
Chapter 14
Uncertain Spatial Data Management:
An Overview

Andreas Züfle

14.1 Introduction

Due to the proliferation of handheld GPS enabled devices, spatial and spatio-
temporal data is generated, stored, and published by billions of users in a plethora
of applications. By mining this data, and thus turning it into actionable information,
The McKinsey Global Institute projects a “$600 billion potential annual consumer
surplus from using personal location data globally”.

As the volume, variety and velocity of spatial data has increased sharply
over the last decades, uncertainty has increased as well. Until the early twenty-
first century, spatial data available for geographic information science (GIS) was
mainly collected, curated, standardized (Fegeas et al. 1992), and published by
authoritative sources such as the United States Geological Survey (USGS) (United
States Geological Survey). Now, data used for spatial data mining is often obtained
from sources of volunteered geographic information (VGI) (Sui et al. 2012; Open
Street Map). Consequentially, our ability to unearth valuable knowledge from large
sets of such spatial data is often impaired by the uncertainty of the data which
geography has been named the “the Achilles heel of GIS” (Goodchild 1998) for
many reasons:

– Imprecision is caused by physical limitations of sensing devices and connection
errors, for instance in geographic information system using cell-phone GPS
(Couclelis 2003),
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Fig. 14.1 Locations of a user of a Location-based social network (Gowalla) over a day

– Data records may be obsolete. In geo-social networks and microblogging
platforms such as Twitter, users may update their location infrequently, yielding
uncertain location information in-between data records (Kumar et al. 2014),

– Data can be obtained from unreliable sources, such as volunteered geographic
information like data in Open-Street-Map (Open Street Map), where data is
obtained from individual users, which may incur inaccurate or plain wrong data,
deliberately or due to human error (Grira et al. 2010),

– Data sets pertaining to specific questions may be too small to answer questions
reliably. Proper statistical inference is required to draw significant conclusions
from the data and to avoid basing decisions upon spurious mining results (Hsu
1996; Casella and Berger 2002).

To illustrate uncertainty in spatial and spatio-temporal data, Fig. 14.1 shows a
typical one-day “trajectory” of a prolific user in the location-based social network
Gowalla (data taken from Cho et al. 2011). While a trajectory is usually defined as
a function that continuously maps time to locations, we see that in this case, we can
only observe the user at discrete times, having hours in-between subsequent location
updates. Where was the user located in-between these updates? Should we use dead
reckoning techniques to interpolate the locations or should be assume that the user
stays at a location until next update? Also, users may spoof their location (Zhao
and Sui 2017), either to protect their privacy or to gain advantages within the
location-based social network. Given this uncertainty, how certain can we be about
the location of the user at a given time t? And how does the uncertainty increase
as location updates become more sparse and obsolete? The goal of this chapter
is to provide a comprehensive overview of models and techniques to deal with
uncertainty. To handle uncertainty, we must first remind ourselves that a database
models an aspect of the real world, the universe of discourse. Information observed
and stored in a database may deviate from the real-world. For reliable decision
making, we need to quantify the uncertainty of attribute values stored in the database
and consider potentially missing objects that may change mining results.
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Fig. 14.2 Exemplary uncertain database

Example 1 As a running example used through this chapter, consider Fig. 14.2
which shows a toy uncertain spatial database. In this example, two objects, Q and
B have uncertain locations, indicated by alternative locations {q1, q2} of Q and
alternative locations {b1, b2} of B. In this book chapter, we will survey methods to
answer questions such as “What object is closest to Q?”, or “What is the probability
of B to be one of the two-nearest neighbors of Q?”

To answer such queries, we first need a crisp definition of what it means for an
uncertain object to be a (probabilistic) nearest neighbor of a query object and how
the probability of such an event is defined. This chapter gives a widely used interpre-
tation of uncertain databases using Possible Worlds Semantics. This interpretation
allows to answer arbitrary queries on uncertain data, but at a computational cost
exponential in the number of uncertain objects. For efficient processing, this chapter
defines a paradigm of querying uncertain data that allows to efficiently answer many
spatial queries on uncertain spatial data.

This chapter gives a survey on the field of modeling, managing, and querying
uncertain spatial data. Parts of this section have been presented in the form of
presentation slides at recent conference tutorials at VLDB 2010 (Renz et al. 2010),
ICDE 2014 (Cheng et al. 2014), ICDE 2017 (Züfle et al. 2017), and MDM 2020
(Züfle et al. 2020). This section is subdivided to give a survey of definitions, notions
and techniques used in the field of querying and mining uncertain spatio-temporal
data.

– Section 14.2 presents a survey of state-of-the-art data representations models
used in the field of uncertain data management. This section explain discrete and
continuous models for uncertain objects.

– To interpret queries on a database of uncertain objects, well-defined semantics
of uncertain database are required. For this purpose, Sect. 14.3 introduces the
possible world semantics for uncertain data.

– To run queries on uncertain spatial data, existing systems for uncertain spatial
database management are surveyed in Sect. 14.4.

– Given an uncertain database, the result of a probabilistic query can be interpreted
in two ways as elaborated in Sect. 14.5. This distinction between different
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probabilistic result semantics is not made explicitly in any related work, but
is required to gain a deep understanding of problems in the field of querying
uncertain spatial data and their complexity.

– Section 14.6 gives an overview over probabilistic query predicates. A probabilis-
tic query predicate defines the requirements for the probability of a candidate
result to be returned as a query result.

– Section 14.7 introduces a novel paradigm for uncertain data to efficiently answer
any kind of query using possible world semantics. This Paradigm of Equivalent
Worlds generalizes existing solutions by identifying requirements a query must
satisfy in order to have a polynomial solution.

– Section 14.8 presents efficient solutions for the problem of computing range
queries on uncertain spatial databases. For this purpose, the paradigm of equiv-
alent worlds is leveraged to compute the distribution of the sum of a Poisson-
binomial distributed random variable, a problem that is paramount for many
spatial queries on uncertain data.

– Section 14.9 gives an overview of specific research problems using uncertain
spatial and spatio-temporal data, and surveys state-of-the-art solutions.

– Finally, Sect. 14.10 concludes this book chapter and sketches future research
directions that can be opened by leveraging the Paradigm of Equivalent Worlds
to new applications and query types.

14.2 Discrete and Continuous Models for Uncertain Data

An object is uncertain if at least one attribute of o is uncertain. The uncertainty
of an attribute can be captured in a discrete or continuous way. A discrete model
uses a probability mass function (pmf) to describe the location of an uncertain
object. In essence, such a model describes an uncertain object by a finite number
of alternative instances, each with an associated probability (Kriegel et al. 2007;
Pei et al. 2008), as shown in Fig. 14.3a. In contrast, a continuous model uses a
continuous probability density function (pdf), like Gaussian, uniform, Zipfian, or

Fig. 14.3 Models for uncertain attributes. (a) Discrete probability mass function. (b) Continuous
prob. density function
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Fig. 14.4 Uncertain objects. (a) Discrete case. (b) Continuous case

a mixture model, as depicted in Fig. 14.3b, to represent object locations over the
space. Thus, in a continuous model, the number of possible attribute values is
uncountably infinite. In order to estimate the probability that an uncertain attribute
value is within an interval, integration of its pdf over this interval is required (Tao
et al. 2005). The random variables corresponding to each uncertain attribute of an
object o can be arbitrarily correlated.

To capture positional uncertainty, such models can be applied by treating
longitude and latitude (and optionally elevation) as two (three) uncertain attributes.
In the case of discrete positional uncertainty, the position of an object A is given
by a discrete set a1, . . . , am of m ∈ N possible alternatives in space, as exemplarily
depicted in Fig. 14.4a for two uncertain objects A and B. Each alternative ai is
associated with a probability value p(ai), which may for example be derived from
empirical information about the turn probabilities of intersection in an underlying
road network. In a nutshell, the position A is a random variable, defined by
a probability mass function pdfA that maps each alternative position ai to its
corresponding probability p(ai), and that maps all other positions in space to
a zero probability. An important property of uncertain spatial databases is the
inherent correlation of spatial attributes. In the example shown in Fig. 14.4a it can
be observed that the uncertain attributes a and b are highly correlated: given the
value of one attribute, the other attribute is certain, as there is no two alternatives of
objects A and B having identical attribute values in either attribute.

Clearly, it must hold that the sum of probabilities of all alternatives must sum to
at most one:

m∑

i=1

p(ai) ≤ 1

In the case where
∑m

i=1 p(ai) ≤ 1 object A has a non-zero probability of
1 − ∑m

i=1 p(ai) ≥ 0 to not exist at all. This case is called existential uncertainty,
and A is denoted as existentially uncertain (Yiu et al. 2009). If the total number of
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possible instances m is greater than one, A is denoted as attribute uncertain. In the
context of uncertain spatial data, attribute uncertainty is also referred to as positional
uncertainty or location uncertainty. An object can be both existentially uncertain
and attribute uncertain. In Fig. 14.4a, object A is both existentially uncertain and
attribute uncertain, while object B is attribute uncertain but does exist for certain.

In the case of continuous uncertainty, the number of possible alternative positions
of an object A is infinite, and given by the non-zero domain of the probability density
function pdfx . The probability of A to occur in some spatial region r is given by
integration

∫

r

pdfA(x)dx.

Since arbitrary pdfs may be represented by an uncountably infinite large number
of (position, probability) pairs, such pdfs may require infinite space to represent.
For this reason, assumptions on the shape of a pdf are made in practice. All contin-
uous models for positionally uncertain data therefore use parametric pdfs, such as
Gaussian, uniform, Zipfian, mixture models, or parametric spline representations.
For illustration purpose, Fig. 14.4b depicts three uncertain objects modelled by a
mixture of gaussian pdfs. Similar to the discrete case, the constraint

∫

Rd

pdfA(x)dx ≤ 1

must be satisfied, where R
d is a d dimensional vector space. In the case of spatial

data, d usually equals two or three. The notion of existentially and attribute uncertain
objects is defined analogous to the discrete case.

The following section reviews related work and state-of-the-art on the field of
modeling uncertain data.

