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for Disaster Damage Mapping
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4.1 Monitoring Disasters from Space

Earth observation has been receiving considerable attention in disaster management
in recent years. As such, the imaging capability of national or international earth
observation missions has been improving steadily. Also, driven by technology
innovation in New Space, the number of satellites has been increasing dramatically.
Satellite constellations enable high-frequency data acquisition, which is often
required in disaster monitoring and rapid response.

In the last two decades, enormous efforts have been made in international
cooperative projects and services for sharing and analyzing satellite imagery in
emergency response. Some representative ones are listed below.

• International Charter ‘Space and Major Disasters’:1 The International Charter
‘Space and Major Disasters’ is an international collaboration among space
agencies and companies (e.g., Maxar and Planet Labs) to support disaster
response activities by providing information and products derived from satellite
data. The charter was initiated by the European Space Agency (ESA) and the
French space agency (CNES), came into operation in 2000, and activated 601
times for 125 countries supported by 17 charter members with 34 satellites as of
April 1, 2019.

1https://disasterscharter.org

B. Adriano · N. Yokoya (�) · J. Xia · G. Baier
RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
e-mail: bruno.adriano@riken.jp; naoto.yokoya@riken.jp; junshi.xia@riken.jp;
gerald.baier@riken.jp

© Springer Nature Switzerland AG 2021
M. Werner, Y.-Y. Chiang (eds.), Handbook of Big Geospatial Data,
https://doi.org/10.1007/978-3-030-55462-0_4

99

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-55462-0_4&domain=pdf
https://disasterscharter.org
mailto:bruno.adriano@riken.jp
mailto:naoto.yokoya@riken.jp
mailto:junshi.xia@riken.jp
mailto:gerald.baier@riken.jp
https://doi.org/10.1007/978-3-030-55462-0_4


100 B. Adriano et al.

• UNOSAT:2 UNOSAT is a technology-intensive programme of the United
Nations Institute for Training and Research (UNITAR) to provide satellite
imagery analysis and solutions to the UN system and its partners for decision
making in critical areas, including humanitarian response to natural disasters.
UNOSAT was established in 2001 and the Humanitarian Rapid Mapping service
of UNOSAT was launched in 2003 and contributed to 28 humanitarian response
to natural disasters in 22 countries in 2018.

• Sentinel Asia:3 The Sentinel Asia initiative is a voluntary basis international
collaboration among space agencies, disaster management agencies, and inter-
national agencies to support disaster management activities in the Asia-Pacific
region by applying remote sensing and Web-GIS technologies. Sentinel Asia
was initiated by the Asia-Pacific Regional Space Agency Forum (APRSAF) in
2005 and its members consist of 93 organizations from 28 countries/regions and
16 international organizations. In 2018, there were 25 emergency observation
requests and disaster response activities are supported by 8 data provider nodes
and 48 data analysis nodes.

• Copernicus Emergency Management Service (Copernicus EMS):4 Copernicus
EMS provides geospatial information for emergency response to disasters as
well as prevention, preparedness, and recovery activities by analyzing satellite
imagery. Copernicus EMS is coordinated by the European Commission as one
of the key services of the European Union’s Earth Observation programme
Copernicus. The two Mapping services of Copernicus EMS (i.e., Rapid Mapping,
Risk and Recovery Mapping) started operation since April 2012 and 349
mapping activations have been conducted as of April 3, 2019.

Owing to the development of hardware, big earth observation data is now
available from various types of satellites and imaging sensors. Large volume and
a wide variety of earth observation data promote new applications but also raise
challenges in understanding satellite imagery for disaster response. In this book
chapter, we summarize recent advances and challenges in the processing of big earth
observation data for disaster management.

4.2 Earth Observation Satellites

Over the last decades, the number of earth observation satellites has steadily
increased, providing an unprecedented amount of available data. This includes optial
(multi- and hyperspectral) images (e.g., Fig. 4.1b) and also synthetic aperture radar
(SAR) images (e.g., Fig. 4.1e, f). Regarding disaster response, the sheer number

2https://unitar.org/unosat/
3https://sentinel.tksc.jaxa.jp
4https://emergency.copernicus.eu/mapping/

https://unitar.org/unosat/
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Fig. 4.1 (a) Illustration of optical remote sensing. (b) Sentinel-2 imagery. (c) NDVI derived from
Sentinel-2 data. (d) Illustration of SAR remote sensing. (e) ALOS-2 (L-band) imagery. (f) Sentinel-
1 (C-band) imagery

of satellites ensures quick post-event acquisitions and often, due to the regular
acquisition patterns of many satellite missions, the availability of a recent pre-event
image. In the following paragraphs, we provide a summary of current and future
earth observation satellite missions and how they benefit mapping damages and the
extent of disasters.

