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Abstract. In the process of selecting locations for establishing new busi-
ness facilities, location recommendation offers the optimal candidates,
which maximizes the number of customers served to bring the maximum
profits. In most existing work, only spatial positions of customers are
considered, where social relationships and temporary activities, which
are significant factors for candidate locations, are ignored. Additionally,
current studies fail to take the capacity of service facilities into con-
sideration. To overcome the drawbacks of them, we introduce a novel
model MITLR (Multi-characteristic Information based Top-k Location
Recommendation) to recommend locations with respect to capacity con-
straints. The model captures the spatio-temporal behaviors of customers
based on historical trajectory and employs social relationships simulta-
neously, to determine the optimal candidate locations. Subsequently, by
taking advantage of feature evaluating and parameter learning, MITLR
is implemented through a hybrid B-tree-liked framework called CLTC-
forest (tree). Finally, the extensive experiments conducted on real-world
datasets demonstrate the better effectiveness of proposed MITLR.

Keywords: Top-k location recommendation · Spatio-temporal
trajectory · Social relationship · Capacity constraint

1 Introduction

The study of top-k facility locations selection aims to identify the appropriate k
locations for new business facilities from a range of available candidate locations.
In this context, location is defined as a special site in a road network with facility
on it in terms of a given service for customers, the selection is based on factors
such as the number of customers served or the returns on facility investments.
This kind of query has been widely applied in a variety of recommendation
applications, such as planing to establish new electric vehicle charging stations,
mobile toilets, or retail stores in a city.

As GPS and mobile devices are developed in recent years, daily trajecto-
ries have been recorded and utilized widely, as well as an increasing number of
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studies with location recommendation come to focus on trajectories [1,4–6,10].
Furthermore, advances in social network technology are facilitating interper-
sonal communication, friend-based recommendation becomes a growingly signif-
icant and relevant factor in recommendation system. For instance, customers
will receive electronic red envelopes or coupons occasionally while consuming,
and then share them with friends in some instant messaging Apps like Wechat,
QQ, Alipay, etc. With shared electronic red envelopes or coupons, their friends
could get a discount when they are consuming afterwards [11].

However, existing studies of trajectory-based location recommendation eval-
uate the correlation between customers and facility locations by their spatial dis-
tances solely, they fail to evaluate the timestamp of trajectories and the effects
of customer social relationships on facility locations querying, which will render
the recommendation results inaccurate or uneconomic. To illustrate the neces-
sity of considering the friend-based recommendation, a straightforward example
is demonstrated as below.
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Fig. 1. A toy example with candidate locations, trajectories and social relationships.

Example 1. As shown in Fig. 1, there are four candidate locations l1 to l4 with
electric vehicle charging stations, and six vehicle trajectories T1 to T6 correspond-
ing to six distinct customers u1 to u6. To select the optimal facility location for
u6, as the shortest spatial distances from T6 to l2, l3 and l4 are all equal, a
random one between l2, l3 and l4 would be chosen by several existing algorithms
such as NetClus [6], while spatial distances with candidate locations are consid-
ered merely. However, Fig. 1 shows that u5 and u6 could readily share electronic
red envelopes or coupons since they are close friends. Therefore, if u5 has been
served by l4 (as u5 passes l4 directly), there is a great probability that u6 will
also be served by l4 due to the reciprocal recommendation of u5.

To overcome the aforementioned deficiencies of earlier work, we formalize
the problem of constrained top-k facility location recommendation into a novel
model MITLR. To determine whether a candidate location is recommended or
not, the total service utilities of candidate location are predicted. Unlike the
previous work that only considers the road spatial distance, this model examines
the importance of spatial and temporal features of trajectories, as well as the
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Fig. 2. The framework of MITLR.

social relationships of customers at the same time. As a result, the evaluation of
service utilities is rendered more precisely by these significant characteristics and
the new objective function. In addition, we take a formal approach to consider
the capacity of all candidate locations with regards to the real living conditions
of customers. We then develop a new hybrid index using service utilities and
location capacities, which is referred to CLTC (Constrained Location and social-
Trajectory Clusters) forest, to incorporate spatio-temporal trajectories, social
relationships and candidate locations into CLTC-trees that ultimately form the
final CLTC-forest. Based on this hybrid index, this study presents an efficient
query algorithm that exploits a simple greedy strategy to obtain the final top-k
results for recommending.

The overall framework of the proposed model is outlined in Fig. 2, and our
key contributions are summarized as follows.

