer@tuwien.ac.at, peter@vmars.tuwien.ac.at

Abstract. Dependable cyber-physical systems usually have stringent
requirements on their response time, since failure to react to changes in
the system state in a timely manner might lead to catastrophic conse-
quences. It is therefore necessary to determine reliable bounds on the
execution time of tasks. However, timing analysis, whether done stat-
ically using a timing model or based on measurements, struggles with
the large number of possible execution paths in typical applications. The
single-path code generation paradigm makes timing analysis trivial by
producing programs with a single execution path. Single-path code uses
predicated execution, where individual instructions are enabled or dis-
abled based on predicates, instead of conditional control-flow branches.
Most processing architectures support a limited number of predicated
instructions, such as for instance a conditional move, but single-path
code benefits from fully predicated execution, where every instruction
is predicated. However, few architectures support full predication, thus
limiting the choice of processing platforms. We present a novel approach
that adds support for fully predicated execution to existing processor
cores which do not natively provide it. Single-path code is generated by
restructuring regular machine code and replacing conditional control-flow
branches with special instructions that control the predication of subse-
quent code. At runtime an instruction filter interprets these predicate-
defining instructions, computes and saves predicates and filters regular
instructions based on the predicate state, replacing inactive instructions
with a substitute that has no effect (e.g. a NOP). We are implementing
this single-path filter for the LEON3 and the IBEX processors.

Keywords: Single-path · Real-time · Predictable timing

1 Introduction

In many dependable cyber-physical systems the execution of a task must com-
plete within a time limit, otherwise the system might fail. It is therefore essential
to guarantee that the task will not exceed that limit, which requires to bound its
Worst-Case Execution Time (WCET). This is usually done either through Static

c© Springer Nature Switzerland AG 2020
A. Casimiro et al. (Eds.): SAFECOMP 2020 Workshops, LNCS 12235, pp. 111–122, 2020.
https://doi.org/10.1007/978-3-030-55583-2_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-55583-2_8&domain=pdf
http://orcid.org/0000-0002-5103-8848
http://orcid.org/0000-0002-2495-0778
https://doi.org/10.1007/978-3-030-55583-2_8

112 M. Platzer and P. Puschner

Timing Analysis (STA) or through measurement-based techniques, however both
of these approaches struggle with the large number of execution paths in typ-
ical programs [14]. In STA every additional path requires to keep track of an
ever growing number of possible hardware states thus leading to the state space
explosion problem. In measurement-based approaches, exhaustively measuring
the duration of every path is infeasible in practice.

Single-path code is a code generation paradigm which makes execution time
bounding trivial by producing a program with a single execution trace [6]. The
STA of a single-path program needs to keep track of one path only. On time-
predictable hardware the execution time of single-path code is constant, hence
a single measurement is enough to determine the execution time. Single-path
code makes use of predicated execution to enable or disable instructions condi-
tionally and thereby replace conditional control-flow branches with predicated
instructions [1].

Since single-path code relies on predicated execution for conditional parts of a
program, the target architecture must support that. Most Instruction Set Archi-
tectures (ISAs) have some form of conditional instructions besides control-flow
instructions, such as for instance a conditional move instruction [4]. That allows
to execute all traces in a conditional statement speculatively and then discard
the results of all but one trace. However, this adds additional complexity to the
code, in particular when a speculatively executed trace must avoid exceptions
(e.g. division by zero). Therefore, in order to efficiently execute single-path code,
the processor should support fully predicated execution, where all instructions
can be enabled or disabled based on predicates.

Fully predicated execution is not a common feature in modern processor
architectures [4]. The ARM ISA is notable for supporting it, by allowing every
instruction to be enabled or disabled based on condition codes in the status reg-
ister. The limited availability of fully predicated execution confines single-path
code to those few architectures. However, these might not always be the best
fit for every application, since other requirements could favor different execution
platforms. In that case one option is to build a custom processor with custom
ISA, as has been done by Schoeberl et al. [11], who developed the Patmos pro-
cessor. Patmos supports fully predicated execution and the compiler backend
written especially for it has the option to produce single-path code that has
an execution time that is effectively independent of input data. Developing a
purpose-built processor with a dedicated instruction set is already a daunting
and complex task on itself. On top of that it requires to build a custom toolchain
which can compile programs to that new instruction set.

We would like to bring the benefits of single-path code to existing architec-
tures without the need to build a new processor and to develop a new instruction
set. We also want to avoid tying single-path code generation to a specific com-
piler. Therefore, we apply the single-path transformation as a post-processing
step to the fully compiled and linked executable file of a program. We propose a
novel approach to upgrade existing processors with the ability to execute single-
path code generated that way by adding an instruction filter in the instruction

An Instruction Filter for Time-Predictable Code 113

fetch path of the processor core. This requires minor modifications to the hard-
ware that can easily be applied to a wide variety of processor architectures.
To demonstrate the feasibility of our approach we have started to apply these
changes to two processors: LEON3, a core using the SPARC v8 ISA and IBEX,
which uses the RISC-V architecture.

This paper makes following contributions:

– We adapt the single-path generation algorithm of the Patmos compiler such
that it can be used to convert machine code of various ISA to single-path
code. Special instructions controlling the state of predicates are encoded with
unused opcodes.

– We present a novel approach to add predicated execution to existing processor
cores by adding an instruction filter with an internal predicate stack. The
filter interprets the special instructions controlling the predicates at runtime
and filters instructions fetched by the core depending on the state of these
predicates.

This work is organized as follows: Sect. 2 gives a more detailed overview
of the single-path paradigm, along with its advantages and drawbacks. Section 3
presents prior approaches to generating and executing single-path code. In Sect. 4
we discuss the concept and requirements of an instruction filter for the execution
of single-path code and in Sect. 5 we explain details of our implementation.
Section 6 describes the current state of our implementation and Sect. 7 concludes
this paper.

2 Single-Path Paradigm

Although it is essential to determine the WCET of a task in critical real-time
applications, actually determining a tight bound using STA remains a complex
undertaking. It requires solving two problems: modelling the timing behavior
of the execution platform and determining the possible execution paths of a
program [14]. While the severity of the first problem depends on the temporal
predictability of the hardware, the complexity of the latter increases with the
number of execution paths in the software.

Measurement-based methods were proposed as an alternative to STA [10].
These are usually hybrid approaches, combining measurements with static anal-
ysis. For instance, Measurement-Based Probabilistic Timing Analysis (MBPTA)
has been introduced by Wenzel et al. [13], where timing measurements are used
to build a hardware timing model which complements standard STA for deter-
mining WCET bounds. While these approaches generally allow to obtain lower
bounds, the accuracy of those bounds and their respective violation probabil-
ities depends on hardware systemic effects and appropriate test coverage [3],
i.e. the proportion of execution paths of which the execution time was actually
measured.

The number of possible program execution paths grows exponentially with
the number of control-flow alternatives, hence analysis of all paths in STA as

114 M. Platzer and P. Puschner

well as measuring the execution time of all paths quickly becomes intractable.
Single-path code is a code generation paradigm in which all execution traces
of a program are merged into a single execution path [6], thus making timing
analysis trivial. Single-path code executed on a time-predictable processor has
constant execution time regardless of input data and therefore the WCET can
be determined with a single measurement.

Instead of conditionally executing code blocks using branches, single-path
code makes use of predicated execution to conditionally enable or disable indi-
vidual instructions [1]. While the same sequence of instructions is executed by
the processors every time a single-path program is run, instructions might have
no effects depending on the state of predicates. These predicates capture the
truth values of conditions and thus predicated instructions replace the condi-
tional branches used in regular machine code. Loops are executed for a con-
stant number of iterations based on a loop bound. It has been shown that every
WCET-analyzable code can be converted to single-path code [9].

The drawback of single-path code is that all execution traces must be exe-
cuted, which is why the execution time of single-path code is typically larger
than that of regular code. However, reduced performance is traded for increased
predictability. Also, the increased execution time is often lower than the WCET
bound of the equivalent regular code [7].

3 Related Work

A method to transform regular code into single-path code for platforms which
support partial predicated execution has first been described by Puschner
et al. [8]. It makes use of the conditional move instruction, which is implemented
in several processor architectures. Conditional code sections are always executed
speculatively regardless of the truth value of the respective condition, but the
results are discarded if that condition is false.

In order to achieve constant execution times with respect to input data,
single-path code must be executed on time-predictable hardware. Schoeberl et al.
[12] implemented the conditional move instruction on the time-predictable Java
Optimized Processor (JOP). They demonstrated that single-path programs exe-
cuted on this platform do indeed have a constant execution time regardless of
input values.

Geyer et al. [2] investigated which ISA and extensions thereof are particularly
suitable for the execution of single-path code both in terms of execution time
and code size. In particular, they compared single-path code using partial pred-
ication, which made use of a conditional move instruction as did earlier work,
with single-path code using full predication. For the latter they implemented
predicated blocks for the SPARC v8 architecture, a form of predication where an
entire block of code is predicated by specifying a condition that would apply to
subsequent code with a special predbegin instruction. The predication remains
active until an associated predend instruction is encountered.

While those early contributions focused on a description of the principles
of single-path code, Prokesch et al. [5] analyzed single-path conversion on the

An Instruction Filter for Time-Predictable Code 115

Control-Flow Graph (CFG) level of a program and introduced an algorithm to
automatically generate single-path code for platforms that support fully pred-
icated execution. Each basic block of the CFG is predicated according to the
conditions that apply to it. All instructions from the original regular machine
code are kept, with the exception of conditional branches, which are replaced by
special instructions that modify the predicates. The algorithm also retains the
topological ordering of instructions, hence all active instructions are executed in
the exact same order in which they would have been executed in the equivalent
regular code. The algorithm was embedded into their port of the LLVM compiler
which produces code for the time-predictable processor Patmos.

Although Prokesch et al. implemented single-path transformation in the Pat-
mos compiler, the algorithm itself works independent of the target architecture.
Since it operates on the CFG of a program and does not require access to the
source code, it can also be applied as a post-processing step to the executable file
produced by an arbitrary compilation toolchain. We use this method to generate
single-path code for various ISA, which we extend with special instructions to
control the state of predicates.

4 Single-Path Extension

The goal of our work is to execute single-path code on existing processor cores.
We want to take advantage of fully predicated execution to execute single-path
code efficiently [4]. Since most ISA do not support full predication, we extend
those with special instructions that manipulate the state of predicates. These
special instructions are encoded with unused opcodes of the respective ISA.

We use the automated single-path transformation algorithm developed by
Prokesch et al. [5] to convert regular machine code to single-path code. While
Prokesch et al. implemented single-path generation inside their port of the LLVM
compiler, we apply this transformation as a post-processing step to a fully com-
piled and linked executable. That way the single-path conversion is not tied to
a specific compilation toolchain. The transformation rearranges the basic blocks
of the CFG of a program and replaces conditional control-flow branches with
special instructions that modify predicates.

Existing cores do not understand these special instructions, thus requiring
some modifications. In an attempt to keep the required changes to a minimum,
we design an instruction filter which interprets the special instructions con-
trolling the predicates and implements predication for all other instructions by
filtering out the inactive ones based on predicate values identified by the filter.
It either passes fetched instructions to the processor or replaces them with NOP
instructions (depending on the architectures there might be several instructions
that have no effect, but for simplicity we refer to all of them as NOPs).

Allowing existing processor cores to execute single-path code therefore
involves two steps:

1. Single-path code is generated from regular machine code by applying the
method of Prokesch et al. to the executable file of a program. This single-path

116 M. Platzer and P. Puschner

code consists of restructured object code that includes special instructions for
computing predicates.

2. An instruction filter is added to the processor core. At runtime, this filter
interprets the special instructions of the single-path code, to compute pred-
icates and filter instructions depending on the actual predicate states. As a
result the processor receives a stream of filtered native instructions (either
instructions from the object code or NOPs) at runtime.

The filter is placed on the instruction fetch path, such that all instructions
pass through it as they are fetched by the core. Figure 1 shows a concept diagram
of a processing platform using the filter. Instructions are only forwarded to the
core if all predicates on the predicate stack are true, otherwise they are replaced
by NOPs. Conditionally modifying predicates requires access to the condition
codes of the processor, therefore we add an interface that routes the condition
codes out of the core and into the filter. The remainder of this section discusses
the requirements for such a single-path filter.

Fig. 1. Concept diagram of the single-path filter: Instructions are fetched from memory
and pass through the filter, from where they are either passed on to the core or replaced
by an instruction with no effects. The filter has access to the condition codes of the
core, thus allowing to set predicates conditionally.

We apply the single-path conversion to the executable file of a program, after
all compilation and linking steps have been completed, which has the advantage
that it is not dependent on a specific compilation toolchain. That requires, how-
ever, that any additional state information necessary for the execution of the
single-path code (such as for instance the predicate values) need to be saved in
the filter, as saving it in memory or registers might lead to collisions with the
memory or register allocation of the preceding compilation or linking steps.

An Instruction Filter for Time-Predictable Code 117

The first requirement to execute single-path code generated in this manner is
that the execution platform must support fully predicated execution. The single-
path filter must interpret special instructions that compute predicates, manage
the predicates and filter out instructions that are disabled by these predicates.
Predicates capture the truth values of conditions and a new predicate is required
for every condition that we encounter. Predicates expire when the execution of
subsequent instructions no longer depends on the associated condition. Pro-
gramming constructs that use conditions, such as conditional statements (e.g.
if-then-else statements) or loops, can be nested, with new conditions applying
on top of others. Consequently the predicates should be managed in a predicate
stack. A new predicate is pushed to the stack when encountering a condition and
the predicate is removed from the stack when it expires. That predicate stack
must be stored in dedicated hardware in the filter, such that the predicate values
are readily available to it.

Apart from fully predicated execution, another requirement is that loops
require an iteration counter. In regular code the number of iterations of a loop
depend on the loop condition only. However, in single-path code the loop bound
dictates the number of iterations and a counter is required to count these iter-
ations. This counter cannot be stored in memory or a register either, since we
do not want to restrict the hardware resources available to the compiler. There-
fore, the iteration counters for loops in single-path code also need to be stored
in hardware. Loops might be nested, hence instead of a single loop counter a
loop counter stack is required. A new loop counter is pushed to that stack upon
entering a loop and initialized with the total iteration count. The counter is then
decremented on every iteration. When the loop counter reaches 0 the loop exits
and the loop counter is removed from the stack.

Finally, the single-path filter must have a dedicated return address stack for
single-path functions. In regular code a function call writes the address of the
call instruction to a specific register known as the return address register. When
the function returns, it transfers control back to that address. Function calls can
be conditional, for instance when they appear inside conditional statements. In
single-path code, every function call is executed unconditionally, but depending
on the values of predicates, all instructions of that function might be inactive and
thus the function call might have no effects. This is equivalent to a function that
would not have been executed in regular code. Since an inactive function does not
modify any memory locations or registers, including the return address register,
the return address would be lost if it were not saved elsewhere. Therefore, the
return address of single-path function calls must be stored in the filter as well.
Function calls are usually nested, hence a return address stack is required.

5 Filter Implementation

In order to add the ability to execute single-path code to an existing processor,
we add an instruction filter with a predicate stack which computes and saves
predicates triggered by special predicate-defining instructions and filters regular

118 M. Platzer and P. Puschner

instructions based on the values of these predicates, by either passing them on to
the core or replacing them by instructions that have no effects (NOPs). The filter
also manages a loop counter stack which holds the iteration counters of loops in
single-path code and a return address stack which stores the return addresses of
single-path function calls. To control the behavior of the single-path filter the
instruction set must be extended with special single-path instructions, which
modify the state of these hardware stacks. Unused opcodes in the instruction set
are used to encode these special instructions, which replace conditional control-
flow branches when generating single-path code and are parsed and applied
directly by the filter when fetched by the processor core.

Single-path code requires the ability to conditionally modify predicates, since
the predicates are used to capture the truth value of conditions. Therefore, the
instruction filter needs access to the results of comparisons in the core. On most
architectures condition codes are used to capture the results of compares and to
evaluate conditions. Hence, by giving the instruction filter access to these condi-
tion codes, it can evaluate conditions based on these condition codes analogously
to the processor core and modify predicates accordingly.

Individual predicates are pushed to the predicate stack, where they are then
modified either conditionally or unconditionally, thereby enabling and disabling
the execution of subsequent instructions. Predicates are removed from the pred-
icate stack in the reverse order than they have been added to it.

In our implementation we require that all instructions on the predicate stack
are true in order to enable instructions and thereby forward them to the core.
Although our hardware implementation does not differentiate between different
types of predicates, we distinguish them logically based on the purpose they
serve in single-path code.

1. Function predicates: Each function has a function predicate, which is the first
predicate pushed to the predicate stack upon entering a function and con-
versely the last predicate popped from the stack upon leaving that function.
The function predicate is initially true and changes to false when the code
encounters a return statement. Single-path code requires that all instructions
of a function are always executed, hence an early return from a function is
realized by clearing the function predicate and thereby causes the filter to
substitute all remaining instructions of that function by NOPs.

2. Conditional predicates: A conditional predicate is pushed to the stack for each
conditional statement (e.g. if-then-else statements). The conditional predicate
is initialized based on the result of a condition and remains on the stack for
as long as the condition applies.

3. Loop predicates: Each loop has a loop predicate. Similar to a function predi-
cate, this is the first predicate pushed to the predicate stack when entering a
loop and the last predicate removed when exiting the loop. The loop predi-
cate is true as long as the loop condition is true. Once cleared it remains false
for all remaining loop iterations.

4. Iteration predicates: In addition to the loop predicate, every loop also has
an iteration predicate. The iteration predicate is set to true at the beginning

An Instruction Filter for Time-Predictable Code 119

of each loop iteration and is cleared if one iteration of the loop is aborted
without exiting the loop, such as would happen when encountering a continue
statement.

The following examples illustrate the use of predicates for conditional state-
ments and for loops.

Figure 2 shows the C code for a simple conditional statement, along with
pseudo-assembler representations of the regular version as well as of the single-
path version of the machine code for that conditional. The generic operation
OP A is executed unconditionally prior to the conditional block. OP B is exe-
cuted if the condition COND is true, otherwise OP C is executed instead.
Finally, OP D comes after the conditional block and is again executed uncon-
ditionally. In regular machine code the conditional execution of either OP B or
OP C is realized with control-flow instructions. A conditional branch moves con-
trol to the else label if COND is false, thus executing OP C. Otherwise OP B is
executed and then an unconditional jump brings control to the end of the condi-
tional block. The single-path version, by contrast, does not use any control-flow
instructions. Instead a new predicate is pushed to the stack and that predicate
(with index 0 since it is at the top of the stack) is cleared if COND is false. Hence,
the predicate at the top of the stack initially corresponds to the truth value of
COND, and therefore the operation OP B is only enabled if COND is true.
Then, the value of the predicate is inverted, thereby enabling OP C if COND is
false. The right column shows the state of the predicate stack depending on the
truth value of COND for each of the generic operations.

Figure 3 shows a similar representation for a simple loop. This time however
the single-path version also contains a control-flow instruction. This is a special
instruction that is used in conjunction with a loop counter, which will be replaced
either by an unconditional jump to the beginning of the loop as long as the loop
counter is not 0 or by a NOP to exit the loop when the loop counter reaches 0.
Simultaneously, the loop counter is decremented by one every time control jumps
back to the start of the loop. The loop counter is pushed to the loop counter
stack and initialized with the loop bound specified in the annotation before the
start of the loop. Loops use a loop predicate to capture the state of the loop
condition and an iteration predicate that is replaces branches to the start of the
loop. While the loop predicate at index 1 in the predicate stack is cleared once
if the loop condition COND A is false and then remains false for all remaining
iterations, the iteration predicate at index 0 is conditionally cleared if COND B
is true for one loop iteration only and is reset to true for the next iteration. Both
of these predicates are pushed to the predicate stack before the beginning of the
loop and removed from the stack after the loop has been left.

The single-path filter substitutes the instructions fetched from memory by
instructions that have no effects (NOPs) when any of the predicates on the stack
is false. In order to achieve constant execution time that substitute instruction
must also have the same execution time than the original instruction. Which
and how many instructions are used for this purpose will therefore depend on
the specific processor. On architectures that use a hard-wired zero-register (i.e.

120 M. Platzer and P. Puschner

Fig. 2. Example of a conditional statement in single-path code: While regular machine
code uses control-flow branches to conditionally execute code, in single-path code pred-
icates are used instead.

Fig. 3. Example of a loop in single-path code: The loop bound annotation is used to
initialize the loop counter in single-path code and the loop is executed for a constant
number of iterations. The loop predicate capturing the loop condition and the iteration
predicate, which is cleared by a continue statement and reset at the start of each
iteration, control whether the instructions are actually active.

a register that always reads as 0 and cannot be written) the destination register
of an instruction can simply be replaced by that zero register, in which case the
instruction does not modify any registers and thus has no effect.

6 Current Work

We are implementing the single-path generation and the instruction filter for
two Reduced Instruction Set Computer (RISC) processors that are synthesized
as softcores in a Field-Programmable Gate Array (FPGA):

An Instruction Filter for Time-Predictable Code 121

– LEON3, a SPARC v8 processor core developed by Cobham Gaisler for safety-
critical applications.

– IBEX, a RISC-V processor core developed by ETH Zürich and the non-profit
organization lowRISC.

Both of these processors have a multi-stage in-order pipeline with predictable
timings, thus they execute a given single-path program in constant time regard-
less of input values.

The single-path code is generated following the method of Prokesch et al. [5],
which is applied to the fully compiled and linked executable file generated by a
target-dependent version of the GNU C Compiler (GCC).

Currently our implementation allows the successful translation and execution
of a set of experimental sample programs. We are working on the completion
of the single-path translation and filtering, such that all WCET-analyzable pro-
grams can be transformed to single-path and executed on these two processors,
and possibly extending the approach to other architectures.

7 Conclusion

We have presented a method to enable existing processor cores to efficiently
execute single-path code by placing a filter in the instruction-fetch path of the
core which provides predicated execution by filtering instructions depending on
the values of predicates. The predicates are managed on a predicate stack in
the filter and are controlled by special instructions that are interpreted by the
filter itself. The condition codes of the processor are routed to the filter to allow
predicates to be set conditionally.

Single-path code that can be executed by a processor that was upgraded
with this filter is generated from regular machine code by applying the single-
path transformation method developed by Prokesch et al. to the executable
produced by a regular compilation toolchain in a post-processing step. This
conversion reorders the basic blocks of the CFG of the program and replaces
conditional control-flow branches with special instructions that control the state
of predicates. These special instructions are parsed and interpreted by the filter.

We are implementing the single-path generation and the instruction filter for
two RISC processors. Currently our implementations allow the successful exe-
cution of few simple test programs. We plan to complete the single-path filters
for these two processors and potentially implement versions for more architec-
tures. Once fully functional we will evaluate the performance of single-path code
on these platforms and compare the WCET of regular code with the constant
execution time of the equivalent single-path code.

References

1. Delvai, M., Huber, W., Puschner, P., Steininger, A.: Processor support for tem-
poral predictability - the spear design example. In: 2003 Proceedings of the 15th
Euromicro Conference on Real-Time Systems, pp. 169–176, July 2003

122 M. Platzer and P. Puschner

2. Geyer, C.B., Huber, B., Prokesch, D., Puschner, P.: Time-predictable code execu-
tion - instruction-set support for the single-path approach. In: 16th IEEE Interna-
tional Symposium on Object/Component/Service-Oriented Real-Time Distributed
Computing (ISORC 2013), pp. 1–8 (2013)

3. Law, S., Bate, I.: Achieving appropriate test coverage for reliable measurement-
based timing analysis. In: 2016 28th Euromicro Conference on Real-Time Systems
(ECRTS), pp. 189–199, July 2016. https://doi.org/10.1109/ECRTS.2016.21

4. Mahlke, S.A., Hank, R.E., McCormick, J.E., August, D.I., Hwu, W.M.W.: A com-
parison of full and partial predicated execution support for ILP processors. In:
Proceedings of the 22nd Annual International Symposium on Computer Architec-
ture, ISCA 1995, pp. 138–150. Association for Computing Machinery, New York
(1995). https://doi.org/10.1145/223982.225965

5. Prokesch, D., Hepp, S., Puschner, P.: A generator for time-predictable code. In:
2015 IEEE 18th International Symposium on Real-Time Distributed Computing,
pp. 27–34, April 2015. https://doi.org/10.1109/ISORC.2015.40

6. Puschner, P.: The single-path approach towards WCET-analysable software. In:
IEEE International Conference on Industrial Technology, vol. 2, pp. 699–704
(2003). https://doi.org/10.1109/ICIT.2003.1290740

7. Puschner, P.: Experiments with WCET-oriented programming and the single-path
architecture. In: 10th IEEE International Workshop on Object-Oriented Real-Time
Dependable Systems, pp. 205–210 (2005)

8. Puschner, P.: Transforming Execution-Time Boundable Code into Temporally Pre-
dictable Code, pp. 163–172. Springer, Boston (2002). https://doi.org/10.1007/978-
0-387-35599-3 17

9. Puschner, P., Kirner, R., Huber, B., Prokesch, D.: Compiling for time predictability.
In: Ortmeier, F., Daniel, P. (eds.) Computer Safety, Reliability, and Security, pp.
382–391. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33675-
1 35

10. Santinelli, L., Guet, F., Morio, J.: Revising measurement-based probabilistic timing
analysis. In: 2017 IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), pp. 199–208, April 2017

11. Schoeberl, M., et al.: T-CREST: time-predictable multi-core architecture for
embedded systems. J. Syst. Archit. 61(9), 449–471 (2015). https://doi.org/10.
1016/j.sysarc.2015.04.002

12. Schoeberl, M., Puschner, P., Kirner, R.: A single-path chip-multiprocessor system,
vol. 5860, pp. 47–57 (2009). https://doi.org/10.1007/978-3-642-10265-3 5

13. Wenzel, I., Kirner, R., Rieder, B., Puschner, P.: Measurement-based timing analy-
sis. Commun. Comput. Inf. Sci. 17, 430–444 (2008). https://doi.org/10.1007/978-
3-540-88479-8 30

14. Wilhelm, R., et al.: The worst-case execution-time problem-overview of methods
and survey of tools. ACM Trans. Embed. Comput. Syst. 7(3) (2008). https://doi.
org/10.1145/1347375.1347389

https://doi.org/10.1109/ECRTS.2016.21
https://doi.org/10.1145/223982.225965
https://doi.org/10.1109/ISORC.2015.40
https://doi.org/10.1109/ICIT.2003.1290740
https://doi.org/10.1007/978-0-387-35599-3_17
https://doi.org/10.1007/978-0-387-35599-3_17
https://doi.org/10.1007/978-3-642-33675-1_35
https://doi.org/10.1007/978-3-642-33675-1_35
https://doi.org/10.1016/j.sysarc.2015.04.002
https://doi.org/10.1016/j.sysarc.2015.04.002
https://doi.org/10.1007/978-3-642-10265-3_5
https://doi.org/10.1007/978-3-540-88479-8_30
https://doi.org/10.1007/978-3-540-88479-8_30
https://doi.org/10.1145/1347375.1347389
https://doi.org/10.1145/1347375.1347389

ISO/SAE DIS 21434 Automotive
Cybersecurity Standard - In a Nutshell

Georg Macher1(B), Christoph Schmittner2, Omar Veledar3,
and Eugen Brenner1

1 Institute of Technical Informatics, Graz University of Technology, Graz, Austria
{georg.macher,brenner}@tugraz.at

2 Austrian Institute of Technology, Vienna, Austria
christoph.schmittner@ait.ac.at
3 AVL List GmbH, Graz, Austria

omar.veledar@avl.com

Abstract. A range of connected and automated vehicles is already avail-
able, which is intensifying the usage of connectivity features and infor-
mation sharing for vehicle maintenance and traffic safety features. The
resulting highly connected networking amplifies the attractiveness level
for attacks on vehicles and connected infrastructure by hackers with dif-
ferent motivations. Hence, the newly introduced cybersecurity risks are
attracting a range of mitigating strategies across the automotive field.
The industry’s target is to design and deliver safe and secure connected
and automated vehicles. Therefore, efforts are being poured into devel-
oping an industry standard capable of tackling automotive cybersecurity
issues and protecting assets. The joint working group of the standardiza-
tion organizations ISO and SAE have recently established and published
a draft international specification of the “ISO/SAE DIS 21434 Road
Vehicles - Cybersecurity Engineering” standard.

This document delivers a review of the available draft. This work pro-
vides a position statement for discussion of available analysis methods
and recommendations given in the standard. The aim is to provide a
basis for industry experts and researchers for an initial review of the
standard and consequently trigger discussions and suggestions of best
practices and methods for application in the context of the standard.

Keywords: ISO 21434 · ISO 26262 · Automotive · Security analysis

1 Introduction

Prior to the introduction of connectivity features and automated driving func-
tionalities, safety engineering was at the forefront of the automotive domain’s pri-
orities. Functional safety engineering methods and processes are thus becoming
industry standard and a critical part of the development. Today, many connected
and automated vehicles are available and connectivity features and information
sharing is increasingly used for additional vehicle, maintenance and traffic safety
c© Springer Nature Switzerland AG 2020
A. Casimiro et al. (Eds.): SAFECOMP 2020 Workshops, LNCS 12235, pp. 123–135, 2020.
https://doi.org/10.1007/978-3-030-55583-2_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-55583-2_9&domain=pdf
https://doi.org/10.1007/978-3-030-55583-2_9

124 G. Macher et al.

features. This has also increased the vulnerability of vehicle attacks by hack-
ers with different criminal motivations and thus introduces new risks for vehicle
cybersecurity.

Consequently, new challenges regarding automotive cybersecurity have
emerged; these in turn require additional efforts, engineering approaches and
a very specific skill-set to deal with threats, risk management, secure design,
awareness, and cybersecurity measures over the whole lifecycle of the vehicle.
Well aware of these facts, the automotive industry has thus been making enor-
mous efforts in the design and production of safe and secure connected and
automated vehicles. As the domain geared up for the cybersecurity challenges,
it has been able to leverage a broad range of valuable experiences from many
other domains, but it must nevertheless face several unique challenges.

The automotive industry has clearly recognized these requirements and there-
fore invested in the development of an industry standard to tackle automotive
cybersecurity issues and protect their assets. The joint working group of the
standardization organizations ISO and SAE has recently established a committee
draft of the “ISO/SAE DIS 21434 Road Vehicles - Cybersecurity Engineering”
standard [11].

From the perspective of the automotive industry, this standard achieves a
common understanding of security by design in product development and along
the entire supply chain.

This document is a review of the available draft. The aim of this work is
to provide a position statement of the available draft, the presented analysis
methods and recommendations given in the standard.

We further provide an overview of recommendations of the ISO/SAE DIS
21434 Road Vehicles - Cybersecurity Engineering standard regarding the map-
ping of cybersecurity processes in context of established processes. The aim of
this work is to provide a basis for industry experts and especially researchers for
an initial review of the standard. Based on this work we intend to trigger discus-
sions on mapping and suggestions of best practices and methods for application
in the context of the standard.

2 Established Safety and Security Frameworks

Safety and security engineering are tightly interlinked disciplines. They both
focus on system-wide features and could greatly benefit from one another if
adequate interactions between their processes are defined.

2.1 Safety Engineering Standards

Safety engineering is already an integral part of automotive engineering and
safety standards, such as the road vehicles - functional safety norm ISO 26262
[10] and its basic norm IEC 61508 [7], are well established in the automotive
industry. Safety assessment techniques, such as failure mode and effects analysis

ISO/SAE DIS 21434 Automotive Cybersecurity Standard - In a Nutshell 125

(FMEA) [8] and fault tree analysis(FTA) [9], are also specified, standardized,
and integrated in the automotive development process landscape.

IEC 61508 Ed 2.0 provides a first approach for integrating safety and security;
security threats are to be considered during hazard analysis in the form of a
security threat analysis. However, this threat analysis is not specified in more
detail in the standard and Ed 3.0 is about to be more elaborated on security-
aware safety topics.

ISO 26262 Ed 2.0, which was published at the end of 2018, includes more
recommendations for the interaction between safety and security. Separate stan-
dards were published based on an initial discussion about how to deal with safety
and cybersecurity in Automotive standardization, but with a description of inter-
actions. Annex E of ISO 26262:2018 delivers additional guidance on interactions.
The coordination of plans and milestones is suggested for the management, as
well as field monitoring. During concept phase a focus is on the interaction
between HARA and TARA and the coordination between countermeasures. In
the development phase a focus is on consecutive analysis and the identification of
potential impacts between the disciplines. The Annex is concluded with guidance
on the interaction in the production phase.

2.2 Security Engineering Standards

The SAE J3061 [22] guideline is a predecessor of ISO/SAE 21434 and establishes
a set of high-level guiding principles for cybersecurity by:

– defining a complete lifecycle process framework
– providing information on some common existing tools and methods
– supporting basic guiding principles on cybersecurity
– summarizing further standard development activities

SAE J3061 states that cybersecurity engineering requires an appropriate life-
cycle process, which is defined analogous to the process framework described in
ISO 26262. Further, no restrictions are given on whether to maintain separate
processes for safety and security engineering with appropriate levels of interac-
tion or to attempt direct integration of the two processes.

The guidebook also recommends an initial assessment of potential threats
and an estimation of risks for systems that may be considered cybersecurity rel-
evant or are safety-related systems, to determine whether there are cybersecurity
threats that can potentially lead to safety violations. A report on the application
of SAE J3061 was published [20].

While other standards, such as the IEC 62443 [1] or the ISO 27000 series [2]
are not directly aimed at automotive systems, they are nevertheless relevant for
the production and backend systems on automotive systems.

In [13] we reviewed the available threat analysis methods and the recommen-
dations of the SAE J3061 guidebook regarding threat analysis and risk assess-
ment method (TARA) in context of ISO 26262 (2011) and SAE J3061. We
provided an evaluation of available analysis methods together with a review of

126 G. Macher et al.

recommended threat analysis methods. Furthermore, we investigated systematic
approaches to support the identification of trust boundaries and attack vectors
for the safety- and cybersecurity-related aspects of complex automotive systems
also in context of ISO 26262 (2011) and SAE J3061 in [14]. In the work of [15]
we proposed a structured method for integrating security and safety engineering
in the existing Automotive SPICE context.

Aside from this, in [18] we presented a first overview about the ongoing devel-
opment and status of ISO/SAE 21434. Our working group presented ThreatGet,
a new tool for security analysis, based on threat modelling [5] and a method for
evaluating risk in cybersecurity with the name RISKEE [12]. This method is
based on attack graphs and the Diamond model [3] in combination with the
FAIR method for assessing and calculating risk. In a comparison with these
works we updated the overview to consider the ongoing development, review the
current status regarding methodological guidance and give a first evaluation on
integrating cybersecurity into established automotive processes.

In recent years, SafeComp workshops have started a discussion on automotive
efforts taken in the context of designing and producing safe and secure connected
and automated vehicles. With the focus on industry standards to tackle automo-
tive cybersecurity issues and additional standards by European Telecommuni-
cations Standards Institute (ETSI) and International Telecommunication Union
(ITU) working on security topics of connected vehicles [21]. Further activities
of last year’s SafeComp also focus on presenting the method gaps and a pro-
posal towards a solution to achieve coordinated risk management by applying a
quantitative security risk assessment methodology [4].

3 ISO/SAE DIS 21434

In January 2016, the first guidebook for cyber-physical vehicle systems cyberse-
curity, SAE J3061 [22], was issued and marked the beginning of the cooperation
between ISO and SAE to collaborate on the development of a cybersecurity stan-
dard for road vehicles in September 2016. The purpose of the fist standard to be
created (ISO/SAE 21434 [11]) was to (a) define a structured process to ensure
cybersecure design, (b) thus reducing the potential for a successful attack and
reducing the likelihood of losses, and (c) provide clear means to react to cyber-
security threats consistently across global industry.

As already mentioned, ISO/SAE DIS 21434 [11] is intended for applica-
tion to road-vehicles and focuses on setting minimum criteria for automotive
cybersecurity engineering. In the standard neither the specifics of cybersecurity
technologies, nor solutions and remediation methods are given. Furthermore no
unique requirements for autonomous vehicles or road infrastructure given. A
risk-oriented approach for prioritization of actions and methodical elicitation of
cybersecurity measures is encouraged.

ISO/SAE DIS 21434 Automotive Cybersecurity Standard - In a Nutshell 127

Fig. 1. Overview of the ISO/SAE DIS 21434 chapter structure [11]

3.1 ISO/SAE DIS 21434 Structure and Sections

Key principles focused by ISO/SAE DIS 21434 [11] are the cybersecurity activi-
ties in all phases of the vehicle life-cycle; ranging from design and development,
production, operation and maintenance to decommissioning. In this section, the
structure of the ISO/SAE DIS 21434 draft, depicted in Fig. 1, is analysed and
briefly described before a more detailed description is given in the following
sections of this work.

Section 1 defines the scope of the standard.
Section 2 provides normative references.
Section 3 defines abbreviated terms and definitions of terms used in the docu-

ment.
Section 4 is an informative part describing the vehicle ecosystem, organizational

cybersecurity management and the related automotive lifecycle.
Section 5 includes descriptions of organizational cybersecurity strategy, policy

and objectives.
Section 6 defines risk management requirements, which includes a plan and

method to determine the extent to which the road user is threatened
by a potential circumstance or event.

Section 7 deals with the concept phase and defines cybersecurity goals, resulting
from a threat analysis and risk assessment; as well as cybersecurity
requirements definition to achieve the cybersecurity goals.

Section 8 specifies the implementation and verification of cybersecurity require-
ments specific to product development phase.

Section 9 is focussed on the production, operation and maintenance phases and
also on specifying requirements to ensure that the cybersecurity spec-
ifications are implemented in the produced item; also covering in-field
cybersecurity activities.

128 G. Macher et al.

Section 10 describes supporting processes, including organizational processes.
Annexes are also informative parts describing several activities, examples and

methods which have not been agreed to be mandatory.

Sections 1, 2, and 3 define the scope of the standard. The abbreviated terms
and definitions of terms used on the first pages of this document and are not
further detailed in this work, since already introduced in the introduction section
and because more details do not provide additional added value.

3.2 ISO/SAE DIS 21434 Section 4 - General Considerations

This section informs of the vehicle ecosystem, organizational cybersecurity man-
agement and the related automotive lifecycle. In this context, automotive cyber-
security is defined, as concerning the protection of all assets in the vehicle against
cybersecurity threats. Automotive cybersecurity thus considers (a) threats to
the vehicle or its components and (b) threats to the ecosystem that compromise
assets outside of the vehicle but utilize vulnerabilities within the vehicle. Addi-
tionally, a general organizational overview of cybersecurity management and the
cybersecurity engineering lifecycle activities is provided.

3.3 ISO/SAE DIS 21434 Section 5 - Management of Cybersecurity

The objectives of this section:

a Describing the organizational objectives regarding cybersecurity and the orga-
nizational strategy to achieve these objectives.

b The specification of organization-specific rules and processes to implement
the organizational cybersecurity strategy.

c Assign responsibilities for cybersecurity engineering and the corresponding
authority.

d Provision of the resources needed.
e Foster a cybersecurity culture.
f Managing the competences and awareness needed to perform the cybersecu-

rity activities.
g Applying continuous improvement.
h The performing of an organisational cybersecurity audit.
i Managing interactions between cybersecurity processes.

Paragraph 5.1.4.7 details the interaction between cybersecurity processes and
existing processes within the organisation. This section also states that effective
communication channels between cybersecurity, functional safety, privacy and
other disciplines that are related to the achievement of cybersecurity shall be
maintained. This also includes communication between cybersecurity and func-
tional safety engineering to exchange relevant information (e.g. threat and haz-
ard information, violations of either cybersecurity goals or safety goals). In this
context the SAHARA method [16] was intended to have the same purpose.

ISO/SAE DIS 21434 Automotive Cybersecurity Standard - In a Nutshell 129

Furthermore, paragraph 5.1.4.6 expresses the requirement of a cybersecurity
audit, which shall be performed to independently judge whether the organi-
zational processes achieve the process related objectives of this standard. This
paragraph also states that the independence scheme can be based on Automotive
SPICE, IATF 16949 in conjunction with ISO 9001, or ISO 26262.

Aside from this, general statements are given with regard to cybersecurity
management during the concept phase and product development (paragraph
5.2) and during production, operation and maintenance (paragraph 5.3). This
also includes tailoring of cybersecurity activities for reuse (5.2.4.2.2), system or
component out of context development (5.2.4.2.3) and off-the-shelf development
(5.2.4.2.4).

3.4 ISO/SAE DIS 21434 Sections 6 - Risk Assessment Methods

This section is introduced with an informative risk assessment methods intro-
duction paragraph (6.1), which generally deals with risk assessment on organi-
sational level, but does not specify any specific risk assessment methods or does
not propose approaches to be used.

Here the work of SafeComp2016 [13] analysed some possible TARA analysis
methods for their applicability in the automotive context. The work of Dobaj et
al. [4] recently proposed a solution to achieve coordinated risk management by
applying a quantitative security risk assessment methodology. This methodology
extends established safety and security risk analysis methods with an integrated
model, denoting the relationship between adversary and victim, including the
capabilities and infrastructure used. This model is applied in estimating the
resistance strength and threat capabilities, for determining attack probabilities
and security risks. Other related works may be EVITA method [6], HEAVENS
model, or the threat matrix approach. As mentioned initially, a method for eval-
uating risk in cybersecurity called RISKEE [12], is based on attack graphs and
the Diamond model [3] in combination with the FAIR method for assessing and
calculating risk. In terms of a structured threat analysis and threat modelling,
the presented ThreatGet tool for security analysis [5] needs to be mentioned.

Paragraph 6.2 deals with asset identification and thus focuses on (a) assets,
(b) their security properties (e.g. CIA) and (c) damage scenarios (e.g. a safety,
financial, operational or financial impact) in the event of the loss of their security
properties. To that end, candidate assets and potential damage scenarios are
identified and an impact analysis is performed on the potential damage scenarios;
here too no specific methods or approaches are suggested.

In the following paragraphs the threat analysis (6.3), impact assessment (6.4),
and vulnerability analysis (6.5) are depicted. The objective of the threat analysis
is to identify threats scenarios that could potentially compromise the security
properties of the item. The impact assessment additionally assesses the impact
or the extent of damage resultiong from a given damage scenario. The impact
is defined as something that would be experienced or eventually sustained by
the stakeholders (e.g. road users or businesses). While vulnerability analysis
results in (a) a list of security vulnerabilities, (b) the distinguishing of flaws

130 G. Macher et al.

and weaknesses and (c) identifying the attack paths that connect these security
vulnerabilities to an attack.

Paragraph 6.6 describes the objective of attack analysis, which is to develop
and/ or update a set of attack paths which could be exploited to realize a threat
scenario. The assessment of the exploitability of these attack paths is subject of
an attack feasibility assessment (described in paragraph 6.7).

Finally, the risk assessment (paragraph 6.8) and risk treatment (6.9) deal
with classification of the identified threat scenarios (based on the impact and
attack feasibility) and the selection of appropriate risk treatment options.

As already mentioned, dedicated methods or specific approaches are not men-
tioned in this normative part, but they are mentioned in some parts of the Annex.

3.5 ISO/SAE DIS 21434 Sections 7 - Concept Phase

This section of the norm determines if the system under development is cyber-
security relevant (paragraph 7.1), the item definition in cybersecurity context
(7.2), and the initiation of product development at concept phase (7.3). It also
includes, in alignment with the ISO 26262 approach, the definition of cybersecu-
rity goals (7.4) and a cybersecurity concept (7.5). Here the link to the SAHARA
method [16] shall be mentioned, which was one of the first methods to map the
safety HARA analysis on the cybersecurity challenge.

The determination of the cybersecurity relevance of an item is not specifically
mentioned, but Annex H provides a questionnaire that can be used to assess an
item. The item definition and mining of cybersecurity goals is very much aligned
with the safety-related approach known from ISO 26262 [10]. The cybersecurity
concept consists, again as known from ISO 26262, of the cybersecurity require-
ments that achieve the cybersecurity goals along with their allocation at the
appropriate level of architecture.

The cybersecurity concept also contains a collection of cybersecurity require-
ments which achieve the cybersecurity goals in implementation-independent
manner.

3.6 ISO/SAE DIS 21434 Sections 8 - Product Development

This section of the standard describes the remaining product development
phases. System development phase in paragraph 8.1, which can be linked to
ISO 26262 part 4, Hardware development phase (paragraph 8.2), which can be
linked to ISO 26262 part 5, and Software development phase (paragraph 8.3),
which can be linked to ISO 26262 part 6. The additional paragraphs 8.4 is deal-
ing with verification and validation and 8.5 is dealing with post-development
release. In this context the work of Schmittner et al. [19] provides an FMEA
application for security topics, called FMVEA.

Various different risk assessment activity types are also mentioned at various
stages in the system development but these are not detailed. Three assessments
are made, first at concept phase an assessment of the threats for the item and its

ISO/SAE DIS 21434 Automotive Cybersecurity Standard - In a Nutshell 131

operational environment, second at system development phase an assessment of
system specification vulnerabilities that cause residual risk and third an assess-
ment of system integration vulnerabilities that cause residual risk. The only
mention, that system development shall be planned to identify methods and
measures for system development and the cybersecurity activities.

Clause 8.1.4.2.2.3 mentions the following best practices of cybersecurity
design:

1. principle of least privilege
2. authentication
3. authorization
4. audit
5. End-to-End security
6. architectural trust level (segregation of interfaces, defense in depth)
7. segregation of interfaces (to allow proper cyber security analysis)
8. protection of maintainability during service (test interface, OBD)
9. testability during development (test interface) and operations

10. Security-by-default (simplicity, non-obfuscation, no reliance on expert users)

Further, system integration shall be verified and tested by a combination of
the proper methods, namely (a) requirement-based positive and negative testing,
(b) interface testing, (c) penetration testing, (d) vulnerability scanning and (e)
fuzz testing. For hardware design, the following mechanisms that ensure cyber-
security functionalities should be considered (clause 8.2.4.3.3):

– design cybersecurity domain (domain separation)
– self-protection of security functionalities
– protection against bypass of the security functionalities
– secure initialization of the security functionalities.

Further, all physical and logical interfaces of hardware elements related to cyber-
security, shall be identified by their purpose, usage and parameters. Since inter-
faces are a potential entry point for cybersecurity attacks and should serve as
an input to the vulnerability analysis, also mentioned in [17].

For cybersecurity related software development, software cybersecurity
requirements have to be derived from the system cybersecurity requirements
and allocated to software modules. Software unit design specifications and their
implementations need to be verified statically and dynamically. Therefore, secure
design rules and coding guidelines, domain separation, self-protection, non-
bypass characteristics, and secure initialization definition shall be considered.
Paragraph 8.3.4.6.5 states design principles for software unit design and imple-
mentation at the source code level. Including also the properties of (a) correct
order of execution of subprograms and functions, (b) consistency of the inter-
faces, (c) correctness of data flow and control flow, (d) simplicity, readability and
comprehensibility, and (e) robustness, verifiability and suitability for software
modification. Regarding verification and validation most activities are described
in Annex F.

132 G. Macher et al.

3.7 ISO/SAE DIS 21434 Sections 9 - Production, Operation and
Maintenance

This section deals with production (paragraph 9.1) to ensure that the cybersecu-
rity specifications from development are implemented in the produced item and
that the implemented processes prevent the introduction of additional cyberse-
curity vulnerabilities. The cybersecurity monitoring (9.2), must have processes
in place for gathering relevant cybersecurity information and for the reviewing
of cybersecurity information. Additionally, the handling and incident response
(9.3) processes present how to handle cybersecurity events and updating of basic
cybersecurity requirements and capabilities are mentioned (9.4).

3.8 ISO/SAE DIS 21434 Sections 10 - Supporting Processes

The processes described in this section are for supporting the cybersecurity activ-
ities and for defining interactions, dependencies and responsibilities between cus-
tomers and suppliers. Included in this are management systems (paragraph 10.2)
together with distributed cybersecurity activities (10.3) describing the relation
between customer and suppliers and tool management (10.4). While no stan-
dard tools for development processes mentioned, a hint is given in the direction
of safety standards such as ISO 26262, IEC 61508, DO-178B is referred for tool
qualification also for cybersecurity tools.

4 Review

A challenging task of the ISO/SAE 21434 committee was to create a brand
new cybersecurity standard for the specifics of the automotive industry without
building upon a wider variety of previous standards. While SAE J3061 was an
important step forward, it was also recognized that this guidebook could not
fulfil a role similar to that as was intended by ISO/SAE 21434, as in the case
of ISO 26262, for the cybersecurity engineering of road-vehicles. The cybersecu-
rity topic in the automotive context is a very new one and the ambitious plan
of providing a framework that includes both the requirements for cybersecurity
processes and a common language for communicating and managing cyberse-
curity risk among the stakeholders is aiming high. The fact that this standard
does not prescribe specific technology or solutions related to cybersecurity brings
additional ambiguities to the descriptions of processes and approaches.

Another stated high aim is to provide a clear means of reacting to cyberse-
curity threats consistently across the global industry. This is a relatively chal-
lenging target to achieve. A prominent example, is the CAL, a counterpart to
the Automotive Safety Integrity Level (ASIL) from ISO 26262 during the risk
assessment. The CAL should be used to define rigorous and applicable methods,
but since no consensus has been found as yet on how to determine and treat
such a parameter, this part has also been relegated to the Annex only. Thus,
a risk-oriented approach for prioritization of actions and methodical elicitation

ISO/SAE DIS 21434 Automotive Cybersecurity Standard - In a Nutshell 133

of cybersecurity measures is encouraged, but no further added value in terms of
best practices or agreed approaches is given.

In conclusion, this work is a highly creditable effort. The first common stan-
dard is both a major and an essential step in the right direction, but in the
standard context it has not been possible to provide all the answers to questions
related to methods, guidelines and best practices (or for those that are intended).
The aim of this work is thus to share a basis for discussion and exchange between
industry experts and researchers. Starting form this it will be possible to mine
best practices and state-of-the-art methods for application in the context of the
standard.

5 Conclusion

The joint working group of the standardization organizations ISO and SAE has
recently established and published a draft of the “ISO/SAE 21434 Road Vehi-
cles - Cybersecurity Engineering” standard. With this standard, the goal was to
provide a basis for an entire uniform cybersecurity development process in the
automotive industry. The relevant aspects for product definition, design, imple-
mentation and testing with this standard have been described, but no specific
implementation details or best practice approaches given.

In this work we have thus highlighted the outcomes of the current draft stan-
dard and described how security standards, such as ISO/SAE 21434, are not the
silver-bullet answer to applications in practice. These are often in a fragmented
state, or provide descriptions at an abstract level for direct application in work-
ing environment and are not intended to provide answers to questions related to
methods, guidelines and best practices.

Thus, one aim of this work is to provide a basis for industry experts and
especially researchers for an initial review on the standard. The more important
goal was to trigger discussions on mapping and suggestions of best practices and
methods for application in the context of the standard and the domain. This
work has solely provided some additional related efforts and was intended to
provide a position statement for discussion, invite experts to get in contact and
set/improve the state-of-the-art.

Acknowledgments. This work is supported by the DRIV ES project. The Develop-
ment and Research on Innovative Vocational Educational Skills project (DRIV ES) is
co-funded by the Erasmus+ Programme of the European Union under the agreement
591988-EPP-1-2017-1-CZ-EPPKA2-SSA-B.

References

1. IEC 62443: Industrial communication networks - network and system security
2. ISO 27000 series, information technology - security techniques
3. Caltagirone, S., Pendergast, A., Betz, C.: The diamond model of intrusion analy-

sis. Technical report, Center for Cyber Intelligence Analysis and Threat Research
Hanover Md (2013)

134 G. Macher et al.

4. Dobaj, J., Schmittner, C., Krisper, M., Macher, G.: Towards integrated quanti-
tative security and safety risk assessment. In: Romanovsky, A., Troubitsyna, E.,
Gashi, I., Schoitsch, E., Bitsch, F. (eds.) Computer Safety. Reliability, and Security,
pp. 102–116. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26250-1 8

5. El Sadany, M., Schmittner, C., Kastner, W.: Assuring compliance with protection
profiles with threatget. In: Romanovsky, A., Troubitsyna, E., Gashi, I., Schoitsch,
E., Bitsch, F. (eds.) Computer Safety. Reliability, and Security, pp. 62–73. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-26250-1 5

6. Henniger, O., Ruddle, A., Seudié, H., Weyl, B., Wolf, M., Wollinger, T.: Securing
vehicular on-board IT systems: The EVITA project. In: VDI/VW Automotive
Security Conference, p. 41 (2009)

7. ISO - International Organization for Standardization. IEC 61508 Functional safety
of electrical/electronic/programmable electronic safety-related systems

8. ISO - International Organization for Standardization. IEC 60812 Analysis tech-
niques for system reliability - Procedure for failure mode and effects analysis
(FMEA) (2006)

9. ISO - International Organization for Standardization. IEC 61025 Fault tree analysis
(FTA), December 2006

10. ISO - International Organization for Standardization. ISO 26262 Road vehicles
Functional Safety Part 1–10 (2011)

11. ISO - International Organization for Standardization. ISO/SAE DIS 21434 Road
Vehicles - Cybersecurity engineering (2020)

12. Krisper, M., Dobaj, J., Macher, G., Schmittner, C.: RISKEE: a risk-tree based
method for assessing risk in cyber security. In: Walker, A., O’Connor, R.V., Mess-
narz, R. (eds.) EuroSPI 2019. CCIS, vol. 1060, pp. 45–56. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-28005-5 4

13. Macher, G., Armengaud, E., Brenner, E., Kreiner, C.: A review of threat anal-
ysis and risk assessment methods in the automotive context. In: Skavhaug, A.,
Guiochet, J., Bitsch, F. (eds.) SAFECOMP 2016. LNCS, vol. 9922, pp. 130–141.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45477-1 11

14. Macher, G., Messnarz, R., Armengaud, A., Eric, A., Riel, A., Brenner, E., Kreiner,
C.: Integrated safety and security development in the automotive domain. In: SAE
Technical Paper. SAE International (2017)

15. Macher, G., Schmittner, C., Dobaj, J., Armengaud, E., Messnarz, R.: An integrated
view on automotive spice, functional safety and cyber-security. In: SAE Technical
Paper. SAE International, April 2020

16. Macher, G., Sporer, H., Berlach, R., Armengaud, E., Kreiner, C.: SAHARA: a
security-aware hazard and risk analysis method. In: Design, Automation Test in
Europe Conference Exhibition (DATE), pp. 621–624, March 2015

17. Macher, G., Sporer, H., Brenner, E., Kreiner, C., An automotive signal-layer secu-
rity and trust-boundary identification approach. Procedia Comput. Sci. 109, 490–
497 (2017). 8th International Conference on Ambient Systems, Networks and Tech-
nologies, ANT-2017 and the 7th International Conference on Sustainable Energy
Information Technology, SEIT 2017, 16–19 May 2017. Madeira, Portugal (2017)

18. Schmittner, C., Griessnig, G., Ma, Z.: Status of the development of ISO/SAE
21434. In: Larrucea, X., Santamaria, I., O’Connor, R.V., Messnarz, R. (eds.) Sys-
tems, Software and Services Process Improvement, vol. 896, pp. 504–513. Springer,
Heidelberg (2018). https://doi.org/10.1007/978-3-319-97925-0 43

https://doi.org/10.1007/978-3-030-26250-1_8
https://doi.org/10.1007/978-3-030-26250-1_5
https://doi.org/10.1007/978-3-030-28005-5_4
https://doi.org/10.1007/978-3-319-45477-1_11
https://doi.org/10.1007/978-3-319-97925-0_43

ISO/SAE DIS 21434 Automotive Cybersecurity Standard - In a Nutshell 135

19. Schmittner, C., Gruber, T., Puschner, P., Schoitsch, E.: Security application of
failure mode and effect analysis (FMEA). In: Bondavalli, A., Di Giandomenico, F.
(eds.) SAFECOMP 2014. LNCS, vol. 8666, pp. 310–325. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-10506-2 21

20. Schmittner, C., Ma, Z., Reyes, C., Dillinger, O., Puschner, P.: Using SAE J3061
for automotive security requirement engineering. In: Skavhaug, A., Guiochet, J.,
Schoitsch, E., Bitsch, F. (eds.) SAFECOMP 2016. LNCS, vol. 9923, pp. 157–170.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45480-1 13

21. Schmittner, C., Macher, G.: Automotive cybersecurity standards - relation and
overview. In: Romanovsky, A., Troubitsyna, E., Gashi, I., Schoitsch, E., Bitsch,
F. (eds.) Computer Safety. Reliability, and Security, pp. 153–165. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-26250-1 12

22. Vehicle Electrical System Security Committee. SAE J3061 Cybersecurity Guide-
book for Cyber-Physical Automotive Systems

https://doi.org/10.1007/978-3-319-10506-2_21
https://doi.org/10.1007/978-3-319-45480-1_13
https://doi.org/10.1007/978-3-030-26250-1_12

WiCAR - Simulating Towards
the Wireless Car

Harrison Kurunathan(B), Ricardo Severino, Ênio Filho, and Eduardo Tovar

CISTER/INESC TEC and ISEP-IPP, Porto, Portugal
{hhkur,rarss,enpvf,emt}@isep.ipp.pt

Abstract. Advanced driving assistance systems (ADAS) pose stringent
requirements to a system’s control and communications, in terms of time-
liness and reliability, hence, wireless communications have not been seri-
ously considered a potential candidate for such deployments. However,
recent developments in these technologies are supporting unprecedented
levels of reliability and predictability. This can enable a new genera-
tion of ADAS systems with increased flexibility and the possibility of
retrofitting older vehicles. However, to effectively test and validate these
systems, there is a need for tools that can support the simulation of these
complex communication infrastructures from the control and the net-
working perspective. This paper introduces a co-simulation framework
that enables the simulation of an ADAS application scenario in these
two fronts, analyzing the relationship between different vehicle dynam-
ics and the delay required for the system to operate safely, exploring the
performance limits of different wireless network configurations.

Keywords: Automotive · Safety · ADAS · Intra-vehicle
communication · DSME · Robotic-network co-simulation

1 Introduction

In the past decade, Wireless Sensor Networks (WSN) have been widely adopted
and supporting several innovative applications in a multitude of domains, such
as in health, security, and agricultural. Nowadays, the increasing miniaturiza-
tion of modern embedded systems, together with the advancements in the area
of WSNs and energy harvesting, have opened up new possibilities to fit wire-
less communications into an unexpected series of applications. The automotive
industry, has understandably been reluctant to adopt WSN, mostly pointing out
its non-deterministic communication behaviour, unreliability due to interference
and security issues. Therefore, wireless has been confined to some limited func-
tionalities of infotainment systems and its adaption in critical systems has been
non-existent in vehicles, although it has been already enabling a series of critical
scenarios in other industrial domains.

The day-to-day automobile has gradually evolved from fully mechanical
design to a fully electronically equipped modern car. The existing subsystems
c© Springer Nature Switzerland AG 2020
A. Casimiro et al. (Eds.): SAFECOMP 2020 Workshops, LNCS 12235, pp. 136–147, 2020.
https://doi.org/10.1007/978-3-030-55583-2_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-55583-2_10&domain=pdf
https://doi.org/10.1007/978-3-030-55583-2_10

WiCAR - Simulating Towards the Wireless Car 137

of a modern car consist of several sensors and actuators that are coupled with
hundreds of Electronic Control Units (ECU) that are interconnected through
thick wired harnesses and communicate based on real-time communication pro-
tocols. These wired harnesses can increase the overall weight of the car resulting
reduction of the performance of the vehicle in terms of fuel consumption. Thus,
the excess weight of the car also can be extrapolated to an environmental issue.

Current trend, is to continue to increase the number of application modules
and complexity in the vehicle, by fitting newer models with improved advanced
driving assistance systems (ADAS) to increase their safety. However, this effort is
not being applied to the millions of older vehicles that will continue to share the
roads in the next 15 years, partially due to the tremendous complexity involved
in retrofitting such vehicles. Wireless communications can potentially become
an enabling technology to support such possibility, considering its flexibility
and ease of deployment, by exploring the innovative plug-and-play possibili-
ties introduced by these networked sensor networks. Ideally, additional sensing
arrays could be introduced into the vehicle with minimum complexity, and with-
out requiring complex re-wiring. However, ADAS pose stringent requirements
to a system’s control and communications, in terms of timeliness and reliabil-
ity, and these properties must be ensured by the communications technology.
The improvements to the low-power, low-rate IEEE 802.15.4 standard [1], intro-
duced by the .e amendment, enables interesting features such as guaranteed
bandwidth, deterministic delay and several other improved reliability support
via the introduction of multi-channel techniques. These characteristics turn this
communication technology as a prominent candidate to support wireless ADAS
as well as other non-critical applications.

However, to effectively test and validate these systems, there is a need for
tools that can support the simulation of these complex communication infras-
tructures from the control and the networking perspective, focusing on the inter-
play between these two dimensions. This paper introduces a co-simulation frame-
work that enables the simulation of an ADAS application scenario in these two
fronts, analyzing the relationship between vehicle dynamics, i.e. speed and brak-
ing force, and the delay required for the system to operate safely, exploring the
performance limits of different network configurations of the DSME protocol.

The main contributions of this paper are as follows:

– We provide a co-simulation framework that joins a network simulator fit-
ted with a DSME communications stack i.e. OmNet++/OpenDSME, with a
robotics simulator i.e. Gazebo, that simulates the control and dynamics of a
real vehicle.

– We implement a proof-of-concept Parking Assistance ADAS systems that
relies on external sensors and wireless communications.

– We investigate the adequacy of the DSME MAC behavior of IEEE 802.15.4
for supporting the ADAS, and from the application perspective, we determine
speed limits that guarantee the safety of the system.

138 H. Kurunathan et al.

2 Related Work

The research community has continuously looked into the possibility of using
Wireless Sensor and Actuator Networks (WSANs) in intra-car communication.
One of the foremost motivation for its implementation is to reduce the weight
of the car and increase the overall performance in terms of fuel economy and
reliability. Researchers in [2] investigated the design aspects of WSANs in intra-
car systems and if whether they could become a viable solution to partially
replace or enhance current wired measurement and control subsystems.

In [3], authors used IEEE 802.15.4 Compliant and ZigBee RF Transceivers to
create a Blind Spot Information System (BLIS). BLIS systems implemented by
many car manufacturers (e.g., General Motors, Ford, and Volvo) are based on
costly hardware components such as cameras and radars. The proposed intra-car
system in this work was non-intrusive at the same time cost-efficient. This work
provided important information on the ideal location for sensors in an intra-car
system, which we have adopted in our intra-car scenario depicted in Fig. 3.

Case studies such as [4] have proven that multi-hop has the potential for
providing additional reliability, robustness, and energy usage improvements over
existing single-hop approaches. In their study, they state that aggregating data
in one or several processing centers in the vehicle is critical for the monitoring
capabilities of the sensors, which are constrained by both energy and computa-
tional power. Multi-hop systems, despite its large overhead, can enhance system
reliability, robust performance, and reduce communication energy. In our work,
we look into a communication technology which features multi-hop and multi-
channel capabilities and hence can enhance the performance of the network.

There have also been several simulation studies [5], [6] on implementing low
power and low rate wireless sensor networks for intra-vehicle communications.
These authors considered ZigBee to be a good candidate because of its mesh
networking capabilities and low power consumption. Zigbee solves multi-path
fading using Direct Sequence Spread Spectrum (DSSS) technology and interfer-
ence resilience using Carrier Sense Multiple Access (CSMA). The propagation
channel inside a vehicle is closed and is affected by the mechanical vibrations
caused by the movement of the vehicle. Hence authors propose a simulation of
the physical layer of the ZigBee network and the propagation channel inside
a vehicle along with an adaptive equalizer at the receiver. Though Zigbee had
mesh capabilities, determinism is not assured in such networks due to the usage
of a contention-based mechanism for transmission. From our previous works [7,8]
we were able to confirm that DSME had the capability to communicate under
strict time bounds and support time-critical applications. In this work, we rely
on DSME which supports both a contention-based to be a possible candidate
for intra-car communication systems.

3 Co-simulation Framework

Simulation of integrated application and network models can be done in diverse
ways either by co-simulating with two different simulators, by expanding a

WiCAR - Simulating Towards the Wireless Car 139

network simulator with physical models [9] or by expanding the physical simula-
tor with network model [10]. However, joining two, or more, well-proven simula-
tors, in each particular area, can offer significant advantages. Kudelski et al. in
their work [11] propose a an integrated framework to support multi-robot and
network simulation. In this work the authors propose an integration of three sim-
ulators namely ARGoS [12], NS-2 and NS-3 that can be used in co-simulation
scenarios. ARGoS is a ARGoS is a multi-physics robot simulator that can sim-
ulate large-scale swarms of robots of multiple variants. Similarly to the Gazebo
simulator, which we use in our work, ARGoS can be extended with plugins, how-
ever, the integration of Gazebo with ROS constitutes an undeniable advantage,
by providing flexibility, modularity, and easing robotics integration. NS-2 and
NS-3 are legacy network simulators that can simulate a network stack. In this
work the authors propose a synchronization approach between the simulators
in which the number of nodes, characteristics of the equipment and simulation
area a synchronized together. At every simulation step the ARGoS sends the
updated robot position to the network simulator and the communication is car-
ried our and is transferred back to the robotic simulator that the data packets
are carried out. In our work, we take a similar approach by integrating Gazebo
with OMNeT++++. In our case, we use the ROS sync application to handle
the synchronization in our simulations as it will be shown in the next section.

BARAKA [13] is another co-simulator tool introduced by Thomas Halva
Labella et al. In this work they provide a tool that is able to perform integrated
simulation of communication networks using OMNeT++ and robotic aspects
using Open Dynamics Engine (ODE) [14] for rigid-body physics simulation. The
steps for integration in this simulation is done in two steps, they first integrate the
collision/detection step loop in the OMNeT++. Then they create modules that
simulate the robots and motes both in the physical aspects. Finally these modules
are accessed by an agent program to control the behavior of the agents in the
simulated world. The ODE loop in the OMNeT++ in this case has no connection
to any other module in the simulation. In our work, for every simulation step, the
simulators are synchronized in a seamless way by relying upon the ROS middle-
ware and its topics. The flexibility of such middleware is tremendous and we use
it for exchanging information between the simulators.

In this work we built a Wireless-ADAS co-simulation framework that com-
bines the network simulation capabilities of OMNeT++/INET and the ability
to emulate the vehicle physics and sensors behaviour in 3D scenarios using the
Gazebo robotics simulator. This will enable us to analyze the mutual impact
between the control and the networking aspects. The integration is done over
the Robotics Operating System (ROS), based our previous works in [15,16] which
focused on inter-vehicle communications (i.e. using ETSI ITS-G5) to enable a
cooperative platooning function. A general Architecture for our framework is
presented in Fig. 1. The integration of the network model is supported by the
openDSME open-source framework [17] to implement the DSME protocol on
top of the IEEE 802.15.4 physical layer. Two kinds of nodes are implemented in
OMNeT++/INET simulation: the sensor nodes and the sink, corresponding to 8

140 H. Kurunathan et al.

end-devices and a PAN Coordinator respectively. In the OmNet++/INET side,
the displayed outward 8 nodes (sensor nodes - IEEE 802.15.4 End Devices) cor-
respond to the wireless radar/sonar modules implemented in the Gazebo vehicle
model to achieve a 360 degree coverage of the vehicle without any blind spots.
At the center of the layout, the “sink” node (IEEE 802.15.4 PAN Coordinator)
is also displayed and corresponds to the Application Unit (AU) wireless inter-
face. The AU is responsible for the ADAS system control implementation. It
processes the sensor inputs and reacts accordingly, by interfacing the vehicle’s
steering and braking systems. To handle the synchronization between the two
simulations, we developed a ROS Sync Application, which we describe next.

Synchronization Approach

OMNeT++ is an event-driven simulator and Gazebo a time-driven simulator,
therefore synchronizing both simulators represented a key challenge. In order to
accomplish this, a synchronization module was implemented in OMNeT++ to
carry out this task, relying upon the ROS “‘/Clock” topic as clock reference.
The OMNeT++ synchronization module subscribes to ROS’ “/Clock” topic,
published at every Gazebo simulation step (i.e. every 1 ms) and proceeds to
schedule a custom made OMNeT++ message for this purpose (“syncMsg”) to
an exact ROS time, which allows the OMNeT++ simulator engine to generate an
event upon reaching that timestamp and be able to execute any other simulation
process that must be run.

Data Workflow

In order to support data flowing between the Gazebo and OMNeT++ simu-
lators, the ROS publish/subscribe middle-ware support was crucial. For each
node in the OmNet++/INET simulation, there is a corresponding sensor in
the Gazebo vehicle model which publishes its relevant data into a rostopic i.e.
“/car1/sensors/sonar1”. In the OmNet++/INET side, each node subscribes to
the corresponding rostopic and prepares a message that is en-queued into the
openDSME MAC layer to be transmitted to the sink node, which role is assumed
by the network PAN Coordinator. OpenDSME handles the transmission and, if
successful, the sink node publishes a rostopic with the sensor data that is sub-
scribed by the AU. The AU then uses this input to feed its control loop. As
for the Gazebo model, a Toyota Prius car model (visible at Fig. 1) is used as
the baseline deployment for this WSN layout with 7 sonars and a radar. With
this general layout architecture, different ADAS scenarios can be implemented,
by changing sensors or their characteristics, the vehicle model, the track and
the surrounding environment, enabling the possibility to extensively test and
validate a ADAS behaviour and explore its performance limits pre-deployment.

For the upcoming ADAS, vehicles are increasingly being equipped with a
wide variety of sensors, in order to get a good awareness of their surroundings.
In addition, Sensors are already being deployed in current ADAS to evaluate the
status of some of the vehicle components (i.e., steer, brakes) to detect stress and

WiCAR - Simulating Towards the Wireless Car 141

Fig. 1. Integration architecture

prevent any failure. In this framework, all these sensors, can be implemented in
a vehicle model, and later be integrated into the network model as a new node
that feeds data into the AU, for a integrated perspective of the system on a
multitude of scenarios.

4 Network Specification

For our intra-car system, we used the DSME MAC behavior of IEEE 802.15.4e
because of its deterministic capabilities. The DSME network provides determin-
istic communication using its beacon-enabled mode. This mode is supported by
multisuperframes that may contain stacks of superframes, as shown in Fig. 2.
Each superframe comprises a Contention Access Period (CAP) in which the
nodes contend to access the channel and a Contention Free Period (CFP) in
which the nodes send the data using Guaranteed timeslots (GTSs). It is in this
period that the vehicle’s sensors are accommodated, for guaranteed service.

The superframe is defined by BO, the Beacon Order which is the transmis-
sion interval of a beacon in a superframe. MO is the Multi superframe Order
that represents the Enhanced Beacon interval of a multi-superframe, and SO is
the Superframe Order that represents the beacon interval of a superframe. The
number of superframes in a multisuperframe is given by 2MO−SO. These values
are conveyed to the nodes by an Enhanced Beacon (EB) at the beginning of
each Multisuperframe. Reducing the values of SO and MO reduces the size of
the timeslots and the number of superframes in a multi superframe duration,
but also decreases the network’s latency. In what follows we evaluate the rela-
tionship between such network settings and latency in the context of a ADAS
application as a proof-of-concept.

142 H. Kurunathan et al.

Fig. 2. DSME superframe

5 Performance Analysis

To showcase our proposal and simulation tool, we evaluate a parking lot Wireless
ADAS scenario presented in Fig. 3. When roaming inside a parking lot while
searching for a parking spot, a driver can suffer from decreased perception of
the overall environment. As his attention diverges from the driving actions into
his visual search for the parking space, his ability to respond to unexpected
situations is hindered, and may not be capable of perceiving an obstacle in time
to avoid it. In this case, we consider the obstacle as a car that suddenly exits a
parking space form the right-hand side of our vehicle. We push the requirements
of the scenario to a point in which a typical driver would be unable to stop the
car in time due to his reaction times. In this scenario, we consider the car can
be traveling up to 30 Km/h (typical maximum speed inside a parking lot) and
is fitted with an array of sensors covering a 360◦ field of view.

We evaluate this scenario from the two complementary perspectives. Firstly,
we take the application perspective, by varying the braking capacity of the vehi-
cle and its speed, and then the network perspective, by varying the MO and SO
settings, and thus its worst-case delay. This is one of the greatest advantages
of our co-simulation tool, which enables a multi-dimensional assessment of an
application scenario.

5.1 Impact of Braking Force

Braking capacity is one of the common parameters in any car that deteriorates
over time. This is a result of the loss of friction in the clamping mechanism while
actuating a brake. In a 100% operational brake, the clamping load is assumed to
act on all friction surfaces equally. The loss in this force is only generated when
the wheel does not lock because the friction of a sliding wheel is much lower
than a rotating one.

In this experiment, we study the limits of this system by averaging the results
for several trials for different braking forces and calculating the maximum accept-
able delay for the vehicle to operate without a crash. From the results in Fig. 4,
it is evident and expected, that the braking force and vehicle speed impose dif-
ferent requirements into the network delay. Decreased braking capacity or higher
speeds demand lower communication delays to avoid the crash. At 30 km/h, with

WiCAR - Simulating Towards the Wireless Car 143

Fig. 3. Scenario taken for evaluation

Fig. 4. Maximum acceptable delay for the braking force applied

a 50% braking capacity, the vehicle is unable to avoid hitting the car leaving the
parking space, independently of the delay. This is the point where we reach the
performance limit of the control system as dictated by vehicle dynamics.

5.2 Impact of Network Settings

We carried out several trials for these application settings, and different net-
work MO/SO settings, to explore the performance limits of the Wireless ADAS
scenario. Figure 5 presents the communication’s delay tolerances, for different

144 H. Kurunathan et al.

speeds (25 and 30 km/h) and braking capacities (100% to 50%), to prevent a
crash, superimposed by the overall bounded delay at different network settings.

Fig. 5. Impact of static scheduling and braking force on the crash rate

As observed in Fig. 5, if the vehicle travels at 25 km/h in the parking lot, and
has its braking capacity at 80%, it can still allow approximately 550 ms of delay
in the ADAS communications; therefore, a (BO/SO/MO) = (6/4/5) setting
suffices. This is important considering the usage of a higher MO can support the
allocation of additional superframes and support additional nodes, particularly if
CAP reduction is activated, increasing the scalability of the system. Thus finding
this trade-of between delay and scalability, in parallel with speed and braking
capacity, can lead to increased efficiency and safety. When the braking capacity
reduces to 70 or 60%, the maximum acceptable delay decreases steeply and can
only be met by lower MO/SO network settings. This is also the case for a speed
of 30 Km/h, that even at 100% braking capacity, only (BO/SO/MO) = (6/4/4)
settings or lower, can meet the imposed delay requirement of approximately 360
ms. These results show us that for those settings, at the targeted speed for our
scenario of 30 km/h, our system can still guarantee the safety of the vehicle even
with its braking capacity impaired by 50%.

5.3 Impact of Delay

One of the important prerequisite for the safe functioning of this scenario is the
ability to adhere to a maximum speed limit of 30 Km/h. To achieve this we must
be able to provide a maximum delay bound of 350 ms which is a crucial aspect for
safe functioning. Hence, we must verify the determinism of the network. In the

WiCAR - Simulating Towards the Wireless Car 145

worst-case scenario, the maximum time a superframe can take to accommodate
a transmission will be the size of the superframe. Hence by varying the size of the
superframe, we will be able to control the latency of the network and determine
definite bounds. The following experiment is carried out with (BO/MO/SO) =
(6/4/4) setting with fixed static schedule. As previously mentioned, the results
strictly adhere to the limit of the worst-case delay. We experience a maximum
delay of 0.23 s and it is bounded as seen in Fig. 6. This also means we will be
also able to operate the application at a steady speed of 30 km/h with a fixed
delay using this setting.

Fig. 6. Delay with Static scheduling for MO = 4 and SO = 4

The fluctuations of delay values in these static settings can be attributed to
the arrival time of the packet. The packets that are served immediately with
respect to its arrival result in a much lower delay. The worst-case delay is pro-
duced when the sensor data arrival happens at the end of the first superframe
and gets scheduled for its adjacent superframe. One significant advantage of
static scheduling is that the user has the possibility to vary the network settings
and fix a steady worst-case bound based on the network prerequisite.

6 Conclusion and Future Scope

In this work we introduce a co-simulation tool that can combine both the network
and the application perspectives of a realistic ADAS scenario. As a proof of
concept, we provide a detailed delay analysis with the DSME network to evaluate
its ability to meet the required deadlines for the control system. Furthermore,
we also implemented a static scheduled network that can help in providing worst
case delay deterministic bounds to ensure the safety of the system and explored it
in our scenario at different speeds and braking capabilities. Preliminary results,
show that the DSME network can cope with these, however, further exploration
work is needed, and particularly a new more demanding scenarios with different

146 H. Kurunathan et al.

sensors, vehicles, and speeds can and will be studied. Overall, the co-simulation
framework proved to be up to the evaluation task and we are confident it will
become mandatory tool to carryout a serious analysis of such networked ADAS
systems.

Acknowledgements. This work was partially supported by National Funds through
FCT/MCTES (Portuguese Foundation for Science and Technology), within the CIS-
TER Research Unit (UIDB/04234/2020).

References

1. Kurunathan, H., Severino, R., Koubaa, A., Tovar, E.: IEEE 802.15. 4e in a nutshell:
survey and performance evaluation. IEEE Commun. Surv. Tutorials 20(3), 1989–
2010 (2018)

2. Stamatescu, G., Popescu, D., Stamatescu, I.: Modeling for deployment techniques
for intra-car wireless sensor networks. In: 2014 18th International Conference on
System Theory, Control and Computing (ICSTCC), pp. 501–505. IEEE (2014)

3. Lin, J.-R., Talty, T., Tonguz, O.K.: Feasibility of safety applications based on
intra-car wireless sensor networks: a case study. In: IEEE Vehicular Technology
Conference (VTC Fall), pp. 1–5. IEEE (2011)

4. Hashemi, M., Si, W., Laifenfeld, M., Starobinski, D., Trachtenberg, A.: Intra-car
multihop wireless sensor networking: a case study. IEEE Commun. Mag. 52(12),
183–191 (2014)

5. Reddy, A.D.G., Ramkumar, B.: Simulation studies on zigbee network for in-vehicle
wireless communications. In: 2014 International Conference on Computer Commu-
nication and Informatics, pp. 1–6. IEEE (2014)

6. Tsai, H.-M., Tonguz, O.K., Saraydar, C., Talty, T., Ames, M., Macdonald, A.:
Zigbee-based intra-car wireless sensor networks: a case study. IEEE Wirel. Com-
mun. 14(6), 67–77 (2007)

7. Kurunathan, H., Severino, R., Koubâa, A., Tovar, E.: Worst-case bound analysis for
the time-critical MAC behaviors of IEEE 802.15. 4e. In: IEEE 13th International
Workshop on Factory Communication Systems (WFCS), pp. 1–9. IEEE (2017)

8. Kurunathan, H., Severino, R., Anis, K., Tovar, E.: Symphony: routing aware
scheduling for DSME networks, pp. 26–31 (2020)

9. Ramos, D., Oliveira, L., Almeida, L., Moreno, U.: Network interference on cooper-
ative mobile robots consensus. Robot 2015: Second Iberian Robotics Conference.
AISC, vol. 417, pp. 651–663. Springer, Cham (2016). https://doi.org/10.1007/978-
3-319-27146-0 50

10. Li, W., Zhang, X., Li, H.: Co-simulation platforms for co-design of networked
control systems: an overview. Control Eng. Practice 23, 44–56 (2014)

11. Kudelski, M., Gambardella, L.M., Di Caro, G.A.: Robonetsim: an integrated frame-
work for multi-robot and network simulation. Robot. Auton. Syst. 61(5), 483–496
(2013)

12. Pinciroli, C., et al.: Argos: a modular, parallel, multi-engine simulator for multi-
robot systems. Swarm Intell. 6(4), 271–295 (2012)

13. Labella, T.H., Dietrich, I., Dressler, F.: BARAKA: a hybrid simulator of SANETs.
In: 2007 2nd International Conference on Communication Systems Software and
Middleware, pp. 1–8. IEEE (2007)

14. Smith, R., et al.: Open dynamics engine (2005)

https://doi.org/10.1007/978-3-319-27146-0_50
https://doi.org/10.1007/978-3-319-27146-0_50

WiCAR - Simulating Towards the Wireless Car 147

15. Vieira, B., Severino, R., Koubaa, A., Tovar, E.: Towards a realistic simulation
framework for vehicular platooning applications. In: 22nd IEEE International Sym-
posium on Real-Time Computing (ISORC 2019). Institute of Electrical and Elec-
tronics Engineers (2019)

16. Severino, R., Vasconcelos Filho, E., Vieira, B., Koubaa, A., Tovar, E.: COPADRIVe
- a realistic simulation framework for cooperative autonomous driving applications.
In: IEEE International Conference on Connected Vehicles and Expo (ICCVE)
(IEEE ICCVE 2019), Graz, Austria, p. 2019, November 2019

17. Kauer, F., Köstler, M., Lübkert, T., Turau, V.: OpenDSME - a portable framework
for reliable wireless sensor and actuator networks (demonstration). In: Proceedings
of the 3rd International Conference on Networked Systems (NetSys 2017), March
2017

Automated Right of Way for Emergency
Vehicles in C-ITS: An Analysis

of Cyber-Security Risks

Lucie Langer1(B), Arndt Bonitz1, Christoph Schmittner1, and Stefan Ruehrup2

1 Austrian Institute of Technology, Vienna 1210, Austria
{lucie.langer,arndt.bonitz,christoph.schmittner}@ait.ac.at

2 ASFINAG, Vienna 1120, Austria
stefan.ruehrup@asfinag.at

Abstract. Cooperative Intelligent Transport Systems (C-ITS) provide
comprehensive information and communication services to enable a more
efficient and safe use of transport systems. Emergency vehicles can ben-
efit from C-ITS by sending preemption requests to traffic lights or other
connected road users, thus reducing their time loss when approaching an
emergency. This, however, depends on a secure and reliable communi-
cation between all involved parties. Potential risks involve cyber-attacks
and acts of sabotage. A major issue is the security process applied to
provide C-ITS vehicles with the authorisations to exercise the right of
way intended for emergency vehicles.

This paper presents results from the research project EVE (Efficient
right of way for emergency vehicles in C-ITS): Following the lifecycle and
processes of the emergency vehicle and its on-board unit from installa-
tion to decommissioning, relevant use cases are subjected to an extended
Failure Mode and Effects Analysis (FMEA) to assess inherent flaws that
could be exploited by cyber-attacks. The results show that, while the
technical provisions foreseen by the relevant standards in general pro-
vide strong security, detailed security management processes need to be
specified.

Keywords: C-ITS · SSP · Risk analysis · FMEA · Emergency vehicle

1 Introduction

In our future transport systems vehicles will interact both with road infras-
tructure and with each other: Intelligent Transport Systems (ITS) are defined
as “systems in which information and communication technologies are applied
in the field of road transport, including infrastructure, vehicles and users, and
in traffic management and mobility management, as well as for interfaces with

The work described in this paper was carried out as part of the project EVE funded
by the Austrian Security Research Programme KIRAS.

c© Springer Nature Switzerland AG 2020
A. Casimiro et al. (Eds.): SAFECOMP 2020 Workshops, LNCS 12235, pp. 148–160, 2020.
https://doi.org/10.1007/978-3-030-55583-2_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-55583-2_11&domain=pdf
https://doi.org/10.1007/978-3-030-55583-2_11

Automated Right of Way for Emergency Vehicles in C-ITS 149

other modes of transport” [18]. ITS use digital communication to exchange infor-
mation about road works, hazardous locations, traffic rules etc., partially based
on data provided by various sensors. Cooperative ITS (C-ITS) place additional
demands on the communication equipment: “Cooperative” means that each ITS
station (on-board or roadside) must be able to communicate ad hoc with other
ITS stations and exchange relevant information in a trusted domain.

Currently emergency vehicles indicate the urgency of their mission by warn-
ing lights and siren. On a rescue mission they usually have the right of way, and
may disregard traffic lights. However, exercising this right can be challenging for
the driver, especially with dense urban traffic or multi-lane roads, and requires
a significant slow-down. There are systems for traffic signal preemption that
change the signal to give way to the approaching emergency vehicle. These sys-
tems are also used for public transport, and are implemented in different ways,
resulting in country- or even city-specific solutions.

The Austrian research project EVE (Efficient right of way for emergency
vehicles in C-ITS)1 investigates how this situation could be improved by C-
ITS: At signalised intersections (see Fig. 1) the emergency vehicle can send a
preemption request to the traffic light controller or other connected vehicles. On a
motorway, the efficiency of forming a rescue lane may be enhanced by announcing
an approaching emergency vehicle. To prevent misuse, so-called Service-Specific
Permissions (SSPs) limit the use of preemption requests to authorised parties.

Fig. 1. Traffic signal preemption for emergency vehicles.