14.2.1 Existing Models for Uncertain Data

This section gives a brief survey on existing models for uncertain spatial data used
in the database community. Many of the presented models have been developed to
model uncertainty in relational data, but can be easily adapted to model uncertain
spatial data. Since one of the main challenges of modeling uncertain data is to
capture correlation between uncertain objects, this section will elaborate details on
how state-of-the-art approaches tackles this challenge. Both discrete and continuous
models are presented.
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14.2.2 Discrete Models

In addition to reviewing related work defining discrete uncertainty models, the aim
of this section is to put these papers into context of Sect. 14.2. In particular, models
which are special cases or equivalent to the model presented in Sect. 14.2 will be
identified, and proper mappings to Sect. 14.2 will be given.

Independent Tuple Model. Initial models have been proposed simultaneously
and independently in Fuhr and Rölleke (1997b) and Zimányi (1997). These works
assume a relational model in which each tuple is associated with a probability
describing its existential uncertainty. All tuples are considered independent from
each other. This simple model can be seen as a special case of the model presented in
Sect. 14.2, where only existential uncertain but no attribute uncertainty is modelled.

Block-Independent Disjoint Tuples Model and X-Tuple model A more recent
and the currently most prominent approach to model discrete uncertainty is the
block-independent disjoint tuples model (Dalvi et al. 2009), which can capture
mutual exclusion between tuples in uncertain relational databases. A probabilistic
database is called block independent-disjoint if the set of all possible tuples can be
partitioned into blocks such that tuples from the same block are disjoint events, and
tuples from distinct blocks are independent. A commonly used example of a block-
independent disjoint tuples model is the Uncertainty-Lineage Database Model
(Benjelloun et al. 2006; Sarma et al. 2006; Soliman et al. 2007; Yi et al. 2008a,b),
also called X-Relation Model or simply X-Tuple Model that has been developed for
relational data. In this model, a probabilistic database is a finite set of probabilistic
tables. A probabilistic table T contains a set of (uncertain) tuples, where each tuple
t ∈ T is associated with a membership probability value Pr(t) > 0. A generation
rule R on a table T specifies a set of mutually exclusive tuples in the form of
R : tr1 ⊕ . . . ⊕ trm where tri ∈ T (1 ≤ i ≤ m) and P(R) := ∑m

i=1 tri ≤ 1.
The rule R constrains that, among all tuples tr1 , . . . , trm involved in the rule, at most
one tuple can appear in a possible world. The case where P(R) < 1 the probability
1 − P(R) corresponds to the probability that no tuple contained in rule R exists. It
is assumed that for any two rules R1 and R2 it holds that R1 and R2 do not share
any common tuples, i.e., R1 ∩ R2 = ∅. In this model, a possible world w is a subset
of T such that for each generation rule R, w contains exactly one tuple involved in
R if P(R) = 1, or w contains 0 or 1 tuple involved in R if Pr(R) < 1.

This model can be translated to a discrete model for uncertain spatial data as
discussed in Sect. 14.2 by interpreting the set T as the set of all possible locations
of all objects, and interpreting each rule R as an uncertain spatial object having
alternatives tri . The constraint that no two rules may share any common tuples
translates into the assumption of mutually independent spatial objects. Finally, the
case P(R) < 1 corresponds to the case of existential uncertainty (see Sect. 14.2).

A similar block-independent disjoint tuples model is called p-or-set (Re et al.
2006) and can be translated to the model described in Sect. 14.2 analogously. In
Antova et al. (2008a), another model for uncertainty in relational databases has been
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proposed that allows to represent attribute values by sets of possible values instead
of single deterministic values. This work extends relational algebra by an operator
for computing possible results. A normalized representation of uncertain attributes,
which essentially splits each uncertain attribute into a single relation, a so-called
U-relation, allows to efficiently answer projection-selection-join queries. The main
drawback of this model is that it is not possible to compute probabilities of the
returned possible results. Sen and Deshpande (2007) propose a model based on a
probabilistic graphical model, for explicitly modeling correlations among tuples in
a probabilistic database. Strategies for executing SQL queries over such data have
been developed in this work. The main drawback of using the proposed graphical
model is its complexity, which grows exponential in the number of mutually
correlated tuples. This is a general drawback for graphical models such as Bayesian
networks and graphical Markov models, where even a factorized representation may
fail to reduce the complexity sufficiently: The idea of a factorized representation is
to identify conditional independencies. For example, if a random variable C depends
on random variables A and B, then the distribution of C has to be given relative to all
combination of realizations of A and B. If however, C is conditionally independent
of A, i.e., B depends on A, C depends on B, and C only transitively depends on
A, then it is sufficient to store the distribution of C relative only to the realizations
of B. Nevertheless, if for a given graphical model a random variable depends on
more than a hand-full of other random variables, then the corresponding model will
become infeasible.

And/Xor Tree Model. A very recent work by Li and Deshpande (2009)
extends the block-independent disjoint tuples model by adding support for mutual
co-existence. Two events satisfy the mutual co-existence correlation if in any
possible world, either both happen or neither occurs. This work allows both mutual
exclusiveness and mutual co-existence to be specified in a hierarchical manner. The
resulting tree structure is called an and/xor tree. While theoretically highly relevant,
the and/xor tree model becomes impracticable in large database having non-trivial
object dependencies, as it grows exponentially in the number of database objects.

If not stated otherwise, this chapter will apply the block-independent disjoint
tuples model as model of choice for discrete uncertain data.

14.2.3 Continuous Models

In general, similarity search methods based on continuous models involve expensive
integrations of the PDFs, hence special approximation and indexing techniques
for efficient query processing are typically employed (Cheng et al. 2004b; Tao
et al. 2005). In order to increase quality of approximations, and in order to reduce
the computational complexity, a number of models have been proposed making
assumptions on the shape of object PDFs. Such assumptions can often be made in
applications where the uncertain values follow a specific parametric distribution,
e.g. a uniform distribution (Cheng et al. 2003, 2008) or a Gaussian distribution
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(Cheng et al. 2008; Deshpande et al. 2004; Patroumpas et al. 2012). Multiple such
distributions can be mixed to obtain a mixture model (Tran et al. 2010; Böhm et al.
2006). To approximate arbitrary PDFs, Li and Deshpande (2010a) proposes to use
polynomial spline approximations.

14.3 Possible World Semantics

In an uncertain spatial database D = {U1, . . . , UN }, the location of an object is
a random variable. Consequently, if there is at least one uncertain object, the data
stored in the database becomes a random variable. To interpret, that is, to define the
semantics of a database that is, in itself, a random variable, the concept of possible
worlds is described in this section.

Definition 1 (Possible World Semantics) A possible world w = {ua1
1 , . . . , u

aN

N } is
a set of instances containing at most one instance u

ai

i ∈ Ui from each object Ui ∈ D.
The set of all possible worlds is denoted as W. The total probability of an uncertain
world P(w ∈ W) is derived from the chain rule of conditional probabilities:

P(w) := P(
∧

u
ai
i ∈w

Ui = u
ai

i ) =
N∏

i=1

P(u
ai

i |
∧

j<i

u
aj

j ). (14.1)

By definition, all worlds w having a zero probability P(w) = 0 are excluded
from the set of possible worlds W. Equation 14.1 can be used if conditional
probabilities of the position of objects given the position of other objects are known,
e.g. by a given graphical model such as a Bayesian network or a Markov model. In
many applications where independence between object locations can be assumed,
as well as in applications where only the marginal probabilities P(u

ai

i ) are known,
and thus independence has to be assumed due to lack of better knowledge of a
dependency model, the above equation simplifies to

P(w) =
N∏

i=1

P(u
ai

i ). (14.2)

Example 2 As an example, consider Fig. 14.5 where a database consisting of three
uncertain objects D = {U1, U2, U3} is depicted. Objects U1 = {u1

1, u
2
1} and

U2 = {u1
2, u

2
2} each have two possible instances, while object U3 = {u1

3, u
2
3, u

3
3} has

three possible instances. The probabilities of these instances is given as P(u1
1) =

P(u2
1) = 0.5, P(u1

2) = 0.7, P(u2
2) = 0.2, P(u1

3) = 0.5, P(u2
3) = 0.3,

P(u3
3) = 0.2. Note that object U2 is the only object having existential uncertainty:

With a probability of 1 − 0.7 − 0.2 = 0.1 object U2 does not exist at all. Assuming
independence between spatial objects, the probability for the possible world where
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Fig. 14.5 An uncertain database and all of its possible worlds

Table 14.1 Possible worlds corresponding to Fig. 14.5

World Probability World Probability

{u1
1, u

1
2, u

1
3} 0.5 · 0.7 · 0.5 = 0.175 {u2

1, u
1
2, u

1
3} 0.5 · 0.7 · 0.5 = 0.175

{u1
1, u

1
2, u

2
3} 0.5 · 0.7 · 0.3 = 0.105 {u2

1, u
1
2, u

2
3} 0.5 · 0.7 · 0.3 = 0.105

{u1
1, u

1
2, u

3
3} 0.5 · 0.7 · 0.2 = 0.07 {u2

1, u
1
2, u

3
3} 0.5 · 0.7 · 0.2 = 0.07

{u1
1, u

2
2, u

1
3} 0.5 · 0.2 · 0.5 = 0.05 {u2

1, u
2
2, u

1
3} 0.5 · 0.2 · 0.5 = 0.05

{u1
1, u

2
2, u

2
3} 0.5 · 0.2 · 0.3 = 0.03 {u2

1, u
2
2, u

2
3} 0.5 · 0.2 · 0.3 = 0.03

{u1
1, u

2
2, u

3
3} 0.5 · 0.2 · 0.2 = 0.02 {u2

1, u
2
2, u

3
3} 0.5 · 0.2 · 0.2 = 0.02

{u1
1, u

1
3} 0.5 · 0.1 · 0.5 = 0.025 {u2

1, u
1
3} 0.5 · 0.1 · 0.5 = 0.025

{u1
1u

2
3} 0.5 · 0.1 · 0.3 = 0.015 {u2

1, u
2
3} 0.5 · 0.1 · 0.3 = 0.015

{u1
1, u

3
3} 0.5 · 0.1 · 0.2 = 0.01 {u2

1, u
3
3} 0.5 · 0.1 · 0.2 = 0.01

U1 = u1
1, U2 = u1

2 and U3 = u1
3 is given by applying Equation 14.2 to obtain the

product 0.5 · 0.7 · 0.5 = 0.175. All possible worlds spanned by D are depicted in
Fig. 14.5. The probability of each possible world is shown in Table 14.1, including
possible worlds where U2 does not exist.
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Recall that a predicate can evaluate to either true or false on a crisp (non-uncertain)
database. An exemplary predicate is There are at least five database objects in a
500m range of the location “Theresienwiese, Munich”. To evaluate a predicate φ

on an uncertain database using possible world semantics, the query predicate is
evaluated on each possible world. The probability that the query predicate evaluates
to true is defined as the sum of probabilities of all worlds where φ is satisfied,
formally:

Definition 2 Let D be an uncertain spatial database inducing the set of possible
worlds W, let φ be some query predicate, and let

I(φ,w ∈ W) := P(φ(D)|D = w) ∈ {0, 1}

be the indicator function that returns one if world w satisfies φ and zero otherwise.
The marginal probability P(φ(D)) of the event φ(D) that predicate φ holds in D is
defined as follows using the theorem of total probability (Zwillinger and Kokoska
2000):

P(φ(D)) =
∑

w∈W
I(φ,w) · P(w) (14.3)

The main challenge of analyzing uncertain data is to efficiently and effectively
deal with the large number of possible worlds induced by an uncertain database
D. In the case of continuous uncertain data, the number of possible worlds is
uncountably infinite and expensive integration operations or numerical approxima-
tion are required for most spatial database queries and spatial data mining tasks.
Even in the case of discrete uncertainty, the number of possible worlds grows
exponentially in the number of objects: in the worst case, any combination of
alternatives of objects may have a non-zero probability, as shown exemplary in
Fig. 14.5. This large number of possible worlds makes efficient query processing
and data mining an extremely challenging problem. In particular, any problem that
requires an enumeration of all possible worlds is #P-hard.1 In particular, a number of
probabilistic problems have been proven to be in #P (Valiant 1979). Following this
argumentation, general query processing in the case of discrete data using object
independence has proven to be a #P-hard problem (Dalvi and Suciu 2004) in the
context of relational data. The spatial case is a specialization of the relation case,
but clearly, the spatial case is in #P as well, which becomes evident by construction
of a query having an exponentially large result, such as the query that returns all
possible worlds. Consequently, there can be no universal solution that allows to
answer any query in polynomial time. This implies that querying processing on
models that are generalizations of the discrete case with object independence, e.g.,

1#P is the set of counting problems associated with decision problems in the class NP. Thus, for any
NP-complete decision problem which asks if there exists a solution to a problem, the corresponding
#P problem asks for the number of such solutions.
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models using continuous distribution, or models that relax the object independence
assumption, must also be a #P hard problem. The result of Dalvi and Suciu (2004)
implies that there exists query predicates, for which no polynomial time solution
can be given. Yet, this result does not outrule the existence of query predicates that
can be answered efficiently. For example the (trivial) query that always returns the
empty set of objects can be efficiently answered on uncertain spatial databases.

14.4 Existing Uncertain Spatial Database Management
Systems

Recently developed systems provide support for spatio-temporal data in big data
systems (Akdogan et al. 2010; Aji et al. 2013; Lu et al. 2012; Wang et al. 2010;
Zhang et al. 2012). Such systems exhibit high scalability for batch-processing
jobs (Apache; Dean and Ghemawat 2008), but do not provide efficient solutions
to handle uncertain data and to assess the reliability of results. The vivid field of
managing, querying, and mining uncertain data has received tremendous attention
from the database, data mining, and spatial data science communities. Recent books
(Aggarwal 2010) and survey papers (Aggarwal and Philip 2008; Wang et al. 2013;
Li et al. 2018) provide an overview of the flurry of research papers that have
appeared in these fields.

The problem of managing uncertain data has been well-studied by the database
research community in the past. While the traditional database literature (Cavallo
and Pittarelli 1987; Barbará et al. 1992; Bacchus et al. 1996; Lakshmanan et al.
1997; Fuhr and Rölleke 1997a) has studied the problem of managing uncertain
data, this research field has seen a recent revival, due to modern techniques for
collecting inherently uncertain data. Most prominent concepts for probabilistic data
management are MayBMS (Antova et al. 2008b), MystiQ (Boulos et al. 2005), Trio
(Agrawal et al. 2006), and BayesStore (Wang et al. 2008). These uncertain database
management systems (UDBMS) provide solutions to cope with uncertain relational
data, allowing to efficiently answer traditional queries that select subsets of data
based on predicates or join different datasets based on conditions. Extensions to the
UDBMS also allow answering of important classes of spatial queries such as top-k
and distance-ranking queries (Hua et al. 2008; Cormode et al. 2009a; Li et al. 2009a;
Bernecker et al. 2010; Li and Deshpande 2010b). While these existing UDBMS
provide probabilistic guarantees for their query results, they offer no support for
data mining tasks. A likely reason for this gap is the theoretic result of Dalvi and
Suciu (2007) which shows that the problem of answering complex queries is #P-
hard in the number of database objects. To illustrate this theoretic result, imagine
running a simple range query with an arbitrary query point on a database having N

objects each having an arbitrary non-zero probability of being in that range. Further,
assume stochastic independence between these objects. In that case, any of the 2N

combinations of result objects becomes a possible result and must be returned.
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Nevertheless, a number of polynomial time solutions have been proposed in the
literature for various spatial query types such as nearest neighbor queries (Cheng
et al. 2004a, 2008; Kriegel et al. 2007; Iijima and Ishikawa 2009), k-nearest
neighbor queries (Beskales et al. 2008; Ljosa and Singh 2007; Li et al. 2009b; Cheng
et al. 2009) and (similarity-) ranking queries (Bernecker et al. 2008; Cormode et al.
2009b; Li et al. 2009b; Soliman and Ilyas 2009). On first glance, these findings
may look contradicting (unless P = NP ), providing polynomial-time solution
to a #P-hard problem. On closer look, it shows that different related work use
different semantics to interpret a result. Aforementioned related works that provide
polynomial time solutions for spatial queries on uncertain data make a simplifying
assumption: Rather than computing the probability for each possible result, they
compute the probability of each object to be part of the result. This reduces the
number of probabilities that have to be reported, in the worst-case, from a number
exponential in the number of database objects, to a linear number. Re-using the
example of a range query on an uncertain database, it is possible to compute the
probability that a single object is within the query range independent from all other
objects.

Unfortunately, this simplification also yields a loss of information, as it is
not possible to infer the probability of query results given only probabilities of
individual objects. Let us revisit the running example from introduction, which is
duplicate in Fig. 14.6 for convenience. This example will illustrate how such an
object-based approach, which computes object-individual probabilities, rather than
the probabilities of result sets, may yield misleading results.

Example 3 Assume that the task is to simply find the probabilistic two nearest
neighbors (2NN) of uncertain object Q. Objects Q and B have two alternative
positions each, yielding a total of four possible worlds. For example, in one possible
world, where Q has location q1 and B has location b1, the two nearest neighbors of
Q are A and C. This possible world has a probability of 0.6 · 0.5 = 0.3, obtained by
assuming stochastic independence between objects. Following object-based result
semantics, we can obtain probabilities of 0.3, 0.3, 0.6, 0.4, 0.4 for objects A, B,
C, D, and E to be the 2NNs of Q, respectively. However, this result hides any
dependence between these result objects, such as objects A and B are mutually
exclusive, while D and E are mutually inclusive.

Fig. 14.6 The exemplary
uncertain database from
Fig. 14.2
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Towards approximate solutions, the Monte-Carlo DB (MCDB) system (Jampani
et al. 2008) has been proposed, which samples possible worlds from the database,
executes the query predicate on each sampled world. MCDB estimates the proba-
bility of each object to be part of the result set. However, this approach of assigning
a result probability to each object, as illustrate in the example above, cannot be
extended to assess the probability of result sets. The problem is that the number
of possible result sets may be exponentially large. To aggregate possible worlds
into groups of mutually similar worlds (having similar results), an approach has
been proposed for clustering of uncertain data (Züfle et al. 2014; Schubert et al.
2015) and more recently for general query processing on spatial data (Schmid and
Züfle 2019). Revisiting the example of Fig. 14.2, this approach reports the results
of a probabilistic query 2NN query as {A,C}, {B,C}, {D,E}, having respective
probabilities of 0.3, 0.3, and 0.4. However, this approach (Schmid and Züfle 2019)
can only be applied to spatial queries that return result sets, thus cannot be applied
to more complex spatial queries or data mining tasks. To further elaborate the
difference between solutions that compute the probability of each object to be part
of the result, and solutions that compute the probability of each result, the following
section will further survey the two different “Probabilistic Result Semantics”:
Object-based and Result-based.

14.5 Probabilistic Result Semantics

Recall that a spatial similarity query always requires a query object q and,
informally speaking, returns objects to the user that are similar to q. In the case
of uncertain data, there exists two fundamental semantics to describe the result of
such a probabilistic spatial similarity query. These different result semantics will
be denoted as object based result semantics and the result based result semantics.
Informally, the former semantics return possible result objects and their probability
of being part of the result, while the later semantics return possible results, which
consist of a single object, of a set of objects or of a sorted list of objects depending
on the query predicate, and their probability of being the result as a whole.

14.5.1 Object Based Probabilistic Result Semantics

Using object based probabilistic result semantics, a probabilistic spatial query
returns a set of objects, each associated with a probability describing the individual
likelihood of this object to satisfy the spatial query predicate.

Definition 3 (Object Based Result Semantics) Let D be an uncertain spatial
database, let q be a query object and let φ denote a spatial query predicate. Under
object based (OB) probabilistic result semantics, the result of a probabilistic spatial
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φ query is a set φOB(q,D) = {(o ∈ D, P (o ∈ φOB(q,D)))} of pairs. Each pair
consists of a result object o and its probability P(o ∈ φOB(q,D)) to satisfy φ.
Applying possible world semantics (cf. Definition 1) to compute the probability
P(o ∈ φOB(q,D)) yields

P(o ∈ φOB(q,D)) =
∑

w∈W,o∈φ(q,w)

P (w), (14.4)

where φ(q,w) is the deterministic result of a spatial φ query having query object q

applied to the deterministic database defined by world w.