4.2.1 Optical Satellite Missions

Table 4.1 shows the list of optical satellite missions. An explosive amount of
data has become available in the last decade. For instance, only Sentinel-2 satel-
lites acquire over one petabyte per year. Data policies are different depending
on resolution: datasets from moderate-resolution satellites (e.g., Landsat-8 and
Sentinel-2) are freely available and those from very high-resolution satellites (e.g.,
Pleiades and WorldView-3) are commercial. For emergency responses, even some
commercial satellite images are openly distributed through special data programs
(e.g., Open Data Program5 for WorldView images and Disaster Data Program6 for
PlanetScope).

Optical remote sensing records the solar radiation reflected from the surface
in visible, near-infrared, and short-wave infrared ranges as illustrated in Fig. 4.1a.

5https://www.digitalglobe.com/ecosystem/open-data
6https://www.planet.com/disasterdata/

https://www.digitalglobe.com/ecosystem/open-data
https://www.planet.com/disasterdata/
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Table 4.1 Current optical satellite missions

Satellite mission Best GSD Swath width # of Bands Revisit cycle Launch date

Landsat 8 15 m 185 km 11 16 days 2013

Sentinel-2 A/B 10 m 290 km 13 5 days 2015

SPOT 7 1.5 m 60 km 5 26 days 2014

WorldView-3 0.31 m 13.1 km 29 daily 2014

Pleiades 0.5 m 20 km 5 daily 2011

PlanetScope 3 m 16.4 km 4 daily 2016

Gaofen-2 0.8 m 45 km 5 5 days 2014

Reflected spectral signatures allow us to discriminate different types of land
covers. Owing to its similar characteristics to human vision, optical imagery is
straightforward to analyze for damage recognition. A pair of pre- and post-disaster
optical images are commonly used to detect pixel-wise or object-wise changes
and identify damage levels of affected areas. In particular, if there is any clear
change in the normalized difference vegetation index (NDVI) (e.g., Fig. 4.1c) or
the normalized difference water index (NDWI) due to landslides or floods, affected
areas can be detected easily and accurately.

Optical satellite imaging systems have evolved in terms of spatial, temporal, and
spectral resolutions. Spatial and temporal resolutions are critical for disaster damage
mapping. Improvement of temporal resolution has been achieved by forming
satellite constellations. For instance, the revisit cycle of Sentinel-2 is five days and
it was accomplished by a constellation of twin satellites (i.e., Sentinel-2 A and B).
An extreme example is PlanetScope: the daily acquisition is possible for the entire
globe with a constellation of 135+ small satellites (i.e., Droves). The evolution
in temporal resolution allows disaster damage mapping within a day under good
weather conditions.

Spatial resolution is another key factor to ensure accuracy of disaster damage
mapping. Medium-resolution satellites such as Landsat-8 and Sentinel-2 are suffi-
cient for mapping large-scale changes of the surface due to floods, landslides, wild-
fires, and volcanos. High-resolution satellites data are necessary particularly when
analyzing damages in urban areas. Visual interpretation in emergency response
relies on sub-meter satellite imagery such as Pleiades and WorldView to identify
building damages.