As C-ITS relies heavily on ad-hoc communication between the different par-
ticipants, cybersecurity aspects play an important role: Tampering with C-ITS
messages could, for example, cause drivers to react to fake events or follow
incorrect rules, resulting in undesired or even unsafe driving behaviour. If an
attacker obtains the Service-Specific Permissions reserved for emergency vehi-
cles, he could use them for his own prioritisation or to disturb the overall traffic
situation. C-ITS are therefore embedded in a comprehensive security and trust
architecture to ensure the authorised use of C-ITS services. However, a high level

1 https://kiras.at/en/financed-proposals/detail/d/eve-effiziente-bevorrangung-von-
einsatzfahrzeugen-im-automatisierten-strassenverkehr/.

https://kiras.at/en/financed-proposals/detail/d/eve-effiziente-bevorrangung-von-einsatzfahrzeugen-im-automatisierten-strassenverkehr/
https://kiras.at/en/financed-proposals/detail/d/eve-effiziente-bevorrangung-von-einsatzfahrzeugen-im-automatisierten-strassenverkehr/

150 L. Langer et al.

of security and safety of the target system can be ensured only by performing a
comprehensive risk analysis and implementing according countermeasures.

This work presents a threat and risk analysis for prioritised emergency vehi-
cles in C-ITS. Following the lifecycle of the emergency vehicle and its on-board
unit from installation to decommissioning, relevant use cases have been sub-
jected to an extended Failure Mode and Effects Analysis (FMEA) as part of the
EVE project. The FMEA procedure and results are presented along the core use
case, i.e., traffic signal preemption.

The paper is structured as follows: Sect. 2 summarises the state of the art in
C-ITS, focusing on security aspects. Section 3 explains the methodology used for
the risk analysis in the EVE project. Section 4 describes the risk analysis and
evaluation results along the core use case of traffic signal preemption. Section 5
concludes the paper and provides an outlook on future work.

2 State of the Art

2.1 Status of C-ITS in Europe

C-ITS applications are currently being rolled out in Europe in mass production
vehicles and in infrastructure deployments in several countries. The CAR-2-
CAR Communication Consortium (C2C-CC) [28] has published profiles for C-
ITS in vehicles based on standards and specifications from European Telecom-
munications Standards Institute (ETSI), European Committee for Standard-
ization/International Organization for Standardization (CEN/ISO), Society of
Automotive Engineers (SAE), and Institute of Electrical and Electronics Engi-
neers (IEEE). For the infrastructure deployment, 18 EU Member states have
joined the C-ROADS Platform which aims at cross-border harmonisation and
interoperability for the roll-out C-ITS services. C-ROADS published a set of pro-
files that determine which ITS standards and which data elements and options
should be used for the so-called Day-1 services, i.e., C-ITS services which should
be available in the short term due to their expected societal benefits and tech-
nology maturity [1]. The profiles of C2C-CC and C-ROADS are coordinated to
form a harmonised basis for Day-1 C-ITS services in Europe.

C-ROADS pilot deployments play an important role to launch the Europe-
wide infrastructure roll-out. C-ROADS built on the experience from corridor
projects, such as the Cooperative ITS Corridor between Rotterdam and Vienna
[29], where the Austrian part ECo-AT [30] was characterised by a large set of use
cases including road works and hazardous location warnings, as well as In-Vehicle
Information (IVI) and Intersection Safety (ISS). In France, the SCOOP@F [31]
project has equipped five pilot regions in France with C-ITS equipment since
2014. While most deployments target Day-1 or -1.5 use cases involving normal
passenger vehicles, the specialised emergency vehicles and their specific use cases
have only gained little attention.

The ITS Directive [18] provides the legal and technical framework for ITS
within the European Union. It was followed by the European strategy on Coop-
erative Intelligent Transport Systems [5]. Based on this, the EC has initiated the

Automated Right of Way for Emergency Vehicles in C-ITS 151

C-ITS platform in Phase I (2014–2016) [4] as a cooperative framework for devel-
oping a common European vision for the interoperable deployment of C-ITS. In
Phase II (2016–2017) [6], the common vision for C-ITS was further developed
towards Cooperative, Connected and Automated Mobility (CCAM).

2.2 Relevant C-ITS Services and C-ITS Security

ETSI TR 102 638 [13] defines a Basic Set of Applications (BSA) that reflect
the main user needs and requirements. In the context of emergency vehicles, the
following three services are important: The Cooperative Awareness (CA)
Basic Service [11] allows road users to inform each other about their cur-
rent position, velocity and other attributes. This service could be used by a
vehicle to indicate its type (i.e., emergency vehicle) to other road users. The
Decentralised Environmental Notification (DEN) Basic Service [10]
supports informing road users about road hazards or abnormal traffic conditions,
for example an approaching emergency vehicle or closed lanes on a motorway
after an accident. Regarding infrastructure elements, [17] provides a set of ser-
vices, including the Traffic Light Control (TLC) Service which enables the
prioritisation of public transport and public safety vehicles at traffic lights.

The C-ITS security architecture defined in ETSI TS 102 940 and
TS 102 941 [15,16] details a set of security requirements and a security (life-
cycle) management system to establish the C-ITS trust model for the general
communication architecture [9]. This trust model is based on a fully defined pub-
lic key infrastructure (PKI), including concepts regarding Certificate Trust Lists
with multiple Root Certificate Authorities and the revocation of certifications
via Certificate Revocation Lists. With TS 103 097, ETSI also gives guidance on
how to secure communication between road users and infrastructure elements
[14]. For example, the Service-Specific Permissions (SSPs) transmitted as
part of every ITS message ensure that only authorised ITS stations disseminate
certain messages (for example, only an emergency vehicle may generate the DEN
message emergency vehicle approaching). The PKI-based Certificate Policy [19]
includes legal and technical requirements for the management of PKI certificates
for C-ITS applications and all entities participating in the European C-ITS.

3 Methodology

With regard to EVE’s focus on the ITS-S lifecycle and related processes, the risk
analysis was performed through a process-based FMEA, which is an established
method to systematically analyse each process step for potential risks, and has
already been used for security analysis [23]. The attacks were classified according
to the STRIDE model [22,24].

The first step of the analysis was to determine the lifecycle of the ITS sta-
tion (ITS-S) from provisioning to decommissioning. Next, the processes defining
each phase of the lifecycle were broken down into process steps and visualised
in activity diagrams. This output was subsequently used for the process-based
FMEA. Each of these steps is described in more detail in the following.

152 L. Langer et al.

3.1 Lifecycle Definition

From a security point of view, the lifecycle of an ITS-S includes the initial con-
figuration, enrolment, authorisation, operation2, and end of life (see Fig. 2): The
initial configuration of the ITS-S is done as part of the manufacturing process,
and establishes information and key material in the ITS-S and the Enrolment
Authority (see [16] for details). This information includes the designated app-
Permissions for the ITS-S, i.e. the C-ITS services that this ITS-S is permitted
to use. For emergency vehicles, these may include sending DEN messages such
as emergency vehicle approaching (cf. Sect. 2).

Fig. 2. ITS-S security lifecycle (cf. [16]).

In the enrolment phase, the initialised ITS-S requests its enrolment creden-
tial from the Enrolment Authority. For authorisation, the enrolled ITS-S uses
this credential to request authorisation tickets from the Authorisation Authority,
who checks with the Enrolment Authority whether the requested authorisations
correspond to the approved appPermissions for that ITS-S.

During operation, the ITS-S communicates with other ITS-S. For each
transmitted message the ITS-S uses an Authorisation Ticket to prove to the
receiver that it is entitled to send that message and use the corresponding C-
ITS service without revealing its identity. For the operation phase of the ITS-S
lifecycle, two specific scenarios were considered for an emergency vehicle ITS-
S: (i) requesting traffic signal pre-emption in urban areas (see Sect. 4) and (ii)
requesting the formation of an ad-hoc emergency corridor on motorways (beyond
the scope of this paper).

If the ITS-S has been compromised or has otherwise reached its end of
life, it is passively revoked, i.e. the Enrolment Authority rejects any further
authorisation requests for this ITS-S.

3.2 Process Analysis

For each of the ITS-S lifecycle phases, a process analysis was performed to iden-
tify the individual steps required to accomplish the target state. In order to
ensure a structured procedure and to obtain an easily comprehensible overview
of the processes, this breakdown into individual process steps was done by using
2 Maintenance is not considered here.

Automated Right of Way for Emergency Vehicles in C-ITS 153

UML activity diagrams for modelling (see Fig. 3) followed by a (textual) descrip-
tion of each process step. This analysis provided the basis for the subsequent
process-based FMEA.

3.3 FMEA

The security analysis focuses on the processes relevant to the operation of emer-
gency vehicles in a C-ITS environment. It is based on an extended FMEA, a
structured technique that examines failure modes and effects. The aim is to
identify potential weaknesses and improve the reliability, availability or safety
of a system. The system or process under examination is hierarchically broken
down into its basic elements and steps. Subsequently, the failure modes (i.e.,
error causes) of the elements are examined for causes and effects [21].

Originally, FMEA was aimed at the reliability or safety of hardware. It was
later extended to cover additional topics like process analysis and security. The
FMEA type used in this work is a process-based FMEA, which aims to identify
possible weaknesses in production or performance processes. Since the focus is
on security aspects, the FMEA method is applied in a slightly modified variant:
If the failure of a component is caused by an attack, it is treated as a mal-
function [27]. The main difference to the method presented in ETSI TR 102
893 “Intelligent Transport Systems (ITS); Security; Threat, Vulnerability and
Risk Analysis (TVRA)” [12] is our focus on the process and lifecycle of the sys-
tem which requires a different approach than the more technical system-focused
approach presented in [12].

The FMEA is based on the outcomes of the process analysis (see Sect. 3.2).
Each process step is analysed for potential attacks. For each attack, the potential
causes and effects (or attack vectors) are listed. Control measures defined by
the relevant ETSI specifications are considered as well as additional security
measures that supplement or refine these provisions.

The risk assessment, i.e. determining the risk level pertaining to a certain
attack vector, is based on the factors likelihood, severity and detection
probability. Each factor is assigned a numerical value3, and the product of
these values gives a risk priority number (RPN), as standardised in [8]. In recent
years there have been some reservations against the use of the RPN [2,3]; it is,
however, a familiar concept and widely used in the automotive industry. While
there are differing risk curves, depending on the multiplication or addition of the
contributing values, the FMEA standard IEC 60812 [21] proposes to use mul-
tiplication for obtaining the RPN. In addition, with regard to our focus on the
security of the underlying lifecycle processes, [7] supports using multiplication
for RPN when assessing process-related risk.

The risk assessment was conducted by a group of experts from the EVE
consortium and discussed in multiple workshops. To provide a structured assess-
ment, two additional elements were considered: A classification of the attack

3 The range is from low (1) to high (10) for severity and likelihood, and vice versa for
detection probability.

154 L. Langer et al.

according to the Microsoft STRIDE model [22,24], and an assessment of the most
probable adversaries. Here, attacker profile archetypes, as defined by [26], have
been used to guide the assessment. These profiles include Basic User (low skill,
low resources, no direct aim to attack the system), Cybercriminal (advanced ICT
skill, low skills for physical attacks, advanced tools, average financial resources),
Insider (advanced system knowledge, access to physical properties, dedicated
tools, but low financial resources), Nation State (high offensive skills, resources
and determination, advanced tools, focus on stealth), and Terrorist (low offen-
sive skills, average resources, focus on physical availability).

Since an exact assessment could not always be achieved for the three deter-
mining factors, the resulting RPN often is a number range rather than a single
value: This is also due to the fact that severity depends strongly on the distribu-
tion of autonomous or semi-autonomous vehicles that can react automatically to
falsified ITS messages and thus cause greater damage. Similar scenarios are also
conceivable for likelihood and detection probability. Depending on the distribu-
tion of ITS-enabled road users, the probability of an attack and its detection
increases. The resulting risk priority score nevertheless provides a good basis to
point out potentially critical process steps.

4 Exemplary Use Case

This section describes the procedure and outcomes of our risk analysis for one
specific use case part of the lifecycle phase operation: An emergency vehicle
approaches an intersection with ITS-enabled traffic lights and requests signal
preemption (cf. the Emergency Vehicle Approaching use case from the SCOOP
project [20]). This use case focuses on two infrastructure services, the Road
and Lane Topology (RLT) and Traffic Light Maneuver (TLM) services
[17], with two main components: (i) the on-board unit (OBU) of the emergency
vehicle and (ii) the road-side unit (RSU) of the traffic light installation at the
intersection.

4.1 Exemplary Process Analysis

The first step is a process analysis (see Sect. 3.2) including a visual representation
of all required process steps (see Fig. 3). Each process step is then described in
more detail (see Table 1) to facilitate the FMEA.

4.2 Exemplary FMEA

Since presenting the full FMEA table for this example would exceed the scope
of this paper, the individual results are presented in a simplified list below. For
each process step, possible attack vectors are listed including a first classification
according to STRIDE, followed by effects and causes (in this order), see Sect. 3.3.

– PS-001 Drive towards intersection: Out of scope as we only considered
cyber-security attacks.

Automated Right of Way for Emergency Vehicles in C-ITS 155

Fig. 3. UML activity diagram: traffic signal preemption for emergency vehicles.

Table 1. Process steps (PS) of the traffic signal preemption use case.

Process step Description

PS-001 Drive towards intersection Vehicle is approaching an intersection
intending to cross it

PS-002 Receive “Road and Lane Topology”OBU receives the road and lane topology
transmitted by the RSU (Signal Phase And
Timing Extended Message, SPATEM)

PS-003 Process “Road and Lane Topology”OBU receives the topology information and
checks it for correctness (authenticity)

PS-004 Calculate distance to intersection OBU calculates distance to intersection using
the topology information

PS-005 Send priority request OBU sends priority request with Estimated
Time of Arrival (ETA) to the RSU (Signal
Request Extended Message, SREM)

PS-006 Receive “Signal Phase and Timing”OBU receives “Signal Phase and Timing” of
the RSU (Signal request Status Extended
Message, SSEM)

PS-007 Check “Signal Phase and Timing” OBU checks “Signal Phase and Timing”
information for priority and authenticity status

PS-008 Inform driver about priority status OBU informs driver via on-board display about
status of prioritisation

PS-009 Pass intersection Vehicle passes intersection

PS-010 Stop sending preemption request OBU stops sending the preemption request
once the intersection has been successfully
crossed

156 L. Langer et al.

– PS-002 Receive “Road and Lane Topology”:
1. Denial of Service: OBU cannot receive topology information from RSU;

Cause: attacker interferes with radio signal of the RSU
2. Spoofing: OBU receives falsified topology information for the intersec-

tion and cannot calculate a correct prioritisation request; Cause: attacker
sends out faulty or modified messages (for example after having compro-
mised a RSU)

– PS-003 Process “Road and Lane Topology”:
1. Denial of Service: either (i) RLT information is incorrect and cannot be

distributed or (ii) the stability of the OBU could be affected; Cause:
attacker has distributed (invalid) modified RLT

2. Tampering: RLT model in OBU incorrect; Cause: attacker has distributed
(valid) modified RLT

– PS-004 Calculate distance to intersection:
– Tampering: Distance to intersection calculated incorrectly; Cause:

attacker has distributed (valid) modified RLT
– PS-005 Send priority request:

1. Denial of Service:
(a) RSU cannot receive priority request; Cause: attacker interferes with

radio signal of the OBU
(b) RSU has incorrect arrival time, possible consequences for traffic;

Cause: attacker modifies ETA on OBU side
2. Elevation of Privilege: Vehicle is illegitimately prioritised; Cause: attacker

pretends to be a vehicle on a rescue mission
– PS-006 Receive “Signal Phase and Timing”:

1. Denial of Service: OBU cannot receive signal phase and timing (SPAT)
information from RSU, vehicle cannot pass intersection; Cause: attacker
interferes with radio signal (of the RSU)

2. Spoofing: (i) Vehicle cannot pass intersection (ii) Vehicle attempts to
pass intersection without prioritisation; Cause: attacker sends out faulty
or modified SPAT information (must spoof signature)

– PS-007 Check “Signal Phase and Timing”:
– Denial of Service: Could possibly affect the stability of the OBU; Cause:

attacker has distributed modified RLT
– PS-008 Inform driver about priority status:

– Tampering: Driver tries to pass an intersection assuming that he has been
granted priority treatment; Cause: attacker modifies on-board display and
shows incorrect prioritisation status (i.e., pretends that priority has been
granted)

– PS-009 Pass intersection: Out of scope as we only considered cyber-
security attacks.

– PS-010 Stop sending of prioritisation request:
– Denial of Service: RSU continues to give priority, traffic disruption; Cause:

attacker continues to send preemption requests

Automated Right of Way for Emergency Vehicles in C-ITS 157

4.3 Risk Assessment and Results

Based on these attack vectors the actual risk assessment was performed by deter-
mining likelihood, severity and detection probability for each individual attack
scenario (see Fig. 4 as an example for process steps PS-002, PS-003 and PS-006).
The attacker profile and security measures provided for by the relevant ETSI
specifications were taken into account as these can affect the individual values:
For example, the use of cryptographically signed messages reduces the likelihood
of a successful attack. In many cases it was difficult to pin down the individ-
ual scores to one exact number due to the lack of real-world large-scale C-ITS
implementations which could provide reliable data. Therefore, number ranges
were used instead (cf. Fig. 4). Risk priority scores with a particularly wide range
were additionally discussed in expert workshops within the EVE consortium in
order to narrow the range.

Fig. 4. Analysis of process step PS-002 Receive “Road and Lane Topology”, PS-003
Process “Road and Lane Topology” and PS-006 Receive “Signal Phase and Timing”;
Attacker Profile C refers to Cybercriminal and T to Terrorist, cf. Sect. 3.3.

The attack vectors with the highest risk priority scores of this exemplary
use case apply to process steps PS-002 (Receive “Road and Lane Topology”),
PS-003 (Process “Road and Lane Topology”) and PS-006 (Receive “Signal
Phase and Timing”), see underlined values in Fig. 4: The risk posed by com-
promised road-side infrastructure is in general higher than the risk associated
with compromised on-board units. While road infrastructure is more prone to
tampering due to its easier accessibility, it is still managed by an infrastructure
provider, and manipulations will probably be quickly detected. However, suc-
cessful attacks may affect many other road users and therefore tend to be more
severe than those targeted at on-board units of individual vehicles.

158 L. Langer et al.

The relevant standards and guidelines suggest a number of countermeasures
to minimise the risk from (cyber) threats. Additional countermeasures were
defined as part of the process-based FMEA in EVE. Suggested countermeasures
for the exemplary use case include system hardening of the ITS-S, i.e., remov-
ing all software components and functions that are not absolutely necessary
for the ITS-S to perform its intended task. Secure software development tech-
niques (e.g., input validation and sanitation) should be used to create the ITS-S
software. Validating the achieved security level, for example through penetration
tests and code reviews, can also help to ensure that the measures taken have been
effectively implemented. Another countermeasure that applies specifically to the
attack vector in process step PS-006 is anomaly detection for RSUs: Attacks
to road-side infrastructure could be detected more efficiently by using systems
that automatically report anomalies in the communication traffic between RSUs
and OBUs. For example, an alarm could be triggered if no Common Awareness
Messages (CAMs) from the OBUs of passing vehicles have been received by an
RSU for several minutes at peak hours, possibly indicating a Denial of Service
attack.

5 Conclusion and Outlook

Emergency vehicles can use the novel information and communication services
provided by C-ITS to request right of way from infrastructure components or
other connected road users, thus reducing the time loss when approaching an
emergency. Cyber-attacks and acts of sabotage can, however, pose a significant
risk to these scenarios, for example when attackers get hold of the credentials
used for prioritisation. Our process-based FMEA shows that, while existing spec-
ifications and standards foresee a high level of security and reliability in general,
they fall short of providing a full specification of security processes. Detailed pro-
cedures need to be defined for secure provisioning and decommissioning to ensure
that unauthorised persons do not get hold of sensitive material. For Example,
the Enrolment Authority must be informed in case an ITS-S has reached its end
of life to prevent that it is used in an unauthorised way beyond the end of its
lifecycle.

In addition, while there are standards, concrete guidance regarding secu-
rity for infrastructure operators, automotive original equipment manufacturers
(OEMs) and emergency fleet management organisations is still missing. One
notable progress in this area is the recently published and approved Common
Criteria Protection Profile for the C-ITS communication gateway in road work
warning units [25]. This document provides not only guidance on the security
measures the technical system should possess, it also includes Organisational
Security Policies aimed at ensuring secure processes. While the Protection Pro-
file for the C-ITS communication gateway in road work warning units has a
rather restricted application area, it can provide the basis for a more general
Protection Profile for C-ITS stations. Countermeasures that resulted from the
process-based FMEA presented herein can be helpful when developing recom-
mendations for such an extended Protection Profile.

Automated Right of Way for Emergency Vehicles in C-ITS 159

References

1. C-ITS Platform Final Report, January 2016. https://ec.europa.eu/transport/sites/
transport/files/themes/its/doc/c-its-platform-final-report-january-2016.pdf

2. Certa, A., Enea, M., Galante, G.M., La Fata, C.M.: An alternative to the risk
priority number. ELECTRE TRI-based approach to the failure modes classification
on the basis of risk parameters. Comput. Ind. Eng. 108, 100–110 (2017)

3. Ciani, L., Guidi, G., Patrizi, G.: A critical comparison of alternative risk priority
numbers in failure modes, effects, and criticality analysis. IEEE Access 7, 92398–
92409 (2019)

4. Commission, European: C-ITS Platform, Phase I. Final Report, Technical report
(2016)

5. European Commission. COM 2016/766 A European strategy on Cooperative Intel-
ligent Transport Systems, a milestone towards cooperative, connected and auto-
mated mobility (2016)

6. Commission, European: C-ITS Platform, Phase II. Final Report, Technical report
(2017)

7. Bundesministerium des Innern/Bundesverwaltungsamt. Handbuch für Organisa-
tionsuntersuchungen und Personalbedarfsermittlung, February 2018

8. DIN EN ISO 13485:2010–01, Medizinprodukte – Qualitätsmanagementsysteme –
Anforderungen für regulatorische Zwecke (2016)

9. ETSI EN 302 665 Intelligent Transport Systems (ITS); Communications Architec-
ture V1.1.1. European Standard (2010)

10. ETSI EN 302 637–3 Intelligent Transport Systems (ITS); Vehicular Communica-
tions; Basic Set of Applications, Part 3: Specifications of Decentralized Environ-
mental Notification Basic Service V1.2.1. European Standard (2014)

11. ETSI EN 302 637–2 Intelligent Transport Systems (ITS); Vehicular Communica-
tions; Basic Set of Applications, Part 2: Specifications of Cooperative Awareness
Basic Service V1.4.1. European Standard (2019)

12. ETSI TR 102 893 Intelligent Transport Systems (ITS); Threat, Vulnerability and
Risk Analysis (TVRA) V1.2.1. Technical Report (2017)

13. ETSI TS 102 637–1 Intelligent Transport Systems (ITS); Vehicular Communica-
tions; Basic Set of Applications; Part 1: Functional Requirements V1.1.1. Technical
Specification (2010)

14. ETSI TS 103 097 Intelligent Transport Systems (ITS); Security; Security header
and certificate formats V1.3.1. Technical Specification (2017)

15. ETSI TS 102 940 Intelligent Transport Systems (ITS); Security; ITS communica-
tions security architecture and security management V1.3.1. Technical Specifica-
tion (2018)

16. ETSI TS 102 941 Intelligent Transport Systems (ITS); Security; Trust and Privacy
Management V1.3.1. Technical Specification (2019)

17. ETSI TS 103 301 Intelligent Transport Systems (ITS); Vehicular Communications;
Basic Set of Applications; Facilities layer protocols and communication require-
ments for infrastructure services V1.3.1. Technical Specification (2020)

18. Directive 2010/40/EU of the European Parliament and of the Council of 7: on the
framework for the deployment of Intelligent Transport Systems in the field of road
transport and for interfaces with other modes of transport. Official J. Eur. Union
L 207(296–308), 2010 (2010)

19. European Commission. Certificate Policy for Deployment and Operation of Euro-
pean Cooperative Intelligent Transport Systems (C-ITS)

https://ec.europa.eu/transport/sites/transport/files/themes/its/doc/c-its-platform-final-report-january-2016.pdf
https://ec.europa.eu/transport/sites/transport/files/themes/its/doc/c-its-platform-final-report-january-2016.pdf

160 L. Langer et al.

20. Ministry for an Ecological, Transport Solidary Transition – Directorate General for
Infrastructure, and the Sea (DGITM). C-ITS French Use Cases Catalog Functional
descriptions. Technical Report

21. IEC 60812: Analysis techniques for system reliability: Procedure for failure mode
and effects analysis (FMEA). International Standard (2006)

22. Kohnfelder, L., Garg, P.: The threats to our products. Microsoft Interface 33 (1999)
23. Lai, L.K.H., Chin, K.S.: Development of a failure mode and effects analysis based

risk assessment tool for information security. Ind. Eng. Manag. Syst. 13(1), 87–100
(2014)

24. Microsoft. The STRIDE Threat Model. https://docs.microsoft.com/en-us/
previous-versions/commerce-server/ee823878(v=cs.20)

25. Niehöfer, B., Wagner, M., Berndt, S.: Protection Profile for a Road Works Warning
Gateway v1.1. Common Criteria Protection Profile (2019)

26. Rocchetto, M., Tippenhauer, N.O.: On attacker models and profiles for cyber-
physical systems. In: Askoxylakis, I., Ioannidis, S., Katsikas, S., Meadows, C. (eds.)
European Symposium on Research in Computer Security, vol. 9879, pp. 427–449.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-319-45741-3 22

27. Schmittner, C., Gruber, T., Puschner, P., Schoitsch, E.: Security application of
failure mode and effect analysis (FMEA). In: Bondavalli, A., Di Giandomenico, F.
(eds.) SAFECOMP 2014. LNCS, vol. 8666, pp. 310–325. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-10506-2 21

28. CAR 2 CAR Communication Consortium. https://www.car-2-car.org
29. Cooperative ITS Corridor. http://c-its-korridor.de/
30. ECo-AT. http://www.eco-at.info/
31. SCOOP@F Project. http://www.scoop.developpement-durable.gouv.fr/en/

https://docs.microsoft.com/en-us/previous-versions/commerce-server/ee823878(v=cs.20)
https://docs.microsoft.com/en-us/previous-versions/commerce-server/ee823878(v=cs.20)
https://doi.org/10.1007/978-3-319-45741-3_22
https://doi.org/10.1007/978-3-319-10506-2_21
https://www.car-2-car.org
http://c-its-korridor.de/
http://www.eco-at.info/
http://www.scoop.developpement-durable.gouv.fr/en/

Integrity Checking of Railway
Interlocking Firmware

Ronny Bäckman, Ian Oliver(B), and Gabriela Limonta

Nokia Bell Labs, Espoo, Finland
{ronny.backman,ian.oliver,gabriela.limonta}@nokia-bell-labs.com

Abstract. While uses of trusted computing have concentrated on the
boot process, system integrity and remote attestation of systems, lit-
tle has been made on the higher use cases - particularly safety related
domains - where integrity failures can have devastating consequences, eg:
StuxNet and Triton. Understanding trusted systems and exploring their
operation is complicated by the need for a core and hardware roots of
trust, such as TPM module. This can be problematical, if not impossible
to work with in some domains, such as Rail and Medicine, where such
hardware is still unfamiliar. We construct a simulation environment to
quickly prototype and explore trusted systems, as well as provide a safe
means for exploring trust and integrity attacks in these vertical domains.

1 Introduction

The increasing use and implementation of digitalisation technologies and infras-
tructures enabled by the use of 5G communications, edge and far-edge com-
puting into safety related and safety-critical verticals, such medical and rail,
is inevitable. This brings an increasingly larger attack surface for a wide (and
expanding) range of cybersecurity attacks. We can no longer rely upon network
or device isolation as mechanisms to provide security - indeed the authors here
argue that, except in some exceptional scenarios, there is no such thing as an
isolated network.

The European Railway Agency (ERA) launched a study in 2018 amongst 10
countries to get an overview of the existing Command, Control and Signaling
(CCS) systems. This was done to assist ERA with the deployment of European
Rail Traffic Management System (ERTMS). ERTMS aims at replacing the dif-
ferent national train control and command systems in Europe [5,11]. The EN
50126 standard [3] specifies the CCS-systems safety and functional safety in rail-
way applications. Key specifications are made for the development process [14].
While provision is made for maintenance, patching, update and system provi-
sioning, implementation is left solely to the vendor or contractor that is in charge
of maintenance [38]. These specifications furthermore do not touch upon the sub-
ject of platform trust, meaning integrity guarantees of hardware, firmware and
software during the mentioned processes.

The Railway CCS-systems have been in the past vendor specific imple-
mentations for specific applications, components and interfaces to comply with
c© Springer Nature Switzerland AG 2020
A. Casimiro et al. (Eds.): SAFECOMP 2020 Workshops, LNCS 12235, pp. 161–175, 2020.
https://doi.org/10.1007/978-3-030-55583-2_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-55583-2_12&domain=pdf
https://doi.org/10.1007/978-3-030-55583-2_12

162 R. Bäckman et al.

national specifications. This has made the systems hard to attack through from
cyberspace. With new interoperability specifications in Europe and the demand
to lower the cost of the old relay based systems, new standardized CCS-systems
will emerge [32]. While vendors have already implemented remote maintenance
on these systems, these are proprietary solutions that are protected by public
key infrastructure if at all [10].

This paper is split into the following parts. We first describe the use of trusted
computing technologies [28] to provide security and integrity guarantees and how
this technology can be scaled up from its firmware roots into a larger scale set
of trust services. We then describe how trusted computing can be utilised and
investigated through the use of a simulation environment [29] and how this sim-
ulation environment can be utilised to accurately describe a railway signalling
system. We then describe a simplified firmware or configuration attack upon
a railway system. We then conclude with a discussion of the role of trusted
computing and simulation in the railway environment and how it impacts how
cybersecurity is viewed and how it can be utilised to develop sound cybersecu-
rity procedures [15,16] with particular emphasis on the remote attestation and
firmware tampering case.

2 Trusted Computing Concepts

A trusted system [1,33] can be defined as one that provides trusted execution
environment (TEE) to the workload running on it and one where its integrity
can be determined. A trusted execution environment is defined through the
provisioning of one or more of the features listed below. We concentrate on
the first point in this paper that a trusted system is one where the system
and workload integrity can be checked and assured. Such facilities are usually
integrated into processing environment and Trusted Platform Module (TPM) [6,
7].

– integrity measurement
– secure storage
– execution isolation
– authentication
– attestation
– physical location

The use cases for such mechanisms are based around integrity checking of the
firmware, bootloader, operating system and application components as typically
seen in systems using a TPM [2]. Other use cases relate to secure data stor-
age, such as key management and disk encryption schemes. Further use cases
such as DRM also exist though mainly in more specific areas such as found
in embedded system software and mobile/telecommunications devices. In all of
these cases there is an underlying reliance on a core root of trust which is provi-
sioned typically through an initial set of measurement code and a measurement
mechanism.

Integrity Checking of Railway Interlocking Firmware 163

2.1 Platform Integrity and Boot

The x86 platform measured boot with legacy BIOS or UEFI is standardised
by the TCG. The crucial point for establishing trust in a platform starts from
the moment the platform is started. In the initial start up phase the first code to
run on the platform is a process called the Core Root of Trust for Measurement
(CRTM). The CRTM’s purpose is to start a chain of trust, to accomplish this it
needs to be able to control the environment of the platform in the initial phase.

The x86 platform boot and measurements are shown in Fig. 1. Measurements
are taken during the phases of the boot, through to starting the required oper-
ating system. These measurements are written to the Platform Configuration
Registers (PCRs) through a process of extension thus forming a simple Merkel
Tree-like structure: PCRnew := hash(PCRold||new). The measurements are a
mechanism to spot changes in the code and configuration of the firmware. Ref-
erence points need to be made of trusted states of these values by platform
manufacturers, OEMs, vendors and customers.

Fig. 1. Boot time measurements

2.2 Device Identity and Keys

The TPM provides key generation and storage features to provide unique keys
which cannot be extracted. Incorporated in the TPM there are different seeds,
which are multiple one-time programmable eFuses set during manufacturing
time. These are used to create keys inside the TPM. Keys are protected in
hierarchies as shown in Fig. 2 which can be locked during the manufacturing
and supply-chain in a process called provisioning.

This combination of prior-provided keys can be utilised to form part of a
device identity [4]. The TPM however provides two unique keys which themselves
form the basis of the device’s identity, these are known as the Endorsement (EK)
and Attestation Keys (AK) and are used in a number of processes: the EK is
effectively a root certificate and the AK - derived from this - is used in signing
cryptographic measurements from the TPM.

164 R. Bäckman et al.

Fig. 2. Certificate and key storage for provisioning and attestation

The TPM uses an attestation structure - known as a quote - that contains a
digest of one or more requested PCR measurements, certain device meta-data,
the name of the signing key as well as limited nonce and user supplied data.
This quote is also signed and verifiable against the TPM’s specific attestation
key further guaranteeing the provenance of the information.

2.3 Typical Integrity Attacks

Attacks against industrial control systems (ICS) can be described as cyber-
physical attacks and they involve more layers than every day criminal attacks [9,
36]. The layers can be divided into an IT layer which is used to spread the mal-
ware, the control system layer which is used to manipulate process control and,
finally, the physical layer where the actual damage is created.

Depending on the physical security of the system it can also be possible
to directly target the Industrial Control System layer without touching the IT
layer [37]. In railway systems the security of the control systems are not as high as
in private production facilities. This makes the attack vector against the control
system more compelling as has been seen with StuxNet and others [8,12,21,27].

One interesting approach to quantifying the amount of potential attacks
against railway systems has been the HoneyTrain project [20]1 which has utilised
a honey pot to simulate railway infrastructure [35]. While addressing a different
area of security, specifically API attacks and denial of service, this approach has
demonstrated clearly the amount of attacks (approximately 2.7 million individ-
ual attempts in one week in this study), the availability of attack vectors and
the ease by which they might be utilised to deliver a much more destructive
payload.
1 https://news.sophos.com/de-de/2015/09/17/projekt-honeytrain-hackerwork/.

https://news.sophos.com/de-de/2015/09/17/projekt-honeytrain-hackerwork/

Integrity Checking of Railway Interlocking Firmware 165

Combining attacks on the two lowest layers is also possible, especially if the
levels are not properly secured. Tampering or substitution of sensors can provide
useful outcomes when combined with tampered logic on the control level [39].
These attacks are many times possible due to lacking security protocols and
procedures in these systems. Securing interconnections, cryptographic identities,
configuration monitoring and signing are just a few things that always should
be implemented on these systems but have not formally been used.

3 Simulation Environment

Tampering with railway signalling needs to be done in a controlled environment.
We do not want real incidents to happen when testing. It is more secure, cost
friendly and safer to simulate the system. When tampering with firmware on real
devices there is a big risk that the system as a whole will not be recoverable. This
section introduces a simulation framework that is utilised in the experimentation
and attacking of the railway signalling system.

An overview of the framework can be seen in Fig. 3. Along with a management
environment, each docker container corresponds to a real-World device with the
addition of a set of tools to simulate the core root of trust, firmware and the
measured boot process.

Fig. 3. Overview of simulation environment.

While providing a mechanism to develop simulated devices, it is also neces-
sary for the simulation environment to provide two further services:

– Simulation Environment Management

166 R. Bäckman et al.

– Attestation Services

The first refers to the functionality used to configure the devices and their
communication (for rapid design, IP networking and MQTT message passing
is used) and is utilised by the person in the role of setting up a simulation
environment. The second contains the pre-built components specifically for the
provisioning and remote attestation of the simulated (or real) trusted devices.
These components are called by elements within the base containers automati-
cally by the simulation environment. The remote attestation facilities would be
presented to the users of the simulation as part of the cybersecurity forensics
and failure detection processes.

4 Finnish Rail Traffic Management System

The Finnish rail traffic management system consists of four individual systems
that work together: the interlocking, automatic train protection (JKV2), track
vacancy monitor and the remote control system and is explained in [14].

The system uses track vacancy as the main safety criteria. A interlocking
device takes the vacancy inputs and restricts traffic according to a predefined
logic application. Trains are only allowed to move on tracks that are not occupied
while speed is controlled by the interlocking system, partly through signalling
and partly via track parameters.

There are two different methods for monitoring the track vacancy. The newer
method is able to count train and carriage axles: if a carriage is broken loose
from the train, the count between two sequential counters is not the same. The
interlocking system will protect the track section between the counters and not
let any trains pass. The older vacancy monitoring equipment depends on forming
a track circuit; it can only report if the track section is occupied or not.

The interlocking system takes the inputs from the vacancy control system
with the purpose to protect the railway environment by granting and prohibit-
ing access for trains on track sections. Granting access is done by reserving track
sections from the remote control system. A protective logic is implemented on
the interlocking system that protects the rail environment from dangerous reser-
vations. As an example it is not possible to reserve an already occupied track. It
is not possible to reserve a soon to be occupied section, if stopping an incoming
train is not possible.

Track switching is controlled by the interlocking system, so when a reserva-
tion is made and granted the track also switches to move the train to the desig-
nated endpoint. When the train moves on the reserved sections past vacancy con-
trol, track sections can be freed manually or even automatically. Track switches
always try to protect the movement in a fail-safe manner, for example, if a stop
signal is passed the train is routed to a free section.

The interlocking system is in charge of controlling all signals. The track side
signals have three different modes proceed, proceed 35 and stop3. These are shown
2 [Automattinen] Junan Kulunvalvonta.
3 The official Finnish terms are Aja, Aja35 and Seis.

Integrity Checking of Railway Interlocking Firmware 167

by green, yellow/green and red lights on the physical track-side signal posts. An
occupied track section is protected by a stop aspect, that section by a proceed 35
(warning) and that section by a proceed aspect. Other combinations are possible
based on track speeds, train type (express vs freight), braking distances etc.

The Finnish automatic train protection system (JKV) is a second or addi-
tional signalling system that is installed on the train. It communicates with track
side equipment, in this case a balise, which sends information to the train about
the signalling and track information. The JKV system can react to lack of driver
input and stop the train.

Safety is the sole purpose of the interlocking system, it takes the vacancy
input, grants access to a remote control request if a safe passage can be routed,
controls track side signals and data sent to the JKV system. Integrity of the
interlocking system and the implemented logic is of high importance. When
implementing an interlocking system it is tested, simulated and verified before
production use. After it is put into use the interlocking integrity is not actively
monitored.

5 Attacking the Trusted Railway Simulation

Attacking the firmware layer before the protective logic application can produce
issues as described in [17,32]. Hardware initialization is done during the boot
stage and this maps interfaces cards that produce outputs and take inputs from
track side equipment. These inputs/outputs are in many cases analog and there-
fore can be directly swapped on the interlocking device. A trusted system would
record the configuration measurements as cryptographic hashes of these com-
ponents and write these to the TPM for subsequent remote attestation before
admitting that device to the system.

For example a point device that controls the turnout of a train in a spe-
cific point could have 2 inputs and 2 outputs. The inputs tell the interlocking
device where the pointing device turnout is. This is a simple analog circuit, if the
circuit is closed the turnout is active. Through the outputs the turnout could
be controlled. Note, this is intentionally (and maybe grossly) simplified - real
systems rely upon multiple points within the interlocking to ensure functional
integrity [23]; however the point here is to demonstrate a detectable misconfig-
uration in a digitalised system.

Swapping the input and output could - in the worst case - derail a train or
cause a collision [34]. The interlocking device would believe that the turnout is
connected to the correct track according to the application logic. However the
input and output are swapped on firmware level, which of the application have
no control of.

Firmware changes require a reboot of the device to take effect. Simulating
device reboots with changes gives an opportunity to verify Traffic Management
procedures so that right mitigation can be done and failed integrity can be
corrected.

The mechanism for firmware updates typically requires a reboot of the system
- this means that the effects of tampering can be hidden to take effect later and

168 R. Bäckman et al.

not directly after a reboot changes in the firmware which are measured during
the measured boot are detectable and actionable once they have been reported
to the attestation mechanisms. Indeed some cases of malware [26] have included
secondary attacks embedded within these [13].

5.1 Attack Anatomy

An example scenario is seen in Fig. 4 which shows the user-interface to the rail-
way management system. In the simulator this interface is provided by its own
container and the track and signalling devices as well as the interlock(s) similarly
by their own containers.

Fig. 4. Example of track section under attack

In this case we have a train (T100) approaching a switch (V311) set to enter
track section (301). The signal protecting the switch (311) should display the
appropriate aspect to allow the train to progress, typically a proceed or caution.

The attack upon this system - obviously relying upon digital components - is
introduced by some vector as referenced earlier and need not be a direct attack
against that device but also via some other attack medium. The attack here
is designed to swap or misconfigure input and output signals. Figure 5 shows
the input and output signals that will be mapped to each other in the attack.
The delivery of the attack could further be made during normal maintenance
operations [18]. The effect of swapping the input and output lines here would
allow the train to cross the switch and enter the occupied section of track (302).

We introduce here three different attack triggers:

– Attacker triggers reboot after tampering.
– Passive reboot triggering waiting for maintenance reboot.
– Dynamic trigger activated a certain time after reboot.

As typical of firmware attacks, a reboot of the device is required to take
effect. Either the reboot is directly triggered by the tampered firmware or we
wait until a scheduled reboot is made.

Integrity Checking of Railway Interlocking Firmware 169

Fig. 5. Input-output signals that are flipped in the attack.

The first trigger would be activated directly after tampering the device
firmware. Due to fail safe procedures, which should be monitoring for certain
kinds of misconfiguration, every device connected to the interlocking device
would go into fail safe mode when active signals from the device are removed.
This assumes however that the particular misconfiguration is detectable and that
the incorrect configurations have been properly characterised.

Although it depends upon the implementation of the interlocking device
reboot, we can assume that most of the implementations would show a notice
of the reboot which should trigger reattestation. As reboots are indicative of
a potential reconfiguration detecting and accurately reporting on reboots and
being able to provide forensics of why a reboot took place is a critical part of
firmware integrity security.

From the traffic controllers perspective an interlocking device reboot would
be identified, if the reboot activity is monitored. Otherwise the reboot would
just show up/seem as a moment of downtime for the device. In our scenario it is
possible to discover a short disruption of the interlocking device service. This can
be discovered by every controlled track side device from that interlocking device
to go into fail safe for the rebooting time. Depending on traffic management
procedures mitigation would be done to resume normal operations.

Attacks could wait for a maintenance reboot from after which the configura-
tion change would be in place. More advanced attacks could also do a dynamic
mapping and implement a trigger for the swap to occur during normal operating
hours. This makes reboot monitoring not a full covered mitigation to discover
firmware tampering.

5.2 Measurement

Detecting firmware attacks depends upon the element being trustable and mea-
suring relevant parameters. In our railway elements as we have built in the
simulation we measure the firmware, the configuration of the firmware and then
finally the configuration and static software (or hardware) elements that make
up the configurable parts of the element. In this case we take cryptographic
measurements of the input and output port configurations and these are loaded
into the PCR registers on board the TPM.

170 R. Bäckman et al.

In all of the above cases the TPM provides information about device reboots
through monotonically increasing counters that indicate the amount of power
cycles. These counters are reported as metadata during the acquisition of a device
quote of its measured configuration. Further forensics are provided by the use of
a ‘safe’ counter which provides information whether the TPM embedded in that
device was cleanly shut down or not.

5.3 Mitigation

Controller software is mostly firmware that is upgraded by flashing after the
device is rebooted. So firstly we will see a reboot of a device when attacked.
If the devices are constantly monitored, there will be a short downtime off a
device if it is rebooted. The best practice would be to attest the device as soon
as possible after the reboot.

Attestation of a device can be made locally or remotely. In local attesta-
tion the device itself is responsible for checking the measurements made against
locally stored known good values. This was the default mechanism used in the
earlier TPM 1.2 devices which did not take into consideration larger, distributed
systems. This local attestation mechanism is now largely deprecated and not
used in TPM 2.0.

In the newer TPM 2.0 standard we either utilise remote attestation system
and rely upon the attestation integrating with other parts of the system to report
trust failures, or, we can seal certain information in the TPM’s non-volatile
RAM that can only be obtained if a correct configuration is measured. In reality
both mechanisms need to be used though with more of a focus on the remote
attestation occurs for reliability and relatively ease of use and configuration.

We have constructed a remote attestation and integrated that with the simu-
lation environment for railway signalling described here. This has been adapted
from an earlier system targeted towards telecommunication systems [22,29–31].
Each device reports its immutable identity (via its EK and AK keys) and its
configuration to the remote attestation service. Figure 6 shows the attestation
server and the basic device identity information.

Upon reboot of a device, the remote attestation server would communicate
with the device and report that the device has failed the correct system mea-
surements as shown in Fig. 7. This is achieved using the quoting mechanism
described earlier. Here we can also see that the device still has a valid signature
and that the quote returned by the TPM is both syntactically and semantically
valid.

The remeasurement of a device may be triggered in a number of ways. Firstly
the reboot might have been triggered by some other system and the attestation
server notified to take measurements. The device itself may also trigger attesta-
tion by reporting explicitly its reboot. Depending upon the nature of the envi-
ronment, communication and real-time properties either or both systems might
be utilised.

In Fig. 7 we see that the device has failed its expected measurements test
which is indicative of some change to the configuration. As we have mentioned

Integrity Checking of Railway Interlocking Firmware 171

Fig. 6. Device identity

Fig. 7. Device showing configuration trust failure/error

172 R. Bäckman et al.

other tests has passed successfully so we can be sure that the correct device is
present.

Once we have identified a change in some measurements we proceed with the
initial forensics where we examine the particular PCRs reported by the TPM as
shown in Fig. 8. In this case we see that there has been a change in PCR1 which
depending upon the semantics of the PCRs, at least on an x86 system, would
indicate a change in the actual firmware itself.

Fig. 8. TPM forensics using PCR listing

Further forensics can now start, for example examining the TPM boot logs
exposed by the UEFI firmware on x86 machines. Similar mechanisms would have
to be developed for other architectures, such as ARM, where this has not been
standardised.

6 Conclusion

The work here has presented an attack on the integrity of a railway interlocking
environment using the firmware and configuration of those systems in such a way
- through simulation - that it causes changes in the measurable - in a trusted
sense - aspects of the system. This allows us to safely understand the role of
trusted computing in the firmware attack scenarios and develop techniques and
plans to deal with such incidents.

Integrity Checking of Railway Interlocking Firmware 173

This has been developed as the case study for a larger simulation environment
for trusted systems. This provides us therefore with an educational environment
where - in this case - railway signallers and control role operators can explore
their reactions and develop mechanisms for the successful diagnosis and recovery.

Future work includes developing the scenarios shown in conjunction with
trusted hardware and remote attestation specifically designed for safety-critical
systems. It must be pointed out that dealing with trust failures is relatively
novel and an unexplored area. Beyond preliminary investigations into root cause
analysis there is currently no mechanism for trust failure forensics, analysis and
recovery - especially in the case of safety critical systems [24].

A number of aspects have come out of this work so far which require more
discussion. Firstly the response to a failure in a safety-critical system can not
be a reboot/reinstall or taking that element out of usage [19]; instead a more
sophisticated mechanism of managed degradation of functionality put in place.
In the signalling case this might require manual intervention and imposition of
procedures such as ‘drive on sight.’

The real-time characteristics and data transmission restrictions also come
into play. The size of a TPM quote is around 1000 bytes, but the time to gen-
erate, sign and check a quote might take a number of seconds [25]. So while
the reporting of attestation information is well within specifications such as the
EuroBalise data transmission specification, the real-time properties present sig-
nificant problems to the obtaining of timely information. If a quote take 3 s to
generate and check, then a high speed train at 300 kmh will travel approximately
250 m during that time. Even at slower speeds this might prove to be a significant
obstacle especially when mitigation mechanisms need to put into place.

Finally handling of trust failures needs to be properly developed. While inte-
gration of cybersecurity procedures into normal railway signalling procedures is
starting to happen, trust failure forensics and management is undeveloped. We
have examined how root cause analysis can be integrated and automated with
the remote attestation at least in the telecommunications server environment.
Extending this into rail and other safety-critical domain use cases is ongoing.

Acknowledgements. This work has been partially funded by EU ECSEL Project
SECREDAS (Grant Number: 783119).

References

1. Trusted computing platform alliance main specification. Trusted Computing Group
(2002)

2. Trusted platform module library, part 1: architecture. Trusted Computing Group
(2016). Version Number: Level 00 Revision 01.38

3. EN 50126–1. European Committee for Electronic Standardization (2017)
4. TCG TPM v2.0 Provisioning Guidance. Trusted Computing Group (2017). Version

Number: 1.0
5. Hybrid ERTMS/ETCS Level 3. EEIG ERTMS Users Group (2018). Version Num-

ber: 1C

174 R. Bäckman et al.

6. TCG PC Client Platform Firmware Profile. Trusted Computing Group (2019).
Version Number: Level 00 Revision 1.04

7. TCG PC Client Platform Firmware Profile Specification. Trusted Computing
Group, June 2019. Version Number: 1.04

8. Assante, M.J., Conway, T., Lee, R.M.: German steel mill cyber attack. Technical
report, SANS Industrial Control Systems (2014)

9. Basnight, Z., Butts, J., Lopez Jr., J., Dube, T.: Firmware modification attacks on
programmable logic controllers. Int. J. Crit. Infrastruct. Prot. 6(2), 76–84 (2013)

10. Bastow, M.D.: Cyber security of the railway signalling & control system (2014)
11. Buurmans, K., Koopmans, M., Rijlaarsdam, R., Es, A.V., Vliet, M.V.: Feasibility

study reference system ERTMS: final report, digitalisation of CCS (control com-
mand and signalling) and migration to ERTMS. Techreport, European Railway
Agency (2018)

12. Falliere, N., Murchu, L.O., Chien, E.: W32.Stuxnet dossier. Technical report
(2011). Volume: Version 1.4

13. Gotora, T.T., Zvarevashe, K., Nandan, P.: A survey on the security fight against
ransomware and Trojans in Android. Int. J. Innov. Res. Comput. Commun. Eng.
2(5), 4115–4123 (2014)

14. Kantamaa, V.M., Sorsimo, T.: Rautatieturvalaitteet. Otavan Kirjapaino Oy (2018)
15. Karjalainen, M., Kokkonen, T., Puuska, S.: Pedagogical aspects of cyber security

exercises. In: 2019 IEEE European Symposium on Security and Privacy Workshops
(EuroS&PW), pp. 103–108. IEEE (2019)

16. Kokkonen, T., Hautamäki, J., Siltanen, J., Hämäläinen, T.: Model for sharing the
information of cyber security situation awareness between organizations. In: 2016
23rd International Conference on Telecommunications (ICT), pp. 1–5. IEEE (2016)

17. Konstantinou, C., Maniatakos, M.: Impact of firmware modification attacks on
power systems field devices. In: 2015 IEEE International Conference on Smart
Grid Communications (SmartGridComm), pp. 283–288. IEEE (2015)

18. Kour, R., Aljumaili, M., Karim, R., Tretten, P.: eMaintenance in railways: issues
and challenges in cybersecurity. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit
233(10), 1012–1022 (2019)

19. Kour, R., Thaduri, A., Karim, R.: Railway defender kill chain to predict and detect
cyber-attacks. J. Cyber Secur. Mobil. 9(1), 47–90 (2020)

20. Kühner, H., Seider, D.: Security engineering für den schienenverkehr. In: Eisenbahn
Ingenieur Kompendium, pp. 245–264 (2018)

21. Langner, R.: To kill a centrifuge. Technical report, The Langner Group (2013)
22. Hippelainen, L., Oliver, I., Lal, S.: Towards dependably detecting geolocation of

cloud servers. In: 2nd International Workshop on Security of Internet of Everything,
SECIOE 2017, Helsinki, Finland. IEEE, August 2017

23. Lim, H.W., Temple, W.G., Tran, B.A.N., Chen, B., Kalbarczyk, Z., Zhou, J.: Data
integrity threats and countermeasures in railway spot transmission systems. ACM
Trans. Cyber-Phys. Syst. 4(1), 1–26 (2019)

24. Limonta, G., Oliver, I.: Analyzing trust failures in safety critical systems. In: Pro-
ceedings of the 29th European Safety and Reliability Conference (ESREL) (2019)

25. Limonta Marquez, G.: Using remote attestation of trust for computer forensics.
Master’s thesis, 10 December 2018

26. Mago, M., Madyira, F.F.: Ransomware software: case of wannacry. Eng. Sci. 3(1),
258–261 (2018)

27. Matrosov, A., Rodionov, E., Bratus, S.: Rootkits and Bootkits. No Strach Press
Inc., San Francisco (2019)

Integrity Checking of Railway Interlocking Firmware 175

28. Oliver, I., et al.: Experiences in trusted cloud computing. In: Yan, Z., Molva,
R., Mazurczyk, W., Kantola, R. (eds.) NSS 2017. LNCS, vol. 10394, pp. 19–30.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-64701-2 2

29. Oliver, I., et al.: A testbed for trusted telecommunications systems in a safety
critical environment. In: Gallina, B., Skavhaug, A., Schoitsch, E., Bitsch, F. (eds.)
SAFECOMP 2018. LNCS, vol. 11094, pp. 87–98. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-99229-7 9

30. Oliver, I., Lal, S., Ravidas, S., Taleb, T.: Assuring virtual network function image
integrity and host sealing in telco cloud. In: IEEE ICC 2017, Paris, France, May
2017

31. Oliver, I., Ravidas, S., Hippeläinen, L., Lal, S.: Incorporating trust in NFVI:
addressing the challenges. In: Proceedings of 20th Innovations in Clouds, Inter-
net and Networks Conference, ICIN 2017, Paris, France (2017)

32. Pasquale, T., Rosaria, E., Pietro, M., Antonio, O., Ferroviario, A.S.: Hazard analy-
sis of complex distributed railway systems. In: 2003 Proceedings of the 22nd Inter-
national Symposium on Reliable Distributed Systems, pp. 283–292. IEEE (2003)

33. Proudler, G., Plaquin, D., Chen, L., Balacheff, B., Pearson, S.: Trusted Computing
Platforms: TCPA Technology in Context. Prentice Hall, Upper Saddle River (2002)

34. Anthony Hidden, Q.C.: Investiation into the Clapham junction railway accident.
UK Department of Transport, November 1989

35. Schindler, S., Schnor, B.: Honeypot architectures for IPv6 networks. Ph.D. thesis,
Universität Potsdam, Mathematisch-Naturwissenschaftliche Fakultät (2016)

36. Schuett, C., Butts, J., Dunlap, S.: An evaluation of modification attacks on pro-
grammable logic controllers. Int. J. Crit. Infrastruct. Prot. 7(1), 61–68 (2014)

37. Shila, D.M., Geng, P., Lovett, T.: I can detect you: using intrusion checkers to
resist malicious firmware attacks. In: 2016 IEEE Symposium on Technologies for
Homeland Security (HST), pp. 1–6. IEEE (2016)

38. Stumpp, K.: Draft of the security-by-design and of railway cyber security manage-
ment system standards. Technical report, European Union Funding for Research
and Innovation (2019)

39. Thaduri, A., Aljumaili, M., Kour, R., Karim, R.: Cybersecurity for eMaintenance
in railway infrastructure: risks and consequences. Int. J. Syst. Assur. Eng. Manag.
10(2), 149–159 (2019). https://doi.org/10.1007/s13198-019-00778-w

https://doi.org/10.1007/978-3-319-64701-2_2
https://doi.org/10.1007/978-3-319-99229-7_9
https://doi.org/10.1007/978-3-319-99229-7_9
https://doi.org/10.1007/s13198-019-00778-w

LoRaWAN with HSM as a Security
Improvement for Agriculture Applications

Reinhard Kloibhofer1(B), Erwin Kristen1, and Luca Davoli2

1 AIT Austrian Institute of Technology GmbH, Giefinggasse 4, 1210 Vienna, Austria
{reinhard.kloibhofer,erwin.kristen}@ait.ac.at

2 Internet of Things (IoT) Lab, Department of Engineering and Architecture,
University of Parma, Parco Area delle Scienze 181/A, 43124 Parma, Italy

luca.davoli@unipr.it

Abstract. The digital future in agriculture has started a long time ago, with Smart
Farming and Agriculture 4.0 being synonyms that describe the change in this
domain. Digitalization stands for the needed technology to realize the transfor-
mation from conventional to modern agriculture. The continuously monitoring
of all environmental data and the recording of all work parameters enables data
collections, which are used for precise decision making and the planning of in-
time missions. To guarantee secure and genuine data, appropriate data security
measures must be provided.

This paper will present a research work in the EU AFarCloud project. It intro-
duces the important LoRaWAN data communication technology for the trans-
mission of sensor data and to present a concept for improving data security and
protection of sensor nodes. Data and device protection are becoming increasingly
important, particularly around LoRaWAN applications in agriculture.

In the first part, a general assessment of the security situation in modern
agriculture, data encryption methods, and the LoRaWAN data communication
technology, will be presented.

Then, the paper explains the security improvement concept by using a Hard-
ware Secure Module (HSM), which not only improves the data security but also
prevents device manipulations. A real system implementation (Security Evalua-
tion Demonstrator, SED) helps to validate the correctness and the correct function
of the advanced security improvement.

Finally, an outlook on necessary future works declares what should be done in
order tomake the digital agriculture safe and secure in the same extent as Industrial
Control Systems (ICSs) will be today.

Keywords: LoRaWAN · Trusted Platform Module (TPM) · Internet of Things
(IoT) · Cyber-Physical Systems (CPS) · Safety & Security · Agriculture

1 Introduction

This paper aims to bring a reader closer to the importance of Long Range Wide Area
Network (LoRaWAN) technology for the transmission of digital data and to present a

© Springer Nature Switzerland AG 2020
A. Casimiro et al. (Eds.): SAFECOMP 2020 Workshops, LNCS 12235, pp. 176–188, 2020.
https://doi.org/10.1007/978-3-030-55583-2_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-55583-2_13&domain=pdf
https://doi.org/10.1007/978-3-030-55583-2_13

LoRaWAN with HSM as a Security Improvement for Agriculture Applications 177

concept for improved data protection,which, in turn, is becoming increasingly important,
particularly around LoRaWAN-based applications in agriculture.

LoRaWAN has triumphed in recent years when it comes to periodically transferring
small amounts of data over long distances [1]. This type of short- andmedium-range data
transmissions is gaining more and more importance in data and commands’ distribution
for sensors and actuators at the field level and in Internet of Things (IoT)-oriented
contexts [2]. A special application area will be the modern agriculture domain, where
different sensors, directly installed on the field, deliver environmental data to support
finding correct decisions for the exact mission planning in time.

However, the increasing digitalization in agriculture and the associated networking
of machines and production systems increase the risk of cyber-attacks. Especially, by
widely distributed production facilities (at field level) in agriculture and the network
supported interaction with the Information Technology (IT) world, new points of attack
have been disclosed. This technical progress allows an easier penetration of attackers
to the production facility, manipulating it and even impairing safety (e.g., machinery
safety).

A new important aspect of modern agriculture is the fact that the above-mentioned
field level becomes more and more powerful. Today’s field devices are highly integrated
and powerful electronic processing systems, with high-performance computing capabil-
ities, firmware updates and maintenance interfaces. The attractiveness for cyber security
attacks and field device misusing is expected to rise.

IoT security deals with different types of threats. The following list summarizes the
most critical vulnerabilities.

• Espionage: this vulnerability type focuses on collecting data from the cyber-attacked
victim. The data is used to gain secret knowledge or to obtain information in order to
prepare further attacks, e.g., theft of sensor data.

• Destruction and Exaction: the goal of this vulnerability is to perform data adulteration
or produce system damage, e.g., falsification of the original sensor data.

• Sabotage: the goal of this vulnerability is to reduce or prevent correct system
operations, e.g., shortening battery life by permanently activating the sensor node.

• Misuse: the goal of this vulnerability is the unauthorized use of system equipments
to perform criminal actions, such as building botnets and kidnapping of foreign com-
puters for Distributed Denial-of-Service (DDoS) attacks. An example of this kind of
vulnerability is the installation of malware.

Important countermeasures are the early detection of attacks, the encryption of trans-
mitted data and the protection against unauthorized device access by using a login
procedure (e.g., with usernames and passwords, as well as based on tokens).

2 Data Encryption with Symmetric and Asymmetric Keys

The data transmission from a sender to one or multiple receivers, as well as the data
storage, must be protected against eavesdropping and manipulation. Therefore, there
is the need of encryption algorithms, which are a set of mathematical procedures for

178 R. Kloibhofer et al.

performing encryption tasks on data. With the use of such algorithms, data will be
transformed to ciphertext through a secret key, thus requiring the use of the same or
another secret key to transforming data back into its original form. Moreover, through
cryptography the data is transformed so that it cannot be read or understood by an
eavesdropper, while only the trusted receiver, who has permissions, can transform the
ciphertext to the original data (by using the secret key). This technique is old and used
from the Roman times (e.g., through the Caesar cypher).

To encrypt and decrypt, it is possible to distinguish between (i) symmetric encryption
and (ii) asymmetric encryption. The symmetric encryption represents the simpler way
and is characterized by the fact that keys for encryption and decryption are identical,
as shown in Fig. 1. In this case, both sender and receiver must have the same secret
key, which, in turn, must be generated and exchanged at least at communication channel
or storage’s setup time. Another problem regards the protection of this key against
unauthorized read-out or distribution. Examples of symmetric encryption algorithms
are Blowfish, Advanced Encryption Standard (AES), and Data Encryption Standard
(DES). The most commonly used algorithms are AES-128, AES-192, and AES-256,
where the number denotes the key length in bits.

Fig. 1. Symmetric encryption (Source: https://
www.ssl2buy.com/wiki/symmetric-vs-asymme
tric-encryption-what-are-differences)

Fig. 2. Asymmetric encryption (Source:
https://www.ssl2buy.com/wiki/symmetric-
vs-asymmetric-encryption-what-are-differ
ences)

A more complex encryption schema is represented by the usage of asymmetric
encryption, which is a relatively new method. In this case, the keys for encryption and
decryption are different, and denoted as private and public keys, as shown in Fig. 2. The
public key, used for encryption purposes, is made freely available and can be distributed
to everyone who wants to encrypt data for the receiver. Instead, the private key is known
only by the receiver and will be never distributed to anyone else. A message that is
encrypted using the public key can only be decrypted using its paired private key, while
amessage encrypted using the private key can be decrypted using the public key. Security
of the public key is not required, it can be stored and sent unsecured. Asymmetric keys
improve the security of information transmitted during communication.

In current Internet communications, asymmetric encryption is the most commonly
used technique for securing the data transfer.

https://www.ssl2buy.com/wiki/symmetric-vs-asymmetric-encryption-what-are-differences
https://www.ssl2buy.com/wiki/symmetric-vs-asymmetric-encryption-what-are-differences

LoRaWAN with HSM as a Security Improvement for Agriculture Applications 179

3 Overview on LoRaWAN

LoRaWAN is aMediaAccess Control (MAC) protocol forWideAreaNetworks (WANs)
[3]. A focus in the design of LoRaWANwas to allow low-power devices to communicate
with a LoRaWAN server, leading to the involvement in Low-Power WANs (LPWANs).
LoRaWAN is implemented on top of the LoRa modulation in the Industrial, Scientific
and Medical (ISM) radio bands. The specification can be found on the LoRa Alliance
website,1 while its network architecture is shown in Fig. 3.

Fig. 3. LoRaWAN network architecture (Source: https://lora-alliance.org/sites/default/files/
2018-04/what-is-lorawan.pdf)

Instead, LoRa represents the physical layer of a communication protocol able to
support long-range communication and is based on Chirp Spread Spectrum (CSS) mod-
ulation [4], which significantly increases the communication range, if compared to Fre-
quency Shift Keying (FSK) modulation. CSS has been used in military applications for
long time, but LoRa is the first low-cost implementation available for commercial use,
allowing data transmissions over distances up to 10 km.

While many existing deployed networks follow the mesh network approach, where
each end-node is also used to forward messages from other nodes to extend the trans-
mission range, LoRaWAN uses a star topology. This saves battery life of the end-nodes
because they do not act as gateways (GWs). Moreover, a LoRaWAN end-node is not
associated with a specific GW since, in a well-designed operating environment, uplink
data from an end-device are received by multiple intermediate GWs and forwarded
to the Network Server (NS). Hence, the NS can handle multiple copies of data, per-
forms security checks, schedules acknowledgements, manages the back channel from
the Application Server (AS) to the end-node, and decides over which GW the back
communication will be performed.

1 Source: https://lora-alliance.org/.

https://lora-alliance.org/sites/default/files/2018-04/what-is-lorawan.pdf
https://lora-alliance.org/

180 R. Kloibhofer et al.

End-nodes can work asynchronously, meaning that they can wake-up and communi-
cate when they have new data. For receiving downlink data from the server, the end-node
opens the receiver interface at pre-defined time windows. This operating mode, defined
as Class A, helps to save battery power and enables an operation time for up to 10 years
with a single battery cell. Other operating modes can set the end-node to continuously
open the receiver interface to react faster to commands from the server, thus consuming
more battery power and therefore lowering the battery lifetime.

Regarding security and encryption, in LoRaWAN they are performed in both the
network and application layers [5], as illustrated in Fig. 4. The network security enables
authenticity of the end-node in the network, while the application security protects data
between end-nodes and the AS. Moreover, the network layer does not have access to
application data and, for both layers, AES-based symmetric encryption is used, being
well-analysed, approved by the National Institute of Standards and Technology (NIST),
and widely used.

Fig. 4. LoRaWAN security with network and session keys

For data encryption and decryption, Network Session Key (NwkSKey) and Applica-
tion Session Key (AppSKey) are used. These keys should be strongly protected against
hacking and misuse in either end-node, NS, and AS.

For setting-up a LoRaWAN network and the application, NwkSKey and AppSKey
must be generated and exchanged among the different network devices (end-node, NS,
and AS) through two different techniques (defined in the LoRaWAN standard):

• Over-The-Air-Activation (OTAA): this is the preferred and most secure way, since an
end-node communicates with the NS to perform the activation process, denoted as

LoRaWAN with HSM as a Security Improvement for Agriculture Applications 181

join procedure. According to the LoRaWAN specifications, the OTAA mode is used
when an end-node is already deployed, or after a reset.

• Activation By Personalisation (ABP): in this mode, the session keys are pre-stored in
the end-node and the servers (NSandAS). This activationmight seemsimpler, because
the join procedure is skipped, but it has some disadvantages related to security aspects.

In both activation modes, root keys and session keys must be protected. On the
server side, a Key Management (KM) system can be used [6], while on the end-node,
the protection of the keys is more challenging. In order to furtherly improve the security,
a periodical keys alteration is recommended, in order to prevent a successfully security
key theft via brute force methods.

4 Security Module

A Trusted Platform Module (TPM, also known as ISO/IEC 11889-1:2015 [7]) is a
device providedwith a secure cryptographic processor, that is a dedicatedmicrocontroller
designed to secure hardware through integrated cryptographic keys. Once enabled on a
system, the TPM can provide full disk encryption capabilities. Moreover, it becomes the
“root of trust” for the system to provide integrity and authentication of the boot process,
and keeps hard drives locked/sealed until the system completes a system verification,
or authentication check. The TPM includes a unique Rivest-Shamir-Adleman (RSA)-
based security key burned into it, used for asymmetric encryption. Additionally, it can
generate, store, and protect other keys used in the encryption and decryption process.
A TPM is normally integrated in the system hardware (HW) and cannot be removed;
without the TPM, the system cannot work. A Hardware Security Module (HSM) is like
a TPM, but it can also be added or connected later to the host system, by a connector,
and it can perform the same security features as a TPM.

The security module adopted for the implementation purposes in this paper is an
HSM called Zymkey 4i [8] and produced by Zymbit Corporation. As shown in Fig. 5,
it is a small-scale module which is designed to work with Raspberry Pi (series 3 and 4)
boards. However, it can also be connected to other microcontrollers or host systems.

Fig. 5. Zymkey 4i module (Source: https://community.zymbit.com/t/getting-started-with-zym
key-4i/202)

The Zymkey HSM has multiple security layers to protect against cyber and physical
threats. A secure element (SE), as part of the HSM, with micro-grid protected silicon
stores sensitive resources, while a security supervisor isolates the SE from the host
computer and provides additional functions of multi-factor identity/authentication for
devices and physical security. The key features of the Zymkey module are the following.

https://community.zymbit.com/t/getting-started-with-zymkey-4i/202

182 R. Kloibhofer et al.

• Multi Device Identification and Authentication: Zymkey enables remote confirmation
of the HW configuration of the host device. It has a unique Identification (ID) token
that was created with several device-specific parameters. Cryptographically-derived
ID tokens are never made available to customers.

• Data Integrity, Encryption & Signing: the cryptographic engine uses some of the
strongest encryption functions available on themarket to encrypt, sign and authenticate
data. These includes Elliptic Curve Digital Signature Algorithm (ECDSA), Elliptic-
Curve Diffie–Hellman (ECDH), Advanced Encryption Standard (AES-256), Secure
Hash Algorithm (SHA256). It also incorporates a True Random Number Generation
(TRNG).

• KeySecurity, Generation&Storage: themodule can store key pairs in tamper-resistant
silicon to support different security services. Multiple key slots can be used. There are
pre-defined and user slots available. Once generated, private keys are never exposed
outside of the silicon and therefore cannot be copied, or keys can be stored in the
module which will be erased depending on security policy.

• Physical Tamper Detection: the module monitors the physical environment for symp-
toms of physical tampering (Perimeter Detection). This includes the supervision of
interrupting or break of two independent wire loops. A physical intrusion into a
device (like a sensor) can be monitored. Optional accelerometers detect shock or
fast orientation changes. Also, the quality of the power supply can be monitored.

• Real Time Clock (RTC): the Zymkey includes a battery-backed RTC to support off-
grid applications.

• Ultra-LowPowerOperation: themodule delivers long-term autonomous security from
a built-in battery.

• Secure Element Hardware Root of Trust: the Zymkey provides different layers of
hardware security, having a dual secure-processor architecture in which it is hard to
penetrate.

Each module has a unique Serial Number (SN). When the Zymkey module is paired
to a host system, the host platform’s SN and the Secure Digital (SD) card’s SN will
be stored together with the unique ID in the Zymkey crypto accelerator chip. After the
pairing process (binding), the module is only linked to the host system. For development
purposes, a temporary binding is possible. After cutting a lock tab on the module (as
shown in Fig. 6), the binding is permanent, and the module cannot be used on another
host. If the host’s File System (FS) is encrypted with the module through Linux Unified
Key Setup (LUKS), then the FS can only be read with the module connected to the host.

Fig. 6. Lock tab of the Zymkey module

LoRaWAN with HSM as a Security Improvement for Agriculture Applications 183

5 Implementation of HSM in a LoRaWAN End-Node

As explained in Sect. 1, security for digital data communication is a very important
topic. Especially for agriculture sensor-based applications, where the physical space is
not enclosed and protected as in industrial applications. Sensors are exposed in or near
agriculture fields and can be stolen and then manipulated in a laboratory environment.
For medium or wide agriculture environments, it is very important that both devices
and data cannot be manipulated in any way, so that the whole agriculture output is not
endangered.

About this, there are different types of vulnerabilities for deployed sensors, that can
be improved with the use of a security element in the end-device:

1. move the sensor from the intended location;
2. physical integrity of the sensors;
3. reuse the HW for manipulation of the agriculture environment;
4. manipulate communication data.

A widely used protocol for semi-automated agriculture application is the LoRaWAN
protocol, because this protocol is designed for long-range communication with small
data amounts and for long-time battery use. LoRaWAN also has good security features
using symmetric AES encryption and decryption on network and application layers.
But, as explained in Sect. 2, encryption and decryption keys must be protected against
read-out and manipulation from hackers.

5.1 Secure Evaluation Demonstrator

In the EU AFarCloud project,2 one topic is the analysis and improvement of security
in agriculture applications. Therefore, the Security Evaluation Demonstrator (SED) is
under development to demonstrate how security improvements can be archived.

Figure 7 illustrates the block diagram of the SED. There are two main blocks: the
“Farm” block, which represents the farm environment, and the “Cloud” block, with
processing and data repository services. The Farm can be further divided in “Sensors”
and “Edge” sections. The first one comprises one LoRaWAN-oriented sensor with TPM,
while the second sensor only provides LoRaWAN communications. Sensor data are
received by Gateway 1, a GW with integrated LoRaWAN NS and AS, and Gateway
2, a GW acting as a LoRaWAN forwarder. Gateway 1 transfers sensor data over the
internal router, while an Internet Service Provider (ISP) modem, via MQTT protocol,
send them to a Cloud-based MQTT broker with Data Repository. Gateway 2 performs
the data transfer to the Cloud-based Data Repository via the LoRaWAN protocol. In
the second case, LoRaWAN NS and AS in the Cloud are used. While by the first data
transmission to the Cloud, data are ciphered with asymmetric encryption, data for the
second transmission are protected with symmetric encryption. Finally, a firewall (FW)
serves as an additional farm protection shield, for example commands and firmware
updates.

2 Source: http://www.afarcloud.eu/.

http://www.afarcloud.eu/

184 R. Kloibhofer et al.

Fig. 7. Secure evaluation demonstrator

5.2 Hardware Implementation

The sensor nodes of the SED are both built-up with a Raspberry Pi [9] (Sensor 1) and an
Arduino platform [10] (Sensor 2). The more powerful sensor node, Sensor 1, is built as a
sandwich construction around a Raspberry Pi with a LoRa shield attached and equipped
with an HSM on top. The use of two different add-on boards, sharing the same control
lines, results in a problem in most cases. Thus, a physical separation of the chip select
control lines on the Raspberry Pi board was necessary here, as shown in Fig. 8.

Fig. 8. Hardware implementation of the developed sensor

5.3 LoRaWAN Implementation

For the LoRaWAN software implementation, in C/C++ there are free available
LoraMAC-in-C (LMIC) [11] software libraries useable for OTAA and ABP. In the pro-
posed deployment, initially OTAA has been used, thus having three secret root keys
before the activation is completed (AppKey, 64 bit; DevEUI, 64 bit; and AppKey, 128
bit) and two additional secret session keys after a successful activation of the end-node
in the LoRaWAN network (NwkSKey, 128 bit; and AppSKey, 128 bit).

LoRaWAN with HSM as a Security Improvement for Agriculture Applications 185

In the free sample software codes, the root keys are hard-coded, meaning that, if the
source code is stored in the end-device, an intruder can read these keys and use them in
a duplicated device. If only the compiled code is on the end-device, these root keys are
still in the code and can be extracted to use them in a duplicated device.

The session keys are generated during the activation process and are stored in RAM
during the execution, and could be read out, too, but a much higher technical effort is
needed.

5.4 HSM Integration

With the integration of a Zymkey HSM on the Raspberry Pi, the protection of the secret
keys can be considerably increased. There are two possibilities for protecting keys with
this module: (i) save the keys inside the module, or (ii) encrypt the secret keys using the
HSM and store the encrypted keys on the Raspberry Pi. In both cases, the HSMmust be
firstly paired to the Raspberry Pi.

In the proposed deployment, the second method has been adopted, meaning the
encryption of the three root keys. The decryption of these keys is only possible if there
is an access to the HSM. The executing software has access to the HSM and the keys,
but not a hacker without authentication. For the implementation of the encryption and
decryption of secret keys, the HSM provides libraries for C/C++ and Python. With the
C/C++ library, the key can be encrypted (locked) and decrypted (unlocked). The session
keys are not encrypted in the first version, but in an advanced version these keys should
also be encrypted or stored in the HSM and not in RAM.

An additional (and higher) protection of the end-device is performed by encrypting
the overall file system of the Raspberry Pi on the SD card with LUKS. With the Zymkey
HSM, the key for the encryption of the file system will be stored directly inside the
module and can’t be read-out by an intruder.

For protection against end-device movement, the integrated GPS module of the
LoRa shield has been used. In an outdoor scenario (like an agricultural environment),
the GPS position will be measured at fixed time intervals. If the GPS position changed
because the normally fixed sensor is moved, the software will block the wireless LoRa
communication. The server should trigger an alarm if the communication of a sensor is
lost for a longer time.

A physical security feature for the end-device is the module’s tamper detection,
implemented by using two physical wire loops which are arranged around the inner side
of the sensor case. A physical manipulation of the case will interrupt one of the loops,
which triggers an alert, while the software continuously monitors the status of the two
wire loops.

6 Results and Expectations in Agriculture Applications

The SED is currently under construction and alreadywell-advanced.Many implemented
functions already work to full satisfaction. The following four tests are planned and in
preparation, in order to verify the extended security functionalities.

186 R. Kloibhofer et al.

1. Move the end-device from the intended location.
In this test, the sensor is exposed outdoor with the GPS function activated. If the
sensor is moved more than 100 m (location change event), or if the GPS position is
not available, then the sensor triggers an alarm and interrupt the communication.

2. Physical integrity of end-nodes.
The sensor is packed in a case together with a battery pack. Two wire loops are
connected to the HSM and placed in a way that the wire loop will be destroyed if the
case is opened. By cutting the tab of the HSM the device will be “armed” (thus recog-
nizing a “close-then-open” event on one or two of the perimeter wire loops). Then,
the “zymkey_perimeter_event_action” parameter will be set to “self_destruct”. If
the device will be opened, which is only possible by cutting one of the wire loops,
the HSM will be irrevocable destroyed and the sensor cannot be used any more.

3. Reuse the hardware for manipulation of the agriculture environment.
Once at least one of the wire loops is opened, the keys in the module are destroyed.
No more access to the Raspberry Pi or the FS is possible after extracting the coin
cell of the module and restarting the sensor. Then, it is not possible to read the SD
card because it is encrypted with the (destroyed) keys of the HSM.

4. Manipulate the communication data.
This test must be done before destroying the keys in the module. The LoRaWAN
sensor is set-up and powered. TheOTAAprocedure is executed automatically and the
sensor sends data to the LoRaWAN server. Without authentication to the Raspberry
Pi it is not possible to read any root key or session key. The session keys are never
transferred via the LoRa link but generated on the end-device and on the server side
from other keys plus some parameters generated by the LoRaWAN server. It is not
possible to extract the key from the communication.

Modern agriculture systems are more and more essentially software-driven automa-
tion systems, including farm management centres, data storages, powerfully edge com-
puters for the interaction with the devices in the field domain. The field domain is in the
most cases located in the open field, far away and outside of protected areas.

In the field there are several networked vehicles, which are supported by a continu-
ously data stream of commands and control data for guidance and assistance, and a col-
lection of different smart sensors, which register all relevant environmental parameters
and data for decision finding. These smart sensors are becoming increasingly complex,
supporting a great number of features. Hence, sensors not only measure the environ-
ment around, but also perform data pre-processing, data forwarding, battery monitoring,
firmware update and many other functions [12]. These powerful mini-PCs in the field
are very attractive for cyber-attacks in the future.

Today’s field elements have already reached a high level of technical complexity
and must consequently be protected in future applications, and it is hoped that security
protection proposals and concepts, as described in this paper, will become more and
more important.

LoRaWAN with HSM as a Security Improvement for Agriculture Applications 187

7 Outlook

There is currently a need to define cyber-security guidelines for modern agriculture
(Agriculture 4.0), such as those already developed for industrial control systems in the
European Union (EU). While in the USA the United States Department of Homeland
Security (DHS) has carried out research during the last years to identify potential cyber-
security vulnerabilities for agriculture, in Europe, however, a similar investigation does
not appear to have taken place. Authors in [13] focus onmany industries to show the risks
and the need of monitoring support to ensure cyber-security; but the modern agriculture
domain is not included. Even in the EU publication [14] from Q4 2017, smart farming
and cyber-security are not addressed.

Acknowledgments. This work has received funding from AFarCloud which is an ECSEL Joint
Undertaking (JU) project under grant agreement No. 783221. The JU receives support from the
EuropeanUnion’s Horizon 2020 research and innovation programme andAustria, Belgium, Czech
Republic, Finland, Germany, Greece, Italy, Latvia, Norway, Poland, Portugal, Spain, Sweden.

Parts of this work were funded by the Austrian Research Promotion Agency (FFG) and BMK
(Austrian Federal Ministry for Climate Action, Environment, Energy, Mobility, Innovation and
Technology).

The work of Luca Davoli is partially funded by the University of Parma, under “Inizia-
tive di Sostegno alla Ricerca di Ateneo” program, “Multi-interface IoT sYstems for Multi-layer
Information Processing” (MIoTYMIP) project.

References

1. Grunwald, A., Schaarschmidt, M., Westerkamp, C.: LoRaWAN in rural context: use cases
and opportunities for agricultural businesses. In: Mobile Communication - Technologies and
Applications; 24. ITG-Symposium, Osnabrueck, Germany (2019). https://ieeexplore.ieee.
org/abstract/document/8731787. Accessed 03 June 2020

2. Shenoy, J., Pingle, Y.: IoT in agriculture. In: 2016 3rd International Conference on Computing
for Sustainable Global Development (INDIACom), New Delhi, India (2016). https://ieeexp
lore.ieee.org/abstract/document/7724508. Accessed 03 June 2020

3. LoRaAlliance. LoRaWAN1.1 Specification. http://lora-alliance.org/lorawan-for-developers.
Accessed 02 May 2020

4. Reynders, B., Pollin, S.: Chirp spread spectrum as amodulation technique for long range com-
munication. In: 2016 Symposium on Communications and Vehicular Technologies (SCVT),
Mons, pp. 1–5 (2016). https://doi.org/10.1109/scvt.2016.7797659

5. Eldefrawy, M., Butun, I., Pereira, N., Gidlund, M.: Formal security analysis of LoRaWAN.
Comput. Netw. 148, 328–339 (2018). https://doi.org/10.1016/j.comnet.2018.11.017

6. Naoui, S., Elhdhili, M., Saidane, L.: Trusted third party based key management for enhancing
LoRaWANsecurity. In: 2017 IEEE/ACS14th International Conference onComputer Systems
and Applications (AICCSA), Hammamet, pp. 1306–1313 (2017). https://doi.org/10.1109/aic
csa.2017.73

https://ieeexplore.ieee.org/abstract/document/8731787
https://ieeexplore.ieee.org/abstract/document/7724508
http://lora-alliance.org/lorawan-for-developers
https://doi.org/10.1109/scvt.2016.7797659
https://doi.org/10.1016/j.comnet.2018.11.017
https://doi.org/10.1109/aiccsa.2017.73

188 R. Kloibhofer et al.

7. ISO/IEC 11889. Information technology—Trusted platform module library. https://www.iso.
org/standard/66510.html. Accessed 03 June 2020

8. Zymkey 4i, Hardware security module for Raspberry-Pi. https://www.zymbit.com/wp-
content/uploads/2018/12/Zymbit-Data-Sheet-Zymkey-4i-DATA-SHEET-04100910A2.pdf.
Accessed 03 June 2020

9. Raspberry Pi, Single Board computer, developed in the United Kingdom by the Raspberry Pi
Foundation. https://www.raspberrypi.org/. Accessed 03 June 2020

10. Arduino platform, Open-source platform for single-board microcontroller kits. https://www.
arduino.cc/. Accessed 03 June 2020

11. LoraMAC libraries. A LoRaWANend-device stack implementation. https://github.com/Lora-
net/LoRaMac-node. Accessed 03 June 2020

12. Codeluppi, G., et al.: LoRaFarM: A LoRaWAN-Based Smart Farming Modular IoT
Architecture. Sensors, 20(7), 2028, 1–24 (2020). https://doi.org/10.3390/s20072028

13. Nai-Fovino, I., et al.: European Cybersecurity Centres of Expertise Map - Definitions and
Taxonomy. https://doi.org/10.2760/622400

14. Directorate-General for Agriculture and Rural Development (European Commission), ECO-
RYS, Wageningen Economic Research. Study on risk management in EU agriculture. https://
doi.org/10.2762/08778

https://www.iso.org/standard/66510.html
https://www.zymbit.com/wp-content/uploads/2018/12/Zymbit-Data-Sheet-Zymkey-4i-DATA-SHEET-04100910A2.pdf
https://www.raspberrypi.org/
https://www.arduino.cc/
https://github.com/Lora-net/LoRaMac-node
https://doi.org/10.3390/s20072028
https://doi.org/10.2760/622400
https://doi.org/10.2762/08778

1st International Workshop on
Dependable Development-Operation
Continuum Methods for Dependable

Cyber-Physical System
(DepDevOps 2020)

1st International Workshop on Dependable
Development-Operation Continuum Methods

for Dependable Cyber-Physical Systems
(DepDevOps 2020)

Miren Illarramendi1, Haris Isakovic2, Aitor Arrieta1, and Irune Agirre3

1 Software and Systems Enginering, Mondragon Unibertsitatea,
Mondragon-Arrasate, Spain

{millarramendi,aarrieta}@mondragon.edu
2 Computer Engineering, Cyber-Physical Systems,
Technische Univeristat Wien, Viena, Austria

haris@vmars.tuwien.ac.at
3 Dependable Embedded Systems, Ikerlan Research Centre,

Mondragon-Arrasate, Spain
iagirre@ikerlan.es

1 Introduction

In recent years it has become evident that the use of software to perform critical
functions is on the rise. As a result, dependable embedded systems are getting more
intelligent and automated. For instance, the automotive industry is a clear witness of
this trend, where more and more Advanced Driver-Assistance Services (ADAS) are
already embedded in cars. This results in a dramatic increase of software complexity,
which also requires hardware platforms with higher computing power. All these trends
hinder the safety certification, as it is increasingly difficult to guarantee at design time
that system errors are prevented or controlled in such a way that there will be no
unreasonable risk associated to the electrical/electronic system component at operation
time. These challenges are leading to the need for new development practices that
reduce the overall system development time and costs without compromising safety
and certification.