1. This study proposes the top-k location recommendation problem and a novel
model MITLR, and defines the service utility function to predict the correla-
tion while capturing the spatio-social and temporal behaviors.

2. We have developed a new index structure of the CLTC-forest (tree) which
combines both candidate locations and trajectories, as well as present the
process of parameter learning and efficient query approach.

3. Extensive experiments are performed on real datasets to offer insight into the
effectiveness and feature weights of the proposed model.

2 Related Work

We cover the existing work on next optimal location prediction and the optimal
k locations prediction in turn.

Several studies [1–3,7,9] focus on the next optimal location prediction prob-
lem by taking advantage of various metrics and objective functions. Sun et al.
[7] acknowledge the service capacity of each location facility, they suggest that
there is a certain limitation on the number of served customers and the metric
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is only examined by spatial distances. Li et al. [3] query a location for establish-
ing facility based the optimal segment query of trajectories, they assign a score
on each segment as in [1] but without recognizing the candidate location as a
specific position on a road network. Yao et al. [9] take advantage of a recurrent
model SERM for the next optimal location prediction in semantic trajectories,
where both spatio-temporal transitions and relevant textual information posted
by customers are considered to improve the precision.

Recent researches have concentrated on exploring the problem of the opti-
mal k location recommendation [4–6,10]. In more details, Li et al. [4] mine the
most influential k-location, from this point of view, they evaluate the maximum
number of unique trajectories that traverse a location in a given spatial region,
therefore, the common practicability of this work is greatly restricted by the tra-
verse limitation. Mitra et al. [5,6] focus on the top-k location query problem with
respect to trajectory merely, they [6] propose an index framework of NetClus for
TOPS query by covering a wide range of objective functions, their work assumes
that each of candidate locations has a radius parameter τ , as a result, the con-
struction of NetClus leads to lots of index instances which are calculated and
stored with different values of τ and cluster radii. They further extend TOPS to
TIPS [5] in an attempt to minimize either the maximum customer inconvenience
or the average inconvenience.

3 Problem Statement

In this section, we formalize the problem and the model MITLR, Table 1 sum-
marizes the frequently used notations throughout this paper.

Table 1. Notation and corresponding description.

Notation Description

L, C Set of candidate locations and capacities

Γ Set of spatio-temporal trajectories

U , S Set of customers and social relationships

fd(li, uj) Spatial distance of li and uj

fs(li, uj) Social relevance of li and uj

ft(li, uj) Temporal region of li and uj

F (uj) Friend set of uj

SU(li, uj) Service utility of li and uj

Ψ(li) Service utilities of li

� Set of optimal k locations

Considering a setting where candidate locations and trajectories are located
in a road network and social relationships of customers in trajectories can be cap-
tured. The road network is defined as a directed weighted graph G = {Vg, Eg},
where Vg denotes the set of vertices of road intersections and Eg denotes the
set of directed edges of road segments, the weight of directed edge denotes its
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spatial distance. The candidate location l is a place for establishing a certain
facility or service like electric vehicle charging station or mobile toilet, and the
service capacity of li is defined as cli , which means that it cannot be exceeded
in real serving applications. A trajectory T is represented in the sequential form
of T = {(v1, t1), ..., (vζ , tζ)}, vζ ∈ Vg, where tζ denotes the timestamp when T
crosses vζ . The social relationships of customers are simply modeled as an undi-
rected and unweighted graph S = {Vu, Eu}, Vu is the set of nodes representing
the customers, and Eu is the set of edges, where an edge denotes that there is
a friend relationship between two corresponding customers. Besides, we suppose
|L| = m and |Γ | = |U | = n.

First of all, three significant characteristics of spatial distance, social rele-
vance and temporal region in service utility are provided in detail.

Spatial Distance. The formula of the shortest spatial distance between location
and trajectory is adopted, as presented in [6]. Therefore, the spatial distance
characteristic of customer and location is outlined:

fd(li, uj) =
min∀vjk,vjι∈Tj

{d(vjk, li) + d(li, vjι) − da(vjk, vjι)} − ρmin

ρmax − ρmin
(1)

where ρmin and ρmax are normalization factors, da(vjk, vjι) denotes the shortest
spatial distance from vjk to vjι by going along Tj . To illustrate, a customer uj

deviates from vjk of Tj to li, and then returns to vjι on G in her/his usual
trajectory, note that the additional distance on Tj is not included.