The major drawback of optical satellites is that they cannot acquire images when
affected areas are covered by clouds. Because of this limitation, in many real cases,
datasets from different sensors are only available before and after disasters in a few
days after disasters. Integration and fusion of multisensor data sources are crucial to
deliver map products of disaster damages.
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Table 4.2 Current and future SAR missions. Resolutions and swath widths depend on the
acquisition mode. The table lists the maximum resolution and the corresponding swath width

Satellite mission Max. resolution Swath width Band Launch date

TerraSAR-X/TanDEM-X 1 × 0.25 m 5 km X 2007/2010

COSMO-SkyMed 1 × 1 m 10 km X 2007/2008/2010

RADARSAT-2 3 × 1 m 18 km C 2007

KOMPSAT-5 1 m 5 km X 2013

ALOS-2 3 × 1 m 25 km L 2014

Sentinel-1 A/B 5 × 5 m 80 km C 2014/2016

Gaofen-3 1 × 1 m 10 km C 2016

NovaSAR-S 6 m 20 km S 2018

PAZ 1 × 0.25 m 5 km X 2018

SAOCOM 1A 10 m 40 km L 2018

ICEYE X2 1 × 1 m 10 km X 2018

COSMO-SkyMed 2nd Gen. 0.5 × 0.5 m 7 km X 2019

RADARSAT Constellation 3 × 1 m 20 km C 2019

ALOS-4 3 × 1 m 35 km L 2020

Capella 0.5 × 0.5 m 10 km X 2020

Synspective 1 × 1 m 10 km X 2020

NISAR 6 × 8 m 240 km L 2021

4.2.2 SAR Satellite Missions

Unlike optical imagery, SAR sensors have the advantage that they are undisturbed
by clouds, making them invaluable for responding to disasters due to their reliable
image acquisition schedule. Table 4.2 lists current and future SAR missions,
together with their highest resolution modes, the corresponding swath widths, their
frequency bands and launch dates. All of these satellites also have lower resolution
acquisition modes with increased spatial coverage. As can be seen from Table 4.2,
even moderately large areas can easily result in multiple G B of data if several
sensors are used and acquisitions before and after an event are collected.

As a quite recent development, several startup companies (ICEYE, Capella and
Synspective) announced plans to create constellations of dozens of comparatively
small and cheap satellites, that enable frequent and short notice acquisitions. Such
constellations would produce a wealth of data, compounding the need, both for big
data systems and algorithms.

The following publications provide more verbose information for the respective
SAR satellites and list additional references. Morena et al. (2004) for RADARSAT-
2, Lee (2010) for KOMPSAT-5 and Werninghaus and Buckreuss (2010) for
TerraSAR-X, TanDEM-X and the essentially identical PAZ satellite (Suri et al.
2015). Torres et al. (2012) describes ESA’s Sentinel-1 satellites, Bird et al. (2013)
NovaSAR-S, Caltagirone et al. (2014) COSMO-SkyMed, Rosenqvist et al. (2014)
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SAOCOM, and Sun et al. (2017) Gaofen-3. Future SAR missions are covered in
Rosen et al. (2017) for NISAR, Motohka et al. (2017) for ALOS-4, and finally
De Lisle et al. (2018) introduces the RADARSAT constellation mission. Technical
details and developments regarding small SAR satellite constellations are given
in Farquharson et al. (2018) and Obata et al. (2019).

Many satellites have acquisition modes where the resolution suffices to detect
changes and damages for individual buildings. In any case, large scale destructions,
caused by earthquakes (Karimzadeh et al. 2018), wildfires (Tanase et al. 2010;
Verhegghen et al. 2016) landslides or flooding (Martinis et al. 2018) can be observed
by all sensors. We cover these in greater detail in Sects. 4.4.1, 4.4.2 and 4.4.3. Here
we introduce the reader to SAR image formation and how these characteristics
are applicable for disaster damage mapping. For a more thorough introduction we
advice the interested reader to consult (Moreira et al. 2013).

SAR sensors emit electromagnetic waves and measure the reflected energy (see
Fig. 4.1d), called backscatter, which depends on the geometric and geophysical
properties of the target. This renders the SAR sensors sensitive to different kinds
of land cover but also physical parameters, such as soil moisture. In addition,
depending on the SAR’s operating frequency, parts of the electromagnetic wave
also penetrate the surface and image layers below the uppermost land cover.

Just like visible light, microwaves are polarized, and the polarimetric compo-
sition of reflected waves depends on the imaged targets’ geometric and physical
properties. These polarimetric signatures permit further analysis and classification
of the imaged area.

Inside one SAR resolution cell, i.e. pixel, numerous elemental scatterers reflected
the impinging electromagnetic wave. The superposition of all these reflections make
up the received signal at the SAR sensors. Between two SAR acquisitions changes of
the elemental scatterers can be estimated, providing a direct measure of differences,
the so-called coherence.