Formally, the result of a probabilistic spatial query under object based result
semantics is a function

φOB(q,D) : D → [0, 1]

o 	→ P(o ∈ φOB(q,D)).

mapping each object o in D (the results) to a probability value.

Example 4 Figure 14.7 depicts a database containing objects D = {A,B,C}.
Objects A and B have two alternative locations each, while the position of C

is known for certain. The locations and the probabilities of all alternatives are
also depicted in Fig. 14.7. This leads to a total number of four possible worlds.
For example, in world w1 where A = a1, B = b1 and C1 = c1, object A is
closest to q, followed by objects B and C. Assuming inter-object independence, the
probability of this world is given by the product of individual instance probabilities
P(w1) = P(a1) · P(b1) · P(c1) = 0.04. The ranking of each possible world and
the corresponding probability is also depicted in Fig. 14.7. For a probabilistic 2NN

query for the depicted query object q, the object based result semantic computes the
probability of each object to be in the two-nearest neighbor set of q. For object A,
the probability P(A) of this event equals 0.1, since there exists exactly two possible

q

a1

b1

c1

b2a2

P(a1)=0.1
P(a2)=0.9
P(b1)=0.6
P(b2)=0.4
P(c1)=1.0

World Rank
1

Rank
2

Rank
3

P(w)

w1=a1 b1 c1 A B C 0.04

w2=a1 b2 c1 A C B 0.06

w3=a2 b1 c1 B C A 0.54

w3=a2 b2 c1 C B A 0.36

Fig. 14.7 Example Database showing possible positions of uncertain objects and their correspond-
ing probabilities
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worlds w1 and w2 with a total probability of 0.04 + 0.06 = 0.1 in which A is on rank
one or on rank two, yielding a result tuple (A, 0.1). The complete result of a P 2NN

query under object based result semantics is {(A, 0.1), (B, 0.94), (C, 0.96)}. Note
that in general, objects having a zero probability are included in the result. For
instance, assume an additional object D such that all instances of D have a distance
to q greater than the distance between q and b2. In this case, the pair (D, 0) would
be part of the result.

The result of a query under object based probabilistic result semantics contains
one result tuple for every single database object, even if the probability of the
corresponding object to be a result is very low or zero. In many applications,
such results may be meaningless. Therefore, the size of the result set can be
reduced by using a probabilistic query predicate as explained later in Sect. 14.6. A
computational problem is the computation of the probability P(o ∈ D) of an object
o to satisfy the spatial query predicate. In the example, this probability was derived
by iterating over the set of all possible worlds w1, . . . , w4. Since this set grows
exponentially in the number of objects, such an approach is not viable in practice.
Therefore, efficient techniques to compute the probability values P(o) are required.
A general paradigm to develop algorithms that avoid an explicit enumeration of all
possible worlds is presented in Sect. 14.7.

14.5.2 Result Based Probabilistic Result Semantics

In the case of result based result semantics, possible result sets of a probabilistic
spatial query are returned, each associated with the probability of this result.

Definition 4 (Result Based Result Semantics) Let D be an uncertain spatial
database, let q be a query object and let φ denote a spatial query predicate. Under
result based (RB) result semantics, the result of a probabilistic spatial φ query is a
set

φRB(q,D) = {(r, P (r))|r ⊆ D, P (r) =
∑

w∈W,φ(q,w)=r

P (w)}

of pairs. This set contains one pair for each result r ⊆ D associated with the
probability P(r) of r to be the result. Following possible world semantics, the
probability P(r) is defined as the sum of probabilities of all worlds w ∈ W such
that a spatial φ query returns r .

Formally, the result of a probabilistic spatial query under result based result
semantics is a function

φRB(q,D) : P(D) → [0, 1]
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r 	→ P(r).

mapping a elements of the power set P(D) (the results) to probability values.

Example 5 For a probabilistic 2NN query for the depicted query object q, result
based result semantics require to compute the probability of each subset of
{A,B,C} to be in the two-nearest neighbor set of q. For the set {B,C}, the
probability of this event is 0.90, since there is two possible worlds w3 and w4 with
a total probability of 0.54 + 0.36 = 0.9 in which B and C are both contained in the
2NN set of q. Note that in worlds w3 and w4 objects B and C appear in different
ranking positions. This fact is ignored by a kNN query, as the results are returned
unsorted. In this example, the complete result of a P 2NN query under object based
result semantics is {({A,B,C}, 0), ({A,B}, 0.04), ({A,C}, 0.06), ({B,C}, 0.90),
({A}, 0), ({B}, 0), ({C}, 0), ({∅}, 0)}.
Clearly, the result of a query using result based result semantics can be used to derive
the result of an identical query using object based result semantics. For instance, the
result of Example 5 implies that the probability of object A to be a 2NN of q is 0.10,
since there exists two possible results using result based result semantics, namely
({A,B}, 0.04) and ({A,C}, 0.06) having a total probability of 0.04 + 0.06 = 0.1,
which matches the result of Example 4.

Lemma 1 Let q be the query point of a probabilistic spatial φ query. It holds that
the result of this query using object based result semantics φOB(q,D) is functionally
dependent of the result of this query using result based result semantics. The set
PSφQOB(q,D) can be computed given only the set PSφQRB(q,D) as follows:

PSφQOB(q,D) = {(o, P (o))|o ∈ D ∧ P(o) =
∑

(r,P (r))∈PSφQRB(q,D),o∈r

P (r)}

Proof Let W denote the set of possible worlds of D, and let p(w ∈ W) denote the
probability of a possible world. Furthermore, let

wS⊆D := {w ∈ W|φ(q,w) = S}

denote the set of possible worlds such that φ(q,w) = S, i.e., such that the predicate
that a φ query using query object q returns set S holds. In each world w, query
q returns exactly one deterministic result PSφQRB(q,w). Thus, the sets wS⊆D
represent a complete and disjunctive partition of W, i.e., it holds that

W =
⋃

S⊆D
wS (14.5)

and

∀R, S ∈ P(D) : R = S ⇒ wR

⋂
wS = ∅. (14.6)
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Using Equations 14.5 and 14.6, we can rewrite Equation 14.4

P(o ∈ φOB(q,D)) =
∑

w∈W,o∈φ(q,w)

P (w)

as

P(o ∈ φOB(q,D)) =
∑

S∈P(D)

∑

w∈wS,o∈φ(q,w)

P (w).

By definition, query q returns the same result for each world in w ∈ wS . This
result contains object o if o ∈ S. Thus we can rewrite the above equation as

P(o) =
∑

S∈P(D),o∈S

P (S).

The probabilities P(S) are given by function PSφQRB(q,D). ��
In the above proof, we have performed a linear-time reduction of the problem

of answering probabilistic spatial queries using object based result semantics to
the problem of answering probabilistic spatial queries using result based result
semantics. Thus, we have shown that, except for a linear factor (which can be
neglected for most probabilistic spatial query types, since most algorithm run in no
better than log-linear time), the problem of answering a probabilistic spatial query
using result based result semantics is at least as hard as answering a probabilistic
spatial query using object based semantics.

To summarize this section, we have learned about two different semantics to
interpret the result of a spatial query on uncertain data: Object Based and Result
Based. Understanding the difference of both result semantics is paramount to
understand the landscape of existing research: in some related publication the
problem of answering some probabilistic query may be proven to be in #P , while
another publication gives a solution that lies in P -TIME for the same spatial query
predicate and the same probabilistic query predicate. In such cases, different result
semantics may explain these results without assuming P = NP .

14.6 Probabilistic Query Predicates

Generally, in an uncertain database, the question whether an object satisfies a
given query predicate φ, such as being in a specified range or being a kNN of
a query object, cannot be answered deterministically due to uncertainty of object
locations. Due to this uncertainty, the predicate that an object satisfies φ is a random
variable, having some (possibly zero, possibly one) probability. A probabilistic
query predicate quantifies the minimal probability required for a result to qualify as
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a result that is sufficiently significant to be returned to the user. This section formally
define probabilistic query predicate for general query predicates. The following
definition are made for uncertain data in general, but can be applied analogously
for uncertain spatial data.

A probabilistic query can be defined without any probabilistic query predicate.
In this case, all objects, and their respective probabilities are returned.

Definition 5 (Probabilistic Query) Let D be an uncertain database, let q be a
query point and let φ be a query predicate. A probabilistic query φ(q,D) returns all
database objects o ∈ D together with their respective probability P(o ∈ φ(q,D))

that o satisfies φ.

φ(q,D) = {(o ∈ D, P (o ∈ φ(q,D)))} (14.7)

The term probabilistic query is simply derived from the fact that unlike a
traditional query, a probabilistic query result has probability values associated with
each result. The main challenge of answering a probabilistic query, is to compute
the probability P(o ∈ φ(q,D)) for each object. Using possible world semantics,
a probabilistic query can be answered by evaluating the query predicate for each
object and each possible world, i.e.,

P(o ∈ φ(q,D)) :=
∑

w∈Wfind (φ,w)·P(w)

.

But clearly, it is necessary to avoid the combinatorial growth that would be
induced by this “naive” evaluation method.

Example 6 For example, consider the query “Return all friends of user q having a
spatial distance of less than 100m to q” depicted in Fig. 14.8. Thus, the predicate
φ is a 100 m-range predicate using query point q. We can deterministically tell that
friend A must be within ε = 100 m Euclidean distance of q, while friends E and
F cannot possibly be in range. The pairs (A, 1), (E, 0) and (F, 0) are added to the
result. For friends B, C and D, this predicate cannot be answered deterministically.
Here, friend B has some possible positions located inside the 100 m range of q,
while other possible positions are outside this range. The two locations inside q’s
range have a probability of 0.1 and 0.2, respectively, thus the total probability of
object B to satisfy the query predicate is 0.1 + 0.2 = 0.3. The pair (B, 0.3)

is thus added to the result. The pairs (C, 0.2) and (D, 0.9) complete the result
100 m-range(q,D) = {(A, 1), (B, 0.3), (C, 0.2), (D, 0.9), (E, 0), (F, 0)}.