Social Relevance. For assessing the social relevance of li and uj , we assume
that F (uj) is set of customers who have friend relationships with uj , and CU(li)
represents set of customers that have already been evaluated to li for being
served. Then the social relevance between uj and li is defined as follows:

fs(li, uj) =
|{uk|uk ∈ F (uj) ∧ uk ∈ CU(li)}|

|CU(li)| + λs
(2)

where | · | denotes the number of elements and λs is the Laplace smoothing
coefficient. The intuition behind the social relevance feature is the friend-based
recommendation through shared electronic red envelopes or coupons, and only
the direct friendships between customers are concerned here.

Temporal Region. Supposing that uj departs from her/his usual trajectory to
one location at timestamp tjk in Eq. (1), and arrives at location li at timestamp
AT (uj , li) = tjk + Δt, where Δt is a constant timestamp value representing the
duration from departure to arrival. For simplicity, Δt of each customer is set
to equal and one day is divided into 24 equal segments. As a consequence, the
temporal region characteristic is given:

ft(li, uj) =

∑

uk∈CU(li)

min{|I(uj , uk
, li)|, 24 − |I(uj , uk

, li)|}/24

|CU(li)| + λt
(3)
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where I(uj , uk
, li) = AT (u

k
, li) − AT (uj , li), and λt is also the Laplace smooth-

ing coefficient. The ground truth of temporal region is that, if a customer intends
to stagger her/his arrival time with others who have already been evaluated to be
served in the same facility, then the customer will get more guaranteed service.

Next, the service utility function that is raised to evaluate the correlation
between li and uj can be presented:

SU(li, uj) =
{

1 fd(li, uj) = 0
−αϑ ∗ fd(li, uj) + βϑ ∗ fs(li, uj) + γϑ ∗ ft(li, uj) otherwise

(4)
where αϑ, βϑ and γϑ are feature weights and αϑ+βϑ +γϑ = 1, if fd(li, uj) = 0, it
demonstrates that Tj of uj just traverses li straightforward. The greater value of
SU(li, uj) indicates there is a closer connection between li and uj , and there is
also a higher probability of li serving uj , vice versa. Moreover, from the perspec-
tive of a candidate location, the total service utilities (also as service revenue)
for all the served customers are defined as follows:

Ψ(li) =
∑

uj∈U ′
SU(li, uj),U ′ ∈ U, |U ′| ≤ Ci (5)

where ∀uυ ∈ U ′,∀ul ∈ U − U ′, SU(li, uυ) ≥ SU(li, ul). Consequently, the model
of MITLR is formally stated.

Problem Definition. Given a query with parameter k, a set of spatio-temporal
trajectories Γ with corresponding customers U on G, a set of social friend rela-
tionships S, and a set of candidate locations L with capacities C, the MITLR
seeks to select the optimal location set � (� ∈ L, |�| = k), which maximizes
the sum of total service utilities Υ without exceeding the capacity limitations of
each selected location, where Υ = arg max

∑k
i=1 Ψ(li), li ∈ �.

4 Model Implementation

It is recognized that candidate locations in close proximity are prone to serve a
great number of identical customers, and when k 	 m and ci 	 n, i ∈ [1,m],
the locations selected in query results are all keeping a certain distance from
each other, therefore, the CLTC-tree (forest) is designed for MITLR in terms of
model implementing and model learning. For specified k, the final k locations
are returned from CLTC-forest by adopting a simple greedy manner.

4.1 CLTC-forest

The CLTC-forest is composed of a series of CLTC-trees, and the CLTC-tree is
a B-tree-liked hybrid index structure that integrates candidate locations, trajec-
tories, and customers with social relationships according to their service utilities
and location capacities. Each tree node links three pieces of additional informa-
tion, which include a candidate location li as its representation (label), a set of
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Fig. 3. A simple CLTC-tree.

customers that will be served by U(li) with their corresponding SU limited by
facility capacity, as well as a total service utility of Ψ .

However, the none-leaf nodes of CLTC-tree are quite different from leaf nodes,
as the representation of a none-leaf node is one of the labels of its two children
nodes, the customers are a subset of a union which is constituted by customers
of two children nodes that do not exceed the capacities. A simple example of
one CLTC-tree that represents candidate locations, trajectories and customers
with corresponding social relationships of Fig. 1 is denoted as in Fig. 3, where Ψ
is omitted in each of specific tree node.

4.2 Generation Processes

The CLTC-forest construction includes two steps of clustering and combining.

