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Recommender system has become a popular way to alleviate information over-
load issue. Among the various recommendation methods, Collaborative filtering
(CF) [1] is a most essential model to capture users’ general preferences owing to
its effectiveness and interpretability, but it fails to model the sequential dynamics
in recommendation task. Leveraging users’ behavior history sequences instead
of ratings to predict their future behaviors has become increasingly popular in
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Abstract. The sequential pattern behind users’ behaviors indicates the
importance of exploring the transition relationships among adjacent
items in next-item recommendation task. Most existing methods based
on Markov Chains or deep learning architecture have demonstrated their
superiority in sequential recommendation scenario, but they have not
been well-studied at a range of problems: First, the influence strength
of items that the user just access might be different since not all items
are equally important for modeling user’s preferences. Second, the user
might assign various interests to certain parts of items, as what often
attracts users is a specific feature or aspect of an item. Third, many
methods ignore the complex item relations in user’s previous actions.
In this paper, we present a novel recommendation approach with gating
mechanism and encoding module to address above problems. Specifically,
the pair-wise encoding layer is first introduced to build 3-way tensor for
modeling the relationships among items in user interact histories. We also
apply two gating layers to filter useful information and capture user’s
short-term preference from aspect-level and item-level. We also follow
the similar sprits to model user’s long-term preference by integrating
user latent embeddings. Empirical results on three public datasets show
that our method achieves effective improvements over the state-of-the-art
sequence-based models.
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recent years [2,3]. This is because users access items in chronological order and
the items that user will consume may be related to the items that he has just
visited. To facilitates this task, a line of works convert users’ historical actions
into an action sequence order by operating timestamps [3-5].

Different from the conventional recommendation models, sequential recom-
mendation methods usually based on Markov Chains (MCs) [2], which is a clas-
sic model that assume next action depends on previous actions and model the
transition relationships between adjacent items for predicting user preferences.
Although MCs-based models perform well in sparse scenarios, yet they cannot
capture complex sequential dynamics. Another line of researches make use of
deep neural networks (DNNs) to model both personalization and transitions
based on item sequences, which outperform the MCs-based baselines. For exam-
ple, Convolutional Neural Networks (CNNs) [6,7] have been introduced to cap-
ture user’s short-term preferences, it adopts convolutional feature detectors to
extract local patterns from item sequences by various sliding windows.

However, common neural methods regard sequence as a whole to calculate the
impact on next item, which are difficult to gather relation features of different
positions. Since a user may focus on one specific aspect of an item and pay
different attention to various aspects of the same item. Furthermore, the item
influence strength based on users’ behaviors is diverse and dynamic, yet DNNs-
based models fail to consider the specific aspect or feature of different items and
ignore the item importance based on users’ sequential actions.

In this paper, we also take user’s sequences of recent interactions into account
for sequential recommendation and follow the similar spirits [8] to apply Gate
Convolutional Networks for modeling sequential dynamics for better recommen-
dation. Specifically, we propose Hierarchical Pairwise Gating Model (HPGM)
to effectively capture the sequential pattern then applying two gate linear units
to model transition relationships and represent high-level features. For better
relation extraction, we further devise pairwise encoding layer with concatenation
which learn more meaningful and comprehensive representation of item sequence.
We also conduct a series of experiments on serval benchmarks datasets. More
importantly, experimental results show our model achieves better improvement
over strong baselines.

2 Related Work

2.1 General Recommendation

General recommendation always focus on user’s long-term and static preferences
by modeling user’s explicit feedbacks (e.g., ratings). Matrix Factorization (MF)
[9] is the basis of many state-of-the-art methods such as [10], it seeks to uncover
latent factors for representing users’ preferences and items’ properties from user-
item rating matrix through the inner product operation. MF relies on user’s
explicit feedbacks but user’s preferences also can be mined from implicit feed-
backs (e.g., clicks, purchases, comments). The pair-wise methods [11] based on
MF have been proposed to mining users’ implicit actions and assume that user’s
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observed feedbacks should only be ‘more preferable’ than unobserved feedbacks
then optimize the pairwise rankings of pairs.

