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Preface

Spatial data form the backbone of many science and engineering investigations
and applications. For example, spatial data are fundamental to construction and
engineering, social sciences and life sciences, art and visualization, and many more
fields. In spatial data, the geometry component captures the concept of shape,
presence, movement, and similarity about things in space. In this book, we focus on
a particular type of spatial data: data that are suitable to understand various aspects
of the physical surroundings, either in a local environment or for the entire Earth.
Such data are known as geospatial data, as they are geometric data linked to things
in the physical world. Specifically, we focus on big geospatial data, a subdomain
within spatial data, which considers the computing technologies for handling large
datasets of geometry representing things on Earth (hence “geo”).

Due to the advent of mobile computing and GPS (global positioning system)
technologies, the location of mobile devices, including smartphones, cars, and assets
such as ships, containers, and more, can be determined without a high cost. The
implication of these mobile location data is potent. Still, it requires careful consider-
ations and technologies to understand and exploit the positive potential and mitigate
the risks of the negative potential of such data. On the one hand, such information
can be used to optimize logistics, increase the efficiency of transportation systems
in cities, and enhance personalized experiences for individual users. On the other
hand, ubiquitous location information can produce undesired applications, including
deanonymizing individuals, tracking user behavior unwillingly, and micro-targeting
commercials with fake news, for example, micro-targeting fake news that trick
people into spending money they would not have spent or (much worse) deceive
people to vote for certain politicians and political parties.

In addition to mobile location data, public and private satellites and in situ
measurements are continuously generating geospatial databases of unprecedented
sizes and accuracy. High-quality satellite missions with global coverage at limited
resolutions, like Landsat and Copernicus, provide us a global view of our planet
with pretty short update times (a few days) between individual acquisitions.
High-resolution satellites can provide centimeter-level geospatial observations with
typically either cheaper sensors building some constellation or less frequent visits
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vi Preface

of the same place on Earth. Airborne machines (plane, helicopter, drone) and street-
level measurement campaigns (streetview, urban mapping) provide targeted, highly
precise data describing selected aspects of the physical and natural environment.
Typically, the amount of collected/sensed data is so large, and we do not yet
understand the impact of the existence of these collections at all. For example,
what is the best use case for such data? Can we solve some of our most pressing
challenges, like feeding the world, fighting climate change, and fighting poverty,
using increased precision and detailed views of the Earth? Or are we going to
experience malicious use of these data first, such as predictive policing affected
by biases present in such observations limiting civil rights?

Yet another domain generating huge amounts of big geospatial data that have
provenly affected our democratic elections at least once (though there is a debate
about how much actually) is the domain of social media. Social media datasets
with location information represent the connection of where people are (accessible
from their smartphones) with what they want to communicate (content) and to
whom (their social network). This domain generates impressive amounts of data
and enables positive and negative use cases.

The previous paragraphs have shown that our societies are currently facing a
significant challenge: we are collecting huge amounts of location data and do not
yet understand the impact. We hope that the positive use of these data will outweigh
the risks, but we cannot be sure. Therefore, research on the technologies for making
use of spatial data is crucial, especially in the context of big data where the sheer
amount of data allows for advanced processing, including machine learning and
data mining. However, spatial data are highly heterogeneous, and, therefore, many
interdisciplinary islands do exist, each of which is having their ideals, languages,
problems, and cultures. The various fundamental theories of spatial computing come
from both computer science and spatial science, which presents a challenge for
working with spatial data as there are not many truly interdisciplinary collections of
knowledge that can serve as a starting point. Very often, these fundamental theories
can be hidden from the applications, since they are not at all easy to access or
understand for the users who approach spatial computing from an applied setting.
Also, there are many domains in which spatial data are generated and processed
for specific applications. This leads to the fact that significant developments in
spatial computing are being published in separate domains, not directly accessible or
transferrable to other domains. As a result, the same techniques often are developed
multiple times.

In the context of the ACM SIGSPATIAL GIS conference in 2017, we concluded
that a collection of a diverse set of articles from the various subfields of our com-
munity with strong ties to spatial computing would be beneficial for many research
communities that use spatial data. This collection will provide a forum in which
our research topics can be discussed and made accessible across boundaries. In this
setting, we have asked our colleagues to provide book chapters in which various
topics of spatial computing are explained in a didactic setting while still allowing
for presenting new research results. The selected chapters are organized into several
sections to provide an overview of big geospatial data. Each chapter represents a



Preface vii

unique contribution from expert researchers within their own traditionally isolated
disciplines and provides a medium for them to write from their view of the topic.
These disciplines include mathematics, computational geometry, machine learning,
statistics, remote sensing, smart cities, indoor navigation, politics, big data, and
social media analytics, to name a few. We hope that the book will further facilitate
interdisciplinary dialogue so that all disciplines working with big geospatial data
can understand each other a bit better.

In summary, this book is intended to be an initial contribution to shed light on
how spatial data could improve our lives and, at the same time, how they could harm
our societies. The book consists of contributions of more than 70 authors writing
a total of more than 600 pages aiming at helping to increase the interdisciplinary
understanding of big geospatial data for future collaboration and evolution of the
field.

Overview of the Book

We organized the book into five topic areas aiming to differentiate the nature of the
chapters and the mindset of the authors. The first Part, Spatial Computing Systems
and Applications, introduces the topic of big geospatial data by presenting example
systems and domains from the wide area of big geospatial data. This includes
processing systems like IBM PAIRS and GeoSpark, as well as domain-dependent
applications like Indoor Mapping or Disaster Response using satellite data. The
second Part, Trajectories, Event, and Movement Data, collects various chapters on
this interesting and challenging type of spatiotemporal data. This includes chapters
on two lately introduced extensions of geospatial trajectories with semantics and,
more generally, toward multi-attribute trajectories and application examples from
urban road map extraction. It concludes with a hands-on chapter on the explorative
analysis of big trajectory datasets. The third Part, Statistics, Uncertainty, and Data
Quality, focuses on issues arising from uncertainty, methods to combat uncertainty
from a database research perspective, and an introduction to statistical models for
spatial datasets. The fourth Part, Information Retrieval from Multimedia Spatial
Datasets, provides a broad range of chapters related to information retrieval, either
from text and social media, bridging the domains of big geospatial data and classical
information retrieval, or from spatial datasets, such as historic map archives. The
fifth Part, Governance, Infrastructures, and Society, collects chapters on more
societal and systemic questions related to big geospatial data. Two chapters explore
the state of the art of the governmental big geospatial data infrastructures in Europe
(INSPIRE) and the United States (the National Spatial Data Infrastructure). They are
augmented with a discussion of how decision-makers can be integrated into spatial
data warehouse architectures and how semantic graphs can be used to deal with
spatial evolution, for example, changing polygonal subdivision of urban regions due
to growth.
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In summary, this book provides a comprehensive view of the field of big
geospatial data. In addition to covering a wide range of topics, three clusters of
chapters stand out: multimedia information retrieval, trajectories, and moving data,
as well as societal and organizational aspects of infrastructures. This is in line with
the current research trends and needs.

For the next generation of big geospatial data systems, we need to overcome
the traditional approach of collecting data for local analysis. Instead, we need to
envision strong infrastructures for bringing the analysis code directly to the data
saving energy and cost. However, this contains challenges related to reproducibility
in science and to the business models of both spatial data companies and national
agencies that have been used to earn money on request and to provide “dumb” data
instead of services. In addition, urbanization and mobility are tightly interlinked
societal challenges: how can we better understand and optimize our urban spaces,
and how can we sustainably fulfill the mobility demand of people and goods?
Trajectory computing is a very hard subfield of spatial computing that is essential to
answering these questions in a data-driven way.

At this point, we want to thank all authors of papers and all colleagues who
helped with this book project in one way or another. We hope that the book will be
useful to grow our community of spatial computing. Now, enjoy the book!

Munich, Germany Martin Werner

Los Angeles, USA Yao-Yi Chiang
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and Applications



Chapter 1
IBM PAIRS: Scalable Big
Geospatial-Temporal Data and Analytics
As-a-Service

Siyuan Lu and Hendrik F. Hamann

1.1 Introduction

Traditional geographic information systems connect data with geolocations (e.g.,
weather, maps etc.). Since their first computerized instantiations in 1960 (Clarke
1986) such systems have been widely used to process and analyze (mostly) static,
geo-coded “vector” data (=points, lines and polygons). Traditional GIS is a central
technology to geospatial analytics which is a fast growing market projected to reach
96 billion USD by 2025 at a 12.9% CAGR (Compound Annual Growth Rate)
(https://www.marketsandmarkets.com/PressReleases/geospatial-analytics.asp).
However, GIS is at an inflection point for mainly two reasons: On the technology
side, the backends of traditional GIS are hitting serious scalability limits as a
result of the emergence of “mega” big data in the form of geo-coded imagery
(e.g., from drones and satellites) (Tang and Shao 2015; Bouwmeester and Guo
2010), time-series IoT (Internet of Things) (Gubbi et al. 2013; Weber 2016),
LiDAR (Light Detection and Ranging) (Dubayah and Drake 2000) or RaDAR
(Radio Detection and Ranging) data. By way of example, the European Space
Agency (ESA) produces more than 10 TeraBytes of satellite data in a single day
(Petiteville n.d.). Ten TeraBytes cannot by handled by most GIS backends. The
growth of GIS data generation is expected to be exponential, considering the
emergence of new platforms for data collections such as drones (Dubayah and
Drake 2000) or nanosatellites (Bouwmeester and Guo 2010) or new sensor types
such as hyperspectral LiDAR (Hakala et al. 2012).

On the application side, GIS users are now looking more and more to take
full advantage of these ever-growing, ubiquitous new data sources leveraging the
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Fig. 1.1 Transformation of traditional GIS

latest advances of machine-learning and artificial intelligence with the goal to
operationalize GIS use cases (Chen et al. 2011; Yuan 2009). Examples of such
“geospatial-temporal” use cases are plentiful and cut across different industries
ranging from the energy and utility industry (when and where to trim vegetation
to avoid costly outages), agribusiness (when and where to buy or sell agricultural
commodities), insurance (when and where are the highest risk assets) to govern-
ments (when and where to optimally respond to a natural disaster).

Figure 1.1 illustrates the transformation of traditional GIS from a static, mostly
vector-based, planning tool to an operational, real-time technology, which can
process all kinds of different data at scale. An example for this is the application
of smart meter monitoring (advanced metering infrastructure= AMI) in the context
of renewable energy management (Resch et al. 2014).

The technical challenges for the transformation as depicted in Fig. 1.1 are at
least twofold. On a more practical level, scalable integration of data from different
data sources is still a major bottleneck, where often more than 90% of all effort
is spent on data pre-processing, curation and integration. Most use cases require
a combination of different data whether this is raster (or imagery), vector (points,
lines, and polygons), or time-series information. It is well known that such data can
be highly complex, with hundreds of different formats, resolutions, projections and
reference systems.

On a more fundamental level though, while such multi-modal data integration
can be very difficult, it is arguably much more challenging to do this at scale.
Many of the emerging geospatial-temporal data sets, which users seek exploiting are
simply too big to be moved or downloaded in time to be useful for an operational
application. By way of example, the daily 10 TeraBytes from the European Space
Agency (at 100 MB/s – read speed of a hard disk drive) takes more than a day
to “move” from a storage device to the memory of a processor for subsequent
computation.

The facts that (i) many of new emerging geospatial-temporal data sets (LiDAR,
RaDAR, imagery, time-series) are too big to be moved and (ii) most use cases
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require the integration of multiple data sets, leads to the notion of data gravity.
Data gravity means that big data tends to attract more data – in the same way a
bigger mass attracts a smaller mass – and with that, big data attracts more compute
and applications. Most traditional GIS “move” data to the application or analytics
and thus they are inherently limited in terms of how much can be processed and
exploited. To be more specific, the database backend of GIS must become much
more powerful to cope with these challenges, where in the future, analytics and data
must be directly collocated.

The solution to these data gravity challenges involves many technologies. First,
given the size of the data and the fact that many users require the same big data
sets (such as weather) for their different applications, a shared, often cloud-based
system becomes more economical, which can be used remotely as a service. Other
key technologies may include HDFS (Hadoop Distributed File System) (Lam 2010;
Zikopoulos and Eaton 2011), which allows a scalable distributed storage layer
exemplified by key-value stores such as HBase (Dimiduk et al. 2013; Harter et al.
2014a) to be combined with a highly parallel processing layer using frameworks
such as MapReduce (Dean and Ghemawat 2008; Ekanayake et al. 2008). This in
turn enables processing of very large data sets by pushing analytics tasks “into”
queries and thus avoiding data movement.

By way of comparison, GIS systems even today rely often on relational database
systems such as Postgres, mostly for vector data and/or file-based storage for raster
data. It is well known that relational databases have difficulties in scaling to data
sizes beyond a few tens of TeraBytes. The use of file-based storage comes with other
major drawbacks. Often users need to assemble different images thereby dealing
with different timestamps, resolutions, map projections etc. Even in simple cases
where a user wants to extract a time series from multiple satellite observations
for the same location, one would have to download and open often thousands of
files to extract the right information. Ironically, the inability to perform analytical
tasks within the data and without downloading often leads to more data, where
data providers compute ahead of time more derivatives of the raw data (such as
vegetation index from hyperspectral satellite data).

To address the aforementioned challenges recently the IBM PAIRS Geoscope
(Physical Analytics Integrated Data Repository & Services) was introduced (Klein
et al. 2015; Lu et al. 2016), which unlike most systems does not use relational
database systems or file-based storage (object or cold store). PAIRS is based on
a distributed, highly parallel, key-value big data system with a big, ready-made
catalog of carefully indexed, diverse, and continually updated geospatial-temporal
information (of both spatial and/or temporal vector and imagery data) in the cloud,
enabling scalable access to complex queries and machine learning-based analytics
and AI to run without the need for downloading data.

PAIRS provides several benefits to the users. Firstly, PAIRS allows access to
PetaBytes of geospatial-temporal data sets at low cost. That is because many users
require the same data sets (e.g., weather, satellite etc.) and analytics capabilities and
thus the shared services of PAIRS are much more efficient and cost effective. Second
and as we will discuss in more detail below, PAIRS drastically accelerates the
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analytics by reducing the time to insights when retrieving and analyzing geospatial-
temporal information – whether PAIRS (i) just provides AI-ready curated data, or
(ii) returns results from search and analytics queries involving multiple data sets
(by filtering, aggregating, applying mathematical functions etc.) or (iii) provides
platform services for custom analytics without downloading the data or (iv) enables
clients to integrate their own data thereby allowing them to exploit, analyze or
monetize their data along with the PetaBytes of already curated data. Finally, and
thirdly, due to the technology’s unique scalability, PAIRS enables users – often for
the first time – to scale and operationalize their respective geospatial-temporal use
cases.

PAIRS is not the only technology for geospatial information which leverages a
combination of key-value store with a distributed parallel big data system to over-
come scalability limits. GeoMesa and GeoWave are two exciting and innovative,
open-source research projects using a similar idea (Hughes et al. 2015; Whitby et
al. 2017). By way of comparison, GeoMesa and GeoWave designs are primarily
centered on vector data, while PAIRS complements this capability by focusing on
raster data. In addition, PAIRS aims to provide end-to-end functionality from data
curation to customizable “in data” analytics which a user can directly use without
performing deployment or configuration optimization. Such “as-a-service” nature
of PAIRS is reflected in its architecture and user experience as discussed next.

1.2 PAIRS Architecture Overview

Key components of the PAIRS architecture are shown in Fig. 1.2. In overview,
PAIRS has four main components: (i) an ingestion/data curation engine, (ii)
a massive distributed compute and data store based on HDFS/HBase, (iii) an
analytics and data platform, which enables users via (iv) an interface to interact
with the system.

(i) The ingestion/data curation engine includes data cleaning, filtering, re-
projecting, resampling. It is a highly tuned C++ program compatible with a large
variety of geospatial-temporal data in over 200 formats built on top of GDAL/OGR
(Warmerdam 2008) and PDAL (Contributors 2018). During the ingestion process,
all imagery data is remapped onto a set of nested resolution layers and to a
common projection and reference system. Details were described previously (Klein
et al. 2015; Lu et al. 2016). The data curation engine can process with today’s
infrastructure (over 100 servers, ~4000 cores, ~30 TB of RAM, and ~500GB/sec
total network switching bandwidth) more than 50 TeraBytes per day. Routinely,
PAIRS curates more than 15 TeraBytes per day and has subscribed to many agencies
such as NASA, ECMWF, ESA, NOAA etc. for continuous, near real-time data
ingestion.

All data uploaded are indexed to a massive distributed compute and data store
based on HDFS/HBase. In this key-value store, every raster data layer is modeled
as (x, y, t, θ – value), i.e. value as a function of x (longitude), y (latitude), t (time),
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Fig. 1.2 Overview of PAIRS architecture

and additional dimensions θ . Here θ represents any additional dimensions, other
than x, y, t, which are required to uniquely define the value. For example, additional
dimensions may include vertical elevation (for 3D atmospheric data) or forecast lead
time, Δt (between the issue of a weather forecast and the actual forecasted time) or
a sensor ID. A distinguishing feature of PAIRS is that all data are ready for use
without a data staging or preparation step. Unlike many other technologies, PAIRS
uses object and cold store only for archiving data which have already been ingested
into the key-value store. All PAIRS data are organized in layers, where each layer is
linked in space and time. Layers can be access controlled (visualization only, read,
write, admin) according to the privileges of user groups. In addition to PetaBytes of
raster data stored, vector data (discrete points, polygons, typically much smaller in
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volume) are stored in PAIRS in Postgres or a key-value store which can be queried
using SPARK SQL.

A MapReduce (M/R) query and built-in analytics engine is at the core of the
analytics and data platform. It enables data retrieval, filtering, logical joins and
complex math of a layer or between different layers. A basic PAIRS query is based
on four elements: (i) what (specifies the data layers and additional dimensions if
needed), (ii) where (geographical region), (iii) when (time period, maybe different
for different data layers), and (iv) post-processing or built-in analytics (aggregation,
mathematical computation, filtering). The query syntax is unified for different
data layers. The key differences with respect to conventional platforms are the
following: (i) A PAIRS query returns physical and logically organized data which is
ready for analytics. This contrasts with a conventional platform’s “search for data”
function, which simply returns the reference to a set of files containing relevant
data. The PAIRS data store design ensures that most of the data required by the
same processor are co-located on the same cluster, which minimizes the burden of
data reorganization. (ii) A PAIRS query takes care of commonly encountered post-
processing tasks, such as aggregation and filtering, which often effectively reduces
the data returned to the users (compared to the raw data) by over one order of
magnitude. More detailed examples will be given below.

The query results are available as files for download, for visualization or pro-
cessing via OGC web map service (WMS) (Consortium n.d.-a) and web processing
service (WPS) (Consortium n.d.-b) which are served from a set of geo-servers
(Henderson 2014), or as Pandas data frames or SPARK data frames ready to be used
for analytics without downloading. For this, a Docker encapsulated (“dockerized”)
Python Jupyter Notebook with access to the data frame can be readily “spun” up.

All interactions with PAIRS are available to end users via an interface of
an open RESTful API and a PAIRS client application, which includes a query
GUI (graphical user interface) and Python Jupyter Notebooks. Two screenshots
of the PAIRS GUI are shown in Fig. 1.3. A freemium version of this PAIRS
client is available at this reference (https://ibmpairs.mybluemix.net). Further
updates of the PAIRS Client will be made including user-enabled uploading
and 3D visualization. An initial version of the PAIRS API is available at this
reference (https://pairs.res.ibm.com/tutorial/). For the convenience of Python
users, an open sourced PAIRS SDK wrapping API functionalities is available
at (https://github.com/ibm/ibmpairs) or from pip or conda Python package
management system.

Multiple PAIRS deployment models including SaaS, on premise, or hybrid can
co-exist to accommodate clients’ focus, e.g. business user, data distributor, appli-
cation developer. In addition, PAIRS supports multiple data protection schemes to
accommodate full data and/or analytics privacy protection, residency requirements,
and flexible selective data sharing.

While we have described PAIRS from an architectural point of view it is equally
important to understand PAIRS from a users’ perspective. From a users’ perspective,
PAIRS can be a (i) data curation service, where users upload their geospatial-
temporal data into PAIRS. The benefit of that is that the user’s data becomes
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Fig. 1.3 (a) PAIRS Client landing page and (b) screenshot of the PAIRS query UI

query-able with all the already curated PAIRS data. Many users exploit PAIRS as a
smart (ii) data service, where for example, time-series information from satellite
data is being requested at multiple points. On the next level PAIRS enables a
(iii) search or discovery service for geospatial-temporal data. More specifically,
users can query PAIRS to identify or find all locations in a certain geographic
area, which meet a couple of requirements. For example, show me all areas in
the United States, where the population is larger than 1000 people per square
mile and the temperature will be below freezing in the next 5 days (for heating
energy consumption estimation). Finally, a user can fully leverage the different
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(iv) analytics platform services, which enables users to customize analytics without
downloading the information first. The anticipation of such PAIRS usage patterns
from a users’ perspective dictates the design of PAIRS key-value store which we
detail next.

1.3 Key-Value Store Design and Performance

At the core of PAIRS is its data store based on HBase on top of Hadoop (Dimiduk
et al. 2013; Harter et al. 2014a). For brevity, in the following discussion we focus on
the implementation of the raster data store. Interested readers may refer to GeoMesa
(Hughes et al. 2015) and GeoWave (Whitby et al. 2017) for the implementation of
big vector data store. In HBase all data abstractly can be thought of as being stored
as multi-level ordered key-value pairs on a distributed system, which extends over
many data nodes (region servers) controlled by a master. Each region server hosts
several consecutive key-value pair sections. Such sections are referred to as regions.
Using MapReduce (M/R) and SPARK respectively, queries and analytical tasks are
executed, which may access multiple regions on different region servers of HBase
in parallel, thereby providing excellent scalable performance (Dean and Ghemawat
2008; Ekanayake et al. 2008). Unlike relational databases, carefully tuned key-value
stores are scalable to hundreds of PetaBytes (DeCandia et al. 2007).

While details vary, fundamental to the implementation based on key-value store
is how to effectively translate or index multi-dimensional geospatial-temporal data
(at least 3 dimensions x, y, t) to a one-dimensional key so that optimal and balanced
performance of writing/reading is achieved for different types of raster data. The
salient design decisions of the PAIRS key-value store are summarized in Table
1.1 and actual implementation is provided in Table 1.2. The design decisions are
motivated by the anticipated read/write patterns of the geospatial-temporal data
encoded in the key-value store, and importantly, how to efficiently handle raster
data at both of the two extreme ends of the spectrum. As depicted in Fig. 1.4, on
one end, there are cases with data of very high spatial resolution but only a few
timestamps, such as the high-resolution aerial imagery from the US Department
of Agriculture (USDA) National Agriculture Imagery Program (NAIP) dataset.
The spatial resolution of this dataset is 0.5–1 m but data is only available every
other year. On the other end, there is data of lower spatial resolution with many
timestamps. For example, weather forecasts often come with hourly resolution but
are of few kilometers’ spatial resolution.

Moreover, merely reading the key-value store to retrieve data is not enough. As
discussed earlier, the retrieved data must be organized logically and physically in
a way that readily enables downstream data analytics (i.e. analytics that proceeds
without major reshuffling of the data, which can be a bottleneck in a public cloud
environment).

In PAIRS, each dataset (such as a satellite imagery product) is represented as an
HBase table (HTable), which conceptually is a hierarchical, three-level key-value
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Table 1.1 Summary of PAIRS design decisions

Design decision Rationale

Use a fixed coordinate
reference system and a fixed set
of nested grids.

To enable analytics-ready data at the cost of reprojection
errors.

Employ a multi-aspect row key
to encode spatial and temporal
information.

To enable efficient parallelized data processing for large
queries.

Supercells (32 × 32 pixels) as
the value of the key-value store.

To reduce the storage overhead of the keys and the
computional overhead of the key-value operations.

Temporal hash in the HBase
row keys.

To mitigate the resorting of the HBase key-value stores
during ingestion of data layers of high temporal frequency.

Spatial hash in the HBase row
keys.

To mitigate HBase region server “hot-spotting” when
Ingesting data layers of high spatial resolution.

Construct a set of
coarse-grained overview layers
for each data layers.

To enable (1) effective retrieval of available timestamps at
given locations, (2) rapid preview of the results of large
queries, and (3) acceleration of queries which require the
filtering of data layer values.

Table 1.2 Design of the PAIRS key-value store

Key Value

Row key [128 bits] Column Version
timestamp

2ˆN × 2ˆN
pixel super cell

Column
family

Column
qualifier

[4 bits reserved] + [4 bits
temporal hash] + [4 bits
spatial hash ] + [52 bits
spatial] + [16 bits reserved]
+ [48 bits temporal key]

Data layer Additional
dimensions

Not used Typical
32 × 32 pixels

store – the three keys being row key, column family and column qualifier. The
key-value store is ordered by the three keys with row keys being at the top of the
hierarchy. PAIRS employs a key design as shown in Table 1.2. The highest level
HBase row key encodes space and time (i.e. x, y, t). The second level column family
encodes a data layer (such as a band of a satellite imagery product). The third level
column qualifier encodes any additional dimensions. For example, atmospheric data
usually comes in at different altitude. The altitude information is stored as one of
the additional dimensions. Weather forecasts may also involve a forecast lead time
(e.g. forecast is for 1 day or 10 days ahead), the forecast lead time can be stored as
another additional dimension. In the following, we note a few salient features of the
raster key-value store design.

To encode the location information of incoming data by spatial keys, a prede-
termined map projection and spatial resolution are necessary. PAIRS is designed
primarily as a cloud hosted data and analytics service for industrial applications. We
also anticipate many of its users may come from non-geospatial background. Thus,
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Fig. 1.4 Spatial and temporal resolutions of different raster data sets

PAIRS adopted the WGS 84 projection in favor of its simplicity. The inefficiency
and non-convergence problem of WGS 84 near the poles are typically of less
importance for most conceivable industrial use cases but this can be addressed by
alternative projections. A fixed and nested resolution hierarchy (spatial resolutions)
as shown in Table 1.3 is adopted. The grid size reduces by a factor of 2 when
resolution increases one level. During ingestion, all data is re-sampled to the next
higher resolution level, e.g., data from a satellite with 1.0 m resolution is re-
sampled to level 26 (0.89 m at equator). While such implementation increases the
data volume, it has the advantage that all information is linked and thus PAIRS
can provide very fast “contextual” information (e.g. from different satellites with
different resolutions) compared to other systems. Queries including multiple layers
of geospatial-temporal data – e.g. “show me all areas in the Middle East where
the accumulated precipitation in the last week was lower than 0.2 mm and the
population density is larger than 1,000 people/km2” – are orders of magnitude faster
because no re-sampling of the data is required at query time.

Temporal and spatial hash in row keys Naively, one might use a key with location
and time information and then a z-order to ensure that the data from the same
location is stored close on the same part of the disk. However, this creates “hotspots”
when reading/writing always hits the same server (Vohra 2016). To overcome this,
PAIRS introduces a special spatial and temporal hash in the beginning of the key to
achieve an improved and balanced performance for data layers at the two extreme
ends of Fig. 1.4.

First consider a data layer with low spatial resolution but high temporal refresh
rate such as the GOES-16 satellite data (5 minutes refreshing interval). Because the
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Table 1.3 Shows the PAIRS
grid size. The different rows
show the grid size in
latitude/longitude degree
(�θ,�ϕ)

Levels �θ, �φ [degree] �y �x (θ = 0◦) �x (θ = 40◦)
31 2.5e-7 2.78 cm 2.09 cm
30 5e-7 5.56 cm 4.19 cm
29 1e-6 11.1 cm 8.37 cm
. . . . . . . . . . . .

25 1.6e-5 1.78 m 1.34 m
. . . . . . . . . . . .

20 5.12e-4 57.0 m 42.9 m
. . . . . . . . . . . .

10 0.524288 58.3 km 43.9 km

main temporal key comes after the spatial key, writing data with a new timestamp
to a spatial location means inserting (in contrast to appending) new rows into the
HTable. Doing such insertion frequently is computationally quite expensive because
within the HTable one must re-sort and re-compact to keep the key-store ordered
(Harter et al. 2014b). To mitigate this problem, we have introduced a four-bit
temporal hash. We note that GeoMesa employs a very similar temporal hash. This
hash ensures that only a small part of the HTable must be re-sorted and re-compacted
as new timestamps get inserted. Tests have shown that this temporal hash improves
the data ingestion/curation process by more than 10x.

A different problem is encountered when ingesting and querying a data layer
of high spatial resolution but very low temporal refreshing such as the NAIP data
(2 years refresh rate). In such case, because the tailing temporal key has only a few
different values, when querying a polygon area or ingesting a new image tile, one
will be effectively reading/ writing a set of continuous keys of HBase which usually
are hosted on the same region server. This causes the aforementioned and well-
known issue of “region hot-spotting” (Vohra 2016). To overcome this difficulty, a 4
bits spatial hash is introduced after the temporal hash. This hash ensures that reading
or writing of a large spatial area is parallelized on multiple regions to avoid “hot-
spotting”.

Supercell as values Moreover, PAIRS uses supercells, which are arrays of 32× 32
pixels, as the value of the key-value store. In this way the storage taken by the key
(16 bytes) becomes negligible compared to the value (4 KiloBytes for pixels of 4-
byte float type). Reading/writing each key-value pair then processes 1024 pixels at
once, significantly enhancing performance. Our benchmarking showed over 50×
improvement compared to one pixel per key-value pair.

PAIRS aims to achieve high performance for both “big” queries of raster data for
a “large” area and “small” queries of point locations. Indeed, the profiling of PAIRS
queries (Fig. 1.5) indicates a large fraction of queries are the “small” ones for point
location, typically 1–100 KiloBytes in size. We found empirically that supercells
made of 32 × 32 pixels is a good size as it enables balanced performance. With a
32× 32 pixel supercell, the time required to seek a key is already much less than the
time to reading/writing each value (involves 1024 pixels, 4 KiloBytes for a pixel of 4
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Fig. 1.5 PAIRS user
behavior sampled from more
than 7M requests between
01/01 and 12/31 2017

Byte float type). Thus for “big” spatial queries, the effect of further reducing the time
to seek keys by increasing the supercell size is only marginal. On the other hand, for
queries of point locations, even though we need to retrieve a supercell (1024 pixels)
for a single pixel value, the performance is not significantly degraded either. This
is because even with a 32 × 32 supercell, the time for data retrieval is still about
100 microsecond or less, insignificant compared to the overhead (establishing https
connection, logging the query etc.).

The overview layer key-value stores The discussed key design favors data
retrieval from point spatial locations for a period, which matches the preferred user
behavior (see Fig. 1.5). In this case, the starting and ending row keys for the point
locations can be readily determined. One may simply retrieve all the row keys in
between (retrieving all the key-values between a starting and an ending key is called
a “scan” operation). In contrast, to retrieve data for an area for a period (or a set
of time periods) is more problematic. The reason is that for any given spatial key,
one does not necessarily know what temporal keys exist. For example, in satellite
imagery, different parts of the earth are imaged at different times. Without prior
timestamp information, one will have to either read out all the timestamps possible
or first scan each spatial location to know what keys are available. In key-value store
operations, such a “scan” operation often takes on more than 1 millisecond, which
is much too slow compared to merely retrieving the value for a known key (called a
“get” operation, typically on the order of 1 microsecond).

To overcome such difficulty, the PAIRS innovation includes the introduction
of multi-level overview layers as illustrated in Fig. 1.6. An overview layer uses a
similar key-value store structure (Table 1.2) as the main layer, except that its spatial
resolution is coarse-grained by a factor of two per level-up. At selected overview
levels, statistics of the supercells are stored. For example, each pixel of the fifth
level overview layer stores the mean, min, and max values of the corresponding
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Fig. 1.6 Landsat-8 (NIR band) illustrating the relation of main layer (bottom), fifth level overview
layer (middle) and tenth level overview layer (top)

32× 32 pixel supercell in the main layer (1024× reduction in the number of pixels).
Similarly, the tenth level overview layer stores the mean, min, max values of the
corresponding 32 × 32 supercell in the fifth level overview layer.

To retrieve data for an area for a time period (or a set of time periods), one
first scans the overview layer to obtain the timestamps available for the area. This
enables one to pre-calculate all the row keys needed to retrieve in the main layer,
leading to much faster data retrieval using the “get” operation (instead of the “scan”
operation).

Moreover, the overview layer also brings the added benefit that it enables rapid
overview visualization of the data layers and accelerated data filtering (e.g. “get
data where temperature is below freezing”), because if the filtering condition can
be ascertained by the overview layer, the retrieval of unnecessary data layers can be
completely skipped.

PAIRS queries of point locations are usually served in real-time (with hundreds
of milliseconds response times). In contrast, for queries of areas, Fig. 1.7 is a useful
way to characterize their performance. In Fig. 1.7 the time for retrieving data is
plotted as a function of data size. More complex queries would apparently change
the curve. Since writing output to disk is the most expensive part of a query, query
time can reduce substantially if a query involves data reduction (see examples in the
next section).

From Fig. 1.7 one observes that if little data is retrieved, the performance is
limited by latency, which is determined by the overhead of logging, authorization of
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Fig. 1.7 PAIRS query times as a function of query data size

a query, and queueing for the availability of resources before starting a MapReduce
job. As the processing time increases with query size, latency becomes negligible.
Within an optimal query size range, the time is only weakly dependent on the
size because the number of parallel mappers (in MapReduce) processing the query
increases with its size. The slope in Fig. 1.7 in this regime characterizes the
scalability. For a typical user, the PAIRS system has an optimal query size range
from 0.5 to 500 GB. The scalability slope is ~0.2 because the number of mappers
scales sub-linearly with the query size for a typical user. Beyond the optimal query
size, the number of mappers reaches an upper bound, and the query time scales
about linearly with size. The slope of the linear relation defines the max query speed,
which is currently ~400 MB/s for a typical user. The maximum throughput is the
largest possible query size limited by the memory available to hold the result for
in-memory analytics, which is ~2 TB for a typical user.

1.4 PAIRS User Experience

The implantation and performance of the PAIRS key-value store discussed above
enables a paradigm-shifting user experience for many geospatial-temporal use
cases when compared to a conventional system. Indeed, the conventional usage of
geospatial-temporal data at scale is convoluted. For example, a user intends to run
analytics on satellite imagery using a conventional system such as the US Geological
Survey (USGS) EarthExplorer (https://earthexplorer.usgs.gov/). One first selects
an area-of-interest (AOI) and a time range to obtain a list of image files of the
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relevant satellite tiles. Then these image files are downloaded and processed for
the user’s task at hand. Suppose one is to obtain a time series of near-infrared
surface reflectance from ESA’s Sentinel-2 satellite for a particular region over many
years. In such a scenario, often hundreds of tiles will need to be downloaded and
opened/sought to extract the pixel(s) corresponding to the region of interest. Such a
task gets increasingly complicated as more data sources become involved – e.g. we
need temperature in addition to surface reflectance and/or we want to use data from
other satellites such as LandSat or MODIS.

The PAIRS design emphasizes that the platform relieves the user from per-
forming such data reorganization and provides a simple and unified experience
regardless of the details of the original data. The PAIRS API and GUI capabilities
are detailed in its documentation (https://pairs.res.ibm.com/tutorial/). In this section
we illustrate how the PAIRS provides a new user experience. For generality, we
discuss the PAIRS query examples using the native PAIRS REST API. Often the
open sourced PAIRS Python SDK (short PAW = PAIRS Geoscope RESTful API
Wrapper) (https://github.com/ibm/ibmpairs) which wraps the native PAIRS API
offers more convenient interaction with PAIRS.

1.4.1 Data Service

The simplest service which PAIRS offers is the data service. For example, to obtain
the time series of surface reflectance as well as temperature, one simply sends a
POST request to PAIRS with a JSON payload (query_json). The sample Python
code snippet is:

import pandas as pd, requests
pairs_auth = ('<username>', '<password>') # your username and password here. 
query_json = {

"layers" : [
{

"id" : "49361" # near IR surface reflectance, Sentinel-2 L2 band 8 
}, 
{

"id" : "49257" # 2m temperature, TWC gCOD hourly weather
} 

],
"spatial" : {"type" : "point",  "coordinates" : ["41.213", "-73.798"]},
"temporal" : {"intervals" : [

{"start" : "2017-01-01T00:00:00Z", "end" : "2019-10-31T00:00:00Z"}
]}

}

# send a POST request containing query_json to PAIRS API endpoint.
api_response = requests.post(

'https://pairs.res.ibm.com/v2/query', auth = pairs_auth, json = query_json
)
# convert the response json into a pandas dataframe
pairs_data = pd.DataFrame(api_response.json()['data'])

The query above requests about 3 years of near-infrared surface reflectance
(Sentinel-2 band 8, PAIRS data layer id = 49361) and 2 m temperature (global



18 S. Lu and H. F. Hamann

Fig. 1.8 PAIRS GUI (Geoscope) enables the real-time visualization of the content of data layers
in PAIRS. This example shows global NDVI from MODIS Aqua on 2015-11-25 and a 20-year
time series at latitude 37.3◦/longitude −89.1◦

weather history hourly temperature from TWC (The Weather Company, an IBM
business), PAIRS data layer id= 49257) for a location somewhere in New York with
the coordinates 41.213/−73.798 degree (latitude/longitude). PAIRS responds with a
JSON (api_response) with about 100 records of surface reflectance and about 24,000
records of hourly temperature typically within a few hundreds of milliseconds. The
last line of the code snippet above converts the JSON into a Pandas data frame
for downstream analytics. Beyond point location query, a user may specify a query
JSON with the spatial part representing a bounding box or a multi-polygon. In such
case PAIRS returns either a set of geotiffs or CSVs (latitude, longitude, timestamp,
value) for the queried area.

As the GUI counterpart to such query capability, a user can in real-time visualize
the content of a data layer in PAIRS GUI as shown in Fig. 1.8. This includes (1)
picking a timestamp to visualize a data layer as a color map and (2) picking a
location and time range to visualize a time-series.

The performance of the query is the benefit of the key-value store design of
PAIRS. Take the surface reflectance and temperature timeseries query above for
example, given the key design shown in Table 1.2, the location and time range
specified in the query can be directly translated to a set of starting and ending keys
for scanning the HBase to retrieve data. In contrast, in a conventional file-based
system, one would be forced to open and seek tens of thousands of files (each for
different timestamps) to retrieve data, which limits performance. It may also be
obvious to the readers that the visualization of the data layer content on the GUI
relies on the construction of the overview layers (Fig. 1.6). Thus, at a given zoom
level, the PAIRS overview layers can supply data to the GUI at the appropriately
coarse-grained resolution.
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1.4.2 Search or Discovery Service

More sophisticated than the data service, PAIRS enables a user to push spatial
and/or temporal aggregation, filtering, math computation, and basic geospatial
transformation into a query, which we refer to as the search or discovery service.
Let us use the following query as an example. The example computes the summer
2018 max temperature for all the corn fields averaged for all states in the contiguous
US (CONUS).

query_json = {
"layers" : [

{
"id" : "92", # PRISM daily maximum temperature
"temporal" : {"intervals" : [

{"start" : "2018-06-01T00:00:00Z", "end" : "2018-08-31T00:00:00Z"}
]},
"aggregation" : "Max"

}, 
{

"id" : "111", # USDA cropscape
"temporal" : {"intervals" : [{

"start" : "2018-01-01T00:00:00Z", "end" : "2018-12-31T00:00:00Z"}
]},
"aggregation" : "Mean", # collapse crop type in the temporal range into a single value
# filter out spatial area for which crop type equals 1 (corn per USDA designation)
"filter": {"expression" : "EQ 1"}, "output" : "false"

} 
],
"spatial" : {

"type" : "poly",  
"aoi" : "24", # polygon of Contiguous US 
# list of polygon id for 48 states
"aggregation" : {"aoi": [121, 123, 124, … , 130, 131, 133, 134, … , 171]} 

},
# "temporal" below is irrelevant as it is overridden by "temporal" within the data layers above
"temporal" : {"intervals" : [

{"start" : "2018-06-01T00:00:00Z", "end" : "2018-09-30T00:00:00Z "}
]}

}

There is quite a lot going on in the example. To begin we are requesting data
for spatial area CONUS (“aoi” : “24”) and for two data layers: daily maximum
temperature from PRISM dataset (“id” : “92”), and crop type from USDA cropscape
dataset (“id” : “111”). The spatial resolution of PRISM is ~4 km (PAIRS level
14), while crop type is ~30 m (PAIRS level 21). PAIRS automatically samples the
temperature data to match the crop type which is the highest resolution data layer
of this query. Moreover, for each of the two data layers we use a different temporal
range. We requested temporal range 06/01/2018 to 09/30/2018 for temperature and
requested PAIRS to apply max aggregation for the time period (“aggregation” :
“Max”) to obtain the highest temperature during the time period for each pixel.
Separately for crop type, the temporal is 01/01/2018 to 12/31/2018. Temporal
aggregation (“aggregation” : “Mean”) is applied to collapse crop type within the
temporal range into a single value. A filter (“filter”: {“expression” : “EQ 1”}) is
applied, which request PAIRS to retrieve data for only spatial areas with crop
type =1 (i.e. corn per US department of agriculture convention). Finally, a spatial
aggregation is specified with a list of polygon id’s for the 48 contiguous US states
(“spatial”: {“type”: “poly”, “aoi”: “24”, “aggregation”: {“aoi”: [121, 123, 124, 125,
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. . . . . . 171]}} ).PAIRS thus spatially aggregates the corn field temperature by states
and provides an output file in the default CSV format.

A salient character of such a query is that all the computations are performed in
parallel in the PAIRS cluster. While there is a large amount of data being processed,
a user merely retrieves a CSV with 48 rows in which each row contains the 2018
spatially averaged summer max temperature of corn fields for one state.

We can now take such query capability to answer some less trivial questions. Say
we are interested in the impact of global warming on agriculture, thus would like to
know which part of the croplands in the northern hemisphere have seen a substantial
summer daily maximum temperature (Tmax) rise of over 1.5 ◦C in the last 40 years.
The sample query is below.

query_json = {
"layers" : [

{
# data layer id 49188 is daily maximum temperature (Tmax) at 2 m above surface
# virtual layer "Y2018" is the mean summer Tmax of Jun to Aug 2018. Same below.
"alias" : "Y2018","temporal" : {"intervals" : [{"start" : "2018-06-01",\
"end" : "2018-08-31"}]}, "id" : 49188, "aggregation" : "Mean", 
"output" : "false" # PAIRS does not write output for this layer 

},
{

# virtual layer "Y2017" is the mean summer Tmax of 2017.
"alias" : "Y2017","temporal" : {"intervals" : [{"start" : "2017-06-01",\
"end" : "2017-08-31"}]}, "id" : 49188, "aggregation" : "Mean", "output" : "false"

},

… … # not showing "Y1980" to "Y2016" due to space limitation

{
# virtual layer "Y1979" is the mean summer Tmax of 1979.
"alias" : "Y1979","temporal" : {"intervals" : [{"start" : "1979-06-01",\
"end" : "1979-08-31"}]}, "id" : 49188, "aggregation" : "Mean", "output" : "false"

},
{

# the mean summer Tmax difference between 2009 to 2018 and 1979 to 1998 
"alias" : "TempDiff",
"expression" : " ($Y2018 + $Y2017 + $Y2016 + $Y2015 + $Y2014 \

+ $Y2013 + $Y2012 + $Y2011 + $Y2010 + $Y2009)/10 \
- ($Y1988 + $Y1987 + $Y1986 + $Y1985 + $Y1984 \
+ $Y1983 + $Y1982 + $Y1981 + $Y1980 + $Y1979)/10",

"filter" : {"expression" : "GT 1.5"} # filter out pixels of value greater than 1.5
},
{

"alias" : "crop_fraction",
"temporal" : {"intervals": [{"snapshot" : "2017-01-01"}]},
"id" : 49307, # crop fraction at 250 m resolution, survey of timestamp 2017-01-01
"aggregation" : "Mean",
"filter" : {"expression" : "GT 0.5"} #  filter where crop fraction > 50%         

}
],
"spatial" : {

# bbox north hemisphere, latitude 0 to 80 deg north and longitude –179.9 to 179.9 deg east
"type" : "square", 'coordinates': [0,-179.9, 80, 179.9]

},
# "temporal" below is overridden by "temporal" within the data layers above
"temporal" : {"intervals" : [

{"start" : "1976-01-01", "end" : "2018-12-31"}
]}

}

In this example, we are requesting data for the northern hemisphere between
latitude −0 to 80 degree north and longitude −179.9 to 179.9 degree east (defined
by ‘coordinates’: [0, −179.9, 80, 179.9]). A number of user-defined “intermediate”
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layers are created by “mean” aggregation of Tmax (PAIRS data layer id = 49188).
For example layer “Y2018”
{

# data layer id 49188 is daily maximum temperature (Tmax) at 2 m above surface
# virtual layer "Y2018" is the mean summer Tmax of Jun to Aug 2018. Same below.
"alias" : "Y2018","temporal" : {"intervals" : [{"start" : "2018-06-01",\
"end" : "2018-08-31"}]}, "id" : 49188, "aggregation" : "Mean", 
"output" : "false" # PAIRS does not write output for this layer

},

represents the mean Tmax in summer (June to August) 2018. Note that “output”
: “false” instructs PAIRS to not write output, thus the intermediate layer stays only
in memory.

Based on the intermediate layers, a user defined function (UDF)
{

# the mean summer Tmax difference between 2009 to 2018 and 1979 to 1998
"alias" : "TempDiff",
"expression" : " ($Y2018 + $Y2017 + $Y2016 + $Y2015 + $Y2014 \

+ $Y2013 + $Y2012 + $Y2011 + $Y2010 + $Y2009)/10 \
- ($Y1988 + $Y1987 + $Y1986 + $Y1985 + $Y1984 \
+ $Y1983 + $Y1982 + $Y1981 + $Y1980 + $Y1979)/10",

"filter" : {"expression" : "GT 1.5"} # filter out pixels of value greater than 1.5
},

computes the mean summer daily maximum temperature difference between 2009
to 2018 and 1979 to 1988. The temperature difference is subsequently filtered by
“filter”: {“expression” : “GT 1.5”}, i.e. selecting the pixels of temperature rise over
1.5 ◦C. Moreover, a filter using crop fraction (data layer id 49307) selects the pixels
in which the crop fraction percentage is over 50%.

The result of the query is shown in Fig. 1.9 below, which concludes that Europe
croplands had the most notable summer daily maximum temperature rise in the last
40 years.

Fig. 1.9 A PAIRS query showing northern hemisphere croplands in which mean summer daily
maximum temperature has risen over 1.5 ◦C comparing 1979 to 1988 and 2008 to 2018. Note that
Europe stands out as the most affected region
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The query above involves over 1800 timestamps of temperature and 6e9 spatial
grid points (northern hemisphere at around 250 m meter resolution, PAIRS
level 18 for crop fraction). This combination represents ~1e13 spatial-temporal
grid points. Such a task, starting from raw data gathering may conventionally
take a data scientist from days to weeks to complete. In contrast, it took a
single query and around 60 seconds to execute on PAIRS, showcasing the
processing power and user experience on the PAIRS platform. While the UDF
employed in the query is simplistic involving only arithmetic operations, PAIRS
UDF supports common mathematical and logical operators and functions. More
sophisticated analytics which can be pushed into UDFs includes regression
models and decision trees. Some examples can be found in this reference
(https://github.com/IBM/ibmpairs/tree/master/examples).

In addition to the functionalities discussed above, a PAIRS query may also
include common geospatial processing including coarse graining, contouring,
as well as customized functions such as delineating trees from satellite
images (see section below on vegetation management) etc. The list of built-
in functionalities is continually evolving. For the latest refer to documentation
(https://pairs.res.ibm.com/tutorial/).

1.4.3 Analytics Platform Service

Finally, it is anticipated that a query (discovery service) by itself may not be able
to perform all the analytics a user may want to. In such cases, it is expected that a
PAIRS query would have substantially reduced the amount of data via aggregation,
filtering etc. as discussed earlier. The last mile of customized analytics beyond query
capability is handled by analytics platform service. A user may request a Python
Jupyter Notebook on the PAIRS cluster or an IBM Watson Studio Notebook which
contains the query result as data frame(s) to be launched. In API mode, a user makes
the request using the id of a completed query and gets in the response a unique URL
for the notebook. In the GUI, a user clicks on the “generate Jupyter Notebook”
button in the “Actions” menu as shown in the screenshot (Fig. 1.10). For resource
management and access control purposes the notebook is dockerized (Merkel 2014).
In the Jupyter Notebook, the user can take advantage of all the latest modules of
Python including PyTorch for deep learning and SPARK for scalable processing.
For privileged users, a big query result will be returned as a SPARK data frame
instead of a usual Pandas data frame. A SPARK data frame is distributed throughout
the memory of the PAIRS cluster when possible. Using PySpark, the data frame may
be accessed from the Jupyter Notebook through a set of RESTful APIs orchestrated
by an Apache Livy server.

.
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Fig. 1.10 GUI interface by which a user may spin up a Jupyter Notebook on the PAIRS cluster
from a query result. The Jupyter Notebook is pre-loaded with the query result as dataframe(s)

1.5 Selected Industry Applications

Following the discussion of PAIRS architecture and user experience above, we
present next a couple of selected geospatial-temporal use cases whose solutions
were developed using PAIRS in the past few years. Geospatial-temporal use cases
are, generally speaking “What-When-and-Where” type of applications and are
naturally plentiful cutting across multiple industries and sectors (Table 1.4), such
as government (how, when and where to respond to a disaster such as a hurricane?),
retail (what, when and where to promote a product?), finance (when and where
to buy and sell what commodities), agriculture (when and where to apply the right
amount of fertigation), or energy (when, where and how much renewable energy will
be generated?). While sometimes such PAIRS enabled applications are described as
being “on top” of PAIRS, we note that this notion is misleading. It is better to refer
to such applications as ones “within” PAIRS as they exploit the in-data computation
capabilities as discussed in the previous sections.

1.5.1 PAIRS Enabled Improvements in Weather Forecasting

One of the useful applications of PAIRS is weather forecasting, which is an old field
of science (i.e., meteorology) but still very actively researched. For one, weather
impacts literally every aspect of our lives and the economy, and for another, weather
is highly complex with many aspects of the underlying physical phenomena not
quite understood. It is thus well known that not every weather model provides
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Table 1.4 Exemplary PAIRS industrial use cases

the same forecasts and accuracy. By way of example, this becomes very evident
during extreme weather events such as hurricanes, where multiple weather models
can project very different pathways (Brennan and Majumdar 2011). The difference
in the forecasts is naturally most pronounced for longer term forecasts (going
beyond 10 days) and thus we focus in the following on such long-term forecasts.
Specifically, we discuss briefly how PAIRS can be used to improve the accuracy
of such forecasts using its scalable big data processing capabilities by leveraging
state-of-the-art machine-learning techniques. While the discussion will be focused
on weather, it should be noted that the general framework, presented below, is
applicable to “consolidate” between different forecasts or prediction modalities,
which is a common challenge. For example, the presented framework could be used
to consolidate the information received from different IoT sensor systems, which
measure similar or related but not agreeing parameters.

Table 1.5 shows a selected list of data sets available in PAIRS, which are
relevant for improving the accuracy of long-term forecasting. This includes weather
station data from RAWS (=Remote Automatic Weather Stations) (Horel and
Dong 2010; https://raws.nifc.gov/), the ISD (=Integrated Surface Database) from
NOAA (National Oceanic and Atmospheric Administration) (Smith et al. 2011;
https://www.ncdc.noaa.gov/isd), and NOAA’s Surface Radiation network (SurfRad)
(Augustine et al. 2008; https://www.esrl.noaa.gov/gmd/grad/surfrad/index.html).
PAIRS also includes data from GPS-RO (=Radio Occultation) (Kuo et al. 2004;
https://www.cosmic.ucar.edu/), which is a technique for measuring atmospheric
parameters from space. There are also outputs from several extended or long
range weather forecast models available, including NOAA’s CFS v2 (=Climate
Forecasting System) (Saha et al. 2006), as well as extended range forecasts
from ECMWF (=European Centre for Medium-Range Weather Forecasts)
(https://www.ecmwf.int/en/forecasts/datasets/set-vi) and from JMA (=Japanese
Meteorology Agency) (Japan Meteorological Agency 2013). Note that Table 1.5
is only a rough estimate about the total amount of data content one may be able
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to retrieve from the data sources from a user’s perspective. It is not about the
internal complexity and data processing necessary to produce the user accessible
outputs. For example, the ECMWF extended range forecasts are for 46 days ahead
at 6 hourly resolution (185 timestamps) and for a 0.4 degree global grid (globally
~4e5 grid points). On the order of 100 parameters and/or pressure levels and 51
ensemble members are available from the forecasts. The forecasts are issued twice
a week. Assuming parameter values are stored as four bytes floating-point numbers,
we estimate that, phenomenologically, the daily data content is around 185 × 4e5
× 100 × 51 × 2 / 7 × 4 ~ 400 GB/day.

Table 1.5 highlights the complexity of the data integration. For example, the
forecast models not only differ in the underlying physics and assumptions which
are used to generate them but also provide data at different spatial and temporal
resolutions and cover different forecasting horizons. By virtue of PAIRS, the
output from all these different models are “automatically” harmonized, integrated
and spatially linked. Note that although many relevant datasets, such as ECMWF
weather reanalysis etc. are omitted in Table 1.5, the amount of data listed already
amounts to over 500 TeraBytes annually. Clearly to exploit all that data within a
reasonable processing time, a scalable big data platform such as PAIRS is required.

As for any machine-learning task, the analytics includes two steps (training
and deployment). In the training, first, an error analysis is performed to identify
the most important features, where historical forecasts are compared with actual
measurements from high quality weather station. Because PAIRS allows quick and
scalable access to data, this can be followed by a very granular functional analysis of
variance (FANOVA) (Hooker 2007), which identifies zeroth, first and second order
errors of the forecasted parameters (such as temperature, precipitation rate etc.). By
way of example, the zeroth order of a temperature forecast is just a bias, while the
first order error depends on one feature and the second order error on two features
and so on. Such features can include other forecasted parameters. An example of a
second order error of a 30-day temperature forecast from NOAA CFSv2 member
1 is shown in Fig. 1.11, where it is compared to a class I weather station from
the SurfRad network (here for Bondville, IL, 40.05192◦N, 88.37309oW). In this
example, the second order error is a function of wind speed and solar irradiance.
As shown in Fig. 1.11, FANOVA reveals that for this specific location the NOAA
CFSv2 model on average overpredicts the temperature if the forecasted wind
speed and solar irradiance are high. However, the same model underpredicts the
temperature if the wind speed is low and solar irradiance is high. Clearly and as
shown in Fig. 1.11, different regimes of weather categories can be identified. We
note that the second order error does not only depend on the forecast location, but
it is also a function of forecast horizon (e.g., 30 days ahead vs 60 days ahead),
and forecast parameter (e.g., temperature, precipitation). While we only show in
Fig. 1.11 four weather categories, many others are identified using FANOVA for
different features, forecast horizons, locations etc.

Next we train an individual machine learning (ML) for each weather situation,
forecast horizon, location and forecast parameter. Best results have been achieved
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Fig. 1.11 Second order error
of a 30-day ahead
temperature NOAA forecast
for Bondville, IL, USA (here
as a function of wind speed
and solar irradiance)

using ensemble learning methods for regression (random forest) although other
ML methods show good results as well. One may even run multiple ML models
in parallel and adopt a multi-expert learning system which dynamically picks the
most accurate ML method based on recent performance. The key, however, is to
have on-demand access to data frames of training label (ground truth) and a large
number of features so that the important parameters for different weather situations
and different ML methods can be selected.

A typical training involves querying over 3 years of historical training data from
around 100,000 point locations globally, which means around 1 TeraBytes have
to be processed for each forecast variable – a nontrivial task. For this purpose, a
specific data assembly module is used. The module uses an XML file as the template
to construct complex PAIRS queries, manages those queries, and reorganizes the
query results into training or forecasting data frames. As noted in Table 1.5, NOAA
CFS forecasts are issued four times per day, while ECMWF and JMA extended
range forecasts are issued twice and once a week, respectively. Thus, one of the roles
of the data assembly module is to pick different lead times (Δt between the issue of
a forecast and the actual forecasted time) for the different forecasting models in the
PAIRS query so that the latest forecasts of the models are selected.

In the deployment step, after data assembly and classifying the respective
weather categorization, we apply the specific trained machine-learning model for
this case, for each forecast parameter, location, and forecast horizon if applicable.
Figure 1.12 shows an example of such a forecast, which nicely illustrates the power
of the approach and how a scalable platform such as PAIRS can help to develop such
fine-grained ML models. We show in Fig. 1.12 the best long-term forecast from the
four members of NOAA’s CFSv2 model (in red) for a location with a high quality
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Fig. 1.12 Comparison of a 30 day ahead temperature forecasts from the “best” NOAA forecasts
and a PAIRS forecast (with and without categorization) with measurements from a SurfRad
weather station at Pennsylvania State University (year 2015)

weather station at Pennsylvania State University (40.72012◦N, 77.93085◦W). The
temperature measurements are shown in blue. Because forecasts were available
every 6 hours the comparison between forecast and measurement is performed
for the same time interval. As becomes evident the NOAA CFS forecast provides
moderate accuracy. For comparison we have plotted forecasts, where we used
machine-learning without categorization (green) and with categorization (blue).
While the machine-learnt forecasts without categorization show improvements
over NOAA CFS forecast it tends to be “biased towards the mean”, which is a
common pitfall of certain machine-learning approaches. Clearly, as shown in Fig.
1.12, PAIRS big data capabilities, which enable specific machine-learning for each
weather category, this problem can be mitigated and overall the best accuracy can be
achieved. For reference in this plot we show four corresponding weather categories
(labeled from 1 to 4).

While the data in Fig. 1.12 shows just a snapshot for a single location and
forecast parameter (i.e., temperature) we show in Fig. 1.13 the mean absolute error
(MAE) results for 7 locations in the US with class 1 weather stations (Bondville,
IL (40.05192◦N, 88.37309◦W), Boulder, CO (40.12498◦N, 105.23680◦W),
Desert Rock, NV (36.62373◦N, 116.01947◦W), Fort Peck, MT (48.30783◦N,
105.10170◦W), Goodwin Creek, MS (34.2547◦N, 89.8729◦W), Penn State, PA
(40.72012◦N, 77.93085◦W), Sioux Fall, SD (43.73403◦N, 96.62328◦W)) for wind
speed and temperature, respectively in comparison with the four NOAA CFS
member models (for the duration from 06/20/15 – 09/20/15). Figure 1.13 shows
improvements in MAE of 30% over the best NOAA CFS ensemble model member.



1 IBM PAIRS: Scalable Big Geospatial-Temporal Data and Analytics As-a-Service 29

Fig. 1.13 Mean absolute error (MAE) of the PAIRS model for wind speed and temperature for
seven locations in the US with class 1 weather stations (Surfrad) in comparison with the 4 NOAA
CFS ensemble model members (for the duration from 06/20/15 – 09/20/15)

1.5.2 Vegetation Management

Besides weather forecasting, PAIRS recently attracted many applications in the
electric utility industry. In many parts of the world electrical powerlines are above
ground. For example, in the US alone, the electrical grid includes 200,000 miles
of transmission and 5.5 million miles of distribution lines and almost all of it is
above ground, where it can come in contact with vegetation. However, this is a
safety hazard and can cause major outages or even spark wildfires. Consequently,
many electric utilities have complex vegetation management programs, which
include regular pruning, brush removal, herbicide applications, etc., to prevent the
vegetation from interfering with the utility assets and overgrowing of the conductors.
Naturally such line clearance programs are not only difficult and complex but most
importantly very costly with vegetation management being the largest preventive
maintenance expense for many utilities (Hollenbaugh and Champagne 2006). By
way of example, it has been reported that San Diego Gas & Electric must trim more
than 450,000 trees regularly (Rodgers 2014).

It is well known that tree growth can vary tremendously by species and other
environmental conditions such as weather, soil etc. (McPherson and Peper 2012).
However, the lack of monitoring capabilities, which could provide actionable
insights in where and when vegetation management is required, leaves many utilities
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Table 1.6 Different data sets in PAIRS relevant for vegetation management

Other Satellite Weather Soil
Source LiDAR NAIP Sentinel II NAM GFS SURGO Soilgrid

Type Vector Raster Raster Raster Raster Vector Raster
Coverage Local US Global US Global US Global
Spatial
resolution

<0.1 m 0.5 m 10 m 5 km 0.25 deg Point 250 m

Temporal
resolution

NA 2 y Weekly 1 h 3 h NA NA

Forecasting
horizon

NA NA NA 0–60 h 6–192 h NA NA

Estimated
data size

NA ~80 TB/year ~12 TB/day ~0.6 TB/day ~1 TB/day ~1 TB ~2 TB

Fig. 1.14 Shows the basic process of tree delineation using the normalized difference vegetation
index (NDVI): (a) raw NDVI, (b) result of smart thresholding, (c) vectorization to obtain the outline
of tree canopies

with no other choice than regular maintenance schedules for their programs, which
is naturally non-optimal and adds to the already very large cost.

In the following we discuss briefly how a vegetation management solution has
been developed using PAIRS big data processing capabilities. Table 1.6 shows
selective data sets which are available in PAIRS and are relevant to understand and
monitor the progression of vegetation. As in the previous example, multiple very
large data sources with different data types, resolutions etc. must be integrated.

Key to the vegetation management solution in PAIRS is the combination of
high and low-resolution (spatial) hyperspectral aerial/satellite imagery. The high-
resolution imagery, for example, the NAIP dataset in US at 0.5–1 m spatial
resolution (USDA NAIP n.d.), enables the computation of a vegetation base layer.
In some cases, the base layer can also be derived from LiDAR (light detection and
ranging) data sets, which can be easily processed in PAIRS (Klein 2019). Both
LiDAR and/or NAIP data sets can be used to estimate and delineate the canopy size
as illustrated in Fig. 1.14. The computation of the vegetation from NAIP is based
on the normalized difference vegetation index (NDVI), which is the normalized
difference between the red and near infrared band of the imagery. In some cases,
some additional data layers (i.e., land use, OpenStreet map etc.) can be leveraged to
improve the tree identification process.

The difference between different types of vegetation can be inferred from a time
series of remote observations of the vegetation index, which is often not available
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Fig. 1.15 Time-series of normalized difference vegetation index (NDVI) for two different vegeta-
tion types

at such high spatial resolution. However, the Sentinel-2 satellite from the European
space agency (ESA) provides NDVI data at 10 m spatial resolution every 5 days if
clouds are not interfering (ESA Sentinel-2 n.d.). An alternative data source, which
is not listed in Table 1.6, but available in PAIRS is the LandSat-8 dataset from the
USGS (USGS LandSat n.d.). Figure 1.15 shows a time series of NDVI data for two
different vegetation types. In combination with ground truth data, which can also
be obtained from LiDAR scans, such information can then be used to identify the
vegetation type and tree species as applicable.

Combining tree type identification with consecutive high-resolution imagery or
LiDAR scans, one can further estimate the tree growth using the canopy size. The
basic relationship between tree canopy size and tree growth is shown in Fig. 1.16
(McPherson and Peper 2012) for different weather conditions.

Finally, we show in Fig. 1.17 the results from such an analysis with the delineated
vegetation and tree height in the vicinity of a power line. While the model is
simplistic, initial validations have shown that this model can provide between 80–
90% accuracy (Klein 2019).

1.6 Conclusion and PAIRS Resources

To conclude, IBM Physical Analytics Integrated Data Repository and Services
(PAIRS) is a big data and analytics service platform designed to support complex
industrial applications which require analytics of a wide range of geospatial-
temporal data. PAIRS features highly scalable (PetaBytes scale) storage of curated
data and processing close to the data for advanced analytics and offers a unified user
interface and user experience independent of the source of such data. It substantially
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Fig. 1.16 Shows the relationship between tree height and canopy size for different environmental
conditions for a green ash tree. (Rendered from McPherson and Peper 2012)

Fig. 1.17 Tree distribution around power lines after processing high resolution aerial and LiDAR
data

reduces users’ data management burden and, in many use cases, enables the users to
drastically accelerate “data-to-sights” through its ability to compare, combine, filter,
sort and display multiple large data sets simultaneously for correlation discovery and
change detection.

Some useful PAIRS resources are provided below.

• Freemium GUI: https://ibmpairs.mybluemix.net
• API tutorial and reference: https://pairs.res.ibm.com/tutorial/
• Data documentation: https://ibmpairs.mybluemix.net/data-explorer
• Python SDK and sample Jupyter Notebooks (open source): https://github.com/

ibm/ibmpairs

https://ibmpairs.mybluemix.net/
https://pairs.res.ibm.com/tutorial/
https://ibmpairs.mybluemix.net/data-explorer
https://github.com/ibm/ibmpairs
https://github.com/ibm/ibmpairs
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Chapter 2
Big Geospatial Data Processing Made
Easy: A Working Guide to GeoSpark

Jia Yu and Mohamed Sarwat

2.1 Introduction

In the past decade, the volume of available geospatial data increased tremendously.
Such data includes but not limited to: weather maps, socio-economic data, and
geo-tagged social media. Moreover, the unprecedented popularity of GPS-equipped
mobile devices and Internet of Things (IoT) sensors has led to continuously
generating large-scale location information combined with the status of surrounding
environments. For example, several cities have started installing sensors across
the road intersections to monitor the environment, traffic and air quality. Making
sense of the rich geospatial properties hidden in the data may greatly transform
our society. This includes many subjects undergoing intense study: (1) Climate
analysis: that includes climate change analysis (N. R. C. Committee on the
Science of Climate Change 2001), study of deforestation (Zeng et al. 1996),
population migration (Chen et al. 1999), and variation in sea levels (Woodworth
et al. 2011), (2) Urban planning: assisting government in city/regional planning,
road network design, and transportation/traffic engineering, (3) Commerce and
advertisement (Dhar and Varshney 2011): e.g., point-of-interest (POI) recommen-
dation services. These data-intensive spatial analytics applications highly rely on
the underlying database management systems (DBMSs) to efficiently manipulate,
retrieve and manage data.

There has been a flurry of spatial database systems (Spatial DBMSs) that provide
spatial data types, query operators and index structures to handle spatial data
based on the Open Geospatial Consortium standards (http://www.opengeospatial.
org/). Some of these systems opt to extend existing relation databases (PostGIS,
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http://postgis.net/), key – value stores (RocksDB, Rocksdb – spatial indexing.
https://rocksdb.org/) or document-based databases (MongoDB, Mongodb – geospa-
tial. https://www.mongodb.com/). Others are dedicated to standalone data sys-
tems (ArcGIS, https://www.arcgis.com/index.html; QGIS, https://qgis.org/) which
have more granular control over the internal data organization. Even though the
aforementioned systems offer full support for spatial data access, they suffer from
the scalability issue when handling large-scale spatial data. That happens because
the massive scale of available spatial data hinders making sense of it when using
traditional spatial query processing techniques.

On the other hand, researchers and practitioners have been using cluster comput-
ing systems such as Hadoop MapReduce (Apache. Hadoop, http://hadoop.apache.
org/) and Apache Spark (https://spark.apache.org) to process data at scale. However,
the existing systems do not provide native support for spatial data. Users have
to write tedious code or even inefficient algorithms to conduct spatial analysis
applications. Recent works Eldawy and Mokbel (2015), Xie et al. (2016), and Yu
et al. (2019) attempt to extend these systems to bolster spatial indices, spatial query
operators and so on.

In this chapter, we mainly focus on GeoSpark, a cluster computing system that
extends the core engine of Apache Spark and Spark SQL to process geospatial data
at scale. This chapter is organized as follows: it first gives a brief introduction of
the existing cluster computing systems and explains basic concepts that will be used
in the other sections. It then explains different components of GeoSpark system
including Spatial RDDs, and spatial queries. Section 2.6 explains how to write
spatial data analytics applications in GeoSpark.

2.2 Background

2.2.1 Cluster Computing Systems

Over the years, researchers and practitioners have designed several different cluster
computing systems to address the scalability issue on big data. These systems do
not come with the functionalities of spatial data processing by default. However,
learning their internals is very beneficial for the readers to understand how people
extend the core models to support geospatial data. This section briefly summarizes
the key concepts proposed in the state-of-art cluster computing systems.

Big Table and its derivatives Google Big Table (Chang et al. 2008) is a distributed
key-value store which builds on top of Google File System (Ghemawat et al. 2003).
Each record in Big Table contains a composite key and a string value. The composite
key comprises three parts: row key, column key and timestamp. Among them, the
row key and column key work in conjunction to identify the physical location of the
record (the location on a particular data partition). The timestamp describes when
the record is received and it also allows for versioning and garbage collection. In
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Fig. 2.1 Google Big Table

Big Table, the records at the same location may have several versions based on
timestamps. A table in Big Table is split into many small tablets across the cluster
(see Fig. 2.1), each of which contains a subset of data according to the row keys.
The system tries to utilize the data locality such that any key search will only touch
a few tablets. Although Google never open-sources Big Table, the emergence of
this system has motivated a couple of open-source alternatives such as Apache
Hbase (http://hbase.apache.org/) and Apache Accumulo (https://accumulo.apache.
org/). These derivatives follow the same design philosophy of Big Table but use
Hadoop Distributed File System (HDFS) (Shvachko et al. 2010) as the underlying
file system because Google File System is for in-house use only.

Hadoop MapReduce The Hadoop MapReduce system (Apache. Hadoop, http://
hadoop.apache.org/) is an open-source implementation of Google MapReduce
model (Dean and Ghemawat 2008). The MapReduce model is inspired by the
decades-old Map and Fold operations in functional programming languages such
as S (Becker 1984) and R (Ihaka and Gentleman 1996) but extends the idea to
the cluster computing environment by incorporating fault tolerance, task scheduling
and so on. It is designed to process large datasets with a distributed algorithm on
a cluster. This system gives a simple abstraction of complex distributed programs
and hides the details of parallelization, fault-tolerance, data distribution and load
balancing. A MapReduce program usually consists of three phases (see Fig. 2.2):
Map, Shuffle, and Reduce. Among them, the Map and Reduce phases can run
user-defined functions. The map function takes an input value key/value pair and
generates a set of intermediate key/value pairs. The reduce function will merge the
values of that key to a smaller set of values, based on the logic written by the user.
A complex program may need to repeat the three phases, Map, Shuffle, and Reduce,
many times and the intermediate data between two phases are persisted on local
disk. The MapReduce system will execute the algorithm by scheduling tasks to
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Fig. 2.2 A MapReduce model

Fig. 2.3 Spark Directed Acyclic Graph

distributed machines, running different tasks in parallel, managing data shuffle and
providing redundancy and fault tolerance.

Apache Spark The Spark system is a distributed general-purpose cluster comput-
ing framework which allows users to easily write distributed programs without being
involved in the details of parallelism. It also can tolerate faults and scale out to many
commodity machines. It is an implementation of Resilient Distributed Datasets
(RDD) (Zaharia et al. 2012). RDD is an immutable distributed collection of in-
memory objects. Each RDD is built using parallelized transformations (filter, join or
groupBy). For fault tolerance, Spark rebuilds lost data on failure using lineage: each
RDD remembers how it was built from other datasets (through transformations) to
recover itself. The lineage among RDDs is represented as a Directed Acyclic Graph
which consists of a set of RDDs (points) and directed Transformations (edges)
(Fig. 2.3).

There are two transformations can be applied to RDDs, (1) narrow transfor-
mation: Each partition of the parent RDD is used by at most one partition of the
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child RDD. A Narrow transformation does not incur any data shuffle. Examples
are map and filter. (2) Wide transformation: Each partition of the parent RDD is
used by multiple child partitions. An example is join. A wide transformation will
introduce data shuffle. The dependency between the parent and child is called wide
dependency.

Directed Acyclic Graph (DAG) scheduler is deemed one of the most important
components of Apache Spark that conducts stage-oriented scheduling. After a
complex job is submitted to Spark, the scheduler computes a Directed Acyclic
Graph for this job and divides the job into a set of stages based on this graph. This
way, Spark can maximize the utilization of in-memory intermediate data and avoid
unnecessary data shuffle (aka data transfer among nodes in the cluster).

2.2.2 Spatial Queries

Spatial queries are the basic building blocks of spatial analytics applications. With
neat and concise APIs, users will be able to assemble complex applications which
fit in their scenarios.

Spatial range query A spatial range query (Pagel et al. 1993) returns all spatial
objects that lie within a geographical region. For example, a range query may find
all parks in the Phoenix metropolitan area or return all restaurants within one mile
of the user’s current location. In terms of the format, a spatial range query takes a set
of spatial objects and a polygonal query window as input and returns all the spatial
objects which lie in the query area.

Spatial join Spatial join queries (Patel and DeWitt 1996) are queries that combine
two datasets or more with a spatial predicate, such as distance and containment
relations. There are also some real scenarios in life: tell me all the parks which have
lakes and tell me all of the gas stations which have grocery stores within 500 feet.
Spatial join query needs two sets of spatial objects as inputs. It finds a subset from
the cross product of these two datasets such that every record satisfies the given
spatial predicate.

Spatial K Nearest Neighbors (KNN) query Spatial KNN query takes a query
center point, a spatial object set as inputs and finds the K nearest neighbors around
the center points. For instance, a KNN query finds the 10 nearest restaurants around
the user.

Spatial query language The state-of-art distributed geospatial data systems usu-
ally provide neat APIs and hide the underlying system details from the users. This
transparency is actually an important design principle because most of the geospatial
data scientists are not experts in distributed systems. The existing systems can be put
into two categories:
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– High-level declarative language. Some systems allow users to write their
applications using declarative languages which is more flexible and user-friendly.
GeoSpark (Yu et al. 2019) and ESRI Tools (ESRI, Esri tools for hadoop, https://
esri.github.io/gis-tools-for-hadoop/) implement Spatial SQL API in Apache
Spark and Hadoop MapReduce, respectively. Both of them follow the SQL-
MM3 standard (Ashworth 2016) which is widely used in spatial databases such
as PostGIS (http://postgis.net/). Spatial SQL has a syntax similar to the regular
SQL but equips many spatial data types (e.g., point, polygon, . . . ) and functions
(e.g., ST_Contains, ST_Within, . . . ). Apache Pig develops its own high-level
language called Pig Latin, on top of Hadoop MapReduce, which has some key
properties: ease of programming, optimization opportunities, and extensibility.
Pigeon (Eldawy and Mokbel 2014) is a Spatial MapReduce language which
extends Pig to support spatial data processing. It implements spatial functionali-
ties via User-Defined Functions such that existing query operators such as Filter,
GroupBy and Join can directly work with the operators. It implements the Open
Geospatial Consortium (OGC) standard (http://www.opengeospatial.org/) (e.g.,
Cross, Overlap). SpatialHadoop (Eldawy and Mokbel 2015) ships with Pigeon
by default.

– Operational language. Almost all of the existing systems provide APIs in
different operational languages such as Java, Python, and Scala. Writing spatial
analysis applications in such languages has a higher learning curve but these APIs
are helpful for smart application-dependent optimizations.

2.3 Overview

GeoSpark1 is a cluster computing framework that can process geospatial data at
scale. It extends the core engine of Apache Spark (https://spark.apache.org) and
SparkSQL to support spatial data types, distributed spatial indices, distributed
spatial data partitioning and distributed spatial queries. As depicted in Fig. 2.4,
GeoSpark allows users to issue queries using the out-of-box Spatial SQL API
and RDD API. The RDD API provides a set of interfaces written in operational
programming languages including Scala, Java, Python and R. The Spatial SQL
interfaces offers a declarative language interface to the users so they can enjoy more
flexibility when creating their own applications. These SQL API implements the
SQL/MM Part 3 (Ashworth 2016) standard which is widely used in many existing
spatial databases such as PostGIS (http://postgis.net/) (on top of PostgreSQL). In
particular, GeoSpark put the available Spatial SQL functions into three categories:
(1) Constructors: create a geometry type column (2) Predicates: evaluate whether a
spatial condition is true or false. Predicates are usually used in WHERE clauses,
HAVING clauses and so on (3) Geometrical functions: perform a specific geo-

1GeoSpark website: https://datasystemslab.github.io/GeoSpark/
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Fig. 2.4 GeoSpark overview

metrical operation on the given inputs. These functions can produce geometries or
numerical values such as area or perimeter.

Spatial Resilient Distributed Dataset layer extends RDD, the core data
structure in Apache Spark, to accommodate big geospatial data in a cluster. It
consists of data partitions that are distributed across the Spark cluster. A Spatial
RDD can be created by RDD transformation or be loaded from a file that is stored
on permanent storage. This layer provides a number of APIs which allow users
to read heterogeneous spatial object from various data formats. Moreover, Spatial
RDDs equip distributed spatial indices and distributed spatial partitioning to speed
up spatial queries.

Spatial query processing layer supports a number of spatial queries which
harness distributed spatial indices and distributed spatial partitioning in Spatial
RDDs and parallelize the workload using efficient distributed query algorithms. This
layer provides standards APIs for the most-widely used spatial query operators, such
as spatial range query, spatial join query, spatial KNN query.

GeoSparkViz is an extension of GeoSpark which provides native support of
general cartographic design. It encapsulates the main steps of the geospatial map
visualization to a set of massively parallized RDD transformation in Apache Spark.
The visualization operators in GeoSparkViz directly take Spatial RDDs as input
and generate high-resolution maps (i.e., scatter plot and heat map) using the Spark
cluster. GeoSparkViz, together with GeoSpark, offers users a holistic system to
data management and visualization on spatial data in the same cluster and avoid
the unnecessary overhead of transferring intermediate data between two isolated
systems.
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GeoSparkSim is another GeoSpark extension which upholds large-scale road
network traffic simulation. It allows users to generate trajectories data for numerous
vehicles over any arbitrary road network. The system employs microscopic traffic
models, such as traffic lights, light changing and car following, to produce more
realistic trajectory data. GeoSparkSim works in conjunction with GeoSpark and
GeoSparkViz to deliver an end-to-end data system to simulate, analyze and visualize
urban traffic data.

2.4 Spatial RDD Layer

GeoSpark loads geospatial data from a variety of data sources, chops data into
partitions and assemble Spatial RDDs. Spatial RDD in GeoSpark intuitively extends
the RDD structure in Apache Spark to accommodate geospatial data in the cluster.
The system equips several techniques to improve the geospatial data storage in the
cluster and hence accelerate the distributed spatial query processing in the cluster.

2.4.1 Supported Spatial Data Sources

In the past, researchers and practitioners have developed a number of geospatial
data formats for different purposes. However, the heterogeneous sources make it
extremely difficult to integrate geospatial data together. For example, WKT format is
a widely used spatial data format that stores data in a human readable tab-separated-
value file. Shapefile is a spatial database file which includes several sub-files such
as index file, and non-spatial attribute file. In addition, geospatial data usually
possesses different shapes such as points, polygons and trajectories.

Supported data formats Currently, GeoSpark can read WKT, WKB, GeoJSON,
Shapefile, and NetCDF/HDF format data from different external storage systems
such as local disk, Amazon S3 and Hadoop Distributed File System (HDFS) to
Spatial RDDs.

Supported geometry types Spatial RDDs now can accommodate seven types
of spatial data including Point, Multi-Point, Polygon, Multi-Polygon, Line String,
Multi-Line String, GeometryCollection, and Circle. Moreover, spatial objects that
have different shapes can co-exist in the same Spatial RDD because GeoSpark
adopts a flexible design which generalizes the geometrical computation interfaces
of different spatial objects.
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2.4.2 Spatial RDD Built-In Geometrical Library

It is quite common that spatial data scientists need to exploit some geometrical
attributes of spatial objects in GeoSpark, such as perimeter, area and intersection.
Spatial RDD equips a built-in geometrical library to perform geometrical operations
at scale so the users will not be involved into sophisticated computational geometry
problems. Currently, GeoSpark provides over 20 different functions in this library
and put them in two separate categories

Regular geometry functions are applied to every single spatial object in a
Spatial RDD. For every object, it generates a corresponding result such as perimeter
or area. The output must be either a regular RDD or Spatial RDD.

Geometry aggregation functions are applied to a Spatial RDD for producing
an aggregate value. It only generates a single value or spatial object for the entire
Spatial RDD. For example, GeoSpark can compute the bounding box or polygonal
union of the entire Spatial RDD.

2.4.3 Spatial RDD Partitioning

Data partitioning is an important concept in Spark due to its significant impact on
the performance. By default, Spark tries to read data into RDD from the nodes
that are close to it. If the input data is already partitioned like the files in Hadoop
Distributed File System (HDFS), Spark will use the same RDD partitions to hold the
HDFS partitions and these RDD partitions are put at the same place where HDFS
partitions stay. This way, Spark can create RDD without introducing data shuffle. If
the input data is not partitioned such as the data file on local disk or from Amazon
S3, Spark will use the default Hash partitioner to partition the data automatically
and distribute the partitions across the cluster. However, these partitioning methods
do not take into account the spatial proximity which has a dramatic impact on the
query speed.

GeoSpark equips a data partitioning method which is tailored to spatial data
processing in a cluster. Data in Spatial RDDs are partitioned according to the spatial
data distribution and nearby spatial objects are very likely to be put into the same
partition. The effect of spatial partitioning is two-fold: (1) when running spatial
queries that target at particular spatial regions, GeoSpark can speed up queries by
avoiding the unnecessary computation on partitions that are not spatially close.
Figure 2.5 shows the spatial partitioning grids currently supported by GeoSpark.
(2) it can chop a Spatial RDD to a number of data partitions which have similar
number of records per partition. This way, GeoSpark can ensure the load balance
and avoid stragglers when performing computation in the cluster.
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Fig. 2.5 Grids generated by SRDD spatial partitioning techniques. (a) SRDD partitioned by
uniform grids. (b) SRDD partitioned by Quad-Tree. (c) SRDD partitioned by R-Tree. (d) SRDD
partitioned by KDB-Tree

2.4.4 Spatial RDD Index

Spatial indices such as R-Tree and Quad-Tree are widely used in spatial data systems
to accelerate the query processing. This is because spatial indices internally leverage
a hierarchical structure to cluster spatial objects according to the spatial proximity.
Given a query window, the indices quickly navigate the predicate to corresponding
tree nodes in a top-down fashion. However, a traditional index on the entire Spatial
RDD can cost an additional 15% storage overhead (Yu and Sarwat 2016, 2017). No
single machine can afford such storage overhead when the data scale becomes large.
Moreover, a single-machine spatial index cannot leverage the cluster to parallelize
the workload.

GeoSpark proposes a distributed spatial index to index Spatial RDDs in the
cluster (see Fig. 2.6). This distributed index consists of two parts (1) global index: is
stored on the master machine and generated during the spatial partitioning phase. It
indexes the bounding box of partitions in Spatial RDDs. The purpose of having such
a global index is to prune partitions that are guaranteed to have no qualified spatial
objects. (2) local index: is built on each partition of a Spatial RDD. Since each local
index only works on the data in its own partition, it can have a small index size.
Given a spatial query, the local indices in the Spatial RDD can speed up queries in
parallel.
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Fig. 2.6 Distributed spatial
index in GeoSpark

2.4.5 Spatial RDD Customized Serializer

When distributed databases transfer objects across machines (e.g., data shuffle), all
objects have to be first serialized in byte arrays. The receiver machines will put
the received data chunk in memory and then de-serialize the data. Many distributed
spatial databases use generic serializers such as Kryo which can provide a compact
representation of simple objects (e.g., integers). However, for spatial objects that
possess very complex geometrical shapes, the generic serializer may lead to large-
scale data shuffled across the network and tremendous memory overhead across the
cluster.

GeoSpark provides a customized serializer for spatial objects and spatial indexes.
The proposed serializer can serialize spatial objects and indices into compressed
byte arrays. This serializer is faster than the widely used kryo serializer and has
a smaller memory footprint when running complex spatial operations, e.g., spatial
join query. When converting spatial objects to a byte array, the serializer follows
the encoding and decoding specification of Shapefile (ESRI 1998). The detailed
specification is given below:

– Byte 1 specifies the type of the spatial object. Each supported spatial object type
has a unique ID in GeoSpark.

– Byte 2 specifies the number of sub-objects in this spatial object.
– Byte 3 specifies the type of the first sub-object (only needed for GeometryCol-

lection, other types don’t need this byte).
– Byte 4 specifies the number of coordinates (n) of the first sub-object. Each

coordinate is represented by two double type (8 bytes * 2) data X and Y.
– Byte 5 – Byte 4+16*n stores the coordinate information.
– Byte 16*n+1 specifies the number of coordinates (n) of the second sub-object. . .
– Until the end Here all sub-objects have been serialized.

The serializer can also serialize and deserialize local spatial indices, such as
Quad-Tree and R-Tree. For serialization, it uses the Depth-First Search (DFS) to
traverse each tree node following the pre-order strategy (first write current node
information then write its children nodes). For de-serialization, it will follow the
same strategy used in the serialization phase. The de-serialization is also a recursive
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procedure. When serialize or de-serialize every tree node, the index serializer will
call the spatial object serializer to deal with individual spatial objects.

2.5 Spatial Query Processing Layer

The spatial query processing layer in GeoSpark equips a set of distributed spatial
query algorithms to uphold various spatial query operators. Currently, range query,
distance query, K Nearest Neighbors (KNN) query, range join query, and distance
join query are supported. The query processing layer intuitively leverages the spatial
indices and data partitioning in the Spatial RDD layer to speed up the query
execution.

2.5.1 Spatial Range Query

A spatial range query takes as input a query window which can be polygon or
rectangle, and a Spatial RDD. It usually runs fast and does not incur a data shuffle.
GeoSpark completes this query using a parallelized filter transformation in Apache
Spark. The steps are: (1) Broadcast the query window to each machine in the cluster
and create a spatial index on each Spatial RDD partition if necessary. (2) For each
Spatial partition, if a spatial index is created, use the query window to query the
spatial index. Otherwise, check the spatial predicate between the query window and
each spatial object in the Spatial RDD partition. If the spatial predicate holds true,
the algorithm adds the spatial object to the result set.

2.5.2 Spatial K Nearest Neighbors (KNN) Query

A spatial KNN query takes as input a query point, a Spatial RDD and a number.
The straightforward way to perform this query in a Spark cluster is to compute
the distance among the query point and all other spatial objects, conduct a global
sorting, and take the top K spatial objects that have the shortest distances to the query
point. However, this approaches requires a global sorting which is slow and incurs a
huge data shuffle. GeoSpark adopts a distributed top-k algorithm which runs in two
phases (1) selection phase: for each Spatial RDD partition, GeoSpark calculates the
distances from the given query point to each spatial object, then maintains a local
priority queue on the distances. Such a queue contains the nearest K objects around
the given query point and becomes a partition of the new intermediate Spatial RDD.
For the indexed Spatial RDDs, GeoSpark can query the local indexes in partitions
to accelerate the distance calculation. (2) sorting phase: each partition in the RDD
produced in the previous step contains k spatial objects which are the candidates
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of the global top k nearest neighbors. In the sorting phase, GeoSpark sorts spatial
objects in this RDD and takes global top k nearest neighbors. This sorting only
works on a few spatial objects that are candidates for the global K nearest neighbors
such that the sorting overhead is reduced.

2.5.3 Spatial Join Query

A spatial join query in GeoSpark takes as input two Spatial RDDs, A and B. Both
of them should be partitioned by the same spatial partitioning grid file. One of the
Spatial RDD can have local indices. GeoSpark develops a join algorithm called
GSjoin (Yu et al. 2019) which leverages the spatial data partitioning and indices
built in Spatial RDDs. The algorithm zips two Spatial RDDs partition by partition,
according to spatial proximity. In every partition, for spatial objects from Spatial
RDD A and B, the algorithm computes their spatial relations. If the spatial object
from A overlaps the other one from B, the algorithm keeps them in the final results.
Finally, the algorithm removes the duplicated points and returns the result to other
operations in the Spark.

2.6 Perform Spatial Data Analytics in GeoSpark

This section details the usage of GeoSpark RDD and SQL APIs and showcases the
system. In particular, it illustrates several GeoSpark queries and gives a complete
example about how to interact with Zeppelin. The example code in this section is
written in Scala but also works for Java.2

2.6.1 Run Queries Using RDD APIs

The section outlines the steps to create Spatial RDDs and run spatial queries using
GeoSpark RDD APIs. The example code is written in Scala but also works for Java.

Set up dependencies Before starting to use GeoSpark, users must add the cor-
responding package to their projects as a dependency. For the ease of managing
dependencies, the binary packages of GeoSpark are hosted on the Maven Central
Repository which includes all JVM based packages from the entire world. As long
as the projects are managed by popular project management tools such as Apache

2Example code: https://github.com/jiayuasu/GeoSparkTemplateProject

https://github.com/jiayuasu/GeoSparkTemplateProject
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Maven and sbt, users can easily add GeoSpark by adding the artifact id in the project
specification file such as POM.xml and build.sbt.

Initiate SparkContext Any RDD in Spark or GeoSpark must be created by
SparkContext. Therefore, the first task in a GeoSpark application is to initiate
a SparkContext. The code snippet below gives an example. In order to use
GeoSpark custom spatial object and index serializer, users must enable them in the
SparkContext.

1 val conf = new SparkConf()
2 conf.setAppName("GeoSparkExample")
3 // Enable GeoSpark custom Kryo serializer
4 conf.set("spark.serializer", classOf[KryoSerializer].getName)
5 conf.set("spark.kryo.registrator", classOf[

GeoSparkKryoRegistrator].getName)
6 val sc = new SparkContext(conf)

Create a Spatial RDD Spatial objects in a SpatialRDD is not typed to a certain
geometry type and open to more scenarios. It allows an input data file which contains
mixed types of geometries. For instance, a WKT file might include three types of
spatial objects, such as LineString, Polygon and MultiPolygon. Currently, GeoSpark
can load data in many different data formats. This is done by a set of file readers such
as WktReader and GeoJsonReader. For example, users can call ShapefileReader to
read ESRI Shapefiles (ESRI 1998).

1 val spatialRDD = ShapefileReader.readToGeometryRDD(sc, filePath)

Transform the coordinate reference system GeoSpark doesn’t control the coor-
dinate unit (i.e., degree-based or meter-based) of objects in a Spatial RDD. When
calculating the distance between two coordinates, GeoSpark simply computes the
Euclidean distance. In practice, if users want to obtain the accurate geospatial
distance, they need to transform coordinates from the degree-based coordinate
reference system (CRS), i.e., WGS84, to a planar coordinate reference system (i.e.,
EPSG: 3857). GeoSpark provides this function to the users such that they can
perform this transformation to every object in a Spatial RDD and scale out the
workload using a cluster.

1 // epsg:4326: is WGS84, the most common degree-based CRS
2 val sourceCrsCode = "epsg:4326"
3 // epsg:3857: The most common meter-based CRS
4 val targetCrsCode = "epsg:3857"
5 objectRDD.CRSTransform(sourceCrsCode, targetCrsCode)

Build the distributed spatial index Users can call APIs to build a distributed
spatial index on the Spatial RDD. Currently, GeoSpark provides two types of spatial
indexes, Quad-Tree and R-Tree, as the local index on each partition. The code of this
step is as follows:
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1 spatialRDD.buildIndex(IndexType.QUADTREE, false) // Set to true
only if the index will be used join query

Write a spatial range query A spatial range query takes as input a range query
window and a Spatial RDD and returns all geometries that intersect/are fully covered
by the query window. Assume the user has a Spatial RDD. He or she can use the
following code to issue a spatial range query on this Spatial RDD. The output format
of the spatial range query is another Spatial RDD.

1 val rangeQueryWindow = new Envelope(-90.01, -80.01, 30.01, 40.01)
2 /*If true, return gemeotries intersect or are fully covered by

the window; If false, only return the latter. */
3 val considerIntersect = false
4 // If true, it will leverage the distributed spatial index to

speed up the query execution
5 val usingIndex = false
6 var queryResult = RangeQuery.SpatialRangeQuery(spatialRDD,

rangeQueryWindow, considerIntersect, usingIndex)

Write a spatial KNN query A spatial K Nearest Neighbor query takes as input a
K, a query point and a Spatial RDD and finds the K geometries in the RDD which
are the closest to the query point. If the user has a Spatial RDD, he or she then can
perform the query as follows. The output format of the spatial KNN query is a list
which contains K spatial objects.

1 val geometryFactory = new GeometryFactory()
2 val pointObject = geometryFactory.createPoint(new Coordinate

(-84.01, 34.01)) // query point
3 val K = 1000 // K Nearest Neighbors
4 val usingIndex = false
5 val result = KNNQuery.SpatialKnnQuery(objectRDD, pointObject, K,

usingIndex)

Write a spatial join query A spatial join query takes as input two Spatial RDDs
A and B. For each object in A, finds the objects (from B) covered/intersected by it.
A and B can be any geometry type and are not necessary to have the same geometry
type. Spatial RDD spatial partitioning can significantly speed up the join query.
Three spatial partitioning methods are available: KDB-Tree, Quad-Tree and R-Tree.
Two Spatial RDDs must be partitioned by the same spatial partitioning grid file. In
other words, If the user first partitions Spatial RDD A, then he or she must use the
data partitioner of A to partition B. The example code is as follows:

1 // Perform the spatial partitioning
2 objectRDD.spatialPartitioning(joinQueryPartitioningType)
3 queryWindowRDD.spatialPartitioning(objectRDD.getPartitioner)
4 // Build the spatial index
5 val usingIndex = true
6 queryWindowRDD.buildIndex(IndexType.QUADTREE, true) // Set to

true only if the index will be used join query
7 val result = JoinQuery.SpatialJoinQueryFlat(objectRDD,

queryWindowRDD, usingIndex, considerBoundaryIntersection)
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2.6.2 Run Queries Using SQL APIs

The page outlines the steps to manage spatial data using the Spatial SQL interface of
GeoSpark. The SQL interface follows SQL/MM Part3 Spatial SQL Standard (Ash-
worth 2016). In order to use the system, users need to add GeoSpark as the
dependency of their projects, as mentioned in the previous section.

Initiate SparkSession Any SQL query in Spark or GeoSpark must be issued by
SparkSession, which is the central scheduler of a cluster. To initiate a SparkSession,
the user should use the code as follows:

1 var sparkSession = SparkSession.builder()
2 .appName("GeoSparkExample")
3 // Enable GeoSpark custom Kryo serializer
4 .config("spark.serializer", classOf[KryoSerializer].getName)
5 .config("spark.kryo.registrator", classOf[GeoSparkKryoRegistrator

].getName)
6 .getOrCreate()

Register SQL functions GeoSpark adds new SQL API functions and optimization
strategies to the catalyst optimizer of Spark. In order to enable these functionalities,
the users need to explicitly register GeoSpark to the Spark Session using the code
as follows.

1 GeoSparkSQLRegistrator.registerAll(sparkSession)

Create a geometry type column Apache Spark offers a couple of format parsers
to load data from disk to a Spark DataFrame (a structured RDD). After obtaining
a DataFrame, users who want to run Spatial SQL queries will have to first create a
geometry type column on this DataFrame because every attribute must have a type
in a relational data system. This can be done via some constructors functions such
as ST_GeomFromWKT. After this step, the users will obtain a Spatial DataFrame.
The following example shows the usage of this function.

1 SELECT ST_GeomFromWKT(wkt_text) AS geom_col, name, address
2 FROM input

Transform the coordinate reference system Similar to the RDD APIs, the
Spatial SQL APIs also provide a function, namely ST_Transform, to transform the
coordinate reference system of spatial objects. It works as follows:

1 SELECT ST_Transform(geom_col, "epsg:4326", "epsg:3857") AS
geom_col

2 FROM spatial_data_frame

Write a spatial range query GeoSpark Spatial SQL APIs have a set of predicates
which evaluate whether a spatial condition is true or false. ST_Contains is a classical
function that takes as input two objects A and returns true if A contains B. In a given
SQL query, if A is a single spatial object and B is a column, this becomes a spatial
range query in GeoSpark (see the code below).
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1 SELECT *
2 FROM spatial_data_frame
3 WHERE ST_Contains (ST_Envelope(1.0,10.0,100.0,110.0), geom_col)

Write a spatial KNN query To perform a spatial KNN query using the SQL APIs,
the user needs to first compute the distance between the query point and other spatial
objects, rank the distances in an ascending order and take the top K objects. The
following code finds the 5 nearest neighbors of Point(1, 1).

1 SELECT name, ST_Distance(ST_Point(1.0, 1.0), geom_col) AS
distance

2 FROM spatial_data_frame
3 ORDER BY distance ASC
4 LIMIT 5

Write a spatial join query A spatial join query in Spatial SQL also uses the
aforementioned spatial predicates which evaluate spatial conditions. However, to
trigger a join query, the inputs of a spatial predicate must involve at least two
geometry type columns which can be from two different DataFrames or the same
DataFrame. The following query involves two Spatial DataFrames, one polygon
column and one point column. It finds every possible pair of <polygon, point>
such that the polygon contains the point.

1 SELECT *
2 FROM spatial_data_frame1 df1, spatial_data_frame2 df2
3 WHERE ST_Contains(df1.polygon_col, df2.point_col)

Perform geometrical operations GeoSpark provides over 15 SQL functions for
geometrical computation. Users can easily call these functions in their Spatial SQL
query and GeoSpark will run the query in parallel. For instance, a very simple query
to get the area of every spatial object is as follows:

1 SELECT ST_Area(geom_col)
2 FROM spatial_data_frame

Aggregate functions for spatial objects are also available in GeoSpark. They
usually take as input all spatial objects in the DataFrame and yield a single value.
For example, the code below computes the union of all polygons in the Data Frame.

1 SELECT ST_Union_Aggr(geom_col)
2 FROM spatial_data_frame

2.6.3 Interact with GeoSpark via Zeppelin Notebook

Although Spark bundles interactive Scala and SQL shells in every release, these
shells are not user-friendly and not possible to do complex analysis and charts.
Data scientists tend to run programs and draw charts interactively using a graphic
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Fig. 2.7 Run GeoSpark Spatial SQL in Apache Zeppelin web-based notebook

interface. Starting from 1.2.0, GeoSpark provides a Helium plugin tailored for
Apache Zeppelin (Foundation AS, Apache zeppelin. https://zeppelin.apache.org/)
web-based notebook. Users can perform spatial analytics on Zeppelin web notebook
(see Fig. 2.7) and Zeppelin will send the tasks to the underlying Spark cluster.

Users can create a new paragraph on a Zeppelin notebook and write code in
Scala, Python or SQL to interact with GeoSpark. Moreover, users can click different
options available on the interface and ask GeoSpark to render different charts such
as bar, line and pie over the query results. For example, Zeppelin can visualize the
result of the following query as a bar chart and show that the number of landmarks
in every US county.

1 %sql
2 SELECT C.name, count(*)
3 FROM US_county C, US_landmark L
4 WHERE ST_Contains(C.geom_col, L.geom_col)
5 GROUPBY C.name

Another example is to find the area of each US county and visualize it on a bar
chart (see Fig. 2.7). The corresponding query is as follows. This actually leverages
the geometrical functions offered in GeoSpark.

1 %sql
2 SELECT C.name, ST_Area(C.geom_col) AS area
3 FROM US_county C

https://zeppelin.apache.org/
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Chapter 3
Indoor 3D: Overview on Scanning
and Reconstruction Methods

Ville V. Lehtola, Shayan Nikoohemat, and Andreas Nüchter

3.1 Introduction

Accurate three-dimensional (3D) data is called for creating accurate reconstructions
of indoor spaces, i.e., application-suitable digital twins of these spaces. For instance,
the global indoor 3D laser scanner market accounted for 3.79 billion in 2017
(Businesswire 2019). The purpose of reconstruction is roughly dividable into two
types: schematic models for engineering purposes or visual models that are intended
for a broader audience than just engineers. On the one hand, schematic applications
include performing change detection between building information models (BIM)
and as-built data, and the related planning and monitoring of construction processes
and building conditions. On the other hand, visually-appealing virtual models are
useful for facility management, supporting high-level decision making, real-estate
brokering and marketing, displaying cultural and historical heritage, and other
applications. The schematic and virtual properties of digital 3D models can also
be combined. Indoor models of public buildings, e.g., airports and shopping malls,
can be used to assist indoor navigation and location-based services. Concerning the
public sector, construction permit processes may be sped up by applying automated
model checkers into these digital models – before and after the construction.
Furthermore, decision making on city planning can be facilitated when plans are
made for indoor or underground public places. Such places are common, for
example, near metro stations and in northern countries where winters are cold.
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Fig. 3.1 Point cloud of Startup Sauna entrance at Aalto University. (Reproduced from Lehtola
et al. 2017)

Perhaps surprising to a common man, the scanning and modeling of building
interiors and exteriors are two different things. The reader may reflect on this
while they proceed. The activities for reconstructing building exteriors were already
well-known when the interest towards the indoor spaces was taking its first
steps (Musialski et al. 2013).

The creation of indoor 3D models from scanned data was mainly a curiosity
before 2010s, and was done without modern mobile mapping methods. The
reconstruction of indoor models relied on 3D point clouds obtained from terrestrial
laser scanning (TLS), see Fig. 3.1, or on classical photogrammetry, specifically,
bundle adjustment. On one hand, TLS scanning required professional level high-
cost equipment and post-processing software for the lidar data, which made the
process impossible to automate. On the other hand, digital RGB images taken
with calibrated cameras were employed to find similar features from images
and then triangulate the 3D geometry from these images. After sparse matching,
dense matching and reconstruction techniques were employed, e.g. those based on
voxelization (Furukawa et al. 2009). Considering automated processing, this bundle
adjustment-based technique required professional knowledge of camera calibration
from the user and had problems with lighting, textures, and the complex geometry
of the indoor environments (Lehtola et al. 2014). These initial techniques however
brought an initial sense of success and with the development in miniaturization of
sensors (lidars, MEMS INS), they sparked a boom of interest in indoor scanning
and reconstruction.

The indoor scanning problem has been a hot topic throughout the 2010s, seeing
many different scanning systems being designed (Lehtola et al. 2017). The problem
itself was approached from several directions. First, the positioning procedure of
the mobile mapping system that traditionally relied on global navigation satellite
systems (GNSS) was ‘re-designed’ to operate in interior spaces. This meant
disabling the GNSS receiver and using only the inertial sensor to navigate. This
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so-called (pedestrian) dead reckoning1 technique however results into a rapidly
increasing uncertainty about the position of the sensor system, because the inertial
sensor drift rate is an unknown function with respect to time. In other words, even
if the inertial sensor drift is calibrated at an instant of time, that drift changes at a
certain rate. Now, this change rate could also be measured and calibrated away, but
because the change rate is unknown, the calibration does not last. With a navigation
grade inertial measurement unit (IMU), i.e. equipment with a very small drift change
rate, Trimble was able to design a pushcart system in 2012. This unit however
remains to be a test system due to the high costs of such an IMU (>20,000 euros).
Hence, the key in indoor scanning is the robustness of the positioning method. The
position of the scanning system, when developed as a function of time, becomes the
traversed path of motion, i.e. the trajectory.

After the bundle adjustment, the TLS, and the dead reckoning methods led into
shortcomings, the research focus was intensified in mobile systems and trajectory-
based methods. There, the basic idea is to track the position and heading (i.e. pose)
of the sensor system as a function of time in 3D relative coordinates. The pose
updates are done using the overlaps in optical data, that is for example keeping
record on déjà-vu’s, or technically, features that have been seen before. In robotics,
this is known as the simultaneous localization and mapping (SLAM).

This book chapter is written as follows. We shall begin by considering the
properties of indoor environments and what problems they pose for scanning
and reconstruction (Sect. 3.2). Then we discuss how can these spaces can be
understood by computers, i.e., map representations (Sect. 3.3). The development of
the indoor scanning techniques are reflected on the introduced problems and we list
some prominent mobile mapping methods (Sect. 3.4). Based on these and given
an application, the reader should to be able to identify the scanning challenges
related to that application and then be able to select a suitable indoor mobile
mapping system for that application. Furthermore, in order to give the reader a
basic understanding in how the indoor mapping systems perform simultaneous
localization and mapping (SLAM), we describe the algorithm based on iterative
closest points (ICP) (Sect. 3.5). This description (along with the cited works) allows
– in principle – for the reader to construct their own indoor mobile scanning system.2

We expect, however, that most readers do not construct their own systems but are
instead interested in the functionality of the existing systems and their development
in the creation of point clouds. The reconstruction of indoor spaces (Sect. 3.6)
covers the necessary step of semantically segmenting the created point cloud and
the following step on turning this labeled point cloud into a meshed model. Hence,
by indoor 3D reconstruction we are referring to the process of generating a meshed
model which is exportable to one of the standard formats such as IFC (industry

1The terms dead reckoning and pedestrian dead reckoning are used in the field of positioning and
navigation.
2Note that ready open source SLAM codes are also available, e.g. https://github.com/
googlecartographer/ (Hess et al. 2016).

https://github.com/googlecartographer/
https://github.com/googlecartographer/
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foundation classes) or IndoorGML (Chen and Clarke 2017). In other words, the
point cloud that is obtained from scanning is replaced by a mesh that consists of
continuous geometrical shapes such as planes. In Sect. 3.7, we review applications.
The book chapter ends with a discussion on future trends (Sect. 3.8) and a list of
exercises for students (Sect. 3.9).

A common thread of this book chapter, as the reader will discover, is that the
scanning trajectory is of critical importance in each of the steps towards the final 3D
model, i.e. an application-suitable digital twin of the indoor space. The concept of
trajectory, i.e. the path that the scanning system has traveled, is at the very core of
mobile mapping and we highlight that it is important to understand what it stands for
as it is exploited not only in scanning but also in reconstruction steps of the indoor
spaces. To this end, we need to review some terminology.

3.1.1 Terminology

The development in indoor mobile mapping has heritage in multiple fields of
science. Hence, there are several words that bear a similar or identical meaning. A
systematic review of the scanning terminology is listed in Table 3.1. Additionally,
there are some apparent ambiguities that need to be clarified. It is important to differ-
entiate between relative positioning, where a map with an internal coordinate system
is created,3 and absolute positioning, where a map with geographic coordinates is
created (typically using a GNSS receiver). Here, the term map follows from robotics
(definition in Sect. 3.3) and does not refer to a cartographic map. When relative
positioning such as SLAM techniques are used to create a map, this map can be
geo-referenced. Geo-referencing is a surveying term that means that the internal
coordinate system of a map or image is transformed into a geographic coordinate
system, typically WGS82 (World Geodetic System). In other words, after an indoor
space is mapped, the obtained map may be connected onto an outdoor map to form
a seamless indoor-outdoor transition in the map. Finally, the range precision of

Table 3.1 Typical terminology related to (indoor) point cloud registration comes from different
disciplines of science (term data registration is sometimes also used). The symbols (xyzθφκ)
correspond to 3 Cartesian coordinates and 3 Euler angles

Discipline Equipment Term Mathematical equivalent

Laser scanning lidar (uses terms below)

Photogrammetry Digital camera Orientation (xyzθφκ)

Computer vision Digital camera External calibration (xyzθφκ)

Robotics Robot (or sensor) Pose (or posture) (xyzθφκ)

Navigation GNSS receiver Position, heading (xyz), (θφκ)

3Typically, the origin is chosen to be at the start point of scanning, i.e. (x, y, z) = (0, 0, 0).
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lidars is around some millimeters, so positioning from dense scans using SLAM
almost never results in issues with precision. Instead, there are problems related to
erroneous scan registrations which are discussed in Sect. 3.5.5 and which we refer
to with the word accuracy or accurate data.

3.2 Properties of Indoor Environments and Identification
of Scanning and Reconstruction Problems

Indoor spaces may be dark or over-illuminated. They can be colorful or lacking
texture. These properties of indoor spaces have an immediate impact on the
functionality of sensors. Sensor capabilities with respect to different conditions in
indoor environments are detailed in Table 3.2. Note that only the most commonly
used sensors are included. The range of a sensor is important when large indoor
facilities are scanned. In addition to sensors, there are further things to consider.

Every object and feature within an interior space has a specific purpose, as they
have been designed by humans. These objects and features come in different sizes,
see Fig. 3.2. There are, in fact, a lot of objects in which people do not normally
pay attention, and some of these may have geometrically complex shapes. Some
are small, such is the width of an electric wire, and some are big, such is a room.
The magnitude of sizes varies from the order of one centimeter to dozens or even
hundreds of meters. In other words, the characteristic length scale of interior spaces
spans four orders of magnitude. We call this as a multi-scale problem (Lehtola et al.
2017).

The multi-scale problem sets apparently conflicting criteria to the design of the
indoor mapping system. On one hand, the sampling resolution should be large to be
able to account for the smallest details, but on the other it should be sparse to make
covering large spaces computationally tractable. However, the fast accumulation
of data from large resolution may be dealt with sophisticated data distillation
techniques. Hence, an ideal system designed for three-dimensional (3D) indoor
reconstruction has a sampling rate that can account for the smallest details, but
is able to do efficient data distillation so that even the largest interior spaces may

Table 3.2 Optical sensor capabilities with respect to different conditions in indoor environments

RGB-D (range
Conditions RGB (camera) camera) lidar RGB and lidar

Nominal Y Y Y Y

Weak textures N Y Y Y

Dark N N Y Y

Direct light or sunlight N N Y Y

Advantage Textures (and
geometry)

Textures and
geometry

Geometry Textures and
geometry

Range Unlimited 6–10 m 30–100 m 30–100+m
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Fig. 3.2 Multi-scale problem. Each object and feature in indoor environments serves a specific
purpose for which it has been put there. These span a multitude of length scales, for example, a
network cable has 0.6 cm thickness, while the thickness of the radiator is one order of magnitude
larger, i.e. 7 cm. The building itself can span a distance of hundreds of meters. Success in separating
the objects of these different scales depends on the precision of the data and the models used. A
coarse assumption of a rectangular room leads to the elimination of these features, depicted with a
cyan plane. Instead, using a piece-wise planar model shown with red planes allows for the recovery
of the different objects

be covered. Usually for applications, it is important that the level of detail stays
the same regardless of the size of the building. Hence, in practice, the application
determines the properties that the measurement system should fulfill.

The measuring geometry of indoor data is very different from traditional remote
sensing, where the Earth is viewed from above, and from 3D scanning of single
objects, since of two restrictions. First, scanning techniques must account for not
being able to see the surrounding indoor space in one snapshot, as sensors typically
have a field of view that does not cover 360 degree rotation around two directions.
Second, the sensor trajectory is more restricted and difficult measuring geometries
that may lead to registration problems are encountered for example in narrow
doorways. In contrast, an air-borne scanning system can be freely flown above the
Earth or a studio-system freely moved around the single object that is 3D scanned.

Indoor environments are highly convoluted spaces. In topological sense, they can
be thought to resemble Swiss cheeses, i.e. bulks with multiple carved holes. Such a
bulk can be discretized with an occupancy grid for optical ‘mining’ (see Sect. 3.3).
One typical problem that is encountered is the difficulty in distinguishing the points
captured from the two different sides of a thin wall. Another is distinguishing
between an opening caused by missing data and an opening caused by an existing
window.

Occlusions are abundant indoors, since often an object or one part of the area
to be scanned blocks another part of the area to be scanned, see Fig. 3.3. Outdoors,
when large platforms may be used, the problem can be alleviated by fusing sensor
data from different platform locations (Schneider et al. 2010). Indoors, the sensor
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Fig. 3.3 Occlusion is a
common problem indoors.
Some parts of the scene
occlude some other parts of
the scene. Obvious examples
of occluding objects include
static constructs such as
pillars and corners, but there
are also dynamic objects such
as furniture and doors. Here,
a pillar is occluding a part of
the view of the scanning
system located at the red spot
(visible area shown in blue,
occluded area in grey)

systems are purposefully smaller and this approach is less feasible. These occlusions
can be then overcome with footwork, i.e. a thorough scan of the indoor space, which
is likely to require an online interface from which the operator can see what part
of the areas need further scanning. This need for an interface has partly lead the
development and design of commercial indoor scanning products.

Dynamic occlusions and static occlusions are two different things. If a scan
is planned, it needs to be taken into account that indoor spaces are often full of
people and objects. In technical sense, people that move around may be referred
to as dynamic occlusions while objects that do not move present static occlusions.
Dynamic occlusions can be detected by performing scans of the same environment
at different instances of time and then comparing the obtained point clouds. If
only one instance of time is used, then dynamic occlusions may not be easily
detected. Static occlusions need to be treated in the reconstruction phase, for
example, oftentimes a priori knowledge of the environment is used to fill in the
gaps (Sect. 3.6). Different measures to detect changes in indoor MLS point clouds
are discussed in Lehtola et al. (2017).

Reflection is the ‘evil twin’ of occlusion. Reflections of optical rays may occur
from transparent surfaces, e.g. glass, or shiny surfaces, e.g. metal. With digital
images, light sources are probably the most common cause for reflections from
surfaces. As another simple example, the first return of a laser beam is back-
scattered from a window and the second one follows from the beam hitting
something solid beyond that window. These are a typical cause of outliers in the
indoor 3D data. One straightforward way of eliminating these is to use a threshold
value to omit returns that have a low intensity value. However, this is not always
feasible for automated methods, as the threshold value depends on multiple factors
and hence may appear arbitrary.
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Outliers in indoor 3D data may be considerably harder to eliminate than the ones
present in 3D object data because objects have a simple (convex hull) topology
while indoor spaces usually do not. In other words, while outlier points inside a 3D
object are harmless, they are a problem inside a room. Also, airborne scanned laser
data that forms a surface with height differences usually is easier to de-noise than
an indoor 3D point cloud that contains empty spaces inside.

In indoor 3D scanning, all surfaces are explicit surfaces in contrast to object 3D
scanning. When scanning separate objects, e.g. by moving a camera around them,
it is typically assumed that the surface of that object does not contain any holes, i.e.
that the surface is implicit. This assumption greatly facilitates the reconstruction,
because then a coherent surface without holes is always recovered. However, this
assumption must be relaxed for indoor spaces, because for example windows (or
arbitrary decorations) form holes on the walls (or other surfaces). This, that all
indoor surfaces are explicit, makes the reconstruction process significantly harder
than what it is for single objects. Data that is missing due to scanning occlusions
or due to incomplete scan coverage must then be identified, and dealt with. The
identification of this missing data is plausible with e.g. machine learning techniques
that can benefit from the consistence of the existing data to create an estimate for
occluded shapes and textures (Sect. 3.6).

List of problems or challenges identified in indoor 3D scanning and reconstruc-
tion is then as follows

• Optical sensor challenges as in Table 3.2 (S)
• Multi-scale problem: objects of different size (S,R)
• Occlusions from the measurement geometry in a highly convoluted space (S)
• Dynamic occlusions (S) and static occlusions (R)
• Reflections and outliers (R)
• Convoluted space with explicit surfaces (S,R)

Note that some of these problems are typically solved in either the scanning (S)
or the reconstruction (R) phase. This depends on the problem characteristics. The
reader should keep these in mind when reading the following sections.

3.3 Map Representations

Computers (or robots) understand the indoor spaces differently than humans. In their
memory, they form a map. How the map looks like is explained in a while. First,
consider the following procedure where a mobile mapping system gathers optical
data of the environment, while being propagated forward by a human operator:

Initially, the map does not exist. It is generated from optical observations.
In this process, we can see that there are two important concepts, positioning
and map expansion. These are intertwined. The captured optical data can be
transformed to expand a map, if and only if the platform movement is known. That
is, if the platform can be accurately positioned with respect to time. In outdoor
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Result: Map (and other scanned data)
Initialize new map from the first scan;
while Scanning do

Observe new data;
if Match between new data and the stored map is found then

Update the position of the system on the map;
Expand the map with the new data (e.g. Figure 1.4) ;

end
end

environments, global navigation satellite system (GNSS) receivers are typically
employed to provide absolute positions for a mobile mapping system in a so-called
PVT format (position, velocity, precise time).4 However, as the GNSS signals are
not available indoors, relative positioning methods must be employed. This means
that the generated map is employed to localize the system on it. Therefore, this is
called simultaneous localization and mapping (SLAM, Sect. 3.5). In other words,
estimating the trajectory of the platform and estimating the map is the very same
problem, that is, the problem has a dualistic nature.

The map itself may have a variety of forms, see Table 3.3. A map can be 2D
or 3D. However, the localization method used to construct it may be limited to 2D
even if it outputs a 3D map. A good example of such system would be a multi-
sensor system that utilizes a 2D lidar to perform the localization but has a 3D lidar
or digital cameras to capture data. In some instances, these systems or methods are
referred to output 2.5D maps. The 2.5D stands for two and half dimensions meaning
that the outputted point clouds are 3D but there are some limitations in the method,
e.g. restricting the mapping of two stories on top of each other into the same map.

Point-based maps are point clouds, such as Fig. 3.1, which are extended as the
scanning continues. The benefits of these maps are that the point density can be
allowed to vary from dense to sparse. The point density is stored and may be utilized
later to evaluate the uncertainties in the scan result. Furthermore, point-based maps
lack the discretization error that is present when the space is discretized into voxels
or when planes are used to represent the space. Their limitation, however, is that
they are not infinitely dense.

The voxel maps (or occupancy grids), such as Fig. 3.4, consist of cells of a given
size, e.g. 5 cm3, that are labeled as either occupied or unoccupied (or unexplored).
For example, the map updating could go as follows: if during a scan a point is
observed and that point resides in a voxel, then that voxel is marked as occupied.
Also, the voxels residing along the line of sight to that point are also marked as
unoccupied. A voxel map does not, however, have to be binary. It can also be
probabilistic, for example see OctoMap (Hornung et al. 2013). Then the voxel
cells are do not have binary states of being either occupied or unoccupied, but

4Navipedia of European Space Agency: https://gssc.esa.int/navipedia/

https://gssc.esa.int/navipedia/
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Table 3.3 Map representations used when scanning indoor environments

2D 3D

Point-based

Voxel

Feature (plane) N/A

have a probability of being full (or empty). Note that in the reconstruction phase5

(Sect. 3.6), the voxels are converted into a binary (occupied or empty) format, while
here they may have unexplored or probabilistic states. Occupancy grids offer a
straightforward way to represent the scanned space and are powerful in 2D, where
they offer a computationally light way for keeping track of dense scans. In 3D,
however, this beneficial property is severely countered by the rapidly increasing
amount of (empty) voxels. The usefulness of a 3D voxel map hence easily suffers
from the amount of memory required to span a large volume, because this demand
increases as O(N3).

Planes are commonly used to represent floors, walls, and ceilings in indoor
reconstruction (Sect. 3.6). Hence, planar features are beneficial in that they may
allow for the SLAM algorithm to output models that are close to ones obtained from
reconstruction (Grant et al. 2019; Karam et al. 2019). Further discussion related
to SLAM algorithms is in Sect. 3.5. Other geometrical features may also be used
instead or in conjunction with planar features.

5In reconstruction literature, voxel maps are also referred to as Manhattan world approximation.
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Fig. 3.4 Occupancy grid representation of an indoor environment: grey areas are not explored,
white areas are empty, except those with lines. Red path is the past trajectory of the mobile mapping
system. Red arc displays the field of view of the scanner. One room door is open and the scanner
can partly see inside that room. Other doors are closed
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Multiple maps may be created and benefited from. If the scanning system
provides a map that is updated online while the operator is walking, it shows the
operator which areas are yet unexplored. This is helpful, so that all the rooms and
corners of the indoor environment get covered in the final detailed map that will be
the output of the scanning.

3.4 Development of Indoor Scanning Systems

The history of the development of indoor scanning systems is briefly visualized
in Fig. 3.5. First conscious attempts to capture whole 3D indoor environments
were concluded using RGB cameras (Fig. 3.5c) and structure from motion tech-
niques (Furukawa et al. 2009). Soon after, consumer-level depth cameras (RGB-D,
Fig. 3.5a were found suitable for some limited mapping tasks but their weakness
remains to be a very limited range6 (Du et al. 2011). Almost simultaneously, a
backpack platform with cameras and laser scanners was put together by Liu et al.
(2010) to enable the capture of accurate geometry and textures.

The following wave of development consisted of improving the way of usage
of one scanline (or 2D) lidars. A single 2D lidar was used in conjunction with an
inertial sensor in a system called Zebedee (Bosse et al. 2012). Another 2D lidar
system used a rotation encoder (Zhang and Singh 2014). Ultimately, a mobile 2D
lidar was used without any other sensors to capture 3D indoor data (Fig. 3.5e,
Lehtola et al. 2015, 2016). In other words, the a-priori model for the ego-motion
required to start registering the data was successfully relaxed at a later stage of the
SLAM processing. Lauterbach et al. (2015) (Fig. 3.5f) combined a 2D laser scanner
in conjunction with a 3D scanner on a backpack system. Here, data from the 3D
scanner could augment the 2D trajectory from an initial localization from the 2D
scanner into full 3D.

The third wave of development consists of multi-line scanners (Fig. 3.5g). These
relatively inexpensive but potent scanners enabled the emergence of multiple
commercial systems. The systems based on these multi-line scanners include for
example hand-held (Fig. 3.5h) and backpack (Fig. 3.5i) systems.

3.4.1 Single Sensor Methods and Multi-sensor Systems

Single sensor methods are important in understanding the possibilities and limita-
tions of the sensors. Their study helps designing multi-sensor systems with optimal
combinations of sensors that complement each other. In the following, we list
selected state-of-the-art systems and methods.

6Today the commercial RGB-D cameras have a range of only up to 10 m.
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Fig. 3.5 Development of indoor 3D scanning platforms, from single sensor systems (a, b, c, d)
to multi-sensor systems (e, f, g, h, i, j). These selected example systems are (a) RGB-D camera
(Kinect), (b) RGB camera, (c) rolling 2D scanner (Aalto VILMA), (d) a multi-line laser scanner,
(e) 3x RGB-D cameras (Matterport), (f) a multi-sensor trolley (NavVis), (g) a multi-sensor pushcart
(FGI Slammer), (h) backpack with a 2D scanner and a 3D scanner (From University of Würzburg),
(i) hand-held system (Kaarta stencil), and (j) multi-sensor backpack (Leica Pegasus). Many more
systems exist. (e, f, g, h, i, j) are reproduced from Lehtola et al. (2017) (CC)

Single sensor methods operate on the data from

• Digital RGB and RGB-D (depth) cameras: visual SLAM, see e.g. Mur-Artal and
Tardós (2017) and review by Taketomi et al. (2017). Individual frames from a
video feed are matched so that the movement of the camera can be estimated.

• 2D lidar (Lehtola et al. 2016). Note that it is very challenging to reconstruct a 3D
model out of 2D lidar data, and therefore these lidars are usually employed in a
multi-sensor system.

• Multi-line lidar (Moosmann and Stiller 2011; Grant et al. 2019). The multi-line
lidar outputs a scan that already has some 3D geometry, and the overlap from
different scans can be employed in 3D scan registration for SLAM (see Sect. 3.5).

Multi-sensor systems are common in mobile mapping of indoor spaces. Our
careful estimate is that there are dozens of different multi-sensor systems. Those
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who are interested in quantitative measures should refer to Lehtola et al. (2017),
where the performance of eight different systems has been compared. Three of these
are further analyzed in Tucci et al. (2018). Here, we divide multi-sensor systems into
human-carriable systems and mobile platforms.

3.4.1.1 Carriable Systems

The simplest multi-sensor systems consist of a 2D lidar and an inertial sensor,
e.g. Zebedee scanner (Bosse et al. 2012), or a 2D lidar and an angular decoder,
e.g. LOAM (Zhang and Singh 2014). These additional sensors provide digital
a-priori knowledge about the motion of the scanner that can be utilized in a
prediction algorithm to make registration of the data feasible. The prediction step is
especially important in providing information about the extra dimension, when a 3D
reconstruction is attempted using the data from a 2D scanner. It is also worthwhile
in keeping track of fast rotations when using a 3D scanner that has a low frequency
(of some 10–20 Hz) in capturing scan lines, see e.g. Velas et al. (2018).

RGB cameras are also used in minimalist systems. Using an inertial measurement
unit (IMU) in conjunction with a RGB camera allows for solving the absolute scale
of the camera network (Nützi et al. 2011) and it provides robustness against sudden
rotations where the camera system would otherwise lose track (Concha et al. 2016).

Lidar backpack systems can mount several sensors and have a combination of
lidars, cameras, and IMUs. One of the first backpack systems had 3 cameras, 3
Hokyuo lidars, and one IMU (Liu et al. 2010). Since then, backpacks are seeing
more 3D lidars such as Riegl VZ-400 (Lauterbach et al. 2015) and multi-line
Velodyne scanners (Blaser et al. 2018).

3.4.1.2 Mobile Platforms

Mobile platforms roll on wheels, having space to mount multiple sensors to ensure
a full capture of the environment. Also, they offers some advantages related to
the predictability of the platform movement. For example, the localization may be
conducted in 2D. Numerous experimental pushcart or trolley platforms have been
assembled. For example, Radler is an instrumented surveyor’s wheel that uses low-
cost sensors, a 2D laser scanner and an IMU, to create 3D point clouds (Borrmann
et al. 2018), while the FGI scanner (Kaijaluoto et al. 2015) (Fig. 3.5g) is more
cumbersome to move, but consists of solely state-of-the-art high-end sensors. One
of the known commercial platforms is NavVis (2016), see Fig. 3.5f.

3.4.1.3 Micro Aerial Vehicles

Micro Aerial Vehicles (MAVs) offer maneuverability and flexibility in mapping
indoor spaces. They have, for example, been used in inventing warehouses (Eudes
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et al. 2018) and mapping caves (Kaul et al. 2016). One captivating scene of
autonomous MAV mapping can be found in the movie Prometheus. In buildings,
however, the use of MAVs is limited by that they cannot open doors and therefore
are restricted by closed doors.

3.5 Iterative Closest Point SLAM

The positioning of indoor mobile mapping systems is performed using simultaneous
localization and mapping (SLAM) techniques, since satellite-based positioning is
unavailable indoors. We offer an example on SLAM techniques in the form of ICP-
based SLAM, but the reader should be aware that there are other SLAM techniques
as well. The ICP algorithm is used for matching new observations against the stored
map, after which the map expansion can be done and the system position may be
updated.

3.5.1 The ICP Algorithm

The ICP algorithm is the de-facto baseline for all other algorithms. The complete
algorithm was invented at the same time in 1991 by Besl and McKay, by Chen
and Medioni and by Zhang. The method is called the Iterative Closest Points (ICP)
algorithm.

Given two independently acquired sets of 3D points, M̂ (model set) and D̂ (data
set) which correspond to a single shape, we want to find the transformation (R, t)
consisting of a rotation matrix R and a translation vector t which minimizes the
following cost function:

E(R, t) = 1

N

N∑

i=1

||mi − (Rdi + t)||2 , (3.1)

All corresponding points can be represented in a tuple (mi ,di ) where mi ∈ M ⊂ M̂

and di ∈ D ⊂ D̂. Two things have to be calculated: First, the corresponding
points, and second, the transformation (R, t) that minimizes E(R, t) on the basis of
the corresponding points. The ICP algorithm uses closest points as corresponding
points. A sufficiently good starting guess, i.e. that the matched point sets are quite
similarly oriented already, enables the ICP algorithm to converge to the correct
minimum, see Fig. 3.6.

Current research in the context of ICP algorithms mainly focuses on fast variants
of ICP algorithms (Rusinkiewicz and Levoy 2001). If the input are 3D meshes
then a point-to-plane metric can be used instead of Eq. (3.1). Minimizing using a
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Fig. 3.6 Registration of 3D scans. The scanned scene shows the Domshof in Bremen. Left: 3D
point cloud, Right: Bird eye’s view. Top: Initial registration based on rough estimates. Middle:
Result after 5 iterations of ICP. Below: Final registration after ICP has terminated
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point-to-plane metric outperforms the standard point-to-point one, but requires the
computation of normals and meshes in a pre-processing step.

The computation of closest points is the most expensive step in the ICP
algorithm. Using the optimized k-d trees the cost for finding the closest point to a
given query point is at average in the order of O(log N) (Friedman et al. 1977), thus
the overall cost is O(N log N) (expected time). Note: N can be very large (Elseberg
et al. 2013). Improvements to k-d tree search have been presented by Elseberg et al.
(2012). They include approximate k-d tree search (Greenspan and Yurick 2003),
registration using d2-trees (Mitra et al. 2004) and cached k-d tree search (Nüchter
et al. 2007).

3.5.2 Computing Optimal Poses

Four algorithms are currently known that solve the error function (3.1) in closed
form (Lorusso et al. 1995). The difficulty of this minimization is to enforce the
orthonormality constraint for the rotation matrix R. Three of these algorithms
separate the computation of the rotation R from the computation of the translation
t. These algorithms compute the rotation first and afterward the translation is
derived using the rotation. For this separation, two point sets M ′ and D′ have to
be computed, by subtracting the mean of the points that are used in the matching:

cm = 1

N

N∑

i=1

mi , cd = 1

N

N∑

i=1

di (3.2)

and

M ′ = {m′i = mi − cm}1,...,N , D′ = {d′i = di − cd}1,...,N . (3.3)

After replacing Eqs. (3.2) and (3.3) in the error function, E(R, t) Eq. (3.1)
becomes:

E(R, t) = 1

N

N∑

i=1

||m′i − Rd′i − (t− cm + Rcd)︸ ︷︷ ︸
=t̃

||2 (3.4)

= 1

N

N∑

i=1

∣∣∣∣m′i − Rd′i
∣∣∣∣2 − 2

N
t̃ ·

N∑

i=1

(
m′i − Rd′i

)+ 1

N

N∑

i=1

∣∣∣∣t̃
∣∣∣∣2 .

In order to minimize the sum above, all terms have to be minimized. The second
sum is zero, since all values refer to centroid. The third part has its minimum for
t̃ = 0 or
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t = cm − Rcd .

Therefore the algorithm has to minimize only the first term, and the error function
is expressed in terms of the rotation only:

E(R, t) ∝
N∑

i=1

∣∣∣∣m′i − Rd′i
∣∣∣∣2 . (3.5)

1. The first method was developed in 1987 by Arun, Huang, and Blostein. The
rotation R is represented as an orthonormal 3× 3 matrix. The optimal rotation is
calculated by R = VUT . Here the matrices V and U are derived by the singular
value decomposition H = U�VT of a cross correlation matrix H. This 3 × 3
matrix H is given by

H =
N∑

i=1

m′Ti d′i =
⎛

⎝
Sxx Sxy Sxz

Syx Syy Syz

Szx Szy Szz

⎞

⎠ , (3.6)

where Sxx =∑N
i=1 m′x,id

′
x,i , Sxy =∑N

i=1 m′x,id
′
y,i , . . . .

2. The second method is similar to the previous method and was independently
developed in 1988 by Horn, Hilden and Negahdaripour. Again, a correlation
Matrix H according to Eq. (3.6) is calculated. Afterwards a so-called polar
decomposition is computed, i.e., H = PS, where S = (HT H)1/2. For this polar
decomposition, Horn et al. (1988) define a square root of a matrix. Let H, S and
P the matrices as described above. Then the optimal rotation is given by

R = P = H
(

1√
λ1

u1uT
1 +

1√
λ2

u2uT
2 +

1√
λ3

u3uT
3

)
,

where {λi} are the eigenvalues and {ui} the corresponding eigenvectors of the
matrix HT H (Horn et al. 1988).

