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Abstract. Short-term exit traffic flow prediction at a toll station is an important
part of the intelligent traffic system.Accurate and real-time traffic exit flow forecast
of toll stations can help people predict congestion situation in advance and then
take corresponding measures. In this paper, we propose a traffic flow prediction
model (LSTM_SPLSTM) based on the long short-term memory networks. This
model predicts the exit traffic flow of toll stations by combining both the sequence
characteristics of the exit traffic flow and the spatial-temporal characteristics with
the associated stations. This LSTM_SPLSTM is experimentally verified by using
real datasets which includes data collected from six toll stations. The MAEs of
LSTM_SPLSTM are respectively 2.81, 4.52, 6.74, 7.27, 5.71, 7.89, while the
RMSEs of LSTM_SPLSTM are respectively 3.96, 6.14, 8.77, 9.79, 8.20 10.45.
The experimental results show that the proposed model has better prediction per-
formance than many traditional machine models and models trained with just a
single feature.

Keywords: Short-term exit traffic prediction · Sequence characteristics ·
Spatial-temporal characteristics · Long Short-term memory networks

1 Introduction

As we all know, toll stations are the main channel for vehicles to enter and exit high-way
networks, and it has always been a bottleneck in traffic networks [1]. Short-term traffic
flow of toll station is affected by many external factors such as time period, geographical
location and spatial distance between highway network nodes. Due to these factors, the
uncertainty of short term traffic flow forecasting is difficult to accurately predict by
only using traditional forecasting methods. Therefore, studying how to obtain accurate
and efficient traffic forecasts is necessary. High-quality predictions can not only relieve
traffic pressure, but also make people travel more convenient.

At present, traffic prediction methods in the transportation fields are mainly based on
statistics, machine learning, and deep learning. Among them, the statistical-based meth-
ods mainly include the autoregressive integrated moving average method (ARIMA) and
the improved methods of ARIMA [2, 3]. The machine learning based methods mainly
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include Bayesian networks [4], support vector regression [5], gradient boosting decision
tree (GBDT) [6], and neural networks [7]. The deep learning based methods include
deep belief networks [8], stacked auto-encoders [9], and deep neural network mod-
els that extract the spatial-temporal characteristics of traffic data through combination
of multiple models [10–12]. Due to the fact that Long Short Term Memory Network
(LSTM) has long-term memory which is suitable for solving long-term dependence
problems, it’s widely used in natural language processing, weather prediction and other
fields. Reference [13] first applied LSTM to the field of traffic flow prediction, and then
more and more researchers began to improve LSTM and continue to exert the prediction
effect of LSTM in the field of transportation [14–16]. In this paper, we propose a traffic
prediction model based on LSTM to predict the exit traffic flow of toll stations. This
model combines the sequence characteristics of the exit traffic flow with the spatial-
temporal characteristics of the enter traffic flow of the associated stations. The main
contributions of this paper as follows:

• We propose a model named LSTM_SPLSTM, which can respectively extract the
sequence features of exit traffic flow of a target toll station and the spatial-temporal
features of its associated toll stations. By combining the two features, it can accurately
predict the short-term exit traffic flow of the target toll station;

• Considering the different impacts of associated stations on a target toll station, the
Pearson correlation coefficient is used to measure the impacts and also used as the
combined weight of the hidden layer of different associated toll stations in the spatial-
temporal model;

• Experiments are performed on real toll station datasets. The experimental results show
that the model we proposed has better prediction performance than many traditional
machine models and models trained with a single feature.

2 Methodology

2.1 Problem Description

The structure of a road network is usually divided into many road sections with toll
stations as dividing points. The stations on the same road segment are associated with
each other and a toll station can be associated with multiple other toll stations. The Fig. 1
shows toll stations in a road network. The enter and exit traffic flows are illustrated in
the Fig. 2. As shown in the Fig. 2, the road AB is divided by station A and B and the road
AC is divided by station A and C. Additionally, station B and C are called the associated
stations for station A. Cars entering the road AB or AC by station A belong to the enter
flows of station A. On the contrary, cars leaving the road AB or AC through station A are
called the exit flows of station A.