Neighborhood-based and model-based methods also have been extended to
tackle implicit feedbacks, a line of works are based on Item Similarity Matrix
such as SLIM [12], FISM [13]. These methods calculate preference scores for a
new item by measuring its similarities with previous items. Recently, various
deep learning techniques have been introduced to extract item features from the
description of items such as images and texts by neural network in recommen-
dation task [14].

2.2 Sequential Recommendation

For sequential recommendation task, Markov Chains (MCs) is an effective
method to model sequential dynamics from successive items. Factorized Person-
alized Markov Chains (FPMC) [2] is a classic sequential recommendation model
that combines MF and factorized MCs to model user preference and sequential
patterns simultaneously. Hierarchical Representation Model (HRM) [4] extends
the FPMC by introducing aggregation operations like max-pooling to model
more complex. He et al’s method (TransRec) [3] models the third-order interac-
tions between sequential items by combining with metric embedding approaches.

Besides, another line of works model user sequences via deep learning tech-
niques and show effective performance in sequential recommendation task [15].
Convolutional Sequence embedding (Caser) [6] captures sequential patterns and
transitions from previous item sequence by convolutional operation with various
filters. Another popular method RNN is also used to model user’s sequential
interactions because RNN is good at capturing transition patterns in sequence
[16,17]. Attention Mechanisms have been incorporated into next item recom-
mendation to model complex transitions for better recommendation [18]. Self-
attention based sequential model (SASRec) [19] relies on Transformer instead of
any recurrent and convolutional operations, it models the entire user sequence
to capture user’s long-term and short-term preferences then make predictions on
few actions.

3 Proposed Methodology

The objective of our task is to predict next behaviors of users depending on
previous chronological actions. We use U and Z to present user set and item
set (respectively) in sequential recommendation scenario. Given user u’s action
sequence S* = (8§, 8%, - ’S\%“\)’ where S;* € T denotes user u ever interacted
with the item at time step t. To train the network, we extract every L successive
items (S7,S8%, - ,S}) of each user v € U as the input, its expected output
as the next 7' items from the same sequence: (S¢,|,S} o, -+ ,Sf 7). In this
section, we introduce our model via an embedding layer, pairwise encoding layer,
hierarchical gating layer and prediction layer. The detailed network architecture
is showed in Fig. 1.
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Fig. 1. The detail network architecture of HPGM. Previous successive item embed-
dings are transmitted into the pairwise encoding layer, the output and user embedding
after pooling are passed into the hierarchical gating layer (G4, Gr) and then predict
the next item by combining the original user embedding and the sequence embedding
after pooling operation.

3.1 Embedding Layer

Let E; € R? be the item embedding corresponding to the i-th item in the
item sequence, where d is the latent dimensionality. The embedding look-up
operation retrieves previous L items’ embeddings and stack them together to
form the input matrix X" € REX4 for user u at time step t. Along with item
embedding, we also represent user features in latent space with user embedding
P, € R%.

3.2 Pairwise Encoding Layer

In order to capture intricate item relations among a specific item sequence and
improve the flexibility of the model, we use pair-wise encoding layer to build
a sequential tensor T(%*) e REXEX2d ¢4 store various item relationships. T(%*)
is composed by the item pair(z, j) of item subsequence, which concatenate the
embedding of item ¢ and j. The encoded 3-way tensor is similar to “image feature
map” in the CNN-based model for computer vision tasks, so T(**) can replace
the sequential item embedding X (“*) as the input to downstream layers. Note
we padding the user embedding with “1” and generate a user tensor P, with
same dimensions of T(%*) for feeding the user embedding into the subsequent
layers.