All of these properties: backscatter, polarimetric composition, and coherence are
useful when analysing disaster-struck areas.

Some newer SAR satellite systems, namely PAZ, NovaSAR-S and the
RADARSAT constellation, are additionally equipped with automatic identification
system (AIS) receivers, enabling them to track shipping traffic. In most countries
AIS transceivers are mandatory for vessels above a certain size. AIS is an additional
data source that could be exploited for responding to disasters affecting ships.

4.3 Land Cover Mapping

Map information is necessary in all phases of disaster management. Mapping of
buildings and roads is essential for rescue, relief, and recovery activities. The map
information is generally well maintained in the developed countries; however, it is
not the case for developing countries, particularly where uncontrolled urbanization
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is happening, and thus there is high demand for the automatic update of map
information from satellite imagery at a large (e.g., country) scale.

Mapping of buildings, roads, and land cover types is one of the key applications
using satellite imagery. Global land cover maps at a high resolution have been
derived from satellite data in the last decade. Global Urban Footprint (GUF) was
created with a ground sampling distance of 12 m by the German Aerospace Center
by processing 180,000 TerraSAR-X and TanDEM-X scenes (Esch et al. 2013).
The GUF data was released in 2012, freely available at a full resolution for any
scientific use and also open to any nonprofit applications at a degraded resolution
of 84 m. GlobeLand30 is the first open-access and high-resolution land cover map
comprising 10 land cover classes for the years from 2000 to 2010 by analyzing more
than 20,000 Landsat and Chinese HJ-1 satellite images (Jun Chen et al. 2015). In
2014, China donated the GlobeLand30 data to the United Nations to contribute to
global sustainable development and climate change mitigation.

Recently, building and road mapping technologies that apply machine and deep
learning to high-resolution satellite imagery have been dramatically improved. For
instance, Ecopia U.S. Building Footprints powered by DigitalGlobe (currently a
part of Maxar) has been released in 2018 as the first precise, GIS-ready building
footprints dataset covering the entire United States produced by semi-automated
processing based on machine learning. The 2D vector polygon dataset will be
updated every six months using latest DigitalGlobe big satellite image data to ensure
up-to-date building footprint information. Going beyond 2D is the next standard in
the field of urban mapping. 3D reconstruction and 3D semantic reconstruction using
large-scale satellite imagery have been receiving particular attention in recent years.

Benchmark datasets and data science competitions have been playing key roles
in advancing 2D/3D mapping technologies. Representative benchmark datasets are
listed below.

• SpaceNet:7 SpaceNet is a repository of freely available high-resolution satellite
imagery and labeled training data for computer vision and machine learning
research. SpaceNet was initiated by CosmiQ Works, DigitalGlobe, and NVIDIA
in 2016. SpaceNet building and road extraction competitions were organized with
over 685,000 building footprints and 8000 km of roads from large cities in the
world (i.e., Rio de Janeiro, Las Vegas, Paris, Shanghai, Khartoum).

• DeepGlobe:8 DeepGlobe is a challenge-based workshop initiated by Facebook
and DigitalGlobe as conjunction with CVPR 2018 to promote research on
machine learning and computer vision techniques applied to satellite imagery and
bridge people from the respective fields with different perspectives. DeepGlobe
was composed of three challenges: road extraction, building detection, and land
cover classification. The building detection challenge used the SpaceNet data;
the road extraction and land cover classification challenges used images sampled

7https://spacenetchallenge.github.io/
8http://deepglobe.org/

https://spacenetchallenge.github.io/
http://deepglobe.org/
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from the DigitalGlobe Basemap +Vivid dataset. The road extraction challenge
dataset comprises images of rural and urban areas in Thailand, Indonesia,
and India, whereas the land cover classification challenge focuses on rural
areas (Demir et al. 2018).

• BigEarthNet:9 The BigEarthNet archive was constructed by the Technical
University of Berlin and released in 2019. The archive is a large scale dataset
composed of 590,326 Sentinel-2 image patches with land cover labels. BigEarth-
Net was created from 125 Sentinel-2 tiles covering 10 countries of Europe and
the corresponding labels were provided from CORINE Land Cover database.
BigEarthNet advances research for the analysis of big earth observation data
archives.