The immediate question in the above example is: “Is a probability of 0.3
sufficient to warrant returning B as a result?”. To answer this question, a prob-
abilistic query can explicitly specify a probabilistic query predicate, to specify the
requirements, in terms of probability, required for an object to qualify to be included
in the result. The following subsections briefly survey the most commonly used
probabilistic query predicates: probabilistic threshold queries and probabilistic Topk

queries.
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Fig. 14.8 Example of an uncertain ε-range query. Object A is a true hit, objects B, C and D are
possible hits

14.6.1 Probabilistic Threshold Queries

This paragraph defines a probabilistic query predicate that allows to return only
results that are statistically significant.

Definition 6 (Probabilistic Threshold Query(PτQ)) Let D be an uncertain (spa-
tial) database, let q be a spatial query object, let 0 ≤ τ ≤ 1 be a real value and let φ

be a spatial query predicate. A probabilistic τ query (PτQ) returns all objects o ∈ D
such that o has a probability of at least τ to satisfy φ(q,D):

Pτφ(q,D) := {o ∈ D|P(o ∈ φ(q,D)) ≥ τ }.

Example 7 In Fig. 14.8, a probabilistic threshold 100 m-range(q,D) query with τ =
0.5 query returns the set of objects P 0.5 100 m-range(q,D) = {A,D}, since objects
A and D are the only objects such that their total probability of alternatives inside
the query region is equal or greater to τ = 0.5.

Semantically, a probabilistic threshold spatial query returns all results having a
statistically significant probability to satisfy the query predicate. Therefore, the
probabilistic threshold query serves as a statistical test of the hypothesis “o is a
result” at a significance level of τ . This test uses the probability P(o ∈ φ(q,D)) as
a test statistic. Efficient algorithms to compute this probability P(o ∈ φ(q,D)), for
the example of kNN and similarity ranking queries will be surveyed in Sect. 14.8
similarity ranking queries and RkNN queries.
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A probabilistic threshold query on uncertain spatial data is useful in applications,
where the parameters of the spatial predicate τ (e.g. the range of an ε-range query, or
the parameter k of a kNN query), as well as the probabilistic threshold τ are chosen
wisely, requiring expert knowledge about the database D. If these parameters are
chosen inappropriately, no results may be returned, or the set of returned result may
grow too large. For example, if τ is chosen very large, and if the database has a
high grade of uncertainty, then no result may be returned at all. Analogously, if the
parameter ε is chosen too small then no result will be returned, while a too large
value of ε may return all objects. The special case of having ε = 0, i.e., the case of
returning all possible results (having a non-zero probability), is often used as default
if no other probabilistic query predicate is specified (e.g. Soliman et al. 2007; Yi
et al. 2008a). This case may be referred to as a possibilistic query predicate, as all
possible results (regardless of their probability) are returned.

14.6.2 Probabilistic Topk Queries

In cases where insufficient information is given to select appropriate parameter
values, the following probabilistic query predicate is defined to guarantee that only
the k most significant results are returned.

Definition 7 (Probabilistic Topk Query (PTopkQ)) Let D be an uncertain spatial
database, let q be a spatial query object, let 1 ≤ k ≤ |D| be a positive integer, and let
φ be a spatial query predicate. A probabilistic spatial Topk query (PTopkQ) returns
the smallest set PTopkφ(q,D) of at least k objects such that

∀Ui ∈ PTopkφ(q,D), Uj ∈D\PTopkφ(q,D) :P(Ui ∈ φ(q,D)) ≥P(Uj ∈ φ(q,D))

Thus, a probabilistic spatial Topk query returns the k objects having the highest
probability to satisfy the query predicate. Again, in case of ties, the resulting set
may be greater than k.

Example 8 In Fig. 14.8, a PTop3 φ query using a φ = 100 m-range spatial predicate
returns objects PT op3 100 m-range(q,D) = {A,B,D}, since these objects have
the highest probability to satisfy the spatial predicate, i.e., have the highest
probability to be located in the spatial 100 m-range.

Note, that the probabilistic Topk query predicate can be combined with a kNN

spatial query, i.e., with the case where φ = kNN . Such a probabilistic Topk jNN

query returns the set of k objects having the highest probability, to be j -nearest
neighbor of the query object. Clearly, k and j may have different integer values,
such that differentiation is needed.
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14.6.3 Discussion

In summary, a probabilistic spatial query is defined by two query predicates:

– A spatial predicate φ to select uncertain objects having sufficiently high proximity
to the query object, and

– a probabilistic predicate ψ , to select uncertain objects having sufficiently high
probability to satisfy φ.

It has to be mentioned, that alternatively to this definition, a single predicate can
be used, that combines both spatial and probabilistic features. For example, a
monotonic score function can be utilized, which combines spatial proximity and
probability to return a single scalar score. An example of such a monotone score
function is the expected distance function

E(dist(q, U ∈ D)) =
∑

u∈U

P (u) · dist(q, u),

where q is the query object, and D is an uncertain database. The expected support
function is utilized by a number of related publications, such as Ljosa and Singh
(2007) and Cormode et al. (2009b). Using such a monotone score function, objects
with a sufficiently high score can be returned. The advantage of using such an
approach, is that objects that are located very close to the query require a lower
probability to be returned as a result, while objects that are located further away
from the query object require a higher probability. Yet, the main problem of such
a combined predicate, is that the probability of an object is treated as a simple
attribute, thus losing its probabilistic semantic. Thus, the resulting score is very
hard to interpret. An object that has a high score, may indeed have a very low
probability to exist at all, because it is located (if it exists) very close to the query
object. Consequently, the score itself no longer contains any confidence information,
and thus, it is not possible to answer queries according to possible world semantics
using a single aggregate, such as expected distance, only.

14.7 The Paradigm of Equivalent Worlds

In Sect. 14.3 the concept of possible world semantics has been introduced. Possible
world semantics give an intuitive and mathematically sound interpretation of an
uncertain spatial database. Furthermore, queries that adhere to possible world
semantics return unbiased results, by evaluating the query on each possible world.
Since any such approach requires to run queries on an exponential number of worlds,
any naive approach is infeasible. Yet, for specific settings, such as specific result-
based semantics, specific spatial query predicates and specific probabilistic query
predicates, the literature has shown that it is possible to efficiently answer queries
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on uncertain data. While it is hardly feasible to enumerate all combinations of
result-based semantics, spatial query predicates and probabilistic query predicates,
this section introduces a general paradigm to find such a solution yourself. In a
nutshell, the idea is to find, among the exponentially large set of possible worlds, a
partitioning into a polynomially large number of subsets, which are equivalent for a
given query.

14.7.1 Equivalent Worlds

The goal of this section is introduce a general paradigm to efficiently compute exact
probabilities, while still adhering to possible world semantics. For this purpose,
reconsider Definition 2, defining the probability that some predicate φ is satisfied
in an uncertain database D as the total probability of all possible worlds satisfying
φ. Recall Equation 14.3

P(φ(D)) =
∑

w∈W
I(φ,w) · P(w),

where W is the set of all possible worlds; I(φ,w) is an indicator function that
returns one if predicate φ holds (i.e., resolves to true) in the crisp database defined
by world w and zero otherwise, and P(w) is the probability of world w. To reduce
the number of possible worlds that need to be considered to compute P(φ(D)), we
first need the following definition.

Definition 8 (Class of Equivalent Worlds) Let φ be a query predicate and let S ⊆
W be a set of possible worlds such that for any two worlds w1, w2 ∈ S we can
guarantee that φ holds in world w1 if an only if φ holds in world w2, i.e.,

∀w1, w2 ∈ S : I(φ,w1) ⇔ I(φ,w2)

Then set S is called a class of worlds equivalent with respect to φ. In the
remainder of this chapter, if the spatial query predicate φ is clearly given by the
context, then S will simply be denoted as a class of equivalent worlds. Any worlds
wi,wj ∈ S are denoted as equivalent worlds.

We now make the following observation:

Corollary 1 Let S ⊆ W be a class of worlds equivalent with respect to φ

(cf. Definition 8), we can rewrite Equation 14.3 as follows:

P(φ(D)) =
∑

w∈W
I(φ,w) · P(w) ⇔
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P(φ(D)) =
∑

w∈W\S
I(φ,w) · P(w) + I(φ,w ∈ S) ·

∑

w∈S

P (w). (14.8)

Proof Due to the assumption that for any two worlds w1, w2 ∈ S it holds that φ

holds in world w1 if an only if φ holds in world w2, we get I(φ,w1) = 1 ⇔
I(φ,w2) = 1 and I(φ,w1) = 0 ⇔ I(φ,w2) = 0 by definition of function I. Due
to this assumption, we have to consider two cases.

Case 1: ∀w ∈ S : I(φ,w) = 0
In this case, both Equations 14.3 and 14.8 can be rewritten as

P(φ(D)) =
∑

w∈W\S
I(φ,w) · P(w).

Case 2: ∀w ∈ S : I(φ,w) = 1
In this case, both Equations 14.3 and 14.8 can be rewritten as

P(φ(D)) =
∑

w∈W\S
I(φ,w) · P(w) +

∑

w∈S

P (w)

��
The only difference between both cases is the additive term

∑
w∈S P (w), which

exists only in Case 2. The indicator function I(φ,w ∈ S) ensures that this term is
only added in the second case. As main purpose, Corollary 1 states that, given a set
of equivalent worlds S, we only have to evaluate the indictor function I(φ,w) on a
single representative world w ∈ S, rather than on each world in S. This allows to
reduce the number of (crisp) φ queries required to compute Equation 14.3 by |S|−1.

Corollary 1 leads to the following Lemma.