3.3 Hierarchical Gating Layer

Original GLU integrate convolution operation and simplified gating mechanism
to make predictions [20], motivated by the gated linear unit (GLU) utilized
on recommendation task [8], we also adopt similar spirits to model sequence
dynamics. GLU control what information should be propagated for predicting
next item, so we can select specific aspect/feature of item and particular item
that is related to future items.
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Aspect-Level Gating Layer. A user generally decides whether to interact
with the item by looking for the specific attractive aspects of the item. There-
fore, we modify the GLU to capture sequence pattern based on user-specific
preference. The convolution operation is replaced by inner product to reduce
the parameters of the model and the user’s aspect-level interest can be gener-
ated by:

T = 700 s o (W - TD 4 W,y - P,) (1)

where * is the element-wise multiplication, - represents inner product operation,
Wi, Wy € R1X24x2d and h € R1PX1%24 are the corresponding 3-way weight terms
and the bias term, o(-) denotes the sigmoid function. And the aspect-specific
information can be propagated to the next layer by the aspect-level gating layer.

Item-Level Gating Layer. Users will assign higher weight attention to a par-
ticular item in real life. Exiting models ignore the item importance in modeling
users’ short-term preferences and attention mechanism is a success way to cap-
ture item-level interest. In this paper, we also adopt an item-level gating layer
to achieve the same or even better performance. And the results after this layer
can be calculated as:

T =T s o(Wy - T + Wy - P,) (2)

where W3 € R1*1x2d 1), ¢ R1¥Lx2d gre learnable parameters. By performing
aspect-level and item-level gating module operations on item embedding, our
model selects informational items and their specific aspects, meanwhile elim-
inates irrelevant features and items. Then we apply average pooling on the
sequence embedding after item-level gating layer to make aggregation by accu-
mulating the informative parts:

Ewt) — average{TI(u’t) } (3)

3.4 Prediction Layer

After computing user’s short-term preference by preceding operation, we induce
an implicit user embedding P, to capture user’s general preferences then we
employ the conventional latent factor model (matrix factorization) to generate
prediction score as follows:

y§u7t) — E(u,t)vj + Rtvj (4)

where y](-"’t) can be interpreted as the probability of how likely user u will interact
with item j at time step ¢ and v; denotes the item embedding. Note we adopt

the full-connected layer to reduce the high-dimension before prediction.
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3.5 Network Training

To train the network, we adopt the binary Bayesian Personalized Ranking loss
[11] as the objective function:

L= % —na(y! —y!)+re(lO]) (5)

(u,i,5)€ED

where © = {X, P,, Wy, Wy, W5, Wy,b} denotes the model parameters, which
are learned by minimizing the objective function on training set. Note we use
some tricks to learn these 3-way parameters by PyTorch and their dimensions
are derived from experiments. \g is the regularization parameter and o(xz) =
1/(1 4+ e "), D is the set of training triplets:

{(w,i,j)lueUNIi €T NjeT,} (6)

we also randomly generate one negative item j from a candidate set of
each user in each time step t, the candidate set of each user is defined by
{j €I |Z-=7—-8"} and the Adam Optimizer [21] is used to optimize the
network.

4 Experiments

In order to evaluate our model, we experiment with various baselines on three
large-scale real-world datasets. The datasets cover different domains and sparsity.
All the datasets and code we used are available online.

4.1 Datasets

We evaluate our model on three real-world dataset and these datasets vary
greatly in domain, variability, sparsity and platform:

Amazon'. This dataset is collected from Amazon.com that contains large cor-
pora of products ratings, reviews, timestamps as well as multiple types of related
items. In this work, we choose the “CDs” category to evaluate the quantitative
performance of the proposed model.

MovieLens?. MovieLens is created by the Grouplens research group from
Movwielen.com, which allows users to submit ratings and reviews for movies they
have watched.

GoodReads®. A new dataset introduced in [22], comprising a large number
of users, books and reviews with various genres. This dataset is crawled from

! http://jmcauley.ucsd.edu/data/amazon/.
2 https://grouplens.org/datasets/movielens,/ .
3 https:/ /sites.google.com/eng.ucsd.edu/ucsdbookgraph /home.
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Goodreads, a large online book review website. In this paper, we adopt the genres
of Comics to evaluate the proposed model.