The rise of new connection technologies (e.g., 5G) bring new opportunities in terms
of the download of frequent software updates of new (improved) releases and sending
back operation-time information for fixing bugs and enhance the design. Advances
done in new development practices like DevOps have shown effectiveness in software
development while reducing overall development costs. The DevOps paradigm aims at
having seamless methods for the Design-Operation Continuum of software systems.
This paradigm has shown promising results in different domains, including web and
mobile engineering. Its practices can bring several advantages to dependable CPSs,
including bug fixing based on operational data, inclusion of new functionalities, etc.

However, in the context of dependable CPSs, several challenges arise, requiring
DevOps paradigms to have adaptions from several perspectives: the environment in

which the CPS operates needs to be considered when updating the software, depend-
ability of software needs to be ensured to a certain level, software fault might lead to
severe damages, etc. Furthermore, the safety-critical industry has well established
safety-lifecycles dictated by safety standards and adopting the DevOps paradigm has
several open research challenges.

The International Workshop on Dependable Development-Operation Continuum
Methods for Dependable Cyber-Physical Systems (DepDevOps) is dedicated to explore
new ideas on dependability challenges brought by over-the-air-software updates to the
critical domain, with special focus on safety, security, availability, and platform
complexity of emerging dependable autonomous systems. This is a fundamental step
for the adoption of DevOps approaches in dependable embedded systems. Over the air
updates can bring several benefits to dependable Cyber-Physical Systems, like solving
security vulnerabilities, adding new functionalities or bug fixing and they are a key
enabler for improving the design based on operation time data. In addition to this, the
workshop aims to identify novel tools and architectures that enable the developers
implement a streamlined and automatic workflow that makes methods and tools to be
seamlessly used during design phases as well as in operation.

The first edition of DepDevOps was held as part of the 39th International
Conference on Computer Safety, Reliability, & Security (SAFECOMP 2020).

2 H2020 Projects: Dependable DevOps

The DepDevOps project has been organized by researchers from two H2020 projects
that are in-line with the workshop:

– Adeptness: Design-Operation Continuum Methods for Testing and Deployment
under Unforeseen Conditions for Cyber-Physical Systems of Systems (https://
adeptness.eu/).

– UP2DATE: New software paradigm for SAfe and SEcure (SASE) Over-the-Air
software updates for Mixed-Criticality Cyber-Physical Systems (MCCPS) (https://
h2020up2date.eu/).

which means that the topics of the workshop are in line with the research objectives
of these projects and as both projects are in their first year, the papers presented during
the workshop will be considered as inputs and inspiration for the next stages.

3 Acknowledgments

As chairpersons of the workshop, we want to thank all authors and contributors who
submitted their work, Friedemann Bitsch, the SAFECOMP Publication Chair, and the
members of the International Program Committee who enabled a fair evaluation
through reviews and considerable improvements in many cases. We want to express
our thanks to the SAFECOMP organizers, who provided us the opportunity to organize
the workshop at SAFECOMP 2020. Particularly we want to thank the EC and national

1st International Workshop on Dependable Development-Operation Continuum 191

https://adeptness.eu/
https://adeptness.eu/
https://h2020up2date.eu/
https://h2020up2date.eu/

public funding authorities who made the work in the research projects possible. We
hope that all participants will benefit from the workshop, enjoy the conference and
accompanying programs and will join us again in the future!

4 International Program Committee

Erwin Schoitsch
Friedemann Bitsch
Pedro Ferreira
Shuai Wang
Jon Perez
Kim Gruettne
Leonidas Kosmidis
Shaukat Ali
Paolo Arcaini
Mikel Azkarate-Askasua
Blanca Kremer
Eduard Paul Enoiu
Francisco J. Cazorla
Aitor Agirre
Ezio Bartocci
Goiuria Sagardui
Wasif Afzal

192 M. Illarramendi et al.

Multilevel Runtime Security and Safety
Monitoring for Cyber Physical Systems Using

Model-Based Engineering

Smitha Gautham(B) , Athira V. Jayakumar, and Carl Elks

Virginia Commonwealth University, Richmond, VA, USA
gauthamsm@vcu.edu

Abstract. Cyber-Physical Systems (CPS) are heterogeneous in nature and are
composed of numerous components and embedded subsystems that are interact-
ing with each other and with the physical world. The interaction of hardware and
software components at each level, expose them to attack surfaces, which need
novel methods to secure against. To ensure safety and security of high integrity
CPSs, we present a multilevel runtime monitor approach where there are monitors
at each level of processing and integration. In the proposed multi-level monitoring
framework, some monitoring properties are formally defined using Event Calcu-
lus. We then demonstrate the need for multilevel monitors for faster detection and
isolation of attacks by performing data attack and fault injection on a Simulink
CPS model.

Keywords: Runtime monitors · Event calculus · Model-based engineering ·
Cyber-physical systems

1 Introduction and Motivation

Cyber Physical Systems (CPSs) are heterogeneous architectures composed of physical,
network and computational components that are tightly integrated together that allow
human cyber interactions [1]. To do this, CPSs are evolving toward software intensive
systems where functionality, integration, and operations of a given system are largely
governed by its complex software interactions. Although software testing methods and
practices have undergone tremendous progress over the past 20 years, the evolving nature
of software intensive CPSs can create layers of unforeseen failure modes and complex
attack surfaces. These can lead to safety design assurance issues at design time and
become problematic for ensuring safety at runtime. Such challenges (among others) are
emerging drivers for new design and development and operation practices that strive to
reduce cost without compromising safety – termed as DevOps Safety Continuum [2].

In many safety critical application domains, runtime monitors (or runtime verifica-
tion) are used to enforce operational safety and security – as a complementary defense
to design assurance [3]. Runtime monitors can be thought of as means to detect and
mitigate failures/attacks that design time verification may have omitted or overlooked.

© Springer Nature Switzerland AG 2020
A. Casimiro et al. (Eds.): SAFECOMP 2020 Workshops, LNCS 12235, pp. 193–204, 2020.
https://doi.org/10.1007/978-3-030-55583-2_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-55583-2_14&domain=pdf
http://orcid.org/0000-0001-5394-9832
https://doi.org/10.1007/978-3-030-55583-2_14

194 S. Gautham et al.

In order to detect attacks and complex evolving failures across a CPS, we posit that sin-
gle monitor solutions are insufficient. Rather we suggest that multiple distinct types of
monitors positioned across the CPS provide more comprehensive detection and location
capability [4]. This paper supports an important aspect of DevOps Continuum; namely
that such multilevel monitors are a promising consideration toward ensuring operational
safety in complex CPSs.

We implemented themultilevel monitoring scheme in aMathWorks SimulinkModel
Based Engineering tool to ascertain the benefits and challenges of evaluating multilevel
monitors with respect to security and safety considerations. Model-based Design and
Engineering (MBDE) approaches are widely becoming the normative methodology to
design, verify and validate safety-critical Cyber Physical Systems (CPS) across various
domains (e.g. automotive and aerospace). Our practical and technical contributions that
help in the design of dependable CPS are:

• Development of a novel multilevel monitoring framework for runtime safety and
security monitoring of CPSs.

• Evaluating the efficacy of multilevel monitoring framework in detecting faults and
attacks in a distributed CPS

• Use of MBDE tools to connect design time with runtime monitoring for accessing
security and safety considerations early in the design development process.

2 Related Work

With the growth in use of CPSs in numerous safety critical applications, runtime veri-
fication of such systems is becoming an essential and important topic of research. Ref.
[5] presents a bus monitoring approach for COTS processors where the communication
between the peripherals and the system aremonitored. Ref. [3] presents a bolt-onmonitor
that silently receive messages over a CAN bus without affecting the system functional-
ity. With the limited information available on the bus, the runtime monitor verifies safe
system behavior. Ref. [6] present a non-intrusive monitoring approach for multi-core
processors based on the execution traces received by the processors. A three layer CPS
architecture is proposed in [7] comprising of transport layer, control layer and execution
layer and attacks that can occur at each of these layers is surveyed but no specific exam-
ple is provided. Ref. [8] provides a comprehensive survey of monitoring distributed real
time systems and provides architectural frameworks to monitor processor and Bus in a
CPS. Monitors have been modeled using MBDE tools in prior work, for example Ref.
[9] uses Simulink to model runtime monitors. However, multilevel monitors for a CPS
with specific attacks/faults has not been explored. Our paper contributes to this area by
clearly demonstrating the need for multilevel monitors (data, network and functional) in
a CPS to detect a wide range of attacks as well as locate their origin. We then evaluate
our multilevel monitoring framework using MathWorks Simulink tools.

3 Development of a Multilevel Monitoring Framework

CPS are heterogeneous in nature encompassing many computational units and include
physical interfaces to sensors and actuators. It is important to not just monitor each

Multilevel Runtime Security and Safety Monitoring for Cyber Physical Systems 195

component in a CPS individually but also monitor the interaction of the components and
the physical environment. Figure 1 depicts a common interpretation of a generalized
CPS structure [9].

Fig. 1. Structure of a cyber physical system (Adapted from [10] but modified and redrawn).

Referring to Fig. 1, the attacks on a CPS can be broadly classified into three domains.
First, attacks on low level hardware/firmware-oriented devices. These include sensor
or actuator attacks, for example sensor spoofing, firmware attacks, replay attacks to
name a few. Second, attacks on the connection or network layer (e.g. I2C, CAN, SPI)
that include attack on a communication bus such as Denial of Service (DoS), packet
injection, eavesdropping. Lastly, attacks on the computational elements such as malware
injection, control flow attack, buffer overflow etc. that can affect the functionality of the
processing unit. In this paperwe consider attacks and faults that affect hardware, network
and computational elements in a CPS and architect a multilevel runtime monitoring
framework to effectively detect and isolate the origin of the attack/fault. We consider
three levels of monitoring across a CPS. They are:

• Data monitors: They mainly monitor the hardware/firmware-oriented devices such
as sensors and actuators that constantly interact with the outside environment. They
check for integrity of the information coming from these devices through the physical
interface.

• Network monitors: They mainly monitor the connection or network layer of the CPS.
Sensors, actuators and computational units in a CPS use communication protocols
such as UART, I2C and buses such as CAN. Network monitor checks for signal faults,
incorrect signaling protocol, timing, configurations, etc. in these communication
networks.

• Functional monitors: They mainly monitor the computational units of a CPS to verify
the overall systembehavior or functionality of a processing unit within theCPS. Safety
and security properties are monitored for expected system behavior.

Having monitors at multiple levels (data, network and functional monitors) should
ensure that more classes of faults/attacks can be detected and isolated early before it
propagates and affects the system (Fig. 2). Attacks that fall outside the intersection,
in Fig. 2 can only be detected by having a localized monitor at that particular level in
the CPS. Having these local monitors at each critical level in a CPS helps cover one
other’s blind spot [11]. We demonstrate the benefits of multilevel monitoring scheme

196 S. Gautham et al.

with the specific example of an Anti-lock Braking System (ABS). Furthermore, we show
that some faults/attacks may be detected by monitors at other levels (than that of their
origin). Even in such cases, monitors at multiple levels are needed to find the location
of these faults/attacks.

Fig. 2. Attacks/faults detected by multilevel monitors.

4 Example CPS: Anti-lock Braking System (ABS) and Event
Calculus to Specify Safety and Security Properties

We use a Simulink model of an Anti-lock Braking System (ABS) from MathWorks
examples as a target CPS to demonstrate multilevel monitoring framework [12]. The
ABS system is summarized in the Fig. 3. ABS is a safety critical unit in a car that helps
prevent the locking of brakes thereby preventing an uncontrollable skid. The slip in a car
is calculated based on the wheel rotation speed and actual vehicle speed measured by
sensors in the plant (modeled by the vehicle dynamics). This slip value is communicated
to the ABS controller through the CAN bus. The ABS controller compares the measured
slip and a pre-set threshold slip (chosen so that a slip below this threshold is acceptable
for safe operation of the car) and determines if the brake has to be on or off. The brake
state (on/off) output determined by theABS controller is communicated back to the plant
through the CAN bus. Some important considerations while designing the monitoring
framework are:

4.1 Rationale for the Monitors Used in the ABS Controller CPS

Considering the heterogeneous nature of CPS and the attacks that can occur at various
levels, we consider three monitors (Fig. 3) to detect attacks/faults: Functional monitor
M1 at the ABS controller and slip calculation unit, Data monitor M2 at the wheel speed
sensor, vehicle speed sensor and brake actuator and Network Monitor M3 at the CAN
bus. The rationale for the choice of monitors and their placement are as follows: The data
from sensors of dynamic quantities such as vehicle speed or wheel speed can be attacked
or corrupted, hence a data monitor (M2) is needed there. At the ABS controller and slip
calculator modules, there are various faults that can compromise the functionality of

Multilevel Runtime Security and Safety Monitoring for Cyber Physical Systems 197

the controller/computational element, hence a functional monitor (M1) is necessary.
Finally, by injecting spurious traffic into the CAN bus, genuine data being transmitted
between the ABS controller and the plant can be delayed or even distorted. Therefore, it
is necessary to have a network monitor (M3). ABS functionality can be monitored even
from the information in the CAN bus. Although, functional monitoring on the CAN bus
can offer effective bolt-on solution to existing CPS, it is important to note that the CAN
bus has limited observability, all data and functionality we want to monitor may not be
available of the CAN bus.

Fig. 3. Anti-lock braking system showing (a) Functional monitor M1 at the computational units
(b) Data monitor M2 at the hardware sensor/actuators level (c) Network monitor M3 at the CAN
bus network level.

4.2 Monitoring Properties Expressed Using Event Calculus

We define the safety and security properties to be monitored using a formal language
calledEventCalculus. All propertieswere derived from system level requirements for the
specific ABS application. In this example, we focus on application dependent properties,
but event calculus is equally expressive for application independent properties. Event
calculus is a powerful logical formalism that can conveniently express the effect of
events or actions in a CPS in a general way [13]. It is particularly suitable in its ability to
express high level functional events as well as low level hardware events. For example,
one can express the condition that the temperature of the room increases at a certain rate
after a heater in turned on. Formally, in the language of event calculus, switching “on”
the heater is an action or an event, that affects the temperature of the room (a fluent) at
certain time points. Happens, Initiates, Terminates, HoldsAt and Clipped are the basic
event calculus predicates defined in [13]. We use the Happens and HoldsAt predicates to
define properties for our system. The semantics of these two predicates are as follows:

• Happens (α, t) means that an action or an event α happens at time t.

198 S. Gautham et al.

• HoldsAt (f, t) means that the fluent f holds at time t.

To keep the analysis simple, we describe only one property monitored by each of
the multilevel monitors (data, network and functional) as an example to explain our
framework.

Property 1 Verified by Functional Monitor M1: If the calculated Slip is greater than
a permissible threshold of Slipsafe at time T, then the brake should be off at time T. Here
Slip is the event and state of the Brakeoff is the fluent.

Happens(Slip,T) ∧ (
Slip > Slipsafe

) ⇒ HoldsAt
(
Brakeoff ,T

)
(1)

Property 2 Verified by Data Monitor M2: If there is an event on wheel speedWheel-
Speed_A at time Ta and another event on wheel speedWheelSpeed_B at time Tb where
Tb = Ta + Td, then the rate of change of wheel speed Rw = (WheelSpeedB−WheelSpeedA)

Td
should be less than Rw_safe (rate of change of wheel speed for safe operation).

Here Td is time elapsed between successive wheel speed measurements.
WheelSpeed_A andWheelSpeed_B are the events and the rate of change of wheel speed
being less than the permissible rate of change of wheel speed is the fluent:

Happens(WheelSpeed_A,Ta) ∧ Happens(WheelSpeed_B,Tb) ∧ (Tb
= Ta + Td) ⇒ HoldsAt (Rw < Rw_safe,Tb)

(2)

Property 3 Verified by Network Monitor M3: If there is a packet arrival in the CAN
bus (PacketA) at time Ta and another packet arrival (PacketB) at time Tb then the rate of
packet arrival Tp = Tb − Ta should be less than Tsafe which is the delay in the CAN bus
when there is normal traffic for all time T.

Here Tp is time elapsed between successive packet arrivals. Arrival of PacketA and
PacketB are the events and rate of packet arrival Tp is the fluent:

Happens(PacketA,Ta) ∧ Happens(PacketB,Tb)
⇒ HoldsAt (Tp < Tsafe,Tb)

(3)

The Event Calculus formalisms above combined with Simulink modeling allows
designers/modelers to precisely capture monitoring properties.

5 Evaluation of Multilevel Monitors

The ABS controller, sensors and the CAN bus were injected with attacks/faults and the
efficacy of the monitors in detecting these attacks/faults were evaluated. We used the
data injection toolbox in [14] to inject sensor attacks on the model. Fault saboteurs were
inserted in the model as explained in [15] at various points in the system. Figure 4 shows
the saboteurs inserted in the ABS controller. Excessive information packets of higher
priority from a malicious node flooding the CAN bus emulated a “Denial of Service”
attack. The monitoring conditions were modeled using Simulink assertion verification
blocks. We discuss below some examples to demonstrate that (1) there are attacks/fault
scenarios that can only be detected if there are localized monitors at each level (data,

Multilevel Runtime Security and Safety Monitoring for Cyber Physical Systems 199

functional, network) (2) Some attacks/faults may be detected by a monitor at another
level (other than the level of its origin), but monitors are nevertheless needed at each level
to locate the origin of the attack/fault in such scenarios. Table 1 summarizes some of
the attacks/faults that were injected in the CPS to demonstrate the need for a multilevel
monitoring framework.

Fig. 4. Fault saboteurs injected in the ABS.

Table 1. Attacks/faults injected on the CPS.

No. Attack/fault Attack location Monitors that detect

1. Stuck-at 0 fault ABS controller M1 only

2. Denial of service attack CAN bus M3 only

3. Sensor measurement injection attack Wheel speed sensor Attack-1: M2 only
Attack-2: M1 and M2

5.1 Case-1. Attacks/Faults Needing Localized Monitors at Each Level

Consider the Fig. 5 where the slip, vehicle speed and wheel rotation speed are plotted
as a function of time without the attacks/faults mentioned in the Table 1.

When there is no attack/fault, the ABS is able to ensure that the vehicle speed slows
down to under 15 m/s at 12 s by appropriately releasing the brake whenever the slip
exceeds a threshold. In many cases, where there is an attack/fault as shown in Fig. 6,
Fig. 7 and Fig. 8, the vehicle speed is ~20 m/s or higher in 12 s (thus rendering the
braking ineffective). The ABS controller decides whether the brake should be on/off
depending on the slip. When the slip is greater than 0.25 (a threshold value) the brake
should be off and when the slip is less than 0.25, the brake should be on.

200 S. Gautham et al.

Fig. 5. (a) Wheel speed (b) vehicle speed (c) slip (d) monitor state: when there is no attack/fault
on the CPS.

We first consider a fault on the ABS controller which can be critical for the system
safety. A “stuck-at zero” fault was injected on the slip at about t = 5 s and hence the
controller never turns the brake off and is always on. Therefore, the property, “the brake
is turned off when the slip (“s”) is greater than 0.25” is violated. It can be seen in Fig. 6
that around t = 6 s, the true slip communicated to the controller exceeds 0.25 and the
functional monitor (M1) expects the brake to turn off. However, due to the fault (slip
seen by the controller is zero) the controller still keeps the brake on. Hence, the property
is violated and fault is detected by the ABS functional monitor. However, since this does
not affect the signal transmission through the CAN bus or other sensor properties, the
monitors at the network and data levels are unable to detect this. Hence, one specifically
needs a functional monitor here to detect the fault.

Likewise, theCANbus is prone to number of attacks: packet insertion, packet erasure,
packet payload modification, to name a few [16]. These lead to Denial of Service (DoS)
attack that changes the packet frequency on the CAN bus. Time interval between CAN
packets is usually periodic and has a fixed delay. A malicious node can change the time
interval between successive packets by injecting extra packets causing delay in the bus.

An attack on the CAN packet frequency was performed by introducing a malicious
node that delays the communication to and from the ABS controller. This was not
detected by either the functional monitor (M1) at the ABS or the data monitor (M2). The
fixed delay for normal traffic was identified and the network monitor (M3) verifies at
runtime that the time interval between subsequent packets is within bounds. When the
time interval exceeds the normal levels themonitorM3 indicated an attack on the network
as shown in Fig. 7. When the system has no faults/attacks, the ABS controller receives
the slip value, approximately every 0.006 s through the CAN bus. However, when there
is more than a certain level of network traffic due packet injection by a malicious node,
the delay in the CAN bus increases, which is detected by the monitor as shown. Flooding
the CAN bus with many packets can lead to huge delay as seen in Fig. 7(b) between
11th and 12th second. This affects the braking and the vehicle speed. The vehicle speed
was 30 m/s instead of 15 m/s during normal conditions with no fault/attack. While we

Multilevel Runtime Security and Safety Monitoring for Cyber Physical Systems 201

Fig. 6. For a stuck at 0 fault on the ABS controller, (a) correct slip calculated (b) slip as seen by
the ABS controller due to the fault at its input (c) the brake state which is always “on” as even
though the true slip exceeds 0.25, the ABS only sees the slip = 0 (d) vehicle speed that is affected
by the ABS not correctly functioning (e) the ABS expects the brake to go “off” when slip exceeds
0.25, and thus detects a fault (f) other monitors do not detect this fault.

used this approach as a proof of concept, there are alternate ways of monitoring the bus
traffic discussed in [16].

Fig. 7. Bus traffic delay detected by Network monitor For a DoS attack, (a) vehicle speed that
is affected due to delay in CAN bus (b) delay in CAN bus is greater than 0.006 s (c) Network
monitor detects the attack (d) all other monitors do not detect the attack.

A sensor attack, “attack-1” on the wheel speed sensor that is detected by the data
monitor (M2) is showed in Fig. 8. It monitored the safety property “the absolute value
of the rate of change of wheel speed should not be greater than Tw rad/s” where Tw is a

202 S. Gautham et al.

threshold rate of change of wheel speed for safe operation. However, none of the other
monitors were able to detect this attack.

Hence, in all the above cases multilevel monitors are needed as faults/attacks at one
level cannot be detected by monitors at the other levels as demonstrated by the above
examples. Hence, we show that having monitors at multiple levels are beneficial (and
sometimes required) to detect attacks/faults that span multiple levels and systems.

Fig. 8. For an attack on wheel speed sensor, (a) wheel speed when there is no attack/fault (b)
wheel speed with an attack (c) vehicle speed affected by attack on the wheel speed sensor (d) Data
monitor for wheel speed detects the attack (e) other monitors do not detect this attack.

5.2 Case-2. Attacks/Faults Detected at More Than One Level but Still Needing
Multiple Levels to Find to Location of the Attack

When there is sensormeasurement attack (discussed earlier) of amuch highermagnitude
(attack-2), it could cause the rate of wheel speed to change so drastically that it briefly
affects the functional relation between the slip and break state monitored by M1. Hence
it is detected by the functional monitor in addition to the wheel speed data monitor as
shown in Fig. 9. Note that this example has less number of disruptions to the wheel speed
and does not significantly change the eventual vehicle speed reached at 12 s. However,
it is still important to detect any attacks on the CPS.

We argue both of these monitors are probably needed, as even though the functional
monitor detects this data attack, we cannot be sure where the attack/fault originated if
we only had one functional monitor. We would use the fact that both the wheel speed
data monitor and functional monitor detected this attack to pinpoint it was at the wheel
speed sensor; while if only the functional monitor had detected the attack (not the data
monitor) we would probably conclude the attack was on the ABS controller.

Another issue to be considered is whether the ABS functionality (M1) and sensor
data (M2) can be monitored from the information in the CAN bus. One issue is the

Multilevel Runtime Security and Safety Monitoring for Cyber Physical Systems 203

Fig. 9. Attack detected by multiple monitors (a) Wheel speed when there is sensor attack (b)
vehicle speed not affected significantly by attack on the wheel speed sensor (c) Data monitor for
wheel speed detects the attack (d) functional monitor detects this attack.

CAN bus has limited observability as all data and functionality we want to monitor may
not be available of the CAN bus. The other issue is as follows: Suppose the slip and
brake state, are available on the CAN bus, we could have implemented the same ABS
functional monitor on the slip and Brake ON/OFF state from information in the CAN
bus (not shown here) rather than locally as we did earlier. While such a monitor would
have detected a fault in the ABS controller action, it would have also been affected by
excessive network traffic. So, this monitor alone would not be able to specifically pin
point the origin of the attack.

6 Conclusion and Future Work

We have developed and implemented a multilevel monitoring framework and demon-
strated the need for monitors at multiple levels to detect various attacks/faults for an
ABS controller CPS. We showed that existing MBE tools (Simulink) can model and
evaluate such monitoring architectures and integrate safety and security considerations
early in the design process. Future continuation of this work will; (1) focus on com-
parisons with other approaches to access the benefits and limitations, (2) further the
development of a theory of multilevel monitoring for CPSs to fully characterize its
assumptions and impacts. Finally, the generality and scalability of multilevel monitors
deployed in diverse CPSs will be better understood by evaluating the resources needed
for implementing such monitors.

References

1. Cyber physical systems and Internet of Things program. NIST, 09 March 2016. https://www.
nist.gov/programs-projects/cyber-physical-systems-and-internet-things-program. Accessed
18 May 2020

2. Combemale, B., Wimmer, M.: Towards a model-based DevOps for cyber-physical systems.
In: Bruel, J.-M., Mazzara, M., Meyer, B. (eds.) DEVOPS 2019. LNCS, vol. 12055, pp. 84–94.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-39306-9_6

https://www.nist.gov/programs-projects/cyber-physical-systems-and-internet-things-program
https://doi.org/10.1007/978-3-030-39306-9_6

204 S. Gautham et al.

3. Kane, A.: Runtime monitoring for safety-critical embedded systems. Carnegie Mellon
University (2015)

4. Gautham, S., Bakirtzis, G., Leccadito,M.T., Klenke, R.H., Elks, C.R.:Amultilevel cybersecu-
rity and safety monitor for embedded cyber-physical systems: WIP abstract. In: Proceedings
of the 10th ACM/IEEE International Conference on Cyber-Physical Systems, NewYork, NY,
USA, pp. 320–321 (2019). https://doi.org/10.1145/3302509.3313321

5. Pellizzoni, R., Meredith, P., Caccamo, M., Rosu, G.: BusMOP: a runtime monitoring
framework for PCI peripherals, p. 23 (2008)

6. Convent, L., Hungerecker, S., Scheffel, T., Schmitz, M., Thoma, D., Weiss, A.: Hardware-
based runtime verification with embedded tracing units and stream processing. In: Colombo,
C., Leucker,M. (eds.) RV 2018. LNCS, vol. 11237, pp. 43–63. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-03769-7_5

7. Lu, T., Lin, J., Zhao, L., Li, Y., Peng, Y.: A security architecture in cyber-physical systems:
security theories, analysis, simulation and application fields. IJSIA 9(7), 1–16 (2015). https://
doi.org/10.14257/ijsia.2015.9.7.01

8. Goodloe, A.E., Pike, L.: Monitoring distributed real-time systems: a survey and future
directions, (NASA/CR-2010-216724), p. 49, July 2010

9. Whalen, M.W., Murugesan, A., Rayadurgam, S., Heimdahl, M.P.E.: Structuring simulink
models for verification and reuse. In: Proceedings of the 6th International Workshop on
Modeling in Software Engineering -MiSE 2014, Hyderabad, India, pp. 19–24 (2014). https://
doi.org/10.1145/2593770.2593776

10. Lee, E.A., Seshia, S.A.: Introduction to Embedded Systems: A Cyber-Physical Systems
Approach, 2nd edn. MIT Press, Cambridge (2017)

11. Fournaris, A.P., Komninos, A., Lalos, A.S., Kalogeras, A.P., Koulamas, C., Serpanos, D.:
Design and run-time aspects of secure cyber-physical systems. In: Biffl, S., Eckhart, M.,
Lüder, A., Weippl, E. (eds.) Security and Quality in Cyber-Physical Systems Engineering,
pp. 357–382. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25312-7_13

12. Effects of communication delays on an ABS control system - MATLAB & Simulink. https://
www.mathworks.com/help/simevents/examples/effects-of-communication-delays-on-an-
abs-control-system.html. Accessed 18 May 2020

13. Shanahan,M.: The event calculus explained. In:Wooldridge,M.J., Veloso,M. (eds.) Artificial
Intelligence Today. LNCS (LNAI), vol. 1600, pp. 409–430. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48317-9_17

14. Potluri, S., Diedrich, C., Roy Nanduru, S.R., Vasamshetty, K.: Development of injection
attacks toolbox in MATLAB/Simulink for attacks simulation in industrial control system
applications. In: 2019 IEEE 17th International Conference on Industrial Informatics (INDIN),
July 2019, vol. 1, pp. 1192–1198 (2019). https://doi.org/10.1109/indin41052.2019.8972171

15. Jayakumar,A.V.: Systematicmodel-based design assurance and property-based fault injection
for safety critical digital systems. Theses and Dissertations, January 2020. https://scholarsc
ompass.vcu.edu/etd/6239

16. Lokman, S.-F., Othman, A.T., Abu-Bakar, M.-H.: Intrusion detection system for automotive
ControllerAreaNetwork (CAN)bus system: a review.EURASIP J.Wirel.Commun.Network.
2019(1), 1–17 (2019). https://doi.org/10.1186/s13638-019-1484-3

https://doi.org/10.1145/3302509.3313321
https://doi.org/10.1007/978-3-030-03769-7_5
https://doi.org/10.14257/ijsia.2015.9.7.01
https://doi.org/10.1145/2593770.2593776
https://doi.org/10.1007/978-3-030-25312-7_13
https://www.mathworks.com/help/simevents/examples/effects-of-communication-delays-on-an-abs-control-system.html
https://doi.org/10.1007/3-540-48317-9_17
https://doi.org/10.1109/indin41052.2019.8972171
https://scholarscompass.vcu.edu/etd/6239
https://doi.org/10.1186/s13638-019-1484-3

Towards a DevOps Approach in Cyber
Physical Production Systems Using

Digital Twins

Miriam Ugarte Querejeta(B) , Leire Etxeberria , and Goiuria Sagardui

Mondragon Unibertsitatea, Goiru Kalea 2, 20150 Arrasate-Mondragon, Spain
{mugarte,letxeberria,gsagardui}@mondragon.edu

Abstract. Nowadays product manufacturing must respond to mass cus-
tomisation of products in order to meet the global market needs. This
requires an agile and dynamic production process to be competitive in
the market. Consequently, the need of factory digitalisation arises with
the introduction of Industry 4.0. One example of the digitalisation is the
digital twin. Digital twin enhances flexibility due to its adaptability and
seamless interaction between the physical system and its virtual model.
Furthermore, it bridges the gap between development and operations
through the whole product life cycle. Therefore, digital twin can be an
enabler for the DevOps application in cyber physical production systems
as DevOps aims at merging Development and Operations to provide a
continuous and an agile process. This paper analyses the use of the digital
twin to enable a DevOps approach of cyber physical production systems
(CPPS) in order to create a fully integrated and automated production
process, enabling continuous improvement.

Keywords: Digital twin · DevOps · Life cycle · Cyber physical
production system

1 Introduction

The manufacturing sector is continuously facing the rapidly changing market
needs. In fact, product manufacturing complexity is increasing as the market
requires more flexible, reconfigurable and customised systems that are capable
of adapting to changes throughout the whole product life cycle. This emerges the
need of new approaches and technologies in order to decrease the development
cost and time, improving efficiency and effectiveness. Digitalisation and Industry
4.0 are the technologies emerging to face these challenges with the transformation
of the manufacturing process into a fully digital and intelligent process where
automation plays a key role [17]. The digitalisation of the industry makes a step
forward towards the automation, integration and optimisation of the production
process and it enables operation and monitoring throughout the whole product
life cycle.

c© Springer Nature Switzerland AG 2020
A. Casimiro et al. (Eds.): SAFECOMP 2020 Workshops, LNCS 12235, pp. 205–216, 2020.
https://doi.org/10.1007/978-3-030-55583-2_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-55583-2_15&domain=pdf
http://orcid.org/0000-0002-0395-5131
http://orcid.org/0000-0002-4846-2007
http://orcid.org/0000-0003-1002-456X
https://doi.org/10.1007/978-3-030-55583-2_15

206 M. Ugarte Querejeta et al.

In this paper, we focus on digitisation as an enabler of the continuous
improvement during the product life cycle. In this sense, digital twins are emerg-
ing as the latest trend on digital transformation. This technology links the physi-
cal asset and its virtual model in an agile and continuously evolving environment.
The digital twin gives the possibility to continuously improve the model by 1)
collecting real time data and analysing it in order to foresee malfunctions and
2) introducing improvements on the product and validating them in a virtual
environment before deploying them into the real system. In addition, the digital
twin has the ability to adapt its model seamlessly and near real time as changes
are made on the system, thus facilitating the production flow. All these charac-
teristics and capabilities of the digital twin accelerate the integration of an agile
and continuous production process, principles of the so called DevOps approach.

DevOps approaches are being used widely in software development, specially
for web-based applications, delivering faster applications and continuously. In
fact, it has been mainly used to automate the development and deployment
of web based applications from end to end [10]. DevOps is a continuation of
the Agile journey [15] (often referred to continuous delivery, integration and
deployment) that merges the development and operation with cross-functional
collaboration process. A DevOps approach on software development brings these
agile principles for continuous software development and deployment.

In other types of development, such as manufacturing systems and cyber
physical production systems (CPPS), there are still some challenges that need
to be addressed. These systems must deal with legacy architecture and hardware
limitations in order to integrate a flexible and adaptive environment. In any case,
the manufacturing sector could benefit from a DevOps approach to create a
continuous production system and bring continuous improvement throught the
whole product life cycle. However, adoption of DevOps in the manufacturing
sector requires an agile and adaptive system where digitalisation is one of the
key elements and the digital twin the main enabler.

This paper analyses the use of the digital twin for a DevOps approach on
CPPS. The digital twin technology enables DevOps to develop and test the
product simultaneously, reducing development costs and time to market. More-
over, the bridge between development and operations guarantees the continuous
improvement in an agile environment.

The paper is structured as follows: Sect. 2 introduces briefly the background
of the digital twin, DevOps and Cyber Physical Production Systems, and on
the other hand, it highlights the motivation of the paper. Section 3 describes the
digital twin for a DevOps approach on product manufacturing of CPPS. Finally,
Sect. 4 provides the conclusions and future work.

2 Background and Motivation

2.1 Digital Twin

The digital twin has its origin in 2003, conceived by Grieves with the product
life cycle management [13]. However, the term digital twin was firstly defined

Towards a DevOps Approach in CPPS Using Digital Twins 207

by NASA in 2010 [27] as follows “A digital twin is an integrated multi-physics,
multi-scale, probabilistic simulation of a vehicle or system that uses the best
available physical models, sensor updates, fleet history, etc., to mirror the life
of its flying twin.” Nowadays, there exists a wide range of definitions, therefore,
it is necessary to clarify the concept. From the author’s perspective on prod-
uct manufacturing, the digital twin is the virtual representation of the physical
asset where both counterparts are connected to each other and are dynamically
updating through the whole product life cycle [21,25].

The digital twin model requires a physical entity, a virtual model and con-
nected data [21,25]. However, Tao et al. proposed the five-dimensional Digital
Twin (see Fig. 1), composed of a physical entity, virtual model, digital twin data,
services and connections [26,30].

Fig. 1. Five dimensional digital twin - adapted from [30].

2.2 DevOps

DevOps aims to bridge the gap between software Development (Dev) and Oper-
ations (Ops) by combining best practices from both domains and enabling col-
laboration between the teams [4]. The main principles of DevOps are focused on
continuous integration, continuous delivery and continuous deployment [15] as
depicted in Fig. 2.

Continuous Integration: Continuous integration (CI) is a principle that puts a
great emphasis on the dynamic software integration process and test automa-
tion [5] in order to detect problems easily early in the process. It is a prerequisite
for continuous delivery [15].

Continuous Delivery: Continuous delivery (CD) aims at delivering new software
features with greater speed and frequency [5]. This requires the software to be
always ready for release [11] and promotes the automation of the release process,
enabling a constant flow.

208 M. Ugarte Querejeta et al.

Fig. 2. DevOps principles through the software life cycle.

Continuous Deployment: Continuous deployment is usually confused with con-
tinuous delivery, however it goes a step further. Every change that is successfully
committed on the previous stages is automatically deployed to production [11].

DevOps benefits from these principles to shorten time to market, reduce
development costs and increase productivity with a higher quality. Moreover, it
goes beyond by covering the entire life cycle, from development to operations.

2.3 Cyber Physical Production Systems

Cyber physical production systems are formed by different CPS, comprising
different elements and sub-systems connected to each other autonomously and in
cooperation [23]. The main objectives that a CPPS should meet are the following
according to Monostori et al. [24]:

– Responsiveness to any changes in the system or environment.
– Intelligence of the components that are part of a CPPS.
– Connectivity between the elements, services, subsystems and other systems.

Therefore, the digital twin represents a fundamental prerequisite of cyber
physical production systems due to its adaptive ability, real time and seamless
connectivity and control of the production process.

Regarding the development of CPPS, this implies system verification and val-
idation before releasing it into operations. System verification is often carried out
in silos by each engineering discipline and thus, different interdisciplinary simu-
lation tools are utilised for partial simulations. Consequently, the final product
is not jointly validated until the system is fully integrated and interoperability
issues become a major challenge. Thus, there exists the need to carry out inter-
disciplinary tests in a jointly environment from early stages of the development.

2.4 Motivation

DevOps practices are mostly applied to software development and little has been
done on cyber physical systems. Nevertheless, Garcia and Cabot applied DevOps
practices at the model level for the very first time in 2018 [11] and it has been
explored to model driven engineering in cyber physical systems in the recent
years [6,33].

Towards a DevOps Approach in CPPS Using Digital Twins 209

DevOps life cycle is not only applicable to software development and its cycle
changes based on the applicable environment. Implementing DevOps principles
at the entire life cycle of model based approaches is the next step of cyber phys-
ical systems, enabling a continuous and dynamic life cycle of the system. How-
ever, cyber physical systems must overcome the following barriers to integrate a
DevOps approach [6,12]:

– Dealing with hardware constraints due to different communication protocols,
programming environments and dedicated hardware.

– Real time communication between the physical and virtual systems.
– Obtaining feedback data from operations, customers and other systems.
– Facilitating a collaborative framework between different stakeholders and

engineering disciplines.
– Supporting an agile and a flexible environment.

This paper puts forward the use of the digital twin in order to carry out a
DevOps approach into CPPS. The digital twin technology facilitates a flexible
environment with the dynamic adaption capability of the physical asset and its
virtual counterpart. In fact, both counterparts are continuously adjusting to the
changes in real time. On the other hand, this technology enables interdisciplinary
collaboration so that operations and development can co-work together and get
mutual feedback through the whole life cycle.

3 Digital Twin as DevOps Enabler for CPPS

The digital twin brings an agile framework for the development and operation of
cyber physical systems [36]. Therefore, the authors introduce the digital twin as
a DevOps accelerator where it stages a DevOps approach throughout the whole
product life cycle. This way, product design, engineering, integration, operation
and service activities can be performed efficiently on an agile and collaborative
environment between different departments [3] and engineering disciplines such
as mechanical, electrical and automation, among others.

Figure 3 represents the digital twin as the enabler of DevOps across the prod-
uct life cycle of a CPPS. In this case, the digital twin is the technology to shorten
the gap between the development and operations as it interchanges data seam-
lessly through the whole life cycle. This way, the development process benefits
from the feedback obtained from the operational data and vice versa.

The following subsections describe the use of the digital twin within the
development and operations of a CPPS and highlights DevOps practices in order
to achieve a continuous and runtime production system.

210 M. Ugarte Querejeta et al.

Fig. 3. Use of the digital twin for a DevOps approach across the product life cycle -
inspired by [3,32].

3.1 Digital Twin in Development

The development process involves the design, engineering, and integration
phases, and requires testing practices for the verification and validation of the
model before being released. Model Verification and Validation, V&V, deter-
mines if the model is correct by the verification of the model, and on the other
hand, it validates that the requirements are met successfully and that the model
is adequate to represent the real system. Tania Tudorache proposed the V model
for a mechatronic product development process in 2006 [32]. A decade later, in
2018, the use of the digital twin for V&V was introduced by Dahmen et al. as
simulation based verification with experimentable digital twins [7,8].

Fig. 4. V model for continuous product development process - adapted from [32].

Towards a DevOps Approach in CPPS Using Digital Twins 211

The V-model of a traditional mechatronical system [32] verifies and validates
the system during the last step of the product development process, it does
not allow to perform V&V before the system is integrated. This arises system
design and engineering problems during the integration stage, making its resolu-
tion difficult and increasing development costs and time to market. To confront
this, there exists simulation tools that carry out partial system verification of
each engineering discipline. However, carrying out simulations solely derive into
interoperability issues between these interdisciplinary models during the sys-
tem integration. Therefore, the V model is adjusted to integrate the digital twin
practices from the experimentable digital twin [8] and thus, enable system verifi-
cation and validation from the initial phase of the development process (system
design) as seen in Fig. 4. The digital twin provides a new stage called virtual
integration where the physical components are replaced by their virtual mod-
els before building the actual system. Moreover, a DevOps approach has been
applied to the V model in order to gain insights from operations and provide a
continuous product development process.

One of the applications that encompasses the whole V&V model is virtual
commissioning. Virtual Commissioning is performed by the use of virtualisation
and simulation technologies (such as the digital twin) in order to perform a series
of collaborative verification tasks between domain specific engineering disciplines
and through the whole development process (system design, system engineering,
system integration or commissioning).

The main objectives of the use of the digital twin in product development
process are described below [20]:

– To reduce time to market.
– To reduce development costs.
– To improve the performance of the production line.
– To reduce the failure rate and downtime of the production line.
– To solve interoperability issues between different domain tools and systems.
– To detect design and engineering errors, failures or malfunctions at earlier

stages of the development process.

System Design. Designing is the first phase going down on the left side of the
V model. It starts from the system requirements and describes the main physical
and logical operation characteristics of the product [32]. System validation and
verification must be accomplished in order to meet the requirements and this
is facilitated with the digital twin as it permits testing the designed model by
replacing the required physical components with their virtual models. Moreover,
the digital twin provides feedback and the knowledge gained from the operational
data for continuous design improvement [3].

A practical use case of the system design is the optimisation of the product.
For example, Soderberg et al. applied the digital twin on design optimisation in
order to obtain good geometrical quality in the final product [28].

212 M. Ugarte Querejeta et al.

System Engineering. System engineering is the phase following the system
design up to the integration phase. An interdisciplinary approach is applied to
the system design by adding domain specific engineering functionalities (mechan-
ical, electrical, automation, etc.) to the model [32]. Traditionally, the engineering
development was carried out in silos with multiple domain specific models, how-
ever, the digital twin sets up a collaborative framework where all disciplines can
co-work in the same environment. Moreover, the use of the digital twin permits
carrying out what-if simulations and making changes on the virtual environ-
ment before the real system is released. It also facilitates the testing of specific
functionalities on a secure environment, for example Bitton et al. created a cost
effective digital twin to facilitate the security evaluation of a specific industrial
environment [2].

System Integration. The last phase of the V model is system integration.
This is a critical phase as the engineering models, system components and inter-
connections are brought together [32]. Traditionally, the validation and verifica-
tion of the system was carried out when the system integration was completed,
thereby, unexpected errors were frequently arised due to dependency of the pre-
vious phases (design, engineering). However, the system can be tested before the
real system is built with the use of the virtual models and digital twins (e.g.
virtual commissioning technology). Therefore, the digital twin permits a flexible
environment for continuous integration as it facilities testing the system securely
on the virtual environment and it can then be automatically deployed to the real
system. Another practice is the assembly commissioning process optimisation in
order to improve the assembly quality and efficiency [29].

3.2 Digital Twin in Operations

Once the development process is completed, the product is realised into opera-
tions and service, closing the loop of DevOps.

Operations. The system is running on a real environment and runtime verifi-
cation and validation of the system can be accomplished [14]. Operational data
of the physical system can be used as input to the operational digital twin for
predictions of breakdowns or failures, and vice-versa, knowledge gained on the
operational digital twin can fed back to the physical asset for continuous improve-
ment within the development process. Some of the operational applications and
real use cases of the digital twin are described below:

– Optimisation of the system operation [19].
– Decision making under unexpected situations: runtime controllability verifi-

cation of a control command [14], optimal state control framework [34], con-
trollability of the physical layer [35], holistic online parallel controlling [19].

– Reconfiguration of the manufacturing system for reacting on changeover of
the product order [18].

Towards a DevOps Approach in CPPS Using Digital Twins 213

Service. Lastly, the service stage provides real time status and monitoring of the
product, closing the loop of the operational cycle. In this scenario, dynamic data
obtained from the physical asset (usage, wear, temperature, etc.) is mapped to
the operational digital twin for real time monitoring. Furthermore, the historical
data and the knowledge retrieved from the development cycle is combined with
current operational data in order to carry out preventive maintenance. Thus,
most of the services are related to real time monitoring, asset management and
educational purposes:

– Monitoring: continuous monitoring [19,35], real time monitoring to improve
the product quality and production efficiency of a welding production line,
real time status warning of the production process [36].

– Real-time transmission of manufacturing updates [1].
– Tracking and updating warehouse inventory [1].
– Maximum traceability and transparency for the supply chain [22].
– Training and learning: learning environment for engineering education [31],

a versatile learning environment to facilitate collaboration between industry
and academia [16].

4 Conclusions and Future Work

In this paper we have discussed the use of the digital twin as the main enabler
to apply a DevOps approach in Cyber Phsycal Production Systems. The digital
twin is the bridge between the physical and real world, and also between the
operational and development life cycles of a CPPS. Digital twin makes a step
forward towards DevOps due to its agile framework for a continuous production
system.

The digital twin provides current operational production data converging it
with the synthetic data of the virtual model. This creates a runtime production
development process as it gains insights and new requirements from operations in
order to make adjustments on the go, by providing a proactive and a continuous
optimisation process. A continuous production system could made a shift in
virtual commissioning.

Furthermore, virtual commissioning practices are usually proceeded in silos
between different domains of engineering (mechanic, electronic, automation)
where seamless interaction between these interdisciplinary models is a challenge
when testing the whole system. In contrary, the digital twin brings the collabo-
ration between all these disciplines and models in the same environment, hence
avoiding interoperability issues.

Beside all the benefits that the use of the digital twin and a DevOps approach
would bring to the manufacturing sector, there is actually a lack a of industrial
practices. One of the main challenges is the lack of standards for digital repre-
sentation. In this sense, the Asset Administration Shell (AAS) is a promising
standard for the digital twin representation as it holds properties, models and
functionalities of all the components part of the system [9]. Nevertheless, it is

214 M. Ugarte Querejeta et al.

still not a mature standard and its implementation into CPPS should be the
way forward.

Acknowledgements. This work was accomplished by the Software and Systems
Engineering research group of Mondragon Unibertsitatea (IT1326-19), supported by
the Department of Education, Universities and Research of the Basque Government,
and the DiManD Innovative Training Network (ITN) project. DiManD ITN is an Euro-
pean Training Network (ETN) programme funded by the European Union through
the Marie Sktodowska-Curie Innovative Training Networks (H2020-MSCA-ITN-2018)
under grant agreement number no. 814078.

References

1. Banica, L., Stefan, C.: Stepping into the industry 4.0: the digital twin approach.
Ann. Univ. Dunarea de Jos Galati: Fascicle: I, Econ. Appl. Inform. 25(3), 107–113
(2019)

2. Bitton, R., et al.: Deriving a cost-effective digital twin of an ICS to facilitate
security evaluation. In: Lopez, J., Zhou, J., Soriano, M. (eds.) ESORICS 2018.
LNCS, vol. 11098, pp. 533–554. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-99073-6 26

3. Boschert, S., Rosen, R.: Digital twin—the simulation aspect. In: Hehenberger, P.,
Bradley, D. (eds.) Mechatronic Futures, pp. 59–74. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-32156-1 5

4. Capizzi, A., Distefano, S., Mazzara, M.: From DevOps to DevDataOps: data man-
agement in DevOps processes. arXiv preprint arXiv:1910.03066 (2019)

5. Caprarelli, A., Di Nitto, E., Tamburri, D.A.: Fallacies and pitfalls on the road to
DevOps: a longitudinal industrial study. In: Bruel, J.-M., Mazzara, M., Meyer,
B. (eds.) DEVOPS 2019. LNCS, vol. 12055, pp. 200–210. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-39306-9 15

6. Combemale, B., Wimmer, M.: Towards a model-based DevOps for cyber-physical
systems. In: Bruel, J.-M., Mazzara, M., Meyer, B. (eds.) DEVOPS 2019. LNCS,
vol. 12055, pp. 84–94. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
39306-9 6

7. Dahmen, U., Rossmann, J.: Experimentable digital twins for a modeling and
simulation-based engineering approach. In: 2018 IEEE International Systems Engi-
neering Symposium (ISSE), pp. 1–8. IEEE (2018)

8. Dahmen, U., Roßmann, J.: Simulation-based verification with experimentable dig-
ital twins in virtual testbeds. Tagungsband des 3. Kongresses Montage Hand-
habung Industrieroboter, pp. 139–147. Springer, Heidelberg (2018). https://doi.
org/10.1007/978-3-662-56714-2 16

9. Di Orio, G., Maló, P., Barata, J.: NOVAAS: a reference implementation of indus-
trie4.0 asset administration shell with best-of-breed practices from it engineering.
In: IECON 2019–45th Annual Conference of the IEEE Industrial Electronics Soci-
ety, vol. 1, pp. 5505–5512. IEEE (2019)

10. Ebert, C., Gallardo, G., Hernantes, J., Serrano, N.: DevOps. IEEE Softw. 33(3),
94–100 (2016)

11. Garcia, J., Cabot, J.: Stepwise adoption of continuous delivery in model-driven
engineering. In: Bruel, J.-M., Mazzara, M., Meyer, B. (eds.) DEVOPS 2018. LNCS,
vol. 11350, pp. 19–32. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
06019-0 2

https://doi.org/10.1007/978-3-319-99073-6_26
https://doi.org/10.1007/978-3-319-99073-6_26
https://doi.org/10.1007/978-3-319-32156-1_5
https://doi.org/10.1007/978-3-319-32156-1_5
http://arxiv.org/abs/1910.03066
https://doi.org/10.1007/978-3-030-39306-9_15
https://doi.org/10.1007/978-3-030-39306-9_6
https://doi.org/10.1007/978-3-030-39306-9_6
https://doi.org/10.1007/978-3-662-56714-2_16
https://doi.org/10.1007/978-3-662-56714-2_16
https://doi.org/10.1007/978-3-030-06019-0_2
https://doi.org/10.1007/978-3-030-06019-0_2

Towards a DevOps Approach in CPPS Using Digital Twins 215

12. Giaimo, F., Yin, H., Berger, C., Crnkovic, I.: Continuous experimentation on cyber-
physical systems: challenges and opportunities. In: Proceedings of the Scientific
Workshop Proceedings of XP 2016, pp. 1–2 (2016)

13. Grieves, M.W.: Product lifecycle management: the new paradigm for enterprises.
Int. J. Prod. Dev. 2(1–2), 71–84 (2005)

14. Kang, S., Chun, I., Kim, H.S.: Design and implementation of runtime verification
framework for cyber-physical production systems. J. Eng. 2019 (2019)

15. Kim, G., Humble, J., Debois, P., Willis, J.: The DevOps Handbook: How to Cre-
ate World-Class Agility, Reliability, and Security in Technology Organizations. IT
Revolution, Portland (2016)

16. Lanz, M., Lobov, A., Katajisto, K., Mäkelä, P.: A concept and local implementation
for industry-academy collaboration and life-long learning. Procedia Manuf. 23,
189–194 (2018)

17. Lasi, H., Fettke, P., Kemper, H.-G., Feld, T., Hoffmann, M.: Industry 4.0. Bus.
Inf. Syst. Eng. 6(4), 239–242 (2014). https://doi.org/10.1007/s12599-014-0334-4

18. Leng, J., et al.: Digital twin-driven rapid reconfiguration of the automated manu-
facturing system via an open architecture model. Robot. Comput.-Integr. Manuf.
63, 101895 (2020)

19. Leng, J., Zhang, H., Yan, D., Liu, Q., Chen, X., Zhang, D.: Digital twin-driven
manufacturing cyber-physical system for parallel controlling of smart workshop. J.
Ambient Intell. Humaniz. Comput. 10(3), 1155–1166 (2018). https://doi.org/10.
1007/s12652-018-0881-5

20. Li, X., Du, J., Wang, X., Yang, D., Yang, B.: Research on digital twin technology
for production line design and simulation. In: Xhafa, F., Patnaik, S., Tavana, M.
(eds.) IISA 2019. AISC, vol. 1084, pp. 516–522. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-34387-3 64

21. Lu, Y., Liu, C., Kevin, I., Wang, K., Huang, H., Xu, X.: Digital twin-driven smart
manufacturing: Connotation, reference model, applications and research issues.
Robot. Comput.-Integr. Manuf. 61, 101837 (2020)

22. Mandolla, C., Petruzzelli, A.M., Percoco, G., Urbinati, A.: Building a digital twin
for additive manufacturing through the exploitation of blockchain: a case analysis
of the aircraft industry. Comput. Ind. 109, 134–152 (2019)

23. Monostori, L.: Cyber-physical production systems: roots, expectations and R&D
challenges. Procedia CIRP 17, 9–13 (2014)

24. Monostori, L., et al.: Cyber-physical systems in manufacturing. CIRP Ann. 65(2),
621–641 (2016)

25. Qi, Q., Tao, F.: Digital twin and big data towards smart manufacturing and indus-
try 4.0: 360 degree comparison. IEEE Access 6, 3585–3593 (2018)

26. Qi, Q., et al.: Enabling technologies and tools for digital twin. J. Manuf. Syst.
(2019)

27. Shafto, M., et al.: Modeling, simulation, information technology & processing
roadmap. National Aeronautics and Space Administration (2012)

28. Söderberg, R., Wärmefjord, K., Carlson, J.S., Lindkvist, L.: Toward a digital twin
for real-time geometry assurance in individualized production. CIRP Ann. 66(1),
137–140 (2017)

29. Sun, X., Bao, J., Li, J., Zhang, Y., Liu, S., Zhou, B.: A digital twin-driven approach
for the assembly-commissioning of high precision products. Robot. Comput.-Integr.
Manuf. 61, 101839 (2020)

30. Tao, F., Zhang, M., Liu, Y., Nee, A.: Digital twin driven prognostics and health
management for complex equipment. CIRP Ann. 67(1), 169–172 (2018)

https://doi.org/10.1007/s12599-014-0334-4
https://doi.org/10.1007/s12652-018-0881-5
https://doi.org/10.1007/s12652-018-0881-5
https://doi.org/10.1007/978-3-030-34387-3_64
https://doi.org/10.1007/978-3-030-34387-3_64

216 M. Ugarte Querejeta et al.

31. Toivonen, V., Lanz, M., Nylund, H., Nieminen, H.: The FMS Training Center-
a versatile learning environment for engineering education. Procedia Manuf. 23,
135–140 (2018)

32. Tudorache, T.: Employing ontologies for an improved development process in col-
laborative engineering. Doctoral thesis, Technische Universität Berlin, Fakultät
IV - Elektrotechnik und Informatik, Berlin (2006). https://doi.org/10.14279/
depositonce-1477

33. Wortmann, A., Barais, O., Combemale, B., Wimmer, M.: Modeling languages in
industry 4.0: an extended systematic mapping study. Softw. Syst. Model. 19(1),
67–94 (2020)

34. Zhang, K., et al.: Digital twin-based opti-state control method for a synchronized
production operation system. Robot. Comput.-Integr. Manuf. 63, 101892 (2020)

35. Zheng, P., Sivabalan, A.S.: A generic tri-model-based approach for product-level
digital twin development in a smart manufacturing environment. Robot. Comput.-
Integr. Manuf. 64, 101958 (2020)

36. Zheng, Y., Yang, S., Cheng, H.: An application framework of digital twin and its
case study. J. Ambient Intell. Humaniz. Comput. 10(3), 1141–1153 (2018). https://
doi.org/10.1007/s12652-018-0911-3

https://doi.org/10.14279/depositonce-1477
https://doi.org/10.14279/depositonce-1477
https://doi.org/10.1007/s12652-018-0911-3
https://doi.org/10.1007/s12652-018-0911-3

Leveraging Semi-formal Approaches
for DepDevOps

Wanja Zaeske1 and Umut Durak1,2(B)

1 Department of Informatics, Clausthal University of Technology,
Julius-Albert-Str. 4, 38678 Clausthal Zellerfeld, Germany

{wanja.zaeske,umut.durak}@tu-clausthal.de
2 Institute of Flight Systems, German Aerospace Center (DLR),

Lilienthalplatz 7, 38108 Braunschweig, Germany
umut.durak@dlr.de

Abstract. While formal methods have long been praised by the depend-
able Cyber-Physical System community, continuous software engineer-
ing practices are now employing or promoting semi-formal approaches
for achieving lean and agile processes. This paper is a discussion about
using Behaviour Driven Development, particularly Gherkin and RSpec
for DepDevOps, DevOps for dependable Cyber-Physical Systems.

Keywords: Semi-formal approaches · Dependable systems · Agile

1 Introduction

Software engineering is evolving towards removing disconnects among its activ-
ities with employing continuous practices to achieve agile processes. First,
Test-Driven Development (TDD) bridged the gap between implementation and
testing. Then, Continuous Integration (CI) and Continuous Deployment (CD)
attacked the disconnect between the development and deployment. Eventually
Behaviour-Driven Development (BDD) enhanced TDD with specification and
continuous acceptance testing. Now DevOps is connecting development and oper-
ations.

Continuity with streamlined and automated processes has long been studied
in software engineering to achieve agility. Not only iterative and incremental
development life-cycles but also inevitable software evolution during operation
have been asking for rapid feedback cycles between the developer and the user.
DevOps is defined as the set of practices for reducing the time between commit-
ting the code and using it in normal operation [3]. It connects two worlds: the
development and the operation. Accordingly it consists of two integrated cycles;
one for development and the other for operation. A Release starts an operation
cycle that is composed of Deploy, Operate and Monitor steps. Feedback from
monitoring starts the next development cycle that is composed of Plan, Design,
Build, Test and Release steps.

DevOps harmonizes the agile software engineering practices, from TDD
and BDD to CI and CD to realize a fast forward track. It further promotes
c© Springer Nature Switzerland AG 2020
A. Casimiro et al. (Eds.): SAFECOMP 2020 Workshops, LNCS 12235, pp. 217–222, 2020.
https://doi.org/10.1007/978-3-030-55583-2_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-55583-2_16&domain=pdf
https://doi.org/10.1007/978-3-030-55583-2_16

218 W. Zaeske and U. Durak

monitoring and logging mechanism for feedback loops. As stated by Ebert et
al. [8], “obviously, the achievable cycle time depends on the environmental con-
straints and deployment model”. Inspired from the other application domains,
Cyber-Physical Systems (CPS) users are now asking for on-the-fly software
updates, easy problem reporting, and frequent feature enhancements. While the
expectation is to have mobile-like driver-assistance or avionics applications, the
dependability constraints and embedded software deployment models are pre-
venting any cycle faster than years, deployed at the service centers by authorized
personal.

This paper concentrates on dependability constraints, knowing that embed-
ded software deployment is also an open research area for achieving full-fledged
DevOps for CPS. Dependability is a system property that describes its ability
to deliver services that can justifiably be trusted [1]. It is an integrated concept
for availability, reliability, safety, integrity, and maintainability. Formal meth-
ods are mathematical techniques for specifying and verifying systems [7]. They
have long been proposed and employed to tackle dependability challenges in gen-
eral [17,19] and safety challenges in particular [2,5,12,13]. The dependable CPS
community of the last decade has also praised formal methods as one of the key
techniques [11,18]. While there are many research efforts that aim at integrat-
ing formal methods and agile practices, such as [4,9,21], this paper brings the
semi-formal methods that are being practiced in DevOps world to the attention
of dependable CPS community. The methods of interest are executable specifi-
cation methods of BDD, Gherkin [22] and RSpec [6].

2 Behaviour Driven Development in DevOps

Chelimsky et al. [6] define BDD as “implementing an application by describing
its behavior from the perspective of its stakeholders” It builds upon TDD, and
promotes a semi-formal ubiquitous language for the specification of behaviours
that is accessible to all the stakeholders of the system. The ubiquitous language
idea is based on Evans [10], who stresses that the linguistic divide or the language
fracture between the domain expert and the technical team leads only to vaguely
described and vaguely understood requirements. The aim of BDD is to come up
with executable as well as a human readable specification of the system, in a
single representation [14].

BDD is structured around features which can be defined as the capabilities
provided by the system that create a benefit to its users. A feature is usually
described in BDD by a title, a brief narrative, and a number of scenarios that
serve as acceptance criteria. Scenarios are concrete examples to describe the
desired behaviours of the system. When the concrete examples are executable;
they turn the criteria to an acceptance test. BDD calls this automated acceptance
testing.

Gherkin is the common language to write features, particularly for the
Cucumber test automation framework [22]. While it is not a Turing Complete
language, it has a grammar enforced by a parser. It aims at human readability,
while enabling execution in Cucumber using its grammar. The basic Gherkin

Leveraging Semi-formal Approaches for DepDevOps 219

keywords to specify a scenario are Given, When and Then. Given is used to
describe the context of the system, the state of the system before an event.
When is used to specify the event(s) and eventually Then is used to give the
outcome(s).

Features that are written in Gherkin and executed in Cucumber are regarded
as outer cycle. They define the behaviour of a system. RSpec is the name given
to the language and the test automation framework that is used to specify the
behaviour of objects [6]. It is regarded as the inner cycle. The test code is struc-
tured using Describe, Context and It keywords. Describe is used to define an
example group. An example is a test case. Context is similar to Describe; it is
used to group examples with a certain context. It is used to specify an example.

Fig. 1. Behaviour driven development in DevOps (Adapted from [23])

Figure 1 extends Yackel’s ideas [23] about the integration of BDD in the devel-
opment cycle of DevOps. The Plan, Design, Build, Test, and Release steps can be
realized using a layered BDD approach with Cucumber and RSpec duo. Features
are specified in Planning step using Gherkin. At the Design step, following a high
level-design, required unit behaviour is specified using RSpec. Low-level design
and implementation followed by Build step end up with a system to be tested.
With every passing unit test in RSpec, system also undergoes acceptance tests
in Cucumber against the feature specifications in Gherkin. The inner cycle ends
when the outer cycle, namely the acceptance tests are successful and eventually
leads to the Release step.

3 Gherkin and RSpec for Dependable CPS

If we take avionics as an example dependable CPS domain, the DO-178C Soft-
ware Considerations in Airborne Systems and Equipment Certification [15] sets

220 W. Zaeske and U. Durak

the baseline for process requirements. It necessitates high-level requirements
specification that interprets the system requirements to the software item, and
low-level requirements that can be directly implemented without further infor-
mation. The authors would like to start a discussion about using Gherkin for
the specification of high-level requirements and RSpec for low-level requirements
with an example avionics application, Terrain Awareness and Warning System
(TAWS).

TAWS is an airborne equipment introduced in 1990’s for reducing the risk of
the Controlled Flight Into Terrain (CFIT) accidents. It produces aural and visual
warning for impending terrain with a forward looking capability and continued
operation in landing configuration [16]. There are three classes of TAWS. Class
A, being most stringent, are for large turbine powered aircraft with at least one
radio altimeter; Class B for smaller turbine powered aircraft which may not have
radio altimeter and Class C, being least stringent, for smaller general aviation
aircraft.

Class C TAWS features include Forward Looking Terrain Avoidance (FLTA),
Premature Descent Alerting (PDA), Excessive Rate of Descent (Mode 1), Nega-
tive Climb Rate or Altitude Loss After Take-Off or Go Around (Mode 3) and Five
Hundred Foot Callout. The authors are prototyping a Class C TAWS, namely
Open TAWS to demonstrate dependable DevOps concepts. Sample Gherkin and
RSpec specifications that will be introduced in the following sections can be
found at Open TAWS Git repository.1

DO-367 Minimum Operational Performance Standards (MOPS) for Terrain
Awareness and Warning Systems (TAWS) Airborne Equipment states that dur-
ing non-precision approaches Class C Equipment shall generate at least Five
Hundred Foot Callout within 1.3 s of descending through 500 foot above terrain
or the nearest runway, or the altitude Callout within 1.3 s of descending through
the pilot selected altitude when the altitude callouts are not inhibited [16].

An excerpt from the Gherkin specification of the Five Hundred Foot Callout
high-level requirement can be as follows:

Feature: Five Hundred Foot Callout
DO-367 TAWS_MOPS_292
Scenario: Aircraft less then 500 feet above the terrain

Given Aircraft is in non-precision approach
And Altitude callout is not inhibited
When Aircraft descends under 500 feet above the terrain
Then Within 1.3 seconds Five Hundred Foot Callout is given

Open TAWS is designed to have a terrain server, which needs to provide the
terrain query interface that returns the altitude of a point at a given geographical
position. Rust is selected as the programming language for Open TAWS due
to its promises in safety, performance and zero-cost abstractions and growing
embedded systems community [20]. An excerpt from the RSpec specification of

1 https://gitlab.tu-clausthal.de/aeronautical-informatics/otaws.

https://gitlab.tu-clausthal.de/aeronautical-informatics/otaws

Leveraging Semi-formal Approaches for DepDevOps 221

the low-level requirement for the altitude query interface using Rust-RSpec2 can
be as follows:

rspec::describe("Altitude query", environment, |ctx| {
ctx.specify("a position in geographical coordinates", |ctx| {

ctx.it("should return the altitude of the terrain
at that position", |env| {

assert_eq!(env.sut.altitude(env.position),
env.expected_altitude);

});
});

})

4 Outlook

The paper is a short discussion starter for employing semi-formal specification
approaches of Behaviour Driven Development; namely Gherkin and RSpec for
dependable CPS. The automated traceability and requirements-based test cov-
erage analysis using test automation tools supporting Gherkin and RSpec is a
promise of such an approach to support dependability and lean development.
On the other side, ubiquitous specification languages, and specification-as-code
approach enables both continuity and agility.

Both Cucumber and RSpec are written in the Ruby programming language,
and were originally used for Ruby. While Cucumber (and Gherkin) could spread
to various programming languages, RSpec is still almost exclusive to the Ruby
community. There are both Cucumber and RSpec implementations for Rust.
While Cucumber-Rust3 is feature rich, Rust-RSpec is relatively limited and
has not been maintained for a long time. Cucumber-Rust parses the human-
readable semi-formal feature specifications and provides an API for developing
test cases that implements them. However, limited API of Rust-RSpec almost
fails to enable writing readable specification; they rather look like basic unit test
code.

This paper reports the early experience from the example avionics applica-
tion. Future work includes demonstration of a full-fledged DepDevOps with an
extensive discussion about alternative tools and infrastructures.

References

1. Avizienis, A., Laprie, J.C., Randell, B., Landwehr, C.: Basic concepts and taxon-
omy of dependable and secure computing. IEEE Trans. Dependable Secure Com-
put. 1(1), 11–33 (2004)

2. Barroca, L.M., McDermid, J.A.: Formal methods: use and relevance for the devel-
opment of safety-critical systems. Comput. J. 35(6), 579–599 (1992)

2 https://github.com/rust-rspec/rspec.
3 https://github.com/bbqsrc/cucumber-rust.

https://github.com/rust-rspec/rspec
https://github.com/bbqsrc/cucumber-rust

222 W. Zaeske and U. Durak

3. Bass, L., Weber, I., Zhu, L.: DevOps: A Software Architect’s Perspective. Addison-
Wesley Professional, Boston (2015)

4. Black, S., Boca, P.P., Bowen, J.P., Gorman, J., Hinchey, M.: Formal versus agile:
survival of the fittest. Computer 42(9), 37–45 (2009)

5. Bowen, J.P., Stavridou, V.: Formal methods and software safety. In: 1992 Safety
of Computer Control Systems (SAFECOMP 1992), pp. 93–98. Elsevier (1992)

6. Chelimsky, D., Astels, D., Helmkamp, B., North, D., Dennis, Z., Hellesoy, A.: The
RSpec Book: Behaviour Driven Development with Rspec. Cucumber, and Friends,
Pragmatic Bookshelf 3, 25 (2010)

7. Clarke, E.M., Wing, J.M.: Formal methods: state of the art and future directions.
ACM Comput. Surv. (CSUR) 28(4), 626–643 (1996)

8. Ebert, C., Gallardo, G., Hernantes, J., Serrano, N.: DevOps. IEEE Softw. 33(3),
94–100 (2016)

9. Eleftherakis, G., Cowling, A.J.: An agile formal development methodology. In:
Proceedings of the 1st South-East European Workshop on Formal Methods, pp.
36–47 (2003)

10. Evans, E.: Domain-Driven Design: Tackling Complexity in the Heart of Software.
Addison-Wesley Professional, Boston (2004)

11. Fitzgerald, J., Gamble, C., Larsen, P.G., Pierce, K., Woodcock, J.: Cyber-Physical
Systems design: formal foundations, methods and integrated tool chains. In: 2015
IEEE/ACM 3rd FME Workshop on Formal Methods in Software Engineering, pp.
40–46. IEEE (2015)

12. Gerhart, S., Craigen, D., Ralston, T.: Experience with formal methods in critical
systems. IEEE Softw. 11(1), 21–28 (1994)

13. McDermid, J.A.: Formal methods: use and relevance for the development of safety-
critical systems. In: Safety Aspects of Computer Control, pp. 96–153. Elsevier
(1993)

14. Okolnychyi, A., Fögen, K.: A study of tools for behavior-driven development.
In: Full-Scale Software Engineering/Current Trends in Release Engineering, p. 7
(2016)

15. RTCA: DO-178C software considerations in airborne systems and equipment cer-
tification. RTCA (2011)

16. RTCA: DO-367 minimum operational performance standards (MOPS) for terrain
awareness and warning systems (TAWS) airborne equipment. RTCA (2017)

17. Rushby, J., Underst, F.B.S., Stankovic, J.A.: Formal methods for dependable real-
time systems (1992)

18. Seshia, S.A.: New frontiers in formal methods: learning, cyber-physical systems,
education, and beyond. CSI J. Comput. 2(4), R1 (2015)

19. Thomas, M.: The role of formal methods in achieving dependable software. Reliab.
Eng. Syst. Saf. 43(2), 129–134 (1994)

20. Uzlu, T., Şaykol, E.: On utilizing rust programming language for Internet of Things.
In: 2017 9th International Conference on Computational Intelligence and Commu-
nication Networks (CICN), pp. 93–96, September 2017. https://doi.org/10.1109/
CICN.2017.8319363

21. Wolff, S.: Scrum goes formal: agile methods for safety-critical systems. In: 2012
First International Workshop on Formal Methods in Software Engineering: Rigor-
ous and Agile Approaches (FormSERA), pp. 23–29. IEEE (2012)

22. Wynne, M., Hellesoy, A., Tooke, S.: The Cucumber Book: Behaviour-Driven Devel-
opment for Testers and Developers. Pragmatic Bookshelf (2017)

23. Yackel, R.: BDD in DevOps: an example of BDD in continuous integra-
tion. https://www.qasymphony.com/blog/bdd-devops-example-bdd-continuous-
integration/. Accessed 20 May 2020

https://doi.org/10.1109/CICN.2017.8319363
https://doi.org/10.1109/CICN.2017.8319363
https://www.qasymphony.com/blog/bdd-devops-example-bdd-continuous-integration/
https://www.qasymphony.com/blog/bdd-devops-example-bdd-continuous-integration/

1st International Workshop on
Underpinnings for Safe Distributed
Artificial Intelligence (USDAI 2020)

1st International Workshop on Underpinnings
for Safe Distributed AI (USDAI 2020)

Enabling technologies and regulatory frameworks for safe distributed AI

Morten Larsen1, Alexandru Uta2, and Simon Duque Anton3

1 AnyWi Technologies, Leiden, the Netherlands
Morten.Larsen@anywi.com

2 Leiden Institute of Advanced Computer Science, Leiden, the Netherlands
A.Uta@liacs.leidenuniv.nl

3 German Research Center for AI, Kaiserslautern, Germany
Simon.duque_anton@dfki.de

1 Introduction

Safe distributed artificial intelligence (AI) requires a reliable and secure underpinning
and Europe needs to develop its own capabilities in this area as witnessed by the
increasingly frequent calls for a “European digital sovereignty”. This will involve a
significant effort to develop the required enabling technologies. Furthermore, to protect
the investments made, it must be ensured that these technologies provide value for the
involved stakeholders as well as society in general and create a lasting impact.

There are several ways in which to achieve the distribution of AI, but in all cases
the right algorithms must meet the right data – and this must happen at the right
moment if the application is time critical. Similarly, in order to learn from distributed
“experiences”, distributed learning approaches (federated, or central with redistribution
of results) are needed.

The basic challenges to achieve safe distributed AI therefore include data collec-
tion, local processing and reliable transport, as well as the orchestration of distributed
algorithms, all in a reliable and secure manner and in a way that respects the privacy of
users, operators and the general public.

This workshop will address a wide range of enabling methods and technologies to
ensure trustworthiness of data as well as the processing and use of the resulting
information. Topics will range from advanced computational methods to the legal and
regulatory frameworks in which they must function. There will be a session open for
presenters to pitch project ideas for further work on the topics related to the workshop
theme.

2 This Year’s Workshop

The workshop USDAI 2020 presents discussions and insights to an interesting and
relevant set of topics. The safe collection, transport, and usage of data for AI appli-
cations is discussed in four presentations and two keynote presentations.

The session starts with a keynote regarding relevance, applications and pitfalls of
AI in different application scenarios. The first session Data Collection and Processing
comprises two presentations:

1. Towards building data trust and transparency in data-driven business applications,
Annanda Rath, Wim Codenie, and Anna Hristoskova
In view of deriving business value from their (product) data, organisations need to
adopt the right method and technology to analyse these data to infer new insights
and business intelligence. This is feasible only with a certain guarantee on the
completeness, trustworthiness, consistency and accuracy of the data. Thus, building
trust in acquired (product) data and its analytics is pivotal if we are to realise its full
benefits. To this end, we explore different technologies for building data trust, such
as Blockchain, traditional distributed databases and trusted third party platforms, in
combination with security algorithms. In this paper, we present a Blockchain-based
solution for building data trust, based on which we designed a system prototype as a
proof-of-concept.

2. Distributed AI for special-purpose vehicles, Kevin Van Vaerenbergh, Henrique
Cabral, Pierre Dagnely, and Tom Tourwé
In this paper, we elaborate on two issues that are crucial to consider when exploiting
data across a fleet of industrial assets deployed in the field: 1) reliable storage and
efficient communication of large quantities of data in the absence of continuous
connectivity, and 2) the traditional centralized data analytics model which is
challenged by the inherently distributed context when considering a fleet of dis-
tributed assets. We illustrate how advanced machine learning techniques can run
locally at the edge, in the context of two industry-relevant use cases related to
special-purpose vehicles: data compression and vehicle overload detection. These
techniques exploit real-world usage data captured in the field using the I-HUMS
platform provided by our industrial partner ILIAS solutions Inc.

The second session starts with a keynote as well. After that, two presentations about
AI in DevOps are presented:

1. Cynefin Framework, DevOps and secure IoT, Franklin Selgert
Cynefin does not mean tackling problems in familiar ways but with a new
vocabulary. It means thinking about the world in a different way, drawing on
lessons from complexity science, cognitive neuroscience and biological
anthropology.

2. Creating it from SCRATCh: A Practical Approach for Enhancing the Security of
IoT-Systems in a DevOps-enabled Software Development Environment, Simon D
Duque Anton, Daniel Fraunholz, Daniel Krohmer, Daniel Reti, Hans Dieter
Schotten, Franklin Selgert, Marcell Marosvölgyi, Morten Larsen, Krishna
Sudhakar, Tobias Koch, Till Witt and Cedric Bassem

1st International Workshop on Underpinnings for Safe Distributed AI (USDAI 2020) 225

DevOps describes a method to reorganize the way different disciplines in software
engineering work together to speed up software delivery. However, the introduction
of DevOps-methods to organisations is a complex task. A successful introduction
results in a set of structured process descriptions. Despite the structure, this process
leaves margin for error: Especially security issues are addressed in individual
stages, without consideration of the interdependence. Furthermore, applying
DevOps-methods to distributed entities, such as the Internet of Things (IoT) is
difficult as the architecture is tailormade for desktop and cloud resources. In this
work, an overview of tooling employed in the stages of DevOps processes is
introduced. Gaps in terms of security or applicability to the IoT are derived. Based
on these gaps, solutions that are being developed in the course of the research
project SCRATCh are presented and discussed in terms of benefit to DevOps-
environments.

The aim is to unite academic research with industrial research and development in
order to explore options for application-oriented uptake of new technologies in the field
of safe distributed AI.

As chairpersons of the workshop, we want to thank all authors and contributors
who submitted their work, the SAFECOMP Publication Chair, and the members of the
International Program Committee who enabled a fair evaluation through reviews and
considerable improvements in many cases. We want to express our thanks to the
SAFECOMP organizers, who provided us the opportunity to organize the workshop at
SAFECOMP 2020. Particularly we want to thank the EC and national public funding
authorities who made the work in the research projects possible.

We hope that all participants will benefit from the workshop, enjoy the conference
and accompanying programs and will join us again in the future!

Morten Larsen
Alexandru Uta

Acknowledgements. Part of the work presented in the workshop received funding
from y ITEA3 through project SCRATCh (label 17005) with funding from: The
Federal Ministry of Education and Research (BMBF) of the Federal Republic of
Germany, within the project SCRATCh (01IS18062E, 01IS18062C), Netherlands
Enterprise Agency, the regional institute for research and innovation of Brussels
Belgium, Innoviris. see individual acknowledgements in papers.

International Program Committee

Morten Larsen AnyWi Technologies (NL)
Alexandru Uta LIACS, Leiden University (NL)
Alan Sears Leiden Law School, Leiden University (NL)
Anna Hristokova SIRRIS (BE)
Reda Nouacer CEA (FR)
Ricardo Reis Embraer (BR)
Andries Stam Almende (NL)
Raúl Santos de la Cámara Hi-Iberia (ES)

226 M. Larsen et al.

Valeriu Codreanu SURFsara (NL)
Raj Thilak Rajan TU Delft (NL)
Simon Duque Antón DFKI (DE)
Tobias Koch consider-it (DE)
George Dimitrakopoulos Harokopio University (GR)

1st International Workshop on Underpinnings for Safe Distributed AI (USDAI 2020) 227

Towards Building Data Trust
and Transparency in Data-Driven

Business Applications

Annanda Rath(B), Wim Codenie, and Anna Hristoskova

Software Engineering Department, Sirris, Brussel, Belgium
{Annanda.rath,Wim.Codenie,anna.hristoskova}@sirris.be

https://www.sirris.be

Abstract. In view of deriving business value from their (product) data,
organisations need to adopt the right method and technology to analyse
these data to infer new insights and business intelligence. This is feasi-
ble only with a certain guarantee on the completeness, trustworthiness,
consistency and accuracy of the data. Thus, building trust in acquired
(product) data and its analytics is pivotal if we are to realise its full
benefits. To this end, we explore different technologies for building data
trust, such as Blockchain, traditional distributed databases and trusted
third party platforms, in combination with security algorithms. In this
paper, we present a Blockchain-based solution for building data trust,
based on which we designed a system prototype as a proof-of-concept.

Keywords: Data trust · Transparency · Data driven business ·
Security

1 Introduction

Companies that adopt a data-driven business model rely on (product) data to
support their business operations. There are different ways companies or organ-
isations can be driven by data. Specifically, there are those that are completely
data-driven, where their business revenues are based solely on the selling data,
others use data to drive a more conventional business, and still others use data
to enhance or optimise their business (e.g., improve product or enhance business
operation). Typically, in some service companies (e.g., sharing economy, market
place, ...), large amount of data is generated, and a data-driven business model
can be a powerful tool to boost the revenues, improve business efficiency, open
additional business opportunities and create a positive impact on their business
operation. With current competitive business environments, companies that har-
ness the power of data to transform their businesses (e.g., offer additional services
based on data) can become sustainable.

In data-driven business models, data are a critical asset and in order to sell
these to business partners in the eco-system, a data provider company needs
c© Springer Nature Switzerland AG 2020
A. Casimiro et al. (Eds.): SAFECOMP 2020 Workshops, LNCS 12235, pp. 229–242, 2020.
https://doi.org/10.1007/978-3-030-55583-2_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-55583-2_17&domain=pdf
https://doi.org/10.1007/978-3-030-55583-2_17

230 A. Rath et al.

to prove that the collected data are real, accurate and not manipulated. Com-
panies, especially those that envision to include data-driven models in their
business strategy, need to invest (in early phase) in building trust in their data
and guaranteeing transparency in data analytics as a way to convince their part-
ners. A study by Harvard Business Review1 also highlights the importance of
trust building and transparent data practices. It indicates that “in order to gain
consumers’ trust, transparent data practices are needed.” Another report, from
Sänger et al. [3], also highlights the importance of data trust and provides a
roadmap for research in building trust in data.

We are currently living in the age of Big Data, where large amounts of trust-
worthy data can be utilised to establish innovative data-driven approaches, how-
ever, this is intrinsically tied to the trust we can put in the origins and quality of
the underlying data. In this paper, we focus on building trust in data and its ana-
lytics by exploring different technological solutions from Blockchain to trusted
third party platforms (e.g. Cloud), with the special focus on the Blockchain-
based solutions.

The paper is organised as follows. Section 2 presents the notion of trust in
data and security requirements for data trust assurance. Section 3 details the
data trust solution and a high-level architecture. Section 4 is about the design
of a prototype of a Blockchain-based solution. Section 5 focuses on the related
work and we conclude this paper with Sect. 6.

2 Notion of Trust in Data and Security Requirements for
Data Trust Assurance

In this section, we explain a notion of trust in data and highlight a list of security
requirements for building trust in data.

2.1 Notion of Trust and Trust in Data

In the dictionary [6], trust refers to confidence in the honesty or integrity of
a person or thing. Another definition of trust that is often cited in literature
regarding trust and reputation online was proposed by Gambetta in 1988 [5]
and is referred to as reliability trust: Trust is a particular level of the subjective
probability with which an agent assesses that another agent or group of agents
will perform a particular action, both before he can monitor such action (or
independently of his capacity ever to be able to monitor it) and in a context in
which it affects his own action.

In the recent decade, various trust models have been developed to establish
trust. Thereby, two common ways can be distinguished, namely policy-based
and reputation-based trust establishment [4]. Policy-based trust is based on the
exchange of hard evidence (e.g., credentials). In general, it relies on objective
“strong security” mechanisms, which are based on well defined semantics (e.g.,
logic programming) providing strong verification and analysis support.
1 https://hbr.org/2015/10/can-your-data-be-trusted.

https://hbr.org/2015/10/can-your-data-be-trusted

Towards Building Data Trust and Transparency 231

Reputation-based trust, in contrast, is derived from the history of interac-
tions. Hence, it can be seen as an estimation of trustworthiness. Reputation is
defined as follows: “Reputation is what is generally said or believed about a
person or thing, character or standing” [4]. It is based on referrals, ratings or
reviews from members of a community and can, therefore, be considered as a
collective measure of trustworthiness [4,8].

In this paper, we focus on policy-based trust establishment. We propose
a solution for building trust in data and guaranteeing transparency in data
analytics by means of technologies instead of using the history of interactions
as a means to measure trust. The reason of focusing on policy-based trust is
because we believe it is beneficial to all companies and organisations, mature
or small, especially, to those that do not have long history of interactions with
customers.

2.2 Security Requirements

In the following, we present security requirements for assuring that the data is
tamper-proof from its creation to its storage or sharing with a third party system.
These requirements cover the data source environment security, communication
security, storage security and processing security.

1. Data source environment (DSE) represents the place where the data are gen-
erated. To ensure that data are not tampered with, it is pivotal to secure the
DSE and make sure that the data cannot be manipulated at this level. If the
data protection at this level fails, the entire eco-system fails. Various secu-
rity protection techniques can be used, to achieve this security requirement,
depending on the nature of the DSE (e.g. IoT-based vs Cloud-based).

2. Communication environment. To prevent possible data tampering while data
are in a communication channel(s) and/or in transit, a secure communication
medium must be used. Multi-layer of security (e.g. end-to-end encryption with
standard security protocol) must be used in order to ensure tamper-proof data
delivery.

3. Secure data processing environment and storage consists of three sub-
requirements:

– A secure data collection system must ensure that the data are collected
securely from their sources and are correct and untampered.

– Secure storage data tampering can also occur at storage level. In order
to address this, we need to have a secure and tamper-proof data storage
where a user can audit the data transparently.

– Secure data auditing focuses on the validation of the data in storage.
The system must allow a data client to check whether or not it has been
tampered with. The auditing must be done independently, not under con-
trol/influence of a data provider.

4. The data sharing environment requires security, authenticity and correctness
of data shared/sold to third party. The system must be able to prove the
authenticity of data and be able to detect data tampering happened in a
third party system.

232 A. Rath et al.

It is worth mentioning that data need to be protected securely and should be
tamper-proof in all of the four environments in order to meet the data trust
security requirements.

Fig. 1. High-level architecture of the blockchain-based solution

3 Data Trust Solutions and High-Level Architectures

In this section, we present our Blockchain-based solution able to guarantee data
trust. Our assumption is that all entities (e.g., data provider, client, platform
provider, ...) in the eco-system are untrusted, especially the data provider and
there is a need to securely control and independently monitor the flow of data
from creation to final destination. The proposed solution is used to ensure that
the data is tamper proof and safe and if data tampering happens, it can be
easily detected by means of trusted auditing tool operating independently from
the data provider system.