3. The third method finds the transformation for the ICP algorithm by using
unit quaternions. This method was invented in 1987 by Horn. The rotation
represented as unit quaternion q̇, that minimizes Eq. (3.1), corresponds to the
largest eigenvalue of the cross covariance matrix N =
⎛

⎜⎜⎜⎝

(Sxx + Syy + Szz) (Syz + Szy) (Szx + Sxz) (Sxy + Syx)

(Syz + Szy) (Sxx − Syy − Szz) (Sxy + Syx) (Szx + Sxz)

(Szx + Sxz) (Sxy + Syx) (−Sxx + Syy − Szz) (Syz + Szy)

(Sxy + Syx) (Syz + Szy) (Szx + Sxz) (−Sxx − Syy + Szz)

⎞

⎟⎟⎟⎠ .

4. The fourth solution method for minimizing Eq. (3.1) uses so-called dual quater-
nions. This method was developed by Walker et al. in 1991. Unlike the first three
methods covered so far the transformation is found in a single step. There is
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no need to apply the trick with centroids to compute the rotation in a separate
fashion. Here, the optimal transformation consisting of a rotation and translation
is again a solution of the eigenvalue problem of a 4 × 4 matrix function that is
built from corresponding point pairs.

The closed-form solutions discussed so far are all non-linear, since they need
an eigenvector/eigenvalue solver, e.g., in case of using the third method, a quartic
equation must be solved (Horn 1987).

For SLAM applications it is necessary to have a notion of the uncertainty of
the poses calculated by the registration algorithm. The following is the extension
of the probabilistic approach first proposed by Lu and Milios (1997) to 6 DoF.
This extension is not straightforward, since the matrix decomposition, i.e., Eq. (3.8)
cannot be derived from first principles. For a more detailed description of the
extension refer to Borrmann et al. (2008a,b). In addition to the pose X, the pose
estimate X̄ and the pose error ΔX are required.

The positional error of a scan at its pose X is described by:

E =
m∑

i=1

‖X⊕ di −mi‖2 =
m∑

i=1

‖Zi (X)‖2

Here, ⊕ is the compounding operation that transforms a point di into the global
coordinate system. For small pose errors ΔX, E can be linearized by use of a Taylor
expansion:

Zi (X) ≈ X̄⊕ di −mi −∇Zi (X̄)ΔX

= Zi (X̄)−∇Zi (X̄)ΔX

Utilizing the matrix decomposition MiH of ∇Zi (X̄) that separates the pose X,
which is contained in H from the points mi and di , which are contained in Mi :

Zi (X) ≈ Zi (X̄)−MiHΔX

Appropriate decompositions are given for the Euler angles, quaternion representa-
tion and the Helix transform in the following paragraphs. Because Mi is independent
of the pose, the positional error E is approximated as:

E ≈ (Z−MHΔX)T (Z−MHΔX),

where Z is the concatenation of all Zi (X̄) and M the concatenation of all Mi’s.
E is minimized by the ideal pose:

Ē = (MT M)−1MT Z
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and its covariance is given by

C = s2(MT M),

where s2 is the unbiased estimate of the covariance of the identically, independently
distributed errors of Zi :

s2 = (Z−MĒ)T (Z−MĒ)/(2m− 3). (3.7)

Note that Ē is the minimum for the linearized pose HΔX. To obtain the optimal
X the following transformation is performed:

X = X̄−H−1Ē,

C = (H−1)C(H−1)T .

The representation of pose X in Euler angles, as well as its estimate and error is
as follows:

X =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

tx

ty

tz

θx

θy

θz

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

, X̄ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

t̄x

t̄y

t̄z

θ̄x

θ̄y

θ̄z

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

,ΔX =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

Δtx

Δty

Δtz

Δθx

Δθy

Δθz

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

The matrix decomposition MiH = ∇Zi (X̄), i.e., the Jacobian, is given by:

H =

⎛

⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 t̄z cos(θ̄x)+ t̄y sin(θ̄x) t̄y cos(θ̄x) cos(θ̄y)− t̄z cos(θ̄y) sin(θ̄x)

0 1 0 −t̄z −t̄x sin(θ̄x) −t̄x cos(θ̄x) cos(θ̄y)− t̄z sin(θ̄y)

0 0 1 t̄y −t̄x cos(θ̄x) t̄x cos(θ̄y) sin(θ̄x)+ t̄y sin(θ̄y)

0 0 0 1 0 sin(θ̄y)

0 0 0 0 sin(θ̄x) cos(θ̄x) cos(θ̄y)

0 0 0 0 cos(θ̄x) − cos(θ̄y) sin(θ̄x)

⎞

⎟⎟⎟⎟⎟⎟⎠
. (3.8)

and

Mi =

⎛

⎜⎜⎝

1 0 0 0 −dy,i −dz,i

0 1 0 dz,i dx,i 0
0 0 1 −dy,i 0 dx,i

⎞

⎟⎟⎠ .

As required, Mi contains all point information while H expresses the pose
information. Thus, this matrix decomposition constitutes a pose linearization
similar to those proposed in the preceding sections. Note that, while the matrix
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decomposition is arbitrary with respect to the column and row ordering of H, this
particular description was chosen due to its similarity to the 3D pose solution given
by Lu and Milios (1997).

3.5.3 Marker and Feature-Based Registration

Sometimes the ICP algorithm does not properly converge from the starting guess
and is attracted into a local minimum. To avoid these issues with starting guess
in the ICP framework, marker based registration uses defined artificial or natural
landmarks as corresponding points. This manual data association ensures that by
minimizing Eq. (3.1) the scans are registered at the correct location. Iterations are no
longer required. Feature based algorithms, like using SIFT features, automatically
extract the 3D position of natural features and do not need any iterations nor manual
interference for registration (Böhm and Becker 2007).

While registering several 3D data sets using the ICP algorithm or marker and
feature-based registration techniques, errors sum up. These errors are due to impre-
cise measurements and small registration errors. Therefore, globally consistent scan
matching algorithm aim at reducing these errors.

3.5.4 ICP-Based SLAM

Chen and Medioni (1992) aimed at globally consistent range image alignment when
introducing an incremental matching method, i.e., all new scans are registered
against the so-called metascan, which is the union of the previously acquired and
registered scans. This method does not spread out the error and is order-dependent.

Bergevin et al. (1996), Stoddart and Hilton (1996), Benjemaa and Schmitt
(1997); Benjemaas and Schmitt (1998), and Pulli (1999) present iterative
approaches. Based on networks representing overlapping parts of images, they
use the ICP algorithm for computing transformations that are applied after all
correspondences between all views have been found. However, the focus of research
is mainly 3D modeling of small objects using a stationary 3D scanner and a
turn table; therefore, the used networks consist mainly of one loop (Pulli 1999),
where the loop closing has to be smoothed. These solutions are locally consistent
algorithms that stick to the mentioned analogy of the spring system (Cunnington
and Stoddart 1999), whereas true globally consistent algorithms minimize the error
function in one step. A probabilistic approach was proposed by Williams et al.
(1999), where each scan point is assigned a Gaussian distribution in order to model
the statistical errors made by laser scanners. This causes high computation time due
to the large amount of data in practice. Krishnan et al. (2000) presented a global
registration algorithm that minimizes the global error function by optimization on
the manifold of 3D rotation matrices.
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The n-scan registration using linearization allows us to compute global optimal
poses in one step given point correspondences between adjacent scans. These scans
are given by a graph, where each link, j → k denotes a set of point pairs, i.e.,
closest points. Following the notation of ICP, scan j serves as the model set,
while scan k serves as data set. Next we present four novel linear methods for the
parameterization of the rotation.

For an uncertainty-based global point cloud registration method or SLAM
method, the 2-scan case, discussed above is extended. Under the assumption that
two poses X′j and X′k are related by the linear error metric E′j,k we wish to minimize
the Mahalanobis distance that describes the global error of all the poses:

W =
∑

j→k

(Ēj,k − E′j,k)T C
−1
j,k(Ē

′
j,k − E′j,k)

=
∑

j→k

(Ēj,k − (X′j − X′k))C
−1
j,k(Ē

′
j,k − (X′j − X′k)). (3.9)

The error between two poses is modeled by the Gaussian distribution (Ēj,k,Cj,k).
In matrix notation, W becomes:

W = (Ē−HX)T C−1(Ē−HX).

Here H is the signed incidence matrix of the pose graph, Ē is the concatenated
vector consisting of all Ē′j,k and C is a block-diagonal matrix comprised of C−1

j,k

as submatrices. Minimizing this function yields new optimal pose estimates. The
minimization of W is accomplished via the following linear equation system:

(HT C−1H)X =HT C−1Ē

BX =A.

The matrix B consists of the submatrices

Bj,k =

⎧
⎪⎪⎨

⎪⎪⎩

n∑

k=0

C−1
j,k (j = k)

C−1
j,k (j 
= k).

The entries of A are given by:

Aj =
n∑

k=0
k 
=j

C−1
j,kĒj,k.
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In addition to X, the associated covariance of CX is computed as follows:

CX = B−1

The actual positional error of two poses Xj and Xk is not linear:

Ej,k =
m∑

i=1

∥∥Xj ⊕ di − Xk ⊕mi

∥∥2 =
m∑

i=1

∥∥Zi (Xj ,Xk)
∥∥2

.

Analogous to the simple 2-scan case the linearized pose difference E′j,k is obtained
by use of a Taylor expansion of Zi (Xj ,Xk):

Zi (Xj ,Xk) ≈ Zi (X̄j , X̄k)−
(∇Xj

Zi (X̄j , X̄k)ΔXj −∇Xk
Zi (X̄j , X̄k)ΔXk

)
.

Here, ∇Xj
refers to the derivative with respect to Xj . Utilizing the same matrix

decomposition MiH of ∇Zi (X̄) as in the 2-scan case Zi (Xj ,Xk) is approximated
as:

Zi (Xj ,Xk) ≈ Zi (X̄j , X̄k)−MiE′j,k,

where E′j,k is the linear error metric given by:

E′j,k = (HjΔXj −HkΔXk)

= (X′j − X′k).

E′j,k is linear in the quantities X′j that will be estimated by the algorithm. Again, the
minimum of E′j,k and the corresponding covariance are given by

Ēj,k = (MT M)−1MT Z

Cj,k = s2(MT M).

Here Z is the concatenated vector consisting of all Zi = X̄j ⊕ di − X̄k ⊕mi .
Note that the results have to be transformed in order to obtain the optimal pose

estimates, just like in the 2-scan case.

Xj = X̄j −H−1
j X′j ,

Cj = (H−1
j )CX

j (H−1
j )T .

Note that SLAM techniques have not been developed for indoor applications
only, as applications for SLAM exist also in undersea, space, underground, and
forest environments. We recommend interested readers to get acquainted with
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probabilistic techniques such as Kalman and particle filtering in SLAM (see e.g.
Thrun et al. 2005).

3.5.5 Assessing the SLAM Errors

The Mahalanobis distance of Eq. (3.9) offers a formulation for a computational
error that can be minimized to match all poses. However, the minimized residual
of this error can not be straightforwardly interpreted to assess the quality of the final
point cloud. For example, it does not take a stance on whether the ICP algorithm
has been attracted into local minima leading to failed pose matching, which in
turn may lead into serious distortions in the final point cloud. In other words, the
residual from Eq. (3.9) can be very small even if the final point cloud is nonsense.
This is because of the dualistic nature of the SLAM problem: the pose errors are
transformed onto errors in the observed 3D shape of the environment. The errors in
the final point cloud are thus a function of all data (as these were used to estimate the
poses), and include sensor errors, system calibration errors, and quality and extent of
observation overlap. For the case of any SLAM (also ICP), the errors can therefore
be

• quantitatively assessed only if reference data is available, from the trajectory or
from the point cloud

• qualitatively assessed with the human eye, which is commonly used in 3D
visualization, from the point cloud

• assessed against a-priori knowledge, e.g. geometric rules that require all walls to
be planar or such that require all corners to be straight.

Point cloud to point cloud comparisons can be conducted by using a measure for
control points, point subsets, or whole point clouds (Lehtola et al. 2017). Different
measures are summarized in Table 3.4. The choice depends on the properties of
the scanned object, i.e. whether it can change shape, and whether the point cloud
has already been smoothed, e.g. filtered for outliers. Shape change is a property
often related to human 3D body scanning but a room with swinging doors could
also be considered with these measures. Smoothing is usually an integrated part of
commercial products, meaning that if the data is captured with such a product, the
output is a smoothed point cloud.

Once a model is reconstructed (see Sect. 3.6) from the scanned point cloud, the
assessment becomes more straightforward. It is then a model to model comparison.
The straightforwardness follows from that the measures such as completeness, that
the model covers the reference, and correctness, that the model does not contain
anything extra with respect to the reference, can be defined (Tran et al. 2019).
However, the cave-at here is that then the total errors are a function of not only the
SLAM process but also the reconstruction process. This may make the assessment
appear oblique if the cause of errors is of interest. In industry, the reconstructed
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Table 3.4 Metrics for point cloud to point cloud comparison. DEM stands for digital elevation
models. (Adapted from Lehtola et al. 2017)

Smoothed point cloud Non-smoothed point cloud

Rigid object Lp norms L1 and L2 norms with cutoff radius

Hausdorff measure Examples: Raw point clouds

Examples: Scanned 3D objects, DEM

Non-rigid object Gromov-Hausdorff N/A

Gromov-Wasserstein

Examples: Shape changing objects

models are in standard formats (see Sect. 3.6) and are validated with commercial
model checkers.

In mobile mapping, a real time map from an online SLAM is sometimes used
to direct the operator when data is gathered. However, pose errors are typically
larger for online SLAM than offline SLAM, since less data is used for overlap
computation in the online versions to keep the computational load tractable. In turn,
the offline, or post-processing, SLAM algorithms can optimize over all data. Such is
the minimization of the Mahalanobis distance of Eq. (3.9) and such are also the so-
called graphSLAM techniques that are based on graphs representing all observations
(Grisetti et al. 2010).

3.6 Indoor 3D Reconstruction

By indoor 3D reconstruction we are referring to the process of generating a mesh
model which is exportable to one of the standard formats such as IFC (industry
foundation classes) or IndoorGML (Chen and Clarke 2017). In other words, the
point clouds are replaced by a mesh that consists of continuous geometrical shapes
such as planes and boundary representations (B-Rep). During a reconstruction
process, a successful composition of walls is the most important factor because it
defines the main layout of the interiors. However, some approaches are contented by
providing a volumetric model of the interiors without an explicit representation of
walls. The reconstruction process here includes the data segmentation step, where
the point cloud is divided into rooms and subspaces. Note that some of the room
segmentation methods explained next directly result in a final mesh model (e.g.
cell decomposition), while some just assign labels to points (e.g. mathematical
morphology) and require another method for the creation of the mesh.
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3.6.1 Space Subdivision and Room Segmentation

Space subdivision is referred to the problem of dividing the space into semantic
subspaces. Another term used in the literature for space subdivision is room
segmentation. However, there are slight differences between the concepts of a room
and a subspace. A room is separated from other rooms by permanent structures
such as walls, floors and ceilings and there should be an opening (e.g. door) to
connect two rooms. A subspace can represent a room or part of a room, for example
a meeting area which is separated from the rest of that room by temporary partitions.
When spaces are physically separated by permanent structures, space subdivision is
equivalent to room segmentation. Several important remarks need to be considered
when dealing with space subdivision:

1. The space subdivision can be done in 2D (Bormann et al. 2016), in 2.5D (Ikehata
et al. 2015) and in full 3D (Mura et al. 2016).

2. The space subdivision can be done with Manhattan-World assumptions
(Khoshelham and Díaz-Vilariño 2014) or without it (Ochmann et al. 2019).
In Manhattan-World assumption, walls are assumed to be perfectly vertical and
perpendicular to each other.

3. The trajectory of the acquisition device, in case of mobile laser scanners, can be
a valuable data source for the space subdivision (Elseicy et al. 2018; Nikoohemat
et al. 2018).

In the following, the most common space subdivision methods in the literature
are presented along with their limitations.

Mathematical morphology The input data is converted into a 2D grid, which is
essentially an image (with pixels), and or into a 3D voxel grid. The pixels (or voxels)
are labeled as occupied (not accessible) or empty (accessible). A morphological
erosion is applied on empty pixels which causes the occupied pixels (e.g. walls)
to grow and the empty pixels to either vanish or get separated, if they had a
weak connection. Then a connected component analysis is run, which identifies
all connected segments of empty space. Each empty segment represents a room
candidate. Finally, a morphological dilation is applied on the generated room
segments to grow until the border of the room meets the occupied space (Bormann
et al. 2016; Nikoohemat et al. 2018). See Fig. 3.7. The limitation of the morphology
approach is that one has to make a selection for the pixel size to provide a good
trade-off between computational cost and accuracy of the room topology. Obviously,
smaller pixel size represents a better accuracy of the room topology but becomes
computationally expensive and needs more iteration to converge to the correct
number of rooms.

Delaunay Triangulation/Voronoi Diagram (Bormann et al. 2016; Turner et al.
2014): For this method, the input is either a set of points representing wall samples
or a 2D grid of occupied and empty pixels (similar to the morphology case).
Delaunay triangulation is run on the input producing a set of triangles that connect
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Fig. 3.7 Room segmentation by mathematical morphology. Each color is one segment. (Repro-
duced from Nikoohemat et al. 2018)

the wall sample points of the input data, see Fig. 3.8. Then the triangles are labeled
as inside or outside using the line of sight established from the scanner trajectory.
If an intersection between the line of sight and the triangle is encountered, then
the triangle is labeled as inside. Inside triangles are used as room seeds. For each
triangle, a circumcircle is generated (i.e. the unique circle that passes through each
corner point of that triangle). It is assumed that the circumcircles with the highest
overlap belong to the same room, and only one of these is stored. The initial set of
room seeds then equals to the largest remaining circumcircles. The result is a rough
location of each room and an initial number of rooms. Finally, candidate rooms
are merged under two conditions: (i) if they share a large perimeter with another
room and (ii) if they share a border which is too large to be a door. This, however,
results in over-segmentation in the long corridors. Delaunay triangulation is mainly
implemented in 2D and then extended to 2.5D. It is not an ideal method for true 3D
modeling.

Cell decomposition is perhaps the most used approach in the literature. It
consists of three steps, see Fig. 3.9. (i) The input data is converted into a set of
lines (2D) or planes (3D). (ii) Lines or planes are elongated so that they intersect
with the bounding box limits of the modeled space. This process generates a 2D or
3D cell complex, where each cell is represented by a piece-wise planar polyhedron
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Fig. 3.8 (a) Delauney triangulation. The shown circles with the longest circumcircles form seeds
for rooms. (b) Obtained room segmentation. (Reproduced from Turner et al. 2014 with permission)

Fig. 3.9 Room segmentation by cell decomposition. Steps in (i) left, (ii) middle, and (iii) right
image explained in text are visualized here. (Reproduced from Mura et al. 2014)

or a convex cell. Additionally, each cell is labeled as an inside cell or an outside
cell. Typically, this is done using line-of-sight ray tracing techniques. (iii) Cells
with the inside label are clustered and merged to form individual rooms. This is the
step where methods show most differences, especially in the way room seeds are
clustered, for example, with Markov clustering (Mura et al. 2016), Integer Linear
Programming (Ochmann et al. 2019), or graph cut optimization (Oesau et al. 2014).
This that there has been multiple different approaches to the optimization of the
cell clustering step tells that it is not a straightforward problem, which may be
considered as a limitation.

MLS trajectory-based method Mobile laser scanner data is registered into a
3D point cloud using SLAM techniques. From that process, for each point in the
point cloud, we can obtain the point on the trajectory from which that particular
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Fig. 3.10 Room segmentation by using the trajectory of a mobile laser scanning system. This
method relies on doorway (opening) detection. Left: Elseicy et al. (2018), right: Mozos (2010,
p.31)

measurement was done. In order to do room segmentation, first the trajectory is
divided to segments using the locations, where a door is detected from the data,
as division points. The location of the doors can be extracted by intersecting the
trajectory with wall candidates, which are lines in 2D and planes in 3D. Obviously,
only doors which were entered during the scanning can be identified and used to
segment the trajectory. In addition, one can consider that each loop in the trajectory
is a possible room candidate, see Fig. 3.10. By applying both criteria (door location
and loops) the trajectory is segmented more robustly in that it takes into account
also the cases where the entryway is larger or otherwise different than a standard
door. Then the subset of the point cloud captured from that trajectory segment can
be collected (using e.g. the time attribute in both point clouds and the trajectory).
One limitation of this approach is the existence of openings, meaning that from
the scanner positions residing inside a room parts of other spaces can also be
scanned if there are openings to those spaces. This causes the room topology
to become inaccurate near doors and windows. Another limitation concerns the
correct detection of loops, for example if the scanning operator enters one room
and exits from another door a loop is not formed. Similarly, if the operator makes
an unnecessary loop in a big hall or a corridor it results in an over-segmentation of
the space (Elseicy et al. 2018; Mozos 2010).

Machine learning methods bring in the possibility of naming the rooms by
their functions. This so-called semantic labeling of rooms goes one step further
than plain room segmentation. Machine learning methods such as random forest,
adaBoost and conditional random field are used to cluster the detected planes or
super segments into rooms with a function (e.g. corridor, kitchen, bedroom, etc.)
(Bassier and Vergauwen 2019; Bormann et al. 2016; Mozos 2010). For this kind of
methods, however, training data needs to be created and that training data should
represent different types of rooms. Another novel approach is using deep learning
(Convolutional Neural Network), which needs an even larger training dataset but
in return is able to produce, for example, floor plans from a large set of RGB-D
samples (Liu et al. 2018). Hence, the effort of creating a method is partly replaced
by an effort to create a set of labeled data to be used for training. On the other
hand, if the method can take sensor data as input, in a so-called end-to-end network
fashion, this can be seen advantageous.
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Other approaches for room segmentation such as graph-based methods, enclo-
sure of the spaces, and shape grammar are referred to in the bibliography (Murali
et al. 2017; Nikoohemat et al. 2019; Tran et al. 2018).

3.6.2 Reconstruction of Walls

Walls can be reconstructed as infinitely-thin planar planes, see Fig. 3.9, or as
volumetric objects that have a non-zero thickness. Oftentimes the choice depends
on the application, for example, in BIM models walls are volumetric objects. Given
a point cloud, there are several approaches to separate walls form the furniture and
to create the correct wall arrangement. Some of these approaches were explained
in Sect. 3.6.1 on room segmentation, because these two problems are related. Room
segmentation determines the room layout and consequently the wall arrangement.
Furthermore, there is another approach that is based on constructive solid geometry
(CSG) (Xiao and Furukawa 2014). It begins by slicing the point clouds to horizontal
layers and looking for primitives such as rectangles in 2D or cuboids in 3D.
Rectangle primitives are the most common shapes in the architecture. By exploiting
a so-called free-space constraint and optimizing an objective function, the best
arrangement of the primitives is selected, which means that some of the rectangles
are merged into one another. Finally, the 2D CSG models are elongated in the third
dimension to make them volumetric, and the objects stacked on top of each other
form the sought-after 3D model with the correct wall arrangement. This approach
generates volumetric walls but it does not create a topology for rooms. That is, the
geometrical objects are created in their respective positions but the relations between
these objects, e.g. how they form rooms, need to be established with additional
means.

3.6.3 Grammar Approach

Grammar represents the rules of how things should be expressed. Ill-defined
grammar or bad grammar results in ambiguities and misunderstandings. A natural
language, English for example, would not function without grammar, because it
would not make sense. Grammar is also widely applied in programming languages
(see e.g. Chomsky 1959). Another types of grammar, ones intended for 3D models,
can also be defined. For example, shape grammars have been used as modeling
techniques in architecture, computer graphic and engineering (Stiny and Gips 1971).
These were decades before the introduction of 3D scanning data. Later, grammar
approaches that exploit the regularity and repetitive pattern of architectures were
employed to generate models that are not based on real data, for urban designers or
for computer games (Wonka et al. 2003).
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Considering scanned 3D data, data-based reconstruction activities started from
building façade reconstruction for city models (e.g. Müller et al. 2006; Musialski
et al. 2013). Soon after, grammar was harnessed to benefit indoor 3D reconstruction
(Becker et al. 2013; Boulch et al. 2013) with the founding idea that data-based
indoor 3D reconstruction would yield BIM models (see Sect. 3.7). Simultaneously,
automatically generated 2D floor plans could also be extracted (Ikehata et al. 2015).
Floor plan generation is important, for example, in Americas as there most homes
lack floor plans. Latest studies present BIM-aimed approaches where grammar rules
are used iteratively to fit the best representations (parametric models with semantics)
into the data (Becker et al. 2015; Tran et al. 2018). Point clouds have been
established as the main input data format for grammar based indoor reconstruction.

The reconstruction of walls, or segmentation of rooms, is the goal also when
we are using grammar. A grammar is a set of components such as terminals,
non-terminals, rules, axioms and attributes. Rules define how the non-terminals
(e.g. shape) should be transformed to terminals during the model creation. Rules
generally are defined by an expert and this is the challenging part of the grammar.
Some of the common rules in shape grammar are merge, split and a set of
transformations. Attributes can be color, texture, material and labels. Attributes are
not always part of the grammar unless we are using an attribute grammar.

One basic idea to apply grammar in indoor reconstruction is to define a primitive
shape such as a cuboid as an axiom and fit the cuboid to the data (e.g. a point
cloud). For this purpose a parametric shape can be defined and placed aligned with
the axis in the data. If the data is axis-aligned then a Manhattan World can be
assumed and fitting the cuboid to the data becomes easy. By placing, scaling, and
transforming more cuboids the model can be reconstructed. Then, based on the fact
that whether there are enough points to support the faces of each cuboid as valid
walls, the cuboids can be merged or split to form rooms. Useful information may
additionally be obtained from the locations of doorways which can be used to justify
whether some cuboid faces should be added to split the cuboids (e.g. one cuboid per
room). Similar approach is used by Ikehata et al. (2015) and Khoshelham and Díaz-
Vilariño (2014). One limitation of using grammar lies in assuming Manhattan-World
structures, as the rooms are considered to be in a grid. Another limitation is the need
of an expert who defines the rules. However, as a line of research, it is possible to
attempt to learn the rules form a large training data.

3.6.4 Detection and Reconstruction of Openings

Detection of openings (e.g. doors and windows) from the scanned data is important
so that these openings can be successfully reconstructed. This adds an important
level of detail to the model. It turns out that in most of indoor environments the
structural surfaces are actually occluded (see Sect. 3.2), and as a consequence there
are holes, for example, on the walls, which necessarily do not represent openings.
The challenge then is to discriminate between these holes caused by occlusion and
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Fig. 3.11 Left: A window in a point cloud. Middle: Ray casting divides the voxels into occupied
(red) and unoccupied (blue) classes. Right: Results after Eq. (3.10) include also occluded (green)
and opening (yellow) classes. (Reproduced from Nikoohemat et al. 2017)

the holes which represent windows or doorway openings, for instance. We discuss
two types of opening detection methods. First, ray casting can be used generally for
opening detection. Second, trajectory-based methods are used for door detection.

classes
1. Ray casting is illustrated in Fig. 3.11. Initially, an image is generated for

each wall surface, defined by a surface plane. The optical axis of the image is
taken parallel to the normal vector of the surface plane. The image is bounded by
a bounding box encompassing the wall surface. All the pixels are labeled by an
initial label L0. The objective then is to label the pixels on the surface to opening,
occluded or occupied. A ray is cast from each scanner position Si to each point Pi

in the point cloud and the ray intersects with a surface at the intersection point Ij .
Then two distances can be calculated from these three points: DSi−Pi

, which is the
distance between the scanner position and the measured point. DSi−Ij

, which is the
distance between scanner position and the intersection point. By comparing these
two distances, we have

Label =

⎧
⎪⎨

⎪⎩

Occlusion, ifDSi−P i < Dsi−Ij

Occupied, ifDSi−P i = Dsi−Ij

Opening, ifDSi−P i > Dsi−Ij

(3.10)

Note that some of the pixels remain with the label L0 and in the image on
the right they are shown in blue. After labeling each surface, the openings can be
distinguished from occlusions and the borders of the openings can be extracted.
Adan and Huber (2011) use a support vector machine (SVM) method to further
reconstruct the border of the opening in each surface. Additionally, note that ray
casting can also be done in 3D by using a set of voxels, which enables the treatment
of more complex geometries for openings. Finally, a common drawback of any
occlusion reasoning method is that when an opening is partially occluded it is hard
to reconstruct the border between the opening and the occlusion.

2. Using the Trajectory: When indoor data is collected with a mobile laser
scanning system, the trajectory of the laser scanner intersects doorways, see
Fig. 3.12. Nikoohemat et al. (2017) exploits this fact to detect the doorways. Given
a point cloud, the 3D space is voxelized and the voxels are labeled as empty and
occupied (depending if there are points in the voxel). For doorway detection, the
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Fig. 3.12 (a) Snapshot from inside a point cloud with the trajectory from a mobile mapping system
shown with a line. (b) Reconstruction of openings with the help of a known trajectory. ((a) is
reproduced from Nikoohemat et al. 2018)

goal is to find the voxels at the center and on the top of the door frame, which
gives us an approximate location of the doorway and its orientation. Note that this
approach does not require any knowledge about the walls. Three criteria are checked
for each voxel. It represents the center of a doorway if (i) above it, there are several
occupied voxels, (ii) it resides close to the trajectory, e.g. distance is within 15 cm,
and (iii) it is surrounded by empty voxels when considering a short radius (of e.g.
30 cm). The first criterion scouts for the top of the door frame. The second one is
self-explanatory. The third criterion implies that the door center is in the middle of
an opening (i.e. not a door that was closed). When identifying the voxel candidates
for the door center, the voxels on top of the door center (considering a standard
door height) are similarly identified as top of the door. For identifying closed doors,
the empty voxels in the third criterion are replaced by occupied voxels, because
we expect the center of a closed door is occupied by points. One of the benefits of
this approach is that the doorways can be identified regardless of whether the doors
are being opened or closed during the measurement. This approach has later been
extended by others (Elseicy et al. 2018; Staats et al. 2019).

This method can be simplified if the wall surfaces are known. For example, each
place where the trajectory intersects a wall is a probable doorway candidate. Also,
the orientation of the door can be derived from the wall normal vector. Obviously,
the limitation in using the trajectory knowledge is that there is no guarantee that any
untraversed doorways would be detected (e.g. with closed doors).

3.6.5 Reconstructing Occluded Data by Machine Learning

When an object is between the measurement instrument and another object, the
first object occludes the other object (see Sect. 3.2). In a point cloud, this is seen
as missing data (or holes) that are shaped as a shadow of the first object. For
2D images, inpainting is a well-known technique to restore missing pixels (so-
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Fig. 3.13 Left: Point cloud with occlusion. Right: Disocclusion by inpainting. (Reproduced from
Xiong et al. 2013)

Fig. 3.14 Inpainting a 3D point cloud separately for geometry and colors and then combining the
results. (Reproduced from Väänänen and Lehtola 2019)

called disocclusion in computer vision). For 3D data, a common approach is to
take snapshots from the point cloud and then apply some known 2D techniques to
fill the missing data. Xiong et al. (2013) use a 3D Markov Random Field inpainting
algorithm for disocclusion, shown in Fig. 3.13. Essentially, the algorithm uses planar
patches that are labeled as wall, ceiling, floor, or clutter, and the characteristics of
opening shape and location for each patch class are learned using machine learning
techniques. This learning allows for enough prior knowledge in order to distinguish
between occlusion and openings, so that occlusions are filled but openings are left
as they are.

Arbitrary geometries and textures can also be patched up, see Fig. 3.14. Väänänen
and Lehtola (2019) train the patches separately for geometry and colors with a
generative adversarial network (GAN) for each pre-defined class in the point cloud.
Their method is noteworthy in that there is no need for external data, i.e. each point
cloud can be inpainted per se, and the inpainting is independent of both the occlusion
shape and cause. There are limitations as well. The patch size is essentially the size
of the band-aid that is laid on the occluded holes, and covering large areas well is
difficult.
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3.7 Applications

As we have seen, indoor 3D data is important as reconstruction material and that
reconstruction aims for industry standardized formats (see Sect. 3.6) in building
information modeling (BIM). Figure 3.15 displays applications in facility man-
agement, asset management, and construction. Other applications for BIM include
real estate brokering and various planning activities. The planning, building, and
operating actions can be thought to form a so-called BIM cycle. The BIM-supported
decisions relate either to the construction (or renovation) phase, during which the
indoor spaces are physically modified, or to the operational phase, during which the
indoor spaces are being used. The cycle is closed when the planning is revisited with
the scanned as-built data and other data gathered while operating functions inside
the building.

In the construction phase, for example, making spaces that are energy efficient
brings savings in the fixed costs. This can be achieved through the integration of
thermal data (Lagüela et al. 2013) onto 3D models which allows for insulation
planning and energy conservation. Also, daylight simulations on the other hand
allow for optimization of the electrical illumination (Díaz-Vilariño et al. 2014).

On the other hand, designing the spaces so that they facilitate the activities
increases the efficiency of operations, which brings savings in the operational costs.
Importantly, 3D models allow for detailed modeling of future operations, which in
turn enables better advance planning before construction. As a specific example,
hospitals are interested in the smooth flow of people and equipment and in tracking
the room occupancy data. Indoor routing for pedestrians can be planned with the
help of navigation graphs (Flikweert et al. 2019). Also, BIM helps with inventory
data such as equipment serial numbers and make and model data so that it can be
connected to room data and accessed when needed. See Fig. 3.15.

Automated model checkers are by themselves a commercial application.7 Model
checkers bring economic savings in altering the ways that problems are handled
in construction. One classic example is the overlap of pipelines, meaning that a
pipeline is planned to run in a space occupied already for another purpose such
as another pipeline. Conventionally, such overlaps were detected in the field and
solved by ad hoc methods in the order of occurrence. With 3D planning and model
checking, such problems are detected already in the planning phase, and therefore
better solutions are plausible. Concerning the public sector, these model checkers
can be programmed to test and validate whether e.g. private 3D building plans
comply with state regulations.

7For example, https://www.solibri.com/how-it-works

https://www.solibri.com/how-it-works
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Fig. 3.15 3D BIM models for industry applications, e.g. facility and asset management (top,
courtesy of Engworks) and construction (bottom, courtesy of Youbim, youbim.com). Building
information modeling (BIM) is important also for various other planning applications
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Imagine that your company would possess a large real-estate portfolio. To
make most profit out of it, your company would benefit from having a detailed
understanding of this ownership. Once the company has the understanding,
it can be matched to meet the needs of clients. Further questions may then
emerge: are the indoor spaces adjustable for different functions? What are
the cost estimates for the adjustments? What functions would provide the
most income? Is the portfolio missing something? Asset management is also
important. Example assets are lights, fire extinguishers, tables, chairs, etc. Your
company is asking: are all the assets that are supposed to be there in place?
Are there some synergies inside the portfolio related to the procurement of new
assets? Can maintenance be optimized?
Concerning the public sector, consider the vast amount of indoor spaces owned
by state ministries, health services, schools, public transportation systems, and
even universities. Same questions apply.

3.8 Future Trends

At the time of writing, we see the future trends in scanning, in reconstruction, and
in society, as follows.

In scanning, several indoor mobile mapping systems (e.g. commercial systems
Kaarta Stencil, Paracosm PX-80, Leica Pegasus: backpack) are relying on lidars
that capture multiple scan lines simultaneously. This is because these multiline
scanners offer robustness in the SLAM registration process. The authors expect
that these multiline scanners will be upgraded into solid-state lidars which have no
micro-mechanical moving parts and therefore offer more robustness in mobile use
and further miniaturization possibilities for these platforms. New applications are
likely to emerge. Single photon techniques are also interesting, since they require
less energy to operate than traditional pulsed beams. Their cave-at is background
illumination, mainly from sunlight, which may not manifest as overly restrictive in
indoor environments (Lehtola et al. 2019).

In reconstruction, one of the main problems encountered is that the trouble in
the capture of point clouds often leads into imperfections of the scanned surfaces.
Some of these imperfections follow from the scanning geometry and from visual
occlusions and manifest themselves as holes and missing observations. The authors
expect that machine learning based methods that learn from the intact surfaces
to tailor covering patches for the holes and missing observations shall become
even more popular in the near future. Also, note that the BIM models in Fig. 3.15
are reconstructed from mobile mapping data and abide industry standards. The
difference between these standardized BIM models and the reconstructed models
shown in Sect. 3.6 is that there is an extra step in between. The reconstruction into
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a standardized BIM format typically requires manual effort as it is very hard to
automate reliably, but this is about to change.

In society, the shift from 2D to 3D will eventually be completed. At the time
of writing, 3D cadaster registration has been started, for example in Northern
Europe, to allow for non-surface (underground) properties. In planning, private
businesses are leading the way. Building information modeling (BIM) is widely
used for construction planning by large construction companies, especially in
Northern Europe. One major hindrance still standing in front of these models are
the official processes of the state and the municipalities, such as construction permit
admission processes. Oftentimes these processes cannot be set in motion with the
3D models, even if they abide an industrial standard, but the official process requires
that floorplans need to be extracted into a conservative 2D form and stored in
portable document format (PDF). The work on standards is therefore important (e.g.
Zlatanova et al. 2016).

Finally, the authors hope that more open data sets would become available for
indoor method testing in addition to the ISPRS dataset (Khoshelham et al. 2017).

3.9 Exercises for Students

The following exercises require the reading of this book chapter, some of the cited
work, and – some thinking.

• How does the scanning process differ for building interiors and exteriors?
• How does the reconstruction process differ for building interiors and exteriors?
• Write a definition for the trajectory of an indoor mobile mapping system, using

mathematical expressions when necessary. Let t denote time.
• An indoor space has been scanned. Give an example on how the available

trajectory can be utilized to benefit the reconstruction of an indoor model.
• What are occlusions and how can they be avoided and/or dealt with to obtain

watertight models?
• Give two examples on how machine learning can be benefited from in indoor

scanning and/or reconstruction.
• Which representation contains more information about the indoor environment:

a scanned point cloud or a reconstructed meshed model? Why?
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Chapter 4
Big Earth Observation Data Processing
for Disaster Damage Mapping

Bruno Adriano, Naoto Yokoya, Junshi Xia, and Gerald Baier

4.1 Monitoring Disasters from Space

Earth observation has been receiving considerable attention in disaster management
in recent years. As such, the imaging capability of national or international earth
observation missions has been improving steadily. Also, driven by technology
innovation in New Space, the number of satellites has been increasing dramatically.
Satellite constellations enable high-frequency data acquisition, which is often
required in disaster monitoring and rapid response.

In the last two decades, enormous efforts have been made in international
cooperative projects and services for sharing and analyzing satellite imagery in
emergency response. Some representative ones are listed below.

• International Charter ‘Space and Major Disasters’:1 The International Charter
‘Space and Major Disasters’ is an international collaboration among space
agencies and companies (e.g., Maxar and Planet Labs) to support disaster
response activities by providing information and products derived from satellite
data. The charter was initiated by the European Space Agency (ESA) and the
French space agency (CNES), came into operation in 2000, and activated 601
times for 125 countries supported by 17 charter members with 34 satellites as of
April 1, 2019.

1https://disasterscharter.org
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• UNOSAT:2 UNOSAT is a technology-intensive programme of the United
Nations Institute for Training and Research (UNITAR) to provide satellite
imagery analysis and solutions to the UN system and its partners for decision
making in critical areas, including humanitarian response to natural disasters.
UNOSAT was established in 2001 and the Humanitarian Rapid Mapping service
of UNOSAT was launched in 2003 and contributed to 28 humanitarian response
to natural disasters in 22 countries in 2018.

• Sentinel Asia:3 The Sentinel Asia initiative is a voluntary basis international
collaboration among space agencies, disaster management agencies, and inter-
national agencies to support disaster management activities in the Asia-Pacific
region by applying remote sensing and Web-GIS technologies. Sentinel Asia
was initiated by the Asia-Pacific Regional Space Agency Forum (APRSAF) in
2005 and its members consist of 93 organizations from 28 countries/regions and
16 international organizations. In 2018, there were 25 emergency observation
requests and disaster response activities are supported by 8 data provider nodes
and 48 data analysis nodes.

• Copernicus Emergency Management Service (Copernicus EMS):4 Copernicus
EMS provides geospatial information for emergency response to disasters as
well as prevention, preparedness, and recovery activities by analyzing satellite
imagery. Copernicus EMS is coordinated by the European Commission as one
of the key services of the European Union’s Earth Observation programme
Copernicus. The two Mapping services of Copernicus EMS (i.e., Rapid Mapping,
Risk and Recovery Mapping) started operation since April 2012 and 349
mapping activations have been conducted as of April 3, 2019.

Owing to the development of hardware, big earth observation data is now
available from various types of satellites and imaging sensors. Large volume and
a wide variety of earth observation data promote new applications but also raise
challenges in understanding satellite imagery for disaster response. In this book
chapter, we summarize recent advances and challenges in the processing of big earth
observation data for disaster management.

4.2 Earth Observation Satellites

Over the last decades, the number of earth observation satellites has steadily
increased, providing an unprecedented amount of available data. This includes optial
(multi- and hyperspectral) images (e.g., Fig. 4.1b) and also synthetic aperture radar
(SAR) images (e.g., Fig. 4.1e, f). Regarding disaster response, the sheer number

2https://unitar.org/unosat/
3https://sentinel.tksc.jaxa.jp
4https://emergency.copernicus.eu/mapping/
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(a) Optical Remote Sensing

(d) SAR Remote Sensing

(b) Sentinel-2

(e) ALOS-2 (f) Sentinel-1

(c) NDVI

-1 1

Fig. 4.1 (a) Illustration of optical remote sensing. (b) Sentinel-2 imagery. (c) NDVI derived from
Sentinel-2 data. (d) Illustration of SAR remote sensing. (e) ALOS-2 (L-band) imagery. (f) Sentinel-
1 (C-band) imagery

of satellites ensures quick post-event acquisitions and often, due to the regular
acquisition patterns of many satellite missions, the availability of a recent pre-event
image. In the following paragraphs, we provide a summary of current and future
earth observation satellite missions and how they benefit mapping damages and the
extent of disasters.

4.2.1 Optical Satellite Missions

Table 4.1 shows the list of optical satellite missions. An explosive amount of
data has become available in the last decade. For instance, only Sentinel-2 satel-
lites acquire over one petabyte per year. Data policies are different depending
on resolution: datasets from moderate-resolution satellites (e.g., Landsat-8 and
Sentinel-2) are freely available and those from very high-resolution satellites (e.g.,
Pleiades and WorldView-3) are commercial. For emergency responses, even some
commercial satellite images are openly distributed through special data programs
(e.g., Open Data Program5 for WorldView images and Disaster Data Program6 for
PlanetScope).

Optical remote sensing records the solar radiation reflected from the surface
in visible, near-infrared, and short-wave infrared ranges as illustrated in Fig. 4.1a.

5https://www.digitalglobe.com/ecosystem/open-data
6https://www.planet.com/disasterdata/

https://www.digitalglobe.com/ecosystem/open-data
https://www.planet.com/disasterdata/
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Table 4.1 Current optical satellite missions

Satellite mission Best GSD Swath width # of Bands Revisit cycle Launch date

Landsat 8 15 m 185 km 11 16 days 2013

Sentinel-2 A/B 10 m 290 km 13 5 days 2015

SPOT 7 1.5 m 60 km 5 26 days 2014

WorldView-3 0.31 m 13.1 km 29 daily 2014

Pleiades 0.5 m 20 km 5 daily 2011

PlanetScope 3 m 16.4 km 4 daily 2016

Gaofen-2 0.8 m 45 km 5 5 days 2014

Reflected spectral signatures allow us to discriminate different types of land
covers. Owing to its similar characteristics to human vision, optical imagery is
straightforward to analyze for damage recognition. A pair of pre- and post-disaster
optical images are commonly used to detect pixel-wise or object-wise changes
and identify damage levels of affected areas. In particular, if there is any clear
change in the normalized difference vegetation index (NDVI) (e.g., Fig. 4.1c) or
the normalized difference water index (NDWI) due to landslides or floods, affected
areas can be detected easily and accurately.

Optical satellite imaging systems have evolved in terms of spatial, temporal, and
spectral resolutions. Spatial and temporal resolutions are critical for disaster damage
mapping. Improvement of temporal resolution has been achieved by forming
satellite constellations. For instance, the revisit cycle of Sentinel-2 is five days and
it was accomplished by a constellation of twin satellites (i.e., Sentinel-2 A and B).
An extreme example is PlanetScope: the daily acquisition is possible for the entire
globe with a constellation of 135+ small satellites (i.e., Droves). The evolution
in temporal resolution allows disaster damage mapping within a day under good
weather conditions.

Spatial resolution is another key factor to ensure accuracy of disaster damage
mapping. Medium-resolution satellites such as Landsat-8 and Sentinel-2 are suffi-
cient for mapping large-scale changes of the surface due to floods, landslides, wild-
fires, and volcanos. High-resolution satellites data are necessary particularly when
analyzing damages in urban areas. Visual interpretation in emergency response
relies on sub-meter satellite imagery such as Pleiades and WorldView to identify
building damages.

The major drawback of optical satellites is that they cannot acquire images when
affected areas are covered by clouds. Because of this limitation, in many real cases,
datasets from different sensors are only available before and after disasters in a few
days after disasters. Integration and fusion of multisensor data sources are crucial to
deliver map products of disaster damages.
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Table 4.2 Current and future SAR missions. Resolutions and swath widths depend on the
acquisition mode. The table lists the maximum resolution and the corresponding swath width

Satellite mission Max. resolution Swath width Band Launch date

TerraSAR-X/TanDEM-X 1 × 0.25 m 5 km X 2007/2010

COSMO-SkyMed 1 × 1 m 10 km X 2007/2008/2010

RADARSAT-2 3 × 1 m 18 km C 2007

KOMPSAT-5 1 m 5 km X 2013

ALOS-2 3 × 1 m 25 km L 2014

Sentinel-1 A/B 5 × 5 m 80 km C 2014/2016

Gaofen-3 1 × 1 m 10 km C 2016

NovaSAR-S 6 m 20 km S 2018

PAZ 1 × 0.25 m 5 km X 2018

SAOCOM 1A 10 m 40 km L 2018

ICEYE X2 1 × 1 m 10 km X 2018

COSMO-SkyMed 2nd Gen. 0.5 × 0.5 m 7 km X 2019

RADARSAT Constellation 3 × 1 m 20 km C 2019

ALOS-4 3 × 1 m 35 km L 2020

Capella 0.5 × 0.5 m 10 km X 2020

Synspective 1 × 1 m 10 km X 2020

NISAR 6 × 8 m 240 km L 2021

4.2.2 SAR Satellite Missions

Unlike optical imagery, SAR sensors have the advantage that they are undisturbed
by clouds, making them invaluable for responding to disasters due to their reliable
image acquisition schedule. Table 4.2 lists current and future SAR missions,
together with their highest resolution modes, the corresponding swath widths, their
frequency bands and launch dates. All of these satellites also have lower resolution
acquisition modes with increased spatial coverage. As can be seen from Table 4.2,
even moderately large areas can easily result in multiple G B of data if several
sensors are used and acquisitions before and after an event are collected.

As a quite recent development, several startup companies (ICEYE, Capella and
Synspective) announced plans to create constellations of dozens of comparatively
small and cheap satellites, that enable frequent and short notice acquisitions. Such
constellations would produce a wealth of data, compounding the need, both for big
data systems and algorithms.

The following publications provide more verbose information for the respective
SAR satellites and list additional references. Morena et al. (2004) for RADARSAT-
2, Lee (2010) for KOMPSAT-5 and Werninghaus and Buckreuss (2010) for
TerraSAR-X, TanDEM-X and the essentially identical PAZ satellite (Suri et al.
2015). Torres et al. (2012) describes ESA’s Sentinel-1 satellites, Bird et al. (2013)
NovaSAR-S, Caltagirone et al. (2014) COSMO-SkyMed, Rosenqvist et al. (2014)
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SAOCOM, and Sun et al. (2017) Gaofen-3. Future SAR missions are covered in
Rosen et al. (2017) for NISAR, Motohka et al. (2017) for ALOS-4, and finally
De Lisle et al. (2018) introduces the RADARSAT constellation mission. Technical
details and developments regarding small SAR satellite constellations are given
in Farquharson et al. (2018) and Obata et al. (2019).

Many satellites have acquisition modes where the resolution suffices to detect
changes and damages for individual buildings. In any case, large scale destructions,
caused by earthquakes (Karimzadeh et al. 2018), wildfires (Tanase et al. 2010;
Verhegghen et al. 2016) landslides or flooding (Martinis et al. 2018) can be observed
by all sensors. We cover these in greater detail in Sects. 4.4.1, 4.4.2 and 4.4.3. Here
we introduce the reader to SAR image formation and how these characteristics
are applicable for disaster damage mapping. For a more thorough introduction we
advice the interested reader to consult (Moreira et al. 2013).

SAR sensors emit electromagnetic waves and measure the reflected energy (see
Fig. 4.1d), called backscatter, which depends on the geometric and geophysical
properties of the target. This renders the SAR sensors sensitive to different kinds
of land cover but also physical parameters, such as soil moisture. In addition,
depending on the SAR’s operating frequency, parts of the electromagnetic wave
also penetrate the surface and image layers below the uppermost land cover.

Just like visible light, microwaves are polarized, and the polarimetric compo-
sition of reflected waves depends on the imaged targets’ geometric and physical
properties. These polarimetric signatures permit further analysis and classification
of the imaged area.

Inside one SAR resolution cell, i.e. pixel, numerous elemental scatterers reflected
the impinging electromagnetic wave. The superposition of all these reflections make
up the received signal at the SAR sensors. Between two SAR acquisitions changes of
the elemental scatterers can be estimated, providing a direct measure of differences,
the so-called coherence.

All of these properties: backscatter, polarimetric composition, and coherence are
useful when analysing disaster-struck areas.

Some newer SAR satellite systems, namely PAZ, NovaSAR-S and the
RADARSAT constellation, are additionally equipped with automatic identification
system (AIS) receivers, enabling them to track shipping traffic. In most countries
AIS transceivers are mandatory for vessels above a certain size. AIS is an additional
data source that could be exploited for responding to disasters affecting ships.

4.3 Land Cover Mapping

Map information is necessary in all phases of disaster management. Mapping of
buildings and roads is essential for rescue, relief, and recovery activities. The map
information is generally well maintained in the developed countries; however, it is
not the case for developing countries, particularly where uncontrolled urbanization
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is happening, and thus there is high demand for the automatic update of map
information from satellite imagery at a large (e.g., country) scale.

Mapping of buildings, roads, and land cover types is one of the key applications
using satellite imagery. Global land cover maps at a high resolution have been
derived from satellite data in the last decade. Global Urban Footprint (GUF) was
created with a ground sampling distance of 12 m by the German Aerospace Center
by processing 180,000 TerraSAR-X and TanDEM-X scenes (Esch et al. 2013).
The GUF data was released in 2012, freely available at a full resolution for any
scientific use and also open to any nonprofit applications at a degraded resolution
of 84 m. GlobeLand30 is the first open-access and high-resolution land cover map
comprising 10 land cover classes for the years from 2000 to 2010 by analyzing more
than 20,000 Landsat and Chinese HJ-1 satellite images (Jun Chen et al. 2015). In
2014, China donated the GlobeLand30 data to the United Nations to contribute to
global sustainable development and climate change mitigation.

Recently, building and road mapping technologies that apply machine and deep
learning to high-resolution satellite imagery have been dramatically improved. For
instance, Ecopia U.S. Building Footprints powered by DigitalGlobe (currently a
part of Maxar) has been released in 2018 as the first precise, GIS-ready building
footprints dataset covering the entire United States produced by semi-automated
processing based on machine learning. The 2D vector polygon dataset will be
updated every six months using latest DigitalGlobe big satellite image data to ensure
up-to-date building footprint information. Going beyond 2D is the next standard in
the field of urban mapping. 3D reconstruction and 3D semantic reconstruction using
large-scale satellite imagery have been receiving particular attention in recent years.

Benchmark datasets and data science competitions have been playing key roles
in advancing 2D/3D mapping technologies. Representative benchmark datasets are
listed below.

• SpaceNet:7 SpaceNet is a repository of freely available high-resolution satellite
imagery and labeled training data for computer vision and machine learning
research. SpaceNet was initiated by CosmiQ Works, DigitalGlobe, and NVIDIA
in 2016. SpaceNet building and road extraction competitions were organized with
over 685,000 building footprints and 8000 km of roads from large cities in the
world (i.e., Rio de Janeiro, Las Vegas, Paris, Shanghai, Khartoum).

• DeepGlobe:8 DeepGlobe is a challenge-based workshop initiated by Facebook
and DigitalGlobe as conjunction with CVPR 2018 to promote research on
machine learning and computer vision techniques applied to satellite imagery and
bridge people from the respective fields with different perspectives. DeepGlobe
was composed of three challenges: road extraction, building detection, and land
cover classification. The building detection challenge used the SpaceNet data;
the road extraction and land cover classification challenges used images sampled

7https://spacenetchallenge.github.io/
8http://deepglobe.org/

https://spacenetchallenge.github.io/
http://deepglobe.org/


106 B. Adriano et al.

from the DigitalGlobe Basemap +Vivid dataset. The road extraction challenge
dataset comprises images of rural and urban areas in Thailand, Indonesia,
and India, whereas the land cover classification challenge focuses on rural
areas (Demir et al. 2018).

• BigEarthNet:9 The BigEarthNet archive was constructed by the Technical
University of Berlin and released in 2019. The archive is a large scale dataset
composed of 590,326 Sentinel-2 image patches with land cover labels. BigEarth-
Net was created from 125 Sentinel-2 tiles covering 10 countries of Europe and
the corresponding labels were provided from CORINE Land Cover database.
BigEarthNet advances research for the analysis of big earth observation data
archives.

• 2019 IEEE GRSS Data Fusion Contest:10 2019 IEEE GRSS Data Fusion
Contest, organized by the Image Analysis and Data Fusion Technical Committee
(IADF TC) of the IEEE Geoscience and Remote Sensing Society (GRSS) and
the Johns Hopkins University (JHU), promoted research in semantic 3D recon-
struction and stereo using machine learning and satellite images. The contest was
composed of four challenges: three of them are simultaneous estimation of land
cover semantics and height information from single-view, pairwise, and multi-
view satellite images, respectively; the last one is 3D point cloud classification.
The contest used high-resolution satellite imagery and airborne LiDAR data over
Jacksonville and Omaha, US (Le Saux et al. 2019).

One major challenge in land cover mapping is the generalization ability. Most
of training data was prepared for a limited number of countries and cities. Trained
models for such data do not always work globally due to different characteristics
of structures. The technical focus has been on how to ensure the generalization
ability between different cities (Yokoya et al. 2018). To exploit the capability of
machine learning and maximize the mapping accuracy, the simplest approach is to
increase training data. Many mapping projects have been progressing in developing
countries through annotation efforts by local people (e.g., Open Cities Africa11).
Collaborative mapping based on crowdsourced data represented by OpenStreetMap
plays a major role in creating training data. The synergy of openly available big
earth observation data, crowdsourcing-based annotations, and machine learning
technologies will accelerate the land cover mapping capability for the entire globe.

9http://bigearth.net/
10http://www.grss-ieee.org/community/technical-committees/data-fusion/2019-ieee-grss-data-
fusion-contest/
11https://opencitiesproject.org/

http://bigearth.net/
http://www.grss-ieee.org/community/technical-committees/data-fusion/2019-ieee-grss-data-fusion-contest/
http://www.grss-ieee.org/community/technical-committees/data-fusion/2019-ieee-grss-data-fusion-contest/
https://opencitiesproject.org/
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4.4 Disaster Mapping

4.4.1 Flood Mapping

Besides the above-mentioned international cooperative projects and services for
the disaster response in the introduction part, flood mapping systems are also
availability.

• Global flood detection system.12 The objective of this system is to detect and
map major river floods using daily passive microwave remote sensing sensors
(AMSR2 and GPM).

• NASA Global flood detection system.13 This system adapts real-time TRMM
Multi-satellite Precipitation Analysis (TMPA) and Global Precipitation Measure-
ment (GPM) Integrated Multi-Satellite Retrievals.

• Tiger-Net.14 ESA supports the African with earth observation for monitoring
water resource (including flood mapping) through the satellites of ESA.

• Dartmouth flood observatory.15 It was founded in 1993 at Dartmouth College,
Hanover, NH USA and moved to the University of Colorado, INSTAAR in 2010.
They have used all the available satellite datasets (optical and SAR) to estimate
the flood inundation map using change detection methods.

• DLR flood service.16 Sentinel-1 and TerraSAR-X SAR datasets are used to
extract the flooding maps using a fully automatic chains (i.e., pre-processing,
auxiliary datasets collection, initialized classification and post-processing) via a
web-client.

For flood mapping, SAR images are the better choice compared to the optical and
UAV images, as clouds are penetrated by electromagnetic waves and do not corrupt
the resulting image. Usually, due to the lower reflectance in optical and lower
backscattering in SAR datasets, water bodies are easily detected. Two traditional
but efficient methods are usually utilized (seen in Fig. 4.2). The first one is to apply
the change detection methods between pre- and post-flood images and then use the
filters (e.g., morphological closing and opening) to remove the noise. This kind of
techniques is suitable to detect the flood area using single source datasets, such as
Landsat series (Chignell et al. 2015), ENVISAT ASAR (Schlaffer et al. 2015), and
Sentinel SAR (Li et al. 2018).

The second one is to extract the water bodies using classification methods (water
and non-water areas) and indexes (listed in Table 4.3) from pre- and post-flood
images. Then, the flood area is produced by analyze the changes between the water

12http://www.gdacs.org/flooddetection/
13https://disasters.nasa.gov/datasets/global-flood-monitoring-system
14http://www.tiger-net.org/
15https://floodobservatory.colorado.edu/index.html
16https://www.dlr.de/eoc/en/desktopdefault.aspx/tabid-12939/22596_read-51634/

http://www.gdacs.org/flooddetection/
https://disasters.nasa.gov/datasets/global-flood-monitoring-system
http://www.tiger-net.org/
https://floodobservatory.colorado.edu/index.html
https://www.dlr.de/eoc/en/desktopdefault.aspx/tabid-12939/22596_read-51634/
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Fig. 4.2 Flood detection methods. (a) Location map of the target area. (b) False composite color
image of Sentinel-1 SAR (R: pre-event, G, B: post-event). (c) Post-event high-resolution optical
image (Jilin-1 sp06). (d) Mapping of flooded areas

Table 4.3 Water indices with their equations and sources for optical datasets

Indices Equation Source

NDWI NDWI = (Green-NIR)/(Green+NIR) Mcfeeters (1996)

MNDWI MNDWI = (Green-SWIR)/(Green+SWIR) Xu (2006)
AWEI AWEINSH = 4(Green-SWIR1)-(0.25NIR+2.75*SWIR2) Feyisa et al. (2014)

AWEISH = Blue+2.5Green-1.5(NIR+SWIR1)-0.25SWIR2

NDWI normalized difference water index, MNDWI modification of normalised difference water
index, AWEI automated water extraction index, AWEINSH AWEI in non-shadow area, AWEISH

AWEI in shadow area

bodies of two periods. Tong et al. (2018) have applied the support vector machine
and the active contour without edges model for extracting water from Landsat 8 and
COMSO-SkyMed and then mapped the flood using image difference method.

Technical challenges and future directions are list as follows:

1. Mapping flood in small specific area. Very high resolution remote sensing
provide an opportunity to monitoring the flood in a small scale (e.g., downtown
area). However, water is always mixed by the shadow areas. To separate the
shadow from water body will improve the performance of flood monitoring.

2. Developing more computationally efficient and robust method without con-
sidering spatial resolution, spectral signature, or viewing angle. Normalized
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Fig. 4.3 (a) Location map of the target area. (b) False composite color image of Sentinel-1 SAR
(R: pre-event, G, B: post-event). (c) Post-event high-resolution optical image (Jilin-1 sp06). (d)
Mapping of flooded areas

Difference Flood Index (NDFI) (Cian et al. 2018), which is computed using
multi-temporal statistics of SAR images, will give us the inspirations.

3. Flood detection via satellite and social media by deep learning. Satellite images
can provide large scale flooding information, however, we should wait for
the datasets. Social media can provide real-time information. A proper way
should be found to integrate the information derivied from satellite images
and social multimedia. Interested reader can read more details in http://www.
multimediaeval.org/mediaeval2018/.

Here, a typical example of combining medium-resolution SAR (i.e., Sentinel-1)
and high-resolution optical (i.e., Jilin-1 sp06) datasets to detect the flood areas in
Iran is shown in Fig. 4.3. Due to the coarse resolution of Sentinel-1, the small flood
areas in the city center (red rectangle areas in Fig. 4.3b) could not be detected by
using only Sentinel-1 images. However, it can be identified by the high-resolution
optical images. Thus, the final flooded mapping is the combination of the city
flooded areas extracted by high-resolution and the non-city flood areas generated
by Sentinel-1.

http://www.multimediaeval.org/mediaeval2018/
http://www.multimediaeval.org/mediaeval2018/
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4.4.2 Landslide Mapping

Landslide disasters are frequently triggered by heavy rains and earthquakes (Martel-
loni et al. 2012; Tanyaş et al. 2019). These deadly events can cause a large number
of fatalities (Intrieri et al. 2019). As a result, there have been several efforts to map a
global subjectively of occurrence using big earth observation data sources (Stanley
and Kirschbaum 2017). These activities take advantage of the relationship between
landslides and four main variables such as topography slope computed from global
topography models (SRTM, ASTER GDEM), land cover, rainfall data, and seismic
activity (NASA Goddard Space Flight Center 2007; Muthu and Petrou 2007;
Kirschbaum et al. 2010, 2015; Kirschbaum and Stanley 2018). These techniques
are mainly based on models that integrate all variables using heuristic functions to
evaluate the possibility of landslide occurrence. These models can map the landslide
susceptibility on a continental scale (approximately 1 km2), regional, and local scale
with a resolution of few hundred meters. These studies provide an overview of the
landslide hazard and can be used for mitigation and preparation activities before
these disasters occurred.

Differently, earth observation data is also applied for mapping landslide damages
in smaller scales focusing on particular events. Visual interpretation methods
employ very-high-resolution optical imagery acquired from either space- or air-
bone platforms. Although these approaches provide high-reliability on the damage
assessment, their applicability is often restricted by the availability of suitable
images such as cloud-free and good-illumination conditions. It is also important to
notice that these techniques require huge human efforts for damage interpretation,
specially in case of rapid disaster response.

Change detection models, on the other hand, use a set of images acquired
before and after the disaster to evaluate the damages. The land cover changes
estimated from multi-temporal optical imagery is used for delineating the extent
of landslides. Furthermore, spectral indexes (e.g. normalized vegetation and soil
index) are also employed for landslide mapping (Rau et al. 2014; Lv et al. 2018;
Yang et al. 2013; Zhuo et al. 2019; Ramos-Bernal et al. 2018). Integration of high-
resolution digital terrain models allows estimation of landslide-induced damages
such as debris and land scars distribution in the affected area (Dou et al. 2019; Bunn
et al. 2019). Similarly to visual interpretation approach, the availability of suitable
multi-temporal image datasets firmly bound the deployment of these techniques.

In the case of SAR data that has almost all-weather acquisition conditions,
mapping techniques take advantage of the side-looking nature of these sensors. The
two properties of SAR data, intensity, and phase information of the backscattered
signal are exploited for detecting landslide damages. The later is widely applied
for monitoring and mapping seismic-induced landslides (Cascini et al. 2009; Kalia
2018). Interferometric SAR (InSAR) analysis using detail DEM data provide the
spatial distribution and displacement fields of the ground movement (Riedel and
Walther 2008; Rabus and Pichierri 2018; Amitrano et al. 2019). Furthermore,
time-series InSAR models allow landslide monitoring of slow-movement land-
slides (Kang et al. 2017). On the other hand, change detection techniques, using
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SAR intensity images, are also powerful means to estimate the spatial distribution
of landslide damages (Shi et al. 2015). For instance, texture features computed
from multi-temporal datasets shows good correlation with the areas affected by
landslides (Darvishi et al. 2018; Mondini et al. 2019). Furthermore, in case of
disaster response where rapid geolocations of affected areas are crucial for rescue
efforts, change detection based on intensity information has great applicability
because of low computation time and direct manipulation of geocoded images. For
instance, on September 6, last year, the 2018 Hokkaido Eastern Iburi Earthquake
caused several landslides distributed in an extensive area (Yamagishi and Yamazaki
2018). Figure 4.4 shows a repid landslide mapping (yellow segments) using a
combination of pixel- and object-based change detection analysis, proposed by
Adriano et al. (2020), of a pre- and post-event Sentinel-1 intensity images acquired
on September 1 and 13, 2018, respectively.

Recently, machine learning algorithms together with earth observation data are
applied to detect landslide areas. Application of well establish classifiers such as
support vector machine and ensemble learning models are used to identify landslide
areas from optical, SAR intensity, and SAR coherence images (Bui et al. 2018;
Park et al. 2018; Burrows et al. 2019). Furthermore, deep neural networks are

Fig. 4.4 (a) Location of the target area. The red start shows the earthquake epicenter (b) Color-
composed image from pre- and post-event Sentinel-1 intensity images (R: pre-event, G, B: post-
event). (c) Google Satellite imagery corresponding to the same area shown in b. (d) Landslide
mapping results using multi-temporal Sentinel-1 imagery. Background image corresponds to the
color-composed RGB image
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also employed to map the landslide detection (Ghorbanzadeh et al. 2019; Wang
et al. 2019). These approaches focused on high-resolution remote sensing imagery
and landslide influencing features such as DEM data, land cover, and rainfall
information.

4.4.3 Building Damage Mapping

Assessing the building damage in the aftermath of major disasters, such as
earthquakes, tsunamis, and typhoons, are crucial for post-disaster rapid and efficient
relief activities. In this context, earth observation data is a good alternative for
damage mapping because satellite imagery can observe large scenes from remote or
inaccessible affected areas (Matsuoka and Yamazaki 2004). Based on the evolution
of sensor platforms and their spatial resolution, damage mapping can be divided into
two parts. Initial applications for building damage recognition were based on change
detection analysis of moderate-resolution, mainly using sensor launched in the late
90’s such as the Landsat-7 Satellite and the European Remote Sensing (ERS-1) SAR
satellite, optical and SAR imagery. These applications relied on the interpretation of
texture and linear correlation features computed from pre- and post-event datasets.
Besides, due to their relative low spatial resolution (about 30 m2), these methods
were efficiently applied for building damage mapping in a block-scale (Yusuf et al.
2001; Matsuoka and Yamazaki 2005; Kohiyama and Yamazaki 2005).

The following generation of high-resolution optical and SAR imagery, starting
in early 2000s such as the QuickBird, GeoEye-1, TerraSAR-X, COSMO-SkyMed
satellites, contribute to developing frameworks for detail mapping of building
damage. These methods, besides of change detection techniques, implemented
sophisticated pixel- and object-based image processing algorithms for damage
recognition (Miura et al. 2016; Tong et al. 2012; Brett and Guida 2013; Gokon
et al. 2015; Ranjbar et al. 2018). Moreover, taking advantage of very-high-resolution
datasets, sophisticated frameworks were implemented to extract building damage
using only post-event images (Gong et al. 2016). Most of these methodologies
rely on specific features of SAR data. For instance, some studies analyzed the
polarimetric characteristics of radar backscattering that are correlated with building
damage patterns observed in SAR images (Yamaguchi 2012; Chen and Sato
2013). Furthermore, SAR platforms such as the Sentinel-1 and ALOS-2 repeatedly
acquired images constructing large time-series datasets. Phase coherence computed
from multi-temporal SAR acquisitions can provide important characteristics of the
degree of changes in urban areas in the case of earthquake-induced damage (Yun
et al. 2015; Olen and Bookhagen 2018; Karimzadeh et al. 2018).

Recently, advanced machine learning algorithms are implemented using multi-
temporal and multi-source remote sensing data for mapping building damage.
These methodologies learn from limited but properly labeled samples of damaged
buildings to assign a level on the whole affected area (Endo et al. 2018). A
recent example, Adriano et al. (2019) used an ensemble learning classifier on
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Fig. 4.5 (a) Location of the target area. The red start shows the earthquake epicenter (b) Pre-
event WorldView-3 image. (c) Post-event WorldView-3 images. (d) Damage mapping results using
multi-sensor and multi-temporal remote sensing data. Background image corresponds to the pre-
event Sentinel-1 SAR image capture on May 26, 2018

SAR and optical datasets to map the building damage following the 2018 Sulawesi
Earthquake-Tsunami in Palu, Indonesia. Their methodology successfully classified
three levels of building damage with an overall accuracy greater than 90% (Fig. 4.5).
Furthermore, their implemented framework provided a reliable thematic map after
only after three hours of acquired all raw remote sensing datasets.

4.5 Conclusion and Future Lines

Open data policy in earth observation and international cooperation in emergency
responses have expanded practical use of image and signal processing techniques for
rapid disaster damage mapping. In this chapter, we have reviewed earth observation
systems available for disaster management and showcased recent advances in land
cover mapping, flood mapping, landslide mapping, and building damage mapping.

Although human visual interpretation is still required to determine the level of
detailed building damages, it takes a long time to acquire high-resolution images and
conduct visual interpretation. One possible future direction is to construct training
data on past disasters via human visual interpretation and develop machine learning
models that can respond quickly to unknown disasters. Another challenge is that
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there are many cases where data can not be obtained from the same sensor before
and after a disaster (He and Yokoya 2018). How to extract disaster-induced changes
from multisensor and possibly heterogeneous data sources before and after disasters
is a practical problem in damage mapping. Furthermore, it is important for the entire
disaster management process to verify the accuracy of damage assessment results
using in-situ data. Integration and fusion of earth observation data with ground-shot
images and text information available online (e.g., news and SNS) is also a future
subject. On the basis of the remote sensing image and signal processing technology
and human expert knowledge, machine learning technologies have the potential to
accelerate the accuracy and speed of damage mapping from big earth observation
data.
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Chapter 5
Spatial Data Reduction Through
Element-of-Interest (EOI) Extraction

Samantha T. Arundel and E. Lynn Usery

5.1 Introduction

Big Data are characterized as any vast and complex data collection that is difficult
to manage with traditional practices. Big data containing geo-referenced attributes,
which are viewed as big geospatial data, are transforming the geospatial industries
into data-driven disciplines (Graham and Shelton 2013; Kitchin 2013; Miller
and Goodchild 2015). Most geospatial big data currently derive from remotely
sensed imagery via satellite, airborne and ground vehicles, or geo-enabled social
media platforms like Twitter and Facebook. Big geospatial data suffer from issues
related to the five ‘Big Vs’ – variety, volume, velocity, veracity and value, which
respectively describe the great diversity of data types, the tremendous volume of
data, the speed at which new data are produced, the reliability of the data, and the
degree to which the data may actually be utilized (Emani et al. 2015; Lee and Kang
2015).

Whereas the benefits, including analytics, visualization, and knowledge dis-
covery, of big data are reported elsewhere (Lee and Kang 2015; Li et al. 2013),
complications associated with big geospatial data analysis have recently attracted
considerable attention. The belief that more data results in higher accuracy has led
to the collection of vast amounts and varieties of data, despite the cost of collection
and storage (Chen and Zhang 2014; Goodchild 2013). Although big spatial data are
currently available to the public via data portals and cyberinfrastructures, little use
is made of them because they often fail to meet specific study requirements in their
raw form. In fact, data collection continues to be a significant element in the design
of geographical research. Instead, it may be wise to emphasize better exploitation
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of existing datasets. Utilizing big data in their raw formats results in formidable
challenges to visualization, data mining, data query and analysis. To meet these
challenges, raw data must be reduced to features, or elements of interest (EOI) must
be extracted from them, without losing essential characteristics. In general, however,
such features are scarce, and their quality is unsatisfactory in big data analytics
(Lecun et al. 2015; Lekamalage et al. 2013; Najafabadi et al. 2015). This “big but
valueless” predicament has become a significant obstruction to the beneficial use of
big geospatial data.

EOI hail from two general data sources: (1) the mapping and remote sensing
fields, which include surveying; and (2) social media and location-based data
sources, which include the Internet of Things (IoT). We refer to the first type as
active spatial data sources, in that data are actively collected for spatial applications,
whereas the second type is considered passive, where data are ‘collected’ for other
reasons but happen to be spatially enabled.

Remotely sensed data (RSD) in the spatial domain, and information derived from
them, are an exceptional example of geospatial Big Data. Recently, the volume of
data available to remote sensing consumers has seen such a rapid increase that a shift
in the traditional way they are handled is needed. Big Data are often unstructured or
collected for different purposes, whereas RSD are designed to be highly structured
to mine significant information from the planetary surface and its atmosphere about
an object, value, state or condition. In the case where imagery is collected to
understand objects and their spatial patterns, efficient and timely extraction of those
objects from the base imagery is essential for data reduction, which in turn lessens
the infrastructure required to support the data.

Social media and location-based data, including IoT, form a large class of Big
Data with location as a secondary attribute, often derived from the data content or
context. Data sources and applications of location-based data include the IoT, fleet
management, volunteered geographic information (VGI), governmental activities
such as INSPIRE in the European Union, and cadastral information. These data
are continually being updated, sent in real-time or video streams, some with GPS
locations, but most with their place of origin derived from the static location
of the sensors or the message content. Identification of EOI in these data rely
heavily on data mining and knowledge discovery of similarities in content to
interpret environmental or social patterns. The breadth of applications for these Big
Geospatial Data spans urban monitoring, human movement, natural and human-
created event processing, predictive maintenance for fleet management (Killeen et
al. 2019) and many others.

5.2 Methods to Obtain EOI from Georeferenced Big Data

This section presents current state-of-the-art methods to create EOI from some types
of georeferenced big data.
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5.2.1 Methods Commonly Used in the Remote Sensing
and Mapping Fields

5.2.1.1 Pixel-Based Methods

Satellite and other remotely-sensed images are viewed as a collection of samples
each of which is an individual pixel created by optical to electrical conversion to
generate a brightness value in a number of different bands of the electromagnetic
spectrum. The analysis, definition, and classification of EOI rely on individual
pixel values and the methods to extract EOI are called pixel-based methods. Each
pixel location has a unique value for each band of wavelengths, such as, blue,
green, red, and infrared, that are acquired. The pixel values are assigned based on
the brightness and spectral reflectance. A collection of these values for a specific
geographic feature forms a “spectral signature” and spatial location for the feature.
These collections can be created by the user in a supervised classification mode,
in which the user identifies groups of pixels that spectrally and spatially identify
a geographic feature of known type. A series of these collections of pixels form a
set of sample signatures that can be used by an automatic classifier, such as nearest
neighbor, minimum distance, or maximum likelihood, to group unidentified pixels
into the defined classes. An alternative is an unsupervised approach in which the user
allows the computer algorithm to determine clusters of pixels with common spectral
and spatial signatures. Although these clusters may represent geographic features, it
is likely the user must aggregate clusters and define the features of interest. A similar
classification from these clusters can be obtained and then interpreted to represent
geographic features such as land use classification. These pixel-based methods
have been extensively researched and are described in detail in general reference
textbooks on remote sensing and image classification (Jensen 2015; Lillesand et al.
2015).

Pros and Cons of Pixel-Based Methods in Big Data

Pixel-based methods have a long history in analysis of remotely sensed big data
beginning with satellite images with coarse spatial resolutions of 79x57 meters
(m) from the original Landsat Multispectral data, 30x30 m from Landsat Thematic
Mapper data, and 10 m from SPOT data. The accuracy of the methods depends
on the spatial resolution and classification system used. For example, land cover,
often the target product of the analysis, usually is classed in multilevel classification
systems, such as the USGS Anderson land cover classes, and could usually attain
an 85% accuracy for most images. These methods were optimized on the basis of
aggregation of Earth surface materials inside the pixel ground area. Thus, in a scene
in which vegetation and concrete occurred together, they could not be separated and
were classed together. Sub-pixel classifiers were developed to handle fractionated
land covers within individual pixels. These mixed pixel classifiers use techniques
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that estimate the abundance of different materials within each pixel and although
they can successfully produce subpixel classifications, they are less well developed
and understood than pixel-based methods. High resolution remotely sensed images,
those with 1 m or higher spatial resolution, appeared in the 1990s and led to failure
of many of the pixel-based methods. The diversity of Earth reflectance in high
resolution images mitigated the pixel-based approach which depends on aggregation
of Earth materials in a single pixel. The need for an alternative to analyze high
spatial resolution images, including newer sensors such as lidar, led to segmentation
of the images into objects with common reflectance characteristics and object-based
image classification.

5.2.1.2 Object-Based Methods

Object-based image classification with a geographical element (GEOBIA) studies
spatial elements and their relationships by defining and analyzing image objects –
collections of adjoining pixels that share a common property (Castilla and Hay
2008; Blaschke 2010). These image objects become the rudimentary entity of anal-
ysis rather than an individual pixel. GEOBIA can generally be simplified into two
processes: segmentation and classification. Segmentation is a process that groups
similar pixels into objects, based on chosen components like spectral properties,
numerical values, size, shape, texture, context and geometry (Blaschke 2010).
Many segmentation algorithms exist, but in the natural sciences, multiresolution
segmentation is used regularly due to its ability to simultaneously produce objects
of various sizes (scales) in a single image (Baatz and Schäpe 2000). This capability
performs well in spatial applications because similar features may vary in size, as do
geologic faults or hydrological water bodies. Once fundamental objects are created,
GEOBIA classification uses selected properties to group them into categories.

Multiple image bands, images and other spatial datasets, including vector data,
can be fused in GEOBIA to create and classify objects. An example is the use of
elevation, aspect, slope and proximity to streams to find specific vegetation types
(Kim et al. 2010). Each layer not only provides its own context, but the spatial
relationships within and between them can also be evaluated. Objects hold proximity
and distance relationships between neighbors. As another example, objects with
high negative curvature adjacent to ridges can be classified as glacial cirques
(Arundel 2016). Another important advantage of GEOBIA over traditional pixel-
based approaches is GEOBIA’s ability to assimilate semantics into the translation of
objects into everyday features, relying on the insight of the user (Blaschke and Strobl
2001). Thus, GEOBIA may avail many improvements over pixel-based methods
(Blaschke et al. 2014; Chen et al. 2018).

Big data challenges for GEOBIA are typically related to imagery of high
resolution covering large areas, reaching limits of RAM, CPU, disk space and I/O
speed. As in pixel-wise approaches, one way to improve the processing of these
images is by tiling them into smaller chunks, processing each chunk separately and
then merging the results. Whereas pixel- or neighborhood-wise procedures result
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in identical output using this process, most GEOBIA segmentation routines must
consider relationships between pixels within a much broader spatial context (Michel
et al. 2015). To address this issue, automated methods are being explored to extract
smaller regions of interest (ROI) in a meaningful way to support spatial image
segmentation (Gonçalves et al. 2019). Through appropriate sampling design, ROIs
should be representative of the desired processes, and thus should allow independent
processing.

Research into improving big data analysis has also recently centered on enhanc-
ing the automation of GEOBIA procedures. One topic of focus has been developing
techniques to assist the selection of the scale at which neighboring pixels are
evaluated, known as the scale parameter (Cánovas-García and Alonso-Sarría 2015;
Drăguţ et al. 2010; Ming et al. 2015), as well as other input parameters (Gonçalves
et al. 2019; Kim et al. 2008; Liu et al. 2012). Tools that consider the research
question to automatically determine the appropriate resolution and select data based
on it offer possible future solutions to the big data problem (Chen et al. 2018).
Parallel processing, recently introduced to GEOBIA algorithms, also promises
better handling of big spatial data (Scrucca 2013).

5.2.1.3 Machine Learning

Machine learning (ML) is a principal subset of artificial intelligence focused on
algorithms that permit computers to develop responses based on empirical data,
as compared to imposing reactions up front. It is an essential counterpart to con-
ventional techniques like geostatistics. The most unmistakable property of machine
learning is its ability to uncover information and automatically choose behaviors
based on that knowledge through the use of nonlinear, adaptive, robust and universal
tools for pattern extraction and data modeling (Chen and Zhang 2014). Although in
theory they should be capable of modeling any process, learning machines must
be structured appropriately and their parameters (called hyperparameters) tuned
properly. Careful selection and testing of these two elements give rise to the majority
of machine learning research today (Kanevski et al. 2008).

Two important categories of machine learning algorithms are Statistical Learning
Theory such as kernel-based methods like Support Vector Machines and Support
Vector Regression, and Artificial Neural Networks of various construction (Li et al.
2016). Being data driven (black/grey boxes), such techniques rely substantially on
the quality and quantity of data. Variograms are often used to regulate the quality
of data analysis and modeling, and tune hyperparameters (Kanevski and Maignan
2004).

As datasets have increased in resolution, variety, temporality and size, they
have revealed weaknesses in conventional approaches to handling them (Li et al.
2016; Shekhar et al. 2012). In many cases, geospatial questions are answered with
multivariate, highly dimensional and scale-dependent data for which prediction
becomes quite demanding (Leuenberger and Kanevski 2015). One advantage to
machine-learning algorithms is their nonparametric capabilities – i.e. lack of
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dependence on specific data distributions, their flexibility in the testing data they
can accept as input, and their general aptitude for modeling complex data types
with multi-dimensional feature space. These data types are modeled with higher
accuracy using leaning machines than when addressed with traditional parametric
techniques (Maxwell et al. 2018).

5.2.2 Methods to Analyze Social Media and Location-Based
Data

These big geospatial data sources include advanced sensors and devices, such as
mobile (smart) phones, health monitors, air quality sensors, sound sensors, and
many others connected to the Internet. Except for smart phones, many of these
devices are collectively referred to as the Internet of Things. These sensors measure
time, motion, temperature, noise, movement of humans and machines, vibration,
temperature, humidity and other chemical and physical changes in the environment.
Many sensors are permanently or semi-permanently placed geographically and
form sensor networks that broadcast to the Internet. The term social sensing was
applied by Liu et al. (2015) to big social data types including taxi trajectories,
mobile phone records, social media and social network data, smart card records
in public transportation systems, and others. Yao and Li (2018) define a class of
data called big spatial vector data that includes many of these social media and
location-based data types. These data are commonly represented as points, lines,
and polygons (Shekhar et al. 2011). The processing and extraction of EOI from these
big geospatial data sources use algorithms for hotspot and anomaly detection, often
implemented in parallel and cloud computing environments (Yang et al. 2017). The
primary methods for EOI extraction include data mining and knowledge discovery
methods, data analytics, especially visual analytics, and machine learning.

5.2.2.1 Data Mining

Data mining is identifying novel, interesting and actionable patterns in data. Knowl-
edge discovery is sometimes equated with data mining. Data mining techniques
can be used with social media data to determine community and group detection,
influence propagation, diffusion of information topic detection and monitoring,
behavior analysis and market research (Barbier 2011). Data mining methods have
been used with social big data to analyze social interactions, health records, phone
logs, and digital traces (Boyd and Crawford 2012). The methods use clustering
of similar data responses to identify hotspots and anomalies. These then become
the EOI for these data, identifying conversation topics, intensity of discussion, and
ultimately evaluation of subject matter opinions expressed and social and cultural
results.
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Classification is a common technique for social data analysis, and similar to land
remote sensing data analysis, techniques for mining social data include supervised
and unsupervised methods. Supervised approached depend on a-priori class labels
whereas unsupervised approaches characterize data based on internal data patterns.
In both cases a set of training data is prepared and then an algorithm to classify the
full dataset is implemented. Clustering is a common unsupervised approach used in
data mining of social data. Clustering techniques do not depend on labels in the data,
but rather converge patterns of similarity. Additional methods for mining for social
data include association rules, Bayesian classification (Cui et al. 2019), rule-based
classifiers, support vector machines, text mining, link analysis, and multi-relational
data mining (Barbier 2011).

5.2.2.2 Data Analytics

Data analytics for big geospatial data include statistical analysis methods such
as simulation, classification, and common visual representations for both analysis
and results. Strategies to achieve this integration include abstraction in which
data are defined with a representation similar in form to the semantics (meaning),
while hiding details. Aggregation is used to summarize information about a certain
bounded region. Visual analytics are analytical reasoning methods with interactive
visual interfaces that rely on the tight integration of visualization and analytics
of big data. This visualization works especially well for geospatial data because
these data a include representation of space (and time) along with the phenomena.
Visual analytics seeks to determine explicit and latent relationships in data and
interpret how these relationships inform analytic tasks. Goals in visual analytics
are to synthesize information, detect the expected and discover the unexpected and
unknown, provide assessments, and communicate the assessments effectively. Key
steps in the process include data transformation, visual mapping/layout, model-
based analysis and user interactions (Keim et al. 2008).

For big social and location-based data, goals of analytics are often determination
of public opinion, perception, sentiment, and market analysis. The methods involve
location tracking and transit analysis, as with taxi trip records, polling of public
sentiment, as with political commentary using Twitter feeds or intensity and needs
during hazard events and disasters. Concept-level analysis from social text uses
keyword spotting, lexical affinity, and statistical methods (Cambria et al. 2013).
The tracking and opinion usually come from the public at large and methods of
aggregation and statistical analysis are used to refine the data into clusters of similar
phenomena that can be interpreted.

5.2.2.3 Machine Learning

As with remote sensing data, high resolution social media and location–based data
are being processed and analyzed using machine learning and artificial intelligence
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methods. These methods use a series of algorithms that enable computers to identify
patterns in data and classify them in clusters. The algorithms detect objects by
using high volumes of labeled training data in a learning mode. Semantic signatures
are sometimes used with machine learning and geographic artificial intelligence
techniques to analyze the digital trace of human activity (Janowicz et al. 2019).
Digital traces are produced and collected through mobile devices, sensor fields,
and IoT devices and thus are passive data. Data collected and processed may
include natural language posts and text, human movement tracers, video, sound, and
sensor feeds of environmental data. The volume and heterogeneity of the data make
them particularly suited to analysis in geographic artificial intelligence. Specific
machine learning methods for social media analytics, domain adaptation, sentiment
analysis, and link prediction are provided by Hayat et al. (2019). Martin et al. (2018)
provide an example of convolutional neural networks to analyze human mobility and
behavior. All these methods require extensive, high-quality well-labeled training
data for successful implementation.

5.3 Use Cases in the Active and Passive Big Data Spatial
Realms

5.3.1 Active Use Cases

Components of the geospatial terrain obtained from digital elevation models present
an important use case of EOI extraction (Fig. 5.1). This research has focused on
the basic terrain elements peaks, pits and passes of surfaces (Ehsani and Quiel
2008; Takahashi 2006); slope, aspect and curvature (Csillik et al. 2015; Eisank and
Drăgut, 2010), physiographic units (Drăguţ and Eisank 2012; Gerçek et al. 2011),
general landform segmentation and classification (Camiz and Poscolieri 2015; Graff
and Usery 1993), and specific landform types such as mountains (Miliaresis and
Argialas 2002; Sinha and Mark 2010) and cirques (Anders et al. 2009; Arundel
2016).

Drăguţ and Eisank (2012) used object-based image analysis to classify ~90
m resolution Shuttle Radar Topography Mission (SRTM) data, resampled to ~1
km, into topographic or terrain classes for the globe. The original 90 m dataset,
assuming the globe is approximately 510 million km2, is covered by 57 billion
pixels, requiring about a half terabyte (TB) in 8-byte storage. The resulting objects
represent the terrain classes along with additional descriptors at three scale levels –
small, medium and large. These 8-byte vector files are 94.6 megabytes (MB), 216
mg, and 395 MB, respectively (L. Drăgut,, personal communication, November 26,
2019). The source 90 m SRTM dataset is 1250 times larger than even the highest
resolution object dataset, and the resampled 1 km SRTM (~4 gigabytes (GB)) is
ten times larger. Thus, data reduction using EOI extraction from digital elevation
models can be quite remarkable.
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Fig. 5.1 An example of data reduction through element-of-interest extraction. Three raster
datasets (USGS historical topographic map, NAIP imager and 3DEP elevation data) are reduced to
one vector object

Community acceptance of the dataset was high, with 88% of experts rating
the dataset as moderately to very useful. Suggested dataset applications fall
mainly within geomorphology, landscape ecology, geology, soil science, ecology,
hydrology and agriculture. For example, Robinne et al. (2018) estimated global
wildfire-water risks based on the classification. The methodological procedures have
been employed and expanded in the same fields (e.g. Manfré et al. 2015).

Vegetation mapping as a use case is a broad field that benefits greatly from
EOI extraction from various datasets. Over the decades, various indices, like the
Normalised Difference Vegetation Index (NDVI) and the Simple Ratio NIR/RED
have been developed and deployed to reduce remote sensing imagery and other data
sources to species or community level vegetation maps (Xie et al. 2008). This work
includes more complex elements of interest like vegetation height, biomass, soil
moisture, leaf area index and chlorophyll density/concentration (Huesca et al. 2019;
Khadim et al. 2019; Koyama et al. 2019; Lang et al. 2019). Large remote sensing
datasets, as well as those encompassing other physical elements like temperature,
precipitation and soil moisture, can be terribly unwieldy in size, especially when
analyzed together across large spatial realms.

Huang et al. (2017) implemented a procedure to extend vegetation heights from
ICESat/GLAS (70 m2 resolution) using MODIS’ 250 m2 resolution Vegetation Con-
tinuous Fields (VCF) product, the Nadir BRDF-Adjusted (Bidirectional reflectance
distribution function) reflectance product (500 m2) and Leaf-area Index (LAI)
product (1 km2); WORLDCLIM near-surface air temperature, precipitation, and
seasonal fluctuation data (1 km2), and SRTM elevations, slopes, aspects and the
Compound Topographic Index (CTI) data (90 m2) to create complete coverage of
China’s vegetation heights. These datasets covering China’s area of ~10 million
km2 (approximately 20 billion pixels) add to over 5 TB, assuming an 8-byte storage
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system. The resulting 500 m2 resolution vegetation height product is about 160 gb,
which is less than 1/30th the size of the input datasets.

This ensuing product can in turn be used directly in land cover assessment (Gong
et al. 2013), understanding carbon sequestration (Smith and Reid 2013), agriculture
(Stanton et al. 2017), biomass estimations (Qi et al. 2019), and biodiversity studies
(Adhikari et al. 2020). Future applications of data reduction through vegetation
EOI extraction will include developing new strategies to integrate country and
continent-wide datasets like the China vegetation heights into other large-area
datasets to improve land cover classifications, global change time-series, and global
and regional climate model predictions.

As lidar coverage becomes more complete at higher resolutions, and additional
sensors on more platforms are launched for Earth observations, the need for
methods to reduce and integrate datasets will continue to increase. Machine learning
techniques will likely continue to expand their role in synthesizing these data into
functional products.

5.3.2 Passive Use Cases

Human mobility – Social data provide a basis for human mobility research and
tracking of human interactions. These data support measures of human conditions,
for example a happiness index (Mitchell et al. 2013) and demographics (Li et
al. 2013). Other uses include sentiment processing and representation of place
semantics (Liu et al. 2015).

Building identification – With VGI from Open Street Map and natural color
images from Worldview II, Yuan et al. (2018) used convolutional neural networks
to identify and classify building footprints. Hecht et al. (2015) also used neural
networks to identify building footprints from several big geospatial data sources
including topographic databases, raster maps and digital landscape models. Jiang
et al. (2015) used point-of-interest data and data mining methods to identify and
classify land use at high resolution from social networks and VGI.

Event Processing – The analysis of big geospatial data for events uses data
from social network and social media platforms such as Twitter, Facebook, Flicker,
FourSquare, and many others. The analytical results of processing the data streams
allow interpretation of social and political sentiment, food and restaurant choice
and selection, and environmental awareness, among others. These data also allow
prediction of event activity, success, and failure. Traffic trajectories from taxi and
other public carrier records can also be used for event processing. Complex event
processing (CEP), which handles many different data streams, has become a major
component of the use of big social data and specific platforms for CEP such as
Oracle CEP and Esper (Lee and Kang 2015).

Smart Cities – The availability of big data from the IoT has allowed the
development and enhancement of the smart cities concept. Use cases for big data
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in smart cities include transportation with traffic monitoring and individual mobility
identifying areas of congestion with alternative solutions such as rerouting; energy
consumption and use in which these big data analytics provide the ability to manage
individual lights or entire power grids; public health identifying areas for spread of
disease, using preventive measures, and smart medical record keeping for diagnosis
and patient care; governance with open citizen participation, environment, and
security with advanced sensing and spotting of anomalies in the big data streams
of pollution, crime and other activities. These smart city approaches are aimed at a
better quality of life for urban citizens resulting from more efficient transportation,
better planning of living and work spaces, and better decision support for many
urban problems (Al Nuaimi et al. 2015).

5.4 Conclusion

Big spatial data reduction through element-of-interest extraction applies an estab-
lished field of research to challenging new horizons. Both active and passive data
collection domains supply input to EOI methods, which are processed through
extremely varied means like object-based image analysis, data mining and machine
learning. The applications to which this research applies are just as diverse,
including vegetation mapping, terrain feature extraction, building identification,
understanding human mobility, predicting events and developing Smart Cities.

Future research can be motivated by asking the question: “what spatial queries
remain that need automated methods to answer them?” The answer to this question
is many and varied. The greatest challenge is recreating the human reasoning
mechanism that can easily answer a question like “which streams drain the North
Rim of the Grand Canyon to the Colorado River?” given a topographic map.
To answer this query requires the extraction of many EOIs, including the Grand
Canyon, the North Rim and the Colorado River, its tributaries within the Grand
Canyon, and their relations. Research to return appropriate responses to these
queries should include exploration of best methods to handle extremely big data,
particularly those using parallel and distributed processing and high-performance
computing, and understanding of the feasibility of cloud, quantum and biological
computing in EOI extraction. The development of additional and refined methods to
better extract spatial EOI from big data should include all procedural tracks. Great
progress can be gained by adapting existing advanced EOI techniques in fields like
medicine and image recognition to the geospatial realm. There is no doubt that the
discipline is perfectly posed to make rapid advances in the near future.
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Chapter 6
Semantic Graphs to Reflect the Evolution
of Geographic Divisions

C. Bernard, C. Plumejeaud-Perreau, M. Villanova-Oliver, J. Gensel,
and H. Dao

6.1 Introduction

All around the world, directives or laws are enacted to open up data to citizens. For
instance, the Open Data Directive1 in Europe sets up a legal framework to make
public sector information widely accessible and reusable. Indeed, according to the
European Commission, allowing public sector data to be re-used should foster the
participation of citizens in political and social life, and increase the transparency
of public policies. Publishing data on the Web is one way to achieve this open
data movement. Thus, public institutions in the world are facing the challenge of
publishing data on the Open Data Web, on behalf of governments or other political
organizations. As a consequence, the volume of data coming from the public sector
is growing rapidly and the Web has been subject to a series of transformations
over the last years, moving from the Documents Web (as Web pages interlinked
by hyperlinks) to the Data Web also called the Linked (Open) Data (LD or LOD)
Web. Today, almost every political authority (State, region, etc.) in the world has an

1https://ec.europa.eu/digital-single-market/en/open-data
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Open Data Portal in order to centralize data and make it accessible to citizens (e.g.,
the opendata.swiss portal,2 the U.S. Government’s open data portal,3 the European
Union Data Portal,4 etc.).

Major actors in this process are (National) Statistical Agencies ((N)SAs) and
Mapping Agencies which create and disseminate official statistics and geographic
information (such as the administrative or electoral boundaries) in order to monitor
their jurisdiction and sub-jurisdictions. Official statistics measure diverse socio-
economic or natural phenomena that occur and evolve on these jurisdictions (e.g.,
demography). The expression geo-coded statistics or territorial statistics is used to
designate such statistics, meaning that data refer to a territorial reference system,
using alphanumerical identifiers of geographic areas (also called geographic units
or statistical areas) (Eurostat 2001). All these geographic areas are organized into
what is called a Territorial Statistical Nomenclature (TSN), built by (N)SAs in
order to observe a territory at several nested geographic division levels (e.g.,
regions, districts, sub-districts levels). These artifact TSNs are built for statistical
purpose, although they usually correspond to an electoral or administrative structure.
Numerous TSNs exist throughout the world. For instance, the one from Eurostat,5

called the Nomenclature of Territorial Units for Statistics (NUTS),6 provides four
nested subdivisions levels of the European Union (EU) territory, for the collection
of EU regional statistics (State members, major Regions, basic Regions, and small
Regions levels).

Territorial statistics are of utmost importance for policy-makers to conduct
various analyses upon their jurisdiction, through time and space. For instance, using
data available at two or more periods in time, they can observe the evolution of
the unemployment rate in a given administrative region. These observations and
the analysis of these observations are essential prerequisites for political decision-
making (spatial planning, public health policies and preventive measures, etc.).
Thus, there is a strong demand from governments, organizations and researchers
regarding time-series of these territorial statistical data. One unexpected underlying
problem is that past territorial data cannot be compared to more recent data if
the geographic areas observed have changed in the meantime i.e., data collected
in different versions of a TSN are not directly comparable because the observed
geographic areas are potentially not the same areas anymore. Territorial changes are
very frequent in Europe (for instance in France, in 2016, administrative regions
have been merged into greater regions) or in the U.S.A. through a well-known
process called gerrymandering or, more broadly redistricting. Territorial changes
lead to broken time-series and are source of both misinterpretations, and statistical

2https://opendata.swiss/
3https://www.data.gov/
4https://data.europa.eu/euodp/en/home?
5The European Statistical Office that provides official statistics to the NSAs of the European Union
member states.
6http://ec.europa.eu/eurostat/web/nuts/overview

https://opendata.swiss/
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biases when not properly documented. For instance, the identifiers of the geographic
areas in the nomenclature do not necessarily change after a territorial redistribution,
even if the areas have changed their name or merged with a neighbor. Then, the
main drawback of using such identifiers for areas lies in their lack of consistency
through time and space, as they may designate a region that has changed over time
in its boundaries or/and name. To address this problem, statistical services often
transfer former statistical data into the latest version of the TSN. Hence, statistical
data sets do not contain traces of territorial changes. However, this non-evolving
view hampers a good understanding of the territory life itself. Indeed, changes of
the areas are not meaningless because they are decided or/and voted by an authority
pursuing some objective. Thereby, solutions for representing different versions of
the geographic divisions, and their evolution are to be proposed in order to enhance
the understanding of territorial dynamics, providing statisticians, researchers, citi-
zens with descriptions to comprehend the motivations and the impact of changes
on territorial data (on electoral results for instance). In fact, providing an explicit
representation of territorial changes through times is a prerequisite to a reliable
analysis of time-series of statistical data. Therefore, it is crucial to keep and
enrich such information about territorial changes with metadata and other resources
available on the Web that may contribute to explain the changes (e.g., societal
reasons, historical events). The fundamental question we address in this chapter
is how to provide statisticians, researchers or citizens with semantic descriptions
of changes and lifelines of evolving geographic areas in order to comprehend the
evolution of the territories over time?

Our solution is to adopt Semantic Web technologies and Linked Open Data
(LOD) (in order to comply with Open Data directives among others) representation
for the description of the geographic divisions, and of their evolution over time.
This guaranties, among others, the syntactic and semantic interoperability between
systems exchanging statistical and geometric datasets about geographic divisions.
We propose a solution to handle the whole TSN data life cycle on the LOD Web:
from the modeling of geographic areas and of their changes, to the automatic
detection of the changes then exploitation of these descriptions on the LOD Web,
using SPARQL requests. Our system embeds two ontologies, TSN Ontology and
TSN-Change Ontology, we have designed for an unambiguous description, in
time and space, of the geographic structures and of their changes over time. The
knowledge graphs we generate improve the understanding of territorial dynamics,
providing policy-makers, technicians, researchers and general public with fine-
grained semantic descriptions of territorial changes to conduct various accurate and
traceable analyses.

In this chapter, we first introduce the current state of territorial statistics and
geographic divisions on the Open Data Web, and issues behind approaches that
erase traces of territorial changes over time. In Sect. 6.3, we investigate solutions
for changes representation using the Semantic Web technologies. In Sect. 6.4, we
present spatiotemporal solutions for the description of evolution of geographic
areas over time. We focus on solutions offered in the Semantic Web. In Sect. 6.5,
we present our solution that provides researchers, citizens with Linked Open
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geospatial representation of the areas evolution over time. In Sect. 6.6, we conclude
by considering other data whose evolution could be describe in order to further
comprehend territorial dynamics over time.

6.2 Context

In this section, we describe in more detail the current states of territorial statistical
information on the Web. We focus on three main issues regarding this information
composed of both statistics and geographic data: (1) statistical and geographic data
are not fully interconnected on the Web, (2) due to change in the territorial units
over time, time-series of socio-economic data are often broken, (3) then statistical
agencies use to estimate data in the latest partition versions and then, this approach
erase traces of territorial changes.

6.2.1 Not Fully Interconnected Data

Although socio-economic or environmental, etc. statistics (produced by NSAs) and
geographic information (produced by National Mapping Agencies) have a strong
connection because statistics measure some observed phenomenon that occurs on a
territory, most of the time, on the Open Data Web they are available in separated
data sets. They are generally available in different formats, using different Web
Services (SDMX REST Web services for the statistics,7 and OGC Web services
(WFS,8 WMS,9 CSW10. . . ) for the geographic information). And, even when they
are available in the same format (CSV or XML for instance), most of the time
the two types of information are described using different data models that are not
interconnected. The only link that is made between these siloed data sets relies on
the identifier (a numeric or alphanumeric identifier) of the geographic area that the
statistical observation refers to. And, as explained in Sect. 6.1, the main drawback
of using such identifiers for areas lies in their lack of accuracy in time and space,
as they may designate a region that has changed over time in its boundaries or/and
name. Even if sometimes the units are recodified after a major change, the fact
remains that in both cases (recoding or not), the statistical series referring to the
identifiers are broken, as explained in Sect. 6.2.2.

7For instance, the REST SDMX API of Eurostat gives access to the Eurostat data (https://ec.
europa.eu/eurostat/web/sdmx-web-services/rest-sdmx-2.1
8https://www.opengeospatial.org/standards/wfs
9https://www.opengeospatial.org/standards/wms
10https://www.opengeospatial.org/standards/cat

https://ec.europa.eu/eurostat/web/sdmx-web-services/rest-sdmx-2.1
https://ec.europa.eu/eurostat/web/sdmx-web-services/rest-sdmx-2.1
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6.2.2 Broken Time-Series

The boundaries of geographic areas defined by humans evolved over time, because
of reforms, electoral concerns, alliances or conflicts between human groups. This
leads to broken statistical series since past data about a given statistical indicator
(e.g., unemployed number, income distribution, life expectancy) can no more be
compared to more recent data if the geographic areas observed have changed. This
problem, well known as the Change of Support Problem (COSP) (Openshaw and
Taylor 1979; Gotway Crawford and Young 2005; Howenstine 1993), describes the
phenomenon where data collected in different TSNs or versions of a TSN are not
comparable due to potential differences between the geographic areas (for instance,
after the split or merge of two regions) used as supports for the collected data.
Consequently, territorial changes are a clear obstacle to the comparability of socio-
economic data over time, as this is only possible if data are estimated in the same
geographical divisions. Changes of geographic areas are, most of the time, more
complex than a split or merge of areas, and very numerous the more we go down
the territorial hierarchy (changes in the municipalities for instance).

6.2.3 Removal of Changes

As seen above, territorial statistics are often simply not comparable over time due
to potential differences between the geographic areas at two periods of time. To
cope with this problem, methods such as aggregation, disaggregation (e.g., Simple
Areal Weighted), and areal interpolation (e.g., Inverse Distance Weighting, Kriging
method) can be used to transfer data into another TSN or version of a TSN or
to abolish the boundaries between areas by using spatial smoothing (Flowerdew
1991; Wang 2014; Anderson et al. 2012; Plumejeaud et al. 2010). However, these
methods mitigate traces of changes, and thus do not help to understand the various
governance and planning choices behind these territorial changes (Plumejeaud et al.
2011). It is crucial to keep and enrich such information about territorial changes
for several reasons: (1) it avoids errors in the analysis of statistics when the areas
keep their identifier while their boundaries have changed; (2) the nature of the
change the areas undergone (e.g., split, merge, redistribution of the areas) helps
in estimating data in a new geographic division. Then, it helps in constructing long
time-series and analyzing the evolution of a territory, using the latest boundaries; (3)
conversely estimating data, such as electoral results, in former electoral areas helps
in analyzing, for instance, electoral votes as if there was no redistricting and then
observe the influence of the new areas on results; and finally, (4) knowing which
area has changed, because of some event or law helps to understand which and why
changes occurred. For instance, the fusion of the French regions in 2016 was acted
by a law that aims at reducing the number of administrative levels for cost saving
purposes.
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In the next section, we investigate solutions offered by the Open Data Web
to the three issues identified (not fully interconnected data, broken time-series,
removal of changes). In particular, we investigate solution relying on Semantic Web
technologies, semantic data being a particular form of Open Data.

6.3 Towards a Change in Representation with the Semantic
Web

6.3.1 Open Data

Considering the Open Data challenge the (N)SAs have to meet, it should be first
noted that there are different degrees of data openness, depending on the data format
chosen by institutions. This data format determines what can be made with data
available on the Web and how they can be linked with other resources on the Web.

Tim Berners-Lee, the inventor of the Web and Linked Data initiator, suggested a
deployment scheme for Open Data (Fig. 6.1) that starts from, at least, the publication
of data as PDF data on the Web, then as structured data (e.g., within an Excel file
instead of an image scan of a table, so that a computer program may extract the
value of each cell). The next step is to make data available in a non-proprietary
format (e.g., comma-separated values instead of Excel). Data reach 4 stars when
each of them (e.g., each cell of a table) may be identified uniquely using a Unique
Resource Identifier (URI), so that people can point at data using their URI. The
Open data process ends when linking each URI with each other i.e., each cell data
being identified uniquely by a URI is connected to other data on the Web using a
link (also identified by a URI). Indeed, the more data are linked, the more users can
discover new facts, by going from one node in the distributed Web graph database
to another. Such a link between two resources on the Web is called a triple (subject-
predicate-object) (Fig. 6.2). Most of the time, the Resource Description Framework
(RDF) standard syntax is used to write these triples, called RDF triples. For instance,
from the data resource “Helsinki”, identified by the URI http://dbpedia.org/resource/

Fig. 6.1 Tim Berners-Lee,
the inventor of the Web and
Linked Data initiator,
suggested a 5-star
deployment scheme for Open
Data (Hausenblas 2012)

http://dbpedia.org/resource/Helsinki
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Fig. 6.2 Example of Linked
Resources on the Web using
URI and the RDF syntax for
their identification and
representation

Helsinki on the Linked Open Data (LOD) Web, users discover famous people born
in Helsinki by visiting linked nodes.

Hence, nowadays for the institutions the challenge is to publish data on the LOD
Web, which implies a significant change from traditional data infrastructures to
approaches based on new Web standard formats and tools dedicated to the sharing
of Linked Data (Tandy et al. 2017).

6.3.2 Linked Data

For the SAs, the stakes behind adopting the LOD approach and technologies
are crucial. Indeed, statistical indicators linked to historical, environmental, etc.
information or linked with each other (in time and space) allow multi-criteria
analyzes of the territories. As a matter of fact, analysts may explore correlations,
causalities and understand the territory under analysis. So far, SAs share their
statistics at data set level, meaning that users have to download the whole data set
(most of the time in a tabular file that list all the values for each geographic areas
of the TSN), even if they are interested in only one indicator or one value of the file
to perform their analysis. Similarly, to address a specific problem, analysts have to
download multiple isolated data sets (containing one or several indicator(s)), each
of them resolving only a part of their problem. SAs are thus far from disseminating
atomic data that can be automatically processed, reused and from which new facts
can be inferred.

Using the LOD paradigm, each statistical data set available on the Web is
identified by a URI, each of them representing a resource, and each indicator, each
data and metadata composing the data set is identified by a URI as well: everything
being a resource node in the distributed Web graph database. Thus, data sets as LOD
are no longer isolated and monolithic instances, they are immersed into the Web as
graph(s). They are all interconnected at a finer granularity, and so the indicators and
the statistical values can be as well. Each statistical value is a resource on the Web,
linked to the geographic area where the observation was made. Since all values

http://dbpedia.org/resource/Helsinki
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and areas are addressable and queryable, users can search for data concerning a
particular region, and cross data from multiple providers.

6.3.3 Semantic Data

LOD technologies foster syntactic interoperability, and, most of all, semantic
interoperability between systems. Indeed, for each data being published on the LOD
Web, it is necessary to define to which set of things – real-world objects, events,
situations or abstract notion – it belongs, by linking it to a concept defining this
set. As part of LOD, ontologies are documents that formally define these concepts
and their relations (Berners-Lee et al. 2001). They help both people and machines to
communicate, supporting the share of semantics and not only of syntax (Alevxander
and Staab 2001). Thus, on the LOD Web, data but also data semantics is explicitly
defined and shared through Ontologies or Vocabularies. Hence, using RDF triples,
the syntax of data is homogenized, data can be transferred from one system to
another (as explained in Sect. 6.3.1), and because of the explicit semantics, systems
“understand” data they receive and can determine the appropriate process to be
applied to data (e.g., data tagged as geospatial data may be shown on a map). Thus,
the term Semantic Web is also used to denote on LOD data sets, ontologies and
technologies related to them.

More recently the term knowledge graph emerges to designate LOD graph
(containing both data sets and ontologies) because data in the graph bear formal
semantics, which can be used to interpret data and infer new facts (Ontotext 2018). A
knowledge graph can be seen as a network of several data sets and ontologies which
are relevant to a specific domain, and upon which a reasoner can operate in order to
infer new knowledge (Ehrlinger and Wöß 2016). Even if the term is borrowed from
a commercial data graph, the Google Knowledge Graph, it is now used to denote
also on openly available graphs, such as DBpedia, YAGO, and Freebase (Paulheim
2017).

Thus, there are many benefits for (N)SAs in using Semantic Web technologies
for their statistics or geospatial data:

– users may navigate from one data set to another or even from one finer piece of
information to another;

– data and metadata are interlinked;
– systems “understand” data they receive and can determine the appropriate

process to apply to data;
– data are put in context, as they are linked to other resources on the LOD Web;
– each statistical indicator and value become addressable;
– using a network of ontologies and data sets, a knowledge graph representing the

territorial dynamics over time may be constructed, combining several statistical
data sets from various disciplines (e.g., environment, socio-economy, ethology,
transports), at different instants in time, observed in different geographic divi-
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sions and versions of these divisions. Also, historical events or other contextual
information could be mobilized in order to explain the changes that occur over
time, such as the changes in boundaries.

From this knowledge graph, one can build intelligent tools for the restitution of
these very disparate data which taken as a whole may help in understanding the
complexity of dynamic phenomena. These tools might also be able to infer new
data (such as the estimation of unemployment values after a redistricting), using
information on the nature of the indicator and on the nature of the territorial change
for accurate estimation.

6.3.4 Linked Open Geospatial Data

Spatial data on the Web are impacted by the transformation of the Web (from the
Web of documents to the Web of data) led by projects such as LinkedGeoData
(Auer et al. 2009) and groups, such as Spatial Data on the Web Working Group11

(a group that gathers members from the World Wide Web Consortium (W3C) and
the Open Geospatial Consortium (OGC)). Software tools, such as the Geotriples
Software12 emerge. Using this software, one can transform geospatial files (here
shapefile) into RDF triples. However, Semantic Web technologies have not yet being
adopted by every one because they imply, as noticed by the Spatial Data on the Web
Working Group,13 “a significant change of emphasis from traditional Spatial Data
Infrastructures (SDI)” (Tandy et al. 2017).

Regarding geographic divisions, even if some agencies published their areas
as LOD (i.e., using the RDF syntax), in most cases these geospatial data are
only available online as ESRI ®shapefiles i.e., a format for geospatial data (the
specification of the format are open). If we refer to the Tim Berner-Lee deployment
scheme for Open Data (see Fig. 6.1), geographic divisions deployment, being
available as geospatial vector files, are at level 3. Obviously, they are not yet
available as Linked (Open) Data.

In the next section, we investigate the existing solutions through the Semantic
Web to describe the evolution of resources over time, including geospatial ones.

11https://www.w3.org/2015/spatial/wiki/Main_Page
12http://geotriples.di.uoa.gr/
13https://www.w3.org/2015/spatial/wiki/Main_Page

https://www.w3.org/2015/spatial/wiki/Main_Page
http://geotriples.di.uoa.gr/
https://www.w3.org/2015/spatial/wiki/Main_Page
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6.4 Modeling Geospatial Changes in the Semantic Web

6.4.1 Identity and Changes

As explained in the previous sections, the descriptions of territorial changes over
time are critical for the interpretation of statistical data produced over several
versions of a geographic area. The description of the world dynamics should help
in understanding the events behind changes and the motivations for partitioning
a territory. In Beller (1991) and Claramunt and Thériault (1995), it is stated
that reproducing the dynamics of spatiotemporal processes consists in describing
changes and relationships between entities, considering the events behind changes
and the facts which enable the observation of these changes. On these fundamentals,
authors in Del Mondo et al. (2013) notice that modeling these dynamics of the world
requires modeling the entities themselves but must of all, the spatial, spatiotemporal
and filiation relations between them (e.g., topological relation, topological relation
considered in time, ancestor/descendant relation). Authors in Del Mondo et al.
(2010) define Spatiotemporal entities as abstractions of the real world that have a
fixed identity and a type (for instance counties, cities, lakes are types of entities).
Spatiotemporal entities can also have time-dependent properties, such as their
geometry that can vary in different time instants. The expressions fixed identity and
a property that can vary bring to attention the fact that even if an object change, its
identity may endure over time.

The term identity requires further definition, since in the context of evolving
object, one may wonder, as noticed in Harbelot et al. (2013), “How far can an
entity vary before losing its identity?”. In philosophy, this issue is often illustrated
by The Ship of Theseus Greek legend: the Ship of Theseus was rebuilt entirely, over
centuries, as every plank was broken one by one. Is the ship still the Ship of Theseus
after all planks being replaced? In Fearon (1999), a philosophical sense of identity
is provided: “the identity of a thing (not just a person) consists of those properties or
qualities in virtue of which it is that thing. That is, if you changed these properties
or qualities, it would cease to be that thing and be something different.”

This issue of entities that change and remain or not the same entities is a problem
that the database community faced many years ago. However, ontology development
is a more decentralized process than database schema development since a change
in one ontology may affect the other ontologies that use it. In Noy and Klein
(2004), it is stated further that in the context of ontologies, one has to distinguish
between “changes in the domain or changes in the real world” and “changes in
conceptualization”. Attention should be paid to the way the LOD technologies deal
with changes over time. The RDF Specification (Cyganiak et al. 2014) states that the
RDF data model is atemporal since RDF graphs are static snapshots of information.
However, RDF graphs can express information about events and temporal aspects,
given appropriate vocabulary terms (i.e., ontological concepts). Whenever possible,
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it is recommended to use existing vocabularies (such as OWL-Time14) to achieve
semantic interoperability. Another concern addressed by the W3C (Cyganiak et al.
2014) is the possibility to express different states of a resource over time through
different RDF graphs enclosed in one resource. However, authors in Stefanidis et al.
(2014) warn about possible duplication of data from one version to another. Then,
this approach can rapidly increase the space memory requirements. An alternative
solution is to store only one version (e.g., the first one) and the differences between
two consecutive versions (called deltas in software engineering).

Another field to explore is precisely the field of software engineering and the
task called Software Configuration Management (SCM) for managing the evolution
of large software systems (Tichy 1988). Within this field, a version is defined as a
state of an evolving item and different types of version are identified (Conradi and
Westfechtel 1998) such as: revisions that are versions intended to supersede their
predecessor; variants that are versions intended to coexist. Another core concept of
SCM is the version model. A version model defines the items to be versioned and
the delta, which is the difference between two consecutive versions (Conradi and
Westfechtel 1998).

To summarize, a model that reflects territorial dynamics should address a set of
prerequisites: (1) the modeling of spatiotemporal entities, (2) the representation of
their relations over time (2.1) and space (2.2) and in filiation (2.3), (3) a definition
of what makes the identity of these entities over time, (4) the description of their
differences (the delta) and changes over time, and (5) the consideration of events
behind changes.

6.4.2 Modeling Changes

In this subsection, we focus on Semantic Web models and standards dedicated to
the representation of territorial dynamics.

6.4.2.1 Standard Space and Time Ontologies

Nowadays, any spatiotemporal modeling of objects on the LOD Web necessarily
implies two standards and fundamentals ontologies that are the GeoSPARQL and
OWL-Time ontologies.

GeoSPARQL is an OGC standard that supports two main actions: representing
and querying geospatial data on the Semantic Web. It defines an ontology for
representing spatial data in RDF, and an extension to the SPARQL query language
for semantic data, for querying spatial data.15 The GeoSPARQL namespace is

14https://www.w3.org/TR/owl-time/
15http://www.opengeospatial.org/standards/geosparql

https://www.w3.org/TR/owl-time/
http://www.opengeospatial.org/standards/geosparql
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available from the URI http://www.opengis.net/ont/geosparql# (the nickname of this URI
is the prefix geo). It provides access to the GeoSPARQL ontological concepts. The
GeoSPARQL ontology is made of three main classes (Perry and Herring 2012):
geo:SpatialObject defined as the super class of every feature or geometry
that can have a spatial representation; geo:Feature defined as the super class
of every feature; geo:Geometry defined as the super class of every geometry.
GeoSPARQL defines topological relations between geo:SpatialObject. For
instance, the relation geo:sfTouches “exists if the subject SpatialObject spa-
tially touches the object SpatialObject”.16 Therefore, using the OGC GeoSPARQL
concepts one may describe the topological relations between entities, fulfilling the
prerequisite 2.2 regarding the modeling of the territorial dynamics.

The Time Ontology in OWL (also called OWL-Time) is a W3C Recommenda-
tion (Cox and Little 2017) defined as an ontology that “provides a vocabulary
for expressing facts about topological (ordering) relations among instants and
intervals, together with information about durations, and about temporal position
including date-time information.”. It supports the set of interval relations defined by
Allen (1983). Therefore, using the W3C OWL-Time ontology one may represent
the temporal relation between entities, another prerequisite 2.1 to the modeling
of the territorial dynamics i.e., being able to temporally characterize geographic
subdivisions, both in an absolute (through dates) and a relative (using order relation)
ways.

Using both the OWL-Time and GeoSPARQL Ontologies, one may describe the
boundaries of areas at a specific time interval (prerequisite 1) and the topological
relations as well as the topological relation considered in time between spatial
objects (prerequisites 2.1 and 2.2). We will see in the next sub-section how to
model the filiation relations between entities (e.g., ancestor/descendant relation)
(prerequisite 2.3), which sometimes raises the issues of the identity of entities
(prerequisite 3) that change over time (prerequisite 4).

6.4.2.2 Fundamentals for the Modeling of Evolving Geospatial Entities

In Khoshafian and Copeland (1986), the authors examine the evolution of objects in
the context of database systems. They identify several possible states of an object
that evolves over time, over periods of existence and non-existence that are: (a) non-
existence without history, (b) create, (c) recall, (d) destroy, (e) continue existence,
(f) eliminate, (g) forget, (h) reincarnate, and (i) non-existence with history.

In Renolen (1997), objects are described as a series of consecutive static states
and transitions (i.e., changing states). Events are defined as transitions with zero
duration (i.e., when objects change suddenly), whereas other objects may change
continuously. The author presents a notation called the history graph to represent
changes of an entity over time. It consists in creating a series of consecutive versions

16http://www.opengis.net/ont/geosparql#sfTouches

http://www.opengis.net/ont/geosparql#
http://www.opengis.net/ont/geosparql#sfTouches
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(i.e., static states), and transitions (i.e. changing states) of an entity that represent its
history over time.

The graph approach is of particular interest in this context of representing entities
(i.e., vertices), and all their relations (i.e., edges) with other entities (descendants
or neighbors). The graph model for spatiotemporal evolution of Del Mondo et al.
(2013) argues also in this direction. The authors define Spatiotemporal graphs as
entities (i.e., vertices) related by spatial and filiation binary relations (i.e., edges). In
Del Mondo et al. (2010), two filiation relation cases are defined (prerequisite 2.3): a
filiation of type Continuation is when the first entity is the same as the second entity
(e.g., one person at two times), i.e., entities maintained their identity; a filiation of
type Derivation is when the first entity creates (possibly with others) the second
entity (e.g., a parent of a child).

Considering once again the example of the ship of Theseus: does the ship of
Theseus at time 0 has a relation of type Continuation with the ship of Theseus at
time 1? What if we consider the relation between the ship at time 0 and time 100, all
the planks having being replaced? In other word, it still the same ship or a different
one? In the literature, there is no unique answer to this question, the response varies
from one chosen definition of what makes the identity of the ship to another, and
more broadly it depends on modeling choices. In the Sect. 6.4.4, we present different
models and ontologies that address this issue of change to the identity of entities
(prerequisites 3 and 4).

6.4.3 Ontological Approaches for the Modeling of Evolving
Entities

6.4.3.1 Versioning Approach

The terms Versioning and Version Control are most of the time used in the context
of computer programming and, more broadly, for the management of modifications
to text document. As previously explained, in the field of Software configuration
management (SCM) (Tichy 1988) a version is defined as a state of an evolving item.

Version-Difference Spatiotemporal model
Adopting the approach of Software configuration management (SCM), the authors
in Huibing et al. (2005) introduce the Version-Difference Spatiotemporal model
developed with the requirement of using historical information in order to analyze
changes of spatial objects over time. Information systems based on this model store
“the current state of an object (called the default version) and all its historic changes
(called version differences).” Then, using a reconstruction operator and the change
descriptions, all the states of an entity over time can be obtained.

PAV and DC-terms Ontologies
The Provenance, Authoring and Versioning Ontology (PAV) (URI: http://purl.org/

pav/), and the Dublin Core Metadata Initiative Terms (DC-terms) (URI: http://purl.

http://purl.org/pav/
http://purl.org/pav/
http://purl.org/dc/terms/
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org/dc/terms/) also adopt the term Version. They focus on entities that are published
on the Web: DC-terms provides terms to describe resources on the Web with
metadata, whereas the PAV ontology is more devoted to the agents contributing
in Web resources: contributors, authors, curators and digital artifact creators. Also,
PAV provides terms for tracking provenance of digital entities that are published
on the Web (Ciccarese et al. 2013). Both PAV and DC-terms use the predicate
hasVersion to point to a resource that is a version, edition, or adaptation of
the described resource. The PAV ontology provides the following definition of the
property hasVersion: “This property is intended for relating a non-versioned or
abstract resource to several versioned resources, e.g. snapshots. The term Snapshot
is found in several models (Renolen 1996; Grenon and Smith 2004),

6.4.3.2 SNAP and SPAN Approach

The Basic Formal Ontology (BFO) is an upper ontology based on the approach of
Grenon and Smith (2004) that accounts for both the static SNAP and the dynamic
SPAN entities, while most of the existing models account only for one type at a
time.

Ontologies for continuants are called SNAP. The terms ‘continuant’ or ‘endurant’
are used interchangeably for those entities that have continuous existence and a
capacity to endure (persist self-identically) through time even while undergoing
different sorts of changes (e.g., a person, the planet Earth) (Grenon and Smith
2004).

Ontologies for occurrents are called SPAN. Two different terms are used to refer
to occurrent entities (e.g., a smile, the passage of a rainstorm over a forest) (Grenon
and Smith 2004): (1) processes that are occurrent entities which persist (perdure)
in time i.e., they are not instantaneous. The term perdurant is also used for these
occurrents; and (2) events that are occurrent entities which exhaust themselves in
single instants of time.

The BFO framework addresses both the continuant and occurrent entities: it is
a SNAP-SPAN framework. Whereas these two alternative views have traditionally
been considered as incompatible, the authors argue that, as reality is essentially
dynamic, an ontology must be capable of accounting for spatial reality both
synchronically (entities that exist at a time) and diachronically (how the things
unfold through time). They introduce the notion of Trans-Ontological relation. A
trans-Ontological relation is a “relation between entities that are constituents of
distinct ontologies.” The SNAP-SNAP Trans-Ontologies are ontologies that depict
the world over time as a succession of temporally separated snapshots. Changes
from one SNAP to another are described and may belong to one of the three main
types that are:

– qualitative change: for instance, the color of a table becomes tarnished over time,
yet there is still something which remains the same;

http://purl.org/dc/terms/
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– locational change: for instance, “in one SNAP ontology the cup is on the table,
in a later SNAP ontology it is on the floor. The cup underwent location change”;

– substantial change: for instance, it is when a substance is divided up so as to
produce a plurality of substances.

The SNAP-SPAN Trans-Ontologies are ontologies that depict the life or history
of entities over time. The lifeline of an entity is a SPAN object, and the entity
itself is a SNAP object. The two approach SNAP-SNAP and SNAP-SPAN may
also be combined in order to depict both the changes of a SNAP entity between
two periods of time and its evolution process over time (i.e., its life). Then, the
authors in Grenon and Smith (2004) address in particular the geographic objects,
and dissociate between:

– SNAP Geographical Object Ontology from which the subcategory “Boundaries
and Geographical Regions” is one of the 5 major subcategories to geographical
SNAP entities. The authors explain that administrative boundaries are SNAP
fiat objects, that is to say, they are constructed object that exist according to an
administrative, social or political convention (in opposition to bona fide objects
that correspond to “natural” objects, such as natural boundaries like mountains)
(Smith and Varzi 2000; Mathian and Sanders 2014).

– SPAN Geographical Process Ontology that may be of two types depending on the
processes described: physical processes or social processes. For instance, change
of the administrative boundaries of regions is a social process.

To conclude, as remarked by Felix (2011) “Since most geographical ontologies
still take the view of a static world, Grenon and Smith developed the Basic Formal
Ontology (BFO), an upper ontology that accounts for both the static SNAP and
the dynamic SPAN entities.” In the following sub-section, we present another
perdurantist approach that focuses on the representation of a relation (between
entities) that changes over time, as most of the time relationships are diachronic,
i.e. they vary with time. This approach is called Ontology for fluents.

6.4.3.3 Ontologies for Fluents Approach

Based on the perdurantist approach (from D.K. Lewis philosopher), Ontologies for
fluents propose a way to represent in OWL relationships between entities that change
with time (Welty et al. 2006). In the fluents approach, entities are four dimensional,
the 4th dimension being time (Batsakis et al. 2017). In the 4D view, all entities are
perdurant (i.e., an individual has a succession of distinct temporal parts throughout
its existence). Thus, all entities have temporal parts and can be thought of intuitively
as four dimensional spacetime worms whose temporal parts are slices of the worm
(Sider 2001; Welty et al. 2006). In Welty et al. (2006), the authors present an
example that explains their 4D fluents approach: in this approach, statements such
as “Joe walked into the room” (i.e., the relationship between Joe and the room at
one time), are represented as “a temporal part of Joe walked into a temporal part
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temporalEmployment

Employee

employs
employs

Company

worksFor worksFor

TimeInterval

interval

Fig. 6.3 Example of N-ary Relations from Batsakis et al. (2017)

of the room”. The main issue they address is the representation of relations between
entities that change over time. They call Fluents relations that hold within a certain
time interval and not in others. The example of the relation between an employee
and a company is a common example in the literature to explain relationships that
change over time: the relationship is true for a defined period of time only, since the
person has not always been an employee of this company. There are different ways
to address this problem in ontologies. We present two of them here:

– the reification solution that reify the relationships into an object, as shown in
Fig. 6.3. “Reification is a general purpose technique for representing n-ary rela-
tions using a language such as OWL that permits only binary relations.”(Batsakis
and Petrakis 2011). Although this approach requires only one additional object
for every temporal relation, it suffers from redundancy of the properties (e.g.,
employs, worksFor) that participate in the reification of the relationships.

– the 4D-fluents (perdurantist) approach where objects in time are represented
by TimeSlices, and their temporary relationships are described between these
timeslices. The main advantage of this approach is the possibility to describe
changes of the entities on the timeslices sub-objects. However, this approach
suffers from proliferation of objects, as remarked by Batsakis et al. (2017) since it
introduces two additional objects (e.g., EmployeeTimeSlice and CompanyTimeS-
lice) for each temporal relation (instead of one in the case of N-ary relations (e.g.,
TemporalEmployment)). The 4D fluents (perdurantist) approach offers a new way
to answer the identity question over time, exposed previously through the Ship of
Theseus story. In this approach, the Ship of Theseus life is represented through
one space-time worm ship which has temporal parts (timeslices): a part at year
zero, a part at year 1, . . . , a part at year 1000 (Sider 2001) (Fig. 6.4).
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Fig. 6.4 Example of 4D fluents from Batsakis et al. (2017)

We have presented several ontologies that model the evolution of entities over
time. In the next sub-section, we investigate the ontologies that model in particular
the evolution of geospatial entities.

6.4.4 Ontological Approaches for the Modeling of Evolving
Geospatial Entities

The 4D fluents approach, combined to the OWL-Time ontology (in order to assign
time points or interval to a TimeSlice), is often used in the LOD Web to represent
the evolution of resources (Batsakis and Petrakis 2011), including geospatial ones
(Harbelot et al. 2015; Tran et al. 2015). For instance, the Continuum Spatiotemporal
Model represents the evolution of parcels in time, adopting the 4D fluents approach
of Welty et al. (2006). In Harbelot et al. (2015), parcels are described as perdurant
entities that have two types of attributes: identity attributes and other attributes,
valid for a period of time (semantic, spatial, temporal components). If the value
assigned to attributes that hold the identity change, then a new parcel is created.
Whereas, if the other attributes change, a new sub-object, i.e. TimeSlice, linked to
the main one is created: it holds all the attributes of the parcel that may change
over time (Welty et al. 2006). Using the Continuum Spatiotemporal Model, the
authors construct lineage of land-parcels through time (Harbelot et al. 2015). Two
attributes of the land-parcels are taken into account to determine whether the
filiation link throughout the versions of the parcels of the CORINE COoRdinate
INformation on the Environment Land Cover (CLC) data set (from the European
Environmental Agency17) are of type continuation or derivation: the polygon

17Available online from the Copernicus Web site https://land.copernicus.eu/pan-european/corine-
land-cover

https://land.copernicus.eu/pan-european/corine-land-cover
https://land.copernicus.eu/pan-european/corine-land-cover
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geometry of the parcels and the nature of the land cover (e.g., agricultural area, forest
area, construction site, etc.) defined in the Corine Land Cover Nomenclature.18

The main drawback of this approach is that the semantics of lineage and changes
are both hold by only one predicate that links two parcels or time-slices of a parcel
over time (for instance, the predicate “deforestation” describes a filiation relation of
type derivation between two parcels and it describes also a change of the nature
of the land cover of the parcel). If one wants to extend this approach in order
to describe some other changes such as an identifier change, a name change, an
inhabitant number change, etc., then, whenever an attribute changes, a link has to
be drawn between the two parcels or time-slices of the parcel. Also, the direct links
created between two time-slices in case of Derivation situations are questionable.
Indeed, in many cases, direct links might not be relevant in the context of statistics.
For instance, let us consider Redistribution events, where the identifiers and the
boundaries of several areas are modified simultaneously in a way that it is difficult
to define the nature of the change (e.g., in terms of merge or split). A solution here
could be to determine the set of impacted areas and the set of created ones, then to
link them all through a node that allows to switch from one version to another.