According to the charging records of a toll station, the traffic information of the
station can be counted and expressed as the following:

Xm_in = ((xin)m1, (xin)m2, . . . , (xin)mt) (1)

Xm_out = ((xout)m1, (xout)m2, . . . , (xout)mt) (2)



464 Y. Lin et al.

Fig. 1. Schematic of toll Stations in a road network
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Fig. 2. The exit and enter flows of a station in road segments

Where m indicates a toll station, (xin)mt is the enter information of toll station m
within time t, (xout)mt represents the exit information of toll station m within time t.

2.2 Model Design

Model Description. The traffic flow prediction of toll stations has typical spatial-
temporal correlations and serial characteristics. Vehicles can drive into different roads
from different toll stations and leave roads from the same toll station after a period of
time. This shows that the enter traffic flow of associated toll stations at different moments
will affect the exit traffic flow of target toll station in the future. Furthermore, the traffic
flow records of a toll station are a series of statistical values within time intervals and
those values reflect certain periodicity and trend over time. Therefore, a method com-
bining sequence features and spatial-temporal features is more conducive to simulating
and predicting traffic flow. As shown in the Fig. 3, the proposed traffic flow prediction
model (LSTM_SPLSTM) is composed of two parts: one is a LSTM model that extracts
sequence features from the exit traffic flow of target toll station; the other is SPLSTM
model that extracts spatial-temporal features from the enter traffic flow of associated
stations.

Sequence Feature Model. A toll station’s traffic records are a series of statistical values
within time intervals. The Fig. 5 illustrates the statistics of a toll station at different time
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Fig. 3. The overall architecture of LSTM_SPLSTM
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Fig. 4. SPLSTM structure for extracting spatial-temporal features

intervals.We can see that the toll station has a large traffic volume at noon and afternoon,
and a smaller traffic volume in the early morning and night in a day. From the statistics
of three weeks, the traffic flow at this toll station has certain periodicity.

Fig. 5. A toll station’s exit traffic, charge amount and mileages in one day and three weeks
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The LSTM model is shown in the Fig. 6. The internal gate control mechanism of
each LSTM neuron includes forgotten gate f , input gate i and output gate o. The neuron
output of the hidden layer is denoted as H = (h1, h2, . . . , ht), the weight isW, the bias
is b, and the neuron state is c. g, ϕ, σ are three different sigmoid functions:

ft = σ(Wxf (xout)t + Whf (xout)t−1 + Wcf ct−1 + bf ) (3)

it = σ(Wxi(xout)t + Whiht−1 + Wcict−1 + bi) (4)

ct = ft ∗ ct−1 + it ∗ g(Wxc(xout)t + Whcht−1 + bc) (5)

ot = σ(Wxo(xout)t + Whoht−1 + Wcoct + bo) (6)

ht = otϕ(ct) (7)
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Fig. 6. LSTM structure for extracting sequence features

Spatial-Temporal Feature Model. The exit traffic flow of a toll station within a certain
period of time is closely related to the entrance traffic flowof different historicalmoments
of its associated toll stations. In order to obtain the impact of each associated site on the
target site’s exit traffic flow at different times, as shown in the Fig. 4, the SPLSTMmodel
establishes an independent LSTM module for representing the enter traffic information
of each associated site and connects the hidden layer information representing each
associated site to the second stacked LSTMmodule according to same time step, thereby
extracting the spatial-temporal features of the target station with its associated stations.

Although vehicles drive into high-speed sections from every associated station and
leave high-speed sections from the same target station every day, the impact of each
associated station on the target station is different. Therefore, in the SPLSTMmodel, the
characteristics of each associated site in the independent LSTMmodel cannot be directly
combined and connected to the second stacked LSTM module. In order to measure the
difference impacts of associated sites on the target site, the combinationweights of hidden
layers in the spatial-temporal features model SPLSTM are represented according to the
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Pearson correlation coefficient computed on historical data. The calculation formula is
as follows:
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(8)

Ht = perm_k ∗ hm,t (9)

Where xm_t represents the enter traffic of associated stationm at time t, yk_t represents
the exit traffic of the target station k at time t, and T represents the number of moments
participating in the calculation. hm_t represents the hidden layer output of the independent
LSTM module of associated station m at time t.

3 Experiments and Results Analysis

3.1 Dataset Introduction and Hyper-parameter Setting

The datasets used in this paper are the charging records of toll stations in a certain area
throughout August. After a series of preprocessing operations, we select six stations as
forecast targets. Each target station has 2496 time-series data and has 11, 15, 36, 18, 19,
and 58 associated sites respectively.