Clustering. In order to cluster candidate locations with their most relevant
customers into leaf nodes, a constrained k-medoid-liked cluster algorithm is pro-
posed, in which all of candidate locations are served as ‘medoids’ and service
utilities calculated by Eq. (4) are served as the metric. It can be seen that the
final clusters are constrained by service capacities of each location on the scales.

However, if a number of customers that pass one candidate location simul-
taneously happen to overwhelm the capacity of the location, those customers
whose initiating position or ending position is in the proximity of this location
are clustered firstly. The is because that a customer will not be visibly disturbed
or interrupted if she/he chooses one facility near to the initiating position or the
ending position on the trace of her/his trajectory.

Combining. Since each leaf node is also a simple CLTC-tree which has merely
one root node, a series of merging approaches can be adopted to combine two
CLTC-trees into one while utilizing their root node information. By repeating
this process, the entire CLTC-trees from leaf nodes to root nodes could be con-
structed, and then, CLTC-forest is formed finally. Before introducing the CLTC-
trees-merging, the definition of the coherence of two CLTC-trees Cti and Ctj is
proposed as CO(Cti, Ctj) = max{Ψ(Lrn(Cti)), Ψ(Lrn(Ctj))}, where Lrn(Cti)
is the representation of root node in Cti. CO(Cti, Ctj) indicates the service util-
ities that combines Cti and Ctj into one by taking advantage of the additional
information of two separate former root nodes. Greater value of CO(Cti, Ctj)
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represents that there is closer relevance of the two CLTC-trees, such as inti-
mate relationships between the two customers set, or adjacent spatial distances
between candidate locations. Therefore, CLTC-trees can be combined according
to their coherence.

If two CLTC-trees is merged into one, a new tree node will be created to
represent the root node, where two sub-trees are the two former CLTC-trees.
For the newly root node, the service utility is equal to CO, the set of evaluated
customers is U ′, where U ′ ∈ Urn(Cti) ∪ Urn(Ctj) by Eq. (5), Urn is the corre-
sponding customers in tree node, and its representation is the candidate location
with larger value of CO in two children CLTC-trees.

4.3 Model Learning

With the help of Eq. (4), it can be observed that the service utility is just referred
as a linear combination of the inputs, accordingly, several different kinds of
regression algorithms could be deployed to learn these parameters. In this study,
a linear regression with regularization is utilized, which the goal is to minimize
the error eM between the ground-truth location facilities and the recommended
location results returned. Supposing that the overall parameters are denoted as
θM (αϑ, βϑ, γϑ), then the corresponding optimization function is defined as:

min
θM

∑k

i=1
dE

2(lpi, lri) + γe||θM ||2 (6)

where γe is the regularization parameter and set equal to 10−8 as demonstrated
in [2], lpi is the predicted location and lri is the corresponding ground truth
location, dE(lpi, lri) indicates the Euclidean distance between lpi and lri.

4.4 Location Recommending

In querying, the tree levels of CLTC-forest are marked in a top-down fashion
firstly, we and assume that the highest tree level is �, where � < lg(�m�+1). All
of the root nodes of CLTC-trees are marked with ls�, and the children of root
nodes (in ls�, if have) are marked as ls�−1, by repeating the process until there is
no node left to be marked (until to ls1), then the entire tree level marks with the
corresponding tree nodes are inserted into a set LS. Within the specified k, the
mark of tree level is selected while |lsi| = k, if exists, the k candidate locations
in the nodes of lsi are the querying results. However, if the mark does not exist,
two marks of lsi and lsi−1 are chosen where |lsi| < k < |lsi−1|. Subsequently,
by utilizing a simple greedy manner, the k distinct candidate locations, which
boast the maximum total service utilities, are selected to the recommendation
results from the nodes of lsi and lsi−1. It is noticed that node in lsi and two of
its children nodes in lsi−1 in one CLTC-tree share one label, so they could not
be chosen into the result together.
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5 Experimental Evaluation

5.1 Datasets

The most widely used urban datasets of Beijing and Shanghai are employed
in this study, where the intersections of road network are utilized to represent
candidate locations. To simulate and generate customers with the corresponding
trajectories, algorithm of discovering Popular Routes in [8] has been adopted
with two real urban datasets. We extract the customer check-in and following
data from Sina WeiBo1, where there is a timestamp in each check-in point that
is accurate to seconds, as well as a part of the trajectory traces of automobiles
are collected. The social relationships are also extracted from Sina WeiBo, where
two customers who are following with each other show that they are close friends.
The statistics of datasets are listed in Table 2.