In these cases, the Change Bridge approach of Kauppinen and Hyvönen (2007)
has to be considered. In Kauppinen et al. (2008), the authors introduce the notion of
Change Bridge to chain former territories (e.g., East Germany and West Germany)
to the following ones (e.g., Germany), using the Change Vocabulary for the charac-
terization of changes. It consists in indirectly linking input and output elements that
are involved in a change event, through a Change node that describes the nature
of the territorial change. The Change Vocabulary19 of Kauppinen et al. (2008)
and Kauppinen and Hyvönen (2007) is a lightweight spatiotemporal vocabulary
made of two properties (before, after) and five classes for the description of changes
(Establishment, Merge, Split, Namechange, Changepartof ). The Change Bridge
approach has been implemented in order to create the Finnish Spatiotemporal
Ontology, an ontology time series of the Finnish municipalities over the time
interval 1865–2007 (Kauppinen et al. 2008). The modeling approach presented in
Kauppinen and Hyvönen (2007) and Kauppinen et al. (2008) is criticized by Lacasta
et al. (2014) as it may lead to a proliferation of instances. Actually, the complete
status of the area has to be described before and after the change event.

The approach from Lacasta et al. (2014) consists in describing changes in
political subdivisions, called Jurisdictional Domains, at the property level (each
property can have its own time span). The authors propose to minimize the
description and to avoid duplication of data. This prevents from the creation of new
instances after each change. They present in López-Pellicer et al. (2008, 2012) an
ontology schema that combines, in a single model, the political structure, the spatial
components, and the temporal evolution of areas. However, this approach requires

18Please consult the nomenclature of CLC classes from the Copernicus Project Web site at https://
land.copernicus.eu/Corinelandcoverclasses.eps.75dpi.png/
19http://linkedearth.org/change/ns/

https://land.copernicus.eu/Corinelandcoverclasses.eps.75dpi.png/
https://land.copernicus.eu/Corinelandcoverclasses.eps.75dpi.png/
http://linkedearth.org/change/ns/
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the use of a written dictionary of changes as input, listing every individual change.
This requirement may be seen as a drawback for current statistical information
systems because the listing by hand of toponym and geospatial changes takes
times. Automating the change detection and annotation allows for processing any
geographic subdivisions in the world (using the same semantics for the description
of changes), whether or not there exists a catalog of changes.

In the next section, we present our 4D perdurantist approach that offers a model
for a fine description of changes that occurred between a series of versions of
geographic divisions and automates their detection and description. The originality
of this approach lies in the fact that it automatically describes territorial changes
at each level of the hierarchy (e.g., States, districts, sub-districts, municipalities
subdivisions). An algorithm has been designed for this and implemented in a
framework. It also seeks for changes to be linked when they impact nested areas.
The framework automatically creates catalogs of changes that are published on the
LOD Web. These catalogs allow double readings of changes: a horizontal reading
of the RDF graph provides a view on the lineage of each area over time; while a
vertical reading of the graph gives to see the propagation of a change event through
the divisions levels.

6.5 Contributions

We adopt a descriptive approach for the territorial dynamics, strongly defended
within the community of geoinformation science (Claramunt and Thériault 1995;
Wachowicz 2003; Del Mondo et al. 2010; Harbelot et al. 2015). As far as we know,
this is the first time that this approach is used in the context of statistics in order to
describe the evolution processes of geographic areas, and of the geographic division
level these areas belong to. The geographic hierarchies we process are standard
nomenclatures, called Territorial Statistical Nomenclatures (TSNs) (as explained
previously in Sect. 6.1), built by (N)SAs to observe a territory at several nested
levels (e.g., regions, districts, sub-districts geographic subdivisions). TSNs change
over time to reflect on political, administrative or population changes. Statisticians
create a “snapshot” of the TSN and amend the snapshot at the end of a specified
period of stability (e.g., three years at least for the Eurostat European TSN, 10 years
for the U.S. Census Tract) to reflect changes in the regional breakdown of a territory.

Our approach is multiscalar and allows to zoom out to visualize in a global
way the main changes of the TSN geographic hierarchy, version to version. Also,
it allows to zoom in to visualize all the sub-changes, until the name change of
the smallest geographic area of the structure. We focus on links between areas
(hierarchical links, spatiotemporal links, filiation links) and automatic description
of these links on the LOD Web.

Most of the time, in statistics, all traces of change and evolution of the areas
are erased. While, in our approach, according to Grasland and Madelin (2006),
we consider the Change of Support Problem no longer as a “Problem” but as a
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“Potential” that provides information about data and territories. Rather than erasing
each previous version of a TSN, we preserve it together with the new one. Our
challenge is to automatically identify, describe and contextualize every change event
that has occurred between two consecutive TSN versions. Our objective is to find:
What (the name of a district, its boundaries . . . ), Where and When changes occurred
on the studied area, and above all, How areas have changed (i.e., the nature of the
change(s) e.g., a fusion of areas). It also aims at discovering Who is responsible for
the change in boundaries, Why (because of a reform?) the change occurs.

To this end, we adopt the Semantic Web technologies for the description of both
the areas and their changes. Thus, we make sure that the semantics of changes
are understood in the same way, by humans and software agents, that share the
same concepts and definitions. Another benefit is the LOD Web, which allows us to
connect and contextualize the change events by connecting to historical or law data
sets on the LOD Web. Figure 6.5 below presents, in a simplified way, the kind of
RDF graph we obtain automatically. Here, the chosen example takes place in France
where the administrative regions have been merged to create great regions. These
changes have been officially adopted in January 2015.20 The illustration presents a
trivial example of fusion of two regions (Auvergne and Rhône-Alpes) which leads
to a new bigger one called Auvergne-Rhône-Alpes.

We have designed and implemented the Theseus Framework in order to supervise
the automatic creation and publication of such RDF graphs on the LOD Web. It
is called Theseus by reference to the identity philosophical issue raised by the
Ship of Theseus that changes over time. This framework has been designed for the
Statistical Agencies, statisticians, or researchers who wish to publish on the LOD
Web successive versions of their geographic areas, as well as change and similarity
descriptions between the versions i.e., filiation links between the features throughout
the versions. The framework encapsulates two ontologies, called TSN-Ontology and
TSN-Change Ontology (available from the URIs http://purl.org/net/tsn# and http://purl.

org/net/tsnchange#) (Bernard et al. 2018b). They are designed for the unambiguous
identification of the geographic areas in time and space, and for the description of
their filiation links (comprising similarity and change descriptions) over time on
the LOD Web. Our proposal is built on an original combination of approaches we
have introduced in Sect. 6.4.2. We adopt the perdurantist approach of ontologies for
fluents, for the description of the geographic areas that vary in time. Also, we adopt
the Change Bridges approach for managing the union of successive time-slices of
the areas. Theseus also embeds our TSN Semantic Matching Algorithm (Bernard et
al. 2018a). It is designed to automate both the detection and the description on the
LOD Web of territorial similarities and changes among various TSNs.

By exploiting the distributed LOD Web, our descriptions of geographic areas
and of their changes can be enriched by looking for other resources in order to
understand more deeply the evolution of the territory. Different data sets exist

20Law No 2015-29 of January 16th, 2015 https://www.legifrance.gouv.fr/eli/loi/2015/1/16/
INTX1412841L/jo/texte

http://purl.org/net/tsn#
http://purl.org/net/tsnchange#
http://purl.org/net/tsnchange#
https://www.legifrance.gouv.fr/eli/loi/2015/1/16/INTX1412841L/jo/texte
https://www.legifrance.gouv.fr/eli/loi/2015/1/16/INTX1412841L/jo/texte
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Fig. 6.5 Simplified illustration of the RDF Graph representing territorial changes generated with
the Theseus Framework

on the LOD cloud, but the ones we found the most relevant in our context are
those from DBPedia21 and WikiData.22 Indeed, they are generalist and provide
encyclopedia-style information, such as historical data. Then, it may be possible
to find the historical cause of a territorial changes in these data sets. All together
the software modules contribute to the publication on the LOD Web of TSNs
semantic history graphs. Those latter constitute catalogs of evolving geographic
areas that enhance the understanding of territorial dynamics, providing statisticians,
researchers, citizens with descriptions to comprehend the motivations and the
impact of changes. Our framework is then a step towards knowledge graph of
evolving territorial statistics that link several ontologies and data sets: RDF Data
Cube data sets, geospatial TSN data sets, (historical) event data sets, law data sets
(for instance, in Europe, the European Legislation Identifier (ELI)23 provides Web
identifiers (URIs) for legal information). . . from which one could build intelligent
tools for the analysis of the territorial dynamics over time. These tools are capable
of inferring new data (such as estimating statistical values in a new TSN version).

21https://wiki.dbpedia.org/
22https://www.wikidata.org/wiki/Wikidata:Main_Page
23https://eur-lex.europa.eu/eli-register/about.html

https://wiki.dbpedia.org/
https://www.wikidata.org/wiki/Wikidata:Main_Page
https://eur-lex.europa.eu/eli-register/about.html
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6.6 Conclusion and Perspectives

In this chapter, we have presented issues behind changes of the geographic divisions
over time, specially when the geographic areas serve as a reference for counting
statistical values. We have highlighted the importance of keeping track of former
geographical divisions and furthermore, the importance of describing their evolution
and their changes over time to comprehend the territorial dynamics.

Then, we have presented a state of the art of the existing approaches to describe
the evolution of geographic areas on the Semantic Web. Since the geographic areas
and their updates are numerous and frequent (in order to reflect the real evolution
of the world), it becomes very important to adopt a versioning, or a perdurantist
approach dedicated to the description of the processes leading the evolution. The
spatiotemporal and semantic approaches we have presented in this chapter may be
useful in many domains (socio-economic, archaeological, cultural, linguistic, . . . )
in order to correctly use data in time and space.

We have also presented our approach which consists in describing the lifeline
and the changes undergone in TSNs in order to strengthen the consistency of
associated statistical data. We have proposed two ontologies, an algorithm to
automatically detect and describe lineages and changes of geographic areas over
time, and we have tested our approach on three official TSN: The European
Nomenclature of Territorial Units for Statistics (NUTS) (versions 1999, 2003, 2006,
and 2010) from the Eurostat Statistical Institute; The Switzerland Administrative
Units (SAU), from The Swiss Federal Statistical Office, that describes the cantons,
districts and municipalities of Switzerland in 2017 and 2018; The Australian
Statistical Geography Standard (ASGS), built by the Australian Bureau of Statistics,
composed of seven nested subdivisions of the Australian territory, in versions 2011
and 2016. The created RDF graphs are available at http://purl.org/steamer/nuts, http://

purl.org/steamer/sau, and http://purl.org/steamer/asgs.
Generalizing this approach to historical map data on the Web may improve search

engines for geographic data, offering the possibility to search by obsolete names
for instance. Also, applying our approach to other kind of geographical divisions,
such as non nested divisions (urban (metropolitan) areas), or other geospatial objects
(network) and giving to see their changes on a map will considerably help policy
makers in the analyses of their jurisdictions evolution over time.
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Part II
Trajectories, Event and Movement Data



Chapter 7
Big Spatial Flow Data Analytics

Ran Tao

7.1 Introduction

Spatial flows, also referred to as origin-destination flows, represent meaningful
interaction activities between regions, organizations, and individuals. Flow activities
widely exist in our daily life, for example, migration flows, commuting flows,
trade flows, and information flows. For the past few decades, studying various
spatial patterns and the decision processes behind flow phenomena have been an
interesting topic in geography, regional science, animal ecology, environmental
science, physics, and urban planning (Farmer and Oshan 2017).

Spatial flow data requires specially-designed analytical methods given its dyadic
nature and unique characteristics. A flow event consists of a pair of corresponding
points. Besides the locational information of the two endpoints, direction, distance
or flow length, flow type, and flow volume often bear the essential information and
deserve special treatment during the analysis. Unlike trajectory data, flow data is
more abstract as it does not account for the actual path between endpoints (Tao
et al. 2017). This makes flow more comparable to the edges in a network, where
topological relationship is the key to gaining insight of the data. Moreover, discrete
flows of fine spatial resolution can be easily converted to aggregated flows by
grouping the ones originated from or destinated to the same upper-level spatial
unit, which calls for different types of analysis and introduces issues such as the
modifiable areal unit problem (MAUP).

The recent data evolution and the widespread adoption of location-aware tech-
nologies such as the GPS-enabled smartphones amass flow data at individual
level, along with much finer spatiotemporal granularity and abundant semantic
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information. The increasing availability of big spatial flow has brought us with
unprecedented opportunities to study all kinds of spatial interaction phenomena
from new perspectives. For example, to optimize transportation planning by identi-
fying spatial territories of multi-type taxi flows (Tao and Thill 2019b); to uncover
inter-urban movement patterns from individual trip flows embedded in online travel
blogs (Gao et al. 2019) and social media check-in data (Liu et al. 2014); to
improve our understanding of the communication space by studying information
flows spreading among cellphone users (Gao et al. 2013). In the meanwhile,
great intellectual challenges need to be overcome in order to extract meaningful
information from the big flow data and visualize it in a readily comprehensive
manner. Therefore, developing data-driven methods specific for big spatial flow
data has become pressing for understanding the dynamics of spatial interaction
phenomena across scientific disciplines (Yan and Thill 2009).

This chapter introduces a collection of the latest analytical methods and tech-
niques tailored for big spatial flow data. Important literatures are reviewed from
several perspectives: flow mapping and geovisualization, spatial data mining, spatial
statistics and spatial regression. One representative method of each category is
selected for elaboration. Available toolkits are introduced. An overview of the
current works and an outlook for the future directions are summarized in the end.

7.2 Flow Mapping & Geovisualization

Flow mapping can serve as the first step of exploring a flow dataset, as well as
the last step of presenting the analytical results. However, visualizing a large flow
dataset can be challenging, and a higher degree of abstraction is needed (Andrienko
et al. 2008). In a flow map, flows are commonly represented by a number of straight
or curved lines connecting origin and destination locations (Zhu and Guo 2014).
Accompanied with well-designed color schemes, labels, or symbols, it can be used
as a visual analytic method to represent the dynamics of movement between two
pair-wise interacting geographical regions (Cao et al. 2015).

The first known map of spatial flows can be traced back to 1837 in which
Lt. Harness depicted bidirectional traffic flows between major Irish urban centers
(Marble et al. 1997). While the first experiment of flow mapping (migration
flows) with the assistance of a computer was done by Tobler (1987). Since then,
considerable efforts have been made to design new layout of flow maps, to increase
the manageable data size, to enhance the drawing speed, to emphasize important
thematic information, and to integrate user-friendly features such as interactive
selection and brushing.

Notwithstanding, scholars have soon found that flow mapping is much more
complex than a pure cartographic technique. Problems emerge even when mapping a
relatively small dataset from today’s perspective (Marble et al. 1997). Severe visual
cluttering caused by massive intersections and overlapping of flows easily turns the
map unreadable. The reason is that unlike mapping point or polygon data which
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are discrete spatial objects, mapping flows is to visually represent the dynamic
processes or relationships between two sets of geographical locations, which can
easily reach a massive size. Given that an increasing amount of flow data are
collected at the individual level, flow mapping becomes even a more challenging
task. A number of geovisualization approaches have been developed in recent years
to visualize big flow data.

7.2.1 Flow Aggregation

As a pioneer in flow mapping, Tobler (1987) suggested that information aggregation
and removal is an important part of identifying patterns through visualization. Tobler
(1987) observed that 75% of migration flow connections on the small side contain
less than 25% of the flow volume. Therefore, filtering out the low-value flows while
preserving the high-value ones is a plausible solution. However, the choice of which
flows to keep or to remove is arbitrary and can result in loss of key information. An
alternative way is to aggregate flows that share common origin or destination, for
example aggregating county level flows to the state level. Tobler (2004) generated
a series of flow maps of migration originated from California between 1995 and
2000 (e.g. Fig. 7.1a), in which straight lines with arrows represent migration flows
with the line width and arrow correspond to flow magnitude and flow direction,
respectively. Aggregation can dramatically improve the clarity of a flow map, but it
still comes short to show many flows that intersect with each other.

When accurate coordinates are available, endpoint aggregation can be processed
with other techniques. Andrienko and Andrienko (2011) utilized a point clustering
method to group flow origins and destinations before drawing the flow maps. It
works for visualizing individual flows as it takes advantage of the high spatial
resolution. Guo (2009) proposed another approach to aggregate locations into
regions based on the flow topology with a graph partitioning technique. This
approach also manages to discover the natural regions from massive individual

Fig. 7.1 (a) From CA migration from Tobler (2004); (b) Top 200 migration flows from Guo and
Zhu (2014)
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flows instead of using pre-defined political boundaries. While endpoint location
aggregation is effective at reducing visual clutter, it bears the modifiable areal unit
problem (MAUP) as selecting a “perfect” geographic scale or region to aggregate
the endpoints is impossible. Aggregating to big regions would result in the loss of
short-distance flows whose origin and destination locate within the same region,
while aggregating to small regions may not remove clutter effectively. Even when
there is an appropriate scale for aggregation, applying the same scale everywhere
may smooth out much of the interesting local spatial structure of the spatially
heterogeneous flow data.

A similar but different strategy is to aggregate flows themselves instead of
the endpoints. This type of strategy first performs a flow grouping approach,
for example, hierarchical flow clustering method (Zhu and Guo 2014), hot flow
detection method (Tao and Thill 2016a), hierarchical and density-based flow
clustering method (Tao et al. 2017), and flow-based density-estimation technique
(Guo and Zhu 2014; Zhu et al. 2019). The grouped flows are then visualized as the
final map. Figure 7.1b shows such a map of the selected top 200 migration flows in
the U.S., after aggregated by a flow-based density estimation method (Guo and Zhu
2014). In contrast with Fig. 7.1a, the aggregated flows in Fig 7.1b are not restricted
to the predefined spatial scale such as state. Moreover, its curved flow symbols
with gradually varied width can visualize a large number of flows with different
origins or destinations at the same time. The choropleth map in the background
helps convey additional information such as the net migration rate. Notwithstanding,
the emphasis of this line of works is usually on the flow grouping approach rather
than the cartographic design. In other words, flow maps in this case serve as the
presentation of the final analytical results.

7.2.2 Edge Bundling

Another type of flow mapping method is called edge bundling, i.e. to bundle nearby
flows together in order to minimize edge crossing and to improve visual clarity.
Compared with previous methods, edge bundling methods make use of geometric
characteristics of flows (edges) directly. The result flow maps are usually no longer
straight line-based graphs but in the road-map-style. While it significantly improves
the overall visual clarity, it inevitably compromises accuracy and completeness of
the original data. For example, the endpoint locational information and flow length
information can be lost during the bundling process. Phan et al. (2005) presented
an edge bundling method using hierarchical clustering to create a flow tree that
connects a source (the root) to a set of destinations (the leaves), while preserving
branching substructure across flow maps with different roots that share a common
set of nodes. Later on, improvements of the edge-bundling framework have been
done by grouping links based on their intersections in the Delaunay triangulation
of the endpoints (Qu et al. 2006), through a control mesh generation method that
can better capture the underlying graph patterns (Cui et al. 2008), and through a
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Fig. 7.2 Framework of the edge-bundling approach from Cui et al. (2008)

self-organizing approach modeling edges as flexible springs that can attract each
other (Holten and Van Wijk 2009). Most recently, Yang et al. (2019) extended the
application scenarios of edge bundling to three-dimensional flow maps.

Here I mainly introduce the edge-bundling approach by Cui et al. (2008), which
is one of the most highly cited works and considered as an important foundation
for later related studies. Figure 7.2 shows the three major steps: control mesh
generation, edge cluster, and the final visualization. Explanations of each step are
provided.

A preparation step is needed to convert the input flow dataset into a topological
graph (e.g. Fig. 7.3a), so that each flow is treated as an edge in the following
algorithm. This conversion from flow to graph is obvious for aggregated flows such
as city-to-city travel flows, but it takes an extra prior step for discreate flows such
as taxi pick-up and drop-off flows. This prior step is to build the network topology
by grouping the endpoints based on Thiessen polygon or predefined administrative
boundaries. Once the preparation is done, the algorithm automatically generates a
control mesh to cage the entire graph. First, regular grid cells are created based on
the bounding box for the input flow data. Kernel Density Estimator is then applied
to decide the primary direction of each cell. Adjacent cells with similar primary
directions are merged as a larger region, such as the polygons with red outlines in
Fig. 7.3b. The primary direction after merging is the weighted average of the cells.
Next, some mesh edges are placed perpendicular to each region’s primary direction,
e.g. the green edges in Fig. 7.3c. Based on these edges and their vertices, the final
meshes are constructed by using Constrained Delaunay triangulation (Fig. 7.3d).
With the mesh generated, the next step is to compute control points, based on which
the flows are clustered. There are many intersection points (red dots shown in Fig.
7.3e) between the flows and the mesh edges created in the previous step. Applying
the K-means clustering, the centers of a bunch of nearby intersection points are
located as the control points. Forcing the flows to pass through these control points,
the edges are bundled together (Fig. 7.3f).

The last step is to add cartographic designs to the bundled edges for a visually
pleasing map. Adding opacity is a great way to show the density of the clustered
flows, while adding colors can symbolize an additional flow attribute of user’s
choice. For instance, Fig. 7.4a shows the original map of the 9,798 migration flows
between 1,790 cities in the contiguous United States. The map is too cluttered to
present any useful information except for the city locations. Figure 7.4b is the result
of this method. The flows sharing similar migration route, i.e. adjacent origins and
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Fig. 7.3 Automatic mesh generation and edge clustering: (a) a graph; (b) grid the graph and merge
the grids based on their calculated primary direction; (c) set some mesh edges perpendicular to the
blocks’ primary direction; (d) graph with a control mesh; (e) the intersections and the control
points; (f) the merged graph from Cui et al. (2008)

Fig. 7.4 (a) The original map and (b) the result map of U.S. migration flows from Cui et al. (2008)

destinations or similar migration direction along the route, are bundled together
in a much cleaner and informative flow map. The color scheme from red to blue
corresponds to the gross migration value from the highest to the lowest. And the
edge width corresponds to the varied volume of migration flows at each segment of
the edge.

7.2.3 Visual Analytics and Tools

The purpose of visualization is not only to depict the geographic entities, but
also as a powerful exploratory tool to discover underlying stories behind the data.
Therefore, visual analytic methods are frequently applied in studying big flow data.
Yan and Thill (2009) use self-organizing maps (SOM) to uncover the structure of air
transport system from air traffic flows. Thill (2011) illustrates the relative space of
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migration with cartograms. In those distorted maps, destination states are allocated
further or closer to the origins, in coordination with different amounts of migrants.

Developing handy tools for visualization and visual analytics of flow data is an
enduring important task. Beginning with Tobler’s Flow Mapper (Tobler 1987, 2004,
various software) applications have been developed for this purpose. Well-known
toolkits to visualize flows in an interactive fashion include Glennon’s Flow Data
Model Tools in a series of ArcGIS 9 Visual Basic for Applications (VBA) macros
(Glennon 2005), Flow Mapping with Graph Participating and Regionalization (Guo
2009), and jFlowMap (Boyandin et al. 2010). Commercial software such as Gephi,
VisIt, and Mapbox also have flow mapping capability. Nowadays it is the trend
that more applications are web-based because it has advantages such as light,
portable, and highly-interactive. Some popular open-source flow mapping tools or
libraries include: d3.ForceBundle (https://github.com/upphiminn/d3.ForceBundle);
the interactive maps of arc and line data on https://kepler.gl/; flowmap.blue (https://
flowmap.blue/) by lya Boyandin; and the FlowMapper plugin of QGIS 2 by Cem
Gulluoglu (https://plugins.qgis.org/plugins/FlowMapper/).

7.3 Spatial Data Mining Methods

Spatial data mining (SDM) is the application of data mining techniques to spatial
data, in order to discover previously unknown, but interesting and potentially
useful patterns from high volume and heterogenous spatial datasets. Due to the
nature of the geographic space and the data complexity, SDM of flow data holds
uniqueness from several aspects. First, flow data is born with internal spatial
dependence. While spatial dependence is a type of spatial properties commonly
exist between nearby spatial objects, flow data hold an additional internal spatial
dependence between each corresponding origin and destination. Therefore, treating
the endpoints separately or condensing a flow object as a point object will ruin this
basic property and end up with erroneous results. Second, flow data have unique
spatial and geometric properties that increase the difficulty of SDM. Often viewed
as a vector line that connects two endpoints, flow data need special treatment for
even basic data analysis such as finding spatial neighbors (Tao and Thill 2019a)
and calculating distance (Tao and Thill 2016a). The path between the two endpoints
is usually abstracted as a straight or curved line since the actual route is unknown,
unlike trajectory data. However, it is risky to simply ignore it during SDM, because it
may embed important information such as potential geographic barriers and political
boundaries that can hinder the flow process. Third, flows are spatially continuous.
The flows of people, shipments, or information do not stop at the destination.
Instead, it is highly likely that a flow object is just one segment of a complex and
dynamic spatial process. For example, a proportion of travelers from city A to city
B will continue traveling to a third city or return to city A. Therefore, it is important
to have a comprehensive and systematic view of the entire flow process rather than
taking individual flow objects as irrelevant events.

https://github.com/upphiminn/d3.ForceBundle
https://kepler.gl/;
https://flowmap.blue/
https://flowmap.blue/
https://plugins.qgis.org/plugins/FlowMapper/
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7.3.1 Spatial Outlier Detection

Spatial outlier detection is defined as the technique to extract a spatially referenced
object whose spatial or non-spatial attributes appear to be inconsistent with other
objects within its spatial neighborhood (Shekhar et al. 2003). It has been proved
useful to pick out outlier flows based on OD locations, flow length, start and end
time, and flow volume. Liu et al. (2010) classified taxi drivers by their income, and
relate this to their driving habits mined from 48 million taxi pick-up and drop-off
flows: such as operation time, average length of single trip, activity space coverage,
capability of avoiding congestion, etc. Interestingly they found the secrets of top-
earning (outliers) taxi drivers: long operation time; good sense of business (short
time intervals between trips); knowledge to avoid congestion; and preference on the
fastest path rather than shortest or longest ones. Fang et al. (2012) identified critical
transportation links in Wuhan, China such as major road bridges, also from the
taxi flows standing out from a large volume. Three exploratory analysis functions
were developed to examine and visualize flows in an integrated spatial and temporal
environment, and alternative travel paths for those bridges are identified.

7.3.2 Flow Clustering

Another SDM technique that has been commonly used is cluster analysis. Treating
flows as vector lines, scholars have migrated various point-based clustering tech-
niques to the flow context. The classical K-means algorithms have been proved very
effective with respect to multi-location spatial data (Ossama et al. 2011; Genolini
and Falissard 2010). Density-based clustering methods such as DBSCAN (Ester et
al. 1996), OPTICS (Ankerst et al. 1999), and their variants have also been adjusted
to flow data (Nanni and Pedreschi 2006; Lee et al. 2007; Zhu and Guo 2014; Tao
and Thill 2016b) as density-based methods are the most suitable for discovering
clusters of arbitrary shapes and filtering out noise. The key of such methods is to
define a set of distance functions tailored for line-segment that can measure both
positional and directional differences. Hierarchical clustering can also be used for
flows. For instance, Zhu and Guo (2014) developed an approach that can generalize
flows to different hierarchical levels and has the potential to support multi-resolution
flow mapping. In general, spatial flow methods are designed to group observations
into “clusters” based on their similarity. Unlike directly aggregating flows to
predefined regions, cluster analysis methods are able to identify groups of similar
flows that are not limited within predefined boundaries. Therefore, the impact of
uneven density levels or ad hoc zoning definition of flow endpoints can be well
handled. As discussed earlier, cluster analysis methods are frequently combined
with visualization techniques when analyzing spatial flows, as the extracted flow
clusters are essential information that deserves visual emphasis on the map. It is
worth mentioning that there is another family of flow clustering method that root in
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Fig. 7.5 The flowchart of FlowHBDSCAN

spatial statistics (to be introduced in section 4) rather than SDM. The difference is
that the statistics-based methods focus on detecting the spatial clustering effects, i.e.
concentration of flow objects or flow value in a certain region, while the SDM-based
methods aim at grouping the similar or nearby flow objects together.

I select FlowHDBSCAN to give a detailed introduction here because it integrates
the advantages of both hierarchical clustering method and density-based clustering
method. It is effective to cluster individual flows with fine spatial resolution while
solving common problems like MAUP, loss of spatial information, and uneven
distribution or hoc zoning definition of flow endpoints. Moreover, it can reveal
the internal hierarchical data structure of the extracted flow clusters. Last but not
least, its sole-parameter design improves its ease to use by avoiding arbitrary
parameterization. Figure 7.5 illustrates the general steps of this method.

The input data is in the form of vector lines ideally with accurate endpoint
locations, e.g. Fig. 7.6. The first step is to build an N by N flow distance matrix with
the distance measure as Equation (7.1), which integrates all the spatial elements of
a flow including endpoint locations, length, and direction (implicitly).

FDistij =

√√√√α
[(

xi − xj

)2 + (
yi − yj

)2
]
+ β

[(
ui − uj

)2 + (
vi − vj

)2
]

(
LiLj

)γ .

or simplify as : FDistij =
√(

αdO
2 + βdD

2
)
/
(
LiLj

)γ
. (7.1)

FDistij is the distance between flow Fi (from Oi (xi ,yi) to Di (ui ,vi)) and flow Fj

(from Oj (xj ,yj) to Dj (uj ,vj)); dO and dD are the Euclidean distances between the
two origins and two destinations, respectively; Li and Lj are flow lengths; α and β

are designed to control the relative importance of origins and destinations (α > 0; β
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Fig. 7.6 Sample set of flows from Tao et al. (2017)

> 0; α + β = 2; by default α = β = 1); γ controls the impact of flow length (by
default γ = 1).

The next step is to calculate two density measures, namely CoreD with Equation
(7.2) and MReachD with Equation (7.3). Both measures are borrowed from classical
density-based clustering methods such as DBSCAN (Ester et al. 1996) and OPTICS
(Ankerst et al. 1999). CoreD, or core distance, is calculated for each flow based
on flow distances and one parameter, namely the minimum cluster size MinFlows.
The smaller CoreD is, the more likely the flow belongs to a cluster. In Fig. 7.6,
CoreD1 is smaller than CoreD11 when MinFlows = 3, which suggests F1 has a
higher likelihood than F11 to be a cluster member. MReachD, or mutual reachability
distance, is calculated for each pairs of flows to measure the relative separation from
one flow to another. In Fig. 7.6, MReachD1, 2 is smaller than MReachD1, 4, which
means F1 has a higher likelihood to be in the same cluster with F2 rather than F4.

CoreDi = FDisti,(MinF lows−1)th nearest neighbor of i (7.2)

MReachDij = max
(
CoreDi, CoreDj , FDist ij

)
(7.3)

Starting from the next step, the algorithm transits from a density-based clustering
approach to a hierarchical-based one. A minimum spanning tree (MST) is built
by connecting each flow with its minimal MReachD to another flow. Figure 7.7a
illustrates the MST with respect to the sample data in Fig. 7.6. Some unitless
numbers (1–4, and) are used here to reflect the magnitudes of MReachD. Flows
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Fig. 7.7 (a) Minimum spanning tree (MST); (b) dendrogram; (c) pruned dendrogram with
identified clusters and noises from Tao et al. (2017)

that are connected by short edges, such as F1, F2 and F3, are more likely to form a
cluster. Sort the MST by an increasing order of MReachD value, a dendrogram is
obtained (Fig. 7.7b). While it illustrates the hierarchical structure of the entire flow
dataset, a further step is needed to distinguish vertices belonging to a cluster from
noises.

Traverse the dendrogram from the top. At the split of every MReachD level:
drop the descendant set that has fewer members than MinFlows as noises, then keep
traversing the rest. Setting MinFlows = 3 in the example of Fig. 7.7b, flow F11

is dropped at the first split of MReachD = 4. At the next split of MReachD = 3,
both descendant sets are preserved as they have more than three flows. Keeping
traversing the dendrogram all the way down to the bottom, the flows dropped at a
high MReachD level such as F11 are likely to be noises, while the ones preserved
till the end such as F1, F2, F3, F4, F5, F6, F7 , F8, and F9 are likely to be cluster
members.

The last step is to calculate the cluster stability index (Equation 7.4) to extract
the final clusters. Taking F10 in Fig. 7.7b as an example, it is not an obvious choice
to remove it as a noise or to join a four-member cluster with F7 , F8, and F9. Unclear
situation also applies to (F1, F2, F3, F4, F5, and F6), as it is debatable to split
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them into small clusters or keep them as a whole. Cluster stability is introduced for
comparing and deciding between such ambiguous situations.

S (Ci) =
∑

Fj∈Ci

λstay

(
Fj

) =
∑

Fj∈Ci

(
λend

(
Fj

)− λbegin

(
Fj

))
(7.4)

S(Ci) is the cluster stability of cluster Ci; λ= 1/MReachD, λbegin(Fj) and λend(Fj)
correspond to the smallest and largest λ value that flow Fj belongs to cluster Ci,
respectively. And λstay(Fj) means the range of λ value in between. According to
the cluster stability index, F1, F2, F3, F4, F5, and F6 separate as two three-member
clusters, while F10 sticks with F7, F8, and F9 as a four-member cluster, as denoted
by the red bounding boxes in Fig. 7.7c.

Figure 7.8a shows the result map of flowHDBSCAN using a real-world eBay
online trade dataset that contains 8,607 flows connecting each seller and buyer
(Tao et al. 2017). In total 39 clusters are extracted between popular location pairs
between eBay buyers and sellers, while the rest of the flows (in grey color) are
discriminated as noises. Most of the clusters are between big cities. The pattern
shows that physical distance is not an impedance in this online trade example, as
there are some coast-to-coast clusters. The hierarchical structure reveals that inside
some of the big clusters, there exist lower-level smaller clusters. For instance, the
cluster from the Greater New York area to the San Francisco Bay area can be broken
down into two smaller clusters, based on their different destination locations in the
northern part and southern part of the Bay area (Fig. 7.8b and c).

Fig. 7.8 (a) Map of eBay trade flow clusters; (b) flow clusters end in San Francisco Bay area; (c)
flow clusters originated from the Greater New York area from Tao et al. (2017)
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7.4 Spatial Statistical Methods

While SDM techniques can discover knowledge from large databases, an important
question is whether it is possible to derive some understanding, explore relation-
ships and develop hypotheses associated with observed movements and spatial
interactions (Murray et al. 2011). In order to further examine these questions in
a confirmatory way, spatial statistics are favored owing to their ability to establish
inferential properties.

7.4.1 Spatial Patterns Detection

The preponderance of the literature on spatial point pattern analysis treats each
point as an event independent from all the others. Spatial flow data, however,
encompass at least two points (polygons), one corresponding to the origin location
(region) or start of the flow and one for the destination location (region) of the
flow. Flow data, therefore, differ fundamentally from point data or polygon data and
methods designed to handle the points and polygons cannot be directly applied to
flow data. Some endeavors have been undertaken in previous research to fill this
gap. Berglund and Karlström (1999) applied the Gi statistics (Getis and Ord 1992;
Ord and Getis 1995) to identify local spatial association in flow data. Although
several different spatial weight matrices were proposed in this paper to address
spatial non-stationarity, only the simplest binary spatial weight matrix based on
identical origins or destinations was implemented, which certainly limits its usage.
Lu and Thill (2003) proposed an ad hoc and partially qualitative approach in which
they apply point cluster detection methods to analyze origin and destination points
separately and combine the two sets of results via a relationship table to conclude
on the patterns exhibited by the flows. Related issues such as sensitivity to scale and
neighborhood definition were discussed in their later work (Lu and Thill 2008).

While decomposing one-dimensional flows into zero-dimensional points can
considerably simplify the problem, this approach would inevitably overlook the
simultaneity of some critical information, such as flow direction and flow length.
Murray et al. (2011) departed from this approach by combining exploratory spatial
data analysis and confirmatory circular statistics to analyze the similarities of flow
direction and length. However, they sacrifice the actual locational information in the
process so that little knowledge on spatial relationships between movements can be
extracted. More recently, Liu et al. (2015) extended both global and local Moran’s I
statistics to a flow context, considering movement distances and directions at once.
Nonetheless, their approach is still based on the spatial proximity relationship of
either set of end points rather than entire vectors. Therefore, it remains within the
scope of measuring spatial autocorrelation of vectors/flows in parts rather than as a
whole. Tao and Thill (2016a) came up with Flow K-function, which upgrades classic
“hot spot” detection to the level of “hot flow” detection, so that both global and local
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patterns of flow’s spatiotemporal distribution can be measured. The method not only
considers flow characteristics, i.e. end points, length, and direction, but also builds
on proper measurement of spatial proximity relationship between entire flows. Tao
and Thill (2019b) further developed the Flow Cross K-function, which is a bivariate
flow analytical method that detects spatial dependency between two types of flows.

Here I mainly introduce the flowAMOEBA (Tao and Thill 2019a), which is a
data-driven and bottom-up spatial statistical method for identifying anomalous high-
or low-value flow values, for instance, very large volume of travelers between two
regions. As a spatial statistical method, flowAMOEBA is mainly an ESDA approach
that concentrates on analyzing both the spatial distribution but also the attribute
distribution of flow data. The results of flowAMOEBA can be used for further
confirmatory analysis, e.g. spatial interaction modeling, which will be introduced
in Section 4.2.

Technically, flowAMOEBA is an extension to the method called AMOEBA (Ald-
stadt and Getis 2006), which identifies clusters of high- or low-value from areal data.
flowAMOEBA targets aggregated flows as oppose to individual flows. Therefore, in
the preparation stage, flows that sharing identical origin and destination need to be
aggregated as one flow by summing up of their numeric values. While the OD matrix
of a flow dataset can easily reach an enormous size, it is indeed very common to
observe large proportion of the matrix elements as null-value OD pairs. Taking the
county-to-county migration flow in the Contiguous U.S. as an example, from year
2010 to 2014 there are less than five percent of the total 9,656,556 OD pairs have at
least one migrant. Therefore, only the non-zero flows are taken into the algorithm.
Another common characteristic of flow dataset is the heavy-tailed distribution of
flow values, in other words, the majority of the non-zero flows have low value.
Using a head-tail break to select the flows with relatively large absolute value into
the seed pool can significantly reduce the computing time without compromising
the result quality.

The first step is to identify the neighbors of every flow based on flow neigh-
borhood definition. A flow’s neighbors can be identified based on its endpoints’
contiguity. Taking flow a in Fig. 7.9 as an example, flow b shares the same
destination zone and their origin zones are contiguous. low b’ is in a similar standing
with the same origin as flow a and an adjacent destination. Both flow b and flow
b’ are considered as neighbor flows to flow a. Flow c represents another situation
where both its origin and destination are contiguous to flow a. Flow c is also seen as
a neighbor to flow a, but with a longer distance compared with flow b and flow b’.
In a less strict definition, it is possible to extend neighborhood of flow a to include
second-order neighbors such as flow d. But here only flow b, flow b’, flow c, and
flows in their equivalent situations are considered as the neighbors of flow a, all
other flows such as flow d and flow e are not.

Next, select an arbitrary flow from the preselected pool of seeds. The seed flow is
the first member of a flow ecotope, which is the group of the seed flows and some of
its neighbors that can expand in space to potentially form a flow cluster. Calculate
the G∗i statistic (Getis and Ord 1992; Ord and Getis 1995) of the seed-only flow
ecotope with Equation (7.5).
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Fig. 7.9 Flow neighborhood
definition
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The classical G∗i statistic is used to measure the concentration of high or low
values at a given location i. The spatial weight wij is set as 1 if flow j neighbors flow
i, otherwise 0. N is the total number of flows. xj is the value of flow j. x is the mean
value of all flows.

A search and expand process starts from the seed flow towards its neighbors.
Traverse the neighbors one at a time. if the G∗i statistic of the flow ecotope increases
after including a neighbor, keep it. Move on to the next till all neighbors of the
seed flow are traversed. In Fig. 7.10, flow i is selected as the seed flow, and its G∗i
statistic is calculated. The grid cells filled with red stripe lines represent the origins
and destinations of flow i’s neighbors.

Keep expanding the flow ecotope by traversing the neighbors of the newly joined
members in the previous step. Again, include only those can increase the G∗i statistic
of the flow ecotope. Do not stop the expansion until the G∗i statistic reaches the
maximum absolute value. The expansion from each seed will result in a stable
flow ecotope, which is a flow cluster of high absolute values if it passes statistical
significant test later on. Repeat the above steps until a flow cluster is obtained by
growing from every seed flow in the preselected seed pool. Figure 7.11 illustrates
all identified potential flow clusters originated from different seeds.

The final step is statistical significance test. Conduct a 1,000-time Monte-Carlo
simulation by randomly permutating the flow values. Keep the potential flow
clusters that pass the statistical significance test as the final outcome. An application
of flowAMOEBA with real dataset can be found in Gong et al. (2018). Figure 7.12
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Fig. 7.10 The initial stage of flow ecotope expansion

Fig. 7.11 The final stage of flow ecotope expansion

shows one of the results of flowAMOEBA. It detects high volume of daily trips
between some cities in Northeast China and Sanya, a mid-size tourist city in the
south. The result reflects the popularity of Sanya as a destination for people from
Northeast China. Given the raw flow data is about trips in April, the story behind can
be more interesting than a seasonal “winter birds” migration for vocational purpose.
Socioeconomic and political factors are probably playing a role here, considering
the ongoing shrinking-city phenomena in Northeast China.
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Fig. 7.12 High volume of daily trips between Northeast China cities and Sanya from Gong et al.
(2018)

7.4.2 From Patterns to Spatial Interaction Models

The spatial statistical approaches listed above still belong to the broad ESDA family
as they aim at exploring the data and detect patterns such as spatial clustering, spatial
autocorrelation, and spatial heterogeneity. However, it is still one step short from
taking these findings to confirmatory studies in order to reach solid explanatory
conclusions. Taking spatial dependence as an example, many researchers have found
that this type of spatial effects exists among OD flow data and specifically refer to it
as network autocorrelation (Black 1992; Griffith 2007; LeSage and Pace 2008; Chun
2008). Implementing classical spatial interaction models, for example, the gravity
model (Zipf 1946); the competing destinations model (Fotheringham 1983; Haynes
and Fotheringham 1984); the random utility model (Block and Marschak 1959); and
the radiation model (Simini et al. 2012), without taking account of this effect tends
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to result in incorrect parameter estimation and unsound conclusions as it violates one
of the key assumptions of those models, i.e. independence of observations. LeSage
and Pace (2008) overcame this problem by proposing spatial weight structures
that model dependence among OD flows that are consistent with standard spatial
autoregressive models. The spatial weight structures consist of three spatial connec-
tivity matrices capturing origin, destination, and origin-to-destination dependences.
Griffith and Chun came up with another solution by using eigenfunction-based
filters for accommodating spatial autocorrelation effects within a spatial interaction
model (Griffith 2007; Chun 2008; Chun and Griffith 2011). They have proved the
effectiveness of using eigenvector filtering to improve spatial interaction modeling
in various application cases. Except for common migration flows, scenarios such as
journey-to-work commuting flows (Griffith 2009), interregional commodity flows
(Chun et al. 2012), and space-time crime incidents flows (Chun 2014) have all
been successfully tested. Accounting for spatial autocorrelation in traditional spatial
interaction modeling provides an example of incorporation of exploratory spatial
statistical considerations into confirmatory hypothesis-testing research. More efforts
should be made along this research line to discover the usefulness of interesting
findings of emerging ESDA methods.

7.5 Conclusion

The increasing availability of big spatial flow has brought both challenges and
opportunities to study spatial interaction phenomena. One of the keys is to develop
data-driven methods tailored to big spatial flow data. First, flow mapping and
geovisualization are critical to discover and present essential information from
the usually cluttered flow maps. Representative techniques include edge bundling
(Cui et al. 2008), which bundle the nearby flows on the map together based on
their spatial and geometric characteristics, is elaborated in this chapter. Second,
various data mining techniques are designed to discover interesting spatiotemporal
flow patterns. Among these techniques, clustering analysis is particularly useful
to quickly gain insights from massive individual flows. A recent method called
flowHBSCAN is introduced step by step. It groups similar flows in space by
combining the advantages of hierarchical-based clustering method and density-
based clustering method. Third, spatial statistics have been updated to extract
patterns of big flow data as well as to explain flow activities and the relevant factors
with confirmatory regression models. A clear advantage of statistical methods is
that they thoroughly consider flow type and flow values, in addition to the spatial
distribution of flow objects. A bottom-up strategy called flowAMOBEA (Tao and
Thill 2019a) is selected to introduce in detail. It is designed for identifying and
delineating corresponding OD regions, between which there exist an anomalous
amount of spatial interaction activities.

Besides the above-mentioned aspects, cyberinfrastructure and high-performance
computing (HPC) are commonly incorporated with existing methods to handle the
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origin-destination matrix of flow data as well as to boost the computing efficiency.
However, the way to apply the powerful computing infrastructure and techniques
to flow data analysis does not clearly distinguish from other geocomputing appli-
cations, therefore, they are not discussed in particular. Last but not least, because
spatial flows can be converted to topological graphs, or network data, it is common
and sometimes beneficial to apply network analysis to study flow data. For example,
Gao et al. (2013) used the Louvain algorithm (Blondel et al. 2008) to extract
communities from cellphone call flows. Chin and Wen (2015) applied PageRank
(Brin and Page 1998) to rank the relative importance of locations in a spatial flow
network. To sum, while we keep developing new flow-exclusive analytical methods
to better suit its unique characteristics, we should be aware of its similarities to other
types of geospatial data and look out for applicable methods from a broader range.
After all, the best method is the one that can help fulfill the research goal most
effectively, whether it is flow-specific or not.
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Chapter 8
Semantic Trajectories Data Models

Maria Luisa Damiani

8.1 Introduction

Semantic trajectories is a major paradigm for representation of the individual
movement. Different from spatial trajectories, which are primarily intended to
represent the continuous movement of an entity in a coordinated space, e.g. the path
of a vehicle, semantic trajectories are grounded on the idea of movement as context
evolution, where the context can be any set of features characterizing the situation
of the entity in time (Dey 2001).

Semantic trajectories can represent many different kinds of movement data, such
as, series of geo-tagged tweets posted by an individual, series of activities performed
in a time frame, paths of vehicles augmented with sensor data on e.g., weather
conditions. Abstractly, a semantic trajectory can be seen as a finite sequence of
states, where a state is a snapshot of the context in which the movement takes place,
typically specifying the individual location together with non-spatial attributes
whose values changes in time. The transitions from one state to the next describe
the object movement. Actually, the notion of state is instrumental in abstracting a
common ground from the variety of existing semantic trajectories representations.
A state can be seen as consisting of two components, a time interval I , and a
description A of the context during I . With little abuse of terminology, we refer
to A as annotation. Structurally, a semantic trajectory, is a series of states or units,
i.e. (I1, A1) . . . (In, An).

The paradigm of semantic trajectories encompasses different models, which
differ for level of abstraction and purpose. This article attempts to provide a few
insights into major research themes and controversial aspects, without any ambition
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for completeness. The remainder of the article is structured as follows. In order
to put the discussion into a proper perspective, Sect. 8.2 overviews the origins and
evolution of the paradigm, reporting as well a few considerations on the relationship
between spatial and semantic trajectories. Section 8.3 elaborates on a simple meta-
model of semantic trajectory, to illustrate core concepts. Section 8.4 presents a
possible classification of semantic trajectories models based on their purpose. The
article ends up with a discussion on research directions.

8.2 Preliminaries

8.2.1 Historical Perspective

For a better understanding of the current research context, we start from some his-
torical notes. Spatial trajectories is the first prominent representation of movement
data. Rooted in GPS technology, this representation is at the heart of the Moving
Object database model developed in early 2000 (Güting et al. 2000).

In the second half of the first decade, novel types of sequential data, other
than GPS trajectories, became available, including telecommunication data (e.g.,
Call Detail Record – CDR data), and series of activities, possibly resulting
from a knowledge discovery process. Following this trend, the GeoPKDD project
(Giannotti and Pedreschi 2008), a research project funded by the European Union
and carried out by a number of research groups spread across Europe, coined the
term semantic trajectory, first appeared in 2007 (Alvares et al. 2007). The core idea
was to enrich spatial trajectories with application-dependent information, possibly
extracted from raw mobility data and supplementary data sources through the use
of knowledge discovery methods. In the same period, similar concerns were raised
in other projects carried out in Asia and US (Zheng et al. 2008; Liu et al. 2006).
Overall, the research in this period is mostly focused on analytical methods and
methodologies related to the conceptual modeling and construction of semantic
trajectories, e.g. Yan et al. (2013). For a survey of early research, we refer the reader
to Parent et al. (2013).

A more recent stream of research focuses on the data engineering aspects,
in particular the management of enriched trajectories through a database system.
This line of research is motivated by the growing availability of big enriched
trajectory data, heterogeneous and voluminous, calling for efficient processing
methods. Especially the plethora of geo-social applications, developed in the last
decade, has led to the collection of large amounts of data, e.g. check-in data,
naturally organized as sequences of geo-referenced POIs, where a POI (Point of
Interest) is a name, possibly accompanied by supplementary information, such as
the facility type. Concerning data modeling, we witness the specification of rigorous
trajectory models and the systematic development of operational solutions targeting
the practical utilization of semantic trajectories. Two contrasting views, however,
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emerge, the one is application-driven and interprets semantic trajectories primarily
as series of time-stamped POIs; the other is application-independent and targets
development of generic trajectory models.

The view presented in this article is in line with the latter interpretation, that is
a semantic trajectory is any representation of the movement as evolving context.
In this sense, the term ‘semantic trajectories’ does not indicate a specific model,
but rather a paradigm. In conclusion, semantic trajectories respond to the need of
encompassing in a representation situational information made available by novel
data acquisition technologies and applications.

8.2.2 Spatial vs. Semantic Trajectories

We elaborate a bit more on the difference between semantic and spatial trajectories:

Spatial trajectories Spatial trajectories are built on sequences of time-stamped
points sampling the entity’s movement in a geometric space S , typically the
Euclidean or the geographical space. Given a temporal domain T , a spatial
trajectory is the sequence: T = (x1, y1, t1) . . . (xn, yn, tn), with (xi, yi) ∈ S , t ∈ T .
The underlying assumption is that the movement is continuous, namely the location
changes smoothly in time, while the sampling rate is sufficiently high so as to ensure
a good approximation of the actual movement. Spatial trajectories can be stored in
a database, typically as values of suitable data types, and accessed through spatio-
temporal query languages (Güting et al. 2000; Zheng and Zhou 2011). A standard
model of spatial trajectories has been recently proposed by OGC (Open GeoSpatial
Consortium) (OGC 2019).

Semantic trajectories From the data modeling perspective, we point out three
major differences between spatial and semantic trajectories:

– Geometry vs. annotation. Spatial trajectories are grounded on the geometric
representation of the object’s location. In contrast, semantic trajectories rely
on the notion of annotation, which encompasses multiple and diverse kinds of
information, including spatial data as a special case. In this sense, the notion of
semantic trajectory goes beyond the spatial context.

– Whole vs. part. Spatial trajectories describe the movement of an object as a
whole. Therefore, attributes can be only attached to the entire trajectory and
not to parts of it. For example, the attribute ‘weather’ can be only specified for
the whole travel. By contrast, a semantic trajectory is an aggregation of smaller
components, the units, while the relationship between the unit and the whole
trajectory is the mereological relationship of parthood. Annotations can thus be
attached to units, and that results in a finer-grained representation of the actual
movement.

– Continuous vs. non-continuous. A spatial trajectory provides an approximate
representation of a continuous movement taking place in a physical space. In con-
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trast, semantic trajectories can describe a broader range of movements, including
discrete and stepwise evolving movements. In this sense, semantic trajectories
can provide a framework suitable for a broader spectrum of applications.

8.3 A Semantic Trajectory Meta-model

To exemplify the above concepts, we elaborate on the generic trajectory model
sketched in the introductory section. The goal is to provide a simple meta-model
sufficiently general to accommodate the diverse interpretations and facilitate the
understanding of key concepts.

A simple meta-model A semantic trajectory T is a sequence of units, where the
unit i-th specifies the temporal extent Ii = [t ib, t ie] and the annotation Ai , i.e. T =
(I1, A1) . . . (In, An). Trajectories have the following properties:

– A time interval can degenerate in a single instant, i.e. t ib = t ie . In that case the unit
is an event. A simplified representation for the event is (ti , Ai)

– Time periods I1, . . . , In do not overlap, i.e.
⋂

i Ii = ∅.
– There cannot exist two adjacent periods reporting the same annotation, i.e. every

unit contains the maximal interval with identical annotation.
– There can exist temporal discontinuities (gaps), namely consecutive units are not

necessarily adjacent in time.
– The annotations are application-dependent. Moreover, an annotation may include

spatial data as a special case.

In the following, we show a few examples of annotations and how these can be
expressed in terms of the generic model.

Annotations as simple values Annotations can indicate generic activities, such as
tasks (e.g. working, shopping) and transportation means (e.g. train, taxi). Activities
have normally a duration, moreover can be represented as attributes of simple type,
e.g. string. The movement described by the trajectory has thus the meaning of
stepwise evolution in a discrete space. A possible structure for the trajectory unit is:
ui = (Ii, [l1, . . . , ln]) where Ii is the time interval and [l1, . . . , ln] the list of one or
more values that, globally, form the annotation. A graphical example of trajectory
annotated with strings, specifically reporting the transportation means used by an
individual during a trip, is shown in Fig. 8.1.

Annotations as labeled points A labeled point is a named location. Semantic
trajectories annotated with labeled points can describe, for example, the series of
check-ins posted by the members of a geo-social network. In that case, the unit
model is an event (in the sense given earlier), while the annotation can include
the name of the POI, its category (and additional attributes), and the location
coordinates. To generalize, a possible structure of the trajectory units is: ui =
(ti , [att1

i , attni , (x, y)i]) indicating: a time-stamp, a sequence of attributes, and a
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Fig. 8.1 Semantic trajectory
as sequence of time-stamped
strings

Fig. 8.2 A semantic
trajectory as sequence of
labeled points

coordinated point, respectively. The graphical representation of semantic trajectory
as sequence of labeled points is shown in Fig. 8.2.

Annotations as spatial sub-trajectories with attributes In this case, spatial
trajectories are split into parts, i.e. segments, based on some partitioning criteria, and
each segment is assigned one or more attributes. Attributes can indicate for example
the activity performed in the period and the weather conditions. A possible structure
for the unit is: ui = (Ii, [l1

i , . . . , lim], segmi), where the pair [l1
i , . . . , lim], segmi

indicates the series of attributes, and the segment, respectively. A graphical example
of trajectory is reported in Fig. 8.3.

8.4 Semantic Trajectory Data Models: A Purpose-Driven
Taxonomy

The paradigm of semantic trajectories encloses a variety of trajectory models.
In this section, we discuss a possible classification of the existing models that,
either explicitly or implicitly, follow the semantic trajectory paradigm. Models are
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Fig. 8.3 A semantic
trajectory as sequence of
labeled spatial
sub-trajectories

primarily characterized by the structural properties of trajectories. Such a structure
is strongly related to the purpose of the representation. In particular, we identify four
main purposes and thus classes, we refer to as:

– Conceptual representation
– Database logical model
– Query processing
– Data analytics

In the following, we describe those classes in more detail and show a few
representative models.

8.4.1 Conceptual Representation

The semantic trajectory models of this class target generic and expressive repre-
sentations and are exclusively defined at conceptual level. That is, models are built
on user-oriented abstractions drawn from application practices and requirements,
while the operational aspects, for example which operations can be performed
over semantic trajectories, are not taken into account. This class comprises two
main groups of models, those based on stop-and-move patterns and those based
on episodes, respectively, described as follows.

Models based on stops-and-moves The seminal work in Spaccapietra et al. (2008)
was inspired by the observation that moving individuals often alternate periods of
relative stationarity (stops) with periods of mobility (move). Goal of the model
was to capture that mobility behavior by annotating spatial trajectories with labels
denoting stops and moves.

Stop-and-move is a pattern of practical relevance in a variety of phenomena. For
example, in an urban setting, the stops can represent POIs, while the moves the
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Fig. 8.4 A semantic trajectory consisting of stop and moves (Parent et al. 2013)

transportation means used by individuals for moving from one stop to another; in
the field of animal ecology, the stops can indicate the animal home-ranges, while
the moves the seasonal migrations. To convey the intuition, an example of trajectory
consisting of stops and moves is illustrated in Fig. 8.4. Following the traditional
approaches to conceptual modeling, this model is expressed using a graphical
notation. The substantial limitation of this model (and alike) is that it is built on
a specific mobility pattern.

Models based on episodes The models of this group aim to overcome the
above limitations, by introducing generic concepts not confined to any specific
mobility pattern. The core idea is to enrich spatial trajectories with supplementary
information, i.e. numerical and categorical attributes, which can regard either the
single points of the trajectories, or the segments resulting from a prior operation of
trajectory partitioning. In the latter case, the segments are called episodes and are
associated with a time interval (Parent et al. 2013). In this view, stops and moves can
be seen as specific types of episodes. The operation of segmentation turns the con-
tinuous movement, represented by the spatial trajectory, into a stepwise movement.
A semantic trajectory can specify one or multiple segmentations. For example, the
trajectory representing a travel can be partitioned based on the transportation means
used by the individual and weather conditions. This generalization provides the
basis for extended conceptual models, e.g. Bogorny et al. (2014) and Mello et al.
(2019).
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8.4.2 Database Logical Models

Another class of semantic trajectory models are those utilized in databases. In
this case, the goal is not only to devise a rich representation, but also to provide
appropriate techniques and languages for the manipulation and querying of trajec-
tories through a database system. In general, the use of rich-content data models
is paid in terms of complexity, usability, efficiency. Simply, the more expressive the
representation, the more complex the operational system. Therefore, a key challenge
is to find a trade-off between expressivity and cost of the solution. Another aspect
of concern is how to embed the trajectory data model into an existing and extensible
database system, so as to make the system usable in real applications. Two major
models of this class are symbolic trajectories, and its evolution, multi-attribute
trajectories, discussed next.

Symbolic trajectories Symbolic trajectories (Valdés et al. 2013; Damiani and
Güting 2014; Güting et al. 2015) describe a movement that evolves step-wise, not
necessarily in a physical space. In its basic form, a symbolic trajectory consists of a
series of units: (I1, l1), . . . , (in, ln) where Ij is a time interval and lj a single label
(i.e., a name) or, in alternative, a set of labels. Units can be also annotated with one
or more places, where a place is a labeled point. An example of symbolic trajectory,
reporting a series of activities (Damiani et al. 2015), is as follows:

([8:45 - 17:00] working)([17:00 - 18:30] shopping) (..)

Key feature of the model is the pattern-based query language, for the retrieval
of trajectories based on pattern matching and rewriting. Matching is used to
retrieve the trajectories satisfying a pattern, while rewriting is to extract or redefine
parts of trajectories matching the given pattern. A pattern is sequential, namely it
consists of a series of simple patterns that are to be matched in the given order.
Moreover, patterns are defined using regular expressions, variables, and predicates.
In particular, variables are used to verify predicates beyond the scope of a simple
pattern (Damiani et al. 2015). For example a query containing a variable (X) and a
condition on the variable (the condition following //) is the following:

Q: * (morning working) X(_ shopping)* //duration X.time> 2 * hour

In this example, the trajectories matching Q are those in which the working
activity takes place in the morning and is followed by a shopping activity taking
more than 2 hours. For the language syntax, we refer the reader to Güting et al.
(2015).

Another feature is that the pattern language and the type system are integrated
into an extensible moving object database (Güting et al. 2015). In particular, a
symbolic trajectory is a value of type mlabel (or mlabels for sets of labels), or
mplace (and mplaces), wherein the construct mtype is a shortcut of moving(type),
defining a mapping from the time domain to the domain of the given type. Hence,
a value of type mlabel indicates a time-varying string. As an example, we can
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construct a relation describing the trips of individuals through an attribute of type
mlabel specifying the road along which the user is traveling:

CREATE TABLE Trips (Id: int, Trip: mlabel)

This model suffers from a major limitation, that the annotation is exclusively
textual.

Trajectories with multiple attributes This data model (Valdés and Güting 2019)
responds to the limitations of symbolic trajectories, by extending such a model
with annotations consisting of multiple attributes of arbitrary time-varying type.
Time-varying types include mpoint (i.e. a time-varying point representing a spatial
trajectory) and mreal/mint (i.e., a time varying numeric quantity). In essence, the
idea is to annotate a time interval with a tuple of attribute values, where the attributes
can be of different type, either spatial or not. As an example, the Trips table can
have, as attributes, a spatial trajectory describing the actual path, the time-varying
road name, and the time-varying speed limit along the road, as shown below:

CREATE TABLE Trips (Id: int, Path: mpoint, RoadName: mlabel,

SpeedLimit: mint)

In this example, the non-spatial attributes, i.e. road name and speed limit, are
categorical attributes that evolve step-wise, inducing two different segmentations
of the spatial trajectory. Sequential queries over multi-attribute trajectories are
formulated through a slightly extended pattern-based language, in which variables
are associated to tuple-based units.

8.4.3 Query Processing

The models in this class are instrumental to the efficient computation of selected
types of queries over large datasets of trajectories. This class also includes inter-
mediate representations, possible resulting from a pre-processing step. In this
sense, these models are possibly defined ad-hoc. In the following, we outline two
representative approaches dealing with different types of semantic trajectories and
focusing on specific types of query.

Top-K spatial keyword queries over trajectories of labeled locations The
overall goal is the efficient retrieval of semantic trajectories defined as activity
trajectories (Zheng et al. 2016). An activity trajectory is a series of timestamped
POIs, supplemented with textual keywords describing the activities undertaken at
that place. Structurally, a trajectory consists of units representing events (in the sense
of Sect. 8.3) annotated with a POI p and with a set of keywords h1, . . . , hm, i.e.,
u = (t, p, {h1, . . . hm}). Given a query q=(x, y, tw, qw, a) specifying a location
(x, y), a time interval tw, a set of keywords qw and a weight factor a used as
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preference, the query retrieves the k trajectories that are most similar to the query,
based on a criteria of similarity encompassing spatial distance, keywords matching
and places popularity. Example: the user located in p is willing to eat Japanese
food, watch movie and go to a pub. The user does not know which places are more
convenient to visit, thus search for the trajectories reporting similar travel experience
by users moving nearby. Query processing is supported by an augmented R-tree
index, called ITB-tree, supporting both spatial and keyword search.

Sequential range queries over labeled spatial sub-trajectories
In this case, the goal is to efficiently retrieve spatial trajectories augmented with

textual annotations. Specifically, a semantic trajectory is a sequence of labeled
segments, possibly resulting from a prior temporal overlay of a spatial trajectory
with a symbolic trajectory (Güting et al. 2015). The units of the trajectory are triples
(Ii, li , segi), where the pair li , segi consists of a spatial trajectory segment and a
label, respectively (Issa and Damiani 2016).

A sequential range query q is a sequence of simple queries, q = q1, . . . , qn, each
specifying a range constraint on time, space and labels, which are to be solved in
the given order. Example: find the users traveling by car or by bus and passing by
region A in the morning and by region B in the evening. In this query, A/B define
the spatial range, morning/evening the temporal range and car/bus the label range.
The query semantics is defined as follows: a trajectory satisfies the query q if there
exist n instants t1, . . . , tn with ti < ti+1 such that for every instant ti , there exists a
trajectory unit matching qi (Issa and Damiani 2016). Importantly, the semantics, and
thus the result of the query, does not depend on the distribution of the sample points
in the spatial trajectory. Query processing is supported by an hybrid index, called
IRWI (IR index with Trajectory Identifiers), an augmented 3D R-Tree integrating
space, time and label search. Moreover the input query is processed by evaluating
concurrently every simple query of the sequence during the traversal of the IRWI
tree.

8.4.4 Data Analytics

The last class of trajectory models are those employed for data analytics purposes.
These models are application dependent, namely the structural properties of the
model do not result from an abstraction effort, but rather are drawn from the
application problem. These trajectories are, therefore, grounded on real application
needs, and, for that reason, interesting for the discussion. Since this is a broad
area, we limit ourselves to consider two recent examples of analytical problems
on semantic trajectories, while we refer the reader to Zheng (2015) for a survey:

Frequent sequential pattern mining The general goal is to respond to queries
such as: Where do people usually go to relax after work? (Zhang et al. 2014; Choi
et al. 2017). A specific instance of the problem considers trajectories structured as
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sequence of events annotated with categorized POIs (e.g., restaurant) (Zhang et al.
2014). In more detail, the mining task is to extract from trajectories, sequences of
groups of POIs satisfying a number of constraints, in particular, the members of
the groups shall be semantically homogeneous and spatially close; and the groups
shall be visited in a specific order and satisfying a maximum transition time. The
sequences matching those conditions are the sequential patterns. . The ultimate goal
is to find those sequential patterns that are frequent in the trajectory dataset.

Topical trajectory pattern mining (Kim et al. 2015) The problem is related to
the analysis of large collections of geo-tagged messages posted through micro-
blogging services such as Twitter. The input dataset consists of geo-tagged message
trajectories, namely trajectories reporting the series of time-stamped and geo-
referenced messages posted by users. In more detail, a trajectory consists of units
representing events, where the annotation consists of a coordinated point (x,y), i.e.
the user position, and a set of words taken from a given vocabulary, and extracted
from the actual text message. The mining task is to identify the geographic locations,
where geo-tagged messages are posted with the same topic (semantic regions), and
the transitions between semantic regions.

8.5 Final Remarks and Research Directions

In summary, the paradigm of semantic trajectories, encompasses a large variety
of models defined at different levels of abstraction and for different purpose.
Semantic trajectories are, thus, characterized by a great structural heterogeneity.
Overcoming such fragmentation is a challenge. Another major goal is to provide
workable solutions allowing for an effective utilization of large datasets of semantic
trajectories. Although a few systems are available, e.g. Valdés and Güting (2019),
Gryllakis et al. (2018), and Mello et al. (2019), the engineering efforts are still
limited.

Concerning the structural properties of trajectories, the ‘semantics’ of the move-
ment is often expressed by textual or spatial keywords embedded as annotations.
While the integration of text, space and time raises interesting research issues,
dealing with keywords only might be not sufficient to fulfill the requirements posed
by modern applications, e.g. IoT. In essence, what is needed is the capability of
describing the context evolution through multiple dimensions. The recent database
model of multi-attribute trajectory (Valdés and Güting 2019) is in line with that
view, similarly the notion of multi-aspect trajectory in Mello et al. (2019). Several
issues, however, remain to be addressed, including: the specification of a unifying
framework enabling the coherent representation of both discrete, stepwise and
continuous movement; the specification of query processing mechanisms over
multi-dimensional trajectories, e.g. Xu et al. (2019); the efficient processing of
complex operations, such as semantic trajectories join. All these functionalities
are instrumental in supporting trajectory data analytics and, more in general, the
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research and technological stream of mobility data science. From a data repre-
sentation perspective, a challenging direction is towards representation learning
methods to support complex tasks such as trajectory similarity detection (Li et al.
2018), applied to semantic trajectories. In this perspective, the availability of a solid
and flexible semantic trajectory representation framework paves the way to novel
research opportunities on fine-grained behavior analysis and prediction.

Acknowledgments This work is partially supported by the Italian government via the NG-UWB
project (MIUR PRIN 2017).

References

Alvares LO, Bogorny V, Kuijpers B, de Macedo J, Moelans B, Vaisman A (2007) A model for
enriching trajectories with semantic geographical information. In: Proceedings of ACM GIS

Bogorny V, Renso C, de Aquino AR, de Siqueira FL, Alvares LO (2014) CONSTAnT – a
conceptual data model for semantic trajectories of moving objects. Trans GIS 18(1):66–88

Choi D-W, Pei J, Heinis T (2017) Efficient mining of regional movement patterns in semantic
trajectories. Proc VLDB Endow 10(13):2073–2084

Damiani ML, Güting RH (2014) Semantic trajectories and beyond. In: Proceedings of IEEE MDM
Damiani ML, Issa H, Güting RL, Valdés F (2015) Symbolic trajectories and application challenges.

SIGSPATIAL Special 7(1):51–58
Dey AK (2001) Understanding and using context. Pers Ubiquit Comput 5:4–7
Giannotti F, Pedreschi D (2008) Mobility, data mining and privacy: geographic knowledge

discovery, 1 edn. Springer Publishing Company, Incorporated, Berlin/Heidelberg
Gryllakis F, Pelekis N, Doulkeridis C, Sideridis S, Theodoridis Y (2018) Spatio-temporal-keyword

pattern queries over semantic trajectories with hermes@neo4j. In: Proceedings of EDBT
Güting RH, Böhlen MH, Erwig M, Jensen CS, Lorentzos NA, Schneider M, Vazirgiannis M (2000)

A foundation for representing and querying moving objects. ACM Trans Database Syst 25:1–
42

Güting RH, Valdés F, Damiani ML (2015) Symbolic trajectories. ACM Trans Spat Algorithms
Syst 1(2):7

Issa H, Damiani ML (2016) Efficient access to temporally overlaying spatial and textual
trajectories. In: IEEE MDM

Kim Y, Han J, Yuan C (2015) Toptrac: topical trajectory pattern mining. In: Proceedings of KDD
Li X, Zhao K, Cong G, Jensen C, Wei W (2018) Deep representation learning for trajectory

similarity computation. In: Proceedings of ICDE
Liu J, Wolfson O, Yin H (2006) Extracting semantic location from outdoor positioning systems.

In: Proceedings of the 7th international conference on mobile data management, p 73
Mello RS, Bogorny V, Alvares LO, Zambom Santana L, Ferrero C, Frozza A, Schreiner GA,

Renso C (2019) Master: a multiple aspect view on trajectories. Trans GIS 23(4):805–822
OGC (2019) Moving features encoding part 1: Xml core. http://docs.opengeospatial.org/is/18-

075/18-075.html
Parent C, Spaccapietra S, Renso C, Andrienko G, Andrienko N, Bogorny V, Damiani ML,

Gkoulalas-Divanis A, Macedo J, Pelekis N, Theodoridis Y, Yan Z (2013) Semantic trajectories
modeling and analysis. ACM Comput Surv 45(4), Article 42, 32 pp

Spaccapietra S, Parent C, Damiani ML, de Macêdo JAF, Porto F, Vangenot C (2008) A conceptual
view on trajectories. Data Knowl Eng 65(1):126–146

Valdés F, Güting RH (2019) A framework for efficient multi-attribute movement data analysis.
VLDB J 28(4):427–449

http://docs.opengeospatial.org/is/18-075/18-075.html
http://docs.opengeospatial.org/is/18-075/18-075.html


8 Semantic Trajectories Data Models 197

Valdés F, Damiani ML, Güting RH (2013) Symbolic trajectories in secondo: pattern matching and
rewriting. In: DASFAA

Xu J, Bao Z, Lu H (2019) Continuous range queries over multi-attribute trajectories,. In: IEEE
international conference on data engineering (ICDE)

Yan Z, Chakraborty D, Parent C, Spaccapietra S, Aberer K (2013) Semantic trajectories: mobility
data computation and annotation. ACM Trans Intell Syst Technol 4:1–38

Zhang C, Han J, Shou L, Lu J, La Porta T (2014) Splitter: Mining fine-grained sequential patterns
in semantic trajectories. Proc VLDB Endow 7(9):769–780

Zheng Y (2015) Trajectory data mining: an overview. ACM Trans Intell Syst Technol 6(3):1–41
Zheng Y, Zhou X (2011) Computing with spatial trajectories. Springer Publishing Company,

Incorporated, New York
Zheng Y, Wang L, Zhang R, Xie X, Ma W (2008) Geolife: managing and understanding your past

life over maps. In: Proceedings of IEEE MDM
Zheng K, Zheng B, Xu J, Liu G, Liu A, Li Z (2016) Popularity-aware spatial keyword search on

activity trajectories. World Wide Web 20(4):749–773



Chapter 9
Multi-attribute Trajectory Data
Management

Jianqiu Xu

9.1 Introduction

Trajectory data, keeping track of historical movements of moving objects such
as vehicles and ships, is becoming ubiquitous due to the widespread use of GPS
devices. Such data that records geographical locations changing over time is of
crucial importance for emerging applications, e.g., route recommendation (Chen
et al. 2010; Tong et al. 2017, 2018), tracking (Lange et al. 2011), monitoring (Yao
et al. 2014), to name but a few.

Despite tremendous efforts made on studying trajectory databases, proposals in
the literature mainly deal with standard trajectories (Tzoumas et al. 2009; Long
et al. 2013; Zheng et al. 2013b), i.e., a sequence of time-stamped geo-locations.
The majority of queries are limited to the spatio-temporal evaluation such as range
queries (Wang and Zimmermann 2011), nearest neighbors (Güting et al. 2010b)
and convoys (Jeung et al. 2008). In the real world, typical moving objects such
as vehicles and persons are associated with pieces of descriptive information. The
database system should represent moving objects by considering several aspects
and allow users to query objects with extensive knowledge to better understand the
movement and users’ behavior. As a fundamental step towards that, a new form of
trajectories is investigated called multi-attribute trajectories, each of which consists
of a standard trajectory and a set of attribute values. Modeling and representing
standard trajectories has been well established (Güting and Schneider 2005), while
attributes have various semantics according to applications. The combination allows
users to issue queries with both spatio-temporal and attribute predicates.
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Fig. 9.1 Querying multi-attribute trajectories

Consider a database storing vehicle trips in a city. Each trip contains a standard
trajectory and two attribute values over domains COLOR = {RED, SILVER,
GRAY} and BRAND = {BENZ, BMW}, respectively, as illustrated in Fig. 9.1. A
query that contains a tuple of attribute values and a spatio-temporal box is issued,
that is, “Did any SILVER BMW pass the area during [t1, t2]?”. Boolean range
queries are studied to report objects containing query attribute values and fulfilling
the spatio-temporal condition. In the example, o3 is returned. Although o2 intersects
the query window, it is not a SILVER BMW.

Recently, researchers have started to investigate spatio-temporal trajectories
annotated with additional information, e.g., semantic trajectories (Yan et al. 2011;
Parent et al. 2013; Zhang et al. 2014; Zheng et al. 2015), activities trajectories
(Zheng et al. 2013a), and transportation modes (Xu and Güting 2013). In particular,
a semantic trajectory is essentially an enriched version of a standard trajectory
in terms of locations. Labels are attached to geo-locations to describe places that
users have visited or performed activities at, e.g., hotel, sport, restaurant. However,
semantic data is restricted to locations. This is orthogonal to multi-attribute trajec-
tories that consider location-independent attributes. The major differences include
three aspects.

• Attributes represent a range of aspects and aim to provide a full picture of moving
objects, as opposed to semantics limited to locations. This will support a different
(even broader) range of applications.

• Semantic locations are sparsely defined because among a person’s trajectory a
few locations have semantics. Attributes are location-independent and associated
with the complete trajectory. They are not derived from time-stamped locations or
the geographical environment. For example, a semantic trajectory is of the form
o = 〈(loc1 , t1, coffee), (loc2, t2, pizza)〉, where coffee and pizza are defined at
two locations. That is, there is no semantic at locations between loc1 and loc2. A
multi-attribute trajectory is of the form o = 〈(loc1 , t1), (loc2, t2)〉, (RED, BENZ),
where (RED, BENZ) is associated with the complete trajectory.

• Semantic trajectories cope with similarity search or ranking queries rather than
the exact match on attribute values with spatio-temporal predicts, leading to
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different tasks when developing the index. Semantic trajectories are grouped in
terms of locations and semantics, but attributes are not related to locations.

To efficiently process multi-attribute trajectories, an index is essentially required
because a sequential scan over the database is prohibitively expensive for large
datasets. Standard trajectory indexes such as TB-tree (Pfoser and Jensen 2000),
SETI (Chakka et al. 2003) and TrajStore (Mauroux et al. 2010) only deal with
the spatio-temporal data without managing attributes. Such a method is suboptimal
because one cannot use the index to prune the search space at the attribute
level. As a result, objects after performing the spatio-temporal evaluation are
sequentially processed, significantly inhibiting the performance. Furthermore, the
pruning technique of min and max distances1 cannot be applied for nearest neighbor
queries if attribute values are not determined. This is because objects that are close
to the query may not fulfill the attribute condition and cannot be used for pruning
further objects. The trajectory subset containing query attributes changes according
to the query setting and cannot be pre-computed. False dismissals will occur if one
performs the pruning without the awareness of attribute values.

One can employ two individual indexes (e.g., a 3-D R-tree and a B-tree) on
standard trajectories and attributes, respectively. The problem is, when the query
evaluates the selective predicate on both parts, an intersection will be performed on
two candidate sets that are separately retrieved, which is suboptimal. Another solu-
tion is to employ an attribute index. The method first receives trajectories containing
query attributes and then proceeds to processing standard trajectories. However,
this method is limited in scope and inherently suffers from the performance issue.
Standard trajectories will be processed by either performing a sequential scan or
accessing an on-line built index. If the attribute predicate is selective, the query cost
may be acceptable because a small dataset is processed. If the attribute predicate has
a poor selectivity, a large number of trajectories will be returned. Both the sequential
scan and building an on-line index incur high CPU and I/O costs. Furthermore,
creating an index for each query at runtime causes extra storage space. This calls
for a structure that is able to simultaneously manage both standard trajectories and
attributes. Meanwhile, the structure should be general and flexible in order to answer
queries on standard trajectories and support update-intensive applications. From a
system point of view, existing techniques need to be extended or adapted to deal
with coming issues rather than developing individual structures each of which only
applies to one problem.

The rest of the chapter is organized as follows. Related work is analyzed in
Sect. 9.2. Multi-attribute trajectories and queries are defined in Sect. 9.3. Indexing
and querying multi-attribute trajectories are introduced in Sects. 9.4 and 9.5,

1Given three rectangles a, b, c, each contains a set of points inside. We aim to find the nearest
point to a given point inside a. Let Max(b, a) and Min(c, a) denote the maximum and minimum
distances between two rectangles. If Max(b, a) ≤ Min(c, a), then no point inside the rectangle c

can be closer than a point in the rectangle b to a. As a consequence, we can omit c when searching
for the nearest neighbor to a.



202 J. Xu

respectively. The system development is presented in Sect. 9.6 and the performance
evaluation is reported in Sect. 9.7. Future directions are pointed out in Sect. 9.8,
followed by conclusions in Sect. 9.9.

9.2 Related Work

The current state-of-the-art is classified into two parts: (i) extending the representa-
tion of standard trajectories by incorporating semantics, and (ii) indexing standard
trajectories with additional data.

9.2.1 Enriching Spatio-Temporal Trajectories

Semantic trajectories Emerging applications require extensive information about
trajectories such as quality and semantics (Zheng and Su 2015). Semantic trajecto-
ries are based on discovering meaningful knowledge from locations (Alvares et al.
2007; Yan et al. 2011; Zheng et al. 2015). Formally,

Definition 1 (Semantic trajectory) A semantic trajectory is represented by a
sequence of time-stamped positions complemented with annotations, that is, osem
= 〈 ( loc1, t1, A1 ), . . . , ( locn, tn, An ) 〉 in which loc ∈R2, t ∈ T , and A is a set of
labels (strings) describing locations.

Interesting patterns can be properly defined and extracted. For example, a
so-called fine-grained sequential pattern reports trajectories that satisfy spatial
compactness, semantic consistency and temporal continuity simultaneously (Zhang
et al. 2014). Consider actions that users can take at particular places such as sport,
dining and entertaining. Activity trajectories are defined by associating geo-spatial
points with activities. A similarity search returns k trajectories whose semantics
contain the query and have the shortest minimum match distance (Zheng et al.
2013a). Motivated by the fact that standard trajectories do not make much sense
for humans, a partition-and-summarization approach is proposed to automatically
generate texts to highlight the significant semantic behavior (Su et al. 2015). A good
survey of semantic trajectories refers to Parent et al. (2013).

Motion modes Moving objects with transportation modes are investigated in Xu
and Güting (2013) and Xu et al. (2015a,b) . A trajectory over diverse geographical
spaces includes time-stamped locations and a sequence of transportation modes
such as Indoor → Walk → Car. Queries containing transportation modes can be
answered, e.g., “who arrived at the university by taxi”.

Definition 2 (Trajectories with transportation modes) A trip with transportation
modes is represented by a sequence of units, each of which defines the movement
over a time interval and a certain mode. That is, each unit is of the form utm = ( loc1,
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loc2, t1, t2, m) in which loc1, loc2 = (oid, loc′ ), oid ∈ int, loc′ ∈R2, t ∈ T , and m

∈ {Indoor, Walk, Car, Bus, Metro, Bike, Taxi}.

The location representation employs a reference system in which oid points to
a geographical object such as a road, a walking area or a bus. Then, the relative
location in the geographical object is recorded. The transportation mode does not
change for each piece of movements.

Symbolic trajectories The task is to deal with generic semantic information
including transportation modes and users’ activities (Valdés and Güting 2014;
Güting et al. 2015). A generic model is proposed to capture a wide range of
meanings derived from a standard trajectory. The symbolic information is computed
from the movement itself or obtained from the geographical environment, and a
symbolic trajectory is represented by a time-dependent label. Typical examples
include names of roads, activities and transportation modes. The goal is to provide
a simple and flexible model for any kind of semantic information, while geometric
locations are not defined.

Definition 3 (Symbolic trajectory) A symbolic trajectory is represented as a
sequence of pairs (t , l), in which t is a time interval and l is a label (short character
string) describing certain aspects of a trajectory.

If transportation modes are considered, a symbolic trajectory is denoted by
osym = 〈([t1, t2], Walk), ([t2, t3], Bus), ([t3, t4], Metro), ([t4, t5], Walk), ([t5, t6],

Indoor)〉.
There are fundamental differences between those works and multi-attribute

trajectories. First, multi-attribute trajectories consider attributes that are location-
independent, differing from attaching location labels in semantic trajectories. Sym-
bolic trajectories do not contain geo-locations, while multi-attribute trajectories do.
Multi-attribute trajectories are defined in a broad context by annotating trajectories
with domain-specific attributes such that users can issue queries combining different
aspects of moving objects. Second, different queries are evaluated. Multi-attribute
trajectories incorporate attributes into the evaluation for Boolean queries and search
for the objects fulfilling the spatio-temporal condition during a time interval or
at each time point. Previous queries deal with spatial closeness and attributes
similarity instead of time-dependent distances and exact matches on attributes.
Labels are sparsely defined in semantic trajectories because a few locations may
contain semantics. As a result, ranking queries are primarily dealt with rather than
the spatio-temporal evaluation at each time point with attributes.

Heterogeneous k-nearest neighbor queries are studied in Su et al. (2007). A
moving object is represented by a location-independent attribute and a set of
coordinates. By defining a function that combines the costs of distances and the
location-independent attribute, the query returns objects having the k-th smallest
value. Although the work considers the location-independent attribute, there are
three major differences in comparison with ours. First, the data representation is
limited in scope because each moving object is associated with only one attribute.
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Second, they query objects based on a ranking function on distance and attribute,
but our queries require exact matches on attribute, leading to different results.
Third, their distance function is not time-dependent, while queries of multi-attribute
trajectories support distances changing over time.

Spatial keywords Queries of spatial keywords have been extensively studied in
the literature (Chen et al. 2013; Lee et al. 2015; Wang et al. 2016). The task is to
support queries that take a geo-location and a set of text descriptions called keywords
as augments and return (i) objects that are close to the query location and contain
the keywords called Boolean kNN query (De Felipe et al. 2008), or (ii) objects with
the highest ranking scores measured by a combination of distances to the query
location and the text relevance to the keywords called Top-k NN query (Cong et al.
2009). To efficiently answer the query, a spatial index such as 2-D R-tree and a text
index structure are combined. For example, the IR-tree (Cong et al. 2009) augments
each node of the R-tree with a pointer to an inverted file that contains a summary
of the text content of the objects in the corresponding subtree. During the query
procedure, one uses the combined structure to estimate both the spatial distance
and the text relevancy to prune the objects that cannot contribute to the result.
However, spatial keywords focus on static geo-locations and location-dependent
text descriptions, leading to different queries. Text descriptions and attributes will
make different tasks when designing the index structure. The index groups close
spatial objects in terms of spatial distances and location-related text relevances. It is
possible to attach attributes to time-stamped locations, but each piece of trajectories
will have all attributes along with the trajectory, resulting in an extremely large
amount of redundant data. In fact, the key issue of boosting the index for multi-
attribute trajectories is to know which objects contain particular attribute values and
where the objects are located in the spatio-temporal index. Therefore, a different
criterion is used to design the index.

9.2.2 Indexing Spatio-Temporal Trajectories

In the last decade, a substantial number of spatio-temporal index structures have
been proposed to efficiently access trajectories. A good survey on trajectory
indexing and retrieved is given in Dinh et al. (2010) and Zheng and Zhou (2011).
Indices can be classified into three categories according to the environment: (1)
free space (Pfoser and Jensen 2000; Tao and Papadias 2001; Chakka et al. 2003;
Pelanis et al. 2006); (2) road network (Frentzos 2003; Pfoser and Jensen 2003;
de Almeida and Güting 2005; Popa et al. 2011); and (3) indoor (Jensen et al. 2009;
Lu et al. 2012). Several algorithms are proposed to minimize the total volume of
trajectory approximations given a user-specified number of splits (Hadjieleftheriou
et al. 2002). Rasetic et al. (2005) provide a better solution that splits trajectories into
a number of sub-trajectories and builds an index on them to minimize the number of
expected disk I/Os with respect to an average size of spatio-temporal range queries.
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The method expects the query window as the input but in real applications the size
of the window varies and the assumption leads to inaccurate estimations.

Indexing semantic and symbolic trajectories Recently, traditional spatio-
temporal indexes have been studied to incorporate semantic information. A grid
index is established to organize spatio-temporal trajectories with activities in a
hierarchical manner (Zheng et al. 2013a). A similar structure is developed to
incorporate both spatial and semantic information for approximate keyword search
(Zheng et al. 2015). The grid is in fact a spatial index and is extended to maintain
objects based on spatial and activity proximities for ranking queries. This line
of work is not applicable to our problem. On the one hand, our attributes are
not related to locations and therefore it does not make sense to group objects by
considering both spatio-temporal data and attributes. On the other hand, our query
reports trajectory objects rather than individual locations. A framework of analyzing
large sets of movement data having time-dependent attributes is developed (Valdés
and Güting 2017, 2019). They aim to support pattern matching queries on tuples of
time-dependent values, e.g., “return all tuples that include either a flight on Tuesday
or a work in Dortmund with a later bus trip”. A new pattern language is proposed
and the superiority is thoroughly analyzed in terms of flexibility and expressiveness.
The corresponding matching algorithm uses a collection of different indexes and is
divided into a filtering and an exact matching phase. A composite index structure
for sets of tuples of time-dependent value is proposed in which a single index of a
suitable type is created for each time-dependent attribute.

Indexing trajectories with keywords An index structure called IOC-Tree is
proposed to answer spatial keyword range queries on trajectories (Han et al. 2015).
The structure consists of an inverted index and a set of 3-D quadtrees termed octrees.
The inverted index has two components: a search structure for all keywords and
lists of references to documents containing words. One is called a dictionary and
the other is called inverted lists. Each keyword is combined with one reference, that
is an octree built on the keyword in the dictionary to organize relevant trajectory
points. In an octree, each leaf node maintains a signature represented by a bit vector
to summarize the identifications of a set of trajectories intersecting the node. The
signature of a non-leaf node is achieved by performing the union on the signatures
of its child nodes.

The IOC-Tree can be extended to solve our problem by setting attribute values as
keywords associated with trajectory points. One can implement the inverted index
as an array of attribute values and each value contains a pointer to an octree. Certain
parameters are defined: the maximal depth h = 5 and the split threshold ϕ = 80.
Leaf nodes that do not contain enough trajectories are merged as one node (still
a leaf node). A 64-bit integer is used for the signature in each node. Each bit
corresponds to a range of trajectory ids. Each octree leaf node is assigned a morton
code and empty nodes (no trajectory intersects) are not materialized. Since each
attribute value corresponds to an octree, we will have a set of octrees and combine
the attribute value and the morton code as the key for each node. A relation stores
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all leaf nodes and tuples are increasingly sorted on keys in order to maintain the
locality of nodes in terms of the spatio-temporal proximity. A B-tree is built on the
relation.

The main difference between trajectories with keywords and multi-attribute
trajectories is that keywords are location-dependent texts, but attribute values are
location-independent. A keyword is relevant to one or a few location points of
the trajectory, while all location points of the trajectory have the same attribute
values. This results in two major changes when maintaining the IOC-Tree and
performing the query, in particular, inserting trajectory points into the index. A
thorough analysis and comparison is provided in the following.

(i) In the context of keywords, location points will be distributed into octrees each
of which corresponds to a keyword that the trajectory point contains. Each octree
stores one or a few relevant location points of the trajectory. However, for multi-
attribute trajectories each octree contains all location points of the trajectory
because they all have the attribute value. Consider the following two trajectories.

• given a trajectory with keywords o1 = 〈 (loc1, t1, coffee), (loc2, t2, pizza) 〉 , we
will store (loc1, t1) and (loc2, t2) in two octrees for coffee and pizza, respectively;

• given a multi-attribute trajectory o2 = (〈(loc1, t1), (loc2, t2)〉, (GRAY, BENZ)),
we will store both (loc1, t1) and (loc2, t2) in two octrees for GRAY and BENZ,
respectively.

The IOC-Tree is efficient for processing trajectories with keywords because only
relevant trajectory points are indexed. However, attribute values are not related to
locations but associated with the complete trajectory. That means, each attribute
value is relevant to all points of the trajectory. Then, the number of trajectory points
in each octree for multi-attribute trajectories is larger than that for trajectories with
keywords, as demonstrated in Table 9.1. To gain trajectories with keywords, we
randomly assign two attributes as keywords to each trajectory point using the dataset
BTaxi in the experiment (Sect. 9.7). During the query procedure, the numbers of
processed octree leaf nodes and trajectories increase, leading to more CPU and I/O
costs. The values in Table 9.1 are calculated based on the condition that the number
of trajectory points is the same in both cases. In fact, such a value for trajectories
with keywords is much smaller than that for multi-attribute trajectories. We will
explain this at point (ii) below.

The variation in processed trajectory points also makes the signature in IOC-Tree
less effective when we perform the intersection on trajectories containing different
keywords. Each node in the octree maintains a signature represented by a bit vector
to summarize the identifications of trajectories passing through the node. Table 9.2

Table 9.1 The average
number of relevant trajectory
points in an octree (BTaxi, d
= 10, dom(Att) = [1, 151])

Multi-attribute
trajectory

Trajectory
with
keywords

83,974 75,198
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Table 9.2 The percentage of
defined bits (64 in total) in the
signature at each level in
IOC-Tree (d = 10, [1, 151])

Att Leaf nodes H = 4 H = 3 H = 2 H = 1

1 45% 98% 100% 100% 100%

20 49% 96% 95% 100% 100%

50 47% 97% 100% 100% 100%

100 46% 98% 100% 100% 100%

Avg 46% 97% 99% 100% 100%

(a) (b)

Fig. 9.2 Cells intersecting the trajectory. (a) Trajectories with keywords. (b) Multi-attribute
trajectories

reports the percentage of defined bits in the vector at each level of the IOC-Tree. We
can see that almost all bits are defined for signatures in non-leaf nodes, weakening
the pruning ability.

(ii) Trajectory points with keywords are sparsely defined because only a few
locations of the trajectory may have semantics such as coffee and mall, but
attributes are associated with all locations of the trajectory. This results in
different numbers of octree leaf nodes intersecting the trajectory. Still using
o1 and o2, we assume that the space is partitioned into 2 × 2 cells. Figure 9.2a
and b show the cells intersecting o1 and o2, respectively. For trajectories with
keywords, each point is assigned to the cell intersecting the trajectory. Locations
between two sampled points will not be addressed because keywords are not
defined. For multi-attribute trajectories, attribute values are associated with
the overall movement and all cells intersecting the trajectory are included.
Consequently, the number of maintained trajectory IDs in the IOC-Tree is much
larger than that of trajectories with keywords. Given a query window, multi-
attribute trajectories process more nodes and trajectories than trajectories with
keywords, increasing the query cost.

Indexing spatial objects with keywords In the field of spatial keywords search,
geo-textual indexes combine spatial and text aspects such that both types of
information can be utilized to prune the search space. To answer Boolean kNN
queries (Wu et al. 2012), the data is partitioned into multiple indexing groups
each of which shares as few attributes as possible. A hierarchical aggregate grid
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index called HAGI is developed to support heterogeneous kNN queries (Su et al.
2007). The method can be adapted to answer our queries, but it is limited as only
one attribute is considered. A function is defined to combine the cost of distances
and location-independent attributes, and the query returns objects having the k-
th smallest function value. Each node in HAGI maintains min and max attribute
values of all objects stored in the subtree. Although min and max values may
work well for one attribute, they fail to guarantee good pruning ability for multiple
attributes as min and max values are likely from different attributes. Also, the query
evaluates objects based on a ranking function, whereas we require the exact match
on attributes. Furthermore, the distance function is not time-dependent, whereas we
deal with distances changing over time.

9.3 Problem Definition

9.3.1 Data Representation

A composite data model O(Trip; Att) is used to represent a multi-attribute trajectory
database, in which Trip denotes standard trajectories and Att denotes multi-
attributes. A standard trajectory is typically modeled by a function from time to 2D
space. In a database system, a discrete model is implemented and the continuously
changing locations are represented by linear functions of time, as illustrated in
Fig. 9.3. That is, a trajectory is represented by a sequence of so-called temporal
units, each of which records start and end locations during a time interval. Locations
between start and end locations are estimated by interpolation. A data type called
mpoint is defined (Forlizzi et al. 2000; Güting et al. 2000).

Definition 4 Dmpoint = {< u1, . . . , un > |n ≥ 1, and u = (loc1, loc2, t1, t2) where

loc1, loc2 ∈R2, t1, t2 ∈ T }

Let A be the set of multiple attributes. The ith attribute and its domain are
denoted by A[i] and dom(A[i]) (i ∈ 1,. . . , |A|), respectively. Assume that each
dom(A[i]) is represented by a set of positive integers and a data type called Datt

is defined for the set of attributes. For the sake of readability, the enum data type is
used for attributes in the following.

Fig. 9.3 Standard trajectory
representation. (a) Abstract.
(b) Discrete

X

T

Y

f : t → space

(a)
X

T

Y

(b)
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Table 9.3 An integration of
standard trajectories and
attributes

Id: int Trip: mpoint Att: att

o1 location + time (RED, BENZ)

o2 location + time (GRAY, BENZ)

o3 location + time (SILVER, BMW)

o4 location + time (GRAY, BMW)

o5 location + time (SILVER, BMW)

Table 9.4 Summary of
notations

Notation Description

O The set of multi-attribute trajectories

o A multi-attribute trajectory

|A| The number of attributes

dom(Ai ), dom(A) The domain of Ai , the overall domain

Qa Query attribute expression

oq , d A query trajectory, the query distance

k The number of nearest neighbors

t A time point or interval

T (o) The time period of a trajectory

Definition 5 (Multi-attribute representation) Datt = {( a1, . . . , a|A| ) | ai ∈ dom(

A[i] ), i ∈ {1, . . . , |A|}} such that

(i) ∀i ∈ {1,. . . , |A|}: dom(A[i]) ⊂ N+;
(ii) ∀ i, j ∈ {1,. . . , |A|}: i 
= j ⇒ dom(A[i]) ∩ dom(A[j ]) = ∅.

The data model is translated to a relation with the schema (Id: int, Trip: mpoint,
Att: att) by embedding mpoint and att as relational attributes, as shown in Table 9.3.
To be more specific, a relation is used to store multi-attribute trajectories by defining
two attributes Trip and Att. The system manipulates multi-attribute trajectories
via a relation. The advantage of using the relational interface is that (i) it allows
combining heterogeneous data models, i.e., spatio-temporal and attribute; and (ii)
existing operators on standard trajectories can be leveraged, benefiting the system
development.

Table 9.4 summarizes notations frequently used in the chapter.

9.3.2 Queries

Attribute values are incorporated into the evaluation and the attribute expression is
defined in the following.

Definition 6 (Attribute query expression) Qa = (a1, . . . , a|A|), ai ∈ dom(Ai) or
ai = ⊥
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Given a tuple of attribute values Qa = (a1, . . . , a|A|) and a multi-attribute
trajectory o ∈ O, an operator contain(o.Att, Qa) returns True if ∀ a ∈ Qa : a ∈
o.Att or a = ⊥.

Three types of queries are supported: (i) range queries, (ii) continuous range
queries and (iii) continuous nearest neighbor queries. The range query is called
RQMAT (Range Queries on Multi-attribute Trajectories) (Xu et al. 2018b). For-
mally,

Definition 7 (Range queries on multi-attribute trajectories (RQMAT)) Given
a spatio-temporal window Qbox and attribute values Qa , RQMAT returns a set of
trajectories O′ ⊆ O such that ∀ o ∈ O′ : (i) o.Att contains Qa ; and (ii) o.Trip
intersects Qbox .

There is a variation of RQMAT that returns objects containing query attributes
and keeping within a spatial range to a moving target at each query time point.
The query is called CRQMAT, Continuous Range Queries on Multi-attribute
Trajectories. Let T (o) return the time period of an object. The function in Frentzos
et al. (2007) is employed to return the time-dependent distance between two
trajectories o1, o2 ∈ O, denoted by dist (o1, o2, T (o1) ∩ T (o2)).

Definition 8 (Continuous range queries on multi-attribute trajectories (CRQ-
MAT)) Given a query trajectory oq , a distance threshold d and an attribute
predicate Qa , CRQMAT aims to identify the result set O′ ⊆ O such that ∀ o′ ∈
O′ : (i) contain( o′.Att, Qa ) ; (ii) ∀ t ∈ T (oq) ∩ T (o′), dist( oq , o′, t ) ≤ d.

Consider an example in Fig. 9.4. Assume that o3 is a special object that carries
VIP passengers or sensitive materials. For security reasons, one detects whether the
special object is stalked. To this end, one makes use of multiple attributes to form a
semantic-richer query, e.g., Did any GRAY BENZ always keep 50 meters to o3. The
returned objects must satisfy the criteria: (i) time-dependent distance constraint and
(ii) attribute consistency. Although o1 is within 50 meters to o3, it is not a GRAY
BENZ and should not be returned. Note that o4 and o2 fulfill the condition during
[t1, t2] and [t2, t3], respectively, but they do not fulfill the condition during the overall
query time. As a result, the query reports {([t1, t2], o4), ([t2, t3], o2)}.

Fig. 9.4 Example of
CRQMAT

t1

t2

t3

o2
(GRAY, BENZ)

o1
(RED, BENZ)

o3
(SILVER, BMW)
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(GRAY, BENZ)

o5
(SILVER, BMW)

Did any (GRAY, BENZ) always keep within 50 meters to o3?

X
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Y
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Fig. 9.5 Example of
CkNN_MAT

X

Y

T

t0

t1

t2

t3

t4

o3(SILVER, BMW)

o5(SILVER, BMW)

o2(GRAY, BENZ)

o4(GRAY, BENZ)

o1(RED, BMW)

Continuously report the nearest SILVER BMW to o4

The third type of queries is called CkNN_MAT (Continuous k Nearest Neighbor
queries over Multi-attribute Trajectories) (Xu et al. 2018a). Such a query returns
the objects fulfilling the condition: (i) attribute consistency and (ii) time-dependent
distance closeness.

Definition 9 (Continuous k nearest neighbor queries over multi-attribute tra-
jectories (CkNN_MAT)) Given a query standard trajectory oq , an integer k and a
set of query attributes Qa , CkNN_MAT receives k trajectories denoted by O′ ⊆ O
at each query time such that (i) ∀ o ∈ O′ : contain( o.Att, Qa ) returns True; (ii) �
o′ ∈ O \ O′ : contain( o′.Att, Qa ) ∧ o′ is closer than ∀ o ∈ O ′ to oq .

An example is illustrated in Fig. 9.5. CkNN_MAT returns ([t1 , t2], o3), ([t2, t3],
o5), ([t3, t4], o3) indicating the key aspect that only objects fulfilling the attribute
condition will be evaluated on the time-dependent closeness. Although o1 and o2 are
closer than o3 and o5 to the query trajectory, they do not contain (SILVER BMW)
and will not be included. Since distances between moving objects vary over time,
results change at certain time points.

Generalizing query attribute expression Up to now, one assumes that the query
defines a single value for each attribute. It is possible that multiple values are
defined, e.g., Continuously report the nearest SILVER BMW or VW to o4. The
query expression is extended to support multiple values.

Definition 10 (An extension of query attributes) Qa = (X1, . . . , X|A|), Xi ⊆
dom(Ai) or Xi = ∅

At the concept level, Qa = (X1 , . . . , X|A|) defines the component for each
attribute over {A1, . . . , A|A|}, in which Xi is a set of attribute values. The multi-
value query SILVER BMW or VW is formed by Qa = ({SILVER}, {BMW, VW}).
At the implementation level, the query is defined by a relation in which a tuple
supports multi-valued attributes. The operator contain is extended accordingly:
contain(o.Att , Qa) returns True if ∀ Xi ∈Qa : o.Att[i] ∈ Xi or Xi = ∅.
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Attribute queries with negative values are also supported, that is, o.Att[j ] 
=
Qa[j ]. Negative queries can be transformed into set queries by setting Qa[j ] the
values that are not equal to the query, e.g., o.Att[j ] 
= RED⇒ o.Att[j ] = GRAY or
SILVER.

9.4 Indexing Multi-attribute Trajectories

9.4.1 An Overview of the Structure

To efficiently answer queries, the index should manage both spatio-temporal
trajectories and attributes in order to prune the search space on both predicates. A
hybrid structure is developed that consists of a 3-D R-tree and a composite structure
named BAR, as shown in Fig. 9.6. The 3-D R-tree that serves as indexing standard
trajectories is a height balanced tree. Each node contains an array of entries, each of
which couples (i) a pointer to a subtree or an object with (ii) a rectangle that bounds
data objects in the subtree. BAR is a composite structure that includes a B-tree, a
relation Att_Rel and a record file RF.

The system builds BAR on top of the 3-D R-tree by extracting attribute
values from multi-attribute trajectories. The structure builds the connection between
attribute values and R-tree nodes and enables us to know attribute values in a sub-
tree. For a leaf node, each entry stores a pointer to a tuple in the trajectory relation
and the tuple is accessed to obtain the attribute value. For a non-leaf node, attribute
values are collected by performing the union on values from child nodes. BAR
maintains attribute values in an efficient way such that one is able to fast settle
the R-tree nodes that (i) contain query attributes and (ii) fall into the range of the
query time. Before elaborating the index structure, we first introduce pre-processing
trajectories in order to have a compact dataset for building a good shape of the 3-
D R-tree (nodes have similar sizes in spatio-temporal dimensions). Sections 9.4.2
and 9.4.3 present grouping small units and partitioning trips according to spatio-
temporal distributions, respectively.

Fig. 9.6 Index architecture
BAR

3-D R-tree

B-Tree

Att Rel
Records

RF
<nid, b, t>
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9.4.2 Packing Trajectories

The R-tree is supposed to be built on sorted minimum bounding rectangles (MBRs)
that approximate trajectories. By observation, raw trajectories from GPS records
contain a large number of small units due to short time intervals or slow movement.
In order to reduce the size of the dataset, small pieces of movements are packed to
have fewer but larger units. Let ui denote the trajectory extent in the ith dimension.
The average extent over all units in the ith dimension is denoted by �i . Then, the
deviation of a unit is given as:

f (u) =
∑ ui

�i

, i ∈ {dx, dy, dt } (9.1)

A threshold Bound is defined to select small units. Duplicate values are removed
to overcome the impact of the number of small units. The lower bound is analytically
estimated.

Bound = Avg(Unique(�f (u)�)) ≥ Avg(�f (u)�) ≈ 3 (9.2)

Let U be the set of all temporal units and the unit with the maximum deviation is

u∗ = arg max
u∈U

Unique(�f (u)�) (9.3)

Not all values in {0, 1, . . . , � f (u∗) �} may be defined and thus the upper bound
is

Bound ≈ Avg(0+ . . .+ f (u∗)) ≤ f (u∗)
2

(9.4)

The packing can be treated as building the R-tree in a different way, as
demonstrated in Fig. 9.7. Small pieces of trajectories are packed to obtain large
units which are taken as the input for a leaf node. The index is built by bulk load
(Bercken and Seeger 2001; Bercken et al. 1997) which uses the same threshold
as the standard value to group units into one leaf node, guaranteeing the spatio-
temporal locality. The Bound is the average value over Unique(f (u)) and thus will
not result in grouping units into a large extent. During the packing procedure, neither
raw units are modified/simplified nor data is lost. One does not need extra storage
space and the same number of original units is maintained.

Demonstrate packing trajectories Using 500 GPS records of taxis, we calculate
the unit deviation and report their values as well as Bound in Fig. 9.8. One can
see that the majority of units have the derivation smaller than Bound. We pack
successive small units of the trajectory as one unit such that the deviation of the
unit is larger than Bound. The overall number of trajectory approximations (MBRs)
is greatly reduced, leading to a compact dataset to build the index.
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Fig. 9.7 The packing procedure. (a) Pack small units. (b) Build the index

Fig. 9.8 Effect of packing
trajectories

9.4.3 Partitioning Trajectories

Trajectories have different distributions over time and space. We would like to
decompose them into pieces which have similar sizes in terms of spatial and
temporal dimensions. This will benefit the index structure because spatio-temporal
extents of nodes are similar, derivations among nodes are small and the area of
inactive space2 is reduced. The time dimension is partitioned into a set of equal-
sized intervals {T1,. . . ,TK} (K > 1) and the 2-D space is partitioned into a set of
equal-sized cells. Given a multi-attribute trajectory, its spatio-temporal trajectory is
split into a set of so-called cell trajectories, each of which represents the movement
within a cell during an interval Tk ∈ {T1 ,. . . ,TK}.

Definition 11 (Cell trajectory) Let Cell(o, t) return the cell where o is located at
a time point t ∈ T (o). A cell trajectory o[i] is a subset of o.Trip such that (i) ∀ t1, t2
∈ T (o[i]) : Cell( o[i], t1 ) = Cell( o[i], t2 ) ; (ii) ∃ Tk ∈ {T1,. . . , TK}: T (o[i]) ⊆ Tk .

We partition each o ∈ O into a set of cell trajectories in three steps: (1) o.Trip
is decomposed into a sequence of sub trajectories such that the time of each sub
trajectory is contained by Tk; (2) For each sub trajectory, a set of cells intersecting
the 2-D bounding box of the trajectory is identified, which is efficiently determined

2The space is contained by the node but there are few or no data objects. One can also call this
dead space (Tao and Papadias 2001), meaning that the area will be evaluated but few objects are
there or even no object exists.
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Fig. 9.9 Partitioning o3 into
cell trajectories

o3

0 0.1 0.2 0.3 0.4 0
0.1

0.2
0.3

0.4
0

0.1
0.2
0.3
0.4

X
Y

T

(a)

0 0.1 0.2 0.3 0.4 0
0.1

0.2
0.3

0.4
0

0.1
0.2
0.3
0.4

X
Y

T

(b)

Fig. 9.10 Leaf node extents affected by partition. (a) Partition. (b) Without the partition

by finding the left-bottom and right-top cells; (3) Each sub trajectory is split into
a set of cell trajectories. We may encounter the case that the object enters the cell
more than once. As a consequence, there are several cell trajectories from one object
located in the same cell. Assume that the 2-D space is partitioned into 4× 4 cells and
o3 is contained by a time interval. The cells intersecting o3 and o3’s cell trajectories
are reported in Fig. 9.9. The index is built on cell trajectories sorted by time, cell id
and 3-D bounding box following a bulk loading approach (Bercken et al. 1997).

Demonstrate partitioning the trajectories We use part of real trajectories in the
experimental evaluation (66,000 taxi trajectories in Beijing) and build two indexes
on trajectories with and without performing the partition, respectively. The extents
on all dimensions are reported by randomly selecting 500 leaf nodes, as illustrated
in Fig. 9.10. Clearly, the deviation among different dimensions after the partition
is much smaller than that without the partition. This contributes to create a good
R-tree.

Grid granularity Grid granularity plays a pivotal role in the index design as an
arbitrary value cannot guarantee an optimal query performance. Assume the 2-D
space is partitioned into δ × δ equal-sized cells. If we set a coarse granularity, e.g.,
δ = 1, all trajectories are located in one cell. The index does not exhibit the spatio-
temporal proximity, increasing false positives in query processing. At the opposite
end, a fine granularity leads to small cells and each cell contains fewer trajectories
having small extent in x and y dimensions. This is good for preserving locality.
However, the finer the granularity is, more nodes are maintained. This is because
the number of cell trajectories grows proportionally as a spatio-temporal trajectory
is partitioned into all intersecting cells. As shown in Fig. 9.11, we will visit all cells
under the setting δ = 2 because they are within the d-distance to o3. However, in
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Fig. 9.11 Coarse and fine
grid granularities. (a) δ = 2.
(b) δ = 8
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cells 3© and 4©, cell trajectories of o2 and o4 do not fulfill the distance condition.
Considering δ = 8, although we can greatly reduce the search space (gray area),
more cells are accessed and some of them do not contain trajectories.

9.4.4 BAR

The relation Att_Rel The key component in BAR is the relation Att_Rel that
builds the connection between attribute values and R-tree nodes. The relation
schema is defined as

Att_Rel: (A_VAL:int, H: int, RecId: int).
For each attribute value, the system maintains a tuple for all nodes containing the

value at the same height. The nodes are stored in a record. A tuple stores the attribute
value, the height, and the record identifier. The relation is created as follows. Step 1,
for each a ∈ dom(A) the approach traverses the R-tree in depth-first search to collect
all nodes containing a and creates an intermediate tuple for each node. One sets a

as the key and records the node height. Step 2, the intermediate tuples are grouped
according to the height and a record stores all nodes containing a at each height. A
tuple is created to store the record id. Steps 1–2 are repeated for all a ∈ dom(A).
One creates a B-tree on Att_Rel by making a key combining A_VAL and H .

A unique key is required for each attribute value. The ideal case is that attribute
domains do not overlap. In practice, it may be not possible to have non-intersecting
domains, but this problem can be solved. One can use a composite number to
represent the attribute value. This is achieved by combining the attribute id and the
value. In turn, a two-dimensional point (i, a) (i ∈ [1, |A|], a ∈ dom(Ai)) is formed.
Then, a space-filling curve Z-order is used to map points of a two-dimensional space
to one-dimensional values. This is done by interleaving the binary coordinate values,
which guarantees that attribute domains do not overlap.

Record Storage The system maintains a list of items in each record. Each item is
represented by a three-tuple: (nid, b, t), in which nid is the node id, b is a bitmap
and t is a time interval. The bitmap represents the entries containing the attribute
value in a node and t is the overall time of entries. The design is made based on
the observation that the number of entries containing an attribute value cannot be
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1

b: 00000110

i = 3, report 2 (the 2nd bit) 2

b: 00000010

i = 1, report 1 (the 1st bit) 3

b: 00000000

return 2, 1

Fig. 9.12 Report defined bits

larger than the total number of entries, usually much smaller. Also, the number of
entries containing an attribute value increases from leaf level to root level. This is
because if a node contains the value, all its ancestor nodes will contain the value. To
efficiently settle the entries fulfilling the attribute condition, the bitmap is accessed
at first instead of performing a linear scan over all entries.

Let m denote the length of a collection of bit-vectors and E be the entry count of
a node. A mapping between m and E is performed. There are two cases. Case (i):
m ≥ E, each bit maps to an entry. If the ith (i ∈ [0, m)) entry contains the attribute,
one has b[i] = 1. Otherwise, b[i] = 0. Case (ii): m < E, each bit maps to a sequence
of entries. The corresponding entries for the ith bit are calculated by [i · !E

m
", (i +

1) · !E
m
"). The system defines b[i] = 1 if one of the entries contains the attribute.

The bitmap index incurs little storage overhead and is efficient for processing data in
small quantity due to the speed of bit-wise operations. The length m depends on the
implementation, e.g., a 32-bit integer. The bitmap fast determines qualified entries
for the intersection condition of several attributes. A data type is embedded into an
relation to represent the records.

Querying the bitmap In order to know the entries containing the query attribute,
the method accesses the bitmap to report defined bits. Let B = < 20, 21, . . . , 2m−1 >

be a sequence of integers. Given a bitmap b, its defined bits are reported as follows:
Step 1, by performing a binary search one finds the smallest 2i ∈ B such that 2i ≥
b. Step 2, if 2i = b, i is reported and the searching is terminated because the bit is
already found. If 2i > b, the procedure updates i - 1 and b = b - 2i−1. Then, steps 1–2
are repeated until b is equal to 0, during which bits are progressively reported from
high to low positions. Figure 9.12 depicts the procedure of reporting b = 00000110
in Record 3.

Let P denote the set of defined bit positions, initially empty. Two indexes s and e

are used to define the sth and eth integers in B. To find the smallest i such that 2i ≥
b, the procedure performs a binary search and terminates when either b is equal to
an integer in B or e = s + 1. In the former case, all bits are found already. In the latter
case, the position of the highest bit is found and put into P . To continue searching
the bits, the approach updates b as well as s and e by setting e← s and s← 0.

Time complexity One needs O(log m) to report the highest bit and the position is
p ∈ [0, m). To find the second highest bit, a binary search is performed, leading to
O(log p). The iteration time depends on p. The smaller p is, the fewer iterations
are needed. If p ∈ [m/2, m), log p = log m iterations are required. If p ∈ [0, m/2),
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log m − 1 iterations are achieved. To report the ith highest bit, the iteration time is
between [log m − (i− 1), log m], depending on where the bit is located. To sum up,

Theorem 1 (Upper Bound)

O(|b| log m) (9.5)

Theorem 2 (Lower Bound)

O

⎛

⎝
|b|∑

i=1

(log m− (i − 1))

⎞

⎠ = O(|b| log m− (|b| − 1)|b|/2) (9.6)

Proof One performs a binary search to look for |b| defined bits in O(m). In the
worst case, they are the |b| highest bits and each iteration needs the time O(log m),
leading to O(|b| log m). An optimal case is that one needs O(log m − 1) for the
second iteration when the position of the second highest bit is smaller than m

2 . If
the position of the second highest bit is ≤m

4 , one needs O(log m − 2) for the third
iteration and so on. $%

9.4.5 Updating the Index

The database needs to keep track of the incoming data and allow querying both
the historical and new data. An important task is to synchronize index structures in
order to be consistent with the underlying data space. Given a set of incoming multi-
attribute trajectories, inserting them into the index incurs updating two structures:
(i) 3-D R-tree and (ii) BAR. In general, a new R-tree named Ru is created on new
trajectories and BAR is built on Ru. To distinguish between historical and new
structures, the new structure is termed BARu. New created structures Ru and BARu

are inserted into historical structures R and BAR, as illustrated in Fig. 9.13.

Updating 3-D R-tree The incoming trajectories are packed and a new R-tree is
created by bulk load. The new R-tree is maintained by the same storage file as

incoming trajectories
delete BARu and
the update path Pu

record file

storage file

BARu

Ru

BAR

R

Fig. 9.13 An outline for updating
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the historical R-tree in order to simplify the procedure of accessing the structure.
Otherwise, one has to detect whether the accessed node belongs to the new R-tree
or the historical R-tree and select the corresponding file. It is a rather complex task
to maintain many storage files for frequent updates. Ru is inserted into R as follows.
Let Hu and H denote the heights of the two R-trees, respectively. Assume that Hu

≤ H . This is because the number of incoming trajectories for one update is usually
much smaller than that of the historical data. If Hu = H , a new root node is created
to hold root nodes of R and Ru as two entries. If Hu < H , the root node of Ru

is inserted as an entry to an appropriate node in the target tree R whose height is
equal to Hu. This is achieved by performing a top-down traversal in the target tree
until a node whose height is equivalent to the new R-tree. During the traversal, the
last entry of each accessed node is always chosen as the node to be processed at
the next level. This is because entries are increasingly sorted by time and incoming
trajectories are certainly located after existing trajectories. If the node is not full, the
root of the new R-tree is inserted as an entry into the node. Otherwise, a new node
is created for the R-tree.

Updating BAR We insert BARu into BAR: step 1, for each tuple in BARu.Att_Rel,
the procedure searches for the matching tuple in BAR.Att Rel and appends record
items for the nodes in Ru; step 2, record items are updated for each node appearing
in Pu.

Ru is inserted into R as a sub-tree and the nodes in Pu are updated in terms
of (i) spatio-temporal boxes; and (ii) attribute values. For each attribute value in
new trajectories, the method looks for tuples in BAR.Att_Rel having the value
and the appropriate height according to Pu. Note that the height is increasingly
numbered from leaf to root level, guaranteeing that the heights of R and Ru are
consistent. If the tuple is found, the record is accessed to update the item for
the node. Precisely, the bitmap and the time box are updated. Later, the record is
refreshed to synchronize the data.

New arrival trajectories incur an ongoing expansion of the time. The time range
of the nodes in Pu overlaps with that of new trajectories. To enhance the update
performance, record items are increasingly sorted on time and updated from the end
of the list.

Definition 12 (Sorted records) Drec = {<nid1, b1, t1 ),. . . ,(nidn, bn, tn > | t1 <

. . . < tn, nidi ∈ int, bi ∈ int, ti ∈ interval}

If a new root node is created, there is no matching tuple in BAR.Att_Rel.
Therefore, the tuple as well as the record are created and inserted into BAR.
Afterwards, BARu and Pu are dropped. Let Ou be the set of new arrival trajectories.
In order to achieve good performance for updating, a light-weight BAR named lw-
BAR is proposed to reduce the I/O cost. The idea is to buffer record items in lw-BAR
rather than updating BAR for each new trajectory. A relation and a B-tree make up
lw-BAR and there is no record file. The relation schema is of the form
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Fig. 9.14 Overflow and Update lw-BAR, BAR

lw-Att Rel:(A_VAL: int, H : int, RecItem: rec).
For each attribute value appearing in BARu, a tuple in lw-Att_Rel is maintained

for the node in Pu. In the update path, there is only one node at each height from
Hu to H , and therefore the number of updated items in a record is one. The lw-BAR
only stores one item in a record. To have a compact structure, the record component
(managed in a record file in BAR) is merged into the relation by replacing the
record id by the record item. Employing the lw-BAR, the number of I/O accesses
for updating will be considerably reduced because only one tuple is processed.

To accommodate frequent updates, the record items for Pu have to be updated
whenever Ru is inserted into R. If entries in the inserted node do not overflow, only
record items for historical nodes are updated. However, under a continuous updating
load, frequent insertions will cause the node overflow and lead to new nodes, as
illustrated in Fig. 9.14. In this scenario, the record item in lw-BAR is merged into
the one in BAR and another record item in lw-BAR is created for the new node.

9.4.6 The Generality

The proposed index structure is general from three aspects: (i) packing standard
trajectories, (ii) managing attribute values, and (iii) supporting a range of queries on
multi-attribute trajectories and also queries on standard trajectories.

Packing. The established method produces a compact data set by reducing the
number of approximations. There is no information loss and no extra storage
cost. The procedure can be applied for other trajectory queries to enhance the
performance.

BAR. The system is able to flexibly build the traditional trajectory index or
the hybrid index, depending on whether standard trajectories or multi-attribute
trajectories are processed. BAR is not tightly integrated into the spatio-temporal
index and therefore can be combined with other traditional trajectory indexes,
categorized into (i) R-tree based indexes, e.g., TB-tree (Pfoser and Jensen 2000),
MV3R-Tree (Tao and Papadias 2001), and (ii) grid based indexes, e.g., SETI
(Chakka et al. 2003). The well-established structures do not have to be modified,
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Fig. 9.15 Popularizing
BAR. (a) TB-tree. (b) Grid
index

(a) (b)

benefiting the system development. Figure 9.15 reports BAR built on top of TB-
tree and Grid index. One instantiates into the 3-D R-tree due to the advantage of
preserving the spatio-temporal proximity and the efficiency of answering nearest
neighbor queries (Güting et al. 2010b). The comparison with other trajectory
indexes is as follows.

• TB-tree. The structure has the trajectory preservation property that only stores
units of the same trajectory within a leaf node, resulting in a large spatial extent of
leaf nodes. The spatial proximity is not preserved because segments of different
trajectories that lie spatially close will be stored in different nodes. One cannot
effectively prune the search space by min and max distances, resulting in poor
performance for nearest neighbor queries. The STR-tree (Pfoser and Jensen
2000) introduces a parameter to balance between spatial properties and trajectory
preservation, but the main concern is to handle the spatial domain and treating
the temporal as a secondary issue.

• SETI. The space is divided into disjoint cells, each of which contains trajectory
segments that are completely within the cell and has a temporal index (an R-
tree) for objects’ time intervals. The number of spatial partitions plays a crucial
role in index design, but setting an optimal value is not trivial. Trajectories can
be uniformly and uniformly distributed, making the performance unstable. The
method focuses on the spatial proximity and has the limitation that the boundaries
of the spatial dimension remain constant. The SEB-tree (Song and Roussopoulos
2003) is similar to SETI where the space is partitioned into zones, but the
difference is that only the zone information is stored in the database without
knowing the exact location.

• MV3R-tree. The index combines a multi-version R-tree (MVR-tree) and a small
auxiliary 3-D R-tree built on the leaf nodes of the MVR-tree. The former is to
process time-stamp queries and the latter is to process long interval queries. Short
interval queries are processed by selecting the appropriate tree. Multi-attribute
trajectories deal with interval queries and thus the structure is essentially a 3-D
R-tree.

Queries. RQMAT, CRQMAT and CkNN_MAT can all be answered by employ-
ing the proposed index structure. One accesses BAR to find the subtrees in the
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spatio-temporal index fulfilling the attribute condition and then explores the spatio-
temporal index. If attributes are not considered, the algorithm directly searches the
spatio-temporal index without accessing BAR.

9.5 Query Algorithms

9.5.1 An Outline

The query procedure follows the filter-and-refine strategy. In general, one performs a
traversal on the index during which objects are pruned on both spatio-temporal and
attribute conditions. When the leaf level is reached, we open the node to retrieve
objects from the relation. The filter step returns a set of candidate trajectories,
each of which is likely to be in the result and will be iteratively evaluated, called
refinement.

9.5.2 Processing RQMAT

The query processing runs in two steps. Step 1 accesses BAR to determine the R-
tree nodes that contain query attribute values and overlap the query time. Step 2
takes the nodes returned from Step 1 as well as the spatio-temporal box to perform
a breadth-first search on the R-tree, as illustrated in Fig. 9.16.

To determine the objects containing query values, the procedure accesses BAR
to look for the nodes fulfilling the attribute condition. That is, the method searches
for the nodes in which there are trajectories containing Qa . For each attribute value,
BAR is accessed to find the tuple and get the record. Each item in the record stores a
node id and a bitmap marking the entries containing the value. The item is obtained
for each attribute value and the intersection operation is performed on bitmaps to
find the entries containing the query. The time dimension of the node is checked
to determine whether the item (a candidate node) exists in the returned node set,
denoted by Na . If not, an item (nid, b, t) is inserted by adding a counter, initialized
by 1. If yes, the counter is increased and the bitmap is updated by performing the
operation AND. In the end, items in Na that cannot contribute to the result are
removed.

Fig. 9.16 Procedure of
RQMAT

Qa BAR
Na

Qbox
3D

R-tree
multi-attribute
trajectories
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Fig. 9.17 Procedure of
CRQMAT
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9.5.3 Processing CRQMAT

The query CRQMAT is answered in three steps, as illustrated in Fig. 9.17. The index
structure GR2-tree includes a Grid R-tree and an attribute relation.

In Step 1, the spatio-temporal area restricted by oq and d is established. Based
on the grid partition one quickly determines the cells within the d-distance to the
query. This is achieved by computing the distance between the 2-D bounding box
of the query trajectory and the cell. The nodes that do not intersect the cells can
be safely pruned. Usually, a cell is not always within the d-distance to the query as
the location of the trajectory changes over time. Time-dependent cells are reported
and maintained by a composite structure including three components: cell tree, cell
set and cell list. The cell tree is a binary tree that records a time interval and the
cells intersecting the query trajectory. The structure reports all cells within the d-
distance to the query during a time interval. A cell may be valid at different time
intervals. The method maintains a cell set by removing duplicate results. The cell
list determines whether all trajectories in a leaf node are within the d-distance to the
query. If yes, the exact distance computation can be avoided as a leaf node stores
trajectories whose movements are restricted in a cell.

An example By referring to Fig. 9.18a, we enlarge the bounding box of o3 in both
x and y dimensions to find all cells within the d-distance to the query (depicted in
gray). Two dashed lines are depicted to help figure out the cells. The time interval
T (o3) intersects {T1, T2, T3}. The cells {c5,1, c5,2, c6,1, c6,2, c7,2} are within the
d-distance to the query at T1, but they should not be considered at T3. There are
three marked cells {c5,5, c6,3, c7,4} at T2 ∪ T3. Thus, the cell trajectory of o1 in c5,5
and the cell trajectory of o4 in c7,4 can be directly returned without performing the
accurate distance computation (the attribute condition is not considered here). The
structure of the time-dependent cells is reported in Fig. 9.18b. The cell set consists
of three parts C1, C2 and C3, partitioned by time intervals. The cell tree is built
on cells with corresponding time intervals. Since cells {c5,5, c6,3, c7,4} are marked
cells, they are put into the cell list with time intervals.

In Step 2, the procedure traverses the R-tree to return a set of candidates, each of
which contains Qa and has the distance to oq less than d. Given an R-tree node, the
algorithm determines the cells intersecting the node. The cells reported in step 1 are
used to prune the node if there is no overlap between the cells intersecting the node
and the cells within the d-distance to the query. When a leaf node is accessed, the
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Fig. 9.18 An example of establishing qualified cells. (a) Cells within d to oq . (b) Cell tree, cell
set and cell list

Fig. 9.19 Distance curve
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algorithm iteratively computes the exact distance between each trajectory and the
query. The distance is an approximate value calculated by using minimum bounding
boxes of trajectories. A candidate is marked if its maximum distance to oq is less
than d.

Step 3 iteratively checks the accurate distance. If the candidate is marked, it will
be directly put into the result set. Otherwise, the actual distance is computed. A
trajectory may be split because only the piece of movements fulfilling the distance
condition is reported. Two trajectories are mapped into pieces with the same time.
The task is to compute the intersections among a set of distance curves to determine
the curves whose values to oq are smaller than d, and return the parts corresponding
to these pieces. The time-dependent distance is represented by a square root of a
quadratic polynomial, as demonstrated in Fig. 9.19.
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Fig. 9.20 Procedure of CkNN_MAT

9.5.4 Processing CkNN_MAT

In the filter step, the structure BAR is accessed to determine the R-tree nodes
including query attribute values and intersecting the query time, denoted by Na .
Next, the procedure takes Na coupled with oq and k as input to traverse the R-Tree
in breadth-first order, during which the search space is pruned by taking into account
spatial and temporal parameters as well as attributes. The filter returns a set of
candidates, each of which fulfills the attribute condition and approximately belongs
to k nearest neighbors. In the refinement step, each candidate trajectory is unpacked
to get the original temporal units and perform the exact distance computation to
return k nearest neighbors at each query time. The query procedure is shown in
Fig. 9.20.

Collecting R-tree nodes The R-tree nodes containing Qa are collected level by
level. For each a ∈ Qa , the procedure starts from h = 1 and accesses BAR to find
the records. For each item (nid, b, t) in the record, one checks whether the item
identified by nid is already in Na . If not, the method inserts the item into Na by
attaching a counter, initialized by 1. Such a value represents the number of query
attribute values contained in the node. The extended record item is denoted by λ. If
the item already exists in Na , the counter is increased and the bitmap is updated by
performing the bitwise AND. This is because a node fulfilling the condition must
contain all values in Qa .

Lemma 1 Given an item λ ∈Na , the item is pruned if λ.counter 
= |Qa| or λ.b = 0.

Proof (i) λ.counter 
= |Qa| : Obviously, it is impossible that λ.counter > |Qa|
as distinct values are counted. If λ.counter < |Qa|, this means that the number of
attributes contained by λ is less than |Qa| and therefore λ can be safely pruned. (ii)

λ.b = 0 : There is no entry in the node containing all a ∈ Qa and λ can be safely
pruned. $%
An extension: multiple values An extension is made to allow a query attribute
with multiple values. A node is satisfied if it contains one of the values. The
aforementioned λ ∈ Na is extended to (nid, b, t , aid) by adding the attribute id.
The bitwise OR is performed on bitmaps for values from the same attribute.

Lemma 2 Let AttCount(Qa) ( ≤ |Qa| ) return the number of query attributes. An
item λ ∈ Na is pruned if λ.counter 
= AttCount(Qa) or λ.b = 0.
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mo1: <u1, u2, u3>, (RED, BMW)

mo2: <u4, u5>, (GRAY, BENZ)

mo3: <u6, u7>, (SILVER, BMW)

mo4 : <u8, u9, u10>, (GRAY, BENZ)

mo5 : <u11>, (SILVER, BMW)
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Fig. 9.21 3D R-Tree
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<N0, 00000010, 1>

Fig. 9.22 Reporting nodes at H = 0

An example Using trajectories in Fig. 9.5, we report the 3D R-Tree and the
structure BAR for attributes SILVER and BMW in Fig. 9.21. Consider Qa =
(SILVER, BMW). At H = 1, we access records 1 and 3, and have b = 00000111
for BMW and b = 0000010 for SILVER. By performing the bitwise “AND”
operation, the 0th and 2nd entries are not defined and therefore N0 and N2 are
pruned. Figure 9.22 depicts the procedure of determining nodes for Qa = <SILVER,
BMW> at H = 0 (t is omitted).

Reporting candidates The approach traverses the R-tree from root to leaf level
and uses a list to maintain accessed nodes. For each visited node, the algorithm
determines whether (i) the node fulfills the attribute condition; and (ii) objects in the
subtree will contribute to the result. The query needs only k neighbors. If there are
k candidates at each defined time, objects that are further than current candidates
to oq can be safely pruned. To determine whether there are enough candidates, a
segment tree is maintained by storing the time interval, the distance and the number
of trajectories in a node. One can do the pre-computation for each attribute value and
use it for |Qa| = 1. However, such a value has to be calculated on-the-fly for |Qa|>
1, which is a costly procedure. The sub-tree will be traversed to count the number
of trajectories containing query attributes as one needs to determine the intersection
set of different query attributes.

