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Abstract. Confidential information analysis can identify the text con-
taining confidential information, thereby protecting organizations from
the threat posed by leakage of confidential information. It is effective
to build a confidential information analyzer based on a neural network.
Most of the existing studies pursue high accuracy to design complex net-
works, ignoring speed and consumption. The optimal defense is to auto-
matically analyze confidential information without compromising routine
services. In this paper, we introduce a lightweight network, DSCNN, that
can be adapted to low-resource devices. We also introduce two hyper-
parameters to balance accuracy and speed. Our motivation is to simplify
convolutions by breaking them down because the space dimension and
channel dimension are not closely related in the convolutions. Experimen-
tal results on real-world data from WikiLeaks show that our proposed
DSCNN performs well for confidential information analysis.
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1 Introduction

Mobile devices generate a vast amount of data every minute. The data may con-
tain confidential information that has not yet been marked. Such confidential
information can be leaked without being noticed and pose a threat to national
security, business trade, or personal life. Many organizations institute enforce-
ment policies to protect confidential information [18]. These policies require every
email sent by an employee to the Internet is reviewed by his manager. On the one
hand, these policies limit the operating efficiency of the organization and waste
a lot of manpower resources. On the other hand, it is ineffective if the employee’s
managers are not extremely well-versed in the scope of confidential matters for
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the entire organization. Therefore, constructing confidential information analyz-
ers has become a trend. As it can help organizations identify confidential infor-
mation, the need for high quality automated confidential information analyzers
becomes much more profound.

Confidential information analysis is a cross-task of Information Security (IS)
and Natural Language Processing (NLP). Its goal is to categorize text into dif-
ferent security levels (such as Confidential and Non-Confidential), or more fine-
grained levels (such as Top-Secret, Secret, Confidential, and Unclassified) [1].
In similar areas of confidential information analysis, such as text mining [17],
sentiment analysis [8], fake news detection [15], and confidential information
detection [7],CNNs have attracted extensive attention because of their excellent
performance. A large number of deep and complex CNNs have been designed
for tasks related to text classification [14]. Conneau et al. used 19 convolution
layers to build a Very Deep CNN (VDCNN) [3]. Johnson et al. built a Deep
Pyramid CNN (DPCNN) with 15 layers [11]. These models can easily achieve
high accuracy with sufficient computational resources and processing time. How-
ever, such models do not work well in low-resource and time-limited devices or
applications. In real-world applications such as Data Leakage Prevention (DLP)
[16] and Security Information and Event Management (SIEM) [21], confidential
information analyzers require the ability to run in real-time on a computation-
ally limited device to enforce the appropriate protection mechanism without
degrading regular services.

In this paper, we present a lightweight model named Depthwise Separable
Convolutional Neural Network (DSCNN) for confidential information anal-
ysis. Our motivation is that separating spaces and channels when convoluting
text can reduce the computational complexity of convolutions. The space dimen-
sion and channel dimension are not closely related that it is preferable not to
map them together. From the perspective of a model, channels are different pre-
trained word embeddings without strict sequence. Additionally, we describe two
hyper-parameters that efficiently balance accuracy and speed. These two hyper-
parameters can be used when designing the appropriate size models for differ-
ent devices. We conduct the comparison experiments of our proposed method
and other popular methods. We also conduct extensive experiments of hyper-
parameter sensitivity. The results show that our proposed method has a better
performance in analyzing confidential information. The main contributions of
this work include:

1) We propose a DSCNN for confidential information analysis. The DSCNN
makes convolution easier by operating in space dimension and channel dimen-
sion respectively to reduce computational complexity.

2) We introduce two simple hyper-parameters, channel multiplier and space mul-
tiplier, to balance accuracy and speed. These two hyper-parameters can be
used to further reduce the amount of calculation.

3) Extensive experiments using real-world data from WikiLeaks show that our
proposed model not only achieves a high accuracy but also saves a lot of time
and resources.
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The rest of the paper is categorized as follows. The previous approaches
are reviewed in Sect. 2. Our proposed method is presented in Sect. 3. Section 4
presents the results of the experiment. Finally, in Sect. 5, we conclude and give
perspectives.

2 Preliminaries

Recently, CNNs have achieved strong performance for tasks related to text classi-
fication [2]. Dos Santos et al. designed a CNN to extract features at the character-
level and word-level for sentiment analysis [4]. Kalchbrenner et al. introduced
a global pooling named dynamic k-max pooling to build CNNs [12]. Kim used
various pre-trained word embeddings to build CNNs for sentence classification
[13]. Yin et al. presented a multi-channel CNN which accepts multiple word
embeddings as the input [19]. Johnson et al. proposed a low-complexity CNN
shaped like a pyramid for text categorization [11].

