
Chapter 9
Multi-attribute Trajectory Data
Management

Jianqiu Xu

9.1 Introduction

Trajectory data, keeping track of historical movements of moving objects such
as vehicles and ships, is becoming ubiquitous due to the widespread use of GPS
devices. Such data that records geographical locations changing over time is of
crucial importance for emerging applications, e.g., route recommendation (Chen
et al. 2010; Tong et al. 2017, 2018), tracking (Lange et al. 2011), monitoring (Yao
et al. 2014), to name but a few.

Despite tremendous efforts made on studying trajectory databases, proposals in
the literature mainly deal with standard trajectories (Tzoumas et al. 2009; Long
et al. 2013; Zheng et al. 2013b), i.e., a sequence of time-stamped geo-locations.
The majority of queries are limited to the spatio-temporal evaluation such as range
queries (Wang and Zimmermann 2011), nearest neighbors (Güting et al. 2010b)
and convoys (Jeung et al. 2008). In the real world, typical moving objects such
as vehicles and persons are associated with pieces of descriptive information. The
database system should represent moving objects by considering several aspects
and allow users to query objects with extensive knowledge to better understand the
movement and users’ behavior. As a fundamental step towards that, a new form of
trajectories is investigated called multi-attribute trajectories, each of which consists
of a standard trajectory and a set of attribute values. Modeling and representing
standard trajectories has been well established (Güting and Schneider 2005), while
attributes have various semantics according to applications. The combination allows
users to issue queries with both spatio-temporal and attribute predicates.
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Fig. 9.1 Querying multi-attribute trajectories

Consider a database storing vehicle trips in a city. Each trip contains a standard
trajectory and two attribute values over domains COLOR = {RED, SILVER,
GRAY} and BRAND = {BENZ, BMW}, respectively, as illustrated in Fig. 9.1. A
query that contains a tuple of attribute values and a spatio-temporal box is issued,
that is, “Did any SILVER BMW pass the area during [t1, t2]?”. Boolean range
queries are studied to report objects containing query attribute values and fulfilling
the spatio-temporal condition. In the example, o3 is returned. Although o2 intersects
the query window, it is not a SILVER BMW.

Recently, researchers have started to investigate spatio-temporal trajectories
annotated with additional information, e.g., semantic trajectories (Yan et al. 2011;
Parent et al. 2013; Zhang et al. 2014; Zheng et al. 2015), activities trajectories
(Zheng et al. 2013a), and transportation modes (Xu and Güting 2013). In particular,
a semantic trajectory is essentially an enriched version of a standard trajectory
in terms of locations. Labels are attached to geo-locations to describe places that
users have visited or performed activities at, e.g., hotel, sport, restaurant. However,
semantic data is restricted to locations. This is orthogonal to multi-attribute trajec-
tories that consider location-independent attributes. The major differences include
three aspects.

• Attributes represent a range of aspects and aim to provide a full picture of moving
objects, as opposed to semantics limited to locations. This will support a different
(even broader) range of applications.

• Semantic locations are sparsely defined because among a person’s trajectory a
few locations have semantics. Attributes are location-independent and associated
with the complete trajectory. They are not derived from time-stamped locations or
the geographical environment. For example, a semantic trajectory is of the form
o = 〈(loc1 , t1, coffee), (loc2, t2, pizza)〉, where coffee and pizza are defined at
two locations. That is, there is no semantic at locations between loc1 and loc2. A
multi-attribute trajectory is of the form o = 〈(loc1 , t1), (loc2, t2)〉, (RED, BENZ),
where (RED, BENZ) is associated with the complete trajectory.

• Semantic trajectories cope with similarity search or ranking queries rather than
the exact match on attribute values with spatio-temporal predicts, leading to
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different tasks when developing the index. Semantic trajectories are grouped in
terms of locations and semantics, but attributes are not related to locations.

To efficiently process multi-attribute trajectories, an index is essentially required
because a sequential scan over the database is prohibitively expensive for large
datasets. Standard trajectory indexes such as TB-tree (Pfoser and Jensen 2000),
SETI (Chakka et al. 2003) and TrajStore (Mauroux et al. 2010) only deal with
the spatio-temporal data without managing attributes. Such a method is suboptimal
because one cannot use the index to prune the search space at the attribute
level. As a result, objects after performing the spatio-temporal evaluation are
sequentially processed, significantly inhibiting the performance. Furthermore, the
pruning technique of min and max distances1 cannot be applied for nearest neighbor
queries if attribute values are not determined. This is because objects that are close
to the query may not fulfill the attribute condition and cannot be used for pruning
further objects. The trajectory subset containing query attributes changes according
to the query setting and cannot be pre-computed. False dismissals will occur if one
performs the pruning without the awareness of attribute values.

One can employ two individual indexes (e.g., a 3-D R-tree and a B-tree) on
standard trajectories and attributes, respectively. The problem is, when the query
evaluates the selective predicate on both parts, an intersection will be performed on
two candidate sets that are separately retrieved, which is suboptimal. Another solu-
tion is to employ an attribute index. The method first receives trajectories containing
query attributes and then proceeds to processing standard trajectories. However,
this method is limited in scope and inherently suffers from the performance issue.
Standard trajectories will be processed by either performing a sequential scan or
accessing an on-line built index. If the attribute predicate is selective, the query cost
may be acceptable because a small dataset is processed. If the attribute predicate has
a poor selectivity, a large number of trajectories will be returned. Both the sequential
scan and building an on-line index incur high CPU and I/O costs. Furthermore,
creating an index for each query at runtime causes extra storage space. This calls
for a structure that is able to simultaneously manage both standard trajectories and
attributes. Meanwhile, the structure should be general and flexible in order to answer
queries on standard trajectories and support update-intensive applications. From a
system point of view, existing techniques need to be extended or adapted to deal
with coming issues rather than developing individual structures each of which only
applies to one problem.

The rest of the chapter is organized as follows. Related work is analyzed in
Sect. 9.2. Multi-attribute trajectories and queries are defined in Sect. 9.3. Indexing
and querying multi-attribute trajectories are introduced in Sects. 9.4 and 9.5,

1Given three rectangles a, b, c, each contains a set of points inside. We aim to find the nearest
point to a given point inside a. Let Max(b, a) and Min(c, a) denote the maximum and minimum
distances between two rectangles. If Max(b, a) ≤ Min(c, a), then no point inside the rectangle c

can be closer than a point in the rectangle b to a. As a consequence, we can omit c when searching
for the nearest neighbor to a.
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respectively. The system development is presented in Sect. 9.6 and the performance
evaluation is reported in Sect. 9.7. Future directions are pointed out in Sect. 9.8,
followed by conclusions in Sect. 9.9.

9.2 Related Work

The current state-of-the-art is classified into two parts: (i) extending the representa-
tion of standard trajectories by incorporating semantics, and (ii) indexing standard
trajectories with additional data.

9.2.1 Enriching Spatio-Temporal Trajectories

Semantic trajectories Emerging applications require extensive information about
trajectories such as quality and semantics (Zheng and Su 2015). Semantic trajecto-
ries are based on discovering meaningful knowledge from locations (Alvares et al.
2007; Yan et al. 2011; Zheng et al. 2015). Formally,

Definition 1 (Semantic trajectory) A semantic trajectory is represented by a
sequence of time-stamped positions complemented with annotations, that is, osem
= 〈 ( loc1, t1, A1 ), . . . , ( locn, tn, An ) 〉 in which loc ∈ R2, t ∈ T , and A is a set of
labels (strings) describing locations.

Interesting patterns can be properly defined and extracted. For example, a
so-called fine-grained sequential pattern reports trajectories that satisfy spatial
compactness, semantic consistency and temporal continuity simultaneously (Zhang
et al. 2014). Consider actions that users can take at particular places such as sport,
dining and entertaining. Activity trajectories are defined by associating geo-spatial
points with activities. A similarity search returns k trajectories whose semantics
contain the query and have the shortest minimum match distance (Zheng et al.
2013a). Motivated by the fact that standard trajectories do not make much sense
for humans, a partition-and-summarization approach is proposed to automatically
generate texts to highlight the significant semantic behavior (Su et al. 2015). A good
survey of semantic trajectories refers to Parent et al. (2013).

Motion modes Moving objects with transportation modes are investigated in Xu
and Güting (2013) and Xu et al. (2015a,b) . A trajectory over diverse geographical
spaces includes time-stamped locations and a sequence of transportation modes
such as Indoor → Walk → Car. Queries containing transportation modes can be
answered, e.g., “who arrived at the university by taxi”.

Definition 2 (Trajectories with transportation modes) A trip with transportation
modes is represented by a sequence of units, each of which defines the movement
over a time interval and a certain mode. That is, each unit is of the form utm = ( loc1,
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loc2, t1, t2, m) in which loc1, loc2 = (oid, loc′ ), oid ∈ int, loc′ ∈ R2, t ∈ T , and m

∈ {Indoor, Walk, Car, Bus, Metro, Bike, Taxi}.

The location representation employs a reference system in which oid points to
a geographical object such as a road, a walking area or a bus. Then, the relative
location in the geographical object is recorded. The transportation mode does not
change for each piece of movements.

Symbolic trajectories The task is to deal with generic semantic information
including transportation modes and users’ activities (Valdés and Güting 2014;
Güting et al. 2015). A generic model is proposed to capture a wide range of
meanings derived from a standard trajectory. The symbolic information is computed
from the movement itself or obtained from the geographical environment, and a
symbolic trajectory is represented by a time-dependent label. Typical examples
include names of roads, activities and transportation modes. The goal is to provide
a simple and flexible model for any kind of semantic information, while geometric
locations are not defined.

Definition 3 (Symbolic trajectory) A symbolic trajectory is represented as a
sequence of pairs (t , l), in which t is a time interval and l is a label (short character
string) describing certain aspects of a trajectory.