The refinement This step includes two phases: (i) unpack each candidate to obtain
temporal units; (ii) apply the slightly modified plane-sweep algorithm (Bentley and
Ottmann 1979) to determine the k lowest time-dependent distance curves to report
the result. Phase (ii) takes in a sequence of candidate trajectories ordered on time.
The time-dependent distances to the query trajectory are computed to find k nearest
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objects at each time point. To achieve this, one determines pieces of movements
with overlapping time and applies the distance function by employing the linear
interpolation on each piece (Forlizzi et al. 2000; Frentzos et al. 2005). The method
manipulates temporal units to calculate the distance. Split points between curves are
found to determine the k lowest pieces of curves.

9.6 The System Development

9.6.1 The Architecture

A prototype database system is developed to efficiently manage multi-attribute
trajectories including data representation, index structures, query algorithms and
optimizations (Wang and Xu 2017; Xu and Güting 2017; Wei and Xu 2018). Since
standard trajectories have been supported in a database system SECONDO (Güting
et al. 2010a), the task is to develop modules for multi-attribute trajectories and
seamlessly integrate them into the system. Key system components are shown in
Fig. 9.23.

The query interface animates standard trajectories and displays multiple
attributes. Not only objects whose locations changing over time are visualized,
but also their time-dependent attribute values are displayed. Queries on multi-
attribute trajectories include several predicates, leading to different query plans.
The optimization selects the best plan according to the analytical model. Then,
the corresponding algorithm is executed and the index structure is accessed. The
index component is in principle made up of a 3-D R-tree and a composite structure
BAR. The 3-D R-tree preserves the spatio-temporal proximity, and BAR manages
attribute values. The data storage component includes several modules such as
spatial and temporal data, standard trajectories, relational tables, and attributes.

Fig. 9.23 The system
architecture
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Fig. 9.24 GPS-clean
workflow
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9.6.2 A Tool for GPS Data Clean

Real-life data is far from being reliable enough for applications predominantly due
to a large number of errors such as inaccurate measurement, noisy, distortion and
outliers, mainly caused by the limitations of devices or signal loss. A data cleaning
tool will serve as the pre-processing module to bring data from a messy to a neat
state. The primary task is the minimization or the total removal, if possible, of GPS
errors, and the repairing of trajectories after removing some sample points. The tool
can be treated as an objective function Clean: RawData → HighQualityData and
must be an integral part of a moving objects database.

The procedure consists of two steps: error detection and data repairing, as
illustrated in Fig. 9.24. Error detection identifies incorrect data values, which can be
classified into two categories: point error and trajectory error. The first is identified
by checking the data item in each individual record such as time-stamp and long/lat,
and the second is established by evaluating a sequence of records of the same object
such as distortion and long time still. Data repairing involves updating the available
data to remove any detected errors, and derives and fills in missing data from the
existing data.

Refining a good clean function requires a rich set of detection rules, filtering
operations, statistical analysis and missing value imputation methods. Prediction
models can be built by learning features from historical data with different charac-
ters. To evaluate the data quality, we define data metrics to measure the quality and
employ machine learning techniques to classify the raw mobility data.

9.6.3 The Generation of Multi-attribute Values and Query
Interface

There is a number of public trajectory data but attribute values are not easy to collect.
A tool is developed to generate attributes. One can flexibly scale the number of
attributes and the domain of each attribute. For each attribute, the value is randomly
and uniformly selected from its domain. By making use of real trajectories from a
company DataTang (2018) (http://factory.datatang.com/en/) and synthetic attribute
values, the chapter demonstrates queries RQMAT, CRQMAT, CkNN_MAT, as
illustrated in Fig. 9.25. Queries are “Find all SILVER VWs intersecting the query
window”, “Keep reporting all BENZs within 5km to the target” and “Continuously
report the nearest RED BMW (or SILVER VM, BLACK BENZ) to the query

http://factory.datatang.com/en/
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(a) (b) (c)

Fig. 9.25 Query and visualize multi-attribute trajectories. (a) RQMAT. (b) CRQMAT. (c)
CkNN_MAT

(a) (b)

Fig. 9.26 The 3-D query interface. (a) Dynamic attributes. (b) Visualizing 3-D R-tree

trajectory”. Objects in the figure are results at a time point and the interface provides
the animation. Users can also define multiple values for each attribute. The query
interface provides zoom in/out to let users get a closer/further view.

By making use of cab mobility traces from Piorkowski et al. (2009), the system
demonstrates querying time-dependent attributes. Each taxi is associated with a flag
marking whether the taxi is free or occupied. To make a good judgment about
the shape of the R-tree, a tool graphically viewing the structure is needed. The
developed query interface supports displaying dynamic attributes and visualizing
the R-tree in a 3-D view, as illustrated in Fig. 9.26.

9.6.4 MDBF: A Tool for Monitoring Database Files

File monitoring plays an essential role in operating system that constantly watches
folders and files. Actions are triggered when files are created or accessed (read-
/write). A tool called MDBF (Monitoring Database Files) is developed to monitor
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Fig. 9.27 The framework of
MDBF

database files during the query execution (Wei and Xu 2018). The tool consists of
three components: file detector, storage and analysis system, and graphical interface,
as illustrated in Fig. 9.27. The file detector, serving as the key component, makes use
of a tool Strace, which is a diagnostic, debugging and instructional userspace utility.
Strace monitors and tampers with interactions between processes and Linux kernel,
including system calling, signal delivering, process state changing, and read and
write blocks of data.

When a query is executed, the tool detects database file operations and produces
a monitoring log. The log data is automatically reported to the filter and formatted
in a relational table in the system. The filtering is performed by extracting the data
related to database file operations and storing action statistics. Strace captures all
system calls in the query evaluation, but file operations are the main tasks. The data
flow received from Strace is transformed to a certain format transferred between
system modules. The information of accessing files is displayed when the querying
is running and also recorded as historical data. A thorough analysis is performed
on log data. MDBF monitors queries incurring database file operations. A graphical
interface visualizes the access content to help understanding the query progress.
Users can compare the access information of different files.

9.7 Performance Evaluation

The proposal is implemented in C/C++ and the evaluation is performed in an
extensible database system SECONDO (Güting et al. 2010a). The system is a
freely open source software and has an extensible architecture well-supported for
spatial and spatio-temporal data management. A standard PC (Intel(R) Core(TM)
i7-4770CPU, 3.4GHz, 4GB memory, 2TB hard disk) running Suse Linux 13.1 (32
bits, kernel version 3.11.6) is used.



9 Multi-attribute Trajectory Data Management 231

Name #Trips #GPS Records
BTaxi 992,997 55,950,357

(a)

X(Y ) 30% · ΔX (ΔY )
T 40% · ΔT

|Qa| {1, 2, 3, 4, 5}
(b)

Fig. 9.28 Datasets and parameters. (a) Standard trajectories. (b) Query parameters

9.7.1 Evaluation of RQMAT

We use real taxi trajectories in Beijing from DataTang (2018) (http://factory.
datatang.com/en/). The statistics of standard trajectories and query parameters are
reported in Fig. 9.28. Qbox is randomly generated with sizes X = 30% · �X and Y

= 30% ·�Y , in which �X and �Y are lengths of x and y dimensions, respectively.
The time interval is 40% of the overall time. One can arbitrarily enlarge or shrink
the spatio-temporal window. We did some preliminary tests and found that smaller
windows may not receive any result. We focus on evaluating the performance
affected by attributes and hence keep the same size for Qbox .

In the evaluation, CPU time and I/O accesses are used as performance metrics
and the results are averaged over 20 runs. Five alternative methods are included: (i)
3D R-tree, (ii) 3D R-tree + Attribute Set (RAttSet for short). The idea is similar
to IR-tree (Cong et al. 2009) employed in spatial keyword querying that augments
each R-tree node with a summary of keywords in the subtree, (iii) 4D R-tree, for
each multi-attribute trajectory, we distribute (a1, . . . , a|A|) into |A| trajectories, each
of which defines the 4-D data: location, time and a single-attribute value. (iv) IOC-
Tree (Han et al. 2015), the structure consists of an inverted index and a set of
three-dimensional quadtrees, each of which corresponds to an attribute and stores
relevant trajectory points and (v) HAGI (Su et al. 2007), the method employs a
hierarchical aggregate grid index. The evaluation demonstrates the impact of |Qa|
on the performance. Figure 9.29 shows that our method is an order of magnitude
faster than other methods in most settings.

9.7.2 Evaluation of CRQMAT

We use real GPS records of Beijing taxis (DataTang (2018) http://factory.datatang.
com/en/). The dataset statistics and the settings of query parameters (|Qa| and d)
are reported in Table 9.5. We perform the evaluation by comparing our method
named GR2-tree (Grid R-tree with an attribute Relation) with five baseline methods
in terms of scalability and efficiency: (i) 3-D R-tree; (ii) RIB, we adapt the method
in Wu et al. (2012). Multi-attribute trajectories are grouped on attribute values by
applying Z-order to map the |A|-dimensional value to one-dimensional. Each R-tree
node contains a pointer to an inverted bitmap that records the positions of entries

http://factory.datatang.com/en/
http://factory.datatang.com/en/
http://factory.datatang.com/en/
http://factory.datatang.com/en/
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(a) (b)

Fig. 9.29 Effect of |Qa | (|A| = 10). (a) CPU Time (sec). (b) I/O Accesses(× 103)

Table 9.5 Datasets and parameter settings

Name #GPS Records |O| |A| dom(A) X and Y ranges

BTaxi 235634511 4220435 10 [1, 151] [21, 119958], [0, 119653]

Query settings

|Qa |: {1, 2, 3, 4, 5} d (km): {1, 5, 10, 20, 50}

Table 9.6 Datasets for
scaling |O| Name |O|

BT1 533635

BT2 1009579

BT3 1424273

BT4 2757312

BT5 4220435

defining the attribute value. A relation stores the bitmaps by setting the fanout as the
bit length; (iii) 4-D R-tree; (iv) IOC-Tree (Han et al. 2015); (v) HAGI (Su et al.
2007).

Scalability. To vary the data size, different subsets of BTAXI are selected, as
summarized in Table 9.6. The performance result is reported in Fig. 9.30. When
the data size grows, the costs of all methods rise proportionally, but our method
outperforms baseline methods by a factor of 5-50x on the largest dataset.

Varying |Qa|. We perform the evaluation by varying the number of query
attributes. The results, as reported in Fig. 9.31, demonstrate that our method
substantially outperforms baseline methods in all settings. When |Qa| increases,
the performance becomes better as the attribute predicate is more selective.

Varying the distance d. We evaluate the performance affected by d, as reported
in Fig. 9.32. When d increases the performance degrades as expected due to more
objects being processed. The advantage of our method is significant. When d

increases, more cells will be included in the search space.
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Table 9.7 Datasets statistics and parameters

|O| Temporal units #

Name (million) (million) |A| dom(A)

TAXI 3.0 32.5 1 [1, 4]

BUS 1.1 8.3 1 [1, 384]

MAT5 1.8 110.88 10 [1, 127]

|Qa | {1, 2, 3, 4, 5}

k {1, 5, 10, 20, 50, 100}

9.7.3 Evaluation of CkNN_MAT

Both real and synthetic datasets are used, shown in Table 9.7. Real datasets are
from a company called Datatang (2018) (http://factory.datatang.com/en/): Shanghai
taxis (TAXI) and Beijing buses (BUS). TAXI includes GPS records from four taxi
companies in 2014. The company id is defined as an attribute. BUS contains bus
card records in 2014. Each record stores the time and bus stops where passengers
gets on and off the bus. Each bus is identified by its id and bus stops are identified
by the order in the route and long/lat. We build bus trips from these records. This
is done by grouping records on bus id and then sorting them on time. There are 384
bus routes in total and the route id is set as an attribute. Part of the data can be found
at http://dbgroup.nuaa.edu.cn/jianqiu/. Synthetic datasets are generated by utilizing
a tool MWGen (Xu and Güting 2012). For each query, oq is randomly selected over
the dataset. The settings for Qa and k are listed, in which default values are in bold.
Each a ∈Qa is a stochastic value from the domain.

We develop three baseline methods for performance comparison. (i) 4D R-tree.
(ii) 3D R-tree + Attribute Relation (3D RAR). The method in Güting et al. (2010b)
is extended to support proposed queries by recording the set of attributes contained
by each node. During the query procedure, we first determine whether the accessed
node contains Qa . If yes, we open the node and move forward to spatial and
temporal examinations. Otherwise, we prune the node. However, the R-tree does
not know the number of trajectories containing Qa for each node because queries
issue different attributes. Consequently, the criterion of pruning trajectories based on
distance and the number of trajectories can not be used. (iii) 3D R-tree + Inverted
Bitmap (RIB) (Wu et al. 2012). Our method is named BAR.

Scaling the number of attributes and the domain. We evaluate the scalability
affected by attributes: |A| and dom(A). Figure 9.33 reports the settings. Figure 9.34
reports the result on scaling |A|. Our method achieves the best performance in
all settings and RIB performs competitively to our method when |A| = 3. RIB
manages attributes and the attribute predicate has a good selectivity when |Qa|
= |A|. However, when |A| increases, dom(A) rises proportionally, and the RIB
performance degrades significantly. We analyze that Z-order values cannot well
preserve the locality when the dimension becomes large, and the linear scanning
method of determining entries is inferior to our bitmap querying approach. When

http://factory.datatang.com/en/
http://dbgroup.nuaa.edu.cn/jianqiu/
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Fig. 9.33 Datasets for
Scalability. (a) |A|. (b)
dom(A)
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Fig. 9.34 Scaling |A|. (a) CPU Time (s). (b) I/O Accesses(× 103)
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Fig. 9.35 Scaling dom(A), |A| = 10. (a) CPU Time (s). (b) I/O Accesses(× 103)

scaling dom(A), our method also outperforms baseline methods. One can see the
trend that the performance increases when dom(A) becomes large as the attribute
predicate is more selective. The 4D R-tree has poor performance because the dataset
is enlarged when dom(A) increases (Fig. 9.35).

Effect by k. We evaluate the performance effected by k and report the results
in Figs. 9.36 and 9.37. TAXI and BUS contain only one attribute and therefore we
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set |Qa| = 1 for them. All methods are not sensitive to k. Our method significantly
outperforms alternative methods for TAXI. For BUS, the RIB performance is close
to ours due to good attribute selectivity. BUS has |A| = 1 and dom(A) is [1, 384]. In
contrast, we have |A| = 1, dom(A) = [1, 4] for TAXI.

The analysis. Consider the 4D R-tree. To build the index, each multi-attribute
trajectory is decomposed into |A| trajectories, each of which contains a single
attribute. This enlarges the dataset by |A| times. Also, the attribute is approximately
evaluated when traversing the index. The method 3D RAR is able to select R-tree
nodes containing individual attributes, but cannot determine whether data objects
contain all query attributes if |Qa| > 1. RIB achieves good performance when the
attribute predicate is quite selective, for example, (i) |Qa| = |A|, or (ii) dom(A) is
large and |Qa| = 1. Thus, this method is limited in scope. Our method achieves the
stable performance and generalizes to queries on standard trajectories, achieved by
skipping the step of accessing BAR.
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9.8 Future Directions

9.8.1 Data Analytics

By making use of multi-attribute trajectories, one is able to provide a fine-grained
analysis on the traffic condition by discovering dense areas such as taxi pick-ups
and drop-offs and crowded bus/metro stations. An optimal deployment can be made
by recommending the ride-sharing and redesigning the scheduling/route. Based on
the number of passengers on the bus/metro at populated places, the system can
recommend people to advance or postpone their trips in a small derivation in order
to avoid the peak time and reduce the waiting time.

Mining and analyzing multi-attribute trajectories is also an interesting topic. One
can utilize the rich contexts from attributes to fully understand spatio-temporal
trajectories and discover potential relationships and behavior. For example, in order
to know whether large vehicles such as buses and trucks have a great negative
impact on traffic flow, the system should consider not only the number of vehicles
in crowded places but also the percentage of large vehicles. Based on that, policies
can be made to improve the traffic. In some applications, attribute values change
over time, e.g., taxi status (free or occupied), fuel consumption and the number
of passengers in a bus. The data representation needs to be extended to support
dynamic attributes. One solution is to define a moving integer/real to represent
the time-dependent value. The question is how to efficiently manage several
dynamic attributes in the framework and adjust the index structure correspondingly.
Application queries and analysis can be performed by considering spatio-temporal
parameters and dynamic attribute values to find some interesting behavior.

9.8.2 Intelligent Trajectory Data Management

The artificial intelligence community has accomplished many promising results,
while the specialization to moving objects will offer new opportunities because
solutions are fitted to particular properties of mobile data. Due to the increasing
number of models and structures, a number of parameters are required to control the
system. An automatic approach of recommending system settings is preferred that
leverages past experiences of workloads. Machine learning models can be trained
by transferring previous experiences to apply for a new application.

The query interface should be powerful enough to support arbitrary queries and
simple enough to let users express their questions in natural language. User queries
are expressed by natural language but will be translated into an executable language
in the system. However, employing natural language to query the database is a
non-trivial task. Most database systems are queried by structured query language
which is often difficult to write for non-experts. Moving objects databases should
be capable of providing a communication model that translates natural language
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questions into well-formed queries such that the user and the system can understand
each other. There are hundreds of published papers about querying moving objects
in which example queries are expressed in natural languages, but an interface
translating natural languages into an SQL or SQL-like language is not available.

9.9 Conclusions

This chapter introduces multi-attribute trajectories that enrich the spatio-temporal
trajectory representation. A range of new queries is studied that search for the target
fulfilling both spatio-temporal and attribute conditions. A hybrid index structure
is designed and updating the index is supported. Efficient query algorithms are
developed with optimization strageties. A systematic design is made such that the
proposed structure is also able to process standard trajectories with little effort.
We develope a prototype database system for multi-attribute trajectories including
data storage, access methods, index structures, data generators, monitoring tools
and the query interface. The performance evaluation is conducted by using real and
synthetic datasets.
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Chapter 10
Mining Colocation from Big Geo-Spatial
Event Data on GPU

Arpan Man Sainju and Zhe Jiang

10.1 Introduction

Given a set of spatial features and their instances, co-location mining aims to find
subsets of features whose instances are frequently located together. Examples of
colocation patterns include symbiotic relationships between species such as Nile
Crocodiles and Egyptian Plover, as well as environmental factors and disease events
(e.g., air pollution and lung cancer).

Societal applications: Colocation mining is important in many applications that
aim to find associations between different spatial events or factors. For example,
in public safety, law enforcement agencies are interested in finding relationships
between different crime event types and potential crime generators. In ecology,
scientists analyze common spatial footprints of various species to capture their
interactions and spatial distributions. In public health, identifying relationships
between human disease and potential environmental causes is an important prob-
lem. In climate science, colocation patterns help reveal relationships between the
occurrence of different climate extreme events. In location based service, colocation
patterns help identify travelers that share the same favourite locations to promote
effective tour recommendation.

Challenges: Mining colocation patterns from big spatial event data poses several
computational challenges. First, in order to evaluate if a candidate colocation pattern
is prevalent, we need to generate its instances. This is computationally expensive
due to checking spatial neighborhood relationships between different instances,
particularly when the number of instances is large and instances are clumpy (e.g.,
many instances are within the same spatial neighborhoods). Second, the number
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of candidate colocation patterns are exponential to the number of spatial features.
Evaluating a large number of candidate patterns can be computationally prohibitive.
Finally, the distribution of event instances in the space may be uneven, making it
hard to design parallel data structure and algorithms.

We introduce GPU colocation mining algorithms based on a grid index, including
a cell-aggregate-based upper bound filter and two refinement algorithms (Sainju
and Jiang 2017). Cell-aggregate-based filter is easier to implement on GPU and is
also insensitive to pattern clumpiness (the average number of overlaying colocation
instances for a given colocation instance) compared with the existing multi-
resolution filter (Huang et al. 2004). We use a GPU platform due to its better energy
efficiency and pricing compared to Map-reduce based clouds.

Scope and outline: We focus on spatial colocation patterns defined by the
event-centric models (Huang et al. 2004). Other colocation definitions such as
Voronoi diagram based focuses on addressing the problem of predefining proximity
threshold among co-located instances. This is beyond the scope of this paper.
We assume the underlying space is Euclidean space. In this chapter, we are only
concerned with the comparison of computational performance of various colocation
mining algorithms.

The outline of the chapter is as follows. Section 10.2 briefly introduces GPU
computing. Section 10.3 discusses on some of the related works. Section 10.4
reviews basic concepts and the definition of the colocation mining problem.
Section 10.5 introduces the GPU colocation pattern mining algorithms, and analyzes
the theoretical properties of algorithm correctness and completeness. Section 10.6
summarizes our experimental evaluation of algorithms on both synthetic datasets
and a real world dataset. Section 10.7 discusses memory bottleneck issues in our
approach and concludes the chapter with potential future research directions.

10.2 GPU Computing

GPU refers to Graphical Processing Unit is a processor that was specialized
for graphics processing but are now gaining popularity to accelerate scientific
computations. In contrast to CPU, GPU contains thousands of lightweight cores,
which are optimized for data-parallel tasks with simple control logic in order to
maximize throughput. GPU threads are grouped into thread blocks, which can
utilize the limited amount of resources called register and shared memory. The
number of threads in a thread block is limited by the architecture of the GPU. GPUs
have to wait for the threads to finish in the thread blocks. Therefore, the runtime of
a thread block is usually the maximum runtime of threads in the same block.
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10.3 Related Work

Colocation pattern mining has been studied extensively in the literature, including
early work on spatial association rule mining (Koperski and Han 1995; Morimoto
2001) and colocation patterns based on event-centric model (Huang et al. 2004).
Various algorithms have been proposed to efficiently identify colocation patterns,
including Apriori generator and multi-resolution upper bound filter (Huang et al.
2004), partial join (Yoo et al. 2004) and joinless approach (Yoo and Shekhar
2006), iCPI tree based colocation mining algorithms (Boinski and Zakrzewicz
2012). There are also works on identifying regional (Mohan et al. 2011; Wang
et al. 2013; Liu et al. 2015) or zonal (Celik et al. 2007) colocation patterns, and
statistically significant colocation patterns (Barua and Sander 2011, 2014, 2017),
top-K prevalent colocation patterns (Yoo and Bow 2011) or prevalent patterns
without thresholding (Huang et al. 2003). Existing algorithms are mostly sequential,
and can be insufficient when the number of event instances is very large (e.g., several
millions). Recently, parallel colocation mining algorithms have been proposed based
on the Map-reduce framework (Yoo et al. 2014) to handle a large data volume.
However, these algorithms need a large number of nodes to scale up, which is
economically expensive, and their reducer nodes have a bottleneck of aggregating
all instances of the same colocation patterns. Another work proposes a GPU based
parallel colocation mining algorithm (Andrzejewski and Boinski 2013) using iCPI
tree (Andrzejewski and Boinski 2014; Yoo and Boulware 2014; Andrzejewski and
Boinski 2015) and the joinless approach, but this method assumes that the number
of neighbors for each instance is within a small constant (e.g., 32), and thus can be
inefficient when instances are dense and unevenly distributed.

10.4 Problem Statement

10.4.1 Basic Concepts

This subsection reviews some basic concepts based on which the colocation mining
problem can be defined. More details on the concepts are in Huang et al. (2004).

Spatial feature and instances: A spatial feature is a categorical attribute such as
a crime event type (e.g., assault, drunk driving). For each spatial feature, there can
be multiple feature instances at the same or different point locations (e.g., multiple
instances of the same crime type “assault”). In the example of Fig. 10.1a, there are
three spatial features (A, B and C). For spatial feature A, there are three instances
(A1, A2, and A3). Two feature instances are spatial neighbors if their spatial distance
is smaller than a threshold. Two or more instances form a clique if every pair of
instances are spatial neighbors.
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Spatial colocation pattern: If the set of instances in a clique are from different
feature types, then this set of instances is called a colocation (pattern) instance, and
the corresponding set of features is a colocation pattern. The cardinality or size of
a colocation pattern is the number of features involved. For example, in Fig. 10.1a,
(A1, B1, C1) is an instance of colocation pattern (A, B, C) with a size or cardinality
of 3. If we put all the instances of a colocation pattern as different rows of a table,
the table is called an instance table. For example, in Fig. 10.1b, the instance table
of colocation pattern (A, B) has three row instances, as shown in the third table of
the bottom panel. A spatial colocation pattern is prevalent (significant) if its feature
instances are frequently located within the same neighborhood cliques. In order to
quantify the prevalence or frequency, an interestingness measure called participation
index has been proposed (Huang et al. 2004).

The participation ratio of a spatial feature within a candidate colocation pattern
is the ratio of the number of unique feature instances that participate in colocation
instances to the total number of feature instances. For example, in Fig. 10.1, the
participation ratio of B in candidate colocation pattern {A,B} is 2

3 since only B1
and B2 participate into colocation instances ({A1, B1}, {A3, B2}). The participation
index (PI ) of a candidate colocation pattern is the minimum of participation ratios
among all member features. For example, the participation index of the candidate
colocation pattern {A,B} in Fig. 10.1 is the minimum of 3

3 and 2
3 , and is thus 2

3 .
We use “candidate colocation patterns” to refer to those whose participation index
values are undecided. PI is used as the measure of prevalence of a colocation
pattern because it follows apriori property. It basically implies that if the pattern
is not prevalent then any of its superset pattern will also not be prevalent which can
be exploited for computational efficiency.

10.4.2 Problem Definition

We now introduce the formal definition of colocation mining problem (Huang et al.
2004).
Given:

• A set of spatial features and their instances
• Spatial neighborhood distance threshold
• Minimum threshold of participation index: θ

Find:
• All colocation patterns whose participation index are above or equal to θ

Objective:
• Minimize computational time cost

Constraint:
• Spatial neighborhood relationships are defined in Euclidean space

Figure 10.1 provides a problem example. The input data contains 12 instances
of 3 spatial features A, B, and C. The neighborhood distance threshold is d. The
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Fig. 10.1 A problem example with inputs and outputs. (a) Input spatial features and instances; (b)
Candidate and prevalent colocation patterns, instance tables

prevalence threshold is 0.6. The output prevalent colocation patterns include {A,B}
(participation index 0.67) and {B,C} (participation index 0.67). Colocation mining
is similar to association rule mining in market basket analysis (Agrawal et al.
1994), but is different in that there are no given “transactions” in continuous space.
Generation colocation instance tables (“transactions”) is the most computationally
intensive part.

Our baseline approach (Huang et al. 2004) uses the filter and refine strategy for
colocation pattern mining. They proposed multiresolution filter that generates the
coarse instance table for each candidate colocation pattern without performing any
computationally expensive distance computation. The coarse instance table contains
the entire actual as well as some false instances of the candidate colocation pattern.
We can use this coarse instance table to compute the coarse participation index.
Coarse participation index is the upper bound of the actual participation index for a
given candidate colocation pattern. Hence, if the upper bound coarse participation
index is lower than the prevalence threshold, we do not have to generate the
computationally intensive instance table to calculate the actual participation index.

10.5 Approach

This section introduces our GPU colocation mining algorithm. We start with the
overview of algorithm structure, and then describe the main part for parallel
algorithms implemented in GPU. We prove the correctness and completeness of
the algorithm.
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10.5.1 Algorithm Overview

The overall structure of our algorithm is similar to the one proposed by Huang
et al. in 2004 (Huang et al. 2004). We design a novel upper-bound filter based
on aggregated counts of feature instances in grid cells. Compared with the multi-
resolution filter (Huang et al. 2004), our upper bound filter is easier to parallelize on
GPU and does not rely on the assumption that colocation instances are clumpy into
a small number of cells.

The overall structure of our algorithm is shown in Algorithm 1. The algorithm
identifies all prevalent colocation patterns iteratively. Candidate colocation patterns
and their instance tables of cardinality k + 1 are generated, based on prevalent
patterns and their instance tables of cardinality k. Each candidate pattern of
cardinality k + 1 is then evaluated based on the participation index computed from
its instance table. For cardinality k = 1, prevalent colocation patterns simply consist
of the set of input features, and their instance tables are the instance lists for each
feature (step 1 in Algorithm 1). Step 2 generates candidate patterns Ck+1 of size k+1
based on prevalent patterns Pk using Apriori property (Agrawal et al. 1994) (i.e., a
candidate pattern of size k+1 cannot be prevalent and thus needs not to be generated
if any subset pattern of size k is not prevalent). Step 4 builds a grid index on spatial
point instances with the cell size equal to the distance threshold. Step 5 counts the
number of instances for each feature in every cell. This will be used in our upper
bound filter. Step 7 starts the iteration. As long as the set of candidate patterns Ck+1
is not empty, the algorithm evaluate each candidate pattern c ∈ Ck+1. When evaluate
a candidate pattern, the algorithm first computes an upper bound of its participation
index in parallel using GPU kernels based on the grid index (step 9–10). If the
upper bound is below the threshold, the candidate pattern is pruned out. Otherwise,
the algorithm runs into a refinement phase, generating the pattern instance table
Ik+1.c and computing the participation index PI . We design two different parallel
refinement algorithms to speed up instance table generation: one using the grid to
rule out unnecessary joins, the other using prefix-based hash joins (steps 13 to 16).
After all prevalent patterns of cardinality k+1 are identified, the algorithm go to the
next iteration (steps 19–22). Figure 10.1b illustrates the execution trace for k = 1
and k = 2.

10.5.2 Cell-Aggregate-Based Upper Bound Filter

The cell aggregate based upper bound filter first overlays a regular grid with its
cell size equal to the distance threshold (shown in Fig. 10.2), and then computes an
upper bound of participation index based on aggregated counts of feature instances
in cells. Our Filter is different from the multi-resolution filter (Huang et al. 2004)
in that the computation of upper bound is not based on generating coarse scale
colocation instance tables. There are two main advantages of cell aggregate based
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Fig. 10.2 Grid-aggregate based Upper Bound Filter: (a) A regular grid (b) An execution trace of
upper bound filter

filter on GPU: first, it is easily parallelizable and can leverage the large number of
GPU cores; second, its performance does not rely on the assumption that pattern
instances are clumpy into a small number of cells, which is required by the multi-
resolution filter.

To introduce cell aggregate based filter, we define a key concept of quadruplet.
A quadruplet of a cell is a set of four cells, including the cell itself as well as its
neighbors on the right, bottom, and right bottom. For a cell that is located on the
right and bottom boundary of the grid, not all four cells exist and its quadruplet is
defined empty (these cells will still be covered by other quadruplets). For example,
in Fig. 10.2, the quadruplet of cell 0 includes cells (0, 1, 4, 5), while the quadruplet
of cell 15 is an empty set.

Based on the concept of quadruplet, we can check all potential colocation
instances by examining all quadruplets. When examining a quadruplet, our filter
computes the aggregated count of instances for every feature in the candidate
pattern. If the aggregated count for any feature is zero, then there cannot exist
colocation instances in the quadruplet. Otherwise, we pretend that all these feature
instances participate into colocation pattern instances. This tends to overestimate
the participating instances of a colocation pattern (an “upper bound”), but avoids
expensive spatial join operations.

Algorithm 2 shows details of the cell aggregate based filter. The algo-
rithms have three main variables, including CountMap, PCountMap, and
QuadrupletAggregate. CountMap records the true aggregated instance count
for each feature in every cell. PCountMap records the instance count for each
feature in every cell that potentially participates in the candidate colocation pattern.
QuadrupletAggregate is a local array for each cell to record the aggregated count
of instances within the quadruplet for each pattern feature. Specifically, steps 1 to 11
computes potential number of participating instances for each feature in each cell in
parallel. A kernel thread is allocated to each cell. For a specific cell i, the kernel first
gets the quadruplet (step 2). Step 3 initializes a local array QuadrupletAggregate



248 A. M. Sainju and Z. Jiang

Algorithm 1 Parallel-Colocation-Miner
Input: A set of spatial features F

Input: Instances of each spatial features I [F ]
Input: Neighborhood distance threshold d

Input: Minimum prevalence threshold θ

Output: All prevalent colocation patterns P

1: Initialize P ← ∅, k← 1, Ck ← F , Pk ← F

2: Initialize Ck+1 ← APRIORIGEN(Pk , k + 1)
3: Initialize Pk+1 ← ∅
4: Initialize instance tables Ik (k = 1) by feature instances
5: Overlay a regular grid with cell size d × d (total N cells)
6: Compute CountMap[N × |F |] in one round instance scanning
7: while |Ck+1| > 0 do
8: for each c ∈ Ck+1 do
9: Initialize PCountMap[N × |c|] ← 0

10: Upperbound =PARALLELCELLAGGREGATEFILTER(CountMap,PCountMap,c)
11: if Upperbound ≥ θ then
12: BitMap← 0 //initialize bitmap for instances of each feature
13: if Hash Join Refinement then
14: (Ik+1.c, P I)← PARALLELHASHJOINREFINE(Ik, c)

15: else if Grid Search Refinement then
16: (Ik+1.c, P I)← PARALLELGRIDSEARCHREFINE(Ik, CInstances, c, BitMap)

17: if PI ≥ θ then
18: Pk+1 = Pk+1 ∪ c

19: P ← P ∪ Pk+1 //add prevalent patterns to results
20: k← k + 1; Ck ← Ck+1; Pk ← Pk+1, Ik ← Ik+1 //prepare next iteration
21: Ck+1 ← APRIORIGEN(Pk , k + 1)
22: Pk+1 ← ∅
23: return P

with zero values. Steps 4 to 8 compute the aggregated count of instances for
each pattern feature (QuadrupletAggregate[f ]). If aggregated count of any
pattern feature is zero, then there cannot be any candidate pattern instance in the
quadruplet and thus the parallel kernel thread terminates (step 8). Otherwise, all
feature instances in the quadruplet can potentially participate into colocation pattern
instances. Steps 9 to 11 record the potential participating instances from each cell
in the quadruplet. This is done by copying instance counts from CountMap to
PCountMap for the 4 cells in the quadruplet. It is worth noting that duplicated-
counting on the same cell is avoided since different GPU kernel threads may
over-write the count for a cell with the same value. Finally, steps 12 to 14 compute
the upper bound of participation index based on counts of potential participating
instances in PCountMap. We use built in GPU library to compute the total counts
of distinct participating instances in step 13.

Figure 10.2 provides an illustrative execution trace of Algorithm 2. Figure 10.2a
shows the input spatial instances overlaid with a regular grid. The distance threshold
is d. Assume that the candidate colocation pattern is (A,B). Figure 10.2b shows
how the filter works. The CountMap array stores the number of instances for
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Algorithm 2 ParallelCellAggregateFilter
Input: CountMap, feature instance count in cells
Input: PCountMap, participating feature instance count in cells
Input: PR, participation ratio
Input: Candidate colocation pattern c

Output: Upper bound of participation index, upperBound

1: for each cell i do in parallel
2: QuadrupletCells = GETQUADRUPLET(cell i)
3: QuadrupletAggregate[|c|] ← 0
4: for each feature f ∈ c do
5: for each cell j ∈ QuadrupletCells do
6: QuadrupletAggregate[f ] ← QuadrupletAggregate[f ] + CountMap[j ][f ]
7: if QuadrupletAggregate[f ] == 0 then
8: finish the parallel thread for cell i //no pattern instance in the quadruplet
9: for each feature f ∈ c do

10: for each cell j ∈ QuadrupletCells do
11: PCountMap[j ][f ] ← CountMap[j ][f ] //participating instance count
12: for each feature f ∈ c do
13: PR[f ] = PARALLELSUM(CountMap[ ][f ])/|I1.f |
14: upperBound = MIN(PR)
15: return upperBound

feature A and B in each cell. A GPU thread is assigned to each cell to compute
the counts of feature instances within its quadruplet. For example, the leftmost
GPU thread is assigned to cell 0. The aggregated instance count for this quadruplet
((0, 1, 4, 5)) is shown by the leftmost QuadrupletCount array, with 2 instances
for A and 1 instance for B. Since instances from both features exist, the number
potential participating instances in these four cells (PCountMap) are copied from
corresponding cell values in CountMap, as shown by the fork branches close to the
bottom. In contrast, the quadruplet of cell 1 ((1, 2, 5, 6)) does not contain instances
of A, and thus cannot contain colocation pattern instances.

Lemma 1 The participation index of a colocation pattern in the cell-aggregate-
based filter is an upper bound of the true participation index value.

Proof The proof is based on the following fact. We create an upper bound to the
true number of neighboring points in neighboring cells (quadruplet) by assuming
that all pairs of points of neighboring cells are within the distance threshold, which
coincides with the cell size. Of course, some of them will not, but it is impossible
for points not within neighboring cells to be neighboring with respect to the distance
threshold. $%
Theorem 1 The cell aggregate based upper bound filter is correct and complete.

Proof The proof is based on Lemma 1. The algorithm is complete (it does not
mistakenly prune out any prevalent pattern) due to the upper bound property. The
algorithm is correct since it computes the exact participation index of a candidate
pattern if it passes the upper bound filter. $%
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10.5.3 Refinement Algorithms

The goal of the refinement phase is to generate the instance table of a candidate
colocation pattern, and to compute participation index. Generating colocation
instance tables is the main computational bottleneck, and thus is done in GPU. As
shown in Algorithm 1, we have two options for refinement algorithms, a geometric
approach based on grid search called ParallelGridSearchRefine and a combinatorics
approach based on prefix-based hash join called ParallelHashJoinRefine, similar to
sequential algorithms discussed in Huang et al. (2004). We now introduce the two
algorithms below.

Algorithm 3 ParallelGridSearchRefine
Input: Ik , instance table of patterns of size k

Input: CellInstances, feature instances for each cell
Input: BitMap, bitmap for participating instances from different features
Output: Ik+1.c, instance table of colocation c (size k + 1) if prevalent
Output: PI , participation index of pattern c

1: //Ik.(c[1..k]) is instance table of sub-pattern of c with first k features
2:
3: Initialize Ik+1.c← ∅
4: for each row instance rIns ∈ Ik.(c[1..k]) do in parallel
5: get neighborhood cells of first feature instance in rIns

6: for each cell i in neighborhood do
7: for each instance ins of feature type c[k + 1] in cell i do
8: if ins is neighbor of all feature instances in rIns then
9: Create new row instance of c, rInsC =< rIns, ins >

10: Ik+1.c = Ik+1.c ∪ rInsC //add new instance into c’s instance table
11: for each feature f ∈ c do
12: BitMap[f ][rInsC[f ]] = true
13: for each feature f ∈ c do
14: PR[f ] = PARALLELSUM(BitMap[ ][f ])/|I1.f |
15: PI = MIN(PR)
16: return Ik+1.c, PI

Geometric approach: The geometric approach generate an instance table of a
size k+ 1 pattern based on the instance table of a size k pattern. For example, when
generating the instance table of pattern (A,B,C), it starts from the instance table
of (A,B) and joins each row of the table with instances of the last feature type C.
In order to reduce redundant computation, we utilize the grid index and only check
the instances of the last feature type within neighboring cells. Algorithm 3 provides
details of the grid-based refinement algorithm. Step 2 is kernel assignment. Each
kernel thread first finds out all neighboring cells of the size k row instance rIns

(step 3). Then, for each neighboring cell, the kernel thread finds out every instance
ins of the last feature type in the cell. It joins ins with size k instance rIns to create
a size k + 1 pattern instance rInsC if they are spatial neighbors (steps 4 to 7). The
new pattern instance rInsC is inserted into the final instance table Ik+1.c, and a
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Fig. 10.3 Illustrative execution trace for grid-based refinement

bitmap is updated to mark the instances that participate into the colocation pattern
(steps 8 to 10). Finally, the participation ratio and participation index are computed
(steps 11 to 13).

Figure 10.3 shows an example. The input data is the same as Fig. 10.1. Assume
that the candidate pattern is (A,B,C). A kernel thread is assigned to each row
instance of table (A,B). Thread 1 is assigned to instance (A1, B1), and it scans
all neighboring cells of A1 (cells 0, 1, 4, 5). Based on the cell to instance index,
the kernel thread checks all instances of feature C (C1, C3, C2) in these cells, and
conducts a spatial join operation. The final output size k + 1 instances from this
thread are (A1, B1, C1), (A1, B1, C3), and (A1, B1, C2).

One issue in GPU implementation is that we need to allocate memory for an
output instance table, and specify the specific memory location to which each
kernel thread writes its results. For example, in the output instance table of pattern
(A,B,C) in Fig. 10.3, the first kernel thread generates 3 row instances, so the second
kernel thread has to start with the 4th row when writing its instances. It is hard
to predetermine the total required memory and enforcing memory coalesce when
threads are writing results. Thus, we use a two-run strategy in which in the first run
we can calculate the exact size of output instance table as well as slot counts of the
number of row instances generated by each kernel thread. In the second run, we
allocate memory for output instance table, and use the slot counts to guide which
row a kernel thread needs to start from when writing results. Similar to the grid-
based refinement, we use two-run strategy to allocate memory and enforce memory
coalesce.

Prefix-based hash Join based refinement: Another option is to generate size
k + 1 instance table by a combinatorics approach. For example, when generating
instance table of pattern (A,B,C), we can join rows in instance tables of (A,B)

and (A,C). The join condition is that the first k instances from the two tables should
be the same, and the last instances from two tables should be spatial neighbors. For
example, when joining a row (A1, B1) with another row (A1, C1), we check that
the first instance is the same (A1), and the last instances B1 and C1 are spatial
neighbors. So these two rows are joined to form a new row instance (A1, B1, C1).
In sequential implementations (Huang et al. 2004), the join process can be done
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Algorithm 4 ParallelHashJoinRefine
Input: Ik , instance table of patterns of size k

Input: BitMap, bitmap for instances of different features
Output: Ik+1.c, instance table of colocation c if prevalent
Output: PI , participation index of pattern c

1: //Ik.c1 and Ik.c2 instance tables of c1 = c[1..k] and c2 = c[1..k − 1, k + 1]
2: for each row instance rIns1 in Ik.c1 do in parallel
3: for each row instance rIns2 in Ik.c2 starting with rIns1[1] do
4: if rIns1 and rIns2 forms an instance of c then
5: Create new instance rInsC by merging rIns1 and rIns2
6: Ik+1.c← Ik+1.c ∪ rInsC

7: for each feature f ∈ c do
8: BitMap[f ].[rInsC[f ]] = true
9: for each feature f ∈ c do

10: PR[f ] = PARALLELSUM(BitMap[ ][f ])/|I1.f |
11: PI = MIN(PR)
12: return Ik+1.c, PI

efficiently through sort-merge join. However, for GPU algorithm, sort merge is
difficult due to the order, dependency and multi-attribute keys. We choose to use
hash join instead. A prefix-based hash index is built on the second table based on
instances of the first spatial feature. Details are shown in Algorithm 4. A kernel
thread is allocated to each row in the first size k instance table Ik.c1 (step 2). The
kernel thread then scans all rows in the second size k instance table Ik.c2 that has the
same first feature instance. For example, if the row in the first table is (A1, B1), then
the thread only scans rows starting with A1 in the instance table of (A,C). If the
two rows satisfy the join condition (sharing the same first k instances, and having
last instances as neighbors), a size k+ 1 instance is created and inserted into output
size k + 1 table (steps 5 to 8). Finally, the participation index is computed (steps 9
to 11). It is worth noting that when generating instance tables of size k = 2 patterns,
we use the grid-based method since hash-index cannot be created in that case.

An illustrative execution trace is shown in Fig. 10.4. The raw input data is still the
same. Each kernel thread is allocated to a row in instance table (A,B). For example,
thread 1 works on pattern instance (A1, B1), and scans instance table (A,C). Based
on the hash index on A instances, the thread only needs to check (A1, C1), (A1, C3)

Fig. 10.4 Illustrative execution trace for hash-join-based refinement
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and (A1, C2). It turns out that B1 is a neighbor for all C1, C2 and C3. So these
instances are inserted to the final output instance table (A,B,C).

10.6 Evaluation

The goals of our evaluation are to:

• Evaluate the speedup of GPU colocation algorithms against a CPU algorithm.
• Compare cell-aggregate-based filter with multi-resolution filter on GPU.
• Compare grid-based refinement with hash-join-based refinement on GPU.
• Test the sensitivity of GPU algorithms to different factors.

Experiment Setup: As shown in Fig. 10.5, we implemented four GPU colocation
mining algorithms with two filter options (M for multi-resolution filter and C for
cell-aggregate based filter) and two refinement options (G for grid-based and H
for hash-join based). We also implemented a CPU colocation mining algorithms by
Huang et al. (2004) (multi-resolution filter, grid-based instance table generation for
size k = 2, and sort-merge based instance table generation for size k > 2). We only
compared computational performance since all methods produce the same patterns.
For each experiment, we measured the time cost of one run for CPU algorithm, and
averaged time cost of 10 runs for GPU algorithms. Algorithms were implemented
in C++ and CUDA, and run on a Dell workstation with Intel(R) Xeon(R) CPU E5-
2687w v4 @ 3.00 GHz, 64 GB main memory, and a Nvidia Quadro K6000 GPU
with 2880 cores and 12 GB memory.

Dataset description: The real dataset contains 13 crime types and 165,000 crime
event instances from Seattle in 2012 (City of Seattle 2012). The synthetic data
is generated similarly to Huang et al. (2004). Figure 10.5b, c provide illustrative
examples. We first chose a study area size of 10,000 × 10,000, a neighborhood

GPU Colocation Miner

Filter
(Cell aggregate(C), 

Multi-Resolution (M))

Prevalence 
Threshold

Distance 
ThresholdSynthetic Dataset

CPU Colocation MinerMaximum 
pattern 

cardinality

Number of
instances

Clumpiness

Refine
(Grid based (G), 

Hash Join Based (H))

Real Dataset

(a) (b) (c)

Fig. 10.5 Experiment Setup (a) Experiment design with different candidate approaches; (b) An
example of synthetic dataset generated with 2 maximal patterns (A,B,C) and (D,E,F ), each
pattern with 2 instances with a clumpiness of 1, 2 noise instances N1 and N2; (c) Another synthetic
dataset similar to (b) but with a clumpiness of 2
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distance threshold (also the size of a grid cell) of 10, a maximal pattern cardinality
of 5, and the number of maximal colocation patterns as 2. The total number of
features was 12 (5×2 plus 2 additional noise features). We then generated a number
of instances for each maximal colocation pattern. Their locations were randomly
distributed to different cells according to the clumpiness (i.e., the number of
overlaying colocation instances within the same neighborhood, higher clumpiness
means larger instance tables). In our experiments, we varied the number of instances
and clumpiness to test sensitivity.

Evaluation metric: We used the speedup of the GPU algorithms over the CPU
algorithm on computational time.

10.6.1 Results on Synthetic Data

10.6.1.1 Effect of the Number of Instances

We conducted this experiment with two different parameter settings. For both
settings, the minimum participation index threshold was 0.5. In the first setting, we
set the clumpiness to 1 (very low clumpiness), and varied the number of feature
instances as 250,000, 500,000, 1,000,000, 1,500,000 and 2,000,000. Results are
summarized in Fig. 10.6a. GPU algorithms in the plot are based on grid-based
filtering. We can see that the speedup of both GPU algorithms increases with
the number of feature instances. The grid-based refinement gradually becomes
superior over the hash join based refinement in GPU algorithms as the number of
instances increases. The reason can be that the cell-instance index in grid-based
refinement is done once and for all, while the prefix-based hash index in hash-join
based refinement needs to be created repeatedly for each new instance table. The
comparison of two approaches with 250,000 instances (the first two points in the
curve) may be less conclusive since the running time for both approaches is too
small (far below one second).

In the second setting, we set the clumpiness value as 20, and varied the number of
feature instances as 50,000, 100,000, 150,000, 200,000, and 250,000. The number
of feature instances were set smaller in this setting due to the fact that given the
same number of feature instances, a higher clumpiness value results in far more
colocation pattern instances (see Fig. 10.5b versus c) but we only have limited
memory. The results are summarized in Fig. 10.6b. We can see that the grid based
refinement is persistently better than hash-join based refinement (around 30 versus
5). The reason is that when the clumpiness is high, there are a large number of
pattern instances being formed combinatorially. Many of them share the same prefix
(i.e., first feature instance). Thus, each GPU kernel thread in prefix-based hash-
join refinement was loaded with heavy computation when doing the join operation,
impacting the parallel performance. In contrast, in the grid-based refinement, each
GPU kernel thread only scans a limited number of instances within neighboring
cells.
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Fig. 10.6 Results on synthetic datasets: (a) effect of the number of instances with clumpiness as
1 (b) effect of the number of instances with clumpiness as 20 (c) effect of clumpiness with the
number of instances as 250k

10.6.1.2 Effect of Clumpiness

We set the number of instances to 250k, and the prevalence threshold to 0.5. Grid-
based filtering was used for GPU algorithms. We varied the clumpiness value as 1,
5, 10, 15, and 20. Results in Fig. 10.6c confirm with our analysis above that when
clumpiness is higher, the performance of grid-based refinement gets better while the
performance of hash-join based refinement gets worse.

10.6.1.3 Comparison on Filter and Refinement

We also compared the computational time of filter and refinement phases of GPU
algorithms in the above experiments for the cases with the largest number of
instances. Details are summarized in Table 10.1. When clumpiness is 1, the grid-
based filter is much faster than the multi-resolution filter in GPU algorithms (0.2 s
versus 0.8 s), making the overall GPU speedup better (37.9 and 28.4 times versus
17.9 times). The reason is that a low clumpiness significantly impacts the multi-
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Table 10.1 Comparison of filter and refinement on synthetic data (time in secs)

Clumpiness Approaches Filter time Refine time Total time Speedup

1 CPU baseline 15.3 18.8 34.1 -

GPU-Filter:M, Refine:H 0.8 1.1 1.9 17.9x

GPU-Filter:C, Refine:G 0.2 0.7 0.9 37.9x
GPU-Filter:C, Refine:H 0.2 1.0 1.2 28.4x

20 CPU Baseline 0.9 407.5 408.4 -

GPU-Filter:M, Refine:H 0.1 97.3 97.4 4.2x

GPU-Filter:C, Refine:G 0.1 13.8 13.9 29.4x
GPU-Filter:C, Refine:H 0.1 96.9 97 4.2x

resolution filter (coarse scale instance tables cannot be much smaller than true
instance tables), while the grid-based filter was less sensitive to clumpiness (more
robust) since the time cost of grid-based filtering does not depend on instance
distribution. When clumpiness is 20, the refinement phase becomes the bottleneck.
The grid-based refinement has a significantly higher speedup than the hash-join
refinement (29.4 times versus 4.2 times).

10.6.2 Results on Real World Dataset

10.6.2.1 Effect of Minimum Participation Index Threshold

We fixed the distance threshold as 10 m and varied the prevalence thresholds from
0.3 to 0.9 (we did not chose thresholds lower than 0.3, because there would be
too many instance tables exceeding our memory capacity). The clumpiness of the
real dataset was high due to a large density of points. Results are summarized
in Fig. 10.7. As we can see, as the prevalence threshold gets higher, the pruning
ratio (candidate patterns being pruned out) gets improved (Fig. 10.7a). The GPU
algorithm with grid based refinement is much better than the GPU algorithm with
hash join based refinement. This is consistent with the results on synthetic datasets
when the clumpiness is high.

10.6.2.2 Comparison of Filter and Refinement

We also compared the detailed computational time in the filter and refinement
phases. The distance threshold was 10 m, and the prevalent threshold was 0.3.
Results are summarized in Table 10.2. Due to a high clumpiness, the refinement
phase is the bottleneck, and the grid-based refinement is better than the hash-join
based refinement (63.2 times overall speedup versus 12.7 times overall speedup).
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Fig. 10.7 Results on real world dataset: (a) pruning ratio versus prevalence thresholds (b) speedup
versus prevalence thresholds

Table 10.2 Comparison of filter and refinement on real dataset (time in secs)

Approaches Filter time Refine time Total time Speedup

CPU baseline 6.5 340.9 347.4 -

GPU-Filter:M, Refine:H 0.2 26. 26.8 13x

GPU-Filter:C, Refine:G 0.5 5.0 5.5 63.2x
GPU-Filter:C, Refine:H 0.5 26.9 27.4 12.7x

10.7 Discussion and Conclusion

Results show that GPU algorithms are promising for the colocation mining problem.
One limitation of the GPU algorithm is memory bottleneck. Our algorithm generates
instance tables of candidate colocation patterns in GPU. When spatial points are
dense and the number of points is large (e.g., millions), such instance tables can
reach gigabytes in size. In case that the GPU global memory is insufficient for a
very large instance table, we can slice it into smaller pieces, compute one piece
each time, and transfer results to the host memory. We need to store all relevant
instance tables of cardinality k in host memory when computing instance tables of
cardinality k + 1. Thus, the host memory size can also be a bottleneck. This may
be less a concern in future when the main memory price gets lower. Our recent
work (Sainju et al. 2018) focuses on addressing those memory management issues.

This chapter investigates GPU-based parallel colocation mining algorithms. We
introduced a cell-aggregate-based upper bound filter, which is easier to implement
on GPU and less sensitive to data clumpiness compared with the multi-resolution
filter. We also design two GPU refinement algorithms, based on grid-based search
and prefix based hash-join. We provide theoretical analysis on the correctness and
completeness of the algorithms. Experimental results on both real world data and



258 A. M. Sainju and Z. Jiang

synthetic data on various parameter settings show that the GPU algorithms are
promising.

In future work, we will explore further refinements on GPU implementation to
achieve higher speedup, e.g., avoid redundant distance computation in instance table
generation. We will also explore other computational pruning methods.
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Chapter 11
Automatic Urban Road Network
Extraction From Massive GPS
Trajectories of Taxis

Song Gao, Mingxiao Li, Jinmeng Rao, Gengchen Mai, Timothy Prestby,
Joseph Marks, and Yingjie Hu

11.1 Introduction

Increasingly, mobile Internet, ubiquitous sensors (Hancke and Hancke Jr. 2013) and
growing Volunteering Geographic Information (VGI) (Goodchild 2007) altogether
boost the construction of transportation information infrastructures (Shaw 2010).
Urban road networks, as the important carriers of transportation in cities, provide
basic support for human & goods transportation and various Location-Based
Services (LBS) such as vehicle route planning and navigation, which are the keys to
smart transportation. However, how to build and update the road network in a rapid
and cost-effective way still remains to be a challenging problem.

Traditional methods such as field surveying and map digitalization are usually
costly and cannot produce up-to-date urban road networks in time (Tao 2000).
With the rapid development of information and communication technologies (ICTs)
and positioning technologies such as the Global Positioning System (GPS), huge
amounts of vehicle movement trajectory data have been accumulated (Liu et al.
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2012). By leveraging these massive GPS trajectories, automatic construction and
updates to road networks can be achieved in near real-time (Li et al. 2012). Although
the idea for the extraction of urban road networks from GPS trajectory data is
intuitive, there is still a considerable gap between the raw GPS traces and the road
network structure. On the one hand, the GPS trajectories have non-negligible errors
due to the inherent noise in GPS, which makes it difficult to distinguish two closely
located road segments in some cases (Cao and Krumm 2009). On the other hand,
complex urban environment such as “urban canyon” often leads to the deterioration
in the GPS precision, making the trajectories less accurate to represent the road
segments. In addition, the diversity and complexity of the road network structure in
some places (e.g., roundabouts, parking lots) also cause challenges for road network
extraction from raw GPS trajectories. Besides the GPS precision and the complex
road network structure, the preprocessing of trajectory data is another challenge.
A large proportion of the GPS data on straight road segments are redundant since
fewer points are already enough to reconstruct the linear road segments, whereas
the curved roads required more points. Also, when there is traffic congestion, more
redundant data (e.g., stay points) will be produced (Zheng 2015). These situations
may cause high computational costs and limit the road network extraction efficiency.
In addition, trajectory outliers (i.e., anomalies) will make it non-trivial to reconstruct
the road network and need to be addressed during the preprocessing step (Zheng
2015; Wang et al. 2019).

To this end, in this chapter, we focus on the trajectory sampling, compression,
and clustering techniques to update road geometry information with regard to the
spatial coverage and topological connectivity. We conduct a literature review in
the following section and then propose a geospatial-big-data-driven framework
to achieve an automatic road network extraction. Specifically, we first introduce
a trajectory compression approach to reduce redundant trajectory data and avoid
the unnecessary computational cost. Then we present an anisotropic density-based
trajectory clustering with noise (ADCN) algorithm (Mai et al. 2018) for identifying
the trajectory points on the road segments, and finally, a kernel density estimation
and vectorization approach is utilized for road network extraction.

11.2 Literature Review

Existing literature on road network extraction methods can be classified into two
categories: density-based approaches and cluster-based approaches.

11.2.1 Density-Based Approaches

The first category mainly relies on density estimation and raster processing tech-
niques. It converts trajectory data into raster data based on density and extracts the
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road network using morphological methods (Davies et al. 2006; Wu et al. 2007;
Shi et al. 2009; Zhao et al. 2011; Biagioni and Eriksson 2012; Jiang et al. 2012;
Wang et al. 2015b; Kuntzsch et al. 2016; Tang et al. 2017). For example, Davies
et al. (2006) first generated a 2D histogram based on the GPS trajectories, then
applied a global density threshold on the cells to find potential road areas, and
finally computed road centerlines based on the Voronoi graph. Shi et al. (2009)
converted vehicle GPS trajectories into a road network bitmap, then computed
the road network skeleton on the bitmap, and finally extracted the vector road
network map data from the skeleton. Biagioni and Eriksson (2012) generated a
road network skeleton based on a kernel-density method and use a map-matching
method to achieve topology reconstruction. Kuntzsch et al. (2016) formulated an
explicit intersection model which integrated consistency measurements with the
raw trajectory data to better perform geometry and topology reconstruction of the
network; Tang et al. (2017) employed Delaunay triangulation with the trajectory
stream fusion to improve the map generation accuracy. However, the difference in
trajectory density has a great influence on the extraction effect, which could make
these methods unreliable in cases with heterogenous trajectory density.

11.2.2 Cluster-Based Approaches

The second category adopted clustering methods to generate road networks
(Edelkamp and Schrödl 2003; Lee et al. 2007; Worrall et al. 2007; Wu et al.
2013; Cao and Krumm 2009; Wang et al. 2015a; Aronov et al. 2016; Stanojevic
et al. 2018). Trajectory clustering is usually used to find representative trajectories
shared by different objects such as individuals or vehicles (Zheng 2015). For
example, Gaffney and Smyth (1999) and Cadez et al. (2000) used a regression
mixture model and an Expectation-Maximization (EM) model to cluster trajectories
according to the overall distance between two trajectories. Lee et al. (2007) proposed
TRACLUS, a modified density-based trajectory clustering algorithm for grouping
close trajectory line segments into clusters, which is based on the original point-
based DBSCAN algorithm. Li et al. (2010) further introduced an incremental
clustering algorithm that reduces the computational and storage cost. In practice,
trajectory clustering can be naturally used for road network extraction. Edelkamp
and Schrödl (2003) applied the K-means algorithm to cluster the trajectories and
then fit the road centerline with the spline curve. This approach is suitable for data
with small density difference, low noise, and high frequency sampling. Worrall
et al. (2007) used clustering to extract the skeleton points of the road network
and used the least squares regression method to connect the skeleton points to
generate the road network. Cao and Krumm (2009) classified the GPS traces using
simulations of physical forces among the traces, and then merged the classified
traces into a graph representation of the road network structure. Wang et al. (2015a)
determined a proper circle boundary to cluster trajectory data into intersections and
used the core points to build the road networks. Stanojevic et al. (2018) formulated
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Fig. 11.1 The trajectory big data processing workflow in this study

the road network generation task as a network alignment optimization task and
proposed an offline algorithm that clustered GPS points for graph construction
as well as an online algorithm that can create and update the road network.
However, the trajectory points along the road networks include linear features
with a continuously changing density which makes current clustering methods tend
to either create an increasing number of small clusters or add noise points into large
clusters. Therefore, incorporating directional information into clustering methods
has become an efficient way to cluster anisotropic distributed points and enhance
extraction performance (Mai et al. 2018).

11.3 Methodology

In this section, we present the details of our road map generation method using
GPS trajectories. As shown in Fig. 11.1, the trajectory big data processing workflow
can be divided into the following steps. First, we utilized a trajectory compression
approach to simplify the trajectory data and reduce unnecessary computational cost.
Second, we applied the Anisotropic Density-based Clustering with Noise (ADCN)
algorithm (Mai et al. 2018) to identify the trajectory points that were along the road
networks with high confidence. Third, a kernel density estimation (KDE) approach
was used to generate a continuous surface. Fourth, high-density areas were selected
as candidates to further extract the road centerlines using thinning and vectorization
operators. Finally, the extracted road network connectivity should be evaluated.

11.3.1 Trajectory Compression

With the rapid development of ICT technologies and positioning devices, the spa-
tiotemporal resolution of trajectory data has unprecedentedly increased. However, a
large amount of trajectory data lead to high computational costs, and a large storage
space is necessary to support the data processing and management. With regard to
road network extraction, it is straightforward to reconstruct the road segments as
long as the trajectory points at the intersections can be obtained and then connected.
Thus, a trajectory compression method was applied to simplify the trajectory data
points and improve extraction efficiency.
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The main purpose of trajectory compression in road network extraction is to
maintain the shape of the trajectories. Several popular algorithms for line simplifi-
cation include Douglas-Peucker algorithm (Douglas and Peucker 1973), Reumann-
Witkam algorithm (Reumann and Witkam 1974), Lang simplification (Lang 1969),
Opheim simplification (Opheim 1982), etc. The evaluation and comparison of
these line simplification algorithms for vector generalization were conducted by
Shi and Cheung (2006). McMaster (1989) proposed a conceptual model including
a sequential set of five procedures for processing linear data with focuses on
geometric simplification and smoothing. In our method, we applied the widely used
Douglas-Peucker simplification algorithm for trajectory simplification.1 A graphic
illustration of the Douglas-Peucker algorithm is shown in Fig. 11.2. A sequence of
points (P1, P2, P3, P4, P5, P6) represent a trajectory in Fig. 11.2a. To simplify the
trajectory, we first mark the first point P1 and the last point P6 as endpoints and
added them to the reserved point set. Then, the point that is furthest from the line
segment with the endpoints is found, and the distance between the point and the
line segment is calculated. If the distance is larger than a compression threshold α,
the point is marked as an endpoint and added to the reserved point set (e.g. P4 in
in Fig. 11.2b and P5 in Fig. 11.2c). Otherwise, the points between the endpoints
would be discarded (e.g. P2 and P3 in Fig. 11.2c). The same process is iteratively
performed until all the trajectory points are marked as an endpoint or discarded
(Fig. 11.2d). Finally, the points in the reserved point set are sorted according to the
original trajectory sequence and linked to generate the compressed trajectory.

11.3.2 Identification of the Trajectory Points Along the Road

Density-based clustering algorithms such as DBSCAN have been widely used
for spatial knowledge discovery such as the detection of urban areas of interest
(Hu et al. 2015) and vague cognitive regions (Gao et al. 2017). The DBSCAN
algorithm offers several key advantages compared with other clustering algorithms
such as K-Means. DBSCAN can discover clusters with arbitrary shapes, are robust
to noise, and do not require prior knowledge (Ester et al. 1996). However, the
trajectory points demonstrate clear anisotropic spatial processes, which makes these
methods tend to either create an increasing number of small clusters or add noise
points into large clusters. Therefore, in this section, we apply a novel anisotropic
density-based clustering algorithm with noise (ADCN) (Mai et al. 2018) to cluster
anisotropic points for identifying the trajectory points along the roads. The codes for
implementing the ADCN algorithm are available in both Javascript2 and Python3

programming languages.

1Python code for the Douglas-Peucker algorithm https://pypi.org/project/simplification/.
2Javascript implementation of the ADCN algorithm at: https://github.com/gengchenmai/adcn.
3Python implementation of the ADCN algorithm at: https://github.com/gissong/ADCN.

https://pypi.org/project/simplification/
https://github.com/gengchenmai/adcn
https://github.com/gissong/ADCN
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Fig. 11.2 Illustration of the Douglas-Peucker trajectory compression algorithm

11.3.2.1 Density-Based Spatial Clustering of Applications with Noise
(DBSCAN)

The used ADCN algorithm was modified based on the DBSCAN algorithm.
Thus, before we describe the ADCN algorithm in detail, we first introduce some
fundamental concepts of the DBSCAN algorithm (Ester et al. 1996). The key idea
of the DBSCAN algorithm is that: given a set of points, it groups nearby points (i.e.,
the points in high-density areas) together and marks the points in low-density areas
as outliers. In order to group the points based on the density, the Eps-neighborhood
of a point is defined (see Definition 1).

Definition 1 (Eps-neighborhood of a point) The Eps-neighborhood NEps(pi) of
point pi in a dataset D is defined as all the points within the scan circle centered at
pi with a radius Eps, which is expressed as follows:

NEps (pi) =
{
pj

(
xj , yj

) ∈ D|dist
(
pi, pj

) ≤ Eps
}

where dist(pi, pj) is the distance between point pi and point pj.
There are two kinds of points in a cluster: core points (i.e., points inside of the

cluster) and border points (i.e., points on the border of the cluster). One intuition
is that for each point of a cluster, an Eps-neighborhood should contain at least a
minimum number of points (MinPts). However, an Eps-neighborhood of a border
point usually contains much fewer points than an Eps-neighborhood of a core point,
and it is hard to choose the representative MinPts for all points. Thus, DBSCAN
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introduces three basic concepts: directly density-reachable, density-reachable and
density-connected (see Definitions 2, 3, and 4).

Definition 2 (directly density-reachable) A point p is directly density-reachable
from a point q wrt. Eps and MinPts if:

1. p ∈ NEps(q) and
2. |NEps(q) | ≥ MinPts (core point condition).

Definition 3 (density-reachable) A point p is density-reachable from a point q
wrt. Eps and MinPts if there is a chain of points p1, . . . , pn, p1 = q, pn = p such
that pi + 1 is directly density-reachable from pi.

Definition 4 (density-connected) A point p is density-connected to a point q wrt.
Eps and MinPts if there is a point O such that p and q are density-reachable from O
wrt. Eps and MinPts.

Figure 11.3 illustrates core points, border points, density-reachability, and
density-connectivity in DBSCAN. These definitions can be used to further define
the density-based notion of a cluster or a noise in DBSCAN. Specifically, the core
points and border points are grouped into clustered points while the points that do
not belong to any cluster are the noise points (as shown in Fig. 11.4).

Fig. 11.3 Illustration of core points, border points, density-reachability and density-connectivity
in the DBSCAN algorithm (Ester et al. 1996)
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Fig. 11.4 Illustration of core points, border points, and noise points in the DBSCAN algorithm

11.3.2.2 Anisotropic Perspective on Local Point Density

One key consideration in the ADCN algorithm is the anisotropic perspective on
local point density in different directions. Without predefined direction information
from spatial point datasets, one has to compute the local major direction for each
point based on the spatial distribution of neighboring points. The standard deviation
ellipse (SDE) (Yuill 1971) is a suitable method to get the major direction of a point
set. Given n points, the SDE constructs an ellipse to represent the orientation and
arrangement of these points. The center of this ellipse is defined as the geometric
center of these n points and is calculated as:

X =
∑n

i=1xi
/

n
, Y =

∑n
i=1yi

/
n

The coordinates (xi,yi) of each point are normalized to the deviation from the
mean center point:

∼
xi = xi −X,

∼
yi = yi − Y

Thus, the semi-major axes σ x and the semi-minor axes σ y of SDE are calculated
as:

σx =
√
∑n

i=1

(∼
xi cos θ + ∼yi sin θ

)2/
n
, σy =

√
∑n

i=1

(∼
yi cos θ − ∼xi sin θ

)2/
n
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where θ is the rotation angle and the SDE will be further used as the search polygon
for clustering neighboring points (Mai et al. 2018).

11.3.2.3 Anisotropic Density-Based Clusters with Noise (ADCN)
Algorithm

In order to introduce an anisotropic perspective to density-based clustering algo-
rithms, we have to revise some definitions. First, the original Eps-neighborhood
of a point in a dataset D is defined by DBSCAN, as given in Definition 1.
Such a scan circle results in an isotropic perspective on clustering. However, an
anisotropic assumption will be more appropriate for trajectory points along the
roads. Intuitively, in order to introduce the anisotropic perspective into DBSCAN,
we can employ a scan ellipse instead of a circle to define the Eps-neighborhood of
each point. Before that, we defined a set of points around a point to derive the scan
ellipse;

Definition 5 (Search-neighborhood of a point) The kth nearest neighbor KNN(pi)
of point pi. Here k =MinPts and KNN(pi) does not include pi itself.

After determining the search-neighborhood of a point, it is possible to define
the Eps-ellipse-neighborhood region (see Definition 6) and the Eps-ellipse-
neighborhood (see Definition 7) of each point.

Definition 6 (Eps-ellipse-neighborhood region of a point) An ellipse ERi is
called an Eps-ellipse-neighborhood region of a point pi if:

1. Ellipse ERi is centered at point pi.
2. Ellipse ERi is scaled from the standard deviation ellipse SDEi computed from the

search-neighborhood S(p)i of point pi.

3. σ ′max

σ ′min

= σmax

σmin
where σ ′max , σ ′min, σmax, σmin are the length of the semi-long and

semi-short axes of ellipse ERi and ellipse SDEi.
4. Area(ERi) = πEps2.

According to Definition 6, the Eps-ellipse-neighborhood region of a point is
computed based on the search-neighborhood of a point. Each point should have a
unique MinPts, as long as the search-neighborhood of the current point has at least
two points for the computation of the standard deviation ellipse.

Definition 7 (Eps-ellipse-neighborhood of a point) An Eps-ellipse-neighborhood
ENEps(pi) of point pi is defined as all the points inside the ellipse ERi, which can be
expressed as:

ENEps (pi) =
{

pj

(
xj , yj

) ∈ D|
((

yj − yi

)
sin θmax +

(
xj − xi

)
cos θmax

)2

a2

+
((

yj − yi

)
cos θmax −

(
xj − xi

)
sin θmax

)2

b2
≤ 1

}
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Fig. 11.5 Illustration of the ADCN algorithm (Mai et al. 2018)

Equipped with Definitions 1, 5, 6, and 7, we can introduce the anisotropic per-
spective to density-based clustering algorithms. The definitions of directly density
reachable, density reachable, cluster, and noise in ADCN are similar to DBSCAN,
which will not be repeated here. Figure 11.5 illustrates the related definitions for
ADCN. The red point in the figure represents the current center point. The blue
points indicate the search-neighborhood of the corresponding center point according
to Definition 5. The green ellipse and the green cross stand for the standard deviation
ellipse constructed from the corresponding search-neighborhood and the center
point. The red ellipse is the scale-transformed Eps-ellipse-neighborhood region
according to Definition 6, whereas the dashed-line circle indicates a traditional scan
circle in DBSCAN. As can be seen in Fig. 11.5, ADCN could exclude the point to
the left of the linear bridge pattern in the clustering process, whereas DBSCAN still
includes it.



11 Automatic Urban Road Network Extraction From Massive GPS. . . 271

11.3.2.4 ADCN Algorithm in Road Network Extraction

The abovementioned ADCN algorithm takes the same parameters (MinPts and Eps)
as the DBSCAN algorithm which must be decided before clustering. This is for good
reasons, as the proper selection of DBSCAN parameters has been well studied, and
ADCN can easily replace DBSCAN without any changes to established workflows.

The ADCN method starts with an arbitrary point pi in a point dataset D and
discovers all the core points which are density reachable from point pi along the
major direction. The result of the points in the clusters will be regarded as the
trajectory points on the road. In order to take care of situations where all points
of the search-neighborhood S(pi) of point pi are strictly on the same line, the short
axis of the Eps-ellipse-neighborhood region ERi becomes zero, and its long axis
becomes infinity. This means that ENEps(pi) is reduced to a straight line. The process
of constructing the Eps-ellipse-neighborhood ENEps(pi) of point pi becomes a point-
on-line query. Furthermore, the ADCN method uses a kth nearest neighborhood of
point pi as the search-neighborhood. Here, the center point pi will not be included
in its kth nearest neighborhood. The runtimes of ADCN are heavily dominated by
the search-neighborhood query which is executed on each point. Hence, the time
complexities of ADCN, DBSCAN, and OPTICS are O(n2) without a spatial index
and O(n log n)otherwise (Kolatch 2001; Mai et al. 2018).

11.3.3 Road Network Generation

11.3.3.1 Road Density Surface Generation

After identifying the compressed and clustered GPS trajectory points on the roads,
the kernel density estimation (KDE) is introduced to fit a smooth surface. To fit the
surface, we used 30 m*30 m square grid cells to divide the space and calculated the
trajectory point density of each cell. Let d1, d2, . . . , dn be a given set of trajectory
point densities. The kernel density estimator is defined as:

f̂(d) = 1

nhd

n∑

i=1

K

(
d − di

h

)

where n is the number of density sets, h denotes the bandwidth parameter, and K is
a kernel function. The kernel surface value is highest at the location of the center
and decreases with increasing distance from the center until reaching zero at the
search radius. The density at each grid cell is calculated by adding the weighted
values under the kernel surface where it overlays the raster cell center. The kernel
function used in this work is based on the quadratic kernel function (Silverman
1986) described as follows:
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Fig. 11.6 A 3D Visualization of the selected quadratic kernel function. The vertical axis represents
the derived K function value

K(d) =
{

3π−1
(
1− dT d

)2
if dT d < 1

0 otherwise

Figure 11.6 shows a 3D plot of the selected quadratic kernel function. Note that
there are two reasons we choose the quadratic kernel function. First, the quadratic
kernel function’s density estimates have higher differentiability properties. Second,
it can be calculated more quickly than the Gaussian kernel, which is suitable for
massive-scale trajectory points with fine spatial resolution.

11.3.3.2 Collapse Surface to Centerline

After the previous steps, the areas whose density is above a threshold β are selected
as the candidates. In this step, the main purpose is to extract the centerline of the
candidate areas while keeping the road network topology. The thinning operator
proposed by Yuan et al. (2012) was performed to remove certain grid cells from
the candidate areas. For a given grid cell in the candidate area, whether it should
be removed depends on its 8-neighboring cells. This method first divided the binary
image (i.e., is a road pixel or not) into two disjointed subfields in a checkerboard
pattern. Then, iterations were performed to remove redundant neighboring cells. The
algorithm ensured that the connectivity of the cells was preserved when a cell was
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deleted. A combination of the thinning operator and the raster-to-vector operation
converted the KDE surface of compressed trajectories into road centerlines. The
quality measures of the extracted road networks including accuracy (correctness),
coverage completeness, redundancy, and connectivity will be discussed with case
study experiments in Sect. 11.4.2.

11.4 Case Study

11.4.1 Data

We applied the above introduced trajectory compression and clustering workflow
in the DiDi research open data “November 2016, Chengdu City Second Ring Road
Regional Trajectory Data Set”4 to extract the road information. Figure 11.7 shows
the KDE visualization of over 1 million e-hailing trip origins and destinations and
part of the extracted road geometry density map from 181,172 trip trajectories in one
day. The date range of this dataset is from November 1 to November 30, 2016 and
the temporal sampling resolution is about 2~5 seconds. The original data is about
50 GB, and about 10 GB after compression.

11.4.2 Experiment

11.4.2.1 Evaluation Metrics

In order to determine the effectiveness of our algorithm that generates big-data-
driven road networks, we performed vector-based quality measures (Wiedemann et
al. 1998). These quality measures were done by comparing a reference road network
data layer to our extracted road network data layers (in Fig. 11.8). To begin, the
road networks were divided into small pieces of the same length. Next, a buffer
was created as a zone with a consistent width that encircles each line segment for
a given analysis. To determine if the extracted network roads match the reference
roads, we constructed a buffer around the reference road data and determined if
the portion of extracted roads inside of the buffer met our requirements. This is
the correctness. Similarly, we constructed a buffer around the extracted road data
and evaluated the portion of reference roads inside the buffer to further analyze
the results. This is called the completeness. Together, correctness and completeness
constitute a comprehensive metric known as quality. Another evaluation metric
known as redundancy determines the degree of overlap in the road extraction
methods.

4https://gaia.didichuxing.com.

https://gaia.didichuxing.com
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Fig. 11.7 A map
visualization of the
case-study DiDi GPS data:
(a) over 1 million trip origins
and destinations per day; (b)
part of the extracted road
geometry density from
181,172 trip trajectories
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Fig. 11.8 The matching principle between extracted roads and reference roads using buffers

• Completeness
The completeness constitutes the percentage of reference roads delineated by

the extracted road network. That is, the percentage of the reference road data
located within the buffer encircling the extracted roads. The closer completeness
is to 1, the better the performance of the algorithm is. Let Lmr be the length of
matched reference roads and Lr be the length of all reference roads.

Completeness = Lmr

Lr

• Correctness
The correctness signifies the percentage of extracted road data that actually

corresponds to the reference road. In other words, it is the percentage of the
extracted road network that falls within the buffer surrounding the reference
roads. The closer correctness is to 1, the better. Let Lme be the length of matched
extraction roads and Le be the length of all extracted roads.

Correctness = Lme

Le

• Quality
The quality summarizes the road extraction method by factoring both com-

pleteness and correctness into one value. The closer quality is to 1, the better. Let
Lur be the length of unmatched reference roads.
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Quality = Lme

Le + Lur

• Redundancy
The redundancy measures the percentage of the matched extraction road

network which overlaps itself. The closer redundancy is to 0, the better.

Redundancy = Lme − Lmr

Lme

11.4.2.2 Results

In order to evaluate the extracted road network quality, we downloaded the
OpenStreetMap (OSM) data as the reference road network layer. Moreover, we
also compared our approach to the baseline approach that is directly based on
the KDE surface of raw trajectory GPS points and the vectorization operation.
The one-day outcomes of the correctness, completeness, quality, and redundancy
using our proposed method with different buffer radiuses (10 m, 20 m, and 40 m)
are shown in Table 11.1 and the results using the baseline approach are shown in
Table 11.2. One can conclude that both methods achieved good performance in
extracting roads which fall within the vicinity of the reference roads. Overall, a
larger buffer distance gets better results but it may encounter the problem of large
redundancy for nearby roads. However, the methods scored poorly in completeness
as an inadequate amount of the reference roads were situated closely to the extracted
roads. As seen in Fig. 11.9, many of the reference roads were simply not extracted
at all which made these unsuccessfully extracted reference roads isolated from the
extracted network. With no extracted roads close by, the completeness value falls. As
a whole, the quality metric scored poorly due to the shortcoming of many reference
road segments not being extracted at all. We would expect the completeness score

Table 11.1 The extracted road quality evaluation results using our proposed approach

Buffer distance Completeness Correctness Quality Redundancy

40 m 0.603534 0.995467 0.430439 1.00737
20 m 0.502849 0.983940 0.371855 0.692080
10 m 0.330325 0.854347 0.265552 0.280146

Table 11.2 The extracted road quality evaluation results using the baseline approach

Buffer distance Completeness Correctness Quality Redundancy

40 m 0.597233 0.986477 0.429040 0.952992
20 m 0.469571 0.925763 0.341474 0.636230
10 m 0.302925 0.768156 0.236453 0.272123
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Fig. 11.9 A visual comparison of the extracted road network and the OSM road reference layer

could increase with larger spatial coverage of the datasets especially in those (non-
major) tributary roads. The redundancy value scored the worst since the length of the
matched extraction was much larger than the length of matched reference. Again,
the failure to extract many reference road segments resulted in a low evaluation
metric. However, Tables 11.1 and 11.2 showed that our approach scored best in
completeness, correctness, and quality whereas the baseline approach scored best in
redundancy only. Our approach outperformed the baseline approach with a small
margin as it compressed clusters and could limit noise points outside the road
network.

In addition, in order to determine the connectivity of the extracted road network,
we applied the shortest-path based approach using the average path length similarity
(APLS) metric to evaluate the extracted road network quality. The average path
length was calculated for both the proposal layer (the extracted roads) and the
ground-truth reference layer (the downloaded OSM road data) using the Dijkstra’s
shortest path algorithm (Dijkstra 1959). Then, we examined the similarity between
the average path lengths to formulate an overall score. The code to run such
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an analysis was made available by the CosmiQ Works.5 This measurement was
performed on both approaches.

To perform the measurement, the road layers were converted to graphs, on which
nodes are placed at intersections, endpoints, and midpoints. The shortest path was
then calculated from each node to each other node for each graph. The differences
in path length were used to calculate a metric. In order to quantify these differences
in distance between the proposal and ground truth graphs, the APLS metric was
computed, which sums the differences in optimal path lengths between nodes in the
ground truth graph and the proposal graph. Missing paths are given the maximum
proportional distance of 1.0.

Due to the nature of this metric, any missing nodes with high centrality will be
penalized much more heavily than those with low centrality as high betweenness
centrality roads account for larger traffic flow (Gao et al. 2013). It is important to
consider how the nodes are generated and which nodes are important to the results
when considering larger graphs. Accordingly, it may be necessary to exclude or
alter the generation of nodes if calculating every possible path becomes infeasible—
which was the case for our road extraction result.

Figure 11.10 shows the proposal graph for our road centerline extraction with
nodes for intersections in sky-blue, as well as a buffer for the visible ground truth
graph in yellow.

The graph was then run through multiple iterations of the APLS measurement
code in order to determine a semi-optimal distance between the generated midpoints
in order to approximate the best result. As shown in Table 11.3, it was determined
that a midpoint distance of 300 meters gave the best suitable result with the highest
APLS score.

A histogram (in Fig. 11.11) of the results was also created for the path differences
when comparing the ground truth graph to the proposal graph, as well as when
comparing the path differences from the proposal graph to the ground truth graph.
The connectivity results were not good given the aforementioned low coverage
completeness of the extracted road networks.

The same process was repeated to calculate the APLS metric for the baseline
approach. Also, a distance of 300 meters between midpoints gave the best result
for the total score (as shown in Table 11.4). However, the total APLS score for the
baseline approach was lower than that of our proposed centerline road extraction
approach, concluding that our approach provided slightly better connectivity in its
resulting road network.

5https://github.com/CosmiQ/apls.

https://github.com/CosmiQ/apls
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Fig. 11.10 The extracted road graph with ground-truth reference graph (yellow)

Table 11.3 Connectivity evaluation results with different distance settings using our proposed
approach (The bold number highlights the best score)

Distance between
midpoints (in meters)

Ground truth nodes
snapped to proposal
graph

Proposal nodes snapped
onto ground truth graph Total score

100 0.032315 0.275312 0.057841
150 0.032516 0.271229 0.058071
200 0.033787 0.287925 0.060478
250 0.034572 0.280139 0.061549
300 0.036189 0.281458 0.064132
400 0.034554 0.276131 0.061422
450 0.033946 0.277987 0.060503
500 0.034808 0.271562 0.061707
550 0.034434 0.265163 0.060953
600 0.034333 0.269076 0.060897
700 0.034470 0.259051 0.060844
1000 0.029633 0.243184 0.052829
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Fig. 11.11 A histogram showing the path differences from proposal (our approach) to ground
truth road network

Table 11.4 Connectivity evaluation results with different distances settings using the baseline
approach (The bold number highlights the best score)

Distance between
midpoints (in meters)

Ground truth nodes
snapped onto proposal
graph

Proposal nodes snapped
onto ground truth graph Total score

250 0.030692 0.286749 0.055450
300 0.032063 0.289250 0.057727
328 0.031514 0.283418 0.056722
350 0.031102 0.293708 0.056248
400 0.031444 0.284132 0.056621
450 0.030946 0.285617 0.055842
500 0.031358 0.276147 0.056321
1000 0.029496 0.242499 0.052595
2000 0.029709 0.238963 0.052849

11.5 Conclusion and Future Work

In this chapter, we present a data-driven approach to extracting road centerline
geometry information using large-scale GPS trajectory data. The introduced road
extraction framework utilizes trajectory compression (Douglas-Peucker algorithm),
an anisotropic density-based trajectory clustering (ADCN algorithm), a kernel den-
sity estimation, and vectorization approach. Compared with remote sensing-based
approach, the ride-hailing service GPS trajectory data has a higher spatiotemporal
resolution but a smaller geographical coverage. A case study using the DiDi
open trajectory dataset in Chengdu, China demonstrates the effectiveness of our
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proposed approach for extracting road networks. It performed well with regard to the
correctness of extracted road networks. However, the connectivity quality is bad due
to the large incomplete coverage of the tributary roads. Future work needs to further
improve the completeness. In addition, road networks include not only geometry
information but also attributes (e.g., number of lanes, one-way restriction, speed
limit). Such information may also be extracted from large-scale trajectory datasets
with additional attributes (e.g., direction, speed), which require more attention in
the road network generation pipeline.
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Chapter 12
Exploratory Analysis of Massive
Movement Data

Anita Graser, Melitta Dragaschnig, and Hannes Koller

12.1 Introduction

Movement of people and goods is related to many of the most pressing issues
we are facing today. Emissions from the transport sector, for example, contribute
significantly to climate change (IEA 2018) and the number of road traffic deaths
worldwide keeps rising (WHO 2018). Movement data enables planners and policy-
makers to make more informed decisions. Traditionally, movement data was often
limited to information about flows between origins and destinations (OD flows).
In contrast, modern data sources provide increasingly detailed episodic or quasi-
continuous movement data (Andrienko et al. 2013) on a bigger scale. These massive
movement data sources cover areas including, for example, movement ecology
(e.g., by understanding migration patterns or monitoring species distribution)
(Brodie et al. 2018; Demšar et al. 2015), transport (e.g., detecting travel behavior
or monitoring traffic quality) (An et al. 2018; Batran et al. 2018), safety (e.g.,
monitoring suspicious behavior) (Lei 2016), and health (e.g., recognizing physical
activity) (Fillekes et al. 2019).

Data analysts face the challenge of how to extract relevant information from
these data sets. Key factors that contribute to this challenge are the wide range
of applications and methods in current movement data analysis research, as well
as the rapidly expanding and often complex datasets that span different spatial and
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temporal scales (Long et al. 2018). Exploratory data analysis and corresponding
interactive visualizations that combine the powers of computational tools with
human visual sense-making are essential tools to gain an understanding of these
massive datasets (Li et al. 2016).

Beyond the above mentioned application domains, research fields that deal with
the analysis of massive movement data, and therefore stand to profit from scal-
able exploratory analysis, include: geography (Lovelace et al. 2016), cartography
(Robinson et al. 2017), GIScience (Demšar and Virrantaus 2010; Shi et al. 2017;
Graser and Widhalm 2018), computer graphics (Willems et al. 2009; Scheepens
et al. 2011), and pattern analysis (Zheng 2015; Nikitopoulos et al. 2018).

This chapter does not attempt to provide an exhaustive overview of the general
field of computational movement analysis, which is also known as trajectory data
mining. For those discussions, readers are referred to Gudmundsson et al. (2011)
and Zheng (2015). Instead, this chapter specifically deals with issues arising in the
exploratory analysis of massive movement data and developments leveraging big
data technologies which have not yet received much attention in movement analysis
within GIScience (Long et al. 2018).

The remainder of this chapter is structured as follows: Section 12.2 provides
an overview of the varying characteristics exhibited by different movement data
sources. Section 12.3 introduces the core concepts of exploratory data analysis
for movement data. Section 12.4 takes a closer look at key exploratory analysis
tasks dealing with massive movement data and related challenges. Section 12.5
discusses privacy challenges of massive movement data. Finally, Sect. 12.6 provides
recommendations for the exploratory analysis of massive movement data before
Sect. 12.7 concludes this chapter.

12.2 Movement Data Characteristics & Their Relation to Big
Data Vs

Before the rise of tracking technology, low-tech data sources, such as questionnaires
and statistical surveys provided some movement data to derive basic information
about mobility patterns. While these smaller data sources pose their own analysis
challenges, this chapter focuses on movement data from tracking systems that
provide larger volumes of data.

The heterogeneity of movement data sources makes it difficult to define what
constitutes Big Data in the context of movement data. The terms “big” or “massive”
movement data have been used since at least 2007 (Andrienko and Andrienko
2007; Ma et al. 2009; Gao 2015; Zheng 2015; Dodge et al. 2016; Vahedian et al.
2017; Chen et al. 2017a) but no unified definition has been established. A practical
approach is to define that big data is “when it does not fit on one machine” (Schutt
and O’Neil 2013, p.24). But this definition, of course, makes big data a moving
target that depends on context.
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While “Big Data” may be considered as much a marketing buzzword as a
technical term, it is still worthwhile to look at massive movement data through
the lens of big data and its defining Vs because they provide a common reference
framework that ties movement data in with the wider field of big data sources.
The three core Vs: Variety, Velocity, and Volume of massive movement data are
discussed in the following subsections. Challenges of Validity and Veracity are
discussed in Sect. 12.4.4.1.

Background Information: Big Data Vs

Big data is commonly defined as high-variety, high-velocity and/or high-volume.
These three characteristics: Variety (diversity of data types and data sources),
Velocity (speed with which the data is generated, processed, and analyzed), and
Volume (amount of data, dataset size) constitute the core 3-V model of big data.

Additional Vs have been proposed to further describe the big data phenomenon,
including, for example: Validity (guarantee of the data quality) or, alternatively,
Veracity (authenticity and credibility of the data), as well as Value (added value for
society, research, or business).

12.2.1 Variety

Movement data are highly heterogeneous. Datasets vary with respect to, for
example, spatial and temporal resolution, spatial dimensions, movement constraints,
collection models, tracking system, data size, and privacy constraints.

Some systems that collect movement data have been built for the purpose of
tracking movement while, in other systems, tracking is a side product. For example,
people can be tracked based on their personal devices, such as mobile phones.
Mobile phone-based data collection includes systems that use dedicated smart phone
apps to track users (including but not limited to social media apps), as well as the
mobile phone network itself, which needs to track users to function correctly and –
in the process – generates so-called call detail records (CDR). In the field of vehicle
tracking, mandatory systems exist for marine vessels (Automatic identification
system (AIS)) and aircraft (Automatic dependent surveillance-broadcast (ADS-B)).
Commercial road-bound fleets may be managed by collecting and analysing floating
car data (FCD). Table 12.1 provides an overview of the different dimensions of
movement data and the corresponding range of characteristics in the context of
GIScience, which are discussed in the remainder of this section.

The spatial resolution of movement data ranges from sub-meter accuracy in tra-
jectories extracted from video material, to meter accuracy in GPS tracks, and finally
to kilometer accuracy based on mobile phone cell towers in CDR. Furthermore,
generalized and aggregated data sources may only provide information on the level
of administrative boundaries, such as ZIP codes, towns, states, or even countries.
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Table 12.1 Dimensions of movement data

Spatial resolution Fine resolution/small location
error, e.g. video trajectories

Coarse resolution/large location
errors, e.g. CDR

Spatial dimensions 2 dimensional, e.g. AIS 3 dimensional, e.g. ADS-B,
animal tracks (birds, whales,. . . )

Temporal resolution Frequent/quasi-continuous, e.g.
1 Hz GPS tracks from smart
phone apps

Sparse/episodic, e.g. social
network data, CDR

Sampling interval Regular in space or time, e.g.
many GPS loggers

Irregular, e.g. AIS, social network
data, CDR, acoustic telemetry

Representation Polylines Continuous curves

Constraints Network-constrained, e.g. FCD Open space, e.g. AIS, ADS-B,
animal tracks

Collection models Lagrangian approach, e.g. GPS or
video trajectories

Checkpoint-based or Eulerian
approach, e.g. WLAN hot spots or
acoustic telemetry

Tracking system Cooperative, e.g. AIS, FCD,
ADS-B, acoustic telemetry
listening to acoustic tags

Uncooperative, e.g. video or
remote sensing tracking, acoustic
telemetry listening to natural
sounds

Privacy Personal/individual-related, e.g.
mobile phone data

Impersonal, e.g. AIS, ADS-B

Data size Small data sets, e.g. tracks from
animal collars

Big data sets/streams, e.g. social
media data

While many data source only include two spatial dimensions, some sources, such
as ADS-B and some animal trackers for monitoring of birds or marine life provide
three-dimensional data.

The temporal resolution of movement data ranges from high-frequency sam-
pling at regular intervals (1 Hz or higher) in some tracking applications to irregular
sparse sampling where hours or days can pass before a moving object creates a new
data record in CDR or social media data. Generalized or aggregated statistical data,
such as travel demand matrices, mostly summarize movement over longer periods
of time.

The most common trajectory representation are polylines, that is, straight lines
between consecutive locations. However, particularly in robotics, aviation, and
autonomous vehicle operations, continuous curve representations are used as well.

Movement is generally constrained by geographic context. Network-constrained
movement in particular is restricted to a network of paths (most commonly street
networks) which affect how data sources, such as FCD, are processed and analyzed.
On the other hand, open space or non-network-constrained phenomena (Miller and
Bridwell 2009), such as movement of animals through terrain, flying drones in the
air, or ships on the open seas require different analysis approaches.

Collection models commonly fit into two categories: in the Lagrangian approach
(Dodge et al. 2016), movement information is referenced to the moving object, for
example, by fitting a GPS device to the object, or by video-tracking the object as
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it moves. In the checkpoint-based (Tao 2016) or Eulerian approach (Dodge et al.
2016), movement information is referenced to fixed locations, such as Bluetooth
beacons, WLAN hot spots, or mobile phone cell towers.

Tracking systems can be cooperative or uncooperative. In cooperative systems,
such as AIS, FCD, or ADS-B, moving objects actively provide their location
information. On the other hand, uncooperative systems, such as video and remote
sensing tracking do not require the moving objects’ cooperation.

Finally, privacy concerns are important to consider in the context of personal
data, such as CDR or social media data. Similarly, movement data of endangered
species can be critical and may be restricted to avoid poaching. On the other hand,
AIS and ADS-B data are broadcast actively to increase safety on the sea and in the
air. (See Sect. 12.4.4.1 for more about the privacy challenge in massive movement
data.)

12.2.2 Velocity & Volume

Volume or size of movement datasets is primarily a result of spatial and temporal
resolution, the number of tracked objects, as well as the duration for which
movement has been recorded. Furthermore, some data sources provide auxiliary
information beyond the basic object identifier, time and location. For example, AIS
messages include vessel type, size, status (such as anchored or sailing), destination
port, or type of cargo.

Velocity does not just describe how quickly data is generated but can also
refer to how quickly it has to be analyzed in order to be useful, for example, to
optimize logistics processes or to avoid dangerous situations. Processing and storage
approaches therefore have to be able to handle a certain velocity.

While some large movement datasets stem from temporally limited observations
(such as data collection campaigns using dedicated trackers or apps), many sources
(such as AIS, ADS-B, mobile phone networks, or social media) provide continuous
streams of data at varying velocities. The following examples illustrate how Velocity
and Volume can be measured as number of records per time interval:

• Maritime transport: 10 million AIS records per day (local coverage focusing
on Denmark) (Graser and Widhalm 2018)

• Social media: 10 million geotagged Tweets per day (based on estimates by
Leetaru et al. (2013) that 2% of all tweets include location information) (Li et al.
2017)

• Mobile phones: 50 million CDR per workday (40 for each one of 1.25 million
subscribers of a single provider) (Zhao et al. 2016)

It is futile to attempt to define a specific quantitative threshold that delimits
regular from massive movement data irrespective of a specific application context
or analysis task because the limits of existing tools for storing, processing, and
visualizing movement data vary. In Sect. 12.4 we therefore look into key exploratory
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movement analysis tasks and compare the literature on traditional GISystems and
novel distributed computing systems to provide reference points for the definition
of big or massive movement data. First, however, it is necessary to establish the core
concepts of exploratory movement data analysis.

12.3 Exploratory Data Analysis (EDA)

Humans tend to struggle with making sense of even moderate amounts of data that
is presented in tables or forms. It is therefore unsurprising that visualization and
visual analytics are frequently mentioned as potential additional Vs of big data
(Li et al. 2016). Visualizations are commonly understood as important tools for
communicating ideas, hypotheses, and analysis results. However, in the case of big
data, the role of visualization in data exploration is even more important (Li et al.
2016).

Interactive and exploratory visualization environments combine the powers
of computational tools with human visual sensemaking and help analysts better
understand what information their data contains (Gudmundsson et al. 2011; Cook
et al. 2012). However, visualizations can be hard to scale because large input
datasets mean that there are many things that can or need to be displayed (Li
et al. 2016). Visualizations of movement data quickly run into issues with over-
plotting and clutter that can obscure important patterns (Janetzko et al. 2013) and
traditional map-based overviews routinely reach their limits with big movement data
(Robinson et al. 2017). Therefore, the exploratory analysis of massive movement
data is particularly challenging.

Exploratory data analysis (EDA) (Tukey 1977) aims to analyze data sets
by summarizing their main characteristics, often using visualizations, to
determine what information the data contains. The objectives of EDA are: to
suggest hypotheses about phenomena observed in the data and their causes, to
assess assumptions, to select appropriate statistical tools and techniques, and
– if necessary – to provide a basis for further data collection.

Computational movement analysis commonly involves exploratory data analysis
and visualization to inspect data, summarize patterns, and formulate hypotheses
and research questions (Dodge 2019). Methods used include movement data
aggregation, grouping or dividing movement data, transformations of space and
time, and trajectory clustering (Gudmundsson et al. 2011). EDA also helps with
performing sanity checks, to find out if and where data is missing or if there are
outliers (Schutt and O’Neil 2013, p.36). Furthermore, EDA is also used to debug
the data collection or tracking process because patterns found in the data can be
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Fig. 12.1 EDA within the broader data science framework (Graser 2020)

the result of issues with the tracking process that need to be fixed. As illustrated by
Fig. 12.1, this leads to feedback loops where EDA results inform data collection,
processing and cleaning, as well as, eventual confirmatory data analysis.

Conceptually, the general EDA framework laid out by Andrienko and Andrienko
(2006, p.158) distinguishes between tasks that deal with individual data elements,
so-called elementary tasks, on the one hand and tasks that deal with the whole
dataset or subsets, so-called synoptic tasks, on the other hand. With respect to
exploratory movement data analysis, elementary spatial events (corresponding to
individual records in a movement data source) consists of time, space, and thematic
attributes (Andrienko et al. 2013, p.49). Movement trajectories consist of a sequence
of these elementary spatial events. Tasks on the trajectory level therefore can be
considered synoptic since they deal with the whole dataset or subsets rather than
individual elements. However, for many tasks, it may be more suitable to think of
trajectories as elementary units and consider only tasks on sets of trajectories as
synoptic.

An alternative conceptual approach is to categorize exploratory movement data
analysis tasks according to their foci (Andrienko et al. 2013): focusing either on
moving objects (also called movers), spatial events, space, or time. Analyses of
movers include spatial summarization and clustering of trajectories, visualization
of positional attributes, as well as encounters between groups of movers and other
relations between movers and their context. To analyze events in movement data,
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they first have to be extracted from trajectories, usually followed by a clustering
step. Again, relations between events, as well as with trajectories and their context
are explored. Similarly, to analyze space using movement data, places of interest
are extracted from trajectories. This extraction can be based on events, time series,
or individual movers. Analyses look into relations or links between places and the
properties of these links, or frequent sequences. Finally, analyses focusing on time
include clustering of times by similarity of spatial situations or the event extraction
from spatial situations.

12.4 EDA Tasks for Massive Movement Data

This section takes a closer look at key EDA tasks and challenges dealing with
massive movement data, as listed in Table 12.2. The provided examples are taken
from both the literature on traditional GISystems, as well as work on cloud
computing big data stacks to gain a better understanding of what kind of problems
have been approached with what kind of system.

Background Information: Big Data Technologies

Traditional GISystems run on a single machine. These systems may support multi-
threading to make use of multiple processor cores but the computations are not
distributed over multiple different machines. In contrast, big data architectures
combine the resources of many networked off-the-shelf computers in order to
created a powerful environment for executing parallel programs on top of a scalable,
distributed, fault-tolerant file system. (Graphics processing units (GPUs), which are
commonly used in other areas of big data processing, so far do not play a prominent
role in the literature on exploratory movement data analysis.)

The most commonly referred to big data programming models are MapReduce
and Apache Spark.1 MapReduce provides a mechanism for processing big data
sets with parallel, distributed algorithms on a cluster (Lämmel 2008). In general,

Table 12.2 EDA tasks for massive movement data and related challenges

Task Challenges

T1 – Spatio-temporal lookup
C1 – Trajectory indexing

C2 – Spatio-temporal visualizations

T2 – Similar trajectory search & join
C3 – Creating & segmenting trajectories

C4 – Moving object identifiers

T3 – Summarization C5 – Representativeness & bias

T4 – Extracting events & places C6 – Data quality

T5 – Detecting outliers C7 – Performance assessments

1https://spark.apache.org
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papers refer to the open source Apache Hadoop implementation of MapReduce.
Apache Spark has been developed in response to limitations in MapReduce, which
restrict the dataflow of distributed programs to reading the input data from disk, then
mapping a function across the data and reducing the results before finally, storing
the reduction results on disk again. In contrast, Spark does not need to constantly
read from and write to disk. Spark adopts a higher-level programming paradigm
that facilitates the implementation of iterative algorithms on distributed datasets.
It includes libraries and high-level functions for interactive and exploratory data
analysis and runs on top of existing Hadoop infrastructure.

The literature presented in this section focuses mostly on the last ten years, going
back to the beginnings of distributed processing with MapReduce around 2008
(Lämmel 2008) to enable a fair comparison based on a similar state of the art.

Of course, the complexity of the analysis as well as the available hardware
resources have to be factored in when comparing results. An individual computation
node setup may range from consumer hardware with 4 GB RAM (Xu et al. 2018) to
a large server with 256 GB RAM or more (Patroumpas et al. 2017). Papers focusing
on algorithmic improvements (Xie et al. 2016; Zhang et al. 2017) often report only
relative improvements or rough run times plotted in graphs on a logarithmic scale. It
is also not uncommon for papers to omit processing time information (Batran et al.
2018; An et al. 2018; Wu et al. 2017).

12.4.1 Task 1: Spatio-Temporal Lookup or Range Queries

Lookup tasks are elementary EDA tasks for finding data components that corre-
spond to given values. In massive movement data analysis, lookup tasks may refer
to spatio-temporal as well as attribute values of trajectories. For example, a lookup
task could return moving objects of a certain object type or within a certain spatio-
temporal extent. Attribute lookup tasks are no different for movement data than
for other types of data. Spatio-temporal lookup tasks however are more specific.
Efficient lookups are essential to support interactive filtering in exploratory analysis
tools.

Spatio-temporal lookups may be applied on the level of individual spatio-
temporal events, as well as on the trajectory level where more complex queries
can be formulated. For example, trajectory-based spatio-temporal range queries can
be used to filter trajectories based on their origin or destination. Table 12.3 lists
publications dealing with spatio-temporal lookup tasks, also commonly referred to
as spatio-temporal range (STR) queries. Papers using big data technology (BDT)
are marked with a check mark.

The run time of spatio-temporal lookup tasks depends on a variety of factors
beyond the size of the movement dataset, hardware specifications, and the perfor-
mance of the presented system. Additional factors include: spatial and temporal
index granularity (which in turn affects the size of the index (Xu et al. 2018)),
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Table 12.3 Spatio-temporal lookup tasks (spatio-temporal range queries): dataset sizes (in
million points), and corresponding run times; for distributed computing systems, the number of
computing nodes is provided in brackets (ordered by year of publication)

BDT Paper Data type Size Technology Run time

� Ma et al. (2009) Generated using
Brinkhoff (2002)

1,013 MapReduce (8) 300 s

� Xie et al. (2016) Generated using
Brinkhoff (2002)

104 (a) Elite (a) 10 sa

(b) Spatial
Hadoop (27)

(b)
10,000 sa

� Fecher and Whitby
(2017)

NYC taxi ODs 1,300 GeoWave &
EMRa (20)

<30 s

� Zhang et al. (2017) Beijing taxi FCD 2,500 TrajSpark (12) 0.2–2 sa

– Xu et al. (2018) Shanghai taxi FCD 420 TripCube 54 s

– Graser (2018) Geolife GPS tracks 25 PostGIS <1 s
a

Estimated from graphs with log scale

skewedness of the data distribution (queries are faster in sparse areas (Yu and Sarwat
2017)), and size of the spatio-temporal query range (Zhang et al. 2017). The run
times provided in Table 12.3 therefore only serve as a very rough performance
indicator.

12.4.1.1 Challenge 1: Trajectory Indexing

In conventional applications that run on a single machine, established solutions,
such as the open source library libspatialindex2 can be used to quickly and
efficiently implement spatio-temporal indexing. However, in distributed environ-
ments, different technologies and approaches are necessary to ensure efficiency
and consistency. State-of-the-art big geospatial data tools, such as GeoMesa3 and
GeoWave4, solve the problem of efficiently storing and accessing large amounts of
spatio-temporal data in distributed systems. Space-filling curves are used to make
multi-dimensional data sortable in one dimension (Fox et al. 2013; Hughes et al.
2015). This makes it possible to store spatio-temporal data in state-of-the-art big
data stores, such as, Apache Accumulo5 and Hive6 (Hughes et al. 2015).

The spatio-temporal indexing approaches implemented in spatial big data tools,
such as GeoMesa and GeoWave, are currently not optimized for trajectories.
However, the body of computer science literature on current developments in
efficient indexing schemes for movement data is extensive (e.g. Zhang et al. 2017;

2https://libspatialindex.org/
3https://www.geomesa.org
4http://locationtech.github.io/geowave/
5https://accumulo.apache.org
6https://hive.apache.org

https://libspatialindex.org/
https://www.geomesa.org
http://locationtech.github.io/geowave/
https://accumulo.apache.org
https://hive.apache.org


12 Exploratory Analysis of Massive Movement Data 295

Xu et al. 2018) which underlines the considerable research interest in this topic.
A thorough review of these developments, however, is beyond the scope of this
chapter.

12.4.1.2 Challenge 2: Spatio-Temporal Visualizations of Massive
Movement Data

The visualization of massive movement data is both a conceptual, as well as a
technical challenge. Recent work in visual analytics (Andrienko et al. 2017) and
cartography (Robinson et al. 2017), as well as a general lack of established tools
confirm as much. Part of the challenge lies in its interdisciplinary nature. While
novel distributed trajectory processing tools, such as TrajSpark (Zhang et al. 2017),
are developed for efficient computations, they do not deal with visualization. Apache
Sedona (formerly known as GeoSpark),7 which is more generic, just added basic
visualization capabilities in version 1.2 (published in March 2019).

More advanced visualization options require integration into dedicated visual-
ization or GIS tools. For example, GeoMesa and GeoWave make it possible to
publish large distributed datasets as OGC compliant Web Map Services (WMS) and
Web Feature Services (WFS) using GeoServer. However, this approach suffers from
the fact that established GIS data models are based on the OGC Simple Features
specification (OGC 2011) which is not time-aware (Graser 2019). This means that
any optimized trajectory data types have to be broken down into Simple Features
where time is not a meaningful dimension but just an attribute like any other.

12.4.2 Task 2: Similar Trajectory Search and Join

Similar trajectory search and join tasks aim to find pairs or groups of trajectories
that are similar in one way or another. Trajectory similarity can be based purely on
geometry (spatial distance between trajectory lines, for example, using Hausdorff
(Hausdorff 1914) or Fréchet distance (Fréchet 1906)) but can also be measured using
spatio-temporal distance measures (Tampakis et al. 2019) or include attributes or
semantic information, such as activities (Wang and Belhassena 2017).

Due to the necessary pairwise comparisons of trajectories, this task is very
computationally expensive. This is also underlined by the dominance of big data
technology literature in Table 12.4. Performance of similar trajectory searches and
joins can be improved through appropriate indexing techniques. However, as shown,
for example, by Xie et al. (2017), building indexes for similar trajectory search can
be considerably more expensive than executing search tasks once these indexes are
built. Particularly for online processing of streaming data, the costs of indexing and
querying therefore have to be weighed carefully.

7https://sedona.apache.org

https://sedona.apache.org
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Table 12.4 Similar trajectory search and join tasks: dataset sizes (in million points), and
corresponding run times; for distributed computing systems the number of computing nodes is
provided in brackets (ordered by year of publication)

BDT Paper Data type Size Technology Run time

� Xie et al. (2017) OSM tracks: (a)
indexing,

1,060 Spark (16) (a)
1000 sa

(b) querying (b) 10 sa

� Wang and
Belhassena (2017)

Geolife GPS tracks 25 Spark (4) 1̃8 s

� Shang et al. (2018) GPS trajectories 141 SparkSQL
(64)

100 msa

GPS trajectory join 66 500–
3,000 sa

� Tampakis et al.
(2019)

AIS distributed
subtrajectory join

1,500 MapReduce &
Hadoop (49)

n/a

a
Estimated from graphs with log scale

12.4.2.1 Challenge 3: Building and Segmenting Trajectories

Many data sources provide continuous moving object data that contains no explicit
starts and ends of trips and stays. Correctly segmenting a trajectory is highly depen-
dent on the context and often requires expert domain knowledge (Gudmundsson
et al. 2011). As a result, a variety of different segmentation approaches exist in
the literature and we refer the readers to Edelhoff et al. (2016) for an overview. A
common segmentation approach is to split the continuous movement data at stays.
A stay is defined as a part of the movement track where the moving object stays
within an area with a small radius for a certain period of time. Movement tracks
may also be split at temporal or spatial gaps, at spatial or temporal events, in regular
temporal cycles, or by thematic attributes (Andrienko et al. 2013).

Trajectory simplification is commonly performed in parallel or directly after
segmentation. Trajectory simplification creates a close approximation of the original
trajectory, often by using a subsampling technique. According to Gudmundsson
et al. (2011), a common approach is to use algorithms based on the Douglas-Peucker
algorithm (Douglas and Peucker 1973), such as Cao et al. (2006) or Gudmundsson
et al. (2009). Usually, the loss of information during subsampling is minimized with
respect to a distance measure, generally Euclidean distance but in principle any
tolerance criterion can be used (Gudmundsson et al. 2011).

Trajectory creation, segmentation, and simplification require that the movement
data is analyzed in chronological order. While this task is straightforward in
traditional data processing, it poses a challenge in big data environments, where
movement data of an individual object is usually massive, unsorted and physically
distributed over many computation nodes.
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Background Information: Distributed data processing

Distributed processing approaches are well suited for dealing with unsorted data
where random order processing is acceptable. The quintessential textbook example
for MapReduce is word counting, that is computing the word frequency histogram
for a (huge) set of text data. In a distributed environment, this problem can easily
be solved by calculating intermediate results on an arbitrary number of computation
nodes, and then merging these intermediate results in a final aggregation step. Word
counting lends itself to such a clean and scalable solution because the order in which
the input data is processed is irrelevant for obtaining the correct result. In contrast,
EDA on massive movement data often does not allow for unsorted data processing:
trajectory building and segmentation is but one example for algorithms that require
the data to be chronologically sorted in order to produce correct results.

Building trajectories with the current core Spark libraries8 can be problematic.
The Spark programming model adds high-level functions for grouping and aggregat-
ing records but these concepts are meant to deal with unsorted data and are not well
suited to processing trajectory data, where most operations only produce correct
results if applied to an entire, time-sorted group of position records. With the default
Spark programming model, an aggregator therefore needs to collect and sort the
entire trajectory in the main memory of a single processing node. When dealing with
large datasets (such as multiple years of AIS records), using Spark’s groupByKey()
functionality and then sorting each group during the aggregation phase can thus
easily lead to out-of-memory errors.

Third-party libraries such as spark-sorted (Tresata 2019) provide groupSort(),
the functionality required to group, sort and iteratively process massive data sets.
It never materializes the group for a given key in memory, but instead offers
iterator-based streaming of the sorted data. This functionality helps to efficiently
solve the two main tasks in this challenge: firstly, trajectories can be created in a
clean and straightforward manner. Because the groupSort() function traverses the
movement data of one vehicle iteratively, this approach synergizes well with an
object-oriented builder pattern: the trajectory can be aggregated one position at a
time. During this iteration, resampling, compression and data-imputation operations
can be applied on-the-fly, as needed. Secondly, trajectory segmentation can be
added to this approach quite naturally: whenever a new position is processed, the
trajectory can be checked for a segmentation criterion (e.g. temporal gap detection).
If segmentation is indicated, the current trajectory can be finalized and a new one
can be started at the current position. Using spark-sorted is more efficient from a
memory-utilization perspective and can in practice mean the difference between
a query succeeding in mere minutes or failing completely. When combined with

8Spark 2.2.0, at the time of writing
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suitable analysis algorithms, it enables processing of trajectories of arbitrary size
within the Spark framework.

However, spark-sorted is no silver bullet and it is worth mentioning some
limitations and drawbacks: firstly, it makes it harder to implement algorithms which
require context (such as the previous n positions of the trajectory). This context must
be provided by manually adding an appropriate caching mechanism to the aggrega-
tor. Special care must be taken when implementing the caching strategy since too
liberal caching will again cause memory problems. Also, algorithms which need the
entire trajectory in memory (such as the classic Douglas–Peucker algorithm) do not
profit from spark-sorted. Secondly, for some algorithms a sorted forward-iterator
may not be a convenient data access mode. It can thus introduce additional code
complexity, especially when combined with the caching requirements mentioned
above. Thirdly, while this approach improves memory utilization, it has no effect
on the fundamental algorithmic complexity of the underlying algorithms. Runtime
performance problems related to overall algorithmic complexity thus can not
be solved with this technique. Therefore, in some cases, a different algorithmic
approach might be needed to facilitate scalability in a distributed environment.

12.4.2.2 Challenge 4: Moving Object Identifiers

Reliable moving object identifiers are essential for reconstructing trajectories since
they are necessary to identify consecutive locations of the same moving object.
However, these are not guaranteed in all datasets. Common issues include the
reassignment of mover identifiers or distinct moving objects that share the same
identifier (Andrienko et al. 2013, p.344 / 349). Reassignments of mover identifiers
can be introduced into a dataset on purpose (for example, as a step towards privacy
protection) but reassignments can also be undocumented and may happen unin-
tentionally. Exploratory analysis should enable the identification of undocumented
reassignments in massive movement data.

Distinct moving objects sharing the same identifier can result in zigzag tra-
jectories if both objects move at the same time but in different locations. This
problem affects, for example, AIS data where this issue can be addressed by
including vessel name or geographic information to attempt to identify vessels with
ambiguous identifiers (Aronsen and Landmark 2016; Wang and Wu 2017). While
zigzag trajectories are reasonably straightforward to spot in trajectory visualizations
of small datasets, cluttered visualizations of massive movement data can hide
these issues. Exploratory analysis should help determine whether a dataset contains
instances where different movers share the same identifier.
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12.4.3 Task 3: Density Mapping and Other Grid-Based
Summarizations

Density maps are the most common example of summarization tasks that provide
overviews of massive movement data in EDA. Approaches range from simple
density maps that only provide counts (Shelmerdine 2015; Aronsen and Landmark
2016) (Fig. 12.2 left), to approaches that also model mean direction (Brillinger et al.
2004) or mean velocity (An et al. 2018), to more complex Gaussian mixture models
(GMM) of velocity and direction (Graser and Widhalm 2018) (Fig. 12.2 right).

Besides classic two dimensional grids, some approaches employ spatio-temporal
density volumes (Demšar and Virrantaus 2010). Another design choice is whether to
compute density from points or from lines (Shelmerdine 2015). Besides computing
densities, Nikitopoulos et al. (2018) also perform statistical Getis-Ord tests to
identify significant spatio-temporal hotspots. Table 12.5 lists publications dealing
with density maps and other grid-based summarization tasks.

The processing requirements of these spatial or spatio-temporal grid-based
summaries increase as the corresponding grid resolution increases and cells get
smaller. For example, Demšar and Virrantaus (2010)’s spatio-temporal density
volume contains 1.5 million cells (or voxels), while An et al. (2018)’s analysis
covers only 2,500 cells (1,680 of which contain data).

Fig. 12.2 Left: Density map of vessel data from AIS for July 2017 highlighting areas with
numerous records such as harbors and anchoring areas; Right: corresponding movement model
with mean direction and velocity where darker arrows signify faster movement (Graser and
Widhalm 2018)
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Table 12.5 Grid-based summarization tasks: dataset sizes (in million points), and correspond-
ing run times; for distributed computing systems the number of computing nodes is provided in
brackets (ordered by year of publication)

BDT Paper Data type Size Technology Run time

– Demšar and
Virrantaus (2010)

AIS (grid: 1.5M voxels) 0.01 ArcGIS 1.5 h

– Shelmerdine (2015) AIS (grid: n/a) 0.06 ArcGIS 1 day a

– Aronsen and
Landmark (2016)

AIS (sparse global grid,
cell size: 185.2 ×
185.2 m)

1,500 PostGIS & GDAL 1 week

– An et al. (2018) Taxi FCD (counts &
mean velocity, grid:
2,500 cells)

506 Oracle 11 g &
ArcGIS 10.0

n/a

– Graser and Widhalm
(2018)

AIS (counts & GMMs of
velocity/direction, grid:
370,000 cells)

560 Java & PostGIS hours

� Nikitopoulos et al.
(2018)

AIS (varying voxel sizes) 1,900 Spark (10) 17 min

� Graser et al. (2020) AIS (counts & GMMs of
velocity/direction, grid:
0.1◦ × 0.1◦)

3,900 Spark & GeoMesa
(8)

41 min

a
Including AIS track generation for line-based density

In contrast to the traditional tools listed in Table 12.5, state of the art big
geospatial data tools, such as GeoMesa, can provide interactive density maps on
the fly.9 This means that cell size, grid extent, and input data can be adapted during
the exploration process. These tools take advantage of the fact that density grid
computations can be readily distributed over multiple nodes: each node can compute
a density map of its local data before finally adding the distributed results together. A
downside of GeoMesa’s current implementation for exploratory analysis is that the
resulting density maps cannot be normalized to a specific value. Instead, the density
process automatically determines the maximum density value for each density map
computation individually and scales the results accordingly. This makes it hard to
compare density maps for different times or locations.

12.4.3.1 Challenge 5: Representativeness & Bias

Available massive movement data is not necessarily representative of the whole
population. For example, Zhao et al. (2016) caution that “How frequently one
uses mobile phone to contact others and when and where those communications
occur largely determine the representativeness of CDRs to reflect true mobility

9https://www.geomesa.org/documentation/user/process.html#density-process

https://www.geomesa.org/documentation/user/process.html#density-process
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characteristics.” Even in more homogeneous groups, such as users of sports tracking
apps, there are bias issues related to participation inequality (Oksanen et al. 2015).

Certain groups are systematically underrepresented in some data sources. While
mobile phone penetration rates, for example, in the U.K. range from 93 to 99% of
adults with little variation amongst age groups (Lovelace et al. 2016), Twitter, as
an example of social media data, is biased towards a young (Li et al. 2013) and
male demographic (Mislove et al. 2011). Besides age and gender, Taubenböck et al.
(2018) find that “the economic divide influences digital participation in public life”
and this in turn affect how less affluent groups living under precarious conditions
are represented in digital data.

The interpretation of density maps and other summarizations in exploratory
analysis therefore has to account for issues of representativeness and bias to avoid
drawing wrong conclusions. For example, Oksanen et al. (2015) describe density
maps that counteract participation inequality by taking user diversity into account
while still preserving user privacy.

12.4.4 Task 4: Extracting Events & Places

Event or place extraction in EDA is an approach to summarize the information
contained in a movement dataset. Events, places, or other significant points include,
for example: stays, speed changes, turns, observation gaps, speeding, delays, or
rendezvous. Events may be of direct interest if detected online from streaming data
(Patroumpas et al. 2017) but they can also be used to, for example, split continuous
movement tracks into individual trajectories, generalize movement (Andrienko and
Andrienko 2011), or extract routing graphs from movement data (Dobrkovic et al.
2018). Beyond individual events and places, exploratory analysis of travel sequences
can help reveal human mobility patterns (Zheng et al. 2009; Widhalm et al. 2015) or
flow strength (Lovelace et al. 2016). Table 12.6 lists publications dealing with the
extraction of events and places.

The online event detection by Patroumpas et al. (2017) illustrates the challenge
of defining the border between regular and big data. By using servers with 48 GB
RAM for simple event detection (implemented in C++) and 256 GB for complex
event recognition (implemented in Prolog), they manage to fit processing of the AIS
stream for their area of interest into main memory and thus can avoid distributed
processing.

Simple events can be detected from trajectories of individual movers. Therefore,
their computation can readily be parallelized by assigning each thread a subset
of all monitored movers (Patroumpas et al. 2017). Complex events involve pairs
of trajectories and therefore it is more difficult to parallelize or distribute their
computation. For example, potential rendezvous or package picking events require
that all combinations of movers within an area are checked (Patroumpas et al. 2017).
Simple spatial partitioning of the analysis area would lead to unbalanced processing
load due to skewed spatial data distribution. Furthermore, the analysis may fail
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Table 12.6 Extraction of events and places: dataset sizes (in million points), and correspond-
ing run times; for distributed computing systems the number of computing nodes is provided in
brackets (ordered by year of publication)

BDT Paper Data type Size Technology Run time

– Zheng et al. (2009) GPS tracks
(locations & travel
sequences)

5 n/a n/a

– Andrienko and
Andrienko (2011)

FCD (significant
points &
aggregation)

2 n/a n/a

– Widhalm et al.
(2015)

CDR (urban
mobility patterns)

n/a n/a n/a

– Patroumpas et al.
(2017)

AIS (online events
detection)

0.6/min C++ <13 s

– Dobrkovic et al.
(2018)

AIS (directed
routing graph)

0.6 n/a 1.7 min

– Batran et al. (2018) CDR (ODs) 393 n/a n/a

� Ranjit et al. (2018) FCD (ODs) 2,200 HDFS & Hive
(n/a)

n/a

� Cao and Wachowicz
(2019)

Bus FCD (stops) 14 MapReduce (n/a) 1,500 s

to identify events along the borders of analysis areas if no overlap is considered
because one mover in a rendezvous event can be located in one spatial partition
while the second mover can be located in another partition.

12.4.4.1 Challenge 6: Data Quality or Veracity

Challenge 4 and 5 already dealt with aspects of data quality, such as the reliability of
moving object identifiers and the overall representativeness of a dataset. However,
there are a additional data quality issues related to massive movement datasets that
affect exploratory analyses, such as the extraction of events and places.

In cooperative tracking systems, such as AIS and FCD, participants may be less
cooperative than expected. For example, vessels may turn off their AIS transponder
while performing illegal activities. A more sophisticated approach to fool tracking
systems is GPS spoofing, where location data is falsified to hide an object’s true
movements.

Sparse and/or coarse data sources, such as CDR and Twitter, present consider-
able challenges for the reliable extraction of events and places. For example, a single
tweet at a new location provides no information about the duration of a potential stay
at this location. The tweet could have been sent while travelling through a place
rather than during a stay. Similarly, a CDR could have been generated because
the mobile phone moved from one location to another and thus switched over
to another cell tower. However, such handovers can also be caused by, e.g. load
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balancing measures implemented by the provider network, or dynamic changes in
signal strength. This phenomenon, often called oscillation, causes additional CDR
to be logged, however those records do not signal any actual change of the phone
owner’s location and have to be detected and dealt with accordingly (Wang and
Chen 2018). Bigger is therefore not always better. For example, Lovelace et al.
(2016) found that smaller survey data provided more realistic flow information for
retail use cases than big Twitter data since “even after ‘data mining’ processes to
refine the low grade ‘ore’ of the Twitter data, the data set seemed to have relatively
low levels of veracity compared with the other data sets.” Even relatively dense
GPS-based movement data sources can provide challenges for event extraction. For
example, Patroumpas et al. (2017) describe out-of-sequence positions, off-course
positions, and zig-zag movement in AIS. All of these would lead to erroneous turn
and speed events, if not handled properly.

Another aspect of data quality is related to the accuracy of position measure-
ments and veracity of quality indicators. In general, all position measurements
suffer from a certain degree of uncertainty. This measurement uncertainty should
be taken into account and modelled (Kuijpers and Othman 2010; Zheng 2015).
Many location sources provide an estimate for their reliability. GPS quantifies
the positional measurement precision with a well-defined dilution of precision
(Langley and others 1999). Similar quality indicators exist for many other data
sources, for example, accuracy values reported by the location providers in Android
smartphones. However, compared to GPS, the reliability of these indicators is low.
For example, Seyyedhasani et al. (2016) report that the actual location error of
the Google Fused location service on Android was much higher than was to be
expected based on the reported accuracy. For critical applications it is suggested to
verify the accuracy information provided by these providers. Widhalm et al. (2015),
who worked with datasets provided by US and Austrian mobile carriers, report that
“mobile carriers usually do not disclose the organization of their networks, and
in practice the spatial range of network cells varies and is difficult to quantify”.
Furthermore, Seyyedhasani et al. (2016) caution that the algorithms behind such
location measurements usually are not only proprietary, but also not standardized
and thus might be subject to change at any time.

Data quality aspects also affects processes for merging different data sources
that contain information about the same moving objects. For example, on Android
smartphones, movement from multiple location providers (such as GPS and network
location) can be recorded simultaneously. While GPS would generally be preferred,
it is typically unavailable while travelling underground or indoors. In such situa-
tions, it can be necessary to impute the missing positioning data with measurements
from less reliable sources (such as the network position). A standard solution for
merging such data sources is a Kalman filter (Kalman 1960; Fritsche et al. 2009;
Goh et al. 2013). As mentioned before, special care has to be taken when the
positioning accuracy is used as an input to data fusion methods since some data
sources report far too optimistic accuracy estimates.
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12.4.5 Task 5: Detection of Outliers and Anomalies

This task deals with identification and handling of unusual observations and patterns
in the data. These patterns are often referred to as outliers or anomalies. An outlier
can generally be defined as “an observation which deviates so much from other
observations as to arouse suspicions that it was generated by a different mechanism”
(Hawkins 1980, p.1). Similarly, an anomaly is a pattern that does not conform to an
expected behavior (Chandola et al. 2009). The distinction is subtle, and the terms
are often used interchangeably in the literature (Chandola et al. 2009). Table 12.7
lists a selection of publications dealing with outlier detection in movement data sets.

While outlier or anomaly detection does not directly serve the primary EDA goal
of summarizing the main dataset characteristics, it is a valuable tool to challenge
assumptions about the data and to develop hypotheses. For example, “an uncommon
trajectory or gathering of people in a specific area might correspond to a special
event such as a festival, traffic accident or natural disaster” (Witayangkurn et al.
2013). Types of movement anomalies include:

• Anomalous records: unusual location, timing, speed, direction, or thematic
attribute data. For example, in GPS tracking data, this can be a vehicle moving
in an unusual direction (Graser and Widhalm 2018). In checkpoint-based data,
such as CDR, an anomalous record can be marked by an unlikely sequences of
network antennas.

• Anomalous (sub)trajectories: unusual trajectories or trajectory parts, for exam-
ple, if a mover takes a previously unseen route to get from A to B. (Wang et al.
2014).

• Anomalous events: the trajectories of individual movers are unremarkable but
their combined spatio-temporal pattern is unusual, for example, if movers gather
at an event location (Wachowicz and Liu 2016). Anomalous events may also be
detected by combining multiple data sources (Zheng et al. 2015).

To enable anomaly detection in large datasets, it is necessary to create a reference
model of normal movement. The types of movement models can be broadly
categorized into (Riveiro et al. 2018):

• Grid-based movement models commonly provide information about how likely
it is to observe a moving object at a certain location, moving at a given speed,
or into a given direction. Depending on the implementation, movement in a grid
cell can be modelled, for example, using Gaussian Mixture Models (GMM) or
Kernel Density Estimation (KDE) (Laxhammar et al. 2009; Graser and Widhalm
2018). In traditional GISystems, grid-based approaches are limited due to the
“computational burden when increasing the scale, as well as the need for a priori
selection of the optimal cell size” (Pallotta et al. 2013). However, grid-based
movement data models where individual cells can be computed independent of
each other, are a good match for distributed computing environments (Graser
et al. 2020).
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Table 12.7 Outlier detection tasks: dataset sizes (in million points), and corresponding run
times; for distributed computing systems the number of computing nodes is provided in brackets
(ordered by year of publication)

BDT Paper Data type Size Technology Run time

� Witayangkurn
et al. (2013)

Cellphone GPS, WiFi &
tower locations (anomalous
record detection using
HMM)

9.2 Hive (4) >=14 h

� Wang et al.
(2014)

AIS (anomalous route
detection using
DBSCAN_SD)

1 MapReduce
(20)

n/a

– Zheng et al.
(2015)

FCD, bike rentals & NYC
311 reported incidents
(Multiple-Source
Latent-Topic model,
Likelihood Ratio Test )

165, 8, 0.2 C++ <30 min

– Wachowicz and
Liu (2016)

Twitter & CDR (outliers
based on social &
geographic space)

0.03 & 1,440 ArcGISa &
Python

n/a

� Chen et al.
(2017b)

FCD (anomalous trajectory
detection using modified
line segment Hausdorff
distance)

350 Spark (3) 500 s

– Graser and
Widhalm (2018)

AIS (anomalous record
detection using quad trees
& GMM)

560 Java n/a

� Filipiak et al.
(2018)

AIS (loitering detection
using avg. speed and SD)

313 Spark (1)b 600 s

– Wang et al.
(2018)

FCD (Anomalous route
detection using improved
edit distance)

n/ac n/a n/a

a
To avoid memory issues, the CDR data was split into parts with 10 million records each

b
One-node pseudo-cluster on virtual machine

c
20,000 taxis for one year with reporting interval <60 s

• Graph-based models allow for a more compact representation of movement,
particularly if the movement is constrained by regulations or geographic context.
However, constructing a movement graph from significant locations, such as, for
example, turning points, is a topic of ongoing research (Pallotta et al. 2013).
The most common approach for clustering significant locations is density-based
clustering using DBSCAN.

• Trajectory or vector-based models that use similarity metrics between trajecto-
ries (Laxhammar and Falkman 2011; Wang et al. 2018) are closely related to the
topic of similar trajectory search and join (previously discussed in Sect. 12.4.2).
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Background Information: Distributed density-based clustering

While DBSCAN is computationally expensive with a complexity of O(n2) (or
O(n log n) if spatial indexes are used (Sidibé and Shu 2017)), there are distributed
variants, such as P-DBSCAN a parallel DBSCAN implementation (Chen et al.
2010), MR-DBSCAN for MapReduce (He et al. 2014) or DBSCAN for Spark
(Cordova and Moh 2015). Furthermore, variants like DBSCAN_SD also consider
speed and direction (Wang et al. 2014).

12.4.5.1 Challenge 7: Anomaly Detection Performance

Anomaly detection is a challenging task since “in many domains normal behavior
keeps evolving and a current notion of normal behavior might not be sufficiently
representative in the future” Chandola et al. (2009). Approaches that consider the
evolving nature of the definition of normalcy include, for example, Graser and
Widhalm (2018) who propose an algorithm that “can continuously update the model
using potentially endless streams of new input data”.