Lemma 2 Let S be a partitioning of W into disjoint sets such that
⋃

S∈S S = W
and for all S1, S2 ∈ S : S1 ∩ S2 = ∅. Equation 14.3 can be rewritten as

P(φ(D)) =
∑

w∈W
I(φ,w) · P(w) ⇔

P(φ(D)) =
∑

S∈S
I(φ,w ∈ S) ·

∑

w∈S

P (w). (14.9)

Proof Lemma 2 is derived by applying Corollary 1 once for each S ∈ S. ��
The next subsection will show how to leverage Lemma 2 to partition the set of all
possible worlds into equivalence classes that are guaranteed to have the same result
for a given query predicate, and how to exploit this partitioning to efficiently answer
queries.
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Fig. 14.9 Summary of the paradigm of equivalent worlds

14.7.2 Exploiting Equivalent Worlds for Efficient Algorithms

Given a partitioning S of all possible worlds, Equation 14.9 requires to perform
the following two tasks. The first task requires to evaluate the indicator function
I(φ,w ∈ S) for one representative world of each partition. This can be achieved
by performing a traditional (non-uncertain) φ query on these representatives. The
final challenge is to efficiently compute the total probability P(S) := ∑

w∈S P (w)

for each equivalent class S ∈ S. This computation must avoid an enumeration of
all possible worlds, i.e., must be in o(|S|).2 Achieving an efficient computation is
a creative task, and usually requires to exploit properties of the model (such as
object independence) and properties of the spatial query predicate. The paradigm
of equivalent worlds is illustrated and summarized in Fig. 14.9. In the first step,
set of all possible worlds W, which is exponential in the number N of uncertain
objects, has to be partitioned into a polynomial large set of classes of equivalent
worlds, such that all worlds in the same class are guaranteed to be equivalent given
the query predicate φ. This yields a the set C = {C1, C2, . . . , Ck} of classes of
equivalent worlds. To allow efficient processing, this set must be polynomial in size,

2Note that if an exponential large set is partitioned into a polynomial number of subsets, then at
least one such subset must have exponential size. This is evident considering that O( 2n

poly(n)
) =

O(2n).
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since each class has to be considered individually in the following. Next, we require
to compute the probability of each class Ci , without enumeration of all possible
worlds contained in Ci , the number of which may still be exponential. In fact, at
least one class Ci must contain O(2N) possible worlds. Next, we need to decide,
for each class Ci , whether all worlds w ∈ Ci satisfy the query predicate φ, or
whether no world w ∈ Ci satisfies φ. Due to equivalence of all possible worlds
in Ci , these are the only possible cases. For some query predicates, this decision
can be made using special properties of the query predicate, as we will see later
in this chapter. In the general case, this decision can be made by choosing one
representative world w ∈ Ci (e.g. at random) from each class Ci , and evaluating the
query predicate on this world. This yields at total run-time of O(|C|) · O(I(φ,w)),
where I(φ,w) is the time complexity of evaluating the query predicate φ on the
certain database w. If this query predicate can be evaluated in polynomial time,
i.e., if O(I(φ,w)) ∈ O(poly(N)), then the total run-time is in O(poly(N)).
This is evident, since if O(C) is in O(poly(N)), then O(C) · O(I(φ,w)) is in
O(poly(N)) · O(poly(N)) which is in O(poly(N)). For each class Ci , where the
representative world satisfies φ, the corresponding probability P(Ci) is added to the
result probability.

The following lemma summarizes the assumptions that a query predicate has to
satisfy in order to efficiently apply paradigm of finding equivalent worlds.

Lemma 3 Given a query predicate φ and an uncertain database D of size N :=
|DB|, we can answer φ onD in polynomial time if the following four conditions are
satisfied:

I A traditional ψ query on non-uncertain data can be answered in polynomial
time.

II we can identify a partitioning C of W into classes C ∈ C of equivalent worlds
(see Definition 8).

III The number |C| of classes is at most polynomial in N .
IV The the total probability of a class S ∈ C can be computed in at most polynomial

time.

Proof Answering a φ query on D requires to evaluate Equation 14.3 which we
reformed into Equation 14.9 using Property II. This requires to iterate over all |C|
classes of equivalent worlds in polynomial time due to Property III. For each class
C ∈ C, this requires to perform two tasks. The first task requires to compute the total
probability of all worlds in C, and the second task requires to evaluate φ on a single
possible world w ∈ C. The former task can be performed in polynomial time due to
Property IV. The later task requires to perform a crisp φ query on the (crisp) world
w in polynomial time due to Property I. ��
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14.8 Case Study: Range Queries and the Sum
of Independent Bernoulli Trials

In this chapter, the paradigm of equivalent worlds will be applied to efficiently solve
the problem of computing the number of uncertain objects located within a specified
range.

Example 9 As an example, consider the setting depicted in Fig. 14.8. In this
example, we have four objects, A, B, C, and D having probabilities of 1.0, 0.3,
0.2, and 0.9 of being located inside the query region defined by query location q

and query range ε. Intuitively, the number of objects in this range can be anywhere
between one and four, as only object A is guaranteed to be inside the range, while on
B, C, and D have a chance to be inside this range among all other objects. How can
we efficiently compute the distribution of this number of objects inside the query
range? What is the probability of having exactly one, two, three or four object in the
range? Intuitively, the number of objects corresponds depends on the result of three
“coin-flips”, each using a coin with a different bias of flipping heads.

Each such “coin-flip” is a Bernoulli trial, which may have a successful (“heads”) of
unsuccessful (“tails”) outcome. In the case where all Bernoulli trials have the same
probability p, the number of successful trials out of N trials is described by the
well-known binomial distribution. In the case where each trial may have a different
probability to succeed, the number of successful trials follows a Poisson-binomial
distributions (Hoeffding et al. 1956).

Formally, let X1, . . . , XN be independent and not necessarily identically dis-
tributed Bernoulli trials, i.e., random variables that may only take values zero and
one. Let pi := P(Xi = 1) denote the probability that random variable Xi has value
one. In this section, we will show how to efficiently compute the distribution of the
random variable

N∑

i=1

Xi

without enumeration of all possible worlds. That is, for each 0 ≤ k ≤ N , this
section shows how to compute the probability P(

∑N
i=1 Xi = k) that exactly k trials

are successful.
This section shows two commonly used solutions to compute the distribution

of
∑

i Xi efficiently: The Poisson-binomial recurrence, and a technique based on
generating functions. Both solutions have in common that they identify worlds that
are equivalent to the query predicate.
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Fig. 14.10 Deterministic finite automaton corresponding to the problem of the sum of independent
Bernoulli trials

14.8.1 Poisson-Binomial Recurrence

The first approach iteratively computes the distribution of the sum of the first
1 ≤ k ≤ N Bernoulli variables given the distribution of the sum of the first k − 1
Bernoulli variables.

To gain an intuition of how to do this efficiently, consider the deterministic finite
automaton depicted in Fig. 14.10.3 The states (i/j) of this automaton correspond to
the random event that out of the first j Bernoulli trials X1, . . . , Xj , exactly i trials
have been successful. Initially, zero Bernoulli trials have been performed, out of
which zero (trivially) were successful. This situation is represented by the initial
state (0/0) in Fig. 14.10. Evaluating the first Bernoulli trial X1, there is two possible
outcomes: The trial may be successful with a probability of p1, leading to a state
(1/1) where one out of one trials have been successful. Alternatively, the trial may
be unsuccessful, with a probability of 1−p1, leading to a state (0/1) where zero out
of one trial have been successful. The second trial is then applied to both possible
outcomes. If the first trial has not been successful, i.e., we are currently located in
state (0/1), then there is again two outcomes for the second Bernoulli trial, leading
to state (1/2) and (0/2) with a probability of p2 and 1−p2 respectively. If currently
located in state (0/1), the two outcomes are state (2/2) and state (1/2) with the same
probabilities. At this point, we have unified two different possible worlds that are

3Note that this automaton is deterministic, despite the process of choosing a successor node being a
random event. Once the Bernoulli trial corresponding to a node has been performed, the next node
will be chosen deterministically, i.e., the upper node will be chosen if the trial was successful, and
the right node will be chosen otherwise. Either way, there is exactly one successor node.
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equivalent with respect to
∑

i Xi : The world where trial one has been successful
and trial two has not been successful, and the world where trial one has not been
successful and trial two has been successful have been unified into state (1/2),
representing both worlds. This unification was possible, since both paths leading
to state (1/2) are equivalent with respect to the number of successful trials.

The three states (0/2), (1/2) and (2/2) are then subjected to the outcome of
the third Bernoulli trial, leading to states (0/3), (1/3), (2/3) and (3/3). That is a
total of four states for a total of 23 = 8 possible worlds. In summary, the number

of states in Fig. 14.10 equals N2

2 . However, it is not yet clear how to compute the
probability of a state (i/j) efficiently. Naively, we have to compute the sum over all
paths leading to state (i/j). For example, the probability of state (2/3) is given by
p1 · p2 · (1 − p3) + p1 · (1 − p2) · p3 + (1 − p1) · p2 · p3. This naive computation
requires to enumerate all

(
j
p3

)
combinations of paths leading to state (i/j).

For an efficient computation, we make the following observation: Each state of
the deterministic finite automaton depicted in Fig. 14.10 has at most two incoming
edges. Thus, to compute the probability of a state (i/j), we only require the
probabilities of states leading to (i/j). The states leading to state (i/j) are state
(i − 1/j − 1) and state (i/j − 1). Given the probabilities P(i − 1/j − 1) and
P(i/j − 1), we can compute the probability P(i/j) of state (i/j) as follows:

P(i/j) = P(i − 1/j − 1) · pj + P(i, j − 1) · (1 − pj ) (14.10)

where

P(0/0) = 1 and P(i/j) = 0 if i > j or if i < 0.

Equation 14.10 is known as the Poisson-Binomial Recurrence (To the best of our
knowledge, the Poisson binomial recurrence was first introduced by Lange 1999)
and can be used to compute the probabilities of states (k/N), 0 ≤ k ≤ N which
by definition, correspond to the probabilities P(

∑
i=1N Xi = k) that out of all N

Bernoulli trials, exactly k trials are successful.
This approach follows the paradigm of equivalent worlds in each iteration k:

The set of all 2k possible worlds is partitioned into k + 1 equivalent sets, each
corresponding to a state i/k, where i ≤ k. Each class contains only and all of the

(
k
i

)

possible worlds where exactly i Bernoulli trails succeeded. The information about
the particular sequence of the successful trials, i.e., which trials were successful and
which were unsuccessful is lost. This information however, is no longer necessary to
compute the distribution of

∑N
i=0 Xi , since for this random variable, we only need

to know the number of successful trials, not their sequence. This abstraction allows
to remove the combinatorial aspect of the problem.