For each of the above datasets, we follow the same preprocessing procedure
from [6]. We converted star-ratings to implicit feedback and use timestamps to
determine the sequence order of users’ actions. In addition, we discard users and
items with less than 5 related actions. We also partition the sequence S* for each
user u into three parts: (1) the first 70% of actions in S* as the training set.
(2) the second 10% of actions for validation. (3) the remaining 20% of actions
are used as a test set to evaluate performance of the model. Statistics of each
dataset after pre-processing are shown in Table 1.

Table 1. Dataset statistics.

Dataset #users | #items | #actions | Avg. #actions /user | Avg. #actions /item
Amazon CDs 17.0K | 35.1K |0.47M 27.69 13.44
MovieLens 129.9K | 13.6K |9.9M 76.43 726.89
GoodReads Comics| 34.4K|33.1K |2.4M 70.00 72.80

4.2 Comparison Methods

We contain three groups of recommendation baselines to show the effective of
HPGM. The first group are general recommendation models which only take
user feedbacks into account instead of considering user’s sequential behaviors.

— PopRec: PopRec ranks items according to the order of their overall popu-
larity which decided by the number of the interactions.

— Bayesian Personalized Ranking (BPR-MF) [11]: This model combines
matrix factorization and learning personalized ranking from implicit feedback
by Bayesian Personalized Ranking.

The next group of the methods models the sequence of user actions to explore
user’s preference in sequential recommendation:

— Factorized Markov Chains (FMC) [2]: FMC factorizes the first-order
Markov transition matrix to capture ‘global’ sequential pattern but it ignores
the personalized user interaction.

— Factorized Personalized Markov Chains (FPMC) [2]: FPMC combines
the matrix factorization and factorized Markov Chains as its recommender
and it captures item-to-item transition and users’ long-term preference simul-
taneously.

The final group includes methods which consider serval previously visited
items to make predictions by deep-learning technique.
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— Convolutional Sequence Embeddings (Caser) [6]: Caser captures
sequential dynamic by convolutional operations on embedding matrix with
length L.

— GRUA4Rec [23]: This model treats users’ action sequence as a session and
utilizes RNNs to model user feedback sequences for session-based recommen-
dation.

~ GRU4Rec" [24]: GRU4Rect extends the GRU4Rec method by applying
a different loss function and sampling strategy and achieve great sequential
recommendation performance.

4.3 Evaluation Metrics

In order to evaluate performance of sequential recommendation, we adopt two
common Top-N metrics Recall@N and NDCG@N. Recall@N measure Top-N rec-
ommendation performance by counting the proportion of times that the ground-
truth next item is among the top N items and NDCGQN is a position-aware
metric that distribute high weights on the higher positions. Here IV is set from
{5,10,15,20}.

4.4 Implementation Details

The parameters of baselines are initialized as corresponding number in original
paper. The latent dimension d is tested in {10, 20,30, 40,50} and the learning
rate for all models are tuned amongst {0.001, 0.005,0.01,0.02,0.05}. We tune the
batch size in {16, 32, 64, 128} and margin Ag is tuned in {0.001,0.005, 0.01, 0.02}.
After tuning processing on validation set, the learning rate is set to 0.001, d = 50,
Ao = 0.001 and the batch size is 256. We also follow the same setting in: the
Markov order L is 5 and predict the future 7' = 3 items. All experiments are
implemented with PyTorch?.

4.5 Recommendation Performance

Overall performance results of HPGM and baselines are summarized in Table 2
and Fig. 2, which clearly illustrate that our model obtains promising performance
in terms of Recall and NDCG for all reported values in sequential recommenda-
tion task. We can gain the following observations:

The performance of BPR-MF is better than PopRec but is not as good as
FMC, which demonstrates that local adjacent sequential information plays an
vital role under the typical sequential recommendation setting. Compared to
conventional sequential-based models (FMC and FPMC), we find that item-to-
item relations is necessary to comprehend user’s sequential actions. Furthermore,
the performance results show that our proposed model can effectively capture
item relationships and sequential dynamics in real-world datasets.