3.1 Architecture of the Blockchain-Based Solution

As mentioned, we propose the architecture, in Fig. 1, which consists of the fol-
lowing modules:

1. The data source environment is where raw data are generated and sent,
through secure communication, to the processing and storage facility module.

2. The Data flow management is responsible for managing the raw data. Once
received, the raw data is stored in (1) the Blockchain (the immutable storage)
and (2) the traditional database called “off-chain”.

3. The Secure data processing and storage consists of the following three sub-
modules:

– Data storage consisting of: (1) Blockchain system, it stores a copy of data
received from sources for validation purpose. The data in this storage will
be used as an image to data stored in off-chain and (2) Off-chain storage
stores encrypted raw data for data processing and information/knowledge
extraction.

Towards Building Data Trust and Transparency 233

– The Data processing module is responsible for processing and extracting
information and knowledge from the data set. It consists of (1) data pre-
processing, (2) data classification and (3) knowledge extraction.

– The Data auditing and validation allows a data client to audit the data
set, and check whether or not data tampering occurred. In case of an
auditing request from a client for a given data set, the auditing module
performs the operation by matching the data set stored in the off-chain
and its image stored in the Blockchain. If these match, no tampering
occurred. As stated earlier, the auditing module must be hosted on an
independent platform not under control of the data provider to ensure
transparency and trust.

This high-level architecture (see Fig. 1) provides an overview of the different mod-
ules required for securing data when they are moved to different entities/places
in the system, for instance, when (product) data is moved from product installed
at customer’s premise to the product builder system. For the implementation of
each module, it is a case-by-case study and we do not address all of them in this
paper. However, in the prototype design in Sect. 4, we provide an implementation
of a solution applied to a bike renting system case.

3.2 Blockchain-Based Solution- Short Description

Since there are different types of DSEs (e.g., IoT, data lake, on premise data)
and each of them requires a specific security protection technique, we do not
address them individually in this paper. We suppose that the DSE is secured with
standard security principles (e.g., secure storage, secure access control, tamper-
proof-resistance, ...) and the communication between the data source and the
data flow management environment (DFM) (see Fig. 1) is secured through a
standard protocol, such as TLS or SSL. Our Blockchain-based solution addresses
the security between the DFM environment and the storage destination (see
Fig. 1). However, in our prototype development presented in Sect. 4, we provide
a solution for securing the IoT-based DSE as we take IoT as our target domain
to build a proof-of-concept.

In this paper, Blockchain, with its immutable property, will be used to guar-
antee that the data is tamper-proof and ensure that data tampering can always
be detected. As shown in Fig. 1, when the DFM module receives data from the
DSE, it processes a copy of it and sends it to be stored in the Blockchain system.
It is worth noting that we do not store a complete data set on the Blockchain,
only a hash of it and its meta data (refer to as data image). Once, a copy of the
data is successfully stored on the Blockchain, the Blockchain system returns a
Unique Transaction Identification Number (UTIN) and the DFM module sends
the original copy of data with this Blockchain UTIN to be stored in an off-chain
storage (data resting place). A data image stored on the Blockchain is used to
validate the authenticity of the original copy stored in the off-chain storage. All
data stored in the off-chain needs to be encrypted and a searchable encryption
algorithm [11] can be used to search for key information from the data set stored

234 A. Rath et al.

in the off-chain database without revealing the detailed information in data set.
Doing so ensures integrity and confidentiality of data stored in off-chain.

If we want to check whether or not the data have been tampered with, we
simply take the data stored in the off-chain and compare them to their image
stored in the Blockchain. If it has been tampered with, they do not match. The
communications between the DFM and the Blockchain and between the DFM
and the off-chain database are secured through the TLS standard protocol.

Fig. 2. Bike renting system prototype architecture

4 Prototype of Blockchain-Based Solution

In this section, we highlight the development of a system prototype of the
Blockchain-based solution.

4.1 Prototype Description and Use Cases

Prototype Description. We aim at building a secure system that can provide
trust in data and transparent data processing for data-driven service applica-
tions, particularly, for the sharing economy environment with the specific case
of bike renting. The system is designed in a way to guarantee security, trust
and reliability on data collection, knowledge extraction and data storage (e.g.,
tamper-evident and tamper-proof data access).

Use Case Scenarios. Suppose that a bike renting company provides a platform
for users to rent bikes in a city. Each bike is attached with sensors, such as air

Towards Building Data Trust and Transparency 235

quality and GPS, so that the company is able to collect air quality data in the
area where the bike passed and also knows its GPS location. The company plans
to generate revenues by selling the air quality data to partners, such as a city
authority. In addition, the company also plans to make use of the GPS data for
advertisement purposes since a particular time and location can be linked to an
individual person (e.g., people who rent bikes) and to buildings (e.g., shops or
companies). With precise GPS data and a number of bikes passing a particular
location, the bike renting company can offer targeted advertisement to shops or
companies that have their building in or around that location.

4.2 System Architecture and Solutions

In this section, we present in detail, the bike renting system architecture for data
collection and processing. As shown in Fig. 2, there are three important modules.

1. The Data generator environment (DGE) represents the place where data are
generated. It includes of two data sources: (1) bike user, his address, personal
information, bike usage pattern and (2) sensor devices attached to the bike.
Data in the DGE is managed and secured by a system embedded in each
sensor device attached to the bike. DGE does not process data, but it forwards
data to the Backend for further processing.

2. The Backend handles the data processing and additional security assurance
to ensure that the data is tamper-proof in all processing states. The Backend
is divided into two sub-components:

– User, data and device management consisting of four sub-modules:
(a) The Data management module is responsible for managing the data

flow from the DGE to both storages: (1) Blockchain and (2) off-chain.
This module is also responsible for assuring that the data stored in
the blockchain is an exact image of the one stored in the off-chain
storage.

(b) The Users management module is responsible for managing the types
of users in the system (e.g., add/remove users): (1) the bike client
referring to physical users using the bike renting services; (2) the
data provider or bike renting system owner referring to users who
have administrative access in the system and can activate/deactivate
users, add/remove devices and perform other operations necessary for
assuring the well-functioning of system; (3) the data client, referring
to those who purchase data from the data providers

(c) The Device management module is responsible for managing all sensor
devices in the system. Through this module, the administrator can
add, deactivate or remove sensor devices and bikes from his system.

(d) The System setting management allows the administrator to set the
system parameters to their preference. For example, set the connec-
tion parameters (interfaces) between the DGE and the backend or
between the backend and the frontend.

– Secure, data processing and storage consisting of six main components:

236 A. Rath et al.

(a) The blockchain platform (immutable storage) where an image of the
data is stored permanently. The data in the immutable storage will
be used to validate the data in the off-chain.

(b) The off-chain storage is responsible for managing and storing raw data
received from the DGE. The off-chain can be a simple file system or
a database management system.

(c) The data auditing and validation is the most critical module as it
allows the data client to detect any data tampering. In case of an
auditing request for a particular set of data from the data client, the
auditing and validation module compares the data set in the off-chain
with their images on the blockchain. If they do not match, it means
that the data has been tampered with.

(d) The data pre-processing responsible for transforming the data to the
desired type and format.

(e) The data classification. Once the data have been pre-processed, they
are classified depending on its intended purpose. For example, create
a list of bikes that passed a given GPS location.

(f) The Knowledge extraction module is responsible for extracting knowl-
edge from a given data set. For example, an average number of bikes
passed a given GPS location and time.

3. The Frontend is the interface allowing users to access the bike renting services.
As shown in Fig. 2, there are three frontend interfaces for three types of
user: (1) the data provider interface facilitating the data provider with the
management of users, devices and system setting, (2) the bike client interface
allowing the bike client to manage its bike usage history, and (3) the data
client interface allowing the data client to manage its preferred set of data
(bike data) selected based on their preferred GPS location.

4.3 System Development

In this section, we present the prototype development architecture, highlighting
the various used technologies and programming languages. As shown in Fig. 3,
there are two main parts: (1) the data structure and (2) the system components.

Data Flow Description. As shown in Fig. 3, the entire system is divided into
three main components: (1) device environment, (2) backend and (3) frontend.
In our prototype design, the device environment is connected wirelessly to the
backend with Lora/wifi technology. The MQTT messaging protocol is used for
sending sensor data to the backend. Each device publishes periodically its sensor
data to the MQTT broker, installed at backend. A module for managing data
from a sensor device is developed in Python and is part of the backend com-
ponent. This python-based data management module acts as data flow control
between the device environment and the backend. It gets sensor data by sub-
scribing to the MQTT broker. The received data is formatted in accordance with
a predefined structure in the form of the BigchainDB [16] transaction and sent
to be stored/added on the BigchainDB Blockchain. After successfully stored on

Towards Building Data Trust and Transparency 237

Fig. 3. Bike renting system implementation architecture

the Blockchain, BigchainDB returns a unique transaction ID. This ID combined
with additional data (e.g., device and sensor data) will be sent to be stored in
a Mysql database. Data stored on the Blockchain is an image of that stored in
the off-chain database and is used for data auditing purposes. Two sets of fron-
tend applications are developed to facilitate the users: (1) a web-based frontend
and (2) a python-based frontend, which is used only for data auditing purposes.
For the web-based frontend, php is used to develop a web application providing
the following features: (1) users management, (2) devices management, (3) data
viewing and (4) data auditing.

Data Structure. This part of the architecture defines the structure of data to be
processed and stored on the various system locations. There are four different
data structure formats for (1) devices environment, (2) data flow control, (3)
BigchainDB Blockchain transaction, and (4) Mysql off-chain database (for more
detail refer to Fig. 3).

System Components. In this section, we present the system components of
the prototype we developed.

1. The Data generator module is responsible for retrieving sensor data and com-
municating it to the data flow control module. We developed micro-python
library that can be deployed on pycom-Lopy [9] micro controler (MC). The
developed library has two functions: (1) retrieving data from a sensor device
attached to the Lopy (in our case we use Pytrack [9] GPS sensor) and (2)
communicating sensor data to the data flow control module. In our imple-
mentation, we used MQTT for communicating sensor data to the data flow

238 A. Rath et al.

control module. We also developed a MQTT pub/sub library to be installed
on the Lopy MC.

2. The Data flow module hosts three important modules: (1) MQTT broker, (2)
data formatter and (3) BigchainDB driver [10].
(a) MQTT broker. MQTT mosquito [1] is used as the broker for the com-

munication between the data flow control module and the device environ-
ment module. This broker is integrated with the data flow control module,
which is developed in Python.

(b) Data formatter, developed in Python, is responsible for formatting the
data for compatibility with the BigchainDB transaction structure. This
formatted data is then used as input for the BigchainDB Blockchain trans-
action validator, that formats the data into valid BigchainDB transaction.
It is worth noting that only a valid BigchainDB transaction can be sent
to the BigchainDB network to be inserted on the Blockchain.

(c) BigchainDB driver is an interface connecting the data flow control
module to the BigchainDB system. Through this driver, we can submit
transactions to be inserted on the Blockchain or retrieve transactions from
it. In our implementation, we used python-based BigchainDB driver [10],
which is integrated into the data flow control module.

3. BigchainDB. In our prototype development, we use BigchainDB as
Blockchain implementation technology. BigchainDB can reside on our back-
end or can be a separate external system installed on a different network or
even on the Internet. It is important to note that not all Blockchain imple-
mentations fit with our proposed solution. Only Blockchain implementations
with high transaction and fast data retrieval rate can be used in our case
explaining why BighchainDB has been chosen.

4. Off-chain storage stores human-readable data from sensor devices. In our
implementation, we use the Mysql database management system as off-chain
storage. The Mysql database is also used to store devices’ and users’ infor-
mation.

5. Web backend. The entire backend of the bike renting system is developed in
two different programming languages: (1) Python and (2) PhP. The Apache
web server is used as the backend system for the web content offering to
the web-based frontend user while the Python backend serves as the python
frontend user interface for auditing purposes.

6. Python data auditing interface and PhP web-based auditing inter-
face. In our prototype, we have developed two different frontend interfaces:
(1) a web-based interface for device and user management, system setting and
data auditing and (2) a python frontend interface for data auditing purposes
only.

4.4 Security Implementation, Experimentation and Testing

Access Control. In our implementation, we use username and password as
authentication mechanism for physical users (e.g., data client, data provider and

Towards Building Data Trust and Transparency 239

bike client) and password plus unique identification for sensor devices authenti-
cation when they onboard the system. The authentication at the MQTT broker
level is done with username and password, meaning only devices with valid user
and password can publish and subscribe to it.

Secure Communication Between System Components. The communica-
tion between the sensor devices and the data flow management module is secured
with the TLS protocol embedded in the MQTT mosquito broker and pub/sub
client module. The communications between the data flow management module
and the BigchainDB Blockchain, and the Mysql system and the web server are
secured with the TLS protocol. We also add another security layer to the data
sent across the TLS communication by encrypting sensor data with AES before
sending them through the TLS channel.

Implementation of Auditing Module. The data auditing module is one of
the most important components of the system. Two auditing interfaces are devel-
oped. The first is a web-based interface allows users to audit sensor data based
on the data tampering models presented below. There, a data client needs to
log into the system with a username and password before being able to perform
a data auditing operation. The data client needs to select data auditing periods
and send the auditing request with the selected periods to the system. Once the
data clients request has been received, the system performs the auditing oper-
ation and returns a detailed information if it detects data tampering activities.
The second auditing interface is a python-based command-line, which allows
users to audit the sensor data based on the same data tampering models.

Data Tampering Models. We implemented the solutions for the following
data tampering models: (1) a data provider inserts new line(s) of data manually
in the database, (2) a data provider modifies a data set manually in the database
and (3) a data provider modifies a blockchain transaction identification linked
to the Blockchain platform.

System Experimentation and Testing. We performed 6 different system
tests based on the testing criteria defined based on the data tampering models
presented above. In our test, the GPS [10] sensor data are generated randomly
and sent to system through MQTT publishers. This MQTT publishers represent
the GPS sensor devices in real system deployment. To simulate the data tamper-
ing activities, we manually modified the GPS data, Blockchain transaction iden-
tification and some of sensor data in off-chain Mysql database. We performed
data auditing tests for both auditing interfaces: web-based and python-based
command-line. Based on the results of the tests, we find that system performs
correctly and its data auditing response time correlates with the length of data
auditing periods, the larger auditing time interval, the larger response time. It
is worth noting that the data auditing response time is largely influenced by the
Blockchain transaction retrieval response time where an average data retrieval
response time from Blockchain is 50, 70 ms.

240 A. Rath et al.

5 Related Work

Several works highlight the data trust challenges [1–5,7]. For instance, a roadmap
for building data trust in big data is proposed by Sänger [3]. However, the paper
does not provide solutions to the data trust challenge. In this paper, our research
focuses on solutions for data-driven business applications. We limit our scope to
this particular domain as we believe this use case has very high business potential
and social impact. The most relevant papers to our work are:

Wang and Guo [2] focus on a Blockchain-based data trust sharing mechanism
in the supply chain where they address the trust and privacy problem during
the data sharing process in the supply chain. In their paper, they start with
system architecture design to introduce the system framework, service process
and data model for data trust sharing. Secondly, they implement the blockchain-
based supply chain platform, consisting of account management module and data
request processing module with open data index name extension. At last, they
state a use case in supply chain to analyse their platform.

Kaaniche and Laurent [1] introduce a Blockchain-based data usage audit-
ing architecture with enhanced privacy and availability. Towards these security
and privacy challenges, they combine hierarchical identity based cryptographic
mechanisms with emerging blockchain infrastructures and propose a blockchain-
based data usage auditing architecture ensuring availability and accountability
in a privacy-preserving fashion. The approach relies on the use of auditable con-
tracts deployed in blockchain infrastructures. Thus, it offers transparent and
controlled data access, sharing and processing, so that unauthorised users can-
not process data without client authorisation. Moreover, based on cryptographic
mechanisms, their solution preserves privacy of data owners and ensures secrecy
for shared data with multiple service providers. It also provides auditing author-
ities with tamper-proof evidences for data usage compliance.

Bonatti et al. [4] work on an integration of reputation-based and policy-
based trust management. The two trust management approaches address the
same problem - establishing trust among interacting parties in distributed and
decentralised systems. The authors analyse the differences between the two mod-
els of trust and argue that an integrated approach would improve significantly
trust management systems.

The researches above focus particularly on the protection of data when they
are shared between different parties in the distributed environment with the
assumption that data provider is a trustworthy entity (there is no question of
authenticity and origin of the data shared in the system). This opposites to
what we are trying to address. In our case, we assume that all parties involving
in processing data are untrusted (including data provider), hence, our solutions
is designed in such a way so that it can be used in completely untrusted envi-
ronment by shielding the communication and protecting data in such a way so
that even data provider could not tamper them.

Towards Building Data Trust and Transparency 241

6 Conclusion

In this paper, we propose a system architecture that can be used as reference for
building data trust in data-driven business applications. When designing systems
aiming at building trust in data, we recommend a Blockchain-based solution if
we want to achieve high level of data trust and if the system is planned to operate
in an untrusted eco-system. However, the Blockchain-based solution does not fit
in case of very load and delay intolerant/sensitive real-time applications; this is
because a Blockchain transaction processing takes more time compared with a
traditional database system. Given this limitation, we are currently working on
other solutions for building trust in data, such as traditional distributed database
and trusted third party concepts.

Acknowledgement

References

1. Kaaniche, N., Laurent, M.: A blockchain-based data usage auditing architecture
with enhanced privacy and availability. In: 2017 IEEE 16th International Sympo-
sium on Network Computing and Applications (NCA), Cambridge, MA, pp. 1–5
(2017)

2. Wang, L., Guo, S.: Blockchain based data trust sharing mechanism in the supply
chain. In: Yang, C.-N., Peng, S.-L., Jain, L.C. (eds.) SICBS 2018. AISC, vol. 895,
pp. 43–53. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-16946-6 4

3. Sänger, J., Richthammer, C., Hassan, S., Pernul, G.: Trust and big data: a roadmap
for research. In: 2014 25th International Workshop on Database and Expert Sys-
tems Applications, Munich, pp. 278–282 (2014)

4. Bonatti, P., Duma, C., Olmedilla, D., Shahmehri, N.: An integration of reputation-
based and policy-based trust management. Technical document, Universita di
Napoli Federico II, Napoli, Italy, Linköpings universitet and L3S Research Center
and University of Hannover, Hanover, Germany (2007)

5. Gambetta, D.: Can we trust trust? In: Gambetta, D. (ed.) Trust: Making and
Breaking Cooperative Relations, pp. 213–237. Basil Blackwell, Oxford (1988)

6. Definition of trust. https://www.oxfordlearnersdictionaries.com/definition/engli
sh/trust 2

7. Belov, N., Schlachter, J., Buntain, C., Golbeck, J.: Computational trust assessment
of open media data. In: 2013 IEEE International Conference on Multimedia and
Expo Workshops (ICMEW), pp. 1–6 (2013)

8. Albanese, M.: Measuring trust in big data. In: Aversa, R., Ko�lodziej, J., Zhang,
J., Amato, F., Fortino, G. (eds.) ICA3PP 2013. LNCS, vol. 8286, pp. 241–248.
Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03889-6 28

https://doi.org/10.1007/978-3-030-16946-6_4
https://www.oxfordlearnersdictionaries.com/definition/english/trust_2
https://www.oxfordlearnersdictionaries.com/definition/english/trust_2
https://doi.org/10.1007/978-3-319-03889-6_28

242 A. Rath et al.

9. Pytrack Pycom. https://pycom.io/product/pytrack/
10. BigchainDB and Python BigchainDB driver. https://www.bigchaindb.com
11. Pramanick, N., Ali, S.T.: A comparative survey of searchable encryption schemes.

In: 8th International Conference on Computing, Communication and Networking
Technologies (ICCCNT), Delhi, pp. 1–5 (2017)

https://pycom.io/product/pytrack/
https://www.bigchaindb.com

Distributed AI for Special-Purpose
Vehicles

Kevin Van Vaerenbergh(B), Henrique Cabral, Pierre Dagnely,
and Tom Tourwé

EluciDATALab Sirris, Boulevard A. Reyerslaan 80, 1030 Brussels, Belgium
kevin.vanvaerenbergh@sirris.be

Abstract. In this paper, we elaborate on two issues that are crucial to
consider when exploiting data across a fleet of industrial assets deployed
in the field: 1) reliable storage and efficient communication of large quan-
tities of data in the absence of continuous connectivity, and 2) the tradi-
tional centralized data analytics model which is challenged by the inher-
ently distributed context when considering a fleet of distributed assets.
We illustrate how advanced machine learning techniques can run locally
at the edge, in the context of two industry-relevant use cases related to
special-purpose vehicles: data compression and vehicle overload detec-
tion. These techniques exploit real-world usage data captured in the field
using the I-HUMS platform provided by our industrial partner ILIAS
solutions Inc.

Keywords: IoT · Distributed data analysis · Time series data
compression

1 Introduction

Ever more industrial assets are being instrumented and connected thanks to sig-
nificant evolutions in Internet-of-Things (IoT) technology, e.g. smaller sensors
and reliable connectivity. Detailed data on how/when/where an asset is used
can be captured continuously, transferred to a central platform, where it is anal-
ysed via advanced data analytics technologies to extract useful insights. This
enables advanced health and usage monitoring applications that help to ensure
availability, reliability and safety of the equipment.

At present, such usage monitoring is mostly done at the level of the individ-
ual asset. Many companies however are operating and managing large groups
of assets, and would like to apply advanced data-driven analysis techniques to
extract insights across their entire fleet. Examples are fleets of vehicles operated
at globally-distributed sites, wind turbines arranged within parks, compressors
and pumps in industrial surroundings, etc. In that context, two issues are crucial
to consider:

This work is supported by the Brussels-capital region - Innoviris.

c© Springer Nature Switzerland AG 2020
A. Casimiro et al. (Eds.): SAFECOMP 2020 Workshops, LNCS 12235, pp. 243–254, 2020.
https://doi.org/10.1007/978-3-030-55583-2_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-55583-2_18&domain=pdf
https://doi.org/10.1007/978-3-030-55583-2_18

244 K. Van Vaerenbergh et al.

– reliable storage and efficient communication of large quantities of data is
challenging due to the absence of continuous connectivity [8,13]

– the traditional centralized data analytics model is challenged by the inherently
distributed fleet context [5,9]

In the next two subsections, we will explain these in more detail.

1.1 Reliable Storage and Efficient Communication of Large
Quantities of Data Is Challenging Due to the Absence of
Continuous Connectivity

Industrial assets can continuously gather data but are not necessarily contin-
uously connected. Some are highly-mobile (e.g vehicles or aircraft) and sites
where they are deployed can be extremely remote, hence continuous and reli-
able communication means are not guaranteed. In addition, different connection
means are possible (e.g. fast Wi-Fi, sat-com or slower 3/4G), but each technol-
ogy influences how much data can be transferred, at which speed, at what cost,
etc. Finally, data offloading opportunities can be scarce and short and offloading
should not interfere with normal operations. For instance, some assets need reg-
ular refuelling but this often does not take long enough to transfer all the data
or does not always happen within an area with communication means.

Consequently, data needs to be stored on-asset until it can be off-loaded to a
collection point. However, storage comes at a cost and explicitly managing this
cost requires carefully considering the amount of data that is retained at asset-
level and eventually transferred. To ensure the most relevant data is always
retained, data reduction techniques need to be considered. In Sect. 3, we will
detail how we consider data compression for special-purpose vehicles in such a
distributed context.

1.2 The Traditional Centralized Data Analytics Model Is
Challenged by the Inherently Distributed Fleet Context

Assets in a fleet are often geographically distributed and not (necessarily) con-
tinuously connected, resulting in data that is scattered over different locations.
Such an inherently distributed context is in sharp contrast with the traditional
centralized data analytics model, in particular the assumption of traditional AI
algorithms that data needs to be available centrally for analysis.

There are good reasons to execute intelligent algorithms on the assets them-
selves. This can lower the communication cost and the need for bandwidth, as
the model, rather than the data itself, can be transferred. It can also help to
meet important privacy and security requirements, as sensitive data is processed
on-asset and doesn’t need to be transferred. Edge computing, a paradigm that
empowers edge nodes within a distributed network to handle data, is currently
mostly limited to relatively simple processing tasks, such as down-sampling and
encryption. However, the concept of edge intelligence, combining edge comput-
ing and machine learning technologies, is rapidly emerging. In Sect. 4, we will
illustrate how we apply AI methods at the edge for vehicle overload classification.

Distributed AI for Special-Purpose Vehicles 245

2 Special-Purpose Vehicle Monitoring

Fig. 1. ILIAS’ I-HUMS sensor.

In the context of this work, we use
vehicle usage data provided by our
industrial partner ILIAS Solutions1.
A fleet of special-purpose vehicles
are instrumented by ILIAS’ I-HUMS
system which captures vehicle usage
measurements (Fig. 1). The system
consists of a smart sensor device, a
collector antenna and a decentral-
ized data processing server. The smart
sensor device contains several sen-
sors sampling at 200 Hz, e.g. 3-axis
accelerometer and 3-axis gyroscope,
and can connect to a vehicle’s CANbus for extra data collection, sampled at
1 Hz. The device offloads the data via the collector antenna when in the vicinity
and transfers it to the data processing server.

Two relevant use cases are considered

– Data compression: compress the time series data generated by a vehicle to
limit data storage requirements and speed up data transfer in such a way that
relevant data is retained as much as possible.

– Vehicle overload: classify a drive as overloaded or not, in order to warn the
operator, limit premature wear-and-tear and prevent warranty to become
void.

3 Data Compression for Special-Purpose Vehicles

Vehicle usage data is gathered at a high frequency and to deal with this fine-
grained time series data, we employ data compression. Data compression can be
lossy or lossless. In contrast to most lossless techniques [12] such as [4] and [16],
a much higher compression rate can be achieved using lossy techniques [14].
Many lossy compression techniques for time series have been researched [1,7]
and [10] with some having trouble on compressing all data types or having a
large run-time. Therefore, we looked at data compression using deep learning.

The algorithm we implemented is proposed by [3] and uses LSTM [2] for
encoding and decoding time series signals. They propose a recurrent auto-
encoder (RAE) [6] as base to learn the dependencies of the signal, increasing the
compression of sections of the signal that have low informativeness/variance. A
detailed description of the algorithm can be found in the next section.

1 https://www.ilias-solutions.com.

https://www.ilias-solutions.com

246 K. Van Vaerenbergh et al.

3.1 Methodology

The intuition behind the methodology is that all data points are not equally
relevant. Many assets have “stable” periods where they are barely active, and
periods with higher activity. For instance, a vehicle can be waiting at a traffic
light, generating a stable period of mostly irrelevant data. Later on, the vehicle
can be driving off-road in mountainous terrain, generating a period with relevant
data to better understand/monitor it’s behaviour. The methodology intends to
detect the irrelevant periods and send the related data with a lower resolution,
e.g. 1 min granularity, while keeping the periods with relevant data at a higher
resolution, e.g. 1 s granularity.

The methodology follows these three steps:

– Train a model to characterize the data input, i.e. model the stable and active
behaviours

– Use the model to detect the stable and active periods in the signal to compress
– Down-sample the stable periods or up-sample the active periods

The model used is a recurrent auto-encoder (RAE). RAEs are a specific kind
of recurrent neural nets (RNN) [15] dedicated to reconstruct an input signal
using time-dependent features. It is composed of two long short-term memory
nets (LSTM), one encoder and one decoder. The encoder compresses the input
signal, which the decoder receives and from which it tries to reconstruct the
input signal as closely as possible. Some limitations are given to the decoder in
order to avoid a perfect reconstruction of the signal. These limitations ensure
that the decoder focuses on the main characteristics of the input signal and
discards unnecessary information.

The methodology relies on two parameters; standard deviation (STD) thresh-
old and error margin. The STD threshold is used to segment the training data
into segments with similar variance. Training data can be acquired from the
asset itself or from a similar one. The data is greedily partitioned into segments
given that the total variance for all the data points within the same segment is
close to the STD threshold (depending of the data characteristics). The RAE is
trained to be able to reconstruct these segments. When the RAE is successfully
trained, it can be used to compress the time series input signals.

The error margin parameter influences the amount of compression reached
by the algorithm. The trained RAE is the basis to identify the to-compress
segments in the signal, i.e. to detect the boundaries of the segments that can
be accurately reconstructed given the allowed error. The compression relies on
the down sampling of these segments. The algorithm loops over the data to
identify the segments to compress. Stable periods in the signal can be better
reconstructed by the RAE and therefore have a larger compression rate. The
resulting signal is a compressed version of the original signal which consists of
several segments of the RAE input size.

Distributed AI for Special-Purpose Vehicles 247

3.2 Results

We applied the methodology on the signal received from the x-axis of the accel-
eration from a driving vehicle, sampled at 200 Hz.

To train the RAE, we segment the signal given a STD threshold, calculated
in an automatic way by bootstrapping a set of segments of distinct sizes from
the original signal and averaging their STD. The original segmentation method
scans the signal sequentially and defines the periods where the STD threshold
is not surpassed. Unfortunately, this approach does not take into account the
change in variability of the signal. In some situations, this can lead to a segment
that is a combination of a period with high variability, followed by a period
of low variability. This is avoided by simply scanning the signal first to define
the indexes where there is a sudden change in STD over a rolling window. The
indexes identified by the first scan, together with the fixed STD thresholds are
used to segment the signal properly, as can be seen in Fig. 2.

Fig. 2. Example of the segments found in the signal using the two-step segmentation
process.

We trained the RAE using the segments defined above offline. We use an
auto-encoder consisting of two LSTM layers for encoding and decoding, with
128 and 64 as input size for encoding, and the reverse for decoding. The network
was trained using 500 epoch, a batch size of 64 and an input size of 30. When the
RAE is trained, we run the compressing algorithm on the original signal. When
the trained network is validated, it can be used on the edge device to compress
in real time.

We compress the original signal given a series of allowed error margins (0.1
to 0.5 with 0.1 step size) and two different minimum segment sizes for construct-
ing the training data (15 and 30). The STD threshold is calculated automati-
cally using a bootstrapping methodology but this can be defined manually by a
domain expert. The minimum segment size of the training data is chosen to be
half and the same as the RAE input size. This influences the amount of detail
that the RAE can reconstruct, as a minimum of half of the input size results in
a up-sampling of the segments to twice their original size for training, increasing
the details of the segments. Using a minimum size equivalent to the RAE input
size will not increase the details of the original segments.

248 K. Van Vaerenbergh et al.

Figure 3 shows the results of a compression given a low error margin (0.1) and
a varying minimum segment size. The segments size influences the RAE’s ability
to learn more details, as can be seen when comparing the left plot (minimum size
15) and middle plot (minimum size 30) resulting compressed signal. The smaller
segment size compression reconstructs the original signal in more details without
increasing in signal size (see the comparison plot on the right side). While we have
a more detailed reconstruction of the original signal using a smaller segments
size, the training of the RAE does take significantly more time due to the larger
size of training data.

Fig. 3. Comparison of a piece of the compressed signal versus the original signal, given
error margin 0.1 and minimum segment size 15 (left) or 30 (right).

Fig. 4. Comparison of sizes for different
parameter settings.

In Fig. 4, we compare the signal
sizes with respect to a varying error
margin, the original signal size and
the theoretical compression size using
Huffman encoding [11]. There is a
clear correlation between the allowed
error margin and the resulting com-
presses signal size. Since the compres-
sion is based on the same trained
RAE, one can simply apply a small
error margin when a small compres-
sion is needed, e.g. when the asset still
has a large amount of storage space
left but no connection to a data sink
has been found in days, or use a large error margin if storage space is becoming
scarce.

4 Overload Indication for Special-Purpose Vehicles

In this section, we illustrate how we apply AI methods at the edge for vehi-
cle overload classification. Detecting overload is particularly challenging, as the

Distributed AI for Special-Purpose Vehicles 249

behavior of a vehicle is tied to the road it is driving on, as well as to the driving
style in question. Furthermore, not all moments of driving are likely to be good
indicators of vehicle load: a heavily loaded vehicle driving at constant speed on
a high-way is not in the same “effort” state as the same vehicle going uphill.

We compare two approaches that draw on vehicle measurements to predict
the load of a vehicle at any given time during driving. The first approach uses a
machine learning classifier built on features derived from sliding windows of the
time series measurements, which reflect the dynamics of the vehicle over a short
period of time. The second approach uses a Long Short Term Memory (LSTM)
neural network on the raw measurement data to make the classification.

4.1 Data

The full dataset contains 10 h of driving from 3 different vehicles of the same type.
To ensure that the models developed are sufficiently robust to cover different
contexts and situations, and to eliminate the driver behavior as factor influencing
the load estimation, all drives were performed by different drivers on routes
incorporating on-road and off-road terrain, normal roads and highways, and
characteristics that allowed accelerating, breaking and turns.

To limit the overload detection to moments when the vehicle was in motion,
only periods when vehicle speed was above 0 km/h was used. This resulted in
a dataset with 7 h of driving, split among the different vehicle load classes -
normal load (3100 kg) and low (3640 kg), medium (3940 kg) and heavy overload
(4380 kg).

The dataset contains a total of 9 drives with an average duration of 39 min
(standard deviation: 3.2 min; normal and low overload classes are represented in
4 and 3 drives, respectively. Medium and heavy overload classes occur in a single
drive).

4.2 Machine Learning Classifier

As a first approach, we train a machine learning classifier based on features
derived from the recorded measurements.

Feature Definition. To capture the dynamics of the vehicle during driving
with different loads, a rolling window of 10 s was slid through the dataset and
used to calculate features based on the driving attributes. These features, listed
in Table 1, were normalized with a standard score.

To control for highly correlated pairs of features, the Pearson correlation was
calculated for all combinations and a threshold of 0.9 was set. This revealed that
flow rate features (mean and std) were highly correlated with engine RPM. The
former ones were excluded from the model dataset.

250 K. Van Vaerenbergh et al.

Table 1. Features used to build the classifier.

Attribute name Description Features derived

Engine RPM Rotations per minute (RPM) mean and std

Acceleration Speed range over window duration (km/h)

Speed Vehicle speed (km/h) min, max and mean

Accelerometer 3-axis acceleration values (g) sum

Engine load Load of the engine (%) mean and std

Throttle position Position of the throttle (%) mean and std

Pressure Absolute pressure (kPa) mean and std

Flow rate Flow rate (g/s) mean and std

Dataset Preparation. The time-dependent nature of the data poses an added
challenge in the building of a classifier, because train and test dataset cannot
be simply defined using a random split of the data, to avoid that neighbouring
time points fall in both train and test datasets, as these are likely to be heavily
correlated, given the rolling window nature of the dataset. The limited number
of drives, however, does not allow splitting the dataset along individual drives.
To tackle this issue, the drives in the dataset were segmented to create synthetic
drives. This segmentation was performed as follows: 1) Identify moments when
vehicle speed dropped to below 1 km/h (putative vehicle stop); 2) Split drives
along those speed drop moments; 3) Divide each drive split into 5 min.

Furthermore, to avoid spill-over of one synthetic drive to the next one, the
first 9 samples in each synthetic drives are excluded (because we’re using 10 s
rolling windows, which correspond to 10 samples). This procedure generated 112
synthetic drives distributed along the different load classes as follows: normal:
29, low: 66, medium: 9, heavy: 8.

To reduce the class imbalancement, which hampers the modelling perfor-
mance, the two major classes (normal and low load) were undersampled. This
was achieved by defining as maximum number of drives three times the number
of drives of the least represented class. This resulted in a dataset, which con-
sisted of 23 5-min drives for the normal load and low overload classes and 9 and
8 drives for the medium and heavy overload classes, respectively.

The splitting of the dataset into train and test datasets was done using a
(load) balanced 3:1 ratio.

Results. The goal of the solution presented here is to predict the load category
of a vehicle at any given point in time. Furthermore, based on this individual
frame predictions, we calculate the overall load class for each drive by means of
a majority vote.

Different classification algorithms were tested with a 10-fold cross-validation
using an accuracy score. The k-nearest neighbour (KNN) and random forest (RF)
both showed a high prediction accuracy. The RF classifier had, in addition, a
very short standard deviation, showing a high degree of consistency across the

Distributed AI for Special-Purpose Vehicles 251

10 iterations of the cross-validation and was, therefore, chosen for the vehicle
overload classification.

The random forest classifier parameters were fine-tuned using a random
search cross-validation approach, where a number of possible parameters were
randomly selected within a defined range. To compensate for the unbalanced
load classes (normal and low load classes occur 3 to 4 times more than the
medium and heavy classes), the proportion of time points in each class was used
as class weights for the classifier to reduce the impact of having an unbalanced
dataset.

Fig. 5. Confusion matrix of the RF classifier (left) and prediction quality for different
metrics and per load class (right).

The results of the random forest prediction on individual time frames of
the test dataset are summarized in Fig. 5. The left plot shows the confusion
matrix, where the values on the matrix diagonal correspond to matches between
the predicted and observed values. These account for 55% of all observations
(prediction accuracy). The plot on the right shows the value of 4 classification
quality metrics for each of the overload cases: accuracy, precision (the percentage
of “positive” predictions that are correct, a positive being each class), recall
(the percentage of correctly predicted “positives”) and f1 score (the harmonic
mean of precision and recall). Accuracy was generally very high across all four
classes. A closer look, however, shows that precision and recall were fairly low,
except for the low load class (the most represented one), indicating a bias of the
classifier towards this class. The f1 score, which offers a better interpretation of
the classifier’s performance since it balances both precision and recall metrics,
shows a low percentage across the normal, medium and heavy load classes.

In addition to determining the class of any given time frame, the accuracy
of the model in determining the correct load class for a given drive was taken
by comparing the most common class for each drive with the correct load class.
The model could correctly identify the low load class in 83.3% of the synthetic
drives and the normal load case in 50% of the cases. It failed at identifying any
of the medium or heavy load drives.

These results indicate that a random forest classifier was not robust enough
to yield accurate predictions, as a consequence of the limited size of the dataset

252 K. Van Vaerenbergh et al.

and the unbalanced load classes. We, hence, tested a different approach based
on an LSTM network.

4.3 LSTM Approach

An alternative approach to the classification of overload driving consists in the
use of deep learning algorithms that considers the full (or a large portion) of
the available measurements using their “raw” values. This bypasses the need to
infer features, leaving it up to the algorithm to identify underlying patterns in
the data that are capable of distinguishing between the two classes.

Neural networks are a popular option and probably the most robust technique
in the field. Within neural networks, recurrent neural networks are particularly
suited for the problem we are tackling, as they make predictions along a tem-
poral sequence. Long Short Term Memory (LSTM) is a type of recurrent neural
network which considers temporal sequences and allows the input of the previ-
ous event to be fed into the decision making procedure of the current one. It is
ideally placed to tackle the prediction of load class over time and will be tested
here.

Dataset Preparation. The same segmentation of the vehicle drives in the
dataset, as described for the random forest classifier, was used for the LSTM
network.

Results. The LSTM network was allowed to learn over 50 epochs, with its per-
formance increasing rapidly for both train and test dataset stabilizing at around
97% and 85% f1 score, respectively. Overall prediction accuracy on the test
dataset was 84%. We can visualize the confusion matrix and the performance of
the four classification quality metrics per load class using the same visualization
as previously shown (Fig. 6). The LSTM network proved more robust than the
random forest classifier across most load classes, with the exception of the heavy
load class, which failed completely. The remaining three classes had a recall rate
that ranged from 79.7% for the medium load class (the least represented one)
to 97.2% for the normal load class.

In terms of accuracy in predicting the load class for the entirety of a drive,
the LSTM network predicted the low load class in all cases and the normal load
class in 50% of the cases. Notably, it was capable of predicting 2 out of the 3
medium load classes correctly, a marked improvement compared to the random
forest classifier.

The results for the LSTM model show that it is more robust in face of the
limitations of the current dataset already mentioned. They suggest that with
more sampling, notably for the least represented load classes, a high degree of
model performance is possible.

Distributed AI for Special-Purpose Vehicles 253

Fig. 6. Confusion matrix of the LSTM network (left) and prediction quality for different
metrics and per load class (right).

5 Conclusion

In this paper, we have explained first that two issues are crucial to consider when
exploiting data across a fleet of industrial assets deployed in the field:

– reliable storage and efficient communication of large quantities of data is
challenging due to the absence of continuous connectivity

– the traditional centralized data analytics model is challenged by the inherently
distributed fleet context

In the context of two industry-relevant use cases related to special-purpose
vehicles, we have illustrated how advanced machine learning techniques can be
applied at the edge.

For the first use case, we adapted a state of the art data compression tech-
nique to apply on the edge device that can realise a high compression of time
series measurements. The proposed approach can achieve a compression rate
up to more then 100 when defining a large margin of error on the compressed
signal. Since the algorithm is highly parameterisable, the user can easily start
with a set of parameters that results in a low compression but a high reconstruc-
tion rate of the original signal.

For the second use case, we evaluated two approaches for vehicle overload detec-
tion that classify a drivewithin its first few seconds.Given a limited amount of vehi-
cle overload drives from different vehicles in diverse road conditions, we extracted
a set of dynamic features from the vehicle usage data that represent the dynamics
of the vehicle. A random forest model that uses these features had low predicting
power, but the feature-free LSTM-based approach showed promising results, with
even the least represented classes attaining a fair prediction accuracy.

For both use cases, the approaches are designed to run locally on a vehicle, so
that it can operate in situations of no or unstable connectivity. The edge computa-
tions require only the model parameters and the streaming vehicle measurements
to compute their results, while the training of the global model using historical
data can take place in a central location. Whenever the vehicle is connected, its
local model is updated and data stored on the vehicle is uploaded, so that the

254 K. Van Vaerenbergh et al.

global model can be updated. In the future, we intend to integrate federated learn-
ing mechanisms, where the local data no longer needs to be uploaded, models are
trained locally, and only model updates are uploaded to the central location.

References

1. Elmeleegy, H., Elmagarmid, A., Cecchet, E., Aref, W., Zwaenepoel, W.: Online
piece-wise linear approximation of numerical streams with precision guarantees.
Proc. VLDB Endow. 2(1), 145–156 (2009)

2. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9,
1735–1780 (1997)

3. Hsu, D.: Time series compression based on adaptive piecewise recurrent autoen-
coder. arXiv:1707.07961 [cs], August 2017

4. Huffman, D.A.: A method for the construction of minimum-redundancy codes.
Proc. IRE 40(9), 1098–1101 (1952)

5. Jin, C., et al.: A comprehensive framework of factory-to-factory dynamic fleet-
level prognostics and operation management for geographically distributed assets.
In: 2015 IEEE International Conference on Automation Science and Engineering
(CASE), pp. 225–230 (2015)

6. Kingma, D.P., Welling, M.: Auto-encoding variational bayes (2013)
7. Lazaridis, I., Mehrotra, S.: Capturing sensor-generated time series with quality

guarantees. In: Proceedings of the 19th International Conference on Data Engi-
neering (Cat. No.03CH37405), pp. 429–440 (2003)

8. Ma, T., Hempel, M., Peng, D., Sharif, H.: A survey of energy-efficient compression
and communication techniques for multimedia in resource constrained systems.
IEEE Commun. Surv. Tutor. 15(3), 963–972 (2013)

9. Oda, T., Tachibana, Y.: Distributed fleet control with maximum entropy deep
reinforcement learning (2018)

10. Papaioannou, T.G., Riahi, M., Aberer, K.: Towards online multi-model approxi-
mation of time series. In: 2011 IEEE 12th International Conference on Mobile Data
Management, vol. 1, pp. 33–38 (2011)

11. Rao, J., Niu, X., Lin, J.: Compressing and decoding term statistics time series. In:
Ferro, N., et al. (eds.) ECIR 2016. LNCS, vol. 9626, pp. 675–681. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-30671-1 52

12. Ringwelski, M., Renner, C., Reinhardt, A., Weigel, A., Turau, V.: The hitch-
hiker’s guide to choosing the compression algorithm for your smart meter data.
In: Proceedings of the 2nd IEEE ENERGYCON Conference and Exhibition/ICT
for Energy Symposium (ENERGYCON), pp. 998–1003 (2012)

13. Sadler, C.M., Martonosi, M.: Data compression algorithms for energy-constrained
devices in delay tolerant networks. In: Proceedings of the 4th International Con-
ference on Embedded Networked Sensor Systems, SenSys 2006, p. 265–278. Asso-
ciation for Computing Machinery, New York (2006)

14. Salomon, D.: A Concise Introduction to Data Compression. Undergraduate Topics
in Computer Science (2008)

15. Sherstinsky, A.: Fundamentals of recurrent neural network (RNN) and long short-
term memory (LSTM) network. Phys. D 404, 132306 (2020)

16. Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE
Trans. Inf. Theory 23(3), 337–343 (1977)

http://arxiv.org/abs/1707.07961
https://doi.org/10.1007/978-3-319-30671-1_52

Cynefin Framework, DevOps and Secure IoT
Understanding the Nature of IoT Systems and Exploring Where

in the DevOps Cycle Easy Gains Can Be Made
to Increase Their Security

Franklin Selgert(B)

AnyWi, 3e Binnenvestgracht 23, 2312 NR Leiden, The Netherlands
franklin.selgert@anywi.com

Abstract. In the relatively new domain of the Internet of Things (IoT), startups
and small companies thrive in and stride in bringing new products to the market.
Many of them experience problems and fail to profit from their IoT innovation. A
lot of those problems are security related. In IoT development, security issues are
often overlooked or underestimated.

This article explores, from a holistic viewpoint, how security in IoT sys-
tems can be prevented or mitigated with a minimal effort. Concepts examined
are: The Cynefin framework, Business DevOps, and the role of constraints and
requirements in the design phase.

Keywords: DevOps · Cynefin · IoT · SCRATCh · Security

1 Introduction

Cynefin (Sense of Place) is a sense making framework: it guides decision makers by
providing a simple yet powerful classification of systems in general. Business DevOps
is often considered as the “holy grail” of all software development approaches, whose
purpose is to increase control over the whole software lifecycle and to speed up software
delivery. The role of constraints and requirements in the sense of how to include security
aspects in the design Phase. The Paper examines, based on these three concepts, where
to focus one effort to maximize security of the IoT system. This article is written as part
of the SCRATCh project that explores tools and methods to improve on security in IoT
based infrastructures.

1.1 Cynefin Framework

The Cynefin framework, “sense of Place” (Fig. 1). Cynefin framework [1] is meant as
a guidance what type of action or behavior fits best in a certain context or state of the
system (domain). In this way Cynefin is a classification model where each of the five
domains is a class. Based on this classification model patterns of counter measures can
be recognized to control the system.

© Springer Nature Switzerland AG 2020
A. Casimiro et al. (Eds.): SAFECOMP 2020 Workshops, LNCS 12235, pp. 255–265, 2020.
https://doi.org/10.1007/978-3-030-55583-2_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-55583-2_19&domain=pdf
https://doi.org/10.1007/978-3-030-55583-2_19

256 F. Selgert

Fig. 1. Cynefin framework [1]

Cynefin is a framework that is designed to help us make sense of what confronts us,
to give us a better understanding of our situation and the approaches that we should take
[2]. The framework has five domains [3]:

Simple, in which the relationship between cause and effect is obvious to all, the
approach is to Sense – Categorize – Respond andwe can apply best practice. An example
would be a simple heat control system. Central unit few sensors and a straight forward
control based on temperature readings.

Complicated, in which the relationship between cause and effect requires analysis
or some other form of investigation and/or the application of expert knowledge, the
approach is to Sense – Analyze – Respond and we can apply good practice. A heat
and ventilation control system with multiple sensors, and an algorithm that controls the
system actuators.

Complex, in which the relationship between cause and effect can only be perceived
in retrospect, but not in advance, the approach is to Probe – Sense – Respond and we can
sense emergent practice.Multiple building control systems connected toweather forecast
information and company planning systems, control based on an Artificial intelligence
algorithm that uses feedback information from different building systems.

Chaos, in which there is no relationship between cause and effect at systems level,
the approach is to Act – Sense – Respond and we can discover novel practice. Any of
the above where an unknown source disrupts part of the system.

Cynefin Framework, DevOps and Secure IoT Understanding the Nature 257

Disorder, which is the state of not knowing what type of causality exists, in which
state people will revert to their own comfort zone in making a decision. this domain is
not discussed in this paper.

In full use, the Cynefin framework has sub-domains, and the boundary between sim-
ple and chaotic is seen as a catastrophic one: complacency leads to failure. In conclusion,
chaos is always transitionary and dynamics are a key aspect.

Although the Cynefin framework is not specifically designed for the classification
of IoT systems, it is possible to position both IoT systems and their development pro-
cesses in one of the five domains. Positioning is however not static and multiple factors
can cause a system to cross one of the domain boundaries. According to [4] there are
a few main patterns of movement through the domains: “Moving through domains, As
knowledge increases, there is a “clockwise drift from chaotic through complex and com-
plicated to simple. Similarly, a “buildup of biases”, complacency or lack of maintenance
can cause a “catastrophic failure”: a clockwise movement from simple to chaotic, repre-
sented by the “fold” between those domains. There can be counter-clockwise movement
as people die and knowledge is forgotten, or as new generations question the rules; and
a counter-clockwise push from chaotic to simple can occur when a lack of order causes
rules to be imposed suddenly.”

1.2 Business DevOps

Business DevOps is meant as a movement in the market that aims to integrate the
business, development and operations functions in small teams that translate business
demand into secure IT solutions in an extreme short time-to-market. Main drivers are
transparency and reducingwaste by automating the complete pipeline from requirements
unto the solution working in the production environment. Security is a property that
emerges in every domain. Regulation is an action as a result of the emergence of a
significant risk in any given sector.

Business DevOps is a movement in the market to reorganize processes and the way
different disciplineswork together to speed up software delivery and stabilize operations.
Applying this approach in any organization is seen as a complex endeavor - different
disciplines, social context, enterprise organizations a total of variables makes the system
complex.

1.3 Design Constraints and Requirements

As most development cycles start with some form of constraints and requirements,
investigating how these can contribute to amore secure systemmakes sense. An example
would be to look at the role of regulation, seen here as a public effort to counteract
emerged negative effects of new technology by forcing compliance to design constraints
and rules. In many cases, this role is performed only after the fact, lack of security, has
led to a unacceptable risk exposure.

1.4 Structure of the Document

The structure of this paper is as follows. In Sect. 2, we will compare IoT systems in
regards their position in the Cynefin Framework, specifically large IoT systems. This

258 F. Selgert

positioning sketches a bit of the behavior of large IoT systems andwhatmethods Cynefin
offers to interact and steer this behavior. In Sect. 3, we combine DevOps and Cynefin and
suggest where in the DevOps process efforts can be optimized in regards to increasing
the security, based on four assumptions. In Sect. 4, we explain in more detail how the
four assumptions play out in each phase of the DevOps, combining Cynefin, DevOps,
design constraints and requirements into a more holistic view on Security. In Sect. 5, we
conclude.

2 Large IoT Systems Versus Cynefin

The question addressed in this section is how to classify an IoT system in the respective
domains (the five states) of the Cynefin classification model.

Given that any IoT system is designed to fulfil a design Goal (stakeholder needs),
it should be predictable to some extent. In the Cynefin framework it can therefore be
classified in one of the ordered domains: Simple or Complicated. The system is consid-
ered Simple if causality is obvious, and Complicated if causality is present but of a more
complex nature, for example if an IoT system uses artificial intelligence or machine
learning algorithms.

Security issues in an IoT systemcanpush a system into theCynefin framework classes
Chaotic or Complex. The Complex class is applicable in case the causality becomes
unpredictable for the system owner, for example in case of unauthorized manipulation
of data. This state is difficult to detect, as the output of the system can still be perceived as
valid. The class Chaotic is applicable if parts of the system fail as a result of manipulation
of other parts. There is also a center part in the Cynefin network “Disorder”, meaning
not knowing where you are –this part of the framework is not discussed in this paper
(Table 1).

Table 1. Mapping IoT systems onto the Cynefin framework

Complex
Causality becomes unpredictable

Complicated
Causality of issues of the IoT is analyzed
based on Artificial Intelligence or machine
learning algorithm

Chaotic IoT
The System or Parts of the system fail with
potential increasing damage to the
environment it is operating in

Simple IoT
Causality is straightforward

3 Combining Cynefin, Business DevOps and Security

How does security come into play in the two models Cynefin and Business DevOps?
Security in itself is not a single property but an invisible attribute of a product or piece of

Cynefin Framework, DevOps and Secure IoT Understanding the Nature 259

software. The “security attribute” of an IoT system is an outcome of a risk assessment
process. What happens if device XY is compromised, is it severe, is it easy to mitigate?
Depending on the application, the result will be different. It’s about creating narratives
or scenarios for security. Narratives are often used to explore the boundaries and place
of a system in relation to the Cynefin framework [4]. A specific boundary to explore is
between the Simple and Chaos domain, also referred to as a cliff [1], because it is seen
as a catastrophic failure of a system. A security breach can push a simple system over
this edge.

Business DevOps can be classified as a software development process in the Com-
plicated domain and the development part often part of the Complex domain [2, 5]. The
business DevOps pipeline includesmultiple stages where potential security issues can be
injected into the artefacts of the IoT system. Rather than ignoring the boundary between
Simple and Chaotic, we recommend: acknowledge it and design a build in failure mode.
Conclusion for the Design Phase of DevOps is:

1. Design Phase: Any system will cross over to the Chaotic domain sometime. Design
any system to prevent to reach the Chaotic domain or mitigation the consequences
of a system in chaos.

The other boundaries are less catastrophic and require a different type of mitigation.
A system will move through the domain crossing boundaries deliberately or unintended
[4]. In this case the focus is less on recovery and more on prevention of security related
issues, detecting and stopping the unintended movement of a system counterclockwise
in the Cynefin framework, e.g. from Complicated to Chaos. Conclusion for the DevOps
phases Code and Build, and Monitor:

2. Code and Build Phase: as most systems start in the Simple domain, “as designed”
checking for the obvious threats and vulnerabilities is step one for prevention.

3. Monitor Phase: as a system grows it may becomeComplicated by design or Complex
by error. Fingerprinting accepted behavior andmonitoring change is a way to control
the movement of a system through the domains.

Conclusion 2 is about tooling and discipline in the design phase, conclusion 3 is
more complicated and involves Ai or Machine learning, Sense (monitoring), analyze
(Ai & ML), Response (intervene).

4 A Holistic View on Security Within Business DevOps

There is no standard DevOps process. Therefore, an arbitrary choice is made for this
article by using the following order: Plan, code, build, test, release, deploy operate
monitor, see Fig. 2. Business DevOps [6].

4.1 Development

Plan/design, Code, Build and Test is development. In business DevOps Terms it is
referred to as continuous integration. Development itself is a container of lots of differ-
ent activities that should lead to a magnificent product/service. As pointed out by [5],

260 F. Selgert

Fig. 2. Business DevOps [6]

“The Cynefin framework can be used to identify the best suited software development
methodology and practices for each of the identified situation”. In this sense, researching
a potential new product is often a trial and error exercise based on a problem statement
with requirementswith little procedural constraints an environment thatmaps to the com-
plex part of the Cynefin framework. Why: any development process consists of some
requirements gathering, stakeholder needs etc., interpretation, translation into features
and stories a more social process in which new insights and requirements emerge dur-
ing the development itself. Indicating a Probe-Sense-Respond type of behavior. Typical
agile methods like Agile Scrum can be applied here. However, in the world of Business
DevOps Kanban is used often too.

Many innovative companies working on IoT have software development methods
adapted that fit in the Cynefin complex domain. Main focus is often functionality and fit
to the market demands. And yet, in this part most of the security aspects of the product
are determined [7]. Success or failure is tightly correlated with behavior and skills of the
team members [1]. Improving on security is not only about using the right tooling - it
is also about improving the skillset of the team and increasing the presence of Security
related requirements in the design phase.

A typical toolset used in this phase to increase security is the combination of threat
modeling, static code analysis, code review and vulnerability checking. Some tooling
can be easily injected in the DevOps pipeline, but a tool like threat modeling needs a
team approach. It is effective if it used to increase the awareness regarding security of
the whole team, [7]. [5, p. 100] talks about team empowerment.

Is this enough? Assuming any (IoT) system eventually will fall into the Chaotic
domain, the key question is: what is needed to recover from chaos. According to Cynefin
“act, sense, response” can bring the system back under control or into an isolated state.
Looking at IoT, act, sense response means one can interact, measure the system and do

Cynefin Framework, DevOps and Secure IoT Understanding the Nature 261

something. Exactly those are the things that aremissing inmany IoT systems [8]: sensors
cannot be updated, a limited set of measurements is possible, there are no means for
direct interaction, etc. Yet, a security breach can push a whole system into chaos. It is in
the design phase that system attributes are programmed and it is in this phase where we
can improve on “continuous security” by simply making the system more controllable,
without the need of knowing for what type of event or requirement we do this.

Thus, the question arises: how to achieve “continuous security” Inserting the right set
of features into the development process forces a team to think about security and risk. In
mature markets this is what certification does, although certification is mostly performed
only after the product is ready for release. The constraints to pass for certification, e.g.,
based on best and good practices, should already inserted in the design phase.

Certification should be considered as a good practice in Complex and Complicated
domains. The translation of the requirements that are implied by the certification like
ISO 27001:2013 can be designed in multiple viable solutions. The good practices gath-
ered by ENISA (European Agency for Cyber Security) can be seen as an example of
recommendations to be interpreted by designers to increase security.

STRIDE1, as a method for threat analysis, done in cooperation with the whole design
team at the start of development, is identified in the 2019-state-of-devops-report-puppet-
circleci-splunk survey [7] as an important good practice to enhance overall security, and
a way to design an architecture that enables a build in failure mode or a dynamic failure
mode. As an example of a build in failure mode would be automatic recovery of a failed
firmware update. Dynamic failure mode would be a continuous monitoring system with
algorithms that interact with the system to counteract certain security events.

Conclusion: development and design phase belong in most situation to the Complex
domain, a domain where Agile is a good practice to be applied [9]. Increasing security
awareness, inject requirements and use of tooling are a key step in improving overall
security of an IoT systems. Focus in this stage is:

1. Assure that the system has control points that allow for Probe-Sense-respond and
Act-Sense-Response, Build in failure modes and dynamic failure modes. A way
to do this is to use a set of recommended requirements, test scenario’s and design
practices e.g. STRIDE.

2. Do the obvious: code review, static analysis, and specifically also vulnerability
checking.

4.2 Test

It aint what you don’t know that gets you in trouble, its what you know for sure that just
ain’t so (Mark Twain).

Although represented as a separate phase in Fig. 2. Business DevOps [6], testing is
an activity that occurs in all stages and preferably before coding (test driven develop-
ment). At this point before release testing it is about confidence in the software/product.

1 The STRIDE acronym stands for Spoofing, Tampering, Repudiation, Information disclosure,
Denial of Service, Elevation of privilege. Naming the 6 most common security categories.

262 F. Selgert

There is no universal answer as how to increase the confidence to a level that is accept-
able. The simple answer is that “it depends” in what sector the product is deployed or
whether it is mission critical. At this point the risk analysis performed in the design
phase using STRIDE and e.g. DREAD 2 (a Risk Assessment Model) will guide test-
ing and depict the level of automation achievable. Instruments are penetration testing,
compliance validation, and again, vulnerability checking.

The IoT system we test is by definition Simple or Complicated by design, as it is an
effort to comply with predefined rules, needs and requirements. That implies that testing
is in line with that expectation. But what if all systems eventually cross over to Complex
or Chaotic how to test system behavior in those situations? According to [2, p. part 2]:
“An increasing challenge for testers will be to look for information about how systems
fail, and test for resilience rather than robustness. Tolerance for failure becomes more
important than a vain attempt to prevent failure”

Testing for the failure modes of the system becomes important to be confident on
the system resilience when entering the unordered domains of the Cynefin framework.

For large IoT systems, testing is complex due to the impossibility of a complete
simulation of a real environment and the coverage of all imaginable scenario’s. A typical
tool of use could be unit test prioritization: if not all tests can be performed, only the
most relevant should. One could, e.g., test if the system has enough control points that
allow for probe-sense-respond and act-sense-response to restore a system from a failed
state. Failure mode testing is a method to ensure resilience of the IoT systems in the
operate phase.

Automation of this phasemeans inDevOps terms “continuous testing” - an important
goal, as it would speed up releases and allow for swift deploy of smaller changes. In
current practice, automation also means that a system can be setup automatically and
mimic the operate phase. For IoT systems, this is not always possible.

4.3 Release

Release is more a decision phase; in the Simple domain it can be automated, while in
the Complex domain, e.g., if the system is heavily regulated, there are probably multiple
compliancy checks and QA processes to complete. With IoT, an additional problem
is the presence of hardware constraints that cannot be grasped in terms of emulating
software: setting up instant staging environments cannot be automated as is done with a
lot of cloud environments.

4.4 Deploy

Deploy is perceived as an activity in the Simple domain: in DevOps, deployment is
tested, its main rule based and repeatable and often automated. Large distributed IoT
systems do not always comply with the term Simple. The number and variety of devices
cannot be extensively tested and minor variation and errors in the design can push the
whole system over the edge into chaos. A typical example is a firmware update of a

2 TheDREADacronym stands for Reproducibility, Exploitability, Affected users, Discoverability,
naming 5 risk catagories.

Cynefin Framework, DevOps and Secure IoT Understanding the Nature 263

set of end nodes: failure of this deployment renders a number of IoT nodes without
a connection. Depending on the role of these nodes the complete system can become
unreliable. A good design and proper failure mode testing are a way to mitigate these
risks. Focus in this phase is recovery after failure: resilience.

4.5 Operate

The system is deployed functioning and acting on data, stable and reliable according to
preset rules: the system is in the Simple domain. In this phase the system is vulnerable
to events that causes a catastrophic push from Simple into the Chaotic domain, e.g.
by a security breach. Or to a more gradual counterclockwise movement [4], caused by
degrading of components or loss of knowledge in the support and design team [1].

What the Cynefin framework teaches here is that the best action pattern in case of a
disruption is: act-sense-response. As design constraint one could insert:

1. It should be possible that a system allows for, act to sense and respond type of
interaction, e.g. allow for firmware updates, shutting down parts of the system, etc.

2. Means to detect this unauthorized manipulation of sensor data or other anomaly, e.g.
logfile analysis, machine learning algorithms, predefined behavior patterns.

3. Default fall back options to stabilize a system “failure modes”.

Relevant constraints are all those constraints that help a design team to incorporate
methods to influence the system, bring it back to order or isolate it, as well as constraints
that open the mindset of designer to think about means to detect deviation of allowed
behavior patterns.

4.6 Monitor

Monitoring has two aspects:

1. Systemic: collecting data from a life system and in the complete CI/CD pipeline
2. Organizational: collecting data from the organization responsible for the system

Organization monitoring is about maintaining processes, expertise and knowledge
within the teams responsible for a certain system, in this paper it is left out of the
discussion. Item 1 Data collection is needed to prevent chaos and provide feedback (act
sense/analyze respond). Many systems are complicated, specifically IoT stems, because
they contain many smaller parts with a variety of behavior patterns. Simple response
actions cannot always be applied in this realm. Machine Learning (ML) and Artificial
Intelligence (AI) canbeused to analyze a systembehavior andmakedetection of anomaly
simpler. A drawback is that ML and AI as mechanism are in itself systems that can drift
through the domain as a consequence of small changes.

Focus in this Phase is sense-categorize-and-respond: monitoring is the most impor-
tant part of keeping a system safe and to know when to act if a system tends to cross a
domain boundary.

264 F. Selgert

5 Conclusion

We can conclude that security is involved in all phases of the DevOps process, but there
are two particular phases, namely Design and Monitor, that need special attention if one
is to produce secure IoT systems and to intend to keep those systems secure. Improving
security in IoT is accepting the situation that your IoT system will fail and fall in to what
the Cynefin framework calls the Chaotic domain. Knowing this, only two questions
remain:

1. How can I detect failure, chaos?
2. How can I restore the system from failure?

Detection is the domain of monitoring, restoring from failure, e.g. when crossing the
boundary between Simple and chaos, is a design constraint to achieve a fail-safe mode.

Having concluded this, it should be noted that it is not the intention of this paper to
neglect security in other DevOps Phases. Merely, it is the intent of this paper to provide
the easy gains towards more secure IoT systems (Table 2).

Table 2. Summary of the IoT and Cynefin

Complex IoT
• Complicated systems may cross over to this
domain by: additional functionality, subtle
unauthorized manipulation of data, failures
of system parts

Complicated IoT
• ML/AI involved in the system
• Operate phase of multiple systems
• A simple system may cross over to this
domain by: expansion, increase of
functionality

Chaotic IoT
• A place to leave quickly
• systems may cross over to this domain by:
additional but bad tested functionality,
unauthorized manipulation of data, failures
of essential system parts, security breaches

Simple IoT
• Straight forward IoT system, e.g. some
automated control systems

• Sudden unexpected Events can push a
system over to Chaotic

Acknowledgements. This work has been supported by several organizations: - The ITEA3 17005
project SCRATCh.

References

1. Puik, E., Ceglarek, D.: The quality of a design will not exceed the knowledge of its designer;
an analysis based on axiomatic information and the cynefin framework. In: 9th International
Conference on Axiomatic Design (ICAD 2015) (2015)

2. Christie, J.: cynefin-and-software-testing-part-1, June 2017. https://www.associationforsoft
waretesting.org/2017/06/11/cynefin-and-software-testing-part-1-james-christie/

https://www.associationforsoftwaretesting.org/2017/06/11/cynefin-and-software-testing-part-1-james-christie/

Cynefin Framework, DevOps and Secure IoT Understanding the Nature 265

3. Snowden: cognitive-edge.com. https://cognitive-edge.com/resources/glossary/
4. Kurtz, C.F., Snowden, D.J.: The new dynamics of strategy: sense-making in a complex and

complicated world. BM Syst. J. 42(3), 462–483 (2003)
5. O’Connor, R.V., Lepmets, M.: Exploring the use of the cynefin framework to inform software

development approach decisions. In: ICSSP 2015: Proceedings of the 2015 International
Conference on Software and System Process, August 2015 (2015)

6. DevOps. [Art]
7. Mann, A., Stahnke, M., Brown, A., Kersten, N.: 2019-state-of-devops-report.html. Circle

Internet Services, Inc., Puppet, Splunk (2019). https://puppet.com/resources/report/state-of-
devops-report/

8. C.S. (EBOS): D1.4 CHARIOT design method and support tools (ver.1), Chariot (2019)
9. Pelrine, J.: On understanding software agility – a social complexity point of view. Emerg.:

Complex. Organ. 13(1), 26–37 (2011)
10. Babar, Z., Lapouchnian, A., Yu, E.: Modeling DevOps deployment choices using process

architecture design dimensions. In: Ralyté, J., España, S., Pastor, Ó. (eds.) PoEM 2015.
LNBIP, vol. 235, pp. 322–337. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
25897-3_21

11. Joosten, A.: Unorder and the applicablity of agile. University of Amsterdam Faculty of
Science, Amsterdam (2018)

12. Schmidt, T., Mathiassen, L.: Agility in a small software firm: a sense-and-respond analysis.
Int. J. Bus. Inf. Syst. (IJBIS) 4(1), 85–104 (2009)

13. Snowden, D.: Cynefin, a sense of time and place: an ecological approach to sense making
and learning in formal and informal communities (2011)

14. Winteringham, M.: atdd-vc-bdd. https://www.hindsightsoftware.com/blog/atdd-vs-bdd

https://cognitive-edge.com/resources/glossary/
https://puppet.com/resources/report/state-of-devops-report/
https://doi.org/10.1007/978-3-319-25897-3_21
https://www.hindsightsoftware.com/blog/atdd-vs-bdd

Creating It from SCRATCh: A Practical
Approach for Enhancing the Security
of IoT-Systems in a DevOps-Enabled
Software Development Environment

Simon D. Duque Anton1(B), Daniel Fraunholz1, Daniel Krohmer1,
Daniel Reti1, Hans D. Schotten1, Franklin Selgert2, Marcell Marosvölgyi2,

Morten Larsen2, Krishna Sudhakar3, Tobias Koch3, Till Witt3,
and Cédric Bassem4

1 German Research Center for Artificial Intelligence (DFKI),
Kaiserslautern, Germany

{simon.duqueanton,daniel.fraunholz,daniel.krohmer,
daniel.reti,hans.schotten}@dfki.de

2 AnyWi, Leiden, The Netherlands
{franklin.selgert,marcell.marosvolgyi,morten.larsen}@anywi.com

3 consider it GmbH, Wedel, Germany
{sudhakar,koch,witt}@consider-it.de

4 NVISO, Brussels, Belgium
cbassem@nviso.eu

Abstract. DevOps describes a method to reorganize the way different
disciplines in software engineering work together to speed up software
delivery. However, the introduction of DevOps-methods to organisations
is a complex task. A successful introduction results in a set of structured
process descriptions. Despite the structure, this process leaves margin
for error: Especially security issues are addressed in individual stages,
without consideration of the interdependence. Furthermore, applying
DevOps-methods to distributed entities, such as the Internet of Things
(IoT) is difficult as the architecture is tailormade for desktop and cloud
resources. In this work, an overview of tooling employed in the stages of
DevOps processes is introduced. Gaps in terms of security or applicabil-
ity to the IoT are derived. Based on these gaps, solutions that are being
developed in the course of the research project SCRATCh are presented
and discussed in terms of benefit to DevOps-environments.

Keywords: DevOps · IoT · Cyber security

1 Introduction

Several studies, e.g. from Gartner [8,12], continue to predict drastic numbers of
Internet of Things (IoT) devices in use. Some are dedicated to certain specialised

c© Springer Nature Switzerland AG 2020
A. Casimiro et al. (Eds.): SAFECOMP 2020 Workshops, LNCS 12235, pp. 266–281, 2020.
https://doi.org/10.1007/978-3-030-55583-2_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-55583-2_20&domain=pdf
https://doi.org/10.1007/978-3-030-55583-2_20

Creating It from SCRATCh 267

environments, such as industrial applications, creating the Industrial Internet of
Things (IIoT), or automotive scenarios. However, these IoT and IIoT devices
contain severe vulnerabilities, often due to the fact that security solutions are
not suited or not applied to IoT environments. Mirai and other botnets were
capable of infecting up to 500 000 devices with dictionary attacks and conse-
quently use those devices to perform Denial of Service (DoS) attacks that heav-
ily impacted the internet [1,9]. In IIoT environments, where devices are linked
with Cyber-Physical Systems (CPSs), attacks in the digital domain are capable
of influencing the physical domain. Thus, vulnerabilities in the IoT can not only
cause monetary loss, but also physical harm to persons and assets. At the same
time, the DevOps-method has been well-established in software life-cycle man-
agement. A typical DevOps-life-cycle with the respective tasks mapped to the
phases is shown in Fig. 1. The DevOps methodology is well described and intro-

Fig. 1. The DevOps-Life-Cycle

duced in many companies. There are multiple ways to implement the process
depending on type of organisation and maturity of the organisation. In general,
three continuous phases can be distinguished in to which the eight steps of a
DevOps-cycle are mapped as follows:

1. Continuous Integration (CI): Code and build steps
2. Continuous Deployment (CD): Test, release, and deploy steps
3. Continuous Feedback (CF): Operate, monitor, and plan steps

This terminology is generally accepted in industry. DevOps as method is mainly
used in controlled environments where connections are stable and infrastructure
can be used by software to set up adhoc staging areas. However, most tooling
specific for cloud or enterprise environments cannot be used for large deployed
IoT systems. Distributed deployment and feedback is difficult to achieve with
the tools at hand. Furthermore, several studies show an unacceptable number of

268 S. D. Duque Anton et al.

security related issues that pass undetected to deployment without the means
for a quick recovery [17, page 32].

This work presents a state of the of art regarding the area of DevOps, with
a focus on gaps in security as well as IoT-applicability in Sect. 2. It is used as
a framework for investigating these gaps and developing improvements to be
implemented in the course of research project SeCuRe and Agile Connected
Things (SCRATCh) in Sect. 3.

2 Tooling for the DevOps-Cycle

DevOps is currently implemented by many companies, in different levels of
maturity. Proof of this is the abundance of available tooling and consultancy.
An overview by XebiaLabs [18] illustrates this. This overview of the different
tools and the phase in which the are employed is shown in the periodic table
of DevOps-tools, provided by XebiaLabs see Fig. 2 [18] in the appendix. How-
ever, tooling is not per definition applicable in the IoT domain and the main
advantage of DevOps, quickly implement updates and mitigate security breaches,
is lost. The increasing issue of creating secure IoT systems puts an additional
focus into the DevOps cycle. There are tools readily available to build a DevOps
Chain, however, specific IoT security objectives are not tackled by these tools.
DevOps does not provide sufficiently holistic solutions yet. This section presents
an overview of the three main phases of DevOps, tools that can be used, their
shortcomings and recommendations to improve working methods and tools for
a more secure DevOps life-cycle in the IoT-domain.

2.1 Continuous Integration (CI)

THe plan, code and build phases of DevOps are referred to as CI or continuous
integration. This is where the DevOps process initially starts and a product or
piece of software is created. Scrum and other agile methods are used and teams
do incremental code development (sprints) until a certain release or minimal
viable product is created. Code is regularly checked in to the main branch,
called integration and builds of the code are made often on regular basis, e.g
daily. Important aspects in this phase related to IoT and security are [15]:

1. Specific security related design constraints
2. System design or architecture
3. Security awareness agile team [11]
4. Code and vulnerability checking.

Most companies are at this level and apply some type of continuous integration,
however, not every organisation applies all of the 4 points mentioned.

Recommendations: The Design-Phase is a bit of a chaotic stage [15] where
agile working methods are common practice. Security by design is not a hollow
phrase. It is important because most security features and future behaviour of
a system is set in the design phase. Yet it is not common practice. A few simple
methods and tools to improve the implementation of Security are:

Creating It from SCRATCh 269

1. Inject security design constraints as non functional requirements or stories
into the process:

– In the design phase specific security features are not always injected by
the customer or product owner, using the outcome of some good practice
research e.g. from European Union Agency for Cybersecurity (ENISA),
will increase security awareness and contribute to a more robust architec-
ture. Some good practices are listed in the knowledge base of SCRATCh.

2. Design resilient architecture:
– If design constraints are reflected in the architecture or system design, it

is likely that the system is better equipped in the operate phase to recover
from security breaches.

– IoT solution architectures can play an important role in keeping a system
safe. If in the architecture methods are defined that increase the resilience
of a system e.g. methods to securely interact with the system.

3. Introduce a simple security analysis exercise for the team, e.g. using STRIDE:
– Number one on the list of practices that improve Security in the sur-

vey [11] is collaboration between security and development teams on
threat models. A simple template developed in SCRATCh can be used
for this purpose.

4. Pick an appropriate threat checking tool:
– Integrate security tools into the CI pipeline ensure that developers can be

confident they’re not inadvertently introducing known, security problems
into their code-bases [11]. It is recommended to extend threat checking
through out the DevOps cycle, e.g at release to check for changes in used
libraries, at operate to check for new introduction of security issues.

2.2 Continuous Deployment (CD)

For CD it is assumed that staging areas can be setup instantaneously, the poten-
tial to be released software can undergo automatic testing in this staging area,
results of these “final” test lead to deployment or not. It is clear that a gap exist
here for IoT systems, as it is impossible to setup adhoc IoT environments that
mimic the real implementation [15].

The deployment software stack itself is complex. Common tools to operate
software are containers (Docker), local virtual machines (VMware, VirtualBox)
and cloud systems (AWS, Azure). For orchestration, Vagarant and Kubernetes
are well-established options. The automated configuration is frequently realized
with Ansibl, Puppet, Saltstack and Chef.

Transport (TLS) or application (HTTPS, SSH) layer security can be con-
sidered standard for communication in the deployment phase, Sect. 3.4 discusses
methods for pre- and late provisioning, thus confidentiality, integrity and authen-
ticity are provided. Several tools also include support for enterprise authentica-
tion, such as LDAP. Security in the deployment phase is significantly based
on (default) configuration, best practices and linting. Sect. 3.4 discusses meth-
ods for pre- and late provisioning to cover the authenticity of a IoT device.
It is important to avoid insecure default configurations. Vagrant, for example,

270 S. D. Duque Anton et al.

used default credentials and a default key pair for SSH communication in the
past. It is also imperative to include linting tools to verify configurations during
the deployment. An example of such a tool is hadolint or kubesec.io. Hadolint
checks configuration files of docker containers for compliance with security best
practices, whereas kubesec.io conducts an automated risk assessment of the con-
figuration. Furthermore, the choice and procurement of base systems may affect
security. Several environments allow to share base systems among their users.
Using base systems from untrusted sources imposes a security risk. Additionally,
the integrity should be validated to ensure a secure basis for further deployment.
An example for integrity protection is the container signing tool Portieris by IBM
and Notary by Docker. Compromised systems cannot be avoided completely by
complying to best practices. There have been, for example, 75 vulnerabilities be
reported for Ansible between 2013 and 2020. To increase resiliency defense-in-
depth strategies may be applied and container firewalls as provided by vArmour
may be set up. Distributing firmware or configuration to a life IoT system ads
to the complexity of these containers and the underlying design of the IoT hard-
ware, as a interrupted update can cause a loss of connection without immediate
means to recover.

In the recent past, the severity of insecure deployment stacks was showcase in
the Tesla Hack in 2018. Tesla used a Kubernetes console that was not password
protected. Criminals found it and gained access to the orchestrated containers.
One of these containers included credentials for an AWS cluster, which was
compromised subsequently.

2.3 Continuous Feedback (CF)

The operate, monitor, and plan-phase of the DevOps-cycle are referred to as CF.
In these phases, the system is operated in the intended fashion and its operation
is monitored.

An IoT system in operation generates feedback (monitoring) information,
some part of this feedback can lead to automatic adaptation or change in the
IoT environment as a preventive act to mitigate an identified risk, Other feedback
is fed back into development to improve on the system, and some feedback will
be analysed by operation. The whole system of data collection and actions is a
constant learning curve that if successfully implemented leads to a more stable
system.

Among other Key Performance Indicators (KPIs), such as application per-
formance and throughput, the operate and monitor-phases are analysing the
systems for security-related incidents. In general, if the vulnerabilities have not
been discovered in the code- or build-phase based on source code analysis or
functional testing, they can be detected in the operate- and monitor-phases
by either host- or network-based intrusion detection systems. A strong focus of
security tools for DevOps lies on data management and the ensurance of privacy,
e.g. by companies such as SignalSciences, HashiCorp, and CyberArk. CyberArk
provides account management for privileged accounts aiming at the reduction
of information leakage and misconfiguration. HashiCorp enables provisioning

Creating It from SCRATCh 271

and securing cloud environments and SignalSciences provides Web Application
Firewalls (WAFs). Their focus lies on the ensurance of data security. However,
as no complete security can be guaranteed for any system, it is desireable to
detect attacks and intrusion if they occur. Snort performs network-based intru-
sion detection with a wide set of rules based on network packets. Tripwire pro-
vides a similar approach by creating snapshots of a given system’s state and
alerting the user in case of a change. Thus, intrusions and changes in behaviour
can be detected.

There are, however, several disadvantages or drawbacks to such solutions.
Since classic Intrusion Detection Systems (IDSs), such as Snort and Tripwire, do
not take into consideration the architecture of the systems, the rules for detecting
intrusions are generic. Furthermore, the extent of an attackers influence, as well
as their goals and methods, cannot be derived from such information. Getting
insight about the intention and approach of an attacker would allow to better
prepare for future attacks. Finally, rule-based IDSs can only protect against
attacks of which the signatures are known, meaning that unknown or stealthy
attacks cannot be detected.

Within SCRATCh two tools are under development that improve Security
in the Operate Phase, Deception in IoT (Sect. 3.2) and Anomaly Detection
(Sect. 3.3).

3 Solution Concepts

This section presents individual solution concepts, addressing challenges in the
DevOps-cycle brought up by security risks as well as the adaption of DevOps into
IoT-environments. A summary mapping the solutions to the respective phases is
shown in Table 1. Since project SCRATCh addresses singular challenges in IoT-
based DevOps environments, not every phase is covered by individual solutions.
Instead, concerns that were raised due to distributed DevOps applications as
well as their implications on security, are the main focus of SCRATCh. The
table shows that CI is not addressed in the context of SCRATCh since most
issues in terms of security integration and IoT applicability are in the CD and
CF phases. Generally, consideration of security issues, security by design, could
provide a more seamless integration and coverage of security objectives. This
would require systems and software to be developed in a fashion that integrates
security integration as early as the design phase. If tooling for security is applied
in later stages, the risks are realised in the CD or CF phase.

3.1 Pentesting IoT Devices

During a penetration test (or pentest for short), an application’s overall secu-
rity posture is measured against simulated cyber attacks. The result of a pentest
are potential security vulnerabilities that could impact the application’s security
posture in terms of confidentiality, integrity and availability. Historically, pen-
tests are performed before a new application or application’s feature is released

272 S. D. Duque Anton et al.

Table 1. Mapping of Solutions to DevOps-phases

Solution CI CD CF

Pentesting IoT Devices (Sect. 3.1) ✓

Deception in IoT (Sect. 3.2) ✓

Anomaly Detection (Sect. 3.3) ✓

ID for the End Node (Sect. 3.4) ✓

Software/Firmware Updates (Sect. 3.5) ✓

so that there is less chance of potential vulnerabilities making it to production.
The tests performed during a pentest, are often performed manually by a pen-
tester and with the support of tools. These tools can take many forms, ranging
from tools that scan for security vulnerabilities fully automatic, to tools that
allow manual interaction with an application component, in a way that it was
not intended by the developers. Sometimes, and depending on the tooling avail-
able, a pentester might even write its own tools to allow testing of very specific
cases. Within the context of SecDevOps, performing a pentest before deploy-
ment would thus not fit the continuous deployment practice as a pentest is not
fully automatic and would therefore not allow fully automatic deployments.

Within the context of testing IoT devices, tools that automatically test secu-
rity are scarce. This can be attributed to a couple of key properties that dif-
ferentiate IoT devices from more traditional applications such as web or mobile
applications:

– Diverse and embedded nature – IoT devices are often designed to have a
single use (smart light bulbs, smoke detectors) and are often developed on
hardware and software platforms tailored specifically for that use. As a result,
there is not one but a highly diverse set of hardware and software platforms
to take into account;

– Use of different physical layer communication technologies: IoT devices are
connected to networks via a wide range of wireless links, such as Bluetooth
Low Energy (BLE), 802.11, GSM/UMTS, LoRaWAN;

– Use of different application layer communication technologies: IoT devices
tend to make use of machine to machine communication technologies such as
MQTT and AMQP;

– Large attack surface: IoT devices are part of a large and complex ecosystem.
For example, a home alarm will be receiving input from motion detection,
cloud and even mobile applications.

Due to the above-mentioned characteristics, fully relying on automated tools
for IoT device testing is not yet feasible today. As such, validating security
requirements through manual pentesting still remains a crucial part of securing
an IoT device. There are a couple of challenges in pentesting of IoT devices.

First of all, there is a lack of security verification requirements and testing
guides for IoT devices. For example, for pentesting traditional application such

Creating It from SCRATCh 273

as web and mobile applications, OWASP provides security verification stan-
dards and testing guides that provide details on generic security verification
requirements and how these can be validated through testing. For IoT devices,
consolidated guides such as these do not yet exist.

Second, there is a lack of tooling to support pentesting activities of IoT
devices. For example, for testing the security of web applications, tools such as
Burp Suite and OWASP Zap exist. These tools provide features such as inspec-
tion and manipulation of HTTP request sent between client and server and
automatic vulnerability scanning through fuzzing HTTP requests. While these
tools can also be used if the IoT device makes use of HTTP, unfortunately, for
many specific IoT technologies as mentioned above, there is a lack of tooling.
Interesting to note is that for many of the traditional pentest tools today more
and more being automated as well. For example, Burp Suite Enterprise Edition
and OWASP ZAP’s Docker containers allow for an easy integration of these
tool’s automatic vulnerability scanning features in a deployment pipeline.

SCRATCh aims to assist the community in establishing the foundations for
validation security requirements of IoT devices through pentesting. In the short
term, this will enable verifying the overall security posture of IoT devices, albeit
through a laborious and mostly manual testing endeavor. However, by providing
solid foundations for efficient pentesting SCRATCh hopes more and more tools
will be able to provide automatic testing. SCRATCh aims to achieve this by
focusing on the following three steps:

– First, SCRATCh aim to create a repository of security verification require-
ments for IoT devices;

– Second, based on these requirements we aim to start with the creation of a
testing guide that documents how these verification requirements be tested
for specific technologies;

– Third, we invest in the creation of tooling that supports these testing activi-
ties.