• 2019 IEEE GRSS Data Fusion Contest:10 2019 IEEE GRSS Data Fusion
Contest, organized by the Image Analysis and Data Fusion Technical Committee
(IADF TC) of the IEEE Geoscience and Remote Sensing Society (GRSS) and
the Johns Hopkins University (JHU), promoted research in semantic 3D recon-
struction and stereo using machine learning and satellite images. The contest was
composed of four challenges: three of them are simultaneous estimation of land
cover semantics and height information from single-view, pairwise, and multi-
view satellite images, respectively; the last one is 3D point cloud classification.
The contest used high-resolution satellite imagery and airborne LiDAR data over
Jacksonville and Omaha, US (Le Saux et al. 2019).

One major challenge in land cover mapping is the generalization ability. Most
of training data was prepared for a limited number of countries and cities. Trained
models for such data do not always work globally due to different characteristics
of structures. The technical focus has been on how to ensure the generalization
ability between different cities (Yokoya et al. 2018). To exploit the capability of
machine learning and maximize the mapping accuracy, the simplest approach is to
increase training data. Many mapping projects have been progressing in developing
countries through annotation efforts by local people (e.g., Open Cities Africa11).
Collaborative mapping based on crowdsourced data represented by OpenStreetMap
plays a major role in creating training data. The synergy of openly available big
earth observation data, crowdsourcing-based annotations, and machine learning
technologies will accelerate the land cover mapping capability for the entire globe.

9http://bigearth.net/
10http://www.grss-ieee.org/community/technical-committees/data-fusion/2019-ieee-grss-data-
fusion-contest/
11https://opencitiesproject.org/

http://bigearth.net/
http://www.grss-ieee.org/community/technical-committees/data-fusion/2019-ieee-grss-data-fusion-contest/
http://www.grss-ieee.org/community/technical-committees/data-fusion/2019-ieee-grss-data-fusion-contest/
https://opencitiesproject.org/
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4.4 Disaster Mapping

4.4.1 Flood Mapping

Besides the above-mentioned international cooperative projects and services for
the disaster response in the introduction part, flood mapping systems are also
availability.

• Global flood detection system.12 The objective of this system is to detect and
map major river floods using daily passive microwave remote sensing sensors
(AMSR2 and GPM).

• NASA Global flood detection system.13 This system adapts real-time TRMM
Multi-satellite Precipitation Analysis (TMPA) and Global Precipitation Measure-
ment (GPM) Integrated Multi-Satellite Retrievals.

• Tiger-Net.14 ESA supports the African with earth observation for monitoring
water resource (including flood mapping) through the satellites of ESA.

• Dartmouth flood observatory.15 It was founded in 1993 at Dartmouth College,
Hanover, NH USA and moved to the University of Colorado, INSTAAR in 2010.
They have used all the available satellite datasets (optical and SAR) to estimate
the flood inundation map using change detection methods.

• DLR flood service.16 Sentinel-1 and TerraSAR-X SAR datasets are used to
extract the flooding maps using a fully automatic chains (i.e., pre-processing,
auxiliary datasets collection, initialized classification and post-processing) via a
web-client.

For flood mapping, SAR images are the better choice compared to the optical and
UAV images, as clouds are penetrated by electromagnetic waves and do not corrupt
the resulting image. Usually, due to the lower reflectance in optical and lower
backscattering in SAR datasets, water bodies are easily detected. Two traditional
but efficient methods are usually utilized (seen in Fig. 4.2). The first one is to apply
the change detection methods between pre- and post-flood images and then use the
filters (e.g., morphological closing and opening) to remove the noise. This kind of
techniques is suitable to detect the flood area using single source datasets, such as
Landsat series (Chignell et al. 2015), ENVISAT ASAR (Schlaffer et al. 2015), and
Sentinel SAR (Li et al. 2018).