If transportation modes are considered, a symbolic trajectory is denoted by
osym = 〈([t1, t2], Walk), ([t2, t3], Bus), ([t3, t4], Metro), ([t4, t5], Walk), ([t5, t6],

Indoor)〉.
There are fundamental differences between those works and multi-attribute

trajectories. First, multi-attribute trajectories consider attributes that are location-
independent, differing from attaching location labels in semantic trajectories. Sym-
bolic trajectories do not contain geo-locations, while multi-attribute trajectories do.
Multi-attribute trajectories are defined in a broad context by annotating trajectories
with domain-specific attributes such that users can issue queries combining different
aspects of moving objects. Second, different queries are evaluated. Multi-attribute
trajectories incorporate attributes into the evaluation for Boolean queries and search
for the objects fulfilling the spatio-temporal condition during a time interval or
at each time point. Previous queries deal with spatial closeness and attributes
similarity instead of time-dependent distances and exact matches on attributes.
Labels are sparsely defined in semantic trajectories because a few locations may
contain semantics. As a result, ranking queries are primarily dealt with rather than
the spatio-temporal evaluation at each time point with attributes.

Heterogeneous k-nearest neighbor queries are studied in Su et al. (2007). A
moving object is represented by a location-independent attribute and a set of
coordinates. By defining a function that combines the costs of distances and the
location-independent attribute, the query returns objects having the k-th smallest
value. Although the work considers the location-independent attribute, there are
three major differences in comparison with ours. First, the data representation is
limited in scope because each moving object is associated with only one attribute.
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Second, they query objects based on a ranking function on distance and attribute,
but our queries require exact matches on attribute, leading to different results.
Third, their distance function is not time-dependent, while queries of multi-attribute
trajectories support distances changing over time.

Spatial keywords Queries of spatial keywords have been extensively studied in
the literature (Chen et al. 2013; Lee et al. 2015; Wang et al. 2016). The task is to
support queries that take a geo-location and a set of text descriptions called keywords
as augments and return (i) objects that are close to the query location and contain
the keywords called Boolean kNN query (De Felipe et al. 2008), or (ii) objects with
the highest ranking scores measured by a combination of distances to the query
location and the text relevance to the keywords called Top-k NN query (Cong et al.
2009). To efficiently answer the query, a spatial index such as 2-D R-tree and a text
index structure are combined. For example, the IR-tree (Cong et al. 2009) augments
each node of the R-tree with a pointer to an inverted file that contains a summary
of the text content of the objects in the corresponding subtree. During the query
procedure, one uses the combined structure to estimate both the spatial distance
and the text relevancy to prune the objects that cannot contribute to the result.
However, spatial keywords focus on static geo-locations and location-dependent
text descriptions, leading to different queries. Text descriptions and attributes will
make different tasks when designing the index structure. The index groups close
spatial objects in terms of spatial distances and location-related text relevances. It is
possible to attach attributes to time-stamped locations, but each piece of trajectories
will have all attributes along with the trajectory, resulting in an extremely large
amount of redundant data. In fact, the key issue of boosting the index for multi-
attribute trajectories is to know which objects contain particular attribute values and
where the objects are located in the spatio-temporal index. Therefore, a different
criterion is used to design the index.

9.2.2 Indexing Spatio-Temporal Trajectories

In the last decade, a substantial number of spatio-temporal index structures have
been proposed to efficiently access trajectories. A good survey on trajectory
indexing and retrieved is given in Dinh et al. (2010) and Zheng and Zhou (2011).
Indices can be classified into three categories according to the environment: (1)
free space (Pfoser and Jensen 2000; Tao and Papadias 2001; Chakka et al. 2003;
Pelanis et al. 2006); (2) road network (Frentzos 2003; Pfoser and Jensen 2003;
de Almeida and Güting 2005; Popa et al. 2011); and (3) indoor (Jensen et al. 2009;
Lu et al. 2012). Several algorithms are proposed to minimize the total volume of
trajectory approximations given a user-specified number of splits (Hadjieleftheriou
et al. 2002). Rasetic et al. (2005) provide a better solution that splits trajectories into
a number of sub-trajectories and builds an index on them to minimize the number of
expected disk I/Os with respect to an average size of spatio-temporal range queries.
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The method expects the query window as the input but in real applications the size
of the window varies and the assumption leads to inaccurate estimations.

Indexing semantic and symbolic trajectories Recently, traditional spatio-
temporal indexes have been studied to incorporate semantic information. A grid
index is established to organize spatio-temporal trajectories with activities in a
hierarchical manner (Zheng et al. 2013a). A similar structure is developed to
incorporate both spatial and semantic information for approximate keyword search
(Zheng et al. 2015). The grid is in fact a spatial index and is extended to maintain
objects based on spatial and activity proximities for ranking queries. This line
of work is not applicable to our problem. On the one hand, our attributes are
not related to locations and therefore it does not make sense to group objects by
considering both spatio-temporal data and attributes. On the other hand, our query
reports trajectory objects rather than individual locations. A framework of analyzing
large sets of movement data having time-dependent attributes is developed (Valdés
and Güting 2017, 2019). They aim to support pattern matching queries on tuples of
time-dependent values, e.g., “return all tuples that include either a flight on Tuesday
or a work in Dortmund with a later bus trip”. A new pattern language is proposed
and the superiority is thoroughly analyzed in terms of flexibility and expressiveness.
The corresponding matching algorithm uses a collection of different indexes and is
divided into a filtering and an exact matching phase. A composite index structure
for sets of tuples of time-dependent value is proposed in which a single index of a
suitable type is created for each time-dependent attribute.

Indexing trajectories with keywords An index structure called IOC-Tree is
proposed to answer spatial keyword range queries on trajectories (Han et al. 2015).
The structure consists of an inverted index and a set of 3-D quadtrees termed octrees.
The inverted index has two components: a search structure for all keywords and
lists of references to documents containing words. One is called a dictionary and
the other is called inverted lists. Each keyword is combined with one reference, that
is an octree built on the keyword in the dictionary to organize relevant trajectory
points. In an octree, each leaf node maintains a signature represented by a bit vector
to summarize the identifications of a set of trajectories intersecting the node. The
signature of a non-leaf node is achieved by performing the union on the signatures
of its child nodes.

The IOC-Tree can be extended to solve our problem by setting attribute values as
keywords associated with trajectory points. One can implement the inverted index
as an array of attribute values and each value contains a pointer to an octree. Certain
parameters are defined: the maximal depth h = 5 and the split threshold ϕ = 80.
Leaf nodes that do not contain enough trajectories are merged as one node (still
a leaf node). A 64-bit integer is used for the signature in each node. Each bit
corresponds to a range of trajectory ids. Each octree leaf node is assigned a morton
code and empty nodes (no trajectory intersects) are not materialized. Since each
attribute value corresponds to an octree, we will have a set of octrees and combine
the attribute value and the morton code as the key for each node. A relation stores
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all leaf nodes and tuples are increasingly sorted on keys in order to maintain the
locality of nodes in terms of the spatio-temporal proximity. A B-tree is built on the
relation.

The main difference between trajectories with keywords and multi-attribute
trajectories is that keywords are location-dependent texts, but attribute values are
location-independent. A keyword is relevant to one or a few location points of
the trajectory, while all location points of the trajectory have the same attribute
values. This results in two major changes when maintaining the IOC-Tree and
performing the query, in particular, inserting trajectory points into the index. A
thorough analysis and comparison is provided in the following.

(i) In the context of keywords, location points will be distributed into octrees each
of which corresponds to a keyword that the trajectory point contains. Each octree
stores one or a few relevant location points of the trajectory. However, for multi-
attribute trajectories each octree contains all location points of the trajectory
because they all have the attribute value. Consider the following two trajectories.

• given a trajectory with keywords o1 = 〈 (loc1, t1, coffee), (loc2, t2, pizza) 〉 , we
will store (loc1, t1) and (loc2, t2) in two octrees for coffee and pizza, respectively;

• given a multi-attribute trajectory o2 = (〈(loc1, t1), (loc2, t2)〉, (GRAY, BENZ)),
we will store both (loc1, t1) and (loc2, t2) in two octrees for GRAY and BENZ,
respectively.

The IOC-Tree is efficient for processing trajectories with keywords because only
relevant trajectory points are indexed. However, attribute values are not related to
locations but associated with the complete trajectory. That means, each attribute
value is relevant to all points of the trajectory. Then, the number of trajectory points
in each octree for multi-attribute trajectories is larger than that for trajectories with
keywords, as demonstrated in Table 9.1. To gain trajectories with keywords, we
randomly assign two attributes as keywords to each trajectory point using the dataset
BTaxi in the experiment (Sect. 9.7). During the query procedure, the numbers of
processed octree leaf nodes and trajectories increase, leading to more CPU and I/O
costs. The values in Table 9.1 are calculated based on the condition that the number
of trajectory points is the same in both cases. In fact, such a value for trajectories
with keywords is much smaller than that for multi-attribute trajectories. We will
explain this at point (ii) below.

The variation in processed trajectory points also makes the signature in IOC-Tree
less effective when we perform the intersection on trajectories containing different
keywords. Each node in the octree maintains a signature represented by a bit vector
to summarize the identifications of trajectories passing through the node. Table 9.2

Table 9.1 The average
number of relevant trajectory
points in an octree (BTaxi, d
= 10, dom(Att) = [1, 151])

Multi-attribute
trajectory

Trajectory
with
keywords

83,974 75,198
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Table 9.2 The percentage of
defined bits (64 in total) in the
signature at each level in
IOC-Tree (d = 10, [1, 151])

Att Leaf nodes H = 4 H = 3 H = 2 H = 1

1 45% 98% 100% 100% 100%

20 49% 96% 95% 100% 100%

50 47% 97% 100% 100% 100%

100 46% 98% 100% 100% 100%

Avg 46% 97% 99% 100% 100%

(a) (b)

Fig. 9.2 Cells intersecting the trajectory. (a) Trajectories with keywords. (b) Multi-attribute
trajectories

reports the percentage of defined bits in the vector at each level of the IOC-Tree. We
can see that almost all bits are defined for signatures in non-leaf nodes, weakening
the pruning ability.