3.2 Deception in the IoT

The earliest form of deception in the field of computers were honeypots, which
were network port functioning as canaries to detect interaction. As no legitimate
service was using this network port, every connection to the port would be ille-
gitimate. Later the field of deception technology has been extended to different
computer domains such as databases, memory stacks and network topology. A
database could have canary tables or entries which raise alerts when accessed
and computer memory could have canary entries on different stack locations,
which, when being overwritten, indicate buffer overflow attacks. The network
topology could change over time, utilizing Moving Target Defense (MTD), to
confuse potential attackers and reduce the attack surface. In classical security
operations an asymmetry between attackers and defenders exist, where defend-
ers cannot afford to make any mistake, whereas the attacker has unlimited time
and attempts to find a mistake. Deception may help to give the defender the

274 S. D. Duque Anton et al.

advantage of detecting malicious attempts, while causing uncertainty and pre-
caution for the attacker. Bell and Whaley coined a taxonomy for deception,
where they distinguish two modes of deception, simulation or showing the false
and dissimulation or hiding the truth. Further, according to this taxonomy, sim-
ulation can be described as either mimicking, inventing or decoying and dis-
simulation as either masking, repackaging or dazzling. In SCRATCh, deception
strategies are researched for the IoT security domain. A large focus of IoT secu-
rity lies on firmware security and update distribution, which could be improved
using canaries for reverse engineering detection, canaries for memory corruption
detection and feint patches in firmware updates to distract from the actual vul-
nerabilities the security update patches. Similarly, special pins on a hardware
chip could be used as a tampering detection and disable the chip. How such
deception and canary tokens could be planted into the firmware as part of the
CI-pipeline is in scope of the SCRATCh research. Another focus of IoT security
is the network security, where the application of the previously introduced MTD
is being researched. One possible strategy could be that the addresses of each
IoT device change in short time intervals.

3.3 Anomaly-Based Intrusion Detection

Methods and tools for intrusion detection are well-established for end user
devices. Such tools encompass anti-virus software and firewalls, furthermore
network segmentation is a commonly applied method to secure systems. Gener-
ally, there are two methods to detect and prevent attacks: signature-based and
anomaly-based. Signature-based intrusion detection is founded on the assump-
tion that a given attack is characterised by a certain behaviour, e.g. a pattern
of network packets. A signature-based IDS can scan for this pattern and conse-
quently detect this kind of attack. Such systems are robust for known attacks,
however, obfuscation techniques can make it hard for an IDS to detect the attack.
Furthermore, novel attacks cannot be detected as no signature is known of them.
Most common tools are signature-based.

Anomaly-based IDS learn models of a system’s normal behaviour and discov-
ery deviations from the normal behaviour. This allows them to detect formerly
unknown attacks for which no signature is available. However, this commonly
comes at the cost of a higher false positive rate, i.e. events that are incorrectly
classified as an attack, compared to signature-based IDS.

These approaches work well for known attacks and regular system behaviour.
In the domain of the IoT, a heterogeneous landscape of devices, many of which
work without user interaction, these preconditions are not met. Due to the
variety of use cases, it is difficult to derive system models for anomaly-based
IDS. Additionally, several devices contain several vulnerabilities so that signa-
ture management becomes difficult. Especially if attacks solely make use of valid
commands and packets attacks are difficult to detect based on their signature.
In order to tackle this issue, two dimensions are evaluated in an automated fash-
ion: Timing and spatial distribution. Previous research has shown that in the
IIoT, most behaviour is periodic or at least reoccurring [10]. An algorithm called

Creating It from SCRATCh 275

Matrix Profiles [19] can be used to extract sequences of characteristic behaviour,
e.g. number of packets in and out, open connections, and detect anomalies. Since
this algorithm is efficient in terms of computational time, this can be done for
each device in a network, so that despite the heterogeneous systems, each device
has an anomaly score to detect intrusions. The sequences are extracted by the
Matrix Profile algorithm in a sliding window fashion. Then a distance metric
is calculated and the minimum of all distances for a given sequence is kept. A
low minimal distance indicates the presence of a similar sequence in the time
series, a high minimal distance indicates an outlier that can be an attack. Apart
from regular behaviour in terms of timing, IoT networks often contain regular
patterns of communication. These patterns can be extracted by considering the
amount of in- and outbound connections, e.g. based on TCP sessions. If this
value is taken in a periodic fashion, a time series is created that can be analysed
for anomalies with the Matrix Profile algorithm.

As previous research shows, Matrix Profiles are capable of perfectly, i.e. with
neither false positives nor false negatives, detect attacks in novel industrial envi-
ronments, such as the IIoT [4,6]. Since IoT environments are similar in important
characteristics, this approach in combination with the integration of relationships
between devices is expected to detect attacks that are formerly unknown with a
high accuracy.

In addition, machine learning methods have proven to successfully learn a
normal model behaviour, despite irregular human interaction, and reliably detect
attacks in network traffic data. Especially Support Vector Machines (SVMs) and
Random Forests perform well with perfect or near perfect accuracy [5].

3.4 Secure Deployment ID for IoT Components

Deploying new software to a IoT device has several challenges, with secure iden-
tification being the first that needs to be addressed.

IoT Identity Provisioning. It sounds simple, but is an essential question in
the digital world: how do you prove ownership of a physical device? Consider you
want to bring in some new IoT device into your home or office network. Leaving
aside the challenge of connecting it to WiFi, by assuming you just plugged it
into your router, how do you connect to it? And how do you make sure nobody
else connects to it or, even worse, completely high-jacks the device? Most of the
times there is a centralised web platform where you register yourself and your
devices. But likely you are not the only user connecting a new device at the
moment - how do you know which device belongs to which user? There are a
few ways to do this - and some compromise security more than others. Within
SCRATCh we intend to look implementing a feasible solution for SMEs out of:

– Late Stage Parameter Configuration [13]
– Pre-Provisioning Keys

276 S. D. Duque Anton et al.

There are large similarities within the usual identity processes. The device
needs to hold a secret which is only known to the rightful owner. When claiming
ownership towards a management platform, both the user and the device are
linked upon matching that secret.

Late-Stage Parameter Configuration. If the device is as sophisticated as a
laptop and provides some means of either input or output, the identity process
can be achieved by multiple means like

(a) entering a secret on the device which then is also entered on the management
platform

(b) displaying a random key generated on the device and send to the platform
which is entered again on the management platform by the user

If the device does not have such means of interaction

(c) using an additional device like a mobile phone which connects locally to the
IoT device and acts as input/output provider is an option.

As a variation of process the user could attach storage to the device holding
such secret key. All these processes share a commonality - they can be performed
post-distribution when the devices is within the target network. There are many
other approaches and deviations to connect new devices, especially if already
authenticated devices exist within the target network. They are not considered
as they still cause the initial challenge of getting one device registered, which
mostly happens by using one of the processes described above. The benefit of
this process is to avoid the logistical challenges laid out in the Pre-Provisioned
Keys section below.

Pre-Provisioned Keys. Some IoT devices come with pre-provisioned key. The
onboarding process is similar to a) - a secret already exists on the device (ideally
some kind of secure element) and is provided either physically (e.g. printed on
the box of the IoT device) or digitally (like USB sticks) to the user. While
this process is quite intuitive and, depending on the target audience, simpler to
perform the logistical process of matching the digital secret within the device
and the externally available secret should not be underestimated.

Identities Can Be Stolen. It is important to consider that identities can be
stolen. It happens to devices [3] as it happens to people [3]. The same way you
don’t let your wallet with your credit card laying around in a cafe, you need to
protect the device identity from being stolen. A simple text file on an SD card
will likely not be enough. Considering you plan to use this to provide the next
level of Netflix, Hulu or Amazon prime - you can be sure that this text file will be
shared on the Internet quickly and people will abuse and consume your services
free of charge. As a general rule its good to remember that the attack on the
identity (and thus affiliated services) should be more expensive than purchasing

Creating It from SCRATCh 277

the services legally. Secure elements are a proven solution here - at the costs of
cents they protect already today high value assets from credit cards to passports
and ID cards.

Additional Challenges to Consider. Having an architectural approach for
your IoT identity provisioning solving the previously mentioned challenges is
good. But usually it is only a part of the entire life cycle and environment to
consider.

For the life cycle it must be assumed that devices are being de-provisioned
(due to being broken, stolen, sold, hacked, etc.). Some of those devices will be
re-provisioned by a different user. Some devices need to be able to rollback to a
trusted state and re-provisioned while considering that this can be an attack vec-
tor as well. The chosen identity solution needs to consider this. From a security
point it must be possible to blacklist devices and not just trust anything.

Some environmental challenges come from the device and the enclosing
network itself. Starting with the available bandwidth: Not every device is con-
nected to broad band allowing Mega or even Gigabytes to be transferred. E.g. a
Sigfox payload size is as little as 12 bytes [16]. This imposes limits on ciphers to
be used for secure transmission of the shared secrets.

Being on- or off-grid with regards to the power connection will impact
the latency of communication (e.g. the device may not be always on due to
power saving requirements), the computational power you can put into your
provisioning may be limited due to the same reason as well.

The device may be behind NAT or other firewall setups not allowing
direct communication as intended. A proxy may be required to ensure secure
communication to the managing entity.

In general it is challenging to ensure not just secure identity provisioning, but
maintaining the devices security through the entire life cycle. Another challenge
the SCRATCh project is looking at, is to provide easy means of updating the
device in the field. Re-reading the previously mentioned challenges may make
you aware of the further challenges out there when managing IoT infrastructures.

Solution Direction. The solution direction SCRATCh aims at is to provide a
easy and usable method for SMEs to get their IoT devices out to the customer
without worrying about the logistical aspect pre-provisioned processes allowing
a late-stage parameter configuration. For this the device will actively seek a
connection to a pre-configured proxy server which then established a secured
connection via a unique address. Once this connection is in place the centralized
IoT server can negotiate the identity with the device and register it to the rightful
owner. The credentials will be encrypted during transfer and at rest and where
possible be stored in a secure element, given this is available.

3.5 Software/Firmware Updates for IoT

Keeping an IoT system safe throughout its life cycle needs some methods of
interacting and updating the infrastructure [15,17]. In the SCRATCh project

278 S. D. Duque Anton et al.

we see secure identification as discussed in Sect. 3.4 as a first step to solve.
Apart from the ownership of the device, the device also needs to know for sure
that the firmware updates are provided by the intended source, a requirement
addressed by update authorization. In this section this problem is addressed.

Large Scale IoT deployment poses difficulties on software update security.
Partially caused by the many different use cases, huge variety in actual devices
and their capabilities and architectures. There are devices running advanced
operating systems, having microprocessor units (MPU’s), some run on powerful
microcontroller units (MCU’s) yet others have very restricted resources. And
there are devices with combinations of powerful MPU’s and MCU’s, each running
their own firmware. This leads to many combinations where specific risks arise or
where requirements or objectives compete or even become mutually exclusive [2].

Platforms or tool kits can help manage these problems, but might be limited
in that they only cover some security aspects or only applicable to a limited set
of device types. It’s pointed out by the ENISA [7] that several issues arise in
firmware/software updates of IoT devices, e.g.: Complex ecosystems, fragmen-
tation of standards and regulations and security integration.

A cryptography system which can be tailored to the specific use case,
addresses these issues. Redwax [14] which provides a modular and decentral-
ized approach, is demonstrated here with a very simple example. The principles
of the Redwax architecture are appealing in our context because they aim for
flexibility yet hide handles which require cryptography experts.

In this scenario a new firmware is being sent to an IoT device and the goal is
to check the authenticity of the time stamp (which may include a firmware sum)
and whether the update is newer than the active firmware or not. This happens
on the IoTdevice. If the check fails the device can take appropriate actions, e.g.
go to a specific fail state, refuse the new firmware and keep the current etc.

As an example we consider a Redwax time stamp server, which is located on
premise where the firmware development takes place. Access is under company
control. The server is a hardware device equipped with a secure element (SE).
The server is being setup with timestamp front-end module, signing back-end
module which uses a OpenSSL engine with the SE to provide signing with a
private key. The server generates (root) certificates which are to be installed on
the IoT devices.

The time stamping is used to protect against the out-of-date firmware prob-
lem, where firmware could be provided with expiration date through manifest,
and rollback attacks. This is even more advantageous in a setting where regu-
lar software updates are part of a strategy. The secret key, being kept in the
time stamp server, suffers minimal exposure and provides trust for the source.
A next step is to extend this with public key infrastructure (PKI) and imple-
ment it in e.g. an small and medium-sized enterprise (SME) setting. Emphasis is
then on “the integration and deployment of their own cryptography system”[14]
(architecture).

In a next phase research will be done on how to cope with the specific IoT
issues like non continuous connections, low bandwidth and hardware limitations.

Creating It from SCRATCh 279

It is not given that we will reach the end goal of secure deployment of software
containers and at the same time having a fail safe mode implemented in all IoT
devices. However, the goal is clear and for any gap identified alternative solutions
might provide a mitigation.

4 Conclusion

The DevOps-cycle has been successfully established for the application in IT-
and cloud-based environments. Such environments are easy to manage in a cen-
tralised fashion, creation, roll-out, and management of code can be performed
with established tools. However, the de-centralised nature of IoT environments
makes it difficult to apply the standard tools presented in this work. Further-
more, it opens up security issues, in the roll-out of identities and software, but
also in monitoring the networks for intrusions. Such gaps in available tooling are
addressed by the research project SCRATCh, which focuses on selected demands
not yet met by standard tooling. Such tools include connecting to edge nodes and
uploading identities to them,securely updating software to non-classic IT-devices
as well as intrusion detection methods for novel threats and threat intelligence. In
a next step, these solution approaches are integrated into test case environments
and evaluated with realistic scenarios.

Acknowledgements. This work has been supported by ITEA3 through project
SCRATCh (label 17005) with funding from:

– The Federal Ministry of Education and Research (BMBF) of the Federal Republic
of Germany, within the project SCRATCh (01IS18062E, 01IS18062C).

– Netherlands Enterprise Agency
– The regional institute for research and innovation of Brussels Belgium, Innoviris.
The authors alone are responsible for the content of the paper.

280 S. D. Duque Anton et al.

A Appendix

Fig. 2. The periodic table of DevOps-Tools

References

1. Antonakakis, M., et al.: Understanding the mirai botnet. In: 26th USENIX Security
Symposium Security 17), pp. 1093–1110 (2017)

Creating It from SCRATCh 281

2. Asokan, N., Nyman, T., Rattanavipanon, N., Sadeghi, A.R., Tsudik, G.: Assured:
architecture for secure software update of realistic embedded devices, October 2018.
https://arxiv.org/pdf/1807.05002.pdf

3. Bradford, V.: Why device id may not be enough to stop fraud
4. Duque Anton, S., Ahrens, L., Fraunholz, D., Schotten, H.D.: Time is of the essence:

machine learning-based intrusion detection in industrial time series data. In: 2018
IEEE International Conference on Data Mining Workshops (ICDMW), pp. 1–6.
IEEE (2018)

5. Duque Anton, S., Kanoor, S., Fraunholz, D., Schotten, H.D.: Evaluation of machine
learning-based anomaly detection algorithms on an industrial Modbus/TCP data
set. In: Proceedings of the 13th International Conference on Availability, Reliability
and Security, pp. 1–9 (2018)

6. Duque Anton, S.D., Fraunholz, D., Schotten, H.D.: Using temporal and topological
features for intrusion detection in operational networks. In: Proceedings of the 14th
International Conference on Availability, Reliability and Security (ARES), pp. 1–9
(2019)

7. Enisa: Baseline security recommendations for IoT, November 2017. https://www.
enisa.europa.eu/publications/baseline-security-recommendations-for-iot

8. Goasduff, L.: Gartner says 5.8 billion enterprise and automotive IoT endpoints will
be in use in 2020, August 2019. https://www.gartner.com/en/newsroom/press-
releases/2019-08-29-gartner-says-5-8-billion-enterprise-and-automotive-io

9. Kolias, C., Kambourakis, G., Stavrou, A., Voas, J.: DDoS in the IoT: mirai and
other botnets. Computer 50(7), 80–84 (2017)

10. Lohfink, A.P., Duque Anton, S.D., Schotten, H.D., Leitte, H., Garth, C.: Security in
process: visually supported triage analysis in industrial process data. IEEE Trans.
Vis. Comput. Graph. 26(4), 1638–1649 (2020)

11. Mann, A., Stahnke, M., Brown, A., Kersten, N.: 2019 state of the art DevOps
report (2019). https://puppet.com/resources/report/state-of-devops-report/

12. van der Meulen, R.: Gartner says 8.4 billion connected “things” will be in use
in 2017, up 31 percent from 2016, February 2017. https://www.gartner.com/
en/newsroom/press-releases/2017-02-07-gartner-says-8-billion-connected-things-
will-be-in-use-in-2017-up-31-percent-from-2016

13. NXP: Late stage parameter configuration
14. Redwax: Redwax project. https://redwax.eu
15. Selgert, F.: Cynefin framework, devops and secure IoT. In: Proceedings of the 39th

International Conference on Computer Safety, Reliability and Security (2020)
16. Sigfox: Sigfox technical overview, May 2017. https://api.build.sigfox.com/files/

59c211c69d14790001fbe9a2
17. Skoufis, C.: D1.4 chariot design method and support tools (ver.1) (2019). https://

www.chariotproject.eu/uploadfiles/D1.4.pdf
18. XebiaLabs: Periodic table of DevOps tools (v3) (2020). https://xebialabs.com/

periodic-table-of-devops-tools/
19. Yeh, C.C.M., et al.: Matrix profile i: all pairs similarity joins for time series: a

unifying view that includes motifs, discords and shapelets. In: 2016 IEEE 16th
International Conference on Data Mining (ICDM), pp. 1317–1322, December 2016.
https://doi.org/10.1109/ICDM.2016.0179

https://arxiv.org/pdf/1807.05002.pdf
https://www.enisa.europa.eu/publications/baseline-security-recommendations-for-iot
https://www.enisa.europa.eu/publications/baseline-security-recommendations-for-iot
https://www.gartner.com/en/newsroom/press-releases/2019-08-29-gartner-says-5-8-billion-enterprise-and-automotive-io
https://www.gartner.com/en/newsroom/press-releases/2019-08-29-gartner-says-5-8-billion-enterprise-and-automotive-io
https://puppet.com/resources/report/state-of-devops-report/
https://www.gartner.com/en/newsroom/press-releases/2017-02-07-gartner-says-8-billion-connected-things-will-be-in-use-in-2017-up-31-percent-from-2016
https://www.gartner.com/en/newsroom/press-releases/2017-02-07-gartner-says-8-billion-connected-things-will-be-in-use-in-2017-up-31-percent-from-2016
https://www.gartner.com/en/newsroom/press-releases/2017-02-07-gartner-says-8-billion-connected-things-will-be-in-use-in-2017-up-31-percent-from-2016
https://redwax.eu
https://api.build.sigfox.com/files/59c211c69d14790001fbe9a2
https://api.build.sigfox.com/files/59c211c69d14790001fbe9a2
https://www.chariotproject.eu/uploadfiles/D1.4.pdf
https://www.chariotproject.eu/uploadfiles/D1.4.pdf
https://xebialabs.com/periodic-table-of-devops-tools/
https://xebialabs.com/periodic-table-of-devops-tools/
https://doi.org/10.1109/ICDM.2016.0179

3rd International Workshop on
Artificial Intelligence Safety Engineering

(WAISE 2020)

3rd International Workshop on Artificial
Intelligence Safety Engineering (WAISE 2020)

Orlando Avila-García1, Mauricio Castillo-Effen2, Chih-Hong Cheng3,
Zakaria Chihani4, and Simos Gerasimou5

1 Research and Innovation, Atos Spain, Spain
orlando.avila@atos.net

2 Lockheed Martin Corporation, USA
mauricio.castillo-effen@lmco.com

3 DENSO AUTOMOTIVE Deutschland GmbH, Germany
c.cheng@denso-auto.de

4 CEA LIST, CEA Saclay Nano-INNO, France
zakaria.chihani@cea.fr

5 Department of Computer Science, University of York, UK
simos.gerasimou@york.ac.uk

1 Introduction

The International Workshop on Artificial Intelligence Safety Engineering (WAISE) is
dedicated to exploring new ideas on AI safety, ethically aligned design, regulations,
and standards for AI-based systems. WAISE aims at bringing together experts,
researchers, and practitioners from diverse communities, such as AI, safety engineer-
ing, ethics, standardization, certification, robotics, cyber-physical systems, safety-
critical systems, and industries such as automotive, healthcare, manufacturing, agri-
culture, aerospace, and critical infrastructure. The third edition of WAISE was held on
September 15, 2020 as part of the 39th International Conference on Computer Safety,
Reliability, & Security (SAFECOMP 2020).

2 Programme

The Programme Committee (PC) received 23 submissions in the following categories:

• Full scientific contributions – 15 submissions
• Short position papers – 5 submissions
• Proposals of technical talk/sessions – 3 submissions

Each paper was peer-reviewed by at least three PC members, following a single-
blind review process. The workshop organizers also selected technical talks/sessions to
be presented at the workshop. The committee decided to accept 11 papers for oral
presentation, eight full scientific papers and three short position papers, which are
included in the final proceedings; resulting in an acceptance rate of 55%. Two

proposals for technical talks were accepted for presentation but not included in the final
proceedings.

Due to COVID-19, WAISE 2020 was held online and organised into thematic
sessions following a highly interactive format comprising recorded videos and live
Q&A sessions between authors and workshop audience. We selected the following
three topics to distribute the presentations into three thematic sessions:

Thematic Session 1: Machine Learning Uncertainty and Reliability

• Revisiting Neuron Coverage and its Application to Test Generation. Matthias
Woehrle, Stephanie Abrecht, Maram Akila, Sujan Sai Gannamaneni, Konrad Groh,
Christian Heinzemann and Sebastian Houben

• A Principal Component Analysis approach for embedding local symmetries into
Deep Learning algorithms. Pierre-Yves Lagrave

• A Framework for Building Uncertainty Wrappers for AI/ML-based Data-Driven
Components. Michael Kläs and Lisa Jöckel

Thematic Session 2: Machine Learning Safety

• Rule-based Safety Evidence for Neural Networks. Tewodros A. Beyene and Amit
Sahu

• Safety Concerns and Mitigation Approaches Regarding the Use of Deep Learning
in Safety-Critical Perception Tasks. Oliver Willers, Sebastian Sudholt, Shervin
Raafatnia and Stephanie Abrecht

• Positive Trust Balance for Self-Driving Car Deployment. Philip Koopman and
Michael Wagner

• Integration of Formal Safety Models on System Level using the Example of
Responsibility Sensitive Safety and CARLA Driving Simulator. Bernd Gassmann,
Frederik Pasch, Fabian Oboril and Kay-Ulrich Scholl

Thematic Session 3: Assurances for Autonomous Systems

• A Safety Case Pattern for Systems with Machine Learning Components. Ernest
Wozniak, Carmen Carlan, Esra Acar-Celik and Henrik J. Putzer

• Structuring the Safety Argumentation for Deep Neural Network Based Perception
in Automotive Applications. Gesina Schwalbe, Bernhard Knie, Timo Sämann,
Timo Dobberphul, Lydia Gauerhof, Shervin Raafatnia and Vittorio Rocco

• An Assurance Case Pattern for the Interpretability of Machine Learning in Safety-
Critical Systems. Francis Rhys Ward and Ibrahim Habli

• A Structured Argument for Assuring Safety of the Intended Functionality (SOTIF).
John Birch, David Blackburn, John Botham, Ibrahim Habli, David Higham, Helen
Monkhouse, Gareth Price, Norina Ratiu and Roger Rivett

The following technical talks were accepted for presentation:

• Applying Heinrich’s Triangle to Autonomous Vehicles: Analyzing the Long Tail of
Human and Artificial Intelligence Failures. Amitai Bin-Nun, Anthony Panasci and
Radboud Duintjer Tebbens

• Solving AI Certification in SAE G-34/EUROCAE WG-114. Mark Roboff

3rd International Workshop on Artificial Intelligence Safety Engineering 285

3 Acknowledgements

We thank all authors of submitted papers to WAISE 2020 and congratulate the authors
whose papers were selected for inclusion into the workshop programme and pro-
ceedings. We also thank the Steering Committee (SC) for their support and advice in
organizing WAISE 2020. We especially thank our distinguished PC members, for
reviewing the submissions and providing high-quality feedback to the authors:

• Rob Alexander, University of York, UK
• Vincent Aravantinos, Argo AI, USA
• Rob Ashmore, Defence Science and Technology Laboratory, UK
• Alec Banks, Defence Science and Technology Laboratory, UK
• Markus Borg, RISE SICS, Sweden
• Lionel Briand, University of Ottawa, Canada
• Simon Burton, Bosch, Germany
• Guillaume Charpiat, Inria, France
• Raja Chatila, ISIR/UPMC-CNRS, France
• Huascar Espinoza, CEA LIST, France
• Jose Faria, Safe Perspective Ldt, UK
• John Favaro, INTECS, Italy
• Michael Fisher, University of Liverpool, UK
• Jelena Frtunikj, Argo AI, USA
• Simon Fuerst, BMW, Germany
• Mario Gleirscher, University of York, UK
• Stéphane Graham-Lengrand, SRI International, USA
• Jérémie Guiochet, LAAS-CNRS, France
• José Hernández-Orallo, Universitat Politècnica de València, Spain
• Nico Hochgeschwende, Bonn-Rhein-Sieg University, Germany
• Xiaowei Huang, University of Liverpool, UK
• Bernhard Kaiser, Assystem GmbH, Germany
• Guy Katz, Hebrew University of Jerusalem, Israel
• Philip Koopman, Carnegie Mellon University, USA
• Timo Latvala, Huld Oy, Finland
• Chokri Mraidha, CEA LIST, France
• Jonas Nilsson, Nvidia, Sweden
• Sebastiano Panichella, University of Zurich, Switzerland
• Davy Pissoort, Katholieke Universiteit Leuven, Belgium
• Philippa Konmy, Adelard, UK
• Mehrdad Saadatmand, RISE SICS, Sweden
• Rick Salay, University of Waterloo, Canada
• Mario Trapp, Fraunhofer ESK, Germany
• Ilse Verdiesen, TU Delft, Netherlands

286 O. Avila-García et al.

We also thank the following additional reviewers:

• Morayo Adedjouma, CEA LIST, France
• Patrik Hoyer, University of Helsinki, Finland
• Deebul Nair, Bonn-Rhein-Sieg University, Germany
• Xingyu Zhao, Heriot-Watt University, Scotland

3rd International Workshop on Artificial Intelligence Safety Engineering 287

Revisiting Neuron Coverage
and Its Application to Test Generation

Stephanie Abrecht1, Maram Akila2, Sujan Sai Gannamaneni2, Konrad Groh1,
Christian Heinzemann1, Sebastian Houben2(B), and Matthias Woehrle1

1 Robert Bosch GmbH, 70465 Stuttgart, Germany
{stephanie.abrecht,konrad.groh,

christian.heinzemann,matthias.woehrle}@de.bosch.com
2 Fraunhofer IAIS, Schloss Birlinghoven, 53757 Sankt Augustin, Germany

{maram.akila,sujansai.gannamaneni,sebastian.houben}@iais.fraunhofer.de

Abstract. The use of neural networks in perception pipelines of
autonomous systems such as autonomous driving is indispensable due
to their outstanding performance. But, at the same time their complex-
ity poses a challenge with respect to safety. An important question in
this regard is how to substantiate test sufficiency for such a function.
One approach from software testing literature is that of coverage met-
rics. Similar notions of coverage, called neuron coverage, have been pro-
posed for deep neural networks and try to assess to what extent test
input activates neurons in a network. Still, the correspondence between
high neuron coverage and safety-related network qualities remains elu-
sive. Potentially, a high coverage could imply sufficiency of test data. In
this paper, we argue that the coverage metrics as discussed in the cur-
rent literature do not satisfy these high expectations and present a line
of experiments from the field of computer vision to prove this claim.

1 Introduction

Recently, deep neural networks (DNNs) have started to outperform most other
machine learning (ML) techniques in the analysis and prediction of complex data
including voice and image recognition [2]. Particularly in image classification,
DNNs routinely surpass human performance [7], which makes them attractive
for an increasing number of (industrial) tasks. One example are computer vision
tasks in automated driving applications where DNNs are used to interpret sensor
data (e.g. from cameras). These tasks may be safety-critical if the system needs
to rely on predictions for safe movement and, therefore, pose a high demand for
extensive verification and validation (V&V) (see [21] for a recent survey).

The increasing importance of V&V shifted the initial focus on performance-
centered metrics for the evaluation of DNN models towards measures of inter-
pretability [1] and robustness, e.g. under image perturbations [5,20]. From a
practitioner’s point of view, however, a fundamental question is how to decide
whether a DNN has been sufficiently tested for a given task. In software testing,
this is usually assisted by use of coverage metrics [15] that provide a measurable
c© Springer Nature Switzerland AG 2020
A. Casimiro et al. (Eds.): SAFECOMP 2020 Workshops, LNCS 12235, pp. 289–301, 2020.
https://doi.org/10.1007/978-3-030-55583-2_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-55583-2_21&domain=pdf
https://doi.org/10.1007/978-3-030-55583-2_21

290 S. Abrecht et al.

criterion when to stop testing and allow for inferring additional tests improv-
ing coverage. The idea of coverage has been transferred to coverage metrics on
DNNs that measure which parts of a DNN are “active” during inference. Such
ideas sparked several approaches to test networks and generate new test cases
designed to either break the model or make it more robust [8,12,14,19].

In this paper, we review these coverage metrics and discuss how they can
be used for V&V in an image recognition task. First, we focus on the underly-
ing definition of coverage, which plays a critical role when determining whether
full coverage is reached. Second, our experiments show that full coverage can be
reached without exploring the full semantic input space of a DNN, even if lim-
ited to only correct predictions. And last, we benchmark previous approaches
to increase coverage by generating new test cases [14] with simple augmenta-
tion techniques like translation and rotation. Furthermore, we find that neuron
coverage is highly dependent on the chosen layer within the DNN.

Structure of the Paper: Next we provide more details on coverage metrics.
Section 3 defines our research questions and experimental setup before we
describe the results of our experiments in Sect. 4. Section 5 concludes the paper.

2 Fundamentals

We first review the definition of coverage from software testing (Sect. 2.1). Then,
we discuss different definitions of neurons and activations from the literature that
form the basis of neuron coverage for DNNs (Sect. 2.2).

2.1 Coverage

Coverage is a widely-used metric in software testing. Most well-known are struc-
tural coverage metrics based on source code such as Branch and Modified Con-
dition/Decision Coverage (MC/DC) used for white-box testing of small soft-
ware units [15]. However, coverage criteria are not restricted to code and can
be selected based on the corresponding test level. Additional examples include
coverage of requirements and respective equivalence classes on an embedded soft-
ware level. Hence on a lower level, there are white-box coverage metrics in which
we measure based on internals of an implementation, while black-box coverage
based on the software’s purpose is used on a high functional level. In summary, a
coverage metric supports the testing process by providing a quantitative measure
that must be adequate for the test level and purpose.

From an academic perspective, Bron et al. [3] discuss properties that a cov-
erage metric should: (i) have an underlying static model, (ii) be (practically)
coverable, i.e. we can achieve full coverage, (iii) be actionable, i.e. we know
how to continue, and (iv) have an exit strategy when reaching full coverage.

For a statement coverage goal, it is quite apparent how these properties are
useful. We can build a coverage model upon the given source code. As long as we
find a non-covered statement, we either formulate a corresponding new test or
verify via analysis that a given statement is not reachable. If statement coverage
is reached, we may stop testing on code/unit level for this coverage goal.

Revisiting Neuron Coverage and Its Application to Test Generation 291

2.2 Neuron Definition and Activations

Neuron Definition. Neurons are the basis for defining coverage in the context
of DNNs. However, there are different possibilities for defining what a neuron is.

The biologically inspired view considers a neuron an element that receives
input signals, aggregates them, and depending on some threshold fires a signal
to other neurons. Translated to ML, a neuron comprises an element in a con-
volutional or linear layer including the subsequent ReLU. Other layers, such as
pooling layers, may not be considered.

The (software) architecture inspired view considers a neuron any switching
element that affects the computation paths of the function (i.e. of the DNN).
This would include any layer that comprises switching elements, such as fully-
connected layers, non-differentiable activation functions like ReLUs as well as
max pooling layers (but not average pooling layers). Some non-linear, but differ-
entiable activation functions, e.g. ReLU, may also be split into a finite number
of equivalence classes to account for non-linearities. Conceptually, the switching
elements divide the huge input space into local linear halfspaces that (i) could
be individually tested but (ii) increase combinatorially with model depth.

Regretfully, there are different definition of neurons from literature that do
not follow clearly along the above view and this results in different numbers
of coverage items to be considered. The differences mainly present themselves
in two respects: (i) How to handle spatial layers such as convolutional layers
and (ii) which layers to include. The earliest related work is DeepXplore [14]
whose neuron definition is further used in DeepGauge [12], Dissector [19], and
the work by Kim et al. [8]. This definition reduces convolutional layers to a
single neuron per filter, i.e. all elements in a single filter are reduced to their
mean activation which removes fine-granular information about spatial coverage.
Other works also consider the spatial distribution of convolutional layers such as
Sun et al. [17]. In their neuron definition, pooling layers and final predictions are
excluded. For reasons of practical feasibility, we restrict ourselves to a notion of
neuron coverage in which we inspect neurons individually. For an approach that
considers combinations of activations, we refer to DeepCT [11].

In this work, we use a definition inspired by approaches in interpretability
and visualization, e.g. [13] focused on a software architecture inspired view:

Definition 1 (Layer and element-wise coverage (LWC)). A neuron is an
individual output element of a layer. All layers are considered separately, except
for activations that are always considered part of the previous layer.

The main difference between the LWC definition and the one from the related
work above is how to handle convolutional layers, since in the definition of
LWC each patch multiplied by the kernel counts as an individual output as
shown in Fig. 1. Figure 2 compares coverage based on the DeepXplore definition
(DXC) [12,14] and LWC for an initial convolutional layer deploying a simple
CNN for MNIST (cf. “Simple” in Table 2 for the architecture). For both cases,
we use the activation/coverage definition in Definition 2.

292 S. Abrecht et al.

4@5
×5

Number of Neurons
DXC = 4
LWC = 4×5×5 = 100

Fig. 1. The difference between neuron counts in DXC and LWC for convolutional
layers: For DXC a whole channel is aggregated to a single neuron by averaging. In
contrast, LWC considers each element individually, cf. [13].

Fig. 2. Comparison of neuron coverage according to the definition of a neuron for an
initial convolutional layer crel1 of Simple CNN (Table 2): The trained and untrained
DXC cannot be distinguished as they show very similar behavior and reach full coverage
with small test set size.

We see a clear difference in coverage values for the first convolutional layer
due to the discrepancy in neuron definitions. This can mainly be attributed
to the fact that in the MNIST dataset, outer pixels are rarely set, such that
neurons corresponding to outer edges are typically not covered. While this can
be remedied with augmentation as shown below, the standard MNIST test set
does not feature this out-of-the-box. A DXC approach removes this information
and shows perfect coverage for any test set size, which we deem unwanted for
an application in testing that should uncover such issues.

Another main difference is the resulting number of neurons, which represents
the number of coverage items for testing. We compare the resulting neurons for
each definition in Table 1. For DXC approaches, we recompute the number of
neurons as they differ from the ones reported in the literature. As we see for
both LWC and the approach by Sun et al. [17] a detailed study of convolutional
layers increases the number of coverage items by one order of magnitude, even

Revisiting Neuron Coverage and Its Application to Test Generation 293

for small DNNs. LWC and Sun et al. only differ in handling pooling and pre-
diction layers. Sun et al. [17] additionally discuss the coverage of the number of
interactions. Such an approach further increases the number of neurons to be
considered in particular for fully connected layers. In summary, there currently
is no consistent neuron definition in the literature, yet the competing definitions
have a considerable impact on the number of coverage items.

Table 1. Neuron counts for different definitions and several architectures

Architecture DXC Sun et al. [17] LWC

MLP 784 × 128 × 64 × 10 986 976 986

MNIST CNN in [17] 258 14,208 17,738

LeNet-5 258 6,508 8,094

VGG-19 16,168 14,861,288 16,391,656

We follow Definition 1 in this work. When aggregating coverage across layers
as shown in Table 1, each definition inherently emphasizes different layer types
(e.g. DXC emphasizes fully connected layers, Sun et al. [17] excludes pooling
layers). In order to avoid bias in interpretation of aggregated coverage, we study
layer-wise coverage in the following. Intuitively, as layers perform different func-
tions in a network, we follow the approach used in software testing in which we
separate coverage into individual units (here layers) in order to receive actionable
feedback as described above (cf. Sect. 2.1).

Neuron Activation. In classical software testing, it is easy to define whether
a line of code has been covered, namely if it has been executed. In DNNs, things
are more difficult as all neurons are executed in every inference. Therefore,
approaches for DNN coverage use notions of activation of neurons for check-
ing whether they are covered. The actual coverage may thus be defined differ-
ently based on the activation value v(n) of a neuron n given an input datum.
From an architectural viewpoint, comparing a neuron activation to one (or more)
thresholds (e.g. a threshold of 0 for ReLU and Max Pooling layers) is most suit-
able. From a biologically-inspired perspective, several definitions are plausible,
e.g. different thresholds may be selected (also adapted dynamically based on the
current run and input data), or concepts of most activated neurons (e.g. Top-k
Neuron Coverage in [12]) can be used. There are also definitions of activation
that are tuned to a training set [12], which seems dangerously subjective coun-
teracting the typical verification perspective that testing procedures should be
independent from software construction. Burkov et al. argue that only correct
predictions should be used for coverage [4], however, that may depend on the
application and the kind of insight one hopes to achieve with the testing setup.

A common definition is based on a single threshold t, i.e. v(n) �� t, where ��∈
{≥, >} and t ∈ R, [14]. Some works suggest to normalize v(n) based on all acti-
vations in a layer, such that vnorm ∈ [0, 1]. In practice, this does not make a

294 S. Abrecht et al.

difference for ReLU layers and v(n) > 0, however, for other choices a normal-
ization may be more suitable. Since our view is software architecture inspired,
we simply use unnormalized activations and a threshold of 0, which has the
advantage that (i) there is no additional cost and no test dependency due to
normalization, and (ii) a natural fit to layers with ReLU activation as studied in
this work, see e.g. [4].1 Coverage on the prediction layer should be handled dif-
ferently due to its unique activation functions as described in [4] and is excluded
from the analysis in the remainder.

Definition 2 (Covered neuron). A neuron n is covered, when its activation
is larger than zero, i.e. v(n) > 0 for at least one test datum.

Intuition: Let us revisit Fig. 2 and study the resulting coverage in detail for
a convolutional layer, i.e. crel1 of the Simple network as defined in Table 2.
The figure plots coverage over the test set size. It is expected that the coverage
increases monotonically with the test set size. This is motivated by looking at
the extreme cases: zero coverage for zero tests and full coverage for an infinite
test set. Note that 100% coverage may still not be achieved due to dead neurons,
which are intuitively similar to unreachable code in code coverage. However, the
mere size of the test set does not necessarily correspond to novel test cases and
by extension to an increase in coverage. As an example, a simple copy of a test set
doubles its size, but the coverage remains the same. Therefore, in such coverage
plots, we see a high level of coverage for small test set sizes and a small increase
as more tests activate the same neurons again.

Let us compare the coverage of a trained filter, say an edge detector, with
a random filter (untrained) in the first layer. The coverage of the trained filter
measures how often the edge is observed in the test data at all locations. In
contrast the coverage of the random filter measures how often the test data
correlates with the random filter. Thus, it may be expected that for a smaller
number of features in the first layer the coverage of the random filter is close to
that of the trained filter as can be seen in Fig. 2.

3 Research Questions and Experimental Setup

A high coverage means that the test data was sufficient to activate all neurons.
Potentially, we can infer two things from this. A high coverage metric could be
used as a proxy that the test data contains all relevant cases. This would be
particular appealing for verification. Additionally, we check whether a coverage
based test generation generally facilitates efficient testing, here comparing to
standard data augmentation. The experimental section reflects on both points.

1 In a software architecture inspired view, both activation and non-activation should
be included for coverage (cf. branch coverage). Since non-activation is the standard
case and typically achieved with few tests, we focus on the activation part.

Revisiting Neuron Coverage and Its Application to Test Generation 295

Effectively, we answer the following research questions:

– What impact does augmentation have on coverage in initial layers?
– Is the structural coverage metric dependent on classes?
– Does neuron coverage-based differential test generation suggest better tests

than test time augmentation techniques?

Table 2. Architectures used: Simple CNN and LeNet5 [9], Abbreviations used: CV =
Conv2D, MP = MaxPool2d, L = Linear, R = ReLU, S = Softmax

Simple crel1 max1 crel2 max2 frel1 preds

CV(1, 20, 5)
+ R

MP(2) CV(20, 50,
5) + R

MP(2) L(800, 500)
+ R

L(500, 10) +
S

LeNet5 crel1 max1 crel2 max2 frel1 frel2 preds

CV(1, 6, 5)
+ R

MP(2) CV(6, 16, 5)
+ R

MP(2) L(400, 120)
+ R

L(120, 84) +
R

L(84, 10) +
S

All experiments are either performed on MNIST or Fashion-MNIST. The
networks, defined in Table 2, are trained using SGD optimizer with a learning
rate of 0.01 and momentum of 0.5. We use Pytorch for all the experiments. The
complete test data is used for the experiments unless stated otherwise. We use
the architectures in Table 2 in the experiments for both datasets. We perform
augmentation with translation and rotation in standard pytorch and use the
following parametrizations: (i) Weak augmentation: For weak augmentation,
we set the translation bound to ±10% and a rotation bound of ±5◦ for random
sampling. (ii) Strong augmentation: For strong augmentation, we set the
translation bound to ±20% and a rotation bound of ±10◦.

4 Experiments

4.1 Impact of Augmentation on Coverage in Initial Layers

In Fig. 2, we see that achieving full coverage, in particular LWC, in initial con-
volutional layers is not possible on the MNIST test set. Our assumption is that
this is due to the data setup of MNIST, with centered images and considerable
(non-informative) boundaries.

Experiment: We study in detail the effect of input diversity on coverage of
the first convolutional layer crel1 in the simple CNN in Table 2. In particular,
we analyze the impact of test time augmentation in order to strengthen a test
set. (For actual testing, we would need to verify that augmentation does not
invalidate labels. We refrain from reviewing augmented samples for this study
as we focus on coverage, not performance.) We use augmentations as described
in Sect. 3. We also train models using both types of augmentation to a similar

296 S. Abrecht et al.

Table 3. Performance on different MNIST test sets for the Simple CNN models trained
with weak or strong augmentation (aug.), tested with standard MNIST test set and
test set augmentations of size 10000, except for Strong-500 with size 500

Train on Test on

Standard Weak aug. Strong aug. Strong-500

Weak aug. 0.9910 0.9826 0.8765 0.892

Strong aug. 0.9905 0.9890 0.9795 0.982

performance as shown in Table 3 in order to investigate potential impacts from
training.2

Result: We see in Table 4 that coverage results are consistent across different
training regimes, i.e. the uncovered neurons do not result from training, but from
the choice of test set. Given the same test set size, weak augmentation during test
time can already cover most of the neurons in crel1 which the standard MNIST
test set misses. With strong augmentation, we obtain full coverage, even with a
very small test set of size 500 (Strong-500). Our conclusion is that augmentations
can be very helpful to achieve coverage in early convolutional layers. As discussed
above, this is based on a fine-granular notion of coverage for convolutions since
an approach such as DeepXplore already achieves full neuron coverage for the
standard MNIST test set (cf. Fig. 2).

Table 4. Neuron coverage for crel1 (number of uncovered neurons in parentheses) on
different MNIST test sets for models described in Table 3, tested with standard MNIST
test set and test set augmentations of size 10000, except for Strong-500 with size 500

Train on Test on

Standard Weak Strong Strong-500

Weak augment 0.9968 (37) 0.9999 (1) 1.0 (0) 1.0 (0)

Strong augment 0.9950 (58) 0.9997 (3) 1.0 (0) 1.0 (0)

4.2 Class Dependency of Structural Coverage Metrics

A common belief in deep learning is that the later layers encode some semantic
concept of the data. With this we have in mind that the presence or absence
of specific features encoded in a later layer are combined in the final layer to
come to the network’s prediction. For the data sets considered in this work, these
concepts should be independent of the location, scale and rotation of the input

2 Obviously, the performance of the weakly trained model, does not generalize to
strong augmentation.

Revisiting Neuron Coverage and Its Application to Test Generation 297

data. In other words they should be independent of the augmentation process
chosen for our experiments. Thus we would expect that the coverage of the later
layers is largely unaffected by augmentation. If these semantic concepts correlate
with the output class and coverage is a good metric for these concepts, we should
see an effect of the output class on the coverage of the later layers.

We have seen above that input diversity through augmentation helps with
coverage in the initial convolutional layer. Similarly, we can investigate whether
diversity on outputs, i.e. using data from different classes, supports coverage on
the final feature layer (the penultimate layer, before the output layer).

Experiment: Concretely, in the following we study coverage in layer frel1
(cf. “Simple” in Table 2). Note that Sun et al. [17] indicate that even with a
single MNIST digit, one can achieve high coverage on a test set, indicating
that thus coverage is a “bad proxy for functional coverage”. We investigate this
more deeply using experiments in which we construct test sets that contain only
subsets of digits and check if coverage on frel1 is affected by this reduction (as
a proxy for “output diversity”). The intuition is that each digit correlates with
specific signal paths in the network and if these signal paths are decoupled for
later layers, coverage should drop considerably when sub-sampling digits.

The networks are the ones from above in Sect. 4.1, i.e. trained with all digits
and strong augmentation. Again, we use two variants of test time augmentation
with a base test set size of 10000. Sub-selecting one digit results in approximately
1000 samples, i.e. for a single test digit the test set has size ≈ 1000, for 3 digits
≈ 3000.

Table 5. Coverage results for layer frel1 if we select specific digits from an MNIST
test set (standard or augmented): In the second column, the coverage for all digits is
shown. Bold numbers indicate that the subset of digits has the same coverage as All.

Test set All Only 0 Only 9 Only 5 0,1 8,9 4,5

Standard 0.9900 0.9260 0.8960 0.9460 0.9680 0.9480 0.9780

Weak aug. 0.9900 0.9580 0.9620 0.9740 0.9900 0.9840 0.9900

Strong aug. 1.0000 0.9920 0.9920 0.9940 0.9991 0.9940 0.9997

Test set All 0,1,2 7,8,9 4,5,6 0,1,2,3 6,7,8,9 3,4,5,6

Standard 0.9900 0.9880 0.9740 0.9840 0.9880 0.9840 0.9900

Weak aug. 0.9900 0.9900 0.9900 0.9900 0.9900 0.9900 0.9900

Strong aug. 1.0000 1.0000 0.9980 0.9997 1.0000 0.9994 1.0000

Results: Table 5 summarizes our results. We see that with a full test set we
obtain (almost) perfect coverage for different test set variants. Strong augmen-
tation also helps with achieving full coverage for frel1. We also see that even if
we select just a single digit, coverage on frel1 is only marginally reduced. More-
over, we only need data from a small subset of the digits to achieve the same

298 S. Abrecht et al.

coverage as for the full test set. Even for the penultimate layer, input diversity
through augmentation helps with coverage. This shows that for MNIST there is
no direct dependency between output diversity in the form of digits in the test
set and the feature diversity needed for coverage of frel1. Note that we obtained
similar results for the same architecture using the Fashion-MNIST dataset. We
hypothesize that coverage based on mere activation of a neuron is not sufficient
to capture semantic concepts for the following reasons: (i) Even with a single
digit, augmentation provides a strong boost in coverage (without any change on
the output class) and (ii) for augmented test sets when adding additional digits,
we see almost no improvement in coverage anymore which suggests that com-
parable diversity is already achieved although additional digits should stimulate
new features. We leave the further exploration of this question as future work.

4.3 Coverage-Guided Differential Testing vs. Augmentations

Several gradient-based approaches [12,14,18] have been proposed to generate
realistic and novel test samples with an explicit aim of maximizing coverage. Do
such approaches generally perform better w.r.t. coverage compared to simple test
time augmentations discussed above? We study this research question based on
DeepXplore [14]. DeepXplore uses gradient ascent to generate novel test cases
from existing data, i.e. in a sense in the same class of “local modifications” of
existing data as data augmentation. Gradients are generated using a loss function
optimizing for two goals: (i) finding samples that exist on the decision boundary
by maximizing differential output of multiple DNNs (differential goal) and (ii)
maximizing activation of inactive neurons (coverage goal). We evaluate whether
the DeepXplore approach performs better than weak and strong augmentations
discussed in Sect. 3 on both architectures described in Table 2, especially for
deeper layers. We perform experiments, with (i) a dataset containing all classes
and (ii) focusing on one class and studying coverage on this subset.

Table 6. Overview of raw coverage (baseline) and coverage from different test genera-
tion methods: Columns 4 and 5 show the coverage when using DeepXplore[14] and are
compared to results using weak and strong augmentations (largest coverage bold).

Network Layers Raw DeepXplore Full DeepXplore Layer Weak Aug Strong Aug

CNN crel2 .9763 .9918 .9928 .9847 .9935

frel1 .9975 .9975 .9986 .998 1.0

LeNet5 crel1 .9921 .9926 .9929 .9974 .9987

crel2 .9848 .9969 .9974 .9924 .9966

max2 .9960 1.0 1.0 .9994 1.0

Experiment: We use DeepXplore with hyper-parameters λ1 = 1, λ2 = 2, s =
0.5. Experiments are conducted using two architectures, the Simple CNN used

Revisiting Neuron Coverage and Its Application to Test Generation 299

earlier and a LeNet5 (Table 2) on Fashion-MNIST. As s basis for differential
output using multiple DNNs, we train three models of each network with different
initial seeds that achieve ≈ 91% accuracy on the Fashion-MNIST test set. As
described, in DeepXplore, the coverage goal of the joint loss is to increase the
activation of inactive neurons. In our experiments, we consider two different
versions: DeepXplore Full and DeepXplore Layer. In DeepXplore Full, inactive
neurons from the entire network are randomly chosen and considered in the loss.
In DeepXplore Layer, we only consider inactive neurons from the specific layer
to see whether such a focused sampling strategy provides additional benefits.
As discussed, we perform two experiments with (i) the full class diversity of
Fashion-MNIST (cf. Table 6) in which the experiment is conducted using 500
random samples from test dataset and (ii) focus on a subset containing only the
class “AnkleBoot” (cf. Table 7), featuring its 1000 samples. All experiments are
performed five times with different random seeds.

Results: Table 6 shows results for all classes for both architectures that the
coverage increases across all layers for the generated images. The increase in
coverage for DeepXplore is higher than the one achieved via weak augmentation.
DeepXplore Layer is slightly and consistently better than DeepXplore Full. As
we see from the table, the largest coverage gain is however obtained by strong
augmentation for most layers including deeper layers. The results for a test
dataset of a single class in Table 7 are similar. The gain in coverage due to
augmentations in early layers is higher than the one obtained via generated
images. For deeper layers, coverage gain for generated images is higher than
for weak augmentation, but strong augmentation generally provides the largest
increase in coverage. DeepXplore Layer does not show benefits over sampling
the full network (DeepXplore Full) in this case.

Table 7. Overview of raw coverage (baseline) and coverage from different test gen-
eration methods on Simple CNN: Coverage for DeepXplore variants are compared to
results using weak and strong augmentations (largest coverage bold).

Layers Raw DeepXplore Full DeepXplore Layer Weak Aug Strong Aug

crel1 .9917 .9744 .9764 .9845 .9947

crel2 .8909 .9633 .9622 .9481 .9843

frel1 .8459 .9373 .9333 .9199 .9696

4.4 Experiments Summary and Discussion

In addition to the results presented, we also studied effects of training, differ-
ent thresholds for neuron activation and other data sets and their impact on
coverage. We found the results to be consistent with the ones presented here,
but omitted them for the sake of brevity. All results indicate that augmentation

300 S. Abrecht et al.

performs favorably on DNNs for an MNIST-like task, especially if taking into
account that coverage-guided test data generation is also computationally more
costly than performing augmentation. However, for deeper DNNs in which late
layers learn high-level features, a coverage-guided test generation with seman-
tic concept changes may fare differently. Nevertheless, Li et al. [10] discuss
similar concerns w.r.t. the fault detection capabilities of the k-multisection cri-
terion described in DeepGauge [12] with MNIST and LeNet as well as with Ima-
geNet and pre-trained VGG-19 and ResNet-50 networks. While we performed
our experiments on image classification tasks, the coverage metric is general and
can be applied to more complex tasks in computer vision and other application
domains.

5 Conclusion

In this paper, we evaluated different coverage definitions for DNNs and analyzed
how they can be used for analyzing coverage and for test generation. Our results
indicate that the specifics of neuron definition matter and that different kinds of
layers behave very differently with respect to coverage. From our experiments, we
further see that (i) augmentation is useful for coverage, (ii) full coverage can be
reached while using only a subset of the classes and (iii) test time augmentation
can beat coverage-guided test generation on MNIST-like tasks.

In conclusion, our experimental results show that structural coverage metrics
are not sufficient for arguing that a DNN has been sufficiently tested. This, in
turn, raises the need for additional coverage measures, e.g. considering also the
semantic features of the input space that the DNN shall be able to detect. To
this end, future research should investigate how input coverage [6] or coverage
of latent space features [16] can improve the argumentation.

Acknowledgment. The research leading to the results presented above are funded
by the German Federal Ministry for Economic Affairs and Energy within the project
KI Absicherung—Safe AI for automated driving.

References

1. Adadi, A., Berrada, M.: Peeking inside the black-box: a survey on explainable
artificial intelligence (XAI). IEEE Access 6, 52138–52160 (2018)

2. Alam, M., Samad, M.D., Vidyaratne, L., Glandon, A., Iftekharuddin, K.M.: Survey
on deep neural networks in speech and vision systems. arXiv:1908.07656 (2019)

3. Bron, A., Farchi, E., Magid, Y., Nir, Y., Ur, S.: Applications of synchronization
coverage. In: Symposium on Principles and Practice of Parallel Programming, pp.
206–212 (2005)

4. Burkov, A.: Machine Learning Engineering (2020). http://www.mlebook.com/
wiki/doku.phps

5. Geirhos, R., Temme, C.R., Rauber, J., Schütt, H.H., Bethge, M., Wichmann, F.A.:
Generalisation in humans and deep neural networks. In: Advances in Neural Infor-
mation Processing Systems, pp. 7538–7550 (2018)

http://arxiv.org/abs/1908.07656
http://www.mlebook.com/wiki/doku.phps
http://www.mlebook.com/wiki/doku.phps

Revisiting Neuron Coverage and Its Application to Test Generation 301

6. Gladisch, C., Heinzemann, C., Herrmann, M., Woehrle, M.: Leveraging combina-
torial testing for safety-critical computer vision datasets. In: Workshop on Safe
Artificial Intelligence for Automated Driving (2020)

7. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-
level performance on imagenet classification. In: IEEE International Conference on
Computer Vision, pp. 1026–1034 (2015)

8. Kim, J., Feldt, R., Yoo, S.: Guiding deep learning system testing using surprise
adequacy. In: International Conference on Software Engineering (2019)

9. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

10. Li, Z., Ma, X., Xu, C., Cao, C.: Structural coverage criteria for neural networks
could be misleading. In: 41st International Conference on Software Engineering:
New Ideas and Emerging Results, pp. 89–92. IEEE Press (2019)

11. Ma, L., et al.: Deepct: tomographic combinatorial testing for deep learning systems.
In: 26th International Conference on Software Analysis, Evolution and Reengineer-
ing, pp. 614–618. IEEE (2019)

12. Ma, L., et al.: Deepgauge: multi-granularity testing criteria for deep learning sys-
tems. In: International Conference on Automated Software Engineering (2018)

13. Olah, C., et al.: The building blocks of interpretability. Distill 3, e10 (2018).
https://doi.org/10.23915/distill.00010

14. Pei, K., Cao, Y., Yang, J., Jana, S.: DeepXplore: automated whitebox testing of
deep learning systems. In: Symposium on Operating Systems Principles, pp. 1–18
(2017)

15. Pezzè, M., Young, M.: Software Testing and Analysis: Process, Principles, and
Techniques. Wiley, Hoboken (2008)

16. Schwalbe, G., Schels, M.: A survey on methods for the safety assurance of machine
learning based systems. In: European Congress Embedded Real Time Software and
Systems (2020)

17. Sun, Y., Huang, X., Kroening, D., Sharp, J., Hill, M., Ashmore, R.: Structural test
coverage criteria for deep neural networks. ACM Trans. Embed. Comput. Syst.
18(5s), 1–23 (2019)

18. Tian, Y., Pei, K., Jana, S., Ray, B.: DeepTest: automated testing of deep-neural-
network-driven autonomous cars. arXiv:1708.08559 (2017)

19. Wang, H., Xu, J., Xu, C., Ma, X., Lu, J.: Dissector: input validation for deep
learning applications by crossing-layer dissection. In: International Conference on
Software Engineering (2020)

20. Woods, W., Chen, J., Teuscher, C.: Adversarial explanations for understanding
image classification decisions and improved neural network robustness. Nat. Mach.
Intell. 1(11), 508–516 (2019)

21. Zhang, J., Li, J.: Testing and verification of neural-network-based safety-critical
control software: a systematic literature review. Inf. Softw. Technol. 123, 106296
(2020)

https://doi.org/10.23915/distill.00010
http://arxiv.org/abs/1708.08559

A Principal Component Analysis
Approach for Embedding Local
Symmetries into Deep Learning

Algorithms

Pierre-Yves Lagrave(B)

Thales Research and Technology, Palaiseau, France
pierre-yves.lagrave@thalesgroup.com

Abstract. Building robust-by-design Machine Learning algorithms is
key for critical tasks such as safety or military applications. By leverag-
ing on the ideas developed in the context of building invariant Support
Vectors Machines, this paper introduces a convenient methodology for
embedding local Lie groups symmetries into Deep Learning algorithms
by performing a Principal Component Analysis on the corresponding
Tangent Covariance Matrix. The projection of the input data onto the
principal directions leads to a new data representation which allows
singling out the components conveying the semantic information useful
to the considered algorithmic task while reducing the dimension of the
input manifold. Besides, our numerical testing emphasizes that, although
less efficient than using Group-Convolutional Neural Networks as only
dealing with local symmetries, our approach does improve accuracy and
robustness without introducing significant computational overhead. Per-
formance improvements up to 5% were obtained for low capacity algo-
rithms, making this approach of particular interest for the engineering
of safe embedded Artificial Intelligence systems.

Keywords: Safe machine learning · Robustness-by-design ·
Model-based engineering · Lie groups · Data representation

1 Introduction

Real world data embed structural symmetries, and incorporating those into
the design of Machine Learning models appears very natural (e.g., transla-
tion/rotation invariance for image classification, tone invariance for voice to text
translation). In this context, Convolutional Neural Networks (CNN) [12], which
ensure equivariance to translations, have been shown to be very efficient archi-
tectures for image processing tasks.

A simplified way of dealing with the generic notion of symmetry is to consider
Lie groups theory [16], so that we can represent the transformations of the input
data as the action of a Lie group on the set to which the inputs belong to.
c© Springer Nature Switzerland AG 2020
A. Casimiro et al. (Eds.): SAFECOMP 2020 Workshops, LNCS 12235, pp. 302–314, 2020.
https://doi.org/10.1007/978-3-030-55583-2_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-55583-2_22&domain=pdf
http://orcid.org/0000-0002-5774-636X
https://doi.org/10.1007/978-3-030-55583-2_22

Local Symmetries PCA for Deep Learning 303

According to this formalism, CNN used for image processing tasks therefore
appear to be equivariant to the action of the Lie group of translations on the set
of 2-dimensional images.

From a safety standpoint, data symmetries usually translate into require-
ments with respect to the behavior of the trained algorithms and taking those
into account in the algorithms design could provide a basis for the specification
of efficient post-hoc formal verification methods. Indeed, for critical tasks such
as safety or military applications (e.g., autonomous trains, drones flight trajec-
tory planning, etc.), proving the robustness of an algorithm is mandatory to its
deployment and robust-by-design algorithms are in this sense quite useful. With
respect to translations, CNN are examples of robust-by-design algorithms, as
the translation symmetry is directly encoded into the convolution layers.

Besides, other approaches for embedding symmetries into Machine Learning
algorithms exist, including the use of data augmentation techniques, the specifi-
cation of penalized loss functions [14] or the use of transformed input data [9,18].
As exogenous to the core algorithms design, they are particularly convenient from
a practical standpoint since they allow to leverage on existing efficient implemen-
tations of these. However, the performance results stemming from their coupling
with classical Machine Learning algorithms are unfortunately not always sup-
ported by a sound theory. Consequently, conducting some extensive robustness
testing is in this case a strong prerequisite to any operational deployment.

The purpose of this paper is to investigate a methodology relying on the
Principal Component Analysis (PCA) technique for embedding local Lie group
symmetries into Deep Learning algorithms. More precisely, by building and diag-
onalizing a Tangent Covariance Matrix (TCM), we propose leveraging on the
ideas introduced in [18] for Support Vector Machines (SVM) [22]. As shown by
our numerical results for the MNIST [13] and ROT-MNIST [11] datasets, feed
forward Neural Networks (NN) benefit from our proposed representation of the
input data obtained by projection onto the eigenvectors of the TCM. Indeed,
our results emphasize that the dimension of the input manifold can be signifi-
cantly reduced and that, for the same number of trainable parameters, better
performances are obtained with our PCA-based approach than with the classi-
cal method, improving accuracy and robustness by up to 5% for low capacity
algorithms. As our approach only aims at dealing with local symmetries, our per-
formance results are below those of state-of-the-art Group-Convolutional Neural
Networks (G-CNN), as expected. However, for a comparable number of param-
eters, our approach leads to algorithms which are significantly faster for both
training and making predictions. It therefore appears to be well suited to prac-
tical cases where clean input data may be scarce and computational resources
limited, as it is the case for embedded Machine Learning systems.

Although finding a rigorous justification to our results is not an easy task
as it is closely linked to the problem of specifying a rigorous Deep Learning
theory, we do provide some rational supporting our approach by using a data
representation formalism anchored in algebraic topology, as introduced in [2].

304 P.-Y. Lagrave

2 Related Work and Contributions

The development of Deep Learning algorithms embedding symmetries repre-
sented as group actions is an active area of research. Using group theory, several
attempts have been made to generalize the CNN structure to achieve equivari-
ance to more general actions, leading to algorithms known as G-CNN.

The G-CNN structure was first introduced in [4] and it was further shown
in [10] that, for compact groups, the use of equivariant layers is a necessary and
sufficient condition for building equivariant Neural Networks. Although their
proposed methodology has the advantage of being amenable to an efficient imple-
mentation, it has the drawbacks of requiring a discretization of continuous groups
(which is not always possible) and having a linear time complexity in the cardi-
nality of the discretized group.

Some work specifically focuses on Lie group symmetries and proposes to
build corresponding G-CNN. In [1], a B-splines approach is proposed but the
methodology is only applicable to homogeneous inputs spaces for the considered
group actions. Building on the same ideas, [21] proposes an architecture using
partial derivative equations to build equivariant layers to Lie group actions,
provided that these actions are transitive. The work [7] generalizes the above
approaches to general Lie group actions and to arbitrary continuous data. In
some less recent work focusing on pattern recognition in images [20], the usual
back-propagation algorithm is generalized to train Neural Networks with layers
preserving local invariance.

Embedding symmetries into the design of Machine Learning models has also
been investigated for other algorithms than NN, and in particular for SVM
algorithms [17]. In [18], it is shown that, for linear kernels, it is possible to build
SVM which are locally invariant to one-parameter Lie groups by whitening the
input data by multiplication with an appropriate matrix. Following the link
established with the PCA technique, this approach has been further generalized
to general kernels in [3].

The purpose of our work is to investigate the applicability of the PCA app-
roach derived in the context of building invariant SVM to Deep Learning algo-
rithms. More precisely, following the algebraic topological formalism introduced
in [2], our goal is to study the impact of data representation on the perfor-
mance on Neural Networks, focusing on representations emphasizing Lie group
symmetries.

We therefore see the contribution of this work as it follows:
– We generalize the PCA approach introduced for SVM to Deep Learning algo-

rithms operating on arbitrary inputs and subject to generic Lie group actions.
– We instantiate our framework for image classification tasks and we provide

some numerical results obtained when working with the reference MNIST and
ROT-MNIST digits datasets, together with a discussion with respect to the
performance of state-of-the-art G-CNN.

– To substantiate the rational of our approach, we analyze the PCA implied
data representation using a rigorous formalism, anchored in algebraic topol-
ogy theory.

Local Symmetries PCA for Deep Learning 305

3 Background

In the following, symmetries will be represented as actions of the elements of Lie
groups on the input data, and we give below some corresponding background.

3.1 Lie Groups

A group is a set G, together with a multiplication map � : G × G → G which
is required to be associative and to have a neutral element e ∈ G. Furthermore,
each element g ∈ G is required to be invertible in G, meaning that there exists
a unique element denoted g−1 such that g � g−1 = g−1 � g = e.

A Lie group is a group for which the elements form a smooth manifold and for
which the multiplication and inversion maps operate smoothly on this manifold.
The Lie algebra g of the Lie group G is the tangent space at the identity element
and is a vector space of dimension n equal to the dimension of G seen as a
manifold. The Lie algebra can therefore be represented by a basis ζ1, ..., ζn ∈ g of
infinitesimal generators, so that any transformation g ∈ G can be associated with
an infinitesimal generator ζg, which can be expressed as a linear combination of
the ζi ∈ g.

3.2 Group Action and Equivariance

A group G is acting on a set S if there exists a map ◦ : G × S → S which is
compatible with group law in the sense that h ◦ (g ◦ S) = (h � g) ◦ S, ∀g, h ∈ G.

For two sets X and Y on which a group G acts respectively with ◦X and
◦Y , a function f : X → Y is said to be G-equivariant if ∀x ∈ X and ∀g ∈ G,
f (g ◦X x) = g ◦Y f (x).

Similarly, f : X → Y is said to be G-invariant if f (g ◦X x) = f (x), ∀x ∈ X
and ∀g ∈ G.

Hence, G-invariance is therefore a special case of G−equivariance, for which
the group action ◦Y is trivial.

3.3 Some Examples

We consider the set I2 of 2−dimensional gray scale images that we represent, as
in [20] using convolution techniques, by continuous functions f : R

2 → [−1, 1],
where f (x, y) represents the value of the renormalized pixel at position (x, y).

Examples of Lie groups acting on the set I2 include the translation group
R

2, the rotation group SO(2) and the special euclidean group SE(2).
For t=(t1, t2) ∈ R

2, its action on f ∈ I2 is defined by:

(t ◦ f) (x, y) = f (x + t1, y + t2) (1)

For Rθ ∈ SO(2), its action on f ∈ I2 is defined by:

(Rθ ◦ f) (x, y) = f (x cos θ − y sin θ, x sin θ + y cos θ) (2)

For Tt,θ ∈ SE(2), its action on f ∈ I2 is defined by:

(Tt,θ ◦ f) (x, y) = f (t1 + x cos θ − y sin θ, t2 + x sin θ + y cos θ) (3)

306 P.-Y. Lagrave

4 Tangent PCA Implied Data Representation

After having introduced some mathematical tools for manipulating data repre-
sentations, we specify our PCA-based approach for Deep Learning algorithms
and we make a link with the data augmentation techniques.

4.1 Mathematical Framework for Data Representation

Following the ideas from [2], we see the input data as functions spaces, i.e. as sets
of real-valued functions on some topological space V . More formally, denoting
by X the input space, a data point x ∈ X will be associated with a set Fx

of functions fx operating on the topological space V . We denote by ∼ this
association, so that x ∼ {fx (V) , fx ∈ Fx}. In the following, we call a function
fx ∈ Fx a representation of x.

Coming back to the gray scale image example, we have V = R
2 and the set

FI for a given image I in particular includes f0
I , the function associating each

position to its pixel value in a default observation setting, all the translations
and rotations of f0

I , the Fourier Transform of f0
I , etc.

More generally, if a data point x ∈ X is represented by a function f0
x ∈ Fx

and is subject to the action of a Lie group G, then its functional space contains
all the functions g ◦ f0

x , for all g ∈ G. In the following, we consider a discrete
measurement, meaning that a data point x represented by fx will be written as
x = (fx (v1) , ..., fx (vN)), for vi ∈ V and N ∈ N

∗.

4.2 Deep Learning and TCM Based PCA Transformations

We remind here that [18] proposes training SVM which are (locally) invariant to
a one parameter Lie group by minimizing the expected �2 norm of the associated
infinitesimal generator applied to the decision boundary function. For linear ker-
nels, the authors show that this optimization problem can actually be solved by
training a SVM on whitened inputs and they also provide a PCA interpretation
of their approach. In [3], the same approach is applied to non-linear kernels by
building an appropriate Kernel-PCA map. In the following, we propose lever-
aging on the PCA interpretation of these approaches for embedding invariance
properties into Deep-Learning algorithms.

To do so, we start from a training data set (x1, y1),...,(xl, yl), with xi ∈ R
N

and yi ∈ R, and we consider that each input xi is represented by a corresponding
function fxi

, i.e. that we have xi =
(
fxi

(
vi

k

))N

k=1
. We further assume that we

are interested in building a Deep Learning algorithm targeting the invariance to
the transformations arising with the action on R

N of a n-dimensional Lie group
G, with Lie algebra g represented by its basis ζ1, ..., ζn. Following the approach
described in [18] for linear SVM, we define the corresponding TCM CG as it
follows,

CG =
1
n

n∑

i=1

⎧
⎨

⎩
1
l

l∑

j=1

ζi (xj) ζi (xj)
T

⎫
⎬

⎭
(4)

Local Symmetries PCA for Deep Learning 307

where u → uT refers to the transpose operator.
By diagonalizing CG, we obtain the decomposition CG = SGDGST

G, where SG

is an orthogonal matrix of eigenvectors and DG a diagonal matrix of eigenvalues.
We then propose building new representations fG

xi
of the inputs by projecting the

original data onto the eigenvectors of the TCM CG. More precisely, we define:

fG
xi

(
vi

k

)
= 〈SGxi, ek〉

RN (5)

where (e1, ..., eN) is the canonical basis of R
Nand 〈., .〉

RN the canonical scalar
product. To ease the exposition, we have only detailed here the formalism cor-
responding to the linear PCA approach. However, non-linear transformations
of the original data could also be obtained by using the Kernel-PCA projec-
tion technique [19] in which the tangent vectors are embedded into some high
dimensional space.

By using the representations fG
xi

as inputs to Deep Learning algorithms, we
aim at separating the components which are G-invariant from those which are
less semantically meaningful for the considered task. For instance, coming back
to the example given in [18] in the context of image classification, this approach
allows separating the component corresponding to the relative value of the pixels
from that corresponding to their absolute position.

In some sense, this approach externalizes some logic from the algorithms, as
relevant features are directly passed as inputs instead of being learned through
the networks. By doing so, the algorithms could get faster to a meaningful inter-
nal representation of the data for the considered task, which would be possibly of
smaller dimension than in the original set-up by using less trainable parameters,
as illustrated on Fig. 1. Besides, as for the usual PCA approach, the dimension of
the input manifold could be reduced in some cases, keeping in mind that we are
however interested in removing components with a high relative variance, as they
are those conveying the less useful information. Coming back to the example of
Fig. 1 where the reduction dimension of the input space is not represented, if the
contribution of fx (v1) to the outputs is low enough, it can simply be removed.

When working with the linear approach, a link with the initialization strategy
of the weights Ω of the first layer of the NN can also be established. Indeed, the
first activation function is applied component-wise to the vector ΩSGx and the
PCA transform would be made statistically void if the weights were to be sam-
pled according to a spherical distribution (e.g., i.i.d Gaussian random variables).
We therefore propose sampling these weights uniformly in a hypercube.

The above discussion is quite heuristic and does not aim at giving a rigorous
proof for the validity of our approach. This is indeed a challenging task as deeply
related to the specification of a generic Deep Learning theory, which is in itself
a very active domain of research as illustrated by [5,6,15]. We have rather tried
to formalize the underlying intuitions.

4.3 Link with Data Augmentation Techniques

Another approach for embedding symmetries into a Deep Learning algorithm
consists in augmenting the training dataset with symmetrized inputs, hoping

308 P.-Y. Lagrave

Fig. 1. On the left, a Neural Network tailored for the representation fxi is operating on
the PCA implied representation fG

xi
. We assume that the value of the first component

fxi

(
vi
1

)
has a high variance with respect to the action of G and has a low relative

impact, though not negligible, on the learned features and on the output value yi. On
the right, a Neural Network with fewer parameters and operating on the representation
fG
xi

should lead to similar performance results.

for the algorithm to learn the corresponding invariance directly from the data
during its training.

More precisely, data augmentation techniques consist in adding more train-
ing inputs of the form (g ◦ xi, yi), for some g ∈ H, with H ⊆ G. Hence, by seeing
g1 ◦ xi, g2 ◦ xi, etc., corresponding to a same output yi, the algorithm is some-
how able to learn the invariance property. It means that part of the algorithm
logic is dedicated to this task. In our approach, we directly encode the local
invariance property into the PCA-transformed inputs, leading to a more com-
pact representation of the useful information and allowing to a faster training
of the algorithm. However, as our approach only deals with local invariance, it
can still benefit from data augmentation, as illustrated by our numerical results
shown in Sect. 5.

To illustrate the above discussion, let’s consider N = 2, G = SO(2), g1 = Rθ

and g2 = Rθ+dθ. By operating on the augmented training dataset, an algorithm
can therefore access the infinitesimal generator ζθ and imply the corresponding
invariant features, to be used in deeper layers. In our approach, these features
embedding the information about the group action are directly given as inputs.

5 Numerical Experiments

We give in this section the numerical results obtained when testing our app-
roach in the context of image classification, using both MNIST and ROT-MNIST
datasets. In this context, we denote N nh,nl the fully connected NN with nl layers
of nh neurons with ReLu activation functions and with one output layer of 10
neurons, on the top of which a softmax function is applied. With respect to the
initialization of the NN, the weights are sampled uniformly following [8] and the
bias are set to zero.

When the algorithm N nh,nl operates on data transformed according to the
linear PCA approach corresponding to a group G, it will be denoted N nh,nl

G .
While performing our testing, we have been interested in several dimensions,

Local Symmetries PCA for Deep Learning 309

including in particular the generalization accuracy and the robustness of the
considered algorithms. All our tests and timing estimations have been performed
by running the algorithms using 8 Intel cores of type i7-8705G CPU @ 3.10 GHz.

The testing we have performed is subject to the statistical noise stemming
from several randomness components, including in particular the NN weights
initialization and the generation of the evaluation scenarios. In order to better
appreciate the statistical relevance of the reported results, each experiment has
been conducted 10 times and we report the corresponding average result A,
together with the associated standard deviation σ, by using the notation A(σ).

5.1 MNIST Dataset

When working with the MNIST dataset, all the considered algorithms have
been trained on the original training set of 60,000 samples. Their accuracy and
robustness have then been measured on the original testing set of 10,000 samples,
and on the following additional testing scenarios:

– hvt: a random translation of (th, tv) pixels, where th ∼ U (−2, 2) and tv ∼
U (−2, 2), is applied to each of the original 10,000 testing samples.

– rot: a random rotation of θ degrees, where θ ∼ U (−30, 30), is applied to each
of the original 10,000 testing samples.

– iso: a random isometry, i.e. a combination of a random translation of
(th, tv) pixels and a random rotation of θ degrees, where th ∼ U (−2, 2),
tv ∼ U (−2, 2), and θ ∼ U (−30, 30), is applied to each of the original 10,000
testing samples.

The three above scenarios, for which U (a, b) refers to the uniform distribution on
the interval [a, b], respectively correspond to the action of a local Lie subgroup
of the translation group R

2, the rotation group SO(2) and the special euclidean
group SE (2), which have been introduced in Sect. 3.

From the results shown in Table 1, we see that our PCA-based approach
allows achieving better accuracy results than the classical approach. The net-
works N nh,1

G also appear to be more robust than N nh,1, even for scenarios which
do not necessarily correspond to the underlying Lie group G - for instance,
N nh,1

SO(2) consistently achieves better performance results than N nh,1
R2 in the hvt

scenario.
As discussed in Sect. 4, our PCA approach could be used to reduce the size

of the input layer by removing the components with a high relative variance.
This point is illustrated by the results shown on Fig. 2, where we in particular
observe that N 32,1

SO(2) remains quite efficient when compared to N 32,1, even after
having removed 200 components out of the original 784. Although the slope
of the accuracy decrease is also quite small for other groups, the benefit of the
dimension reduction is however less pronounced than for the SO(2) case. Despite
the fact that these results are promising with respect to the design of embedded
algorithms operating with memory constraints, we have however not observed
any accuracy improvement when removing the components.

310 P.-Y. Lagrave

Table 1. MNIST dataset accuracy results for fully connected Neural Networks, trained
with 50 epochs. From left to right and top to bottom: original testing set, hvt, rot and
iso scenarios

nh Nnh,1 Nnh,1

R2 Nnh,1
SO(2) Nnh,1

SE(2) Nnh,1 Nnh,1

R2 Nnh,1
SO(2) Nnh,1

SE(2)

32 95.5(0.5) 96.3(0.1) 96.5(0.2) 96.3(0.2) 82.0(1.9) 84.9(0.8) 86.1(0.8) 84.7(0.5)

64 96.9(0.2) 97.3(0.1) 97.3(0.2) 97.2(0.1) 86.9(0.6) 88.2(0.7) 88.8(0.7) 88.0(0.4)

128 97.3(0.3) 97.7(0.2) 97.7(0.2) 97.7(0.1) 88.6(0.4) 89.6(0.3) 90.1(0.6) 89.5(0.6)

256 97.7(0.2) 97,8(0.1) 97.9(0.1) 97.9(0.1) 89.4(0.8) 90.3(0.8) 90.9(0.4) 90.0(0.7)

512 97.7(0.1) 97.9(0.2) 98.1(0.1) 98.0(0.2) 89.7(0.7) 90.3(0.5) 91.5(0.4) 90.5(0.4)

nh Nnh,1 Nnh,1

R2 Nnh,1
SO(2) Nnh,1

SE(2) Nnh,1 Nnh,1

R2 Nnh,1
SO(2) Nnh,1

SE(2)

32 86.1(1.3) 87.7(0.7) 88.1(0.6) 87.4(0.3) 71.6(2.3) 74.3(0.9) 75.7(0.5) 74.0(0.5)

64 89.1(0.4) 89.7(0.3) 90.0(0.5) 89.8(0.5) 76.8(0.8) 78.2(0.7) 79.0(0.8) 78.0(1.1)

128 90.3(0.8) 91.0(0.3) 91.0(0.5) 91.0(0.4) 79.1(1.1) 80.1(0.7) 81.0(0.5) 80.0(0.8)

256 91.1(0.5) 91.2(0.3) 91.6(0.5) 91.3(0.4) 80.3(1.1) 80.9(0.8) 82.2(0.8) 80.7(0.6)

512 91.4(0.8) 91.4(0.7) 92.0(0.4) 91.8(0.6) 80.5(1.3) 81.1(0.9) 83.1(0.6) 81.6(0.4)

Fig. 2. Accuracy of the several algorithms N 32,1
G measured as a function of the removed

PCA components on the testing set (left) and on the rot scenario (right) for the MNIST
dataset, with the markers size being proportional to the associated standard deviation

5.2 ROT-MNIST Dataset

To draw a comparison with state-of-the art results for G-CNN algorithms, we
have conducted some testing using the ROT-MNIST dataset for which the algo-
rithms are trained on the 12,000 samples of the original training set. Their
accuracy is then measured on the 50,000 samples of the testing set, without
any further processing. The corresponding results include the cases of training
without and with data augmentation. In [4,7] the data augmentation is done
by randomly rotating each element during the optimization process. To be able
to apply our approach without having to develop specific optimization routines,
we have proceeded differently by defining an augmentation factor κ so that, for
each sample (xi, yi) in the original training set, we have added κ−1 new samples
(gj ◦ xi, yi), for g1, ..., gκ−1 drawn uniformly from the rotation group SO(2).

Local Symmetries PCA for Deep Learning 311

The Table 2 shows that, for the testing set, our PCA-based methodology
allows to obtain better results than the original structure N nh,2 and that better
results are obtained with our approach by using less parameters, consistently
with the MNIST dataset results. We can also see that our approach seems to be
compatible with the data augmentation technique, as we still get some improve-
ments even for large augmentation factors such as κ = 32. Besides, when con-
sidering the iso scenario, we see that working with SO(2) leads to lower accu-
racy results than those obtained when considering R

2 and SE(2). This result is
expected as, with this dataset, the rotation invariance is actually embedded dur-
ing the training in all the considered algorithms, as opposed to the translation
one. The fact that N nh,2

SO(2) underperforms N nh,2 in the iso scenario for nh ≥ 128
may be due to some overfitting with respect to the rotation component.

Also, similar experiments as those corresponding to the results of Fig. 2 have
shown that N 32,2

SO(2) outperforms N 32,2 on the testing set even after the removal of

200 components. Moreover, N 32,2
R2 and N 32,2

SE(2) outperform N 32,2 and N 32,2
SO(2) in

the hvt scenario up to the removal of 25 components. However, when removing
additional components, N 32,2

SO(2) outperforms the two algorithms embedding a
translation invariance, consistently with the results obtained for the MNIST
dataset.

With respect to the comparison with state-of-the-art algorithms and in par-
ticular, with the LieConv approach [7], the Table 3 gives the results obtained
using the implementation of the authors and their ImgLieResnet architecture.
We can see that the ImgLieResnet algorithm allows reaching consistently bet-
ter performance than those reported by our approach in Table 2. This result
is expected because their architecture allows embedding the entire Lie group
symmetries within the network, while our approach only deals with local sym-
metries. Moreover, the topology of the ImgLieResnet is quite different to that
of fully connected NN, including in particular several convolutional layers which
have been proven very efficient for image processing tasks.

These performance differences have also to be put in perspective of the
timings associated with the two approaches. When comparing the ImgLieRes-
net with the parameters described in [7] (≈ 600k parameters) with N 512,2

G (≈
650k parameters), we observed that the training time was approximately 900
sec/epoch for the former and of 0.9 sec/epoch for the latter. With respect to
prediction timing, the ImgLieResnet is also much slower than N 512,2

G , taking
approximately 4.2×10−2 sec/sample to be compared with 2.7×10−5 sec/sample.

312 P.-Y. Lagrave

Table 2. ROT-MNIST testing set (top) and iso scenario (bottom) accuracy results
for fully connected Neural Networks, trained with 50 epochs without (left) and with
(right) data augmentation (κ = 32)

nh Nnh.2 Nnh.2

R2 Nnh.2
SO(2) Nnh.2

SE(2) Nnh.2 Nnh.2

R2 Nnh.2
SO(2) Nnh.2

SE(2)

32 69.3(1.9) 73.1(0.6) 75.8(0.8) 71.6(1.1) 82.2(4.6) 89.1(0.3) 89.4(0.3) 88.9(0.4)

64 79.3(0.9) 80.6(1.2) 82.4(1.0) 80.2(0.4) 90.8(0.7) 92.5(0.2) 92.2(0.2) 92.5(0.2)

128 83.8(1.1) 85.1(1.1) 86.0(0.7) 85.0(0.1) 93.2(0.4) 94.7(0.1) 94.5(0.2) 94.7(0.1)

256 85.7(1.3) 85.9(0.9) 87.2(0.9) 86.5(1.4) 94.7(0.1) 96.0(0.1) 95.7(0.1) 95.9(0.1)

512 86.7(0.9) 87.2(1.2) 87.4(0.5) 86.8(0.5) 94.8(0.3) 96.3(0.1) 96.2(0.1) 96.2(0.2)

nh Nnh.2 Nnh.2

R2 Nnh.2
SO(2) Nnh.2

SE(2) Nnh.2 Nnh.2

R2 Nnh.2
SO(2) Nnh.2

SE(2)

32 46.5(1.9) 49.2(0.8) 46.9(0.9) 49.8(0.7) 49.9(2.7) 55.5(1.2) 54.8(0.5) 55.7(0.7)

64 52.5(0.8) 55.1(0.9) 52.0(1.1) 56.3(0.6) 57.1(1.3) 61.3(0.8) 60.0(0.6) 62.2(0.7)

128 57.7(0.9) 60.0(0.6) 56.3(0.5) 60.8(0.5) 63.5(1.1) 66.8(0.3) 62.7(0.9) 66.7(1.13)

256 60.6(1.3) 61.5(1.0) 58.9(0.7) 62.7(1.5) 66.9(0.6) 69.8(0.5) 65.7(0.6) 70.1(0.40)

512 61.7(1.5) 62.7(1.4) 59.6(0.5) 63.8(1.0) 67.5(0.8) 71.0(0.9) 67.4(0.5) 71.7(0.41)

Table 3. ImgLieResnet results for the ROT-MNIST dataset, with and without data
augmentation

DataAug/G R
2 SO(2) SE(2)

With 98.50 98.60 98.61

Without 95.32 97.82 95.96

6 Conclusions and Further Work

By leveraging on the ideas developed in the context of building locally invari-
ant SVM algorithms, we have specified a PCA-based approach for embedding
Lie groups symmetries into Deep Learning algorithms. We have motivated the
rational of our approach by using a data representation formalism anchored
in algebraic topology and have shown some numerical results for two reference
datasets.

The conducted testing shows that, although our approach is not as efficient
as G-CNN algorithms, it does allow obtaining some improvements with respect
to standard fully connected Neural Networks for both accuracy and robustness
dimensions. We have also highlighted that, for the considered datasets, working
with SO(2) allows to significantly reduce the dimension of the input manifold.

Besides, our approach is also quite convenient as it does not induce any
material computational overhead compared to the standard one, except for the
diagonalization of the TCM (PCA step for linear kernels) which can be per-
formed offline on a standalone basis. The timings for G-CNN obtained using the
LieConv implementation are however significantly higher, for both training and
prediction.