The second one is to extract the water bodies using classification methods (water
and non-water areas) and indexes (listed in Table 4.3) from pre- and post-flood
images. Then, the flood area is produced by analyze the changes between the water

12http://www.gdacs.org/flooddetection/
13https://disasters.nasa.gov/datasets/global-flood-monitoring-system
14http://www.tiger-net.org/
15https://floodobservatory.colorado.edu/index.html
16https://www.dlr.de/eoc/en/desktopdefault.aspx/tabid-12939/22596_read-51634/

http://www.gdacs.org/flooddetection/
https://disasters.nasa.gov/datasets/global-flood-monitoring-system
http://www.tiger-net.org/
https://floodobservatory.colorado.edu/index.html
https://www.dlr.de/eoc/en/desktopdefault.aspx/tabid-12939/22596_read-51634/
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Fig. 4.2 Flood detection methods. (a) Location map of the target area. (b) False composite color
image of Sentinel-1 SAR (R: pre-event, G, B: post-event). (c) Post-event high-resolution optical
image (Jilin-1 sp06). (d) Mapping of flooded areas

Table 4.3 Water indices with their equations and sources for optical datasets

Indices Equation Source

NDWI NDWI = (Green-NIR)/(Green+NIR) Mcfeeters (1996)

MNDWI MNDWI = (Green-SWIR)/(Green+SWIR) Xu (2006)
AWEI AWEINSH = 4(Green-SWIR1)-(0.25NIR+2.75*SWIR2) Feyisa et al. (2014)

AWEISH = Blue+2.5Green-1.5(NIR+SWIR1)-0.25SWIR2

NDWI normalized difference water index, MNDWI modification of normalised difference water
index, AWEI automated water extraction index, AWEINSH AWEI in non-shadow area, AWEISH
AWEI in shadow area

bodies of two periods. Tong et al. (2018) have applied the support vector machine
and the active contour without edges model for extracting water from Landsat 8 and
COMSO-SkyMed and then mapped the flood using image difference method.

Technical challenges and future directions are list as follows:

1. Mapping flood in small specific area. Very high resolution remote sensing
provide an opportunity to monitoring the flood in a small scale (e.g., downtown
area). However, water is always mixed by the shadow areas. To separate the
shadow from water body will improve the performance of flood monitoring.

2. Developing more computationally efficient and robust method without con-
sidering spatial resolution, spectral signature, or viewing angle. Normalized
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Fig. 4.3 (a) Location map of the target area. (b) False composite color image of Sentinel-1 SAR
(R: pre-event, G, B: post-event). (c) Post-event high-resolution optical image (Jilin-1 sp06). (d)
Mapping of flooded areas

Difference Flood Index (NDFI) (Cian et al. 2018), which is computed using
multi-temporal statistics of SAR images, will give us the inspirations.

3. Flood detection via satellite and social media by deep learning. Satellite images
can provide large scale flooding information, however, we should wait for
the datasets. Social media can provide real-time information. A proper way
should be found to integrate the information derivied from satellite images
and social multimedia. Interested reader can read more details in http://www.
multimediaeval.org/mediaeval2018/.

Here, a typical example of combining medium-resolution SAR (i.e., Sentinel-1)
and high-resolution optical (i.e., Jilin-1 sp06) datasets to detect the flood areas in
Iran is shown in Fig. 4.3. Due to the coarse resolution of Sentinel-1, the small flood
areas in the city center (red rectangle areas in Fig. 4.3b) could not be detected by
using only Sentinel-1 images. However, it can be identified by the high-resolution
optical images. Thus, the final flooded mapping is the combination of the city
flooded areas extracted by high-resolution and the non-city flood areas generated
by Sentinel-1.

http://www.multimediaeval.org/mediaeval2018/
http://www.multimediaeval.org/mediaeval2018/
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4.4.2 Landslide Mapping

Landslide disasters are frequently triggered by heavy rains and earthquakes (Martel-
loni et al. 2012; Tanyaş et al. 2019). These deadly events can cause a large number
of fatalities (Intrieri et al. 2019). As a result, there have been several efforts to map a
global subjectively of occurrence using big earth observation data sources (Stanley
and Kirschbaum 2017). These activities take advantage of the relationship between
landslides and four main variables such as topography slope computed from global
topography models (SRTM, ASTER GDEM), land cover, rainfall data, and seismic
activity (NASA Goddard Space Flight Center 2007; Muthu and Petrou 2007;
Kirschbaum et al. 2010, 2015; Kirschbaum and Stanley 2018). These techniques
are mainly based on models that integrate all variables using heuristic functions to
evaluate the possibility of landslide occurrence. These models can map the landslide
susceptibility on a continental scale (approximately 1 km2), regional, and local scale
with a resolution of few hundred meters. These studies provide an overview of the
landslide hazard and can be used for mitigation and preparation activities before
these disasters occurred.