Another challenge described by Chandola et al. (2009) stresses that the “avail-
ability of labeled data for training/validation of models used by anomaly detection
techniques is usually a major issue. [. . . ] Labeling is often done manually by a
human expert and hence requires substantial effort to obtain the labeled training data
set.” Depending on the availability of labeled data sets, anomaly detection methods
may fall into one of three categories:

• Supervised anomaly detection techniques which require extensive training data
sets. These data sets must represent all types of behaviors, including abnormal
instances (which are often difficult to obtain).

• Semi-supervised anomaly detection tries to mitigate the training data problem
as it requires labeling of training data only for the normal class. Abnormality
is detected by comparing a record to the statistical distribution learned from the
training data.

• Unsupervised anomaly detection methods do not require any training data.
They operate under the assumption that the majority of data points represent
normalcy, and try to find data points that least fit with the remaining data.
Consequently, “if this assumption is not true then such techniques suffer from
high false alarm rate” (Chandola et al. 2009).

12.5 Privacy

Personal movement data can reveal the places a person visits. These include home
and work locations, as well as other places that may be sensitive. For example,
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Krumm (2007) presents an experiment to identify home locations and identities
of volunteers. Outside of experimental settings, Tockar (2014) demonstrates how
people can be stalked based on seemingly anonymized New York City taxi data and
that it is straightforward to find pick-up locations of clients that are dropped off
near a certain gentlemen’s club at night. Using the same data, Douriez et al. (2016)
show how taxi driver information can be reconstructed, thus potentially revealing
their income, and conclude that “unless the utility of the data set is significantly
compromised, it will not be possible to maintain the privacy of taxi medallion
owners and drivers”. Beyond human mobility, movement data of endangered species
can be critical as well. Particularly data on species that are threatened by poaching
requires protection (Miller et al. 2019).

An extensive overview of privacy protection strategies for movement data is
provided by Duckham and Kulik (2006). They distinguish regulatory approaches
and privacy policies (which set rules but cannot enforce privacy) versus anonymity
approaches (including pseudonymity, spatial cloaking using k-anonymity, and
zero-knowledge proofs) and obfuscation (including inaccuracy, imprecision, and
vagueness).

Massive movement data collected by cloud-based services are of particular
concern for user privacy. In these systems, data from client apps is sent to a cloud
server where movement models are constructed and merged with other users’ data.
For example, Andrienko et al. (2013, p367) mention the issue of being able to find
a person’s home and work location from Twitter data. They therefore suggest the
concept of a “trusted data transformer” that preprocesses personal data, for example,
by applying k-anonymity approaches, before others get to use it.

12.5.1 k-Anonymity

k-Anonymity (Sweeney 2002) is a well-known data protection model. “A release
of information provides k-anonymity protection if the information for each person
contained in the release cannot be distinguished from at least k-1 individuals whose
information also appears in the release. The parameter k determines the level of
privacy protection.” (Andrienko et al. 2013, p367f)

One approach to ensure privacy protection are aggregations using space tessel-
lations. To ensure k-anonymity, each spatial compartment needs to contain visits
of at least k different movers (Andrienko et al. 2013, p368). In areas with more
movers, these compartments can be smaller than in areas with fewer movers. For
example, Oksanen et al. (2015) present a method for deriving privacy-preserving
heat-maps from sports tracking data. Similarly, if event clustering approaches are
used, k-anonymity requires that each cluster must contain events from at least k
different movers (Andrienko et al. 2013, p368).

However, as discussed by Duckham and Kulik (2006), the need for trusted
transformers or brokers is just one of the disadvantages of anonymity-based
approaches. They also present “a barrier to authentication and personalization,



308 A. Graser et al.

which are required for a range of applications.” They can render data useless
for mover-oriented tasks that deal with reconstruction of individual movement
behaviors (Andrienko et al. 2013, p368). Furthermore, k-anonymity has shown to be
vulnerable to attackers who possess prior knowledge (Machanavajjhala et al. 2007).
This shortcoming is addressed by the l-diversity concept by Machanavajjhala et al.
(2007). However, ElSalamouny and Gambs (2016) argue that “it is not possible for
a privacy definition to guarantee the indistinguishability of the user’s location under
any prior knowledge while allowing a reasonable utility at the same time.”

12.5.2 Differential Privacy

According to ElSalamouny and Gambs (2016), the core idea of differential privacy
(Dwork 2006) is that “the presence (or absence) of an individual in the dataset
should have a negligible impact on the probability of each output of a computation
(e.g., a statistical query)”. ElSalamouny and Gambs (2016) adapt differential privacy
to location based services. They view the real location of the user as the secret to
be protected. Consequently, a mechanism processing locations needs to ensure that
every two adjacent locations are indistinguishable to some extent. This prevents an
attacker observing the output of the mechanism from distinguishing the real location
of a user from others situated within a certain distance.

12.5.3 Privacy by Design

Regardless of the reliability of a trusted data broker, the mere existence of individual
level data on the cloud (or any other system that may be compromised) always
presents a data protection issue. Therefore, an alternative approach is described by
Meier (2017) who proposes to construct the user movement model on the client-side
and to share only an abstracted generalised version of the model with the cloud.
The added privacy protection has to be weighed against challenges regarding initial
model training and limited processing capabilities on the client-side. Furthermore,
changes to the movement model that require additional data would be problematic
since – in this approach – there is no more detailed archived data to use.

To the best of our knowledge, no visual analytics tools so far fully implement
privacy by design and there is need for an underlying fundamental framework
defining which kinds of privacy-protecting transformations to apply depending on
the properties of the available data and the types of information that needs to be
extracted (Andrienko et al. 2013, p369).
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12.6 Recommended EDA Workflow for Massive Movement
Data

Building on the previously discussed EDA concepts and identified challenges,
we propose a workflow for the exploratory analysis of massive movement data.
Our proposed workflow is based on two core ideas: firstly, efficient exploration
of movement data requires a dual approach: combining point representation of
individual records and line representation of trajectories. Secondly, in order to
detect patterns in massive data, aggregates and summarizations are required that
communicate movement characteristics.

The structure of our proposed workflow is summarized in Fig. 12.3. It is based on
EDA goals and starts with establishing an overview of the data, considering context,
extracting trajectories and events, and finally exploring patterns and outliers. The
following subsections cover the individual steps of the workflow and describe the
corresponding questions and assumptions about the data that should be checked by
the analyst.

12.6.1 Establishing an Overview

The first step in our proposed EDA workflow can be performed directly on raw
input data since it does not require temporally ordered data. It is therefore suitable
as a first exploratory step when dealing with new data. The following questions and
assumptions should be checked:

• Q1.1 Geographic extent: Is the geographical extent as expected and are there
holes in the spatial coverage?

• Q1.2 Temporal extent: Is the temporal extent as expected and are there holes in
the temporal coverage?

• Q1.3 Spatio-temporal gaps: Does the geographic extent vary over time or do
holes appear during certain times? For example, tracking data of migratory
animals is expected to exhibit seasonal changes. Such changes in vehicle tracking
systems however may indicate issues with data collection.

These questions can be approached using, for example, density maps, time series
plots, and animated density maps (for example, using GeoMesa’s built-in density
function which can be published as GeoServer WMS and animated with QGIS
TimeManager) or space-time density volumes (Demšar and Virrantaus 2010). When

Fig. 12.3 Recommended EDA workflow for massive movement data
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doing so, it is important to consider the analysis scale since data gaps may only
be visible at certain scales. For example, if there is a systematic issue with the
data collection and data is missing for a specific hour of the day, aggregated daily
statistics will fail to detect this gap.

Common technical issues: Time zones

It is generally recommended to use one single, standardised time representation
(preferably UTC) internally, and convert all timestamps to this representation at the
earliest possible moment. This approach ensures that potential timestamp issues
are identified and resolved at an early stage and is geared towards a common
requirement of movement data analysis: sorting items by absolute moments in time.

12.6.2 Putting Movement Records in Context

The second exploration step puts movement records in their temporal and geogra-
phic context. The exploration includes information based on consecutive movement
data records, such as time between records (sampling intervals), speed, and direc-
tion. Therefore, this step requires temporally ordered data. The following questions
and assumptions should be checked:

• Q2.1 Sampling intervals: Is the data sampled at regular or irregular intervals?
• Q2.2 Speed values: Are there any unrealistic movements? For example: Does

the data contain unattainable speeds?
• Q2.3 Movement patterns: Are there any patterns in movement direction or

speed?
• Q2.4 Temporal context: Does the movement make sense in its temporal context?

For example: Do nocturnal animal tracks show movement at night?
• Q2.5 Geographic context: Does the movement make sense in its geographic

context? For example: Do vessels follow traffic separation schemes defined in
maritime maps? Are there any ship trajectories crossing land?

Movement patterns can be approached using appropriate summarizations. For
example, movement prototypes (Graser and Widhalm 2018; Graser et al. 2020)
provide information about the distribution of movement speed and direction.

12.6.3 Extracting Trajectories & Events

The third exploration step looks at individual trajectories. It therefore requires
that the continuous tracks are split into individual trajectories. Analysis results
depend on how the continuous streams are divided into trajectories and/or events (as
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discussed in the segmentation challenge in Sect. 12.4.2.1). The following questions
and assumptions should be checked:

• Q3.1 Object identifiers: Does the dataset contain stable object identifiers?
• Q3.2 Trajectory lines: Do the trajectory lines look plausible or are there

indications of out of sequence positions or other unrealistic location jumps?
• Q3.3 Home/depot locations: Do day trajectories start and end at the same home

(for human and animal movement) or depot (for logistics applications) location?

Splitting tracks in regular temporal cycles (creating for example, daily trajectories)
or according to attribute changes (for example, when the moving object’s status
changes) is straightforward. However, most meaningful trajectory analyses require
trajectories between consecutive stay locations. Therefore, appropriate stay detec-
tion methods that are tailored to the dataset characteristics have to be applied.

12.6.4 Exploring Patterns in Trajectory and Event Data

The fourth exploration step looks at the set of all or subsets of the trajectories and
events extracted from the movement data. This step involves many of the compu-
tationally more expensive operations, such as trajectory similarity computations
(discussed in Sect. 12.4.2). The following questions and assumptions should be
checked:

• Q4.1 Origins/destinations: Are there any common trip origins or destinations?
For example: Where do customers of a certain retail store live?

• Q4.2 Similar trajectories: Are there repeating similar trajectories?
• Q4.3 Pairwise patterns: Are there frequent encounters or are movers avoiding

one another?
• Q4.4 Group patterns: Are there any patterns involving groups of movers? For

example: Are there any discernible flocking or dispersal patterns?
• Q4.5 Home ranges: Are individual home ranges overlapping, by how much, and

where/when?

Interpretation of event and trajectory patterns that goes beyond basic observa-
tions generally requires domain knowledge and therefore discussions with domain
experts. It is not unusual at this point in the EDA workflow to perform multiple
iterations of step 3 and 4 to evaluate different trajectory segmentation and event
extraction approaches.

12.6.5 Analyzing Outliers

The fifth and final exploration steps looks at potential outliers and how they may
challenge preconceived assumptions about the dataset characteristics. This step in
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particular regularly requires domain knowledge that exceeds the information that
can be discovered from the movement data itself. The following questions and
assumptions should be checked:

• Q5.1 Anomalous movement: Are there any unusual movements? For example:
a tanker vessel travelling through a region where no tankers are usually encoun-
tered.

• Q5.2 Anomalous spatio-temporal regions/events: Are there any unusual
spatio-temporal regions or events? For example: unusual gatherings in a certain
area and time.

As indicated by the data science framework in Fig. 12.1, results from any one of the
steps in this EDA workflow may trigger a feedback loop that can lead to changes
in data collection, processing, cleaning, exploratory or confirmatory data analysis.
Especially if data analysts are not domain experts themselves, visual tools are an
important asset in communicating with other experts in interdisciplinary teams.

12.7 Conclusions

In this chapter, we have discussed exploratory data analysis (EDA) for massive
movement datasets. After an introduction to EDA in general and EDA for movement
data, we laid out common exploratory analysis tasks for massive movement data and
provided examples from the classic GIS literature as well as examples using big data
technology.

We have discussed the various challenges, including indexing, visualization,
segmentation, data quality, veracity, bias, and particularly, privacy. In addition to
these conceptual challenges, we observe a general lack of established EDA tools
for movement data. The heterogeneity of movement data sources and application
domains makes it difficult to develop general purpose EDA tools.

In light of these challenges, we proposed a five-step EDA workflow for massive
movement data. This workflow can serve researchers and analysts who are con-
fronted with new datasets in getting to know their data in a structured way. The
technical implementation of the proposed workflow steps, however, is up to the
individual analyst. While this chapter provides some general pointers to tools within
the Hadoop and Apache Spark ecosystem, these are by no means the only option.
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Statistics, Uncertainty and Data Quality



Chapter 13
Spatio-Temporal Data Quality:
Experience from Provision of DOT
Traveler Information

Douglas Galarus, Ian Turnbull, Sean Campbell, Jeremiah Pearce,
and Leann Koon

13.1 Introduction

The motivation for this chapter stems from a 15-year collaboration between the
California Department of Transportation (Caltrans) and the Western Transportation
Institute, and now Utah State University. Ian Turnbull, recently retired from
Caltrans, set the standard of “accurate, timely and reliable” for all projects he was
involved with, particularly those in remote, rural areas of California, and related
collaborations. Ian’s team, now headed by Jeremiah Pearce, is responsible for the
operation of a vast field sensor network and the provision of weather sensor data,
CCTV images, chain control messages, changeable message sign (CMS) messages,
and just about every other type of traveler information related to Caltrans District
2, particularly in remote, rural areas of Northeastern California. In turn, Sean
Campbell, also from Caltrans, makes this and similar data from the rest of the
state available to third-party providers of traveler information and other related
applications. The experience gained in working with Ian, Sean, Jeremiah and others
on the provision of traveler information and the development of systems for DOT
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operations and maintenance personal has been invaluable for recognizing the need
for and the challenges of providing quality spatio-temporal data.

The transportation industry has shifted from building more infrastructure to
“smarter” operation of existing roadways so-as to better manage challenges includ-
ing congestion, inclement weather, maintenance, increased traffic volumes, etc.
This shift has been accompanied by a rapid advance in technologies and an
increased demand for more high quality, real-time traveler information (Margiotta
2002; Schuman 2001). This need will be magnified with the plan for massive
Federal infrastructure investment by the current administration and compounded
by advancement in sensing technology associated with the Internet of Things as
well as the push for connected and autonomous vehicles. The standard of “accurate,
timely and reliable” remains elusive in this field despite best intentions, and surely
is problematic in other areas that treat data quality as a pre-processing activity.

Data quality for traveler information has generally been handled on an ad-hoc
basis, with little or no provision for error notification other than sometimes through
user-reporting of observed errors. The quality of data - for example, whether it
is accurate, timely, and reliable - is a crucial consideration for the provision and
use of traveler information. When drivers access traveler information that is up to
date, correct, and accessible every time they need it, they will use it to make travel
decisions which ultimately impact traffic management effectiveness (Robinson et al.
2012). However, if travelers access traveler information and see old camera images,
obviously incorrect weather conditions (e.g., warm temperatures when it is cold
everywhere else in near proximity), or misspellings on sign messages that change
the meaning of the message, then users are less likely to make travel decisions based
on the traveler information and they will not trust it. This can significantly diminish
the effectiveness of traffic management efforts. Even worse, if drivers (or automated
systems) use incorrect information to make travel-related decisions, more serious
consequences such as death may follow.

Our project team conducted related work that was sponsored by Caltrans under
the auspices of the Western States Rural Transportation Consortium as a technology
incubator project (Galarus et al. 2018). The goal of that project was to analyze
and document existing system best practices for data quality for the aggregation
and dissemination of state department of transportation traveler information. The
research team conducted a survey of DOT practitioners in western states, as well as
a literature review on data quality within the transportation field. “Best practices”
were documented. Recommendations and next steps were formulated based on
applicability to Caltrans traveler information data and processes.

Neither the survey of DOT practitioners nor the literature review identified
a comprehensive, well-defined plan for unified, multi-dimensional approaches to
quality assurance of traveler information. However, all DOT practitioners that were
surveyed as well as the literature reviewed relative to data quality in transportation
indicated that quality data was important for safe, efficient operation of the
transportation system, including provision of traveler information. This observation
is especially valid given the current environment that is increasingly focused on
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performance measurements, accountability and “smarter” operation of roadways,
and is rapidly progressing with connected and autonomous vehicle initiatives.

Recommendations were made considering Caltrans’ traveler information data
and processes. It was recommended that relevant quality metrics and requirements
should be clearly defined. This includes how to determine that requirements
are being met with quality data. Common statewide standards for data quality,
performance, maintenance, and calibration should be defined and established using
an engineering approach. These standards should be tied to all specific uses of the
data.

In this chapter, we present information from our experience with the challenges
of data quality for traveler information:

• Concrete examples of spatio-temporal data quality problems.
• Spatio-temporal data quality attributes.
• State of the practice methods for assessing spatio-temporal data quality.
• Enhanced methods for assessing spatio-temporal data quality, including identifi-

cation of bad metadata.
• Motivation for further research and development in this area.

While motivated by our transportation applications, these topics should be of
general interest and use to practitioners and researchers alike.

13.2 Example Data Quality Problems

The process of providing accurate, timely, and reliable traveler information that
effectively impacts traffic management, safety, and operations, is complex and
rife with challenges. One of the core problems is determining which data quality
descriptors to apply and how they should be used relative to traveler information,
e.g. determining what to measure and how to measure it. In September 2000,
ITS America and the U.S. Department of Transportation established guidelines for
traveler information data collection and quality. In the introduction to the report,
the authors commented that the early vision for traveler information was simple –
data would be collected by public agencies and disseminated to various devices and
media outlets. However, they stated that, “In hindsight, it is clear that the difficulty of
collecting good complete and timely data, transforming data into information, then
packaging, marketing and communicating that information to people and devices
was underestimated” (I. A. A. C. Steering Committee 2000). In the era of big data
and rapidly changing technology, this statement still holds true, possibly more so
now than ever.

Data quality is a crucial consideration in the process of aggregating and
disseminating meaningful traveler information. Potential issues and problems with
traveler information data include but are not limited to:
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• incorrect, erroneous or missing sensor data (temperature, precipitation, surface
condition, etc.);

• bad meta data such as incorrect locations and timestamps;
• old, frozen, partial, poorly lit, poorly positioned or unavailable CCTV images;
• device settings visible to the public;
• etc.

In November 2010, a final rule was published establishing the Real-Time System
Management Information Program (23 CFR 511) in accordance with Section 1201
of the Safe, Accountable, Flexible, Efficient Transportation Equity Act: A Legacy
for Users (SAFETEA-LU) (USDOT n.d.). “The Real-Time System Management
Information Program (was) to provide the capability to monitor in real-time the
traffic and travel conditions of the major highways across the U.S. and provide a
means of sharing these data with state and local governments and with the traveling
public” (FHWA, Federal Highway Administration 2015). It provided a foundation
for basic traveler information and data exchange formats and established minimum
requirements for real-time traffic and road condition information for construction
activities, road or lane blocking incidents, road weather observations, travel times,
information accuracy, and information availability. It also specified that a real-
time information program was to be 85 percent accurate at a minimum or have a
maximum error rate of 15 percent (U. S. D. of T. F. H. Administration). But, no
methods for measuring accuracy or other quality metrics were included. Nor did
the program define metrics for specific elements such as RWIS or CMS. Instead,
individual states were given the “flexibility to use methods appropriate to systems
and processes used to acquire information and data” (Trachy et al. 2016).

In our survey of DOT practitioners, one state DOT representative commented
relative to quality dimensions and meeting the RTSMIP requirements, “This has
been problematic - how to measure accuracy of . . . e.g., incident data . . . we’re
reporting what we know but how do we know if that’s all.” In other words, the
requirements can be met, but the quality of the information can’t be quantified or
defined. i.e., the requirements can be met with garbage data. As a result, DOTs find
themselves challenged in assessing the quality of their traveler information data.
Following are several examples of problematic traveler information from the One-
Stop-Shop for Rural Traveler Information (http://oss.weathershare.org/).

In Fig. 13.1, an Arizona DOT CMS message, shows how a single missing letter
dramatically changes the meaning of a message. Figure 13.2 shows a Caltrans
CCTV image including configuration settings. The positioning of the camera makes
it difficult to determine what else is being shown. Figure 13.3 shows an incorrect
pavement surface temperature from an Oregon Department of Transportation RWIS,
indicating freezing conditions when freezing is not present. Figure 13.4 shows a
CMS message from Caltrans District 1 that is verified by Fig. 13.5, which shows a
camera image of the CMS displaying this message. Caltrans District 1 has deployed
cameras in proximity to CMS to help verify that messages are correctly displayed
on CMS. This example is shown not because camera verification of sign messages is
a preferred approach, but to demonstrate the concern from DOT staff that messages

http://oss.weathershare.org/
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Fig. 13.1 Arizona DOT
CMS message with a typo

Fig. 13.2 Caltrans CCTV
image with camera settings

may not be properly displayed on the physical signs. In Fig. 13.6, a Montana DOT
camera is incorrectly located approximately 20 miles south of its actual location
along Interstate 90. As a result, automated placement of these cameras on map-
based traveler information systems is problematic, and detection likely requires user
recognition of the problem.
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Fig. 13.3 Incorrect ODOT
RWIS surface temperature

Fig. 13.4 Caltrans District 1
CMS message

Taken individually, these errors may seem anecdotal. But many errors are present
at any time, indicating that there is a systemic problem that affects all state DOTs,
with numerous points of failure.
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Fig. 13.5 Caltrans District 1
CCTV image to confirm
CMS message

Fig. 13.6 Bad location for
Montana DOT CCTV image

13.3 Data Quality Attributes

Data quality from the perspective of the consumer is presented subjectively by
Wang and Strong (1996) as a comprehensive framework of data quality attributes.
They describe the accuracy dimension as having the following attributes: “data
are certified error-free, accurate, correct, flawless, reliable, errors can be easily
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identified, the integrity of the data, and precise.” Timeliness has a single entry in
its attribute list: age of data. Reliability is mentioned throughout their paper, but it
is neither given a definition nor attributes. They present many other data quality
attributes and specifically mention precision, currency, completeness, relevancy,
accessibility and interoperability in the context of information systems.

Batini et al. (2009) present a more recent survey and summary of data quality
dimensions, and point out varying definitions for dimensions such as timeliness
and completeness. They define several types of accuracy including “closeness of
value . . . to the elements of the corresponding definition domain.” They include
timeliness with currency and volatility as time-related dimensions and assert that
“there is no agreement on the abstract definition of time-related (data quality)
dimensions; typically, currency and timeliness are often used to refer to the same
concept.” They too mention reliability but provide no definition. Completeness and
consistency are also mentioned as popular measures.

Luebbers et al. (2003) develop data mining tools to assist in data quality
assessment, and present a definition for data auditing that includes measurement and
improvement of data quality. Bisdikian et al. (2007) present overlap and differences
between “Quality of Data” and “Quality of Information” (QoI). While these papers
are useful in general terms, they do not include specific, comprehensive measures
that can be applied to the spatio-temporal data quality challenges that we have
encountered.

Devillers and Jeansoulin (2010) provide a comprehensive review of spatial
data quality, including treatment of temporal aspects, and distinguish between
internal and external quality. Internal quality includes dimensions such as accuracy,
completeness and consistency, while external quality is defined as fitness for use or
purpose. They also cite and expand on prior work from Bédard and Vallière (1995),
which presented six characteristics of external quality for geospatial databases: def-
inition, coverage, lineage, precision, legitimacy, and accessibility. They distinguish
between spatial, temporal and thematic accuracy.

Work from Shi et al. in (2003a) is relevant because it presents sources of
uncertainty in spatial-data mining, and these sources can also be viewed as sources
of data quality problems. While these papers provide general guidance to us, they
do not provide specific measures and algorithms that address our spatio-temporal
situation.

In Aggarwal (2013), Aggarwal defines Data Cleaning as “Given a data set,
remove discordants from it. Correct any errors in the data if possible.”. Data
cleaning is presented by Sathe et al. in the context of pull-based and push-based
data acquisition in Sathe et al. (2013), along with a model-based approach to
outlier/anomaly detection. Ives et al. (1999) present an adaptive query system for
systems integrating overlapping data sources, including query optimization, while
Sofra et al. (2008) investigate the trade-offs between accuracy and timeliness of
information acquired in a data aggregation network. Also from the networking
domain, the work presented by Charbiwala et al. in (2009) focuses on rate control
guided by Quality of Information (QoI) measures. They indicate that such efforts
are highly application-dependent. Another network-related publication, this one
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by Hermans et al., (2009) presents four components of data quality: accuracy,
consistency, timeliness and completeness. Timeliness is expressed principally as
a network phenomenon. Fugini et al. (2002) define completeness, currency, inter-
nal consistency, timeliness, importance, source reliability and confidentiality for
cooperative web information systems. These definitions are general and useful
conceptually but require further definition specific to spatio-temporal data to be of
direct help to us.

Klein et al. present work in relation to the transfer and management challenges
related to the inclusion of quality control information in data streams and develop
optimal, quality-based load-shedding for data streams in (Klein and Lehner 2009a,
b; Klein 2007; Klein et al. 2007; Klein and Hackenbroich n.d.). Specific measures
presented include accuracy, confidence, completeness, data volume and timeliness,
and all are presented in relation to sensor data streams. A missing component in
these works relative to ours is an accounting for the spatial aspect.

For Klein et al., data is considered and managed as individual streams. In our
work, it is important to not only consider data streams from individual sites and
sensors but the collective of all sites and sensors and their interrelationships. We are
generally working with batches of data that cover relatively short amounts of time.
Data from one site may be in error while data from another nearby site may be good.
Specific measures are presented by Klein et al. and are of use as examples, while
some such as completeness have apparent short-comings for our application which
we subsequently address. In several applications, we wish to evaluate overlapping
data providers, and there is no direct mechanism to do so here. In subsequent work,
Klein et al. (Jerzak et al. 2011; O’donovan et al. 2013) incorporate their data quality
measures into a larger middleware architecture named GINSENG, intended for
performance monitoring and control of sensor networks. The specific measures used
are like those presented by Klein in prior work.

Quality of Service (QoS) is used by Tatbul for load-shedding in (2002) while
noting that conflicting objectives are common. Similar work is presented in the
context of operator scheduling by Carney et al. (Carney et al. 2003). Mokbel et
al. (2004) present load-shedding for spatio-temporal data streams, but they do not
specifically address quality control measures. Other work regarding load-shedding
for data streams can be found in Babcock et al. (Babcock et al. 2004, 2007), Nehme
and Rundensteiner (2007), and Tatbul et al. (2003, 2007; Tatbul and Zdonik 2006).
Of these, (Nehme and Rundensteiner 2007) from Nehme and Rundenste appears
most relevant due to its spatio-temporal setting, presenting a clustering approach to
load-shedding in which moving objects that are similar in terms of location, time,
direction and speed are clustered, and data from individual members of the cluster
can be dropped with the representatives of the cluster summarizing them.

Jeung et al. (2010) present an automated metadata generation approach that
includes a probabilistic measure of data quality. In Hossain et al. (2011), Hossain et
al. dynamically assess three quality attributes for the detection and identification of
human presence in multimedia monitoring systems, whereas Rodríguez and Riveill
(2010) present data quality in relation to e-Health monitoring systems. Crowd-
sourced citizen science as described by Kelling et al. in (2015) and volunteered
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geographic information efforts from Goodchild and Li (2012), Barron et al. (2014),
and Ballatore and Zipf (2015) overlap with data quality research for obvious
reasons. When the public assists in collecting data, the benefits of public collection
must be weighed against the potential for poor quality submissions. These efforts
do indicate that the benefits of public participation outweigh the drawbacks while
leaving open paths for further research.

In Kelling et al. (2015), Kelling et al. tackle the problem of quality with analysis
both of data submission and subsequent observer variation. Goodchild et al. call
upon existing data quality standards such as the US Spatial Data Transfer Standard
from the USGS (USGS) and the Content Standard for Digital GeoSpatial Metadata
(F. (Federal G. D. Committee)) while demonstrating the open-ended nature of
quality assurance for volunteered geographic information. Barron et al. (2014)
reference the ISO 19113 (2002), ISO 19114 (2003) and ISO 19157 (2013) standards
while pointing out that data quality for volunteered geographic information projects
such as OpenStreetMap (OSM) (2013) depends on the user’s purpose. In turn they
present a framework tailored to “fitness for purpose” with six different categories
of purpose and 25 measures within those categories, all specific to OSM. Ballatore
and Zipf (2015) investigate “conceptual quality” using OSM, and indicate wider
applicability than that of Baron et al. (2014). While these sources demonstrate
ongoing interest and need for related research, none of these approaches directly
addresses quality control for spatio-temporal data for the consumer/aggregator
situation.

Accuracy, precision, error and uncertainty relative to location information are
addressed in general terms by Goodchild and Gopal (1989), although the specifics
of identifying such problems in data sets like ours are lacking. In Shi et al. (2003b),
Shi et al. describe errors in position, in which location is distorted by some vector.
They further describe the situation in which such errors vary smoothly in space,
preserving continuity and spatial autocorrelation. They also describe absolute versus
relative errors in location. This is useful for both location and timestamp errors. A
distinction is made by Shi et al. (2003b) between attribute accuracy and thematic
accuracy. Data quality as spatial metadata and use of the quality information is also
addressed.

13.4 Data Quality Assessment Methods

The weather and road-weather communities employ detailed accuracy checks for
individual observations. The Oklahoma Mesonet uses the Barnes Spatial Test
(Barnes 1964), a variation of Inverse Distance Weighting (IDW) (see Shepard
(1968)). Further examples include Shafer et al. (2000), and the Federal Highway
Administration’s Clarus project, as described by Limber et al. in (2010). MesoWest
(U. of Utah) uses multivariate linear regression to assess data quality for air
temperature, as described by Splitt and Horel in (Splitt and Michael n.d.; U. of
Utah). MADIS (NOAA) implements multi-level, rule-based quality control checks
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including a neighbor check using Optimal Interpolation/kriging (NOAA; NOAA;
Belousov et al. 1972).

These approaches (IDW, Linear Regression, kriging) can be used to check indi-
vidual observations for deviation from predicted and flag individual observations
as erroneous or questionable if the deviation is large. If interpolated values are
erroneous, then the quality assessment will be wrong too. If metadata such as
location or timestamps associated with a site is erroneous, then the quality control
assessment will be invalid because of comparison with the wrong data from the
wrong sites. None of these approaches identify incorrect location metadata and only
one provider, Mesowest, attempts to identify bad timestamps. Their approach only
identifies one of the most obvious timestamp-related problems – timestamps that
cannot possibly be correct because they occur in the future relative to collection
time.

Beyond bad metadata, sites that are chronically bad are identified at best by
rudimentary means. MADIS’ statistical spatial consistency check flags a current
observation as failing if 75% of the observations for the site/sensor have failed
individually in the prior week. This check will discontinue flagging observations
as bad if the failure rate for other checks drops beneath 25% in subsequent weekly
statistics. While this check does give an overall, general indication of site/sensor
health, it is possible that there is a problem with a site while observations from the
site still pass quality control enough proportion of time to go unnoticed.

Many spatial approaches use interpolation to model data for quality assessment,
so it is useful to examine work that compares and enhances traditional interpolation
methods. Zimmerman et al. (1999) use artificial surfaces and sampling techniques
as well as noise level and strength of correlation to compare Ordinary and Universal
kriging and IDW. They found that the kriging methods outperformed IDW across
all variations they examined. Lu and Wong (2008) found instances in which kriging
performed worse than their modified version of IDW, where they vary the exponent
depending on the neighborhood. They indicate that kriging would be favored in
situations for which a variogram accurately reflects the spatial structure. Mueller
et al. (2004) show similar results, saying that IDW is a better choice than ordinary
kriging in the absence of semi-variograms to indicate spatial structure.

In prior work, we proposed a modification of IDW that used a data-based distance
rather than geographic distance to assess observation quality (Galarus et al. 2012;
Galarus and Angryk 2013). That work focused on the use of robust methods to
associate sites for assessment of individual observations. In Galarus and Angryk
(2016a, b, 2018) we extended the mappings to better account for spatio-temporal
variation and observation time differences when assessing observations. In Galarus
and Angryk (2014, 2016c) we developed quality measures that extended beyond
sites, to help evaluate overall spatial and temporal coverage of a region.

Shepard’s method/Inverse Distance Weighting is widely applied, including
applications which involve outlier detection and mitigation. Xie et al. (2004) applied
it to surface reconstruction, in which they detect outliers using distance from fitted
surfaces. Others extend the method in different ways including added dimensions,
particularly time. Li et al. extend IDW in (Li et al. 2016) to include the time
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dimension in their application involving estimated exposure to fine particulate
matter. Grieser warns of problems with arbitrarily large weights when sites are
near in analyzing monthly rain gauge observations (Grieser 2015), and mitigates
the problem in a manner that Shepard originally used by defining a neighborhood
for which included points are averaged with identical weights in place of the large,
inverse distance weights.

Kriging and Optimal Interpolation were developed separately and simultaneously
as spatial best linear unbiased predictors (blups) that are equivalent for practical
purposes. L. S. Gandin, a meteorologist, developed and published optimal inter-
polation in the Soviet Union in 1963. Georges Matheron, a French geologist and
mathematician, developed and published kriging in 1962, named for a South African
mining engineer, Danie Krige, who partially developed the technique in 1951 and
later in 1962. For further information, refer to Cressie (1990).

Kriging is easily impacted by multiple data quality dimensions and its applica-
bility is hindered by data quality problems. Kriging will down-weight observations
that are clustered in direction, as indicated by Wackernagel (2013). This may be
beneficial. However, a near observation can shadow far observations in the same
direction, causing them to have small or even negative weights. This is problematic
in the case that the near observation is bad.

Kriging is used to estimate values at locations for which measurements are
unknown using observations from known locations. Covariance is typically esti-
mated. This estimate usually takes the form of a function of distance alone and is
determined by the data. A principal critique of kriging is that while it does produce
optimal results when the covariance structure is known, the motivation for using
kriging is questionable when the covariance structure must be estimated. Handcock
and Stein (1993) make such an argument. Another critique is that kriging will yield
a model that matches data input, giving the (false) impression that the model is
perfect, as stated by Hunter et al. (2009).

Unfortunately, none of these approaches directly addresses outlier and anomaly
detection for spatio-temporal data in a robust and comprehensive manner that meets
our needs. None identify bad sites and metadata in a comprehensive manner. The
methods used by the weather data providers appear to be state of the art for
assessment of accuracy.

13.5 Enhanced Methods

13.5.1 General Definitions

An individual site refers to a fixed-location facility that houses one or multiple
sensors that measure conditions. A measurement and associated metadata are
referred to as an observation. The set of all sites, represented by S, is the set of
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sites for which observations are available for a time period and geographic area of
interest.

An observation, obs, is represented as a 4-tuple, obs = 〈s, t, l, v〉 = 〈obss, obst,
obsl, obsv〉 consisting of the site/sensor s, timestamp t, location l (spatial coordi-
nates), and an observed value v. We investigate observations from a single sensor
type, so we assume that s identifies both the site and sensor. The set of all
observations, represented by O, consists of observations from sites in S over a time-
period of interest.

Ground-truth is the exact value of the condition that a given sensor is intended to
measure at a given location and time. Ground-truth will rarely be known because of
sensor error, estimation error, and high human costs, among other reasons. Human
cost is a huge challenge, with agencies struggling to accurately inventory assets and
technicians unable to service and maintain all equipment, including situations where
they may not even be able to find the equipment.

We wish to evaluate observations to determine if they are erroneous. To do
so, we compare observations to estimates of ground-truth. For our purposes, these
estimates will be determined via interpolation, which is commonly used in the GIS
community, as well as in the weather and road-weather communities.

13.5.2 General Approach

We measure outlyingness as the absolute deviation between an observed value
and ground truth. In principal, this is our measure of accuracy. Ground truth may
not be known, so we estimate outlyingness as the absolute deviation between an
observation and modeled ground truth corresponding to the observed value in time
and location. Given the degree of outlyingess (exact or estimated), we identify
outliers using a threshold. If the degree of outlyingness for an observation meets or
exceeds the threshold, then we flag the observation as an outlier. Otherwise, we flag
it as an inlier. The degree of outlyingness is more informative than an outlier/inlier
label.

Our process is consistent with general model-based approaches for outlier
detection found in Han et al. (2011), Tan, Steinbach and Kumar (2006) and
Aggarwal (2013), and follows the general data-mining framework of Train, Test
and Evaluate. Our process is outlined in Fig. 13.7. Notice that quality assessment is
not relegated to pre-processing but is instead part of a necessarily iterative process.

13.5.3 Interpolation to Model Ground Truth

Inverse Distance Weighting (IDW) (refer to Shepard (1968)) estimates ground truth
as the weighted average of observation values using (geographic) distance from
the site for which an observation is to be estimated as the weight, raised to some
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Fig. 13.7 Our general process

exponent h. If ground truth is known, a suitable exponent h can be determined to
minimize error. Isaaks and Srivastava (1989) indicate that if h= 0, then the estimate
becomes a simple average of all observations, and for large values of h, the estimate
tends to the nearest neighboring observation(s). This simple version of IDW does
not account for time, so it is assumed that observations fall in temporal proximity.

Least Squares Regression (LSR) estimates observed values using the coordinates
of the sites. We only use x-y coordinates in our experiments for LSR. There could
be benefit in using elevation and other variables including time. However, doing
so compounds problems related to bad metadata such as incorrect locations, bad
timestamps and inaccurate elevations.

Universal kriging (kriging with a trend) (UK) estimates observed values using the
covariance between sites, the coordinates of the sites, and the observed values. In
our experiments, we used a Gaussian covariance function of distance and estimated
the related parameters to minimize error relative to ground-truth for our training data
using data from the present time window. Refer to Huijbregts and Matheron (1971)
for further information on Universal kriging. We implemented a fitter/solver for the
estimation of the covariance function parameters using the Gnu Scientific Library
(GSL) non-linear optimization code (Galassi et al. n.d.). Refer to Bohling (n.d.) for
additional covariance functions.

These methods can be applied using a restricted radius or a bounding box to
alleviate computational challenges and to focus on local trends. Other interpolators
could be applied in a similar manner. There are obvious risks in using interpolators.
Outliers and erroneous values will have an adverse impact on interpolation, causing
poor estimates. Lack of data in proximity to a point to be estimated can also result
in a poor estimate. For these reasons, we developed our own robust interpolator in
prior work.
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13.5.4 Our SMART Approach

In prior work, we developed a representative approach for data quality assessment
of site-based, spatio-temporal data using what we call Simple Mappings for
Approximation and Regression of Time series (SMART) (Klein 2007; Klein et al.
2007; Klein and Hackenbroich n.d.; Jerzak et al. 2011; O’donovan et al. 2013;
Tatbul 2002; Carney et al. 2003). We used the SMART mappings to identify bad
(inaccurate) observations and “bad” sites/sensors, so that they can be excluded from
display and computation, and to subsequently estimate (interpolate) ground truth.

First, we compute site-to-site mappings. Let an observation be represented as
obs = {(t, v) : t = time, v = value}, pairing the value with the reported time. Let
obsi be the set of observations from site i and obsj be the set of observations from
site j. For a given time radius r we pair the observations from sites i and j as
obspairsi, j = {(x, y) : (t1, x) ∈ obsi, (t2, y) ∈ obsj, |t2 − t1| ≤ r}. See Fig. 13.7 for
an example pairing of an observation from one site to observations from another
site.

We then define a site-to-site mapping l as a linear function of the x-coordinate
(the observed value from site i) of the paired observations obs _ pairsi, j:
li, j(x) = a + bx. We determine this function to minimize the squared error between
the values of the function and the y-coordinates (the observed values from site j) for
the paired observations. See Fig. 13.8 for an example site-to-site mapping.

We next define a quadratic estimate q of the squared error of the linear mapping
relative to the time offset between the paired observations. We expect an increased
squared error for increased time differences. This model estimates the squared error
and accounts for time offsets between observations. Our method does not require
a complex, data-specific covariance model. See Fig. 13.9 for an example quadratic
error mapping (Fig. 13.10).
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Fig. 13.8 An observation paired with observations from another site
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sqerrpairs i,j
=

{(
Δt,

(
y − (

li,j (x)
))2

)
: (t1, x) ∈ obsi,

(t2, y) ∈ obsj ,Δt = |t2 − t1| ≤ r

}

qi,j (Δt) = a + b (Δt)+ c(Δt)2

These simple mappings are the core elements of our approach, and we must
overcome the potential impact of the erroneous data in determining them. Least
squares regression suffers from sensitivity to outliers. We use the method from
Rousseeuw and Van Driessen to perform Least Trimmed Squares Regression
(Rousseeuw and Van Driessen 2006). Least Trimmed Squares determines the least
squares fit to a subset of the original data by iteratively removing data furthest from
the fit. Before applying least trimmed squares to determine the linear mapping,
we select the percentage of data that will be trimmed. We can interpret the trim
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percentage either as our willingness to accept bad data in our models or our
estimation of how much data is bad. We used a trim percentage of 0.1 throughout.

For the quadratic error mappings, we experienced problems with local minima
when attempting quadratic least trimmed squares. Instead we group data into
intervals, determine the trimmed mean for each group, and then compute the least
squares quadratic fit for the (time difference, trimmed mean) pairs.

We then check the coefficients and derived measures of the linear and quadratic
mappings for outlying values relative to all other mappings. If we find outlying
values, we flag the mapping as unusable. For instance, if the axis of symmetry of
the quadratic error mapping is an outlier relative to that for another pairing, then
there may be problem with the timestamps of at least one of the two sites.

We also investigated derived values for the quadratic error mappings and found a
relationship between these values and timestamps associated with observations from
a site. In turn, we found strong evidence that timestamps are incorrect for many sites.
The impact of bad metadata such as location and timestamps on interpolation can
be significant, adding error to estimates of ground truth and reducing our ability to
characterize bad observation data (Fig. 13.11).

We next employ our SMART Interpolator. The SMART interpolator uses the site-
to-site mappings. Formally: Let S be the set of all sites. Let s ∈ S be a site for which
we are evaluating observations. Let 〈s1, . . . , sn| si ∈ S, si 
= s〉 be the set of sites
other than site s. We want to estimate obss(ts), the value of the observation at site s
at time ts using the most recent observations from the other sites relative to time t:
(ti, vi).

Our SMART interpolator is like IDW, but using our quadratic error estimates
instead of distance given the time lag between observations and using our SMART
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l.mse for GISC1 (Gibson near
Castella)
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linear mappings to yield estimated ground truth producing an estimate. Neither
distance nor direction are directly used. The linear mappings and quadratic error
estimates account for similarity between sites. No attempt is made to down-weight
clustered sites, although there may be benefit in doing so.

SMART_estimates (ts) ≈
∑n

i=1

(
1

qs,si (ts−ti)

)g
ls,si (vi)

∑n
i=1

(
1

qs,si (ts−ti)

)g

We determine the exponent g by minimizing error relative to ground truth, if
available, or estimated ground truth. Prior to computing the weighted estimate, we
examine the weights and, if necessary, “re-balance” to reduce the potential influence
of single sites on the outcome. We found it useful to restrict the maximum relative
weight a site can be given to 0.25 to reduce the risk that a bad value from one
site will overly influence the resulting average. Rather than take a simple weighted
average, we use a trimmed mean to further reduce the influence of outliers.

Algorithm 1. SMART_ESTIMATE(s,S,t)
Input: S is the set or a subset of all sites, s ∈ S is a site for which we are evaluating
values/observations, 〈s1, . . . , sn| si ∈ S, si 
= s〉 is the set of sites other than site s, t
is the time for which the prediction will be made.
Constants: maxweight = 0.25 ∈ (0, 1], trimpct = 0.1 ∈ (0, 1],
minvalidqfit = 0.0001 ∈ (0, 1] maxvalidqfit = 0.5 ∈ (0, 1] ,
iterationsmax = 100 ∈ N

Output: The estimate.
Algorithm:

sumweights=0
weightedsum=0
for i = 1 to n
if VALID_MAPPING(si,s) then
let (tsi,vsi) =MOST_RECENT_OBS(si,t)
xi = lsi,s(vsi)
�t = t-tsi

qfitval=qsi,s(�t)
if (qfitval > minvalidqfit) and (qfitval < maxvalidqfit) then

weight=1/qfitval
wi = weight

else
wi = 0

else
wi = 0
xi = 0

NORMALIZE_WEIGHTS(w)
BALANCE_WEIGHTS(w,maxweight)
predicted =W_TRIMMED_MEAN(x,w,trimpct,iterationsmax)
return predicted
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VALID_MAPPING(si,s) indicates if the SMART mapping between si and s is valid.
A mapping will be invalid if it is undefined or if the associated coefficients or
derived values are outliers. NORMALIZE_WEIGHTS(W) normalizes weights to sum
to 1. Weights must be non-negative. BALANCE_WEIGHTS(w, maxweight) reduces
any weights that exceed the maximum specified and redistributes the excess weight
proportionally to remaining elements. Iteration may be necessary if a redistributed
weight exceeds the maximum specified.

13.5.5 Artificial Data Set

As we show subsequently, evaluation with real data for which data quality measures
are inaccurate or unavailable is challenging. For this reason, we developed a
weather-like artificial data set representing temperature as approximate fractal
surfaces using the method of Successive Random Addition. For further information
on Successive Random Addition, refer to Voss (1985), Feder (2013), and Barnsley
et al. (2011). Fractional Brownian processes were used by Goodchild and Gopal to
generate random fields representing mean annual temperature and annual precipita-
tion to investigate error in (Goodchild and Gopal 1989). We generated a surface
and multiple weather patterns using a simulated flow. We generated time series
of “ground truth” data by combining the surface data with the weather data, a
periodic effect, a north-south effect, and a diurnal effect. We selected 250 “sites”
using random uniform x-y coordinates. For each site we assigned a reporting pattern
with a random frequency and offset. We added errors to the observations from 25
sites via: random noise added to ground truth (NOISE), rounding of ground truth
(ROUNDING), replacement of ground truth with a constant value (CONSTANT),
replacement with random bad values with varying probabilities (RANDOMBAD),
or negation of ground truth. The remaining 225 sites were left error-free. See Fig.
13.12 for example artificial data from multiple sites, including several apparent
errors.

13.5.6 Evaluation

We evaluated the performance of the various interpolators including our SMART
Method in-depth, in terms of computation and ability to identify bad data. We
compared our SMART method, Inverse Distance Weighting (IDW), Least Squares
Regression (LSQ), Universal Kriging (UK) and Ordinary Kriging (OK). We mea-
sured performance and scalability using run-time in milliseconds. We measured
accuracy using mean-squared-error between estimated and known ground-truth.
We compared means using t-tests when multiple runs were available. We used
Area Under the ROC Curve (AUROC) analysis to evaluate accuracy of outlier
classification given varying “threshold” values for outlier/inlier determination.
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Fig. 13.12 Example artificial data

We analyzed our artificial data set, MADIS air temperature for Northern
California from December 2015, MADIS air temperature for Montana from January
2017, and Average Daily USGS Streamflow for Montana from 2015, 2016, 2017.

13.5.7 Evaluation Using an Artificial Data Set

We performed an in-depth comparison of the various algorithms using our artificial
data set. We enhanced the standard algorithms by randomly choosing neighboring
sites using set inclusion percentages (0.1, 0.2, 0.3, . . . , 0.9, 1.0). For instance,
a 0.9 inclusion percentage corresponds to selecting neighboring sites individually
with 0.9 inclusion/0.1 exclusion probability. We varied the radius (50, 75, 100,
. . . , 175, 200) over which sites were included relative to the location of the site
whose observation we were testing. We repeated this procedure 10 times for each
parameter combination (inclusion percent and radius) and used the median of the
resulting estimates as the estimate for that parameter combination. By randomly
holding out sites, bad data will be held out in some of the resulting combinations.
By taking the median of the results, we eliminate the extreme estimates, particularly
those impacted by bad data, and determine a robust estimate. We iterated through
the observations in order by time and estimated ground truth for each observation as
if computing in real time as the observations become known. Only observations that
occurred at the same time as or prior to each observation were used for prediction,
simulating real-time operation of the system. We averaged the MSE and run time
for each configuration (inclusion radius and inclusion percent).

For Inverse Distance Weighting, the Mean-Squared-Error was least for larger
radii and smaller inclusion percentages. This result indicates both the benefit of
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holding out potentially bad data and including a wide radius of values. The latter
is somewhat surprising, indicating that data other than just the closest is of benefit
to the estimate. An inclusion percentage of 1 corresponds to use of IDW without
random exclusion, and full inclusion out-performed inclusion percentages of 0.5,
0.6, 0.7, 0.8 and 0.9 for inclusion radii of 150 units or greater, showing that the
balance between more data versus exclusion of erroneous data tilted in favor of
more data. Using similar analysis, we identified the inclusion percentages and radii
for the optimal versions of the other methods for our artificial data set: IDW (0.1,
175), LSQ (0.2, 200), UK (0.2, 200). Using these parameter settings, we conducted
a statistical analysis of run time and accuracy for the individual runs of the various
methods.

The average run times were 4022 ms for IDW, 6337 ms for SMART, 6550 ms
for LSQ and 16079 ms for UK. Corresponding p-values for t-tests (one-tail, unequal
variance) comparing the mean run times by method were all less than 3 × 10-05.
Based on these statistics, we concluded the following ordering from least to greatest
of run-time required for the methods and associated parameters: IDW, SMART,
LSQ, UK.

The accuracy (MSE) for the methods was 0.1026 for SMART, 0.2759 for IDW,
0.7943 for UK and 0.8035 for LSQ. Corresponding p-values for t-tests (one-
tail, unequal variance) comparing the mean-squared-errors by method were all
effectively 0 except for the comparison between LSQ and UK, which yielded a
p-value of 0.3520. Based on these statistics and t-tests, we concluded the following
ordering of accuracy (MSE): SMART is best, IDW is second best, and LSQ/UK are
tied for worst.

We measured the ability of each method to distinguish increasing percentages of
the bad data from good data using an AUROC analysis. True outliers were defined
as data that differs from ground-truth – i.e., data that was modified to be erroneous.
Predicted outliers were data that differed from estimated ground truth by a given
threshold. We varied thresholds for outlier/inlier cutoffs and compared results with
the actual labels identifying whether the data was truly an outlier or inlier. See Fig.
13.13. The AUROC (area under the ROC curve) values were 0.827 for the SMART
method, 0.74 for UK, 0.739 for LSQ and 0.708 for IDW. The AUROC values show
better discriminative power for the SMART method versus the other methods. No
method will be perfect in identifying all errors. Some errors are small and impossible
to distinguish from interpolation error. Known ground truth and known error from
ground truth yields perfect labels. As we will see in subsequent analysis, bad labels
will yield questionable results using ROC curve analysis.

The overall amount of preprocessing time required to determine the linear
mappings and quadratic error functions for our SMART Method was comparable
to run time required for Universal kriging. This was encouraging. Generation of the
mappings will be done as an offline, batch process, so the observed time required
is still within reason to help facilitate the faster and more accurate, online process.
Additional benefits such as identification of bad sites and bad metadata come from
these mappings, further justifying the effort required. Optimizations can reduce the
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Fig. 13.13 ROC curves by method for artificial data set

overall time needed to compute the mappings. The benefits and potential to improve
the run time outweigh the amount of required preprocessing time.

13.5.8 December 2015 MADIS California Data

We analyzed Northern California December 2015 ambient air temperature data from
888 sites in the MADIS Mesonet subset. We excluded observations that failed the
MADIS Level 1 Quality Control Check. This range check restricts observations
in degrees Fahrenheit to the interval [−60 ◦F, 130 ◦F]. Many values that failed
this check fall far outside the range and can have a dramatic impact on the
interpolation methods. Our SMART method performs very well in the presence of
extreme bad data, and it would have easily out-performed the other methods in the
presence of the range-check failed data. There were over 2 million observations.
MADIS flagged 73.5% of these observations as “verified”/V, slightly less than 4%
as “questioned”/Q, and 22.5% as “screened”/S, indicating that it had passed the
MADIS Level 1 and Level 2 quality checks, but that the Level 3 quality checks had
not been applied.

Verified (V) observations from the first week in December 2015 were used to
train all methods, including our SMART method. In the absence of range-failed
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data, the “enhanced” (iterated subset) versions of the other algorithms showed little
improvement in accuracy while consuming excessive computation time, particularly
“enhanced” Universal kriging. In some cases, it would have taken days to compute
results. Because of this, we used the methods directly, without enhancement.
We also tested Ordinary kriging (refer to Bailey and Gatrell (1995) for further
information). We do not know “ground truth” for this data and the verified data is
the closest to ground truth. We trained all methods on this data to minimize mean-
squared-error of predicted versus actual. We used a 50-mile inclusion radius due to
the density of sites to avoid excessive computation time for the kriging approaches.
The SMART mapping coefficients and derived values were examined for outliers,
and ranges were determined for valid mappings. If any coefficient or derived value
for a given SMART mapping fell outside these ranges, then the SMART mapping
was considered bad, and that mapping was not used for predictions.

The SMART method produced significantly better results than all other methods
for the training data in terms of estimation of ground truth measured by mean-
squared-error. Only the verified (V) data was used in this comparison since it best
approximates ground truth. The MSE values were 2.8 for SMART, 7.6 for IDW,
16.5 for UK, 17.1 For LSQ, and 18.5 for OK.

Run times were recorded for multiple training sessions for the methods. Only one
run time was used for Least Squares (LSQ) because no parameters were trained for
that method. There was a statistically significant difference between the run times
for the methods and the order from least to greatest for average run times was: LSQ
(19842), IDW (23932), SMART (113865), OK (352905) and UK (363005).

Testing. Testing was conducted using all data from the entire month of December
2015, minus the range-check-failed data, with results grouped by week. We
computed the mean-squared-error for the verified (V) data since it best represents
ground truth, but all observations were used in making estimates. The testing results
indicate the robustness of methods in the presence of bad data. The SMART method
significantly out-performed all other methods, with MSE values for SMART ranging
from 2.75 to 6.63 and MSE values for the other methods ranging from 7.69 to 17.93.

We conducted an AUROC analysis to compare classification ability of the
methods based on the MADIS quality control flags. We considered the following
flags from MADIS to be good/inlier data: V/verified, S/screened, good. The Q/ques-
tioned, was treated as bad/outlier data. Recall that we excluded the observations
having a QC flag of X, those that failed the range test, from our evaluation. Even
if we accept the MADIS quality control flags as being correct, and we do not, this
approach is problematic. The S flag corresponds to data for which not all the QC
checks have been run. While this data had not failed any quality control checks
that have been applied, it possibly would have failed the higher-level checks. The
AUROC values were 0.7906 for IDW, 0.7578 for LSQ, 0.7317 for SMART, 0.6458
for OK and 0.6062 for UK. While these AUROC values seem reasonable, they
are affected by incorrect outlier/inlier labels, and our SMART method suffers the
greatest impact because the distance-based methods approximate the MADIS Level
3 quality control check. OK and UK fall short because they fail to make predictions
for many observations.
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13.5.9 December 2017 MADIS Montana Data

We investigated ambient air temperature for 497 sites from Western Montana/North-
ern Idaho from the MADIS Mesonet and the MADIS HFMetar subset in January
2017. We added the HFMetar data set to account for aviation AWOS/ASOS sites
that included in the Mesonet data set. The bounding box was comparable in size
to the one used for Northern California, although the density of sites is less. We
excluded observations that failed the MADIS Level 1 Quality Control Check.
All total there were over 1 million observations. MADIS flagged 71.2% of these
observations as “verified”/V; 10.3% of as “screened”/S, indicating that they had
passed the MADIS Level 1 and Level 2 quality checks, but that the Level 3 quality
checks had not been applied; and a relatively large 18.5% of the data was labeled as
“questioned”/Q. This is over four times the percentage of questioned data as there
was for the California data set.

Verified (V) observations from the first week in January 2017 were used to train
all methods, including our SMART method. We used a 100-mile inclusion radius
due to a low density of the Montana/Idaho sites. The SMART mapping coefficients
and derived values were examined for outliers, and bad mappings were identified
as any mapping associated with such values. The quality of the mappings was
noticeably less than that for the Northern California data set. We found problems
with many of the timestamps in this data set. Recognizing that much of the Idaho
data comes from the Pacific Time Zone while the Montana data comes from the
Mountain Time Zone, there appeared to be many sites for which the conversion
to UTC time was not consistent. The Northern California data all falls within
Pacific Time, and we did not see this problem in that data set. In terms of mean-
squared-error, the SMART method produced significantly better results than each
of the other methods for the training data. The p-values were effectively zero for
all comparisons. The MSE values 8.1513 for SMART versus 16.7217 for IDW and
29.8039 for LSQ, and 10.6726 for SMART versus 47.0028 for OK and 33.9863 for
UK. Ordinary kriging and Universal kriging failed to produce estimates in nearly
two-thirds of the tests, likely due to singular matrices. Methods were compared
pairwise only in instances when both produced estimates.

There was a statistically significant difference between the run times for the
methods and the order from least to greatest run time was: LSQ (6009), IDW (6803),
SMART (33356), OK (103851) and UK (107540).

Testing was conducted using data from the remainder of January 2017. All data
was used for this test except for the observations that failed the MADIS Level 1
range test. The SMART method significantly out-performed all other methods in
pairwise comparisons with MSE values ranging from 7.69 to 31.51. The MSE values
for the other methods ranged from 16.26 to 68.82.

We conducted an AUROC analysis to test classification ability based on the
MADIS quality control flags in the same way as described for the Northern
California data set in the previous section. As noted in that section, many of the
MADIS QC flags are incorrect. In terms of Area Under the ROC curve, LSQ, IDW
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and SMART were comparable, with LSQ finishing ahead. These AUROC values
are less than those for the Northern California data set at least in part because they
are all adversely affected by incorrect outlier/inlier labels. The AUROC values were
0.69 for LSQ, 0.6697 for IDW, 0.6393 for SMART, 0.5432 for OK and 0.5476 for
UK.

This data set includes a large percentage of observations (18.5%) that are
flagged as “questionable” by MADIS. These were considered “bad”/outliers for the
purposes of our analysis. It also includes a large percentage (10.3%) that are flagged
as “screened” by MADIS, indicating that not all QC checks have been conducted.
These are considered “good”/inliers for our analysis. There were many observations
flagged as “questionable”/outliers in the HFMetar subset that should have been
flagged as “good”/inliers. This data alone accounts for most of the questionable data
in the data set. Aviation weather sites are well-maintained and regularly calibrated,
so it is hard to believe that these sites would produce data that is entirely bad. We
checked this data against predicted values and it was very close, so it is unclear why
the data was labeled as questionable.

Numerous sites were flagged by our SMART method as “bad” and all observa-
tions from those sites were labeled as bad. MADIS flagged some observations from
these sites as good when they were close to predicted values. In some cases, this
may have been reasonable, but in others it was a random occurrence. There were
some sites that produced bad data for the training period but then produced good
data for at least a portion of the test period. One could argue that for such sites
all associated observations should be questioned. If a site was identified as bad by
the SMART method, then the V and S observations would adversely impact the
SMART method in the AUROC analysis. The chance situations in which the other
methods came close to the “good” values and far from the “bad” values improved
their performance.

13.5.10 December 2015–2017 USGS Streamflow Data

Mean daily streamflow (ft3/sec) was downloaded for all sites in Montana from the
USGS (USGS) for every day from January 1st, 2015 through April 24th, 2017.
There were 145 sites having data than spanned this period, and these sites were
analyzed. This data set is far different from the air temperature data used for prior
analysis. Since daily averages were used, there is no visible diurnal effect. There is a
seasonal effect which varies with elevation and location relative to watersheds. Due
to the dramatic fluctuations that occur in this data during times of peak runoff, the
base-10 logarithm of the data was used for analysis.

This data set includes quality flags. Daily values are flagged as “A”, approved
for publication, and “P”, provisional and subject to revision. Values may further be
flagged as “e” for estimated. Values transition from provisional to approved after
more extensive testing is conducted, so provisional values aren’t necessarily bad.
These flags were of limited use to us and we did not use them for analysis. We
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treated the data as being all good and subsequently introduced errors into some of
the observations, making them known bad. There were 122,380 total observations.

All data from 2015 was used to train all methods, including our SMART method.
We assume this data, which was mostly “approved”, to be ground truth. We trained
over this data to minimize mean-squared-error of predicted versus actual. We used
a 200-mile inclusion radius. The SMART mapping coefficients and derived values
were examined for outliers. If any coefficient or derived value for a given SMART
mapping was an outlier, then the SMART mapping was considered bad, and it
wasn’t used for predictions. In terms of mean-squared-error, the SMART method
produced significantly better results than the other methods for the training data
with p-values of zero. The MSE was 0.0174 for SMART, 0.8751 for IDW, 0.9611
for LWQ, 0.9431 for OK and 0.9617 for UK.

Run times were recorded for multiple training sessions. Only one run time was
used for Least Squares (LSQ) because no parameters are trained for that method.
There was a statistically significant difference between the run times for the methods
except between LSQ (686) and IDW (742), and the order from least to greatest was:
LSQ (686)/IDW (742), SMART (2628), OK (69667) and UK (72356).

Testing was conducted using the 2016–2017 data, grouped by year. The SMART
method significantly out-performed all other methods in terms of mean-squared-
error. The MSE for the SMART method ranged from 0.3805 to .0438. The MSE for
the other methods ranged from 0.8175 to 0.9968.

Further testing was conducted using the 2016–2017 data, with errors introduced
into 10% of the observations. A random normal value with mean zero and standard
deviation one was added to each observation in the 10% group. The mean-squared-
error was computed relative to the known, original observations which represent
ground truth, and all observations (including bad observations) were used in making
estimates. The testing results help to measure the robustness of methods in the
presence of bad data. The SMART method again significantly out-performed all
other methods in terms of mean-squared-error, with MSE ranging from 0.0406 to
0.0463, while the MSE for the other methods ranged from 0.8242 to 1.0002.

We conducted an AUROC analysis to test the methods on classification ability
based on whether observations had been altered to be erroneous by our process
of randomly selecting 10% of the observations and adding a normal random
variable with mean 0 and standard deviation 1 to those observations. The altered
observations were labeled “bad”/outlier and the unaltered observations were labeled
as “good”/inlier. Our SMART method performed far better than all the other
methods, achieving an AUROC value of 0.8722. The AUROC values for the other
methods were 0.6241 for IDW, 0.6136 for OK, 0.6046 for UK and 0.6031 for LSQ.

13.5.11 Evaluation Summary

For all four data sets and for every training and testing instance compared, our
SMART method performed significantly better in terms of accuracy (mean-squared
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error) than all other methods. Its computational performance was competitive even
though no effort was made to optimize it. For the two MADIS data sets, its
performance for AUROC analysis of classification and discrimination capability
showed it to be competitive with the best of the other methods. This comparison
and evaluation made use of MADIS data quality labels for which we have found
numerous problems. As such, all methods underperformed, and the SMART method
was penalized most by mislabeling. For the other two data sets (artificial and USGS)
in which ground truth is known or assumed and errors were introduced relative
to ground truth, the SMART method outperformed the other methods by a wide
margin. This further supports our assertions regarding the impact of bad labels on
the MADIS data, and the need for better methods and benchmark data sets for data
quality assessment.

Ordinary kriging and Universal kriging both failed to produce estimates for many
observations, likely due to singular matrices. They were not competitive in terms of
run time and their accuracy was no better than the other methods. Universal kriging
and least squares regression are prone to very large errors if the predicted surface
slopes in an extreme manner.

Our SMART method identifies “bad sites”, sites that chronically produce bad
data, and does not use data from these sites in estimating ground truth for other
sites. Data from these “bad sites” is labeled as all bad. The SMART method falls
short in cases where a site exhibits chronic behavior during training but recovers to
produce good data during a testing period.

The USGS streamflow data exhibits correlation between sites, but the correlation
corresponds to sites close to each other and in the same river/stream. Correlation
will not necessarily be high for sites that are close but in different rivers. For rivers
that have dams and other features that may influence streamflow in unusual ways,
sensors will be correlated on each side of such features, but not as much on opposite
sites, and certainly not as much with sites on rivers that do not have similar features.

The SMART method identifies like sites, yielding better correlations. Inverse
Distance Weighting and Least Squares Regression did not perform well. And, the
kriging methods will not perform well if a stationary, isotropic covariance function
is used. Such an assumption is typical, and we used this assumption in determining
the covariance matrices for the kriging tests.

13.6 Further Research and Development Topics

While our SMART method out-performed the other methods in nearly all instances,
it was not our intent to present it as the “best” method. Instead, we present it as
representative of the type of approach needed to overcome challenges of spatio-
temporal data quality assessment. It makes no assumption of isotropic covariance
and does not require the determination of a specific covariance function. While it
requires preprocessing time, it is suitable for near-real-time, online use. It accounts
for disparate reporting times and frequencies of sites. It not only helps to identify
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“bad data”, but it also works well in the presence of bad data. It helps to identify
erroneous observations, “bad sites”, and bad metadata. It uses multiple, robust
methods to mitigate the impact of bad data on its estimates. Other methods such
as Least Squares Regression and the various kriging approaches could (and should)
be modified in a similar manner to produce better, more robust results. Further, it
is important to recognize the impact of bad data quality labels on evaluation. It is
necessary to develop and use benchmark datasets with known, correct data quality
labels.

In our research, we have investigated relatively simple situations and data
sets involving ambient air temperature. We set out to improve our assessment
of the accuracy of individual observations and found that location metadata was
inaccurate. When we tried to assess the accuracy of location metadata we found
that timestamp metadata was incorrect. The assessment of spatio-temporal data
quality is a difficult challenge. Connected and autonomous vehicles present further
challenges. We have used the site-based nature of the data to help identify
mislocated sites, bad timestamps and bad sites in general. Mobile data presents
further challenges.

We intend to expand our work to further examine other measures including wind
and precipitation as well as CCTV camera images. Departments of Transportation
use CCTV camera images to verify road weather conditions reported by sensors.
These images also suffer from poor data quality. Further research is needed to
develop methods for detecting bad CCTV image data and for using CCTV image
data to confirm sensor conditions and vice-versa. And, we intend to further develop
benchmark datasets with known, good data quality labels. Indeed, Ian’s standard
of “Accurate, Timely and Reliable” is elusive. But, we believe it is attainable and
efforts must continue to achieve it.
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Chapter 14
Uncertain Spatial Data Management:
An Overview

Andreas Züfle

14.1 Introduction

Due to the proliferation of handheld GPS enabled devices, spatial and spatio-
temporal data is generated, stored, and published by billions of users in a plethora
of applications. By mining this data, and thus turning it into actionable information,
The McKinsey Global Institute projects a “$600 billion potential annual consumer
surplus from using personal location data globally”.

As the volume, variety and velocity of spatial data has increased sharply
over the last decades, uncertainty has increased as well. Until the early twenty-
first century, spatial data available for geographic information science (GIS) was
mainly collected, curated, standardized (Fegeas et al. 1992), and published by
authoritative sources such as the United States Geological Survey (USGS) (United
States Geological Survey). Now, data used for spatial data mining is often obtained
from sources of volunteered geographic information (VGI) (Sui et al. 2012; Open
Street Map). Consequentially, our ability to unearth valuable knowledge from large
sets of such spatial data is often impaired by the uncertainty of the data which
geography has been named the “the Achilles heel of GIS” (Goodchild 1998) for
many reasons:

– Imprecision is caused by physical limitations of sensing devices and connection
errors, for instance in geographic information system using cell-phone GPS
(Couclelis 2003),
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Fig. 14.1 Locations of a user of a Location-based social network (Gowalla) over a day

– Data records may be obsolete. In geo-social networks and microblogging
platforms such as Twitter, users may update their location infrequently, yielding
uncertain location information in-between data records (Kumar et al. 2014),

– Data can be obtained from unreliable sources, such as volunteered geographic
information like data in Open-Street-Map (Open Street Map), where data is
obtained from individual users, which may incur inaccurate or plain wrong data,
deliberately or due to human error (Grira et al. 2010),

– Data sets pertaining to specific questions may be too small to answer questions
reliably. Proper statistical inference is required to draw significant conclusions
from the data and to avoid basing decisions upon spurious mining results (Hsu
1996; Casella and Berger 2002).

To illustrate uncertainty in spatial and spatio-temporal data, Fig. 14.1 shows a
typical one-day “trajectory” of a prolific user in the location-based social network
Gowalla (data taken from Cho et al. 2011). While a trajectory is usually defined as
a function that continuously maps time to locations, we see that in this case, we can
only observe the user at discrete times, having hours in-between subsequent location
updates. Where was the user located in-between these updates? Should we use dead
reckoning techniques to interpolate the locations or should be assume that the user
stays at a location until next update? Also, users may spoof their location (Zhao
and Sui 2017), either to protect their privacy or to gain advantages within the
location-based social network. Given this uncertainty, how certain can we be about
the location of the user at a given time t? And how does the uncertainty increase
as location updates become more sparse and obsolete? The goal of this chapter
is to provide a comprehensive overview of models and techniques to deal with
uncertainty. To handle uncertainty, we must first remind ourselves that a database
models an aspect of the real world, the universe of discourse. Information observed
and stored in a database may deviate from the real-world. For reliable decision
making, we need to quantify the uncertainty of attribute values stored in the database
and consider potentially missing objects that may change mining results.
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Fig. 14.2 Exemplary uncertain database

Example 1 As a running example used through this chapter, consider Fig. 14.2
which shows a toy uncertain spatial database. In this example, two objects, Q and
B have uncertain locations, indicated by alternative locations {q1, q2} of Q and
alternative locations {b1, b2} of B. In this book chapter, we will survey methods to
answer questions such as “What object is closest to Q?”, or “What is the probability
of B to be one of the two-nearest neighbors of Q?”

To answer such queries, we first need a crisp definition of what it means for an
uncertain object to be a (probabilistic) nearest neighbor of a query object and how
the probability of such an event is defined. This chapter gives a widely used interpre-
tation of uncertain databases using Possible Worlds Semantics. This interpretation
allows to answer arbitrary queries on uncertain data, but at a computational cost
exponential in the number of uncertain objects. For efficient processing, this chapter
defines a paradigm of querying uncertain data that allows to efficiently answer many
spatial queries on uncertain spatial data.

This chapter gives a survey on the field of modeling, managing, and querying
uncertain spatial data. Parts of this section have been presented in the form of
presentation slides at recent conference tutorials at VLDB 2010 (Renz et al. 2010),
ICDE 2014 (Cheng et al. 2014), ICDE 2017 (Züfle et al. 2017), and MDM 2020
(Züfle et al. 2020). This section is subdivided to give a survey of definitions, notions
and techniques used in the field of querying and mining uncertain spatio-temporal
data.

– Section 14.2 presents a survey of state-of-the-art data representations models
used in the field of uncertain data management. This section explain discrete and
continuous models for uncertain objects.

– To interpret queries on a database of uncertain objects, well-defined semantics
of uncertain database are required. For this purpose, Sect. 14.3 introduces the
possible world semantics for uncertain data.

– To run queries on uncertain spatial data, existing systems for uncertain spatial
database management are surveyed in Sect. 14.4.

– Given an uncertain database, the result of a probabilistic query can be interpreted
in two ways as elaborated in Sect. 14.5. This distinction between different
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probabilistic result semantics is not made explicitly in any related work, but
is required to gain a deep understanding of problems in the field of querying
uncertain spatial data and their complexity.

– Section 14.6 gives an overview over probabilistic query predicates. A probabilis-
tic query predicate defines the requirements for the probability of a candidate
result to be returned as a query result.

– Section 14.7 introduces a novel paradigm for uncertain data to efficiently answer
any kind of query using possible world semantics. This Paradigm of Equivalent
Worlds generalizes existing solutions by identifying requirements a query must
satisfy in order to have a polynomial solution.

– Section 14.8 presents efficient solutions for the problem of computing range
queries on uncertain spatial databases. For this purpose, the paradigm of equiv-
alent worlds is leveraged to compute the distribution of the sum of a Poisson-
binomial distributed random variable, a problem that is paramount for many
spatial queries on uncertain data.

– Section 14.9 gives an overview of specific research problems using uncertain
spatial and spatio-temporal data, and surveys state-of-the-art solutions.

– Finally, Sect. 14.10 concludes this book chapter and sketches future research
directions that can be opened by leveraging the Paradigm of Equivalent Worlds
to new applications and query types.

14.2 Discrete and Continuous Models for Uncertain Data

An object is uncertain if at least one attribute of o is uncertain. The uncertainty
of an attribute can be captured in a discrete or continuous way. A discrete model
uses a probability mass function (pmf) to describe the location of an uncertain
object. In essence, such a model describes an uncertain object by a finite number
of alternative instances, each with an associated probability (Kriegel et al. 2007;
Pei et al. 2008), as shown in Fig. 14.3a. In contrast, a continuous model uses a
continuous probability density function (pdf), like Gaussian, uniform, Zipfian, or

Fig. 14.3 Models for uncertain attributes. (a) Discrete probability mass function. (b) Continuous
prob. density function
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Fig. 14.4 Uncertain objects. (a) Discrete case. (b) Continuous case

a mixture model, as depicted in Fig. 14.3b, to represent object locations over the
space. Thus, in a continuous model, the number of possible attribute values is
uncountably infinite. In order to estimate the probability that an uncertain attribute
value is within an interval, integration of its pdf over this interval is required (Tao
et al. 2005). The random variables corresponding to each uncertain attribute of an
object o can be arbitrarily correlated.

To capture positional uncertainty, such models can be applied by treating
longitude and latitude (and optionally elevation) as two (three) uncertain attributes.
In the case of discrete positional uncertainty, the position of an object A is given
by a discrete set a1, . . . , am of m ∈ N possible alternatives in space, as exemplarily
depicted in Fig. 14.4a for two uncertain objects A and B. Each alternative ai is
associated with a probability value p(ai), which may for example be derived from
empirical information about the turn probabilities of intersection in an underlying
road network. In a nutshell, the position A is a random variable, defined by
a probability mass function pdfA that maps each alternative position ai to its
corresponding probability p(ai), and that maps all other positions in space to
a zero probability. An important property of uncertain spatial databases is the
inherent correlation of spatial attributes. In the example shown in Fig. 14.4a it can
be observed that the uncertain attributes a and b are highly correlated: given the
value of one attribute, the other attribute is certain, as there is no two alternatives of
objects A and B having identical attribute values in either attribute.

Clearly, it must hold that the sum of probabilities of all alternatives must sum to
at most one:

m∑

i=1

p(ai) ≤ 1

In the case where
∑m

i=1 p(ai) ≤ 1 object A has a non-zero probability of
1 −∑m

i=1 p(ai) ≥ 0 to not exist at all. This case is called existential uncertainty,
and A is denoted as existentially uncertain (Yiu et al. 2009). If the total number of
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possible instances m is greater than one, A is denoted as attribute uncertain. In the
context of uncertain spatial data, attribute uncertainty is also referred to as positional
uncertainty or location uncertainty. An object can be both existentially uncertain
and attribute uncertain. In Fig. 14.4a, object A is both existentially uncertain and
attribute uncertain, while object B is attribute uncertain but does exist for certain.

In the case of continuous uncertainty, the number of possible alternative positions
of an object A is infinite, and given by the non-zero domain of the probability density
function pdfx . The probability of A to occur in some spatial region r is given by
integration

∫

r

pdfA(x)dx.

Since arbitrary pdfs may be represented by an uncountably infinite large number
of (position, probability) pairs, such pdfs may require infinite space to represent.
For this reason, assumptions on the shape of a pdf are made in practice. All contin-
uous models for positionally uncertain data therefore use parametric pdfs, such as
Gaussian, uniform, Zipfian, mixture models, or parametric spline representations.
For illustration purpose, Fig. 14.4b depicts three uncertain objects modelled by a
mixture of gaussian pdfs. Similar to the discrete case, the constraint

∫

Rd

pdfA(x)dx ≤ 1

must be satisfied, where R
d is a d dimensional vector space. In the case of spatial

data, d usually equals two or three. The notion of existentially and attribute uncertain
objects is defined analogous to the discrete case.

The following section reviews related work and state-of-the-art on the field of
modeling uncertain data.

14.2.1 Existing Models for Uncertain Data

This section gives a brief survey on existing models for uncertain spatial data used
in the database community. Many of the presented models have been developed to
model uncertainty in relational data, but can be easily adapted to model uncertain
spatial data. Since one of the main challenges of modeling uncertain data is to
capture correlation between uncertain objects, this section will elaborate details on
how state-of-the-art approaches tackles this challenge. Both discrete and continuous
models are presented.
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14.2.2 Discrete Models

In addition to reviewing related work defining discrete uncertainty models, the aim
of this section is to put these papers into context of Sect. 14.2. In particular, models
which are special cases or equivalent to the model presented in Sect. 14.2 will be
identified, and proper mappings to Sect. 14.2 will be given.

Independent Tuple Model. Initial models have been proposed simultaneously
and independently in Fuhr and Rölleke (1997b) and Zimányi (1997). These works
assume a relational model in which each tuple is associated with a probability
describing its existential uncertainty. All tuples are considered independent from
each other. This simple model can be seen as a special case of the model presented in
Sect. 14.2, where only existential uncertain but no attribute uncertainty is modelled.

Block-Independent Disjoint Tuples Model and X-Tuple model A more recent
and the currently most prominent approach to model discrete uncertainty is the
block-independent disjoint tuples model (Dalvi et al. 2009), which can capture
mutual exclusion between tuples in uncertain relational databases. A probabilistic
database is called block independent-disjoint if the set of all possible tuples can be
partitioned into blocks such that tuples from the same block are disjoint events, and
tuples from distinct blocks are independent. A commonly used example of a block-
independent disjoint tuples model is the Uncertainty-Lineage Database Model
(Benjelloun et al. 2006; Sarma et al. 2006; Soliman et al. 2007; Yi et al. 2008a,b),
also called X-Relation Model or simply X-Tuple Model that has been developed for
relational data. In this model, a probabilistic database is a finite set of probabilistic
tables. A probabilistic table T contains a set of (uncertain) tuples, where each tuple
t ∈ T is associated with a membership probability value Pr(t) > 0. A generation
rule R on a table T specifies a set of mutually exclusive tuples in the form of
R : tr1 ⊕ . . . ⊕ trm where tri ∈ T (1 ≤ i ≤ m) and P(R) := ∑m

i=1 tri ≤ 1.
The rule R constrains that, among all tuples tr1 , . . . , trm involved in the rule, at most
one tuple can appear in a possible world. The case where P(R) < 1 the probability
1 − P(R) corresponds to the probability that no tuple contained in rule R exists. It
is assumed that for any two rules R1 and R2 it holds that R1 and R2 do not share
any common tuples, i.e., R1 ∩R2 = ∅. In this model, a possible world w is a subset
of T such that for each generation rule R, w contains exactly one tuple involved in
R if P(R) = 1, or w contains 0 or 1 tuple involved in R if Pr(R) < 1.

This model can be translated to a discrete model for uncertain spatial data as
discussed in Sect. 14.2 by interpreting the set T as the set of all possible locations
of all objects, and interpreting each rule R as an uncertain spatial object having
alternatives tri . The constraint that no two rules may share any common tuples
translates into the assumption of mutually independent spatial objects. Finally, the
case P(R) < 1 corresponds to the case of existential uncertainty (see Sect. 14.2).

A similar block-independent disjoint tuples model is called p-or-set (Re et al.
2006) and can be translated to the model described in Sect. 14.2 analogously. In
Antova et al. (2008a), another model for uncertainty in relational databases has been
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proposed that allows to represent attribute values by sets of possible values instead
of single deterministic values. This work extends relational algebra by an operator
for computing possible results. A normalized representation of uncertain attributes,
which essentially splits each uncertain attribute into a single relation, a so-called
U-relation, allows to efficiently answer projection-selection-join queries. The main
drawback of this model is that it is not possible to compute probabilities of the
returned possible results. Sen and Deshpande (2007) propose a model based on a
probabilistic graphical model, for explicitly modeling correlations among tuples in
a probabilistic database. Strategies for executing SQL queries over such data have
been developed in this work. The main drawback of using the proposed graphical
model is its complexity, which grows exponential in the number of mutually
correlated tuples. This is a general drawback for graphical models such as Bayesian
networks and graphical Markov models, where even a factorized representation may
fail to reduce the complexity sufficiently: The idea of a factorized representation is
to identify conditional independencies. For example, if a random variable C depends
on random variables A and B, then the distribution of C has to be given relative to all
combination of realizations of A and B. If however, C is conditionally independent
of A, i.e., B depends on A, C depends on B, and C only transitively depends on
A, then it is sufficient to store the distribution of C relative only to the realizations
of B. Nevertheless, if for a given graphical model a random variable depends on
more than a hand-full of other random variables, then the corresponding model will
become infeasible.

And/Xor Tree Model. A very recent work by Li and Deshpande (2009)
extends the block-independent disjoint tuples model by adding support for mutual
co-existence. Two events satisfy the mutual co-existence correlation if in any
possible world, either both happen or neither occurs. This work allows both mutual
exclusiveness and mutual co-existence to be specified in a hierarchical manner. The
resulting tree structure is called an and/xor tree. While theoretically highly relevant,
the and/xor tree model becomes impracticable in large database having non-trivial
object dependencies, as it grows exponentially in the number of database objects.

If not stated otherwise, this chapter will apply the block-independent disjoint
tuples model as model of choice for discrete uncertain data.

14.2.3 Continuous Models

In general, similarity search methods based on continuous models involve expensive
integrations of the PDFs, hence special approximation and indexing techniques
for efficient query processing are typically employed (Cheng et al. 2004b; Tao
et al. 2005). In order to increase quality of approximations, and in order to reduce
the computational complexity, a number of models have been proposed making
assumptions on the shape of object PDFs. Such assumptions can often be made in
applications where the uncertain values follow a specific parametric distribution,
e.g. a uniform distribution (Cheng et al. 2003, 2008) or a Gaussian distribution
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(Cheng et al. 2008; Deshpande et al. 2004; Patroumpas et al. 2012). Multiple such
distributions can be mixed to obtain a mixture model (Tran et al. 2010; Böhm et al.
2006). To approximate arbitrary PDFs, Li and Deshpande (2010a) proposes to use
polynomial spline approximations.

14.3 Possible World Semantics

In an uncertain spatial database D = {U1, . . . , UN }, the location of an object is
a random variable. Consequently, if there is at least one uncertain object, the data
stored in the database becomes a random variable. To interpret, that is, to define the
semantics of a database that is, in itself, a random variable, the concept of possible
worlds is described in this section.

Definition 1 (PossibleWorld Semantics) A possible world w = {ua1
1 , . . . , u

aN

N } is
a set of instances containing at most one instance u

ai

i ∈ Ui from each object Ui ∈ D.
The set of all possible worlds is denoted as W. The total probability of an uncertain
world P(w ∈W) is derived from the chain rule of conditional probabilities:

P(w) := P(
∧

u
ai
i ∈w

Ui = u
ai

i ) =
N∏

i=1

P(u
ai

i |
∧

j<i

u
aj

j ). (14.1)

By definition, all worlds w having a zero probability P(w) = 0 are excluded
from the set of possible worlds W. Equation 14.1 can be used if conditional
probabilities of the position of objects given the position of other objects are known,
e.g. by a given graphical model such as a Bayesian network or a Markov model. In
many applications where independence between object locations can be assumed,
as well as in applications where only the marginal probabilities P(u

ai

i ) are known,
and thus independence has to be assumed due to lack of better knowledge of a
dependency model, the above equation simplifies to

P(w) =
N∏

i=1

P(u
ai

i ). (14.2)

Example 2 As an example, consider Fig. 14.5 where a database consisting of three
uncertain objects D = {U1, U2, U3} is depicted. Objects U1 = {u1

1, u
2
1} and

U2 = {u1
2, u

2
2} each have two possible instances, while object U3 = {u1

3, u
2
3, u

3
3} has

three possible instances. The probabilities of these instances is given as P(u1
1) =

P(u2
1) = 0.5, P(u1

2) = 0.7, P(u2
2) = 0.2, P(u1

3) = 0.5, P(u2
3) = 0.3,

P(u3
3) = 0.2. Note that object U2 is the only object having existential uncertainty:

With a probability of 1− 0.7− 0.2 = 0.1 object U2 does not exist at all. Assuming
independence between spatial objects, the probability for the possible world where
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Fig. 14.5 An uncertain database and all of its possible worlds

Table 14.1 Possible worlds corresponding to Fig. 14.5

World Probability World Probability

{u1
1, u

1
2, u

1
3} 0.5 · 0.7 · 0.5 = 0.175 {u2

1, u
1
2, u

1
3} 0.5 · 0.7 · 0.5 = 0.175

{u1
1, u

1
2, u

2
3} 0.5 · 0.7 · 0.3 = 0.105 {u2

1, u
1
2, u

2
3} 0.5 · 0.7 · 0.3 = 0.105

{u1
1, u

1
2, u

3
3} 0.5 · 0.7 · 0.2 = 0.07 {u2

1, u
1
2, u

3
3} 0.5 · 0.7 · 0.2 = 0.07

{u1
1, u

2
2, u

1
3} 0.5 · 0.2 · 0.5 = 0.05 {u2

1, u
2
2, u

1
3} 0.5 · 0.2 · 0.5 = 0.05
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3 is given by applying Equation 14.2 to obtain the

product 0.5 · 0.7 · 0.5 = 0.175. All possible worlds spanned by D are depicted in
Fig. 14.5. The probability of each possible world is shown in Table 14.1, including
possible worlds where U2 does not exist.
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Recall that a predicate can evaluate to either true or false on a crisp (non-uncertain)
database. An exemplary predicate is There are at least five database objects in a
500 m range of the location “Theresienwiese, Munich”. To evaluate a predicate φ

on an uncertain database using possible world semantics, the query predicate is
evaluated on each possible world. The probability that the query predicate evaluates
to true is defined as the sum of probabilities of all worlds where φ is satisfied,
formally:

Definition 2 Let D be an uncertain spatial database inducing the set of possible
worlds W, let φ be some query predicate, and let

I(φ,w ∈W) := P(φ(D)|D = w) ∈ {0, 1}

be the indicator function that returns one if world w satisfies φ and zero otherwise.
The marginal probability P(φ(D)) of the event φ(D) that predicate φ holds in D is
defined as follows using the theorem of total probability (Zwillinger and Kokoska
2000):

P(φ(D)) =
∑

w∈W
I(φ,w) · P(w) (14.3)

The main challenge of analyzing uncertain data is to efficiently and effectively
deal with the large number of possible worlds induced by an uncertain database
D. In the case of continuous uncertain data, the number of possible worlds is
uncountably infinite and expensive integration operations or numerical approxima-
tion are required for most spatial database queries and spatial data mining tasks.
Even in the case of discrete uncertainty, the number of possible worlds grows
exponentially in the number of objects: in the worst case, any combination of
alternatives of objects may have a non-zero probability, as shown exemplary in
Fig. 14.5. This large number of possible worlds makes efficient query processing
and data mining an extremely challenging problem. In particular, any problem that
requires an enumeration of all possible worlds is #P-hard.1 In particular, a number of
probabilistic problems have been proven to be in #P (Valiant 1979). Following this
argumentation, general query processing in the case of discrete data using object
independence has proven to be a #P-hard problem (Dalvi and Suciu 2004) in the
context of relational data. The spatial case is a specialization of the relation case,
but clearly, the spatial case is in #P as well, which becomes evident by construction
of a query having an exponentially large result, such as the query that returns all
possible worlds. Consequently, there can be no universal solution that allows to
answer any query in polynomial time. This implies that querying processing on
models that are generalizations of the discrete case with object independence, e.g.,

1#P is the set of counting problems associated with decision problems in the class NP. Thus, for any
NP-complete decision problem which asks if there exists a solution to a problem, the corresponding
#P problem asks for the number of such solutions.
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models using continuous distribution, or models that relax the object independence
assumption, must also be a #P hard problem. The result of Dalvi and Suciu (2004)
implies that there exists query predicates, for which no polynomial time solution
can be given. Yet, this result does not outrule the existence of query predicates that
can be answered efficiently. For example the (trivial) query that always returns the
empty set of objects can be efficiently answered on uncertain spatial databases.

14.4 Existing Uncertain Spatial Database Management
Systems

Recently developed systems provide support for spatio-temporal data in big data
systems (Akdogan et al. 2010; Aji et al. 2013; Lu et al. 2012; Wang et al. 2010;
Zhang et al. 2012). Such systems exhibit high scalability for batch-processing
jobs (Apache; Dean and Ghemawat 2008), but do not provide efficient solutions
to handle uncertain data and to assess the reliability of results. The vivid field of
managing, querying, and mining uncertain data has received tremendous attention
from the database, data mining, and spatial data science communities. Recent books
(Aggarwal 2010) and survey papers (Aggarwal and Philip 2008; Wang et al. 2013;
Li et al. 2018) provide an overview of the flurry of research papers that have
appeared in these fields.

The problem of managing uncertain data has been well-studied by the database
research community in the past. While the traditional database literature (Cavallo
and Pittarelli 1987; Barbará et al. 1992; Bacchus et al. 1996; Lakshmanan et al.
1997; Fuhr and Rölleke 1997a) has studied the problem of managing uncertain
data, this research field has seen a recent revival, due to modern techniques for
collecting inherently uncertain data. Most prominent concepts for probabilistic data
management are MayBMS (Antova et al. 2008b), MystiQ (Boulos et al. 2005), Trio
(Agrawal et al. 2006), and BayesStore (Wang et al. 2008). These uncertain database
management systems (UDBMS) provide solutions to cope with uncertain relational
data, allowing to efficiently answer traditional queries that select subsets of data
based on predicates or join different datasets based on conditions. Extensions to the
UDBMS also allow answering of important classes of spatial queries such as top-k
and distance-ranking queries (Hua et al. 2008; Cormode et al. 2009a; Li et al. 2009a;
Bernecker et al. 2010; Li and Deshpande 2010b). While these existing UDBMS
provide probabilistic guarantees for their query results, they offer no support for
data mining tasks. A likely reason for this gap is the theoretic result of Dalvi and
Suciu (2007) which shows that the problem of answering complex queries is #P-
hard in the number of database objects. To illustrate this theoretic result, imagine
running a simple range query with an arbitrary query point on a database having N

objects each having an arbitrary non-zero probability of being in that range. Further,
assume stochastic independence between these objects. In that case, any of the 2N

combinations of result objects becomes a possible result and must be returned.
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Nevertheless, a number of polynomial time solutions have been proposed in the
literature for various spatial query types such as nearest neighbor queries (Cheng
et al. 2004a, 2008; Kriegel et al. 2007; Iijima and Ishikawa 2009), k-nearest
neighbor queries (Beskales et al. 2008; Ljosa and Singh 2007; Li et al. 2009b; Cheng
et al. 2009) and (similarity-) ranking queries (Bernecker et al. 2008; Cormode et al.
2009b; Li et al. 2009b; Soliman and Ilyas 2009). On first glance, these findings
may look contradicting (unless P = NP ), providing polynomial-time solution
to a #P-hard problem. On closer look, it shows that different related work use
different semantics to interpret a result. Aforementioned related works that provide
polynomial time solutions for spatial queries on uncertain data make a simplifying
assumption: Rather than computing the probability for each possible result, they
compute the probability of each object to be part of the result. This reduces the
number of probabilities that have to be reported, in the worst-case, from a number
exponential in the number of database objects, to a linear number. Re-using the
example of a range query on an uncertain database, it is possible to compute the
probability that a single object is within the query range independent from all other
objects.

Unfortunately, this simplification also yields a loss of information, as it is
not possible to infer the probability of query results given only probabilities of
individual objects. Let us revisit the running example from introduction, which is
duplicate in Fig. 14.6 for convenience. This example will illustrate how such an
object-based approach, which computes object-individual probabilities, rather than
the probabilities of result sets, may yield misleading results.

Example 3 Assume that the task is to simply find the probabilistic two nearest
neighbors (2NN) of uncertain object Q. Objects Q and B have two alternative
positions each, yielding a total of four possible worlds. For example, in one possible
world, where Q has location q1 and B has location b1, the two nearest neighbors of
Q are A and C. This possible world has a probability of 0.6 · 0.5 = 0.3, obtained by
assuming stochastic independence between objects. Following object-based result
semantics, we can obtain probabilities of 0.3, 0.3, 0.6, 0.4, 0.4 for objects A, B,
C, D, and E to be the 2NNs of Q, respectively. However, this result hides any
dependence between these result objects, such as objects A and B are mutually
exclusive, while D and E are mutually inclusive.

Fig. 14.6 The exemplary
uncertain database from
Fig. 14.2
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Towards approximate solutions, the Monte-Carlo DB (MCDB) system (Jampani
et al. 2008) has been proposed, which samples possible worlds from the database,
executes the query predicate on each sampled world. MCDB estimates the proba-
bility of each object to be part of the result set. However, this approach of assigning
a result probability to each object, as illustrate in the example above, cannot be
extended to assess the probability of result sets. The problem is that the number
of possible result sets may be exponentially large. To aggregate possible worlds
into groups of mutually similar worlds (having similar results), an approach has
been proposed for clustering of uncertain data (Züfle et al. 2014; Schubert et al.
2015) and more recently for general query processing on spatial data (Schmid and
Züfle 2019). Revisiting the example of Fig. 14.2, this approach reports the results
of a probabilistic query 2NN query as {A,C}, {B,C}, {D,E}, having respective
probabilities of 0.3, 0.3, and 0.4. However, this approach (Schmid and Züfle 2019)
can only be applied to spatial queries that return result sets, thus cannot be applied
to more complex spatial queries or data mining tasks. To further elaborate the
difference between solutions that compute the probability of each object to be part
of the result, and solutions that compute the probability of each result, the following
section will further survey the two different “Probabilistic Result Semantics”:
Object-based and Result-based.

14.5 Probabilistic Result Semantics

Recall that a spatial similarity query always requires a query object q and,
informally speaking, returns objects to the user that are similar to q. In the case
of uncertain data, there exists two fundamental semantics to describe the result of
such a probabilistic spatial similarity query. These different result semantics will
be denoted as object based result semantics and the result based result semantics.
Informally, the former semantics return possible result objects and their probability
of being part of the result, while the later semantics return possible results, which
consist of a single object, of a set of objects or of a sorted list of objects depending
on the query predicate, and their probability of being the result as a whole.

14.5.1 Object Based Probabilistic Result Semantics

Using object based probabilistic result semantics, a probabilistic spatial query
returns a set of objects, each associated with a probability describing the individual
likelihood of this object to satisfy the spatial query predicate.

Definition 3 (Object Based Result Semantics) Let D be an uncertain spatial
database, let q be a query object and let φ denote a spatial query predicate. Under
object based (OB) probabilistic result semantics, the result of a probabilistic spatial
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φ query is a set φOB(q,D) = {(o ∈ D, P (o ∈ φOB(q,D)))} of pairs. Each pair
consists of a result object o and its probability P(o ∈ φOB(q,D)) to satisfy φ.
Applying possible world semantics (cf. Definition 1) to compute the probability
P(o ∈ φOB(q,D)) yields

P(o ∈ φOB(q,D)) =
∑

w∈W,o∈φ(q,w)

P (w), (14.4)

where φ(q,w) is the deterministic result of a spatial φ query having query object q

applied to the deterministic database defined by world w.

Formally, the result of a probabilistic spatial query under object based result
semantics is a function

φOB(q,D) : D→ [0, 1]

o (→ P(o ∈ φOB(q,D)).

mapping each object o in D (the results) to a probability value.

Example 4 Figure 14.7 depicts a database containing objects D = {A,B,C}.
Objects A and B have two alternative locations each, while the position of C

is known for certain. The locations and the probabilities of all alternatives are
also depicted in Fig. 14.7. This leads to a total number of four possible worlds.
For example, in world w1 where A = a1, B = b1 and C1 = c1, object A is
closest to q, followed by objects B and C. Assuming inter-object independence, the
probability of this world is given by the product of individual instance probabilities
P(w1) = P(a1) · P(b1) · P(c1) = 0.04. The ranking of each possible world and
the corresponding probability is also depicted in Fig. 14.7. For a probabilistic 2NN

query for the depicted query object q, the object based result semantic computes the
probability of each object to be in the two-nearest neighbor set of q. For object A,
the probability P(A) of this event equals 0.1, since there exists exactly two possible

q

a1

b1

c1

b2a2

P(a1)=0.1
P(a2)=0.9
P(b1)=0.6
P(b2)=0.4
P(c1)=1.0

World Rank
1

Rank
2

Rank
3

P(w)

w1=a1 b1 c1 A B C 0.04

w2=a1 b2 c1 A C B 0.06

w3=a2 b1 c1 B C A 0.54

w3=a2 b2 c1 C B A 0.36

Fig. 14.7 Example Database showing possible positions of uncertain objects and their correspond-
ing probabilities



370 A. Züfle

worlds w1 and w2 with a total probability of 0.04+ 0.06 = 0.1 in which A is on rank
one or on rank two, yielding a result tuple (A, 0.1). The complete result of a P 2NN

query under object based result semantics is {(A, 0.1), (B, 0.94), (C, 0.96)}. Note
that in general, objects having a zero probability are included in the result. For
instance, assume an additional object D such that all instances of D have a distance
to q greater than the distance between q and b2. In this case, the pair (D, 0) would
be part of the result.

The result of a query under object based probabilistic result semantics contains
one result tuple for every single database object, even if the probability of the
corresponding object to be a result is very low or zero. In many applications,
such results may be meaningless. Therefore, the size of the result set can be
reduced by using a probabilistic query predicate as explained later in Sect. 14.6. A
computational problem is the computation of the probability P(o ∈ D) of an object
o to satisfy the spatial query predicate. In the example, this probability was derived
by iterating over the set of all possible worlds w1, . . . , w4. Since this set grows
exponentially in the number of objects, such an approach is not viable in practice.
Therefore, efficient techniques to compute the probability values P(o) are required.
A general paradigm to develop algorithms that avoid an explicit enumeration of all
possible worlds is presented in Sect. 14.7.

14.5.2 Result Based Probabilistic Result Semantics

In the case of result based result semantics, possible result sets of a probabilistic
spatial query are returned, each associated with the probability of this result.

Definition 4 (Result Based Result Semantics) Let D be an uncertain spatial
database, let q be a query object and let φ denote a spatial query predicate. Under
result based (RB) result semantics, the result of a probabilistic spatial φ query is a
set

φRB(q,D) = {(r, P (r))|r ⊆ D, P (r) =
∑

w∈W,φ(q,w)=r

P (w)}

of pairs. This set contains one pair for each result r ⊆ D associated with the
probability P(r) of r to be the result. Following possible world semantics, the
probability P(r) is defined as the sum of probabilities of all worlds w ∈ W such
that a spatial φ query returns r .

Formally, the result of a probabilistic spatial query under result based result
semantics is a function

φRB(q,D) : P(D)→ [0, 1]
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r (→ P(r).

mapping a elements of the power set P(D) (the results) to probability values.

Example 5 For a probabilistic 2NN query for the depicted query object q, result
based result semantics require to compute the probability of each subset of
{A,B,C} to be in the two-nearest neighbor set of q. For the set {B,C}, the
probability of this event is 0.90, since there is two possible worlds w3 and w4 with
a total probability of 0.54+ 0.36 = 0.9 in which B and C are both contained in the
2NN set of q. Note that in worlds w3 and w4 objects B and C appear in different
ranking positions. This fact is ignored by a kNN query, as the results are returned
unsorted. In this example, the complete result of a P 2NN query under object based
result semantics is {({A,B,C}, 0), ({A,B}, 0.04), ({A,C}, 0.06), ({B,C}, 0.90),
({A}, 0), ({B}, 0), ({C}, 0), ({∅}, 0)}.
Clearly, the result of a query using result based result semantics can be used to derive
the result of an identical query using object based result semantics. For instance, the
result of Example 5 implies that the probability of object A to be a 2NN of q is 0.10,
since there exists two possible results using result based result semantics, namely
({A,B}, 0.04) and ({A,C}, 0.06) having a total probability of 0.04 + 0.06 = 0.1,
which matches the result of Example 4.

Lemma 1 Let q be the query point of a probabilistic spatial φ query. It holds that
the result of this query using object based result semantics φOB(q,D) is functionally
dependent of the result of this query using result based result semantics. The set
PSφQOB(q,D) can be computed given only the set PSφQRB(q,D) as follows:

PSφQOB(q,D) = {(o, P (o))|o ∈ D ∧ P(o) =
∑

(r,P (r))∈PSφQRB(q,D),o∈r
P (r)}

Proof Let W denote the set of possible worlds of D, and let p(w ∈ W) denote the
probability of a possible world. Furthermore, let

wS⊆D := {w ∈W|φ(q,w) = S}

denote the set of possible worlds such that φ(q,w) = S, i.e., such that the predicate
that a φ query using query object q returns set S holds. In each world w, query
q returns exactly one deterministic result PSφQRB(q,w). Thus, the sets wS⊆D
represent a complete and disjunctive partition of W, i.e., it holds that

W =
⋃

S⊆D
wS (14.5)

and

∀R, S ∈ P(D) : R 
= S ⇒ wR

⋂
wS = ∅. (14.6)



372 A. Züfle

Using Equations 14.5 and 14.6, we can rewrite Equation 14.4

P(o ∈ φOB(q,D)) =
∑

w∈W,o∈φ(q,w)

P (w)

as

P(o ∈ φOB(q,D)) =
∑

S∈P(D)

∑

w∈wS,o∈φ(q,w)

P (w).

By definition, query q returns the same result for each world in w ∈ wS . This
result contains object o if o ∈ S. Thus we can rewrite the above equation as

P(o) =
∑

S∈P(D),o∈S
P (S).

The probabilities P(S) are given by function PSφQRB(q,D). $%
In the above proof, we have performed a linear-time reduction of the problem

of answering probabilistic spatial queries using object based result semantics to
the problem of answering probabilistic spatial queries using result based result
semantics. Thus, we have shown that, except for a linear factor (which can be
neglected for most probabilistic spatial query types, since most algorithm run in no
better than log-linear time), the problem of answering a probabilistic spatial query
using result based result semantics is at least as hard as answering a probabilistic
spatial query using object based semantics.

To summarize this section, we have learned about two different semantics to
interpret the result of a spatial query on uncertain data: Object Based and Result
Based. Understanding the difference of both result semantics is paramount to
understand the landscape of existing research: in some related publication the
problem of answering some probabilistic query may be proven to be in #P , while
another publication gives a solution that lies in P -TIME for the same spatial query
predicate and the same probabilistic query predicate. In such cases, different result
semantics may explain these results without assuming P = NP .

14.6 Probabilistic Query Predicates

Generally, in an uncertain database, the question whether an object satisfies a
given query predicate φ, such as being in a specified range or being a kNN of
a query object, cannot be answered deterministically due to uncertainty of object
locations. Due to this uncertainty, the predicate that an object satisfies φ is a random
variable, having some (possibly zero, possibly one) probability. A probabilistic
query predicate quantifies the minimal probability required for a result to qualify as
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a result that is sufficiently significant to be returned to the user. This section formally
define probabilistic query predicate for general query predicates. The following
definition are made for uncertain data in general, but can be applied analogously
for uncertain spatial data.

A probabilistic query can be defined without any probabilistic query predicate.
In this case, all objects, and their respective probabilities are returned.

Definition 5 (Probabilistic Query) Let D be an uncertain database, let q be a
query point and let φ be a query predicate. A probabilistic query φ(q,D) returns all
database objects o ∈ D together with their respective probability P(o ∈ φ(q,D))

that o satisfies φ.

φ(q,D) = {(o ∈ D, P (o ∈ φ(q,D)))} (14.7)

The term probabilistic query is simply derived from the fact that unlike a
traditional query, a probabilistic query result has probability values associated with
each result. The main challenge of answering a probabilistic query, is to compute
the probability P(o ∈ φ(q,D)) for each object. Using possible world semantics,
a probabilistic query can be answered by evaluating the query predicate for each
object and each possible world, i.e.,

P(o ∈ φ(q,D)) :=
∑

w∈Wfind (φ,w)·P(w)

.

But clearly, it is necessary to avoid the combinatorial growth that would be
induced by this “naive” evaluation method.

Example 6 For example, consider the query “Return all friends of user q having a
spatial distance of less than 100m to q” depicted in Fig. 14.8. Thus, the predicate
φ is a 100 m-range predicate using query point q. We can deterministically tell that
friend A must be within ε = 100 m Euclidean distance of q, while friends E and
F cannot possibly be in range. The pairs (A, 1), (E, 0) and (F, 0) are added to the
result. For friends B, C and D, this predicate cannot be answered deterministically.
Here, friend B has some possible positions located inside the 100 m range of q,
while other possible positions are outside this range. The two locations inside q’s
range have a probability of 0.1 and 0.2, respectively, thus the total probability of
object B to satisfy the query predicate is 0.1 + 0.2 = 0.3. The pair (B, 0.3)

is thus added to the result. The pairs (C, 0.2) and (D, 0.9) complete the result
100 m-range(q,D) = {(A, 1), (B, 0.3), (C, 0.2), (D, 0.9), (E, 0), (F, 0)}.

The immediate question in the above example is: “Is a probability of 0.3
sufficient to warrant returning B as a result?”. To answer this question, a prob-
abilistic query can explicitly specify a probabilistic query predicate, to specify the
requirements, in terms of probability, required for an object to qualify to be included
in the result. The following subsections briefly survey the most commonly used
probabilistic query predicates: probabilistic threshold queries and probabilistic Topk

queries.
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Fig. 14.8 Example of an uncertain ε-range query. Object A is a true hit, objects B, C and D are
possible hits

14.6.1 Probabilistic Threshold Queries

This paragraph defines a probabilistic query predicate that allows to return only
results that are statistically significant.

Definition 6 (Probabilistic Threshold Query(PτQ)) Let D be an uncertain (spa-
tial) database, let q be a spatial query object, let 0 ≤ τ ≤ 1 be a real value and let φ

be a spatial query predicate. A probabilistic τ query (PτQ) returns all objects o ∈ D
such that o has a probability of at least τ to satisfy φ(q,D):

Pτφ(q,D) := {o ∈ D|P(o ∈ φ(q,D)) ≥ τ }.

Example 7 In Fig. 14.8, a probabilistic threshold 100 m-range(q,D) query with τ =
0.5 query returns the set of objects P 0.5 100 m-range(q,D) = {A,D}, since objects
A and D are the only objects such that their total probability of alternatives inside
the query region is equal or greater to τ = 0.5.

Semantically, a probabilistic threshold spatial query returns all results having a
statistically significant probability to satisfy the query predicate. Therefore, the
probabilistic threshold query serves as a statistical test of the hypothesis “o is a
result” at a significance level of τ . This test uses the probability P(o ∈ φ(q,D)) as
a test statistic. Efficient algorithms to compute this probability P(o ∈ φ(q,D)), for
the example of kNN and similarity ranking queries will be surveyed in Sect. 14.8
similarity ranking queries and RkNN queries.
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A probabilistic threshold query on uncertain spatial data is useful in applications,
where the parameters of the spatial predicate τ (e.g. the range of an ε-range query, or
the parameter k of a kNN query), as well as the probabilistic threshold τ are chosen
wisely, requiring expert knowledge about the database D. If these parameters are
chosen inappropriately, no results may be returned, or the set of returned result may
grow too large. For example, if τ is chosen very large, and if the database has a
high grade of uncertainty, then no result may be returned at all. Analogously, if the
parameter ε is chosen too small then no result will be returned, while a too large
value of ε may return all objects. The special case of having ε = 0, i.e., the case of
returning all possible results (having a non-zero probability), is often used as default
if no other probabilistic query predicate is specified (e.g. Soliman et al. 2007; Yi
et al. 2008a). This case may be referred to as a possibilistic query predicate, as all
possible results (regardless of their probability) are returned.

14.6.2 Probabilistic Topk Queries

In cases where insufficient information is given to select appropriate parameter
values, the following probabilistic query predicate is defined to guarantee that only
the k most significant results are returned.

Definition 7 (Probabilistic Topk Query (PTopkQ)) Let D be an uncertain spatial
database, let q be a spatial query object, let 1 ≤ k ≤ |D| be a positive integer, and let
φ be a spatial query predicate. A probabilistic spatial Topk query (PTopkQ) returns
the smallest set PTopkφ(q,D) of at least k objects such that

∀Ui ∈ PTopkφ(q,D), Uj ∈D\PTopkφ(q,D) :P(Ui ∈φ(q,D)) ≥P(Uj ∈φ(q,D))

Thus, a probabilistic spatial Topk query returns the k objects having the highest
probability to satisfy the query predicate. Again, in case of ties, the resulting set
may be greater than k.

Example 8 In Fig. 14.8, a PTop3 φ query using a φ = 100 m-range spatial predicate
returns objects PT op3 100 m-range(q,D) = {A,B,D}, since these objects have
the highest probability to satisfy the spatial predicate, i.e., have the highest
probability to be located in the spatial 100 m-range.

Note, that the probabilistic Topk query predicate can be combined with a kNN

spatial query, i.e., with the case where φ = kNN . Such a probabilistic Topk jNN

query returns the set of k objects having the highest probability, to be j -nearest
neighbor of the query object. Clearly, k and j may have different integer values,
such that differentiation is needed.
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14.6.3 Discussion

In summary, a probabilistic spatial query is defined by two query predicates:

– A spatial predicate φ to select uncertain objects having sufficiently high proximity
to the query object, and

– a probabilistic predicate ψ , to select uncertain objects having sufficiently high
probability to satisfy φ.

It has to be mentioned, that alternatively to this definition, a single predicate can
be used, that combines both spatial and probabilistic features. For example, a
monotonic score function can be utilized, which combines spatial proximity and
probability to return a single scalar score. An example of such a monotone score
function is the expected distance function

E(dist(q, U ∈ D)) =
∑

u∈U
P (u) · dist(q, u),

where q is the query object, and D is an uncertain database. The expected support
function is utilized by a number of related publications, such as Ljosa and Singh
(2007) and Cormode et al. (2009b). Using such a monotone score function, objects
with a sufficiently high score can be returned. The advantage of using such an
approach, is that objects that are located very close to the query require a lower
probability to be returned as a result, while objects that are located further away
from the query object require a higher probability. Yet, the main problem of such
a combined predicate, is that the probability of an object is treated as a simple
attribute, thus losing its probabilistic semantic. Thus, the resulting score is very
hard to interpret. An object that has a high score, may indeed have a very low
probability to exist at all, because it is located (if it exists) very close to the query
object. Consequently, the score itself no longer contains any confidence information,
and thus, it is not possible to answer queries according to possible world semantics
using a single aggregate, such as expected distance, only.

14.7 The Paradigm of Equivalent Worlds

In Sect. 14.3 the concept of possible world semantics has been introduced. Possible
world semantics give an intuitive and mathematically sound interpretation of an
uncertain spatial database. Furthermore, queries that adhere to possible world
semantics return unbiased results, by evaluating the query on each possible world.
Since any such approach requires to run queries on an exponential number of worlds,
any naive approach is infeasible. Yet, for specific settings, such as specific result-
based semantics, specific spatial query predicates and specific probabilistic query
predicates, the literature has shown that it is possible to efficiently answer queries
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on uncertain data. While it is hardly feasible to enumerate all combinations of
result-based semantics, spatial query predicates and probabilistic query predicates,
this section introduces a general paradigm to find such a solution yourself. In a
nutshell, the idea is to find, among the exponentially large set of possible worlds, a
partitioning into a polynomially large number of subsets, which are equivalent for a
given query.

14.7.1 Equivalent Worlds

The goal of this section is introduce a general paradigm to efficiently compute exact
probabilities, while still adhering to possible world semantics. For this purpose,
reconsider Definition 2, defining the probability that some predicate φ is satisfied
in an uncertain database D as the total probability of all possible worlds satisfying
φ. Recall Equation 14.3

P(φ(D)) =
∑

w∈W
I(φ,w) · P(w),

where W is the set of all possible worlds; I(φ,w) is an indicator function that
returns one if predicate φ holds (i.e., resolves to true) in the crisp database defined
by world w and zero otherwise, and P(w) is the probability of world w. To reduce
the number of possible worlds that need to be considered to compute P(φ(D)), we
first need the following definition.

Definition 8 (Class of Equivalent Worlds) Let φ be a query predicate and let S ⊆
W be a set of possible worlds such that for any two worlds w1, w2 ∈ S we can
guarantee that φ holds in world w1 if an only if φ holds in world w2, i.e.,

∀w1, w2 ∈ S : I(φ,w1)⇔ I(φ,w2)

Then set S is called a class of worlds equivalent with respect to φ. In the
remainder of this chapter, if the spatial query predicate φ is clearly given by the
context, then S will simply be denoted as a class of equivalent worlds. Any worlds
wi,wj ∈ S are denoted as equivalent worlds.

We now make the following observation:

Corollary 1 Let S ⊆ W be a class of worlds equivalent with respect to φ

(cf. Definition 8), we can rewrite Equation 14.3 as follows:

P(φ(D)) =
∑

w∈W
I(φ,w) · P(w)⇔
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P(φ(D)) =
∑

w∈W\S
I(φ,w) · P(w)+ I(φ,w ∈ S) ·

∑

w∈S
P (w). (14.8)

Proof Due to the assumption that for any two worlds w1, w2 ∈ S it holds that φ

holds in world w1 if an only if φ holds in world w2, we get I(φ,w1) = 1 ⇔
I(φ,w2) = 1 and I(φ,w1) = 0 ⇔ I(φ,w2) = 0 by definition of function I. Due
to this assumption, we have to consider two cases.

Case 1: ∀w ∈ S : I(φ,w) = 0
In this case, both Equations 14.3 and 14.8 can be rewritten as

P(φ(D)) =
∑

w∈W\S
I(φ,w) · P(w).

Case 2: ∀w ∈ S : I(φ,w) = 1
In this case, both Equations 14.3 and 14.8 can be rewritten as

P(φ(D)) =
∑

w∈W\S
I(φ,w) · P(w)+

∑

w∈S
P (w)

$%
The only difference between both cases is the additive term

∑
w∈S P (w), which

exists only in Case 2. The indicator function I(φ,w ∈ S) ensures that this term is
only added in the second case. As main purpose, Corollary 1 states that, given a set
of equivalent worlds S, we only have to evaluate the indictor function I(φ,w) on a
single representative world w ∈ S, rather than on each world in S. This allows to
reduce the number of (crisp) φ queries required to compute Equation 14.3 by |S|−1.

Corollary 1 leads to the following Lemma.

Lemma 2 Let S be a partitioning of W into disjoint sets such that
⋃

S∈S S = W
and for all S1, S2 ∈ S : S1 ∩ S2 = ∅. Equation 14.3 can be rewritten as

P(φ(D)) =
∑

w∈W
I(φ,w) · P(w)⇔

P(φ(D)) =
∑

S∈S
I(φ,w ∈ S) ·

∑

w∈S
P (w). (14.9)

Proof Lemma 2 is derived by applying Corollary 1 once for each S ∈ S. $%
The next subsection will show how to leverage Lemma 2 to partition the set of all
possible worlds into equivalence classes that are guaranteed to have the same result
for a given query predicate, and how to exploit this partitioning to efficiently answer
queries.
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All O(2N) Possible Worlds

C1 C2 C…
Ck

kϵO(poly(N))

Partitioning

Classes of Equivalent
Worlds

Select a
Representative World

P(C2)
Compute Probability

of each Class P(C1) P(C…) P(Ck)

Evaluate Query
Predicate true false true false true false true false

Result Probability

P(C1) P(C2) P(C…) P(Ck)

Fig. 14.9 Summary of the paradigm of equivalent worlds

14.7.2 Exploiting Equivalent Worlds for Efficient Algorithms

Given a partitioning S of all possible worlds, Equation 14.9 requires to perform
the following two tasks. The first task requires to evaluate the indicator function
I(φ,w ∈ S) for one representative world of each partition. This can be achieved
by performing a traditional (non-uncertain) φ query on these representatives. The
final challenge is to efficiently compute the total probability P(S) := ∑

w∈S P (w)

for each equivalent class S ∈ S. This computation must avoid an enumeration of
all possible worlds, i.e., must be in o(|S|).2 Achieving an efficient computation is
a creative task, and usually requires to exploit properties of the model (such as
object independence) and properties of the spatial query predicate. The paradigm
of equivalent worlds is illustrated and summarized in Fig. 14.9. In the first step,
set of all possible worlds W, which is exponential in the number N of uncertain
objects, has to be partitioned into a polynomial large set of classes of equivalent
worlds, such that all worlds in the same class are guaranteed to be equivalent given
the query predicate φ. This yields a the set C = {C1, C2, . . . , Ck} of classes of
equivalent worlds. To allow efficient processing, this set must be polynomial in size,

2Note that if an exponential large set is partitioned into a polynomial number of subsets, then at
least one such subset must have exponential size. This is evident considering that O( 2n

poly(n)
) =

O(2n).
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since each class has to be considered individually in the following. Next, we require
to compute the probability of each class Ci , without enumeration of all possible
worlds contained in Ci , the number of which may still be exponential. In fact, at
least one class Ci must contain O(2N) possible worlds. Next, we need to decide,
for each class Ci , whether all worlds w ∈ Ci satisfy the query predicate φ, or
whether no world w ∈ Ci satisfies φ. Due to equivalence of all possible worlds
in Ci , these are the only possible cases. For some query predicates, this decision
can be made using special properties of the query predicate, as we will see later
in this chapter. In the general case, this decision can be made by choosing one
representative world w ∈ Ci (e.g. at random) from each class Ci , and evaluating the
query predicate on this world. This yields at total run-time of O(|C|) ·O(I(φ,w)),
where I(φ,w) is the time complexity of evaluating the query predicate φ on the
certain database w. If this query predicate can be evaluated in polynomial time,
i.e., if O(I(φ,w)) ∈ O(poly(N)), then the total run-time is in O(poly(N)).
This is evident, since if O(C) is in O(poly(N)), then O(C) · O(I(φ,w)) is in
O(poly(N)) ·O(poly(N)) which is in O(poly(N)). For each class Ci , where the
representative world satisfies φ, the corresponding probability P(Ci) is added to the
result probability.

The following lemma summarizes the assumptions that a query predicate has to
satisfy in order to efficiently apply paradigm of finding equivalent worlds.

Lemma 3 Given a query predicate φ and an uncertain database D of size N :=
|DB|, we can answer φ on D in polynomial time if the following four conditions are
satisfied:

I A traditional ψ query on non-uncertain data can be answered in polynomial
time.

II we can identify a partitioning C of W into classes C ∈ C of equivalent worlds
(see Definition 8).

III The number |C| of classes is at most polynomial in N .
IV The the total probability of a class S ∈ C can be computed in at most polynomial

time.

Proof Answering a φ query on D requires to evaluate Equation 14.3 which we
reformed into Equation 14.9 using Property II. This requires to iterate over all |C|
classes of equivalent worlds in polynomial time due to Property III. For each class
C ∈ C, this requires to perform two tasks. The first task requires to compute the total
probability of all worlds in C, and the second task requires to evaluate φ on a single
possible world w ∈ C. The former task can be performed in polynomial time due to
Property IV. The later task requires to perform a crisp φ query on the (crisp) world
w in polynomial time due to Property I. $%
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14.8 Case Study: Range Queries and the Sum
of Independent Bernoulli Trials

In this chapter, the paradigm of equivalent worlds will be applied to efficiently solve
the problem of computing the number of uncertain objects located within a specified
range.

Example 9 As an example, consider the setting depicted in Fig. 14.8. In this
example, we have four objects, A, B, C, and D having probabilities of 1.0, 0.3,
0.2, and 0.9 of being located inside the query region defined by query location q

and query range ε. Intuitively, the number of objects in this range can be anywhere
between one and four, as only object A is guaranteed to be inside the range, while on
B, C, and D have a chance to be inside this range among all other objects. How can
we efficiently compute the distribution of this number of objects inside the query
range? What is the probability of having exactly one, two, three or four object in the
range? Intuitively, the number of objects corresponds depends on the result of three
“coin-flips”, each using a coin with a different bias of flipping heads.

Each such “coin-flip” is a Bernoulli trial, which may have a successful (“heads”) of
unsuccessful (“tails”) outcome. In the case where all Bernoulli trials have the same
probability p, the number of successful trials out of N trials is described by the
well-known binomial distribution. In the case where each trial may have a different
probability to succeed, the number of successful trials follows a Poisson-binomial
distributions (Hoeffding et al. 1956).

Formally, let X1, . . . , XN be independent and not necessarily identically dis-
tributed Bernoulli trials, i.e., random variables that may only take values zero and
one. Let pi := P(Xi = 1) denote the probability that random variable Xi has value
one. In this section, we will show how to efficiently compute the distribution of the
random variable

N∑

i=1

Xi

without enumeration of all possible worlds. That is, for each 0 ≤ k ≤ N , this
section shows how to compute the probability P(

∑N
i=1 Xi = k) that exactly k trials

are successful.
This section shows two commonly used solutions to compute the distribution

of
∑

i Xi efficiently: The Poisson-binomial recurrence, and a technique based on
generating functions. Both solutions have in common that they identify worlds that
are equivalent to the query predicate.
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Fig. 14.10 Deterministic finite automaton corresponding to the problem of the sum of independent
Bernoulli trials

14.8.1 Poisson-Binomial Recurrence

The first approach iteratively computes the distribution of the sum of the first
1 ≤ k ≤ N Bernoulli variables given the distribution of the sum of the first k − 1
Bernoulli variables.

To gain an intuition of how to do this efficiently, consider the deterministic finite
automaton depicted in Fig. 14.10.3 The states (i/j) of this automaton correspond to
the random event that out of the first j Bernoulli trials X1, . . . , Xj , exactly i trials
have been successful. Initially, zero Bernoulli trials have been performed, out of
which zero (trivially) were successful. This situation is represented by the initial
state (0/0) in Fig. 14.10. Evaluating the first Bernoulli trial X1, there is two possible
outcomes: The trial may be successful with a probability of p1, leading to a state
(1/1) where one out of one trials have been successful. Alternatively, the trial may
be unsuccessful, with a probability of 1−p1, leading to a state (0/1) where zero out
of one trial have been successful. The second trial is then applied to both possible
outcomes. If the first trial has not been successful, i.e., we are currently located in
state (0/1), then there is again two outcomes for the second Bernoulli trial, leading
to state (1/2) and (0/2) with a probability of p2 and 1−p2 respectively. If currently
located in state (0/1), the two outcomes are state (2/2) and state (1/2) with the same
probabilities. At this point, we have unified two different possible worlds that are

3Note that this automaton is deterministic, despite the process of choosing a successor node being a
random event. Once the Bernoulli trial corresponding to a node has been performed, the next node
will be chosen deterministically, i.e., the upper node will be chosen if the trial was successful, and
the right node will be chosen otherwise. Either way, there is exactly one successor node.
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equivalent with respect to
∑

i Xi : The world where trial one has been successful
and trial two has not been successful, and the world where trial one has not been
successful and trial two has been successful have been unified into state (1/2),
representing both worlds. This unification was possible, since both paths leading
to state (1/2) are equivalent with respect to the number of successful trials.

The three states (0/2), (1/2) and (2/2) are then subjected to the outcome of
the third Bernoulli trial, leading to states (0/3), (1/3), (2/3) and (3/3). That is a
total of four states for a total of 23 = 8 possible worlds. In summary, the number

of states in Fig. 14.10 equals N2

2 . However, it is not yet clear how to compute the
probability of a state (i/j) efficiently. Naively, we have to compute the sum over all
paths leading to state (i/j). For example, the probability of state (2/3) is given by
p1 · p2 · (1− p3)+ p1 · (1− p2) · p3 + (1− p1) · p2 · p3. This naive computation
requires to enumerate all

(
j
p3

)
combinations of paths leading to state (i/j).

For an efficient computation, we make the following observation: Each state of
the deterministic finite automaton depicted in Fig. 14.10 has at most two incoming
edges. Thus, to compute the probability of a state (i/j), we only require the
probabilities of states leading to (i/j). The states leading to state (i/j) are state
(i − 1/j − 1) and state (i/j − 1). Given the probabilities P(i − 1/j − 1) and
P(i/j − 1), we can compute the probability P(i/j) of state (i/j) as follows:

P(i/j) = P(i − 1/j − 1) · pj + P(i, j − 1) · (1− pj ) (14.10)

where

P(0/0) = 1 and P(i/j) = 0 if i > j or if i < 0.

Equation 14.10 is known as the Poisson-Binomial Recurrence (To the best of our
knowledge, the Poisson binomial recurrence was first introduced by Lange 1999)
and can be used to compute the probabilities of states (k/N), 0 ≤ k ≤ N which
by definition, correspond to the probabilities P(

∑
i=1N Xi = k) that out of all N

Bernoulli trials, exactly k trials are successful.
This approach follows the paradigm of equivalent worlds in each iteration k:

The set of all 2k possible worlds is partitioned into k + 1 equivalent sets, each
corresponding to a state i/k, where i ≤ k. Each class contains only and all of the

(
k
i

)

possible worlds where exactly i Bernoulli trails succeeded. The information about
the particular sequence of the successful trials, i.e., which trials were successful and
which were unsuccessful is lost. This information however, is no longer necessary to
compute the distribution of

∑N
i=0 Xi , since for this random variable, we only need

to know the number of successful trials, not their sequence. This abstraction allows
to remove the combinatorial aspect of the problem.

An example showcasing the Poisson binomial recurrence is given in the follow-
ing.

Example 10 Let N = 4 and let p1 = 0.1, p2 = 0.2, p3 = 0.3 and p4 = 0.4.
The corresponding DFA is depicted in Fig. 14.11. The probability of state (0/0) is
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Fig. 14.11 Example deterministic finite automaton for a total of four Bernoulli random variables

explicitly set to 1.0 in Equation 14.10. To compute the probability of state (0/1), we
apply Equation 14.10 to compute

P(0/1) = P(−1/0) · p1 + P(0/0) · (1− p1).

with P(−1/0) = 0 and P(0/0) = 1 explicitly defined in Equation 14.10 this yields

P(0/1) = 0 · p1 + 1 · (1− p1) = 0.9

Analogously, we obtain

P(1/1) = P(0/0) · p1 + P(1/0) · (1− p1) = 1 · p1 = 0.1

Using these initial probabilities, we can continue to compute

P(0/2) = P(−1/1) · p2 + P(0/1) · (1− p2) = 0 · 0.2+ 0.9 · 0.8 = 0.72

P(1/2) = P(0/1) · p2 + P(1/1) · (1− p2) = 0.9 · 0.2+ 0.1 · 0.8 = 0.26

P(2/2) = P(1/1) · p2 + P(2/1) · (1− p2) = 0.1 · 0.2+ 0 · 0.8 = 0.02

The probabilities P(i/2), 0 ≤ i ≤ 2 can be used to compute

P(0/3) = P(−1/2) · p3 + P(0/2) · (1− p3) = 0 · 0.3+ 0.72 · 0.7 = 0.504

P(1/3) = P(0/2) · p3 + P(1/2) · (1− p3) = 0.72 · 0.3+ 0.26 · 0.7 = 0.398
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P(2/3) = P(1/2) · p3 + P(2/2) · (1− p3) = 0.26 · 0.3+ 0.02 · 0.7 = 0.092

P(3/3) = P(2/2) · p3 + P(3/2) · (1− p3) = 0.02 · 0.3+ 0 · 0.7 = 0.006

Finally, these probabilities can be used to derive the final distribution of the
random variable

∑4
i=1 Xi :

P(0/4) = P(−1/3) · p4 + P(0/3) · (1− p4) = 0 · 0.4+ 0.504 · 0.6 = 0.3024

P(1/4) = P(0/3) · p4 + P(1/3) · (1− p4) = 0.504 · 0.4+ 0.398 · 0.6 = 0.4404

P(2/4) = P(1/3) · p4 + P(2/3) · (1− p4) = 0.398 · 0.4+ 0.092 · 0.6 = 0.2144

P(3/4) = P(2/3) · p4 + P(3/3) · (1− p4) = 0.092 · 0.4+ 0.006 · 0.6 = 0.0404

P(4/4) = P(3/3) · p4 + P(4/3) · (1− p4) = 0.006 · 0.4+ 0 · 0.6 = 0.0024

These probabilities describe the PDF of
∑4

i=1 Xi by definition of P(i/j).

14.8.1.1 Complexity Analysis

To compute the distribution of
∑

i Xi we require to compute each probability P(i/j)

for 0 ≤ j ≤ N, i ≤ j , yielding a total of N2

2 ∈ O(N2) probability computations. To
compute any such probability, we have to evaluate Equation 14.10, which requires
to look up four probabilities P(i − 1/j − 1), P(i/j − 1), pj and 1− pj , which can
be performed in constant time. This yields a total runtime complexity of O(N2).
The O(N2) space complexity required to store the matrix of probabilities P(i/j)

for 0 ≤ j ≤ N, i ≤ j can be reduced to O(N ·k) by exploiting that in each iteration
where the probabilities P(i/k), 0 ≤ i ≤ k are computed, only the probabilities
P(i/k − 1), 0 ≤ i ≤ k − 1 are required, and the result of previous iterations can be
discarded. Thus, at most N probabilities have to be stored at a time.

14.8.2 Generating Functions

An alternative technique to compute the sum of independent Bernoulli variables
is the generating functions technique. While showing the same complexity as the
Poisson binomial recurrence, its advantage is its intuitiveness.

Represent each Bernoulli trial Xi by a polynomial poly(Xi) = pi · x + (1− pi).
Consider the generating function
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FN =
N∏

i=1

poly(Xi) =
N∑

i=0

cix
i . (14.11)

The coefficient ci of xi in the expansion of FN equals the probability
P(

∑N
n=1 Xn = i) (Li and Deshpande 2009). For example, the monomial 0.25 · x4

implies that with a probability of 0.25, the sum of all Bernoulli random variables
equals four.

The expansion of N polynomials, each containing two monomials leads to a total
of 2N monomials, one monomial for each sequence of successful and unsuccessful
Bernoulli trials, i.e., one monomial for each possible worlds. To reduce this
complexity, again an iterative computation of FN , can be used, by exploiting that

Fk = Fk−1 · poly(Xk). (14.12)

This rewriting of Equation 14.11 allows to inductively compute Fk from Fk−1.
The induction is started by computing the polynomial F0, which is the empty
product which equals the neutral element of multiplication, i.e., F0 = 1. To
understand the semantics of this polynomial, the polynomial F0 = 1 can be
rewritten as F0 = 1 · x0, which we can interpret as the following tautology:“with
a probability of one, the sum of all zero Bernoulli trials equals zero.” After each
iteration, we can unify monomials having the same exponent, leading to a total of
at most k+ 1 monomials after each iteration. This unification step allows to remove
the combinatorial aspect of the problem, since any monomial xi corresponds to a
class of equivalent worlds, such that this class contains only and all of the worlds
where the sum

∑N
k=1 Xk = 1. In each iteration, the number of these classes is k and

the probability of each class is given by the coefficient of xi .
An example showcasing the generating functions technique is given in the

following. This examples uses the identical Bernoulli random variables used in
Example 10.