Local Symmetries PCA for Deep Learning 313

The testing we performed only covered image classification tasks for quite
simple datasets and it will be interesting to evaluate our methodology for other
inputs types, with more complex structures. In this context, we will investigate
its applicability to real-world examples involving structured datasets such as
radar signals analysis and to real-world perception pipelines operating at a high
frequency, with limited computational resources. This will constitute the oppor-
tunity to consider the use of non-linear kernels into more details, to better link
the NN weights initialization strategy with our approach, and to better quantify
the robustness of the approach with respect to several degrees of transformation
of the training data.

Finally, the scope of this paper is limited to Lie groups based transformations,
but we believe that the approach consisting in using informed data representa-
tions could be extended to more generic transformations by using projection
techniques onto appropriate Lie algebras. The corresponding results could then
be used to increase the robustness with respect to adversarial attacks, should
the corresponding perturbations exhibit enough structure.

References

1. Bekkers, E.J.: B-spline CNNs on lie groups. In: International Conference on Learn-
ing Representations (2020). https://openreview.net/forum?id=H1gBhkBFDH

2. Bergomi, M., Frosini, P., Giorgi, D., et al.: Towards a topological-geometrical the-
ory of group equivariant non-expansive operators for data analysis and machine
learning. Nat. Mach. Intell. 1, 423–433 (2002). https://doi.org/10.1038/s42256-
019-0087-3

3. Chapelle, O., Schölkopf, B.: Incorporating invariances in nonlinear support vector
machines. In: Proceedings of the 14th International Conference on Neural Infor-
mation Processing Systems: Natural and Synthetic, NIPS 2001, pp. 609–616. MIT
Press, Cambridge (2001)

4. Cohen, T., Welling, M.: Group equivariant convolutional networks. In: Balcan,
M.F., Weinberger, K.Q. (eds.) Proceedings of The 33rd International Conference
on Machine Learning. Proceedings of Machine Learning Research, PMLR, New
York, 20–22 June 2016, vol. 48, pp. 2990–2999 (2016). http://proceedings.mlr.
press/v48/cohenc16.html

5. Cohen, U., Chung, S., Lee, D., et al.: Separability and geometry of object manifolds
in deep neural networks. Nat. Commun. 11(746), 1–13 (2020). https://doi.org/10.
1038/s41467-020-14578-53

6. Ensign, D., et al.: The complexity of explaining neural networks through (group)
invariants. In: Hanneke, S., Reyzin, L. (eds.) Proceedings of the 28th International
Conference on Algorithmic Learning Theory. Proceedings of Machine Learning
Research, PMLR, Kyoto University, Kyoto, Japan, 15–17 Oct 2017, vol. 76, pp.
341–359 (2017). http://proceedings.mlr.press/v76/ensign17a.html

7. Finzi, M., Stanton, S., Izmailov, P., Wilson, A.G.: Generalizing convolutional neu-
ral networks for equivariance to lie groups on arbitrary continuous data. arXiv
preprint arXiv:2002.12880 (2020)

https://openreview.net/forum?id=H1gBhkBFDH
https://doi.org/10.1038/s42256-019-0087-3
https://doi.org/10.1038/s42256-019-0087-3
http://proceedings.mlr.press/v48/cohenc16.html
http://proceedings.mlr.press/v48/cohenc16.html
https://doi.org/10.1038/s41467-020-14578-53
https://doi.org/10.1038/s41467-020-14578-53
http://proceedings.mlr.press/v76/ensign17a.html
http://arxiv.org/abs/2002.12880

314 P.-Y. Lagrave

8. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward
neural networks. In: Teh, Y.W., Titterington, M. (eds.) Proceedings of the Thir-
teenth International Conference on Artificial Intelligence and Statistics. Proceed-
ings of Machine Learning Research, PMLR, Chia Laguna Resort, Sardinia, Italy,
13–15 May 2010, vol. 9, pp. 249–256 (2010). http://proceedings.mlr.press/v9/
glorot10a.html

9. Kondor, R.: Group theoretical methods in machine learning. Ph.D. thesis (2008)
10. Kondor, R., Trivedi, S.: On the generalization of equivariance and convolution

in neural networks to the action of compact groups. In: Dy, J.G., Krause, A.
(eds.) Proceedings of the 35th International Conference on Machine Learning,
ICML 2018, Stockholmsmässan, Stockholm, Sweden, 10–15 July 2018, Proceed-
ings of Machine Learning Research, vol. 80, pp. 2752–2760. PMLR (2018). http://
proceedings.mlr.press/v80/kondor18a.html

11. Larochelle, H., Erhan, D., Courville, A., Bergstra, J., Bengio, Y.: An empirical eval-
uation of deep architectures on problems with many factors of variation. In: Pro-
ceedings of the 24th International Conference on Machine Learning. ICML 2007,
pp. 473–480. Association for Computing Machinery, New York (2007). https://doi.
org/10.1145/1273496.1273556

12. LeCun, Y., Bengio, Y.: Convolutional Networks for Images, Speech, and Time
Series, pp. 255–258. MIT Press, Cambridge (1998)

13. LeCun, Y., Cortes, C., Burges, C.: Mnist handwritten digit database. ATT Labs
(2010). http://yann.lecun.com/exdb/mnist

14. Leen, T.K.: From data distributions to regularization in invariant learning. Neural
Comput. 7(5), 974–981 (1995). https://doi.org/10.1162/neco.1995.7.5.974

15. Mallat, S.: Understanding deep convolutional networks. Philos. Trans. R. Soc. A:
Math. Phys. Eng. Sci. 374(2065) (2016). https://doi.org/10.1098/rsta.2015.0203

16. Olver, P.: Applications of Lie Groups to Differential Equations. Springer, New York
(1993)

17. Schölkopf, B., Burges, C., Vapnik, V.: Incorporating invariances in support vector
learning machines. In: von der Malsburg, C., von Seelen, W., Vorbrüggen, J.C.,
Sendhoff, B. (eds.) ICANN 1996. LNCS, vol. 1112, pp. 47–52. Springer, Heidelberg
(1996). https://doi.org/10.1007/3-540-61510-5 12

18. Schölkopf, B., Simard, P., Smola, A., Vapnik, V.: Prior knowledge in support vector
kernels. In: Proceedings of the 1997 Conference on Advances in Neural Information
Processing Systems, NIPS 1997, vol. 10, pp. 640–646. MIT Press, Cambridge (1998)

19. Schölkopf, B., Smola, A., Müller, K.-R.: Kernel principal component analysis.
In: Gerstner, W., Germond, A., Hasler, M., Nicoud, J.-D. (eds.) ICANN 1997.
LNCS, vol. 1327, pp. 583–588. Springer, Heidelberg (1997). https://doi.org/10.
1007/BFb0020217

20. Simard, P.Y., LeCun, Y.A., Denker, J.S., Victorri, B.: Transformation invariance
in pattern recognition — tangent distance and tangent propagation. In: Orr, G.B.,
Müller, K.-R. (eds.) Neural Networks: Tricks of the Trade. LNCS, vol. 1524, pp.
239–274. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49430-8 13

21. Smets, B., Portegies, J., Bekkers, E., Duits, R.: PDE-based group equivariant con-
volutional neural networks (2020)

22. Vapnik, V.: The Nature of Statistical Learning Theory. Statistics for Engineering
and Information Science. Springer, Heidelberg (2000). https://doi.org/10.1007/
978-1-4757-3264-1

http://proceedings.mlr.press/v9/glorot10a.html
http://proceedings.mlr.press/v9/glorot10a.html
http://proceedings.mlr.press/v80/kondor18a.html
http://proceedings.mlr.press/v80/kondor18a.html
https://doi.org/10.1145/1273496.1273556
https://doi.org/10.1145/1273496.1273556
http://yann.lecun.com/exdb/mnist
https://doi.org/10.1162/neco.1995.7.5.974
https://doi.org/10.1098/rsta.2015.0203
https://doi.org/10.1007/3-540-61510-5_12
https://doi.org/10.1007/BFb0020217
https://doi.org/10.1007/BFb0020217
https://doi.org/10.1007/3-540-49430-8_13
https://doi.org/10.1007/978-1-4757-3264-1
https://doi.org/10.1007/978-1-4757-3264-1

A Framework for Building Uncertainty
Wrappers for AI/ML-Based Data-Driven

Components

Michael Kläs(B) and Lisa Jöckel(B)

Fraunhofer Institute for Experimental Software Engineering IESE,
Fraunhofer-Platz 1, 67663 Kaiserslautern, Germany

{michael.klaes,lisa.joeckel}@iese.fraunhofer.de

Abstract. More and more software-intensive systems include components that
are data-driven in the sense that they use models based on artificial intelligence
(AI) or machine learning (ML). Since the outcomes of such models cannot be
assumed to always be correct, related uncertainties must be understood and taken
into accountwhendecisions aremadeusing these outcomes. This applies, in partic-
ular, if such decisions affect the safety of the system. To date, however, hardly any
AI-/ML-based model provides dependable estimates of the uncertainty remaining
in its outcomes. In order to address this limitation, we present a framework for
encapsulating existing models applied in data-driven components with an uncer-
tainty wrapper in order to enrich the model outcome with a situation-aware and
dependable uncertainty statement. The presented framework is founded on exist-
ingwork on the concept andmathematical foundation of uncertaintywrappers. The
application of the framework is illustrated using pedestrian detection as an exam-
ple, which is a particularly safety-critical feature in the context of autonomous
driving. The Brier score and its components are used to investigate how the key
aspects of the framework (scoping, clustering, calibration, and confidence limits)
can influence the quality of uncertainty estimates.

Keywords: Artificial intelligence ·Machine learning · Safety engineering · Data
quality · Operational design domain · Out-of-distribution · Dependability

1 Introduction

Components based on machine learning and other AI methods are increasingly finding
their way into software-intensive systems. In this context, we talk about data-driven
components (DDCs) if the functionality provided by the component is not explicitly
specified and implemented by developers, but is automatically generated by algorithms
based on data. Such data-driven components play an important role, particularly in
areas such as autonomous driving or Industry 4.0, because they provide opportunities
for perception that cannot yet be reasonably realized with conventional software. Well-
known tasks are the recognition of people, traffic signs, or other objects and structures
in camera images, but also speech recognition and natural language processing.

© Springer Nature Switzerland AG 2020
A. Casimiro et al. (Eds.): SAFECOMP 2020 Workshops, LNCS 12235, pp. 315–327, 2020.
https://doi.org/10.1007/978-3-030-55583-2_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-55583-2_23&domain=pdf
https://doi.org/10.1007/978-3-030-55583-2_23

316 M. Kläs and L. Jöckel

Especially when applied in the context of safety-critical systems, there is, however,
the challenge that – in contrast to traditional software –we can neither assumenor demon-
strate that data-driven components will provide the intended output for any input. For
example, we cannot assume that a person recognition component will really recognize
all types of people in any operating condition. The outputs of data-driven components are
thus always subject to uncertainty. Therefore, it seems essential to quantify the degree
of uncertainty, which is usually also situation-dependent, and consider it in subsequent
decision-making. For example, when the outcome of a pedestrian being detected at a
distance of 40 m has a moderate uncertainty, this could lead to a precautionary reduction
in speed, whereas when the outcome is highly uncertain, i.e., if there is probably no
pedestrian, the current speed may be maintained as long as sufficient time remains for a
braking maneuver at short notice.

Existing data-drivenmodels (DDMs) andmodeling approaches, however, usually do
not explicitly consider uncertainty in their outcomes, or provide uncertainty estimates
that are not dependable from a statistical point of view [1]. To address this limitation,
which we discuss further in the background section of this paper, Kläs and Sembach
introduced the mathematical foundations for ‘uncertainty wrappers’, which enclose
an existing data-driven model and enrich its outcomes with dependable uncertainty
estimates [2]. The concept considers the three different kinds of common sources of
uncertainty introduced in the onion shell model: limitations regarding themodel fit, data
quality, and scope compliance [3].

Contribution: To make uncertainty wrappers applicable in practice, we developed a
framework, which we present in this paper. The framework underpins the previously
published mathematical concepts with specific methods and provides a reference archi-
tecture as well as tooling support for building and applying uncertainty wrappers. In
order to show its applicability and potential benefits, we illustrate the application on
an existing DDM for pedestrian detection and investigate how the key elements of the
framework (scoping, clustering, calibration, and confidence limits) influence the quality
of uncertainty estimates as measured by the Brier score and its components.

Structure: Section 2 motivates the relevance of the proposed framework, positioning it
in the context of related work and introduces the Brier score measure. Section 3 presents
the framework and illustrates its use on a simplified example of pedestrian detection.
Section 4 investigates which parts of estimation quality as measured by the Brier score
are addressed by the key aspects of the framework. Finally, Sect. 5 concludes the paper
with previous application experience and an outlook on future work.

2 Background

In this section, we will first provide a short summary on uncertainty estimates and
observed limitations in their calculations (see [1] for a more elaborate discussion). Next,
we will briefly introduce the foundations of the uncertainty wrapper concept that we use
and elaborate in this paper. Finally, we will introduce the Brier score as a measure for
evaluating uncertainty estimates.

A Framework for Building Uncertainty Wrappers 317

Uncertainty Estimates: Uncertainty estimates for categorical outcomes, which are
commonly provided as probabilities, can be obtained by different means. There are,
for example, specific kinds of DDMs that implicitly provide uncertainty estimates, such
as decision trees, which provide not only the selected category, but also its probability.
Several ML approaches have also been extended to provide DDMswith uncertainty esti-
mates (e.g., various Neural Networks [4, 5]). For example, Henne et al. [6] and Snoek,
et al. [7] provide benchmarking for a selection of such approaches. However, uncer-
tainty estimates directly provided by DDMs are usually not dependable, i.e., there is no
statistical guarantee for these values. Sometimes the provided values are not even prob-
abilities in a probabilistic sense, such as in the case of Naïve Bayes and Support Vector
Machines. Moreover, DDMs usually focus on providing accurate prediction results, not
uncertainty estimates. Therefore, they ignore uncertainty-relevant features that do not
contribute to the accuracy of the model. Finally, their estimates are usually calculated
based on data used during model training, which increases the risk of overfitting and
thus of overconfident estimates [1].

There are approaches that can be applied to calibrate improper probability estimates
using an independent representative calibration dataset [8]. Scikit-learn, e.g., provides
algorithms for sigmoid (parametric) and isotonic (nonparametric) calibration [9]. How-
ever, the use of calibration methods does not solve the problem that the provided uncer-
tainty estimates are usually received from a black box; e.g., domain experts cannot
semantically validate the criteria based on which the model decides whether a certain
result has a higher or lower attributed uncertainty. Moreover, the calibration methods of
which we are aware provide no upper boundary for the estimated uncertainty given a
requested level of statistical confidence, which limits their usefulness in a safety argu-
ment. Finally, existing approaches largely ignore the fact that a DDM might also be
applied outside the scope for which it was calibrated and that the provision of realistic
uncertainty estimates and of accurate outcomes does not necessarily require the same
inputs and features, which is, however, an implicit assumption when integrating the
calculation of uncertainty estimates directly into a DDM [1].

Uncertainty Wrapper: Themodel-agnostic concept of an uncertaintywrapper proposed
by Kläs & Sembach [2] addresses these limitations. It defines uncertainty as the likeli-
hood that the outcome of a DDM is not correct considering a given definition of correct-
ness. Based on this definition, Kläs & Sembach show that uncertainty can be mathemati-
cally decomposed into the three classes of an onion shell model [3]: (1)Model-fit-related
uncertainty occurs due to the inherent modeling limitations when creating a DDM. (2)
Quality-related uncertainty results from applying a DDM on input data with quality
limitations, which is a common phenomenon in practice. (3) Finally, scope-compliance-
related uncertainty addresses circumstances where a DDM is applied for cases outside
the application scope for which it was built and tested.

Wheremodel-fit-related uncertainty can be determinedwith traditionalmodel testing
approaches, the likelihood of scope compliance is determined by ‘scoping’. Scoping
checks the adherence of a specific case to a number of scope factors that should all be
valid for each case within the intended application scope. Quality-related uncertainty
is addressed by clustering the cases in the application scope into areas with similar
uncertainty considering relevant quality factors. The estimates for individual clusters

318 M. Kläs and L. Jöckel

need to be calibrated on a dataset representative for the intended application scope.
Finally, considering a requested level of confidence, statistics are proposed for estimating
an upper boundary for the uncertainty in each cluster.

Although the concept of uncertainty wrappers appears promising, a framework oper-
ationalizing the concept has been missing to date, along with a reference architecture
for the wrapper, specific methods that can be applied for clustering and scoping, as well
as tooling support.

The work most closely related to the framework proposed in this paper may be the
framework proposed by Czarnecki and Salay for managing perceptual uncertainty [10],
which, however, remains on a more descriptive level. Whereas the uncertainty wrapper
focuses on situation-aware estimates at runtime, known tooling support usually focuses
on dealing with uncertainty at design time. For example, Matsuno et al. [11] provide
a tool that investigates how uncertainty in ML affects safety arguments, and the nn-
dependability-kit examines the robustness of data-driven components against known
perturbations during testing [12].

Evaluating Uncertainty Estimates: Defining uncertainty as the probability that the
DDM outcome is not correct, we can consider uncertainty estimation as a (binary)
probabilistic classification task. With scoring rules, decision theory provides a means
for evaluating the utility of such estimates. We generally request certain properties for
scoring rules to be reasonable; themost relevant one is that they should be strictly proper.
Strictly proper scoring rules assure that the scoring result only depends on the probability
to be estimated and is optimized exclusively by estimating the correct probability.

Theoretically, the number of strictly proper scoring rules is infinite. However, there
are some popular rules such as negative log-likelihood and especially Brier score (bs),
which was introduced by Brier in 1950 [13] and is, e.g., applied by Snoek, et al. [7]. It
measures the mean squared difference between the predicted probability of an outcome
and the actual outcome. Applied to uncertainty, this means that if the estimated uncer-
tainty is 80% and the actual outcome is wrong (e.g. ‘1’), bs= (1− 0.8)2 = 0.04. So it can
be considered as a cost function with a minimum of 0, where lower values mean more
accurate uncertainty estimates. Choosing the Brier score as a cost function is especially
appealing if we do not know how the estimates are planned to be used further, since it
does not emphasize particular decision thresholds but assumes a uniform distribution.

Murphywas able to show that the Brier score can be further detailed by decomposing
it into three additive components, which he named uncertainty, resolution, and reliability
[14]. Deviating from this designation, we speak of variance instead of uncertainty to
avoid confusion, and of unreliability instead of reliability since counterintuitively, low
reliability values would mean high reliability. Besides Brier score, we consider its three
components since theyprovide amore detailed picture of the specific limitations affecting
uncertainty estimates, which are also addressed by different elements of the uncertainty
wrapper framework:

bs = var − res + unr (1)

A Framework for Building Uncertainty Wrappers 319

Variance (var) describes the empirically observed variation in the correctness of the
DDM outcomes (i.e., Bernoulli variance). This means DDMs with a high average error
rate provide a high average uncertainty and thus a high variance.

var = E(P(correct)) E (P(wrong)) (2)

Resolution (res) describes how much the case-specific uncertainty estimates differ
from the empirically observed average error rate of the DDM (i.e., the case-independent
average uncertainty).

res = E(P(wrong | uncertainy) − E(P(wrong)))2 (3)

Unreliability (unr) describes how much, given an estimated uncertainty, the empiri-
cally observed uncertainty (i.e., the error rate) differs. If we have, for example, ten cases
with an estimated uncertainty of 30%, unr is 0 if we empirically observe that the DDM
outcome for three of them is wrong.

unr = E(uncertainy − P(wrong | uncertainty))2 (4)

3 Framework and Application Example

This section introduces a framework for building uncertainty wrappers for arbitrary
data-driven models, assuming the availability of a labeled dataset that is representative
of the model’s target application scope (TAS), i.e., its intended application settings.
TAS as a concept is thus comparable to the operational design domain as defined by
SAE J3016 for automated driving. A dataset or sample is considered as representative
if it “ensures external validity in relationship to the population of interest the sample is
meant to represent” [15], e.g., by using a random selection approach. Besides the input
of the data-driven component, the dataset also needs to comprise the intended outcome
for each case (e.g., the location of a pedestrian in a given input image). Given a definition
of correctness, we can apply the DDM for each case in the dataset and derive whether
the outcome is correct or not.

Figure 1 illustrates how the uncertainty wrapper architecture complements the DDM
with a quality model and a quality impact model to determine quality-related uncertain-
ties and a scopemodel and a scope compliancemodel to determine the likelihood of scope
incompliance. Finally, the wrapper combines both results into an overall uncertainty
statement considering the requested level of confidence.

In this setting, uncertainty is defined by the likelihood that outcomes of the DDM
are not correct, and a dependable uncertainty estimate is a justified upper boundary
on this for a given level of confidence [2]. In our application, we get as an outcome a
bounding boxwith, e.g., the corners (34, 352) and (51, 359) that could potentially contain
a pedestrian, extended with the dependable uncertainty estimate that the probability of
providing a wrong box is less than 4%, considering a confidence level of .9999 and the
definition of correctness.

The tooling that is part of the framework supports the creation and validation of each
uncertainty wrapper element in a separate module developed in Python, the de-facto

320 M. Kläs and L. Jöckel

Data-Driven Component (DDC) : Pedestrian Detection Component

Uncertainty Wrapper: Wrapper for Pedestrian Detection

Existing Data-Driven Model (DDM) : Yolo-based object detection

Confidence
(e.g., 9999%)

(e.g., GPS,
rain sensor,
distance of
interest)

(e.g. Camera
Image)

Outcome
(e.g., corners of
bounding box
for a person)

Dependable
Uncertainty
Estimate
(e.g., < 4%)

C
om

bi
na

tio
n

Quality Model

Scope Model Scope Compliance Model

Quality-Impact Model

Data-Driven
Component
Input

Intended
Outcome

Correctness

QFER

QFER: Quality Factor Evaluation Results UQ: Quality-Related Uncertainty
SFER: Scope Factor Evaluation Results USC: Scope-Compliance-Related Uncertainty

SFER

UQ

USC

Fig. 1. Wrapper architecture including the dataflow between the data-processing models

standard language for data science in most companies (cf. [16]). The elements realizing
the overall wrapper as well as elements provided in submodules have been validated to
be compliant with the estimator interface of the popular open-source machine learning
package ‘scikit-learn’ [9]. As a result, the elements are intuitive to use for most data
scientists, can simply reuse existing models and metrics from scikit-learn, and can be
easily integrated into larger data analysis pipelines or ensembles of models.

The sections below illustrate each element using a simplified example application
of pedestrian detection on a dataset containing approx. one million images. Although
the framework was also applied and validated in an industry setting with field data, we
decided to illustrate its usage on YOLOv3 as a publicly available DDM [17] and with
data generated using the driving simulator CARLA [18], which allows us to publish
concrete numbers as well as raw data (upon request). The given example primarily
serves to illustrate the framework; it does not claim high external validity.

ScopeModels contain all elements required to process the inputs of aDDC in order to
provide case-specific information on ‘scope compliance’-related causes for uncertainty
considering a set of scope factors. Each scope factor is quantified by one or more scope
measures, which provide measurement results that are then evaluated with a scope factor
evaluation. For example, if the TASof theDDC is limited toGermany,we need to find out
whether the model is applied outside Germany, since the data we used to test the model
and calibrate the uncertainty estimates might not be representative for usage outside of
Germany. Therefore, we would need to define measures that extract the geo-location
from the DDC input and a factor that applies an evaluation returning the likelihood that
the geolocation is within Germany.

The framework mainly distinguishes three kinds of scope factors (Fig. 2). Bound-
ary-based factors define a valid range for specific DDC inputs. These boundaries can
be explicitly stated in the TAS definition, such as requesting a geolocation within Ger-
many, or implicitly derived from empirical data, such as a valid range for temperatures.

A Framework for Building Uncertainty Wrappers 321

Condition-based factors model multivariate concepts like location-specific temperature
ranges. Finally, novelty-detecting factors try to detect cases that are outside the TAS
but still satisfy boundary- and condition-based scope factors. This is important since we
would usually need an infinite number of scope factors to describe a TAS perfectly.

TAS
Target

Application
Scope

Explicit, Univariate
Scope Factor 1

Implicit, Univariate Scope Factor 2

Implicit, Multivariate
Scope Factor 3

UAS
Universal

Application
Scope

Sufficient and
Representative

Cases in
Test Dataset

provide a sample
with target label

Novel Case

Target Case

Novelty Detecting
Scope Factor 4
using one-class classification

e.g., temperature

e.g., geolocation

e.g., density-based

e.g., temperature @
geolocation

Fig. 2. The different kinds of scope factors help to detect a potential application outside the TAS.

In order to detect such novel cases, the framework relies on one-class classification,
considering the cases of the test dataset as representations taken from the TAS. The
framework supports the creation of novelty-detecting factors based on one-class sup-
port vector machines, kernel-density estimation, and percentile-based boundaries [19].
Moreover, the framework calculates performance statistics for the novelty-detecting fac-
tors using cross-validation. The false alarm rate is calculated by the ratio of cases that
are predicted as novel in hold-out parts of the test data. Since, as for any one-class
classification task, we do not have a representative set of cases labeled as novel, the
framework supports sampling cases from the input space defined through boundary-
and condition-based scope factors (i.e., the white area in Fig. 2) assuming a given, e.g.,
equal, distribution. The obtained overall alarm rate (incl. correct as well as false alarms,
which cannot be distinguished due to missing labels) can then be related to the false
alarm rate in order to select the most appropriate novelty-detecting factor.

Scope Compliance Models provide for a given case an estimate of the uncer-
tainty jointly introduced by ‘scope compliance’-related causes considering the factor-
individual evaluation results provided by the scope model. The implementation applies
the multiplicative combination proposed in [2] and finally returns an estimate for the
likelihood that the model will be used outside its intended application scope TAS.

322 M. Kläs and L. Jöckel

QualityModels contain all elements required to process the inputs of a givenDDC in
order to provide case-specific information on ‘data quality’-related causes of uncertainty.
A quality model thus represents the counterpart to the scope model and follows the same
structure. Quality factors can be identified by domain experts, but also through data
analysis. For example, a low sun altitude may influence the performance of the DDM
used for pedestrian detection.Unlike the use of theDDMoutsideGermany, the use during
low sun altitude may still be part of the TAS but makes the detection task harder due
to backlight. Therefore, measures can be defined that extract the sun’s location and the
driving direction from the DDC input. The measurement results are then evaluated using
factor evaluation to determine the binary evaluation result low_sun_altitude. Further
examples of factors are the amount of precipitation based on the rain sensor signal
(optionally complimented with a convolution neural network trained to detect rain) and
the distance over which we want to detect pedestrians (which may depend, among other
things, on the current vehicle speed).

Quality ImpactModelsprovide for a given case an estimate of theuncertainty jointly
introduced by ‘data quality’-related causes considering the factor-individual evaluation
results provided by the quality model. In order to make the resulting uncertainty estimate
not only statistically sound but understandable and traceable for safety engineers and
domain experts, we train an information-gain-based decision tree structure to identify
clusters with similar uncertainties (cf. Fig. 3). The dependent variable is the correctness
of the DDM outcome and the independent variables are the quality factor evaluation
results of the quality model. In order to provide statistically sound results, the clusters
(i.e., the tree nodes) are identified using a training dataset and then calibrated with a
separate calibration dataset representative of the TAS. Moreover, the given confidence
level is considered when the uncertainty estimates are calculated.

The results can be evaluated semantically based on the decision tree structure; e.g.,
the distance to the pedestrian increases the uncertainty. Moreover, the appropriateness
of the refinement can be evaluated comparing the base rate (dashed line in Fig. 3) against
the degree of separation provided by the identified clusters measured as loss of certainty
(cl). Given a disjoint test dataset, the Brier score results can also be considered.

Finally, the calibration can be checked using a calibration curve [20]. The calibration
curves in Fig. 4 show that applying a confidence level during calibration pushes the cal-
ibration line above the perfect line, making the uncertainty estimates more conservative
but also more reliable when tested on new datasets not used for calibration. For example,
the uncertainty of the cases in cluster #14 is no longer underestimated.

A Framework for Building Uncertainty Wrappers 323

#5
#4

#7
#11

#8
#12

#15

#19

#20

#22
#26

#23

#30
#27

#29

#14

9.244 > distance >= 10.911
AND precipita on_deposi on > 45
AND low_sun_al tude = false

node #14
confidence = 0.9999
uncertainty = 0.380

node #4
confidence = 0.9999
uncertainty = 0.035

distance <= 7.037

node #0
distance <= 10.911

gini = 0.395
samples = 546494

value = [147828, 398666]

True False
node #1

distance <= 9.244
gini = 0.163

samples = 308344
value = [27670, 280674]

node #16
distance <= 14.924

gini = 0.5
samples = 238150

value = [120158, 117992]

node #2
distance <= 8.005

gini = 0.089
samples = 222539

value = [10331, 212208]

node #9
precipitation_amount <= 45.0

gini = 0.322
samples = 85805

value = [17339, 68466]

node #17
precipitation_deposition <= 75.0

gini = 0.49
samples = 162016

value = [69556, 92460]

node #24
distance <= 16.245

gini = 0.446
samples = 76134

value = [50602, 25532]

node #3
distance <= 7.037

node #6
precipitation_amount <= 45.0

node #10
distance <= 10.177

node #13
low_sun_altitude <= 0.5

node #18
low_sun_altitude <= 0.5

node #21
low_sun_altitude <= 0.5

node #25
precipitation_amount <= 45.0

node #28
low_sun_altitude <= 0.5

gini = 0.057 gini = 0.153 gini = 0.289 gini = 0.456 gini = 0.481 gini = 0.489 gini = 0.478 gini = 0.405
samples = 152961 samples = 69578 samples = 72812 samples = 12993 samples = 137541 samples = 24475 samples = 35963 samples = 40171

value = [4503, 148458] value = [5828, 63750] value = [12771, 60041] value = [4568, 8425] value = [55476, 82065] value = [14080, 10395] value = [21749, 14214] value = [28853, 11318]

node #4 node #5 node #7 node #8 node #11 node #12 node #14 node #15 node #19 node #20 node #22 node #23 node #26 node #27 node #29 node #30
gini = 0.042 gini = 0.085 gini = 0.126 gini = 0.291 gini = 0.235 gini = 0.352 gini = 0.411 gini = 0.486 gini = 0.463 gini = 0.494 gini = 0.499 gini = 0.463 gini = 0.487 gini = 0.385 gini = 0.44 gini = 0.356

samples = 98515 samples = 54446 samples = 59193 samples = 10385 samples = 41785 samples = 31027 samples = 6638 samples = 6355 samples = 70469 samples = 67072 samples = 12485 samples = 11990 samples = 30447 samples = 5516 samples = 20974 samples = 19197
value = [2096, 96419] value = [2407, 52039] value = [3994, 55199] value = [1834, 8551] value = [5694, 36091] value = [7077, 23950] value = [1918, 4720] value = [2650, 3705] value = [25627, 44842] value = [29849, 37223] value = [6458, 6027] value = [7622, 4368] value = [17671, 12776] value = [4078, 1438] value = [14108, 6866] value = [14745, 4452]

Decision tree fi ed on training data …

Fig. 3. A calibrated decision-tree-based quality impact model with confidence = .9999 and
its evaluation, visualizing uncertainty estimates and certainty loss (cl) in comparison to DDM
baseline.

node #14

node #14

Fig. 4. The calibration curves illustrate the differences between a quality impact model calibrated
without a confidence level (left) and one calibrated with a confidence level of .9999 (right).

Wrappers provide a transparent option for enriching existing DDMs with uncer-
tainty estimates, taking the inputs of the DDC and providing uncertainty estimates with
a requested level of confidence as a second output. Internally, they delegate the task to
the encapsulated DDM and the introduced wrapper elements.

324 M. Kläs and L. Jöckel

4 Brier-Score-Based Investigation

In order to investigate the influence of the key aspects of an uncertainty wrapper –
scoping, clustering, calibration, and confidence limits – on the quality of the provided
uncertainty estimates, we proceeded as follow:

(1) We prepared three separate datasets using the driving simulator CARLA. The train-
ing dataset was used to identify clusters based on the quality impact model and
provide naïve baseline estimates based on the average error rate. The calibration
dataset representing the TAS was used to calibrate the quality impact model. The
test dataset was used to evaluate the uncertainty estimates by calculating the Brier
score and its components. In order to simulate common issues observed in practice,
we modified the distribution of the different kinds of pedestrians between the train-
ing and the calibration dataset (e.g., more children). We also kept some unintended
cases from the simulation results that were not compliant with our TAS definition
in the test dataset, such as pedestrians detected beyond the maximum intended
application distance.

(2) Next, we used the framework to create five (partial) wrapper instances A to E:

A addresses none of the key aspects. The provided uncertainty estimates are case-
independent using the average error rate determined on the training dataset.
B addresses scoping, which means that it uses a scope compliance model (cf.
Figure 3) to detect cases that are outside the TAS and rejects them. Estimates
are still case-independent using the average error rate determined on the training
dataset.
C addresses not only scoping, but also clustering, meaning it uses a quality impact
model based on a decision tree, which was learned on the training dataset using
information gain and a maximum depth of 4. Estimates are now case-aware con-
sidering quality factors such as the amount of precipitation measured by the rain
sensor to determine the appropriate cluster (i.e., leaf in the decision tree).
D addresses not only scoping and clustering, but also calibration, meaning the
uncertainty-related values in the leaves of the decision tree (i.e., our clusters) are
updated based on the calibration dataset.
E finally addresses all key aspects, which adds confidence limits. This means for
our example that an upper boundary for the uncertainty estimate is determined for
each cluster. The calculations consider not only the specific uncertainty, but also
the requested confidence level of .9999 and the number of cases in the cluster.

(3) Finally we applied thewrapper instances A to E to our test dataset with 291,584 data
points. On the results, we calculated the Brier score and its components, which we
introduced in Sect. 2. Moreover, the proportion of clusters providing overconfident
uncertainty estimates (o/confident) were determined as a measure of dependability.
The uncertainty estimates of a cluster are considered as overconfident if the observed
rate of wrong DDM outcomes exceeds the cluster-adjusted uncertainty estimate.
Table 1 summarizes the investigation results.Metrics that change from the preceding
wrapper instance to the current one are printed in bold. At this point, we would like
to point out once again that the reported results were obtained for data based on

A Framework for Building Uncertainty Wrappers 325

images generated by a driving simulator and the application of a general-purpose
object detection DDM. Thus, the absolute numbers should be interpreted with
care. However, the general effects and tendencies we report are confirmed by our
experience when we applied the framework on real-world datasets in an industry
setting.

Table 1. Characteristics and performance of several (partial) wrapper instances

Instance A Instance B Instance C Instance D Instance E

Scoping – ✓ ✓ ✓ ✓

Clustering – – ✓ ✓ ✓

Calibration – – – ✓ ✓

Confidence – – – – ✓

#outcomes 291584 242576* 242576* 242576* 242576*

#clusters 1 1 16 16 16

Brier score 0.28339 0.23995 0.18319 0.15485 0.15502

+ Variance 0.23924 0.22009 0.22009 0.22009 0.22009

– Resolution 0.00000 0.00000 0.06526 0.06526 0.06526

+ Unreliability 0.04416 0.01986 0.02836 0.00002 0.00019

o/confident 100% 100% 100% 56% 0%

*Further cases (cf. Instance A) were identified by the wrapper as being outside the TAS

Discussion: Instances without clustering have only one cluster comprising all cases,
whereas instances C-E are based on the same 16 clusters identified during clustering.
Scoping, which detects and indicates situations for which the DDC was not intended,
is considered in instances B-E, which is reflected by the reduced number of valid DDM
outcomes. Scoping influences variance and unreliability (cf. Instance A vs. B). Variance
is reduced since applications outside the TAS are more likely to lead to higher error
rates, and unreliability is reduced since situations outside the TAS are usually not well
represented in the training data. Clustering increases the resolution by providing uncer-
tainty estimates based on the 16 different clusters identified (cf. Instance B vs. C). The
separation into individual clusters, however, can also increase overall unreliability to
some extent. Calibration then addresses unreliability, with a representative calibration
dataset able to reduce unreliability even to close to zero (cf. Instance D). Usually, ~50%
of the clusters will now provide overconfident estimates. Depending on the chosen con-
fidence level, the ratio of clusters with overconfident estimates can be reduced to zero
or at least to close to zero (cf. Instance E). Depending on the number of clusters and
calibration data points, this can, however, increase unreliability, since the estimate now
has to consider some ‘safety’ margin. In total, brier score is reduced from 0.28339 to
0.15502 by the uncertainty wrapper.

326 M. Kläs and L. Jöckel

5 Conclusion

The uncertainty wrapper framework differs from existing solutions for dealing with
uncertainty in AI/ML-based components. It makes the sources contributing to uncer-
tainty transparent, enabling them to be evaluated by experts instead of being hidden
in the algorithms of the DDM or its extensions (cf., e.g., approaches benchmarked in
[6]). Moreover, unlike in existing solutions, a requested confidence level, which can
even change at runtime depending on the integrity level needs, is considered when pro-
viding the uncertainty estimates, which makes them justifiable and more dependable.
Compared to naïve approaches, the wrapper also makes uncertainty estimates situation-
aware, thereby providing separation between cases with high and low uncertainty (cf.
Fig. 3). Finally, the framework is model-agnostic as well as holistic in terms of model
fit, quality, and uncertainty related to scope compliance.

Based on the Brier score and its components, which we applied to investigate the
quality of uncertainty estimates, we showed that an uncertainty wrapper can contribute
to estimation quality by improving all the components of the Brier score, i.e., variance,
resolution, and unreliability. Specifically, clustering cases with a quality impact model
as part of an uncertainty wrapper addresses its resolution as well as its calibration unre-
liability. Moreover, a scope compliance model, which is also part of the uncertainty
wrapper, can help to reduce variance and unreliability by detecting and excluding cases
outside the target application scope. In contrast, using a confidence limit increases unre-
liability. However, it also makes overconfident estimates much more unlikely and thus
contributes to the overall dependability of uncertainty estimates (cf. Fig. 4).

Although the presented framework was applied and validated in an industry setting
with field data, we cannot provide these results in this paper. Instead, we used a publicly
available DDM and data generated using a driving simulator. In the next step, however,
we plan to provide a more detailed evaluation of the approach on publicly available
traffic sign images augmented with typical quality deficits [21] and compare the results
with the results of probabilistically extended DDMs.

Acknowledgments. Parts of this work have been funded by the Ministry of Science, Education,
and Culture of the German State of Rhineland-Palatinate in the context of the project MInD and
the Observatory for Artificial Intelligence in Work and Society (KIO) of the Denkfabrik Digitale
Arbeitsgesellschaft in the project “KI Testing & Auditing”. We would like to thank especially
Naveed Akram and Pascal Gerber for providing the dataset we used to illustrate the framework
application, and Jan Reich and Sonnhild Namingha for the initial review of the paper.

References

1. Kläs, M.: Towards Identifying and Managing Sources of Uncertainty in AI and Machine
Learning Models - An Overview. arXiv:1811.11669 (2018)

2. Kläs, M., Sembach, L.: Uncertainty wrappers for data-driven models – increase the trans-
parency of AI/ML-based models through enrichment with dependable situation-aware
uncertainty estimates. In: WAISE 2019, Turku, Finland (2019)

3. Kläs, M., Vollmer, A.M.: Uncertainty in machine learning applications – a practice-driven
classification of uncertainty. In: WAISE 2018, Västerås, Sweden (2018)

http://arxiv.org/abs/1811.11669

A Framework for Building Uncertainty Wrappers 327

4. Phan,B.,Khan, S., Salay,R.,Czarnecki,K.:Bayesianuncertainty quantificationwith synthetic
data. In: WAISE 2019, Turku, Finland (2019)

5. Gal, Y.: Uncertainty in Deep Learning. University of Cambridge, Cambridge (2016)
6. Henne, M., Schwaiger, A., Roscher, K., Weiss, G.: Benchmarking uncertainty estimation

methods for deep learning with safety-related metrics. In: SafeAI 2020, New York, USA
(2020)

7. Snoek, J., et al.: Can you trust your model’s uncertainty? Evaluating predictive uncertainty
under dataset shift. In: Advances in Neural Information Processing Systems (2019)

8. Niculescu-Mizil, A., Caruana, R.: Predicting good probabilities with supervised learning. In:
22nd International Conference on Machine Learning (2005)

9. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., et al.: Scikit-learn: machine learning
in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

10. Czarnecki, K., Salay, R.: Towards a framework to manage perceptual uncertainty for safe
automated driving. In: WAISE 2018, Västerås, Sweden (2018)

11. Matsuno, Y., Ishikawa, F., Tokumoto, S.: Tackling uncertainty in safety assurance for machine
learning: continuous argument engineering with attributed tests. In: WAISE 2019, Turku,
Finland (2019)

12. Cheng, C.-H., Huang, C.-H., Nührenberg, G.: nn-dependability-kit: engineering neural
networks for safety-critical systems. https://arxiv.org/abs/1811.06746 (2018)

13. Brier, G.W.: Verification of forecasts expressed in terms of probability. Mon. Weather Rev.
78(1), 1–3 (1950)

14. Murphy, A.H.: A new vector partition of the probability score. J. Appl. Meteorol. 12(4),
595–600 (1973)

15. Dumicic, K.: Representative samples. In: Lovric, M. (ed.) International Encyclopedia of
Statistical Science. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-04898-2

16. Developer Survey Results. https://insights.stackoverflow.com/survey/2019 (2019)
17. Redmond, J., Farhadi, A.: YOLOv3: An Incremental Improvement. arXiv:1804.02767
18. Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., Koltun, V.: CARLA: an open urban driving

simulator. In: 1st Annual Conference on Robot Learning (2017)
19. Pimentel, M., Clifton, D., Clifton, L., Tarassenko, L.: A review of novelty detection. Sig.

Process. 99, 215–249 (2014)
20. Kumar, A., Liang, P.S., Ma, T.: Verified uncertainty calibration. In: NIPS 2019 (2019)
21. Jöckel, L., Kläs, M.: Increasing trust in data-driven model validation. In: Romanovsky,

A., Troubitsyna, E., Bitsch, F. (eds.) SAFECOMP 2019. LNCS, vol. 11698, pp. 155–164.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26601-1_11

https://arxiv.org/abs/1811.06746
https://doi.org/10.1007/978-3-642-04898-2
https://insights.stackoverflow.com/survey/2019
http://arxiv.org/abs/1804.02767
https://doi.org/10.1007/978-3-030-26601-1_11

Rule-Based Safety Evidence for Neural
Networks

Tewodros A. Beyene(B) and Amit Sahu

fortiss - Research Institute of the Free State of Bavaria,
Guerickestraße 25, 80805 München, Germany

{beyene,sahu}@fortiss.org

Abstract. Neural networks have many applications in safety and mis-
sion critical systems. As industrial standards in various safety-critical
domains require developers of critical systems to provide safety assur-
ance, tools and techniques must be developed that enable effective cre-
ation of safety evidence for AI systems. In this position paper, we propose
the use of rules extracted from neural networks as artefacts for safety evi-
dence. We discuss the rationale behind the use of rules and illustrate it
using the MNIST dataset.

Keywords: Neural network · Safety · Evidence · Certification

1 Introduction

The complexity of embedded software and increasing demands on dependability,
safety, and security has already outpaced the capabilities of current verification
and certification methods. Unless these methods advance quickly to ensure the
highest dependability requirements demanded by safety-critical software, new
and exciting capabilities such as AI may never reach the market. Safety-critical
systems are often subject to a rigorous safety certification process. The process
is aimed at providing assurance that the system can be safely used in a spe-
cific environment under specific conditions [1,5]. The system can also be deemed
safe by a regulatory body only after such assurance is established for the sys-
tem. The certification process is typically guided by domain-specific safety stan-
dards such as DO-178C for avionics and ISO26262 for the automotive domains.
Demonstrating compliance with a safety standard involves gathering convincing
evidence during the development of the system.

Safety cases are commonly used forms of evidence that are created to convince
inspectors that a system is safe. A safety case communicates a clear, comprehen-
sive and defensible argument that a system is acceptably safe in its operating
context [2]. The argument should make it clear that it is reasonable to assume
the system can be operated safely. In general, we define evidence for safety certi-
fication as “information or artefacts that contribute to developing confidence in
the safe operation of a system” [3]. Safety evidence can be supported by argu-
mentation. Safety arguments are a set of inferences between claims and evidence
c© Springer Nature Switzerland AG 2020
A. Casimiro et al. (Eds.): SAFECOMP 2020 Workshops, LNCS 12235, pp. 328–335, 2020.
https://doi.org/10.1007/978-3-030-55583-2_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-55583-2_24&domain=pdf
https://doi.org/10.1007/978-3-030-55583-2_24

Rule-Based Safety Evidence for Neural Networks 329

that leads from the evidence forming the basis of the argument to a top-level
safety claim, which typically claims that the system is safe to operate in its
intended environment.

The advent of new capabilities such as AI is currently demanding tools,
methods and techniques for assuring safety and dependability of these systems.
In response to this demand, there have also been recent efforts to extend safety
assurance approaches for traditional software to AI-based systems, such as self-
driving cars and other autonomous systems. There are two main challenges to
extending existing safety assurance approaches to AI systems. The first challenge
is finding efficient analysis, testing, and verification methods that are used to
create safety evidence and build the safety argument on. The second challenge
is finding “information or artefacts that contribute to developing confidence in
the safe operation of the AI system”, i.e., artefacts for AI systems that can serve
as a piece of evidence [4]. Among other things, a candidate evidence artefact
needs to be verifiable, auditable, and maintainable and could come from diverse
methods.

In this position paper, we take on the second challenge and propose the use
of rule extraction methods to create safety evidence for neural networks, and
the use of extracted rules as safety evidence. We discuss in detail the features of
extracted rules that make them good candidates to be used as evidence artefacts
in safety cases.

2 Rule Extraction

Rule extraction is a procedure that takes a trained neural network together
with the data on which the network was trained, and produces a description
of the network’s hypothesis that is comprehensible yet closely approximates the
network’s predictive behavior [6]. The procedure can greatly help experts in
explaining the network as well as arguing about safety and dependability of the
network. There are different types of rule extraction algorithms, and which are
defined by two important factors, namely, the employed rule extraction approach
and the type of generated rules.

Rule Extraction Approaches. In general, rule extraction techniques explicitly
or implicitly make an assumption on their perceived view of the underlying
NN architecture. Based on this view, there are two main approaches. The first
approach, called pedagogical approach, aims at finding the corresponding output
for the input to an NN by treating the network as a black-box. The weights
and parameters of the internal structure of the network are not considered by
the approach [11]. The second approach, called decompositional approach, works
by splitting the network at neuron level, obtaining rules for each neuron, and
aggregating the results to generate rules representing the entire network. While
it was a common practice to perform training and rule extraction sequentially,
some decompositional algorithms perform both the network training and rule
generation simultaneously [12]. These algorithms take less time, but they do not

330 T. A. Beyene and A. Sahu

work for all NN architectures. Some algorithms can also extract both continuous
and discrete rules by using a decision tree from pre-trained neural networks [13].

Types of Extracted Rules. Depending on the task, different types of rules can
be used. For feedforward NNs, relevant rules include (1) If-then: boolean con-
ditional statement; (2) M-of-N : M of N conditions are satisfied; (3) Decision
Tree: conditions organized in a hierarchical binary tree fashion; (4) fuzzy rules:
conditional statements with approximation for partial truths; and (5) first-order
rules: conditions with quantifiers and variables.

Rule Extraction for DNNs. Rule extraction techniques for DNN employ a divide
and conquer mechanism, where rules are generated layer-by-layer [14]. As such
techniques demand high memory usage and computational time, they need spe-
cial methods to enable efficiency. The most common techniques applied are rule
pruning and network pruning [15], where less important components of extracted
rules and the input neural network are pruned, respectively.

3 Rule-Based Safety Evidence

Given a safety claim, its corresponding evidence should be generated during the
establishment of the claim by chaining together smaller pieces of safety evidence
on all data and functions involved during the claim establishment. Moreover, the
structure of the evidence artefact should encourage incremental maintenance of
evidence when a piece of evidence becomes obsolete. In this section, we present
the rationale behind the use of rules as evidence artefacts for safety. We also
discuss the complexity of rules extraction techniques.

3.1 Rules as Evidence Artefacts

Rules and rule extraction techniques possess characteristic features that pro-
vide the basis for the use of rules as artefacts of safety evidence for NNs. We
summarise below some of these features.

Diverse Perception/View of Rules. Some properties of an NN can only be estab-
lished by having a detailed view of its underlying inner units. For example, the
coverage property in autonomous vehicles requires the coverage of all features
(e.g., not only lane marking but also other vehicles) in the given image classifi-
cation datasets. Decompositional rule extraction techniques can generate rules
that can be used as evidence for such properties. There are also properties that
can be established by viewing the NN as a black-box. An example is correctness
of a network with simple noise, such as fog, in the empirical image dataset.

Rule-Based Safety Evidence for Neural Networks 331

Applicability of Extraction Techniques in Diverse Architectures. There exists a
class of rule extracting techniques where the network is trained specifically to
facilitate efficient rule extraction. Such techniques are often specific to particu-
lar network architecture. Such rules can be useful in federated learning, where a
shared global model is trained across many participating clients that keep their
training data locally [18]. As each client may have a distinct platform and net-
work architecture, the diverse nature of rule extraction techniques enables rules
to be employed as evidence for each client. The safety evidence for the entire
learning comprises pieces of evidence for each client.

Amenability of Rules for Quality Assessment. Safety evidence that uses rules
will have a characteristic feature of amenability for quality assessment. The set
of criteria for evaluating rules includes accuracy, fidelity, and consistency [16].
Properties of the NN such as coverage with respect to a given dataset and absence
of blind spot can be established by assessing the extracted rules.

Diverse Expressive Power of Rules. Depending on the specific type of safety
claims, evidence with different expressiveness are needed. For example, while
decision trees can provide the required expressiveness for hierarchical properties
of an NN, if-then are not expressive enough for such properties.

3.2 Algorithmic Complexity of Rule Extraction

Another consideration for using rules as evidence artefacts is the availability of
efficient algorithms for rule extractions. Most early decompositional rule extrac-
tion approaches employed a search process for subsets of rules at each hidden
and output units of the NN, which is exponential in the number of inputs to the
node [17]. This factor has been the Achilles heel for using rule extractions for
analyzing, validating, testing, and interpreting neural networks. However, various
heuristics can be applied to limit space exploration [10] and achieve tractabil-
ity for real-world problems. In addition, for some NN architectures, crisp sym-
bolic rules can be extracted in polynomial time [7]. The complexity of extracted
rules, which is defined as a factor of number of extracted rules and number of
antecedents per rule, is another problem. However, there exist methods such as
network pruning and rule pruning, rule abstraction, distillation approach that
are aimed at reducing the size of the generated rulesets. Approaches like partial
order reductions and priority synthesis from the formal methods community can
also be considered for reducing the extracted rules to a manageable size.

4 Illustration

In this section, we illustrate our proposed approach of using extracted rules as
safety evidence for the MNIST dataset using a complex NN LeNet (includes
CNN and fully connected layers). Extracting decision trees from datasets with
semantic features makes the NN models easier to understand. However, as safety-
critical applications like autonomous driving and medical imaging consist of

332 T. A. Beyene and A. Sahu

images, we have considered the MNIST image dataset of handwritten digit clas-
sification. Another reason for MNIST dataset is that its commonly used as a
baseline for adversarial noise property, which is essential for safety critical appli-
cations. Extracting a decision tree from pixels of an image does not add enough
interpretability information about the NN. For this reason, we have selected the
last fully connected layer of the model as a feature layer and built the surrogate
decision tree over this feature-output combination.

The first step in obtaining rule-based evidences from NNs is to extract rules
with a high fidelity score. Therefore, we applied two pedagogical rule extraction
techniques:

– TREPAN [10]: The algorithm uses an Oracle that can query and sample
examples from the dataset. Each node is split based on the best fit that
generates the highest fidelity with the NN model. In contrast to the M-of-N
rules of the original algorithm, here we have used If-then rules.

– Surrogate Random Forest Model: In this algorithm, the NN model was taken
as a black-box model generating feature-output combination. This combina-
tion is used to train a separate Random Forest Model from scratch.

The second step is to identify safety properties for which a rule can be used as
an evidence artefact. We have used adversarial noise, which is a critical issue in
applying NNs for real-world problems. There have been many training methods
developed to handle adversarial noise including augmenting training datasets
with adversarial images [9] and provably bound the model (avoid misclassifica-
tion) against fixed noise [8]. As a basis of our approach, we have selected models
that are trained to have robustness against adversarial perturbation. The models
are trained with the following methods [8]:

1. Plain: trained with basic backpropagation algorithm.
2. Adversarial Training (AT): trained with adversarial images to make the model

robust to adversarial perturbation.
3. Maximization of Linear Regions (MMR): trained with MMR regularizer to

increase the provable bound on effective adversarial noise.
4. MMR+AT: a hybrid approach that uses both MMR and AT approaches.

We have found that plain and AT models have their rules closer towards the
median. The models also have more rules with features containing negative min-
imum values than the other models. The properties of these models with respect
to the adversarial noise of ε = 0.3 from [8], and fidelity scores for surrogate
models are shown in Table 1. To have the rules be justified as evidence, both
the safety property (robustness to noise) and the correctness (and completion)
of the secondary model need to be accessed. Following two measures provide the
respective initial analysis: (1) L2 robust error is a term defined in [19], which is a
measure of the percentage over the input dataset which do not have a guaranteed
safety against the given ε noise. (2) Fidelity score quantify the approximation
provided by the secondary model as a substitute for the primary NN model.
Since NNs approximate the true function that defines the classification and the

Rule-Based Safety Evidence for Neural Networks 333

Table 1. Fidelity with different surrogate models and adversarial robustness

Model Decision tree
fidelity (%)

Random forest
fidelity (%)

L2 robust error
Lower Bound (%)

L2 robust error
Upper Bound (%)

Plain 94 98.67 3.1 100

AT 91.34 98.5 1.8 100

MMR 87.12 96.37 5.8 11.6

MMR+AT 90 97.08 4.6 9.7

decision tree is approximating the NNs, we need high fidelity for the secondary
model and low robust error bound for the NN to use them as evidence. As can
be observed, the surrogate Random Forest model had better fidelity scores than
the surrogate Decision Tree. We attributed this effect to the higher complexity of
the Random Forest model because it can provide a better approximation of the
complex function represented by the NN model. Also, looking at the individual
features, we observe that decision trees that include nodes with higher scoring
(measured using Random Forest model) features have better fidelity than the
decision trees with lower scoring features.

We observe that simple decision trees have lower fidelity scores than the
more complex models (Random Forest). In addition, the models with robustness
against adversarial property achieved lower fidelity than plain or simpler models.
Looking at the rules extracted for the MNIST dataset, we assessed classes of
properties for which the rules can be used as evidence. The following properties
can use rules as evidence artefacts:

1. Interpretability of the decision process: this can be done by analysing the
trace of a decision tree for each data point. In the example, we observed the
trace in the form of rules on features applied to reach the classification. For a
particular datapoint, the set of applied rules can serve as an evidence artefact
of the decision process.

2. Robustness to noise: it can be checked by observing the effect of noise on
individual rules. In the example, threshold value of the feature w.r.t. the
range of observed values could act like a robustness measure.

3. Feature coverage: coverage of the decision tree is more tractable as compared
to coverage over neuron activations, which results in an exponential blow-up.
In the example, coverage over 100 neurons requires exponential combination
of activations, i.e., 2100. However, hierarchical distribution of rules results in
tractable coverage over the features.

4. Input coverage: In our example, input coverage boils down to coverage over
the image pixels. In this regard, NNs are better as CNNs cover the whole
image for features but needs to be checked for the decision trees.

334 T. A. Beyene and A. Sahu

5 Conclusion

In this paper, we proposed the use of rules extracted from NN as evidence
artefact for a given safety claim over the NN. We have also argued and illustrated
different types of safety evidence can be defined using extracted rules. While
rules have been widely used for NN interpretability, their usage as evidence
artefacts has not been yet explored to the best of our knowledge. This work is
a first step towards the goal of using rules as safety evidences. One direction of
future work could be to explore the relation between types of extracted rules
and the corresponding classes of safety properties. Another direction could be
the soundness and completeness arguments for rule extraction methods. Such
arguments help in assuring the validity and sufficiency of the extracted rules as
evidence artefacts for safety certification.

References

1. Ericson, C.A.: Concise Encyclopedia of System Safety: Definition of Terms and
Concepts. Wiley, New York (2011)

2. Ministry of Defence (MoD) UK: Defence Stanandard 00–56 Issue 4: Safety Man-
agement Requirements for Defence Systems (2007)

3. de la Vara, J.L., et al.: Towards a model-based evolutionary chain of evidence for
compliance with safety standards. In: Ortmeier, F., Daniel, P. (eds.) SAFECOMP
2012. LNCS, vol. 7613, pp. 64–78. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-33675-1 6

4. de la Vara, J., Nair, S., Walawege, R.P.: On the use of artefacts as safety evidence:
a conceptual model. Technical report (2013)

5. Kornecki, A., Janusz, Z.: Certification of software for real-time safety critical sys-
tems: state of the art. Innov. Syst. Softw. Eng. 5, 149–161 (2009). https://doi.org/
10.1007/s11334-009-0088-1

6. Craven, M.W.: Extracting comprehensible models from trained neural networks.
Ph.D dissertation, University of Wisconsin-Madison (1996)

7. Bologna, G.: A model for single and multiple knowledge based networks. Artif.
Intell. Med. 28, 141–163 (2003)

8. Croce, F., Andriushchenko, M., Hein, M.: Provable robustness of ReLU networks
via maximization of linear regions. In: AISTATS (2019)

9. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial
examples. In: ICLR (2015)

10. Craven, M., Shavlik, J.: Using sampling and queries to extract rules from trained
neural networks. In Machine Learning: Proceedings of the 11th International Con-
ference, San Francisco, CA (1994)

11. KumarSethi, K., Kumar Mishra, D., Mishra, B.: Extended taxonomy of rule extrac-
tion techniques and assessment of KDRuleEx. Int. J. Comput. Appl. 50(21), 25–31
(2012)

12. Ozbakır, L., Baykasoglu, A., Kulluk, S.: A soft computing-based approach for inte-
grated training and rule extraction from artificial neural networks: DIFACONN-
miner. Appl. Soft Comput. 10, 304–317 (2010)

13. Sato, M., Tsukimoto, H.: Rule extraction from neural networks via decision tree
induction. In: International Joint Conference On Neural Network (2001)

https://doi.org/10.1007/978-3-642-33675-1_6
https://doi.org/10.1007/978-3-642-33675-1_6
https://doi.org/10.1007/s11334-009-0088-1
https://doi.org/10.1007/s11334-009-0088-1

Rule-Based Safety Evidence for Neural Networks 335

14. Zilke, J.: Extracting rules from deep neural networks. M.S. thesis, Computer Sci-
ence Department, Technische Universitaet Darmstadt (2015)

15. Setiono, R., Leow, W.K.: FERNN: an algorithm for fast extraction of rules
from neural networks. Appl. Intell. 12, 12–25 (2000). https://doi.org/10.1023/A:
1008307919726

16. Andrews, R., et al.: An evaluation and comparison of techniques for extracting and
refining rules from artificial neural networks. QUT NRC, February 1996

17. Fu, L.M.: Rule generation from neural networks. IEEE Trans. Syst. Man Cybern.
28(8), 1114–1124 (1994)

18. Yang, Q., Liu, Y., Chen, T., Tong, Y.: Federated machine learning: concept and
applications. ACM Trans. Intell. Syst. Technol. 10, 1–19 (2019)

19. Wong, E., Kolter, J.Z.: Provable defenses against adversarial examples via the
convex outer adversarial polytope. In: ICML (2018)

https://doi.org/10.1023/A:1008307919726
https://doi.org/10.1023/A:1008307919726

Safety Concerns and Mitigation
Approaches Regarding the Use of Deep

Learning in Safety-Critical
Perception Tasks

Oliver Willers, Sebastian Sudholt, Shervin Raafatnia(B),
and Stephanie Abrecht

Robert Bosch GmbH, Chassis Systems Control, Automated Driving,
70499 Stuttgart-Weilimdorf, Germany

{Sebastian.Sudholt,Shervin.Raafatnia,Stephanie.Abrecht}@de.bosch.com

Abstract. Deep learning methods are widely regarded as indispensable
when it comes to designing perception pipelines for autonomous agents
such as robots, drones or automated vehicles. The main reasons, however,
for deep learning not being used for autonomous agents at large scale
already are safety concerns. Deep learning approaches typically exhibit
a black-box behavior which makes it hard for them to be evaluated with
respect to safety-critical aspects. While there have been some work on
safety in deep learning, most papers typically focus on high-level safety
concerns. In this work, we seek to dive into the safety concerns of deep
learning methods on a deeply technical level. Additionally, we present
extensive discussions on possible mitigation methods and give an outlook
regarding what mitigation methods are still missing in order to facilitate
an argumentation for the safety of a deep learning method.

1 Introduction

During the last years new applications were enabled by machine learning (ML)
and especially, by deep learning (DL) methods. Their capability of solving prob-
lems which cannot be fully specified makes DL a key enabler in many applica-
tions, especially in the field of Advanced Driver Assistance Systems (ADAS) and
Automated Driving (AD). Therefore, DL is also of fundamental importance for
the fast growing field of ADAS and AD as it is not possible to specify an open
context in every detail (e.g., the data representation of a pedestrian in all vari-
eties cannot be specified such that it could always be recognized by a rule-based
algorithm).

Parts of the research leading to the presented results are funded by the German Federal
Ministry for Economic Affairs and Energy within the project “KI Absicherung – Safe
AI for automated driving”. We would like to thank the consortium for the successful
cooperation, in particular Matthias Woehrle, Peter Schlicht and Christian Hellert for
reviewing our work and their thoughtful comments.

c© Springer Nature Switzerland AG 2020
A. Casimiro et al. (Eds.): SAFECOMP 2020 Workshops, LNCS 12235, pp. 336–350, 2020.
https://doi.org/10.1007/978-3-030-55583-2_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-55583-2_25&domain=pdf
https://doi.org/10.1007/978-3-030-55583-2_25

Safety Concerns and Mitigation Approaches 337

Different from humans, current DL algorithms do not learn semantic or causal
relationships but simply correlations in data they are presented with. For exam-
ple, a DL algorithm used for detecting objects in camera images learns correla-
tions between the pixels of the image and object representations, e.g., bounding
boxes. While DL algorithms provide state-of-the-art performance, it is difficult
to understand how they arrive at their predictions, which poses a problem from
a safety point of view.

While safety-related aspects in the automotive area are usually handled
through approaches defined in ISO 26262 [19], the usage of DL methods intro-
duces a number of additional safety-related aspects not covered in this norm.
Most notably, DL algorithms may predict incorrect results, e.g., an object detec-
tor may miss to predict an object. These kinds of limitations are not covered in
ISO 26262 but rather in the recently published ISO PAS 21448 also known as
Safety of the Intended Functionality (SOTIF) [20].

SOTIF is the absence of unreasonable risk due to hazards resulting from
functional insufficiencies of the intended functionality. A prerequisite for achiev-
ing SOTIF is a proper understanding of the system, its limitations as well as
the conditions which may unveil these limitations. This is a difficult task for
systems incorporating DL components because the learning process of DL algo-
rithms is entirely different from a human one. Humans analyze systems and their
weaknesses on a semantic level, e.g., interpreting a difficult scene as a composi-
tion of things like lightning conditions, type and position of objects, behavior of
actors, etc. However, in DL the problem space shifts from a semantic level to the
level of data representations (e.g., pixel values of an image). Thus, DL-specific
insufficiencies and failure causes are not necessarily intuitive for humans, mak-
ing it difficult to understand such methods and their limitations. Hence, arguing
the safety of a system that relies on the correctness of DL outputs requires a
dedicated safety consideration of such algorithms.

In this paper, we give a concise overview of safety concerns and their under-
lying problems regarding the use of DL algorithms focusing on Deep Neural
Networks (DNNs)1. In particular, we will consider DNN used in the perception
pipeline of an ADAS or AD system. Typical use cases for such components are
DNN-based object detection or semantic segmentation of the input data. The
information obtained from these DNN-components are then further used in an
ADAS or AD system which may incorporate additional information such as par-
allel sensing paths or post processing of the DNN’s output. The goal of the sys-
tem is to enable one or multiple functions, e.g., an automated emergency brake
or a highway pilot. Furthermore, we present potential mitigation approaches
along with a deep technical discussion. It needs to be noted that we have no
claim on completeness of the list of safety concerns and their mitigation. Theses
are just the possible problems we could identify according to our experiences
and knowledge, together with some promising approaches for their alleviation.

1 Please note that while we focus on DNNs, a large amount of the safety concerns
discussed in this paper may also be valid for other types of ML-based methods.

338 O. Willers et al.

While these issues and the methods suggested here for their mitigation are
known, the categorization and mapping presented here is to the best of our
knowledge novel.

2 Related Work

During the last years the question how one can use NL in safety critical tasks has
attracted a considerable amount of research over a broad range of applications
(medical diagnosis, avionics, automotive, etc.). For example, [30] provides an
overview an overview about safety assurance for neural networks in avionics.

As pointed out in [13], currently, there exists no agreed-upon way to verify
and validate ML components used in ADAS or AD systems. In particular, the
foundational statistical ML principles of empirical risk minimization and aver-
age losses are not fully applicable when considering safety, as discussed in [33].
However, several works exist which define requirements or safety criteria such a
component needs to fulfill.

In [23], the authors derive safety criteria for neural networks from an abstract
top-level goal. Thereby, the posed goals and criteria are on a purely functional
level outlined in a Goal Structuring Notation (GSN). Following this line of work,
Burton et al. [6] and Gauerhof et al. [12] propose a systematic approach using
GSN in order to argue the safety of ML-based components. In their work, they
formulate requirements for an ML model derived from the discussed safety con-
cerns. In a further work, Burton et al. [7] propose an approach for constructing
an argumentation for the safety of an ML model which they term performance
evidence confidence. The approach is based on a design-by-contract principle of
the safety argumentation which in turn uses safety contracts.

Another work that deals with this topic is given by Adler et al. [1]. Here,
the authors extract areas of activity by a systematic literature search. Based
on this, challenges regarding the use of DNNs in safety critical applications are
listed and methods which might help to overcome them are mapped. However,
the validity of the list as well as the effectiveness of the mapped methods remains
to be shown.

In this work, we seek to expand the discussion about safety concerns with
regard to the usage of DNNs in safety-critical perception tasks. We concretize
these concerns and discuss potentials as well as limitations of possible mitigation
approaches.

3 Background

A Deep Neural Network (DNN) is a machine learning model which in most
use cases for ADAS and AD is tasked to predict the posterior probability for
a dependent random variable Y (e.g., class probabilities) based on an indepen-
dent random variable X (e.g., input images). For this, one needs to specify the
expected type of distribution of Y . This is important as the DNN needs to be
equipped with a link function which maps to the correct range of Y . In case of

Safety Concerns and Mitigation Approaches 339

a classification task, Y is typically expected to follow a multinomial distribu-
tion and the link function of choice is the well-known softmax. As X and Y are
unknown, the typical approach for obtaining a good DNN model is to record a
dataset D = {(xi, yi)}Ni=1 with realizations of X and Y and perform maximum-
likelihood estimation of the parameters with respect to the data. Here, xi is a
data sample (e.g., camera image) and yi the corresponding annotation(s) (e.g.,
bounding boxes of objects). In practice, optimization is typically achieved by
minimizing a loss function using (stochastic) gradient descent.

According to ISO PAS 21448, functional insufficiencies are insufficiencies
inherent in the system possibly leading to hazards. Such an insufficiency can
appear, e.g., in form of a performance limitation leading to an incomplete or
wrong perception of the environment. A functional insufficiency can be unveiled
under some conditions. A set of such conditions is referred to as a triggering
event. In particular, considering a DNN module in the perception pipeline of an
ADAS or AD system, such an event can provoke an erroneous output possibly
causing a hazardous behavior of the system.

4 Safety Concerns

We define safety concerns (SCs) as underlying issues which may negatively affect
the safety of a system. They are either (i) the direct root of a functional insuffi-
ciency or (ii) describe a black-box-like characteristic of the system which in turn
makes it hard to assess safety. SCs are usually tied to subcomponents of the sys-
tem. In particular, there exist specific concerns when deploying a DL algorithm
in an ADAS or AD vehicle.

(i) The concerns which turn into functional insufficiencies originate from the
inherent design of DL methods. In general, a supervised DL algorithm approxi-
mates the unknown probability distribution p(X,Y) using a dataset D of sam-
ples of p [4]. The algorithm produces incorrect results, if its approximation of
the underlying distribution p is not good enough at a given data point.

(ii) The concerns relating to black-box-characteristics originate from DL-
specific properties. DL algorithms usually project the input data into high-
dimensional spaces which cannot be entirely interpreted by a human anymore.
While it is, for example, well known that classification-based DL methods par-
tition their input space into non-convex subspaces, giving semantic meaning to
these subspaces is largely impossible.

In the following, we will describe the safety concerns of DL algorithms in an
AD perception pipeline in detail. As mentioned in the introduction, these issues
were identified in line with the ISO PAS 21448 approach for achieving SOTIF
and according to our experiences and knowledge of DNNs.

Data Distribution Is Not a Good Approximation of Real World
(SC-1). The first overarching concern is that the distribution of the data used
in development might not be a good approximation to the one of the real open
world which is a priori unknown. As mentioned before, the distribution meant
here is on the level of data representations, which are high-dimensional and

340 O. Willers et al.

counterintuitive. Therefore, we can only approach them from (or estimate them
on) a semantic level by analyzing influencing factors such as daylight, object
appearance and weather conditions. This is prone to incompleteness since not all
aspects important for the data representation may be covered this way. Besides,
the data collection can have other shortcomings which are independent of the
level at which it is represented. Examples of such problems are bias (e.g. over- or
under-representation of certain factors) or disregarding effects related to differ-
ent physical deployments (e.g. varying sensor position and angle due to different
system variants or manufacturing tolerances). Training and testing a DNN with
data which do not sufficiently cover the Operational Design Domain (ODD) will
very likely lead to an insufficient performance or robustness later in the field.

Distributional Shift Over Time (SC-2). A DNN is trained and tested at a
certain point in time, e.g., during development. However, our world is changing
continuously. This means that even if we would train a “perfect” algorithm,
the probability distribution of the input data will change over time (e.g., new
vehicles with a different appearance will be released). Since such a change will
occur naturally, this concern needs to be addressed by appropriate measures
being effective over the product’s lifetime.

Incomprehensible Behavior (SC-3). One of the main difficulties in arguing
safety of DNNs is our inability to explain exactly how they come to a decision. In
other words, the non-linearity and complexity of DNNs is a double-edged sword;
on the one hand, it enables them to automatically extract features and relate
those to outputs via non-linear activation functions, which, in turn, makes them
so suitable for solving problems that cannot be specified in detail. On the other
hand, those features and their connection to the outputs are counterintuitive and
incomprehensible for us. Hence, unlike in the case of rule-based functions, it is
hardly possible to derive a causal relation between the data representation and
network predictions. Consequently, identifying weaknesses and failure causes of
DNNs is difficult and sometimes infeasible, impeding the applicability of common
safety engineering methods (e.g., fault tree analysis, common cause analysis).

Unknown Behavior in Rare Critical Situations (SC-4). This concern is
directly related to the long-tail problem in the AD context which describes the
fact that there exists an enormous amount of scenarios with a low occurrence
probability. These scenarios may however be safety-critical. For testing, it would
require a practically impossible amount of driving hours to capture them by
chance. Regarding this issue, two important aspects need to be mentioned: first,
note that according to statistical learning theory, the performance of a ML model
evaluated on a test dataset can only be generalized if training and test data are
independent and identically distributed (i.i.d.) samples out of the same proba-
bility distribution as the one faced later in the open world [4]. Thus, it might be
problematic to artificially insert rare scenarios into the test data used to esti-
mate the generalization capabilities of DNN’s performance. Second, even though
one could define a separate dataset in order to test the function with respect
to such data, it is hardly possible to identify a rare critical situation from the

Safety Concerns and Mitigation Approaches 341

perspective of a DNN a priori. This is due to the fact that DNNs do not look
at semantic content but rather the data itself making it very difficult to define
appropriate test cases in advance.

Unreliable Confidence Information (SC-5). In practice, DNNs will be faced
with input data for which they cannot make an accurate prediction. This may
either stem from an insufficient amount or representativeness of training data or
an inherent uncertainty in the data itself (e.g., motion blur). Ideally, the DNN
should reliably indicate if its prediction can be trusted or not. This behavior
would allow for a number of established safety approaches to be used for a DNN
component such as giving more weight to parallel information paths, initiating
an emergency maneuver or a driver handover. Most DNN algorithms used in
practice output some form of posterior probability (e.g., class probabilities) and
one may be tempted to use the value of the highest probability or the information
entropy as a measure of confidence. This may, however, be highly critical if
the probabilities are not well calibrated. In particular, it has been shown that
DNNs using the standard multinomial cross entropy loss in combination with the
softmax as link function tend to be overconfident in their predictions [15]. Even
worse, it can be shown that if these DNNs use Rectified Linear Units (ReLUs)
as activation functions they can produce arbitrarily high posterior probabilities
when dealing with data far away from the training data [17]. While confidence
information may not benefit the solution of the problem itself, it serves as an
enabler of a safety argument in a safety case.

Brittleness of DNNs (SC-6). As shown by many works, the brittleness of
DNNs is a major safety concern. This includes the robustness against common
perturbations such as noise or certain weather conditions (e.g., [18]), transla-
tions/rotations (e.g., [2]), as well as targeted perturbations known as adversarial
examples (e.g., [14,32]). Note that regarding adversarial examples, adversarial
patches are of special interest in the context of ADAS and AD (e.g., [10,25,28]).
This is due to the fact that a would-be attacker can simply change the operation
environment of a vehicle instead of hacking into the vehicle itself. Physical adver-
sarial patch-based attacks do thus scale considerably better than those based on
overlaying the raw sensor data recorded in a vehicle with noise.

Inadequate Separation of Test and Training Data (SC-7). For train-
ing and testing DNNs, data is usually divided into training, validation and test
datasets. For not overestimating the DNN’s performance, the test dataset needs
to be (sufficiently) uncorrelated to the other ones. However, in practice, highly
correlated data is usually acquired since, e.g., data is recorded in sequences (i.e.
consecutive frames are rather similar) or data is recorded at same locations sev-
eral times. Another aspect is that developers tend to optimize on test datasets
during training because they strive for the highest possible performance. There-
fore, a training process is continued until performance goals of a network are met
on the test dataset. Although good and labeled data is expensive and thus, rare
in practice, using a test dataset several times means also an optimization with
respect to the test data leading to an overestimation of a DNN’s performance.

342 O. Willers et al.

Dependence on Labeling Quality (SC-8). For supervised learning, labeled
datasets are required for developing a DNN. Labeling is typically done manually
and its quality directly affects the resulting function and thus, the obtained
test results [16]. If the label quality is not sufficient, the test results may be
misleading. As a result, the function could have an insufficient performance later
in the field. Hence, the labeling quality needs to be ensured in order to argue
the safety of such a learning function.

Insufficient Consideration of Safety in Metrics (SC-9). Using state-of-
the-art metrics such as mean average precision and false positive/negative rate,
only the average performance of DNNs is evaluated. Consequently, when assess-
ing the performance of a DNN, typically all elements of a test dataset influence
the performance metric. There may, however, be elements which the DNN pre-
dicted incorrectly but would not impact the system itself. For example, consider
the case of a DNN used for pedestrian detection which serves the function of an
automated emergency brake. If the car is driving at 30 km/h and fails to detect
a pedestrian at 500 m distance, this will in all likelihood not have an impact on
the safety of the system. However, in common metrics, such a person will be
counted in the same way as a person standing directly in front of the car. This
will inevitably lead to giving the DNN a worse safety rating than is actually the
case.

5 Potential Mitigation Approaches

Releasing an ADAS or AD system requires a comprehensive argumentation to
show that all concerns related to the system’s safety are identified, understood
and mitigated. After having discussed the safety concerns regarding the use of
DNNs within such systems in Sect. 4, we present several promising mitigation
approaches (MAs) which could be used in order to provide supporting arguments
and evidences for a safety case. We do not provide a complete list of possible
methods/solutions within the mitigation approaches and those presented might
be interchangeable.

Well-Justified Data Acquisition Strategy (MA-1). The basis for testing
ML functions is an appropriate dataset reflecting the context in which the func-
tion is supposed to work. In particular, one needs to argue that the dataset used
is a suitable representation of the data which the DNN will face within the ODD
((SC-1), (SC-4)). As pointed out before, the distribution which is relevant here
is on the level of the data representations (e.g., pixel-level distribution). Finding
suitable random samples from this distribution is - in most cases - highly non-
trivial, mainly due to the dimensionality of the data. Thus, we propose to follow
a two-step approach here. The first step is to specify the data content, as well as
the data acquisition and selection process, in a structured and thorough manner.
For this, essential ODD factors such as weather conditions, road types, occurring
objects and their variations in the ODD need to be determined, see e.g., [22].
Additional factors such as mounting tolerances of the sensors and predictable

Safety Concerns and Mitigation Approaches 343

changes over the product’s lifetime (e.g. sensor aging) should be considered as
well. Finally, the existence of specified variations and their frequencies in the
acquired data need to be verified. The aforementioned analysis happens on a
semantic level and may not fully cover the specifics of the data at hand (e.g.,
certain biases in the pixel distribution of an image). Thus, the second step is to
analyze the raw data and find suitable datapoints which are missing from the
first step. This can, for example, be achieved by finding a latent representation
of the data using a variational autoencoder and sampling the latent space in a
suitable manner.

Providing Reliable Confidence Information (MA-2). As explained before,
the posterior probability predicted by a DNN tends to be overconfident even for
inputs close to the training data [15] and may be arbitrarily high when moving
away from the training data [17]. In order to be able to output reliable confidence
information and thus mitigate (SC-5) amongst others, a number of approaches
have been proposed. In [15], a number of heuristic approaches are evaluated.
Besides heuristics, other approaches have made use of Bayesian methods in order
to extract uncertainties. In [11], the authors use dropout during inference which
turns their neural network into a Bayesian model. This approach is known as
Monte Carlo Dropout. Another Bayesian approach is presented by Blundell et al.
[3]. Here, the authors model the weights of the neural network using Gaussian
distributions and minimize the ELBO loss. Besides the actual method itself, it
is still an open question how one can determine if a measure of confidence is
reliable or not in the context of AD. In [29], the use of expected calibration
error (ECE) and maximum calibration error (MCE) is proposed. Both metrics
operate on the probabilities predicted from the neural network. First, the max-
imum posterior probability is quantized into a desired number of bins for a test
dataset. Then, the accuracy is computed for each. Generally, the outputs are
well-calibrated if the accuracy of each bin is equal to the average probability
in this bin. The difference in these two values is called calibration error. While
for ECE the calibration error is averaged over all bins, MCE simply returns
the largest calibration error. However, a main drawback of both metrics is that
they both depend on a parameter, namely the number of bins, which heavily
influences the obtained result.

Using Gray-Box Methods (MA-3). A major impediment to the safety argu-
mentation of DNNs is their black-box character SC-3. Even though turning the
black-box to a white-box will be scarcely possible in the foreseeable future, sev-
eral methods were introduced recently to gain understanding of the root causes
for DNN’s predictions by visualizing decisive parts of the input (e.g., gradient-
weighted class activation mapping [31]) or by forcing the DNN to provide more
interpretable outputs (e.g., object attributes [24]). While these methods cannot
enable an analytical safety evaluation, they still can contribute to a safety case,
e.g., by making the analysis of a test result more meaningful or by supporting the
extraction of uncertainties for DNN’s prediction (e.g., by analyzing the distribu-
tion of decisive parts of an image with respect to certain object classes). Note
that the trustworthiness of such methods needs to be shown which is non-trivial.

344 O. Willers et al.

Specification of Adversarial Threat Models and Incorporation of
Defense Methods (MA-4). Defending against adversarial examples is part of
SC-6 mitigation and requires determining a threat model first, which in essence
represents an assumption on what a possible attacker can perform as an attack.
Typical models in computer-vision-based problems include changing the pixel
values in an image at arbitrary locations with a certain budget (e.g., [27]). Other
data-level threat models include adversarial patches [5] or affine transformation-
based attacks [9]. Allowing data-level changes may oftentimes be an unrealistic
or highly improbable threat model. For example, in the case of autonomous
vehicles, an attacker would need access to the camera memory, which stores the
pixels of a recorded image. This form of attack does not scale well and is thus
probably neglectable. There are a number of other techniques, known as physical
adversarial examples, that do scale well. Here, the environment in which a datum
is recorded is altered instead of the datum itself. Common techniques for this
include sticker-based attacks (e.g., [25,26]). Many other existing threat models
are not listed here2. In general, no threat model can be assumed by default.
In the future, there might be standards and norms which define an appropriate
threat model for a given domain. In the meantime this choice must be made on
a per-case basis and argued accordingly.

Having chosen and argued for a specific threat model, one has to deploy
defense mechanisms to protect against it. The main problem with most known
mechanisms is that they may have given good results initially but were quickly
exposed after having been published (see, e.g., [8]). As of writing this paper, there
are only two defense approaches which are effective to at least a certain degree
and are somewhat accepted in the ML community3. First, an empirical approach
known as adversarial training with PGD adversaries [27], which tries to optimize
a DNN to predict the correct class for a given sample’s strongest adversarial
example. While this approach is not able to guarantee that it actually finds the
strongest adversary under a given threat model, it is very flexible with respect to
choosing this model. The second approach uses a convex outer approximation of
reachable activations of the ReLU units of a DNN to defend against adversarial
examples [34]. It gives guaranteed lower bounds on the loss values of adversarial
examples. A drawback of this analytic method is that the training procedure
takes considerably longer than standard SGD training.

Testing (MA-5). Naturally, a key component of a safety argumentation is
testing, usually including verification and validation activities. While verifica-
tion rather addresses issues which are already known or foreseeable, validation
focuses on identifying unknown issues. In the following, we will refer to mitiga-
tion approaches that address these issues as MA-5a and MA-5b, respectively.

MA-5a: Known or predictable critical cases can be assessed via targeted testing.
This approach supports mitigating SC-1, SC-4, SC-5, and SC-6. The selection

2 For a concise overview of common threat models see, e.g., [35].
3 Defending against adversarial examples is currently a heavily researched topic and

there may exist other effective methods.

Safety Concerns and Mitigation Approaches 345

of test data is key for a thorough analysis of DNNs. A method for identifying
targeted test cases is HAZOP (Hazard & Operability, [21]), a standard safety
procedure to systematically identify malfunctions and risks of a complex sys-
tem. In [36], the authors adapt HAZOP to computer vision systems and provide
a catalog containing an extensive set of known critical situations for computer
vision tasks as a basis for assessing the quality and thoroughness of test data. Of
special interest is the stability of DL algorithms with respect to certain effects
in the input space (e.g. blur, windscreen smudges or exposure related effects).
As highlighted by Zendel et al. [37], the evaluation of robustness requires a tar-
geted addition of difficult samples into a test dataset. A benchmark for robust-
ness against known corruptions and perturbations is introduced in [18]. Another
approach for effectively testing DNN algorithms is search-based-testing [38]. This
technique aims at exploring the input space in a targeted manner enabling, e.g.,
a sensitivity analysis with respect to certain ODD factors or different combina-
tions of them. Note that while some of the approaches mentioned can make use
of real data (recorded on public roads or test tracks) others require artificially
generated data. However, for obtaining reliable test results on synthetic data,
the validity of this data with respect to real data has to be shown, which is a
highly non-trivial problem.4

MA-5b: The unknown and unpredictable problems associated with deploying
DNNs in a safety-critical open-world context can only be identified by chance.
For this purpose, field test data need to be collected randomly in accordance to
the guidelines mentioned in MA-1. Such a testing mainly addresses SC-4, but
also supports the mitigation of SC-6, by providing means for finding previously
unknown safety-critical situations5 Note that the open-context nature of the
operational domain, renders the coverage of the entire problem space via brute-
force approaches practically infeasible. Instead, one needs to combine field testing
with other methods, as pointed out in this paper, to enable the release of such
systems.

Deep Analysis of Test Results Obtained in an Iterative Development
Process (MA-6). As is known, DL is a data-driven approach and its develop-
ment should be pursued in an iterative way. Discovered weaknesses of the DL
component are continuously mitigated by optimizing architectures and hyperpa-
rameters or by adding new data that covers previously missing aspects. Hence,
a fundamental part of this process is analyzing the intermediate results, ideally
leading to a continuous improvement. In order to extract as much information as
possible from these results, the analysis should be performed in a structured and
if possible, automated manner (e.g., by extracting systematic weaknesses from
comprehensive metadata by which the data should be enriched beforehand). In
addition to cases where the DL component makes wrong predictions, cases asso-
ciated with high uncertainty should be considered in order to gain insights about
4 Even though synthetic data may look “realistic” to a human, the data-level distri-

bution may be significantly different leading to non-meaningful test results.
5 For reasons described in SC-7, the test set used for the ultimate performance eval-

uation needs to remain unseen until final testing.

346 O. Willers et al.

conditions that could lead to wrong predictions. This approach can contribute
to the mitigation of SC-4 and SC-6.