Table 2. Statistics of the datasets.

Categories Beijing Shanghai

# of intersections 171,186 333,766

# of road segments 226,237 440,922

# of customers (trajectories) 412,032 230,303

# of candidate locations 171,186 333,766

# of social relationships 26,139,861 13,687,459

# of CR 300 313

# of VCS 854 868

Two categories of popular existed facilities are prepared for model training
and model testing in two cities, which are chained restaurants (CR) including
KFC, MacDonald and Pazza Hut, as well as fast vehicle charging stations (VCS).
The number of two existed facilities is also presented in Table 2 respectively.
Furthermore, their geographic coordinates are obtained from AutoNavi2.

5.2 Evaluation Plans

Competitive Approaches. To the best of our knowledge, no existing studies
have been committed to the top-k candidate recommendation by exploiting cus-
tomer trajectories and social relationships in a city-scale road network so far,
therefore, we compare our model with a series of competitive methods, which
are k-Medoids, SERM [9] and NetClus [6] by means of slight modifications.

Evaluation Metrics. A couple of the metrics of Precision and Root Mean
Square Error (RMSE) are designed carefully in effectiveness evaluating. On one
1 https://www.weibo.com/.
2 https://www.amap.com/.

https://www.weibo.com/
https://www.amap.com/
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hand, we suppose that � is the top-k querying results obtained from testing
data, as well as L′ is the corresponding existed facilities with the same category,
then the precision is given as Pk =

∑k
i=1 hit(�i,L

′
i)

k , where hit(�i, L
′
i) = 1 indi-

cates there is a corresponding facility Lϑ
i that satisfies dE(�i, L

′
i) ≤ τE ,�i ∈ �

and L′
i ∈ Lϑ. On the other hand, RMSE is also adopted to measure the devi-

ations between the recommended locations and the ground-truth facilities, the

definition of RMSE is RMSEk =
√∑k

i=1 min (dE(�i,L′
i))

2

k . Note that each pair of
�i and L′

i is evaluated only once in two metrics.

Basic Settings. The corresponding datasets are divided into training part and
testing part, which consist of 70% and 30% of the whole datasets selected ran-
domly, each experiment is evaluated by 10 times and the average results are
returned. The default values of αϑ, βϑ and γϑ are all equal to 1/3 at the begin-
ning of model learning, λs and λt are set equal to 1. Meanwhile, τE is set to
200 metres, k is initialized as 20, 50, 80, and 100 separately. During the method
practices, the multi-process programming is utilized to accelerate the whole eval-
uations while a total of 20 CPU cores are handled.

5.3 Experimental Results

Figure 4 and Fig. 5 have illustrated the precision and RMSE of varying k in two
facility categories that are operated on Beijing and Shanghai respectively. It can
be seen that the proposed MITLR significantly outperforms the other methods
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Fig. 5. Performance in terms of RMSE

under all circumstances in precision, the reasons would be analyzed in several
important aspects, as we not only consider the effects of customer historical
trajectories on facility placing, but also take advantage of the friend relation-
ship based reciprocal recommendation, besides, the serious acknowledgements of
service capacity improves the accuracies of prediction as well. Furthermore, the
precision declines softly along with the raise of k, for the larger value of k, the
hitting accuracy will experience diminishing returns.

Subsequently, we can see that our proposed model has better achievements
compared with all competitors in RMSE, and the results has a reverse manner
comparing with the precision, the reason could by analyzed from their defini-
tions directly. In other words, if the value of precision is larger, the candidate
locations recommended will be better represented by the corresponding facilities
in road network, it also demonstrates that the larger RMSE will result in a worse
performance on predicting contrarily.

We further investigate three feature weights in Fig. 6, when referring to αϑ, βϑ

and γϑ, the characteristic of social relevance is a principal factor on the evaluation
of service utility especially in VCS, this is because that the majority of customers
are more prone to be influenced by red envelopes or positive comments posted
by their close friends when they are going to have consumptions at VCS, and
vice versa.
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Fig. 6. Weights learned by MITLR

6 Conclusions

In this paper, we have defined a novel model MITLR for top-k facility location
recommendation, it considers both spatio-temporal behaviors and social rela-
tionships of customers. In order to achieve effective query processing, CLTC-tree
(forest) that combines candidate locations and customers are presented, and a
query algorithm is also examined to obtain the results. Finally, extensive exper-
iments with real datasets are performed to offer insights into the effectiveness.
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