(ii) Trajectory points with keywords are sparsely defined because only a few
locations of the trajectory may have semantics such as coffee and mall, but
attributes are associated with all locations of the trajectory. This results in
different numbers of octree leaf nodes intersecting the trajectory. Still using
o1 and o2, we assume that the space is partitioned into 2 × 2 cells. Figure 9.2a
and b show the cells intersecting o1 and o2, respectively. For trajectories with
keywords, each point is assigned to the cell intersecting the trajectory. Locations
between two sampled points will not be addressed because keywords are not
defined. For multi-attribute trajectories, attribute values are associated with
the overall movement and all cells intersecting the trajectory are included.
Consequently, the number of maintained trajectory IDs in the IOC-Tree is much
larger than that of trajectories with keywords. Given a query window, multi-
attribute trajectories process more nodes and trajectories than trajectories with
keywords, increasing the query cost.

Indexing spatial objects with keywords In the field of spatial keywords search,
geo-textual indexes combine spatial and text aspects such that both types of
information can be utilized to prune the search space. To answer Boolean kNN
queries (Wu et al. 2012), the data is partitioned into multiple indexing groups
each of which shares as few attributes as possible. A hierarchical aggregate grid



208 J. Xu

index called HAGI is developed to support heterogeneous kNN queries (Su et al.
2007). The method can be adapted to answer our queries, but it is limited as only
one attribute is considered. A function is defined to combine the cost of distances
and location-independent attributes, and the query returns objects having the k-
th smallest function value. Each node in HAGI maintains min and max attribute
values of all objects stored in the subtree. Although min and max values may
work well for one attribute, they fail to guarantee good pruning ability for multiple
attributes as min and max values are likely from different attributes. Also, the query
evaluates objects based on a ranking function, whereas we require the exact match
on attributes. Furthermore, the distance function is not time-dependent, whereas we
deal with distances changing over time.

9.3 Problem Definition

9.3.1 Data Representation

A composite data model O(Trip; Att) is used to represent a multi-attribute trajectory
database, in which Trip denotes standard trajectories and Att denotes multi-
attributes. A standard trajectory is typically modeled by a function from time to 2D
space. In a database system, a discrete model is implemented and the continuously
changing locations are represented by linear functions of time, as illustrated in
Fig. 9.3. That is, a trajectory is represented by a sequence of so-called temporal
units, each of which records start and end locations during a time interval. Locations
between start and end locations are estimated by interpolation. A data type called
mpoint is defined (Forlizzi et al. 2000; Güting et al. 2000).

Definition 4 Dmpoint = {< u1, . . . , un > |n ≥ 1, and u = (loc1, loc2, t1, t2) where

loc1, loc2 ∈ R2, t1, t2 ∈ T }

Let A be the set of multiple attributes. The ith attribute and its domain are
denoted by A[i] and dom(A[i]) (i ∈ 1,. . . , |A|), respectively. Assume that each
dom(A[i]) is represented by a set of positive integers and a data type called Datt

is defined for the set of attributes. For the sake of readability, the enum data type is
used for attributes in the following.

Fig. 9.3 Standard trajectory
representation. (a) Abstract.
(b) Discrete

X

T

Y

f : t → space

(a)
X

T

Y

(b)



9 Multi-attribute Trajectory Data Management 209

Table 9.3 An integration of
standard trajectories and
attributes

Id: int Trip: mpoint Att: att

o1 location + time (RED, BENZ)

o2 location + time (GRAY, BENZ)

o3 location + time (SILVER, BMW)

o4 location + time (GRAY, BMW)

o5 location + time (SILVER, BMW)

Table 9.4 Summary of
notations

Notation Description

O The set of multi-attribute trajectories

o A multi-attribute trajectory

|A| The number of attributes

dom(Ai ), dom(A) The domain of Ai , the overall domain

Qa Query attribute expression

oq , d A query trajectory, the query distance

k The number of nearest neighbors

t A time point or interval

T (o) The time period of a trajectory

Definition 5 (Multi-attribute representation) Datt = {( a1, . . . , a|A| ) | ai ∈ dom(

A[i] ), i ∈ {1, . . . , |A|}} such that

(i) ∀i ∈ {1,. . . , |A|}: dom(A[i]) ⊂ N+;
(ii) ∀ i, j ∈ {1,. . . , |A|}: i �= j ⇒ dom(A[i]) ∩ dom(A[j ]) = ∅.

The data model is translated to a relation with the schema (Id: int, Trip: mpoint,
Att: att) by embedding mpoint and att as relational attributes, as shown in Table 9.3.
To be more specific, a relation is used to store multi-attribute trajectories by defining
two attributes Trip and Att. The system manipulates multi-attribute trajectories
via a relation. The advantage of using the relational interface is that (i) it allows
combining heterogeneous data models, i.e., spatio-temporal and attribute; and (ii)
existing operators on standard trajectories can be leveraged, benefiting the system
development.

Table 9.4 summarizes notations frequently used in the chapter.

9.3.2 Queries

Attribute values are incorporated into the evaluation and the attribute expression is
defined in the following.

Definition 6 (Attribute query expression) Qa = (a1, . . . , a|A|), ai ∈ dom(Ai) or
ai = ⊥
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Given a tuple of attribute values Qa = (a1, . . . , a|A|) and a multi-attribute
trajectory o ∈ O, an operator contain(o.Att, Qa) returns True if ∀ a ∈ Qa : a ∈
o.Att or a = ⊥.

Three types of queries are supported: (i) range queries, (ii) continuous range
queries and (iii) continuous nearest neighbor queries. The range query is called
RQMAT (Range Queries on Multi-attribute Trajectories) (Xu et al. 2018b). For-
mally,

Definition 7 (Range queries on multi-attribute trajectories (RQMAT)) Given
a spatio-temporal window Qbox and attribute values Qa , RQMAT returns a set of
trajectories O′ ⊆ O such that ∀ o ∈ O′ : (i) o.Att contains Qa ; and (ii) o.Trip
intersects Qbox .

There is a variation of RQMAT that returns objects containing query attributes
and keeping within a spatial range to a moving target at each query time point.
The query is called CRQMAT, Continuous Range Queries on Multi-attribute
Trajectories. Let T (o) return the time period of an object. The function in Frentzos
et al. (2007) is employed to return the time-dependent distance between two
trajectories o1, o2 ∈ O, denoted by dist (o1, o2, T (o1) ∩ T (o2)).

Definition 8 (Continuous range queries on multi-attribute trajectories (CRQ-
MAT)) Given a query trajectory oq , a distance threshold d and an attribute
predicate Qa , CRQMAT aims to identify the result set O′ ⊆ O such that ∀ o′ ∈
O′ : (i) contain( o′.Att, Qa ) ; (ii) ∀ t ∈ T (oq) ∩ T (o′), dist( oq , o′, t ) ≤ d.

Consider an example in Fig. 9.4. Assume that o3 is a special object that carries
VIP passengers or sensitive materials. For security reasons, one detects whether the
special object is stalked. To this end, one makes use of multiple attributes to form a
semantic-richer query, e.g., Did any GRAY BENZ always keep 50 meters to o3. The
returned objects must satisfy the criteria: (i) time-dependent distance constraint and
(ii) attribute consistency. Although o1 is within 50 meters to o3, it is not a GRAY
BENZ and should not be returned. Note that o4 and o2 fulfill the condition during
[t1, t2] and [t2, t3], respectively, but they do not fulfill the condition during the overall
query time. As a result, the query reports {([t1, t2], o4), ([t2, t3], o2)}.

Fig. 9.4 Example of
CRQMAT

t1

t2

t3

o2
(GRAY, BENZ)

o1
(RED, BENZ)

o3
(SILVER, BMW)

50m 50m

o4
(GRAY, BENZ)

o5
(SILVER, BMW)
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Fig. 9.5 Example of
CkNN_MAT

X

Y

T

t0

t1

t2

t3

t4

o3(SILVER, BMW)

o5(SILVER, BMW)

o2(GRAY, BENZ)

o4(GRAY, BENZ)

o1(RED, BMW)

Continuously report the nearest SILVER BMW to o4

The third type of queries is called CkNN_MAT (Continuous k Nearest Neighbor
queries over Multi-attribute Trajectories) (Xu et al. 2018a). Such a query returns
the objects fulfilling the condition: (i) attribute consistency and (ii) time-dependent
distance closeness.

Definition 9 (Continuous k nearest neighbor queries over multi-attribute tra-
jectories (CkNN_MAT)) Given a query standard trajectory oq , an integer k and a
set of query attributes Qa , CkNN_MAT receives k trajectories denoted by O′ ⊆ O
at each query time such that (i) ∀ o ∈ O′ : contain( o.Att, Qa ) returns True; (ii) �

o′ ∈ O \ O′ : contain( o′.Att, Qa ) ∧ o′ is closer than ∀ o ∈ O ′ to oq .

An example is illustrated in Fig. 9.5. CkNN_MAT returns ([t1 , t2], o3), ([t2, t3],
o5), ([t3, t4], o3) indicating the key aspect that only objects fulfilling the attribute
condition will be evaluated on the time-dependent closeness. Although o1 and o2 are
closer than o3 and o5 to the query trajectory, they do not contain (SILVER BMW)
and will not be included. Since distances between moving objects vary over time,
results change at certain time points.