The CNN is a kind of neural network model, which relies on the layer called
convolution layer for feature extraction. At the heart of this convolution layer
is a learnable filter. This filter does convolution operation while scanning the
vectorial text. The outputs of the convolution operation are the extracted feature
maps. Suppose a learnable filter w ∈ R

h×d is scanning the text sequence x ∈
R

s×d The h represents the size of the filter w, the s represents the length of
the sequence x, and the d represents the dimension of the word embeddings. A
extracted feature is obtained by the convolution operation:

fi = σ(w · xi:i+h−1 + b) , (1)

where the xi:i+h−1 representations a region of the above text sequence, the w
represents the above filter, the b represents a bias, and the σ represents a non-
linear function. The filter scans all the sequences {x1:h,x2:h+1, . . . ,xs−h+1:s} to
produce a feature map f = [f1, f2, . . . , fs−h+1]. Typically models use a lot of
filters (with different window sizes) to obtain a variety of feature maps.

The multi-channel CNN is an improvement on the single-channel CNN.
Compared with single-channel CNN, the multi-channel CNN uses different pre-
training word embedding vectors to initialize multiple channels as inputs. The
multi-channel CNN brings the following advantages: On the one hand, multiple
channels rather than one channel can bring more information available to a com-
mon word. On the other hand, one channel can be missing a rare word, other
channels can supplement it. However, it is worth noting that the multi-channel
model will bring lots of computation. In multi-channel CNN, the convolution
layer attempts to learn the filter in three dimensions, which has two space dimen-
sions (width and height) and one channel dimension. The convolution operation
is a joint mapping of these dimensions. In single-channel CNN, the convolution
operation is only a mapping of space dimensions. We think the space dimension
and the channel dimension are not closely related. The channel dimension do not
have the same strict order as the space dimension in the model, so we consider
that joint mapping is unnecessary. To simplify the convolution operations, the
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standard convolution can be decomposed into a series of operations that con-
volving independently on spaces and channels. Our work is similar to Howard et
al. [6] on image classification.

3 Methodology

In this section, we first present the network structure of DSCNN. We then detail
the core of DSCNN – depthwise separable convolution. Finally, we describe two
hyper-parameters – channel multiplier and space multiplier.

3.1 Network Structure of DSCNN

DPCNN [11] is a simple network structure with less computation and better
performance. It is a pyramid-shaped network structure whose upper layer is half
the size of the lower layer. We use the DPCNN network structure as the basic
network of our DSCNN.

Fig. 1. Network structure of DSCNN.
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The network structure of DSCNN is illustrated in Fig. 1. A DSCNN model
consists of input, word embedding layer, region embedding layer, depthwise sep-
arable convolution layer, pooling layer, fully-connected layer, and output. In our
DSCNN, the input is a text sequence and the output is its label. The first layer
is a word embedding layer. The word embedding layer is used to convert text
into vectors. In our DSCNN, we use a variety of pre-trained word embeddings
to initialize the word embedding layer. Each channel of the layer corresponds to
a pre-trained word embedding. So our DSCNN is also a multi-channel CNN. As
mentioned in Sect. 2, multi-channel networks have more advantages than single-
channel networks. The second layer is a region embedding layer. The region
embedding layer works in a similar way to the N-gram model [9,10]. It is used
to extract features of a small region in the width and height of space dimension.
The following layers are the alternations of two depthwise separable convolution
layers and one pooling layer. The depthwise separable convolution layer is used
to extract features and model long distance dependencies. It extracts features in
three dimensions, which has two space dimensions (width and height) and one
channel dimension. After each depthwise separable convolution layer, there is a
pooling layer used to downsample feature maps. We use the max-pooling with
size 3 and stride 2 in the pooling layer. We also fix the number of feature maps
in this pooling layer like DPCNN. With this pooling layer, we can model longer
distance dependencies later by depthwise separable convolution layers. To enable
the training of deep networks, we use shortcut connections with pre-activation.
The shortcut connections with pre-activation can be written as wσ(x) + b [5].
Finally, there is a fully-connected layer to generate the final classification.

3.2 Depthwise Separable Convolution

The core of DSCNN is the depthwise separable convolution. Compared to a
standard convolution, the depthwise separable convolution can greatly reduce
computational complexity. Hereafter we use the notation given in Table 1.

Table 1. This table lists notation declarations.

Symbol Meaning

h Height

w Width

d Channel

KhK , wK, dF, dG A filter

FhF , wF, dF A input feature map

GhG , wG, dG A output feature map

As shown in Fig. 2(a), the standard convolution use dG filters of size hK ×
wK×dF to extract feature maps. It extracts features in both the space dimension
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hG

output feature map

wG

dG
input feature map

hF

wF

dF

(a) standard convolution
dG

hK
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dF

(b) depthwise convolution
dF

hK

wK

1

(c) pointwise convolution

1

1

dG

dF

Fig. 2. The standard convolution extracts the space and channel features in one step
(a), while the depthwise separable convolution extracts space features in the depthwise
convolution (b) and extracts channel features in the pointwise convolution (c).

and the channel dimension. The hK represents the height of the filter and the
wK represents the width of the filter in the space dimension. The dF represents
the channel number of the filter in the channel dimension. The channel number
of the filter is the same as the channel number of the input feature maps because
the filter convolves on a multi-channel input. The dG represents the number of
filters. The number of filters is the same as the channel number of the output
feature maps.