* https://pytorch.org/.
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Table 2. Performance comparison with baselines on three datasets and the best results
highlight in bold (Higher is better). The improvement is calculated by the best perfor-
mance of baselines and our method.

Dataset Amazon-CDs MovieLens GoodReads-Comics
Metrics Recall@10 | NDCG@10 | Recall@10 | NDCG@10 | Recall@10 | NDCG@10
PopRec 0.0181 0.0095 0.0560 0.0487 0.0426 0.0503
BPR-MF 0.0233 0.0145 0.0774 0.0685 0.0688 0.0613
FMC 0.0240 0.0149 0.0819 0.0724 0.0745 0.778
FPMC 0.0245 0.0151 0.0847 0.0751 0.0813 0.0833
GRU4Rec | 0.0302 0.0164 0.0924 0.0815 0.0958 0.0912
GRU4Rect | 0.0336 0.0171 0.1004 0.0946 0.1088 0.1128
Caser 0.0297 0.0163 0.1139 0.1016 0.1273 0.1329
HEPG 0.0347 0.0181 0.1150 0.1087 0.1320 0.1430
%Improv. 3.36 6.08 0.97 7.01 3.67 7.56

Recall

Recall

(c) Recall@N on Comics (d) NDCG@N on Comics

Fig. 2. Ranking performance (NDCG and Recall) with baselines on Amazon-CDs and
GoodReads-Comics.

Another observation is sequential methods GRU4Rec and Caser based on
neural network achieve better performance than conventional sequential rec-
ommendation model such as FPMC. We can conclude that neural network is
suitable to model the complex transition between previous feedbacks and future
behaviors of the user. Since baseline models have a lot of limitation, Caser only
considers group-level influence by adopting CNN with horizontal and vertical
filters but ignores the specific aspect-level influence of successive items.
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Fig. 3. Performance change with different dimension of embeddings d on Amazon-CDs
and GoodReads-Comics.

In a word, our method can beat baselines with ground-truth ranking and
shows effectiveness of our model on item relation, sequential dynamics and user’s
general preferences.

4.6 Influence of Hyper-parameters

In this subsection, we also analyze the effect of two key hyper-parameters: the
latent dimensionality d and the length of successive items L. Figure3 shows
the effect of dimension d by evaluating with NDCG@10 and Recall@10 of all
methods varying from 10 to 50 on Amazons-CDs and GoodReads-Comics. We
also can conclude that our model typically benefits from lager dimension of
item embeddings. Since small latent dimension cannot express the latent feature
completely and with the increase of d, the model can achieve better performance
on the real-world datasets.

Previous analysis can demonstrate that modeling sequence patterns are cru-
cial for next-item recommendation, hence the length of sequence is a significant
factor to determine model’s performance. We also study the influence of different
length of successive items L and Fig.4 shows that the model does not consis-
tently benefit from increasing L and a large L may lead to worse results since
higher L may introduce more useless information. In most cases, L = 5 achieve
better performance on the two datasets.
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Fig. 4. The performance of HPGM with varying L on Amazon-CDs and GoodReads-
Comics.

5 Conclusion

In this paper, we present a novel recommendation approach with gating mech-
anism to learn personalized user and item representations from user’s sequen-
tial actions and generating prediction score by aggregating user’s long-term and
short-term preferences. Specifically, in order to model item relations in user
behaviors, we apply pair-wise encoding layer to encode a sequence of item embed-
ding into a pairwise tensor. Moreover, we build a hierarchical gating layer to
model aspect-level and item-level influence among items to capture latent prefer-
ences of the user. We also conduct extensive experiments on multiple large-scale
datasets and the empirical results show that our model outperforms state-of-the-
art baselines. In the future, we plan to extend the model by exploring sequential
patterns and make predictions from various types of context information.
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