Generalizing query attribute expression Up to now, one assumes that the query
defines a single value for each attribute. It is possible that multiple values are
defined, e.g., Continuously report the nearest SILVER BMW or VW to o4. The
query expression is extended to support multiple values.

Definition 10 (An extension of query attributes) Qa = (X1, . . . , X|A|), Xi ⊆
dom(Ai) or Xi = ∅

At the concept level, Qa = (X1 , . . . , X|A|) defines the component for each
attribute over {A1, . . . , A|A|}, in which Xi is a set of attribute values. The multi-
value query SILVER BMW or VW is formed by Qa = ({SILVER}, {BMW, VW}).
At the implementation level, the query is defined by a relation in which a tuple
supports multi-valued attributes. The operator contain is extended accordingly:
contain(o.Att , Qa) returns True if ∀ Xi ∈ Qa : o.Att[i] ∈ Xi or Xi = ∅.
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Attribute queries with negative values are also supported, that is, o.Att[j ] �=
Qa[j ]. Negative queries can be transformed into set queries by setting Qa[j ] the
values that are not equal to the query, e.g., o.Att[j ] �= RED ⇒ o.Att[j ] = GRAY or
SILVER.

9.4 Indexing Multi-attribute Trajectories

9.4.1 An Overview of the Structure

To efficiently answer queries, the index should manage both spatio-temporal
trajectories and attributes in order to prune the search space on both predicates. A
hybrid structure is developed that consists of a 3-D R-tree and a composite structure
named BAR, as shown in Fig. 9.6. The 3-D R-tree that serves as indexing standard
trajectories is a height balanced tree. Each node contains an array of entries, each of
which couples (i) a pointer to a subtree or an object with (ii) a rectangle that bounds
data objects in the subtree. BAR is a composite structure that includes a B-tree, a
relation Att_Rel and a record file RF.

The system builds BAR on top of the 3-D R-tree by extracting attribute
values from multi-attribute trajectories. The structure builds the connection between
attribute values and R-tree nodes and enables us to know attribute values in a sub-
tree. For a leaf node, each entry stores a pointer to a tuple in the trajectory relation
and the tuple is accessed to obtain the attribute value. For a non-leaf node, attribute
values are collected by performing the union on values from child nodes. BAR
maintains attribute values in an efficient way such that one is able to fast settle
the R-tree nodes that (i) contain query attributes and (ii) fall into the range of the
query time. Before elaborating the index structure, we first introduce pre-processing
trajectories in order to have a compact dataset for building a good shape of the 3-
D R-tree (nodes have similar sizes in spatio-temporal dimensions). Sections 9.4.2
and 9.4.3 present grouping small units and partitioning trips according to spatio-
temporal distributions, respectively.

Fig. 9.6 Index architecture
BAR

3-D R-tree

B-Tree

Att Rel
Records

RF
<nid, b, t>
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9.4.2 Packing Trajectories

The R-tree is supposed to be built on sorted minimum bounding rectangles (MBRs)
that approximate trajectories. By observation, raw trajectories from GPS records
contain a large number of small units due to short time intervals or slow movement.
In order to reduce the size of the dataset, small pieces of movements are packed to
have fewer but larger units. Let ui denote the trajectory extent in the ith dimension.
The average extent over all units in the ith dimension is denoted by �i . Then, the
deviation of a unit is given as:

f (u) =
∑ ui

�i

, i ∈ {dx, dy, dt } (9.1)

A threshold Bound is defined to select small units. Duplicate values are removed
to overcome the impact of the number of small units. The lower bound is analytically
estimated.

Bound = Avg(Unique(�f (u)�)) ≥ Avg(�f (u)�) ≈ 3 (9.2)

Let U be the set of all temporal units and the unit with the maximum deviation is

u∗ = arg max
u∈U

Unique(�f (u)�) (9.3)

Not all values in {0, 1, . . . , � f (u∗) �} may be defined and thus the upper bound
is

Bound ≈ Avg(0 + . . . + f (u∗)) ≤ f (u∗)
2

(9.4)

The packing can be treated as building the R-tree in a different way, as
demonstrated in Fig. 9.7. Small pieces of trajectories are packed to obtain large
units which are taken as the input for a leaf node. The index is built by bulk load
(Bercken and Seeger 2001; Bercken et al. 1997) which uses the same threshold
as the standard value to group units into one leaf node, guaranteeing the spatio-
temporal locality. The Bound is the average value over Unique(f (u)) and thus will
not result in grouping units into a large extent. During the packing procedure, neither
raw units are modified/simplified nor data is lost. One does not need extra storage
space and the same number of original units is maintained.

Demonstrate packing trajectories Using 500 GPS records of taxis, we calculate
the unit deviation and report their values as well as Bound in Fig. 9.8. One can
see that the majority of units have the derivation smaller than Bound. We pack
successive small units of the trajectory as one unit such that the deviation of the
unit is larger than Bound. The overall number of trajectory approximations (MBRs)
is greatly reduced, leading to a compact dataset to build the index.
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Fig. 9.7 The packing procedure. (a) Pack small units. (b) Build the index

Fig. 9.8 Effect of packing
trajectories

9.4.3 Partitioning Trajectories

Trajectories have different distributions over time and space. We would like to
decompose them into pieces which have similar sizes in terms of spatial and
temporal dimensions. This will benefit the index structure because spatio-temporal
extents of nodes are similar, derivations among nodes are small and the area of
inactive space2 is reduced. The time dimension is partitioned into a set of equal-
sized intervals {T1,. . . ,TK} (K > 1) and the 2-D space is partitioned into a set of
equal-sized cells. Given a multi-attribute trajectory, its spatio-temporal trajectory is
split into a set of so-called cell trajectories, each of which represents the movement
within a cell during an interval Tk ∈ {T1 ,. . . ,TK}.

Definition 11 (Cell trajectory) Let Cell(o, t) return the cell where o is located at
a time point t ∈ T (o). A cell trajectory o[i] is a subset of o.Trip such that (i) ∀ t1, t2
∈ T (o[i]) : Cell( o[i], t1 ) = Cell( o[i], t2 ) ; (ii) ∃ Tk ∈ {T1,. . . , TK}: T (o[i]) ⊆ Tk .

We partition each o ∈ O into a set of cell trajectories in three steps: (1) o.Trip
is decomposed into a sequence of sub trajectories such that the time of each sub
trajectory is contained by Tk; (2) For each sub trajectory, a set of cells intersecting
the 2-D bounding box of the trajectory is identified, which is efficiently determined

2The space is contained by the node but there are few or no data objects. One can also call this
dead space (Tao and Papadias 2001), meaning that the area will be evaluated but few objects are
there or even no object exists.
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Fig. 9.9 Partitioning o3 into
cell trajectories
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Fig. 9.10 Leaf node extents affected by partition. (a) Partition. (b) Without the partition

by finding the left-bottom and right-top cells; (3) Each sub trajectory is split into
a set of cell trajectories. We may encounter the case that the object enters the cell
more than once. As a consequence, there are several cell trajectories from one object
located in the same cell. Assume that the 2-D space is partitioned into 4 × 4 cells and
o3 is contained by a time interval. The cells intersecting o3 and o3’s cell trajectories
are reported in Fig. 9.9. The index is built on cell trajectories sorted by time, cell id
and 3-D bounding box following a bulk loading approach (Bercken et al. 1997).

Demonstrate partitioning the trajectories We use part of real trajectories in the
experimental evaluation (66,000 taxi trajectories in Beijing) and build two indexes
on trajectories with and without performing the partition, respectively. The extents
on all dimensions are reported by randomly selecting 500 leaf nodes, as illustrated
in Fig. 9.10. Clearly, the deviation among different dimensions after the partition
is much smaller than that without the partition. This contributes to create a good
R-tree.

Grid granularity Grid granularity plays a pivotal role in the index design as an
arbitrary value cannot guarantee an optimal query performance. Assume the 2-D
space is partitioned into δ × δ equal-sized cells. If we set a coarse granularity, e.g.,
δ = 1, all trajectories are located in one cell. The index does not exhibit the spatio-
temporal proximity, increasing false positives in query processing. At the opposite
end, a fine granularity leads to small cells and each cell contains fewer trajectories
having small extent in x and y dimensions. This is good for preserving locality.
However, the finer the granularity is, more nodes are maintained. This is because
the number of cell trajectories grows proportionally as a spatio-temporal trajectory
is partitioned into all intersecting cells. As shown in Fig. 9.11, we will visit all cells
under the setting δ = 2 because they are within the d-distance to o3. However, in
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Fig. 9.11 Coarse and fine
grid granularities. (a) δ = 2.
(b) δ = 8
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cells 3© and 4©, cell trajectories of o2 and o4 do not fulfill the distance condition.
Considering δ = 8, although we can greatly reduce the search space (gray area),
more cells are accessed and some of them do not contain trajectories.

9.4.4 BAR

The relation Att_Rel The key component in BAR is the relation Att_Rel that
builds the connection between attribute values and R-tree nodes. The relation
schema is defined as

Att_Rel: (A_VAL:int, H: int, RecId: int).
For each attribute value, the system maintains a tuple for all nodes containing the

value at the same height. The nodes are stored in a record. A tuple stores the attribute
value, the height, and the record identifier. The relation is created as follows. Step 1,
for each a ∈ dom(A) the approach traverses the R-tree in depth-first search to collect
all nodes containing a and creates an intermediate tuple for each node. One sets a

as the key and records the node height. Step 2, the intermediate tuples are grouped
according to the height and a record stores all nodes containing a at each height. A
tuple is created to store the record id. Steps 1–2 are repeated for all a ∈ dom(A).
One creates a B-tree on Att_Rel by making a key combining A_VAL and H .