An example showcasing the Poisson binomial recurrence is given in the follow-
ing.

Example 10 Let N = 4 and let p1 = 0.1, p2 = 0.2, p3 = 0.3 and p4 = 0.4.
The corresponding DFA is depicted in Fig. 14.11. The probability of state (0/0) is
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Fig. 14.11 Example deterministic finite automaton for a total of four Bernoulli random variables

explicitly set to 1.0 in Equation 14.10. To compute the probability of state (0/1), we
apply Equation 14.10 to compute

P(0/1) = P(−1/0) · p1 + P(0/0) · (1 − p1).

with P(−1/0) = 0 and P(0/0) = 1 explicitly defined in Equation 14.10 this yields

P(0/1) = 0 · p1 + 1 · (1 − p1) = 0.9

Analogously, we obtain

P(1/1) = P(0/0) · p1 + P(1/0) · (1 − p1) = 1 · p1 = 0.1

Using these initial probabilities, we can continue to compute

P(0/2) = P(−1/1) · p2 + P(0/1) · (1 − p2) = 0 · 0.2 + 0.9 · 0.8 = 0.72

P(1/2) = P(0/1) · p2 + P(1/1) · (1 − p2) = 0.9 · 0.2 + 0.1 · 0.8 = 0.26

P(2/2) = P(1/1) · p2 + P(2/1) · (1 − p2) = 0.1 · 0.2 + 0 · 0.8 = 0.02

The probabilities P(i/2), 0 ≤ i ≤ 2 can be used to compute

P(0/3) = P(−1/2) · p3 + P(0/2) · (1 − p3) = 0 · 0.3 + 0.72 · 0.7 = 0.504

P(1/3) = P(0/2) · p3 + P(1/2) · (1 − p3) = 0.72 · 0.3 + 0.26 · 0.7 = 0.398
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P(2/3) = P(1/2) · p3 + P(2/2) · (1 − p3) = 0.26 · 0.3 + 0.02 · 0.7 = 0.092

P(3/3) = P(2/2) · p3 + P(3/2) · (1 − p3) = 0.02 · 0.3 + 0 · 0.7 = 0.006

Finally, these probabilities can be used to derive the final distribution of the
random variable

∑4
i=1 Xi :

P(0/4) = P(−1/3) · p4 + P(0/3) · (1 − p4) = 0 · 0.4 + 0.504 · 0.6 = 0.3024

P(1/4) = P(0/3) · p4 + P(1/3) · (1 − p4) = 0.504 · 0.4 + 0.398 · 0.6 = 0.4404

P(2/4) = P(1/3) · p4 + P(2/3) · (1 − p4) = 0.398 · 0.4 + 0.092 · 0.6 = 0.2144

P(3/4) = P(2/3) · p4 + P(3/3) · (1 − p4) = 0.092 · 0.4 + 0.006 · 0.6 = 0.0404

P(4/4) = P(3/3) · p4 + P(4/3) · (1 − p4) = 0.006 · 0.4 + 0 · 0.6 = 0.0024

These probabilities describe the PDF of
∑4

i=1 Xi by definition of P(i/j).

14.8.1.1 Complexity Analysis

To compute the distribution of
∑

i Xi we require to compute each probability P(i/j)

for 0 ≤ j ≤ N, i ≤ j , yielding a total of N2

2 ∈ O(N2) probability computations. To
compute any such probability, we have to evaluate Equation 14.10, which requires
to look up four probabilities P(i − 1/j − 1), P(i/j − 1), pj and 1 − pj , which can
be performed in constant time. This yields a total runtime complexity of O(N2).
The O(N2) space complexity required to store the matrix of probabilities P(i/j)

for 0 ≤ j ≤ N, i ≤ j can be reduced to O(N ·k) by exploiting that in each iteration
where the probabilities P(i/k), 0 ≤ i ≤ k are computed, only the probabilities
P(i/k − 1), 0 ≤ i ≤ k − 1 are required, and the result of previous iterations can be
discarded. Thus, at most N probabilities have to be stored at a time.

14.8.2 Generating Functions

An alternative technique to compute the sum of independent Bernoulli variables
is the generating functions technique. While showing the same complexity as the
Poisson binomial recurrence, its advantage is its intuitiveness.

Represent each Bernoulli trial Xi by a polynomial poly(Xi) = pi · x + (1 − pi).
Consider the generating function
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FN =
N∏

i=1

poly(Xi) =
N∑

i=0

cix
i . (14.11)

The coefficient ci of xi in the expansion of FN equals the probability
P(

∑N
n=1 Xn = i) (Li and Deshpande 2009). For example, the monomial 0.25 · x4

implies that with a probability of 0.25, the sum of all Bernoulli random variables
equals four.

The expansion of N polynomials, each containing two monomials leads to a total
of 2N monomials, one monomial for each sequence of successful and unsuccessful
Bernoulli trials, i.e., one monomial for each possible worlds. To reduce this
complexity, again an iterative computation of FN , can be used, by exploiting that

Fk = Fk−1 · poly(Xk). (14.12)

This rewriting of Equation 14.11 allows to inductively compute Fk from Fk−1.
The induction is started by computing the polynomial F0, which is the empty
product which equals the neutral element of multiplication, i.e., F0 = 1. To
understand the semantics of this polynomial, the polynomial F0 = 1 can be
rewritten as F0 = 1 · x0, which we can interpret as the following tautology:“with
a probability of one, the sum of all zero Bernoulli trials equals zero.” After each
iteration, we can unify monomials having the same exponent, leading to a total of
at most k + 1 monomials after each iteration. This unification step allows to remove
the combinatorial aspect of the problem, since any monomial xi corresponds to a
class of equivalent worlds, such that this class contains only and all of the worlds
where the sum

∑N
k=1 Xk = 1. In each iteration, the number of these classes is k and

the probability of each class is given by the coefficient of xi .
An example showcasing the generating functions technique is given in the

following. This examples uses the identical Bernoulli random variables used in
Example 10.

Example 11 Again, let N = 4 and let p1 = 0.1, p2 = 0.2, p3 = 0.3 and p4 = 0.4.
We obtain the four generating polynomials poly(X1) = (0.1x + 0.9), poly(X2) =
(0.2x + 0.8), poly(X3) = (0.3x + 0.7), and poly(X4) = (0.4x + 0.6). We trivially
obtain F0 = 1. Using Equation 14.12 we get

F1 = F0 · poly(X1) = 1 · (0.1x + 0.9) = 0.1x + 0.9.

Semantically, this polynomial implies that out of the first one Bernoulli variables,
the probability of having a sum of one is 0.1 (according to monomial 0.1x=0.1x1),
and the probability of having a sum of zero is 0.9 (according to monomial 0.9 =
0.9x0. Next, we compute F 2, again using Equation 14.12:

F2 = F1 · poly(X2) = (0.1x1 + 0.9x0) · (0.2x1 + 0.8x0) =

0.02x1x1 + 0.08x1x0 + 0.18x0x1 + 0.72x0x0
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In this expansion, the monomials have deliberately not been unified to give an
intuition of how the generating function techniques is able to identify and unify
equivalent worlds. In the above expansion, there is one monomial for each possible
world. For example, the monomial 0.18x0x1 represents the world where the first
trial was unsuccessful (represented by the zero of the first exponent) and the second
trial was successful (represented by the one of the second exponent). The above
notation allows to identify the sequence of successful and unsuccessful Bernoulli
trials, clearly leading to a total of 2k possible worlds for Fk . However, we know
that we only need to compute the total number of successful trials, we do not need
to know the sequence of successful trials. Thus, we need to treat worlds having the
same number of successful Bernoulli trials equivalently, to avoid the enumeration
of an exponential number of sequences. This is done implicitly by polynomial
multiplication, exploiting that

0.02x1x1 +0.08x1x0 +0.18x0x1 +0.72x0x0 = 0.02x2 +0.08x1 +0.18x1 +0.72x0

This representation no longer allows to distinguish the sequence of successful
Bernoulli trials. This loss of information is beneficial, as it allows to unify possible
worlds having the same sum of Bernoulli trials.

0.02x2 + 0.08x1 + 0.18x1 + 0.72x0 = 0.02x2 + 0.26x1 + 0.72x0

The remaining monomials represent an equivalence class of possible worlds. For
example, monomial 0.26x1 represents all worlds having a total of one successful
Bernoulli trials. This is evident, since the coefficient of this monomial was derived
from the sum of both worlds having a total of one successful Bernoulli trials. In the
next iteration, we compute:

F3 = F2 · poly(X3) = (0.02x2 + 0.26x1 + 0.72x0) · (0.3x + 0.7)

= 0.006x2x1 + 0.014x2x0 + 0.078x1x1 + 0.182x1x0 + 0.216x0x1 + 0.504x0x0

This polynomial represents the three classes of possible worlds in F2 combined
with the two possible results of the third Bernoulli trial, yielding a total of 32̇
monomials. Unification yields

0.006x2x1 + 0.014x2x0 + 0.078x1x1 + 0.182x1x0 + 0.216x0x1 + 0.504x0x0 =

0.006x3 + 0.092x2 + 0.398x1 + 0.504

The final generating function is given by

F4 = F3 · poly(X4) =

(0.006x3 + 0.092x2 + 0.398x1 + 0.504) · (0.4x + 0.6) =
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.0024x4 + .0036x3 + .0368x3 + .0552x2 + .1592x2 + .2388x1 + .2016x1 + .3024x0

= 0.0024x4 + 0.0404x3 + 0.2144x2 + 0.4404x + 0.3024

This polynomial describes the PDF of
∑4

i=1 Xi , since each monomial cix
i

implies that the probability, that out of all four Bernoulli trials, the total number
of successful events equals i, is ci . Thus, we get P(

∑4
i=1 Xi = 0) = 0.0024,

P(
∑4

i=1 Xi = 1) = 0.0404, P(
∑4

i=1 Xi = 2) = 0.2144, P(
∑4

i=1 Xi = 3) =
0.4404 and P(

∑4
i=1 Xi = 4) = 0.3024. Note that this result equals the result we

obtained by using the Poisson binomial recurrence in the previous section.