Example 11 Again, let N = 4 and let p1 = 0.1, p2 = 0.2, p3 = 0.3 and p4 = 0.4.
We obtain the four generating polynomials poly(X1) = (0.1x + 0.9), poly(X2) =
(0.2x + 0.8), poly(X3) = (0.3x + 0.7), and poly(X4) = (0.4x + 0.6). We trivially
obtain F0 = 1. Using Equation 14.12 we get

F1 = F0 · poly(X1) = 1 · (0.1x + 0.9) = 0.1x + 0.9.

Semantically, this polynomial implies that out of the first one Bernoulli variables,
the probability of having a sum of one is 0.1 (according to monomial 0.1x=0.1x1),
and the probability of having a sum of zero is 0.9 (according to monomial 0.9 =
0.9x0. Next, we compute F 2, again using Equation 14.12:

F2 = F1 · poly(X2) = (0.1x1 + 0.9x0) · (0.2x1 + 0.8x0) =

0.02x1x1 + 0.08x1x0 + 0.18x0x1 + 0.72x0x0
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In this expansion, the monomials have deliberately not been unified to give an
intuition of how the generating function techniques is able to identify and unify
equivalent worlds. In the above expansion, there is one monomial for each possible
world. For example, the monomial 0.18x0x1 represents the world where the first
trial was unsuccessful (represented by the zero of the first exponent) and the second
trial was successful (represented by the one of the second exponent). The above
notation allows to identify the sequence of successful and unsuccessful Bernoulli
trials, clearly leading to a total of 2k possible worlds for Fk . However, we know
that we only need to compute the total number of successful trials, we do not need
to know the sequence of successful trials. Thus, we need to treat worlds having the
same number of successful Bernoulli trials equivalently, to avoid the enumeration
of an exponential number of sequences. This is done implicitly by polynomial
multiplication, exploiting that

0.02x1x1+0.08x1x0+0.18x0x1+0.72x0x0 = 0.02x2+0.08x1+0.18x1+0.72x0

This representation no longer allows to distinguish the sequence of successful
Bernoulli trials. This loss of information is beneficial, as it allows to unify possible
worlds having the same sum of Bernoulli trials.

0.02x2 + 0.08x1 + 0.18x1 + 0.72x0 = 0.02x2 + 0.26x1 + 0.72x0

The remaining monomials represent an equivalence class of possible worlds. For
example, monomial 0.26x1 represents all worlds having a total of one successful
Bernoulli trials. This is evident, since the coefficient of this monomial was derived
from the sum of both worlds having a total of one successful Bernoulli trials. In the
next iteration, we compute:

F3 = F2 · poly(X3) = (0.02x2 + 0.26x1 + 0.72x0) · (0.3x + 0.7)

= 0.006x2x1 + 0.014x2x0 + 0.078x1x1 + 0.182x1x0 + 0.216x0x1 + 0.504x0x0

This polynomial represents the three classes of possible worlds in F2 combined
with the two possible results of the third Bernoulli trial, yielding a total of 32̇
monomials. Unification yields

0.006x2x1 + 0.014x2x0 + 0.078x1x1 + 0.182x1x0 + 0.216x0x1 + 0.504x0x0 =

0.006x3 + 0.092x2 + 0.398x1 + 0.504

The final generating function is given by

F4 = F3 · poly(X4) =

(0.006x3 + 0.092x2 + 0.398x1 + 0.504) · (0.4x + 0.6) =
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.0024x4+ .0036x3+ .0368x3+ .0552x2+ .1592x2+ .2388x1+ .2016x1+ .3024x0

= 0.0024x4 + 0.0404x3 + 0.2144x2 + 0.4404x + 0.3024

This polynomial describes the PDF of
∑4

i=1 Xi , since each monomial cix
i

implies that the probability, that out of all four Bernoulli trials, the total number
of successful events equals i, is ci . Thus, we get P(

∑4
i=1 Xi = 0) = 0.0024,

P(
∑4

i=1 Xi = 1) = 0.0404, P(
∑4

i=1 Xi = 2) = 0.2144, P(
∑4

i=1 Xi = 3) =
0.4404 and P(

∑4
i=1 Xi = 4) = 0.3024. Note that this result equals the result we

obtained by using the Poisson binomial recurrence in the previous section.

14.8.2.1 Complexity Analysis

The generating function technique requires a total of N iterations. In each iteration
1 ≤ k ≤ N , a polynomial of degree k, and thus of maximum length k + 1, is
multiplied with a polynomial of degree 1, thus having a length of 2. This requires to
compute a total of (k + 1) · 2 monomials in each iteration, each requiring a scalar
multiplication. Thus leads to a total time complexity of

∑N
i=1 2k + 2 ∈ O(N2)

for the polynomial expansions. Unification of a polynomial of length k can be
done in O(k) time, exploiting that the polynomials are sorted by the exponent
after expansion. Unification at each iteration leads to a O(n2) complexity for the
unification step. This results in a total complexity of O(n2), similar to the Poisson
binomial recurrence approach.

An advantage of the generating function approach is that this naive polynomial
multiplication can be accelerated using Discrete Fourier Transform (DFT). This
technique allows to reduce to total complexity of computing the sum of N Bernoulli
random variables to O(N log2N) (Li et al. 2011). This acceleration is achieved by
exploiting that DFT allows to expand two polynomials of size k in O(klogk) time.
Equi-sized polynomials are obtained in the approach of Li et al. (2011), by using
a divide and conquer approach, that iteratively divides the set of N Bernoulli trials
into two equi-sized sets. Their recursive algorithm then combines these results by
performing a polynomial multiplication of the generating polynomials of each set.
More details of this algorithm can be found in Li et al. (2011).

14.9 Advanced Techniques for Managing Uncertain Spatial
Data

The Paradigm of Equivalent worlds has been successfully applied to efficiently
support many spatial query predicates and spatial data mining tasks. These more
advanced techniques are out of scope of this book chapter, but the techniques
presented in this chapter should help the interested reader to dive deeper into
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understanding state-of-the-art solutions, and to help the reader to contribute to
this field. An overview of research directions on uncertain spatial is provided in
Table 14.2.

Efficient solutions on uncertain data have been presented for (1)-nearest neighbor
(1NN) queries (Cheng et al. 2004a, 2008; Kriegel et al. 2007; Iijima and Ishikawa
2009; Zhang et al. 2013; Niedermayer et al. 2013a; Schmid et al. 2017). The
case of 1NN is special, as for 1NN the cases of object-based and result-based
probabilistic result semantics are equivalent: Since a 1NN query only results a
single result object. Thus, the probability of any object to be part of the result is
equal the probability of this object to be the (whole) result. For k Nearest Neighbor
queries, this is not the case, as initially motivated in Fig. 14.2. For object-based
result semantics (as explained in Sect. 14.5), polynomial time solutions leveraging
the paradigm of equivalent worlds have been proposed (Bernecker et al. 2011a). For
result-based result semantics, where each of the (potentially exponential many in k)

Table 14.2 Advanced topics in querying and mining uncertain spatial data

Topic Related work

Nearest neighbor query processing Cheng et al. (2004a, 2008), Kriegel et al. (2007),
Iijima and Ishikawa (2009), Zhang et al. (2013),
Niedermayer et al. (2013a), and Schmid et al.
(2017)

k-nearest neighbor (kNN) query processing Kolahdouzan and Shahabi (2004), Beskales et al.
(2008), Cheng et al. (2009), and Bernecker et al.
(2011a)

Top-k query processing Re et al. (2007), Soliman et al. (2007), and Yi
et al. (2008b)

Ranking of uncertain spatial data Lian and Chen (2008b, 2009b), Bernecker et al.
(2008, 2010, 2012), Cormode et al. (2009b),
Soliman and Ilyas (2009), Li et al. (2009b), Dai
et al. (2005), and Hua et al. (2008)

Reverse kNN query processing Lian and Chen (2009a), Cheema et al. (2010),
Bernecker et al. (2011b), and Emrich et al. (2014)

Skyline query processing Pei et al. (2007), Lian and Chen (2008a), Vu and
Zheng (2013), Ding et al. (2014), and Yang et al.
(2018)

Indexing uncertain spatial data Zhang et al. (2009), Emrich et al. (2012a),
and Agarwal et al. (2009)

Maximum range-sum query processing Agarwal et al. (2018), Nakayama et al. (2017),
and Liu et al. (2019)

Querying uncertain trajectory data Emrich et al. (2012b), Niedermayer et al. (2013b),
and Zheng et al. (2011)

Clustering uncertain spatial data Schubert et al. (2015), Züfle et al. (2014), Ngai
et al. (2006), and Kriegel and Pfeifle (2005)

Frequent itemset and colocation mining Bernecker et al. (2009, 2012, 2013) and Wang
et al. (2011, 2012)
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results is associated with a probability, solutions have been presented in Beskales
et al. (2008) and Cheng et al. (2009).

A related problem is Top-k query processing which returns the k best result
objects for a given score function (Re et al. 2007; Soliman et al. 2007; Yi et al.
2008b). While these solution are not proposed in the context of spatial or spatio-
temporal data, they are mentioned here as they can be applied to spatial data. For
example, if the score function is defined as the distance to query object, this problem
becomes equivalent to kNN. Solutions for result-based probabilistic result semantics
are proposed in Soliman et al. (2007) and Re et al. (2007) and for object-based result
semantics in Yi et al. (2008b).

Another problem generalization are ranking queries, which return the Top-k
result ordered by score. For uncertain data using object-based result semantics, this
yields a probabilistic mapping of each database mapping to each rank for the case
of object-based result semantics. For example, it may return that object o1 has a
80% probability to be Rank 1, and a 20% probability to be Rank 2. In the case
of result-based probabilistic result semantics, each possible ranking of objects is
mapped to a probability, for example, the ranking [o1, o3, o2] may have a 10%
probability. Solutions for the result-based probabilistic result semantic case have
been proposed in Soliman and Ilyas (2009) having exponential run-time due to
the hard nature of this problem. For the case of object-based probabilistic result
semantics, first solutions having exponential run-time were proposed (Bernecker
et al. 2008; Lian and Chen 2008b). Applying the paradigm of equivalent worlds, a
number of solutions have been proposed concurrently and independently to achieve
polynomial run-time (linear in the number of database objects times the number of
ranks). The generating functions technique (as explained in Sect. 14.8) was proposed
for this purpose by Li et al. (2009b). An equivalent approach using a technique
called Poisson-Binomial Recurrence was simultaneously proposed by Bernecker
et al. (2010) and Hua et al. (2008). A comparison of the generating functions
technique and the Poisson Binomial Recurrence, along with a proof of equivalence,
can be found in Züfle (2013). Other works shown in Table 14.2 include solutions for
the case of existential uncertainty (Dai et al. 2005), inverse ranking (Lian and Chen
2009b), and spatially extended objects (Bernecker et al. 2012), and the computation
of the expected rank of an object. Cormode et al. (2009b). Solution for indexing of
uncertain spatial (Agarwal et al. 2009; Chen et al. 2017) and spatio-temporal (Zhang
et al. 2009; Emrich et al. 2012a) data have been proposed to speed up various of the
previously mentioned query types.

The problem of finding reverse k nearest neighbors (RkNNs) have been studied
for spatial data (Lian and Chen 2009a; Cheema et al. 2010; Bernecker et al. 2011b)
and spatio-temporal data (Emrich et al. 2014). Solutions for skyline queries on
uncertain data have been proposed in Pei et al. (2007), Lian and Chen (2008a),
Vu and Zheng (2013), Ding et al. (2014), and Yang et al. (2018). More recently, the
problem of answering Maximum Range-Sum Queries has been studied for uncertain
data (Agarwal et al. 2018; Nakayama et al. 2017; Liu et al. 2019).

Solutions tailored towards uncertain spatio-temporal trajectories, in which the
exact location of an object at each point in time is a random variable have been
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proposed (Emrich et al. 2012b; Niedermayer et al. 2013b; Zheng et al. 2011). In
this work, the challenge is to leverage stochastic processes that consider temporal
dependencies. Such dependencies describe that the location of an object at a time t

depends on its location at time t − 1.
Solutions for clustering uncertain data have been proposed (Schubert et al. 2015;

Züfle et al. 2014; Ngai et al. 2006; Kriegel and Pfeifle 2005). The challenge of
clustering uncertain data is that the membership likelihood of on uncertain object to
a cluster depends on other objects, making it hard to identify groups of worlds that
are guaranteed to yields the same clustering result.

Finally, solutions for frequent itemset mining have been proposed for uncertain
data (Bernecker et al. 2009, 2012, 2013; Wang et al. 2012). While frequent
itemset mining is not a spatial problem, it has applications in spatial co-location
mining (Wang et al. 2011; Chan et al. 2019).

Yet, many other spatial query predicates, as well as other probabilistic query
predicates using different probabilistic result semantics are still open to study. The
authors hopes that this chapter provides interested scholars with a starting point
to fully understand preliminaries and assumptions made by existing work, as well
as a general paradigm to develop efficient solutions for future work leveraging the
Paradigm of Equivalent Worlds presented herein.

14.10 Summary

This chapter provided an overview of uncertain spatial data models and the concept
of possible world semantics to interpret queries on these models. To understand the
landscape of existing query processing algorithms on uncertain data, this chapter
further surveyed different probabilistic result semantics and different probabilistic
query predicates. To give the interested reader a start into this field, this chapter
presented a general paradigm to efficiently query uncertain data based on the
Paradigm of Equivalent Worlds, which aims at finding possible worlds that are
guaranteed to have the same query result. As a case-study to apply this paradigm,
this chapter provided solutions to efficiently compute range queries on uncertain
data using an efficient recursion approach, as well as leveraging the concept of
generating functions.

Given this survey on modeling and querying uncertain spatial data, this chapter
further provided a brief (and not exhaustive) overview of some research directions
on uncertain spatial data. Many queries on uncertain data have already been solved
efficiently, but many new challenges arise. For instance, only limited work has
focused on streaming uncertain data, that is, handling uncertain data that changes
rapidly. Another mostly open research direction is uncertain data processing in
resources-limited scenarios such as edge computing. The author hopes that readers
will find this overview useful to help readers understanding existing solutions and
support readers towards adding their own research to this field.
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Chapter 15
Spatial Statistics, or How to Extract
Knowledge from Data

Anna Antoniuk, Miryam S. Merk, and Philipp Otto

15.1 Introduction

“Everything is related to everything else, but near things are more related than
distant things” according to the first law of geography by Tobler (1970). That is,
observations of a random process appearing close together in space are more similar
than observations that are more distant. In statistics, this is known as dependence or,
more precisely, spatial dependence. To avoid producing artifacts when analyzing
spatial data, it is important that the model accounts for any dependence in the data.
How to account for spatial dependence in different modeling approaches is the
subject of this paper. More precisely, we focus on so-called geostatistical models
and spatial econometric models. Both of them grasp spatial dependence in different
ways, leading to different model properties. However, if all parameters are chosen
in a suitable manner, both approaches lead to the same conclusions and results.

The major aim of statistical modeling is to gain knowledge from data and to find
statistical evidence for certain phenomena, which could be expected according to
theoretical models on the underlying process. Such models could be, for instance,
physical models about the ocean currents to describe displacements of sand or
economical models assuming a certain behavior of individuals and postulating, for
example, tax rates of municipalities. Contrary to methods in artificial intelligence
like deep learning or artificial neural networks, which are mostly used for pattern
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recognition, prediction, and classification, the focus of this paper is on models that
allow for understanding the driving factors of the data. Thus, on one hand, the model
should be simple enough to understand its structure and draw certain conclusions
on the effect of these driving factors. On the other hand, the model should have a
certain flexibility and complexity to accurately account for spatial dependence and
to reproduce the data.

However, in the case of a large number of observations (≥10,000) or big
geospatial data, the estimation of the model parameters might be computationally
challenging for both geostatistical and econometric approaches. Hence, the dimen-
sionality of the so-called spatial covariance matrix regarding geostatistical models
or the spatial weight matrix regarding spatial econometric models must be reduced.
In this overview, we will address the dimensionality reduction by discussing selected
approaches.

In the next section, we summarize different types of spatial stochastic processes
and data, which are illustrated using simple examples. Further, the geostatistics
section focuses on the estimation of spatial dependence using covariograms and
geostatistical modeling approaches. In Sect. 15.4, we provide an overview of spatial
autoregressive (SAR) models with simultaneous spatial dependencies originating in
spatial econometrics. Finally, we utilize both approaches to model the atmospheric
concentration of PM2.5 (particles with diameters less than 2.5 μm). Section 15.6
concludes the paper.

15.2 Spatial Data

Let {Y (s) : s ∈ D} be a univariate stochastic process at known locations s, where
D is a subset of the d-dimensional real numbers Rd . That is, stochastic processes are
(random) observations drawn from data-generating processes having a certain order
in a predefined space. Certainly, a d-dimensional rectangle of positive volume must
exist in D (see, e.g., Cressie 1993; Cressie and Wikle 2011). Moreover, s may vary
discretely or continuously over D. For instance, if the stochastic process lies in a
one-dimensional space (i.e., d = 1), the process could be a time series, like daily
prices/returns of financial assets or the acceleration of a car measured each second,
millisecond, and so on. In Fig. 15.1, two examples of time series data with a one-
dimensional support D are depicted. More precisely, the stock prices and returns of
Apple Inc. are plotted on the left-hand side, and the simulated acceleration of a car
is shown in the right-hand plot.

If s represents a location in the d-dimensional space with d > 1, the stochastic
process is called a spatial or geospatial process. In the simplest case, d = 2, the
process lies on a plane, like the surface of a certain workpiece (e.g., when inspecting
the quality of produced metal sheets). Locally, the surface of the Earth could also
be considered as a plane. Of course, the Earth is a sphere, or rather an ellipsoid,
such that spherical spaces Sd = {s ∈ R

d+1 : ||s||2 = 1} (i.e., unit spheres) should
be used instead of projections into Euclidean space R

2. Note that map projections
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Fig. 15.1 Two time series examples. Left: Stock prices (black, left axis) and logarithmic returns
(blue, right axis) of Apple Inc. Right: Simulated speed (black, dotted, left axis) and acceleration of
a car (blue, dashed, right axis)

are more suitable for local processes being close to the equator (see also Banerjee
2005).

Moreover, one might distinguish between spatial point processes, geostatistical
processes and spatial lattice processes, which might be observed on regular or
irregular grids. In the case of spatial point processes, data are observed at a random
set of locations, where the location of the measurements is of primary interest. For
example, in analyzing the performance of professional dart players, the location
of the arrows hitting the board is of interest. Another example from the field of
astrostatistics would be the location of galaxies in space. The second case covers, for
example, data measured at several measurement stations, like ground temperature
or precipitation measurement stations. More precisely, D would be a subset of the
two-dimensional real numbers R

2 in these cases. That is, we observe realizations
of a random process at certain spatial locations/points. Thus, these processes are
also called marked point processes. In the upper left plot of Fig. 15.2, an example
of such a marked point process or geostatistical process is shown. In particular,
we depict copper concentrations in the topsoil along the river Meuse (see Pebesma
2004; Burrough et al. 2015). The data are measured at several points in space, or
more precisely, at coordinates. If the spatial locations are not “randomly” distributed
across space but lie on a regular or irregular grid, the process would be called the
lattice process. Typical examples of such data are images (d = 2), sequences of
images (d = 3), or raster data (d = 2). Images typically result from aggregating
observations from point processes into grid cells, e.g., by averaging all observation
of one cell. One example of such data is depicted in the upper right corner of
Fig. 15.2. It visualizes the percentage of underweight children (under the age of 5) in
the years 1990 to 2002 (Center for International Earth Science Information Network
2005). In contrast to the previous example, the data are not measured at several
coordinates, but in larger grid cells of size 2.5◦ × 2.5◦, resulting in 4× 4 raster cells
per 10◦ in longitude and latitude. Moreover, D might be a discrete set of locations
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Fig. 15.2 Three examples of spatial processes. Top left: Geostatistical process of the copper
concentration along the river Meuse. Top right: Percentage of malnutrition in Africa on a regular
spatial raster/lattice. Bottom: Percentage of obesity in all US states (except Alaska and Hawaii) as
an example of data on irregular polygons

{s1, . . . , sn} representing irregular polygons, like municipalities, counties, or states.
Typical applications of such processes can be found in econometrics, epidemiology,
or disease modeling. An example of this kind of process is presented in the bottom
plot of Fig. 15.2. In particular, the percentage of adults suffering from obesity is
shown for each state (Centers for Disease Control and Prevention 2017).

15.3 Geostatistical Models

In general, assessing the effect of observable or latent variables and gaining
knowledge about the spatial dependence structure may be of interest. For that
reason, geostatistical or spatial econometric models can be applied. Such models
could be of a simple linear form but also of a highly complex and nonlinear form.
Initially, in this section, we focus on geostatistics, while the focus of Sect. 15.4
is on spatial econometric models. We refer to Cressie (1993) and Cressie and
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Wikle (2011) for an exhaustive and detailed overview of models for spatial and
spatiotemporal data from the viewpoint of geostatistics.

Consider that the random process {Y (s)} is drawn from a distribution
FY(s1),...,Y (sn), which is defined as

FY(s1),...,Y (sn)(y1, . . . , yn) = P(Y (s1) ≤ y1, . . . , Y (sn) ≤ yn),

where P is a probability measure. The idea of any statistical model is to approximate
the true distribution function F using a sample of observations. Furthermore, this
approximation allows us to draw conclusions on the true distribution. In particular,
certain measures describing characteristics or properties of a distribution function
F , like the expectation of F or (co-)variance of F , etc., are easier to interpret than
the full distribution function. Consider the example of malnutrition in Fig. 15.2;
using a statistical model, one might answer questions like “Does the percentage
of underweight children in central Africa (expectation of F ) deviate from 25%
(target/reference value)?”, “Adjusting for a set of predictive variables (covariates),
like poverty or employment rates, could we expect that there are fewer underweight
children (expectation of F ) in central Africa than in southern Africa (reference value
is zero considering differences of the expectations)?”, or “Do the covariates describe
the malnutrition equally well ((co-)variance of F ) in all parts of Africa?” Moreover,
certain regularity assumptions are often made on the distribution F to reduce the
modeling complexity.

The random process is called first-order stationary if

E(Y (si)) = μ for all i.

That is, the mean does not depend on the location. However, the focus should not
only be on the mean of the distribution but also on the variance and covariances
describing the dependence in space. More precisely, the spatial dependence is
characterized by the covariances

Cov(Y (si), Y (sj )) for all i and j,

where Cov(Y (si), Y (si)) = Var(Y (si)). Often it is also assumed that

Cov(Y (si), Y (sj )) = C(si − sj ) ,

that is, the covariance is a function C of the difference between si and sj . If these two
assumptions are fulfilled, the process is called weakly or second-order stationary.
This means that the expectation of the random process is the same in all locations,
and the dependence between the random variables does not depend on the location
but only on the difference between the two locations. We might also consider the
special case in which the dependence is the same for all directions (depending only
on the distance between two locations but not their orientation to each other). Thus,
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Fig. 15.3 Simulated isotropic (1st row) and anisotropic (2nd row) random processes that are
second-order stationary (1st column), not mean-stationary (2nd column) and not covariance-
stationary (3rd column)

if there is a norm || · ||, such that C(·) is only a function of ||si − sj ||, the process
(or rather C(·)) is called isotropic.

Figure 15.3 illustrates six different random processes to visualize these prop-
erties. In the first row, isotropic processes are depicted, while the second row
shows anisotropic processes with stronger north-south than east-west dependencies.
In addition, we distinguish between three cases regarding first or second-order
stationarity. The first column depicts second-order stationary processes, while the
second and third columns reflect cases where either the mean or the covariance
is not constant across space. More precisely, the mean value increases from west
to east in the second column (i.e., E(Y (si)) = μ(si) and the colors are brighter
in the eastern parts) and the covariance grows stronger from north to south in the
third column (i.e., Cov(Y (si), Y (sj )) = C(si − sj , si , sj ) and the clusters get more
pronounced in the south).

15.3.1 Covariogram Estimation

If the (geo-)physical drivers of spatial dependence are known, the covariance func-
tion C might also be known. However, in most real cases, the covariance structure
is unknown. Hence, C must be estimated. One straightforward estimation strategy
is based on the generalized method of moments (GMM), originally proposed by
Hansen (1982). That is, the covariance Cov(Y (si), Y (sj )) between two observations
at si and sj is estimated by the respective sample covariance. Examining
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Var(Y (si)− Y (sj )) = Var(Y (si))+ Var(Y (sj ))− 2Cov(Y (si), Y (sj )) ,

we see that there is a relation between C(si − sj ) and Var(Y (si) − Y (sj )).
Thus, in geostatistics, one typically estimates Var(Y (si) − Y (sj )) instead of
Cov(Y (si), Y (sj )). Moreover, suppose that

Var(Y (si)− Y (sj )) = 2γ (si − sj ) for all i 
= j, and si, sj ∈ D .

The function γ is called a semivariogram (because 2γ is a variogram).
Assuming isotropy (i.e., γ is only a function of the distance ||si−sj ||), the locations
can be grouped in classes with equal distances from each other. Particularly, for
spatial data on regular grids, this approach leads to almost equally sized groups of
more than two locations. More formally, an estimator of γ is given by

2γ̂ (h) = 1

|�(h)|
∑

�(h)

(y(si)− y(sj ))
2 , (15.1)

where �(h) is the set of all observations with distance h, that is,

�(h) = {(si, sj ) : ||si − sj || = h; i, j = 1, . . . , n} . (15.2)

Moreover, the observations are denoted by y(s1), . . . , y(sn). However, data are
typically not “evenly” distributed across space and, therefore, the distance between
the points is irregular and one might not even have one pair of equal distances. In
these cases, one would group the locations into bins of distances from h− l to h+ l,
that is,

�(h) = {(si, sj ) : h− l < ||si − sj || ≤ h+ l; i, j = 1, . . . , n} . (15.3)

Meaning, we allow for a certain tolerance l. However, this also implies that the
estimated variogram is smoothed to some extent.

Obviously, γ (h) = γ (−h) and γ (0) = 0, but γ (h) approaches a certain constant
c0 as h approaches zero. This constant is the so-called nugget effect. For modeling
spatial dependence, certain parametric models are often estimated for γ , like the
exponential, spherical, or Matérn model.

In Fig. 15.4, we illustrate the abovementioned properties using a simulated
geostatistical process on a regular grid. More precisely, the process is weakly
stationary and isotropic (i.e., mean and variance are constant across space, and
the covariance between two observations only depends on the distance between
them). In the side view on the left-hand plot, one may see that the mean and
variance do not vary across space in terms of having a trend, for instance. That is,
the observed/simulated values visualized by the color of the locations are evenly
spread around zero. However, we observe a strong spatial dependence from the
overhead view. More precisely, the red/blue locations representing positive/negative
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Fig. 15.4 Simulated random processes with an exponential covariance function

observations are located close to each other. These so-called spatial clusters indicate
a positive spatial dependence. In most real situations, the spatial dependence would
be positive (see, e.g., Cressie 1993).

The illustrated process can be reproduced using the R package MASS. First, a
d × d regular grid is created that represents the spatial region of interest.

R> require("MASS")
R> d <- 25
R> n <- d^2
R> s <- array(c(rep (1:d, d), sort(rep (1:d, d))), dim = c(n, 2))

The next step involves determining the covariance matrix. In the example, we
employ an exponential covariance function C(||si−sj ||) = aeb||si−sj || with a = 0.3
and b = −0.1.

R> a <- 0.3
R> b <- -0.1
R> Sigma <- array(, dim = c(n, n))
R> for(i in 1:n){
+ for(j in 1:n){
+ Sigma[i, j] <- a * exp(b * sqrt(sum((s[i, ] - s[j, ])^2)))
+ }
+ }

Assuming that the expected value in each location is equal to 0, the random
process can be simulated from a multivariate normal distribution with μ = 0 and �

resulting from C.

R> mu <- rep(0, n)
R> z <- mvrnorm(1, mu = mu, Sigma = Sigma)

To visualize the simulated process as 3D and 2D images, the functions
scatter3D() and scatter2D() from the plot3D package can be used,
respectively.
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R> require("plot3D")
R> scatter3D(x = s[, 1], y = s[, 2], z = z, phi = 0,
+ bty ="g", lwd = 6, pch = 19, ticktype = "detailed")
R> scatter2D(x = s[, 1], y = s[, 2], colvar = z, type = "p",
+ bty = "g", lwd = 10)

15.3.2 Modeling Approaches

In most cases, researchers are interested in the mean behavior of the random
process (i.e., in the expectation E((Y (s1), . . . , Y (sn))

′)) and the effect of potential
covariates on the mean. Let Y = (Y (s1), . . . , Y (sn))

′ and consider a general
regression model of the mean

E(Y ) = Xβ + f (Z) , (15.4)

where X is a n × (p + 1) matrix of potential covariates and regressors, and β is a
(p + 1)-dimensional vector of regression coefficients. Note that the one column
of X, mostly the first column, is assumed to be a vector of ones representing
the intercept. Hence, the model includes p deterministic regressors. In the case
of stochastic regressors, X could be replaced by E(X). Furthermore, the function
f : Rn × R

l → R
n allows for a wide range of potential models, such as spatial

and spatiotemporal models or hierarchical regression models. The support of the
function is a set of l covariates observed at all n locations (i.e., Z is an n× l matrix).

Generally, there are two leading ways of estimating the parameters of such mod-
els. First, they can be estimated by the maximum-likelihood approach. However, this
approach requires the computation of the determinant of a large dimensional matrix.
Thus, in most cases, only the expected likelihood is maximized by an expectation-
maximization (EM) algorithm, which is computationally more efficient. Below, we
go into further detail on this approach. Second, Bayesian approaches are often used
for parameter estimation, particularly, the integrated nested Laplace approximation
(INLA).

Without going into theoretical details, we sketch the abovementioned estimation
methods and particularly their computational implementation. For the sake of
simplicity, we focus only on the purely spatial setting, but not on the spatiotemporal
case. Thus, consider that f covers a latent spatial random effect without any further
regressors. In this case, f is given by

f (Z) = K , (15.5)

where K is an n-dimensional random vector. More precisely, suppose that K follows
a multivariate Gaussian distribution with zero mean and a weakly stationary and
isotropic covariance matrix � = (σij )i,j=1,...,n. Hence, the (i, j)-th element σij is
given by
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σij = C(||si − sj ||),

as in the above definition. The covariance function C can be any valid covariance
function, which might also depend on further parameters. For instance, C could
be an exponential covariance function, Matérn covariance function, or a spherical
covariance function. Many covariance functions/models have been proposed in the
literature for different kinds of spatial data, such as space-time data, stationary and
nonstationary data, or isotropic and anisotropic data (e.g., Matérn 1960; Cressie
and Huang 1999; Gneiting 2002; Fuentes 2002; Apanasovich and Genton 2010).
Note that all interpretations based on such models must be done conditioned on
the specification of the assumed covariance model. Similar issues also occur in
spatial econometrics, which we describe in more detail in the ensuing section. It
is important to note that not all covariance functions are well-defined if the data are
observed on a sphere, such as the surface of the Earth. Moreover, using Euclidean
distances on map projections or chordal distances instead of geodetic distances,
meaning distances on the sphere, may cause severe anomalies, especially for large
distances (see Banerjee 2005; Porcu et al. 2016).

This model is a special case of the spatiotemporal model implemented in
the D-STEM software by Finazzi and Fasso (2014) or Cameletti (2015). While
Finazzi and Fasso (2014) provided an overview of the MATLAB software D-STEM,
Cameletti (2015) implemented the same model in an R package. In particular,
D-STEM can be used for spatiotemporal predictions and kriging, using hierarchical
models. The model parameters can be estimated by the maximum-likelihood
approach using an EM algorithm. In addition, the MATLAB software allows
for distributed computing on several processing units and incorporates several
techniques for reducing the dimensionality of the spatial covariance matrix �, such
that complex spatiotemporal models can be estimated in a reasonable amount of
time and memory even for big geospatial data.

From a Bayesian perspective, spatial and spatiotemporal models can efficiently
be estimated using the INLA approach proposed by Rue et al. (2009). The INLA is
an alternative to the computationally intensive Markov chain Monte Carlo (MCMC)
simulations. The idea of this Bayesian approach is that the process of the parameter
estimation is not deterministic but is being achieved through an approximation
(see Rue et al. 2009). In the first step of such a method, the prior distribution
must be assumed. This prior distribution is further supplemented with the new
information coming from the observed data to transform it into the posterior
distribution, which is more suitable to describe the data. More precisely, INLA uses
a basis representation, which is similar to the fixed-rank kriging, which we describe
below. However, the number of basis functions is larger compared to the fixed-rank
kriging, yielding a high-dimensional basis representation (see Lindgren et al. 2015;
Blangiardo and Cameletti 2015).

Given the general model of the mean in (15.4), we define the parameter vector,
which should be estimated, as θ = {β, f }, where f is some function or a set
of functions that depicts additional influence on the observed variable, such as
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spatial dependencies. Generally, the Bayesian method aims to compute the posterior
marginals given by

p(xi |y) =
∫

p(xi |θ, y)p(θ |y)dθ,

p(θj |y) =
∫

p(θ |y)dθ−j ,

(15.6)

where p(·|·) stands for conditional density, which should be approximated.
To estimate the posteriors, the INLA approach incorporating three steps can

be used. First, the marginal θ should be estimated by applying the Laplace
approximation. Based on the results of this operation, the approximation of xi can
be done in the next step. Usually, this is also based on the Laplace approximation.
However, a simplified Laplace or Gaussian approximation can also be used at this
point. After p̃(xi |θ, y) is determined, the numerical integration is used to determine
the posterior p̃(xi |y). Then, we obtain the following marginal posterior

p̃(xi |y) ≈
K∑

k=1

p̃(xi |θk, y)p̃(θk|y)�k, (15.7)

where θk stands for the set of the weighted points, and �k represents their weights.
For a detailed explanation of this approximation method, we refer to Rue et al.
(2009).

The INLA approach is computationally implemented in the R package INLA,
which can directly be downloaded on the INLA project website. Moreover, this
approach allows for modeling spatiotemporal processes, as done by Cameletti et al.
(2013) for modeling particulate matter concentrations. With the function inla(),
one can conduct the estimation of the model parameters, obtain fitted values of the
observed variable, and gain information criteria. The details of the implementation
of this package and the related examples can be found, for instance, in Martins et al.
(2013), but we also sketch it for our empirical example below.

15.3.3 Dimensionality Reduction of the Spatial Covariance
Matrix

There are several ways to reduce the dimension of the spatial covariance matrix
�, which could be very large for spatial data (see, e.g., Banerjee et al. 2008).
For instance, global raster data with a resolution of 2.5 arc-minutes, approx. 5 km,
would result in more than 37 million spatial locations (i.e., � would have over 1.3
quadrillion or 1.3·1015 entries). As mentioned at the very beginning of the paper, the
first law of geography by Tobler (1970) says that “everything is related to everything
else, but near things are more related than distant things.” Thus, the idea would be
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to restrict the spatial dependence to only close neighbors (i.e., nearby locations).
Consequently, � would have a sparse matrix. Although no exact definition of
sparsity exists, a matrix is typically considered sparse if more than 50% are zero
entries. Restricting the spatial dependence to neighbors lying within a certain
distance is known as covariance tapering (cf. Furrer et al. 2006). By multiplying
the covariance matrix � element-wise by another valid covariance matrix �θ , the
resulting direct product is a valid covariance matrix. This is ensured by Shur’s
theorem (i.e., the direct product of two positive definite matrices is positive definite).
The matrix �θ is a covariance matrix that has zero elements for all pairs of locations
with a distance greater than θ .

However, long-range spatial dependence is ignored by this approach. Thus,
another approach for reducing the dimensionality is the so-called fixed-rank kriging.
For this approach, the spatial process is approximated by a random-effects model,
including r spline basis functions. As long as r is smaller than the number of
locations n, the precision matrix �−1, which is, e.g., needed for kriging, can be
efficiently computed. More precisely, the Sherman-Morrison-Woodbury represen-
tation of the inverse only requires the inverse of the r-dimensional covariance
matrix of the random-effects model to be computed. Contrary to the previous
approach, this allows modeling long-range spatial dependence. Furthermore, full-
scale approximation can be regarded as a combination of both approaches. Vetter
et al. (2014) compared all three approaches with respect to their computational costs
and accuracy of the approximation.

15.4 Spatial Regression Models

In spatial regression models, interactions may arise between observations col-
lected from points or regions in space. These spatial interactions are essentially
characterized in two different ways, namely, in the form of spatially autoregres-
sive dependent variables or spatially autocorrelated residuals. For the former,
observations on the response variable Y (si) in location si may depend on obser-
vations in other locations sj (e.g., real estate agents may base their pricing on
neighboring properties with comparable amenities). An alternative motivation is
latent unobservable characteristics exhibiting spatial patterns (e.g., power plants
or other combustion sources will adversely affect real estate prices in different
adjacent districts). Thus, observations on the response variable are likely to resemble
neighboring observations, which can be used as substitutes for latent influences.

In general, endogenous spatial interaction effects arise when the i-th observation
on the dependent variable affects the j -th observation, and vice versa. These
simultaneous autoregressive dependencies can be expressed as an extension of the
regular linear regression model and are commonly referred to as the spatial lag or
simultaneous autoregressive model, that is,

Y = ρWY +Xβ + ε (15.8)
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or the following reduced form

Y = (I − ρW)−1Xβ + (I − ρW)−1ε,

where I is the identity matrix, ε is an n-dimensional vector of residuals, and it
is typically assumed that ε ∼ N(0, σ 2I ). The spatial dependence structure is
characterized by the n × n spatial weight matrix W , and ρ reflects the strength
of spatial dependence implied by W (see Ord 1975). More precisely, wij reflects
whether and to what extent the i-th location is affected by the j -th location (i.e.,
how Y (sj ) affects Y (si)). The specification of spatial weighting matrices is one of
the key issues in spatial econometric research and is described in more detail in the
following Sect. 15.4.1.

If E(ε) = 0, the expectation of the spatial autoregressive process is given by

E(Y ) = (I − ρW)−1Xβ, (15.9)

where (I − ρW)−1 induces a “multiplier” effect (see LeSage and Pace 2009).
Intuitively, the individual units not only depend on their direct neighbors (their first-
order neighbors) but also on their neighbors’ neighbors (second-order neighbors)
and so forth. These higher-order spillover effects typically diminish quickly with
increasing order.

In contrast to spatial lags, modeling spatial autocorrelation in the disturbances is
not primarily aimed at assessing the nature of spatial dependence or spillover effects.
In fact, spatial error models do not differ from conventional nonspatial models in
terms of their expectations (see LeSage and Pace 2009). Consider the following
random process with spatially autocorrelated residuals e

Y = Xβ + e

e = λWe + ε,
(15.10)

or

Y = Xβ + (I − λW)−1ε,

where λ reflects the strength of that spatial autocorrelation, conditional on the
selection of W . The expectation of a random process with spatially autocorrelated
residuals corresponds to a regular linear regression model, namely,

E(Y ) = Xβ. (15.11)

However, classical estimation procedures, like ordinary least squares, do not lead
to consistent estimates in the presence of spatially correlated errors. Thus, for these
kinds of models, the spatial dependence appears in the error variance-covariance
matrix, that is,
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Fig. 15.5 Simulated random process with spatial autoregressive dependencies, where W is a
Rook’s matrix and ρ = 0.8

E(ee′) = σ 2(I − λW)−1(I − λW ′)−1. (15.12)

Figure 15.5 depicts a simulated spatial process of the following form

Y = (I − ρW)−1ε, (15.13)

where ε ∼ N(0, σ 2I ) and E(Y ) = 0 due to the lack of regressors. Thus, there is no
difference between the spatial lag and error models if the explanatory variables are
omitted from the regression model. It is further assumed that the spatial dependence
arises from a Rook’s matrix (i.e., each location equally depends on its four nearest
neighbors to the north, south, east, and west) and the strength of spatial dependence
is ρ = 0.8. Since the upper bound for the strength in the context of normalized
matrices is ρ < 1, a value of 0.8 reflects fairly strong spatial dependencies. These
dependencies arise in the form of clusters of similar observations on the response
variable Y .

In order to simulate the shown process the R package spatialreg is used.
First, the parameters of the d × d regular spatial grid are specified as follows

R> require("spatialreg")
R> d <- 25
R> n <- d^2

In the next step, the spatial weight matrix can be determined with the functions
implemented in spatialreg.

R> nb <- cell2nb(d, d, type = "rook")
R> W <- nb2mat(nb)

Based on the specification of W and ρ = 0.8, the spatial autoregressive process can
be simulated from a normal distribution by
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R> rho <- 0.8
R> eps <- rnorm(n, mean = 0, sd = 1)
R> Y <- solve(diag(n) - rho * W) %*% eps

To visualize the process, we again use the following functions

R> require("plot3D")
R> scatter3D(x = s[, 1], y = s[, 2], z = Y, phi = 0, lwd = 6,
+ bty ="g", pch=19, ticktype="detailed")
R> scatter2D(x = s[, 1], y = s[, 2], colvar = Y, type = "p",
+ lwd = 10, bty = "g")

In addition to spatial lag and error models, alternative specifications have been
suggested, where variations of the response variable may be induced by spatially
correlated explanatory variables WX, such as the spatial Durbin model based
on both a spatially lagged dependent variable and spatially lagged explanatory
variables. Moreover, both spatially autoregressive dependent variables and residuals
may be included, yielding the spatially autoregressive combined model. Finally, the
Manski model takes all potential sources of spatial dependence into account, that is,

Y = ρWY +Xβ +WXγ + αι+ (I − λW)−1ε, (15.14)

where γ is a p-dimensional vector that captures local spillover effects, and αι is a
constant vector. Thus, X is a n× p matrix comprising the p exogenous regressors.
The individual spatial weighting matrices might be different but are often assumed
to be equal and standardized for reasons of simplicity. Manski (1993) and Elhorst
(2010) provided a comprehensive overview of different spatial dependence models
and their combination and selection.

The point of departure to investigate whether a variable is spatially autocorrelated
is Moran’s I statistic (see Moran 1950), which is one of the suitable measures
for spatial dependence in spatial econometrics. In addition, more specific tests
may be employed to identify the type of spatial dependence inherent in the data.
More precisely, three asymptotic procedures are available in spatial econometric
research, namely, the likelihood ratio test, Wald test, and Lagrange multiplier test
(see, e.g., Anselin 1988; Anselin et al. 1996). The R packages spatialreg and
spdep (see Bivand et al. 2013) provide functions for specification testing, such
as lm.LMtests() for (robust) testing in the presence of spatial lags vs. spatial
errors and LR.sarlm() for comparing the likelihood values of different nested
model specifications. The function moran.test() calculates Moran’s I statistic
for residuals from a linear regression model.

15.4.1 Specification of Spatial Weighting Matrices

Modeling spatial interactions between n cross-sectional units or locations theoreti-
cally requires the examination of n2 − n unknown spatial connections. This results
in the incidental parameter problem that occurs when the number of observations
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Fig. 15.6 Simulated random process with spatial autoregressive dependencies, where W is a
Rook’s matrix (1st column), Queen’s matrix (2nd column) and anisotropic matrix with east, north-
east dependencies (3rd column)

is smaller than the number of parameters. In spatial econometric research, it
is common practice to replace the unknown spatial interrelations with a linear
combination ρW , where W denotes the prespecified spatial weight matrix that
captures how each spatial unit is related to all other units of the sample. Then,
W = (wij )i,j=1,...,n is assumed to be a deterministic spatial weight matrix, and
ρ is a scalar parameter that reflects the strength of spatial dependence implied by
W . In the context of georeferenced data, the spatial weights are typically based on
some measure of geographical proximity (e.g., p-order binary contiguity, q nearest
neighbors or distance decays; Anselin 1988). Figure 15.6 illustrates three different
spatial dependence structures (i.e., the commonly used Rook’s and Queen’s matrix
and an anisotropic weighting scheme).

In addition, further assumptions concerning the construction of W are usually
required (i.e., all diagonal elements of W are zero, (I − ρW) is nonsingular, and
all row and column sums of W are uniformly bounded in absolute value; see, e.g.,
Kelejian and Prucha 1999; Elhorst 2010). The estimation of the unknown parameter
ρ depends on the specification of the spatial weight matrix. Interpretations of the
estimated strength of spatial dependence ρ̂ should always be carried out with respect
to the selection of W , as for geostatistical models, where a suitable covariance
model is assumed. In particular, the feasible parameter space is determined by the
eigenvalues of W (i.e., ρ ∈ (ν−1

min, ν
−1
max), where νmax and νmin are the maximum and

minimum real characteristic roots, respectively; see, e.g., LeSage and Pace 2009).
It is common practice to row-normalize spatial weights such that each matrix row
sums to unity and, hence, the principal eigenvalue of that normalized matrix is 1.
Therefore, row-normalization imposes restrictions on the corresponding parameter
space and facilitates inferences on parameter estimates. While row-normalization is
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straightforward in the case of binary weights, it is less suitable for inverse distance
matrices because it may distort the proportions between rows and the meaning in
terms of geographic distances (Anselin 1988; Elhorst 2001; Kelejian and Prucha
2010).

However, the deterministic specification of spatial weighting matrices has pro-
voked some criticism (see, e.g., Corrado and Fingleton 2012). In particular,
misspecifications of the spatial weights may yield biased parameter estimates (see,
e.g., Stakhovych and Bijmolt 2009; Smith 2009; Lee and Yu 2012). As a result,
a variety of alternative approaches for estimating the spatial weight matrix has
been suggested. Pinkse et al. (2002) proposed a semiparametric estimator based
on distance measures. Bhattacharjee and Jensen-Butler (2013) estimated the spatial
weight matrix from the spatial autocovariance matrix for spatial panel models under
the assumption of symmetry. Moreover, sparsity has been considered the identifying
assumption to estimate the spatial weights from spatial or spatiotemporal data (see,
e.g., Zhu et al. 2010; Ahrens and Bhattacharjee 2015; Bailey et al. 2016; Otto and
Steinert 2018; Merk and Otto 2020). In the context of spatiotemporal data, time-
varying spatial weighting matrices may be considered (Lee and Yu 2012; Qu et al.
2017; Billé et al. 2019; Merk and Otto 2019).

From a computational perspective, handling n × n weighting matrices can be
challenging for large sample sizes n, which is relevant, especially in the context of
big data. In addition to the construction of the weight matrix, further operations are
usually required, such as inversion and calculation of eigenvalues or determinants.
Imposing structural assumptions about W , like sparsity, symmetry, or a triangular
form, contributes to reducing the computing time for these operations. Commonly
used specifications, such as p-order binary contiguity or q nearest neighbor weights
satisfy the assumption of sparsity because the proportion of nonzero spatial weights
is small and remains constant even as the sample size increases.

15.4.2 Inferences on Parameter Estimates

For spatial error models, the interpretation of the regression parameter estimates β̂

is analogous to simple linear regression models without spatial dependencies. More
precisely, the first partial derivative, reflecting the effect of the p-th explanatory
variable on Y , is given by the following

∂E(Y )

∂Xp

= βp. (15.15)

However, for spatial autoregressive models with spatially lagged response
variables, the interpretation of the model coefficients is quite different from linear
regression and spatial error models. In particular, the partial derivatives of Y with
respect to the p-th explanatory variable are given by
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∂E(Y )

∂Xp

= (I − ρW)−1βp, (15.16)

which yields an n×n matrix for each explanatory variable instead of a single scalar.
Thus, changes in the p-th explanatory variable in location j can affect the response
variables in other locations (i.e., ∂E(Yi)/∂Xpj 
= 0, i 
= j ). LeSage and Pace
(2009) referred to these cross-partial derivatives as indirect effects in contrast to
direct effects ∂E(Yi)/∂Xpi that reflect the effect of changes in the same location.
Summary scalar measures, such as the average diagonal and cumulative off-diagonal
elements over all observations, may be taken to interpret the direct and indirect
effects, respectively. The differences between the estimated parameter estimates β̂

and corresponding average direct effects reflect feedback effects that pass through
neighboring units back to the region where the change originally occurred (cf.
LeSage and Pace (2009), p. 71). Since the spatial multiplier effect (I − ρW)−1 is
identical for all exogenous variables, no distinction exists regarding the importance
of spatial spillover effects. In particular, Elhorst (2010) pointed out that the ratio
between direct and indirect effects is the same for all exogenous regressors, which
is not a likely scenario in empirical applications.

Anselin (2003) referred to these spillover effects as global effects because they
are transferred to all locations regardless of whether they are actually connected
through W . Local effects, on the other hand, only transmit changes in explanatory
variables to locations that are connected to each other. Local spillovers are typically
considered by including spatially lagged explanatory variables. Spatial spillover and
feedback effects are precluded by spatial error models, which can be considered as
the main motivation to distinguish between lag and error models.

15.4.3 Estimation Procedures

Regarding the data-generating process in (15.8), it is apparent that the spatial lag
WY is correlated with the residuals ε. Namely,

E((WY)′ε) = σ 2W(I − ρW)−1 
= 0. (15.17)

Ordinary least squares estimators are inconsistent in the context of simultaneity
that occurs because the endogenous variable appears on both the left- and right-hand
sides of the regression model. Consequently, alternative estimation procedures, such
as the ML approach (Ord 1975; Anselin 1988; Lee 2004), Bayesian MCMC (LeSage
1997; LeSage and Pace 2009), generalized two-stage least squares (Kelejian and
Prucha 1998), or generalized method of moments (Kelejian and Prucha 1999),
have been proposed to circumvent endogeneity issues. The latter method has been
primarily applied to estimate the spatial error autocorrelation and will therefore not
be considered in further detail.
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Estimating spatial models using the ML approach has received much attention in
spatial econometrics. It typically requires distributional assumptions regarding the
regression residuals (i.e., ε ∼ N(0, σ 2I ); see also Lee 2004 regarding the properties
of these estimators if the errors are not normal). Thus, the joint likelihood results
from the multivariate normal distribution for Y and the Jacobian term |I − ρW |,
which must be included because of the transformation rule of random variables.
Bayesian methods additionally incorporate model uncertainty by including parame-
ter distributions to derive posterior distributions. Calculating ln |I − ρW | and the
matrix inverse (I − ρW)−1 can be very computationally demanding, especially
in the context of big data and therefore represents a major disadvantage of the
ML and Bayesian MCMC estimation. However, computational aspects of the ML
and MCMC have received considerable attention and improvement, especially
regarding the computation of log determinants (Pace and Barry 1997; Barry and
Pace 1999; Smirnov and Anselin 2001; LeSage and Pace 2007). For example, Ord
(1975) proposed calculating the determinant based on eigenvalues νi of W (i.e.,
ln |I−ρW | =∑n

i=1 ln(1−ρνi)). Other approaches have been suggested, such as the
Monte Carlo approximation (Martin 1993; Barry and Pace 1999) or the Chebyshev
log-determinant approximation proposed by Pace and LeSage (2004). LeSage and
Pace (2009) provided very detailed guidance on estimating models using the ML
and MCMC and explicitly elaborated on computational aspects. Since specification
testing is often based on comparing log-likelihood values, the ML and Bayesian
methods are also very suitable for model selection.

To control for the endogeneity inherent in spatial autoregressive models, instru-
mental variables or two-stage least squares can be used. The right-hand side
endogenous variable (i.e., observations on the response variable of neighboring
locations) is replaced with predicted values. These predictions are obtained from an
instrumental variable regression, where the instruments are composed of exogenous
regressors X and their spatial lags and higher-order spatial lags (WX,W 2X, . . . ),
as suggested by Kelejian and Prucha (1998).

For the estimation of these models, the R package spatialreg provides
several functions. The ML estimation of the spatial lag, error, and combined model
that consists of both spatially autoregressive lags and errors can be carried out by
the functions lagsarlm(), errorsarlm(), and sacsarlm(), respectively.
The function stsls() fits a spatial lag model (SLM) based on generalized two-
stage least squares. The spatial autoregressive parameter in an error model can be
estimated using the GMerrorsar() function.

Up to now, we have focused on modeling spatial dependence in the expectation
and conditional expectations. As a side note, however, it is important to mention that
spatial dependence might also occur in higher-order moments. For instance, Otto
et al. (2018) introduced an autoregressive model for conditional heteroscedasticity
(i.e., the conditional variance in a certain location depends on the variance in its
neighboring locations). Using this approach, spatial dependence in local risks and
(model) uncertainties can be described. For these models, the parameters can be
estimated using the ML approach, which is computationally implemented in the
spGARCH package in R (see Otto 2019 for more details).
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15.5 Case Study

In the following empirical analysis, we consider regular lattice data with a grid-
cell resolution of 0.1◦ that captures PM2.5 concentrations in μg/m3 for Colorado
in 2000. In total, n = 2730 observations cover a land surface area from 37◦ to 41◦
north and 102◦ to 109◦ west. The regressors comprise NOX concentrations (X1),
temperature (X2), population density (X3), and elevation (X4). Both PM2.5 concen-
trations and the exogenous regressors are obtained from the NASA Socioeconomic
Data and Applications Center.

In addition, we provide source code that may be used for the analysis of spatial
data with the spatialreg and INLA packages. In particular, we assess the effect
of the four exogenous variables, which we refer to as X1, X2, X3 and X4 in the
source code. Hence, the model formula is given by

R> f <- Y ~ X1 + X2 + X3 + X4

including an intercept that can be dropped by adding −1.
We consider the two predominant spatial econometric models described in

Sect. 15.4: the spatial lag (SAR) and error model (SEM). Both model specifications
are estimated using the ML approach. For the geostatistical analysis, the INLA
approach is used to estimate two models, namely the spatial lag (SLM) and the
stochastic partial differential equations (SPDE) model described in Sect. 15.3.2.
For computational simplicity, we consider a sparse spatial weighting matrix for the
SAR, SEM, and SLM. More precisely, it is assumed that each location is affected by
its eight nearest neighbors that it either shares a common edge or vertex with, which
is commonly known as the Queen’s matrix. The corresponding list of neighbors for
a d×d lattice, which can be used to construct the spatial weights matrix is generated
as follows

R> require("spatialreg")
R> nblist <- cell2nb(nrow = d, ncol = d, type = "queen")
R> Wlist <- nb2listw(nblist)
R> W <- listw2mat(Wlist, style = "W")

where the option style = "W" creates row-normalized matrices such that the
strength of spatial dependence is constant across all matrix rows and locations. As
mentioned in Sect. 15.4.3, the following functions can be used for the ML estimation
of the econometric spatial lag and error model

R> lag.ml <- lagsarlm(f, data = data, listw = mat2listw(W))
R> err.ml <- errorsarlm(f, data = data, listw = mat2listw(W))

where data is a data.frame object consisting of the response variable data$Y,
regressors data$X1, data$X2, data$X3, data$X4, longitudes data$long
and latitudes data$lat. The summary() command

R> summary(lag.ml)

returns the following summary measures such as parameter estimates, standard
errors and several test statistics
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Call:lagsarlm(formula = Y ~ X1 + X2 + X3 + X4,
listw = mat2listw(W))

Residuals:
Min 1Q Median 3Q Max

-2.3724439 -0.1287108 0.0017116 0.1334192 1.7599943

Type: lag
Coefficients: (asymptotic standard errors)

Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.1434069 0.0210097 6.8257 8.747e-12
X1 -0.0287564 0.0070383 -4.0857 4.395e-05
X2 0.0691952 0.0085066 8.1343 4.441e-16
X3 0.0810635 0.0064164 12.6338 < 2.2e-16
X4 0.0049193 0.0071976 0.6835 0.4943

Rho: 0.97731, LR test value: 9036.9, p-value: < 2.22e-16
Asymptotic standard error: 0.0032237

z-value: 303.16, p-value: < 2.22e-16
Wald statistic: 91909, p-value: < 2.22e-16

Log likelihood: -647.5127 for lag model
ML residual variance (sigma squared): 0.073284, (sigma: 0.27071)
Number of observations: 2730
Number of parameters estimated: 7
AIC: 1309, (AIC for lm: 10344)
LM test for residual autocorrelation
test value: 108.12, p-value: < 2.22e-16

Analogously,

R> summary(err.ml)

returns the summary for the SEM. For more detailed instructions on implementing
the spatialreg package, we refer to Bivand and Piras (2015).

Alternatively, the INLA approach can be used to estimate the spatial lag model.
The following initial commands must be carried out in advance of the actual
estimation

R> require("INLA")
R> data$ind <- 1:n
R> mmatrix <- model.matrix(f, data)
R> Q <- Diagonal(n = ncol(mmatrix), 0.0001)

where the mmatrix is the design or model matrix consisting of the exogenous
regressors and an intercept, and Q is the precision matrix for the resulting coef-
ficients (i.e., α and β). Moreover, the feasible parameter space for the scalar
autoregressive coefficient ρ is obtained by

R> rho.min <- 1/max(eigen(W, only.values = TRUE)$values)
R> rho.max <- 1/min(eigen(W, only.values = TRUE)$values)

as discussed in Sect. 15.4.1. Further, prior distributions for the precision
parameter (i.e., the reciprocal residual variance) and spatial autoregressive
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coefficient can be selected. The list of priors can be retrieved by the command
names(inla.models()$prior) or, alternatively, the default specification

R> hyper <- list(
+ prec = list(prior = "loggamma", param = c(0.01, 0.01)),
+ rho = list(initial = 0, prior = "logitbeta", param = c(1, 1)))

can be used.
Finally, the inla() function estimates the spatial lag model as follows

R> slm.ml <- inla(Y ~ -1 + f(ind, model = "slm",
+ args.slm = list(rho.min = rho.min,
+ rho.max = rho.max,
+ W = W,
+ X = mmatrix,
+ Q.beta = Q,
+ hyper = hyper),
+ data = data)

and the estimated parameters – as part of the random effects – can be returned by
the command slm.m1$summary.random$ind[n+1:ncol(mmatrix),].
For more detailed theoretical and practical instructions on the INLA estimation of
econometric models, we refer to Bivand et al. (2014) or Gomez-Rubio et al. (2017).

One of the modeling approaches, which was proposed by Lindgren et al. (2011)
and is also widely used due to its effectiveness, is based on stochastic partial
differential equations (SPDE). More precisely, a continuous field with the observed
data should be approximated using a Gaussian Markov random field (see Rue and
Tjelmeland 2002). For the INLA-SPDE approach, we assume that the observed
variable in location i follows the normal distribution. Hence, the SPDE model can
be specified as

Y ∼ N(Aη, σ 2
e In)

η = 1α +X′β + Ãξ̃ ,
(15.18)

where the vector ξ̃ represents the Gaussian Markov random field, matrix A is a
specific matrix resulting from the triangulation of the spatial field, and σ 2

e stands
for the variance of residuals, which are assumed to be independent in all locations
(see Blangiardo et al. (2013) for further details). In this case, the estimation function
changes as follows

R> spde.ml <- inla(Y ~ -1 + Intercept + X1 + X2 + X3 + X4 +
+ f(field, model = spde),
+ data = inla.stack.data(stack, spde = spde),
+ family = "gaussian",
+ control.predictor = list(A = inla.stack.A(stack),
+ compute = FALSE),
+ control.compute = list(cpo = FALSE, dic = TRUE),
+ keep = FALSE,
+ verbose = TRUE)
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Table 15.1 Parameter
estimates and metrics of
prediction errors for ML and
INLA

ML-SAR ML-SEM INLA-SLM INLA-SPDE

ρ 0.9773 0.9999

(0.0032) (0.0000)

λ 0.9916

(0.0023)

α 0.1434 6.3262 0.0004 6.4870

(0.0210) (0.6127) (0.0052) (1.2941)

β1 -0.0288 0.0426 -0.0368 0.0419

(0.0070) (0.0277) (0.0070) (0.0265)

β2 0.0692 0.1230 0.0029 0.1263

(0.0085) (0.0170) (0.0066) (0.0165)

β3 0.0811 0.1029 0.0831 0.1311

(0.0064) (0.0087) (0.0064) (0.0091)

β4 0.0049 0.0101 0.0001 0.0160

(0.0072) (0.0185) (0.0071) (0.0186)

RMSE 0.2707 0.2702 0.2691 0.1561

MAE 0.1850 0.1823 0.1833 0.1029

Standard errors in parentheses

where stack is a specific object comprising all data and the triangulation A of the
spatial field, which might be a continuous field as well. In order to print the results
of the estimation procedure, the summary function can be used as explained above

R> summary(spde.ml)

Table 15.1 reports the estimation results for both econometric and geostatistical
model specifications obtained using the spatialreg and INLA packages, respec-
tively.

First, inferences on parameter estimates in models with spatial dependencies and
the comparison of geostatistical INLA and econometric ML approaches should be
handled carefully. For example, as pointed out in Sect. 15.4.2, econometric models
may implicitly incorporate spatial multiplier effects, which must be considered
when interpreting regression coefficients. Hence, the size of the parameter coeffi-
cients may vary between estimation approaches. However, comparable conclusions
can be drawn regarding the sign of the coefficients. The SAR and SLM models
yield similar parameter estimates regarding the strength of the spatial dependencies
ρ and effect of exogenous regressors captured by β. The SEM and SPDE models
also produce similar parameter estimates. In particular, all exogenous variables
exhibit a positive (but, as in the case of elevation level X4, potentially insignificant)
influence on the response variable. The SAR, SEM, and SLM, where the strength
of spatial dependence is implied by W , are explicitly modeled to indicate strong
spatial dependencies. Thus, PM2.5 concentrations exhibit a strong positive spatial
dependence, possibly resulting in clusters of high/low observations.
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Moreover, both approaches, namely econometric ML estimation and INLA, are
compared based on the root mean squared error (RMSE) and mean absolute devia-
tion (MAE) to evaluate the fit of the respective model to the data. The SAR model
apparently yields the highest prediction error in terms of both RMSE and MAE.
However, the difference between the SAR, SEM, and SLM models is negligible.
The SPDE model produces by far the lowest prediction errors and therefore appears
most suitable regarding the prediction accuracy of PM2.5 concentrations, given
the data. However, the prediction accuracy and parameter estimates of the SAR,
SEM, and SLM depend strongly on the specification of the spatial weight matrix.
Thus, alternative specifications of W may yield very different estimation results and
predictions, which represents a major disadvantage of models, where the weight
matrix must be specified in advance.

15.6 Conclusion

The overview provided in this paper summarizes selected statistical models for
spatial and spatiotemporal data, which are suitable for big data. We distinguish
between models in the field of geostatistics and spatial econometrics. Although
the latter models are not tied to applications in economics, they are typically
called econometric models. To combine both fields, we applied several models
and estimation techniques to an empirical dataset in environmetrics, namely PM2.5
concentrations.

Regarding geostatistics, spatial dependence is usually modeled via spatial covari-
ance models. These models, which may depend on additional parameters, rebuild
the covariance structure of the data or the error process of a linear or nonlinear
model. To gain insight into the spatial covariance, the so-called (spatial) covar-
iogram can be computed. For large data sets, however, the covariance matrix
can become very large, such that conventional estimation methods could become
infeasible in a reasonable amount of computing time and using a reasonable amount
of memory. Thus, we summarized selected Bayesian and frequentist estimation
methods and procedures to reduce the complexity of spatial covariance matrices.

Moreover, we explain models emerging in the field of spatial econometrics.
Instead of modeling spatial dependence in the covariance matrix directly, these
models include so-called spatial weighting matrices to incorporate an autoregressive
dependence on the spatially adjacent observations. Classical econometric models
typically require the prior specification of the spatial weighting matrix. Although
these approaches are close to geostatistical approaches, they lead to a slightly
different covariance structure. To estimate the parameters of such models, the
computation of the inverse and determinant of a high dimensional matrix is required.
This matrix involves the spatial weight matrix. We sketch how this can efficiently be
done or avoided when the number of observations is large. Moreover, approaches to
estimating the entire weight matrix are briefly mentioned.
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However, in this paper, we only focused on large spatial and spatiotemporal
data (i.e., a large number of observations), but big data commonly also covers
more complex data structures. These have not been addressed in this overview. In
particular, functional data in space and time, such as coastal profiles or concentration
profiles of environmental pollutants or network data, are interesting emerging fields
where geospatial, statistical models for big data are needed. More precisely, the
structure of a network can be interpreted in the same manner as spatial proximity.
Thus, there is a strong relationship between the network and spatial models.

15.7 Further Reading

For a deeper view into spatial statistics and spatial regression models, we rec-
ommend the following text books. Cressie (1993) provides a thorough overview
on the statistical analysis of spatial data. In particular, all important concepts in
geostatistics are explained, like stationarity or isotropy of spatial processes, as well
as important modeling and estimation procedures. When analyzing spatiotemporal
data, one might additionally have a look into the textbook of Cressie and Wikle
(2011) extending the above mentioned textbook by discussing temporal effects
in spatial (or rather spatiotemporal) data. Regarding spatial regression models, a
classical textbook has been written by LeSage (2008). The focus of this book is on
models for analyzing economic data. Finally, we would like to recommend Banerjee
et al. (2014) for further reading. In particular, they provide a comprehensive
introduction to the INLA approach for spatial data.
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Chapter 16
A Survey of Textual Data & Geospatial
Technology

Jochen L. Leidner

16.1 Introduction

The geographic realm can be viewed as a three-dimensional space projected onto
the ellipsoid that represents planet Earth. For navigation purposes, this space has
been projected down to two dimensions to create maps for centuries, and human
communications and actions have been made more precise by using a grid of
coordinates, latitude and longitude, to uniquely and exactly identify any point
location on our planet of origin. But latitude/longitude pairs are not the first or only
way to communication about locations: human communication has used language
to name and describe places and how to get there, before a grid coordinate system
was conceived, and referring by name (“New York”) or description (“the green
hill”) remain more popular usage for human-to-human communication than grid
references: people name the most relevant locations they inhabit by assigning words
to them (toponyms) by convention, and then use these to collaborate (e.g. to instruct
another human how to reach a place using navigation instructions).

In this chapter, we discuss how these two ways, the numeric, precise but less
human-friendly way to reference locations can be linked with our primary means of
communication, languages like English and others, through automatic means, and
we explore what application uses are enabled now this is possible.

The remainder of this chapter is structured as follows. Section 16.2 disects
the notion of location from a different perspectives and poses a list of research
questions that we may ask when looking at the domain where geographic space
and textual data intersect. Section 16.3 describes some data structures for spatial
indexing, which permit fast computational operations. Section 16.4 describes
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address geocoding, a common way to link places identified by postal addresses to
geographic space. Section 16.5 describes other ways to analyze and link linguistic
signs (typically expressed as pieces of text) to geo-coordinates. Section 16.6 is
concerned what we can do with spatial meta-data. Section 16.7 describes the task of
searching for text when a geographic dimension is involved. Section 16.8 discusses
geofencing, a notification technology that alerts users or software application once
an object enters a location Sect. 16.9 describes a number of applications which have
been proposed that are enabled by georeferenced text. Section 16.10 summarizes
this chapter and concludes with some outlook and pointers for further reading.

16.2 Research Questions & Different Notions of “Where”

Location processing is about asking the question “where?”, and one may legiti-
mately ask the follow-on question where the information about the “where” may
potentially come from. The following notions of “where” are conceivable today:
we may obtain location data in a way that is already structured (digital and
ready for computational downstream processing). In this structured case, (1) a
piece of information pertaining to a location may be obtained via a sensor. For
instance, a GPS chip in a mobile, tablet computer or car may provide location
information based on triangulation across multiple satellites. Or an aeroplane’s
location information can be obtained by radar sensors: an airport control tower uses
two radar systems, the so-called primary and secondary radar to locate it. (2) a
location-bearing piece of information is available in the meta-data that describes
a piece of content (text, image, movie or other). Alternatively, by processing
unstructured (textual) information we can (3) extract location one or more mentions
from text documents, potentially disambiguate them and map to spatial footprints in
gazetteers (Hill 2006). In the latter case, we may distinguish between (3a) coarse-
grained processing, i.e. a whole document will be mapped to one crude spatial
footprint e.g. a country-level bounding rectangle based on the most commonly
referred country. Alternatively, (3b) more fine-grained processing may resolve,
using linguistic and spatial knowledge, each mention to a spatial footprint, taking
into account its spatial and linguistic context.

In doing so, we can ask a number of research questions:

• Where is the action in the document happening (“where” is the document
“about”, so to speak)?

• What is the geographic footprint that best represents a document? What polygon
or other spatial footprint covers the geographic space talked about in a document?

• “Where” (what place) is this document relevant “for”? We normally ask “who” is
a document relevant to, but we may instead ask for a geographic space such that
people inhabiting that space find the document relevant. An example would be a
village downstream a dam, the inhabitants of which would be expected to find a
document about the dam leaking relevant, even if it is many kilometers away.
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• Where was this document written? Can we determine the location of the author
at the time of writing? This is a question the answer of which is relevant where
no explicit location information is given, e.g. in a diary or logbook entry.

• When does a toponym not denote a place? For example, in the sentence “Last
week, the U.S. agreed to begin bilateral trade talks with Japan.”, the phrase “the
U.S.” denotes a geo-political entity (GPE)—i.e., the U.S. government—rather
than “just” a geographic location (LOC), a case of metonymy.

• Where was the user when a document was written and where are the author and
the user of a document now? Does a document reveal any insights about based
on the evidence that they accessed a given document?

• “Where” (which places) does the user know about (how much)? What does a
document reveal about the geographic knowledge of its author? Typically, less
familiar places are explicitly introduced by providing more detail. This question
is also about authors’ expectation to their audiences.

• When can we safely assume the current location of the user has a bearing on his
or her search intent?

• Does the current search need of the user have a geographic element?

These and potentially many other questions can be asked, so clearly, the “where”
question has dimension beyond just aggregating toponyms in a document collection
if we are capable of taking into account spatial background knowledge and linguistic
context.

16.3 Spatial Indexing

16.3.1 Spatial Data Structures

A set of data structures have been conceived to access spatial data efficiently
(Samet 1989, 1990, 2006). The intuition behind Rectangle trees or R-trees is that
nearby objects can be grouped together and be represented by a minimum bounding
rectangle in the next higher tree level (Guttman 1984a,b). Since all children’s objects
lie within this bounding rectangle, a query that does not cut across the parent
bounding box transitively cannot intersect with its children. R-trees are balanced,
maintain their data in pages, and can be used well for persistent storage. Search in
an r-tree is a top-down tree traversal, where at each non-leaf node, its bounding box
is used to decide whether or not to search inside a subtree. While R-trees do not
exhibit good worst-case performance, they mostly perform in practice. Data in an
R-tree permits the efficient search for neighbors within a given distance r , and the
k nearest neighbors can efficiently be computed with a spatial join operation. Quad
trees (Finkel and Bentley 1974) are tree data structures in which each internal node
has exactly four children, arranged into 2 quadrants, which are recursively made
up of four quadtrees. Leaf nodes store spatial payload information. One parameter
along which quadtrees can vary is that the shape of the four subdivided regions may
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Fig. 16.1 Geohash example from http://geohash.org (cited 2008-03-04)

Table 16.1 Some spatially-enabled database management systems

RDBMS name Relational NoSQL in-RAM Spatial Key/Value

Oracle Database Server Enterprise
Ed. with Spatial option
(commercial)

Yes No No Yes No

PostgreSQL with PostGIS (free) Yes No No Yes No

MongoDB (free) No Yes No Yes No

REDIS (free) No No Yes Yes Yes

be square or rectangular, or may indeed have arbitrary shapes. Each cell (sub-tree or
bucket) has a maximum capacity, and when it is reached, it splits. Other spatial data
structures include simple grids/bitmaps, Z-order curves, octrees, UB-trees, variants
of R-trees (R+ trees, R* trees, Hilbert R-trees), X-trees, kd-trees and m-trees.

A Geo-hash is a sequence of characters or a number that encodes a latitude
longitude pair for fast look-up and proximity comparisons. The code is designed
so that the hash code calculated from a pair has two properties: a substring of a
string represents a location that is geographically contained in the geographic space
it is contained in (Fig. 16.1a verus b) and prefix-sharing strings are near each other
geographically (Fig. 16.1b verus c).

16.3.2 Spatially Enabled Database Management Systems

Table 16.1 shows some available spatially-enabled database management systems.
Oracle Database Server (Enterprise Edition) has a priced Spatial add-on option
sometimes known as “Oracle Spatial” or “Spatial option”, which includes spa-
tial datatypes like polygons (SDO_GEOMETRY) datatype. The free, open-source
database PostgreSQL has a spatial counterpart called PostGIS, which likewise has
native geometric types, spatial indexing and retrieval side by side of traditional rela-
tional functionality. Oracele and PostGIS are both Relational Database Management
Systems (RDBMS). In contrast, MongoDB is a so-called “NoSQL” (schema-
free) database management system, which can index semi-structured documents in
JSON format, and it also provides spatial indexing and querying in two or three
dimensions. REDIS is a simple in-RAM key/value store which has no SQL-like

http://geohash.org
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CREATE TABLE businesses (
id NUMBER,
poi_name VARCHAR2(64),
location SDO_GEOMETRY

);

Fig. 16.2 A business and its location in Oracle Spatial’s data definition language

INSERT (poi_name, location) INTO businesses VALUES (
’PIZZA EXPRESS’,
SDO_GEOMETRY(

2001, -- SDO_GTYPE attribute: 2-dim.
NULL,
SDO_POINT_TYPE(-0.132687, 51.514311, NULL), -- lon/lat/alt

-- PizzaExpress Jazz Club, Soho, London
NULL,
NULL

)
);

Fig. 16.3 Creating a new business entry in Oracle Spatial’s query Language

query language but it is capable of indexing points, and it can retrieve all points
within a certain radius.

Other spatially-enabled database management systems include AllegroGraph,
Caliper, Geocouch for CouchDB, GeoMesa, H2, IBM DB2 Spatial Extender, Linter
SQL Server, Microsoft SQL Server, MySQL, OpenLink Virtuoso, RethinkDB, SAP
HANA, Smallworld VMDS, Boeing Spatial Query Server for Sybase, SpatiaLite for
SQLite, Tarantool, Teradata Geospatial and Vertica Place. Rigaux et al. (2002) is a
standard textbook on spatial databases (Figs. 16.2 and 16.3).

16.4 Address Geocoding

The task of address geocoding takes as input a postal address in textual form,
typically stored in a relational database, and maps it to a centroid (given as latitude
and longitude coordinate pair) or a polygon that describes the geographic feature’s
spatial extent (e.g., a building). For example, the postal street address
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John Smith
7 Cosin Court
Cambridge CB2 1QU,
United Kingdom.

can be mapped to

{ lat: 52.20114,
lon: 0.120340 }

In the USA, street address geocoding is much facilitated by a public domain
data set provided by the U.S. Census, namely TIGER+4 (at the time of writing in
version 2018)1 In other countries, address geocoding typically often have to rely on
commercial providers. Figure 16.4 shows how a spreadsheet table containing postal
addresses is batch-geocoded using ESRI ArcMap.2

Rhind (1999, 2001) are the authoritative sources for international address formats
and managing of global address data, which varies significantly in form and
regarding the degree of standardization. Goldberg (2013) describes geocoding
in connection with its use to support location-based services. Li et al. (2014)

Fig. 16.4 ESRI geocoder in ArcMap applied to a table of postal addresses. (Source: ESRI)

1https://www.census.gov/cgi-bin/geo/shapefiles/index.php (cited 2019-01-23.)
2http://desktop.arcgis.com/en/arcmap/latest/manage-data/geocoding/\discretionary-geocoding-a-
table-of-addresses-about.htm (cited 2018-01-15).

https://www.census.gov/cgi-bin/geo/shapefiles/index.php
http://desktop.arcgis.com/en/arcmap/latest/manage-data/geocoding/discretionary {-}{}{}geocoding-a-table-of-addresses-about.htm
http://desktop.arcgis.com/en/arcmap/latest/manage-data/geocoding/discretionary {-}{}{}geocoding-a-table-of-addresses-about.htm
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describe how machine learning based on Hidden Markov Models (HMMs, a limited
window sequence prediction model) can be applied to the problem of address
parsing using a distributed approach. Wang et al. (2016) use a similar approach but
based on Conditional Random Fields (CRFs), a more general model than HMMs,
and stochastic regular grammars. These works are concerned with identifying
addresses in text and breaking them down into their constituent parts (street, house
number, postcode/zip code etc.). Surprisingly little published work is available on
algorithms, data structures and experimental evaluations of methods for the second
step, the matching of these parts to gazeteers holiding the geocoordinates at the
street and building levels.

16.5 Geoparsing and Spatial Resolution

16.5.1 Toponym Resolution

The term “toponym resolution” was first introduced by Leidner (2007) to denote
the resolution of mentions of names for populated places to spatial footprints. It
is a special case of (geo-)spatial resolution of expressions in general, which we
discuss in the next sub-section. Toponym resolution is about the interface between
language and the world, as proper names are said to refer to things in the world (i.e.,
outside of the linguistic system). The task of toponym resolution is made difficult
because to achieve comprehensiveness, we would need to build up a complete
system of place names and their footprints, so-called gazetteers. Frequently, names
get re-used to refer to places, for example in the process of migration, either
with or without modification (York→New York, Boston→Boston3); this is known
as geo/geo ambiguity (Fig. 16.5). Words can also be ambigous between common
English noun, verbs, prepositions etc. and toponyms, which is known as geo/non-
geo ambiguity.4

For example, Arrow, Beer, Box, Cargo, Cotton, Crackpot, Crow, Eagle, Whale
and Wool are all English place names as well as ordinary nounds from common
English lexicon. Send and Settle are English towns and also verbs.5

Whereas early approaches toward georeferencing text targeted the document
level (Amitay et al. 2004; Zong et al. 2005), more recently a wide range of methods

3Boston is a port town in Lincolnshire, England, GB located approx. 160 km north of London.
Boston is also a city in the Commonwealth of Massachusetts in the United States of America.
4Metonymic use of place names (Markert and Nissim 2002; Nissim and Markert 2003), for
example place-for-government metonymy as in The United States condemned the attack strongly.
can be seen as a special case of geo/non-geo ambiguity that looks like geo/geo ambiguity at the
surface.
5http://mentalfloss.com/article/88110/ham-sandwich-40-odd-british-place-names (cited 2019-01-
29). They are capitalized in headlines or in sentence-initial position, were capitalized writing does
not help the computer with disambiguating them.

http://mentalfloss.com/article/88110/ham-sandwich-40-odd-british-place-names
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Fig. 16.5 Examples of Geo/Geo and Geo/Non-Geo ambiguity in English

are more granular and provide disambiguation and resolution at the toponym
mention level (Leidner et al. 2003; Pouliquen et al. 2006; Leidner 2008; Speriosu
and Baldridge 2013).

Generally speaking, in order to resolve a toponym in context, a number of sub-
problems must be addressed:

1. A sub-sequence of characters in a text document must be recognized as contain-
ing a toponym (e.g. “New York” in “The company is based in New York, NY,
USA”).

2. The identified sequence must be mapped to one or more records in a database that
contains information about its feature type and spatial footprint. The identified
sequence must be classified (e.g. “New York” must be looked up as either the
name of a city or the name of a U.S. state, and for each alternative a spatial
representation e.g. a centroid given as a latitude/longitude number pair must be
retrieved.

3. All alternative readings must be disambiguated, using a set of knowledge sources,
which may comprise geographic knowledge (e.g. proximity information) or
linguistics knowledge (e.g. context rules of the type ‘if “New York” is followed
by “NY” then the former toponym refers to the city and the second toponym
refers to the U.S. state.)’

In general, we can distinguish a number of different methods for the toponym
resolution task: first, heuristic methods rely on rules created by a system’s devel-
opers, which are informed by human intuitions on how geospatial knowledge as
well as linguistic knowledge can help disambiguate toponym mentions in context.
Probabilistic methods rely on the statistical distribution of places, their names and
co-occurrences thereof, and this group can be further divided into methods for
supervised learning and unsupervised learning (also clustering). Leidner et al.
(2003) and Leidner (2007), inspired by the proposal by Gardent and Webber
(2001) to use “minimality” in different areas of reasoning, proposed an algorithm
to disambiguate topomyms by assigning those candidate locations as part of the
selected interpretation that jointly minimize the area of the smallest polygon that
contains all centroids of the candidate locations.

Leidner (2007) surveys a dozen linguistic and geospatial heuristics that have
been used to disambiguate place names, and population statistics (“prefer the
interpretation that is inhabited by more people”) and local patterns (“interpret ‘X,
Y’ so as to mean that X is inside of/part of Y”; for instance, with “Cambridge,
England”, select the Cambridge interpretation that is part of England) are clearly
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Fig. 16.6 Assorted heuristics in toponym resolution strategies (Leidner 2007)

among the most commonly used pieces of evidence; Fig. 16.6 shows a list of sixteen
common heuristics (Leidner 2007, p. 102–111).

Batista et al. 2012 propose a heuristic approach to toponym resolution where
toponyms from Portuguese-language news are disambiguated against an ontology
by using semantic similarity metrics. They compare Resnik’s, Jiang and Conrath’s
Jiang and Conrath (1997) and Lin’s semantic similarity metrics and the frequency
of mention of a concept and its descendants (IC), formally defined as IC(c) =
− log f (c)

max f (c)
, to find that Conrath and Lin’s performs best. It is defined as J iang−

Conrath(c1, c2) = 1 − (IC(c1) + IC(c2) − 2ICMICA(c1, c2)), Amc(c) denotes
the ancestors of c in the ontology. Their method is greedy and processes toponyms
in a pairwise fashion from left to right as they occur in the text; they also assume the
one referent per discourse heuristic. While the authors give runtime information, no
evaluation in terms of precision or recall are given; instead, they report an average
distance measure (defined as the arithmetic mean of three ontology path distance
measures) between automatically resolved and human-annotated ground truth in a
corpus of annotated news called Geo-Chave-PT. Chen et al. (2018) compare sixteen
unsupervised clustering methods for toponym resolution and introduce DensityK,
their own method, which is inspired by Riepley’s K function (related to divergence
from randomness) and the density-based, spatial DBSCAN clustering algorithm. In
the authors’ evaluation on 1,000 toponyms comprising two subsets (University of
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Melbourne campus descriptions and Wikipedia+Blogs) their DensityK performed
best at P ≈ 83%.

Recent progress in natural language processing includes the use of word embed-
dings, low-dimensional and vectorial representations of words and their meaning
defined by the context of use, starting with word2vec Mikolov et al. (2013). In the
context of spatial text processing, hybrid textual/geospatial embedding models have
been devices that include textual context and location information (Xie et al. 2016;
Kejriwal and Szekely 2017).

16.5.2 Geospatial Expression Resolution

Compared to the number of proposed method for the resolution of individual
toponyms, there is less published work on the problem of resolving geographic
expressions. The may contain zero or more toponyms embedded in ordinary
linguistic phrases such as noun phrases (NPs) and other signs denoting descriptions
that can be used to refer to locations:

(1) 30 min north of Paris by car
(2) Clapham, a district south-west London lying mostly within the London Borough

of Lambeth
(3) near Bruntsfield Links
(4) approximately seven kilometers from the German border
(5) halfway between Glasgow and Edinburgh

While the understanding of the cognitive processing of spatial language is still
at an early stage (e.g. Coventry and Olivier (eds.) (2002)), symbolic and statistical
techniques for practical processing that work, but that cannot claim to model how
the brain works are now available.

Piton and Maurel (2001) focus on topomym recognition for French using
finite state transducers, and in doing so, they model the relation between multiple
toponyms within the same document (e.g. demonyms like French ~ France). Bilhaut
et al. (2003) describe a rule-based, compositional system for processing French
toponyms and spatial expressions describing places in France using a unification-
based grammar approach. Nagel (2008) describes a system for the analysis of
geo-spatial (locative) expressions in the German language using shallow local
grammars.

16.6 Content Enrichment with Geospatial Metadata

Once a centroid or a point part of a polygon have been identified given as lat/lon
coordinates, it can be represented for purposes of data interchange in one of many
different formats:
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<?xml version="1.0" encoding="UTF-8"?>
<kml xmlns="http://www.opengis.net/kml/2.2">

<Placemark>
<name>Pizza Express (Soho)</name>
<description>

POI place mark attached; intelligently places
itself at the height of the respective ground level.

</description>
<Point>

<coordinates>-0.132687,51.514311,0</coordinates>
</Point>

</Placemark>
</kml>

Fig. 16.7 Example point of interest in KML

• The Keyhole Markup Language (KML)6 is an XML application part of Google
Earth (originally called Keyhole), which has become one quasi-standard for
sharing Point of Interest (POI) data on the Web, and it permits a Google Earth
visualization directly from a Web browser (see Fig. 16.7 for an example). KMZ is
a compressed form of KML. The advantage of XML-based formats is that many
libraries exist to read and validate XML document instances.

• GeoRSS is a variant of the Real Simple Syndication (RSS) format, a Web
standard for sharing newsfeeds. GeoRSS is a variant of RSS that incorporates
geographic metadata encoded in the Geography Markup Language (GML).

• The GPS EXchange Format (GPX) has its origins as an exchange format of GPS
trackers and navigation aids.

• The GeoJSON format is a variant of the Javascript Object Notation (JSON),
a lightweight data exchange meta-format based on potentially hierarchically-
nested attribute-value pairs. GeoJSON is less verbose than KML, but does not
support any validation (JSON is schema-free).

• The Text Encoding Initiative (TEI) has a <geo> tag, which can model lat/lon
coordinates embedded in running text (Fig. 16.10).7

• Figure 16.8 shows an example of a Point of Interest (POI) marked up using
the Resource Description Framework (RDF) standard used by “Semantic Web”
efforts to promote data interoperability on the Web and elsewhere.

6https://developers.google.com/kml/documentation/ (cited 2019-01-26).
7http://www.tei-c.org/release/doc/tei-p5-doc/en/html/ref-geo.html
TEI Specification, Section 13.3.4.1 Varieties of Location (cited 2019-01-28).

https://developers.google.com/kml/documentation/
http://www.tei-c.org/release/doc/tei-p5-doc/en/html/ref-geo.html
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<!-- RDF geo meta-data: Berlin (Mitte), Germany -->
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:geo="http://www.w3.org/2003/01/geo/wgs84_pos#">
<geo:Point>

<geo:lat>52.531677</geo:lat>
<geo:long>13.381777</geo:long>

</geo:Point>
</rdf:RDF>

Fig. 16.8 Geographic meta-data in the semantic web standard RDF

<!-- GeoURL format -->
<meta name="ICBM" content="50.167958, -97.133185">

<!-- Geo Tag format -->
<meta name="geo.position" content="50.167958;-97.133185">
<meta name="geo.placename" content="Rockwood Rural Municipality,

Manitoba, Canada">
<meta name="geo.region" content="ca-mb">

Fig. 16.9 GeoURL and GeoTag meta-data tags in HTML headers on the world wide web (WWW)

• The GeoURL method of putting meta-data in the <head> part of HTML pages
on the Web (Fig. 16.9).8

Note that from the above formats only the last one is able to annotate text
documents inline with geo-coordinates at the individual toponym mention level (see
Appendix “Curating Gold Standard Data for Evaluation and Training” for more
work in that direction); the other forms of meta-data must be separately kept, and
they describe a document as a whole.

Luo et al. (2011) is a survey that covers how to annotate multi-medial content
with geographic meta-data; at the time of writing it has become quite rare that
missing geo-metadata has to be derived from textual sources using toponym
resolution because many devices contain GPS sensors (Fig. 16.10).

8https://web.archive.org/web/20080515145826/http://geourl.org/add.html (cite 2019-01-29).

https://web.archive.org/web/20080515145826/http://geourl.org/add.html
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<place xml:id="pl-c-H" type="county">
<placeName>Herefordshire</placeName>
<listPlace type="villages">
<place xml:id="pl-v-AD">
<placeName>Abbey Dore</placeName>
<location>
<geo>51.969604 -2.893146</geo>

</location>
</place>
<place xml:id="pl-v-AB">
<placeName>Acton Beauchamp</placeName>

</place>
<!-- ... -->
</listPlace>
<listPlace type="towns">
<place xml:id="pl-t-H">
<placeName>Hereford</placeName>

</place>
<place xml:id="pl-t-L">
<placeName>Leominster</placeName>

</place>
<!-- ... -->
</listPlace>
</place>

Fig. 16.10 The geo element of the text encoding initiative (TEI)

The GeoXml library9 is an example software component by Microsoft and part
of the Bing Web controls framework that can process KML/KMZ, GeoRSS, GML
via GeoRSS and GPX. GeoTools10 is an open source library for Java that includes
geographic format conversion (see Fig. 16.11). The GDAL/OGR Geospatial Data
Abstraction Library11 is an open source C++ library for geometric and geographic
computing.

9https://docs.microsoft.com/en-us/bingmaps/v8-web-control/modules/geoxml-module/ (cited
2019-01-26).
10http://www.geotools.org (cited 2019-01-26).
11https://www.gdal.org (cited 2019-01-26).

https://docs.microsoft.com/en-us/bingmaps/v8-web-control/modules/geoxml-module/
http://www.geotools.org
https://www.gdal.org
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Fig. 16.11 Example conversion to and from GeoJSON mit GeoTools in Java

16.7 Hybrid Textual/Spatial Document Retrieval

In ordinary document retrieval (search), a set of pre-indexed documents are ranked
from most relevant to least relevant, given a user’s query. There are many methods
for doing this, for explanatory purposes, we can look at the popular Vector Space
Model (VSM) in this section (Salton et al. 1975). The query is transformed from
a sequence of space-separated word tokens (terms) into a sparse numeric vector
where each component contains the frequency of the k-th term in the lexicon. During
indexing time, each document was already transformed in the same way, from a
representation as a sequence of space-separated word tokens into a numeric vector
of term frequencies. Simplifying somewhat, the cosine of the angle between the
query vector and any document vector can be ordered from smallest angle to largest
angle. The smaller the angle between query vector and a document vector, the more
similar the sets of terms they represent, and the idea is that the more similar the
document to the query, the more relevant that document is for the query, too.

Now to bring in a geographic aspect into the ranking process, we can either create
an integrated ranking score that also takes location into account, or we can use
an off-the-shelf relevance score s(q, d) and combine it with a geo-relevance score
g(q, d).

There are multiple ways to integrate textual relevance and geographic relevance
The first option is to integrate both using linear interpolation:

r(d, q) = λ · s(q, d)+ (1− λ) · g(q, d) (16.1)

where r is the overall relevance ranking function and λ is a weight that determines
how much influence should be given to the text-based relevancy (larger values for λ)
and how much influence should be given for the geospatial dimension (smaller λ).

How a good geographic scoring function looks like is still an open research
question (Leidner 2006b), but one intuition is that it should be designed so
that values of g are higher for query-document pairs where the spatial footprint
associated by the query’s information need overlaps mover with the spatial footprint
of a document. Figure 16.12 shows some example queries that have a geospatial
dimension as well as some candidate documents, some of which match the queries’
information needs. Query (a) matches (i) and (ii). A purely text-based search method
would be able to match (a) and (i), but would miss the connection between (a)
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Fig. 16.12 Some queries with a geographic information need and candidate documents

and (ii) because the term “Sydney” mentioned in the document is not mentioned in
the query; in contrast, a geographically-aware search engine has spatial footprints
associated with documents and queries, so it is able to match the centroid of Sydney
as located inside the polygon or bounding box for Australia, therefore giving is a
higher geo-score g.

The second way to integrate textual relevance and geo-relevance is by using geo-
filtering (Leidner 2006b):

r(d, q) =
{

s(d, q) GEO-FILTER(d, q)
0 otherwise

(16.2)

In Leidner (2006b), three geo-filters are proposed: ANY-INSIDE: this filter lets
a document pass if at least one toponym’s spatial footprint is contained in the
query’s spatial footprint(s); MOST-INSIDE: this filter lets a document pass if most
toponyms’ spatial footprints are contained in the query’s spatial footprint(s); and
ALL-INSIDE: this (most aggressive) filter lets a document pass only if all toponyms’
spatial footprints are contained in the query’s spatial footprint(s).

Clough et al. (2006) and Purves et al. (2018) are good introductions to the topic
of geographic information retrieval (GIR), and the theses (Andogah 2010) and the
monograph (Sallaberry 2013) provide more detailed accounts.

16.8 Geofencing

Document retrieval as described in the previous section is a task initiated by a user’s
query (“pull” by the user). Sometimes, we want to initiate some action by a system
based on some previously defined condition. Geofencing is the task of ongoing
monitoring whether a (set of) candidate points (typically locations of a moving
object) fall inside a geographic footprint or not. A geographic footprint demarcating
an area of interest can be given as a (centroid; radius) pair or as a polygon
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(a) (b)

Fig. 16.13 Two types of geo-spatial footprints for geo-fencing

(Fig. 16.13). So geofencing means defining a spatial footprint (the geofence) and
associating with it an action such that whenever an object (e.g. a car or a user
carrying a mobile phone) enters the spatial footprint, the action (e.g. send a message
to the user) is carried out. Geofencing is also associated with “push” delivery, a
mode of notification that potentially interrupts other activities of the user to make
him or her aware of a event connected with his or her current location.

Figure 16.13a on the left shows a spatial footprint in the form of a circle, given as
a pair (c, r) of a centroid c and a radius r . Candidate point p1 is clearly outside, so
no monitoring event is raised, whereas point p2 is inside the circle (p2 < r), and this
triggers an event of notifying the application that uses the geofence.12 Figure 16.13b
on the right shows another spatial footprint, this time given as a polygon. Point p3
is located inside (thus triggering an event) and point p4 is located outside of the
polygon.

The spatial footprint may be given as a rectangular bounding box, a circle defined
by centroid and radius or a polygon comprising a set of points if more complex
shapes must be taken into consideration. Conceptually, at alerting time the system
must be able to check quickly whether any previously defined geofences, so bespoke
spatial data structures can be devised and studied that permit fast processing (e.g. of
point-in-polygon checks).

An example is a store that may advertise special offers to passers-by that get
close to the store if they have installed a certain application on their mobile device.

12A “push” notification can also be emulated by repeat pull requests (polling).
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The spatial footprints can be stored using intensional descriptions as geometric
objects or they can be translated to a bitmap, which has all bits set that correspond
to “inside” locations. The former is slower but the latter is more memory-intensive.

Li et al. (2014) describe an approach for dynamic geo-fencing, which was one
of the winning entries in the ACM SigSpatial GIS Cup 2013,13 a shared task,
and which exploits the trajectory of moving object to make the point-in-polygon
test more efficient (“boundary partitioning”). They also facilitate the processing
by reducing the complexity of the polygons that describe the geofence’s boundary
(boundary simplification). Polygons checks are often preceeded by simpler Min-
imum Bounding Rectangle (MBR) checks to speed up retrieval from spatial data
structures like R-trees and quad-trees.

16.9 Applications

In this section, we cover a set of example applications, which represent typical uses
of geospatial technologies. Our selection should not be seen as comprehensive.

16.9.1 Location Search

A mobile user is a human, changes location and carries a mobile computation device
(e.g. a mobile phone or tablet). While traveling, an information need such as wanting
to find out where the nearest pizza restaurant is located, May lead to a query such
as “pizza” can be issued (using voice or as typed text). This really is the textual
part of the underlying full query “pizza near me”, where the “near me” part is
implicit context and resolves to the user’s current location. The actual information
need itself is typically expressed using language (text, voice), whereas the “near
me” part is realized by a background computation that involves obtaining the user’s
location via a GPS receiver built into the mobile device and making a spatial query
against a database that holds a set of restaurants, including their pre-calculated geo-
coordinates, held in a spatial data structure like an R∗ tree described earlier. This is
possible because an offline process has already geocoded the restaurant addresses
ahead of time. The nearest restaurant, then, is the one that has the smallest distance
to the user’s location among all candidates.

Figure 16.14 is a screen capture from Google Maps showing a search query for
a cafe in Brooklyn, at the time of writing the most popular local search site on
the Web. Other local search offerings include Apple Maps, Bing, Citymapper, Yelp
Foursquare, Yellow Pages Super Pages, Yellow Book or Local.com.

13http://dmlab.cs.umn.edu/GISCUP2013/ (cited 2018-09-13).

http://dmlab.cs.umn.edu/GISCUP2013/


446 J. L. Leidner

Fig. 16.14 A local search on Google maps (maps.google.com, cited 2019-01-23)

16.9.2 Crime Mapping, Hotspot Analysis and Forecasting

Like every event has a location, every crime has one. Crime mapping is the
process of marking on a geographic map a set of historic crime locations with
the aim to carry out more effective policing going forward (Maltz et al. 1990;
Leitner 2013). Often crimes cluster in certain areas, and identifying and dealing
with these is known as hotspot analysis. Hotspots can inform increased policing
activity from intensified patrols to the establishment of new police wards. One
step further goes crime forecasting, which aims to anticipate potential crimes with
the objective of preventing them from becoming actual crimes. The special report
(Harries 1999; Gonzales et al. 2005) describe some crime mapping techniques and
existing systems from a U.S. perspective, and Hill and Paynich (2014) is a textbook
by practitioners. Mohler et al. (2015) is a study that analyzes predictive modelling
of law enforcement. Geographic profiling (Canter 2003) aims to analyze geospatial
patterns of one particular criminal at large to establish behavioral patterns.

16.9.3 Political Anaysis and Intelligence Applications

The political sciences (geopolitical analysis) and national intelligence services can
benefit from georeferenced data in ways similar to law enforcement applications
mentioned above. For example, Duru (2018) present and analyse a map covering



16 A Survey of Textual Data & Geospatial Technology 447

Fig. 16.15 The European media monitor (emm.newsbrief.eu, cited 2019-01-26)

terrorist attacks in Turkey derived from the Global Terrorism Database (GTD)14

(LaFree and Dugan 2007). GDELT Leetaru and Schrodt (2013) is another dataset
of incidents, built to enable the qualitative and quantitative study of political events
across the globe. From an ethics point of view, this is a dual purpose technology:
segmentation analysis of the electorate can also be used to influence elections, as the
case of the now-defunct company Cambridge Analytica demonstrated.15 Political
actors can group sub-population by criteria including personality and location,
and then target them with messaging that they will be more likely to respond to,
including lies to generate anger. The role of geolocation in such an immoral activity,
which is however technically very similar to targeting individuals with personalized
online ads to influence their buying behavior, is paramount.

The European Media Monitor (EMM) is a suite of applications developed at
the European Commission’s Joint Research Centre (JRC) for decision support of
policy makers (Pouliquen et al. 2006, 2004; Steinberger et al. 2013). It aims to
extract named entities and recognizes events including resolving location names to
geo-coordinates for mapping in order to track disease outbreaks, political crises or
terrorist trends. Figure 16.15 shows some example screen captures that demonstrate
its geospatial mapping and social network analysis capabilities. Petroni et al. (2018)
present an event extraction system, which comprises two independent sub-systems,
one that extracts events from news and another one that extracts events from social
media (Twitter). It is trainable and initially covers a set of human-made and natural
disaster event types (including fires, terrorist attacks) and is able to perform event
co-reference across the two different text types (meeting the challenge that news
stories are much longer and more formal than Twitter posts, whereas Twitter posts
have more varied/creative forms of expression, are very short, and arrive at big daily

14https://www.start.umd.edu/gtd/ (cited 2019-01-20).
15At the time of writing, the detailed nature of the connection between Cambridge Analytica and
the election of Donald Trump to the office of U.S. president as well as alleged voter manipulation
in the context of Britains referendum about the departure from the European Union (“Brexit”) is
still ongoing.

https://www.start.umd.edu/gtd/
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volume and velocity namely 500 millions/day). Resolving place names to lat/lon
coordinates permits the mapping of the extracted events for human analysis.

16.9.4 Healthcare Applications

Arguably the most famous application of geospatial location analysis happened
in London in 1854: after a massive outbreak of cholera in Soho (120 deaths in
just 3 days), John Snow16 mapped the locations of the lethalities, and he found
they clustered around a pump in Broad Street. Once that pump was closed, which
ended the epedemic and perhaps began the geographical analysis of disease data.
Much more recently, Rushton et al. (2008) discuss the use of address geocoding
in cancer research. Fiscella and Fremont (2006) combined geocoding and name
ethnicity analysis as two indirect methods to assess disparities in care. Dredze et al.
(2013) introduce Carmen, a software component for georeferencing Twitter micro-
blog posts (“tweets”), which uses location meta-data communicated by the sending
device in the form of coordinates or textual form, locations mentioned in the user
profile or toponym resolution applied to the message’s content. The system was
applied to the healthcare domain (influenza surveillance), and is easily applicable to
other domains.

16.9.5 Location-Based Services and Location-Aware
Advertising

Location Based Services (LBS) are generally speaking all kinds of services that take
into account the location of their users (Schiller and Voisard 2004). For example,
location-aware B2C (business to consumers) advertising services offer customers of
a particular business some special offers once they are near that business’ premises
(geomarketing, see Cliquet (2006) and Faber and Prestin (2012), for instance). For
example, an advertisement for a nearby restaurant is perhaps more likely to receive
a visit from someone who is alerted to its existance and is 100 m away compared
to someone who is 500 km away. LBS also include location-aware social media
e.g. Foursquare,17 a mobile application that lets its users “check in”, i.e. indicate
they arrived in a particular place such as a restaurant or bar, and they can let they
friends know they are now there, in case the friends are also nearby and would like to
meet up. Geospatial analysis can also be used in real estate planning (B2B, business
to business); for example, the valuation of residential or commercial properties can

16Snow, John (1854), “Epidemiological Society” Medical Times and Gazette 9 (16 December
1854): 629. http://johnsnow.matrix.msu.edu/work.php?id=15-78-A8 (cited 2019-01-25).
17https://foursquare.com (cited 2019-01-26).

http://johnsnow.matrix.msu.edu/work.php?id=15-78-A8
https://foursquare.com
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be modeled taking into account evidence from the vicinity: for instance, an airport
15 min drive away could be very positive for a business and very negative for a
residential property (geospatial analytics). Hu et al. (2018) use toponym resolution
to harvesti local place names from geotagged housing advertisements Supermarket
chains may use Geographic Information Systems (GIS) to conduct branch location
optimization, i.e. to find the best location for a new supermarket, based on a set of
criteria such as availability of parking space, other nearby amenities that already
attract drive-through traffic (e.g. next to a gas station, accessible via a highway).

16.9.6 Other Applications

Numerous other application of geospatially-connected textual data are conceivable
and have been proposed. In conditions, where collections of biological speciments
(animals or plants) need to be cataloged, the location where an item was found is
often described using place names or spatial expressions. Automated methods like
toponym resolution can be used to transform specimen or herbarium collections into
georeferenced collections (Beaman and Conn 2003; Guralnick et al. 2006; Bloom
et al. 2017) that can be mapped. The emerging discipline of Digital Humanities
(Gregory and Geddes 2014), i.e. the application of information technology to
scholarship in history, sociology, or literature offers additional application potential;
for example, DeLozier et al. (2016) annotate the location of places in literary works
so the spatial trajectory of characters can be investigated.

16.10 Summary, Conclusion and Future Work

In this Chapter, we have reviewed a set of technologies and methods for interlinking
the geospatial realm with the realm of textual data. We showed how geocoding
does for postal addresses what toponym resolution does for place names and
spatial grounding in general does for geographic expressions, namely link text
spans to the geographic locations they refer to. We reviewed how spatial data-
structures can be used independently or together with full-text indices to retrieve
information (e.g. documents given a query comprising a text element and a location
element) in a geo-aware way after text collections have become georeferenced.
We described how geofences can alert applications or users of objects entering a
location, and we portrayed several applications: location-based mobile search, crime
mapping, hotspot analysis and crime forecasting, political analysis and intelligence
applications, location-aware advertising, real estate spatial analytics, among others.

In conclusion, the georeferencing of text offers a broad range of valuable
applications, in particular given the high degree of mobility of modern humans and
the wide-spread availability of GPS-enabled devices such as mobile phones and car



450 J. L. Leidner

navigation systems, we can reasonably expect that there will be even more activity
in geospatial technologies in the near future.

In the future, smart cities, self-driving cars, mobile and ambient communication
devices may become more tightly integrated, so it will be more easily possible for a
software application to identify a user’s location. To exploit this knowledge, i.e. to
turn location knowledge into situational awareness, systems need to be mindful of
privacy considerations, learn what a place means for the user’s information needs,
and improve the quality and coverage of georeferenced material available to the user
informed by his or her whereabouts.

Appendix: Ancillary Tasks

Augmenting Gazetteers via Web Mining

Gazetteers comprises names of places and associated information about feature
type and geographic footprint (Hill 2006); often, they are incomplete and suffer
from quality issues. Leidner (2007) reports that the USGS carry out many manual
corrections each month. Uryupina (2003) report an early attempt to gather place
name information automatically from the Web. Official (government-maintained)
toponyms are often already contained in many gazetteers, and governments increas-
ingly make their data available as part of linked open data initiatives to stimulate
innovation in the area of spatial technology; however, non-official, locally-used
names such as nick-names are harder to obtain. These can be useful for “smart
cities” and disaster response applications. Hu et al. (2018) mined Craiglist, a
classified advertisement Web site, by analyzing housing advertisements. They apply
named entity taggers followed by a frequency-weighted form of scale-structured
identification clustering (first proposed by Ratttenbury et al. (2007) for extracting
place semantics from Flickr data). The yield of their method can be measured by
looking at how the Web-mined place names can be added to gazetteers to augment
them. For some cities and gazeteers, up to 330 additional placenames were mined;
on the other hand, in all six large cities evaluated only a few entries mined were
not already part of the part-curated, part-crowdsourced Foursquare gazetteer, a
proprietary resource. Because the original Craiglist houssing advertisements were
geocoded, approximate footprints can also be obtained by the method.

Curating Gold Standard Data for Evaluation and Training

Leidner (2006a, 2007) describes TAME, the Web-based Toponym Annotation
Mark-Up Editor, which was used by subjects to annotate the TR-CoNLL and TR-
MUC gold data corpora for toponym resolution. It reads documents in which named
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entities are already tagged (in the CoNLL BIO format, named after shared tasks
regularly conducted at the Conference on Natural Language Learning(CoNLL)
conference) and converts them to TRML (using a command of his TextGIS suite,18

conll2trmlpl), an XML annotation specifically designed for toponym resolution,
toponym tokens are then annotated with candidate interpretations from a gazetteer
(using another TextGIS command, trgaz). TAME then permits interactive Web
editing by associating TRML files with a CSS style for rendering them dynamically
as XHTML. In this process, the human annotator selects human-friendly generated
path descriptions (e.g. Cambridge > Cambridgeshire > England > GB > Europe)
and each choice is represented by setting the “selected” XML attribute to “yes” for
the toponym’s mention in the XML document instance.

Wallgrün et al. (2017) describe GeoCorpora, an environment to manually
annotate Twitter micro-blog posts (“tweets”) with geographic centroid meta-data,
and such a corpus (of natural and human-made disaster tweets) that is the output
of using the tool, which can be downloaded.19 The GeoCorpora annotation tool
looks up tweet sub-strings in an (Apache Solr) index of the GeoNames gazetteer,
whereupon a set of human subjects (experts or anonymous Amazon Mechanical
Turk workers) choose the most likely intended interpretation on an interactive map.
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Chapter 17
Harnessing Heterogeneous Big
Geospatial Data

Bo Yan, Gengchen Mai, Yingjie Hu, and Krzysztof Janowicz

17.1 Introduction

Among the often mentioned four characteristics, i.e., volume, variety, velocity, and
veracity, of big data, variety is one of the most prominent in the geospatial domain.
One grand challenge of consuming and utilizing big geospatial data is finding
ways to utilize heterogeneous data, despite differences in their representations,
resolution, data quality, semantics, data collection strategy, data cultures, and so
forth (Janowicz 2010). For example, remote sensing images are typically collected
based on a field view, while most Points-of-Interest (POI) data are constructed
using an object view. The vocabularies, often called feature type ontologies, used
to categorize these POI vary between a handful and more than 1000 types making
their integration challenging. In terms of data formats, geospatial data can be in
the forms of unstructured data, semi-structured data, and structured data. A rich
volume of geospatial data (such as place names and addresses) are contained in
unstructured natural language texts, such as Wikipedia, news, books, and even
in social media. Structured geospatial data have a well-defined schema and are
contained in geospatial databases, shapefiles, gazetteers, and knowledge graphs,
e.g., so-called Linked Data. Data will also show significant variation based on
whether it is collected and maintained in the form of Volunteered Geographic
Information (VGI) or by an authoritative source such as a government agency. In
the age of Big Data, a research project often requires the use and integration of
geospatial data from different sources which may have been collected using different
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approaches. The most common source of heterogeneity, however, are differences in
semantics, i.e., in the conceptualizations related to used domain vocabulary such
as River, Poverty, or Neighborhood (Harvey et al. 1999; Frank and Raubal
1999; Bennett 2001; Kuhn et al. 2014; Scheider and Kuhn 2015) as well as cultural
difference. For example, in Germany a bus stop is typically differentiated from other
public spaces such as pavement because it usually has a distinct area with a roof. In
some other countries, however, the concept of a bus stop may not exist at all (e.g.,
people in Turkey can stop the bus wherever they want to get on).

In this chapter, we review how big geospatial data can be conflated, integrated,
and enriched (Kyriakidis et al. 1999; Arens et al. 1993; Samal et al. 2004; Lees
and Ritman 1991; Cobb et al. 1998; Fonseca et al. 2002). These terms themselves
have different definitions across and even within communities. In the context
of our overview, conflation is usually the initial step which involves combining
and consolidating multiple instances of the same geographic entity with various
lineage. To give an intuitive example from everyday experience, in order to gain
a more comprehensive understanding of a Point of Interest, such as a particular
restaurant, people may check multiple sources, e.g., website listings, social media
reviews from multiple vendors such as Yelp, and even images, and cross-verify,
combine, and mix them to provide more accurate and complete thematic (the type
of restaurant, the food they serve, and other amenities for the restaurant), temporal
(hours of operation), and spatial (coordinates and neighborhood) components. After
conflating all this information, the integration step comes into play by which the
data are combined, e.g. in the form of layers, into a larger project. One example
for this integration step are map mashups, a term first made popular in 2004
(Batty et al. 2010). Almost all web maps we use today, e.g. Google Maps, are
products of integration. These maps usually contain a base map and several thematic
layers (such as the POI layer, terrain layer, satellite imagery layer, traffic layer,
and transit layer). These layers can be in the form of vector data, raster data,
or a combination of both. Different components of the map complement each
other so that users can obtain a more comprehensive view of geographic entities
from different perspectives. In a general geospatial data integration workflow,
the conflation stage aims to retain accurate data, reconcile conflicting data, and
minimize redundant data by considering different but overlapping sources; the
integration stage aims to unify different aspects of the data after the initial conflation
stage. Today, geospatial data enrichment plays an increasing role as an additional
step following conflation and integration. With the current development of Web-
accessible knowledge graphs, the barrier for interlinking and enriching geospatial
data has become less severe. Geospatial data enrichment presents a convenient way
of retrieving personalized, timely, and relevant geographic information. In this stage,
methods in text mining or scene classification are also frequently used depending
on whether text or image sources are considered. Machine learning and data mining
models are essential to the success of geospatial data enrichment. For example, in
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Conflation Integration  Enrichment

Fig. 17.1 The overlaps between the conflation process and the integration process as well as
between the integration process and the enrichment process mean that there are no clear boundaries
between them

semantic publishing,1,2 in order to link different articles to the same geographic
entity, preprocessing steps typically include named entity recognition, place name
disambiguation, and coreference resolution. Another example is event detection.3,4

Such enriched data includes texts, temporal information, spatial footprints, and
multimedia. Besides data mining approaches in obtaining events update in a
geographic context, structured and standardized data markup guidelines can also
facilitate the process. In this sense, geospatial data enrichment is the highlight of
the marriage of top-down theory-driven and bottom-up data-driven approaches. It
is worth noting that although there seems to be a linear order to which these three
phases are conducted during the whole process, they do have some overlap and are
not mutually exclusive, as shown in Fig. 17.1.

The content of this chapter is organized following the thread of conflation,
integration, and enrichment. In Sect. 17.2, we lay out the major obstacles in
conflating geospatial data from different sources, such as discrepancies in semantics,
and examine previous research studies in tackling these challenges. In Sect. 17.3,
we review existing methods in spatial data integration, pointing out that the hetero-
geneous nature of geospatial data is, in fact, a blessing in disguise. In Sect. 17.4,
we introduce a combination of top-down and bottom-up methods in enriching
geospatial data and demonstrate the ways in which geospatial domain knowledge
can benefit existing machine learning models. Throughout these sections, we discuss
the Linked Data and geospatial semantics paradigm in which various knowledge
graphs, such as DBpedia,5 Freebase,6 Wikidata,7 and LinkedGeoData,8 emerged
in an attempt to faciliate the conflation, integration, and enrichment of geospatial
data. While these semantically-rich datasets improve the interoperability, they also

1https://en.wikipedia.org/wiki/Semantic_publishing
2http://now.ontotext.com
3http://eventregistry.org
4https://developers.google.com/search/docs/data-types/event
5https://wiki.dbpedia.org/
6https://en.wikipedia.org/wiki/Freebase
7https://www.wikidata.org
8http://linkedgeodata.org
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bring new challenges. In addition, we discuss the reciprocal relationship between
geospatial data and various machine learning models: machine learning models can
help integrate geospatial data, while geospatial data can be integrated into various
other domains as complementary information sources for supporting cutting-edge
models. In Sect. 17.5, we summarize the three phases and conclude our chapter.

17.2 Geospatial Data Conflation

In most geographic information systems and services, geospatial data can be
explored from both a map-centric view and a tabular-centric view (Mai et al. 2016).
Research on facilitating geospatial data conflation can be organized from these two
perspectives as well.

From a map view, geospatial data most often comes in two flavors: raster data and
vector data. Accordingly, studies in geospatial data conflation have considered raster
and raster conflation, raster and vector conflation, and vector and vector conflation
(shown in Fig. 17.2). For raster and raster conflation, Lynch and Saalfeld (1985)
described it as a problem of combining two raster maps to create a third map that is
better than each of the two input maps in some regards, e.g., by reducing NoData
cells. This definition considers geospatial data conflation as map conflation or map
compilation. Lupien and Moreland (1987) decomposed the task into two generic
problems, namely feature alignment and feature matching. In this context, raster
pixels for points, lines, and polygons on the maps are referred to as features. Since
different maps may have different projections and resolutions, feature alignment
is applied to transform the coordinates of one map to fit another one. A common
technique called rubber-sheeting is utilized to solve this problem, which is a
transformation technique that preserves the topology of different features on the
map. Typical rubber-sheeting algorithms utilize control points, triangulation, and
other computational geometry concepts to provide computationally efficient ways to
transform the maps and induce coincidence between different maps (Saalfeld 1985;
White Jr and Griffin 1985; Gillman 1985). Feature matching is then applied after
feature alignment and the performance of feature matching depends on the strength
of the feature alignment. Nearest neighbor pairings and intersection matching
are commonly adopted for feature matching based on different criteria (Rosen
and Saalfeld 1985). The feature alignment and feature matching processes are
often done in an iterative manner to increase the matched features. In order to
solve the problem of positional discrepancy and the challenge of conflation maps
with different levels of detail, Liu et al. (2018) proposed a multiscale polygonal
object matching approach, called the minimum bounding rectangle combinatorial
optimization (MBRCO). This algorithm finds corresponding minimum bounding
rectangles (MBRs) of matching pairs and aligns them to identify object-matching
pairs.

For raster and vector conflation, the core idea is to find the registration between
the raster map data and the vector map data. For instance, Filin and Doytsher (2000)
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Raster and vector conflation

Fig. 17.2 Vector data and raster data are two commonly used types. Practically, a conversion
process can be applied to switch between these two types. However, such a conversion is usually
not lossless. As a result, three types of conflation, namely raster and raster conflation, vector and
vector conflation, and raster and vector conflation, are studied in relevant research

utilized linear features as seed entities for registering map data by detecting the
counterpart elements, establishing correspondence between matched entities, and
transforming the data. Chen et al. (2004) used point pattern matching and exploited
common vector datasets as ‘glue’ to automatically conflate street map imagery.
Raster and vector data conflation is closely related to feature/object extraction
from images and vector data update. As our geographic environment is constantly
changing, updating vector maps automatically is of significance in order to provide
the most relevant and accurate information. By successfully conflating satellite
imagery with vector map data, street networks and other geographic features can
be updated in a more timely manner. Baltsavias and Zhang (2005) automated the
process of 3D road network reconstruction using aerial images and knowledge-
based image analysis. Conflation of vector data and satellite imageries is also used
for automatically geocoding satellite imageries (Hild and Fritsch 1998).

For vector and vector conflation, existing research often examines three com-
ponents, namely geometric component (Beeri et al. 2004; Foley 1997), spatial
relationship component (Fan et al. 2016), and attribute component (Hastings
2008; Samal et al. 2004). Many conflation models also combine all of the three
components, provided that such information is available in the dataset. For example,
a hierarchical rule-based approach was proposed to take into account both geometric
proximity and attribute information to match features (Cobb et al. 1998). A weighted
average of positional measure, shape measure, directional measure, and topological
measure was proposed as the criteria for point, linear, and areal feature matching
and achieved better results compared with traditional distance-based counterparts
(Fan et al. 2016). Li and Goodchild (2011) developed an optimization model to
improve linear feature matching that could handle one-to-one, one-to-many, and
one-to-none correspondence by making use of directed Hausdorff distance (an
asymmetric dissimilarity metric). Instead of using a proximity-based matching
approach, Song et al. (2011) adopted a relaxation labeling approach by utilizing
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iterated local context updates to match the road intersections for vector road
datasets. After initializing the point-to-point matching confidence matrix using
the road connectivity information, in each iteration update, the relative distances
between points are incorporated into the compatibility function. The proposed
relaxation labeling approach yielded much better result than proximity matching
approaches.

From a tabular view, geospatial data conflation can be performed based on place
names, spatial and non-spatial relations, and other attributes. McKenzie et al. (2014)
used a weighted multi-attribute method that considered categorical information,
activities, and topic similarity to match place entries in the gazetteers of Foursquare
and Yelp. To reduce redundancy in a place database, Dalvi et al. (2014) employed a
language model that encapsulates domain knowledge (core words) and geographic
knowledge (spatial context) to detect duplicate place entities. For example, in
the place name “Fresca’s Peruvian Restaurant”, “Fresca’s” is the core word and
“Peruvian Restaurant” is the description word. By accurately detecting core words
and weighing them by their spatial context (such as the city or country these places
are located in), their model outperformed other models. Another research area that
is closely related to geospatial data conflation based on non-spatial attributes is
place name disambiguation. The task is to identify the corresponding geographic
entity given a place name in a text or other unstructured format. This problem
is due to the one-to-many mapping between place names and geographic entities,
which is also frequently encountered in geospatial data conflation. Hu et al. (2014a)
used Wikipedia and enhanced Term Frequency-Inverse Document Frequency (TF-
IDF) with DBpedia terms to improve place name disambiguation. Ju et al. (2016)
integrated entity co-occurrence and topic modeling and outperformed benchmark
systems such as DBpedia Spotlight and Open Calais in terms of F1 score and Mean
Reciprocal Rank for place name disambiguation in short texts.

The recent marriage of geospatial data and the Linked Data paradigm (Kuhn
et al. 2014) also increases the demand for data conflation from a tabular view.
Linked Data uses a graph data model based on the Resource Description Framework
(RDF) to describe both statements about the world and schema knowledge, called
an ontology. RDF triples or statements consist of three parts: subject, predicate,
and object. Subjects can be entities while objects can be both entities and literals.
Predicates are the relationships between subjects and objects. For example, in
the triple :Santa_Barbara :isPartOf :California, :isPartOf is the predicate that
connects the subject :Santa_Barbara and the object :California. Geospatial Linked
Data are often conflated using a tabular view. Related research has focused on
reconciling data conflict, reducing data redundancy, and providing comprehensive
data on both the ontology level and instance level. Geo-ontology alignment itself is
a research topic that has attracted a lot of attention. Existing ontology matching or
alignment systems include: Falcon (using a divide-and-conquer approach) (Hu and
Qu 2008), DSSim (using an agent-based framework) (Nagy et al. 2006), RiMOM
(using a dynamic multi-strategy framework) (Li et al. 2009), AgreementMaker
(Cruz et al. 2009), and so on. Although most ontology alignment systems are
domain-agnostic, some research specifically took a geospatial perspective. Janowicz
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(2012) proposed an observation geo-ontology engineering framework that takes into
account thematic, spatial, and temporal components. Zhu et al. (2016a) implemented
a feature engineering approach using spatial statistics in an attempt to align three
major geo-ontologies, namely DBpedia Places,9 GeoNames,10 and Getty Thesaurus
of Geographic Names (TGN).11 While these works emphasize aligning geographic
concepts or place types from different data sources, Yan (2016) investigated how
modeling bias would influence geo-ontologies and developed a data-driven method
to detect these issues in order to harmonize the conflict between geo-ontology
and the actual geographic entities that populate the ontology. Along the same line,
Janowicz et al. (2018) discussed the issue of bias in Linked Data from data, schema,
and inferential perspectives, implying potential challenges for data conflation. On
the instance level, Zhu et al. (2016b) utilized spatial statistics and semantics
to conflate entities in different geospatial Linked Datasets. Systems that focus
particularly on the coreference resolution aspects of conflation include frameworks
such as LIMES (Ngomo and Auer 2011) and SILK (Volz et al. 2009).

17.3 Geospatial Data Integration

Geospatial data integration focuses on combining data about different themes
or covering different geographic areas into a unified and semantically-consistent
database for various geospatial applications (Abdalla 2016). It should be differenti-
ated from geospatial data conflation where the major goal is to reconcile the conflicts
or duplications in datasets about the same theme and the same geographic areas
(e.g., conflating the transportation network data from OpenStreetMap and Google
Map within the same geographic area). In geospatial data integration, different
datasets often provide perspectives that are complementary to each other. For
example, these datasets may provide different information, such as road network and
POI, about the same region. The datasets to be integrated may also focus on the same
theme but are about different geographic regions, and geospatial data integration
can combine them and produce a whole dataset for the entire area. An example is
to integrate the temperature measurements from different sensors which monitor
the temperature in neighboring counties. Since the data from different sources
can have varied interpretation (e.g. some sensors measure temperature in Celsius
while others measure temperature in Fahrenheit), it is important to identify and
accommodate data inconsistency during the integration process to achieve semantic
interoperability. In other words, we need to ensure the semantic interoperability in
order to produce a correctly integrated dataset.

9http://mappings.dbpedia.org/server/ontology/classes/
10http://www.geonames.org/ontology/documentation.html
11http://www.getty.edu/research/tools/vocabularies/tgn/index.html

http://mappings.dbpedia.org/server/ontology/classes/
http://www.geonames.org/ontology/documentation.html
http://www.getty.edu/research/tools/vocabularies/tgn/index.html


466 B. Yan et al.

Geospatial data integration is closely related to spatial data infrastructure (SDI)
(Janowicz et al. 2010) and CyberGIS (Wang 2010). One can distinguish five typical
activities performed within SDIs in the context of Web-scale systems: finding,
accessing, updating, processing, and visualizing geospatial data. In fact, these
five activities are also among the most commonly used steps for geospatial data
integration. In the following, we will discuss each of these five steps with an
example of disaster mapping for Santa Barbara County after the 2017 Thomas Fire,
the largest wildfire on record in California. In each step, we will emphasize the
importance of semantic interoperability, and discuss how Semantic Web and Linked
Data can help to ensure the propagation of semantics during the data integration
process.

Discovering relevant data sources is the first step for geospatial data integration.
In order to produce a disaster map for the Thomas Fire, multiple datasets for
Santa Barbara county and Ventura County have to be retrieved, such as updated
remote sensing images, transportation network data, wind direction, wind speed,
and air pollution information from the sensor network, population data, and so
on. Geographical information retrieval (GIR) systems (Jones and Purves 2008)
can support such a data discovery process. Query term recommendation and
query expansion techniques (Delboni et al. 2007; Mai et al. 2018) are necessary
to reformulate the search query in order to find relevant datasets. In this step,
semantically-similar terms like similar geographic feature types can be suggested
by using either ontology-based methods like SIM-DL or machine learning based
method like Place2Vec (Yan et al. 2017).

Accessing the content and metadata of the retreived datasets is the next step
for geospatial data integration. It should be noted that the information required by
disaster mapping or other tasks are usually from different data sources, represented
in different data models, or have different internal meanings. Accordingly, it is
essential to have a clear semantic interpretation of the data to achieve semantic
interoperability. For example, we have two datasets about wind directions. Dataset
A has the wind direction for Goleta city with a wind blow from conceptualization
while Dataset B has the wind direction for Santa Barbara city with a wind blow to
conceptualization. In this data accessing step, we need to have a clear understanding
on the semantics of the different datasets when pass these data to the following
workflow. Otherwise, such semantic inconsistency can introduce serious error in
the analysis results. Semantic annotation (Janowicz et al. 2010) on the data can help
to clarify the semantic inconsistency and lead to a meaningful integration result,
such as a wind direction map layer of Santa Barbara County.

Registration of geospatial data is another step for integration. Data conflicts or
redundancy should be removed (if they were not done in data conflation). Also some
new updates that have not made to the datasets need to be added. For example,
some road segments were blocked during the Thomas Fire, and such real-time road
connectivity information is typically not available in the original transportation
network data. In the data registration process, semantically-supported integrity
check also needs to be done to preserve data quality.
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Processing geospatial data is a necessary step when the initial datasets do not
directly satisfy the needs of an application. Consider the example of producing a
map showing the air pollution in the next 24 h of Thomas Fire. An air pollution
dispersion model needs to be developed and executed based on the current wind
direction, wind speed, the current air pollution distribution, the digital elevation
map, and the fire locations. Let’s assume that we have a geoprocessing service
available for the air pollution dispersion model through an OGC Web Processing
Service interface (WPS). The challenge here is not to understand the theory
behind this service but to correctly interpret the intended meaning of the output
of this service (Janowicz et al. 2010). Semantic inconsistency may occur when
the semantics of the data in hand is not in line with the semantic definition of
the input for the current service. For example, the wind speed data we have are
measured in feet per second (ft/s) while the service requires the input wind speed
data to be measured in miles per hour (mph). Using Semantic Web technologies to
conceptualize the geoprocessing services (Scheider and Ballatore 2018) can help to
clarify the semantics of each service, improve their reusability, and achieve semantic
interoperability among these services.

Visualizing the integrated dataset is the last step for geospatial data integration.
After we have obtained various geographic layers such as the transportation layer,
the predicted air pollution layer, the fire zones layer, the POI layer, we need to
combine them to produce a visualization to end users. In this step, semantics also
plays an important role because the visualization need to be aware of the semantics
of different geographic features in order to select the appropriate styles and symbols
for each element. For example, we cannot use the blue color to represent fire zones
because they may be confused with water bodies which are also colored blue on
maps.

In conclusion, geospatial data integration combines heterogeneous data for
addressing various spatial problems. Semantic interoperability and propagations are
critical for effectively and correctly integrating geospatial datasets from different
sources.

17.4 Geospatial Data Enrichment

Geospatial data enrichment aims to augment existing datasets with additional
cross-domain information, typically streamed on-the-fly from an external API
or knowledge graph endpoint. This can be seen as a way to contextualize data
(Janowicz et al. 2019). Compared with geospatial data conflation and integration
which are probably the bread and butter for harnessing heterogeneous big data,
geospatial data enrichment is a relatively novel step that emerged within the last
few years. However, it is playing an increasingly important role with the fast
advancements in machine learning models as well as knowledge engineering in
the context of global, Web-accessible knowledge graphs such as Linked Data that
aims at breaking apart data silos. A simple example would be to access up-to-date
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demographic data from within a GIS while loading a shapefile about towns and
cities. However, the term should be defined more broadly, e.g., including data about
events, relevant research literature that uses the area currently loaded into a GIS as
study area (Gahegan and Adams 2014; Lafia et al. 2016), the biographies of historic
figures and their travels, enriching 3D models with semantic annotations from social
media (Jones et al. 2014), and so on.

There are many areas that may benefit from geospatial data enrichment. One
is to enrich data streams with geosocial events that happened at certain locations
during a particular time period. The challenge of event detection stems from the
sheer amount of streaming data and the overwhelmingly large number of noise
associated with them. Weng and Lee (2011) attempted to tackle these problems by
proposing a clustering algorithm with wavelet-based signals using Twitter streams
and showed promising result. In order to detect important geospatial events such
as earthquakes, Sakaki et al. (2010) examined Twitter streams, applied Kalman
filtering and particle filtering, and developed a probabilistic spatiotemporal model
to find the center and the trajectory of the event location. Pat and Kanza (2017)
utilized geotagged posts in social media and developed a geosocial search system
that effectively finds geospatial events. Zhu et al. (2017) developed a deep learning
framework to analyze geo-tagged videos in a real-time manner in order to recognize
events and activities on the map. Balduini et al. (2013) used their streaming Linked
Data Framework to give city managers real-time access to event data for large-scale
events and integrate the data with GIS functionality such as heatmaps.

Geospatial data enrichment is not limited to the domain of geography. The
core idea of geospatial data enrichment lies in its intricate interplay between other
domain areas or knowledge. In the following, we provide two examples that demon-
strate the value of enriching datasets in other domains with geographic information.
The first example is in scientometrics, and, in particular, spatial scientometrics
which study the spatial aspect of science systems (e.g., scientific collaboration)
(Frenken et al. 2009). By enriching scientometrics data with geospatial information
such as the countries from which conference participants and authors came, the
geographic distributions of co-authorship, the local or global scope of certain
subdisciplines, and so on, researchers are able to explore spatial distributions
of citations, spatial biases in collaborations, and differences between local and
global citation impact. Frenken et al. (2009) also pointed out that the affiliation
information that is frequently used to provide the geographic knowledge has some
issues. For example, it only reflects the home institute of a visiting scholar, and
the granularity of this information is very coarse. Gao et al. (2013) proposed
a series of s_indices to evaluate the spatial impact of scientists and developed
a framework that used the statistics of categorical places, spatiotemporal kernel
density estimations, cartograms, distance distributions, and point-pattern analysis
to identify spatiotemporal citation patterns. Hu et al. (2013, 2014b) developed
several visualization components using scientometrics and geospatial Linked Data
to provide analysis functions for scientific knowledge discovery from a geographic
perspective.
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Semantic publishing provides a second example where geospatial data enrich-
ment can benefit the analysis of the initial data. The idea of semantic publishing
is to enhance online documents with linked metadata, which facilitates machines
and softwares to understand the structure and consume the information in order to
provide richer content. Many of the online documents contain spatial as well as
temporal information. In order to extract semantics and create structured content,
methods involving geographic information retrieval are frequently utilized. For
instance, place name disambiguation is used to determine the corresponding
geographic entity for geographic terms in the document and coreference resolution
is used to connect different surface forms of the same geographic entity. By
enriching these geographic entities with semantic content, users can either follow
their nose to explore the information or the system can generate analytics and graphs
to summarize the geographic knowledge. OpenCalais12 is such a system that can
highlight places mentioned in a document and link them to facts from an external
knowledge graph.