A unique key is required for each attribute value. The ideal case is that attribute
domains do not overlap. In practice, it may be not possible to have non-intersecting
domains, but this problem can be solved. One can use a composite number to
represent the attribute value. This is achieved by combining the attribute id and the
value. In turn, a two-dimensional point (i, a) (i ∈ [1, |A|], a ∈ dom(Ai)) is formed.
Then, a space-filling curve Z-order is used to map points of a two-dimensional space
to one-dimensional values. This is done by interleaving the binary coordinate values,
which guarantees that attribute domains do not overlap.

Record Storage The system maintains a list of items in each record. Each item is
represented by a three-tuple: (nid, b, t), in which nid is the node id, b is a bitmap
and t is a time interval. The bitmap represents the entries containing the attribute
value in a node and t is the overall time of entries. The design is made based on
the observation that the number of entries containing an attribute value cannot be
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1

b: 00000110

i = 3, report 2 (the 2nd bit) 2

b: 00000010

i = 1, report 1 (the 1st bit) 3

b: 00000000

return 2, 1

Fig. 9.12 Report defined bits

larger than the total number of entries, usually much smaller. Also, the number of
entries containing an attribute value increases from leaf level to root level. This is
because if a node contains the value, all its ancestor nodes will contain the value. To
efficiently settle the entries fulfilling the attribute condition, the bitmap is accessed
at first instead of performing a linear scan over all entries.

Let m denote the length of a collection of bit-vectors and E be the entry count of
a node. A mapping between m and E is performed. There are two cases. Case (i):
m ≥ E, each bit maps to an entry. If the ith (i ∈ [0, m)) entry contains the attribute,
one has b[i] = 1. Otherwise, b[i] = 0. Case (ii): m < E, each bit maps to a sequence
of entries. The corresponding entries for the ith bit are calculated by [i · �E

m
�, (i +

1) · �E
m

�). The system defines b[i] = 1 if one of the entries contains the attribute.
The bitmap index incurs little storage overhead and is efficient for processing data in
small quantity due to the speed of bit-wise operations. The length m depends on the
implementation, e.g., a 32-bit integer. The bitmap fast determines qualified entries
for the intersection condition of several attributes. A data type is embedded into an
relation to represent the records.

Querying the bitmap In order to know the entries containing the query attribute,
the method accesses the bitmap to report defined bits. Let B = < 20, 21, . . . , 2m−1 >

be a sequence of integers. Given a bitmap b, its defined bits are reported as follows:
Step 1, by performing a binary search one finds the smallest 2i ∈ B such that 2i ≥
b. Step 2, if 2i = b, i is reported and the searching is terminated because the bit is
already found. If 2i > b, the procedure updates i - 1 and b = b - 2i−1. Then, steps 1–2
are repeated until b is equal to 0, during which bits are progressively reported from
high to low positions. Figure 9.12 depicts the procedure of reporting b = 00000110
in Record 3.

Let P denote the set of defined bit positions, initially empty. Two indexes s and e

are used to define the sth and eth integers in B. To find the smallest i such that 2i ≥
b, the procedure performs a binary search and terminates when either b is equal to
an integer in B or e = s + 1. In the former case, all bits are found already. In the latter
case, the position of the highest bit is found and put into P . To continue searching
the bits, the approach updates b as well as s and e by setting e ← s and s ← 0.

Time complexity One needs O(log m) to report the highest bit and the position is
p ∈ [0, m). To find the second highest bit, a binary search is performed, leading to
O(log p). The iteration time depends on p. The smaller p is, the fewer iterations
are needed. If p ∈ [m/2, m), log p = log m iterations are required. If p ∈ [0, m/2),
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log m − 1 iterations are achieved. To report the ith highest bit, the iteration time is
between [log m − (i − 1), log m], depending on where the bit is located. To sum up,

Theorem 1 (Upper Bound)

O(|b| log m) (9.5)

Theorem 2 (Lower Bound)

O

⎛

⎝
|b|∑

i=1

(log m − (i − 1))

⎞

⎠ = O(|b| log m − (|b| − 1)|b|/2) (9.6)

Proof One performs a binary search to look for |b| defined bits in O(m). In the
worst case, they are the |b| highest bits and each iteration needs the time O(log m),
leading to O(|b| log m). An optimal case is that one needs O(log m − 1) for the
second iteration when the position of the second highest bit is smaller than m

2 . If
the position of the second highest bit is ≤m

4 , one needs O(log m − 2) for the third
iteration and so on. ��

9.4.5 Updating the Index

The database needs to keep track of the incoming data and allow querying both
the historical and new data. An important task is to synchronize index structures in
order to be consistent with the underlying data space. Given a set of incoming multi-
attribute trajectories, inserting them into the index incurs updating two structures:
(i) 3-D R-tree and (ii) BAR. In general, a new R-tree named Ru is created on new
trajectories and BAR is built on Ru. To distinguish between historical and new
structures, the new structure is termed BARu. New created structures Ru and BARu

are inserted into historical structures R and BAR, as illustrated in Fig. 9.13.

Updating 3-D R-tree The incoming trajectories are packed and a new R-tree is
created by bulk load. The new R-tree is maintained by the same storage file as

incoming trajectories
delete BARu and
the update path Pu

record file

storage file

BARu

Ru

BAR

R

Fig. 9.13 An outline for updating
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the historical R-tree in order to simplify the procedure of accessing the structure.
Otherwise, one has to detect whether the accessed node belongs to the new R-tree
or the historical R-tree and select the corresponding file. It is a rather complex task
to maintain many storage files for frequent updates. Ru is inserted into R as follows.
Let Hu and H denote the heights of the two R-trees, respectively. Assume that Hu

≤ H . This is because the number of incoming trajectories for one update is usually
much smaller than that of the historical data. If Hu = H , a new root node is created
to hold root nodes of R and Ru as two entries. If Hu < H , the root node of Ru

is inserted as an entry to an appropriate node in the target tree R whose height is
equal to Hu. This is achieved by performing a top-down traversal in the target tree
until a node whose height is equivalent to the new R-tree. During the traversal, the
last entry of each accessed node is always chosen as the node to be processed at
the next level. This is because entries are increasingly sorted by time and incoming
trajectories are certainly located after existing trajectories. If the node is not full, the
root of the new R-tree is inserted as an entry into the node. Otherwise, a new node
is created for the R-tree.

Updating BAR We insert BARu into BAR: step 1, for each tuple in BARu.Att_Rel,
the procedure searches for the matching tuple in BAR.Att Rel and appends record
items for the nodes in Ru; step 2, record items are updated for each node appearing
in Pu.

Ru is inserted into R as a sub-tree and the nodes in Pu are updated in terms
of (i) spatio-temporal boxes; and (ii) attribute values. For each attribute value in
new trajectories, the method looks for tuples in BAR.Att_Rel having the value
and the appropriate height according to Pu. Note that the height is increasingly
numbered from leaf to root level, guaranteeing that the heights of R and Ru are
consistent. If the tuple is found, the record is accessed to update the item for
the node. Precisely, the bitmap and the time box are updated. Later, the record is
refreshed to synchronize the data.

New arrival trajectories incur an ongoing expansion of the time. The time range
of the nodes in Pu overlaps with that of new trajectories. To enhance the update
performance, record items are increasingly sorted on time and updated from the end
of the list.

Definition 12 (Sorted records) Drec = {<nid1, b1, t1 ),. . . ,(nidn, bn, tn > | t1 <

. . . < tn, nidi ∈ int, bi ∈ int, ti ∈ interval}

If a new root node is created, there is no matching tuple in BAR.Att_Rel.
Therefore, the tuple as well as the record are created and inserted into BAR.
Afterwards, BARu and Pu are dropped. Let Ou be the set of new arrival trajectories.
In order to achieve good performance for updating, a light-weight BAR named lw-
BAR is proposed to reduce the I/O cost. The idea is to buffer record items in lw-BAR
rather than updating BAR for each new trajectory. A relation and a B-tree make up
lw-BAR and there is no record file. The relation schema is of the form
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Fig. 9.14 Overflow and Update lw-BAR, BAR

lw-Att Rel:(A_VAL: int, H : int, RecItem: rec).
For each attribute value appearing in BARu, a tuple in lw-Att_Rel is maintained

for the node in Pu. In the update path, there is only one node at each height from
Hu to H , and therefore the number of updated items in a record is one. The lw-BAR
only stores one item in a record. To have a compact structure, the record component
(managed in a record file in BAR) is merged into the relation by replacing the
record id by the record item. Employing the lw-BAR, the number of I/O accesses
for updating will be considerably reduced because only one tuple is processed.

To accommodate frequent updates, the record items for Pu have to be updated
whenever Ru is inserted into R. If entries in the inserted node do not overflow, only
record items for historical nodes are updated. However, under a continuous updating
load, frequent insertions will cause the node overflow and lead to new nodes, as
illustrated in Fig. 9.14. In this scenario, the record item in lw-BAR is merged into
the one in BAR and another record item in lw-BAR is created for the new node.

9.4.6 The Generality

The proposed index structure is general from three aspects: (i) packing standard
trajectories, (ii) managing attribute values, and (iii) supporting a range of queries on
multi-attribute trajectories and also queries on standard trajectories.

Packing. The established method produces a compact data set by reducing the
number of approximations. There is no information loss and no extra storage
cost. The procedure can be applied for other trajectory queries to enhance the
performance.