14.8.2.1 Complexity Analysis

The generating function technique requires a total of N iterations. In each iteration
1 ≤ k ≤ N , a polynomial of degree k, and thus of maximum length k + 1, is
multiplied with a polynomial of degree 1, thus having a length of 2. This requires to
compute a total of (k + 1) · 2 monomials in each iteration, each requiring a scalar
multiplication. Thus leads to a total time complexity of

∑N
i=1 2k + 2 ∈ O(N2)

for the polynomial expansions. Unification of a polynomial of length k can be
done in O(k) time, exploiting that the polynomials are sorted by the exponent
after expansion. Unification at each iteration leads to a O(n2) complexity for the
unification step. This results in a total complexity of O(n2), similar to the Poisson
binomial recurrence approach.

An advantage of the generating function approach is that this naive polynomial
multiplication can be accelerated using Discrete Fourier Transform (DFT). This
technique allows to reduce to total complexity of computing the sum of N Bernoulli
random variables to O(N log2N) (Li et al. 2011). This acceleration is achieved by
exploiting that DFT allows to expand two polynomials of size k in O(klogk) time.
Equi-sized polynomials are obtained in the approach of Li et al. (2011), by using
a divide and conquer approach, that iteratively divides the set of N Bernoulli trials
into two equi-sized sets. Their recursive algorithm then combines these results by
performing a polynomial multiplication of the generating polynomials of each set.
More details of this algorithm can be found in Li et al. (2011).

14.9 Advanced Techniques for Managing Uncertain Spatial
Data

The Paradigm of Equivalent worlds has been successfully applied to efficiently
support many spatial query predicates and spatial data mining tasks. These more
advanced techniques are out of scope of this book chapter, but the techniques
presented in this chapter should help the interested reader to dive deeper into
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understanding state-of-the-art solutions, and to help the reader to contribute to
this field. An overview of research directions on uncertain spatial is provided in
Table 14.2.

Efficient solutions on uncertain data have been presented for (1)-nearest neighbor
(1NN) queries (Cheng et al. 2004a, 2008; Kriegel et al. 2007; Iijima and Ishikawa
2009; Zhang et al. 2013; Niedermayer et al. 2013a; Schmid et al. 2017). The
case of 1NN is special, as for 1NN the cases of object-based and result-based
probabilistic result semantics are equivalent: Since a 1NN query only results a
single result object. Thus, the probability of any object to be part of the result is
equal the probability of this object to be the (whole) result. For k Nearest Neighbor
queries, this is not the case, as initially motivated in Fig. 14.2. For object-based
result semantics (as explained in Sect. 14.5), polynomial time solutions leveraging
the paradigm of equivalent worlds have been proposed (Bernecker et al. 2011a). For
result-based result semantics, where each of the (potentially exponential many in k)

Table 14.2 Advanced topics in querying and mining uncertain spatial data

Topic Related work

Nearest neighbor query processing Cheng et al. (2004a, 2008), Kriegel et al. (2007),
Iijima and Ishikawa (2009), Zhang et al. (2013),
Niedermayer et al. (2013a), and Schmid et al.
(2017)

k-nearest neighbor (kNN) query processing Kolahdouzan and Shahabi (2004), Beskales et al.
(2008), Cheng et al. (2009), and Bernecker et al.
(2011a)

Top-k query processing Re et al. (2007), Soliman et al. (2007), and Yi
et al. (2008b)

Ranking of uncertain spatial data Lian and Chen (2008b, 2009b), Bernecker et al.
(2008, 2010, 2012), Cormode et al. (2009b),
Soliman and Ilyas (2009), Li et al. (2009b), Dai
et al. (2005), and Hua et al. (2008)

Reverse kNN query processing Lian and Chen (2009a), Cheema et al. (2010),
Bernecker et al. (2011b), and Emrich et al. (2014)

Skyline query processing Pei et al. (2007), Lian and Chen (2008a), Vu and
Zheng (2013), Ding et al. (2014), and Yang et al.
(2018)

Indexing uncertain spatial data Zhang et al. (2009), Emrich et al. (2012a),
and Agarwal et al. (2009)

Maximum range-sum query processing Agarwal et al. (2018), Nakayama et al. (2017),
and Liu et al. (2019)

Querying uncertain trajectory data Emrich et al. (2012b), Niedermayer et al. (2013b),
and Zheng et al. (2011)

Clustering uncertain spatial data Schubert et al. (2015), Züfle et al. (2014), Ngai
et al. (2006), and Kriegel and Pfeifle (2005)

Frequent itemset and colocation mining Bernecker et al. (2009, 2012, 2013) and Wang
et al. (2011, 2012)
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results is associated with a probability, solutions have been presented in Beskales
et al. (2008) and Cheng et al. (2009).

A related problem is Top-k query processing which returns the k best result
objects for a given score function (Re et al. 2007; Soliman et al. 2007; Yi et al.
2008b). While these solution are not proposed in the context of spatial or spatio-
temporal data, they are mentioned here as they can be applied to spatial data. For
example, if the score function is defined as the distance to query object, this problem
becomes equivalent to kNN. Solutions for result-based probabilistic result semantics
are proposed in Soliman et al. (2007) and Re et al. (2007) and for object-based result
semantics in Yi et al. (2008b).

Another problem generalization are ranking queries, which return the Top-k
result ordered by score. For uncertain data using object-based result semantics, this
yields a probabilistic mapping of each database mapping to each rank for the case
of object-based result semantics. For example, it may return that object o1 has a
80% probability to be Rank 1, and a 20% probability to be Rank 2. In the case
of result-based probabilistic result semantics, each possible ranking of objects is
mapped to a probability, for example, the ranking [o1, o3, o2] may have a 10%
probability. Solutions for the result-based probabilistic result semantic case have
been proposed in Soliman and Ilyas (2009) having exponential run-time due to
the hard nature of this problem. For the case of object-based probabilistic result
semantics, first solutions having exponential run-time were proposed (Bernecker
et al. 2008; Lian and Chen 2008b). Applying the paradigm of equivalent worlds, a
number of solutions have been proposed concurrently and independently to achieve
polynomial run-time (linear in the number of database objects times the number of
ranks). The generating functions technique (as explained in Sect. 14.8) was proposed
for this purpose by Li et al. (2009b). An equivalent approach using a technique
called Poisson-Binomial Recurrence was simultaneously proposed by Bernecker
et al. (2010) and Hua et al. (2008). A comparison of the generating functions
technique and the Poisson Binomial Recurrence, along with a proof of equivalence,
can be found in Züfle (2013). Other works shown in Table 14.2 include solutions for
the case of existential uncertainty (Dai et al. 2005), inverse ranking (Lian and Chen
2009b), and spatially extended objects (Bernecker et al. 2012), and the computation
of the expected rank of an object. Cormode et al. (2009b). Solution for indexing of
uncertain spatial (Agarwal et al. 2009; Chen et al. 2017) and spatio-temporal (Zhang
et al. 2009; Emrich et al. 2012a) data have been proposed to speed up various of the
previously mentioned query types.

The problem of finding reverse k nearest neighbors (RkNNs) have been studied
for spatial data (Lian and Chen 2009a; Cheema et al. 2010; Bernecker et al. 2011b)
and spatio-temporal data (Emrich et al. 2014). Solutions for skyline queries on
uncertain data have been proposed in Pei et al. (2007), Lian and Chen (2008a),
Vu and Zheng (2013), Ding et al. (2014), and Yang et al. (2018). More recently, the
problem of answering Maximum Range-Sum Queries has been studied for uncertain
data (Agarwal et al. 2018; Nakayama et al. 2017; Liu et al. 2019).

Solutions tailored towards uncertain spatio-temporal trajectories, in which the
exact location of an object at each point in time is a random variable have been
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proposed (Emrich et al. 2012b; Niedermayer et al. 2013b; Zheng et al. 2011). In
this work, the challenge is to leverage stochastic processes that consider temporal
dependencies. Such dependencies describe that the location of an object at a time t

depends on its location at time t − 1.
Solutions for clustering uncertain data have been proposed (Schubert et al. 2015;

Züfle et al. 2014; Ngai et al. 2006; Kriegel and Pfeifle 2005). The challenge of
clustering uncertain data is that the membership likelihood of on uncertain object to
a cluster depends on other objects, making it hard to identify groups of worlds that
are guaranteed to yields the same clustering result.

Finally, solutions for frequent itemset mining have been proposed for uncertain
data (Bernecker et al. 2009, 2012, 2013; Wang et al. 2012). While frequent
itemset mining is not a spatial problem, it has applications in spatial co-location
mining (Wang et al. 2011; Chan et al. 2019).

Yet, many other spatial query predicates, as well as other probabilistic query
predicates using different probabilistic result semantics are still open to study. The
authors hopes that this chapter provides interested scholars with a starting point
to fully understand preliminaries and assumptions made by existing work, as well
as a general paradigm to develop efficient solutions for future work leveraging the
Paradigm of Equivalent Worlds presented herein.

14.10 Summary

This chapter provided an overview of uncertain spatial data models and the concept
of possible world semantics to interpret queries on these models. To understand the
landscape of existing query processing algorithms on uncertain data, this chapter
further surveyed different probabilistic result semantics and different probabilistic
query predicates. To give the interested reader a start into this field, this chapter
presented a general paradigm to efficiently query uncertain data based on the
Paradigm of Equivalent Worlds, which aims at finding possible worlds that are
guaranteed to have the same query result. As a case-study to apply this paradigm,
this chapter provided solutions to efficiently compute range queries on uncertain
data using an efficient recursion approach, as well as leveraging the concept of
generating functions.

Given this survey on modeling and querying uncertain spatial data, this chapter
further provided a brief (and not exhaustive) overview of some research directions
on uncertain spatial data. Many queries on uncertain data have already been solved
efficiently, but many new challenges arise. For instance, only limited work has
focused on streaming uncertain data, that is, handling uncertain data that changes
rapidly. Another mostly open research direction is uncertain data processing in
resources-limited scenarios such as edge computing. The author hopes that readers
will find this overview useful to help readers understanding existing solutions and
support readers towards adding their own research to this field.
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