In the toll station exit traffic flow prediction model, for each target station and asso-
ciated stations, the time step is 4 and the hidden layer size is 2, among which the number
of hidden units is 64. The mean square error (MSE) is used as the loss function and the
Adam optimization algorithm is used to optimize the network structure.

3.2 Experimental Evaluation Index

To evaluate the accuracy of the traffic prediction model, we mainly measure the error
between the predicted value and the true value. The smaller the error, the closer the
predicted value to the true value. We take root mean square error (RMSE) and average
absolute error (MAE) as the evaluation indicators.

3.3 Experiment Analysis

In order to verify the effectiveness, this paper compares the performance of the proposed
model (LSTM_SPLSTM) with the following 7 models: ARIMA, SVR, BP, GBDT,
SAES, LSTM and SPLSTM. Table 1 shows the prediction results of different models
on six toll stations’ exit flow values for the next 15 min. It can be seen from Table 1
that when the prediction time is 15 min, The RMSEs and MAEs of LSTM_SPLSTM
on different stations are lower than traditional machine learning methods. And it also
performs better than LSTM, SAES and SPLSTM models.
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Table 1. Performance comparison of 6 stations with a predicted duration of 15 min

Model Index S1 S2 S3 S4 S5 S6

ARIMA RMSE 8.54 19.35 49.43 37.33 23.12 34.15

MAE 7.43 16.27 40.75 31.53 19.48 29.53

SVR RMSE 6.83 12.78 16.96 26.53 12.19 15.11

MAE 5.37 10.58 12.97 21.81 9.25 11.64

BP RMSE 6.75 14.74 26.59 24.00 17.07 25.16

MAE 5.32 11.58 20.41 19.58 13.31 20.61

GBDT RMSE 6.64 10.28 16.94 16.82 13.25 15.80

MAE 4.84 7.71 12.49 12.72 9.69 12.27

SAES RMSE 4.51 7.34 10.92 11.80 9.27 12.20

MAE 3.27 5.44 8.33 8.99 6.82 9.24

LSTM RMSE 4.55 7.30 11.66 11.89 9.32 11.77

MAE 3.30 5.61 9.04 9.32 6.82 9.10

SPLSTM RMSE 4.82 8.34 10.66 11.80 9.42 11.05

MAE 3.40 5.80 7.87 8.70 6.55 8.32

LSTM_SPLSTM RMSE 3.96 6.14 8.77 9.79 8.20 10.45

MAE 2.81 4.52 6.74 7.27 5.71 7.89

For further proving the effectiveness of the model, this article predicts the exit traffic
flowof target stations between20min and60minwithin 5min spans.As shown inFigs. 7,
8, 9, 10, 11 and 12, with the increase of the prediction time, the prediction performance
of all models shows an upward trend. But all machine learning methods have faster
prediction errors increase than that of the deep learningmethods. Among them, ARIMA,
BP neural network and support vector regression have poor prediction performance.
By combining the sequence characteristics and the spatial-temporal characteristics, the
prediction effect of LSTM_SPLSTM still performs better as illustrated that the values
of MAE and RMSE have the lowest rise with the increase of prediction time.

Fig. 7. Index performance of station S1 with different forecast intervals
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Fig. 8. Index performance of station S2 with different forecast intervals

Fig. 9. Index performance of station S3 with different forecast intervals

Fig. 10. Index performance of station S4 with different forecast intervals
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Fig. 11. Index performance of station S5 with different forecast intervals

Fig. 12. Index performance of station S6 with different forecast intervals

4 Conclusion

In this paper, we propose a model (LSTM_SPLSTM) to predict the exit traffic flow of a
toll station by using its sequence characteristics and the spatial-temporal characteristics
with its associated stations. By comparing with many traditional machine learning mod-
els and models only considering a single feature, LSTM_SPLSTM can more accurately
predict the exit traffic flow of toll station, and its superiority becomesmore obvious when
the forecast time increasing. Overall, our proposed LSTM_SPLSTMmodel is more suit-
able for predicting the exit flow of toll stations. For future work, how to effectively select
associated stations for a target station without affecting the prediction effect will be our
next research focus.
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