BAR. The system is able to flexibly build the traditional trajectory index or
the hybrid index, depending on whether standard trajectories or multi-attribute
trajectories are processed. BAR is not tightly integrated into the spatio-temporal
index and therefore can be combined with other traditional trajectory indexes,
categorized into (i) R-tree based indexes, e.g., TB-tree (Pfoser and Jensen 2000),
MV3R-Tree (Tao and Papadias 2001), and (ii) grid based indexes, e.g., SETI
(Chakka et al. 2003). The well-established structures do not have to be modified,



9 Multi-attribute Trajectory Data Management 221

Fig. 9.15 Popularizing
BAR. (a) TB-tree. (b) Grid
index

(a) (b)

benefiting the system development. Figure 9.15 reports BAR built on top of TB-
tree and Grid index. One instantiates into the 3-D R-tree due to the advantage of
preserving the spatio-temporal proximity and the efficiency of answering nearest
neighbor queries (Güting et al. 2010b). The comparison with other trajectory
indexes is as follows.

• TB-tree. The structure has the trajectory preservation property that only stores
units of the same trajectory within a leaf node, resulting in a large spatial extent of
leaf nodes. The spatial proximity is not preserved because segments of different
trajectories that lie spatially close will be stored in different nodes. One cannot
effectively prune the search space by min and max distances, resulting in poor
performance for nearest neighbor queries. The STR-tree (Pfoser and Jensen
2000) introduces a parameter to balance between spatial properties and trajectory
preservation, but the main concern is to handle the spatial domain and treating
the temporal as a secondary issue.

• SETI. The space is divided into disjoint cells, each of which contains trajectory
segments that are completely within the cell and has a temporal index (an R-
tree) for objects’ time intervals. The number of spatial partitions plays a crucial
role in index design, but setting an optimal value is not trivial. Trajectories can
be uniformly and uniformly distributed, making the performance unstable. The
method focuses on the spatial proximity and has the limitation that the boundaries
of the spatial dimension remain constant. The SEB-tree (Song and Roussopoulos
2003) is similar to SETI where the space is partitioned into zones, but the
difference is that only the zone information is stored in the database without
knowing the exact location.

• MV3R-tree. The index combines a multi-version R-tree (MVR-tree) and a small
auxiliary 3-D R-tree built on the leaf nodes of the MVR-tree. The former is to
process time-stamp queries and the latter is to process long interval queries. Short
interval queries are processed by selecting the appropriate tree. Multi-attribute
trajectories deal with interval queries and thus the structure is essentially a 3-D
R-tree.

Queries. RQMAT, CRQMAT and CkNN_MAT can all be answered by employ-
ing the proposed index structure. One accesses BAR to find the subtrees in the



222 J. Xu

spatio-temporal index fulfilling the attribute condition and then explores the spatio-
temporal index. If attributes are not considered, the algorithm directly searches the
spatio-temporal index without accessing BAR.

9.5 Query Algorithms

9.5.1 An Outline

The query procedure follows the filter-and-refine strategy. In general, one performs a
traversal on the index during which objects are pruned on both spatio-temporal and
attribute conditions. When the leaf level is reached, we open the node to retrieve
objects from the relation. The filter step returns a set of candidate trajectories,
each of which is likely to be in the result and will be iteratively evaluated, called
refinement.

9.5.2 Processing RQMAT

The query processing runs in two steps. Step 1 accesses BAR to determine the R-
tree nodes that contain query attribute values and overlap the query time. Step 2
takes the nodes returned from Step 1 as well as the spatio-temporal box to perform
a breadth-first search on the R-tree, as illustrated in Fig. 9.16.

To determine the objects containing query values, the procedure accesses BAR
to look for the nodes fulfilling the attribute condition. That is, the method searches
for the nodes in which there are trajectories containing Qa . For each attribute value,
BAR is accessed to find the tuple and get the record. Each item in the record stores a
node id and a bitmap marking the entries containing the value. The item is obtained
for each attribute value and the intersection operation is performed on bitmaps to
find the entries containing the query. The time dimension of the node is checked
to determine whether the item (a candidate node) exists in the returned node set,
denoted by Na . If not, an item (nid, b, t) is inserted by adding a counter, initialized
by 1. If yes, the counter is increased and the bitmap is updated by performing the
operation AND. In the end, items in Na that cannot contribute to the result are
removed.

Fig. 9.16 Procedure of
RQMAT

Qa BAR
Na

Qbox
3D

R-tree
multi-attribute
trajectories
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Fig. 9.17 Procedure of
CRQMAT
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9.5.3 Processing CRQMAT

The query CRQMAT is answered in three steps, as illustrated in Fig. 9.17. The index
structure GR2-tree includes a Grid R-tree and an attribute relation.

In Step 1, the spatio-temporal area restricted by oq and d is established. Based
on the grid partition one quickly determines the cells within the d-distance to the
query. This is achieved by computing the distance between the 2-D bounding box
of the query trajectory and the cell. The nodes that do not intersect the cells can
be safely pruned. Usually, a cell is not always within the d-distance to the query as
the location of the trajectory changes over time. Time-dependent cells are reported
and maintained by a composite structure including three components: cell tree, cell
set and cell list. The cell tree is a binary tree that records a time interval and the
cells intersecting the query trajectory. The structure reports all cells within the d-
distance to the query during a time interval. A cell may be valid at different time
intervals. The method maintains a cell set by removing duplicate results. The cell
list determines whether all trajectories in a leaf node are within the d-distance to the
query. If yes, the exact distance computation can be avoided as a leaf node stores
trajectories whose movements are restricted in a cell.

An example By referring to Fig. 9.18a, we enlarge the bounding box of o3 in both
x and y dimensions to find all cells within the d-distance to the query (depicted in
gray). Two dashed lines are depicted to help figure out the cells. The time interval
T (o3) intersects {T1, T2, T3}. The cells {c5,1, c5,2, c6,1, c6,2, c7,2} are within the
d-distance to the query at T1, but they should not be considered at T3. There are
three marked cells {c5,5, c6,3, c7,4} at T2 ∪ T3. Thus, the cell trajectory of o1 in c5,5
and the cell trajectory of o4 in c7,4 can be directly returned without performing the
accurate distance computation (the attribute condition is not considered here). The
structure of the time-dependent cells is reported in Fig. 9.18b. The cell set consists
of three parts C1, C2 and C3, partitioned by time intervals. The cell tree is built
on cells with corresponding time intervals. Since cells {c5,5, c6,3, c7,4} are marked
cells, they are put into the cell list with time intervals.

In Step 2, the procedure traverses the R-tree to return a set of candidates, each of
which contains Qa and has the distance to oq less than d. Given an R-tree node, the
algorithm determines the cells intersecting the node. The cells reported in step 1 are
used to prune the node if there is no overlap between the cells intersecting the node
and the cells within the d-distance to the query. When a leaf node is accessed, the
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Fig. 9.18 An example of establishing qualified cells. (a) Cells within d to oq . (b) Cell tree, cell
set and cell list

Fig. 9.19 Distance curve
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algorithm iteratively computes the exact distance between each trajectory and the
query. The distance is an approximate value calculated by using minimum bounding
boxes of trajectories. A candidate is marked if its maximum distance to oq is less
than d.

Step 3 iteratively checks the accurate distance. If the candidate is marked, it will
be directly put into the result set. Otherwise, the actual distance is computed. A
trajectory may be split because only the piece of movements fulfilling the distance
condition is reported. Two trajectories are mapped into pieces with the same time.
The task is to compute the intersections among a set of distance curves to determine
the curves whose values to oq are smaller than d, and return the parts corresponding
to these pieces. The time-dependent distance is represented by a square root of a
quadratic polynomial, as demonstrated in Fig. 9.19.
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Fig. 9.20 Procedure of CkNN_MAT

9.5.4 Processing CkNN_MAT

In the filter step, the structure BAR is accessed to determine the R-tree nodes
including query attribute values and intersecting the query time, denoted by Na .
Next, the procedure takes Na coupled with oq and k as input to traverse the R-Tree
in breadth-first order, during which the search space is pruned by taking into account
spatial and temporal parameters as well as attributes. The filter returns a set of
candidates, each of which fulfills the attribute condition and approximately belongs
to k nearest neighbors. In the refinement step, each candidate trajectory is unpacked
to get the original temporal units and perform the exact distance computation to
return k nearest neighbors at each query time. The query procedure is shown in
Fig. 9.20.

Collecting R-tree nodes The R-tree nodes containing Qa are collected level by
level. For each a ∈ Qa , the procedure starts from h = 1 and accesses BAR to find
the records. For each item (nid, b, t) in the record, one checks whether the item
identified by nid is already in Na . If not, the method inserts the item into Na by
attaching a counter, initialized by 1. Such a value represents the number of query
attribute values contained in the node. The extended record item is denoted by λ. If
the item already exists in Na , the counter is increased and the bitmap is updated by
performing the bitwise AND. This is because a node fulfilling the condition must
contain all values in Qa .

Lemma 1 Given an item λ ∈ Na , the item is pruned if λ.counter �= |Qa| or λ.b = 0.

Proof (i) λ.counter �= |Qa| : Obviously, it is impossible that λ.counter > |Qa|
as distinct values are counted. If λ.counter < |Qa|, this means that the number of
attributes contained by λ is less than |Qa| and therefore λ can be safely pruned. (ii)

λ.b = 0 : There is no entry in the node containing all a ∈ Qa and λ can be safely
pruned. ��
An extension: multiple values An extension is made to allow a query attribute
with multiple values. A node is satisfied if it contains one of the values. The
aforementioned λ ∈ Na is extended to (nid, b, t , aid) by adding the attribute id.
The bitwise OR is performed on bitmaps for values from the same attribute.

Lemma 2 Let AttCount(Qa) ( ≤ |Qa| ) return the number of query attributes. An
item λ ∈ Na is pruned if λ.counter �= AttCount(Qa) or λ.b = 0.