Data Partitioning Guidelines (MA-7). In order to address SC-7 and esti-
mate a DNN’s performance correctly, guidelines regarding partitioning the data
into training, validation and test datasets are necessary. In particular, test data
must not be correlated with training data since otherwise the generalization
capability of the ML algorithm will be overestimated. This means that, e.g.,
consecutive frames of a video sequence may not be assigned to different parti-
tions. Further measures could be that test data needs to be acquired at different
days and locations as training data. Such guidelines need to be well-justified and
the partitioning needs to be subsequently reviewed.

Labeling Guidelines (MA-8). The dependence of supervised learning meth-
ods on well-labeled data (see SC-8) requires strict labeling guidelines and checks.
The guidelines should be defined with respect to the specific task (e.g. seman-
tic segmentation or object detection) and should ideally contain additional
application-specific annotations in order to enable an automated evaluation, e.g.,
of the relative frequencies of ODD factors such as weather conditions, object-
specific metadata, etc. Guidelines compilation has to be justified and the adher-
ence to them needs to be reviewed. Appropriately performed, this mitigates SC-8
and supports the argumentation with respect to SC-1.

Evaluating Performance with Respect to Safety (MA-9). As pointed
out above, current state-of-the-art performance metrics in machine learning cal-
culate average values not considering safety with respect to a certain function
(e.g., automated emergency brake) (SC-9). Realizing that it will not be possible
to reach 100% performance, it is obvious that a safety argumentation is hardly
possible based on these metrics. However, considering an object detection com-
ponent in the perception pipeline of an AD vehicle, it is actually not necessary
to assure that all objects are detected but all the objects which are relevant
with respect to system safety. Additionally, one could further refine that all rel-
evant objects need to be detected or a low confidence value needs to indicate
that the DNN might be wrong such that the system can manage the situation
safely (e.g., by relying more on other information paths). Another important
aspect is the analysis of errors over time. If one considers, for example, an object
detection network, missing an object in one single frame might not be prob-
lematic at all because this can be compensated, e.g., by state-of-the-art object
tracking methods or by plausibility checks (e.g., a pedestrian will probably not
disappear within a few milliseconds). But if an object is not detected in several
consecutive frames, the severity of the error is much higher. Therefore, tailored
evaluation metrics are necessary in order to meaningfully assess DNNs from a
safety perspective.

Continuous Learning and Updating (MA-10). In order to maintain the
safety of a DNN-based component, the open context and distributional shift over
time problems (SC-4, SC-2) need to be addressed in the product’s life cycle. In
particular, the DNN could face novel inputs in which the parameter distribution

Safety Concerns and Mitigation Approaches 347

Table 1. Overview of safety concerns and associated mitigation approaches.

Safety concern Mitigation approaches

Data distribution is not a good

approximation of real world

(SC-1)

Well-justified data acquisition

strategy (MA-1), enabling the

output of reliable confidence

information (MA-2), testing

(MA-5), deep analysis of test

results obtained in an iterative

development process (MA-6),

labeling guidelines (MA-8)

Distributional shift over time

(SC-2)

Enabling the output of reliable

confidence information (MA-2),

continuous learning and

updating (MA-10)

Incomprehensible behavior

(SC-3)

Using gray-box methods

(MA-3)

Unknown behavior in rare

critical situations (SC-4)

Well-justified data acquisition

strategy (MA-1), enabling the

output of reliable confidence

information (MA-2), testing

(MA-5), deep analysis of test

results obtained in an iterative

development process (MA-6),

continuous learning and

updating (MA-10)

Unreliable confidence

information (SC-5)

Enabling the output of reliable

confidence information (MA-2),

using gray-box methods

(MA-3), testing (MA-5)

Brittleness of DNNs (SC-6) Enabling the output of reliable

confidence information (MA-2),

specification of adversarial

threat models and

incorporation of defense

methods (MA-4), testing

(MA-5), deep analysis of test

results obtained in an iterative

development process (MA-6),

continuous learning and

updating (MA-10)

Inadequate separation of test

and training data (SC-7)

Data partitioning guidelines

(MA-7)

Dependence on labeling quality

(SC-8)

Labeling guidelines (MA-8)

Insufficient consideration of

safety in metrics (SC-9)

Evaluating performance with

respect to safety (MA-9)

(e.g. pixel values in an image) differ from that of the data seen during develop-
ment. This can occur either because the difference oversteps the generalization

348 O. Willers et al.

abilities of the network (long-tailed open context) or the input includes some-
thing completely new (e.g. a new type of vehicle) which the network has not seen
during training. Therefore, it may be necessary to continually develop the net-
work. Note that continuous learning does not necessarily mean online learning of
the DNN already in use. While this approach is generally possible, it comes with
its own specific problems, namely continuous validation of the newly learned
model in the vehicle with only minimal computation power as well as weak to
no human supervision. Continuous learning as proposed here includes an offline
development step. New and useful data is recognized by a DNN or some other
mechanism and send to a development center where a new version of the DNN
is trained and validated. Finally, the old DNN in the ADAS or AD vehicle is
replaced with the new one, either through software-over-the-air solutions or in
a workshop. This process ensures the in-use DNN to be up-to-date while still
having the ability to make use of large scale computation power for validation.

6 Conclusion

In this work, we have presented a concise list of safety concerns regarding deep
learning methods used in perception pipelines of autonomous agents, especially
highly automated vehicles. We also presented an extensive discussion on possi-
ble mitigation approaches addressing those safety concerns. A summary of the
concerns and their possible mitigation approaches are provided in Table 1. It is
important to note that the discussed approaches have very different maturity
and complexity. Furthermore, while all of the approaches can definitely con-
tribute to a safety case, for the time being it remains an open question when
a specific safety concern is sufficiently mitigated. In particular, many of the
mitigation methods involve parameters for which there does not exist a single
correct value. For example, some methods supply a key performance indicator
(KPI) telling the user how well the DNN under test performed with respect to
this KPI. However, the threshold for this KPI used to determine whether the
deep learning algorithm is safe cannot be obtained analytically in many cases.
Therefore, it is essential to collect knowledge and consolidate this in standard-
ization activities in order to define suitable processes, practices and thresholds.
Extensive discussions with experts working in this field would be of great help
and importance for this purpose.

References

1. Adler, R., et al.: Hardening of artificial neural networks for use in safety-critical
applications - a mapping study. arXiv (2019)

2. Alcorn, M.A., et al.: Strike (with) a pose: neural networks are easily fooled by
strange poses of familiar objects. arXiv (2018)

3. Blundell, C., Cornebise, J., Kavukcuoglu, K., Wierstra, D.: Weight uncertainty in
neural networks. In: ICML (2015)

Safety Concerns and Mitigation Approaches 349

4. Bousquet, O., Boucheron, S., Lugosi, G.: Introduction to statistical learning theory.
In: Bousquet, O., von Luxburg, U., Rätsch, G. (eds.) ML -2003. LNCS (LNAI),
vol. 3176, pp. 169–207. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-28650-9 8

5. Brown, T.B., Mané, D., Roy, A., Abadi, M., Gilmer, J.: Adversarial Patch. arXiv
(2017)

6. Burton, S., Gauerhof, L., Heinzemann, C.: Making the case for safety of machine
learning in highly automated driving. In: Tonetta, S., Schoitsch, E., Bitsch, F.
(eds.) SAFECOMP 2017. LNCS, vol. 10489, pp. 5–16. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-66284-8 1

7. Burton, S., Gauerhof, L., Sethy, B.B., Habli, I., Hawkins, R.: Confidence arguments
for evidence of performance in machine learning for highly automated driving func-
tions. In: Romanovsky, A., Troubitsyna, E., Gashi, I., Schoitsch, E., Bitsch, F.
(eds.) SAFECOMP 2019. LNCS, vol. 11699, pp. 365–377. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-26250-1 30

8. Carlini, N., Wagner, D.A.: Towards evaluating the robustness of neural networks.
In: IEEE Symposium on Security and Privacy (2017)

9. Engstrom, L., Tran, B., Tsipras, D., Schmidt, L., Madry, A.: Exploring the land-
scape of spatial robustness. In: ICML (2019)

10. Eykholt, K., et al.: Physical Adversarial Examples for Object Detectors. arXiv
(2018)

11. Gal, Y., Ghahramani, Z.: Dropout as a Bayesian approximation: representing
model uncertainty in deep learning. In: ICML (2016)

12. Gauerhof, L., Munk, P., Burton, S.: Structuring validation targets of a machine
learning function applied to automated driving. In: Gallina, B., Skavhaug, A.,
Bitsch, F. (eds.) SAFECOMP 2018. LNCS, vol. 11093, pp. 45–58. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-99130-6 4

13. Gharib, M., Lollini, P., Botta, M., Amparore, E., Donatelli, S., Bondavalli, A.:
On the safety of automotive systems incorporating machine learning based com-
ponents: a position paper. In: DSN (2018)

14. Goodfellow, I., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial exam-
ples. In: ICLR (2015)

15. Guo, C., Pleiss, G., Sun, Y., Weinberger, K.Q.: On Calibration of Modern Neural
Networks. arXiv (2017)

16. Haase-Schütz, C., Hertlein, H., Wiesbeck, W.: Estimating labeling quality with
deep object detectors. In: IEEE IV (2019)

17. Hein, M., Andriushchenko, M., Bitterwolf, J.: Why ReLU networks yield high-
confidence predictions far away from the training data and how to mitigate the
problem. In: CVPR (2019)

18. Hendrycks, D., Dietterich, T.: Benchmarking neural network robustness to common
corruptions and perturbations. In: ICLR (2019)

19. ISO: Road vehicles - functional safety (ISO 26262) (2018)
20. ISO: Road vehicles - safety of the intended functionality (ISO/PAS 21448) (2019)
21. Kletz, T.A.: HAZOP & HAZAN: Notes on the Identification and Assessment of

Hazards. Hazard Workshop Modules, Institution of Chemical Engineers (1986)
22. Koopman, P., Fratrik, F.: How many operational design domains, objects, and

events? In: Workshop on AI Safety (2019)
23. Kurd, Z., Kelly, T.: Establishing safety criteria for artificial neural networks. In:

Knowledge-Based Intelligent Information and Engineering Systems (2003)
24. Lampert, C.H., Nickisch, H., Harmeling, S.: Attribute-based classification for zero-

shot visual object categorization. In: TPAMI (2014)

https://doi.org/10.1007/978-3-540-28650-9_8
https://doi.org/10.1007/978-3-540-28650-9_8
https://doi.org/10.1007/978-3-319-66284-8_1
https://doi.org/10.1007/978-3-030-26250-1_30
https://doi.org/10.1007/978-3-319-99130-6_4

350 O. Willers et al.

25. Lee, M., Kolter, J.Z.: On Physical Adversarial Patches for Object Detection. arXiv
(2019)

26. Li, J., Schmidt, F.R., Kolter, J.Z.: Adversarial camera stickers: a physical camera-
based attack on deep learning systems. arXiv (2019)

27. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning
models resistant to adversarial attacks. In: ICLR (2018)

28. Morgulis, N., Kreines, A., Mendelowitz, S., Weisglass, Y.: Fooling a Real Car with
Adversarial Traffic Signs. arXiv (2019)

29. Pakdaman Naeini, M., Cooper, G., Hauskrecht, M.: Obtaining well calibrated prob-
abilities using Bayesian binning. In: AAAI (2015)

30. Schumann, J., Gupta, P., Liu, Y.: Application of neural networks in high assurance
systems: a survey. In: Schumann, J., Liu, Y. (eds.) Applications of Neural Networks
in High Assurance Systems. Studies in Computational Intelligence, vol. 268, pp.
1–19. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-10690-3 1

31. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-
CAM: visual explanations from deep networks via gradient-based localization. In:
ICCV (2017)

32. Szegedy, C., et al.: Intriguing properties of neural networks. In: ICLR (2014)
33. Varshney, K.R.: Engineering safety in machine learning. In: Information Theory

and Applications Workshop (2016)
34. Wong, E., Kolter, J.Z.: Provable defenses against adversarial examples via the

convex outer adversarial polytope. In: ICML (2018)
35. Yuan, X., He, P., Zhu, Q., Li, X.: Adversarial examples: attacks and defenses for

deep learning. In: TNNLS (2019)
36. Zendel, O., Murschitz, M., Humenberger, M., Herzner, W.: CV-HAZOP: introduc-

ing test data validation for computer vision. In: ICCV (2015)
37. Zendel, O., Honauer, K., Murschitz, M., Steininger, D., Domı́nguez, G.F.: Wild-

Dash - creating hazard-aware benchmarks. In: Ferrari, V., Hebert, M., Sminchis-
escu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11210, pp. 407–421. Springer,
Cham (2018). https://doi.org/10.1007/978-3-030-01231-1 25

38. Zhang, J.M., Harman, M., Ma, L., Liu, Y.: Machine Learning Testing: Survey,
Landscapes and Horizons. arXiv (2019)

https://doi.org/10.1007/978-3-642-10690-3_1
https://doi.org/10.1007/978-3-030-01231-1_25

Positive Trust Balance for Self-driving Car
Deployment

Philip Koopman1,2(B) and Michael Wagner1

1 Edge Case Research, Pittsburgh, PA 15201, USA
mwagner@ecr.ai

2 Carnegie Mellon University, Pittsburgh, PA 15213, USA
koopman@cmu.edu

Abstract. The crucial decision about when self-driving cars are ready to deploy
is likely to be made with insufficient lagging metric data to provide high con-
fidence in an acceptable safety outcome. A Positive Trust Balance approach can
help withmaking a responsible deployment decision despite this uncertainty.With
this approach, a reasonable initial expectation of safety is based on a combina-
tion of a practicable amount of testing, engineering rigor, safety culture, and a
strong commitment to use post-deployment operational feedback to further reduce
uncertainty. This can enable faster deployment than would be required by more
traditional safety approaches by reducing the confidence necessary at time of
deployment in exchange for a more stringent requirement for Safety Performance
Indicator (SPI) field feedback in the context of a strong safety culture.

Keywords: Self-driving cars · Autonomous vehicles · System safety ·
Deployment

1 Introduction

At some point, developers must make a decision that it is time to deploy a Self-Driving
Car (SDC) design. Ultimately, all the testing and safety engineering efforts come down
to a binary go/no-go decision: is the vehicle ready to operate on public roads with suf-
ficiently safe outcomes? This paper proposes an approach to living with the uncertainty
that will be inherent in making this decision.

At the time of deployment, the SDC design team must be able to show that expected
operational safety will be acceptable. However, with the still-maturing state of SDC
technology, it is likely that there will be significant uncertainty surrounding any such
expectation. Moreover, due to practical limits on simulation and human-supervised test-
ing, the scale of operations required to establish confidence that the error bars on the
expectation also fall within acceptable safety outcomes will be too large to achieve in
any way other than collecting data from actual at-scale deployment. (We use the term
“confidence” in a general mathematical sense of a confidence interval and the like, and
not in the sense of the strength of an individual’s subjective belief.)

© Springer Nature Switzerland AG 2020
A. Casimiro et al. (Eds.): SAFECOMP 2020 Workshops, LNCS 12235, pp. 351–357, 2020.
https://doi.org/10.1007/978-3-030-55583-2_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-55583-2_26&domain=pdf
http://orcid.org/0000-0003-1658-2386
https://doi.org/10.1007/978-3-030-55583-2_26

352 P. Koopman and M. Wagner

This results in a cyclic dependency: the only way to resolve uncertainty is to deploy,
but deployment cannot be justified based on a high confidence expectation of acceptable
safety due to excessive uncertainty. We propose a framework to ensure a responsible
deployment decision based on Positive Trust Balance (PTB), involving a combination
of validation, engineering rigor, post-deployment feedback, and safety culture.

A key observation is that traditional safety engineering is based on the premise that
the first deployed unit is safe enough to be part of an at-scale production run and that
– potential product recalls notwithstanding – no further changes will need to be made
after deployment to achieve the desired lifecycle safety target. Such a claim might be
unsupportable via practicable validation efforts for salient aspects of SDC technology
such as the use of machine learning based systems. However, rather than saying that it
is hopeless to assure safety at deployment, we instead propose an approach in which the
expected level of safety is shown to be acceptable, but there is a non-negligible potential
for higher than desired operational risk exposure due to uncertainty. This might still
result in net tolerable risk if post-deployment feedback can be relied upon to aggressively
reduce uncertainty over the system lifecycle.

In a related work, [8] assumed that safety was perfectly characterized when deploy-
ing, and explored the implications of uncertainty of in potential safety improvements
after deployment. In contrast, we deal with uncertainty of the expected safety at the time
of deployment.

2 Current Approaches to Deployment Decisions

2.1 Positive Risk Balance

A decision to deploy should include a decision as to whether the system is expected to
be “safe enough.” While there is no universally accepted criterion, a common approach
is that SDCs should be at least as safe as a human-driven car. If the SDC is safer than a
human, it is said to have Positive Risk Balance (PRB) [4].

Typically, PRB is stated in terms of the SDC having a lower fatality rate than other-
wise comparable human-driven vehicles. A more nuanced view should also encompass
major injury rates, minor injury rates, and perhaps property damage events. Setting a
credible risk target is not trivial, and should take into account comparable loss event rates
for the target Operational Design Domain (ODD), risk distribution profile (e.g., whether
vulnerable road users are put at increased risk), and numerous other considerations (e.g.,
according to Section 16 of [1]) rather than simply using a generic national-level statis-
tic for fatality rates. Other safety postures are possible, such as comparison only with
unimpaired human drivers, or even a goal of zero at-fault loss events.

For present purposes we assume some reasonable definition of PRB is the goal.
That assumption having been made, the question is how to decide whether PRB will be
achieved before deploying.

2.2 Driver Test

A commonly proposed deployment criterion is passing some sort of simulated and/or
real-world driving road test, potentially drawing upon elements of human-equivalent
road tests and a scenario catalog (e.g., [3]).

Positive Trust Balance for Self-driving Car Deployment 353

An operational test is essential to confirm the validity of simulation and analysis.
However, any predetermined test will struggle to assess analogues to some real-world
human driving skills such as the ability to handle novel unstructured situations and “com-
mon sense” contextual interpretation. While such attributes are not stressed in human
driver test procedures, traditional driver licensing addresses them indirectly via mini-
mum age, supervised instruction, and brief observation of behavior by a human driver
test official. Such an approach is deemed sufficient based upon significant experience
with human abilities and cognitive development plus mandatory insurance. There is no
analogous testing-only approach to evaluate judgment maturity for SDC technology for
licensing and insurance risk evaluation purposes.

2.3 Testing Metrics

Administering a comprehensive SDC driving test requires significant resources, so a
common alternative approach has been to use metrics that reflect on-road testing experi-
ence. Example metrics are number of miles driven, automation disengagements [2], and
crashes per mile. (It is important to note that physical testing on public roads presents
potentially significant risk that must be mitigated [9].) More sophisticated approaches
combine simulation results with actual road miles.

While it is difficult to justify a deployment decision for a vehicle that lacks sub-
stantial real-world testing, large-scale testing campaigns don’t necessarily ensure safety.
Potential threats to validity for a road testing safety campaign must also be addressed,
including changes to underlying vehicle software mid-campaign, driving only “easy”
miles, and in general driving in conditions that do not cover risky portions of the ODD.

Even if road testing addresses all experimental concerns, the sheer number of miles
required (likely billions of miles [8]) is infeasible to conduct using physical road tests
before deployment.

2.4 SOTIF Approaches

The need for billions of miles of testing can, in principle, be reduced by identifying
scenarios based on real-world operation and ensuring that the vehicle performs properly
for all scenarios possible within the ODD. Amethodical iterative improvement approach
to this is used for Safety of the Intended Function (SOTIF) based workflows [6, 13].
The general idea is to iteratively identify and mitigate so-called triggering events that
expose requirements gaps or other functional insufficiencies, resulting in ever-expanding
scenario catalog. It is generally assumed that the deployment decision will be based on
having high confidence that risk is not unreasonable. However, if a heavy tail distribution
of triggering events is present, it might be that it is economically infeasible to discover
enough of the “unknown hazardous” scenarios to achieve such high confidence, even if
all available evidence based on mitigation of known hazards supports a conclusion of
being safe enough to deploy.

The 2019 revision of ISO/PAS 21448 describing a SOTIF approach includes both
iterative improvement during development and a newly added field monitoring section.
Both activities are essential to achieve practical safety, and are aligned with the approach
described in this paper. However, it is beneficial to also define amore explicit relationship

354 P. Koopman and M. Wagner

between initial deployment safety and the role of field feedback in making the initial
deployment decision, especially in the presence of substantial uncertainty.

3 The Positive Trust Balance Approach

It seems likely that a combination of the approaches discussedwill be required, including
analysis, simulation, testing, scenario catalogs, and iterative improvement. But, even
doing all these things together is likely to result in an unacceptable level of uncertainty
about whether a PRB has actually been achieved before deployment. The proposed
four-prong Positive Trust Balance (PTB) approach addresses this uncertainty.

The issue is that design validation techniques are based on leadingmetrics that predict
a PRB, rather than lagging metrics that confirm a PRB has been achieved in practice
[12]. And, even if pre-deployment on-road PRB lagging metrics could be gathered (at
great expense), it would likely be unaffordable to repeat full-scale on-road evidence
collection before deploying each periodic software update.

A prime motivation for quick SDC deployment is to mitigate losses attributed to
human drivers. However, a key deployment risk is uncertainty as to whether PRB will
actually be achieved, or if instead losses will be worse than with human drivers due
to premature deployment. Fundamental sources of uncertainty (and therefore lack of
confidence) that complicate understanding of advanced SDC technology risk include:

• Lack of a human-comprehensible design for tracing tests back to design intent as is
typically done with a V-model development cycle.

• Still-maturing best practices for developing machine learning-based systems.
• Addressing the problem of how an SDC can know that it is operating (or about to
operate) outside its ODD when it encounters an unforeseen edge case.

Resolving this uncertainty requires more than yet another testing or simulation tool.
Rather, it requires a fundamental re-thinking of the goal of having conclusive evidence
that a safety target has been reached before deploying a system.

We suggest considering a PTB approach that involves an initial practicable, evi-
dence-based expectation that a safety target will be achieved, and then uses opera-
tional data to improve the confidence of that expectation over time. It is essential to
have a robust safety culture for this approach to be viable.

3.1 Pre-deployment Validation

Pre-deployment validation, including analysis, simulation, and testing, should be carried
out to the maximum extent reasonably practicable. That having been said, it has long
been known that brute force testing is impracticable for establishing the safety of high
criticality systems (e.g., [10]). Therefore, we should accept that a testing-only approach
will leave substantial uncertainty as to safety.

Consider a hypothetical validation strategy:

– 10,000 million mile simulation campaign
– 100 million miles of collected road data used to feed those simulations
– 10 million miles of actual road testing used to validate simulation results

Positive Trust Balance for Self-driving Car Deployment 355

Even if the road testing proceeds with no incidents whatsoever, there will be uncer-
tainty as to how well the SDC can handle infrequent events that arrive too seldom to
be thoroughly characterized by the road data and road test campaign. As a simple illus-
tration, a substantial fraction of rare events that happen once every 100 million miles
won’t have been seen at all in that data collection, let along be seen in road testing. But
some of those same comparatively rare events will in aggregate occur more frequently
than every 100 million miles during deployment. That will in turn potentially invalidate
any PRB validation claim of a 100 million mile or longer average fatal mishap arrival
rate. This is in addition to residual concerns about simulation accuracy that will further
increase uncertainty.

Consider a developer claim that road testing and simulationhas beendone to the limits
of economic practicality. The outcome of such a successful limited testing campaign will
be that developers believe the system is safe – as far as they know. But, that knowledge
of safety will have low confidence if it is not based on more data collection and testing
than the expected fatality interarrival rate, which is generally impractical. Put another
way, the developer will have an expectation of reasonable safety, but the error bars will
be too big for comfort due to economic constraints.

Something will need to be done about the error bars.

3.2 Engineering Rigor

Functional safety standards require not only testing, but also evidence that a sufficiently
rigorous engineering process has been applied. In particular, the conventional software
features of the SDC should be designed according to established safety standards, such
as ISO 26262 [7] for functional safety.

While engineering practices for some aspects of SDC technology such as machine
learning are still evolving, there are known bad practices to be avoided, and the use
of best practices should be confirmed. For example, training machine learning-based
systems on safety validation data is clearly undesirable, but in practice corners might
inadvertently be cut or data management mistakes might be made. Best practices are
not a panacea, but it should be established that they have been followed. Moreover, it
is difficult to justify that questionable engineering practices will result in a safe SDC.
Conformance to SDC-specific safety standards and guidelines can help with this (e.g.,
[1, 6, 13]).

3.3 Feedback and Continuous Improvement

Even though validation and engineering rigor have been used to attain an acceptable
expected safety outcome, confidence will likely be low enough that an unacceptable
outcome might yet occur (e.g., the mean risk outcome is acceptable, but figurative error
bars also encompass unacceptable outcomes). To address this concern, feedback from
actual operations should be used to improve confidence as well as fix any problems.

A traditional recall approach that waits for unambiguous trends in mishaps and
only then issues reactive fixes is insufficient here. No developer should deploy an SDC
suspected or known to be unacceptably safe and then wait for multiple fatal crashes to
accumulate before taking corrective action. The degree of safety uncertainty inherent

356 P. Koopman and M. Wagner

to novel SDC technology incurs an obligation to proactively monitor operations and to
respond to all incidents, including near misses.

A specific approach to feedback is the use of Safety Performance Indicators (SPIs)
as defined in ANSI/UL 4600 [1]. SPIs are operational metrics that cover not only lagging
indicators, but also leading indicators. SPIs are tied directly to an SDC’s safety case.
Near miss reporting [14] is an essential part of this approach. The aviation industry uses
SPIs to improve after near misses and process breakdowns without waiting for actual
loss events to drive lessons learned [5].

While it is always possible to get unlucky, in general if near misses are much more
common than loss events, monitoring and correcting root causes of near misses can
increase confidence faster than losses occur. Safe failure fraction SPIs are useful, such
as the ratio of road testing near misses to operator-prevented mishaps.

This approach also encompasses the notion of small scale SDC pilot deployments.
These still require a decision that the SDC is expected to be safe enough to deploy at
pilot scale followed by feedback and improvement to build confidence over time.

3.4 Safety Culture

As with the design of any safety critical system, a robust safety culture [11] is essential
to providing acceptably safe SDCs. Some particularly important issues are:

• Avoiding setting unreasonably low initial quality and validation goals based on an
argument that post-deployment updates will fix bugs. Such an argument is not aligned
with the PTB approach.

• Using the lack of maturity in accepted practices in some areas (e.g., still evolving best
practices for safe machine learning) as an excuse for not following well known best
practices for more traditional aspects of the system, such as functional safety.

The need for a robust, transparent robust safety culture should not be news to anyone
involved in safety critical system design.With a PTB approach it is absolutely essential
to have a strong safety culture both to ensure good technical outcomes as well as enable
public trust to be built over time.

4 Conclusions

A Positive Trust Balance approach to self-driving car deployment includes all of: test-
ing, employing engineering rigor, using field feedback for continuous improvement, and
building a transparent, robust safety culture. Rather than requiring likely unattainable
conclusive proof that a risk target has been met on day one, instead the deployment
decision is made based on practicable evidence collection that supports a reasonable
expectation that risk will be sufficiently low. This must be coupled with a firm com-
mitment to improve confidence in that expectation using post-deployment feedback. A
robust and transparent safety culture is essential to ensure that the developer is committed
to making acceptable safety decisions over the system lifecycle.

Positive Trust Balance for Self-driving Car Deployment 357

In the end, what will matter the most is whether stakeholders trust the safety of SDCs
at least as much as they trust the safety of human-driven vehicles (i.e., Positive Trust
Balance). We believe that strong tool support for a PTB approach embodied in a safety
case will be crucial for combining these elements in practice and developing stakeholder
trust.

References

1. ANSI/UL 4600 Standard for Safety for the Evaluation of Autonomous Products, April 2020
2. Banerjee, S., et al.: Hands off the wheel in autonomous vehicles? In: DSN (2018)
3. Cerf, V.: A comprehensive self-driving car test. CACM 61(2), 7 (2018)
4. Di Fabio, U., Broy, M., Brüngger, R.J., et al.: Ethics commission automated and connected

driving. Federal Ministry of Transport and Digital Infrastructure of the Federal Republic of
Germany (2017)

5. ICAO: Safety Management Manual (SMM), Doc 9859 AN/474, 2nd ed. (2009)
6. ISO: Road Vehicles – Safety of the Intended Function. ISO/PAS 21448:2019
7. ISO: Road Vehicles – Functional Safety. ISO 26262:2018
8. Kalra, N., Groves, D.: The enemy of good: estimating the cost of waiting for nearly perfect

automated vehicles. Rand Corporation, RR-2150-RC (2017)
9. Koopman, P., Osyk, B.: Safety argument considerations for public road testing of autonomous

vehicles, SAE WXC, 2019-01-0123, April 2019
10. Littlewood, B., Strigini, L.: Validation of ultra-high dependability for software-based systems.

C ACM 36(11), 69–80 (1993)
11. NASA: NASA Safety Culture Handbook, NASA-HDBK-8709.24 (2015)
12. Fraade-Blanar, L., et al.: Measuring automated vehicle safety, RAND Technical Report

RR2662 (2018)
13. SaFAD working group: Safety First for Automated Driving, Technical Report
14. Williamsen, M.: Near-miss reporting: a missing link in safety culture. Prof. Saf. 58, 46–50

(2013)

Integration of Formal Safety Models
on System Level Using the Example
of Responsibility Sensitive Safety
and CARLA Driving Simulator

Bernd Gassmann(B) , Frederik Pasch , Fabian Oboril ,
and Kay-Ulrich Scholl

Intel Corporation, Intel Labs, Karlsruhe, Germany
{bernd.gassmann,frederik.pasch,fabian.oboril,

kay-ulrich.scholl}@intel.com

Abstract. Automated Driving (AD) is about to transform our daily life.
However, on the way towards mass deployment, some challenges have to
be resolved. Among these, the safety assurance problem is a key issue.
Therefore, Intel/Mobileye proposed a formal, mathematical model called
Responsibility Sensitive Safety (RSS) to digitize reasonable boundaries
on the behavior of other road users by establishing clear mathematically
proven rules. While the concept of RSS and a first reference implemen-
tation are already known to the community, a remaining question is the
integration of RSS into a complete AD system. In this paper, we address
this gap and describe the integration of RSS into the CARLA driving
simulator as practical example.

1 Introduction

The transportation industry is currently undergoing one of its biggest trans-
formation ever. In particular, the increasing amount of automation is a major
factor in this process. While great progress was made in the last years on the
functional side, assuring safety under all operating conditions, and all environ-
ment conditions is still an open research question.

Classical functional safety standards address possible hazards caused by
malfunctioning behavior (ISO 26262 [7]) and consider intended functionality
(ISO/PAS 21448 [8]) with focus on specified design process together with the
imposition of specific technical requirements and validation methods. The ANSI/
UL 4600 standard [1] addresses safety principles and processes especially for the
evaluation of automated vehicles focusing on the creation of a valid safety case
with its goals, argumentation, and evidence. NHTSA [10] envisions that valida-
tion methods are applied to appropriately mitigate the safety risks associated
with Automated Driving Systems (ADS). Therefore, significant investments in
operational safety of ADS are required, in particular in the areas of scenario
development and formal verification, testing and validation tools [2,18].
c© Springer Nature Switzerland AG 2020
A. Casimiro et al. (Eds.): SAFECOMP 2020 Workshops, LNCS 12235, pp. 358–369, 2020.
https://doi.org/10.1007/978-3-030-55583-2_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-55583-2_27&domain=pdf
http://orcid.org/0000-0002-5017-4987
http://orcid.org/0000-0002-2626-1538
http://orcid.org/0000-0002-2647-4824
http://orcid.org/0000-0001-6337-1798
https://doi.org/10.1007/978-3-030-55583-2_27

Integration of RSS into CARLA Driving Simulator 359

As a possible solution to the problem of safety assurance, Intel/Mobileye
proposed the “Responsibility Sensitive Safety” (RSS) safety model [16]. RSS is
a technology-neutral formal mathematical approach of a safety concept for the
decision making component of an ADS. RSS formalizes human notions of driving
safely like “Do not hit someone from behind”, “Do not cut in recklessly”, “Right-
of-Way is given, not taken”. . .RSS continuously monitors the current state of the
environment and the state of the ADS itself, calculates the safety envelope (i.e.
the longitudinal and lateral safety distances), and performs a proper response in
case of violation of the safety envelope.

The longitudinal safety distance defined by RSS in a vehicle following sce-
nario depends, for example, on the velocities of the front (vf) and rear (vr) car,
the maximum braking βf

max the front car can or will apply, the amount of brak-
ing βr

min the rear car can or will apply and the reaction time ρ, or the amount of
time it takes the rear car to perceive the danger and act accordingly. In addition,
the possibility of the rear car accelerating with up to αr

max during the reaction
time is taken into account. The positive minimum safety distance evaluates to
([16] Definition 1):

dmin =
[
vrρ +

1
2
αr
maxρ

2 +
(vr + ραr

max)
2

2βr
min

− v2
f

2βf
max

]
+

(1)

In a similar way, the lateral safety distance (see [16] Definition 6) is defined
by RSS . If both, the longitudinal and lateral safety distance are violated, the
situation is considered to be dangerous and RSS provides a proper reaction
that will bring the car back into a safe state. Therefore, it will impose proper
restrictions for the longitudinal (accellonmax) and lateral (accellatmax) accelerations
of the driving command that is sent to the vehicle.

As driving simulators like the CARLA AD simulator [5] provide the possi-
bility to simulate a large variety of safety critical scenarios with full access to
ground truth data [18], these can support the test and validation of ADS to a
certain degree. Integrating formal safety models with a driving simulator allows
to perform safety assessment of parts of the ADS as well as an in-depth analysis
of the safety models themselves, i.e. their behavior in corner-cases which are
hard to cover by testing in reality.

In this paper we will briefly describe how safety models in general fit into
an ADS architecture. Then, we show how road topology can be considered for
situation modeling for AD safety models in general and demonstrate the inte-
gration of the formal safety model “Responsibility Sensitive Safety” (RSS) [16]
on system level into the CARLA driving simulator to support the safety assess-
ment of ADS. Finally, we present a demonstrator setup which enables human
test persons to experience AD safety concepts.

2 Integration of Safety Models on System Level

Koopman et al. [9] describe a layered residual risk approach for automated vehi-
cle safety validation which includes phased simulation and testing to mitigate

360 B. Gassmann et al.

residual validation risks, human-interpretable observability points to ensure the
system is doing the right thing for the right reason, checking for gaps in the
requirements and design faults and finally a run-time monitoring approach, a
safety checker functional block, to manage identified risks, catch assumption vio-
lations and “unknown unknowns”. More general, safety checkers are also referred
as ethical governors or safety monitors [3].

A general functional reference architecture of an ADS is sketched in the
upcoming SAE J3131 [15] recommended practice. Therein, the reflexive layer on
top of the basic control layer contains a safety checker/monitor, that indirectly
prevents the system from violating one or more safety goals by flagging safety-
relevant anomalies (see Fig. 1). Based on safety-grade map and environment
information the checker validates the planned trajectory of the ADS.

Fig. 1. The integration of safety models as a monitor/checker component into an ADS
architecture, loosely based on upcoming SAE J3131. On the bottom left the sensing
system of the ADS including cameras, LIDAR, RADAR, GPS, etc. is sketched. The
perception system processes and fuses the sensor data to create information on a higher
level of abstraction to build up an internal model of the world, the ADS is operating on.
Vehicle to vehicle or vehicle to infrastructure communication can support the creation
of the environment model with its traffic participants, the map of the road network,
its regulations as well as other static and dynamic entities. Based on this, the driving
behavior creates and executes a plan to operate within the world and sends control
commands to the actuation system of the vehicle (bottom right). The horizontal lay-
ers indicate the time hierarchy of the ADS functions from mission layer at the top
for strategic functions beyond the sensor range, behavior layer for tactical functions,
reflexive layer to produce motion control requests and the control layer at the bot-
tom for closed-loop motion control functions. The reflexive layer includes checks for
drivability and potential hazards.

The proposed framework for online verification of motion planning of ADS
in [14] mainly follows that kind of separate stand-alone formal safety checker. In

Integration of RSS into CARLA Driving Simulator 361

addition to the trajectories proposed by the planner, the framework generates
fail-safe trajectory extensions which allows to check multiple trajectories and
select a verified one among these. The independence from the actual planner
enables the argumentation with classical functional safety standards; even the
input to the safety checker can be based on an independent perception chain if
required.

Another possibility is to embed safety checkers directly into the planning
function as part of the behavior layer of the driving behavior (see Fig. 1). The
tactical planner considers safety metrics already while creating the trajectories.
This also supports Machine Learning approaches, e.g. by punishing unsafe plans
and rewarding safe plans within the learning process. Cheng et al. [4] incorporate
safety checks as control barrier functions in a reinforcement learning framework.
Like this, the planner itself becomes aware of the safety metrics and enables
optimal and safe planning at once. The drawback of this approach is that the
safety envelope around the planner is not obvious anymore.

Finally, the safety checker functionality can be deployed outside the actual
ADS and used as an external assessment tool. This allows black-box testing of the
of ADS functions by applying the safety metrics to validate the behavior safety.
Any of these integration methods require map and environment information as
input to the safety checker.

3 Road Topology and Situation Modeling Considerations
for AD Safety Models

A safety checker has to consider all potential constellations of the vehicles to
ensure no critical one is missed when performing the situation analysis. The
RSS safety model mainly distinguishes the following main constellations of two
vehicles [16]:

– the vehicles drive in the same direction on the same road
– the vehicles drive in opposite direction on the same road
– the vehicles drive on different roads that overlap in certain areas having to

respect priority rules (intersection)
– areas with no actual road geometries like parking lots (unstructured)

There are different map data formats available like OpenStreetMap [13] or
OpenDRIVE [11] representing geometric and semantic road data. The analysis
required for safety models like RSS , e.g. on intersection level, demands knowl-
edge on priority rules and sophisticated operations on the map data. For this,
we introduce the open source AD map access library1 providing a C++ imple-
mentation for accessing and operating on AD map data. AD map access sup-
ports reading the standardized OpenDRIVE file format and provides high-level
operations required for automated driving like map matching, route planning,
prediction, and i.e. right-of-way handling within intersections.

1 https://github.com/carla-simulator/map.

https://github.com/carla-simulator/map

362 B. Gassmann et al.

Road Network

Select object

Objects

Not processed obect
available?

No

Timestep
Done

Yes

Start mestep

Create same direc on
situa on

Connec ng route
between object and ego

vehicle exists?

No

Both drive in same
direc on?

Create opposite direc on
situa on

Create intersec on
situa on

Yes

Both drive
in opposite direc on and

no intersec on in
between?

Yes

No

Yes

select pair of
predicted routes

No

Both drive through
intersec on coming from

same arm?

Routes are
crossing each other

within the
intersec on?

Yes

No

No

select common
intersec on of
the route pair

Yes

Create same direc on
situa on

another common
intersec on of route pair

exists?

another pair of predicted
routes exist?

Create opposite direc on
situa on

Yes

No

No

Yes

Fig. 2. Flow diagram of the considerations to be done to determine possible constella-
tions of two vehicles

Having AD map data and a list of objects from the environment model at
hand the type of constellation of two vehicles can be determined as sketched
in Fig. 2: Using the road network data, the shortest connecting route between
two vehicles is calculated. If both vehicles are driving in the same direction
with respect to the connecting route a same-direction-constellation is created.
This is done, regardless if intersections between the two vehicles are present,
because one vehicle just follows the other, potentially through the intersection
(see Fig. 3). If both vehicles drive in opposite directions and there is no intersec-
tion in between an opposite-direction-constellation is created (see Fig. 4 (left)).
Otherwise, the planned route of the ego-vehicle has to be analyzed pairwise with
all possible routes of the other vehicle as the others’ planned route is not known.
Every intersection crossed by both routes might result in a new constellation
to be considered: If both drive through the intersection coming from different

Integration of RSS into CARLA Driving Simulator 363

intersection arms with routes not crossing, the vehicles pass each other and an
opposite-direction-constellation is created (see Fig. 4 (right)).

Fig. 3. One vehicle is following the other on the same road, driving in the same direc-
tion: (left) either on the same lane or on another parallel lane. (right) Same direction:
Both vehicles drive through the intersection from the same arm: ego (bright) vehicle is
following the other (dark) vehicle.

Fig. 4. Both vehicle are approaching each other, driving in the opposite direction: (left)
on the same road either on the same or on parallel lane. (right) Both vehicles approach
the intersection and will exit the intersection at the arm that the respective other is
entering.

Other cases lead to the creation of an intersection-constellation where the
routes are crossing each other (see Fig. 5). To determine if one route has priority
over the other as per traffic rules the capabilities of the AD map access are used.
In case of traffic light intersections, the kind and status of the relevant traffic
light determines the current priorities.

This map based approach covers the main connecting routes following the
road network definitions but isn’t claiming completeness. In reality, a wide vari-
ety of road layouts exist which have to be considered. In addition, this method
is limited to structured constellations. For completeness extensions towards
unstructured constellations where e.g. other vehicles enter/exit the road or drive
on larger areas with no defined traffic direction are required.

364 B. Gassmann et al.

Fig. 5. Intersection: Both vehicles approach the intersection with routes crossing within
the intersection: ego (bright) vehicle is turning left; the other (dark) vehicle is driving
straight.

4 Applying RSS Within CARLA Simulator

In this section, we describe how RSS is integrated into the overall CARLA archi-
tecture. This follows the integration of a safety checker as external assessment
tool as described in Sect. 2. We decided to split the integration in two main
parts: the RSS Sensor and the RSS Restrictor . Like this, the RSS Sensor can
be attached as virtual sensor to any of the vehicles providing RSS safety metrics
without influencing the vehicle behavior. If a RSS conform vehicle behavior is
required, the RSS Restrictor functionality can be called to restrict the control
commands before forwarding them to the respective vehicle (see Fig. 6).

Fig. 6. Integration of RSS safety model into CARLA architecture with RSS Sensor ,
RSS Restrictor and Demo Client Interface

Integration of RSS into CARLA Driving Simulator 365

4.1 RSS Sensor

The RSS Sensor is a client-side sensor. It implements the ‘Extract RSS World
Model’ and the RSS checker functionality as part of the ‘Ad RSS Lib’ sketched
in Fig. 6. When attached to a vehicle, the RSS Sensor ‘ticks’ as every other
CARLA sensor. Every ‘tick’ all vehicles are analyzed according to RSS :

1. Perform map matching of the ego-vehicle.
2. Update the ego-vehicle route on which the RSS calculations are based.
3. Calculate the ego dynamics on the route:

– Determine the heading of the route θroute

– Calculate speed components vlat
route, v

lon
route

– Keep track of accelerations alat
route, a

lon
route

4. Create the relevant vehicle constellations required as input to the RSS as
described in Sect. 3.

5. Perform the safety check calling into the RSS Open Library2 [6].
6. Analyze and report the check results including the proper response provided

by the RSS safety model.
7. (optional) Trigger debug visualization

4.2 RSS Restrictor

If an additional RSS Restrictor is instantiated, the output from the RSS Sensor
can be used to make the vehicle behave in a RSS conform manner. The RSS
Restrictor implements the ‘Enforce RSS Restrictions’ functionality sketched in
Fig. 6.

Regardless of the incoming control commands—either by an AD stack, a sim-
ple CARLA control client or even a manual control client—a vehicle equipped
with a RSS Restrictor will consider the proper response calculated by the RSS
Sensor and behave RSS conform; limited to the extend of the feature set sup-
ported by the RSS Sensor and on the accuracy that can be achieved by the
simple implementation.

Limitations. In general, providing RSS conform restrictions of the future vehi-
cle trajectory is not trivial. While enforcing longitudinal restrictions is mainly
achieved by braking, the nature of lateral restrictions is far more complex.
Restricting the lateral movement within the lane requires to control the vehicle
steering where counter steering is the analogy of longitudinal braking. While
braking longitudinally ultimately ends up in standing still, counter steering
might easily lead to a movement to the other side within the lane, which is
not the desired behavior. RSS requests to stop the movement in the respective
lateral direction in the first place, not to move to the opposite (the longitudi-
nal analogy of the latter would be driving backwards to increase the distance
between the two vehicles again).

2 https://github.com/intel/ad-rss-lib.

https://github.com/intel/ad-rss-lib

366 B. Gassmann et al.

RSS leaves enough lateral space towards the other traffic participant, that,
by applying the braking force βlat

min within the reaction time, both vehicles will
be able to stop their lateral movement towards each other (reaching laterally
μ-velocity of 0 as defined in [16] Definition 6) and avoid a collision with each
other. After μ-lateral-zero velocity is reached, the lateral acceleration is again
restricted to [0;αlat

max] or [−αlat
max; 0] respectively.

The RSS Restrictor and the RSS Sensor are running within CARLA usually
at a frequency that is rather too slow for performing a closed loop control. This
doesn’t allow the actual control of the accelerations like it would be possible by a
real vehicle controller. Furthermore, we cannot afford the effort to tune the RSS
Restrictor to every kind of vehicle possible to be spawned within CARLA in
respect to concrete control parameters. Therefore, we decided to go for a simple
implementation of the restrictor that intervenes only if a dangerous situation is
reported.

Longitudinal Restriction. In case the acceleration restrictions reported by
the RSS Sensor trigger a brake in longitudinal direction by a negative result
(accellonmax < 0), the throttle is set to zero and the brake control value (brakectrl ∈
[0.0; 1.0]) is calculated based on the simulated vehicles maximum wheel torques
(braketorquewheel,max), the wheel radius (radiuswheel) and the vehicle mass:

braketorquemax =
∑
wheel

braketorquewheel,max (2)

braketorquedesired = mass
∣∣∣accellonmax

∣∣∣ radiuswheel (3)

brakectrl =
braketorquedesired

braketorquemax

(4)

Lateral Restriction. The means of choice to respond on a lateral restriction
is to counter steer into route direction θroute, the steer output control value
(steerctrlout ∈ [−1.0; 1.0]) is calculated based on the steer control input (steerctrlin),
the ego heading (θego), the simulated vehicles maximum wheel steering angle
(steeranglewheel,max):

steeranglemax = max
wheel

steeranglewheel,max (5)

steerrestr =
arctan(θroute − θego)

steeranglemax

(6)

steerctrlout =

{
max(steerctrlin , steerrestr), if vlat

route < 0,

min(steerctrlin , steerrestr), if vlat
route > 0.

(7)

5 RSS CARLA Demonstrator

While integrating RSS into CARLA and driving around with the keyboard
control, very soon the idea of using steering wheel and pedals to control the

Integration of RSS into CARLA Driving Simulator 367

ego-vehicle came up. Then, the idea was growing quickly towards a demonstra-
tor providing the opportunity for people experiencing RSS without the need to
know on the details of the safety model.

The demonstrator hardware setup consists of a PC, a display, a steering wheel
and pedals for throttle and brake. To provide an immersive user experience, the
steering wheel supports force feedback, i.e. it can be controlled by the application
(see Fig. 7).

Fig. 7. Demonstrator setup: The ego vehicle is trying to steer to the left and provoke a
collision. The RSS Restrictor is preventing the collision by overriding the throttle and
steering control values.

On the PC a RSS demo application connects to a CARLA server instance.
It’s based on the reference manual control steeringwheel.py and instantiates and
attaches a RSS Sensor to the ego vehicle. In case the RSS Sensor reports a
dangerous situation, the values of the steering wheel get overridden by the ones
provided by the RSS Restrictor and a physical force is applied to the steering
wheel. In case of lateral restrictions, the steering wheel gets pushed back to a
safe angle. For longitudinal restrictions the steering wheel vibrates. Additionally,
the unsafe situation is displayed and a red frame is drawn into the display. These
effects enable a test person to haptically experience the effects of RSS.

368 B. Gassmann et al.

Two demo modes are available. The first one is an open world approach,
where the test person drives along a predefined route through a world with ran-
dom traffic. While this allows experiencing many different situations, it’s also
easy to miss them, leading to varying user reception. After this main feedback
from a set of about 20–30 independent test persons, a second mode was imple-
mented which guides the test person through a prepared scenario where the
features of RSS are explained in more detail.

The scenario follows a route and is divided into different situations that
showcase the RSS rules one by one. It’s defined as OpenSCENARIO [12] and
executed by ScenarioRunner3. The test person drives along the route (supported
by navigation hints) and the behavior of the other traffic participants and the
traffic lights is triggered by the location of the ego vehicle. That allows, for
example, to create a situation, where another traffic participant cuts the right
of way.

6 Outlook

In this paper we presented how safety models are integrated on system level using
the example of RSS safety model and CARLA driving simulator as a first public
available reference on how RSS can be integrated while supporting complex road
networks. The integration into an open source driving simulator like CARLA
can help gain the public trust for the deployment of ADS when equipped with a
safety model like RSS , or the Automatic Preventive Braking, APB , model [17]
in future. In this way, one can experience and investigate the safety benefits of
RSS independent from the actual automated driving technology implemented
below. In addition, these enhancements open the possibility for using CARLA
to test AD stacks for their conformance to RSS or some other future RSS -like
standard.

After the initial step is taken, the implementation will be extended by further
use-cases. A big field not yet covered by the presented open source implemen-
tation are pedestrians and behavior in unstructured environments, which play
a major role especially in urban environments. Furthermore, the RSS Sensor in
its current form takes the ideal object data from the CARLA internal world.
Therefore, also hidden objects around the corner are currently considered as if
they were known to the ego vehicle: Handling of occlusions on the side of the
RSS Sensor as well as in other components like RSS map integration and RSS
Open Library will be integrated.

One limitation of the simulation setup is the general question on how much of
the reality can be covered by the simulated scenarios. Simulation cannot replace
on-road testing, it only can supplement it. By using only simulated vehicles one
can never be sure to have covered the behavior of real vehicles on the road,
especially if these are controlled by human operators. Nevertheless, applying
different scenarios which were derived from real world data will support the
analysis of various aspects of safety checkers like RSS . In future, we intend to
3 https://github.com/carla-simulator/scenario runner.

https://github.com/carla-simulator/scenario_runner

Integration of RSS into CARLA Driving Simulator 369

apply the implementation to real traffic scenarios and evaluate the behavior of
the traffic participants in respect to the safety metrics.

References

1. ANSI/UL 4600 - Standard for Safety for Evaluation of Autonomous Products
(2020). https://standardscatalog.ul.com/standards/en/standard 4600 1

2. Aptiv, Audi, Baidu, BMW, Continental, Daimler, Fiat Chrysler Automobiles,
HERE, Infineon, Intel, Volkswagen: Safety first for automated driving. White
Paper, July 2019

3. Charisi, V., et al.: Towards moral autonomous systems. CoRR abs/1703.04741
(2017). http://arxiv.org/abs/1703.04741

4. Cheng, R., Orosz, G., Murray, R., Burdick, J.: End-to-end safe reinforcement learn-
ing through barrier functions for safety-critical continuous control tasks. In: Pro-
ceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 3387–3395,
July 2019. https://doi.org/10.1609/aaai.v33i01.33013387

5. Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., Koltun, V.: CARLA: an open
urban driving simulator. In: Proceedings of the 1st Annual Conference on Robot
Learning, pp. 1–16 (2017)

6. Gassmann, B., et al.: Towards standardization of AV safety: C++ library for
responsibility sensitive safety. In: 2019 IEEE Intelligent Vehicles Symposium (IV)
(2019)

7. ISO: ISO 26262 - Road vehicles - Functional safety (2018)
8. ISO: ISO 21448 - Road vehicles - Safety of the intended functionality (2019)
9. Koopman, P., Wagner, M.: Toward a framework for highly automated vehicle safety

validation. SAE Technical Paper (2018). https://doi.org/10.4271/2018-01-1071
10. NHTSA - US Department of Transportation: Automated Driving Systems: a vision

for safety (2017)
11. OpenDRIVE (2020). https://www.asam.net/standards/detail/opendrive/
12. OpenSCENARIO (2020). https://www.asam.net/standards/detail/openscenario/
13. Open Street Map (2020). https://www.openstreetmap.org
14. Pek, C., Koschi, M., Althoff, M.: An online verification framework for motion

planning of self-driving vehicles with safety guarantees. In: AAET 2019 - Automa-
tisiertes und vernetztes Fahren, pp. 260–274 (2019)

15. SAE - Society of Automotive Engineers: SAE J3131 - Automated Driving Reference
Architecture

16. Shalev-Shwartz, S., Shammah, S., Shashua, A.: On a formal model of safe and
scalable self-driving cars. arXiv preprint arXiv:1708.06374v6 (2017)

17. Shalev-Shwartz, S., Shammah, S., Shashua, A.: Vision zero: on a provable method
for eliminating roadway accidents without compromising traffic throughput. arXiv
preprint arXiv:1901.05022v2 (2018)

18. Takács, Á., Drexler, D.A., Galambos, P., Rudas, I.J., Haidegger, T.: Assessment
and standardization of autonomous vehicles. In: 2018 IEEE 22nd International
Conference on Intelligent Engineering Systems (INES), pp. 000185–000192. IEEE
(2018). https://doi.org/10.1109/INES.2018.8523899

https://standardscatalog.ul.com/standards/en/standard_4600_1
http://arxiv.org/abs/1703.04741
https://doi.org/10.1609/aaai.v33i01.33013387
https://doi.org/10.4271/2018-01-1071
https://www.asam.net/standards/detail/opendrive/
https://www.asam.net/standards/detail/openscenario/
https://www.openstreetmap.org
http://arxiv.org/abs/1708.06374v6
http://arxiv.org/abs/1901.05022v2
https://doi.org/10.1109/INES.2018.8523899

A Safety Case Pattern for Systems
with Machine Learning Components

Ernest Wozniak, Carmen Cârlan(B), Esra Acar-Celik, and Henrik J. Putzer

fortiss GmbH, Guerickestraße 25, 80805 Munich, Germany
{wozniak,carlan,acarcelik,putzer}@fortiss.org

Abstract. Several standards from the domain of safety critical systems,
in order to support the argumentation of the safety assurance of a sys-
tem under development, recommend the construction of a safety case.
This activity is guided by the objectives to be met, recommended or
required by the standards along the safety lifecycle. Ongoing attempts
to use Machine Learning (ML) for safety critical functionality revealed
certain deficits. For instance, the widely recognized standard for func-
tional safety of automotive systems, ISO 26262, which can be used as a
basis to construct a safety case, does not reason about ML. To this end,
the goal of this work is to provide a pattern for arguing about the correct
implementation of safety requirements in system components based on
ML. The pattern is integrated within an overall encompassing approach
for safety case generation for automotive systems and its applicability is
showcased on a pedestrian avoidance system.

Keywords: Machine learning · Safety case · ISO 26262 · GSN

1 Introduction

Industry is quite reserved in introducing Machine Learning (ML) to implement
safety critical functionality for the market products. This is due to the poor
confidence in the correct behavior of functionality implemented by ML compo-
nents [1]. As such, there is a stringent need for improvements not only in the area
of ML-based algorithms design and implementation, but also in validation and
verification approaches, possibly relying on new metrics. Nevertheless, even with
a proper set of methods and metrics, there would still be a need for guidelines
for reasoning about the safety assurance of the ML components. Safety assur-
ance is usually guided by standardized documents. ISO 26262 is a well known,
and prominent standard for functional safety in the automotive domain [2]. The
document recommends the execution of a safety lifecycle, along the system devel-
opment lifecycle. During the safety lifecycle, technical safety requirements are
elicitated and then refined during the product development at hardware and
software level. For the development of hardware and software, ISO 26262 rec-
ommends the execution of two separate processes, specified as V-models. The
current shortcoming of ISO 26262 is that it does not reason about ML as it does
c© Springer Nature Switzerland AG 2020
A. Casimiro et al. (Eds.): SAFECOMP 2020 Workshops, LNCS 12235, pp. 370–382, 2020.
https://doi.org/10.1007/978-3-030-55583-2_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-55583-2_28&domain=pdf
https://doi.org/10.1007/978-3-030-55583-2_28

A Safety Case Pattern for Systems with Machine Learning Components 371

for technologies like software (SW, see part 6 of ISO 26262) or hardware (HW,
see part 5 of ISO 26262). Another relevant standard for automotive, i.e. ISO/PAS
21448 [3] makes only few references to ML, and only in the context of level 1 and
2 automation. In general ISO/PAS 21448 (also called SOTIF - Safety Of The
Intended Functionality) abstracts from specific technology (whether this is SW,
HW or ML) and their limitations. It focuses on hazardous behaviour caused by
the intended functionality or performance limitations of a system that is free
from the faults addressed in the ISO 26262 series.

In order to enable the usage of ML for the implementation of safety-critical
functionality in automotive systems, this work proposes a pattern to construct
a safety case – a clear, comprehensive and defensible argument, supported by
diverse evidence, guaranteeing safety of an item [4]. The pattern is specified in
the Goal Structuring Notation (GSN), which is one of the most prominent nota-
tions used for modeling safety cases [5]. The proposed pattern scopes at guiding
the reasoning about the safety assurance of systems that have parts of their
functionality implemented with ML. The argumentation structure described by
the pattern is aligned with the reasoning about safety assurance ISO 26262 rec-
ommends for software and hardware components, and aims at completing the
set of argumentation patterns for building the safety case of systems compliant
with ISO 26262 that we propose in [6]. The last, in an implicit fashion, supports
also consideration of ISO/PAS 21448 in a construction of a safety case. Further,
the pattern may then serve not only to build a safety case for a specific use-case
from the automotive domain, but also acts as a suggestion on how to ultimately
extend ISO 26262 with ML related concerns.

The paper is structured as follows. Section 2 presents the state of the art in
arguing about the safety of ML-based systems. Next, Sect. 3 introduces funda-
mental concepts on which this work builds up. Section 4 provides a GSN-based
pattern for arguing the satisfaction of safety requirements at the ML component
level. Its evaluation is conveyed in Sect. 5 where it is used to construct a safety
case for a pedestrian detection component. Finally, the paper is concluded in
Sect. 6, together with a discussion on possible future work.

2 Related Work

Currently intensified efforts in exceeding the boundaries of using machine learn-
ing, even for the implementation of safety-critical functionality, result in many
works which elaborate on the safety aspects of ML. However, to our knowledge,
none of these works provides an overview of how to integrate the safety argu-
mentation fragment related to machine learning in an overall safety case of a
system compliant with ISO 26262.

McDermid et al. [1] propose a framework that allows the dynamic update of
the system safety case as the behavior of the system evolves. They claim that the
safety case shall argue about the coverage of gaps between the “real world” and
the “world as imagined”. These could, for instance, be caused by the limitations
of the data used to train an ML model. Nevertheless, authors do not indicate
how to argue against these insufficiencies, unlike we do in this work.

372 E. Wozniak et al.

Picardi et al. [7] propose GSN-based pattern for arguing about the satis-
faction of performance properties by ML components from within the domain
of medical systems. Similarly to our proposed pattern, the satisfaction of per-
formance properties is argued based on a specific operating context, perfor-
mance benchmark, usage of a particular machine learning model and train-
ing/validation/test data sets. In addition to this argumentation, we also consider
an argument over the correct decomposition of ML safety requirements into sub-
requirements. Further, authors discuss also aspects that shall be defended, in
order to demonstrate confidence in the behavior of a machine learning compo-
nent. For instance training, validation and test data sets shall be evidenced to
be representative of the intended operational environment. In a consecutive and
very recent work, Picardi et al. [8] provides more details on how to argue about
these confidence aspects. For that they propose a general pattern. Our work is
complementary to the work of Picardi et al. [8], as the pattern that we provide
acts as an instantiations of their confidence argument pattern.

The earlier work of Picardi et al. [7] is also extended by Burton et al. [9]. The
latter proposes an approach for constructing confidence arguments for the perfor-
mance evaluation techniques, and reveals the limitations of current approaches
for evaluating the performance of ML. However, their discussion focuses on the
employment of ML for a specific use-case of pedestrian detection. Gauerhof
et al. [10] elaborate on the same use case with the goal to construct a safety
argumentation. Both these works introduce relevant goals, strategies and evi-
dences, that were generalized by our pattern, so that they can be applied to ML
based components of various functionality.

Salay and Czarnecki [11] provide certain guidelines for reasoning about the
safety assurance of ML-components in the automotive domain, while adapting
the software safety lifecycle proposed in ISO 26262 (Part 6). To some extent,
our pattern mirrors their reasoning. Rudolph et al. [12] provide support for
arguing about the appropriate usage of a neural network for the implementation
of safety-critical functionality of an automotive system. In contrast to their work,
we provide a complete approach for the safety argumentation of ML-systems
in automotive applications. However, we could use the results of the work of
Rudolph et al. [12] to guide the instantiation of the pattern we propose.

3 Foundations

Machine Learning in Safety-Critical Domains. ML is considered in this work
as a 3rd kind of technology, next to SW and HW. This is the principle adver-
tised in [13] and the main driving force to extend ISO 26262 by introducing, yet
unpublished, VDE-AR-E 2842-61 from DKE-/AK 801.0.8 standard [14]. The
lifecycle offered by the standard is aligned with the safety lifecycle of ISO 26262
(to ease its adaptation by the industry) and further extends it to frame ML
concerns. To this end it defines a V-model like process (see Fig. 1) to develop
a component based on ML - ML component. The first phase of the left branch
this is initiation, where the main activity concerns refinement of system level

A Safety Case Pattern for Systems with Machine Learning Components 373

requirements into ML requirements. It is currently debatable how and even if
such refinement will be feasible, mainly due to complexity of the problem that
ML-based solutions deal with. This work assumes that certain form of require-
ments at the ML component level will be necessary. Second phase concerns data
acquisition, i.e. gathering and labeling of data used for training, validation and
testing. Next is design phase which outputs ML model design. The last phase
concerns implementation and training activities. The implementation is an arti-
fact expressed in a programming language such as Python, or preferably in a
strongly typed language such as C++. This is then used as an input to execute
a training procedure which outputs ML model. The right side of the process
follows the common principle of a V-model, i.e. its phases object in verifying
outcomes of activities executed within the phases of the left branch. An ulti-
mate artifact obtained after traversal through all the phases of the V-model this
is ML component. It contains ML model and provides interfaces to communicate
with other, ML, SW, or HW-based components.

Fig. 1. V model process to develop ML component

Safety Case Patterns for ISO 26262 Compliant Systems. In [6], we propose a
catalogue of GSN-based patterns for modeling safety argumentation based on
evidence generated during the execution of the safety lifecycle recommended by
ISO 26262. Each pattern follows a similar structure entailing four lines of argu-
mentation, while each argumentation line is inspired by the types of artefacts
(work products) generated during the ISO 26262 safety lifecycle. First, a system
property may be decomposed in sub-properties at the same development tier.
Second, the property may be refined into properties specified at the next devel-
opment tier. Third, the satisfaction of a system property (goal or requirement) is
argued by referencing the system design at different levels of abstraction. Further,
the correctness of the system architecture and the SW and HW implementation
is argued based on verification and validation evidence. ISO/PAS 21448 aligns
with the safety lifecycle of ISO 26262 (see Figure 10 of the SOTIF standard [3]).
Therefore pattern of Carlan et al. [6] may also implicitly consider SOTIF related
concerns within the safety case constructed using the pattern.

374 E. Wozniak et al.

4 GSN-Based Pattern to Argue Safety
of ML Components

Currently, ISO 26262 does not provide any recommendation for the safety assur-
ance of ML-based systems. ISO/PAS 21448 makes only few references to ML
which do not provide sufficient information to reason about limitations of this
technology. This hinders the usage of ML in automotive systems for the imple-
mentation of safety-critical functionality. In previous work [6], we proposed a
set of patterns for arguing about the safety assurance of systems compliant with
ISO 26262. In the same work, we presented a general structure for arguing the
satisfaction of a safety requirement (see Sect. 3), structure that has been derived
from the assurance objectives specified in ISO 26262 at hardware and software
level. Based on this argumentation structure, in this section, complementing the
set of patterns proposed in [6], we propose a pattern that tailors the rationale
for arguing the satisfaction of ML safety requirements. The pattern may be used
for arguing the correct implementation of ML safety requirements by an ML
component, while considering the context in which the system shall operate.

Following the structure for arguing about the satisfaction of safety require-
ments by HW or SW components (see Sect. 3), the claim regarding the correct
implementation of machine learning requirements is supported by four lines of
argumentation (see Fig. 2). Similarly to software or hardware safety require-
ments, machine learning safety requirements may be further decomposed into
sub-requirements, case in which the safety argumentation shall consider both
the correct decomposition of the requirement and the satisfaction of each sub-
requirement. Also similar with the safety argumentation at hardware and soft-
ware level, the appropriateness of the chosen design of the ML-based solution
shall be argued about. Further, mirroring the argumentation regarding the cor-
rect hardware or software implementation of safety requirements, for ML solu-
tions, one shall argue about the correct training of the ML model, having as an
input adequate training data and an appropriate ML design. The last argumen-
tation line concerns the appropriate data acquisition. This objective is charac-
teristic to ML-based approaches, where data plays crucial role.

Next, we present how we further develop these lines of argumentation. The
goals within the argumentation patterns we present next can be classified into
two groups, depending on whether they argue about the satisfaction of a specific
ML safety requirement or they are general safety assurance goals. The second
group is independent of ML safety requirement. Their inclusion in the system
safety case is conditional, e.g. it may depend on an assigned ASIL (Automotive
Safety Integrity Level). Please note that numbering of identifiers for goals and
strategies does not start from 1 as it is a continuation of patterns from [6].

One characteristic activity when developing ML-based solution is the prepa-
ration of data sets (consisting of samples and labeling) used for training, vali-
dation and evaluation (see Fig. 3). The training data set serves the purpose of
training an ML model, the validation set is used to choose the hyperparameters
of the model in order to avoid overfitting, whereas the test data is used to verify

A Safety Case Pattern for Systems with Machine Learning Components 375

Fig. 2. Top level of GSN based pattern for safety case construction for ML component

Fig. 3. Refinement of data appropriateness strategy

properties of a trained model. The following goals support the claim regarding
data appropriateness:

– G9.1: Collected data (training/validation/test) satisfies {mlr}. Cer-
tain ML safety requirements can be explicit requirements on data sets, e.g.
{test set shall contain scenario with five pedestrians simultaneously crossing
a road} or implicit, e.g. {ML model shall handle images blurred up to 25%}
that implies that the data sets shall contain blurred images.

– G9.2: Data is properly labeled. This goal aims at proper labeling of
collected data samples. This may refer not only to the problem of labeling
the right objects, but also the proper size of the bounding boxes, etc.

– G9.3: Domain coverage is achieved with training, validation, and
testing data sets. This goal strives for collecting representative data sam-
ples and is further refined into several sub-goals. Goal G9.6 requests that data
sets are characterized with proper distribution comparable to an operational
environment. This means that ODD attributes considered by the system of
interest, such as weather conditions, contrast, etc., shall be properly reflected
in data sets. Next, G9.7 urges for collection of safety critical scenarios within
data sets. An example could be highly occluded pedestrians on a crosswalk.
Goals G9.8 and G9.9 request to enhance data sets with correspondingly,
adversarial examples, and corner cases. Next, G9.10 requests to consider

376 E. Wozniak et al.

different object variations, relations, influences. For instance, a valid relation
between objects, in case of pedestrian detection, is a pedestrian which car-
ries another pedestrian, e.g. mother and a small child. Last, G9.11 raises the
relevance of collecting data sets which properly represent operational environ-
ment. For example if an autonomous car is intended to operate on European
roads, collected data sets shall come from that region.

– G9.4: Samples in training, validation and test data sets are not
overlapping. For example, the same image or three different images but
showing the same situation, shall not appear in these three data sets.

– G9.5: Data sets contain proper amount of data samples. Numbers
of data samples for training shall be sufficient in order to properly train
the model. Also the ratio between amount of data samples in each set shall
be taken into consideration. A common approach is to provide the ratio of
60/20/20.

The Data Acquisition Verification strategy guides the assurance of data
appropriateness by analysing the ODD (Operational Design Domain) coverage,
i.e. whether indeed, collected data sets are representative (G9.12), and by assess-
ing whether the collected data adheres to ML safety requirement (G9.13).

Figure 4 presents the refinement of Design strategy of the ML safety argu-
mentation pattern. Certain safety requirements may determine the choice of a
certain design of the used ML component. For example, the {objects within 10
meters, classified as pedestrians with uncertainty 0.2 and higher, shall be ulti-
mately considered as pedestrians} requirement would have implications on design
because it implicitly requests calculation of uncertainties. In order to achieve
that, a possible design choice is to consider BNN (Bayesian Neural Network) or
use MC dropout. The main goals that shall be achieved by the design of an ML
component are presented in the following:

Fig. 4. Refinement of design strategy

A Safety Case Pattern for Systems with Machine Learning Components 377

– G10.1: ML model design refines {mlr}. The design shall respond to
the needs that explicitly or implicitly result from ML safety requirement. An
example of that was discussed few lines before, and can also be found in the
use case section.

– G10.2: ML model design is sufficiently comprehensible, correct,
robust and verifiable. Comprehensibility minimizes the risks of ambigu-
ous interpretations by different ML experts, while correctness contributes to
proper training of an ML model. Robustness enforces solution that is able to
cope with erroneous input. Further, the verifiability allows to verify design for
example by including additional layers in an NN for the sake of learning NN
patterns. This goal is further refined into several subgoals. G10.7 refers to an
introduction of performance metrics (formerly known as KPIs - Key Perfor-
mance Indicators) in a design. Next, G10.8 strives for optimization, regard-
ing properties of ML design such as performance, availability or reliability.
Further, goal G10.9 advocates reliance on well known, proven designs/ML
algorithms, to solve specific problem. G10.10 concerns the most important
aspect of design, i.e. hyperparameters. The last subgoal G10.11 refers to gen-
eralization aspect which is highly influenced by a proper design.

– G10.3: ML model design is compatible with the target hardware.
The component design shall be executable on a target hardware platform.
For instance, the target hardware shall sustain computational requirements
that are induced by a certain design choice.

– G10.4: Potential hazardous failures are acceptably managed by ML
model design. Detection and mitigation mechanisms for ensuring the oper-
ation in case of failures shall be provided in the design.

Figure 5 presents the argumentation about the safety of an ML component by
referring to implementation and training activities. An ultimate artifact of these
two is an ML model. Following the standard-mandated objectives for HW and
software implementation, the ML model implementation shall integrate good
practices (see G11.2). For example, the ML model should be implemented in
Python or in a strongly typed language such as C++. Further, the usage of
qualified/certified tools is highly advised. Another good practice, targeted by
G11.4, is the usage of an appropriate training platform to assure that functional
and non-functional properties of a trained model will sustain on a target plat-
form. Next, we present the goals supporting the claim about the verification of
the trained model:

– G11.5: ML model is robust. First, the ML model shall be evaluated
against predefined performance metrics (see G11.10 goal). There exist numer-
ous performance metrics that may be used to reason about robustness of ML
model. The purpose of this goal is to find those relevant and use them. Simi-
larly to when software is developed, G11.11 requests that corner cases shall
be considered during training. Corner case involves variables or situations
at extreme levels and gives high probability to result in error behavior, and
a defect of the ML model under test. Additionally to corner cases, one has

378 E. Wozniak et al.

Fig. 5. Refinement of training strategy

to consider adversarial attacks (Goal G11.12), which pose another threat to
robustness of ML models. Adding an imperceptible non-random perturbation
to a source test can fool the ML model under test. Further, the usage of sta-
tistical measures and the execution of fault injection shall be argued. Fault
injection may concern different aspects, e.g. erroneous input data, or sudden
interrupt during ML model operation.

– G11.6: ML model satisfies {mlr} on the target platform. The ML
model executed on target platform delivers the desired output.

– G11.7: Differences between the training and target platforms do not
lead to a violation of the {mlr}. Similarly to G11.4, this goal leverages
awareness of possible issues due to usage of different platforms for training
and execution of an ML model.

– G11.8: ML model semantic is sufficiently well understood. The
semantics of an ML model supports the reasoning about its performance.

– G11.9: ML is interpretable. Apart from ML model semantics, it is also
desirable to be able to interpret its decision making process. In case of rule-
based approaches or neural symbolic integration, this task is easier. However,
when NNs are used, the problem becomes more challenging. There are how-
ever ongoing works, which for instance try to find intermediate representation
of NN model, to be able to interpret it.

5 Evaluation

The objective of this section is to showcase how the proposed GSN pattern can be
used for the construction of an argumentation fragment addressing the fulfillment
of safety requirements by an ML-based component. In this work, we consider as
the system of interest (SoI) a pedestrian avoidance system. This system is built

A Safety Case Pattern for Systems with Machine Learning Components 379

with several components, software or hardware based, among which there is also
a machine learning component responsible for pedestrian detection. The top most
safety goal assigned to the SoI is that “pedestrian avoidance system is safe in a
given context”. Starting from this goal, we model the safety case of the system
by using the patterns proposed by Carlan and Gallina [6], whereas for the ML
component we use the pattern presented in this paper. Subsection 5.1 provides
more details about the considered pedestrian avoidance system and in particular
about the ML component for pedestrian detection, whereas the application of
the pattern is shown in Subsect. 5.2. The safety case for pedestrian avoidance
system in a form of a GSN model made in D-Case tool1 (together with images
of the model diagrams), developed using complete set of patterns introduced in
[6] and the pattern provided in this work, can be viewed under the link provided
in the footnote2. This shows how the complete pattern may be used, but also
feasibility of finding evidences for claims defined within the pattern.

5.1 Description of Pedestrian Detection Component

The main functionality of the ML component is to detect pedestrians (i.e., 2D
bounding box detection of pedestrians) based on the analysis of video data
acquired from a single camera. In Fig. 6, an illustration of the perception pipeline
with its main building blocks and intermediate interfaces is provided.

Fig. 6. Perception pipeline with its main building blocks including the ML component

The aim of the perception pipeline is to match the 2D ground-truth bounding
boxes “as well as possible”. This means that ideally a single bounding box for
each visible pedestrian is returned, with accurately estimated coordinates and
dimensions. The steps of the pipeline are presented in Fig. 6.

The ML component is realized by the Single Shot MultiBox Detector
(SSD) [15], which is a Convolutional Neural Network (CNN) and which was
shown to have a high potential for classification tasks [15]. SSD enables multi-
class classification of various objects with a localization of objects within a given

1 https://www.jst.go.jp/crest/crest-os/tech/D-CaseEditor/index-e.html.
2 https://download.fortiss.org/public/pedestrian-avoidance-safety-case.zip.

https://www.jst.go.jp/crest/crest-os/tech/D-CaseEditor/index-e.html
https://download.fortiss.org/public/pedestrian-avoidance-safety-case.zip

380 E. Wozniak et al.

frame. The network receives pre-processed raw image data and feeds the image
into the network. In the end, the network performs both classification and local-
ization (i.e., providing a bounding box for a detected pedestrian) in one forward
pass.

5.2 Safety Argumentation of ML for Pedestrian Detection

The initial safety goal assigned to pedestrian avoidance system results in sub-
goals which emerge by applying the GSN patterns from Carlan and Gallina [6].
At the technology level, [6] provides a pattern for arguing about the refine-
ment of technical safety requirements (i.e. requirements at the system level) into
SW or HW safety requirements. This work, according to the principle of per-
ceiving ML as a 3rd kind of technology, extends this strategy by considering
also ML safety requirements (i.e. requirements allocated to ML component). A
possible such ML safety requirement could be MLR 001 : “having as an input
raw image data, pedestrians detection component returns a bounding box for each
perceived pedestrian within the 20m range, with accurately estimated coordinates
and dimensions”.

Figure 7 represents an instantiation of the GSN pattern proposed in this
paper. For the sake of simplicity and to avoid redundant information, parts of
the GSN model (represented with the dashed box) were removed from the figure.
The removed parts contain goals from the GSN pattern, which are not specific
to the ML safety requirement. As our system of interest has ASIL D assigned,
all the safety goals specified in our pattern shall be demonstrated to be satisfied.
In case of different ASIL assignment, it has to be decided what would be the

Fig. 7. Partial instantiation of the proposed safety case pattern for the Pedestrian
Detection component

A Safety Case Pattern for Systems with Machine Learning Components 381

sufficient subset of goals to achieve, while each goal shall be supported by at
least one evidence. For instance, G9.2 may be argued by comparing outcome of
automated labeling to human-specified labels.

Due to space restrictions, in Fig. 7 we only present two subrequirements of
MLR 001. Requirement MLR 001 001 implicitly states that the gathered data
shall consider cases with occluded pedestrians. Later, it is important to verify
whether indeed, the trained model can properly classify occluded pedestrians.
MLR 001 002 has primarily implications on the design, and hence it is supported
by the Design Str., but also Impl/Training Str. as it has to be verified if the
feature of calculating uncertainty was indeed implemented, and whether it works,
i.e. ML model provides correct values.

6 Conclusions and Future Work

This paper presented a GSN-based pattern for arguing about the correct imple-
mentation of safety-critical functionality by an ML component. The patterns
proposed in [6], together with the pattern presented in this work, provide a com-
plete framework to build a safety case for automotive systems, even if parts of
their functionality rely on ML technology.

One limitation of this work is that, similarly to related works, it does not
reason about the completeness of an argumentation provided by the proposed
pattern. Neither does it make a claim that proposed set of goals and strategies is
ultimate. Completeness in this case is non-quantifiable and can be achieved by
an overall consensus of stakeholders interested in safety of ML-based solutions.
Such consensus may result in standardization as it was achieved for SW and HW-
based systems within ISO 26262. Consequently this pattern draws from related
works and projects from the domain of AI safety, such as KI Absicherung3, to
form goals and strategies.

To this end, in order to provide further support in the construction of a safety
case, future work shall address the following aspects. First, the manner how
different ASIL levels influence an ultimate selection of the goals defined within
the proposed pattern should be examined. For instance, verification of an ML
model against corner cases may no longer be necessary if the ML model delivers
functionality of lower criticality, e.g. gestures recognition to control the radio.
Second, further possible types of evidence to support claims shall be investigated
due to the constant advances in the area of ML. Finally, the elicitation of safety
requirements for ML-based components remains a challenge that still needs to
be addressed.

3 Bundesministerium für Wirtschaft und Energie, Project KI Absicherung (eng. AI
Safety) https://www.ki-absicherung.vdali.de/.

https://www.ki-absicherung.vdali.de/

382 E. Wozniak et al.

References

1. McDermid, J., Jia, Y., Habli, I.: Towards a framework for safety assurance of
autonomous systems. In: Proceedings of the Workshop on Artificial Intelligence
Safety, vol. 2419. CEUR-WS.org (2019)

2. ISO 26262: Road vehicles - Functional safety (2011)
3. ISO/PAS 21448: Road vehicles - Safety of the intended functionality (2019)
4. Bloomfield, R., Bishop, P.: Safety and assurance cases: past, present and possible

future – an Adelard perspective. In: Dale, C., Anderson, T. (eds.) Making Systems
Safer, pp. 51–67. Springer, London (2010). https://doi.org/10.1007/978-1-84996-
086-1 4

5. The Assurance Case Working Group (ACWG) - Goal Structuring Notation Com-
munity Standard Version 2, January 2018

6. Carlan, C., Gallina, B.: Enhancing state-of-the-art safety case patterns to sup-
port change impact analysis. In: 30th European Safety and Reliability Conference,
November 2020. http://www.es.mdh.se/publications/5789-

7. Picardi, C., Hawkins, R., Paterson, C., Habli, I.: A pattern for arguing the
assurance of machine learning in medical diagnosis systems. In: Romanovsky, A.,
Troubitsyna, E., Bitsch, F. (eds.) SAFECOMP 2019. LNCS, vol. 11698, pp. 165–
179. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26601-1 12

8. Picardi, C., Paterson, C., Hawkins, R., Calinescu, R., Habli, I.: Assurance argu-
ment patterns and processes for machine learning in safety-related systems. In:
Proceedings of the Workshop on Artificial Intelligence Safety, Series CEUR Work-
shop Proceedings, vol. 2560, pp. 23–30. CEUR-WS.org (2020)

9. Burton, S., Gauerhof, L., Sethy, B.B., Habli, I., Hawkins, R.: Confidence arguments
for evidence of performance in machine learning for highly automated driving func-
tions. In: Romanovsky, A., Troubitsyna, E., Gashi, I., Schoitsch, E., Bitsch, F.
(eds.) SAFECOMP 2019. LNCS, vol. 11699, pp. 365–377. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-26250-1 30

10. Gauerhof, L., Munk, P., Burton, S.: Structuring validation targets of a machine
learning function applied to automated driving. In: Gallina, B., Skavhaug, A.,
Bitsch, F. (eds.) SAFECOMP 2018. LNCS, vol. 11093, pp. 45–58. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-99130-6 4

11. Salay, R., Czarnecki, K.: Using machine learning safely in automotive software: an
assessment and adaption of software process requirements in ISO 26262. CoRR,
abs/1808.01614 (2018). http://arxiv.org/abs/1808.01614

12. Rudolph, A., Voget, S., Mottok, J.: A consistent safety case argumentation for
artificial intelligence in safety related automotive systems. In: ERTS 2018, Series
Proceedings of 9th European Congress on Embedded Real Time Software and
Systems, ERTS 2018, January 2018

13. Putzer, H.J., Wozniak, E.: A structured approach to trustworthy autonomous/
cognitive systems. arXiv preprint arXiv:2002.08210 (2020)

14. DKE: Dke deutsche kommission elektrotechnik elektronik informationstechnik in
din und vde - “dke/ak 801.0.8 spezifikation und entwurf autonomer/kognitiver
systeme” (2020)

15. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe,
N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-46448-0 2

https://doi.org/10.1007/978-1-84996-086-1_4
https://doi.org/10.1007/978-1-84996-086-1_4
http://www.es.mdh.se/publications/5789-
https://doi.org/10.1007/978-3-030-26601-1_12
https://doi.org/10.1007/978-3-030-26250-1_30
https://doi.org/10.1007/978-3-319-99130-6_4
http://arxiv.org/abs/1808.01614
http://arxiv.org/abs/2002.08210
https://doi.org/10.1007/978-3-319-46448-0_2

Structuring the Safety Argumentation
for Deep Neural Network Based

Perception in Automotive Applications

Gesina Schwalbe1(B) , Bernhard Knie2,7, Timo Sämann3, Timo Dobberphul4,
Lydia Gauerhof5, Shervin Raafatnia6, and Vittorio Rocco7

1 Continental AG, Regensburg, Germany
gesina.schwalbe@continental-corporation.com

2 Automotive Safety Technologies GmbH, Wolfsburg, Germany
3 Valeo Schalter und Sensoren GmbH, Kronach, Germany

4 Volkswagen AG, Wolfsburg, Germany
5 Corporate Research Robert Bosch GmbH, Renningen, Germany

6 Robert Bosch GmbH, Stuttgart-Weilimdorf, Germany
7 Università di Roma Tor Vergata, Rome, Italy

Abstract. Deep neural networks (DNNs) are widely considered as a
key technology for perception in high and full driving automation. How-
ever, their safety assessment remains challenging, as they exhibit spe-
cific insufficiencies: black-box nature, simple performance issues, incor-
rect internal logic, and instability. These are not sufficiently considered in
existing standards on safety argumentation. In this paper, we systemati-
cally establish and break down safety requirements to argue the sufficient
absence of risk arising from such insufficiencies. We furthermore argue
why diverse evidence is highly relevant for a safety argument involving
DNNs, and classify available sources of evidence. Together, this yields
a generic approach and template to thoroughly respect DNN specifics
within a safety argumentation structure. Its applicability is shown by
providing examples of methods and measures following an example use
case based on pedestrian detection.

Keywords: Automated driving · Safety case · Deep neural networks

1 Introduction

Deep neural networks can solve tasks which cannot be easily specified, involving
high dimensional input spaces. They promise to be an alternative to rule-based
algorithms for environment perception in autonomous driving, like pedestrian
detection. However, their safety assessment in the automotive context remains
challenging: DNNs exhibit specific insufficiencies, that can lead to hazardous
failures not covered by existing safety standards [15, B.2, p. 34] (see discussion
in Sect. 2). For completeness, a safety case must cover the known, technology
specific insufficiencies, which might involve specialized sources of evidence. A
c© Springer Nature Switzerland AG 2020
A. Casimiro et al. (Eds.): SAFECOMP 2020 Workshops, LNCS 12235, pp. 383–394, 2020.
https://doi.org/10.1007/978-3-030-55583-2_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-55583-2_29&domain=pdf
http://orcid.org/0000-0003-2690-2478
https://doi.org/10.1007/978-3-030-55583-2_29

384 G. Schwalbe et al.

structured, two-fold approach towards this challenge for the use of DNNs is pre-
sented in this work. Section 3 features the top-down part: DNN insufficiencies
known from literature are structured (black-box property, simple lack of gener-
alization, incorrect internal logic, and instability), to derive DNN specific safety
requirements, which then are broken down into sub-requirements (see Fig. 1).
Section 4 provides the bottom-up part: The influence of DNN insufficiencies on
the different types of evidence (development, system level, and V&V) is investi-
gated. According to this, a structure for DNN related evidence is suggested (see
Fig. 2). Our concrete contributions towards safety critical DNN applications are
as follows:

– A template to structure the safety argumentation part specific to DNNs is
developed in the form of safety requirements and evidence categories. The
structured approach facilitates coverage not only of known sources of evidence
but also of known DNN specific insufficiencies.

– For the suggested evidence classes, typical examples of methods and measures
are given. As a running example, the automated driving use case pedestrian
detection is used.