Differently, earth observation data is also applied for mapping landslide damages
in smaller scales focusing on particular events. Visual interpretation methods
employ very-high-resolution optical imagery acquired from either space- or air-
bone platforms. Although these approaches provide high-reliability on the damage
assessment, their applicability is often restricted by the availability of suitable
images such as cloud-free and good-illumination conditions. It is also important to
notice that these techniques require huge human efforts for damage interpretation,
specially in case of rapid disaster response.

Change detection models, on the other hand, use a set of images acquired
before and after the disaster to evaluate the damages. The land cover changes
estimated from multi-temporal optical imagery is used for delineating the extent
of landslides. Furthermore, spectral indexes (e.g. normalized vegetation and soil
index) are also employed for landslide mapping (Rau et al. 2014; Lv et al. 2018;
Yang et al. 2013; Zhuo et al. 2019; Ramos-Bernal et al. 2018). Integration of high-
resolution digital terrain models allows estimation of landslide-induced damages
such as debris and land scars distribution in the affected area (Dou et al. 2019; Bunn
et al. 2019). Similarly to visual interpretation approach, the availability of suitable
multi-temporal image datasets firmly bound the deployment of these techniques.

In the case of SAR data that has almost all-weather acquisition conditions,
mapping techniques take advantage of the side-looking nature of these sensors. The
two properties of SAR data, intensity, and phase information of the backscattered
signal are exploited for detecting landslide damages. The later is widely applied
for monitoring and mapping seismic-induced landslides (Cascini et al. 2009; Kalia
2018). Interferometric SAR (InSAR) analysis using detail DEM data provide the
spatial distribution and displacement fields of the ground movement (Riedel and
Walther 2008; Rabus and Pichierri 2018; Amitrano et al. 2019). Furthermore,
time-series InSAR models allow landslide monitoring of slow-movement land-
slides (Kang et al. 2017). On the other hand, change detection techniques, using
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SAR intensity images, are also powerful means to estimate the spatial distribution
of landslide damages (Shi et al. 2015). For instance, texture features computed
from multi-temporal datasets shows good correlation with the areas affected by
landslides (Darvishi et al. 2018; Mondini et al. 2019). Furthermore, in case of
disaster response where rapid geolocations of affected areas are crucial for rescue
efforts, change detection based on intensity information has great applicability
because of low computation time and direct manipulation of geocoded images. For
instance, on September 6, last year, the 2018 Hokkaido Eastern Iburi Earthquake
caused several landslides distributed in an extensive area (Yamagishi and Yamazaki
2018). Figure 4.4 shows a repid landslide mapping (yellow segments) using a
combination of pixel- and object-based change detection analysis, proposed by
Adriano et al. (2020), of a pre- and post-event Sentinel-1 intensity images acquired
on September 1 and 13, 2018, respectively.

Recently, machine learning algorithms together with earth observation data are
applied to detect landslide areas. Application of well establish classifiers such as
support vector machine and ensemble learning models are used to identify landslide
areas from optical, SAR intensity, and SAR coherence images (Bui et al. 2018;
Park et al. 2018; Burrows et al. 2019). Furthermore, deep neural networks are

Fig. 4.4 (a) Location of the target area. The red start shows the earthquake epicenter (b) Color-
composed image from pre- and post-event Sentinel-1 intensity images (R: pre-event, G, B: post-
event). (c) Google Satellite imagery corresponding to the same area shown in b. (d) Landslide
mapping results using multi-temporal Sentinel-1 imagery. Background image corresponds to the
color-composed RGB image
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also employed to map the landslide detection (Ghorbanzadeh et al. 2019; Wang
et al. 2019). These approaches focused on high-resolution remote sensing imagery
and landslide influencing features such as DEM data, land cover, and rainfall
information.