Geospatial data enrichment can also improve machine learning models by enrich-
ing the input training data with additional geographic information. For example,
aiming to provide better embeddings for map search and location recommendation,
Yan et al. (2017) devised an augmented spatial context-based algorithm that
considered both local and global geographic context to learn embeddings for
different place types and achieved better results based on three different evaluation
schemes. Berg et al. (2014) estimated the spatiotemporal priors given locations of
bird species and developed an image classifier that can greatly improve the accuracy
of categorizing highly similar species of birds. Tang et al. (2015) explored different
ways of encoding features extracted from the GPS information of images into
Convolutional Neural Networks (CNN) and improved the mean average precision
on classifying Flickr images by 7%. Along the same line, Yan et al. (2018)
incorporated location Bayesian priors based on spatial contexts into the state-of-the-
art CNN models, such as ResNet and DenseNet, using different approaches, such
as co-occurrence models and Long Short-Term Memory (LSTM), and improved
the classification of the exterior and interior images of different places collected on
Google Maps, Google Street View, and Yelp by over 40% in accuracy. In addition,
Mai et al. (2020) proposed a general-purpose location encoding model called
Space2Vec. By combining it with the state-of-the-art image classification model,
the hybrid model achieved better performances on fine-grained image recognition
tasks. All these examples have shown that geospatial data and domain knowledge
can further enhance machine learning models.

12http://www.opencalais.com/

http://www.opencalais.com/
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17.5 Summary

In this chapter, we discussed three aspects of harnessing the power heterogeneous
geospatial data, namely conflation, integration, and enrichment. These three parts
are not mutually exclusive and can overlap. Conflation deals with reconciling data
from multiple sources to resolve inconsistencies and arrive at a new dataset that is
improved in terms of spatial accuracy, feature completeness, logical consistency,
and so on. Data integration focuses on combining datasets in meaningful ways,
e.g., as part of larger workflows or to arrive at a new, more holistic data product.
In many regards conflation can be considered as a strategy of data integration
(Saalfeld 1988), e.g., in the form of vector and raster conflation to correct street
networks. However, conflation is just one such strategy, and, thus, we decided to
address both separately here and also focus on integration as a driver of cross-
thematic analysis. This view seems more in line with the recent thinking about
heterogeneity in the context of big data. A similar concept that often occurs in
discussions about the integration of geospatial data is semantic interoperability
which studies how to ensure that services can exchange information meaningfully,
i.e., in a way that preserves the intended interpretation of domain vocabularies.
Finally, enrichment is the step of getting additional information, e.g., in the form of
statements from a knowledge graph, about entities in the current dataset or project to
provide additional contextual information. A typical example would be up-to-date
demographics for a study area as well as events that happened in the past. This last
enrichment step is part of ongoing research.
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Chapter 18
Big Historical Geodata for Urban
and Environmental Research

Hendrik Herold

Historical geoinformation is a valuable resource for various scientific disciplines,
ranging from urban and environmental research to the emerging field of digital
humanities. This chapter elucidates potentials and applications of big geospatial
data which it has recently become possible to automatically retrieve from historical
records. Large volumes of historical textual and cartographic documents are cur-
rently being made digitally accessible by libraries and other institutions. With the
help of computer vision and image analysis techniques, the hitherto only implicitly,
i.e. human-readable, contained historical geoinformation can be made machine-
readable and can hence be spatiotemporally analyzed and associated with current
big geospatial databases filled with satellite imagery, digital maps or user-generated
geocoded content. The chapter begins with an overview of existing geohistorical
data sources and processing approaches and describes challenges posed by the sheer
number and diversity of the sources. The main part is dedicated to potentials and
applications of the derived geoinformation in the various environmental research
domains, such as long-term land change monitoring, sustainability research, and
Earth system modeling for studying the complex human-environment interactions
between land, climate change, ecosystem and biodiversity changes during the
Anthropocene.

18.1 Introduction

The term “big geospatial data” should not be used to refer only to recent geocoded
information; rich digital collections of historical cartographic records also provide

H. Herold (�)
Leibniz Institute of Ecological Urban and Regional Development, Dresden, Germany
e-mail: h.herold@ioer.de

© Springer Nature Switzerland AG 2021
M. Werner, Y.-Y. Chiang (eds.), Handbook of Big Geospatial Data,
https://doi.org/10.1007/978-3-030-55462-0_18

475

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-55462-0_18&domain=pdf
mailto:h.herold@ioer.de
https://doi.org/10.1007/978-3-030-55462-0_18


476 H. Herold

an enormous amount of geospatial data. For centuries, these cartographic records
have been unique and “efficient storages devices” for geospatial data (Roberts 1962,
p. 12). In recent years, an ever growing number of these maps have been scanned and
put online by libraries and national mapping agencies. This data, however, fulfills
not only the ‘Volume’ (1) criterion, but also all other ‘V’-characteristics of big data,
namely:

• Variety (2), which refers to the diversity of formats and data types, such as struc-
tured and unstructured data: old maps come in various qualities, geographical
scales, scanning resolution, and as mostly un- or semi-structured image data as
well as structured textual metadata,

• Veracity (3), which refers to the trustworthiness of the data, is particularly
relevant in terms of the potentially uncertain geolocation and historical meaning
of cartographic representations,

• Validity (4), which refers to the appropriateness for the intended use, plays a
key role in terms of the correct data interpretation according to the respective
abstraction level, as cartography always depicts an interpreted reality.

Parallels to ‘Velocity’ (5) and ‘Variability’ (6) of data can also be drawn. While
the velocity of newly emerging data is high but not a relevant issue in comparison
to sensor or video data, variability is highly relevant. The immanent variability
of the mostly hand-drawn cartographic documents is comparable to that of text
in handwritten books and closely related to the variety of formats, qualities and
geographical scales.

All these characteristics pose specific challenges to the management, extraction,
assessment and analysis of big historical geodata. The research of the past decades
focused mainly on extraction and analysis. Challenges of big data have – inspired by
advancements in extraction techniques – just recently addressed in studies. Both the
availability of datasets and the techniques have raised awareness of the cultural and
enormous scientific ‘Value’ (7) of the data. In the following, available data sources,
time spans, and their potential applications are described.

18.2 Data Sources and Time Spans

In referring to geospatial data of the past, there are two strands to consider: textual
documents and cartographic records, which are both examined in the following.

Textual documents There exist vast archives of textual documents, such as
books, travel notes, itineraries, gazetteers and historical tax records. Most of them
implicitly contain geographical information, such as place names, travel times,
and information on land ownership. Libraries and local archives already provide
millions of these documents, containing millions of potentially valuable geocoded
entries. However, many collections of paper documents are still waiting to be
discovered, catalogued, scanned and digitally published in the future (cf. Fig. 18.1).
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Fig. 18.1 “Le champignon informationnel” – the information mushroom, depicting schematically
the relation of digital information currently and in future available for different periods of time.
(Source: Modified after Kaplan (2013))

The computational analysis and interpretation of these documents is one of the
main research efforts in the emerging digital humanities. A large-scale initiative
addressing this challenge is the pan-European Time Machine project (Time Machine
Organization 2019). This initiative also deals with the second source of geospatial
data: cartographic documents.

Cartographic records A more explicit source of historical geodata consists in
cartographic documents. For centuries, these records have been the most compre-
hensive storage and communication tools for geospatial information. In contrast
to the former, they additionally represent geographical positions, relations, and
dimensions of historical entities. Like textual documents, they have been collected
and stored as paper documents in libraries and archives. In the last decade, large-
scale digitization projects have been started. Digital libraries, national mapping
agencies (e.g. the USGS), and individuals have put vast numbers of cartographic
collections online.

The largest online meta-collection of historical cartographic documents is the
portal “OldMapsOnline” (OldMapsOnline 2019). It provides access to many digital
map repositories, such as the Harvard Library Map Collection, the ETH Library
Map Collection, the National Library of Scotland, the Saxon State and University
Library, the Land Survey Office of the Czech Republic, and the David Rumsey
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Map Collection. A more comprehensive overview of collections is given in (Herold
2017). Here, the term old maps refers in its general meaning to all cartographic
records, such as historical cadastral plans and topographic map series. While the
former are usually available on a local to regional scale, the latter often provide a
larger, in the best case, (inter-)national scale.

Of particular interest are those topographic maps that have been trigonomet-
rically surveyed. The trigonometric land surveys started in 1744 with Cassini de
Thury’s new projection and surveying in France (Carte géométrique de la France,
see Cavelti 1989, p. 2), followed by numerous land surveys all across Europe,
e.g. the Austro-Hungarian surveys (e.g., Josephine military survey, 1763–1787),
the Ordnance survey (1791–1850), the Saxonian survey (1780–1806), the Prussian
survey (1830–1865), and the Gaussian survey (1821–1825) (cf. Herold 2017, pp.
22–23). Numerous further land surveys followed in the spheres of influence of the
imperial powers.

The major advantages of trigonometrically surveyed maps over previous carto-
graphic records are their geometrical precision at medium scale and their repre-
sentational homogeneity over large areas, which allow comparative studies on a
(trans-)national or even continental level. Given a temporal coverage of more than
200 years before the present, they provide an essential data source for environmental
research covering the Anthropocene.

In their function as archived documents, topographic maps have preserved scale-
dependent states of land surface patterns at certain points in time. With these
characteristics, they provide a unique and valuable source for the reconstruction
of historical land use and land cover (LULC) and its long-term changes. The land
surface, in turn, is one essential component in Earth system modeling (ESM). Figure
18.2 exemplarily shows the data sources for inferring LULC data for the respective
time spans.

18.3 From the Data Source to Big Geospatial Data

Scanned cartographic documents are digital images, i.e. the desired geographical
information is implicitly contained and not readily available for computational
approaches. This has often been confused, as the terminology of “digital” and
“digitization” is ambiguous here. “Digitization” can refer to the transformation
of the map into a digital document, i.e. the scanning process. In other contexts,
“digitization” refers to the process of extracting features. For the latter, just like in
text mining with optical character recognition (OCR), computer vision and pattern
recognition algorithms need to be applied to extract machine-readable geospatial
data from the scanned maps. Figure 18.3 shows the several processing steps and
methods of the procedure. For relatively small study areas, the preprocessing and
feature extraction can be performed manually. For the large-scale and long-term
applications considered here, however, hundreds or thousands of map sheets need to
be processed. Hence, the research on methods for automated feature extraction has
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Fig. 18.2 Available historical data sources for the example of inferring long-term land change
data during the Anthropocene. The land surface is one key component in Earth system modelling
(ESM). (Source: Author, extended after Herold (2017), embedded sample maps © SLUB 2020)

a relatively long scientific history. A survey can be found in (Chiang et al. 2014), for
instance. Some of the research efforts have led to commercial products or academic
expert systems such as PROMAP (Lauterbach et al. 1992), MAGELLAN (Samet
and Soffer 1998), KAMU (Frischknecht and Kanani 1998), SEMENTA (Meinel et
al. 2009), and STRABO (Chiang and Knoblock 2014).

Map-extracted geodata has been applied in many studies and various scientific
disciplines. An overview of studies and research contexts can be found in (Herold
2017). Besides these local and regional studies, large-scale applications on a
national or continental scale have only emerged in recent years. Examples can be
found in (Fuchs et al. 2015) for Europe, in (Perret et al. 2015) for France, and in
(Leyk and Uhl 2018) for the US. The tendency to large-scale applications poses
new challenges to the research field in terms of the big data characteristics, such as
variability and veracity.

The latest advancements in computer vision and artificial intelligence, namely
deep learning, enhanced data manipulation and integration techniques, will fuel
this research and further boost the capabilities of geographical feature extraction
algorithms. In conjunction with the simultaneously increasing number of accessible
geocoded documents, this will let big historical geodata drastically grow further
within the next few years.
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Fig. 18.3 Conceptual framework for building long-term historical geodatabases from data sources
and their association with scientific data of other research domains. (Source: Author)

18.4 Potentials of Big Historical Geodata

Both the research efforts on automated feature extraction and the tedious work of
manual digitization are matched by the great value of the extracted geospatial con-
tent. This section argues for the long-term data perspective in geospatial research.
As discussed in the data source section, geospatial data can be retrieved from both
textual and cartographic documents. While the former is especially relevant for
digital humanities research, the latter rather unfolds its potential primarily within
the spatial and environmental sciences. In the following, potentials and applications
for both strands are given. The application fields are manifold (see Fig. 18.4), but
some of them are closely linked.

18.4.1 Human-Environment Interactions

Studying and understanding the complex set of human-environment interactions is
one of the key research issues in Earth system science. Climate change and the loss
of ecosystems and biodiversity during the Anthropocene are among mankind’s most
urgent research topics and fields of action. As the human-environment interactions
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Fig. 18.4 Potentials and applications of big historical geodata in the various research domains.
(Source: Author)

and system changes occur gradually – and thus mostly beyond the human horizon
of perception – they can only be understood and studied in a long-term perspective.

For studying the long-term changes of the land surface during the Anthropocene,
topographic map series are, as depicted in Fig. 18.2, a unique resource. The science
behind studying the land surface component is referred to as Land Change Science
(LCS). LCS investigates the complex dynamics of land cover and land use as a
coupled human-environment system and seeks to develop new concepts and tools
for improved understanding and management of land resources (cf. Turner et al.
2007). The objectives of LCS can, according to (Rindfuss et al. 2004; Verburg et
al. 2004; Turner et al. 2007), be summarized as (1) improving the monitoring of
land change patterns and dynamics; (2) understanding these changes as a coupled
human-environment system; (3) disentangling the complex suite of biophysical and
socioeconomic forces; and (4) spatially explicitly modeling land change in a manner
compatible with Earth system models. Thus, long-term spatially explicit evidence is
essential for perceiving, quantifying, and understanding the complex and gradually
proceeding geospatial processes such as the land use and land cover change (cf.
Herold 2017, p. 137). Last but not least, using the geodata for scientific time-lapse
visualizations of system changes is among the most effective tools for awareness
raising and problem communication.
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18.4.2 Land Change Model Calibration

To understand the complex interactions of the coupled human-environment system,
spatially explicit land change models are employed. Their level of application
reaches from regional to global scales. Most land change models are designed
for regional applications which extend from the local to the national level, with
resolutions between 50 square meters and 1000 square kilometres (Verburg et al.
2006, p. 118). There exist various modeling approaches; however, one of the most
crucial steps in land change modelling is the calibration and validation of the model.
It is often also the computationally most expensive step in spatial modeling. In
many studies both terms are used interchangeably, or only a model calibration is
performed. Calibration refers to the parameter fitting, i.e., the adjustment of the
model parameters such that the modeling result fits real system states at discrete
points in time as well as possible. Validation, in turn, refers to the evaluation of
the adjusted model against unseen data, i.e., data that was not used for calibration
(Verburg et al. 2006, p. 130). That is, the calibrated model has to be tested against
data for another area and/or another point in time. In the past, this validation process
has often been neglected in the development and application of land change models
(Wu 2002, p. 795). The issue of insufficient model validation (Wu 2002, p. 795)
is in many cases primarily due to a lack of sufficient historical records, i.e., the
lack of sufficient long-term spatiotemporal data (Goldstein et al. 2004, p. 128).
Here the potentials of big geospatial data become obvious. The effects of long-term
model calibration and validation based on historical geographical data have been
investigated (cf. Fig. 18.5) and quantitatively assessed in Goldstein et al. (2004) and
Akin et al. (2014).

18.4.3 Data-Driven Geoscience and Geodata Science

The traditional research approach in the geosciences is increasingly challenged by
the advent of big data. In particular geographical research has shifted from a data-
scarce to a data-rich environment (Miller and Goodchild 2015). While traditional
space-related analytical methods are confirmatory and require the researcher to
have a priori assumptions, the data-driven approach offers – partially at least –
the possibility of hypothesis-free modeling for knowledge generation. This can
be advantageous, as the classical approach may not readily discover new and
unexpected patterns, trends, and relationships that can be hidden within large and
diverse geographical datasets (Miller and Han 2009, p. 2). Although the data-driven
approach still faces various methodological challenges, it offers the opportunity to
test spatial theories against large geohistorical databases using tools such as Visual
Analytics (VA), Exploratory Data Analysis (EDA), and Geospatial Knowledge
Discovery (GKD, cf. Miller and Han 2009; Mennis and Guo 2009). Big historical
spatiotemporal data, on the other hand, can support the knowledge generation using
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Fig. 18.5 The effects of long-term model calibration and validation using historical geospatial
data. (Source: Modified after Goldstein et al. (2004, p. 129))

spatial data science and geographical knowledge discovery by providing a wider
temporal scope for hypothesis generation as well as the investigation of driving
forces (cf. Herold 2017). This may result in the confirmation or the rejection of
long-standing spatial theories; or, it might even give rise to new theories on the
spatiotemporal evolution of geographical entities.

18.4.4 Digital Humanities and Cultural Heritage

Humanities and social sciences have increasingly adopted computational
approaches in the past decades. The mass digitization of books and historical
documents has generated a need for analyzing this big textual data corpus.
Computational models support e.g. the analysis and association of historical events
and persons, i.e., building social networks of the past. As discussed above, the
geographical component is mainly retrieved from textual documents. Thus, the
research is mainly focused on OCR for textual documents, or, in other contexts, is
focused on 3D laser scanning techniques for the digital representation of monuments
and exhibition objects as part of the cultural heritage. In recent years, however,
cartographic documents, such as architectural plans and topographic maps, have
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gained in importance. The derived geographical data can not only be used to link
historical events, persons and documents to places but also to build historical city
models. An approach to urban 3D reconstructions based on historical maps is
described in (Herold and Hecht 2018). The reconstructed virtual city models can
be of interest to scientists from the spatial sciences, architects and historians, and
also to game developers who are looking for efficient ways of creating large 3D
landscapes.

In the urban history domain, the model can be used to communicate the historical
urban structure and land use. It may also help “historians to locate, analyze,
contextualize and compare meaningful and relevant photographic sources”, as
applied in the project UrbanHistory4D (cf. Visual Humanities 2019). To build and
interconnect many of these local or national “time machines” for spatial scientist,
historians and the general public is the aim of the Time Machine project (Time
Machine Organization 2019). Besides the location and dimensions of geographical
entities, there also exists research interest in the geohistorical place names. Chiang
(2017) gives potentials and applications of automatic text recognition of historical
map labels in the social sciences.

18.4.5 Urban Research and Spatial Planning

Detailed historical data on the urban infrastructure at the level of single buildings
or roads offers a wide range of applications in the interdisciplinary fields of urban
research and spatial planning. These detailed and vast (up to national level) datasets
provide an excellent data base for, e.g., the ex-post assessment of planning policies
and the estimation and modeling of material and energy flows. Urban infrastructure
is a relatively stable, long-term oriented entity and is hence also being considered as
material storage. Thus, building age information, for example, can improve models
to estimate the material stocks and flows as a basis for future material resource
management (cf. Kleemann et al. 2017). Buildings and building construction are
considered to be a major driver of global energy use. In this regard, the building
age information can be a crucial factor for assessing energy consumption (e.g.
Delmastro et al. 2016) as well as for developing strategies for energy optimization.
Long-term data on the spatiotemporal dynamics of the urban structure also enables
the assessment of spatial planning instruments as well as the ex-post study the
effects of land use policies and master plans on a regional and even a national
scale (e.g., Jehling et al. 2018; Xie et al. 2018). In historical demography, data
on urban morphology can be used to estimate the population distribution over
time. The greatest potential in urban research, however, lies in the possibility of
testing hypotheses and theories (see Sect. 18.4.3) against this data on the long-term
evolution of cities, urban morphologies and transportation networks.



18 Big Historical Geodata for Urban and Environmental Research 485

18.5 Conclusion

There is good reason to give the term “big geospatial data” a historical dimension.
This chapter has covered the sources, characteristics and time spans of big historical
geodata, has depicted the path from the data source to big data, and has given
potential applications across a wide range of scientific disciplines. It has shown that
there already exists an enormous amount of historical geospatial data. This amount
will further increase through the ongoing mass digitization efforts of libraries
and other institutions as well as the advancements in artificial intelligence-based
feature extraction algorithms unlocking the geospatial content that is still hidden
in millions of historical textual and cartographic records. The extracted geodata
offers unprecedented views and insights into the spatiotemporal evolution of land
change patterns, urban structures and networks. Massive spatially explicit data could
support theory building in the spatial sciences through hypothesis testing against
large datasets using (geo)data science approaches. On the other hand, leaving out
the historical evidence in the respective disciplines may lead to flawed assumptions
or – when machine learning approaches are employed – incompletely trained
computational models. The applications reach from local studies of material and
energy flows to global-scale Earth system modeling studying the complex human-
environment interactions between land change, ecosystems and biodiversity during
the Anthropocene. In this sense, long-term historical geodata may be considered
much like what ice cores are for climate research. Thus, big geospatial data of the
past may in this way indirectly contribute to tackling some of humanity’s greatest
environmental challenges.
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Chapter 19
Harvesting Big Geospatial Data from
Natural Language Texts

Yingjie Hu and Benjamin Adams

19.1 Introduction and Motivation

Geospatial information is produced by a wide variety of data sources. In addition to
commonly used datasets from agencies such as the US Geological Survey (USGS)
and the US Census, geospatial information is contained in news articles (Lieberman
and Samet 2011; Liu et al. 2014), encyclopedia entries (Hecht and Raubal 2008;
Salvini and Fabrikant 2016), social media posts (Keßler et al. 2009b; Zhang and
Gelernter 2014), historical archives (Southall 2014; DeLozier et al. 2016), housing
advertisements (Madden 2017; McKenzie et al. 2018), online reviews (Cataldi et al.
2013; Wang and Zhou 2016), travel blog entries (Adams and McKenzie 2013;
Ballatore and Adams 2015), and other sources. From these sources, geospatial data
is embedded in natural language texts and is often presented in the form of place
name mentions and place descriptions. For example, a social media post or a news
article might mention multiple places through their names, or a travel blog might
describe the experience of the writer at a particular place. In today’s Big Data era, the
volume and variety of the data from these sources are increasing at an unprecedented
velocity, and it has become feasible to harvest big geospatial data from texts.

Why do we want to harvest geospatial data from texts? Asking this question is
important, since collections of natural language text, e.g., those from social media
or news articles, are often not representative of the entire population (Hecht and
Stephens 2014; Malik et al. 2015; Jiang et al. 2019). There are at least three aspects
in which the geospatial data harvested from texts is valuable. First, they can provide
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valuable human experience information, which is not available in other datasets.
Travel blog entries, for example, do not simply describe where people have been
but also what their feelings are toward these places. Such information about human
experience is critical for building computational models of places (Goodchild 2011;
Merschdorf and Blaschke 2018). Second, geospatial data harvested from some
natural language texts, such as social media posts, reflect near real-time situations
and are valuable for applications such as disaster response (MacEachren et al.
2011; Crooks et al. 2013; Huang and Xiao 2015). This is an important advantage
compared with data from questionnaire-based surveys or face-to-face interviews
which can take often months or even a few years to produce. While the geospatial
data harvested from social media may not be representative, disaster response and
other situation awareness applications often focus on identifying incidents, rather
than, for example, whether the three people trapped in a collapsed building represent
the entire population in the study area. Third, some geospatial data is only available
in unstructured texts. Examples include events reported in newspapers, historical
battles recorded in old archives, or business addresses contained in Web pages (Nesi
et al. 2016; Hu et al. 2017; Barbaresi 2017). In these cases, harvesting geospatial
data from texts is necessary for enabling advanced spatial analysis.

Harvesting geospatial data from unstructured texts has been frequently studied
in geographic information retrieval (GIR) under the topic of geoparsing (Jones and
Purves 2008; Purves et al. 2018). The goal of geoparsing is to recognize the place
names, or toponyms, mentioned in texts, and identify the corresponding instances
and the location coordinates of the recognized place names (Freire et al. 2011;
Gritta et al. 2018). A software tool developed for geoparsing is called a geoparser,
which takes unstructured natural language texts as the input, and outputs structured
geographic data with the recognized place names and their location coordinates.
Some geoparsers, e.g., GeoTxt (Karimzadeh et al. 2013), are published as Web
services which provide easy access for general users through the Internet.

Geoparsing is typically performed in two consecutive steps: toponym recognition
and toponym resolution. For the first step, the goal is to recognize place names from
natural language texts without identifying the particular place instance referred by
a name. For example, in the sentence, “Washington was an important stop on the
rugged Southwest Trail.”, the term “Washington” will be recognized as a toponym,
but this step will not attempt to understand which Washington this term specifically
refers to (there are more than 50 places named “Washington” in the United States).
The second step, toponym resolution, aims to address the place name ambiguity
and resolve the place name to its correct instance and geographic location. The
toponym resolution step will (ideally) find out that the name “Washington” refers
to “Washington, Arkansas” in the sentence, and will locate the place name to its
corresponding spatial footprint, such as the geometric center of the city boundary.
Figure 19.1 provides an overview of the two steps of geoparsing. The geospatial data
harvested from natural language texts usually contain the recognized place names
and their spatial footprints, such as points, lines, and polygons.

Geospatial data can also be harvested from texts that do not explicitly mention
place names (Wing and Baldridge 2014). Non-spatial words, such as beach and
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Fig. 19.1 An overview of the input, output, and the two steps of geoparsing

sunshine, can be geo-indicative (Adams and Janowicz 2012). That is, in the context
of a textual corpus containing documents which are associated with locations on
the Earth, certain words and phrases can be more or less likely to be associated
with specific locations. Words with non-random spatial distributions will be most
apparent in texts that describe physical environments and/or local cultural practices.
Texts that are geo-referenced enable us to discover useful knowledge about places.
This can be done subsequent to geoparsing as well as on texts that are already geo-
referenced by the source. Examples of the latter include tweets with GPS location
and travel blog entries tagged with named places (Hahmann et al. 2014; Adams
and McKenzie 2013). For shorter documents it is often the case that the entire text
content can be associated with one or a few toponyms. However, for longer texts
the task of associating toponyms with the correct selections from the text is still an
open research problem and may require more sophisticated semantic entity linking
and relation extraction, reflecting a lack of easy-to-use tools in this space.

The remainder of this chapter is organized as follows. Section 19.2 reviews
methods on recognizing and resolving place names from texts, and lists existing
geoparsers and human-annotated corpora. Section 19.3 discusses a number of stud-
ies that have harvested big geospatial data from natural language texts for various
applications. Particularly, these studies are organized into three topics: place-related
studies, time-sensitive applications, and special information extraction. Finally,
Sect. 19.4 presents the challenges and possible directions for the near future.

19.2 Methods and Tools

Various methods have been proposed for harvesting big geospatial data from natural
language texts. In this section, we first review the existing methods for toponym
recognition and resolution respectively, and then describe the existing tools for
completing these two steps. We also discuss location inference from texts using
language models, and such approaches are especially useful when texts do not
explicitly contain toponyms.
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19.2.1 Toponym Recognition

The goal of toponym recognition is to recognize the toponyms mentioned in natural
language texts. One typical approach is to use a gazetteer which is a geographic
dictionary that contains organized collections of place names, place types, and
spatial footprints (Hill 2000; Janowicz and Keßler 2008). Since humans refer
to places via their names while machines represent places by their coordinates,
gazetteers fill the critical gap between informal human discourses and formal com-
puter representations (Goodchild and Hill 2008; Keßler et al. 2009a). Accordingly,
we can compare natural langauge texts with the entries in a gazetteer to identify
the contained place names. For example, Woodruff and Plaunt (1994) used a subset
of the Geographic Names Information System (GNIS) gazetteer to identify place
names from textual documents related to the region of California. Amitay et al.
(2004) proposed a system called Web-a-Where which can recognize place names
from Web pages based on a gazetteer containing continents, countries, states, and
cities throughout the world. While straightforward, a main disadvantage of this
direct matching approach is that some place names or their vernacular versions may
not be contained in a gazetteer and therefore cannot be recognized. To address this
issue, methods have been proposed to enrich existing gazetteers with vernacular
or vague place names. For example, Twaroch and Jones (2010) proposed a
platform, called “People’s Place Names” (http://www.yourplacenames.com), which
encourages local people to contribute vernacular place names. Gelernter et al. (2013)
developed an automatic algorithm which can add place names from OpenStreetMap
and Wikimapia into a gazetteer. Jones et al. (2008) developed an approach that
leverages a Web search engine to harvest entities related to a vague place name
in order to construct its boundary. Geotagged photos and the associated textual tags
were also used by many researchers for adding vague places into gazetteers (Grothe
and Schaab 2009; Keßler et al. 2009b; Intagorn and Lerman 2011; Li and Goodchild
2012). More recently, geotagged housing posts, in which vernacular place names are
often mentioned, were examined for their potential in providing local place names
and enriching gazetteers (McKenzie et al. 2018; Hu et al. 2018).

Another approach for recognizing place names from texts is to use natural
language processing (NLP) techniques. A key advantage of this approach is that
it can be used to identify place names without relying on a gazetteer: it makes
use of the words within the local context of a target word (e.g., the previous and
next five words surrounding the target word) to infer whether the target word is
part of a place name. One simple way to implement this idea is to define a set of
grammartical rules for recognizing toponyms. For example, names in the patterns of
“City of 〈name〉” and “〈name〉 Boulevard” are often place names, while those in the
patterns of “Firstname 〈name〉” are typically not (Purves et al. 2018). Since these
grammatical rules need to be defined manually, machine learning based approaches
were proposed to recognize toponyms based on contextual evidence in the text.
From this perspective, toponym recognition can be considered as a sub-task of

http://www.yourplacenames.com
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named entity recognition (NER). One frequently used NER tool is Stanford NER
which is based on a Conditional Random Field (CRF) sequence model (Finkel
et al. 2005) and can recognize multiple types of named entities from texts, such
as locations, persons, and organizations. To recognize toponyms, one can limit the
identified entities to locations only. Many existing studies have included Stanford
NER as part of their workflows. For example, Karimzadeh et al. (2013) developed
GeoTxt in which the Stanford NER is employed for the named entity recognition
step. Gelernter and Mushegian (2011) also used Stanford NER to identify location
names from the tweets after the 2011 earthquake in Christchurch, Canterbury.
Lieberman et al. (2010) leveraged Stanford NER to find location entities from local
news articles in order to build spatial indices for textual data. In addition to Stanford
NER, researchers also made use of other NER models. For example, Gelernter
et al. (2013) employed OpenCalais to find building names from texts, and Hu et al.
(2018) used spaCy NER as one of their four NER models to recognize place names
from geotagged housing posts. Many studies also trained their own NER models for
toponym recognition by leveraging a variety of evidence from the data, such as part
of speech (POS) tags, left words, right words, entity relations, and other possible
cues (Lieberman and Samet 2011; Inkpen et al. 2015).

19.2.2 Toponym Resolution

Once place names are recognized from texts in the first step, the second step
aims to resolve these names to their corresponding geographic instances. This step
is necessary because of the ambiguity existing in the semantics of place names
(Leidner 2008). Amitay et al. (2004) discussed two types of ambiguities: geo/geo
ambiguity, i.e., the same name, such as London, can refer to different geographic
instances in the world; and geo/non-geo ambiguity, i.e., the same name, such as
Washington, can refer to not only places but also persons and other types of entities.
Besides, there is the issue of metonymy. For example, we may have a sentence
“London voted to pass an act”, in which “London” may not represent the place
but the government entity, although it is not entirely unreasonable to recognize
and resolve “London” to the capital of the UK in this sentence. Perhaps due
to this debatable issue, many geoparsers do not directly handle metonymies. In
addition, the toponyms recognized in the first step may contain false positives and
false negatives. The false positives, i.e., the non-place phrases that are mistakenly
recognized as toponyms, can be handled by toponym resolution methods in the
process of resolving geo/non-geo ambiguity. The false negatives, i.e., the place
names that are missed by the toponym recognition step, are more difficult to
deal with, since most toponym resolution methods start with only the recognized
toponyms rather than trying to expand the set. How to recover these false negatives
could be an interesting future research topic.
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A variety of methods have been developed for toponym resolution. Early
approaches often make use of certain domain knowledge about places (e.g., total
population) to define heuristic rules for disambiguation. A simple approach is to
resolve a place name to its most prominent or default place instance, such as the one
that has the highest population or the largest total area (these types of information
are often available in gazetteers). Li et al. (2002) proposed a method for identifying
the default sense of a place name based on the results returned by a search engine
(Yahoo!), and their experiments showed that using the obtained default senses alone
can already achieve a fair performance (i.e., resolving 78% of their ambiguous place
names). Ladra et al. (2008) developed a toponym resolution Web service which
combined administrative hierarchies, the populations of different places, whether
a place is a capital or a main city, and some other information to perform place
name disambiguation. Some other rules, such as one referent per document (i.e., a
toponym that appears in different parts of the same document will most likely refer
to the same place instance), were also developed (Leidner 2008). While hand-crafted
rules can already resolve many toponyms, they can be incomplete or arbitrary:
Which rules should be included and which should not? How to define the threshold
for a city to be considered as a main city? And which rules should have higher
priorities over other rules? Besides, much manual effort is needed to develop these
rules.

Due to the limitations of hand-crafted rules, automatic or semi-automatic
approaches are proposed for toponym resolution. Overell and Rüger (2008)
proposed a co-occurrence model based on how place names occur together in
Wikipedia, and then applied the co-occurrence model to disambiguate place names
from texts. Buscaldi and Rosso (2008) developed a conceptual density based
approach which disambiguates toponyms using an external reference corpus
GeoSemCor. Lieberman and Samet (2011) proposed a multifaceted toponym
recognition and resolution approach by leveraging a wide range of methods and
information resources including a dictionary of entity names and cue words,
statistical methods such as POS tagging and NER, and rule-based toponym
refactoring. Speriosu and Baldridge (2013) trained a toponym resolver using
geotagged Wikipedia articles which associates geo- and non-geo-words with
toponyms, and used the trained resolver to disambiguate place names based on
the words in their surrounding contexts. Santos et al. (2015) proposed a machine
learning approach for place name disambiguation which combined multiple learning
features such as the geospatial distances between candidates and other locations in a
document and the textual context where the place references occur. Ju et al. (2016)
combined entity co-occurrence and topic modeling to identify various contextual
clues (i.e., related entities and topical words) to enhance place name disambiguation.
There are also many other place name disambiguation studies that focused on social
media data (e.g., tweets) and leveraged social media specific features, such as social
interactions, location consistency of users, and metadata fields associated with
tweets (Zhang and Gelernter 2014; Awamura et al. 2015; Di Rocco et al. 2016).
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19.2.3 Developed Geoparsers and Tools

A number of software tools have been developed that can recognize and resolve
toponyms from texts. This section provides a discussion on these tools and their
advantages and limitations, with the goal of helping potential users choose the right
tools for their applications. Our discussion is organized into two parts: general NER
tools that can be used for identifying toponyms and specifically designed geoparsers.

General NER tools. Toponym recognition and resolution could be considered as
a subtask of named entity recognition or word sense disambiguation. As a result,
one way to extract place names from texts is to use existing NER tools developed
from the computer science community and to keep only locations in the extracted
entities. As discussed previously, Stanford NER is a tool that has been widely
used for recognizing place names. It is based on CRF and implemented using
Java (Finkel et al. 2005). While possessing the capability of recognizing toponyms
not contained in gazetteers, Stanford NER does not geo-locate the identified place
names to its corresponding geographic coordinates, since it is designed as a general
NER tool. spaCy NER (https://spacy.io/) is an open source tool implemented in
Python. Similar to Stanford NER, it can only recognize toponyms without being
able to link toponyms with their coordinates. DBpedia Spotlight (Mendes et al.
2011; Daiber et al. 2013) and Open Calais (http://www.opencalais.com) are two
general NER tools based on external knowledge bases (e.g., Wikipedia). A major
disadvantage of them is that they can identify only those place names that are
recorded in a knowledge base such as Wikipedia or a gazetteer. An advantage of
DBpedia Spotlight, compared with Stanford NER, is that it links the recognized
place names to the corresponding entities on DBpedia, which enables the geo-
locating of these place names based on their geographic coordinates in DBpedia.
Open Calais, however, does not provide such direct links for the recognized place
names.

Geoparsers. There exist geoparsers specifically designed for the task of recogniz-
ing and resolving place names. Since Stanford NER already provides a strong tool
for toponym recognition, many geoparsers were developed by integrating Stanford
NER with a toponym resolution component. For example, Karimzadeh et al.
(2013) developed GeoTxt, a Web-based geoparsing tool, that leverages Stanford
NER for toponym recognition, and used GeoNames and a set of heuristic rules
for toponym resolution. DeLozier et al. (2015) designed TopoCluster which is
a geoparser that can perform geoparsing without using a gazetteer. They used
Stanford NER to recognize toponyms from texts and then resolve toponyms based
on the geographic profiles of words in the surrounding context. The geographic
profile of a word is the spatial distribution of the word characterized by local
spatial statistics, and (DeLozier et al. 2015) derived geographic profiles of words
using a set of geotagged Wikipedia articles. Cartographic Location And Vicinity
INdexer (CLAVIN) is an open-source geoparser that employs both Stanford NER
and Apache OpenNLP in its different implementations for toponym recognition,
and utilizes a gazetteer and fuzzy search for toponym resolution. Some geoparsers

https://spacy.io/
http://www.opencalais.com
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were developed using their own approaches for toponym recognition. For example,
the Edinburgh Geoparser is a geoparsing system developed by the Language
Technology Group at Edinburgh University (Alex et al. 2015), which used a
software package developed by the same group for toponym recognition. The
toponym resolution step of the Edinburgh Geoparser can be based on different
gazetteers, such as GeoNames and Unlock. There are also commercial geop-
arsers, such as Yahoo PlaceSpotter (https://developer.yahoo.com/boss/geo/docs/
PM_KeyConcepts.html) and Geoparser.io (https://geoparser.io/), which often put
constrains on the number of free API calls that can be requested.

Comparing the performances of geoparsers is often challenging, largely because
of a lack of openly available and human annotated corpora (Monteiro et al. 2016;
Gritta et al. 2018). Some researchers have made great efforts to alleviate this
dearth of open data for testing and training geoparsers. Leidner (2008) contributed
TR-CoNLL which is a human annotated news corpus consisting of about 1,000
international news articles from Reuters and about 6,000 toponyms. Lieberman et al.
(2010) shared a human annotated dataset called Local-Global Lexicon (LGL) cor-
pus, which contains 588 news articles published by 78 local newspapers from highly
ambiguous places, such as Paris News (Texas) and Paris Beacon-News (Illinois). Hu
et al. (2014) contributed a semi-automatically annotated corpus containing textual
descriptions from city websites with two highly ambiguous place names in the U.S.,
namely Washington and Greenville. Gritta et al. (2018) contributed WikToR which
is a corpus of Wikipedia articles with ambiguous names, such as Lima, Peru, Lima,
Ohio, and Lima, Oklahoma, automatically annotated by a Python script. Wallgrün
et al. (2018) published GeoCopora, a dataset of tweets manually annotated using a
crowdsourcing approach based on Amazon’s Mechanical Turk and further verified
by experts. In addition to contemporary corpora, some historical datasets are also
made available, such as War Of The Rebellion by DeLozier et al. (2016). Finally, the
ACE 2005 English SpatialML is an annotated news corpus shared on the Linguistic
Data Consortium (Mani et al. 2008), but it charges a fee ($1,000) for non-members.

19.2.4 Location Inference from Language Modeling

While geoparsers are effective in recognizing and geo-locating toponyms mentioned
in texts, there are situations when place names are not explicitly mentioned in
texts. A variety of language models have been developed for geo-referencing texts
using all the terms present in a document rather than toponyms only (see Purves
et al. 2018, Ch. 4.6 for a comprehensive survey). Approaches vary from developing
machine learning classifiers of document-level location based on word features
(Wing and Baldridge 2011; Adams and Janowicz 2012) to creating more tailored
linguistic models that analyze spatial language (e.g., spatial prepositions, adjectives,
and reference frames) in text in order to identify locations above and beyond place
names (Tenbrink and Kuhn 2011; Stock and Yousaf 2018). The former often utilize
simplistic spatial models, such as regions and geodesic grids, which allows us to

https://developer.yahoo.com/boss/geo/docs/PM_KeyConcepts.html
https://developer.yahoo.com/boss/geo/docs/PM_KeyConcepts.html
https://geoparser.io/
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train predictive classifiers relatively easily on large amounts of data (Roller et al.
2012; Wing and Baldridge 2014; Han et al. 2014). When these classifiers are
trained on words as features, they are usually single-language models; however, a
Unicode character level classifier has been developed that is language independent
(Adams and McKenzie 2018). Linguistic models, in contrast, involve formalisms of
spatial language that attempt to capture the semantics of spatial relations in natural
language discourse. The developed linguistic models can potentially extract spatial
information that is opaque to the other methods, but also make for a more onerous
task when applied to big data. For example, one can differentiate between a locatum
(an object in space) and a relatum (another object that the locatum is related to),
which can be used by a reader in a (geo)spatial scene to orient and locate the
elements described in texts (Bateman et al. 2007). Doing so in an automated manner
requires a full NLP pipeline that can identify parts-of-speech and dependencies
within the texts prior to the spatial analysis (Chen and Manning 2014; Avvenuti et al.
2018). In addition, corpus linguistics research is also relevant to location inference.
Lexical dialectology (the study of dialects through computational means) can be
used to associate specific language features with places on the Earth, which in turn
can be used to improve the models for geo-locating texts (Rahimi et al. 2017; Dunn
2018).

Unlike the geoparsing tools based on toponym resolution that were described
in the previous section, location inference from language modeling is still largely
done on a bespoke basis in the context of individual research projects. Among the
geoparsers listed in the previous section, only TopoCluster (DeLozier et al. 2015)
utilizes language modeling as a significant component in the pipeline.

19.2.5 Summary

This section discusses the main methods and tools developed for harvesting big
geospatial data from natural language texts. We started from geoparsing, one major
approach that collects geospatial data by recognizing and resolving toponyms
mentioned in texts. The geo-located toponyms can be used as a basis for geo-
locating a whole document (Monteiro et al. 2016; Melo and Martins 2017). It is
necessary to differentiate geoparsing, i.e., the task of recognizing and resolving
(potentially colloquial) toponyms from natural language texts, from geocoding in
conventional GIS, i.e., the task of locating formatted addresses (e.g., door number
with a street name) (Goldberg et al. 2008). Both are important in geographic
information science. In addition to geoparsing, we also discussed the harvesting
of geospatial data when toponyms are not explicitly mentioned in texts, through the
use of language modeling via machine learning and linguistic approaches.
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19.3 Applications of Geospatial Data Harvested from Texts

This section discusses some applications that leverage geospatial data harvested
from natural language texts. We will start from understanding human experiences
toward places, move to using near real-time data for situation awareness, and finally
discuss extracting information about place relations in virtual or cognitive spaces.

19.3.1 Understanding Places and Human Experiences

Space and place are two related, but differently conceived concepts in academic
geography. Until recently, quantitative statistical analysis of geographic information
focused almost exclusively on spatial analysis, while place has been a rich subject of
academic study in human geography. Recently with the advent of more geographic
user-generated content being posted online (a.k.a. volunteered geographic informa-
tion or VGI), especially on social media, place has become a subject of increasing
interest for those doing quantitative data-driven research (Elwood et al. 2012; Sui
and DeLyser 2012). In a phenomenological sense, place has often been described as
space engendered with meaning through human experience (either direct or indirect)
(Tuan 1977). Large amounts of unstructured observations of people’s experiences in
text thus provide a new window to investigate this phenomenological perspective on
place, in ways that were previously restricted to smaller scaled humanisitic inquiries.
Multiple kinds of textual analysis have been used on this data to provide these sorts
of insights. Keyword-based, topical, sentiment, and emotion analyses all provide
different ways to generalize about multiple human experiences (cf. Mei et al. (2006);
Hollenstein and Purves (2010); Chon et al. (2012); Adams and McKenzie (2013);
Adams (2015); Ballatore and Adams (2015); Doytsher et al. (2017)). Apart from
providing better understanding of place in a generic sense, analysis of big-geo
data to understand place has been used for a variety of applications, including
tourism (Hao et al. 2010; Xiang et al. 2015; Rahmani et al. 2018; McKenzie and
Adams 2018), urban research (Cranshaw and Yano 2010; Campagna 2014; van
Weerdenburg et al. 2019), political science (Bastos et al. 2014), public health (Ghosh
and Guha 2013), marketing (Caverlee et al. 2013), and sociolinguistic research
(Eisenstein et al. 2010).

Another domain where place-based geospatial data harvested from texts is
increasingly being used is the digital (geospatial) humanities (Bodenhamer et al.
2010). Geospatial information that is buried in massive collections in libraries
and online has been seen as a goldmine for spatial historical and literary analysis
(Gregory et al. 2015). Historical datasets pose unique challenges, however, as many
geoparsing tools are built on gazetteers of modern place names, and therefore
custom solutions are often required to automatically extract geographic information
from historical texts (Rupp et al. 2013). In this context, historical gazetteers,
such as Pleiades (https://pleiades.stoa.org) and World-Historical Gazetteer (http://

https://pleiades.stoa.org
http://whgazetteer.org
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whgazetteer.org), have been developed to provide services for finding and using
information related to ancient places. In addition to supporting direct analysis,
geospatial data can be extracted from the various documents used in humanities to
build spatial indices which provide an alternative way of exploring textual content
from a geographic perspective (McCurley 2001; Purves et al. 2007; Adams et al.
2015).

19.3.2 Situation Awareness for Emergency Response

Emergency response applications usually need real-time data about the situations on
the ground. A lot of such data comes in the form of natural language text. Examples
include social media posts, short text messages, texts converted from phone calls (or
voice messages), and news reports sent by the journalists at emergency scenes. After
an emergency, information from different sources often flood into the emergency
operations center, overwhelming first responders. Accordingly, automated methods
and tools become very useful for extracting location information (e.g., who needs
help at which location) from massive amounts of data.

Many studies have used geospatial data harvested from texts for emergency
responses. Social media data, especially Twitter data, has been widely utilized
by many researchers (Tsou 2015; Haworth and Bruce 2015). For example,
De Longueville et al. (2009) investigated the spatial, temporal, and social dynamics
of tweets during a major forest fire in the South of France in 2009. Crooks et al.
(2013) examined the spatial and temporal characteristics of tweets after a 5.8
magnitude earthquake occurred on the East Coast of the US in 2011. Nagar et al.
(2014) used daily geotagged tweets in NYC to investigate the spatiotemporal
tweeting behavior related to influenza-like illness (ILI). Although a small percentage
of tweets are already geotagged (about 1–2%), it is estimated that more than
10% tweets contain place references in their texts (Wallgrün et al. 2018). Thus,
researchers also focused on extracting place reference information from the textual
content of tweets. For example, MacEachren et al. (2011) developed SensePlace2,
a visual analytics system that supports the space-time-theme exploration of Twitter
data for situation awareness and crisis management. In SensePlace2, the researchers
differentiated tweets from (i.e., geotagged location) and tweets about (i.e., the
locations mentioned in tweet content). Gelernter and Balaji (2013) proposed
an algorithm for extracting place names in various forms, such as abbreviated,
misspelled, or highly localized names, from the content of tweets posted after
the 2011 earthquake in Christchurch, New Zealand. Issa et al. (2017) studied the
spatial diffusion of tweets about flu in four different cities using both geotagged
and non-geotagged tweets. In addition to social media, news articles were also used
by researchers to understand the situations related to natural hazards. For example,
Wang and Stewart (2015) examined the impact of Hurricane Sandy by extracting
place names, timestamps, and emergency information (e.g., power failure) from the
news texts.

http://whgazetteer.org
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Fig. 19.2 A possible GUI of an information system for using the spatial, temporal, and textual
information harvested from tweets for situation awareness using an example of Hurricane Irma

To give an intuitive idea of using social media data for situation awareness,
we show a possible graphic user interface (GUI) of an information system in
Figure 19.2 based on a sample of tweets collected during Hurricane Irma in
September 2017. In this user interface, the main map shows the current and
predicted trajectory of the hurricane and its impact area. The locations of geotagged
tweets are visualized on the ground (one can also visualize the locations mentioned
in the content of tweets using an approach by MacEachren et al. 2011). The bar
chart at the bottom shows the tweeting intensities on different days. In the case of
Hurricane Irma, most tweets were made between September 9th and 11th when Irma
made Florida landfall and moved inland. On the left side of the interface, a user can
pick three specific days and examine the intensities and geographic distributions of
the tweets on those days. On the right side, three word clouds summarize the main
topics of the tweets in three different time periods. In the case of Hurricane Irma,
the tweets were summarized based on the periods of before, during, and after Irma.
As can be seen, there were many words related to preparation and evacuation before
the hurricane, and words about winds, rain, and trees were seen frequently during
the event; and after the hurricane, the frequent words were about disaster damage
and relief. Such information collected from social media and processed in a near
real-time manner can help support the decision makings of emergency responders.
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19.3.3 Place Relations in Virtual or Cognitive Space

Another special and valuable sort of geospatial information captured by texts is
the relationships between places in virtual or cognitive space. Most traditional
geographic datasets are organized based on spatial proximity. For example, we may
have a dataset of land parcels located in the same geographic region. By contrast,
texts, such as Web pages, social media posts, and news articles, can mention
multiple places that are far apart and even in global scale, thereby relating these
places together, often representing social, economic, and historical relationships that
are non-spatially determined (Adams 2018). Place name co-occurrences, thus, are
often considered as evidence for these sorts of place relations (Hecht and Raubal
2008; Twaroch et al. 2009; Ballatore et al. 2014; Liu et al. 2014; Spitz et al.
2016). Depending on application needs, different textual contexts, such as sentences,
paragraphs, and even entire articles, can be used for determining place name co-
occurrences. Place relations can also be established via hyperlinks, such as those in
Wikipedia articles and other Web pages.

Places can be related together in texts for a variety of reasons. News articles can
report different events that involve multiple places: a sports team may travel from
their hometown to another city for a game; a company based in one country may
establish a new branch office in another country (Toly et al. 2012; Sassen 2016);
a natural disaster, such as hurricane and flooding, can impact multiple cities and
towns. In addition, Wikipedia pages and online blogs can discuss the similarities
and dissimilarities of two places in terms of their climates, populations, geographic
locations, and other aspects. In social media posts, people can talk and compare
the life styles, food, and cultures in different places. In today’s digital society
empowered by information and communication technologies, a majority of places
are interlinked together in the virtual or cyberspace, forming place networks (Taylor
and Derudder 2015; Shaw et al. 2016). As a result, big geospatial data harvested
from natural language texts provide one important source for understanding the
diverse and dynamic place relations in the virtual space, as well as the those
perceived by people, i.e., the relations in cognitive space.

Many studies have examined place relations using different types of texts. Hecht
and Moxley (2009) conducted an early study on place relations using hyperlinks
in Wikipedia pages, and found that nearby places are more likely to have relations
than distant ones, although places far away can still have relations. Liu et al. (2014)
examined place name co-occurrences in a set of news articles, and found that place
relatedness in news articles has a weaker distance decay effect compared with those
derived from human movements. Zhong et al. (2017) also looked into place name
co-occurrences in news articles, and concluded that places are more likely to be
related if they are in the same administrative level or have a part-whole relation
(e.g., Seattle is part of Washington State). Salvini and Fabrikant (2016) analyzed
place name co-occurrences in Wikipedia pages and examined the semantics of place
relations via the categories of Wikipedia pages. Also based on the co-occurrences
of place names in Wikipedia articles, Spitz et al. (2016) constructed toponym



500 Y. Hu and B. Adams

Fig. 19.3 Relations of places under different semantic topics extracted from a corpus of news
articles from The Guardian

networks for place name disambiguation. Adams and Gahegan (2016) performed
spatio-temporal (chronotopic) analysis on Wikipedia corpus by analyzing the co-
occurrences of places and times in texts to understand the intrinsic relations between
place, space, and time in narrative texts. Hu et al. (2017) examined place name co-
occurrences in news articles, and employed a topic modeling approach to annotate
the semantic topics of place relations. Figure 19.3 shows the relations of places
extracted from a corpus of The Guardian newspapers under different semantic
topics, as discussed in Hu et al. (2017). As can be seen, places can have different
strengths of relations under different semantic topics and thus different position
prominence in the place networks: Washington DC plays a much more important
role under the topic of Politics than under the topic of Science and Technology; by
contrast, San Francisco has a largely increased prominence in the network under the
topic of Science and Technology compared with its role under the topic of Politics.

19.4 Summary and Future Directions

Geospatial data exist in various types of natural language texts, such as news articles,
social media posts, Wikipedia pages, travel blogs, historical archives, housing
advertisements, and so forth. Many of these data sources provide large amounts
of data (e.g., millions or even billions of social media posts) which are constantly
increasing as the time goes by. As a result, it becomes possible to harvest big
geospatial data from natural language texts. Compared with the data from more
conventional sources, such as the USGS and the US Census, geospatial data from
texts capture valuable human experiences toward places, provide near real-time
information after a disaster, and record place relations in virtual and cognitive
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spaces. In this chapter, we discussed the methods and tools that can be used for
harvesting geospatial data from texts. Geoparsing is a major approach that can
extract structured geographic information from unstructured texts by recognizing
and resolving the place names mentioned in texts. When toponyms are not explicitly
contained in texts, other approaches based on language modeling can help us derive
geographic information from texts.

A number of research directions can be pursued in the near future. For toponym
recognition, the performances of existing approaches still vary depending on the
tested datasets. Advancements in deep learning, such as bidirectional recurrent
neural networks, can help increase the accuracy of recognizing place names from
texts. New NLP methods may also help better identify the metonymies used in the
texts. For toponym resolution, most approaches currently still resolve place names
only to point-based locations, and there are rivers, countries, and other geographic
features whose spatial footprints can be better represented as polylines, polygons,
and even polyhedras (in a 3D space). In addition, although a number of geoparsers
exist, it is difficult to directly compare the performances of these geoparsers. One
reason is a lack of open and annotated corpora. Although researchers have started
to address this issue in recent years, it still takes a considerable amount of time and
effort to implement existing baselines and run them against common datasets. Thus,
a benchmarking platform, such as EUPEG (Wang and Hu 2019), could be helpful for
comparing and evaluating geoparsers. From a perspective of applications, while this
chapter has highlighted the use of geospatial data from texts in studies about place,
digital humanities, situation awareness, and place relations, other applications are
waiting to be explored and examined in the near future.
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Chapter 20
Automating Information Extraction
from Large Historical Topographic
Map Archives: New Opportunities
and Challenges

Johannes H. Uhl and Weiwei Duan

20.1 Introduction

Map processing, or information extraction from map documents, is a branch of
document analysis that focuses on developing methods for the extraction and the
recognition of information in scanned map documents. Map processing is an inter-
disciplinary field that combines elements of computer vision, pattern recognition,
geographic information science, cartography, and geoinformatics. The main goal of
map processing is to unlock spatial (and spatio-temporal) information from scanned
map documents and to provide this information in digital, machine-readable data
formats to preserve the information digitally and to facilitate the use of these data for
analytical purposes (Chiang et al. 2014). Earth observation via space and airborne
remote sensors in a systematically operational manner has been conducted since
the early 1970s. Hence, for earlier time periods, there is little digital information
available about the dynamics of features at the earth surface, such as the evolution
of human settlements, changes in land cover and land use, or the development of
transportation networks. Thus, map processing typically focuses on the development
of information extraction methods from map documents or engineering drawings
created prior to the era of digital cartography.

Traditional information extraction from map documents includes the steps of
recognition (i.e., identifying objects in a scanned map such as groups of contiguous
pixels with homogeneous semantic meaning), and extraction as a subsequent step
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of transferring these objects into a machine-readable format (e.g., through vector-
ization). The application of methods from pattern recognition or computer vision to
map documents often constitutes additional challenges as compared to traditional
document analysis due to low graphical quality and complex, human-made map
content (e.g., overlapping cartographic symbols). Map processing typically involves
an image segmentation step, and subsequent recognition and extraction procedures
(Chiang et al. 2014).

Whereas image segmentation partitions a digital image into groups of homo-
geneous characteristics such as color or texture, the recognition of objects (i.e.,
obtaining the semantics for the created segments) in classical map processing
include threshold-based methods (e.g., Iosifescu et al. 2016), or template matching
based on (typically manually) generated templates of the cartographic symbol of
interest. Template matching can be based on shape descriptors, cross-correlation
measures or based on feature descriptors. Furthermore, morphological operations
can be applied to filter out irrelevant map content based on a previously created
segmentation. For the detection of linear features, methods such as Hough transform
have been employed (Yamada et al. 1993). Optical Character Recognition (OCR)
techniques have been successfully applied for text recognition in map documents
(Chiang et al. 2014). Moreover, contextual reasoning methods have been employed
for recognition tasks by taking into account map content in spatial proximity
of an object or by considering spatial relationships to already recognized map
features (e.g., Gamba and Mecocci 1999). Malerba et al. (2001) propose an
inductive machine learning approach for automated map interpretation, involving
user-defined spatial, topological, and semantic rules. In these approaches, once the
semantic meaning of a map segment is recognized, the segment can be extracted by
registering its location or shape typically in a geospatial vector data format. At this
stage, common vectorization techniques are typically employed. Here, it is worth
noting that approaches tackling the digitization and recognition of black-and-white
documents such as cadastral maps or floorplans are typically in an inverted order,
i.e., recognition takes place in a previously vectorized version of the document.

Exemplary applications of map processing techniques applied to topographic
maps include the extraction of buildings (Miyoshi et al. 2004; Laycock et al. 2011;
Arteaga 2013), of road networks (Chiang et al. 2011), of contour lines (Miao
et al. 2016), of composite forest symbols (Leyk and Boesch 2008), the recognition
of text (Chiang et al. 2014) as well as the digitization of cadastral maps (e.g.,
Katona and Hudra 1999). Chiang et al. (2014) and Liu et al. (2019) provide useful
overviews on existing traditional methods and applications in map processing.
Whereas most existing approaches are either based on map-specific thresholds and
have been developed and tested on a limited number of individual maps, the lack of
flexibility and a relatively high degree of user interaction required for many of those
approaches did not constitute a major shortcoming.

However, three recent developments are expected to considerably change the
field of map processing in the near future: (a) There is an increased availability
of large map collections holding thousands of map documents as digital and
georeferenced archives and thus, there is an urgent demand to reduce or even
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Fig. 20.1 Overview of a possible workflow for automated information extraction from historical
topographic map archives, highlighting exemplary methods and approaches for each step

eliminate user interaction in information extraction from such large and potentially
heterogeneous amounts of data. (b) Advances in (deep) machine learning for
information extraction from geospatial data, e.g., remotely sensed earth observation
data (see Ball et al. 2017 for an overview) naturally project into the idea of similar
applications for scanned map documents, such as the use of Convolutional Neural
Networks (CNN). (c) Increasingly public availability of geospatial data of high
spatial, temporal, and semantic granularity potentially provides new sources of
ancillary data to be employed in automated information extraction methods based
on multi-source data integration.

These trends constitute new challenges, but also opportunities for the field of
map processing and have catalyzed the development of several new approaches
tackling these challenges. In this contribution, we give an overview on these
developments. More specifically, we provide a brief overview on existing, and
publicly available large digital map archives (Sect. 20.2), on explorative methods
and innovative preprocessing techniques (Sect. 20.3), and we provide a review
of recently developed advanced methods suitable for automated recognition and
extraction of information large amounts of map documents (Sect. 20.4). Figure 20.1
shows a typical workflow including preprocessing, automated training data gener-
ation, recognition, and extraction steps and highlights some exemplary approaches
for each step, as discussed in Sects. 20.3 and 20.4.

20.2 Digital Historical Map Archives

Recently, several efforts have been conducted in order to make large amounts of
historical map documents available to the public. Some examples are the United
States Geological Survey (USGS), that scanned and georeferenced approx. 200,000
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topographic maps published between 1884 and 2006 at multiple cartographic scales
between 1:24,000 and 1:250,000 (Fishburn et al. 2017) and the Sanborn fire insur-
ance map collection maintained by the U.S. Library of Congress, which contains
approximately 700,000 sheets of large-scale maps of approximately 12,000 cities
and towns within the U.S., Canada, Mexico, and Cuba, out of which approximately
25,000 map sheets from over 3,000 cities have been published as scanned map
documents (U.S. Library of Congress 2018a,b,c). Moreover, the National Library
of Scotland scanned and georeferenced more than 200,000 topographic maps from
the United Kingdom dating back to the 1840s and offers many of them as seamless
georeferenced raster layers (National Library of Scotland 2018a,b). The national
cartographic agency of Switzerland Swisstopo scanned and georeferenced approxi-
mately 52,000 printed and hand-made historical topographic maps from Switzerland
dating back to 1840 (Swisstopo 2018a), available as a seamless raster layer as well
(Swisstopo 2018b). David Rumsey Map Center at the Stanford University Library
published more than 88,000 historical maps from different regions online (Stanford
University Library – David Rumsey Map Center 2018).The web map portal Mapire
(Biszak et al. 2017) holds large amounts of historical topographic and cadastral
maps covering many countries in Europe of the nineteenth century, which have
been reprojected into a common, modern spatial reference system and are accessible
online (Mapire 2018). Other efforts include the web portals “Old Maps Online”1 and
“PAHAR”.2 Moreover, there are efforts to digitize large amounts of cartographic
and other historical documents (e.g., cadastral maps) of the city of Venice (Italy)
covering large periods of time (Abbott 2017). Figure 20.2 exemplarily shows a time

Fig. 20.2 USGS topographic maps at a cartographic scale of 1:24,000 covering Boulder, Colorado
(USA), from 1904 to 2013. (Source: adapted from Uhl et al. 2018)

1www.oldmapsonline.org
2 Pahar – the Mountains of Central Asia Digital Dataset: http://pahar.in

www.oldmapsonline.org
http://pahar.in
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series of USGS topographic maps documenting the evolution of Boulder, Colorado
(USA) between 1904 and 2013.

20.3 Preprocessing Methods

In order to extract geospatial information from large digital map archives, optimally,
several conditions should be satisfied: (a) The scanned map documents are stored as
georeferenced digital images, (b) the level of accuracy of the georeference allows
for the spatial alignment of the map content between maps and to geospatial data
from different sources, such as contemporary geospatial vector data, at sufficiently
high spatial accuracy, and (c) the user (i.e., the developer of map information
extraction techniques) is informed about the approximate content of the map archive
(e.g., map content heterogeneity such as inconsistent symbology due to changes in
cartographic design over time), and is aware of the georeference accuracy of the
map documents contained in an archive. This section gives an overview on existing
methods regarding the described issues.

20.3.1 Automated Georeferencing

Preprocessing steps of map processing procedures typically include the automation
of the georeferencing process of scanned map documents. This is particularly
important regarding the overlay of the scanned maps and other georeferenced data
and for the extraction of geospatial vector data in a world coordinate system.
Existing approaches for automated georeferencing can be grouped into two main
categories: Metadata-based approaches and matching-based approaches.

Metadata-based approaches aim to locate features in a scanned map that allow
for georeferencing the map using an ancillary metadata source. Such approaches
are suitable for map collections organized systematically in quadrangles, such as the
USGS topographic map archive. In such cases, map sheet corners or graticule marks
correspond to apriori known coordinates that can be identified and located using
morphological operations, as proposed by Herold et al. (2011) who, additionally,
use a multilayer perceptron to automatically extract the map sheet number from the
scanned map document. Based on the map sheet number, corner coordinates of the
quadrangle corresponding to the map sheet can be obtained from a metadata source,3

see Uhl et al. (2019). Burt et al. (2019) developed a software tool facilitating
the georeferencing process of scanned USGS topographic maps by searching for
perpendicular linear intersections in the scanned map document in order to locate

3Metadata for the USGS topographic map archive is available under https://thor-f5.er.usgs.gov/
ngtoc/metadata/misc

https://thor-f5.er.usgs.gov/ngtoc/metadata/misc
https://thor-f5.er.usgs.gov/ngtoc/metadata/misc
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the graticule marks. More recently, Dong et al. (2018) use a CNN to locate map
corner points, using a CNN trained on image patches of map corner points generated
from manually georeferenced maps. Based on the image coordinates of identified
map corners and graticule marks, and the corresponding world coordinates of these
locations obtained or derived from the metadata, the scanned image can be warped
into the target reference system.

Matching-based approaches make use of independent, geospatial ancillary data
sources and typically aim to find identical locations in the georeferenced ancillary
data and the scanned map in order to obtain transformation parameters allowing
for (co)registering the map document in a world coordinate system. There are two
types of matching-based approaches: Geometric matching is based exclusively on
geometric similarities between map content and ancillary data (vector or raster data)
and typically make use of conflation techniques (Saalfeld 1988) or point pattern
matching techniques (Li and Briggs 2006, 2012). In this context, Saeedimoghaddam
and Stepinski (2020) propose and evaluate the use of deep CNNs for the detection of
road intersections in historical topographic maps. The detected road intersections,
as an example, can then be used for co-registering the underlying map with ancillary
geospatial road network data.

Geometric matching is opposed to semantic matching, which involves the
extraction of semantic information from the scanned map prior to the co-registration
step. This semantic information is then geocoded using gazetteers or other spatial
databases. For example, Weinman (2013) use a spatial toponym database (i.e., a
database containing geographic names and corresponding geolocations) and extract
text contained in scanned maps using OCR to georeference the maps. The extracted
map text elements are matched to the toponym database, and outlier detection is
used to find the matches most likely to be correct in order to establish geometric
transformation rules between image and world coordinates. In Weinman (2017) this
approach has been refined by employing a CNN for text recognition, by taking
into account cartographic labeling styles, and by including probabilistic models
to estimate the correct map projection based on toponym locations. A similar
approach has been proposed by Tavakkol et al. (2019), who make use of cloud-based
services for both, the text recognition step and the geocoding step. While geometric
matching has widely been used in the past, semantic matching has become popular
in recent years, catalyzed by the increasing availability of web-based gazetteers and
geocoding infrastructures.

20.3.2 Spatial Data Alignment

It is well-known that scanned map documents are affected by several kinds of
geometric distortions, introduced by deformations of the paper caused by humidity
or heat, by scanner miscalibration, cartographic generalization and displacement for
better map readability, and by inaccuracies in the underlying topographic measure-
ments or the cartographic projection used (Kaim et al. 2014). For these reasons,
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scanned and georeferenced (historical) map documents rarely align perfectly to
contemporary geospatial vector data, since transformation rules warping image to
world coordinates often do not account for the inherent (and typically unknown)
map distortions. However, such spatial alignment is necessary for certain automated
procedures involving spatial ancillary data, typically in vector format, as described
in the subsequent sections.

Thus, recently, several methods have been developed to improve spatial align-
ment between scanned map documents and geospatial ancillary data. Duan et al.
(2017, 2020) apply systematic shifts to vector data in order to find the optimum
alignment to underlying linear cartographic symbols of interest using a customized
decision making approach, and Reinforcement Learning, respectively, requiring a
minimum degree of user interaction. Uhl et al. (2017) use metadata available for
the USGS map archive to extract the transformation parameters used to warp each
individual map sheet and apply the same transformation to vector data covering the
map extent in order to improve spatial alignment between objects in an individual
georeferenced map and the corresponding vector data. Moreover, the automatic
alignment of geospatial vector data, such as cadastral or road network data to aerial
imagery is an active research field (e.g., Song et al. 2013; Ruiz-Lendínez et al. 2019),
that potentially can be applied to scanned map documents as well.

20.3.3 Exploratory Methods

Exploratory methods in the context of large map document archives may be applied
at two levels: (a) metadata level and (b) content level. Uhl et al. (2018) present
a framework to visually-analytically explore the map archive based on metadata
and low-level image descriptors: In their approach, ground control point coordinate
pairs reported in USGS topographic map archive metadata are used to reconstruct
and visualize the distortions applied to the scanned map image during warping,
allowing for fast identification of potentially inaccurately georeferenced map sheets
(Fig. 20.3).

Furthermore, Uhl et al. (2018) use ancillary geospatial data representing settle-
ment locations to extract samples of settlement signatures across large amounts of
topographic maps. For these collected samples, multidimensional feature descrip-
tors based on color moments Huang et al. (2010) are computed and visualized in
a low-dimensional space using t-SNE dimensionality reduction Maaten and Hinton
(2008), as shown in Fig. 20.4.

Moreover, Zhou et al. (2018) present an approach employing CNNs for the
classification of map types, which may be useful to explore the content in and across
heterogeneous digital map collections.
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Fig. 20.3 Displacement vector field at GCP locations over multiple USGS map quadrangles of
scale 1:24,000, located Northwest of Denver (Colorado), reflecting different types of distortions
introduced to the map documents during the georeferencing process. (Source: Uhl et al. 2018)

Fig. 20.4 Samples of urban settlement symbols collected across 50 maps from the USGS
topographic map archive, visualized in a two-dimensional t-SNE space using low-level image
descriptors. (Source: Uhl et al. 2018)
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20.4 Automated Map Content Recognition and Extraction

Most existing approaches for content extraction from historical maps still require a
certain degree of user interaction to ensure acceptable extraction performance for
individual map sheets. To overcome this persistent limitation, several approaches
have been proposed, such as the application of deep learning models in combination
with automated training data generation, and the creation of benchmark datasets for
pretraining and method evaluation. This section aims to give a brief overview on
these advanced efforts.

20.4.1 Training Data Collection

Artificial intelligence methods such as deep convolutional neural networks typically
require large amounts of training data. In order to overcome manual training data
generation, spatial ancillary data can be employed.

The use of contemporary geospatial data as ancillary information to facilitate
map processing tasks has recently received some attention (Hurni et al. 2013; Tsor-
lini et al. 2014; Leyk and Chiang 2016). In these approaches, ancillary geographic
information that contains the feature of interest such as gazetteers or other map
series for guided graphics sampling in training a recognition model (Chiang and
Leyk 2015; Chiang et al. 2016; Yu et al. 2016). For example, it can be assumed that
many building symbols in a historical map spatially overlap or are in close proximity
to building objects in a contemporary geographic dataset. Thus, sampling nearby
the contemporary building objects enables a system to collect graphic examples
of building symbology in historical maps, thus creating highquality training data
at image patch-level. Uhl et al. (2019) automatically collect training data using an
unsupervised rule-based system involving scale-invariant feature transform (SIFT,
Lowe 1999) keypoint detection to center the collected samples at the feature of
interest to improve training data quality and feature extraction results and employ
Local Binary Pattern (Ojala et al. 2002) feature embedding in combination with
unsupervised clustering methods to automatically generate reliable training labels.
In order to increase the number of training samples, Li (2019) proposes the use of
Generative Adversarial Networks to generate synthetic training samples of historical
maps, generated from contemporary online map services.

Moreover, training and benchmark datasets tailored to machine learning tasks
applied to map processing have been published: Ray et al. (2018) published a
dataset containing annotated text samples collected from historical maps for text
detection and recognition purposes. In Zhou et al. (2018), a dataset called “deep-
map” is used to train a CNN for map type classification tasks. Useful for information
extraction approaches from floor plans is the LIFULL HOME’s dataset containing
large amounts of labelled floor plan images (Kiyota 2018).
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20.4.2 Recognition and Extraction Methods

Recognition methods in map processing that are suitable to extract information from
large and heterogeneous map collections mainly need to comply two criteria: (a)
They need to be capable to solve complex classification problems on heterogeneous
and often noisy data, and (b) they need to work in an automated manner minimizing
user interaction. According to VoPham et al. (2018), information extraction from
map documents is considered a key challenge in geospatial artificial intelligence
(AI) applications.

Budig and Van Dijk (2015) and Budig et al. (2016a) propose the use of
active learning and similar interactive concepts for more efficient recognition of
cartographic symbols in historical maps, whereas Budig et al. (2016b) examine the
usefulness of crowdsourcing for the same purpose. In addition to that, automated
large-scale generation of training data based on ancillary geospatial data gives way
to the application of deep learning techniques for recognition and detection tasks.
For example, Uhl et al. (2019, 2017, 2018); Uhl (2019) collect large amounts of
settlement symbol training data in order to train a CNN in a weakly supervised
manner for the recognition of settlement symbols in USGS maps, based on auto-
matically collected and labelled training data using geospatial ancillary data. Such
approaches allow to combine the traditionally separated processes of segmentation
and recognition into a single, integrated process: semantic segmentation. These
CNN-based models assign semantic labels to each pixel of an input image and
have shown impressive performance in computer vision tasks in recent years. Duan
et al. (2018) and Chiang et al. (2020) test the performance of state-of-the-art CNN
models (i.e., Long et al. Long et al. 2015) and DilatedNet (Yu and Koltun 2015)
for the recognition of several linear geographic features from USGS historical
topographic maps. The employed CNN models require pixel-level training data,
which was generated automatically using contemporary geospatial vector data (i.e.,
railroad and waterline network data) automatically aligned to the corresponding
map symbols. Heitzler and Hurni (2019, 2020) use an ensemble of U-Net CNNs
(Ronneberger et al. 2015) to extract building footprints from historical topographic
maps from Switzerland, based on manually digitized training data, and followed
by a vectorization method that includes geometric refinement of the semantic
segmentation results. Moreover, Uhl (2019) uses a trained VGGNet-16 (Simonyan
and Zisserman 2014) in combination with unsupervised (color-based) image seg-
mentation. These so-called “superpixels” obtained through color segmentation are
used as analytical units to which CNN-based semantic predictions are referred (see
Fig. 20.5 for an example).

Li et al. (2018) propose a framework for “topographic map understanding” that
uses a CNN to (a) localize text elements in map documents, (b) employs a pretrained
OCR engine for text recognition, and (c) compares the recognized text to a gazetteer
containing spatially referenced geographic names in order to understand the map
content. The manually collected training data to train the CNN in step (a) was
augmented, e.g., by adding additional rotations. In the specific case of information
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No building
Single building
Urban area

a b

Fig. 20.5 Preliminary results for superpixel-based extraction of settlement features from historical
topographic maps using VGGNet-16: (a) USGS topographic map from Boulder (Colorado) from
1960, and (b) extracted superpixels with semantic attributes inferred from the trained CNN.
(Source: Uhl 2019; Chiang et al. 2020)

extraction from cadastral maps, which differ significantly from topographic maps in
content and symbology, Ignjatić et al. (2018) provide an overview on deep learning
methods applied to cadastral maps.

Ares Oliveira et al. (2017) use a CNN in combination with unsupervised segmen-
tation for the extraction and recognition of cadastral parcels and handwritten digits
in historical cadastral maps. Worth mentioning here is also the work of Karabork
et al. (2008) that use artificial neural networks, and of Liu et al. (2017) that employ
a CNN for the vectorization of cadastral maps or floor plans, respectively. Typically,
the results of the discussed recognition methods are subsequently vectorized (i.e.,
converted into geospatial vector data) to be used in analytical environments such as
Geographic Information Systems.

20.5 Conclusions and Outlook

Herein, we presented an overview on recent developments towards automated
information extraction from large digital archives of historical map documents.
Recent advances in deep learning, the increasing public accessibility of large
amounts of scanned and often georeferenced map documents represents new
opportunities for unlocking spatial-temporal information about the past and thus,
preserving the information contained in such historical documents. Such extracted,
analysis-ready historical datasets allow for quantitative retrospective analysis of
spatio-temporal geographic processes, relevant to many scientific disciplines, but
also provide baseline information for data-driven future projections of the processes
of interest.

However, the described recent developments also constitute new challenges to the
scientific community, such as the need for versatile and robust recognition methods,
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approaches for automated and reliable training data generation, and methods for
automated spatial alignment between map documents and contemporary geospatial
data, being able to handle the complexity of human-made map content in an
effective and efficient manner. The complexity of human-made map content, and
the resulting sparsity of training data often impede the straightforward application
of state-of-the-art information extraction methods. Nevertheless, the presented
efforts illustrate impressively the ongoing transformation of the field of map
processing towards a data-driven discipline involving artificial intelligence, cloud-
based services, and multi-source data integration.
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Chapter 21
The Integration of Decision Maker’s
Requirements to Develop a Spatial Data
Warehouse

Sana Ezzedine, Sami Yassine Turki, and Sami Faiz

21.1 Introduction

Nowadays, technologies such as positioning systems and Internet make it easier to
produce and access to geographic information. During the recent years, this fact
led to an increasing availability of diverse, heterogeneous and distributed spatial
data sources. Those sources contain information collected at different times and use
different techniques to aliment spatial data warehouses (SDWs) . The specificities
of the SDWs are: (1) The nature of the spatial data requires taking into account
possible incompatibilities: the spatial reference (position, shape, orientation, size),
the reference systems, in the measure units, the spatial uncertainty, the precision,
the size, etc. (2) Other elements to be considered in a warehouse of spatial data: the
topology, the spatial integrity constraints, the consistency between scales, etc.

The architecture of a SDW is divided on five layers (Rifaie et al. 2009): The first
layer consists on the gathring of data sources: external and internal ones.

Internal data is captured and maintained by operational systems inside an
organization and external data refers to those that originate outside an organization.

The second one is the integration of heterogeneous data using the Extract
Transformation Loading (ETL).

Extraction is the process of identifying and collecting relevant data from different
sources. These data will go through the transformation and the cleansing process.
Transformation is the process of converting data using a set of business rules (such
as aggregation functions) into consistent formats for reporting and analysis. At last
the data in staging area are loaded into target repository.
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The third layer defines the structure of the multidimensional model related to a
SDW; in this layer the facts that contain the business metrics (i.e. measures) and the
dimensions which describe the facts and their contexts are described. The next layer
is the customization layer that encourages the construction of a preaggregate data
cube for the different analysis tools.

The last layer is the application layer which defines the applications used by
the decision maker. Tt is based on (OLAP), Data Mining, reporting tools and other
techniques.

To design a Spatial Data Warehouse (SDW), many approaches were proposed in
the literature. These approaches did not propose a standard framework and did not
integrate spatial and non-spatial the decision maker’s (DM) requirements to design
and to implement a SDW. Bimonte et al. integrated spatial information and ensured
correct aggregation over spatial measures (Bimonte et al. 2008). A multidimensional
analysis tool was defined by another work which modeled spatial data in a SDW
(Gomez et al. 2007; Malinowski and Zimanyi 2007). Alternatively, the authors (Da
Silva et al. 2007) defined a query language that allowed the use of multidimensional,
spatial and topological operators such as GeoMDQL (Rivest et al. 2009). Not all
these approaches defined transformations between the conceptual level of an SDW
and its implementation. Moreover, they did not suggest an automatic transformation
from the SDW design to the possible implementation representation. Furthermore,
they did not integrate spatial requirements of a group of DMs.

To overcome these limitations, most approaches use the standard framework,
the Model Driven Architecture (MDA). MDA separates independent models and
platform-specific models using transformation techniques. Glorio and Trujillo
(2008) proposed an alignment of multidimensional spatial model with MDA. To
design an SDW, the second MDA model, the platform independent model (PIM) is
used. (Glorio and Trujillo 2009) extended this approach to include spatial data in
the SDW design level. They define the geographical queries of DMs independently
of the implementation presentation. Mazon and Trujillo (2009) defined some spatial
elements describing the top DMs goals and aims. To model both spatial and non
spatial data in the SDW design, Fidalgo and Cuzzocrea (2012) used a case tool
based on unified modeling language (UML) standard and propose to generate
automatically the data and the analysis models. They focused on the use of
transformations based on MDA.

These approaches outline some limits since they do not consider all the spatial
specifications of DMs such as topological relationships, projection mode, spatial
presentation and other DM’s requirements. Furthermore, the different presented
conceptual models in the literature are lacking the integration of all DMs’ spatial
requirements in the SDW design.

The present work offers a new approach that takes into account the principal
DM’s requirements. This approach defines multiple schemas, which are appropriate
to DMs to design and implementation of the SDW.

To reach this finality, four main steps are to be followed: the first one is to identify
requirements’ models containing an outline of published user’s profile models and
spatial needs collected from Geographic metadata. The second step is to classify
these models into clusters using an appropriate algorithm. The third step is to use
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the MDA to present requirement elements to design a SDW. The last one is to pass
from the design model to the implementation model using rules.

This chapter is organized as follows: in Sect. 21.2, the authors describe the
existing approaches in the literature. In Sect. 21.3, they state the main steps of
the approach. In Sect. 21.3, they define the first model presenting requirements.
They describe the extended clustering algorithm in Sect. 21.4. In Sect. 21.5, this
work presents the conceptual model with the formal design model and the most
relevant transformations between the requirements’ model and the design one of the
SDW. In Sect. 21.6, the authors define the implementation model. Then, they present
transformations between the SDW design model and the implementation model. In
addition, the experimentation is described, and the proposed approach is illustrated
through a case study dealing with the design and the implementation of a SDW in
a relational platform. The SDW is related to a sales manager. Finally, the authors
draw their conclusion and projects on the future work.

21.2 Overview of the Existing Approaches

The methods, proposed in the literature, to design an SDW are not standard and do
not take into account of all needs and profiles of the DMs.

The Table 21.1 present the approaches proposed to integrate the spatial context
in a Data Warehouse (DW).

A set of solutions are presented in Table 21.2 to overcome the limits described in
Table 21.1. The approaches have some disadvantages that the authors try to remedy
in their proposal.

The proposed approaches do not take into account spatial and non-spatial DM’s
requirements of a SDW. Add to that, they do not supply a personalized SDW to
every DM. Consequently, the multidimensional design model is very general and
does not introduce the spatial requirements and the DM profile.

21.3 Overview of the Proposal

Several approaches provide conceptual models in order to obtain the SDW design.
However, the study of the existing literature reveals that the integration of DM’s
requirements is not developed enough neither for descriptive nor for spatial
requirements. Moreover, current methods offered to design a SDW, define a single
schema for all DMs (Glorio et al. 2010). The existing systems are not able to satisfy
all the DMs’ contexts and the proposed SDW is not appropriate for every DM.

The authors aim consists in designing and implementing the SDW for a set of
DMs. The present framework describes the spatial and non-spatial requirements.
The first standard model of MDA, Geographic Computation Independent Model
(GeoCIM), is used to model these requirements. Then the framework allows the
classification of GeoCIMs, corresponding to requirements models and related to
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Table 21.2 The integration of a DM profile and his requirements in a SDW using MDA

Approach and paper Advantages Disadvantages

Using Web based
Personalization on Spatial
Data Warehouses (Glorio et
al. 2010).

The approach integrates a set
of DM requirements in a
SDW (spatial context,
profile).

The realized integration does
not take into account all the
spatial and non-spatial
requirements.

A personalization process for
spatial data warehouse
development (Glorio et al.
2012).

The proposal defines both the
conceptual model and the
implementation one of a
SDW. The models describe
important spatial criteria
which is the geometry of the
spatial object.

The transformations between
the models do not take into
account all the spatial
characteristics such as the
topologic relations, the scale,
etc. They take into account
only the geometry of the
spatial objects.

Conceptual Model for Spatial
Data Cubes (Boulil et al.
2015).

The approach is formal and
based on the UML standard.

The absence of an automatic
integration of requirements and
spatial users profiles into the
design and the logical models
of a SDW.
A set of spatial requirements
are lacked in this work.

different DMs, in clusters. The obtained clusters are used to align the SDW
design with the standard model Geographic Platform Independent Model (GeoPIM).
Then a Geographic Platform Specific Model (GeoPSM) model is derived from the
GeoPIM to present the SDW implementation.

Figure 21.1 presents the different transformations between Geographic MDA
models.

A set of transformations are established to derive the GeoPIM from the GeoCIM
corresponding to the centroid of each cluster as shown in Fig. 21.2. For each cluster,
a unique multidimensional model is adopted to design the SDW.

This work uses also the architecture MDA in order to obtain formal, automatic
and understandable transformations to pass from one GeoPIM to the corresponding
GeoPSM.

To conclude there are five stages:

• The GeoCIM definition: the target of this step is a requirements model that
describes DM requirements and their profiles.

• The classification of GeoCIM models: this section provides k clusters from n
GeoCIMs models (k <= n). Every cluster contains DMs with similar require-
ments.

• The transition from the clusters to the design model (GeoPIM): the target of this
step is the development of a GeoPIM for every cluster.

• The update of the design model: The GeoPIM is enriched when a new spatial
DM’s requirement appears.

• The transition from the clusters to the design model (GeoPIM): this stage
provides the implementation model named GeoPSM.
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Fig. 21.1 The overview of the approach

As shown in Fig. 21.1, five GeoPIMs should be created, corresponding to the five
layers of the SDW architecture (Rifaie et al. 2009). The first layer is the Geographic
Source layer that consists on operational and external data source. The second one is
the Geographic Integration layer that uses Extract Transformation Loading (ETL),
which focuses on the integration of heterogeneous data sources. The third layer
defines the structure and the multidimensional model of a SDW. It is based on facts
that contain the business metrics (i.e. measures) and dimensions, which describe the
facts and their contexts. The next layer is the Customization Layer that encourages
the construction of a pre-aggregate data cube for the different analysis tools. The
last layer is the application layer. It defines applications used by the end user. This
layer is based on OLAP, Data Mining, reporting tools and other techniques.

In the present work, the authors focus on the third layer describing the multi-
dimensional conceptual model. This approach allows also the transition from the
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Fig. 21.2 Steps of the proposed approach

design model, GeoPIM, to different platforms. Authors choose in this work to
define transformations between the GeoPIM and the relational platform, the most
commonly used platform.

Table 21.3 shows the main characteristics of the proposal and its advantages
compared to SDW design approaches existing in the literature. The most approaches
presented in the literature lack of several points, which are required by a DM. Firstly,
the approaches in the literature, define a SDW for users without considering their
profiles and their spatial context. The spatial context define DM’s requirements
corresponding to the spatiality of the used objects like the scale of the spatial objects,
the system coordinates, the projection mode, etc. Consequently, these works do not
propose an appropriate SDW neither for a DM nor for a group of DMs having
similar spatial and non-spatial requirements. In addition, the approaches do not
integrate requirements into the implementation model. Finally, these works do not
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Table 21.3 Comparison between approaches of modelling SDWs

Approaches

Criterion
Glorio et al.
(2012)

Fidalgo and
Cuzzocrea (2012) Others approaches This proposal

Standard framework Yes Yes No Yes
Spatial Attributes
integration

Yes Yes Not all Yes

Non spatial
requirements

Not all No No Yes

Spatial requirements Not all No No Yes
Multiple SDW
conceptual models for
the same query

No No No Yes

offer an automatic transition from the design model to the implementation model. To
resolve these limits, the authors propose a personalized SDW for a group of DMs.

Based on these Criteria, the present work offers a solution containing (1) a list
of spatial and non spatial requirements integrating in requirements models (2) a
classification of requirements models in clusters (3) a set of transformations to pass
automatically from requirements models to the conceptual model of each cluster
(4) transformations from the conceptual model to the implementation one for each
cluster.

In the following sections, a detailed description of each step of the approach is
presented.

21.4 GeoCIM Definition

Several context-aware approaches were proposed to model a user’s profile in diverse
application fields such as the search of information in digital theses (Bohé and
Rumpler 2007), the bridging of the gap between the existing Internet content and
today’s heterogeneous computing environments (Naderi and Rumpler 2007) and the
design of multi channel Web applications and the engineering design through the
interactive goal programming (Kharrat et al. 2011). Recently, Glorio et al. (2012)
presented a modeling approach for a personalized SDW by providing two design
artifacts: a spatial aware user model, which defines the user’s information needed
for personalization and a set of spatial personalization rules specifying the required
personalization actions. The spatial aware user model is lacked some important
elements such as the presentation attributes, the semantic attributes and the spatial
cover attributes. Furthermore, this framework did not allow an automatic transition
from the user model to the SDW design.

The first step of the present approach is to define all spatial requirements
according to every DM using a GeoCIM. The UML profile shown in Fig. 21.3
contains the necessary classes describing the main spatial and non-spatial context
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<< metaclass >>

<< stereotype >>

Equipment

Operational

Activity:String

Role:String

Format:String

Cordinates
System:SystemTypes

SystemType

Projection mode:

Spatial

Spatial Object:String

GeometricType

GeometricType

Quality:String

String
CurrentsEvents:

Sources:String
Geometry:

Presentation:

PresentationFormat

PresentationFormat

Raster
VectorLambert

UTM

Cartographic

Line
Polygon

Collection

Point

Ellipsoidal
Spherical

Cylindrical

Cartesian

Projection Type

ProjectionType

PresentationOrganization

Application Spatial Context

SemanticSpatial Cover

Motivation
DMCharacteri

stics

<< stereotype >>
<< stereotype >> << stereotype >> << stereotype >>

<< stereotype >> << stereotype >>

<< enumeration >> << enumeration >> << enumeration >> << enumeration >>

<< stereotype >> << stereotype >> << stereotype >>

Class

Fig. 21.3 Geographic CIM Definition

at the requirements level. Specifically, the structural properties of GeoCIM are
presented by means of stereotypes. These stereotypes correspond to an inbuilt
mechanism ensuring logical extensions or modifications of the meaning, the display
and the syntax of a model element. Descriptive requirements are synthesized from
requirements models existing in the literature presented previously. The authors
keep the common descriptive elements from the studied user profiles and remove
the stereotypes that are not necessary for a SDW design such as the personal
context (name, language and phone) and the physical context (location and time).
The description of spatial requirements is subsequently achieved by the use of
geographic metadata.

The non spatial stereotypes described in this work are: (1) the ‘Equipment’ that
describes the equipment needed to accomplish the user’s needs, (2) the ‘DMChar-
acteristics’ which details the DM’s organization where he belongs, his activity and
his role in this organization, (3) the ‘Application’ which describes different tasks
and goals that the DM has to achieve and (4) the ‘Motivation’ that describes internal
and external factors to stimulate the DM’s goals. The spatial context stereotypes
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contains: (1) the ‘Presentation’ stereotype describes the data formats needed (XMI,
Geographic Data Bases, etc), the system coordinates (cartesian, cylindrical, etc), the
projection mode (lambert, UTM) and the presentation attribute (raster, vector), (2)
the ‘Spatial Cover’ which enumerates the spatial objects and their geometries (line,
point, etc) and (3) the ‘Semantic’ stereotype with sources attribute to indicate the
origin of data sources, the Current Events attribute which describes the date when
data are taken and the quality which show the data quality.

All the geometric types (point, line, polygon and collection) are grouped in an
enumeration element called GeometricTypes. The authors define also all projection
types in the enumeration element called ProjectionType such as Lambert and UTM.
Thus, they present all the Presentation Formats as Raster and Vector in the enumer-
ation element PresentationFormat. In addition, they describe System Coordinates
Types as Cartesian, Cylindrical, Spherical, Ellipsoidal and Cartographic.

21.5 Classification of the GeoCIMs Models

In the previous section, a GeoCIM for every DM is designed. However, the
conceptual model of a SDW can be dedicated to a group of GeoCIMs related to
a set of DMs. In this section, the authors group similar GeoCIMs in one cluster.
Each cluster will be used for the design of a SDW.

To resolve the problem of classification, it is necessary to use a clustering
algorithm. The most known ones are k-means and k-modes. K-means algorithm
processes the numerical data and k-modes algorithm uses both numerical and
categorical ones (Aranganayagi and Thangavel 2010) but none can process spatial
data (Broda and Mazur 2012). In this work, the authors extend k-means in order to
use both categorical and spatial data. The extension is made through a new similarity
measure that processes numerical, categorical and spatial data.

First, the authors choose k-centroids, as shown in Algorithms 21.1 and 21.2.
The k-centroids contain GeoCIMs of k DMs. The classification is not limited to
spatial objects of each Geo CIM; it takes into account adjacent objects existing
in other clusters. The objective is not to have a constraint-based spatial clustering
(Pattabiraman and Nedunchezhian 2012), but to make it possible to gather DMs
working in adjacent territories. Adjacent spatial objects as defined by Egenhofer
and Franzosa (1991) are objects with external, internal, intersection, equality or
inclusion relations with the required spatial objects.

Then, the authors assign every GeoCIM to the cluster having the most similar
centroid. The cluster’s centroid with the higher number of spatial objects and
adjacent spatial objects in common with the GeoCIM is adopted. If there are non-
common spatial objects, a new cluster is created containing the GeoCIM of this
DM. In the case where more than one cluster is similar to the spatial objects of
DM, the authors consider the similarity between the rest of DM’s requirements and
all requirements of the centroid before assigning the GeoCIM to the most similar
cluster.

As shown in Algorithm 21.1, resemblance is a function, which counts the number
of times that elements of DM’s spatial cover equal elements of centroid’s spatial
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cover. The term D in this algorithm corresponds to the density related to every DM.
It contains the result of the function resemblance divided by the number of spatial
objects of the DM’s centroid. The assigning GeoCIMs in clusters is repeated after
updating the centroid of each cluster until centroids do not change.

Algorithm 21.1 Assigning Geo CIMs into clusters Function Assign (clusters,
users)

BEGIN
1. Repeat

2. Extract the adjacent objects of a user and add them to the spatial cover (Spatial cover 
requirements = spatial cover of the user + adjacent spatial cover)

3. i        i + 1

4. Repeat

5. Resemblance (i)       0

6. For every spatial object_user

7. For every spatial cover centroid (i)

8. If spatial object_user =  spatial cover centroid (i) then

9. Resemblance (i)       Resemblance (i) + 1

10. END If

11. END For

12. END For

13. D (i)       Number of object_user - Resemblance (i) /    Number of object_user

14. i      i+1    

15. Until (i> number of cluster)

16. If (D=1) then 

17. K         k+1

18. Assign the user to the new cluster

19. ELSE

20. If there is a single cluster with minimal D(i) then

21. Assign the user to the cluster i

22. ELSE 

23. Assign the user to the cluster having minimal D (i) and more common requirements

24. END If

25. Until all users are classified 



21 The Integration of Decision Maker’s Requirements to Develop a Spatial. . . 537

0

Coexistence of different geometries

The geometry of the centroid is adopted

0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.5 2.7 2.9 3
Average of the
centroid geometries

Fig. 21.4 Adopted geometries for spatial objects

The purpose of the clustering part is to group similar users i.e. users who work
on neighboring spatial objects or working on the same objects but with different
geometries.

When users are working on the same object but with different geometries, we
propose an algorithm to present the different geometries at the centroid that will
present the GeoCims group. For that we have just assigned a number to each
geometry and then choose intervals for which we keep the geometry otherwise we
adopt the coexistence of geometries.

To resolve the problem of the geometry to be adopted for every spatial object
in the centroid, the authors assign 0 to the point geometry, 1 to the line geometry,
2 to the polygon geometry and 3 to the collection geometry. Then, they calculate
the average of the different geometries of each spatial object of the centroid. To
determinate these intervals, the authors take a set of geometries of spatial objects
and calculate the probability to have the geometry of the centroid. If the probability
exceeds 0.5 the authors adopt the geometry of the centroid. Otherwise, they adopt
the coexistence of different geometries for the same spatial object.

If the average belongs to [0,0.3], [0.5,0.7], [0.9,1.1], [1.3,1.5], [1.7,1.9], [2.1,2.5],
[2.5,2.7] or [2.9,3], the authors adopt the geometry of the centroid described by the
continuous line in Fig. 21.3, else they adopt the coexistence of all geometries of
the same spatial object of GeoCIMs existing in the same cluster (described by the
dotted line in Fig. 21.4).

Outputs of this algorithm are centroids representing clusters. These centroids are
used to design the SDW for each cluster.

21.6 K = Random Number of the Clusters Containing
Adjacent Objects

The authors consider clusters containing spatial objects having an external connec-
tion, an internal connection, an intersection and equality with the spatial objects
required

Algorithm 21.2 The extended k-means Algorithm

1. Repeat
2. Assign (users, clusters)
3. Update the centroid
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4. Until centroids do not change
5. For each cluster (i) do
6. For each spatial_cover_object_centroid (i) do
7. Average = ∑

existing geometries of this elements in cluster (i)/number of
occurrences

Of this element in cluster (i)

8. If average [0, 0.3] or [0.5, 0.7] or [0.9, 1.1] or [1.3, 1.5] or [1.7, 1.9] or [2.1, 2.5]
or [2.7, 2.9] then one geometry is presented which is the geometry of centroid’s
element

9. ELSE one geometry is presented which is the centroid’s element
10. END If
11. END For
12. END For

The complexity of the k-means algorithm is O (KNIS), where: I is the number of
iterations of the algorithm, S is the complexity of calculating the similarity, K is the
number of clusters and N is the number of objects that will be classed.

21.7 From GeoCIM to GeoPIM

21.7.1 GeoPIM Definition

In this proposed approach, the GeoPIM presents the SDW design. This model
describes the conceptual level of a SDW and hides all details related to a specific
platform or technology that can be used later to implement the system. This work is
based on the formalism defined by the PIM presented by Glorio (Glorio et al. 2010).

The most important and necessary stereotypes presented in this model are
Facts ( ) and Dimensions ( ). The measure or the attribute presented in a Fact
corresponds to FactAttribute ( ). With respect to dimensions, classes stereotyped
as Base specify each aggregation level of a hierarchy ( ). The attributes corre-
sponding to dimensions are stereotyped as DimensionAttribute ( ). A dimension
has a description attribute stereotyped as Descriptor ( ). An association between
Bases is stereotyped as Rolls-up to ( ). The role R represents the direction in which
the hierarchy rolls up, whereas D represents the direction in which the hierarchy
drills down.

Glorio et al. (2010) introduced the spatial level ( ) as a hierarchy level with
the attribute Geometry. They also introduced the spatial measure ( ) to support
multidimensional analysis for geometric objects. The same authors presented
another element describing adjacent spatial objects. This element is stereotyped as
Layer ( ).
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<< domain >>

C: Spatial cover

: Spatial Object : Spatial Measure

: geometry : geometry

Name: n_SO Name: n_fa

Name= t_c Name: spatial_type

Where
spatial_type=type_geo2MDtype(t_c)

C E

CIM MD F: fact

<< domain >>

Fig. 21.5 Spatial Object 2 Spatial Measure Transformation

In this model, all the geometric primitives were grouped into an enumeration
element named Geometric Types. In the present work, the authors use the same
process to enumerate the spatial projection and the spatial presentation.

21.7.2 Formal Transformations from GeoCIM to GeoPIM

Defining formal transformations allows to automatically deriving every GeoPIM
from the GeoCIM that represents the cluster’s centroid. To perform transformations,
the authors adopt the QVT with graphical notation that allows readable, understand-
able, adaptable and maintainable transformations.

The authors present in this section the most relevant transformations from the
GeoCIM to the GeoPIM. The transformations are printed out in Figs. 21.5, 21.6,
21.7, 21.8, 21.9, 21.10, and 21.11. The authors do not provide a detailed description
of each transformation, only the DMCharacteristics 2 Dimension relation is further
explained. The remaining transformations are easily understood thanks to the
readability of the QVT.

The QVT (Query / View / Transformation) in the MDA architecture is a standard
for model transformations defined by the OMG (Object Management Group) in
2007. It is central to any proposed MDA. It defines a way to transform source models
to target models.

We need QVT in our approach to pass from every element existing in the source
model which is the GeoCIM or GeoPIM to the target one that can be GeoPIM or
GeoPSM.

The graphical notation for the DM Characteristics 2 Dimension relation can be
seen in Fig. 21.10. On the left hand side of this relation, the reader can see the source
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<< domain >>

C: Spatial cover

Name=n_c

Where
CurrentEvents2 FactAttribute(C,F)
Quality2 FactAttribute (C,F)

Name=n_fC E

CIM MD F: fact

<< domain >>

Fig. 21.6 Spatial cover 2 Fact Transformation

Fig. 21.7 Operational 2 Base Transformation

model, and the target model on the right hand side. The source presents the part of
the GeoCIM that has to match with the part of the Geo PIM, which presents the
target model. In this case, the authors use a set of elements from the UML profile
that represents the DM Characteristics stereotype. The terminal level corresponds to
the Dimension stereotype.

This relation determines the transformation in the following way: it is checked
(C arrow) that the pattern on the left side (source model) exists in the Geo CIM.
The transformation subsequently enforces (E arrow) and the following stereotypes
(and their associations) are created according to the Geo PIM (MD in Fig. 21.10).
A Dimension stereotype with the same name that Geo CIM component is obtained.

Once this relation is set up, the relations Organisation 2 Spatial Level, Oper-
ational 2 Base, Role 2 Descriptor and Activity 2 Descriptor must be performed
(according to the where clause).
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Fig. 21.8 Semantic 2 Base Transformation

Fig. 21.9 Presentation 2 Base Transformation
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Fig. 21.10 Organization 2 Spatial Level Transformation

Fig. 21.11 DM Characteristics 2 Dimension Transformation
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Fig. 21.12 Using Topological Relations to enrich the Multidimensional Model of SDW

Table 21.4 Spatial Hierarchy stereotype used to develop the conceptual model of a SDW

Stereotype Description Presentation

Spatial Hierarchy Spatial Hierarchy present spatial Dimension Hierarchy
with their attributes SH

21.8 Using Topological Relationships to Enrich Dimension
Hierarchies

The authors treat updating in terms of adding a new spatial requirement. They
propose to enrich dimension hierarchies by adding new levels of aggregation in
order to obtain the required hierarchies.

To accomplish this goal, they propose the use of semantic relations among spatial
concepts provided by topological relationships (Egenhofer and Franzosa 1991).
The initial hypothesis is that both SDWs and topological relationships present
hierarchical structures: dimension hierarchies in SDWs show the relationships
between value domains from different dimension attributes (levels of aggregation)
(Bimonte et al. 2006a), while topological relations present hierarchical semantic
relations between spatial concepts, such as adjacency or inclusion or intersection,
etc. (Egenhofer and Franzosa 1991). Therefore, the present approach is based on
using these topological relations to add new levels to dimension hierarchies in order
to obtain the required hierarchies. Fig. 21.12 summarizes this scenario.

In this work, the authors define another stereotype based also on UML named
Spatial Hierarchy, as shown in Table 21.4.

Spatial Hierarchy is added in the conceptual model of a SDW when the DM
needs to take account of a new spatial requirement in the developing of the SDW.

The proposal consists of identifying topological relationships between existing
dimensions in the conceptual model and the new added spatial requirements given
by the DM.
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Step 3’

Extract
Instances

Step 1

Identify topological
relations

New spatial requirement

Create a new
Spatial Hierarchy

Step 2 Step 3

Enriched conceptual
model of SDW

The initial
conceptual model of
the SDW

Add a new value of the
dimension attribute

Fig. 21.13 Different Steps to update a SDW

With each identified topological relationship, the authors create a Spatial Hierar-
chy, which is named with the same name of the identified topological relationship
and has as attributes the characteristics of the added requirement.

Following, the authors explain the main steps of the enriched design model of a
SDW (an overview is shown in Fig. 21.13):

Prerequisite 1. A dimension attribute is chosen from the initial conceptual model of
the SDW. The spatial hierarchy will be added starting from this attribute.

Prerequisite 2. The DM has proposed a new spatial requirement, which is in relation
with instances of the dimension attribute chosen in the initial conceptual model.

Step 1. Extract different instances from the dimension attribute chosen from the
initial conceptual model.

Step 2. Identify topological relationships between spatial objects recently required
with spatial objects existing in the dimension attribute chosen.

Step 3. If there are relationships between the required spatial objects and the existed
ones, a spatial hierarchy for every relationship is created having the same name
as the topological relationship.

Step 3′. If there are no relationships between the required spatial objects and the
existed ones, a new record is inserted in the selected dimension attribute without
creating a new hierarchy.

In Fig. 21.12, every step of the enriched SDW’s design model is illustrated.
From a dimension or a dimension hierarchy in a multidimensional model, a
dimension attribute is chosen. Then the topological relationships are identified
between instances of the dimension attribute and the new requirement in order to
create a new level of the spatial dimension hierarchy. If there are no relationships
between added requirement and existed dimensions, a new record is inserted.
Iterations are repeated until all required spatial objects are classified.
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Relational Table Column

Geo Attribute

Attribute

Geo Type

SQL TypeForeign KeyPrimary Key

Fig. 21.14 Relational GeoPSM Definition

21.8.1 Geo SM Definition

As shown in Fig. 21.1, the authors can define a multiple GeoPSMs from a GeoPIM.
It depends on the implementation platform. In this work, the authors model the
GeoPSM with a geographic relational platform.

Figure 21.14 describes a GeoPSM based on the relational model. A relational
model is composed of a set of relational table. A relational table has different
columns, which contain attributes. Among the columns, there is a column primary
key and a set of columns described the foreign keys if it is necessary. A column
contains Geographic Attributes (Geo Attribute) and non-geographic attributes. Geo
Attribute has a Geographic Type (GeoType). A column has a primary key and
foreign key, which are defined with the SQL Type or Geo Type.

21.9 Transformations from GeoPIM to GeoPSM

Defining formal transformations allows to automatically deriving GeoPSMs from
a GeoPIM. To perform transformations, the authors adopt the QVT with graphical
notation. This section presents the most relevant transformations from the GeoPIM
to the GeoPSM. The transformations are shown in Figs. 21.15, 21.16, 21.17,
21.18, 21.19, and 21.20. The authors provide a detailed description of Dimension
2 Relational Table relation. The remaining transformations are easily understood
thanks to the readability of the QVT.

The graphical notation for the Dimension 2 Relational Table relation can be seen
in Fig. 21.14. The source model is a part of a GeoPIM that has to match with the part
of the GeoPSM. In this case, the authors use a set of elements from the UML profile
that represents the Dimension Attribute stereotype. The terminal level corresponds
to the relational table.
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Fig. 21.15 Dimension 2 Relational Table

Fig. 21.16 Dimension Attribute 2 Attribute

Fig. 21.17 Spatial Hierarchy 2 Relational Table

Figure 21.16 presents the transformation between DimensionAttribute which a
source element and Attribute that presents a GeoPSM’s element.
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Fig. 21.18 Presentation Format 2 Geo Type

Fig. 21.19 System Type 2 Geo Type
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Fig. 21.20 Projection Type 2 Geo Type

Figure 21.17 describes the relation between l’élément Spatial Hierarchy de
GeoPIM et Relational Table de GeoPSM. Every Spatial Hierarchy with the related
attributes is transformed to a relational table.

Figure 21.18 defines a relation between Presentation Format and the related
attribute value and the target element GeoType and the attribute name.

Figure 21.19 describes links System Type, value, Geo Type and name.
Figure 21.20 defines the transformation between the two parts. On the one hand

the Projection Type with the attribute value and which are a GeoPIM’s elements and
on the other hand the GeoPSM’s elements GeoType and name.

21.10 Experimentation

21.10.1 Transition from the Requirements Model
to the Implementation Model of a SDW

This part summarizes the main rules of the passage between GeoCIM model and
GeoPIM model described in a previous session.
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• Rule 1: The transformation Spatial Cover 2 MD Fact

The classe named Spatial Cover is transformed into the classe Fact.

rule SpatialCover2MDFact
{

from 
cim: MRequirements!CouS

to 
MD: MConceptual!Fact (

name_f <- cim.name

)
OwnedAttribute <- cim.ownedAttribute ->select (p|p.type.OclIsKindOf(Class!DataType)   

}

• Rule 2: The transformation Primitives2MDSpatialMeasure

The attribute Primitive of the requirements model GeoCIM is transformed into
the stereotype Spatial Measures of the design model.

Rule Primitives2MDSpatialMeasure

{From p : MRequirements!primitives (

To tp : MConceptual! SpatialMeasure

(            Name <- p.name,

SpatialType <-p.type,

)

}

• Rule 3: DM Characteristics 2 Dimension
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rule DMCharacteristics2Dimension{

from

a: Mexigences! DMCharacteristics

to

out:: MConceptual!Dimension

(

name<- a.name+' DMCharacteristics’'

)

}

Transition from the design model to the implementation model of a SDW
The authors describe in this part some transformations from the GeoPIM to the

GeoPSM with the language Atlas Transform Language (ATL).

• Rule 1: Dimension 2 Relational Table

This rule allows passing from the design element Dimension to the element
Relational Table of the implementation model.

rule Dimension2RelatinalTable
{

from 
MD: MConceptual!Dimension

to 
PSM: MImplementation! RelatinalTable (

name_RT <- MD.name
)

OwnedAttribute <- MD.ownedAttribute ->select (p|p.type.OclIsKindOf(Class !DataType)   

}

• Rule 2: Dimension Attribute 2 Geo Attribute

The transformation Dimension Attriute 2 Geographic Attribute serves to trans-
form the dimension attributes to the relational geographic attributes.
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rule DimensionAttribute2GeoAttribute

{From p : MConceptual!DimensionAttribute (

To tp : MImplementation!GeoAttribute

(            Name <- p.name,

)

}

• Rule3: Projection Mode 2 Geo Type

The rule transforms the attribute Projection Mode of the model GeoPIM to the
item Geo type of the GeoPSM.

rule ProjectionMode2GeoType

{From p: MConceptual! Projection Mode (

To 

tp: MImplementation!GeoType

(            Name <- p.value,

)

}

• Rule 4: Spatial Hierarchy 2 Relational Table

Each stereotype named Spatial Hierarchy of the source model GeoPIM is
transformed into the relational table in the target model GeoPSM.

rule SpatialHierarchy2RelationalTable

{From p: MConceptual! SpatialHierarchy (

To 

tp: MImplementation!RelationalTable

(          Name <- p.value,

)

}
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• Rule 5: Base 2 Foreign Key

A Base in the model GeoPIM is transformed to the foreign key stereotype.

rule Base2ForeignKey

{From p: MConceptual! Base (

To 

tp: MImplementation! ForeignKey

(            Name <- p.name,

)}

The models GeoPIM and GeoPSM, automatically generated, are aligned to the
common storage format XMI, the XML (Extensible Markup Language) Metadata
Interchange.

Figures 21.21 and 21.22 show the GeoCIM and the GeoPIM in XMI format.

21.11 Case Study

In this case study, the authors apply the four steps of the proposal. First, they make
three requirements models for three DMs having different spatial, descriptive needs
and profiles. Then they classify them in clusters. Next, a set of QVT transformations
are applied to generate the SDW design from every cluster.

Three different DMs contexts are chosen: the first DM is a sales manager who
wants to analyze sales operations in stores situated 2 km around the airport (SM1).
The second DM corresponds to the municipality, which aims to regulate goods
transportation in streets that are 10 km around the airport. The last DM is a sales
manager who wants to analyze sales in a city that contains the airport (SM2).

A GeoCIM is performed for each DM. As a result of the clustering step based on
the implementation of the extended k-means algorithm, two clusters are obtained.
The first cluster contains the municipality and SM1. The second cluster corresponds
to SM2.

Subsequently, QVT transformations are used to move from the centroid of each
cluster to a GeoPIM that model the SDW’s design.

Figure 21.23 presents the GeoCIM with the geographic elements of the cluster’s
centroid corresponding to SM1.

Figure 21.24 presents the part of the obtained GeoPIM after applying several
relations described in Figs. 21.5, 21.6, 21.7, 21.8, 21.9, 21.10, and 21.11. These
transformations allow passing from Geo elements such as Application, Equipment,
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Fig. 21.20 GeoCIM in XMI

Fig. 21.21 GeoPIM, automatically generated in XMI

DM Characteristics, Presentation and Semantic to a set of dimensions in Geo PIM.
The transformation Operational 2 base generates the Base Operational with different
Dimension Attributes.

The obtained Spatial Level Organization element is derived from the Geo PIM
element named Organization. Furthermore, the transformations move from the
spatial cover to Fact, which has as spatial measures the spatial objects. The authors
add the layer adjacent object to the resulting Geo PIM and apply the transformation
Sources 2 Spatial Level to present all details related to the sources of spatial objects.

The use of the proposed approach enables an automatic generation of the SDW
design. The resulting GeoPIM integrates the entire DM’s requirements.

.
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Fig. 21.22 Designed GeoCIM of the cluster containing the sales manager SM1

Fig. 21.23 Automatically generated GeoPIM of the cluster containing the sales manager DM

The representation of the design model of the same cluster in Glorio et al. (2012)
can be performed as shown in Fig. 21.25.
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Fig. 21.24 The GeoPIM of the sales manager SM2 case before the proposed extension

Fig. 21.25 The Geo PIM of the sales manager DM

The SDW design resulting from the application of this approach (Fig. 21.24) is
more adapted to DMs than the one presented in Fig. 21.25 since in this case, DM’s
requirements are considered.

Figure 21.26 presents the extended GeoPIM, which integrates Spatial Hierar-
chies: spatial inclusion and spatial intersection.

Figures 21.27 and 21.28 present the part of the obtained GeoPSM after applying
several relations.

The use of the proposed approach enables an automatic generation of the SDW
implementation. The resulting GeoPSM integrates the entire DMs requirements
existing in the design model.



556 S. Ezzedine et al.

Fig. 21.26 Part 1 of the GeoPSM of the sales manager DM

Fig. 21.27 Part 2 of the GeoPSM of the sales manager DM
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21.12 Evaluation of the Proposal

To validate this approach, the authors opted for an empirical validation of the
proposed approach with the valuation method.

The valuation method is defined based on the diffusion theory (Rogers 1995)
which examines the rate and the motivations of the adoption of a technological
innovation by a group of potential users. The diffusion theory demonstrates that
the technological innovation has a chance to succeed if the community of the
users appreciates its quality. This approach is also fruitful for the evaluation of
a new abstract tool such as a method of design by estimating how the users’
community accepts it. We choose for evaluation the Rogers’s method because
it describes the adoption of an innovation with five characteristics: the relative
advantage, the compatibility, the complexity, the testability and the observability.
These characteristics exist in the most innovative evaluation methods. We ask SDW
users’ students a set of questions to measure the satisfaction of the Rogers’s method
characteristics. Then, we calculate statistics that show the percentage of satisfaction
of the SDW users’ students according to every characteristic.

As indicated previously, the theory of diffusion defines five characteristics
(Rogers 1995) which would determine the adoption of a new technology:

• The relative advantage: the degree in which an innovation is perceived as being
better than the already existing ones. It is not necessary that this innovation
possesses has more advantages than the others do but users think that it is more
important and more advantageous than others.

• The compatibility: the degree of the approach’s compatibility with the existing
values, experiences of the users. An innovation which is incompatible with the
values and the current used standards would set more time to be adopted.

• The testability: consists in the possibility of testing and modifying an innovation
before using it. The opportunity to test an innovation allows trusting in the
product because there is the possibility of learning now to use it.

• The observability: the results and the benefits of an innovation should be clear.
When the benefits of the adoption of the innovation are clearer, users will adopt
it easier.

The quality of the document presenting the approach of the design and the
implementation of the SDW is evaluated by three attributes: consistency, efficiency
of the examples and the clarity of the document structure.

Based on these attributes, an evaluation is done focusing on the quality of the
approach. The authors choose to realize this evaluation with students and to use
SDW in their projects. During a session of course, they presented them the approach
proposed in detail and through examples. In return, they asked them to supply a
structured feedback concerning the appreciation of the proposed approach. Because
of all the known criteria indicated, the authors developed a questionnaire with two
parts; a first part reserved for the evaluation of the approach and another one for the
evaluation of the document.
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• Part 1: evaluation of the approach

Question 1: Do you think that the adoption of the approach can help improve
the design and the implementation phases of the SDW?

Question 2: Is the described approach compatible and coherent with the existing
practices shared in your discipline specialty.

Q3: Do you think that the approach is difficult to understand and to use?
Q4: Do you think that the approach supplies enough elements to be tested

before adoption?
Question 5: Do you think that the results of the application of the approach

proposed at the level of the design and the implementation of SDW are
visible?

• Part 2: evaluation of the document

Question 6: Do you find that the terminology used in the document is clear?
Question 7: Do you find that the examples are useful to give you a clear idea

onto the subject?
Question 8: Do you consider that the structure and the format of the document

are clear enough?

For every question, the students can choose among the following options to
express their level of satisfaction: very satisfied (TS)/Satisfied (S)/unsatisfied (NS).

The authors did not define voluntarily the neutral level to incite the students to
express their judgment.

• Part 3 Results

Generally, the proposed approach is considered effective and of a high quality.
The authors give, in what follows, an overview on the result of the evaluation, as
shown in Fig. 21.29.

(i) The criterion advantage: 45% of the “Novice” students found respectively that
the approach presents an advantage in the improvement of the quality of the
SDW due to a better guide and a good cover of the various aspects of the design.
However, only 24% of the “Expert” students judged the “not satisfaction” work.
Were unsatisfied with the work?

(ii) The compatibility criterion: 54% of the “Expert” students find that the adopted
approach is not compatible with the way they are used to design and develop
DW and SDW.

The discussions with the students who followed the session of presentation
of the approach revealed that if 45% of them consider that the approach is not
compatible, it is because they lacked knowledge of the formalism of the MDA.

(iii) The complexity criterion: only 30% of the “Novice” students and 30% of the
“Expert” students answered “Unsatisfied”. This justifies the ease of use of the
proposed approach what makes possible its adoption by a large number of users.
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Fig. 21.28 Synopsis of the results

(iv) The testability criterion: 33% of the “Expert” students consider that the
approach is “not satisfied” with this criterion; this is due to the limited number
of users’ profiles used in the implementation.

(v) The observability criterion: more than 60% of the “Expert” and “Novice”
students covered by the questionnaire were convinced of the results and the
profits of the approach.

21.13 Conclusion

An overview of the existing literature reveals that most of the SDW models lack
an automatic integration of spatial and descriptive DMs requirements in the SDW
design and implementation.

Basing on these limitations, the authors developed, in this chapter, an approach
allowing an automatic transition from the DM’s requirements to the SDW design in
one hand and on other hand from the conceptual level to the implementation level
by the means of model transformations.
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The main contribution of this chapter is to provide a design and implementation
model of an SDW that can be adequate for spatial DM’s requirements. In addition,
it provides an automatic integration of spatial and descriptive requirements in the
SDW design and implementation without a DM intervention.

A case study is presented in order to demonstrate the feasibility of the proposal
and the importance of the generated SDW implementation.

This work can be generalized to cover other platforms such as Oracle platform.
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Chapter 22
Smart Cities

Mayank Kejriwal

22.1 Introduction

The term ‘Smart City’, although far from ubiquitous, has gained increasing promi-
nence in recent decades Hollands (2008), Nam and Pardo (2011), Neirotti et al.
(2014), Su et al. (2011), especially given alarming facts about such aspects of
daily urban life over the last century such as increased air pollution Mayer (1999),
plastic and other kinds of waste Jambeck et al. (2015), emissions Boden et al.
(2009), increasing population in several nations (Commoner 1991), global water
supply (Famiglietti 2014), poverty, crime, violence (Bourguignon 2000), and strain
on infrastructure. At the same time, urbanization is a trend that is ever on the rise
(Vlahov and Galea 2002), with UNESCO1 touting in one2 of its well-cited reports
that global population living in urban areas has increased from a third in 1960 to
47% in 1999, or about 2.8 billion people. Furthermore, the world’s urban population
is now growing by 60 million people annually, outpacing rural population growth by
a factor of 3x. Urbanization in developed regions, such as Europe, North America
and Japan are all more than 75%, and that of Latin America and the Caribbean
has now started to approach those levels. UNESCO estimates that, by 2030, nearly
5 billion (or 61% of the projected world population of 8.1 billion) people will be
living in cities.

Also illuminating is the growth of existing cities themselves (Table 22.1).
UNESCO implicitly defines a megacity as one with 10 million or more inhabitants,

1United Nations Educational, Scientific and Cultural Organization: https://en.unesco.org/
2Accessed here: http://www.unesco.org/education/tlsf/mods/theme_c/popups/mod13t01s009.html
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Table 22.1 A brief illustration of megacity growth, location and features

Slow-growing Growing Rapidly growing

Typical locations South East Asia,
Europe, and North
America

South America and
South East Asia

South/South East Asia
and Africa

Features Over 70& urban
population, no squatter
settlements

40–50% in urban
population, under 20%
in squatter settlements

Under 50% urban
population, over 20% in
squatter settlements

Examples Tokyo, Moscow and
Los Angeles

Rio de Janeiro, Beijing
and Mexico City

Jakarta, Delhi and
Lagos

and most of the new megacities today are in less developed regions, especially in
Asia (Silver 2007; Gurjar et al. 2004), putting even more strain on resources. In
1960 there were only 2 megacities per this definition (New York and Tokyo), but by
1999, there were 17 such cities, and at the time of writing there are 31 such cities,
significantly greater than the number (26) UNESCO had projected for roughly this
time period (2015). The UN estimates that by 2030, this number will climb to 41.

Given these trends and the increasing emphasis on environmental issues at
national and global scales, it is unsurprising that many are looking to both tech-
nology and collective community-driven initiatives to solve some of the problems
mentioned earlier, in addition to (and in some cases, as alternatives to) centralized
government initiatives. The pace of technological innovation, especially in the
digital realm, has accelerated since the 1990s, which is also when the Kyoto protocol
was enacted and signed by 192 parties, including the European Union (Grubb et al.
1997). The rise of the Internet, increased decentralization and democratization of
communications (especially via social media and other platforms) (Welzel et al.
2018), rise of a younger generation of environmentally and socially conscious
individuals and heightened populism (especially in the mid-2010s) due to pressing
issues like the failure of capitalist models to tackle growing inequality (Bergmann
2018), have all contributed to grassroots-level efforts where the average citizen has
greater visibility and participation than ever before (Rimmerman 2018).

Given this complex context, it is perhaps unsurprising that a unique definition of
Smart City does not exist yet, and the literature on the subject is awash in synonyms,
many of which conceptually overlap with each other, and some of which tend to
focus more on one dimension than others. Per the overview in Cocchia (2014),
examples of these roughly synonymous terms include Digital City (Aurigi 2016),
Intelligent City (Hollands 2008), and Learning City (Michel 2005).

Drawing on shared characteristics between these various definitions, it is fair to
synthesize the definitions as falling along one or more of three primary dimensions:
technological, human and institutional (Cocchia 2014). These dimensions are
largely self-explanatory e.g., the technological dimension is based on the use of
technology and infrastructure to improve life and work within the city, the human
dimension is based on people, education, learning and knowledge dissemination,
while the institutional dimension is based on governance and policy. All of these
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dimensions are important, and continue to be studied by experts, but the scope of
this chapter will be mostly limited to the technological dimension.

In the research community, academics have also started to take notice of the rise
and problems associated with smart cities. For example, in their systematic literature
review, Cocchia (2014) found that the number of papers about ‘Smart City’ and
‘Digital City’ increased more than 500% in just the five year period from 2007–
2012. Although the review did not cover all papers that have been published in this
area, and there was also likely some bias due to the term ‘Smart City’ not becoming
popular in the earlier part of this phase, the increase is still significant. Furthermore,
the number of actual smart cities is now quite impressive, especially in Europe. This
makes the current time especially apt for studying smart cities and their emergence.

The rest of this chapter is structured as follows. We begin in Sect. 22.2 with
a brief history and background of smart cities, including the notable events that
seem to have led to an interest in forming a cohesive vision around smart cities.
As stated earlier, smart cities have many synonyms in the literature, many of which
overlap or otherwise focus on a subset of the relevant dimensions. In Sect. 22.3, we
cover the multiple definitions of smart cities, or related synonyms, that have been
proposed over the years. Sections 22.4 and 22.5 contains much of the core material
of this chapter, where we detail in depth the context in which smart cities develop,
and the role of technology, especially Big Data and analytics, in realizing a robust
smart city vision. Section 22.6 describes examples of actual smart cities around
the world. Finally, Sect. 22.7 covers some important future directions for the field,
both academically and in practice, and Sect. 22.8 concludes the chapter with closing
notes.

22.2 History and Background: A Brief Review

The notion of a smart city is predated by several events spanning geopolitics and
information technology. We cover below some of the events that are hypothesized
to have played an especially critical role.

First among these was the Kyoto protocol (Grubb et al. 1997), which sought
to limit carbon dioxide emissions and safeguard the environment. The protocol
was signed by all United Nations members (with the exception of the United
States, Andorra, Canada, South Sudan) and by the European Union in 1997, and
was entered into force after Russia ratified it in October 2004. According to the
protocol, there are two commitment periods in which developed countries have
to achieve binding reductions of greenhouse gas emissions. These periods are
2008–2012 and 2013–2020. The Kyoto Protocol has greatly influenced how we
think about industrialized urban areas, and was itself, arguably, in response to
rising environmental awareness and activism (Grubb et al. 1997; Weyant and Hill
1999; Victor 2011). It has not been ineffective, though the extent of the effect is
debatable (Victor 2011). For example, over the last couple of decades, all state
parties who signed on to the protocol have fostered initiatives to reduce carbon
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dioxide emissions within their own boundaries. In the context of the current topic,
one can argue that the move by national and local governments to design and
apply environmental policies has also driven interest about smart cities insofar as
environmental issues are concerned. We note that it was during 2005 that the Kyoto
Protocol entered into force, and although a decade has passed since then, the full
impact of the protocol may only become clear in the next decade after the second of
the two commitment periods comes to an end (in 2020).

On the corporate side, IBM was one of the first companies in modern history to
bring attention (in 2008) to the concept of ‘Smart Planet’, an even grander vision
than smart cities (Palmisano 2008; Harrison et al. 2010). For IBM, Smart Planet
is conceived as an instrumented, interconnected and intelligent planet where Big
Data could be used to ‘transform enterprises and institutions through analytics,
mobile technology, social business and the cloud’. During that era, IBM started a
new business in this sector, powered by cloud computing (Zhu et al. 2009), and
supplying to governments, solutions focused on ‘smart’ communications, energy
and utilities, and other services. Competition soon followed, with companies such as
Cisco, Siemens and Ericsson entering the space for studying and supplying solutions
for new smart projects in urban areas (Höjer and Wangel 2015). It is possible that
even the terminology of ‘Smart City’ was directly influenced by IBM’s Smart Planet
vision.

Although the IBM vision was US-centric, the Covenant of Mayors was also
instituted during that time as a self-started initiative by European cities (Torres and
Doubrava 2010; Christoforidis et al. 2013; Pablo-Romero et al. 2015). The idea was
to reduce carbon dioxide emissions by more than 20% by 2020 through increased
energy efficiency, and to increase adoption of renewable energy technology. The
European Commission fostered this agreement in the frame of fulfilling Strategy
2020, with actions primarily focusing on clean mobility, redevelopment of (public
and private) buildings and citizen awareness on energy consumption (Torres and
Doubrava 2010). Signatory cities agreed to issue their own PAES (Action Plan
for Sustainable Energy), a roadmap for fulfilling the objectives laid out by the
Commission. Although the Covenant of Mayors was not as tech-focused or forward
as the IBM Smart Planet vision, it was more synergistic with existing initiatives
such as the Strategic Plan for Energy Technologies (Ruester et al. 2014), and like the
Kyoto Protocol, sought to realize the Smart City vision by improving environmental
sustainability, quality improvement and pollution reduction.

Slightly more comprehensive was the Europe 2020 Strategy (Lundvall and
Lorenz 2011), launched by the EU in 2010 to foster investments in education,
research and innovation, achieve sustainable growth in a low-carbon economy, and
emphasize an inclusive agenda to ensure holistic job creation and povery reduction.
The Europe 2020 Strategy was highly influential in popularizing, and spreading
deep awareness and appreciation of, smart and digital city initiatives within Western
Europe. In contrast, despite a strong start, the IBM vision was less successful in
popularizing such a vision in the US.

Finally, and especially in the context of technology, the more diffuse ‘event’ of
the rapid growth of the Internet, and incumbent technologies like smartphone use



22 Smart Cities 567

(Penwarden 2014), the proliferation of easy and intuitive mobile apps (Goldsmith
2014), social media (Perrin 2015), and even the growing popularity of the sharing or
‘gig’ economy (Matzler et al. 2015), cannot be discounted in influencing the smart
city vision, although that was not the primary goal of the Internet. In the smart and
digital city literature, it is common to characterize the rise of the ‘ICT (Information
and Communications Technology) infrastructure’ (Pickavet et al. 2008), which
comprises broadband, wireless sensors, networked applications, open platforms,
cloud and other similar technologies that all work in tandem to form the backbone
of an ‘intelligent’ infrastructure (Aktan et al. 1998), (Banerjee 2009). The very
concept of a digital city is predated on the feasibility of a wired city where it
is possible to provide public and private services over digital platforms to create
socio-economic value for city stakeholders and the larger civic society. Slowly, this
vision is starting to be realized, since at the time of writing, many services centered
in healthcare, energy, transportation, public safety and more controversially, voting
and governance, have a digital footprint. An important topic that was not anticipated
as much by early pioneers in the digital city space was cybersecurity (Khatoun and
Zeadally 2017), and the interference of foreign governments and/or rogue parties in
critical democratic processes (Norden and Vandewalker 2017).

22.3 Defining Smart Cities in Practice

The previous section suggested that there is a tension in the definition of a smart city,
with Europe seeming to place a premium on environmental issues and inclusive
growth versus a more tech-focused vision in the US. For this reason perhaps, the
terms Smart City and Digital City (Hollands 2008; Nam and Pardo 2011; Aurigi
2016), among others (Michel 2005), have both become popular in their own right
despite heavy overlap and the same overarching goals (Cocchia 2014).

In part, this terminological confusion is unsurprising because ‘Smart City’ is such
a broad concept, including aspects of urban life ranging from planning, sustainable
development, environmental issues, energy grid, water supply (Famiglietti 2014;
Cash et al. 2003), to economic development and issues of income inequality
(Kuznets 1955), to technological and social participation (Rimmerman 2018).
Generally, when we consider the different definitions of Smart City that have been
proposed in papers, whether under the banner of ‘Smart’ or some other moniker
(e.g., ‘Knowledge’ or ‘Digital’ City) there is considerable practical overlap between
the definitions, with the term primarily influenced by application. What is clear
however is that there is no one comprehensive definition that has come to be
accepted by academics, businesses and institutions. The differences between a city
that is smart or non-smart are also not completely clear; one could go so far as
to argue that any city with a sufficiently advanced mass transit system and uptake
of technology is ‘smart’. Interestingly, a similar argument and concern applies to
other ‘smart’ technologies, including Artificial Intelligence (Davenport 2018). A
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Table 22.2 Alternate definitions and characterizations of Smart Cities

Moniker [Reference] Definition

Information city
(Anthopoulos and
Fitsilis 2010)

“Digital environments collecting official and unofficial information
from local communities and delivering it to the public via web portals
are called information cities”

Digital city
(Couclelis 2004)

“The digital city is as a comprehensive, web-based representation, or
reproduction, of several aspects or functions of a specific real city, open
to non-experts. The digital city has several dimensions: social, cultural,
political, ideological, and also theoretical”

Sustainable city
(Bătăgan 2011)

“Sustainable city uses technology to reduce CO2 emissions, to produce
efficient energy, to improve the buildings efficiency. Its main aim is to
become a green city”

Intelligent city
(Komninos 2006)

“Intelligent cities are territories with high capability for learning and
innovation, which is built-in the creativity of their population, their
institutions of knowledge creation, and their digital infrastructure for
communication and knowledge management”

Knowledge city
(Ergazakis et al.
2004)

“A Knowledge City is a city that aims at a knowledge- based
development, by encouraging the continuous creation, sharing,
evaluation, renewal and update of knowledge. This can be achieved
through the continuous interaction between its citizens themselves and
at the same time between them and other cities? citizens. The citizens?
knowledge-sharing culture as well as the city?s appropriate design, IT
networks and infrastructures support these interactions”

recent report by MMC Ventures,3 for example, suggested that companies may be
misleadingly reporting the use of AI in their offerings (and/or internal processes)
when they are only exploiting standard digital technologies and efficiencies that
academics would not call AI. Perhaps the problem then is not with the overall
concept of a ‘Smart City’ but with the general moniker ‘smart’.