Scope. As a running example use case, an automotive pedestrian perception
and successive control function for an emergency braking automation is assumed,
with perception realized by a DNN. With the architectural concept inspired
by the STAMP/STPA model [18], hazards could be caused by a late, early, or
misdetection of pedestrians by the DNN. We here want to focus on misdetections.
The failures of hardware and software implementations, as well as non-DNN-
specific SOTIF aspects are not considered (see e.g. [8] on how to structure the
validity of assumptions). Concentrating on a first structure, the evaluation of
the contribution of specific evidence methods is reserved for future work. This
also holds for system architectural aspects like redundancy.

2 Related Work

Completeness of a safety argument requires that all insufficiencies of the used
technology that might lead to malfunctioning are considered. However, estab-
lished safety standards do not yet sufficiently cover DNN specific aspects. The
automotive functional safety standard [13] focuses on failures emerging from
hardware and traditional software, and few of the suggested methods are applica-
ble to DNNs [21]. The standard on safety of the intended functionality (SOTIF)
[15] extends this towards failures caused by foreseeable misuse, environment,
and performance limitations of complex sensoric systems [15, Table 1]—as of
today not considering DNN specific limitations in detail. The same holds for
the available domain specific draft standards that collect best-practice methods
for design as well as verification and validation (V&V). Examples for driving
automation are the white paper [31], and the UL4600 [28]; for aviation the report
[5]; and national activities are e.g. the German DIN SPEC 13266 [6] on computer

Safety Argumentation Structure for DNNs 385

vision systems. We would like to amend the above bottom-up, evidence-driven
approaches with a top-down, insufficiency-oriented perspective. For this we unify
following previous diverse work of the authors. DNN specific safety concerns and
insufficiencies were collected in [22] and [30]. The product argumentation aspects
handled here are built upon [24]. A collection of evidences was provided in [25].
And our evidence structuring can be considered a refinement of [3], who identi-
fied six types of evidence required for confidence in a safety requirement.

3 Respecting DNN Insufficiencies in Safety Requirements

The moment any safety load rests upon the functionality of a DNN, it is required
to either function accurately or provide reliable failure indication for mitigation
measures (see Sect. 4). Hazardous misbehavior could e.g. be overlooking a pedes-
trian (false negative) leading to a crash, or ghost detections (false positive) lead-
ing to unnecessary braking and rear crash. Usual assessment investigates DNN
behavior (i.e. generalization ability) according to human “understanding” of the
task, which includes expected decision boundaries, corner cases, and continuity
of the solution. This introduces a human bias to the assessment: e.g. , an assessor
will expect an algorithm to react similar on examples that he or she assumes sim-
ilar or identical. DNNs—other than manually designed algorithms—are not tied
to such assumptions, as will be discussed in the lack of explainability in Sect. 3.1.
For the sake of completeness of a safety argument, such assumptions must be
validated and avoided. To achieve this, we suggest to derive DNN related safety
requirements from types of DNN specific generalization issues. This will include
issues both on the semantic level, i.e. describable in natural language; and on
the non-semantic level. In Sect. 3.1 we summarize and categorize known DNN
insuffiencies from literature, from which generic safety requirements are derived
in Sect. 3.2 (see Fig. 1).

3.1 DNN Insufficiencies

DNN insufficiencies are properties of trained DNN models inherent to their tech-
nology, and with negative impacts for the use in safety-critical systems [22].
Structured overviews of DNN insufficiencies can be found e.g. in [22] and [30].
For the sake of our arguments, we consider two super-categories of DNN insuf-
ficiencies: The black-box property of DNNs indirectly infringing the safety case,
and generalization issues which can directly cause hazardous failures. Lack of
operational efficiency [22] concerning hardware and implementation dependent
aspects (inference time, memory consumption) are not considered.

The black-box property of DNNs refers to their lack of explainability. DNNs
use learned features to derive their predictions. These are extracted from data
representations rather than the semantic content of the input. This flexibility is
one of their major benefits for hard-to-specify perception applications: For exam-
ple, the representation of a pedestrian in all its varieties cannot be completely
semantically specified such that it could always be recognized by a rule-based

386 G. Schwalbe et al.

Fig. 1. Safety requirements (goals G) and decomposition strategies (S) derived in
Sect. 3.2 in goal structuring notation [26].

algorithm. The flexibility comes at a cost: The learned features and their corre-
lations are not necessarily comprehensible for humans, or even counterintuitive
[9,30]. The high-dimensional internal structures of DNNs further hinder inter-
pretable representations, which are be needed for traditional inspection and test
case selection.

Lack of generalization ability summarizes performance limitations [15, 3.9]
which can cause erroneous output. Generalization here means the performance
on an unseen test set relative to that of the training set, as an estimate for the
performance in the field. We suggest the following categorization: simple gen-
eralization issues, logical issues, and stability issues. The simple generalization
ability refers to the performance on input data which is semantically close to
the training data. This means the distributions of few semantic attributes like
weather condition are changed compared to the training data. Reasons for a
simple lack of generalization can be manifold, e.g. memorization of the training
data, underfitting, or a underrepresentation of attributes in the training data.
For example, if only few training samples feature rain, the DNN performance in
rainy conditions may be very low. Another issue can be a lack of internal logic:
The internal representation and reasoning a DNN applies originate from correla-
tions in the training data, and may be wrong. This leads to errors that generalize
according to semantic rules. For example, due to a bias in the data, a DNN may
predict pedestrians not based on physiological features, but below all traffic
lights. This lack of reasoning may already be obvious from a lack of the internal
representation if no indicative features of pedestrians are included. Lastly, DNNs
suffer from a lack of stability against (slight) perturbations—possibly impercep-
tible slight changes to an image that do not change the semantic information.
Fairly easy-to-find perturbations may change the output of a DNN drastically
and unpredictably [1]. Perturbation types and sources are manifold, e.g. : per-
manent or temporary sensor setup changes [3]; adversarial attacks applied in the

Safety Argumentation Structure for DNNs 387

real world or at pixel level (see taxonomy in [1]); and noise from domain (fog),
sensor (dust, dirt), or intrinsic noise (faulty pixels, transmission error).

3.2 Derived Safety Requirements

We suggest to associate to each lack of generalization ability a safety require-
ment to mitigate it. The first is mitigation of the lack of simple generalization
ability: The DNN should perform safely on a semantic approximation of the
input domain, i.e. on a subset that that covers relevant semantic aspects (Fig. 1,
G1). This means both a sufficient (weighted) overall performance, and sufficient
performance on each safety critical subset (S1). Especially, one needs to argue
separately over all relevant attributes and attribute combinations. In the case of
pedestrian detection, such attributes could be age, occlusion, weather etc. The
challenge of this semantic input space coverage is discussed later in Sect. 4.3.

When testing, the behavior of a function is interpolated from test samples.
Here, implicit assumptions are made, like a certain stability or invariance of the
function. For example, if the DNN detects a pedestrian, it should still do so if
a non-related object like a far traffic light is changed. On a semantic level, this
requires that the DNN applies semantic logic as assumed in the semantic approx-
imation specified before (Fig. 1, G2). Sub-requirements are that relevant fea-
tures or concepts are internally represented (G3.1), and that the logic/reasoning
applied to them is correct (G3.2). In the case of both reasoning and concepts,
one can either formally verify specified ones (G&S3.x.1), or manually inspect
extracted ones (G3.x.2, see verification in Sect. 4.3). Interpolation assumptions
may not only fail on a semantic level, but also due to instabilities. Therefore, the
last goal is that the DNN behavior is stable in the input domain with respect to
relevant slight perturbations (Fig. 1, G3). It remains a challenge to identify all
safety relevant, i.e. realistic, perturbations (S3 and G3.1–3).

4 Respecting DNN Insufficiencies in Evidences

We categorize and will further structure two major types of evidence for suffi-
cient safety: Detection and measurement, which is obtained via V&V; and pre-
vention and mitigation, which can be subdivided into best-practice measures for
item creation, and reduction of the safety load via system level mechanisms (see
Fig. 2). In the following, this structure is detailed, and example methods are
provided. Furthermore, we will discuss the challenges imposed by DNN insuf-
ficiencies with the result that V&V alone cannot provide sufficient confidence
about safety. Best-practice cannot fully compensate this, due to the lack of field
experience with DNNs in automated driving. Thus, our conclusion is that all
types of evidence should be considered (compare [3]).

4.1 Mechanisms During Creation

The example use case is based on a DNN that is trained offline. For this kind of
artificial intelligence component a creation process can be followed that consists

388 G. Schwalbe et al.

Fig. 2. Hierarchical overview of evidence categories identified in Sect. 4.

of three phases: design of the network, data collection and training. The corre-
sponding intermediates are the raw network with initial values; labeled datasets
for training, verification and validation; and the trained network.

Today’s state of the art software engineering is requirement-based with
design, implementation and verification steps following appropriate sets of rules
and strategies to prove fulfillment of requirements and predefined goals (see the
ISO/IEC 330xx family of standards, and [12]). Applying these general principles
to the creation process of offline trained DNNs means: One has to define require-
ments and goals for intermediates in a design step, implement them, and prove
their achievement by a verification step. Defining and complying to strategies
and guidelines for certain activities supports the systematic achievement of goals
and requirements where applicable.

This section structures types of requirements, goals, guidelines or strategies
for the different creation phases and their intermediates, which were extracted
from relevant and current references about reliable DNNs [3,12,22,29–31]. Evi-
dencing their fulfillment helps to argue the mitigation of DNN insufficiencies
during its creation process. The examples aim to show the diversity of aspects,
for details consult the referenced literature.

Design of the Network. The DNN design implicitly makes prior assumptions
about the application, e.g. convolutional DNNs introduce translation invariance.
A DNN respecting the following aspects helps to create a reliable and robust raw
network as a stable starting point for the further phases.

DNN specification [31] containing requirements for: robustness of the algorithm
[31]; the architectural design (including layer parameters) [22]; the DNN
class [22]; the interfaces [12] with definition of the output space and input
resolution [29] to enable the output of reliable confidence information [30];
weight initialization [25].

Design guidelines defining the unified language for the specification [29] and
using best practices from established design approaches.

Data Collection. High quality datasets are essential to maximize the perfor-
mance of trained networks, as they are the source for the learned features.

Safety Argumentation Structure for DNNs 389

Dataset specification [31]: Considering the following aspects will minimize the
insufficiencies arising from incomplete datasets: dataset quality, coverage and
relevance [31]; dataset representativity [3,25]; sample classification and the
corresponding equivalence classes [31]; corner cases and other boundaries
[31]; dataset robustification and necessary perturbations [25]; dataset aug-
mentation including adversarial examples and attribute randomization [22].

Data acquisition strategy [30] defining an adequate choice for data sources.
Data partitioning guidelines [30] giving rules how to divide the dataset into

training, verification and validation data.
Labeling specification [31] High quality labeling is essential to maximize the

quality of datasets. At least the following requirements should be considered
to minimize insufficiencies from weak labeling: choice and boundaries of label
classes [22]; labeling accuracy and quality [31]; adversarial examples [22].

Labeling guidelines [30] to ensure unified and exact labeling and to avoid labeling
errors.

Training. The training practically decides on whether the available data (and
further knowledge) is processed efficiently. This includes preventing e.g. over- and
underfitting. Especially, training quality directly influences the DNN quality.

Training specification: Considering the following types of goals increases the
probability of getting the intended output of the training phase: hyperpa-
rameters (batch size, regularization, loss function, etc.) [31]; active learning
[22]; domain randomization [22]; robustness; constraints for internal logic
[25]; well-calibrated uncertainties [22]; accuracy and failure rates [3].

Training strategy defining the procedure of adjustments of training parameters
and the training sequence and iterations.

Hyperparameters tuning guidelines [31] to systematically adjust the parameters
to achieve the training goals.

Configuration management strategy [12] to establish training baselines [31]. This
enables analyzing the training steps, setting termination points, and recov-
ering optimal stages.

Further modification activities for deploying, optimization, compression or
quantization have not the goal to increase the reliability of a DNN and there-
fore, no arguments for mitigation of insufficiencies are derived conducting these
activities. The challenge is to prove that all assumptions and safety arguments
are still valid after these further modifications.

4.2 Mechanisms on Component and System Level

Besides the mechanisms during DNN creation, other mechanisms, such as detec-
tion of causes for performance limitations, can be applied to decrease the safety
load on the DNN and increase the overall safety. While detection mechanisms
are the first measure to be aware of an potential error, they can be used for
further handling, such as prevention, mitigation or even forecast. Examples are

390 G. Schwalbe et al.

to filter the output, switch to alternative predictors, or increase caution, e.g.
the controller initiates a gentle slow down if the prediction quality is unsure.
We suggest to structure the mechanisms with respect to their intervening point:
input, DNN and output of DNN. Some methods make use of their combination.

Input Before providing the input to DNN, modification of the input can decrease
the chance for an error, e.g. by normalization, denoising, filtering, or removal
of non-semantic features causing adversarial examples [25]. Furthermore, the
input of DNN might be monitored for causes of performance limitations. For
example, detection of adversarial examples [4] causing instability errors, or
out-of-distribution samples, i.e. samples very different from the training data,
can indicate a to-be-expected error within the pedestrian detection.

DNN Error detection and mitigation methods can be applied on the DNN itself.
If the exact error is known, e.g. from input monitoring and estimation, the
DNN output might be corrected by an additional output [23]. Uncertainty
measures of the DNN, indicating the current inherent uncertainty state of the
function [11,17], are treated as promising safety mechanisms. For example,
the output of the DNN can be dropped in the case of high uncertainty.
Otherwise, the uncertainty level should be forwarded to the next component
[25].

Output The output and the behavior of the DNN can be monitored to detect
errors. In general, anomaly detection [7] as well as plausibility checks might
be applied to the DNN output to detect errors, e.g. pedestrians cannot vanish
in clear sight. For doing so, the processing information of the input within
the DNN is compared to the behavior for clean data. An example method is
ODIN [19]: By using temperature scaling (calibration of the DNN confidence
output) and exploring the behavior for small perturbations around the input,
ODIN can detect samples to which the network might not be capable to gen-
eralize. Another method, GraN [20], is introduced for detecting misclassified
data samples in general, and adversarial examples. It investigates the norm of
the gradient of the DNN function on the current input-output combination.
Other than monitoring, the DNN output might be modified, e.g. further pro-
cessed and fused with other signals. For example, when fusing with outputs
of different DNNs as part of an ensemble, the final output might increase the
performance and reduce errors, even though ensuring sufficient model diver-
sity for the latter may be hard [25]. A fusion with signals gathered from other
sensors also result in redundancies that might have different limitations.

4.3 Verification and Validation

Verification activity should determine whether the specified requirements are
met [13, 3.180]. and focuses on known insufficiencies [15, 3.18]. Validation tries
to identify new insufficiencies affecting safety, and provides assurance, that the
safety requirements are adequate [13, 3.148] in the sense of correctness and com-
pleteness. In the following, attention is concentrated on DNN-specific require-
ments as derived in Sect. 3.2, other than e.g. requirements on the system-level
safety mechanisms.

Safety Argumentation Structure for DNNs 391

In practice, the terms verification and validation are hard to distinguish and
share the following common challenges. One is the open-world domain typical for
DNNs, which exhibits many rare scenes and may change over time. Being high-
dimensional, partly non-semantic, and complex, open world domains cannot be
explored or specified thoroughly using human interpretable attributes [30].

The goal of test data is to effectively reveal inconsistencies between expected
and DNN output that indicate DNN insufficiencies. Near misses are less valuable
for this than implausible errors, imposing a challenge for defining performance
indicators. For effectivity, high test data representativity is required, which is
another V&V challenge. We propose to handle this as a coverage problem and
suggest as coverage criteria both the semantic features of the input space, and
the DNN-specific ones, meaning coverage of DNN state-space. The latter is hard
to achieve formally due to the enormous size of the state-space and since the
sub-space of valid samples is unknown. Thus, semi-formal exploration of the
state-space should further aim for coverage of DNN-specific weaknesses: cover-
age of instability sources, and of previous counterexamples. For semantic input
space coverage, all relevant semantic aspects of the objective need to be statis-
tically covered, especially cases defining the true decision boundary (e.g. high
occlusion). Ontologies such as [2] are a good starting point to find such aspects.
Challenges remain: the real distribution of values may be hard to approximate
due to the open-world context or a lack of real samples; and validating realism
of synthetic samples is an unsolved problem [30]. The model decision bound-
aries and decision-relevant features not necessarily agree with those assumed
by humans. To reveal related weaknesses, a high coverage of the model state
space is required. This can be done globally, e.g. via coverage of neuron activa-
tion patterns [27]; or locally by estimating the expected distance to the decision
boundaries (see verification). A lack of instability imposes a major challenge for
the validity range of test samples: Due to the black-box property of correlations,
we may not be able to retrace their cause, wherefore the behavior out of the
validity range cannot be guaranteed or even estimated. The validity range of a
sample includes how far and how stable the nearest sample with significantly
different behavior is. A distance metric can be L2-distance, as used in the for-
mal verification example in [16]. Lastly, DNNs are prone to regression as long as
the effect of parameter adaptions on the global behavior cannot be controlled.
Hence, previous counterexamples should be tested. Prominent sources are e.g.
earlier test phases also from similar tasks, and operation experience like (near)
failure reports and accident databases.

Verification. The types of verification activities from ISO 26262[13, 3.180] that
are in principle applicable to DNNs are [21]: walk-through or inspection of the
algorithm, testing and semi-formal verification, and formal verification requir-
ing a formal notation that is linked to intermediate outputs of the considered
model. A main verification specific challenge is to provide methods applicable
to DNNs. For current formal verification methods, requirements must be formu-
lated as range constraints on neuron outputs which is seldom possible due to

392 G. Schwalbe et al.

the black-box property. Provers, e.g. solvers like Reluplex [16], are mostly lim-
ited in architecture types and speed due to DNN sizes. By definition, inspection
and walk-through require interpretable approximations of the model. A standard
but less expressive example is to indicate the attention of the DNN on selected
samples via heatmapping. Alternatively, the internal logic can be assessed using
local or global rule extraction, but methods that can deal with up-to-date DNN
complexity are scarce [10]. For details on the example methods see [25].

Validation. Ensuring that all safety-relevant factors have been taken into
account is already a non-trivial task for non-AI-based functions due to the open-
world context. The state-of-the-art validation approach in automotive is to eval-
uate the function on a large, randomly collected amount of real-world data ([14,
8.4.3.4], [31, Sect. 3.3.2]). The goal is to test the problem space for safety-relevant
factors. However, the effectivity of explorative testing decreases with increasing
autonomy level, function and environment complexity: Statistical coverage is
harder to achieve; given validity range problems, it is difficult to decide when
enough variations of the same semantic content have been considered; and lastly,
exploring features used by the DNN is infringed by the black-box problematic,
which makes it impossible to specify, and thus cover, all decision-relevant fea-
tures. The central activity for validating DNNs remains the collection of a (large
and) representative test dataset, with emphasis on model state-space coverage.

The discussion above shows: V&V for DNNs cannot be separated clearly,
and are challenged by the complexity coming along with DNNs. Especially due
to the representativity and validity range problems, one cannot expect to gain
sufficient confidence in safety only via V&V. One needs to address V&V at all
development stages and even beyond.

5 Conclusion

Generic safety requirements and an evidence structure were suggested to include
DNN specifics into a safety argument with a focus on completeness. Nevertheless,
the structure revealed several open challenges and difficulties for a complete
safety case for DNNs. Further research will refine the suggested argumentation
on the proposed use case, fill the method gaps, and evaluate the contributions
of the different methods to the overall risk reduction.

Acknowledgements. The research leading to the results presented above is funded by
the German Federal Ministry for Economic Affairs and Energy within the project “KI
Absicherung – Safe AI for automated driving”. The authors would like to thank the con-
sortium for the successful cooperation. Special thanks to Simon Burton, Horst Michael
Groß (Ilmenau University of Technology, Neuroinformatics and Cognitive Robotics
Lab), Christian Hellert, Fabian Hüger, Peter Schlicht, and Oliver Willers.

Safety Argumentation Structure for DNNs 393

References

1. Assion, F., et al.: The attack generator: a systematic approach towards constructing
adversarial attacks. In: Proceedings of the 2019 IEEE Conference on Computer
Vision and Pattern Recognition Workshops (2019)

2. Bagschik, G., Menzel, T., Maurer, M.: Ontology based scene creation for the devel-
opment of automated vehicles. In: Proceedings of the 2018 IEEE Intelligent Vehi-
cles Symposium, pp. 1813–1820. IEEE (2018). https://doi.org/10.1109/IVS.2018.
8500632

3. Burton, S., Gauerhof, L., Sethy, B.B., Habli, I., Hawkins, R.: Confidence arguments
for evidence of performance in machine learning for highly automated driving func-
tions. In: Romanovsky, A., Troubitsyna, E., Gashi, I., Schoitsch, E., Bitsch, F.
(eds.) SAFECOMP 2019. LNCS, vol. 11699, pp. 365–377. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-26250-1 30

4. Carlini, N., Wagner, D.: Adversarial examples are not easily detected: bypassing
ten detection methods. In: Proceedings of the 10th ACM Workshop on Artifi-
cial Intelligence and Security, AISec 2017, pp. 3–14. Association for Computing
Machinery (2017). https://doi.org/10.1145/3128572.3140444

5. Cluzeau, J.M., Henriquel, X., Rebender, G., et al.: Concepts of design assurance
for neural networks. Technical report, European Union Aviation Safety Agency
(EASA) (2020)

6. Deutsches Institut für Normung e.V.: DIN SPEC 13266:2020-04: Guideline for the
development of deep learning image recognition systems. Beuth Verlag, 2020-04
edn, April 2020. https://doi.org/10.31030/3134557

7. Gauerhof, L., Gu, N.: Reverse variational autoencoder for visual attribute manipu-
lation and anomaly detection. In: Winter Application Conference on Applications
of Computer Vision (2020)

8. Gauerhof, L., Munk, P., Burton, S.: Structuring validation targets of a machine
learning function applied to automated driving. In: Gallina, B., Skavhaug, A.,
Bitsch, F. (eds.) SAFECOMP 2018. LNCS, vol. 11093, pp. 45–58. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-99130-6 4

9. Geirhos, R., Rubisch, P., Michaelis, C., Bethge, M., Wichmann, F.A., Brendel, W.:
ImageNet-trained CNNs are biased towards texture; increasing shape bias improves
accuracy and robustness. In: Proceedings of the 7th International Conference on
Learning Representations (2018)

10. Hailesilassie, T.: Rule extraction algorithm for deep neural networks: a review.
CoRR abs/1610.05267 (2016)

11. Henne, M., Schwaiger, A., Roscher, K., Weiss, G.: Benchmarking uncertainty esti-
mation methods for deep learning with safety-related metrics. In: Proceedings of
the Workshop on Artificial Intelligence Safety, vol. 2560, pp. 83–90. CEUR-WS.org
(2020)

12. ISO/IEC JTC 1/SC 7: ISO/IEC/IEEE 12207:2017: Systems and Software
Engineering—Software Life Cycle Processes, 1 edn. (2017)

13. ISO/TC 22/SC 32: ISO 26262–1:2018(En): Road Vehicles—Functional Safety—
Part 1: Vocabulary, ISO 26262:2018(En), vol. 1. 2 edn. (2018)

14. ISO/TC 22/SC 32: ISO 26262–4:2018(En): Road Vehicles—Functional Safety—
Part 4: Product Development at the System Level, ISO 26262:2018(En), vol. 4. 2
edn. (2018)

15. ISO/TC 22/SC 32: ISO/PAS 21448:2019(En): Road Vehicles—Safety of the
Intended Functionality (2019)

https://doi.org/10.1109/IVS.2018.8500632
https://doi.org/10.1109/IVS.2018.8500632
https://doi.org/10.1007/978-3-030-26250-1_30
https://doi.org/10.1145/3128572.3140444
https://doi.org/10.31030/3134557
https://doi.org/10.1007/978-3-319-99130-6_4

394 G. Schwalbe et al.

16. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an
efficient SMT solver for verifying deep neural networks. In: Majumdar, R., Kunčak,
V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 97–117. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63387-9 5

17. Kendall, A., Gal, Y.: What uncertainties do we need in Bayesian deep learning for
computer vision? In: Advances in Neural Information Processing Systems, vol. 30,
pp. 5580–5590 (2017)

18. Leveson, N.: Engineering a Safer World: Systems Thinking Applied to Safety. Engi-
neering Systems. MIT Press, Cambridge (2012)

19. Liang, S., Li, Y., Srikant, R.: Principled detection of out-of-distribution examples
in neural networks. CoRR abs/1706.02690 (2017)

20. Lust, J., Condurache, A.: GraN: an efficient gradient-norm based detector for
adversarial and misclassified examples. In: ESANN (2020). http://www.esann.org/
node/8

21. Salay, R., Queiroz, R., Czarnecki, K.: An analysis of ISO 26262: using machine
learning safely in automotive software. CoRR abs/1709.02435 (2017)

22. Sämann, T., Schlicht, P., Hüger, F.: Strategy to increase the safety of a dnn-based
perception for HAD systems. CoRR abs/2002.08935 (2020)

23. Schorn, C., Guntoro, A., Ascheid, G.: Efficient on-line error detection and mitiga-
tion for deep neural network accelerators. In: Gallina, B., Skavhaug, A., Bitsch, F.
(eds.) SAFECOMP 2018. LNCS, vol. 11093, pp. 205–219. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-99130-6 14

24. Schwalbe, G., Schels, M.: Strategies for safety goal decomposition for neural net-
works. In: Abstracts 3rd ACM Computer Science in Cars Symposium (2019)

25. Schwalbe, G., Schels, M.: A survey on methods for the safety assurance of machine
learning based systems. In: Proceedings of the 10th European Congress on Embed-
ded Real Time Systems (2020)

26. SCSC Assurance Case Working Group: SCSC-141B: Goal Structuring Notation
Community Standard (2018). https://scsc.uk/scsc-141B

27. Sun, Y., Wu, M., Ruan, W., Huang, X., Kwiatkowska, M., Kroening, D.: Concolic
testing for deep neural networks. In: Proceedings of the 33rd ACM/IEEE Interna-
tional Conference on Automated Software Engineering, pp. 109–119. ACM (2018).
https://doi.org/10.1145/3238147.3238172

28. Underwriters Laboratories, Edge Case Research: UL4600: Standard for Safety of
Autonomous Products. Edge Case Research (2019)

29. Voget, S., Rudolph, A., Mottok, J.: A consistent safety case argumentation for
artificial intelligence in safety related automotive systems. In: Proceedings of the
9th European Congress Embedded Real Time Systems (2018)

30. Willers, O., Sudholt, S., Raafatnia, S., Stephanie, A.: Safety concerns and miti-
gation approaches regarding the use of deep learning in safety-critical perception
tasks. CoRR abs/2001.08001 (2020)

31. Wood, M., Robbel, P., Wittmann, D., et al.: Safety First for Automated Driving
(2019). http://www.daimler.com/documents/innovation/other/safety-first-for-aut
omated-driving.pdf

https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5
http://www.esann.org/node/8
http://www.esann.org/node/8
https://doi.org/10.1007/978-3-319-99130-6_14
https://scsc.uk/scsc-141B
https://doi.org/10.1145/3238147.3238172
http://www.daimler.com/documents/innovation/other/safety-first-for-automated-driving.pdf
http://www.daimler.com/documents/innovation/other/safety-first-for-automated-driving.pdf

An Assurance Case Pattern
for the Interpretability of Machine
Learning in Safety-Critical Systems

Francis Rhys Ward(B) and Ibrahim Habli

Assuring Autonomy International Programme, The University of York, York, UK
{Rhys.Ward,Ibrahim.Habli}@york.ac.uk

Abstract. Machine Learning (ML) has the potential to become
widespread in safety-critical applications. It is therefore important that
we have sufficient confidence in the safe behaviour of the ML-based func-
tionality. One key consideration is whether the ML being used is inter-
pretable. In this paper, we present an argument pattern, i.e. reusable
structure, that can be used for justifying the sufficient interpretability
of ML within a wider assurance case. The pattern can be used to assess
whether the right interpretability method and format are used in the
right context (time, setting and audience). This argument structure pro-
vides a basis for developing and assessing focused requirements for the
interpretability of ML in safety-critical domains.

Keywords: Interpretability · Explainability · Machine learning ·
Artificial intelligence · Assurance · Safety · Safety-case

1 Introduction

Machine Learning (ML) algorithms are powerful tools and have applications in
domains in which safety is a concern. One potential weakness of these algo-
rithms is that they are often too complicated to understand - they may relate
thousands of variables into patterns which cannot be understood by a human.
This property is often referred to as the black-box problem. How can we accept
these algorithms into safety-critical decision-making roles if we cannot under-
stand how their decisions are made? [5,13] This problem has limited the growth
of ML algorithms in areas such as healthcare [20,31].

A solution to this issue is to use ML algorithms which are more interpretable,
or to try to explain their behaviour. In some sense an algorithm is interpretable
if we can understand how it works and/or why it makes the decisions that it does
make. [8] defines interpretability in the context of ML as ‘the ability to explain or
to present in understandable terms to a human’ but notes that what constitutes
an explanation is not well-defined. In practice, the term interpretability is used
to refer to a number of distinct concepts [21]. A ML model may be said to be
interpretable if the algorithm is simple enough for us to understand, otherwise
there may be some post-hoc methods which can be used to interpret a black-box.
c© Springer Nature Switzerland AG 2020
A. Casimiro et al. (Eds.): SAFECOMP 2020 Workshops, LNCS 12235, pp. 395–407, 2020.
https://doi.org/10.1007/978-3-030-55583-2_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-55583-2_30&domain=pdf
https://doi.org/10.1007/978-3-030-55583-2_30

396 F. R. Ward and I. Habli

From a safety perspective, interpretability may help us to (1) understand
the system retrospectively, i.e. to understand, with respect to a harm-causing
action or decision, what went wrong, and why and (2) understand the system
prospectively, i.e. to predict, mitigate, and prevent future harm-causing actions
or decisions. But to what extent does machine learning need to be interpretable
to provide assurance? To answer this question, we must decide on who needs to
understand the system, what they need to understand, what types of interpre-
tations are appropriate, and when do these interpretations need to be provided.

To this end, we present an argument pattern, i.e. reusable structure, that
can be used for justifying the sufficient interpretability of ML within a wider
assurance case. Structured argumentation is well-established in the safety-critical
domain as a means for communicating, justifying and assessing confidence in
properties of interest (e.g. risk reduction and acceptability). The pattern presents
an explicit argument that can be used to assess whether the right interpretability
method and format are used in the right context (time, setting and audience).
We show how our pattern can be instantiated for assuring the interpretability
of a system of neural networks intended for retinal disease diagnosis.

The following section provides a background to ML interpretability. In Sect. 3
we present an argument pattern for assuring that ML systems are interpretable.
Then in Sect. 4 we motivate the need for interpretability in safety-critical ML
systems.

2 A Brief Overview of Interpretability

There is a wealth of literature on interpretability of ML and AI [21], cover-
ing a wide range of philosophical and psychological perspectives [1,12,23,26];
the legal implications of (un)interpretable ML [4,11,30]; technical methods for
interpreting different types of ML models [3,14,15,17,19,22,27,28]; and further
discussions which try to bring some clarity to the field [7,20,21,29].

Lipton in [21] seeks to clarify the myriad different notions of interpretability
of ML models in the literature - what interpretability means and why it is
important. It is noted that interpretability is not a monolithic concept and relates
to distinct ideas. The distinction is often made between methods which are
intrinsically transparent and post-hoc methods that attempt to explain a model.
We identify the following types of interpretability. A model/system is:

– Transparent if we understand how it genuinely works (mechanistically,
at some level, for some part of the process). A transparent model is one
which is inherently simple enough for humans to understand. For example,
for a learned model, could a human take the inputs and generate the same
outputs as the model (in reasonable time)?

– Explainable if we can understand why it makes the decisions that it does
make by using some post-hoc analysis and/or approximation, covering:
• Global explainability techniques which approximate the model with

a simpler more transparent one. This simple approximate model is an
explanation.

An Assurance Case Pattern for the Interpretability of Machine Learning 397

• Local explainability techniques which map inputs to outputs and iden-
tify important inputs. These help us to answer the question ‘what were
the important factors in this decision?’

We can categorize some of the features of these different types of interpretabil-
ity. Transparency provides faithful representations of the model, whereas explain-
able methods are often approximations, or incomplete explanations. Hence, there
is a spectrum which captures the level of fidelity of different types of inter-
pretability. Some methods interpret the whole model (global) whereas some
interpret individual decisions (local). Transparency can be seen as an intrin-
sic property of a model (it is either easy to understand or not, or some degree in
between), whereas explainability techniques are post-hoc methods which require
some extra effort to implement.

It may be impossible for some systems/models to be fully and completely
interpretable. For instance, a neural network may have some local explainability
in that we can map certain inputs to outputs. But this does not provide a
complete picture of how the model works globally and it is not transparent. We
are interested in sufficient levels of interpretability needed to assure safety in
different contexts.

Table 1. Phased safety-argument development alongside ML life-cycle

Safety-argument phase ML life-cycle stage Interpretability needs

Preliminary Data Management Global/Local: Identify
Weaknesses in Data

Interim 1 Model Learning Global: Aid Model
Design

Interim 2 Model Verification Global/Local: Identify
Weaknesses in Model

Operational Model Deployment Local: Understand
Decisions

3 An Argument Structure for the Interpretability of ML

Safety arguments, or “safety cases”, are a well-established method used to assure
system properties in the field of safety engineering. [16] advocates a phased safety
argument approach wherein a number of safety case versions are issued alongside
the developing technology, enabling an evolving safety argument. This phased
safety argument will inform, and be informed by, the development process. This
can be combined with the ML life-cycle from [2], which discusses the assurance
of the complex, iterative process starting with the collection of data used to
train an ML model, and ending with the deployment of that model. A safety

398 F. R. Ward and I. Habli

argument should evolve with the ML life-cycle, as in Table 1. Because of the
cyclical nature of the ML life-cycle, interpretability at a later stage may bring
to light flaws which can then be accounted for on the next iteration.

In Fig. 2, we define an argument pattern that explicitly addresses the inter-
pretability assurance considerations, i.e. primary claims, argument strategies and
evidence. The argument is represented using the pattern language of the Goal
Structuring Notation (GSN) [16]. GSN is a graphical argumentation notation
which explicitly represents the individual elements of a safety argument (claims,
evidence, and context) and the relationships that exist between these elements.
When the elements of GSN are linked together in a network they are described as
a “goal structure”. We draw heavily from [6] which presents a pattern for arguing
the assurance of machine learning, with a focus on clinical diagnosis. The first
step is to ask why the project needs interpretability and set the desired require-
ments that the project should satisfy (e.g. being able to investigate accidents see
Sect. 4.1). Figure 1 shows a key for GSN.

Fig. 1. GSN key

– Goal - these are the claims being made in the argument.
– Context - the relevant additional information to the argument.
– Strategy - the argument approach for the support of a claim.
– Solution - evidence reference that claims have been met.
– Supported by - (solid arrows) indicates inferential/evidential relationships.
– In context of - (hollow arrows) declares contextual relationships.
– To be instantiated attached to an element indicates that some part of

the element’s content is a variable that requires instantiation. Variables are
declared using curled braces, such as {ML Model}.

3.1 Interpretability Claim

In Fig. 2, the starting point is the claim that the ML Model is sufficiently inter-
pretable in the intended context. ‘ML model’, ‘interpretable’, and ‘context’ are
variables in this claim to be instantiated As discussed in the previous section,
the term ‘interpretable’ may refer to different types of interpretability. The sub-
stantiation of the ‘ML model’ will be the actual ML model being used, or a
component of it, or the system as a whole - whatever needs to be interpreted.
The context refers to the setting, time, and audience of the interpretation.

An Assurance Case Pattern for the Interpretability of Machine Learning 399

Fig. 2. General argument structure

400 F. R. Ward and I. Habli

3.2 High Level Argument

We identify three essential aspects of the interpretability argument, building on
past work on context-aware systems [10]:

– Right Method - The right interpretability methods are implemented, i.e. the
correct information is faithfully being explained.

– Right Context:
• Time - Interpretations produced at the appropriate times.
• Setting - Interpretations are available in the right setting.
• Audience - Interpretations produced for the right audience.

– Right Format - The interpretability methods are presented in the right format
for the audience.

A detailed argument over these essential aspects is presented in the next
subsections.

3.3 Argument over Interpretability Methods

This is the argument that suitable interpretability methods have been imple-
mented, a method may simply be choosing a transparent model, or employing
some post-hoc explainability techniques. There are two parts to this argument,
first that the methods provide the type of interpretability required to satisfy the
high level interpretability claim (e.g. if the claim is that the ML model is locally
explainable in the context of accidents then the methods must provide this local
explainability). Secondly the interpretability methods must be suitably faithful
to the model process; these methods may be approximations to the model and
may therefore not be accurate interpretations in all cases [29]. The interpretabil-
ity methods must satisfy some desired level of fidelity in the given context. Both
of these being satisfied equates to the correct information being explained.

Once a set of interpretability methods has been proposed, evidence that these
methods are sufficient for purpose must be gathered. There are at least three
different things which must be evaluated with regard to interpretability: how
satisfying and appropriate produced interpretations are to stakeholders; how
faithful interpretations are to the actual model workings; and the relevance of
the interpretation being given. There is some initial research on how to evaluate
the interpretability of ML models. [25] outlines how levels of explainability can
be measured with respect to different user groups. [8] proposes an evidence-
based taxonomy of evaluation approaches for interpretability. These are ways in
which interpretations can be evaluated with respect to how effective they are
at convincing users. Whilst it is important that stakeholders are satisfied with
interpretations, these interpretations also need to be an accurate depiction of
how the system actually works.

Especially in safety-critical systems, it is important that interpretations, or
explanations, of how a system works are not only convincing and satisfying
but also reliably a faithful account of how the model is actually working. [28]

An Assurance Case Pattern for the Interpretability of Machine Learning 401

presents a technical method for evaluating the faithfulness of a certain kind of
local explanation technique. These types of evaluation help users to understand
how a model is genuinely working, even so far as the explanations can help users
to gain enough insight to improve the model. [19] evaluates fidelity (faithfulness
to the model) of explanations vs interpretability (how easy it is to understand)
finding there are trade-offs between the two.

Recent work has highlighted the capacity of even high-fidelity explanations to
mislead users [18]. Three key issues with current post-hoc methods, when opti-
mised for fidelity, are described: i) they do not capture causal relationships; ii)
they cannot choose between multiple (qualitatively different) high-fidelity expla-
nations; iii) they can vary significantly with small perturbations of the input
data. These problems lead to the possibility that current explainability tech-
niques can actually mislead users. Importantly, explanations must also provide
the most relevant information.

3.4 Argument over Context

For simplicity we split context into time, setting, and audience.

– Right Time: Interpretations must be provided at the right time to avoid
being intrusive or confusing. Not every decision may need to be explained
and some interpretations may be needed in real time whereas others may only
need to be produced under specific circumstances. For example, a diagnostic
system may need to provide local explanations to clinicians alongside every
diagnosis prediction, whereas an autonomous vehicle may only need to provide
an explanation when an incident has occurred.

– Right Setting: It is important that interpretations are usefully available to
the audience in the correct setting. Consider again a diagnostic tool, interpre-
tations must be available to doctors in the clinical setting alongside diagnosis
predictions. It is not useful for engineers to be able to produce interpretations
if the audience do not have access to them in the relevant setting.

– Right Audience: Interpretations must clearly be provided to the right peo-
ple to satisfy the interpretability claim and to satisfy the motivations for
interpretability, e.g. policy makers vs developers vs users.

3.5 Argument over the Format of Interpretations

The format of the interpretations is key. Once suitable methods for interpreting
the system have been chosen, they must be presented in a format which is com-
prehensible and relevant to the audience. Section 3.3 discusses how to evaluate
the extent to which interpretations are appropriate and satisfying to stakeholders
and Sect. 4.4 outlines the needs of different stakeholders.

3.6 Example: Deep Learning for Diagnosis in Retinal Disease

We now examine a paper by DeepMind [9] that presents a system of two Neural
Networks (NNs) working to predict retinal disease from scans of the eye. The

402 F. R. Ward and I. Habli

paper purports to address the “black-box problem” by producing a midpoint
result in the system. The first model takes as input a scan of the retina and
produces a tissue-segmentation map. The second neural network takes the seg-
mentation map and outputs a diagnosis and referral (with confidence levels).
This process supplies some system-level transparency. We can instantiate this
example in our argument structure as follows (Fig. 3):

Interpretability Claim: The desired type of interpretability is transparency at
the level of the system logic, the system being the combination of the two NNs.
The context is defined by: the setting - the retinal diagnosis pathway; the time
that interpretations are produced - alongside the system diagnosis prediction;
the audience - the retinal clinicians.

Argument Over Method: The method by which interpretability is produced
is that the system structure, including the production of the segmentation map,
closely resembles the normal decision-process used by clinicians. This means that
the system logic is inherently comprehensible, i.e. transparent, to the retinal
clinicians. Note that this is true even though the individual NNs being used
are not interpreted in any way. This is clearly a faithful method of interpreting
the system logic, as transparency of the system is by definition faithful (the
interpretation of the system logic is the system logic itself).

Argument Over Context: The audience are the retinal clinicians, and they
need interpretations of system behaviour in the clinical setting and alongside
each system diagnosis prediction.

Argument Over Format: The format of the interpretation is the transparent
system logic, including the segmentation map. Presumably, the same prediction
accuracy results could have been achieved without including the mid-point out-
put of the segmentation map. Including this step allows clinicians to understand
the system logic, since the production and use of the segmentation map are part
of the normal clinical process and are understood by the retinal clinicians.

In summary, the healthcare setting here is clearly safety-critical and the
designers of this system have identified interpretability as a requirement of the
system in order that clinicians are able to understand and verify the system’s
predictions. Even though the individual NNs used were not interpreted, the
method still provided some transparency of the system logic to the retinal clin-
icians, increasing their understanding of, and trust in, the ML system.

4 Discussion: Key Safety Interpretability Questions

4.1 Why Do We Need Interpretability in Safety-Critical Domains?

There are many reasons why we should want our ML systems to be interpretable.
Interpretability may:

– Increase insight into model behaviour (and into the operational domain).
– Identify weaknesses of the model, cases where the model under-performs.
– Enable the increase of robustness - i.e. assurance that the system will behave

as intended in new environments/situations.

An Assurance Case Pattern for the Interpretability of Machine Learning 403

Fig. 3. DeepMind example

404 F. R. Ward and I. Habli

– Inform effective improvements/corrections.
– Protect against unfair models helping to avoid discrimination.
– Improve trust in the model and allow informed consent [31].

These advantages are beneficial in any domain of ML use. With regards to
safety, interpretability is of interest for two key reasons:

– To understand the system retrospectively: to understand, with respect to a
harm-causing action or decision, what went wrong, and why. This is important
for post-hoc system diagnostics, establishing accountability, and accident
inquiries.

– To understand the system prospectively: to predict, mitigate, and prevent
future harm-causing actions or decisions.

Furthermore, the right to an intelligible explanation is supposedly required
by law under the well-known 2018 GDPR regulation [11]. However, [24] argues
that a right to explanation of automated decision-making does not exist in the
GDPR due to the fact that the GDPR lacks precise language as well as explicit
and well-defined rights and safeguards against automated decision-making. This
closely relates to the lack of a precise language in the technical field of ML
interpretability [21].

4.2 What Needs to Be Interpreted?

The different types of interpretability identified in Sect. 2 result in the interpre-
tation of a set of distinct objects or processes. Transparency may refer to: the
transparency of the whole model, wherein the entire global logic of the model
can be explained and understood by a human; the transparency of the learning
algorithm, we may understand that some algorithms converge to a solution in
reasonable time (e.g. linear models), whereas we may not know whether another
algorithm finds an optima at all (e.g. neural networks) [21]; transparency of
parameters and model structures, do we understand what these are referring
to and do they even map to human-understandable concepts? Similarly post-
hoc explainability methods may try to explain and interpret these processes,
e.g. through approximating the global logic of a model, or they may explain
local decisions. Global interpretability methods generate evidence that applies
to a whole model (or system), and can be used to support safety assurance by
allowing reasoning about all possible future outcomes. Local methods generate
explanations for an individual system decision, and may be used to 1) predict
how the system will behave in specific situations and 2) analyse why a particular
problem occurred, and to improve the model so future events of this type are
avoided.

4.3 When Are Interpretations Needed?

Interpretations will be needed for different reasons during development and oper-
ation (Fig. 4). ML developers may seek global explanations to better understand

An Assurance Case Pattern for the Interpretability of Machine Learning 405

the model to aid design; stakeholders will need different types of interpretations
during operation (local explanations may be more important during operation
to explain individual cases - e.g. when explaining why an accident occurred).
During development interpretations will be needed for:

– Data Management - interpreting the model may identify imbalances/gaps
in the data.

– Model Selection - the interpretability of a model should influence this.
– Model Learning - being able to interpret the model will inform the model

learning stage, e.g. in aiding hyper-parameter selection, data augmentation,
etc.

– Model Verification - being able to interpret model decisions will aid veri-
fication and help to identify the cause of model weaknesses.

And during operation:

– Normal operation - e.g. for advisory systems such as diagnostic tools expla-
nations may be compulsory.

– In cases where the model is known to underperform - which will aid
contestability or identifying when to hand over control to a human.

– Accident or incident Investigation - Local explainability (e.g. counter-
factual) to discover why particular decisions were made.

– Model Run-time Improvement/Learning - To improve models as new
data and situations are encountered.

4.4 Who Needs an Interpretation?

Different stakeholders need different types of interpretations, consider lay users,
expert users, designers, etc. Developers need explanations and transparency to
understand how the model works in order to predict when undesirable model
behaviour will occur and make corrections and improvements. Whilst developers
may need some local explainability to understand and account for edge cases, in
general they will need global interpretability to aid design. End-users will need
local explanations to satisfy understanding of individual decisions. Figure 4 lists
some potential stakeholders and the explanation needs for each.

5 Summary

In this paper, we built on previous work, which developed an assurance argument
pattern for reasoning about ML in safety-critical domains. We extended this
argument pattern by identifying interpretability as a key consideration. The
extended argument pattern can be used to guide developers of ML systems as
part of a wider safety or assurance case. It identifies how to create a structured
assurance argument for the interpretability of ML models to support a decision
over the deployment of the models in safety-critical applications. The key points
in the argument are the essential aspects: right method, right context, and right

406 F. R. Ward and I. Habli

Fig. 4. Interpretation needs for different stakeholders

format. These are claims that we have identified as necessary to form an explicit
argument over interpretability; importantly these claims must also be supported
by appropriate evidence.

The focus of future work should be to evaluate the applicability of the argu-
ment structure which should be presented to ML practitioners, their feedback
should be used to make any necessary improvements. Further work may expand
our argument structure to address different cases, for instance by drawing a more
concrete link between relevant assurance properties and clear interpretability
needs in a particular system. We hope that this argument structure will provide
a clear basis for developing and assessing requirements for the interpretability
of ML in safety-critical domains.

References

1. Achinstein, P.: The Nature of Explanation. Oxford University Press, Oxford (1983)
2. Ashmore, R., Calinescu, R., Paterson, C.: Assuring the machine learning lifecycle:

desiderata, methods, and challenges (2019)
3. Avati, A., Jung, K., Harman, S., Downing, L., Ng, A., Shah, N.H.: Improving pal-

liative care with deep learning. BMC Med. Inform. Decis. Making 18, 122 (2017).
https://doi.org/10.1186/s12911-018-0677-8

4. Budish, R., et al.: Accountability of AI under the law: the role of explanation
(2017)

5. Burton, S., Habli, I., Lawton, T., McDermid, J., Morgan, P., Porter, Z.: Mind the
gaps: assuring the safety of autonomous systems from an engineering, ethical, and
legal perspective (2020)

6. Picardi, C., Hawkins, R., Paterson, C., Habli, I.: A pattern for arguing the
assurance of machine learning in medical diagnosis systems. In: Romanovsky, A.,
Troubitsyna, E., Bitsch, F. (eds.) SAFECOMP 2019. LNCS, vol. 11698, pp. 165–
179. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26601-1 12

https://doi.org/10.1186/s12911-018-0677-8
https://doi.org/10.1007/978-3-030-26601-1_12

An Assurance Case Pattern for the Interpretability of Machine Learning 407

7. Doran, D., Schulz, S., Besold, T.R.: What does explainable AI really mean? A new
conceptualization of perspectives (2017)

8. Doshi-Velez, F., Kim, B.: Towards a rigorous science of interpretable machine learn-
ing (2017)

9. Fauw, J.D., et al.: Clinically applicable deep learning for diagnosis and referral in
retinal disease (2018)

10. Fischer, G.: Context-aware systems: the ‘right’ information, at the ‘right’ time, in
the ‘right’ place, in the ‘right’ way, to the ‘right’ person (2012)

11. Goodman, B., Flaxman, S.: European union regulations on algorithmic decision-
making and a “right to explanation” (2016)

12. Grimm: The goal of explanation (2010)
13. Habli, I., Lawton, T., Porter, Z.: Artificial intelligence in health care: accountability

and safety. Bull. World Health Organiz. 98(4), 251 (2020)
14. Hendricks, L.A., Akata, Z., Rohrbach, M., Donahue, J., Schiele, B., Darrell, T.:

Generating visual explanations. In: Leibe, B., Matas, J., Sebe, N., Welling, M.
(eds.) ECCV 2016. LNCS, vol. 9908, pp. 3–19. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-46493-0 1

15. Higgins, I., et al.: Learning basic visual concepts with a constrained variational
framework (2017)

16. Kelly, T.: A systematic approach to safety case management (2003)
17. Koh, P.W., Liang, P.: Understanding black-box predictions via influence functions

(2017)
18. Lakkaraju, H., Bastani, O.: How do i fool you?: Manipulating user trust via mis-

leading black box explanations (2019)
19. Lakkaraju, H., Kamar, E., Caruana, R., Leskovec, J.: Interpretable & explorable

approximations of black box models (2017)
20. Lipton, Z.: The doctor just won’t accept that! (2015)
21. Lipton, Z.C.: The Mythos of model interpretability (2017)
22. Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions

(2017)
23. Miller, T.: Explanation in artificial intelligence: insights from the social sciences

(2018)
24. Mittelstadt, B., Russell, C., Wachter, S.: Explaining explanations in AI (2018)
25. Mohseni, S., Zarei, N., Ragan, E.D.: A survey of evaluation methods and measures

for interpretable machine learning (2018)
26. Mueller, S.T.: Explanation in human-AI systems: a literature meta-review synopsis

of key ideas and publications and bibliography for explainable AI (2019)
27. Olah, C., Schubert, L., Mordvintsev, A.: Feature visualization how neural networks

build up their understanding of images (2017)
28. Ribeiro, M.T., Singh, S., Guestrin, C.: “why should i trust you?” Explaining the

predictions of any classifier (2016)
29. Rudin, C.: Please stop explaining black box models for high-stakes decisions (2018)
30. Wachter, S., Mittelstadt, B., Floridi, L.: Why a right to explanation of automated

decision-making does not exist in the general data protection regulation (2017)
31. Watson, D., et al.: Clinical applications of machine learning algorithms: beyond

the black box (2019)

https://doi.org/10.1007/978-3-319-46493-0_1
https://doi.org/10.1007/978-3-319-46493-0_1

A Structured Argument for Assuring Safety
of the Intended Functionality (SOTIF)

John Birch1(B), David Blackburn2, John Botham3, Ibrahim Habli4, David Higham5,
Helen Monkhouse1, Gareth Price6, Norina Ratiu7, and Roger Rivett1,2,3,4,5,6,7

1 HORIBA MIRA Ltd., Nuneaton, UK
john.birch@horiba-mira.com
2 Bentley Motors Ltd., Crewe, UK
3 Ricardo UK Ltd., Cambridge, UK

4 University of York, York, UK
5 Imagination Technologies, Kings Langley, UK

6 McLaren Applied, Woking, UK
7 Aston Martin Lagonda, Gaydon, UK

Abstract. Current safety standards for automated driving recommend the devel-
opment of a safety case. This case aims to justify and critically evaluate, by
means of an explicit argument and evidence, how the safety claims concerning
the intended functionality of an automated driving feature are supported. How-
ever, little guidance exists on how such an argument could be developed. In this
paper, the MISRA consortium proposes a state machine on which an argument
concerning the safety of the intended functionality could be structured. By system-
atically covering the activation status of the automated driving feature within and
outside the operational design domain, this state machine helps in exploring the
conditions, and asserting the corresponding safety claims, under which hazardous
events could be caused by the intended functionality. MISRA uses a Traffic Jam
Drive feature to illustrate the application of this approach.

Keywords: Safety assurance · Safety case · SOTIF · ODD · Automated driving

1 Problem

1.1 Safety Assurance of Automated Driving

Automated Driving (AD) promises to revolutionize the future of road transportation.
However, the challenge of assuring its safety is significant and is subject to ongoing
discussion and research. There are a variety of emerging standards such as ISO/PAS
21448 [1], UL 4600 [2] and ISO/TR 4804 [3] that relate to the safety of AD. These
standards leave freedom for developers to reason about the safety of their systems by
calling for the achievement of high-level goals or objectives, rather than conformance
to prescriptive requirements, and by avoiding a declaration of what level of residual risk
is reasonable or otherwise.

© Springer Nature Switzerland AG 2020
A. Casimiro et al. (Eds.): SAFECOMP 2020 Workshops, LNCS 12235, pp. 408–414, 2020.
https://doi.org/10.1007/978-3-030-55583-2_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-55583-2_31&domain=pdf
https://doi.org/10.1007/978-3-030-55583-2_31

A Structured Argument for Assuring Safety of the Intended Functionality (SOTIF) 409

It is therefore not considered appropriate, nor feasible, to attempt to generate a com-
pliance argument of the form “The Automated Driving System (ADS) is safe because its
development complies with the requirements of standard X”. Instead there is a profes-
sional responsibility placed on engineers to creatively justify, based on clear and rigorous
evidence, why they believe their ADS is free from unreasonable risk. It is proposed that
this justification should be communicated in the form of a safety argument, as part of a
safety case [4], that will feature claims, assumptions and evidence related to a variety of
standards, as acknowledged in [2]. This will help to ensure greater transparency in the
development of ADS by enabling safety assessors and other stakeholders to critically
evaluate the basis on which the system might be deployed.

1.2 Role of the Operational Design Domain

It is often the case that the Intended Functionality (IF), [1], of the ADS can only be
achieved for a restricted set of vehicle, and external environmental, conditions referred to
as the Operational Design Domain (ODD), [5], and defined as the “Operating conditions
under which a given driving automation system or feature thereof is specifically designed
to function (…)” [6]. This limitation may arise from known performance limitations or
specification insufficiencies. To justify that the ADS is free from unreasonable risk it is
necessary to reason about its IF when the vehicle is within the ODD, but also when the
vehicle is transitioning into and out of the ODD.

The aim of this paper is to propose an approach to assuring ADS safety, initially
aligned to ISO/PAS 21448, which is based on the central role played by the ODD and
its transitions. It is illustrated with some example safety assurance considerations for a
generic “Traffic Jam Drive” (TJD) feature.

2 Proposed Approach

2.1 ODD Transitions in an Example TJD Drive Cycle

Consider a typical drive cycle in which the generic TJD feature described in [7] may be
used:

• The driver starts their journey by initializing the vehicle outside of the ODD before
driving it into the ODD (e.g. onto a highway in clear weather with a lead vehicle etc.);

• TJD availability is indicated to the driver and the driver chooses to enable the feature,
handing responsibility for the Dynamic Driving Task (DDT) [6] to the TJD feature;

• The TJD feature continues to control the DDT until either:

– The driver chooses to deactivate the feature and resume control, or
– The TJD hands control back to the driver without driver request;

• The driver leaves the highway (exiting the ODD), completes their journey and parks
and secures the vehicle.

410 J. Birch et al.

If the TJD feature were to be activated before entry to the ODD, or if the vehicle were
to leave the ODD with the TJD still in control, the TJD feature would be responsible for
controlling the DDT under conditions for which it was not designed. However, unless
the driver is ready to resume control it may be unsafe for the TJD feature to relinquish
DDT responsibility on exiting the ODD.

2.2 Presence of the Vehicle in the ODD and Activation Status of the Intended
Functionality

The two key parameters identified in the above drive cycle, whose combination is critical
for considering safe control of the DDT, are:

1. The presence of the vehicle in the ODD, or otherwise;
2. The activation status of the (TJD) feature.

MISRA expresses the combination of these parameters in the form of a state termed the
“ODD-Activation State” which can take one of four values:

• State 1 – The IF is active whilst the vehicle is within the ODD
• State 2 – The IF is active whilst the vehicle is outside of the ODD
• State 3 – The IF is inactive whilst the vehicle is within the ODD
• State 4 – The IF is inactive whilst the vehicle is outside of the ODD

State1:
Active & Within ODD

State2:
Active & Outside ODD

State3:
Inactive & Within ODD

State4:
Inactive & Outside ODD

T 1-2

T 2-1

T 1-3T 3-1

T 3-4

T 4-3

T 4-2 T 2-4

Fig. 1. ODD-Activation States and transitions

These states and the possible transitions between themare depicted as a statemachine
in Fig. 1. It might be argued that transitions could occur directly between State 1 and
State 4 and also between State 2 and State 3. This would require the IF activation status to

A Structured Argument for Assuring Safety of the Intended Functionality (SOTIF) 411

change at exactly the same time as the vehicle presence in the ODD changes. In practice
this is very unlikely to occur, although it is recognized that the time spent in some of the
states could be very short.

2.3 Example TJD Safety Claims

By explicitly defining the states and transitions in Fig. 1 the corresponding safety impli-
cations and possible safety claims can be systematically identified. Let us illustrate this
by returning to the TJD drive cycle example. Using the ODD-Activation state machine

Table 1. Example TJD ODD-Activation States and transitions and corresponding safety claims

ODD-Activation State or transition TJD drive cycle step Example informal safety claims

State 4 Driver initialises vehicle outside of the
ODD as the vehicle has not yet entered a
highway with a lead vehicle, even
though visibility is good

The TJD feature will detect when the
vehicle is outside of the ODD
Activation of the TJD is prevented until
the vehicle enters the ODD

T 4-3 Vehicle enters the highway behind a lead
vehicle. Visibility remains good and so
the vehicle has entered the ODD. The
driver is still in control of the DDT

–

T 3-1 TJD availability is indicated to the driver
and the driver chooses to activate the
feature, handing across control of the
DDT

The handover of DDT control to the TJD
is as anticipated by the driver - it is
intuitive and predictable and does not
occur unless it is requested by the driver
who is ready for it

State 1 The TJD feature continues to control the
DDT until…

The TJD controls the DDT within the
ODD in a safe manner (e.g. successfully
performing Object and Event Detection
and Response (OEDR) [6] by keeping
the vehicle in lane and at a safe distance
to the lead vehicle, avoiding obstacle
collision etc.)

T 1-3 …the driver chooses to deactivate the
feature, taking back control of the DDT
…

The hand-back of control to the driver by
the TJD is as anticipated by the driver - it
is intuitive and predictable and does not
occur until the driver is ready

T 1-2
State 2
T 2-4

…or the TJD hands DDT control back to
the driver because, for example,
visibility suddenly drops due to a change
in the weather
Note: this would ultimately cause entry
into State 4, via State 2

The TJD will never make an active
decision to leave the ODD (e.g. by
causing the vehicle to leave the highway
whilst it is responsible for the DDT)
The TJD will detect the vehicle leaving
the ODD (e.g. due to a sudden change of
weather conditions, outside of its
control) in a timely manner
If the vehicle leaves the ODD whilst the
TJD is in control of the DDT the TJD
feature will take an appropriate and
timely safe action, such as handing back
control of the DDT to an alert driver or
reaching a Minimal Risk Condition
(MRC) [6]
The TJD feature will not regularly have
to hand-back responsibility for the DDT
to the driver because of the inability of
the feature to cope with commonly
occurring conditions (such as a change
in weather)

(continued)

412 J. Birch et al.

Table 1. (continued)

ODD-Activation State or transition TJD drive cycle step Example informal safety claims

State 4 The driver completes the drive cycle,
bringing the vehicle to rest

–

(Fig. 1), Table 1 expands the steps previously outlined with some example informal
claims that one may wish to make about the corresponding ADS behaviour.

The example claims presented in Table 1 may be challenging to substantiate in
practice but that only serves to highlight their necessity. For example, it may be that the
driver and the TJD feature have a conflicting view under certain conditions of whether
the vehicle is present in the ODD. These views may not only conflict with each other but
also with the “true” status of ODD presence. Such a discrepancy may serve as a potential
source of harm. This would prevent the claim “The TJD feature will detect when the
vehicle is outside of the ODD” from being substantiated, which would cause the issue
to be highlighted, and hopefully addressed, as a weakness within the safety case.

Another challenging issue highlighted by the state machine in Fig. 1 and the example
claims in Table 1 is the risk associated with being in State 2 (the IF being active whilst
the vehicle is outside of the ODD). By its nature this is clearly an undesirable state to
be in, but acknowledging its conceptual existence provides the ADS developer with the
opportunity to explain their strategy to limit the corresponding risk.One example strategy
might be to make use of “defensive regions” that lie on the boundary of “µODDs” in
which “best effort” behaviours are specified, as proposed in [8].

2.4 MISRA SOTIF Argument Structure

From the example claims in Table 1, and by considering the states and transitions in
Fig. 1, we can extract some general high-level claims that one may wish to make about
any ADS. These have been collated in a single argument structure expressed in Goal
Structuring Notation (GSN) [9], the top level of which is shown in Fig. 2.

For completeness, the argument structure incorporates reference to the consideration
of post-release SOTIF issues. Whilst this is an important topic it is not one considered
to be central to the ideas presented in this paper and is thus not explored further.

3 Discussion and Further Work

The four-state model and corresponding safety argument represents MISRA’s initial
insight into an approach that highlights the central role played by the ODD in assur-
ing ADS safety. The argument in Fig. 2 represents an initial structure for a series of
subsequent claims and items of evidence that will relate to a variety of topics in [1]. It
is anticipated that these claims will be categorized according to the following MISRA
argument themes related to those introduced in [10]:

• The rationale for the SOTIF requirements used to specify the IF;
• The satisfaction of these requirements by the implemented IF;

A Structured Argument for Assuring Safety of the Intended Functionality (SOTIF) 413

Intended
Functionality

{Functional and
System Specification}

Achievement of SOTIF

The absence of Unreasonable Risk due
to Hazardous Events associated with the
Intended Functionality (IF) of the {Item} or
its reasonably foreseeable misuse is
achieved

Hazardous Events

{Hazardous Events
1...n)

Unreasonable Risk

{Unreasonable Risk
Criteria}

Item

{The implemented
HW, SW, Data, etc.}

ODD-Activation States
Argument structured by
the ODD-Activation States
and the transitions
between them

ODD-Activation States
and Transitions

States and transitions
as defined in Figure 1

State 2 Hazardous Events

No hazardous events caused by
the IF within State 2, or when
transitioning from it, present
unreasonable risk

State 1 Hazardous Events

No hazardous events caused by
the IF within State 1, or when
transitioning from it, present
unreasonable risk

State 3 Hazardous Events

No hazardous events caused by
the IF when transitioning from
State 3 present unreasonable
risk

State 4 Hazardous Events

No hazardous events caused by
the IF when transitioning from
State 4 present unreasonable
risk

Pre-Release

The IF is free from
unreasonable risk when first
introduced into the field

Pre and Post-Release

Argue over development of
the IF and its operation in
the field

Post-Release

Due consideration has been
given to addressing the risk
associated with post-release
SOTIF issues

Date of First
Introduction to
Field

{Date}

Fig. 2. Top-level SOTIF safety argument

• The means used to perform the various SOTIF-related activities;
• The development environment in which they have been performed.

Work is ongoing to further develop the argument structure and to recommend support-
ing claims. This will include broadening the argument scope (beyond [1]) to incorporate
causes of hazardous events relating to malfunctions (functional safety) and vulnerabil-
ities (cybersecurity). It is anticipated that this work will form a basis for a subsequent
MISRA publication that follows on from [10].

References

1. ISO/PAS 21448:2019 Road Vehicles – Safety of the intended functionality
2. UL 4600 UL Standard for Safety for Evaluation of Autonomous Products. First Edition, April

2020
3. ISO/CDTR4804RoadVehicles –Safety and security for automated driving systems –Design,

verification and validation methods
4. Hawkins, R., Kelly, T., Knight, J., Graydon, P.: A new approach to creating clear safety

arguments. In: Dale, C., Anderson, T. (eds.) Advances in Systems Safety, pp. 3–23. Springer,
London (2011). https://doi.org/10.1007/978-0-85729-133-2_1

https://doi.org/10.1007/978-0-85729-133-2_1

414 J. Birch et al.

5. Gyllenhammar, M., et al.: Towards an operational design domain that supports the safety
argumentation of an automated driving system, January 2020

6. SAE J3016: Taxonomy and Definitions for Terms Related to Driving Automation Systems
for On-Road Motor Vehicles, June 2018

7. NHTSA DOT HS 812 623: A Framework for Automated Driving System Testable Cases and
Scenarios, September 2018

8. Koopman, P., Osyk, B., Weast, J.: Autonomous vehicles meet the physical world: RSS, vari-
ability, uncertainty, and proving safety. In: Romanovsky, A., Troubitsyna, E., Bitsch, F. (eds.)
SAFECOMP 2019. LNCS, vol. 11698, pp. 245–253. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-26601-1_17

9. Goal Structuring Notation Community Standard Version 2, January 2018
10. MISRAGuidelines for Automotive Safety Arguments, ISBN 978-1-906400-24-8, September

2019

https://doi.org/10.1007/978-3-030-26601-1_17

Author Index

Abrecht, Stephanie 289, 336
Acar-Celik, Esra 370
Akila, Maram 289

Bäckman, Ronny 161
Balbis, Abel 54
Bassem, Cédric 266
Beyene, Tewodros A. 328
Birch, John 408
Blackburn, David 408
Bonitz, Arndt 148
Botham, John 408
Brenner, Eugen 123

Cabral, Henrique 243
Cârlan, Carmen 370
Cleaveland, Matthew 82
Codenie, Wim 229
Cullmann, Christoph 98

Dagnely, Pierre 243
Dan, György 69
Davoli, Luca 176
Dobberphul, Timo 383
Duque Anton, Simon D. 266
Durak, Umut 217

Elks, Carl 193
Etxeberria, Leire 205

Fabian, Martin 9
Fei, Zhennan 9
Ferdinand, Christian 98
Filho, Ênio 136
Fraunholz, Daniel 266

Gannamaneni, Sujan Sai 289
Gassmann, Bernd 358
Gauerhof, Lydia 383
Gautham, Smitha 193
Gebhard, Gernot 98
Godot, Jean 54
Groh, Konrad 289

Habli, Ibrahim 395, 408
Hahn, Sebastian 98
Heinzemann, Christian 289
Higham, David 408
Houben, Sebastian 289
Hristoskova, Anna 229

Ivanov, Radoslav 82

Jayakumar, Athira V. 193
Jöckel, Lisa 315

Karos, Thomas 98
Kästner, Daniel 98
Kaur, Ramneet 82
Kläs, Michael 315
Kloibhofer, Reinhard 176
Knie, Bernhard 383
Koch, Tobias 266
Koopman, Philip 351
Kristen, Erwin 176
Krohmer, Daniel 266
Kurunathan, Harrison 136

Lagrave, Pierre-Yves 302
Langer, Lucie 148
Larsen, Morten 266
Lee, Insup 82
Limonta, Gabriela 161

Macher, Georg 123
Marko, Nadja 36
Marosvölgyi, Marcell 266
Martinez, Jabier 54
Mauborgne, Laurent 98
Monkhouse, Helen 408

Oboril, Fabian 358
Ogawa, Kiyoshi 23
Oliver, Ian 161

Pasch, Frederik 358
Platzer, Michael 111
Poorhadi, Ehsan 69
Price, Gareth 408
Puschner, Peter 111
Putzer, Henrik J. 370

Raafatnia, Shervin 336, 383
Rath, Annanda 229
Ratiu, Norina 408
Reti, Daniel 266
Rivett, Roger 408
Rocco, Vittorio 383
Ruehrup, Stefan 148
Ruiz, Alejandra 54
Ruiz Nolasco, Ricardo 54

Sagardui, Goiuria 205
Sahu, Amit 328
Sämann, Timo 383
Schmittner, Christoph 123, 148
Scholl, Kay-Ulrich 358
Schotten, Hans D. 266
Schwalbe, Gesina 383
Selgert, Franklin 255, 266
Selvaraj, Yuvaraj 9
Severino, Ricardo 136
Sokolsky, Oleg 82

Striecks, Christoph 36
Sudhakar, Krishna 266
Sudholt, Sebastian 336

Tanaka, Nobuaki 23
Tourwé, Tom 243
Tovar, Eduardo 136
Troubitysna, Elena 69

Ugarte Querejeta, Miriam 205

Van Vaerenbergh, Kevin 243
Vasenev, Alexandr 36
Veledar, Omar 123

Wagner, Michael 351
Ward, Francis Rhys 395
Wilhelm, Stephan 98
Willers, Oliver 336
Witt, Till 266
Woehrle, Matthias 289
Wozniak, Ernest 370

Yomiya, Hisashi 23

Zaeske, Wanja 217

416 Author Index

	Preface
	Organization
	Contents
	15th International Workshop on Dependable Smart Cyber-Physical Systems and Systems-of-Systems (DECSoS 2020)
	15th International Workshop on Dependable Smart Cyber-Physical Systems and Systems-of-Systems (DECSoS 2020)
	Introduction
	ECSEL: The European Cyber-Physical Systems Initiative
	This Year’s Workshop

	Supervisory Control Theory in System Safety Analysis
	1 Introduction
	2 Fault Tree Analysis
	2.1 Pressure Tank System

	3 Supervisory Control Theory
	3.1 Nonblocking Verification

	4 FTA in Supremica
	4.1 Modelling
	4.2 Verification
	4.3 Minimal Cut Sets

	5 Conclusion
	References

	A Method to Support the Accountability of Safety Cases by Integrating Safety Analysis and Model-Based Design
	1 Introduction
	2 Related Work
	2.1 MBSA
	2.2 Standards: AIAG/VDA FMEA Handbook and OMG
	2.3 Consideration for Related Works

	3 Structure of the Diagram to Describe Fault Models
	3.1 Notation Requirement
	3.2 The Metamodel of the Notation

	4 Importing the Safety Analysis Results on SysML Diagrams
	4.1 Correspondence Between Elements of Different Artifacts
	4.2 Assumptions for FTA Results and Conversion of the Fault Tree Model

	5 Case Study
	6 Effect of the Visualization
	7 Future Work
	7.1 Effectiveness When Applied to a Larger System
	7.2 Improvement for the Entire Safety Analysis Work
	7.3 Completeness of Correspondence Between Safety Analysis Artifacts

	8 Conclusion
	References

	Collecting and Classifying Security and Privacy Design Patterns for Connected Vehicles: SECREDAS Approach
	1 Introduction
	2 Related Work
	2.1 Security Pattern Catalogues
	2.2 Organization of Security Patterns
	2.3 Security Patterns in Automotive

	3 Security Pattern Organization for Connected Vehicles
	3.1 Common Technology Elements
	3.2 Reference Architecture: Technology Aspect
	3.3 Security Design Pattern Organization

	4 Security Pattern: Separation of Networks
	5 Conclusion
	References

	Safety and Security Interference Analysis in the Design Stage
	1 Introduction
	2 Case Studies
	3 Background
	3.1 Safety and Security Engineering
	3.2 Fault Trees and Attack Trees
	3.3 Component Local Analysis

	4 Enriching Safety-Security Co-analysis in the Design Stage with Interference Analysis
	4.1 Safety-Security Co-analysis
	4.2 Interference Analysis

	5 Qualitative Evaluation and Discussion
	6 Conclusion
	References

	Formalising the Impact of Security Attacks on IoT Safety
	1 Introduction
	2 A Formal Analysis of Security Properties of Networked Control Systems
	2.1 Safety of a Generic Control System
	2.2 Modelling Security Attacks and Defense Against Them

	3 Event-B
	4 Formal Development of a Safety-Critical System with Security Consideration
	4.1 Discussion of Development

	5 Related Work and Conclusions
	References

	Assurance Case Patterns for Cyber-Physical Systems with Deep Neural Networks
	1 Introduction
	2 Background
	2.1 Assurance Case and GSN
	2.2 Model-Based Approach for the Assurance of Traditional CPS
	2.3 Existing Tool-Based Evidence for the Assurance of CPSNN

	3 Assurance Case Patterns for CPSNN
	3.1 Pattern 1: Modular Pattern
	3.2 Pattern 2: Holistic Pattern

	4 Case Studies
	4.1 Case Study for the Holistic Pattern
	4.2 Case Study for the Modular Pattern

	5 Discussion and Conclusion
	References

	Safety-Critical Software Development in C++
	1 Introduction
	2 The C++ Language
	3 A Safety Standard's Perspective
	4 Coding Guidelines for C++
	5 Analyzability
	6 C++ Challenges
	7 Summary
	References

	An Instruction Filter for Time-Predictable Code Execution on Standard Processors
	1 Introduction
	2 Single-Path Paradigm
	3 Related Work
	4 Single-Path Extension
	5 Filter Implementation
	6 Current Work
	7 Conclusion
	References

	ISO/SAE DIS 21434 Automotive Cybersecurity Standard - In a Nutshell
	1 Introduction
	2 Established Safety and Security Frameworks
	2.1 Safety Engineering Standards
	2.2 Security Engineering Standards

	3 ISO/SAE DIS 21434
	3.1 ISO/SAE DIS 21434 Structure and Sections
	3.2 ISO/SAE DIS 21434 Section 4 - General Considerations
	3.3 ISO/SAE DIS 21434 Section 5 - Management of Cybersecurity
	3.4 ISO/SAE DIS 21434 Sections 6 - Risk Assessment Methods
	3.5 ISO/SAE DIS 21434 Sections 7 - Concept Phase
	3.6 ISO/SAE DIS 21434 Sections 8 - Product Development
	3.7 ISO/SAE DIS 21434 Sections 9 - Production, Operation and Maintenance
	3.8 ISO/SAE DIS 21434 Sections 10 - Supporting Processes

	4 Review
	5 Conclusion
	References

	WiCAR - Simulating Towards the Wireless Car
	1 Introduction
	2 Related Work
	3 Co-simulation Framework
	4 Network Specification
	5 Performance Analysis
	5.1 Impact of Braking Force
	5.2 Impact of Network Settings
	5.3 Impact of Delay

	6 Conclusion and Future Scope
	References

	Automated Right of Way for Emergency Vehicles in C-ITS: An Analysis of Cyber-Security Risks
	1 Introduction
	2 State of the Art
	2.1 Status of C-ITS in Europe
	2.2 Relevant C-ITS Services and C-ITS Security

	3 Methodology
	3.1 Lifecycle Definition
	3.2 Process Analysis
	3.3 FMEA

	4 Exemplary Use Case
	4.1 Exemplary Process Analysis
	4.2 Exemplary FMEA
	4.3 Risk Assessment and Results

	5 Conclusion and Outlook
	References

	Integrity Checking of Railway Interlocking Firmware
	1 Introduction
	2 Trusted Computing Concepts
	2.1 Platform Integrity and Boot
	2.2 Device Identity and Keys
	2.3 Typical Integrity Attacks

	3 Simulation Environment
	4 Finnish Rail Traffic Management System
	5 Attacking the Trusted Railway Simulation
	5.1 Attack Anatomy
	5.2 Measurement
	5.3 Mitigation

	6 Conclusion
	References

	LoRaWAN with HSM as a Security Improvement for Agriculture Applications
	1 Introduction
	2 Data Encryption with Symmetric and Asymmetric Keys
	3 Overview on LoRaWAN
	4 Security Module
	5 Implementation of HSM in a LoRaWAN End-Node
	5.1 Secure Evaluation Demonstrator
	5.2 Hardware Implementation
	5.3 LoRaWAN Implementation
	5.4 HSM Integration

	6 Results and Expectations in Agriculture Applications
	7 Outlook
	References

	1st International Workshop on Dependable Development-Operation Continuum Methods for Dependable Cyber-Physical System (DepDevOps 2020)
	1st International Workshop on Dependable Development-Operation Continuum Methods for Dependable Cyber-Physical Systems (DepDevOps 2020)
	Introduction
	H2020 Projects: Dependable DevOps
	Acknowledgments
	International Program Committee

	Multilevel Runtime Security and Safety Monitoring for Cyber Physical Systems Using Model-Based Engineering
	1 Introduction and Motivation
	2 Related Work
	3 Development of a Multilevel Monitoring Framework
	4 Example CPS: Anti-lock Braking System (ABS) and Event Calculus to Specify Safety and Security Properties
	4.1 Rationale for the Monitors Used in the ABS Controller CPS
	4.2 Monitoring Properties Expressed Using Event Calculus

	5 Evaluation of Multilevel Monitors
	5.1 Case-1. Attacks/Faults Needing Localized Monitors at Each Level
	5.2 Case-2. Attacks/Faults Detected at More Than One Level but Still Needing Multiple Levels to Find to Location of the Attack

	6 Conclusion and Future Work
	References

	Towards a DevOps Approach in Cyber Physical Production Systems Using Digital Twins
	1 Introduction
	2 Background and Motivation
	2.1 Digital Twin
	2.2 DevOps
	2.3 Cyber Physical Production Systems
	2.4 Motivation

	3 Digital Twin as DevOps Enabler for CPPS
	3.1 Digital Twin in Development
	3.2 Digital Twin in Operations

	4 Conclusions and Future Work
	References

	Leveraging Semi-formal Approaches for DepDevOps
	1 Introduction
	2 Behaviour Driven Development in DevOps
	3 Gherkin and RSpec for Dependable CPS
	4 Outlook
	References

	1st International Workshop on Underpinnings for Safe Distributed Artificial Intelligence (USDAI 2020)
	1st International Workshop on Underpinnings for Safe Distributed AI (USDAI 2020)
	Introduction
	This Year’s Workshop

	Towards Building Data Trust and Transparency in Data-Driven Business Applications
	1 Introduction
	2 Notion of Trust in Data and Security Requirements for Data Trust Assurance
	2.1 Notion of Trust and Trust in Data
	2.2 Security Requirements

	3 Data Trust Solutions and High-Level Architectures
	3.1 Architecture of the Blockchain-Based Solution
	3.2 Blockchain-Based Solution- Short Description

	4 Prototype of Blockchain-Based Solution
	4.1 Prototype Description and Use Cases
	4.2 System Architecture and Solutions
	4.3 System Development
	4.4 Security Implementation, Experimentation and Testing

	5 Related Work
	6 Conclusion
	References

	Distributed AI for Special-Purpose Vehicles
	1 Introduction
	1.1 Reliable Storage and Efficient Communication of Large Quantities of Data Is Challenging Due to the Absence of Continuous Connectivity
	1.2 The Traditional Centralized Data Analytics Model Is Challenged by the Inherently Distributed Fleet Context

	2 Special-Purpose Vehicle Monitoring
	3 Data Compression for Special-Purpose Vehicles
	3.1 Methodology
	3.2 Results

	4 Overload Indication for Special-Purpose Vehicles
	4.1 Data
	4.2 Machine Learning Classifier
	4.3 LSTM Approach

	5 Conclusion
	References

	Cynefin Framework, DevOps and Secure IoT
	1 Introduction
	1.1 Cynefin Framework
	1.2 Business DevOps
	1.3 Design Constraints and Requirements
	1.4 Structure of the Document

	2 Large IoT Systems Versus Cynefin
	3 Combining Cynefin, Business DevOps and Security
	4 A Holistic View on Security Within Business DevOps
	4.1 Development
	4.2 Test
	4.3 Release
	4.4 Deploy
	4.5 Operate
	4.6 Monitor

	5 Conclusion
	References

	Creating It from SCRATCh: A Practical Approach for Enhancing the Security of IoT-Systems in a DevOps-Enabled Software Development Environment
	1 Introduction
	2 Tooling for the DevOps-Cycle
	2.1 Continuous Integration (CI)
	2.2 Continuous Deployment (CD)
	2.3 Continuous Feedback (CF)

	3 Solution Concepts
	3.1 Pentesting IoT Devices
	3.2 Deception in the IoT
	3.3 Anomaly-Based Intrusion Detection
	3.4 Secure Deployment ID for IoT Components
	3.5 Software/Firmware Updates for IoT

	4 Conclusion
	A Appendix
	References

	3rd International Workshop on Artificial Intelligence Safety Engineering (WAISE 2020)
	3rd International Workshop on Artificial Intelligence Safety Engineering (WAISE 2020)
	Introduction
	Programme
	Acknowledgements

	Revisiting Neuron Coverage and Its Application to Test Generation
	1 Introduction
	2 Fundamentals
	2.1 Coverage
	2.2 Neuron Definition and Activations

	3 Research Questions and Experimental Setup
	4 Experiments
	4.1 Impact of Augmentation on Coverage in Initial Layers
	4.2 Class Dependency of Structural Coverage Metrics
	4.3 Coverage-Guided Differential Testing vs. Augmentations
	4.4 Experiments Summary and Discussion

	5 Conclusion
	References

	A Principal Component Analysis Approach for Embedding Local Symmetries into Deep Learning Algorithms
	1 Introduction
	2 Related Work and Contributions
	3 Background
	3.1 Lie Groups
	3.2 Group Action and Equivariance
	3.3 Some Examples

	4 Tangent PCA Implied Data Representation
	4.1 Mathematical Framework for Data Representation
	4.2 Deep Learning and TCM Based PCA Transformations
	4.3 Link with Data Augmentation Techniques

	5 Numerical Experiments
	5.1 MNIST Dataset
	5.2 ROT-MNIST Dataset

	6 Conclusions and Further Work
	References

	A Framework for Building Uncertainty Wrappers for AI/ML-Based Data-Driven Components
	1 Introduction
	2 Background
	3 Framework and Application Example
	4 Brier-Score-Based Investigation
	5 Conclusion
	References

	Rule-Based Safety Evidence for Neural Networks
	1 Introduction
	2 Rule Extraction
	3 Rule-Based Safety Evidence
	3.1 Rules as Evidence Artefacts
	3.2 Algorithmic Complexity of Rule Extraction

	4 Illustration
	5 Conclusion
	References

	Safety Concerns and Mitigation Approaches Regarding the Use of Deep Learning in Safety-Critical Perception Tasks
	1 Introduction
	2 Related Work
	3 Background
	4 Safety Concerns
	5 Potential Mitigation Approaches
	6 Conclusion
	References

	Positive Trust Balance for Self-driving Car Deployment
	1 Introduction
	2 Current Approaches to Deployment Decisions
	2.1 Positive Risk Balance
	2.2 Driver Test
	2.3 Testing Metrics
	2.4 SOTIF Approaches

	3 The Positive Trust Balance Approach
	3.1 Pre-deployment Validation
	3.2 Engineering Rigor
	3.3 Feedback and Continuous Improvement
	3.4 Safety Culture

	4 Conclusions
	References

	Integration of Formal Safety Models on System Level Using the Example of Responsibility Sensitive Safety and CARLA Driving Simulator
	1 Introduction
	2 Integration of Safety Models on System Level
	3 Road Topology and Situation Modeling Considerations for AD Safety Models
	4 Applying RSS Within CARLA Simulator
	4.1 RSS Sensor
	4.2 RSS Restrictor

	5 RSS CARLA Demonstrator
	6 Outlook
	References

	A Safety Case Pattern for Systems with Machine Learning Components
	1 Introduction
	2 Related Work
	3 Foundations
	4 GSN-Based Pattern to Argue Safety of ML Components
	5 Evaluation
	5.1 Description of Pedestrian Detection Component
	5.2 Safety Argumentation of ML for Pedestrian Detection

	6 Conclusions and Future Work
	References

	Structuring the Safety Argumentation for Deep Neural Network Based Perception in Automotive Applications
	1 Introduction
	2 Related Work
	3 Respecting DNN Insufficiencies in Safety Requirements
	3.1 DNN Insufficiencies
	3.2 Derived Safety Requirements

	4 Respecting DNN Insufficiencies in Evidences
	4.1 Mechanisms During Creation
	4.2 Mechanisms on Component and System Level
	4.3 Verification and Validation

	5 Conclusion
	References

	An Assurance Case Pattern for the Interpretability of Machine Learning in Safety-Critical Systems
	1 Introduction
	2 A Brief Overview of Interpretability
	3 An Argument Structure for the Interpretability of ML
	3.1 Interpretability Claim
	3.2 High Level Argument
	3.3 Argument over Interpretability Methods
	3.4 Argument over Context
	3.5 Argument over the Format of Interpretations
	3.6 Example: Deep Learning for Diagnosis in Retinal Disease

	4 Discussion: Key Safety Interpretability Questions
	4.1 Why Do We Need Interpretability in Safety-Critical Domains?
	4.2 What Needs to Be Interpreted?
	4.3 When Are Interpretations Needed?
	4.4 Who Needs an Interpretation?

	5 Summary
	References

	A Structured Argument for Assuring Safety of the Intended Functionality (SOTIF)
	1 Problem
	1.1 Safety Assurance of Automated Driving
	1.2 Role of the Operational Design Domain

	2 Proposed Approach
	2.1 ODD Transitions in an Example TJD Drive Cycle
	2.2 Presence of the Vehicle in the ODD and Activation Status of the Intended Functionality
	2.3 Example TJD Safety Claims
	2.4 MISRA SOTIF Argument Structure

	3 Discussion and Further Work
	References

	Author Index