226 J. Xu

mo1: <u1, u2, u3>, (RED, BMW)

mo2: <u4, u5>, (GRAY, BENZ)

mo3: <u6, u7>, (SILVER, BMW)
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mo5 : <u11>, (SILVER, BMW)
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Fig. 9.21 3D R-Tree
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Fig. 9.22 Reporting nodes at H = 0

An example Using trajectories in Fig. 9.5, we report the 3D R-Tree and the
structure BAR for attributes SILVER and BMW in Fig. 9.21. Consider Qa =
(SILVER, BMW). At H = 1, we access records 1 and 3, and have b = 00000111
for BMW and b = 0000010 for SILVER. By performing the bitwise “AND”
operation, the 0th and 2nd entries are not defined and therefore N0 and N2 are
pruned. Figure 9.22 depicts the procedure of determining nodes for Qa = <SILVER,
BMW> at H = 0 (t is omitted).

Reporting candidates The approach traverses the R-tree from root to leaf level
and uses a list to maintain accessed nodes. For each visited node, the algorithm
determines whether (i) the node fulfills the attribute condition; and (ii) objects in the
subtree will contribute to the result. The query needs only k neighbors. If there are
k candidates at each defined time, objects that are further than current candidates
to oq can be safely pruned. To determine whether there are enough candidates, a
segment tree is maintained by storing the time interval, the distance and the number
of trajectories in a node. One can do the pre-computation for each attribute value and
use it for |Qa| = 1. However, such a value has to be calculated on-the-fly for |Qa| >

1, which is a costly procedure. The sub-tree will be traversed to count the number
of trajectories containing query attributes as one needs to determine the intersection
set of different query attributes.

The refinement This step includes two phases: (i) unpack each candidate to obtain
temporal units; (ii) apply the slightly modified plane-sweep algorithm (Bentley and
Ottmann 1979) to determine the k lowest time-dependent distance curves to report
the result. Phase (ii) takes in a sequence of candidate trajectories ordered on time.
The time-dependent distances to the query trajectory are computed to find k nearest
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objects at each time point. To achieve this, one determines pieces of movements
with overlapping time and applies the distance function by employing the linear
interpolation on each piece (Forlizzi et al. 2000; Frentzos et al. 2005). The method
manipulates temporal units to calculate the distance. Split points between curves are
found to determine the k lowest pieces of curves.

9.6 The System Development

9.6.1 The Architecture

A prototype database system is developed to efficiently manage multi-attribute
trajectories including data representation, index structures, query algorithms and
optimizations (Wang and Xu 2017; Xu and Güting 2017; Wei and Xu 2018). Since
standard trajectories have been supported in a database system SECONDO (Güting
et al. 2010a), the task is to develop modules for multi-attribute trajectories and
seamlessly integrate them into the system. Key system components are shown in
Fig. 9.23.

The query interface animates standard trajectories and displays multiple
attributes. Not only objects whose locations changing over time are visualized,
but also their time-dependent attribute values are displayed. Queries on multi-
attribute trajectories include several predicates, leading to different query plans.
The optimization selects the best plan according to the analytical model. Then,
the corresponding algorithm is executed and the index structure is accessed. The
index component is in principle made up of a 3-D R-tree and a composite structure
BAR. The 3-D R-tree preserves the spatio-temporal proximity, and BAR manages
attribute values. The data storage component includes several modules such as
spatial and temporal data, standard trajectories, relational tables, and attributes.

Fig. 9.23 The system
architecture
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Fig. 9.24 GPS-clean
workflow
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9.6.2 A Tool for GPS Data Clean

Real-life data is far from being reliable enough for applications predominantly due
to a large number of errors such as inaccurate measurement, noisy, distortion and
outliers, mainly caused by the limitations of devices or signal loss. A data cleaning
tool will serve as the pre-processing module to bring data from a messy to a neat
state. The primary task is the minimization or the total removal, if possible, of GPS
errors, and the repairing of trajectories after removing some sample points. The tool
can be treated as an objective function Clean: RawData → HighQualityData and
must be an integral part of a moving objects database.

The procedure consists of two steps: error detection and data repairing, as
illustrated in Fig. 9.24. Error detection identifies incorrect data values, which can be
classified into two categories: point error and trajectory error. The first is identified
by checking the data item in each individual record such as time-stamp and long/lat,
and the second is established by evaluating a sequence of records of the same object
such as distortion and long time still. Data repairing involves updating the available
data to remove any detected errors, and derives and fills in missing data from the
existing data.

Refining a good clean function requires a rich set of detection rules, filtering oper-
ations, statistical analysis and missing value imputation methods. Prediction models
can be built by learning features from historical data with different characters. To
evaluate the data quality, we define data metrics to measure the quality and employ
machine learning techniques to classify the raw mobility data.

9.6.3 The Generation of Multi-attribute Values and Query
Interface

There is a number of public trajectory data but attribute values are not easy to collect.
A tool is developed to generate attributes. One can flexibly scale the number of
attributes and the domain of each attribute. For each attribute, the value is randomly
and uniformly selected from its domain. By making use of real trajectories from a
company DataTang (2018) (http://factory.datatang.com/en/) and synthetic attribute
values, the chapter demonstrates queries RQMAT, CRQMAT, CkNN_MAT, as
illustrated in Fig. 9.25. Queries are “Find all SILVER VWs intersecting the query
window”, “Keep reporting all BENZs within 5km to the target” and “Continuously
report the nearest RED BMW (or SILVER VM, BLACK BENZ) to the query

http://factory.datatang.com/en/
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(a) (b) (c)

Fig. 9.25 Query and visualize multi-attribute trajectories. (a) RQMAT. (b) CRQMAT. (c)
CkNN_MAT

(a) (b)

Fig. 9.26 The 3-D query interface. (a) Dynamic attributes. (b) Visualizing 3-D R-tree

trajectory”. Objects in the figure are results at a time point and the interface provides
the animation. Users can also define multiple values for each attribute. The query
interface provides zoom in/out to let users get a closer/further view.

By making use of cab mobility traces from Piorkowski et al. (2009), the system
demonstrates querying time-dependent attributes. Each taxi is associated with a flag
marking whether the taxi is free or occupied. To make a good judgment about
the shape of the R-tree, a tool graphically viewing the structure is needed. The
developed query interface supports displaying dynamic attributes and visualizing
the R-tree in a 3-D view, as illustrated in Fig. 9.26.

9.6.4 MDBF: A Tool for Monitoring Database Files

File monitoring plays an essential role in operating system that constantly watches
folders and files. Actions are triggered when files are created or accessed (read-
/write). A tool called MDBF (Monitoring Database Files) is developed to monitor
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Fig. 9.27 The framework of
MDBF

database files during the query execution (Wei and Xu 2018). The tool consists of
three components: file detector, storage and analysis system, and graphical interface,
as illustrated in Fig. 9.27. The file detector, serving as the key component, makes use
of a tool Strace, which is a diagnostic, debugging and instructional userspace utility.
Strace monitors and tampers with interactions between processes and Linux kernel,
including system calling, signal delivering, process state changing, and read and
write blocks of data.

When a query is executed, the tool detects database file operations and produces
a monitoring log. The log data is automatically reported to the filter and formatted
in a relational table in the system. The filtering is performed by extracting the data
related to database file operations and storing action statistics. Strace captures all
system calls in the query evaluation, but file operations are the main tasks. The data
flow received from Strace is transformed to a certain format transferred between
system modules. The information of accessing files is displayed when the querying
is running and also recorded as historical data. A thorough analysis is performed
on log data. MDBF monitors queries incurring database file operations. A graphical
interface visualizes the access content to help understanding the query progress.
Users can compare the access information of different files.

9.7 Performance Evaluation

The proposal is implemented in C/C++ and the evaluation is performed in an
extensible database system SECONDO (Güting et al. 2010a). The system is a
freely open source software and has an extensible architecture well-supported for
spatial and spatio-temporal data management. A standard PC (Intel(R) Core(TM)
i7-4770CPU, 3.4GHz, 4GB memory, 2TB hard disk) running Suse Linux 13.1 (32
bits, kernel version 3.11.6) is used.
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Name #Trips #GPS Records
BTaxi 992,997 55,950,357

(a)

X(Y ) 30% · ΔX (ΔY )
T 40% · ΔT

|Qa| {1, 2, 3, 4, 5}
(b)

Fig. 9.28 Datasets and parameters. (a) Standard trajectories. (b) Query parameters

9.7.1 Evaluation of RQMAT

We use real taxi trajectories in Beijing from DataTang (2018) (http://factory.
datatang.com/en/). The statistics of standard trajectories and query parameters are
reported in Fig. 9.28. Qbox is randomly generated with sizes X = 30% · �X and Y

= 30% · �Y , in which �X and �Y are lengths of x and y dimensions, respectively.
The time interval is 40% of the overall time. One can arbitrarily enlarge or shrink
the spatio-temporal window. We did some preliminary tests and found that smaller
windows may not receive any result. We focus on evaluating the performance
affected by attributes and hence keep the same size for Qbox .

In the evaluation, CPU time and I/O accesses are used as performance metrics
and the results are averaged over 20 runs. Five alternative methods are included: (i)
3D R-tree, (ii) 3D R-tree + Attribute Set (RAttSet for short). The idea is similar
to IR-tree (Cong et al. 2009) employed in spatial keyword querying that augments
each R-tree node with a summary of keywords in the subtree, (iii) 4D R-tree, for
each multi-attribute trajectory, we distribute (a1, . . . , a|A|) into |A| trajectories, each
of which defines the 4-D data: location, time and a single-attribute value. (iv) IOC-
Tree (Han et al. 2015), the structure consists of an inverted index and a set of
three-dimensional quadtrees, each of which corresponds to an attribute and stores
relevant trajectory points and (v) HAGI (Su et al. 2007), the method employs a
hierarchical aggregate grid index. The evaluation demonstrates the impact of |Qa|
on the performance. Figure 9.29 shows that our method is an order of magnitude
faster than other methods in most settings.