In part, an important motivation behind this chapter was to try and distinguish
between such cases and cities that are truly shaping the Smart City movement by
adopting bold initiatives that are motivated by pressing infrastructural and social
problems. In Table 22.2, we provide some alternate terms and definitions that could
substitute for ‘Smart City’. These are, by no means, exhaustive; some terms that
we did not cover in the table include Learning City, Virtual City, Wired City and
Ubiquitous City. We chose the terms in the table to illustrate the diversity of the
definitions in use, but also to express the overlap. In all cases, the overarching goal
is to better the lives of the citizens of the city, either by reducing environmental
footprint, improving governance and strengthening social institutions, and making
everyday life easier or more seamless through the power of inexpensive and scalable
technology, like widespread Internet access.

3https://www.mmcventures.com/wp-content/uploads/2019/02/The-State-of-AI-2019-
Divergence.pdf

https://www.mmcventures.com/wp-content/uploads/2019/02/The-State-of-AI-2019-Divergence.pdf
https://www.mmcventures.com/wp-content/uploads/2019/02/The-State-of-AI-2019-Divergence.pdf
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22.4 Context Variables Affecting Smart Cities

Various factors can influence the manner in which cities choose to develop and
maintain Smart City initiatives. The abundance of data has clearly had an effect on
this, but even predating Big Data, contextual factors have always been important in
focusing the resources and needs of Smart Cities. We describe four context variables
in this section, inspired by prior work in the area (Neirotti et al. 2014).

22.4.1 Structural Factors

Both city size and population density can be relevant for the development patterns
of Smart Cities. First, it is well known that bigger cities tend to attract more human
capital and can usually rely on heavier investment in infrastructure pertaining to
critical areas as electricity, water and telecommunication. Large cities also have
critical masses of tech-adopting users, which tends to increase both demand and
supply of new digital services. Examples include Bus Checker in London (Stone and
Aravopoulou 2018), but also more advanced mass transit options in bigger cities and
even ridesharing apps (Anderson 2014), which tend to offer more options in bigger,
more hub-like cities. Recently, there have also been indications that ridesharing apps
may start encroaching on the business model of mass transit,4 which are often a
result of centralized government planning (that has its fair share of inefficiencies)
and can run into cost and time setbacks.

However, while it may seem to be a largely positive influence, large city size
can also stifle Smart City innovation. Smaller cities are more ideal settings for pilot
projects, as they can deal with shorter installation times when projects requiring
investments in distributed infrastructures (e.g. street lighting, smart waste) are
needed. Such projects are also more amenable to agile experimentation, allowing
rapid pivoting and modification without causing much disruption on everyday
services.

Large cities also often have a high population density, which can ease the flow
of knowledge and ideas by facilitating social interactions, and via idea generation
and innovation. Some other effects of higher population density are more tangential
to Smart City initiatives but can make the difference between an initiative ‘taking
off’. For example, we mentioned earlier that larger cities have better mass transit
options, which is fertile ground for testing and implementing Smart City initiatives
in the digital and communications realm. Once again, we note that, over a certain
threshold, both population density and size can lead to diseconomies in areas like
transportation, real estate, and energy consumption, and can stifle innovation. Thus,
we predict that, for bolder, riskier and potentially higher-impact ideas, smaller cities

4https://www.upi.com/Top_News/US/2019/01/08/After-taking-on-taxis-ride-share-services-
now-challenging-public-transit-in-US/5281546857951/

https://www.upi.com/Top_News/US/2019/01/08/After-taking-on-taxis-ride-share-services-now-challenging-public-transit-in-US/5281546857951/
https://www.upi.com/Top_News/US/2019/01/08/After-taking-on-taxis-ride-share-services-now-challenging-public-transit-in-US/5281546857951/
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will prove to be much more fertile ground than larger cities in terms of prototyping
and ‘failing fast and smart’. However, it is inevitable that for a model to take off
and scale, adoption in large cities cannot be ignored. There is no real consensus on
whether there is a single city size that can optimize for this interesting tradeoff.

22.4.2 Economic Development

A city’s economy, usually measured by Gross Domestic Product (GDP), can also
significantly influence the development of Smart Cities. Some of the reasons are
obvious i.e. a city cannot be expected to be ready to implement Smart City initiatives
till it can fulfill the basic needs of its citizens, including infrastructural needs like
water, transport, sewage and welfare services. Generally speaking, both cities and
countries with a higher GDP growth rate undergo a higher economic expansion,
which influences the financial resources (and impetus) available for investments
in new (or upgraded) educational, environmental and infrastructural initiatives.
There is also a ‘spiral effect’: cities with a greater economic development appear
more attractive to those people who wish to increase their standard of life, and
consequently attract human capital; this in turn leads to the positive effects of
size and demography on smart city initiatives taking off (see previous section).
Human capital provides both a talent pool for corporations, but also end-users and
consumers for initiatives that might otherwise not scale.

However, just like with the first context variable (structural factors), it is
important not to treat a high GDP as a prerequisite for the development of Smart
City initiatives. Some of the best Smart City initiatives may, in fact, be suitable
for less developed cities since there would be greater need, and most likely, greater
subsequent adoption. This should be borne in mind when considering the potential
of a Smart City initiative in the context of a city: does it really require a sophisticated
underlying infrastructure for an initial rollout? Is there a creative workaround, one
that could lead to new innovation?

22.4.3 Technology

Technological development, adoption and diffusion are hard to predict, and can
be susceptible to unexpected dynamics. At the very beginning, no one thought
smartphones or even personal computers would have wide market traction. Yet, by
employing a ‘sweet spot’ offering of price, design and functionality, companies have
managed to turn these products into global sub-economies.

Generally, systems and organizations that have started to invest earlier in a tech-
nology trajectory are more likely also to develop and adopt emerging technologies
belonging to the same trajectory. For example, a city that has historically invested
heavily in smart transportation, as opposed to telecommunications, is more likely
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to continue doing so in the near future. In practice, it can be difficult to draw such
distinctions, leading to the popular characterization that some cities can be more
‘tech-leaning’ than others.

Cities that are more liberal with technology are also ripe for Smart City initiatives
that fall within the scope of digital, internet or telecommunication innovation.
Internet access, across all incomes and social classes, can be a particularly important
facilitator of smart initiatives in many urban settings. On the other hand, a limited
diffusion could reflect a digital divide that hinders the achievement of a critical
mass of users. This could jeopardize the development of a variety of initiatives. The
budget for R&D investments in both private and public expenditure can also be a
valid metric for measuring technological progress and human capital development.
The density of tech companies or labs can be another metric, albeit one that is not
without its controversies. The countries and cities in which these sectors are more
developed are more likely to effectively deploy Smart City technologies.

22.4.4 Effective Environmentally-Progressive Governance

Environmental sustainability is an important determinant of quality of life in urban
settings (Cash et al. 2003). The availability of green spaces can generate extensive
socio-economic benefits, and cities with stronger environmental policies can face
lower marginal costs for development of Smart City initiatives aimed at improving
their environmental sustainability. Such cities can also rely on a more developed
infrastructure than polluted cities with limited green areas. However, although the
costs for more polluted cities to adopt smart initiatives in transportation, energy and
urban planning can be higher, their relative advantage, as well as the effort spent by
local policy-makers to enact initiatives aimed at mitigating pollution, can be more
evident given their relevance in public opinion and in the political agenda.

Unlike technology and demographics, the effect of environmentally progressive
governance is not as clear-cut or quantifiable as a context variable. However, it has
generally been observed that such cities are more open to liberal, regulation-favoring
initiatives that seek to curb the impact of carbon-intensive industries. It is also
more difficult to study the effects of progressive governance because of definitional
controversies over what qualifies as progressive or effective governance.

22.5 The Role of Data

Recent decades have witnessed a heavy proliferation of open data, including
national censuses, government surveys, and statistically-oriented economic data
such as collected by organizations such as the Bureau of Labor Statistics (BLS) in
the United States (Goldberg and Moye 1985). These datasets are a valuable source
of information about cities, countries and (both current and future) populations,
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since they can be used for both diagnosis and forecasting. Likewise, businesses
periodically collect and analyze significant amounts of data on different segments
of their value chain, including operations, markets, suppliers, distributors and
customers. Limitations of many of these datasets are that they tend to be expensive
to collect, usually relying on surveys and careful process monitoring, can be lagging,
and are aggregated at coarse spatiotemporal scales. Any insights that are yielded by
such datasets may rightfully be termed as ‘small data studies’ and tend to include
questionnaire surveys, case studies, city audits, interviews and focus groups, and
ethnographies. Arguably, much of what we have learned about cities from data is
actually characterized by sparseness (Miller 2010).

Potentially, ‘Big Data’ (Boyd and Crawford 2012) could help transform the
knowledge and governance of cities through the creation of a large and shared
pool of data that seeks to provide much more sophisticated, wider-scale, finer-
grained, and with powerful computation and algorithms, real-time understanding
and regulation of urban settings and independent variables. For example, in the
power industry, AI and Big Data could be used to understand supply and demand
of power in the various states, and be used for power brokerage so that everyone
benefits (Kezunovic et al. 2013; Zhou et al. 2016). With the rise of renewable energy,
accurate forecasting of supply and demand is equally important. Thus, there are
clear motivations in refining and adopting Big Data technology.

Although there are multiple conferences and journals on Big Data at the time
of writing, a general definition still tends to be lacking (e.g., would 1 terabyte be
considered Big Data today?) Generally speaking, Big Data is believed to involve at
least four issues, known as the four Vs:

Volume: As is evident from the name itself, Big Data should be data that has high
volume i.e. usually terabytes or even petabytes. Furthermore, not only can each data
source contain a huge volume of data, but also the number of data sources, even for
a single domain, could potentially be in the tens of thousands.

Velocity: The data is generally being created in near real-time, as a direct
consequence of the rate at which data is being collected and continuously made
available. A good example for understanding velocity of Big Data is the stock
market, where there are many data sources that provide near real time, continuously
changing information about stocks, including bid and ask prices, and volume of
shares traded.

Variety: The data should be diverse, generally comprising a mix of structured
and ‘unstructured’ (usually, natural language) data. Variety could also be measured
in spatiotemporal terms, rather than the structure of the data.

Veracity: It should be possible to derive reasonably accurate and trustworthy
insights from the data i.e. the data should not be ‘falsified’ or misleading at its
source. This is challenging, because data sources (even in the same domain) are of
widely differing qualities, with significant differences in the coverage, accuracy and
timeliness of data provided.

Other than the four Vs, Big Data also tends to obey other criteria e.g., big
datasets in a particular domain tend to be exhaustive in scope, striving to capture
entire populations or systems rather than limited samples. As mentioned before, big
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datasets are also finer-grained in resolution, and hence with the potential to yield
more detailed insights than small-data studies. Big datasets are flexible and scalable
(with the potential to grow in size indefinitely), and finally, big datasets are usually
relational i.e. contain common fields that enable deriving joint insights. For more
details on characteristics of Big Data, we refer the reader to the article in Yin and
Kaynak (2015), and also Dong and Srivastava (2013).

22.5.1 Smart City and Big Data

Sources of ‘Smart City’-relevant big data can be broadly divided into three
categories: directed, automated and volunteered (Kitchin 2014):

1. Directed datasets are generated by traditional forms of surveillance, examples
being immigration passport control systems (e.g., at airports) that record and
validate passenger details in real-time, data generated via CCTV, photographs,
fingerprints and iris scans, spatial video, LiDAR, and thermal (or other electro-
magnetic) scans that enable mobile and real-time mapping of two-dimensional
and three-dimensional structures. It is important to note that directed datasets are
generally ‘domain specific’ e.g., immigration passport control systems have a
specific purpose and modality of data generation and processing, but even more
importantly, are usually not fully automated and are augmented with some kind
of human-in-the-loop check.

2. Automated datasets, as the name suggests are generated as an inherent, automatic
function of the device or system, in contrast with directed datasets that tend to
be generated by systems that have an explicit human-in-the-loop component.
Examples include capture systems, which are used for task and performance
monitoring e.g., using the outputs of a scanner at a store’s check-out counter
to monitor check-out operator performance, as well as collecting information
on what items were purchased, and by whom (followed by data mining and
data analytics techniques like itemset mining Zaki and Hsiao 2002); digital
devices, including mobile phones that capture both background and targeted
(e.g., when the user is using an app) data, digital networks that capture data on
transactions and interactions; clickstream data that records how people navigate
through a website or app; sensed data generated by a variety of sensors and
actuators embedded into objects or environments that regularly communicate
their measurements; scanners that scan machine-readable objects such as travel
passes, passports, or barcodes on parcels that register payment and movement
through a system; and devices that facilitate the Internet of Things (IoT) vision
(Ashton et al. 2009), such as sensors embedded in the home or the environment.

3. Finally, volunteered datasets tend to be user-generated. Social media is the best
example, but less well-known examples of volunteered data also include the gen-
eration and uploading of GPS traces into a public resource like OpenStreetMap
to create a common, open mapping system (Haklay and Weber 2008).
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In comparing these different types of datasets, we note that, while directed
and volunteered data can provide useful insights into urban systems and city
lives, automated data hold the most promise for scaling using computational and
cloud technology that continues to grow ever-cheaper. In particular, there has been
an interest in automated forms of surveillance, sensor networks and IoT devices
(especially at the ‘edge’), and the tracking and tracing of people and objects. Such an
‘instrumented city’ (Kim et al. 2017) offers the promise of an objectively measured,
real-time analysis of urban life and infrastructure, especially using technologies like
IoT, but can also pose threats to citizen liberties as the controversy surrounding
China’s ‘social credit’ system would indicate (Botsman 2017).

It is also important to distinguish between data that are generated in real-time
and can be utilized upon generation vs. data that can be stored and analyzed post-
hoc. We mentioned earlier that GPS traces can be uploaded into OpenStreetMap
to help build out a public mapping resource. Social media is a resource that could
be analyzed post-hoc, but that holds more promise if analyzed in real-time (e.g., to
detect the emergence of a riot, terrorist act or other emergency event that requires an
immediate mobilization of resources). Sensor networks generate so much real-time
data that post-hoc analysis can be practically impossible; it is much more feasible
to use fast signal processing algorithms to detect problems as they arise (Arasteh
et al. 2016). Sensors at the edge of a network may not even have access to sufficient
storage or computing resources and may have to make all decisions in real-time
using minimal resources (Shi et al. 2016).

The discussion above indicates that the type of device generating the data, its
placement and energy source, and its intended utility, are all factors in determining
the design of algorithms that are deployed for processing the data. Even a simple fact
like storage (big cities could potentially generate petabytes of data in short bursts of
time) could influence algorithmic design, since it may not be possible to store data
being generated continuously.

Concerning Internet of Things (IoT), what kinds of Smart City-relevant systems
and applications does it entail? Based on the recent survey by Mehmood et al.
Mehmood et al. (2017), we posit that IoT-based smart city applications can be
categorized on the basis of network type, scalability, coverage, flexibility, hetero-
geneity, repeatability, and end-user involvements (Gluhak et al. 2011). Applications
can be taxonomized along the lines of personal and home, utilities, mobile, and
enterprises. Personal and home applications could include ubiquitous e-healthcare
services to live independently via body area networks (BANs) (Chen et al. 2011),
which help doctors monitor patients remotely. Utilities applications include smart
grid, water network monitoring, and video-based surveillance. Mobile applications
include congestion control and waste management.

IoT devices include, but are not limited to, automatic doors, lighting and heat-
ing systems, security alarms, wifi router boxes, entertainment gadgets, television
recorders, and all such devices that have the ability to transfer data between each
other (possibly through a mediator), leading to the emergence of derived (e.g.,
aggregated) data. Devices such as mobile phones can be traced through space by
triangulation, and can record and transmit their own trails. In practice, datasets
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generated by IoT systems are quite diverse, usually generated by a mix of public
and private agencies, and not all open. However, there is no question that, if used
properly and with the right safeguards in place, the combination of such diverse,
comprehensive datasets makes possible real-time analytics and adaptive forms of
management and governance that were previously impossible.

22.5.2 Real-Time Data

Several city governments now use real-time analytics to manage and regulate both
the functional and operational aspects of a city. A ubiquitous example relates to
vehicle movement and route planning around a transportation network, where data
from a network of cameras and transponders are fed back to a central control hub.
The hub monitors the flow of traffic and could adjust traffic light sequences and
speed limits, while automatically setting other parameters to prevent congestion
while minimizing costs and delivery times (Dodge and Kitchin 2007).

Similarly, the police might monitor a suite of cameras and live incident logs in
order to efficiently and reactively direct appropriate resources to particular locations.
In yet another example, data relating to environmental conditions might be collated
from a sensor network distributed throughout the city, for example measuring air
pollution (Xiaojun et al. 2015) or providing earthquake warnings.

Many local governments use management systems to log public engagement with
their services and to monitor whether staff have dealt with any issues. In nearly all
cases, these are isolated systems dealing with a single issue and are controlled by
a single agency. More recently there has been an attempt to draw all of these kinds
of surveillance and analytics into a single hub, supplemented by broader public and
open data analytics (Kitchin 2014). Some examples are noted below:

1. The Centro De Operacoes (COR)5 in Rio de Janeiro, Brazil is a partnership
between the city government and IBM. In 2010, IBM employed their first
integrated operations center in Rio de Janeiro, pooling generous investments
in sensor networks after signing a contract with the city. Rio had recently
experienced devastating landslides that killed hundreds of people, not to mention
upcoming challenges of hosting the 2016 Olympics and 2014 World Cup. The
city felt that there was a need to develop an Emergency Response System, with
real-time automated C2 (Command and Control) of emergency responses. The
partnership between the city and IBM has led to a citywide instrumented system
that draws together streams of data from 30 agencies, including traffic and public
transport, emergency services and weather feeds, into a single data analytics
centre. Algorithms and analytics are executed over this data for varied purposes,
including for building predictive models applicable to everyday city development

5http://cor.rio/

http://cor.rio/
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and management, as well as humanitarian and disaster situations such as
flooding. A virtual operations platform complements the existing technology.
With the support of analytics programs, city-wide operational processes using
data from any number of domains can continuously predict and react to events
and trends that are affecting the city. Unfortunately, the smart city project has
faced some negative press in popular media, which serves as a cautionary tale.
For example, there have been concerns as to what degree city management should
be delegated to private companies. Furthermore, not enough attention was paid to
using resources to deal with problems such as high crime rates, social inequality
and environmental degradation.

2. In the Spring of 2011, Mayor Bloomberg’s office of Media and Entertainment in
New York City released a roadmap for securing the future of New York City as a
digital city. The report was informed by 90 days of research and over 4,000 points
of engagement from residents, City employees, and technologists who shared
insights and ideas. Chief among public interests were calls for expanded Internet
access, a refreshed nyc.gov interface, real-time information, and more digital
311 tools. Businesses and technologists sought greater broadband connectivity,
a deeper engineering employment pool, and read/write API access to City
information. Finally, City employees proposed ideas for next-generation strategy,
new coordination tools, and shared resources to enhance digital communications
efforts. Specific elements of the roadmap included:

a. Access: Ensuring that all New Yorkers can access the Internet and take
advantage of public training sessions to use it effectively by supporting more
vendor choices to New Yorkers, and introducing Wi-Fi in more public areas.

b. Open Government: Unlocking important public information and supporting
policies of Open Government, further expanding access to services, enabling
innovation that improves the lives of New Yorkers, and increasing trans-
parency and efficiency.

c. Engagement: Improving digital tools including nyc.gov and 311 online
to streamline service and enable citizen-centric, collaborative government,
expanding social media engagement, implementing new internal coordination
measures, and continuing to solicit community input.

d. Industry: Continuing to support (through the New York City Economic
Development Corporation) a vibrant digital media sector through a wide array
of programs, including workforce development, the establishment of a new
engineering institution, and a more streamlined path to do business.

3. Intelligent Nation 2015 (iN2015) was Singapore?s 10- year masterplan to help
realize the potential of ‘infocomm’ over the next decade. iN2015 was designed
to be a multi-agency effort that was the result of combining private, public and
even individual inputs, with the last providing their ideas and views through
focus groups and the Express IT! iN2015 Competition. The competition attracted
thousands of entries from students and the general public on how they envisioned
infocomm would impact the way they live, work, learn and play in 2015. In
addition, hundreds of private and public sector representatives participated in
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numerous discussions to come up with ideas for transforming their sectors
through infocomm, and how to translate these ideas into reality. Ultimately,
iN2015 was a plan to develop Singapore further as a smart city, specifically
through investments in infocomm. Specific reach goals included ensuring that by
the end of the effort, there were 80,000 additional jobs, 90% of homes were using
broadband, and there was 100% computer ownership in homes with school-going
children.

4. In 2018, Sadiq Khan, Mayor of London, launched a roadmap to better utilize
tech and data in support of smart city initiatives. The roadmap was called
‘Smarter London Together’ and includes more than 20 initiatives designed to
support the development of the next generation of smart technology and promote
greater data sharing among the city?s public services. Plans include achieving
full fibre connectivity for all new homes and supporting the commission of
smart technology such as a ‘hyper local’ sensor network, which will create the
world’s most sophisticated air monitoring system in the UK capital. From July,
100 sensors will be attached to lamp posts and buildings in the most affected
areas, alongside two dedicated Google Street View cars that will record air
quality in greater detail than before. A new Connected London program is also
proposed to coordinate efforts and increase connectivity in the city. Measures
include expanding public Wi-Fi in streets and buildings, supporting 5G projects
and promoting a new generation of smart infrastructure to help solve the city?s
biggest challenges.

Advocates of such systems and efforts argue that they ultimately present a data-
driven, efficient form of governance as opposed to one based on intuition and
political ideology. However, there is controversy over whether such initiatives are
best (i.e. most effectively) implemented by governments and also implications for
privacy and incumbent issues like data theft and misuse.

22.5.3 Open Government Data

According to the OECD (Organization for Economic Cooperation and Develop-
ment), Open Government Data (OGD) is a ‘philosophy, and increasingly a set of
policies, that promotes transparency, accountability and value creation by making
government data available to all’. Public bodies produce and commission huge
quantities of data and information. By making their datasets available, public
institutions become more transparent and accountable to citizens. By encouraging
the use, reuse and free distribution of datasets, governments promote business
creation and innovative, citizen-centric services.

OGD can pose some tricky questions for governments, such as who will pay for
the collection and processing of public data if it is made freely available? What are
the incentives for government bodies to maintain and update their data? And what
data sets should be prioritised for release in order to maximise public value? Steps
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are therefore needed to develop a framework for cost and benefit analysis, to collect
data, and to prepare case studies demonstrating the concrete benefits – economic,
social, and policy – of opening government data.

As we saw earlier with the case studies described briefly on Singapore, London
and New York, OGD can be used for building up Smart City initiatives like traffic
management, digitized government services and investments of Wifi and other ICT
technologies to ensure that no precinct is left behind in the race to digitize.

The OECD Open Government Data project aims to progress international efforts
on OGD impact assessment. The mapping of practices across countries will help
establish a knowledge base on OGD policies, strategies and initiatives and support
the development of a methodology to assess the impact and creation of economic,
social and good governance value through OGD initiatives. In the last decade, in
particular, there have been many conferences and initiatives for (1) building ‘OGD
cultures’ especially in the Middle East and North Africa regions to combat endemic
corruption; (2) developing useful indices that can allow one to compare OGD
success and adoption rates in a quantitative way across countries; (3) promoting
the movement, through reviews, blogs and meetings.

As a specific example of a federal initiative, data.gov is managed and hosted by
the U.S. General Services Administration, Technology Transformation Service, is
developed publicly on GitHub, and is powered by two open source applications,
CKAN and WordPress. Data.gov follows the Project Open Data schema, a set of
required fields for every data set displayed on Data.gov. Although the total number
of datasets, available on the Data.gov Metrics page, can fluctuate, the range and
growth has been impressive in recent years. According to official statistics, as of
June 2017, there were approximately 200,000 datasets reported as the total on
Data.gov, representing about 10 million data resources.

Importantly, we note that releasing data in many cases is now no longer
‘voluntary’. Under the terms of the 2013 Federal Open Data Policy, newly-generated
government data is required to be made available in open, machine-readable
formats, while continuing to ensure privacy and security. Federal CFO-Act agencies
are required to create a single agency data inventory, publish public data listings, and
develop new public feedback mechanisms. Agencies are also required to identify
public points of contacts for agency datasets.

22.5.4 The Semantic Web and Linked Open Data

Beyond Open Government Data, there is an entire movement in the Computer
Science community that involves more intelligent sharing, modeling, publication
and standardization of data. The idea behind the Semantic Web is a growing
recognition for making data, not just documents, the ‘first class citizen’ of the Web
in support of an emerging data economy (Berners-Lee et al. 2001). What this really
means is that a systematic framework is desired for publishing, representing and
providing direct access to raw data that currently needs to be wrapped in an HTML

http://data.gov
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document before being publicly exposed on the Web. Yet, the Web was originally
designed to render documents on a browser for human consumption. How can we
publish raw data using such a systematic framework without re-designing the Web
itself?

The Linked Data movement, a direct product of a grassroots effort called the
W3C (World Wide Web Consortium) Linking Open Data (LOD) project that was
founded in January 2007, emerged as a potential (albeit, not unique) solution to
this problem (Bauer and Kaltenböck 2011). In the years since then, the movement
has grown, and many datasets have been published using the four Linked Data
principles. Some well-known Linked Open Datasets include Wikidata, DBpedia,
GeoNames and OpenStreetMap (Vrandečić and Krötzsch 2014; Auer et al. 2007;
Wick 2006; Haklay and Weber 2008). Some of these were not originally published
as Linked Data, but at the time of writing, Linked Data versions of these datasets
now exist. Of these examples, OpenStreetMap and GeoNames are particularly
important examples of geospatial data that have proven to be ubiquitous in a number
of smart city and digital government initiatives due to their global coverage of the
planet and the obvious importance of maps and geographical entities to city planning
efforts.

22.5.4.1 OpenStreetMap

OpenStreetMap6 is built by a community of mappers that contribute and maintain
data about roads, trails, railway stations, among other things, all over the world
(Haklay and Weber 2008). OpenStreetMap emphasizes local knowledge. Contribu-
tors use aerial imagery, GPS devices, and low-tech field maps to verify that OSM
is accurate and up to date. OpenStreetMap powers map data on thousands of web
sites, mobile apps, and hardware devices, a testament to its impact. Importantly,
OpenStreetMap is open data, and users are free to use it for any purpose as
long as they credit OpenStreetMap and its contributors. Concerning Smart Cities,
OpenStreetMap is arguably the best example of a Big Geospatial Dataset that is also
open and that can be used in support of many fo the initiatives we earlier described,
especially considering the prohibitive cost of licensing and using technologies like
Google Maps.

22.5.4.2 GeoNames

The GeoNames geographical database7 is available for download free of charge
under a creative commons attribution license (Ahlers 2013; Wick 2006). It contains
over 25 million geographical names and consists of over 11 million unique features

6https://www.openstreetmap.org/#map=4/38.01/-95.84
7https://www.geonames.org/

https://www.openstreetmap.org/#map=4/38.01/-95.84
https://www.geonames.org/
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whereof 4.8 million populated places and 13 million alternate names. GeoNames
is integrating geographical data such as names of places in various languages,
elevation, population and others from various sources. All lat/long coordinates are in
WGS84 (World Geodetic System 1984). Users may manually edit, correct and add
new names using a user friendly wiki interface. Features for online users include
searching for names using full-text search, bookmarking maps, sending maps via
email, exporting names as character separated value files or png images, adding new
names to the database (for registered users) and geotagging of names (for registered
users).

22.6 Examples of Smart Cities

To conduct a geographic analysis (including understanding the geographic distri-
bution) of Smart Cities, Cocchia (2014) distilled over 700 papers into 162 case
studies for an empirical analysis of Digital and Smart Cities. While full details of
their analysis may be found in their original paper (though some of the data will be
stale since new Smart Cities are emerging every year), the highlights of the analysis
were particularly informative. We list some of the critical outputs of their analysis
below:

1. Europe and Asia account for more than 85% of Smart and Digital8 Cities in their
case studies, with Asia accounting for 49%, and Europe accounting for 36% of
the 162 case studies. In contrast, North America only accounted for 9% of the
cases. The other continents together contributed only 6%, with Middle/South
America contributing the least (1%).

2. Narrowing in on Asia and Europe, the authors found that there were ‘macro-
clusters’ of Smart Cities both in Asia and in Europe. Asia was found to exhibit
greater diversion than Europe, but it is unclear if this is also the case after
controlling for the size difference between the two continents. Smart Cities in
Asia tend to be on the Chinese east coast, while European Smart Cities appear
to be more concentrated in the North Sea Region (including countries like the
Netherlands, Belgium, United Kingdom, Scandinavia) and in the Mediterranean
Region (Spain, France, Italy).

3. In North America, a cluster of Smart Cities can be found near the Great Lakes
Region between the United States and Canada while in Oceania and Africa,
small clusters are located along the most populated and developed areas e.g.,
the Australian east coast and South African coast.

These analyses and the authors’ data were also validated through similar findings
reached by the Ericsson Report about Networked Society City Index. That report

8Although Cocchia (2014) use the term Smart/Digital City, we continue to use Smart City to refer
to the same in this section.
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also concluded that cities located in Northern Europe, North America and parts of
East Asia have a longer tradition of producing and using ICT equipment, and have
therefore been able to benefit from their investments over longer periods of time.
Furthermore, from the literature review about city case studies, we can observe
that the spread of Smart Cities in Asia, Europe and North America have some
shared features insofar as Big Geospatial Data is concerned. Arguably, without the
cost-effective rise of Big Data and AI/ICT technology (Boyd and Crawford 2012;
Davenport 2018; Pickavet et al. 2008), such cities (and Smart City initiatives in these
cities) might not have seen adequate adoption due to cost and scaling issues.

Another insightful, case study-driven analysis on fifteen cities driven by Smart
City technology can be found in Angelidou (2017). We summarize the various case
studies in that analysis in Table 22.3. Some of the cases, such as the initiative in Rio
de Janeiro, were covered in earlier sections.

22.7 Future Directions

Over the next decade, the real-time city is likely to become a growing reality as
urban administrations and municipalities seek to capitalise on novel data sources and
commercial innovations that become more affordable and accurate over time and
with more processing and fine-tuning (both of which scale with increased adoption).
Although Big Data offers a number of opportunities, it also raises significant con-
cerns with respect to the politics and privacy of such data, technocratic governance,
technical debt and corporate influence, system vulnerabilities especially in the
realm of cybersecurity, ethical issues with respect to government and corporate
surveillance, among others (including how data is interpreted). Given the role that
such systems are likely to play in shaping urban governance there is a pressing need
to understand and regulate their functions, ethical use and limitations in governance
and matters of citizenry. There has been a growing number of arguments, especially
given the rise in populism around the world, that without effective controls and
safeguards in place, the smart cities of the future will likely reflect narrow corporate
and state visions, rather than the interests of society at large.

Some of the backlash has also come about because of economic issues, and the
perception of growing inequality and homelessness, particularly in tech-heavy US
cities like San Francisco and Seattle. For example, Brad Smith, President and CLO
at Microsoft at the time of writing, writes in a recent post:9

. . . rapid [tech] growth creates new strains for a community’s infrastructure,
including its schools and transportation network. As 2018 ended, there was some
well-deserved focus on another aspect – the affordability of housing.

When the housing supply fails to keep pace with added population, housing
prices rise, and some people are pushed out. There is growing awareness that this

9https://www.linkedin.com/pulse/today-technology-top-10-tech-issues-2019-brad-smith/

https://www.linkedin.com/pulse/today-technology-top-10-tech-issues-2019-brad-smith/
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Table 22.3 Cases of Smart City strategies analyzed in Angelidou (2017)

Amsterdam smart city Partnership among businesses, authorities, research institutions, and
the people of Amsterdam to reduce CO2 emissions and improve the
environmental record of the city

Barcelona smart city Strategy focusing on “international promotion”, “international
collaboration”, and “local projects”. The number of local projects is
more than a hundred, and the overall strategy is structured around the
collaboration among government, industry, academia, and local
citizenry

Smart London plan Smart city plan created in 2013, and revolving around seven key
themes in the domains of services for citizens, citizen engagement,
development of businesses, smart infrastructure, and networking
among stakeholders

PlanlT valley
(Portugal)

Private, planned smart city to be developed in Portugal, to showcase
the “Urban Operating System” which was developed by the software
company Living PlanIT. This system will accumulate information
from sensors placed throughout the city, which it will then feed to the
applications that monitor and control the city’s systems

Stockholm smart city Strategy whereby environmental and information technologies are
tested and used extensively throughout the city’s infrastructure, with
the purpose of creating a flourishing ecosystem that involves the city’s
inhabitants, private industry, and the public sector

Cyberjaya (Malaysia) Planned smart city that is part of a broader government policy for
advancing the country’s innovation and knowledge economy. The city
is expected to become a global ICT hub by attracting world-class
multimedia companies, professionals, and students. ICT-wise, seven
flagship applications are offered to citizens and businesses

Singapore intelligent
nation 2015

10-year masterplan based on innovation, integration, and
internationalization. It spans the digital media and entertainment
sector, education and learning, financial services, healthcare and
biomedical sciences, manufacturing and logistics, tourism, hospitality
and retail, land and transport, and government and society

King Abdullah
Economic city (Saudi
Arabia)

Planned smart city focusing on manufacturing and logistics, shipping,
light and processing industry and financial services. It will be wired
with high-speed broadband infrastructure and all urban operations will
be managed through Integrated Operation Centers, meant to act as the
“brain of the city”

Masdar city (United
Arab Emirates)

Planned smart city close to Abu Dhabi, designed on the basis of
sustainable urban design. Its economy revolves around clean-tech
research and development, pilot projects, technology, and materials
testing

Skolkovo (Russia) Planned city to be built close to Moscow, expected to contribute to the
modernization of the Russian economy. It will forge a
knowledge-and-innovation ecosystem by developing collaboration
channels between industry and academia in five clusters: ICTs,
biomedical, energy efficiency, space and nuclear technology

Songdo International
business district
(South Korea)

Already developed (again planned) city which is a model of
sustainable, city-scale development and innovation and aims to
become a central business hub in Northeast Asia

(continued)
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Table 22.3 (continued)

Chicago smart city Strategy for leveraging technology in order to promote opportunity,
inclusion, engagement, and innovation. It foresees the collaboration of
the public, the private, and the “third” sector to develop the city?s
infrastructure, “smart” communities, governance, civic innovation, and
the technology business sector

New York digital city Strategy for the city of New York to become “the world’s most digital
city”, developed with the engagement of residents, city employees, and
technologists. Its four core areas are Access, Open Government,
Engagement, and Industry, comprising altogether forty initiatives

Rio de Janeiro
smarter city

Smart city initiative that was a collaboration of the city with
technology vendor IBM to become a “smarter city” for the 2014 World
Cup and the 2016 Olympics. Rio is now equipped with a citywide
Emergency Response System that collects
sensor-and-camera-generated data that enables informed decision
making in policing, traffic, and energy management

Konza technology
city (Kenya)

Planned smart city close to Nairobi, designed on the basis of
sustainable design principles and expected to advance technology
growth in Kenya. Its economy will focus on four sectors: education,
life sciences, telecom, and Information Technology Outsourcing and
Business Process Outsourcing

contributes to growing homelessness, as well as up to daily four-hour commutes in
key U.S. cities for teachers, nurses, first responders and many other middle-income
individuals who play vital community roles. For example, since 2011, as the greater
Seattle area has evolved from the Emerald City to Cloud City, median home prices
have increased by more than 80 percent while median household income has risen
by only 30 percent. Other tech centers confront similar trends.

What this shows, and what has become disturbingly apparent to those who live
in these cities, is that far from being a panacea for many of society’s problems,
technology may have contributed to them with economic and political repercussions
that could last a long time. Consequently, there has been an uptick in protests in
some of these cities. In San Francisco, activists now regularly blockade the private
buses that tech workers take to Silicon Valley, and even protest directly outside the
houses of tech executives. Some of the activism is organized e.g., a group calling
itself the ‘Counterforce’ has been taking credit for some of these actions.

In the introduction, we drew on the characterization of Cocchia (2014) to
specify smart cities as being defined along technological, human and institutional
dimensions. The rising activism in tech-friendly cities presents evidence that the
technological dimension, by itself, is not going to lead to stable and democratic
smart cities that cater to all its stakeholders. Institutional and human dimensions are
equally important, and more dimensions may start to emerge as the theory on smart
cities continues to evolve. We believe that this is the most pressing issue for current
and future work to address, both academically and in practice.
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22.8 Conclusion

Smart Cities have gained much traction (and increased scrutiny) in recent years as a
vision for stimulating entrepreneurship, and supporting innovation and economic
growth, and providing avenues for sustainable and efficient urban management
and development. A significant tool that has been utilized in this vision is data
analytics, including social media and big geospatial data, for understanding,
monitoring, regulating and planning such cities (Angelidou 2017). As cities have
become increasingly embedded with digital infrastructure and networked devices,
the volume of data produced about them has grown exponentially, providing rich
streams of information about not just cities but citizenry. Big Data of this nature is
varied, fine-grained, indexical, dynamic and relational enabling real-time analysis of
different systems and inter-connections between systems. For citizens, such data and
its analysis offers insights into city life, aids everyday living and decision-making,
and empowers alternative visions for city development. For governments, Big Data
and integrated analysis and control centers offer more efficient and effective city
management and regulation. For corporations, big data analytics offers new, long
term business opportunities as key players in city governance.

In conclusion, there is the proverbial ‘something for everyone’ in realizing and
implementing the Smart City vision. However, there are also tradeoffs, as we noted
in the earlier section. A Smart City based on the idea of a ‘technological utopia’
ends up, in practice, in public disenchantment, protests and economic crowding-
out. Some argue it has led to the rise in populism, including movements such as the
anti-immigration fervor and rise of conservatism in the US, Brexit in the UK, and the
rise of far-right governments across Europe. If true, then this argument illustrates the
importance of taking a holistic view in implementing and designing Smart Cities,
one that balances and takes into account all three aspects: technological, human and
institutional.
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Chapter 23
The 4th Paradigm in Multiscale Data
Representation: Modernizing
the National Geospatial Data
Infrastructure

Barbara P. Buttenfield, Lawrence V. Stanislawski, Barry J. Kronenfeld,
and Ethan Shavers

23.1 Access to Nationally Managed Spatial Data
in the United States

The need of citizens in any nation to access geospatial data in readily usable
form is critical to societal well-being, and in the United States (US), demands
for information by scientists, students, professionals and citizens continue to
grow. Areas such as public health, urbanization, resource management, economic
development and environmental management require a variety of data collected
from many sources to identify problems, monitor trends and propose solutions. Such
information needs and demands have driven the coordination of federal and regional
government agencies with respective private sector participation to develop national
geospatial data infrastructures in many countries.

Early spatial data infrastructures emerged in Germany, Switzerland, Canada,
Australia, United Kingdom, and France, followed by national infrastructures in
other nations, as for example Poland (Bialecka et al. 2018), the Netherlands, Brazil,
Bolivia, Malaysia and smaller countries such as the Canary Islands. Buddhathoki
et al. (2008) estimated the existence of roughly 100 national spatial data infras-
tructures, with more in development at regional and subnational levels. A sample
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of current spatial data infrastructure websites for various nations is at https://en.
wikipedia.org/wiki/Spatial_data_infrastructure. In the European Union, a federation
of countries collaborate on the Infrastructure for Spatial Information in Europe
(INSPIRE) project (European Parliament and Council 2007; Craglia et al. 2014).
In the United States, the National Spatial Data Infrastructure (NSDI) evolved with
initial collaboration by 16 federal agencies (NRC 1993) that has since doubled in
size, as described later in this chapter.

A spatial data infrastructure (SDI) differs from a database in several ways. The
SDI incorporates more than a suite of data layers. It is comprised of facilities,
software, systems and installations that provide necessary information integration
and services for the proper functioning of a specific realm of society, such as a
community of users, or an organization, city, or country (Coetzee et al. 2019).
In addition to data and algorithms, an infrastructure comprises “the technology,
policies, standards, human resources and related activities necessary to acquire,
process, distribute, use, maintain, and preserve spatial data” (OMB 2002). Nebert
(2004) defined SDI as a “framework of spatial data, metadata, tools, and a user
community that are interactively connected so that spatial data can be used in an
efficient and flexible way.” Many SDIs have been developed for various reasons.

The U.S. Geological Survey (USGS) Topographic Mapping Program (currently
the National Geospatial Program) is an example of a longstanding SDI for the
United States (NRC 2012). The program began in 1884 and its general-use
topographic maps are still recognized today as a signature and versatile product for
viewing and evaluating the landscape, for managing natural and human resources,
and for environmental stewardship. Over the years, USGS topographic maps
evolved from single-version paper products to digital form called US Topo that is
revised on a 3-year cycle and generated from the most current data available (Usery
et al. 2009). A graphic comparison of a 1:24,000-scale scanned paper map for Fort
Logan, Colorado with the current (2019) US Topo version is shown in Fig. 23.1.

Being a larger country than most, with a diverse range of geographic conditions,
the United States continues development of automated workflows for multiscale
mapping and feature representation, whereas smaller European countries are more
advanced in automated multiscale mapping. The NSDI contains much larger data
stores and a larger range of spatial resolutions than what is available in most other
countries, including finer granular content in elevation and contour representations,
and in hydrographic databases.

Multiscale representation strategies help to steward and sustain any national
geospatial data infrastructure, especially those generated by multiple agencies with
differing mandates that must align with federal, state and local policies and a variety
of user needs. Such strategies are commonly subsumed under the rubric of data
modeling and generalization. Generalization processing systematically modifies
details in geospatial data for appropriate use in mapping and spatial analysis
at reduced scales. The shift toward fully automated generalization has emerged
as computing technology advances to support much larger data volumes (also
referred to as “big data”), distributed data delivery, and streaming data sources that
enable frequent or in some cases near-real-time data updates. At present, multiscale

https://en.wikipedia.org/wiki/Spatial_data_infrastructure
https://en.wikipedia.org/wiki/Spatial_data_infrastructure
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representation has become an umbrella term that incorporates generalization,
data modeling to transform data from one scale or resolution to another, data
integration to provide linkages between data versions across multiple scales, and
geovisualization methods that preserve visual logic of graphical depictions across
display scales.

The principles underlying multiscale representation build upon traditional objec-
tives for generalization and include (1) retention of essential details that provide
evidence of surface processes; (2) omission of details that become visually indis-

Fig. 23.1 Portions of 1:24,000-scale US topographic maps for Fort Logan Quadrangle. 1948
scanned paper edition (top), 2016 U.S. Topo digital GeoPDFderived from The National Map
databases without image background (center), 2016 digital US Topo digital GeoPDF derived from
The National Map datasets with National Agriculture Image Program image background (bottom)
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Fig. 23.1 (continued)

cernible at reduced scales; and (3) preservation of spatial relations (e.g., adjacency,
displacement, topology) that support scientific investigations and modeling. Early
strategies focused on basic geometry such as length and angularity; and more
sophisticated approaches have evolved that tailor multiscale data modeling to local
geographies (e.g., Touya 2008; Mackaness et al. 2007; Stanislawski and Buttenfield
2011; Buttenfield et al. 2011). Appropriate methods for multiscale representation
can improve preservation of landscape conditions and characteristics that are impor-
tant for geomorphometric analysis (Lindsay 2016; Sangireddy et al. 2017; Newman
et al. 2018; Oguchi 2019). And increasingly, multiscale representation involves
data integration that harmonizes information horizontally (across environmental,
economic, and demographic databases) and vertically (from local to regional to
national to global levels).

This chapter reviews existing approaches to multiscale representation (including
data modeling, generalization and data integration, and geovisualization) in support
of the NSDI, emphasizing where additional research is needed and how technolog-
ical advances in data structures and algorithms, such as machine learning and deep
learning for pattern recognition or feature extraction, may provide a trajectory to
improve maintenance and update procedures, and to facilitate access to the NSDI
for a variety of scientific, economic and societal applications. Machine learning and
deep learning encompass the development, testing and examination of algorithms
and statistical models that automatically effectively perform a specific task without
explicit instructions, relying on pattern recognition, training algorithms, and infer-
ence. It is considered an important component of artificial intelligence. Incremental
but cumulatively significant improvements in the speed, robustness and accessibility
of existing data structures and algorithms (e.g., network datasets, Triangulated
Irregular Networks (TINs), skeletons and related structures, numerical equation
solvers) have advanced to a point where ideas that were not practical to implement
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in the past are now much easier to translate from theory to implementation. Best
practices of data curation, processing and dissemination have also changed, marking
a shift towards open and reproducible science. Tenets of the Fourth Paradigm (Hey
et al. 2009) refer to all of these changes as a formal strategy to address the big data
revolution and data intensive discovery.

Challenges persist. The standard “framework data sets” included in the NSDI
include geodetic control, orthoimagery, terrain, cadastral information, surface
hydrography, transportation and administrative boundaries. Additional data layers
are NSDI components as well, such as soils, land use, land cover, geographic names,
and thematic information including demographic and economic data. These data
are maintained by multiple agencies and private sector stakeholders, with varying
scale sensitivities, attribute aggregation levels, and accuracy standards; and this
complicates efforts for horizontal and vertical data integration that are essential to
analysis and mapping applications, and to the integration of multiple SDIs into an
NSDI. Moreover, one of the most significant and valuable objectives of the NSDI
is that data products and services for access and exchange should be made freely
available both internally (among the data producing agencies) and externally to the
nation as a whole, without jeopardizing individual anonymity or national security.
The objective of broadest possible access, use and distribution distinguishes the
NSDI from some other countries, and in some respects complicates data delivery
as the NSDI evolves to accommodate changing definitions of geospatial data and
services.

The question is, what would it take (in terms of data-driven science) to overcome
these challenges and generate an NSDI for the United States that resides within
a unified data framework, that can be accessed across a wide range of user-
specified spatial resolutions, with item-level metadata, linked versions of features,
and landscape descriptors that can be modified for a wide range of natural and
social science applications, in an integrated suite of data models and interoperable
formats? Is this unachievable in a country the size of the United States? Is it
a quixotic fantasy? Or could adoption of data management and manipulation
strategies such as those described in Jim Gray’s Fourth Paradigm (2009) bring
GIScience communities closer to meeting and overcoming this Grand Challenge?

This chapter provides a brief chronology of the United States NSDI and
subsequently presents a visionary approach to modernize and integrate the NSDI
that may or may not be fully operational or even achievable at present. Nonetheless,
current advances in data-driven science, machine learning, and emerging statistical
methods open the door to opportunities to consider a NSDI for larger nations that
can be compiled, maintained, integrated and distributed in a manner analogous
to those for smaller nations. The chapter will cover strategies for how this vision
might be implemented, which could require advanced harmonization and statistical
reasoning using ancillary layers, advanced data linking strategies, and a number of
data science methods that are just beginning to emerge. The authors emphasize at the
outset that solving the technical aspects of multiscale data representation cannot by
itself lead to a fully integrated NSDI, as institutional mechanisms and governmental
policies must be considered also. In the limited space of this chapter however, the
focus will remain on multiscale representation.
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23.2 Chronology and Current Status of NSDI in the United
States

The US Federal Geographic Data Committee (FGDC) was established in 1990, and
is an organized structure of 32 geospatial agencies, professionals and constituents at
federal, state, tribal and local government levels that guides and directs geospatial
activities and data sharing in the nation (https://www.fgdc.gov/organization). A
primary task of the FGDC is coordination and implementation of the NSDI, which
“leverages investments in people, technology, data, and procedures to create and
provide the geospatial knowledge required to understand, protect, and promote our
national and global interests” (FGDC 2013). In describing its vision for a spatial data
infrastructure for the country, a national panel suggested that the phrase “discover
and share for the long term” should be the mantra for spatial data handling (NRC
2012).

A key condition for sharing data and technology services is interoperability.
Interoperability provides the ability to access, exchange and use information in a
uniform and efficient manner. Priorities of access, exchange and use have guided
the emergence and evolution of the NSDI since its inception with the signing of
Executive Order 12906 by President William Clinton on 11 April 1994. The Order
mandated FGDC to coordinate geospatial data access and sharing across the nation
as a whole (The White House 1994). The Order required all US federal agencies that
receive funds for the production of geospatial data to generate appropriate metadata
and adopt standards for describing and distributing the created data through the
NSDI. FGDC’s roles were codified in federal law in the Geospatial Data Act
(GDA) of 2018 (https://www.fgdc.gov/gda/geospatial-data-act-of-2018.pdf). The
GDA adds more structure for accountability by federal agencies implementing
the NSDI and collaborating with public and private sectors. Today, the FGDC is
chaired by the Secretary of the Interior with the Deputy Director for Management,
Office of Management and Budget (OMB) as vice chair. The FGDC continues to
guide, steward, and coordinate the proper generation, collection, and distribution of
geospatial data, metadata and services within the NSDI (https://www.fgdc.gov/gda/
gda-fact-sheet-may-2019.pdf).

The national importance and value of available, interoperable data is most
recently reflected in the passage of key United States laws and Administration
directives designed to improve data availability, access, management processes,
privacy protections, and preservation. These include the “Foundations for Evidence-
Based Policymaking Act of 2018” (Evidence Act) that also includes the “Open
Government Data Act”, and Title III, the “Confidential Information Protection and
Statistical Efficiency Act”. These laws are accompanied by the Executive Order
on Maintaining American Leadership in Artificial Intelligence (The White House
2019), and the “Federal Data Strategy (FDS) 2020 Action Plan” (https://strategy.
data.gov/). These U.S. laws and policies are being implemented in an integrated
manner with the FDS guiding the actions that establish a more unified federal data
enterprise.

https://www.fgdc.gov/organization
https://www.fgdc.gov/gda/geospatial-data-act-of-2018.pdf
https://www.fgdc.gov/gda/gda-fact-sheet-may-2019.pdf
https://www.fgdc.gov/gda/gda-fact-sheet-may-2019.pdf
https://strategy.data.gov/
https://strategy.data.gov/
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As directed by the GDA, the FGDC “shall lead the development and management
of and operational decision making for the National Spatial Data Infrastructure
strategic plan and geospatial data policy” (https://www.congress.gov/115/plaws/
publ254/PLAW-115publ254.pdf, section 753). The most recent NSDI Strategic Plan
(2014–2016, discussed below) focused predominantly on improving the federal
geospatial data portfolio and supporting services. Currently in development, the
FGDC is working with federal agencies and non-federal partners to develop
a consensus-based strategic plan that supports the new laws and policies. Key
elements are projected to include: strengthening the role of non-federal entities in
the NSDI and increased integration of their geospatial data; continuing to improve
discoverability, access and use of geospatial data and services; improving data and
services interoperability through the implementation of standards; and advancing
the use of the Geospatial Platform shared service.

Additionally, the Evidence Act’s establishment of a Federal Chief Data Officer’s
(CDO) Council, and the cross-representation on the Council of FGDC members,
provides a new unique opportunity to advance spatial analytics, by providing a
policy body who can establish interagency processes and policies to improve align-
ment and integrated use of spatial and non-spatial data. As part of the FDS Action
Plan, FGDC members will begin working across the spatial, statistical and other
federal data communities to develop practices that enable machine readable methods
to identify and relate data with spatial features to other statistical, structured and
unstructured data with comparable spatial attributes or characteristics. This will
broaden data use, enable innovative data analysis and applications, and expand the
use of spatial analytics.

Tremendous growth in geospatial data, technologies, and industries over recent
years (2010–2019) has spurred the FGDC to set priorities for the continued enhance-
ment (i.e., development, integration and maintenance) of the NSDI. Goals laid out
in the 2014–2016 NSDI strategic plan include: developing capabilities for national
shared services; ensuring accountability and effective management of federal geo-
spatial resources; and convening leadership of the national geospatial community.
It is expected that enhancing the NSDI will better leverage investments in people,
technology, data, and procedures for increased growth of geospatial applications
and knowledge. Details of the full strategic plan can be found in FGDC (2013), but
here we briefly describe objectives for the first goal. Development of capabilities
for national shared services requires four foundations: a Geospatial Interoperable
Reference Architecture (GIRA); a Geospatial Platform to share geospatial data,
services, and applications through an internet portal; appropriate application of
cloud computing; and promotion of multiagency geospatial acquisition vehicles.
These four requisites are described in detail below.

https://www.congress.gov/115/plaws/publ254/PLAW-115publ254.pdf
https://www.congress.gov/115/plaws/publ254/PLAW-115publ254.pdf
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23.2.1 Geospatial Interoperability Reference Architecture
(GIRA)

The FGDC worked closely with partners to develop a GIRA (https://www.fgdc.gov/
what-we-do/develop-geospatial-shared-services/interoperability/gira), an architec-
ture that provides practical guidance that is aligned with U.S. federal policy,
principles and practices for enterprise architecture to make geographic information
discoverable, accessible, and usable to all stakeholders, including the general public.
The GIRA provides a framework for the management, design, and development
of geospatial systems and solutions and recommends performance measures for
validating and reporting results. It provides guidance for governance, business,
data, applications, services, infrastructure, standards, and security of geospatial
information.

The GIRA includes reference models to guide development of business, data,
application/service, infrastructure, security, geospatial interoperability, and perfor-
mance components for the NSDI. A reference model describes common practices
to describe, use, and share information or methods across organizations. After
presenting a geospatial baseline assessment matrix for data inputs, the data reference
model describes a structure that standardizes data description, data context, and data
sharing. Detailed descriptions of all the reference models are furnished in the GIRA
document (see also GIRA 2015). Use of International Standards Organization (ISO)
metadata (ISO 19115-1:2014) is required as a consistent method for describing
data for all federally stewarded geospatial data. Data content is augmented with
any information that provides additional meaning to data or the purpose for which
the data were created, which can also refer to categorization methods, such as
taxonomies or ontologies (OMB 2013). Data content should be documented through
a web accessible language or service to allow search and discovery of the data
and metadata. Lastly, data sharing requires agreed-upon content models that enable
participating organizations to create interfaces to access or to distribute data.

23.2.2 Geospatial Platform

Through coordination by the FGDC, an internet portal for a Geospatial Platform was
developed for the NSDI allowing access to tools, applications, products, services
and communities, to promote collaboration and use of NSDI resources (FGDC
2013). The current platform (https://www.geoplatform.gov/) includes featured con-
tent about new and forthcoming datasets or services, such as the Ocean Reports
web tool and the Amazon public domain dataset of USGS 3-D Elevation Program
(3DEP) lidar point cloud data. The site includes access to the National Geospatial
Data Asset (NGDA) themes, originally including 34 themes (OMB 2010) that
have been aggregated into 17 primary themes (OMB 2017) including the core
framework data themes (geodetic control, orthoimagery, elevation and bathymetry,

https://www.fgdc.gov/what-we-do/develop-geospatial-shared-services/interoperability/gira
https://www.fgdc.gov/what-we-do/develop-geospatial-shared-services/interoperability/gira
https://www.geoplatform.gov/
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Fig. 23.2 National Geospatial Data Asset (NGDA) Themes on the Geospatial Platform (https://
www.geoplatform.gov/)

transportation, hydrography, cadastral, and governmental units) (OMB 2010). An
NGDA Portfolio Theme is also available, which coordinates additional NGDA
themes (Fig. 23.2). The portal enables users to search or explore resources for data,
services, maps, galleries, and communities through portfolio pages.

23.2.3 Cloud Computing

Cloud computing utilizes a network of remote servers hosted on the Internet to store,
manage and process data. The technology provides an alternative for building data
services on the internet rather than building them on personal or local computers. A
big advantage is that it provides immediate storage and processing services with a
full range of processing speeds and storage capacities to handle a range of user needs
that may not be available locally. Cloud computing can provide organizations with
cost effective alternatives for high data volume or processing services. Common
examples of cloud services include generic social media platforms such as Face-
book, Instagram, and Twitter, and online media services such as Pandora, Netflix,
and Amazon. Commercial Geographic Information System (GIS) platforms, such as

https://www.geoplatform.gov/
https://www.geoplatform.gov/
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Esri, Google Maps, and Bing Maps rely heavily on cloud computing architectures
to promote products and services.

Cloud computing capabilities can also be supported by freely distributed open
source software, such as GRASS (Geographic Resources Analysis Support System),
GDAL (Geospatial Data Abstraction Library), PDAL (Point Data Abstraction
Library), QGIS, R, and Python, along with a myriad of specialized modules such
as pandas, NumPy, Fiona, SciPy, Spectral, etc. As envisioned by the Open Source
Geospatial Foundation (OSGeo, https://www.osgeo.org/about/), groups or individ-
uals can contribute to cloud-based infrastructures without proprietary software
licensing restrictions that can limit free sharing of computing resources. Thus, many
customizable open source computing capabilities are being distributed through
data and software repositories, such as GitHub and Bitbucket. One example is
the geospatial data analysis platform called Whitebox Tools (https://github.com/
jblindsay/whitebox-tools). Another example is the proposed EarthMAP initiative at
USGS, intended as an integrated predictive science capability to provide actionable
intelligence that integrates data and interpreted results in support of earth system
characterization science spanning disciplinary boundaries. Such cloud computing
and open-source capabilities align with best practices for reproducible science
(Stodden et al. 2018; Petras et al. 2015). The goal is to publish linked and executable
data, code, and results in open-source formats, through publicly accessible online
portals, to support both replicability as well as capacity-building that will nurture
more efficient advances in knowledge as well as public trust in science (Peng 2011).

A related effort at USGS has seen further development, by making 3DEP data
accessible through the cloud. The USGS is making all National Map products
and services available through a cloud-based Amazon Web Services (AWS) infras-
tructure. Data available through the cloud includes 3DEP data, derived products
and services. Since 2016, USGS 3DEP has collected airborne-based lidar point
cloud data with the goal of providing very fine resolution elevation data for
the entire country by 2023 (https://www.usgs.gov/core-science-systems/ngp/3dep/
what-is-3dep). Airborne-based Interferometric Synthetic Aperture Radar (IfSAR)
data are used for Alaska where weather conditions hinder lidar collection. Early in
2017, nearly 12 trillion lidar data points (about 98 terabytes) in LAS zip (LAZ) file
format were made available through a requestor-pays Amazon cloud service. These
LAZ files are still available, however, beginning in 2019, through a collaborative
effort between Hobu, Inc., the U.S. Army Corps of Engineers, and AWS. LAZ
files were converted to Entwine Point Tile files (Fig. 23.3), which is a lossless,
streaming octree-based LAZ file encoding structure. These cloud-optimized data are
now part of the Open Data registry provided by AWS (https://registry.opendata.aws/
usgs-lidar/) and freely downloadable and instantly accessible for processing within
the cloud. LidarExplorer tools are under development by the USGS to implement
typical processing requests in the cloud for the entwined lidar data, such as clip,
project, filter and transform.

https://www.osgeo.org/about/
https://github.com/jblindsay/whitebox-tools
https://github.com/jblindsay/whitebox-tools
https://www.usgs.gov/core-science-systems/ngp/3dep/what-is-3dep
https://www.usgs.gov/core-science-systems/ngp/3dep/what-is-3dep
https://registry.opendata.aws/usgs-lidar/
https://registry.opendata.aws/usgs-lidar/
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Fig. 23.3 USGS lidar projects with data that are currently available in Entwine file encoding.
https://usgs.entwine.io/

23.2.4 Multiagency Geospatial Acquisition

The fourth FGDC foundation supporting national shared services for the NSDI
promotes collaboration among agencies and organizations. Collaboration gener-
ates cost savings by leveraging government purchasing power for acquisition
of geospatial data and services, and by distributing costs among contributing
organizations. In the United States, collaboration on data production, maintenance
and exchange is coordinated by the FGDC steering committee and executive
committee, each composed of representatives from many government agencies,
private and state organizations. The two committees oversee activities and distribute
responsibilities among thematic subcommittees and coordination groups, each
focused upon various geospatial data themes and services (https://www.fgdc.gov/
organization). An overview of the organizational structure and components of the
FGDC is shown in Fig. 23.4. A good example of collaborative efforts supported
by the FGDC is the collection of lidar data by the USGS 3DEP, as described

https://usgs.entwine.io/
https://www.fgdc.gov/organization
https://www.fgdc.gov/organization
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Fig. 23.4 Organizational structure and components of the Federal Geospatial Data Committee.
(From https://www.fgdc.gov/organization)

above, whereby costs and work have been distributed among multiple government
and private agencies. This lidar program uses an online geospatial analysis tool
called “SeaSketch” to gather and prioritize data requirements among multiple
agencies. Details on how this part of the NSDI strategy is being implemented are
discussed on the project homepage (https://www.seasketch.org/#projecthomepage/
5272840f6ec5f42d210016e4/about). A cost-benefit analysis coordinated by FGDC
triggered the incentive for multiple federal, state, and private organizations to
collaborate on lidar data collection for 3DEP.

It should be clear that a fully operational NSDI for a country as vast and
diverse as the United States could not be undertaken without the collaborative
efforts of multiple agencies and partnerships, an enterprise reference architecture
that encourages interoperability and tools to support data discovery, as well as
technological advances such as a publicly accessible geospatial platform, and cloud
computing that make open access and freely distributed data products feasible.

https://www.fgdc.gov/organization
https://www.seasketch.org/#projecthomepage/5272840f6ec5f42d210016e4/about
https://www.seasketch.org/#projecthomepage/5272840f6ec5f42d210016e4/about
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To summarize, the four foundations of NSDI provide a firm and reliable base
upon which to establish comprehensive horizontal and vertical integration, utilizing
emerging approaches such as machine learning and advanced data structures to
sustain a workable trajectory for using NSDI to address the pressing societal,
environmental and economic issues facing the United States today. The next section
of this chapter presents a conceptual framework that could support the vision for
utilizing NSDI to greatest national and international benefit.

23.3 The Role of the Fourth Paradigm

In 2007, Microsoft researcher Jim Gray presented an argument (Gray 2007) to the
National Research Council’s Computer Science and Telecommunications Board
arguing for a major transformation of scientific research to focus more directly
on data-intensive systems and open access to data, processing and scientific
communication. Gray termed the transformation a Fourth Paradigm arguing that
it evolved from three historical paradigms of experimentation (a focus on what
can be directly observed and measured), theory building (a focus on what can be
formally hypothesized or inferred in order to lead to generalizable explanations),
and simulation (relying on maturing computational power to reconstruct past
conditions or to forecast future states that may be probable but which are “ . . .

too complicated to solve analytically” (Gray as quoted in Hey et al. 2009: xvii).
The Fourth Paradigm focuses upon data-intensive science consisting of data capture
and validation, curation including organization, cataloging and metadata creation,
analysis, and open communication and publication of data and findings.

Roots of Gray’s argument were founded on the widespread acceptance by several
scientific disciplines that the increasing volume of data forming the basis for
important scientific advances were stored on physical media that was not publicly
accessible, that were vulnerable to magnetic decay and/or could be misplaced
or even discarded due to impermanent information provenance. The National
Science Foundation’s (NSF’s) 1993 Digital Libraries Initiative marked an early
federal effort to catalog, cross-reference and link data collections in networked
environments, and eventually led to development of search engines such as Google
(https://www.nsf.gov/discoveries/disc_summ.jsp?cntn_id=100660). In 2005, NSF’s
National Science Board solicited research (NSB 2005) about preserving data over
longer timeframes to support advancements in science and education, defining
a new transdisciplinary community of what they termed “data scientists”. This
community included information scientists, computer scientists, database engineers,
data curators and archivists, and domain experts.

Data science, also called data-intensive science, e-science, and data-driven
science by various researchers, emerged at the nexus of three domains: com-
puter and information science, mathematics and statistics, and topical domains
including business and management science. These support advanced methods
such as machine learning and artificial intelligence (AI), software and algorithm

https://www.nsf.gov/discoveries/disc_summ.jsp?cntn_id=100660
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development and deployment, technologic progress in distributed computing and
cyberprocessing, and societal and sociotechnical implications of applying such
methods to problem domains including but not limited to medicine and genetics,
earth and atmospheric sciences, economics, social sciences and digital humanities.
The objective is to take full advantage of existing data, instead of formulating theory
and then trying to establish analytic results to confirm or deny it (Steadman 2013).
Data science strategies set up research frameworks that search for and elicit possibly
latent patterns in very large data archives, essentially letting the data speak for
themselves. As Gould (1981: 176) stated prophetically more than a decade before
these efforts and initiatives were formalized:

If we are to pay reverent heed, and write theoria for a Science that is the theory of the
real, then we must let relations between things, the connections between elements of sets,
be stated in such a language that the complexity of data that is trying to speak to us is not
crushed out before we even start.

Culmination of the threads summarized here underscores a national need for a
vertically and horizontally linked, fully transparent, and fully operational spatial
data infrastructure, and raises the central question posed in this chapter, specifically,
what would it take to achieve an NSDI (or even a federated global spatial data
infrastructure “GSDI”) that can support data driven science using linked and
integrated big data and following best practices of reproducible science? The
remainder of this chapter presents a selection of activities and research domains
that could move the nation closer to that objective.

23.4 Activities for Short- and Longer-Term NSDI
Implementation

Based upon the principles espoused in Jim Gray’s Fourth Paradigm concept, we
propose activities to further integrate big data and national spatial infrastructures
from three temporal perspectives, taking into account obstacles and challenges that
might need to be resolved. Some solutions are already developed or in testing. Other
obstacles are either more challenging or cannot be achieved without other advances
in technology or knowledge, and will require longer term attention to become a part
of NSDI.

One obstacle relates to the demand for geospatial data at a continuous or near-
continuous range of scales and resolutions, where data producers are generally
able to generate data products only at a small number of scales. Another obstacle
relates to the need to explore and compare among the large number of available
databases for any theme (hydrography, soils, road networks, vegetation, terrain, etc.)
in order to make informed decisions about which database from which producer
will serve the immediate display or analytical purpose, the required level of data
quality, attribution, file size and form and dimensionality. A third obstacle relates
to changes in technology that have allowed more sophisticated data types, such as
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streaming data, immersive video, and augmented reality. The challenge for NSDI is
to provide geospatial data to support user creation of such products. There is every
reason to envision that in the longer term, NSDI can move towards direct provision
of these advanced data types as a foundation for users to create even more advanced
analyses and data products. Solutions will be proposed that might be implemented
in the short term (1–4 and 5–7 years) and in the longer term (more than 7 years to
implementation).

23.4.1 Short-Term Goals: Integrate NSDI Across Spatial
and Temporal Scales

In the short term (1–5 years), tools to increase NSDI multiscale functionality
will provide data with continuous or near-continuous feature scales. At present,
national databases are compiled within a single spatial scale or localized scale
range, with each version isolated from others. The National Hydrography
Dataset High-Resolution (NHD HR) version is somewhat of an exception.
Through collaborative efforts, the USGS produces the NHD HR, which includes
the best available hydrographic data for the country (https://www.usgs.gov/
core-science-systems/ngp/national-hydrography/national-hydrography-dataset?
qt-science_support_page_related_con=0#qt-science_support_page_related_con).
NHD HR is compiled from multiscale data sources to meet the needs of all
collaborators. A visibility attribute allows users to filter NHD HR feature content
to eight scales (1:24,000; 1:50,000; 1:100,000; 1:250,000; 1:500,000; 1:1,000,000;
1:2,000,000, and 1:5,000,000) for cartographic or analysis purposes (https://www.
usgs.gov/core-science-systems/ngp/national-hydrography/visibilityfilter). Separate
versions of the NHD are also available at 1:100,000-scale (Gary et al. 2010) and
1:10,000,000 (Instituto Nacional de Estadística Geografía e Informática et al. 2006).

In recent years the NHD Plus Version 2, based on 1:100,000-scale NHD, has
been used by scientists to model phenomena ranging from lake eutrophication to
water supply stress and fish species habitat at state, regional and national scales
(Hill et al. 2018; Merriam et al. 2019). In some cases a variety of data versions
are applied within the same research project due to variations in jurisdictional
area and processing capabilities of contributing organizations (e.g., Martin 2018).
In such cases, generalized data may be preferred over more detailed datasets if
the aim is to standardize reporting and facilitate program consistency. The lack
of data integration impedes users attempting to understand what products are
available and to obtain data that is appropriate to the needs of a specific research or
mapping project. A single-source, customizable multiscale product would facilitate
data exploration, data modeling and analysis, development of derivative data,
map production in paper and virtual forms and data redistribution by individuals,
governments and private organizations.

https://www.usgs.gov/core-science-systems/ngp/national-hydrography/national-hydrography-dataset?qt-science_support_page_related_con=0#qt-science_support_page_related_con
https://www.usgs.gov/core-science-systems/ngp/national-hydrography/national-hydrography-dataset?qt-science_support_page_related_con=0#qt-science_support_page_related_con
https://www.usgs.gov/core-science-systems/ngp/national-hydrography/national-hydrography-dataset?qt-science_support_page_related_con=0#qt-science_support_page_related_con
https://www.usgs.gov/core-science-systems/ngp/national-hydrography/visibilityfilter
https://www.usgs.gov/core-science-systems/ngp/national-hydrography/visibilityfilter
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Fig. 23.5 A vision of a user interface for a multiscale data portal targeting a lay audience or K-12
educational communities

One might argue that data production could be limited to the finest possible
resolution (i.e., the largest possible scale), but a single product scale cannot possibly
meet the full range of display and analytic tasks without provision of software
tools to modify levels of detail. For example, searching for patterns of isostatic
rebound following retreat of continental glaciers would be sheer folly in a centimeter
resolution database, just as a search for erosion and deposition patterns in a
continental or global scale database would come up with few results.

A second goal that is immediately achievable relates to opening access to
NSDI data to users of all levels of expertise. Figure 23.5 shows a hypothetical
interface for an NSDI multiscale data portal as it might look to an end user. The
purpose of this interface would be to browse among a suite of data themes and
identify appropriate amounts of detail presented in each theme prior to download.
The interface shown here might be suitable for lay users and/ or K-12 students
who are either unaccustomed to more technical data jargon or just learning about
online data portals. The interface design is straightforward and includes common
elements such as tools to select datasets (left) and to identify a region of interest
(top). Options to select a level of detail (LoD) appear at the bottom but data
filtering options are presented in terms of output quality, accuracy, stream order,
and file size. As noted above, visibility filtering algorithms are already in place
for NHD (https://www.usgs.gov/core-science-systems/ngp/national-hydrography/
visibilityfilter). Filters for other data themes could be developed by any data
producer and tailored to the specifics of the data theme. Options also might be

https://www.usgs.gov/core-science-systems/ngp/national-hydrography/visibilityfilter
https://www.usgs.gov/core-science-systems/ngp/national-hydrography/visibilityfilter


23 The 4th Paradigm in Multiscale Data Representation: Modernizing. . . 605

provided for advanced users. This recognizes that the aims of data users are not
monolithic, and that data are needed to support clear linework on paper maps,
visualization in digital interactive environments, numerical analysis and modeling,
or construction of derivative data products. Lastly, feedback is provided to the user
prior to download about the file characteristics.

Achieving an NSDI that supports continuous- or near-continuous data resolutions
will require the integration of multiple theoretical advances in data generalization
and processing as well as considerable experimentation to control data quality
and estimate data processing times. At least four areas of research are needed
to make this vision a reality. First, feature visibility attributes must be tied to a
continuous range of target scales. This is feasible using methods of automated
scale inference such as multi-criteria decision systems and/or an empirical formula
for the number of features at a given scale (Jiang et al. 2013; Touya and Reimer
2015; Stauffer et al. 2016). Second, progressive or hierarchical geometric reduction
techniques are needed to simplify features to any given target scale. Methods for
hierarchical line Simplification are well-known for line simplification algorithms
that process vertices sequentially (Cromley 1991) or progressively (Saalfeld 1999)
and implementations are publicly available (e.g., Bloch and Harrower 2006).

Third, a comprehensive multiscale product must avoid topological errors. Main-
taining topological consistency is a computationally difficult problem, but numerous
advances occurred in this area over the past few decades. Early work developed
simple modifications of common algorithms to preserve topology (Saalfeld 1999;
Visvalingam and Whyatt 1993). The process can be made computationally efficient
by using a point indexing structure such as a 2-dimensional tree, and can be extended
to segment collapse algorithms (e.g., Tutić and Lapaine 2009; Kronenfeld et al.
2019) by checking for line segments that intersect collapsed triangles using an
R-tree indexing structure. Triangulated irregular networks (TINs) provide another
approach to maintaining topological consistency (Gold 1994; Ai et al. 2016).
Recently there has been much interest in preserving spatial relations between
data themes as for example between streams and elevation surfaces (Gaffuri et al.
2008; Sinha and Silvasesrith 2012), addressing a longstanding challenge to support
vertical integration. Further work is needed in this area.

Fourth, research is needed to preserve specific data characteristics that are
important to users with needs ranging from cartographic display to domain-specific
modeling (Sinha and Silavisesrith 2012). General metrics of accuracy/error such
as linear and areal displacement have long been recognized as important for
quality control (McMaster 1986), but semantic and computational challenges are
only beginning to be fully understood (Hangouet 1995; Kronenfeld and Deng
2019). More sophisticated models are being developed that preserve higher-order
characteristics such as line density (Stanislawski et al. 2012, 2015) and sinuosity
(Kronenfeld et al. 2019). Preservation of user-specified characteristics will require
domain-specific approaches (e.g. Christophe and Ruas 2002; Tutić et al. 2016) as
well as adaptive techniques that utilize local measures of shape and complexity to
determine the best algorithm and parameterization (Buttenfield et al. 2011).
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While several techniques to implement a single source, multiscale NSDI data
portal are available today, the effort required to create a continuous scale data infras-
tructure should not be underestimated. The solution likely will require intermediate
phases with pre-built options that involve some degree of manual intervention and/or
quality control. However, in the long run a fully automated system offers greater
control for the end user as well as eliminating the need for mapping agencies to
maintain multiple versions of each data theme.

The challenge of maintaining single as opposed to multiple versions is tightly
coupled with the need to establish standardized item-level identifiers within each
version. Continuing with the example application domain of hydrography, many
stream features in each version of the NHD are linkable through reach codes, but
because of logistical limitations, finer resolution codes are not always transferred
to coarser resolution versions, and thus database updates cannot be propagated
automatically across some scale versions, introducing temporal disparities. The
same is true of other national databases maintained by other agencies, but for brevity
the discussion here will continue to focus on hydrography.

The lack of item-level linkages results from the sheer volume of data contained
in each hydrography database at each scale. Early solutions reconstituted smaller
scale versions from a finer resolution compilation (e.g., Buttenfield et al. 2013;
Stauffer et al. 2016), but these were limited to selected features or to smaller
scale target databases. Current strategies partition data into tiles, cross-referencing
linkages within tiles to reduce search times. Chaudry and Mackaness (2007)
adopt a hierarchical approach to establish partonomic relations. Even with faster
parallel processing and full automation available today, the absence of strategies to
standardize item-level identifiers in data themes of a size required for the NSDI
means that comprehensive integration of database versions compiled at isolated
scales may push the goal of a fully multi-scale NSDI into the longer-term.

One promising avenue for implementing item-level linkages will apply machine
learning and neural networks for feature extraction of vector data from imagery
or from raster terrain. This strategy directly follows the data-intensive practices of
the Fourth Paradigm, namely to set up research frameworks that search for and
elicit latent patterns in very large data archives. Machine learning and deep learning
encompass the development, testing and examination of algorithms and statistical
models that automatically perform a specific task without explicit instructions,
relying on pattern recognition, training algorithms, and inference. Machine learning
is considered an important component of AI. To date, it has not been used widely
in generalization (Kang et al. 2019; Touya et al. 2019) but is playing an important
role in current work on automated feature extraction from historical maps (Uhl et
al. 2018; Uhl et al. 2017), conflation of vector information with historical archives
(Duan et al. 2017), removal of road artifacts to extract drainage networks from
digital terrain (Stanislawski et al. 2018), and use of training strategies to identify
first-order tributaries from lidar point clouds (Shavers and Stanislawski 2018).

Wider adoption of learning methods and neural network strategies could provide
many benefits and advantages to spatial data compilation and data integration for
the NSDI, specifically landscape classification, spatial reasoning through regression
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trees, data fusion, aggregation and dimension reduction, reinforcement learning
and possibly performance evaluation in conflation studies and algorithm validation.
There are apparent similarities between machine learning and earlier conventional
approaches to classification, clustering, regression and data reduction (factor analy-
sis). It is important to note that the newer machine learning approaches obviate the
need for meeting conventional method assumptions simply by means of the very
large amounts of input data. The advantage of working on big data with machine
learning is the iterative benefits, because models exposed to new data can adapt
independently of manual intervention. This aspect alone makes the management of
big data feasible for pattern recognition, similarity assessments, feature extraction
and database alignment, all of which will be required to achieve a fully integrated
NSDI.

Data alignment proceeds using several types of analytics, especially ontologic
analysis and semantic knowledge discovery. Arpinar et al. (2004) argue these
alignment methods enable capabilities to automatically extract metadata from
unstructured or structured data, and to support reasoning about spatial and temporal
proximity. Examples of promising work on data alignment focus upon matching
feature types in gazetteer ontologies (Zhu et al. 2016), gathering place semantics
from diverse sources (Hu 2017). Varanka and Cheatham (2016) couple semantic
or RDF (Resource Description Framework) triples with relative spatial relations
to align hydrographic ontologies. Arundel and Usery (2020) extract terrain and
vegetation features from raw DEMs and from imagery. Duckam and Worboys
(2007) demonstrate how reduction of uncertainty can improve semantic alignment
and thus improve data fusion. Delgado del Hoyo et al. (2013) highlight problems
arising from ontologies with only partial alignment in a case study matching the
CityGML standard for urban city objects with other data domains such as digital
building information.

23.4.2 Longer-Term Goals: Aligning NSDI with User Needs
and Demands

Looking forward to the longer term of 5–10 years, geospatial science will need to
adapt to other trends in technology and research related to engaging with big data.
In addition to machine learning strategies, two approaches that stand out as impor-
tant to address for multiscale representation involve the use of high-dimensional
geovisualization and making data readily accessible and valuable to diverse user
groups. Geovisualization tools are already available for lower-dimensional data with
animated maps, data brushing, and augmented reality. High-dimensional data offers
more sophisticated capabilities to interact with data in multiple spatial and statistical
dimensions, and the vision for NSDI is to couple these types of functionality to
improve efficiency and effectiveness of data intensive discovery.

There are many perspectives on what data dimensionality means. Shneider-
man (1996) gives seven dimensions for geospatial data: 1D (lists or text); 2D
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(traditional maps and plots); 3D (volumetric data with x, y, and z coordinates);
multi-dimensional (features or areas linked across spatial scales or more complex
statistical dimensions such as those resulting from factor analyses, hierarchical
clustering, or advanced regression methods); temporal (animations and also space-
time trajectories including individual time lines up through space-time aquaria as
proposed early on by Huisman and Forer (1998) and Kwan (2004)); trees (node
data connected to parent or child nodes in a hierarchy); and network data (nodes
and edges with a varied arrangement). Potential dimension multipliers also include
mixed or augmented reality such as linked data maps aiding urban navigation
using a headset or lenses (McKendrick et al. 2016). Real-time and near-real-
time streaming data will be seen in NSDIs across the globe in the very near
future to capture meteorological information, camera and drone surveillance of
routine and exceptional movement behaviors of animals and humans. Hybrid data
models integrating spatial and temporal data with uncertainty metrics are also being
proposed and implemented (Qiang et al. 2018).

Defining dimensions as well as detailing the when, where and how to use
high-dimensional, or n-dimensional (nD), visualization in the near future is a
challenge. Yet, complex dimensionality will increasingly be unavoidable for timely
data acquisition and use in scenarios such as defense and disaster response and is
also essential to taking full advantage of big geospatial data and analyzing temporal
and interdisciplinary trends. The increasing complexity in data visualization and
analysis is compounded when addressing data modeling across spatial and temporal
scales. Specific challenges in multiscale representation for nD data relate to
technology, data and metadata standards, and making data accessible and valuable
to diverse communities of interdisciplinary users.

Technical challenges such as adapting spatial data to untethered augmented and
mixed reality, where users rapidly change view and detail level, are clear and
made more significant when considering national databases and the need for related
standards. The development of national structures and standards for Shneiderman’s
(1996) high-level tasks of visual information processing (overview, filter, then
detailed analysis) on nD datasets of yet to be fathomed size remains a moving target.
Nonetheless progress is needed for the sake of scientific analysis and development
of the NSDI that will be expected to support such activities.

Advances such as mobile devices and web hosting require new strategies and
push the bounds of traditional geospatial principles. Recent advances in nD scene
generalization include GPU feature simplification (DeCoro and Tatarchuck 2007)
which has been pioneered by developers working in the gaming industry. Adapting
real-time high-speed simplification developed for gaming into research quality
geospatial data with feature context preservation and semantic links is in early
stages (Vollmer et al. 2018). Geovisualization in nD strategies and standards will
require continued attention to intentional level of detail scaling for: viewing region,
format, and user (Forberg 2007) as well as the automated generalization principles
of adjacency, displacement, and topology, ideas not necessarily of precedence for
gaming.
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A second longer term goal is to make big data more accessible to as many
user communities as possible. One requirement for ready access is to standardize
data and its associated metadata, so that users can inform themselves about data
content, format and provenance prior to download. The NSDI advocates the use of
ISO (2014) standards on metadata. Organizations similar to the ISO addressing the
above-mentioned challenges include the Open Geospatial Consortium (OGC), an
international organization hosting stakeholder committees focused on open-source
geospatial standards and processes, and the American Society for Photogrammetry
and Remote Sensing (ASPRS) standards committee, responsible for development of
United States lidar quality standards among others. Organizations such as OGC and
ASPRS are advancing standards for new visualization platforms and data structures
that offer direction for a national data infrastructure. For example, by addressing
data advances such as the OGC Indexed 3D Scene Layers (I3S) that defines
strategies for 3D scene structure (OGC 2017), the organizations offer guidelines
and potential forms of national standards.

In Europe, the Centrum Wiskunde & Informatica (CWI) is a national research
organization in the Netherlands with teams working on computer science and math-
ematics development (https://www.cwi.nl/). An example of the CWI development
projects is MonetDB, an open-source column store system for big data storage and
processing, making advances in structures for moving science towards big data
versatility. Methods and technology for gleaning value from big data are being
advanced by governments, academia, and industry, whether in collaboration in the
case of the OGC or as independent groups such as CWI.

On-demand processing ability in nD for diverse user communities using tools
such as data brushing and interpolation will require the data structures and standards
discussed above as well as an understanding of user needs. The ongoing trend
towards interdisciplinary research will complicate definition of user groups and
increasingly require data interoperability for groups in disparate fields, likely
extending the number of years needed to understand and respond to user community
needs and purposes for spatial data. To shorten this longer-term goal, the unique
processing demands and data types that are being explored require tools and
structures that are adaptable by users, supporting the move towards open-source
processing methods and adaptable interfaces such as a multiscale data portal.

Diverse user needs shape technology and analytical strategies as can be seen with
current machine learning models being built and adapted for disparate disciplines
such as cell biology, autonomous vehicle navigation, and social media. Geospatial
user needs can be broadly grouped into users most often engaged in navigation,
learning, or linking data and users who are interested in analysis for business,
scientific research, or governance. Designing a national data infrastructure that is
scalable and appropriately generalized is a complex and dynamic goal that would
be more efficiently addressed by taking advantage of crowd sourcing and open-
source programming, as discussed earlier. The open-source tool and web-hosted
data model employed by Google Earth Engine (Gorelick et al. 2017) and Open Data
Cube (http://www.opendatacube.org) is a potential strategy. The web format, with
common themes such as satellite images and elevation data, navigated through an

https://www.cwi.nl/
http://www.opendatacube.org
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intuitive and simple map view is accessible and adaptable for the general public.
Standard analysis, such as overlay or spatial statistics, is tailored by the user with
some basic tools and operations for use with web-hosted data. More complex and
discipline specific algorithms geared towards researchers can be coded in using
languages such as Python.

And obviously, one would be remiss by neglecting to discuss the future of nD
visualization in the context of AI. While AI strategies inform many aspects of data
processing and nD visualization, spatial data modeling and generalization for the
most part is still governed by defined strategies. This is certainly the case with
national datasets where standards on representation and attribute preservation are
well defined and required for scientific research at the national scale. While not yet
feasible, development of efficient data storage, rapid cloud based processing, and
clear standards for nD visualization in a linked environment set the stage for AI
models to access, processes, and visualize data in ways currently unimaginable.

The goal of optimized multiscale representation is on-demand processing using
built-in algorithms, linked data, and data brushing in nD for diverse user com-
munities and ushering in a research environment where stakeholders can employ
these tools to answer current and future questions. Looking forward, as machine
learning models advance, one can expect much of the work of symbol and scene
simplification to be automated. There will be a point when the models determine
a choice among alternative simplification strategies and make decisions as to what
feature characteristics to preserve and represent at differing scales for specific user
audiences by tracking user research records or traits of the users’ interaction with
a GUI. At that point one might anticipate system designers and administrators
learning from the machines and asking questions now about how to interpret the
decisions and methods of models such as neural networks to prepare for even
larger leaps in the not-too-distant future. This point is argued also by the Fourth
Paradigm community – that eventually (in the longer term of 10 or more years) we
can anticipate that machine automation will provide us interpretations of big data
patterns, and may guide the sequences of questions we ask.

23.5 Implications and Prospects of the Fourth Paradigm
for the NSDI

The question raised at the beginning of this chapter is how data-driven science might
overcome obstacles challenging the present United States spatial data infrastructure,
to modernize an NSDI characterized by a unified and interoperable data framework
with sufficient horizontal and vertical integration to support natural and social
science applications, delivering data across a wide range of user-specified spatial
resolutions, with item-level metadata, linked versions of features, and landscape
descriptors that can inform decisions about the most appropriate algorithms and
operators for specific modeling and mapping tasks.
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There is little doubt that NSDI serves a significant national imperative, and that
emerging data analytics and data-intensive science offer promising opportunities
for reframing science research, education, and literacy. But conditions in the United
States differ from those in smaller countries; and some of these continue to impede
accelerated progress on a fully integrated NSDI. One reason mentioned previously
in this chapter impacts many expansive nations, namely, the sheer size of the United
States and its territories results in a larger data volume, and the highly diverse
landscapes, terrain, and settlement patterns complicate any “one-size-fits-all” data
management, archival and cataloging. No matter the advances in current processing
technologies, updates cannot be implemented exhaustively for any national level
layer at a single point in time. This forces agencies to prioritize updates for
fast-changing regions, thus fragmenting currentness in unpredictable ways (as for
example following environmental crises or major storm events).

Variation across federal agency missions as well as across federal, state, tribal
and municipal policies governing data access and use further confound creation
of a comprehensively unified NSDI. One example of this can be seen in differing
policies about county-level access to cadastral data, for which some counties charge
access fees, others charge only specified target user groups, and still others charge
only for finer resolution data. Another example relates to varying data definitions
whose semantics become difficult to align among various jurisdictions. Take for
example the definition of an “address”, which for the US Postal Service refers to
the coordinate location of a mailbox, but for 911 services and emergency dispatch
refers to the location of a front door. In urban areas, the two are usually proximal,
but in rural areas they may differ by kilometers. Conflating the two databases is
problematic since it is impossible to distinguish database errors from discrepancies
in the data dictionaries. All of these geographic conditions, data conditions,
technical and policy issues lead to infrastructure fragmentation, problems with
horizontal and vertical feature and attribute integration. The efforts by national and
international standards organizations has come a long way toward resolving such
variations, but there is much more work to be done, and scientific communities are
urged to adhere to their guidance, even if adherence increases the time required to
move research to practice or to the marketplace.

As discussed in the chapter, the community of data producers has been able to
implement some solutions fully or partially, following technical advances as well
as conceptual and theoretical developments. The point argued here is that continued
progress can be streamlined in large part by following precepts espoused in the
Fourth Paradigm. Focusing science and technology explicitly on data-driven science
and open access to data, processing and scientific communication is intended
to invoke several benefits. First, by harnessing the increased data volume with
supercomputing and distributed processing, it becomes possible to train algorithms
(through machine learning and AI) to elicit otherwise latent patterns in the data.
Second, by distributing methods, data and results openly and transparently, it
becomes possible for others to replicate and confirm results. Open source tools
offer processing capabilities that obviate the need for centralized software solutions
to meet the diversity of data management and analytics. Off-loading software
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development to the private sector or open-sourcing makes it possible to meet
demands unforeseen by data producers. This in turn raises the need to have
users create metadata according to OGC and other standards organizations, further
democratizing big data curation and archival.

Of course, adoption of the Fourth Paradigm is not a panacea. For example,
Kitchin (2014) and Gahegan (2020) caution that data are not by definition free
of bias, but instead are collected and curated within technologies and mandates
that “ . . . actively shape its constitution” (Kitchin 2014:5). Kitchin also argues,
validly, that not all patterns or products of data discovery are meaningful. Some
are random or carry high correlations due simply to data volume, and to conclude
causality from mere association can generate ecological fallacies (Freedman 2001).
The responsible strategy for big-data-driven science is to use it for data exploration
and to provide a context within which to ask rather than to definitively answer
empirical and theoretical questions. Taking this approach will allow scientists to
add value and “ . . . to make sense of massive, interconnected data sets, fostering
interdisciplinary research that conjoins domain expertise . . . ” (Kitchin 2014:6).

An important component of the vision for NSDI is a framework supporting
linked multiscale representation. While this meets the aim of simplifying ease
of use, data users will prioritize different objectives, such as enhancing visual
clarity, reducing data volume, or preserving particular analytic characteristics of
various component datasets. Many nations produce only a small number of single
resolution data products, in some cases integrating features across resolutions,
but overall directing data production for specific agency mandates (topographic
mapping, civil engineering, strategic purposes, or cataloging natural and human
resources). NSDI development in the United States has followed a different strategy,
obtaining and integrating highest quality multi-resolution datasets to support scien-
tific analysis, while enriching data attributes (e.g., visibility filters), and building
tools to support generalization by collaborators and third parties. This follows
open and democratized data access and processing as advised by Fourth Paradigm
proponents. At roughly the same time as the emergence of the Fourth Paradigm,
Buddhathoki et al. (2008) pointed to the need for shifting away from totally
centralized data production and supply to a passive user base, towards greater
reliance on volunteered geographic information, to reconceptualize NSDI within
which users take a more proactive role by adding value to data, adding tools and
advancing knowledge more effectively for scientists and for the nation as a whole.

As the United States confronts the complexity of an integrated NSDI for a single
(albeit very expansive) region, the European Union (EU) has initiated and made
great progress on creating a suite of federated national SDIs, integrating spatial data
and tools for multiple nations to exchange data (see the INSPIRE chapter in this
volume). Coordination of SDIs for member states of the EU are overseen by the
Infrastructure for Spatial Information in Europe (INSPIRE) Directive (European
Parliament and Council 2007). Contributions of EU member states to INSPIRE are
guided by standards, with the incentive to implement services and data through
INSPIRE for possible business or economic growth and resource management
through geospatial applications. INSPIRE contains a smaller volume of data than
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NSDI, with roughly the same number (17) data themes. But the effort to integrate
multiple national missions for geospatial data demonstrates a starting point for an
internationally federated GSDI.

The integration of international spatial data infrastructures into a GSDI will
obviously mandate a level of coordination beyond any of the visions described
here. Quite possibly, the experience and lessons learned by the United States in
modernizing its own very large NSDI can inform such a globalized effort, opening
the way to the Fourth Paradigm vision of open and transparent data availability
to address the environmental and societal issues confronting every nation and in
so doing, help to sustain the planet for future generations. Possibly the vision is
quixotic, and yet current technology and changing environmental conditions create
important opportunities for the global cooperation that would make such a vision
real.

Disclaimer Any use of trade, firm, or product names is for descriptive purposes only and does not
imply endorsement by the U.S. Government.
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24.1 Introduction

Technological advancements in the last decade have enabled governments, busi-
nesses and citizens to produce and collect increasingly larger amounts of data.
The availability of personal digital devices with built-in sensors increased while
their price significantly decreased, bringing the chance to collect multitudes of
data in a simple and fast way to everyone’s reach. This unprecedented large
and heterogeneous amount of data collected at exceptional scales and speeds has
subsequently led to the establishment of the term Big Data, which has currently
become ubiquitous in many areas. Multiple definitions of Big Data are available,
which bring together different concepts such as volume, variety, cloud, technology,
storage, analytics, processing, information, and transformation. According to the
common formal definition proposed by De Mauro et al. (2015) Big Data represents
the “Information assets characterised by such a High Volume, Velocity and Variety
to require specific Technology and Analytical Methods for its transformation into
Value”. The exploitation of Big Data is often connected to cloud computing
platforms, which are composed of data infrastructures put in place in order to store
and manage data, high-bandwidth networks to transport data, and high-performance
computers to process data (European Commission 2016).

It is clear that the data revolution that is underway is already reshaping how
knowledge is produced, business conducted and governance enacted (Kitchin 2014).
The main components of this data revolution are digitalisation, big data, open data
and data infrastructures. These components, whose impact is already visible in
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science, business, government and civil society are addressed by new and emerging
fields, such as data science, social computing, and artificial intelligence.

In the geospatial arena, Information and Communication Technology (ICT)
developments have been continuously adopted as well. Geospatial data management
started with the development of Geographic Information Systems (GIS) which in
turn evolved into Spatial Data Infrastructures (SDIs), and consequently in Spatial
Knowledge Infrastructures (SKIs). SDIs developments started on the one hand with
legally binding governmental initiatives and on the other hand with more business-
oriented initiatives driven by the private sector. Typical examples of the former are
National Spatial Data Infrastructures (NSDIs) such as the one in the US (Clinton
1994) and European Spatial Data Infrastructures (ESDI), which in the European
Union (EU) are driven by the INSPIRE1 (Infrastructure for Spatial Information
in Europe) Directive (European Parliament and Council 2007). In addition to the
EU Member States (MS) and European Free Trade Association (EFTA) countries,
candidate and potential candidate countries (e.g. Western Balkans) and some
European neighbourhood countries (e.g. Ukraine and Moldova) are also building
their NSDIs in accordance with INSPIRE (Cetl et al. 2014). The latter group
of SDIs is represented by the mapping frameworks from commercial surveying
companies including Google Maps, Microsoft Bing Maps, and HERE Maps.
There is also a third group of SDIs driven by crowdsourced initiatives such as
OpenStreetMap,2 which has built the largest, most diverse and most detailed open
geospatial database to date (Mooney and Minghini 2017) and whose quality can
equal that of authoritative data (see e.g. Haklay 2010; Girres and Touya 2010; Fan
et al. 2014; Brovelli et al. 2016). There is no doubt that all these initiatives have
triggered the creation of Big Geospatial Data. There is also no doubt that all of
them are interrelated and their user bases are becoming more and more similar
(see e.g. Köbben and Graham 2009; Minghini et al. 2019). Those heterogeneous
initiatives combined, have huge potential for creating synergies in Big Geospatial
Data management.

In this chapter our emphasis is on governmental, i.e. authoritative geospatial
data in the EU. These are officially recognised, quality-certified data provided
by authoritative sources such as Environmental Protection Authorities (EPAs) and
National Mapping and Cadastral Agencies (NMCAs). Authoritative geospatial data
in the EU are managed and shared through NSDIs, interlinked in a European Big
Geospatial Data infrastructure that is to a large extent shaped by the legal provisions
of the INSPIRE Directive. Structurally, the chapter is organised as follows. Section
24.2 offers an overview of the current Big Data initiatives started by the European
Commission (EC), with special focus on those characterised by a geospatial
component and their relation with INSPIRE. A more detailed introduction to the
INSPIRE legal, technical and organisational framework as well as the state of play
of INSPIRE is provided in Sect. 24.3. Particular attention is placed on the INSPIRE

1https://inspire.ec.europa.eu
2https://www.openstreetmap.org

https://inspire.ec.europa.eu
https://www.openstreetmap.org
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Geoportal, which is the entry point of the whole infrastructure. This is followed
by Sect. 24.4, which maps the main characteristics of Big Data, expressed by the
popular six Vs, to the main features of the INSPIRE infrastructure, thus proving
its nature of a Big (Geospatial) Data infrastructure. A number of open issues in
making full use of the INSPIRE infrastructure from a user perspective are then
listed. Finally, Sect. 24.5 concludes the chapter by reflecting on those issues and
the lessons learnt from the INSPIRE implementation from a Big Data perspective,
and outlining some potential evolutions from a traditional SDI to a modern data
ecosystem.

24.2 Big Data in the EU

According to the Digital Single Market strategy of the European Commission,3

data represents a key asset for the economy and society similar to the traditional
categories of human and financial resources. The need to make sense of Big Data –
regardless of their nature (geospatial, statistics, weather, research, transport, energy,
or health) and source (public services, connected objects, private sector, citizens,
research) – is leading to innovations in technology, development of new tools and
new skills.

At the EU level, the response to the potential of using the cloud as a platform
for Big Data exploitation resides in the European Cloud Initiative (European
Commission 2016), which aims to interconnect the existing EU data infrastructures
and coordinate their support, ensuring that the sharing of data and the capacity
to exploit them are maximised. The European Cloud Initiative is based on the
Digital Single Market strategy and several other EU initiatives addressing Big Data,
including the 2012 European Cloud Strategy (European Commission 2012a), the
High Performance Computing (HPC) Strategy (European Commission 2012b), and
the policy developed in the Communication on Big Data (European Commission
2014). A number of reasons are listed why Europe has not yet exploited the full
potential of data: non-openness of publicly-funded research data, lack of data
interoperability, data fragmentation (i.e. infrastructures scattered across countries
and domains), and lack of a European world-class HPC infrastructure. Regarding
the lack of data interoperability, the geospatial domain is explicitly mentioned as an
exception thanks to the INSPIRE Directive.

The tool envisioned to give Europe a global lead in scientific data infrastructure
is the European Open Science Cloud (EOSC; Koski et al. 2015), an open, interoper-
able, distributed, service-oriented, publicly funded and publicly governed platform
connecting networks, data, computing systems, software, tools and services of EU
MS to enable gathering, management, analysis, sharing and discovery of scientific
data according to the principles of Open Science (European Commission 2015) to

3https://ec.europa.eu/digital-single-market/en/big-data

https://ec.europa.eu/digital-single-market/en/big-data
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ultimately lead to economic and societal innovation. The EOSC will be research-
centric, though not specific to any discipline or field, and will aim to make all
scientific data produced by the Horizon 2020 Programme open by default according
to the principles of Findability, Accessibility, Interoperability and Reusability
(FAIR; Wilkinson et al. 2016). However, turning the FAIR principles into reality
would require an effort at the level of both the technological infrastructure and
the research culture (European Commission Expert Group on FAIR Data 2018).
Finally, the European Cloud Initiative already foresees quantum computing as the
next breakthrough in supercomputing and secure networking and anticipates the
need for Europe to make significant investments to be at the forefront.4

Looking more into the geospatial dimension of Big Data in the EU, in addition
to the INSPIRE framework which is separately described in Sect. 24.3 there are
several other initiatives worth to be mentioned. Copernicus is the EU’s Earth
Observation (EO) Programme, looking at our planet and its environment for
the ultimate benefit of all European citizens.5 It offers service providers, public
authorities and other international organisations a number of Services – focused
on atmosphere, marine, land, climate change, security and emergency – based on
satellite EO and in situ (non-space) data. The processed data and the information
disseminated, both freely and openly accessible, put Copernicus at the forefront
of the Geospatial Big Data paradigm. More than five million products have been
published in the Sentinel repository managed by the European Space Agency
(ESA) and more than 100.000 users have downloaded more than 50 PB of data
since the system became operational, with 1 PB of data corresponding to about
750.000 datasets (Koubarakis et al. 2019). This volume, as well as the velocity at
which data are collected and processed, will increase in the future with the launch
of new Sentinel satellites. Copernicus is closely connected with INSPIRE since
Copernicus Services need access to openly available, up-to-date and harmonised
geospatial information across Europe for production and validation purposes. In
turn, many geospatial datasets and services produced by Copernicus are exposed
according to the INSPIRE guidelines to maximize their interoperability. In the field
of positioning and navigation, a partnership between the European Space Agency
(ESA) and the EC has resulted into Galileo, the European Global Navigation
Satellite System (GNSS) offering high-quality positioning, navigation and timing
services to users across the world.6 Galileo is fully compatible with the American
GPS and Russian GLONASS, thus offering enhanced combined performance;
in contrast to them, it is specifically designed to remain under civilian control.
Galileo’s full operational constellation – still under construction – will consist of 24
operational satellites plus six spares circling Earth in three circular medium-Earth

4https://ec.europa.eu/digital-single-market/en/news/quantum-technologies-opportunities-
european-industry-report-round-table-discussion-and
5https://www.copernicus.eu
6https://www.gsa.europa.eu/european-gnss/galileo/galileo-european-global-satellite-based-
navigation-system
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orbits, at an altitude of about 23,000 km. Galileo builds upon the success of the
European Geostationary Navigation Overlay Service (EGNOS),7 operational since
2009 to provide safety of life navigation services to aviation, maritime and land-
based users over most of Europe. Finally, the EC is participating in the Group on
Earth Observations (GEO),8 a global network of governmental institutions, research
organisations, data providers, scientists and experts working together to build a
Global Earth Observation System of Systems (GEOSS)9 aimed at strengthening the
monitoring of the Earth and improving decision making. Thanks to the knowledge
acquired through Copernicus, Galileo, EGNOS and other programmes, Europe has
positioned itself as a global force in the field of EO and in 2019 the European
portion of GEO was renamed EuroGEO, and EuroGEOSS was established as the
European component of GEOSS, yet again with a clear link to INSPIRE (European
Commission 2017).

In the context of a general strategy to build a European data economy,10 and
within a framework for digital trust granted by the General Data Protection Regu-
lation (European Parliament and Council 2016), a recent initiative dedicated to the
establishment of a common European data space is addressing challenges pertaining
to data value chains in the era of Big Data. The related EC Communication defines a
data space as “a seamless digital area with the scale that will enable the development
of new products and services based on data” and positions public data at the centre
of data-driven innovation (European Commission 2018). Additional emphasis is put
on ensuring access to publicly-funded data held by private companies, and different
data-flows (business-to-business, business-to-government, etc.) that are beneficial
for all actors involved. This is further addressed by the recent Open Data Directive
(European Parliament and Council 2019), which encourages the FAIR management
of EU public and publicly funded data and recognises INSPIRE as a good practice.
The Directive also introduces the concept of high-value datasets, i.e. datasets with
“the potential to (i) generate significant socio-economic or environmental benefits
and innovative services, (ii) benefit a high number of users, in particular SMEs, (iii)
assist in generating revenues, and (iv) be combined with other datasets”; hence, it
requires that such datasets are made available free of charge, in machine-readable
formats and provided via Application Programming Interfaces (APIs) and as a bulk
download where relevant. The Directive does not provide a full list of such datasets –
which is left for future work – but only defines categories of datasets, one of which
is the geospatial one.

7https://www.gsa.europa.eu/egnos/what-egnos
8http://www.earthobservations.org/index.php
9https://www.earthobservations.org/geoss.php
10https://ec.europa.eu/digital-single-market/en/policies/building-european-data-economy

https://www.gsa.europa.eu/egnos/what-egnos
http://www.earthobservations.org/index.php
https://www.earthobservations.org/geoss.php
https://ec.europa.eu/digital-single-market/en/policies/building-european-data-economy


624 M. Minghini et al.

24.3 INSPIRE State of Play

24.3.1 Legal, Technical and Organisational Framework

The legal framework for INSPIRE has been set by the Directive 2007/2/EC
(European Parliament and Council 2007) and related interdependent legal acts,
which are called Implementing Rules, in the form of Commission Regulations
and Decisions. By design, the INSPIRE infrastructure is built upon the NSDIs
established and operated by the EU MS and EFTA countries that are then made
compliant with the Implementing Rules, covering its core components: metadata,
network services, interoperability of spatial datasets and services, data sharing and
monitoring and reporting (Tomas et al. 2015; Cetl et al. 2019; Minghini et al.
2020). The Implementing Rules for metadata, the interoperability of data themes,
the network services (that help to share the infrastructure’s content online) and
the data sharing are complemented by non-legally binding Technical Guidance
documents. These guidelines explain a possible technical approach to fulfill the legal
requirements and embed additional recommendations that may help data providers
in their implementation for a range of use cases.

The thematic scope of INSPIRE includes 34 cross-sectoral categories, named
data themes (see Fig. 24.1), listed in the three annexes of the Directive and reflecting
two main types of data: baseline geospatial data (presented in Annex I and partly
in Annex II), which define a location reference that the remaining data themes (in
Annex III and partly in Annex II) can then refer to.

Data and metadata are shared through web-based services, referred to as network
services (European Commission 2009), based on a Service Oriented Architecture

Fig. 24.1 INSPIRE themes, organised in three Annexes. (Source: European Commission, Joint
Research Centre)
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Fig. 24.2 Distributed Service Oriented Architecture of INSPIRE. (Source: European Commis-
sion, Joint Research Centre)

(SOA)11 approach (see Fig. 24.2). Network services are implemented through well-
established international standards for geospatial interoperability, mainly developed
by the Open Geospatial Consortium (OGC).12 Technical Guidance documents
illustrate how data providers can establish access to metadata for Discovery
Services through the Catalogue Service for the Web (CSW).13 Similarly for View
Services, the interactive visualisation of georeferenced content involves guidelines
using the Web Map Service (WMS)14 and Web Map Tile Service (WMTS)15

standards. Download Services also have guidelines that recommend the use of
Atom feeds,16 Web Feature Service (WFS),17 Web Coverage Service (WCS)18 and
Sensor Observation Service (SOS),19 for appropriate types of data. There are also
various Transformation Services defined, which can support coordinate and data
transformations. In addition to all the above, there are generic services (registry and

11https://www.opengroup.org/soa/source-book/soa/p1.htm
12http://www.opengeospatial.org/
13https://www.opengeospatial.org/standards/cat
14https://www.opengeospatial.org/standards/wms
15https://www.opengeospatial.org/standards/wmts
16https://validator.w3.org/feed/docs/atom.html
17https://www.opengeospatial.org/standards/wfs
18https://www.opengeospatial.org/standards/wcs
19https://www.opengeospatial.org/standards/sos

https://www.opengroup.org/soa/source-book/soa/p1.htm
http://www.opengeospatial.org/
https://www.opengeospatial.org/standards/cat
https://www.opengeospatial.org/standards/wms
https://www.opengeospatial.org/standards/wmts
https://validator.w3.org/feed/docs/atom.html
https://www.opengeospatial.org/standards/wfs
https://www.opengeospatial.org/standards/wcs
https://www.opengeospatial.org/standards/sos
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Fig. 24.3 INSPIRE Implementation Roadmap. (Source: European Commission, Joint Research
Centre)

other spatial data services), that are implemented on a national as well as European
level.

Deadlines for the implementation of the different components of the infrastruc-
ture are defined by the INSPIRE roadmap (see Fig. 24.3), which foresees different
milestones till 2021 according to the Annexes and the type of resources or services.

A number of important milestones have been already reached, however there
are still activities to be completed, especially regarding data harmonisation and
conformity which is crucial for the overall interoperability of the infrastructure. It
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goes in particular for Annexes II and III where the deadline for data harmonisation
is set for the end of 2020. This means that, at the time of writing (beginning of
2020), data sets falling under related data themes are still made available mostly in
a non-harmonised manner.

24.3.2 INSPIRE Geoportal

The entry point to the INSPIRE infrastructure is the INSPIRE Geoportal.20 It serves
as a central access point to the data and services from public organisations in the
EU MS and EFTA countries which fall under the scope of INSPIRE. The INSPIRE
Geoportal enables cross-border data discovery, access, visualisation and download.
It does not store any geospatial data, but it simply acts as the main client application
of the whole INSPIRE infrastructure by exposing data through the harvesting of the
CSW endpoints made available by MS. Alongside the INSPIRE Geoportal, which is
operated by the EC, there are also national geoportals operated by single countries.
Links to national geoportals are available in the INSPIRE Knowledge Base (IKB)
section entitled INSPIRE in your country.21

The first operational Geoportal Pilot was developed by the Joint Research Centre
(JRC)22 of the EC and released in 2011. In September 2018, a redesigned version
was published (see Figs. 24.4, 24.5, and 24.6) offering easier access to geospatial
data in the EU. The new Geoportal was developed by the JRC in collaboration
with and support from the EC Directorate-General for Environment,23 Eurostat24

and the European Environment Agency.25 It builds on the experience of running
the Geoportal Pilot and supports several actions of the INSPIRE Maintenance and
Implementation Work Programme,26 especially regarding improving the accessibil-
ity of data sets through Network Services and improving the availability of priority
data sets for environmental reporting.27 The redesigned Geoportal is a one-stop shop
for public authorities, businesses and citizens to find, access and use geospatial
data sets related to the environment in Europe. It also provides overviews of the
availability of data sets by country and thematic area, and provides ready-to-use
data either through interoperable web services or by direct download, to maximize
their exploitation in third-party GIS clients and applications.

The Geoportal landing page provides access to three main applications:

20http://inspire-geoportal.ec.europa.eu
21https://inspire.ec.europa.eu/INSPIRE-in-your-Country
22https://ec.europa.eu/jrc/en
23https://ec.europa.eu/dgs/environment
24https://ec.europa.eu/eurostat
25https://www.eea.europa.eu
26https://webgate.ec.europa.eu/fpfis/wikis/pages/viewpage.action?pageId=268249090
27http://inspire.ec.europa.eu/metadata-codelist/PriorityDataset/

http://inspire-geoportal.ec.europa.eu
https://inspire.ec.europa.eu/INSPIRE-in-your-Country
https://ec.europa.eu/jrc/en
https://ec.europa.eu/dgs/environment
https://ec.europa.eu/eurostat
https://www.eea.europa.eu
https://webgate.ec.europa.eu/fpfis/wikis/pages/viewpage.action?pageId=268249090
http://inspire.ec.europa.eu/metadata-codelist/PriorityDataset/
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Fig. 24.4 Landing page of the INSPIRE Geoportal. (Source: European Commission, Joint
Research Centre)

1. Priority Data Sets Viewer, that displays the availability and provides access to
the priority datasets used for environmental reporting28;

28https://ies-svn.jrc.ec.europa.eu/projects/2016-5/wiki

https://ies-svn.jrc.ec.europa.eu/projects/2016-5/wiki
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Fig. 24.5 Harvesting status on 15/12/2019. (Source: European Commission, Joint Research
Centre)

2. INSPIRE Thematic Viewer, that displays the availability and provides access to
all EU MS and EFTA countries datasets falling under the scope of the INSPIRE
Directive, filtered by data themes and/or countries;

3. INSPIRE Reference Validator, a separate application that helps data providers
check whether their data sets, services and metadata meet the INSPIRE require-
ments.

As mentioned above, the input source to the INSPIRE Geoportal is the harvesting
of metadata from the officially registered Discovery Services of EU MS and EFTA
countries. At the time of writing (January 2020) 37 Discovery Services are harvested
on a regular basis (most of them weekly or monthly, however this is fully decided
by the administrators of each Discovery Service), as shown in the Harvesting status
section29 of the Geoportal (see Fig. 24.5).

Insights into the current implementation status of the infrastructure are provided
by the INSPIRE Thematic Viewer, which offers two possibilities for browsing
datasets: by individual EU MS & EFTA country and by INSPIRE data theme. Figure
24.6 shows the availability of datasets in EU MS and EFTA countries as of October
2019.

29https://inspire-geoportal.ec.europa.eu/harvesting_status.html

https://inspire-geoportal.ec.europa.eu/harvesting_status.html
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Fig. 24.6 Availability of INSPIRE datasets in EU MS and EFTA countries in October 2019.
(Source: European Commission, Joint Research Centre)

The three numbers related to each country correspond to the number of available
metadata records, downloadable datasets (i.e. data sets for which a Download
Service is available) and viewable datasets (i.e. datasets for which a View Service
is available). In the INSPIRE Geoportal about 150k datasets are available with
metadata, of which about 24k are also viewable and about 13k downloadable
(see Fig. 24.6). The differences between the number of metadata records and
the number of viewable and downloadable datasets demonstrate that the full
implementation of INSPIRE is yet to be achieved. Similarly, for each EU MS and
EFTA country the Priority Data Sets Viewer displays the availability of metadata,
viewable and downloadable datasets for the priority datasets used for environmental
reporting, which can be filtered by country, environmental domain or environmental
legislation.
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24.4 Inspire as a Big Data Infrastructure

24.4.1 Characteristics of INSPIRE in Terms of Big Data

As already outlined, Big Data represents the information assets characterized by
such a volume, velocity and variety to require specific technology and analytical
methods for its transformation into value (De Mauro et al. 2015). In addition to
volume, velocity, variety and value, characteristics of Big Data are veracity and
visualisation, thus leading to the six Vs of Big Data. The Big Data landscape,
including both the technologies (i.e. data lakes30) and infrastructures (i.e. databases
and analytical tools) is evolving quickly. Geospatial data has always been considered
to have more complex and larger datasets relevant for many other applications
(McDougall and Koswatte 2018). The term Big Geospatial Data typically refers
to spatial datasets exceeding the capacity of widespread computing systems. Many
evidences have witnessed that a significant portion of Big Data is, in fact, Big
Geospatial Data (Lee and Kang 2015). Spatial data comes from many sources and
is used within many domains. According to the business model of the INSPIRE
Directive, an efficient use of government resources requires that “spatial data are
stored, made available and maintained at the most appropriate level” and that “it is
possible to combine spatial data from different sources and share them between
several users and applications” (European Parliament and Council 2007) – thus
envisioning INSPIRE as a digital platform bringing together spatial data holders,
analytics providers and users in sharing, combining and exploiting data. In Table
24.1, we map the six Vs of Big Data to the characteristics of data within the
INSPIRE infrastructure.

Table 24.1 shows that the INSPIRE infrastructure shares the characteristics of
Big Data and thus it could be considered in all respects a Big Geospatial Data
infrastructure. The INSPIRE geospatial interoperability principles offer a flagship
model for integrating huge amounts of heterogeneous sources of public sector
information originating from a variety of providers, domains, administrative levels
and cultural borders.

24.4.2 Challenges from the User Perspective

While several opportunities emerge from the establishment of the INSPIRE Big
Geospatial Data infrastructure, at the same time there are also many challenges
which especially pertain to the usability of such infrastructure. The most pressing
ones are elaborated in more detail in the following subsections.

30https://en.wikipedia.org/wiki/Data_lake

https://en.wikipedia.org/wiki/Data_lake
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Table 24.1 Characteristics of INSPIRE from the perspective of Big Data

Big data characteristics INSPIRE characteristics

Volume – refers to the size of
data

The infrastructure includes geospatial data falling under 34
data themes from all EU MS, EFTA countries and some
candidate and potential candidate countries. Size of data
differs but many are large data sets covering up to the whole
countries, commonly acquired and used in the form of raster
imagery, point cloud data, sensor observations, etc.

Variety – refers to
heterogeneous sources and
the nature of data, both
structured and unstructured

Geospatial data in the infrastructure are produced at different
levels (municipalities, cities, regions and the whole countries).
Some of them are harmonised and structured in an INSPIRE
conformant way, but many of them are “as is” data sets. There
are several different types of data, e.g. imagery data,
geotagged text data, spatio-temporal observation data,
structured and unstructured data, raster and vector data – many
with complex structures. The INSPIRE Find your scope
applicationa lists 338 spatial object types, 121 data types and
294 code lists/enumerations.

Velocity – refers to the speed
of generation of data

The amount of geospatial data in the infrastructure is
increasing on a daily basis as long as new resources are
collected/produced and made available in MS Discovery
Services. Data velocity can be monitored through the
INSPIRE Geoportal.

Veracity – refers to quality of
data and data sources

The quality of geospatial data in the infrastructure varies from
source to source and is expressed in relevant metadata
elements e.g. lineage.

Visualisation – refers to
presentation of data of almost
any type in a graphical format
that makes it easy to
understand and interpret them

While the INSPIRE geoportal embeds a simple map-based
visualisation, the datasets available in the infrastructure can be
analysed and presented through any other visualisation tool
suitable for geospatial datasets, including not only traditional
ones such as charts, maps and imageries but also 3D models,
animations, hotspot and change detection maps. The use of
OGC interoperability standards to serve INSPIRE data
potentially allows any client application to access and
visualise them.

Value – refers to the worth of
the data being extracted or
used

The extraction of information and the actual use of INSPIRE
data has direct economic benefits for Europe. MS
implementation reports clearly show such benefits (Cetl et al.
2017).

ahttps://inspire-regadmin.jrc.ec.europa.eu/dataspecification/FindYourScope.action

24.4.2.1 Discoverability of Datasets

Fostered by INSPIRE, the development of NSDIs in Europe has made more and
more geospatial resources (datasets and services) available on the web. The first
visible component for users, which crucially enables them to search and retrieve
resources is metadata (Cetl et al. 2016). ¯etadata records in INSPIRE are split into
two, with individual records being created for (i) geospatial data and (ii) geospatial
services, both served in the standardised way by using Discovery Services (usually

https://inspire-regadmin.jrc.ec.europa.eu/dataspecification/FindYourScope.action
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OGC CSW). Users then search for the resources by using discovery clients, for
example the INSPIRE Geoportal as well as popular GIS clients such as QGIS.31

This works fine in an SDI environment where both data producers and users are
aware of SDI principles, in particular the corresponding services, the specialised
GIS tools and how to use them. However, many users (both mainstream ICT devel-
opers and end users) are not at all aware of SDIs. Those non-expert users typically
search for geospatial resources through standard web search engines such as Google
and Bing. In addition to that, there are still a lot of geospatial data producers who –
instead of creating and publishing metadata in a predefined structure to make their
resources discoverable through an SDI – simply make them available on the web
without documentation and standardised publication. The solution to that could
be the use of metasearch enhanced crawlers to collect online accessible geospatial
resources published by OGC services. There are also experiences and good practices
with landing pages of datasets and services that could be generated from catalogue
metadata (rather than maintaining the information in different systems). Linked data
also constitutes a fast emerging trend, with clear potential to benefit SDIs (Bucher
et al. 2020), leveraging a way to interconnect related data resident on the web, and
deliver it in a more effective manner to increase its value for users. The resulting
“Web of data” has recently started being populated with geospatial data.32 There
are other ongoing discussions dedicated to web developers, spatial data publishers
and search engine optimisation (SEO) experts related to search engines indexing
optimisations when publishing geospatial data. A first, notable effort to create a
search engine for geospatial resources is Google’s Dataset Search33 launched in
2018.

24.4.2.2 Combining National Datasets to Create Pan-European Products

There is a growing demand for more and better quality data both within the EC
and the EU MS to support a number of key policies related, but not limited to
the environment. Often, several data sources are available at MS level representing
the same spatial objects which differ in various characteristics and quality criteria
such as cartographic scale, level of detail, positional accuracy, timeliness, update
frequency and licensing conditions. The ultimate goal of INSPIRE is to have har-
monised national datasets from MS that can be seamlessly used at cross-border and
transnational levels and facilitate the creation of consistent pan-European datasets
without or with limited additional processing. However, the latter is not among the
original INSPIRE objectives. The latter should be provided based on performant and
stable services in line with the INSPIRE requirements. The challenges in creation

31https://qgis.org
32http://ggim.un.org/meetings/GGIM-committee/8th-Session/documents/Standards_Guide_2018.
pdf
33https://datasetsearch.research.google.com

https://qgis.org
http://ggim.un.org/meetings/GGIM-committee/8th-Session/documents/Standards_Guide_2018.pdf
http://ggim.un.org/meetings/GGIM-committee/8th-Session/documents/Standards_Guide_2018.pdf
https://datasetsearch.research.google.com


634 M. Minghini et al.

of such pan-European datasets are twofold, i.e. related to a technical and a non-
technical harmonisation. In terms of technical harmonisation, reference data are not
yet available for all MS from the INSPIRE Geoportal with harmonised physical data
models and functioning services. Further challenges include harmonisation in terms
of level of detail, scale and edge-matching; in addition, the scope of the datasets
provided by MS in the INSPIRE infrastructure might differ a lot, ranging from
single national datasets to multiple regional or even local datasets. From the non-
technical perspective, despite the efforts made to harmonise the access conditions
to spatial datasets and services (European Commission 2010, 2013), there is still a
high diversity of licensing conditions between countries and in some cases even
among national public authorities of the same country that overall might create
serious legal obstacles to data access and reuse. Data licenses range from open
data licenses such as those from Creative Commons34 to more restrictive and in
some cases custom or national-specific licenses. This diversity clearly hampers
the joint use of datasets as well as the development of consistent and harmonised
EU-wide products derived from national datasets. Even in the circumstance when
multiple datasets from different MS or data providers are published under open
data licenses, the diversity between these licenses might pose legal obstacles to
their combination and joint use from third-party actors. In addition, sometimes MS
organisations adopt different technical means to restrict access to data services (e.g.
through authentication mechanisms or by imposing hefty access fees), thus further
impacting on data accessibility and usability.

24.4.2.3 Data Access and Consumption by Clients

When implementing INSPIRE, MS have adopted a number of different strategies for
the implementation of network services. Often the heterogeneity of the European
data landscape had led to a lack of agreement between data providers on how
to organise Big Data for effective utilisation. Examples include the number of
data sets grouped together within one (or few) View and Download Services as
well as the criteria used to group such data sets (e.g. by data theme, geographic
area, scale, use case or national provider/organisation). A first drawback of this
approach is the difficulty for client applications to easily find the desired resources.
In some cases Big Geospatial Data such as huge databases or coverages covering
whole countries (e.g. national registries of addresses or national orthophotos), which
typically correspond to files of gigantic size, are also served through one single
service. The consequence on the client side is the overall difficulty in accessing
such datasets served through Download Services such as WFS or Atom feeds, in
particular the extremely long waiting times required for download. Even in the
case that the download is successful, the ultimate consequence is still the issue of
consuming (i.e. visualising, analysing and processing) such data for end users.

34https://creativecommons.org

https://creativecommons.org
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24.4.2.4 Cloud Infrastructures

The components of an SDI can be integrated into the cloud as value-added services
(Schäffer et al. 2010). Cloud infrastructures are now available as a cost-effective and
efficient alternative to on-premises provision of INSPIRE services from providers
such as Amazon and Microsoft (Bragg 2017). Only few MS have started to
publish their INSPIRE resources in a cloud infrastructure and it can be expected
that more data providers and organisations will adapt the same approach in the
future, although cloud computing typically raises several concerns due to lack of
trust and transparency. INSPIRE can ultimately benefit from the ability of cloud
infrastructures to handle large amount of requests and deliver data in a robust and
performing manner. By migrating services to the cloud, the geospatial resources
provided by these services would be immediately available in a scalable fashion for
on-demand use. The central components of the INSPIRE infrastructure, which are
technically managed by the JRC, have also not yet been migrated to the cloud. The
only exception is the above mentioned INSPIRE Reference Validator,35 which is
deployed on the cloud since spring 2019 to address the increased user base while at
the same time providing satisfactory performances.

24.5 Conclusions and Outlook

Since its adoption in 2007, the INSPIRE Directive has been the driver behind the
development of an EU-wide Spatial Data Infrastructure based on the interoperability
principles ultimately aiming at the creation of a single European (geo)data space.
The existence of this SDI has been initially considered of primary importance
in support of EU environmental policies and activities impacting the environ-
ment. However, location has become pervasive across multiple policy and societal
domains and so is the relevance and potential of geospatial data. Accordingly,
INSPIRE holds the potential to enable a full use of spatial information across
the public sector, allow multiple stakeholders (including not only governmental
agencies but also private companies, researchers and citizens) to access spatial
data across Europe, assist cross-border policy-making and support better integrated
public eGovernment services (Cetl et al. 2017). Thanks to the numbers, increasing
on an almost daily basis, of metadata records, datasets and services shared by
European countries, INSPIRE is gradually evolving into a reference European SDI
whose data possess all the characteristics of Big Data (see Sect. 24.4). Given that
INSPIRE as an SDI has been a pioneer of the European digital society and economy,
and that many efforts to build SDIs even beyond Europe have looked at INSPIRE
as a model, after more than 10 years since INSPIRE inception a number of lessons
from a Big Data perspective have been learnt. These include opportunities, threats

35http://inspire.ec.europa.eu/validator/about
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and dependencies coming from the emerging technological, societal and economic
trends, which should guide the future steps so that INSPIRE – subject to the
necessary political support and mandate – can continue to play a key role within
the European geospatial digital data revolution.

From our perspective the notion of SDI as it was originally defined (Clinton
1994) is evolving. The processes which are typically described by SDIs are mainly
linear, i.e. data is first collected (often only once) by specific actors (usually
trained professionals), harmonised and published by governmental data providers
and finally consumed by data users. Based on this, there has been the belief that
once such an infrastructure was in place, people would simply use it. But, in the
era of Big Data, reality has become much more complex. First, new actors such
as private companies, citizens and researchers have become key players in terms
of data collection, thus leading to the term ‘produsers’ to denote their blurred role
of being both producers and users of data (Coleman et al. 2009). Nonetheless, the
public sector remains a major actor, whose main advantage is the fact that large
portions of its datasets are quality controlled and often rooted in the formalised
data value chain processes that are legislatively defined. Second, data are currently
collected at unprecedented speeds, and from sources such as drones, smartphones,
in situ sensor networks and Internet of Things (IoT) devices which did not even
exist when the term SDI was first coined. This increased amount of data brings
obvious complexities when it comes to defining ownership, privacy, and licensing.
In this new context, it is crucial that traditional SDIs evolve into modern data
ecosystems. These can be defined as complex systems of people, organisations,
technology, policies, and data in a specific area that interact with each other and
their surrounding environment for a specific purpose. Such ecosystems evolve
and adapt through a cycle of data creation and sharing, data analytics, and value
creation in the form of new products, services, or knowledge, which, when used,
produce new data feeding back into the ecosystem (Pollock 2011; UN Environment
Assembly 2019; Oliveira et al. 2019). Thus, the key difference of data ecosystems
compared to SDIs is the cyclical flow that links the processes of data creation and
sharing, data analytics, value creation and use, in turn generating new data in a
continuous feedback loop between the stakeholders involved. In other words, the
processes within data ecosystem are mainly driven by specific use cases, address
specific users and are described by dynamic and non-linear processes. From a Big
Data perspective, data analytics combined with artificial intelligence are particularly
important for improving policymaking and service delivery (Lisbon Council 2019).

We therefore anticipate the evolution of INSPIRE into a new data ecosystem for
environment (Kotsev et al. 2020). In line with the recently-published priorities of
the EC, which set out a European Green Deal for the EU and its citizens (European
Commission 2019) as well as the strategy to establish a common European data
space (European Commission 2018), INSPIRE should act as an integrated data
ecosystem which, sitting on top of this horizontal EU data space and interconnected
with the EOSC (i.e. with data and services from many different sources and
actors, not necessarily geospatial), can deliver efficient solutions to ensure good
policymaking in the environmental domain and beyond. Using another term to
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express the same idea, INSPIRE should evolve from a highly distributed and
fragmented infrastructure into a centralized platform (Reitz 2019).

The transition towards a successful data ecosystem implies transitions in a
number of dimensions. From the technological perspective, it is still crucial that
such a data ecosystem is built on open standards. However, while a SOA based on
traditional OGC web standards was at the forefront when INSPIRE was conceived,
such standards no longer reflect the modern practices of data exchange through the
web (Open Geospatial Consortium 2019). A new family of API-based standards,
collectively called OGC APIs,36 is under development through a user-centric, data-
driven approach to maximise the benefit for the future users. The first and currently
only standard published, the OGC API - Features,37 has been already identified as a
candidate standard on which a proposal for a specification for setting up INSPIRE
Download Services is under development.38 The OGC API - Features is a REST
API that quickly and easily accesses geospatial features on the web, potentially
allowing to overcome the issues described in Sect. 24.4.2.3. Being designed as a
modern web standard, it is GeoJSON-oriented (although other encodings are also
supported) and thus it goes in the same direction of defining alternative encodings
to simplify and flatten the INSPIRE complex data models, an activity that the JRC
has already started in 2018.39 An increased flexibility, which – at least for selected
spatial object types – relaxes some semantic requirements and only secures a basic
level of interoperability, might definitely help improve the overall usability of the
infrastructure. Similarly, the OGC SensorThings API standard40 is proposed as an
INSPIRE Download Service (Kotsev et al. 2018). SensorThings API is also based
on REST principles and provides a simple yet powerful means for retrieval of
observation data.

In the same direction of simplifying data access and usability, which would
address the issue described in Sect. 24.4.2.1, APIs are also identified by the Open
Data Directive (European Parliament and Council 2019) as the required tool to
publish high-value datasets. APIs have real potential to make the new generation
of data ecosystems user-friendly and usable by developers and end-users, often
not familiar with spatial web services, as building blocks to create third-party
applications to generate additional value. In recent years, several European countries
such as France, Germany, Sweden, Ireland and Croatia have developed an API-
based approach as an integral part of their SDI or INSPIRE developments.

Non-technical transitions are also key for the success of INSPIRE as a data
ecosystem. An open platform model characterised by cyclical data flows between
the actors and stakeholders involved only works if it generates value for all of
them. Thus, it will be increasingly important to move away from a traditional

36http://www.ogcapi.org
37https://www.opengeospatial.org/standards/ogcapi-features
38https://github.com/INSPIRE-MIF/gp-ogc-api-features
39https://github.com/INSPIRE-MIF/2017.2
40https://www.opengeospatial.org/standards/sensorthings
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vision which only looks at the interface between data providers and users, and
include other key stakeholders such as partners, software providers, companies
selling value-added services or data analytics, and intermediary organisations that
facilitate interactions within the platform. All of this without forgetting that the
same stakeholders can play multiple roles. Finally, horizontal aspects such as data
management, governance, protection and sharing issues will need to be prioritised.
The latter includes addressing the INSPIRE licensing scheme which is currently a
serious obstacle for a full exploitation of the infrastructure. Taking the Open Data
Directive – which requires that high-value datasets are “made available for reuse
with minimal legal restrictions and free of charge” – as a reference, a possible path
towards an increased usability of the INSPIRE infrastructure could be to require
the publication of specific datasets without any access obstacle (e.g. authentication
or payment of a license fee) and under an open license that allows for re-use for
any purpose, including commercial. In turn, this would facilitate the cross-border
combination and the creation of pan-European products, at least for these specific
datasets, thus solving the issue described in Sect. 24.4.2.2. Last but not least, the
currently slow and only partial implementation of INSPIRE (already discussed in
Sect. 24.3.2) should be addressed through a well-thought combination of regulatory
interventions and other non legal measures, the latter including incentives, benefits
and constructive competitions (Lisbon Council 2019).
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