4.4.3 Building Damage Mapping

Assessing the building damage in the aftermath of major disasters, such as
earthquakes, tsunamis, and typhoons, are crucial for post-disaster rapid and efficient
relief activities. In this context, earth observation data is a good alternative for
damage mapping because satellite imagery can observe large scenes from remote or
inaccessible affected areas (Matsuoka and Yamazaki 2004). Based on the evolution
of sensor platforms and their spatial resolution, damage mapping can be divided into
two parts. Initial applications for building damage recognition were based on change
detection analysis of moderate-resolution, mainly using sensor launched in the late
90’s such as the Landsat-7 Satellite and the European Remote Sensing (ERS-1) SAR
satellite, optical and SAR imagery. These applications relied on the interpretation of
texture and linear correlation features computed from pre- and post-event datasets.
Besides, due to their relative low spatial resolution (about 30 m2), these methods
were efficiently applied for building damage mapping in a block-scale (Yusuf et al.
2001; Matsuoka and Yamazaki 2005; Kohiyama and Yamazaki 2005).

The following generation of high-resolution optical and SAR imagery, starting
in early 2000s such as the QuickBird, GeoEye-1, TerraSAR-X, COSMO-SkyMed
satellites, contribute to developing frameworks for detail mapping of building
damage. These methods, besides of change detection techniques, implemented
sophisticated pixel- and object-based image processing algorithms for damage
recognition (Miura et al. 2016; Tong et al. 2012; Brett and Guida 2013; Gokon
et al. 2015; Ranjbar et al. 2018). Moreover, taking advantage of very-high-resolution
datasets, sophisticated frameworks were implemented to extract building damage
using only post-event images (Gong et al. 2016). Most of these methodologies
rely on specific features of SAR data. For instance, some studies analyzed the
polarimetric characteristics of radar backscattering that are correlated with building
damage patterns observed in SAR images (Yamaguchi 2012; Chen and Sato
2013). Furthermore, SAR platforms such as the Sentinel-1 and ALOS-2 repeatedly
acquired images constructing large time-series datasets. Phase coherence computed
from multi-temporal SAR acquisitions can provide important characteristics of the
degree of changes in urban areas in the case of earthquake-induced damage (Yun
et al. 2015; Olen and Bookhagen 2018; Karimzadeh et al. 2018).

Recently, advanced machine learning algorithms are implemented using multi-
temporal and multi-source remote sensing data for mapping building damage.
These methodologies learn from limited but properly labeled samples of damaged
buildings to assign a level on the whole affected area (Endo et al. 2018). A
recent example, Adriano et al. (2019) used an ensemble learning classifier on
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Fig. 4.5 (a) Location of the target area. The red start shows the earthquake epicenter (b) Pre-
event WorldView-3 image. (c) Post-event WorldView-3 images. (d) Damage mapping results using
multi-sensor and multi-temporal remote sensing data. Background image corresponds to the pre-
event Sentinel-1 SAR image capture on May 26, 2018

SAR and optical datasets to map the building damage following the 2018 Sulawesi
Earthquake-Tsunami in Palu, Indonesia. Their methodology successfully classified
three levels of building damage with an overall accuracy greater than 90% (Fig. 4.5).
Furthermore, their implemented framework provided a reliable thematic map after
only after three hours of acquired all raw remote sensing datasets.

4.5 Conclusion and Future Lines

Open data policy in earth observation and international cooperation in emergency
responses have expanded practical use of image and signal processing techniques for
rapid disaster damage mapping. In this chapter, we have reviewed earth observation
systems available for disaster management and showcased recent advances in land
cover mapping, flood mapping, landslide mapping, and building damage mapping.

Although human visual interpretation is still required to determine the level of
detailed building damages, it takes a long time to acquire high-resolution images and
conduct visual interpretation. One possible future direction is to construct training
data on past disasters via human visual interpretation and develop machine learning
models that can respond quickly to unknown disasters. Another challenge is that
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there are many cases where data can not be obtained from the same sensor before
and after a disaster (He and Yokoya 2018). How to extract disaster-induced changes
from multisensor and possibly heterogeneous data sources before and after disasters
is a practical problem in damage mapping. Furthermore, it is important for the entire
disaster management process to verify the accuracy of damage assessment results
using in-situ data. Integration and fusion of earth observation data with ground-shot
images and text information available online (e.g., news and SNS) is also a future
subject. On the basis of the remote sensing image and signal processing technology
and human expert knowledge, machine learning technologies have the potential to
accelerate the accuracy and speed of damage mapping from big earth observation
data.
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