9.7.2 Evaluation of CRQMAT

We use real GPS records of Beijing taxis (DataTang (2018) http://factory.datatang.
com/en/). The dataset statistics and the settings of query parameters (|Qa| and d)
are reported in Table 9.5. We perform the evaluation by comparing our method
named GR2-tree (Grid R-tree with an attribute Relation) with five baseline methods
in terms of scalability and efficiency: (i) 3-D R-tree; (ii) RIB, we adapt the method
in Wu et al. (2012). Multi-attribute trajectories are grouped on attribute values by
applying Z-order to map the |A|-dimensional value to one-dimensional. Each R-tree
node contains a pointer to an inverted bitmap that records the positions of entries

http://factory.datatang.com/en/
http://factory.datatang.com/en/
http://factory.datatang.com/en/
http://factory.datatang.com/en/
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(a) (b)

Fig. 9.29 Effect of |Qa | (|A| = 10). (a) CPU Time (sec). (b) I/O Accesses(× 103)

Table 9.5 Datasets and parameter settings

Name #GPS Records |O| |A| dom(A) X and Y ranges

BTaxi 235634511 4220435 10 [1, 151] [21, 119958], [0, 119653]

Query settings

|Qa |: {1, 2, 3, 4, 5} d (km): {1, 5, 10, 20, 50}

Table 9.6 Datasets for
scaling |O| Name |O|

BT1 533635

BT2 1009579

BT3 1424273

BT4 2757312

BT5 4220435

defining the attribute value. A relation stores the bitmaps by setting the fanout as the
bit length; (iii) 4-D R-tree; (iv) IOC-Tree (Han et al. 2015); (v) HAGI (Su et al.
2007).

Scalability. To vary the data size, different subsets of BTAXI are selected, as
summarized in Table 9.6. The performance result is reported in Fig. 9.30. When
the data size grows, the costs of all methods rise proportionally, but our method
outperforms baseline methods by a factor of 5-50x on the largest dataset.

Varying |Qa|. We perform the evaluation by varying the number of query
attributes. The results, as reported in Fig. 9.31, demonstrate that our method
substantially outperforms baseline methods in all settings. When |Qa| increases,
the performance becomes better as the attribute predicate is more selective.

Varying the distance d. We evaluate the performance affected by d, as reported
in Fig. 9.32. When d increases the performance degrades as expected due to more
objects being processed. The advantage of our method is significant. When d

increases, more cells will be included in the search space.
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Table 9.7 Datasets statistics and parameters

|O| Temporal units #

Name (million) (million) |A| dom(A)

TAXI 3.0 32.5 1 [1, 4]

BUS 1.1 8.3 1 [1, 384]

MAT5 1.8 110.88 10 [1, 127]

|Qa | {1, 2, 3, 4, 5}

k {1, 5, 10, 20, 50, 100}

9.7.3 Evaluation of CkNN_MAT

Both real and synthetic datasets are used, shown in Table 9.7. Real datasets are
from a company called Datatang (2018) (http://factory.datatang.com/en/): Shanghai
taxis (TAXI) and Beijing buses (BUS). TAXI includes GPS records from four taxi
companies in 2014. The company id is defined as an attribute. BUS contains bus
card records in 2014. Each record stores the time and bus stops where passengers
gets on and off the bus. Each bus is identified by its id and bus stops are identified
by the order in the route and long/lat. We build bus trips from these records. This
is done by grouping records on bus id and then sorting them on time. There are 384
bus routes in total and the route id is set as an attribute. Part of the data can be found
at http://dbgroup.nuaa.edu.cn/jianqiu/. Synthetic datasets are generated by utilizing
a tool MWGen (Xu and Güting 2012). For each query, oq is randomly selected over
the dataset. The settings for Qa and k are listed, in which default values are in bold.
Each a ∈ Qa is a stochastic value from the domain.

We develop three baseline methods for performance comparison. (i) 4D R-tree.
(ii) 3D R-tree + Attribute Relation (3D RAR). The method in Güting et al. (2010b)
is extended to support proposed queries by recording the set of attributes contained
by each node. During the query procedure, we first determine whether the accessed
node contains Qa . If yes, we open the node and move forward to spatial and
temporal examinations. Otherwise, we prune the node. However, the R-tree does
not know the number of trajectories containing Qa for each node because queries
issue different attributes. Consequently, the criterion of pruning trajectories based on
distance and the number of trajectories can not be used. (iii) 3D R-tree + Inverted
Bitmap (RIB) (Wu et al. 2012). Our method is named BAR.

Scaling the number of attributes and the domain. We evaluate the scalability
affected by attributes: |A| and dom(A). Figure 9.33 reports the settings. Figure 9.34
reports the result on scaling |A|. Our method achieves the best performance in
all settings and RIB performs competitively to our method when |A| = 3. RIB
manages attributes and the attribute predicate has a good selectivity when |Qa|
= |A|. However, when |A| increases, dom(A) rises proportionally, and the RIB
performance degrades significantly. We analyze that Z-order values cannot well
preserve the locality when the dimension becomes large, and the linear scanning
method of determining entries is inferior to our bitmap querying approach. When

http://factory.datatang.com/en/
http://dbgroup.nuaa.edu.cn/jianqiu/
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Fig. 9.33 Datasets for
Scalability. (a) |A|. (b)
dom(A)
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Fig. 9.34 Scaling |A|. (a) CPU Time (s). (b) I/O Accesses(× 103)
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Fig. 9.35 Scaling dom(A), |A| = 10. (a) CPU Time (s). (b) I/O Accesses(× 103)

scaling dom(A), our method also outperforms baseline methods. One can see the
trend that the performance increases when dom(A) becomes large as the attribute
predicate is more selective. The 4D R-tree has poor performance because the dataset
is enlarged when dom(A) increases (Fig. 9.35).

Effect by k. We evaluate the performance effected by k and report the results
in Figs. 9.36 and 9.37. TAXI and BUS contain only one attribute and therefore we
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set |Qa| = 1 for them. All methods are not sensitive to k. Our method significantly
outperforms alternative methods for TAXI. For BUS, the RIB performance is close
to ours due to good attribute selectivity. BUS has |A| = 1 and dom(A) is [1, 384]. In
contrast, we have |A| = 1, dom(A) = [1, 4] for TAXI.

The analysis. Consider the 4D R-tree. To build the index, each multi-attribute
trajectory is decomposed into |A| trajectories, each of which contains a single
attribute. This enlarges the dataset by |A| times. Also, the attribute is approximately
evaluated when traversing the index. The method 3D RAR is able to select R-tree
nodes containing individual attributes, but cannot determine whether data objects
contain all query attributes if |Qa| > 1. RIB achieves good performance when the
attribute predicate is quite selective, for example, (i) |Qa| = |A|, or (ii) dom(A) is
large and |Qa| = 1. Thus, this method is limited in scope. Our method achieves the
stable performance and generalizes to queries on standard trajectories, achieved by
skipping the step of accessing BAR.
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9.8 Future Directions

9.8.1 Data Analytics

By making use of multi-attribute trajectories, one is able to provide a fine-grained
analysis on the traffic condition by discovering dense areas such as taxi pick-ups
and drop-offs and crowded bus/metro stations. An optimal deployment can be made
by recommending the ride-sharing and redesigning the scheduling/route. Based on
the number of passengers on the bus/metro at populated places, the system can
recommend people to advance or postpone their trips in a small derivation in order
to avoid the peak time and reduce the waiting time.

Mining and analyzing multi-attribute trajectories is also an interesting topic. One
can utilize the rich contexts from attributes to fully understand spatio-temporal
trajectories and discover potential relationships and behavior. For example, in order
to know whether large vehicles such as buses and trucks have a great negative
impact on traffic flow, the system should consider not only the number of vehicles
in crowded places but also the percentage of large vehicles. Based on that, policies
can be made to improve the traffic. In some applications, attribute values change
over time, e.g., taxi status (free or occupied), fuel consumption and the number
of passengers in a bus. The data representation needs to be extended to support
dynamic attributes. One solution is to define a moving integer/real to represent
the time-dependent value. The question is how to efficiently manage several
dynamic attributes in the framework and adjust the index structure correspondingly.
Application queries and analysis can be performed by considering spatio-temporal
parameters and dynamic attribute values to find some interesting behavior.

9.8.2 Intelligent Trajectory Data Management

The artificial intelligence community has accomplished many promising results,
while the specialization to moving objects will offer new opportunities because
solutions are fitted to particular properties of mobile data. Due to the increasing
number of models and structures, a number of parameters are required to control the
system. An automatic approach of recommending system settings is preferred that
leverages past experiences of workloads. Machine learning models can be trained
by transferring previous experiences to apply for a new application.

The query interface should be powerful enough to support arbitrary queries and
simple enough to let users express their questions in natural language. User queries
are expressed by natural language but will be translated into an executable language
in the system. However, employing natural language to query the database is a
non-trivial task. Most database systems are queried by structured query language
which is often difficult to write for non-experts. Moving objects databases should
be capable of providing a communication model that translates natural language
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questions into well-formed queries such that the user and the system can understand
each other. There are hundreds of published papers about querying moving objects
in which example queries are expressed in natural languages, but an interface
translating natural languages into an SQL or SQL-like language is not available.

9.9 Conclusions

This chapter introduces multi-attribute trajectories that enrich the spatio-temporal
trajectory representation. A range of new queries is studied that search for the target
fulfilling both spatio-temporal and attribute conditions. A hybrid index structure
is designed and updating the index is supported. Efficient query algorithms are
developed with optimization strageties. A systematic design is made such that the
proposed structure is also able to process standard trajectories with little effort.
We develope a prototype database system for multi-attribute trajectories including
data storage, access methods, index structures, data generators, monitoring tools
and the query interface. The performance evaluation is conducted by using real and
synthetic datasets.
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