As shown in Fig. 2(b), (c), the depthwise separable convolution contains two
parts: a depthwise convolution and a pointwise convolution. The depthwise sep-
arable convolution is decomposed to operate separately in the space dimension
and channel dimension. The depthwise convolution is operating in the space
dimension, while the pointwise convolution is operating in the channel dimen-
sion. The depthwise convolution use dF depthwise filters of size hK × wK × 1
to extract feature maps in the space dimension. The hK represents the height
of the depthwise filter, the wK represents the width of the depthwise filter, and
the 1 represents the channel number of the depthwise filter. The dF represents
the number of depthwise filters. The number of depthwise filters is the same as
the input channel because one input channel corresponds to one depthwise filter.
The pointwise convolution use dG pointwise filters of size 1 × 1 × dF to extract
feature maps in the channel dimension. The 1 × 1 represent respectively the
height and width of the pointwise filter. The dF represents the channel number
of the pointwise filter. The channel number of the pointwise filter is the same as
the number of the depthwise filter. The dG represents the number of pointwise
filters. The number of pointwise filters is the same as the channel number of the
output feature maps.

As discussed in Sect. 1, we think the space dimension and the channel dimen-
sion are not closely related. The standard convolution extracts the space and
channel features in one step, while the depthwise separable convolution extracts
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space features in one step and extracts channel features in another step. Splitting
one step into two steps can reduce computational complexity. Suppose we take
FhF,wF,dF as the input feature maps and GhG,wG,dG as the output feature maps.
The hF represents the height of the input feature maps, the wF represents the
width of the input feature maps, and the dF represents the channel number of
input feature maps. The hG represents the height of the output feature maps,
the wG represents the width of the output feature maps, and the dG represents
the channel number of output feature maps. The computational complexity of
the standard convolution is:

hK · wK · dF · dG · hF · wF . (2)

The depthwise convolution costs:

hK · wK · dF · hF · wF . (3)

The pointwise convolution costs:

dF · dG · hF · wF . (4)

The depthwise separable convolution costs:

hK · wK · dF · hF · wF + dF · dG · hF · wF , (5)

We get a reduction:

hK · wK · dF · hF · wF + dF · dG · hF · wF

hK · wK · dF · dG · hF · wF
=

1
dG

+
1

hK · wK
. (6)

3.3 Channel Multiplier and Space Multiplier

To balance accuracy and speed for more applications, we introduce a simple
parameter α called channel multiplier. It is used to set the channel number of
feature maps and thin the depthwise separable convolution layer. The computa-
tional cost is:

hK · wK · αdF · hF · wF + αdF · αdG · hF · wF , (7)

where α ∈ (0, 1]. α = 1 is the baseline DSCNN and α < 1 are reduced DSCNNs.
We introduce the other parameter β called space multiplier. It is used to set the
space size of feature maps and reduce the resolution of the input feature maps.
The computational cost is:

hK · wK · dF · βhF · βwF + dF · dG · βhF · βwF , (8)

where β ∈ (0, 1]. β = 1 is the baseline DSCNN and β < 1 are reduced DSCNNs.

4 Experiments and Discussion

We evaluated a variety of models on WikiLeaks Cable Dataset in this section.
The purpose of these experiments is to clarify the influence of our proposed
DSCNN for confidential information analysis.
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4.1 Experiments Settings

Dataset: The WikiLeaks Cable Dataset consists of paragraphs extracted from
Public Library of US Diplomacy (PlusD). We use white space as a delimiter,
normalize punctuations, remove special characters, and convert the remaining
characters to lowercase. After pre-processing, the details on the dataset are pro-
vided in Table 2. We randomly choose 80% of the original dataset for training
and 10% of the original dataset for testing. The rest 10% of the original dataset
to construct a validation set. We maintain a Secret/Confidential/Unclassified
balance of the original dataset in each split and use 10-fold cross-validation.

Table 2. Statistics of wikiLeaks cable dataset.

Item Content

Name WikiLeaks cable dataset

Type Sentence-level

#Classes 3

#Instances of secret 10,000

#Instances of confidential 10,000

#Instances of unclassified 10,000

Average length 145

Vocabulary size 125, 534

Test 10-fold CV

Hyper-parameters: We tune the hyper-parameters of our proposed model on
the validation set.

– Pre-trained Word Embeddings: We initialize the word embedding layer
with the following pre-trained word embeddings. We set the channel number
of the word embedding layer as 4 and the dimension of vectors as 300. These
pre-trained word embeddings are available on github1. We use the vectors
of Word2Vec-GoogleNews, Word2VecModified-Wikipedia, GloVe-Crawl840B
and GloVe-Wikipedia. The vectors of these word embedding do not fine-
tune during training the classifiers. The Word2Vec-GoogleNews are trained
on Google News through Word2Vec. The Word2VecModified-Wikipedia are
trained on Wikipedia through modified Word2vec. The GloVe-Crawl840B are
trained on Common Crawl through GloVe. The GloVe-Wikipedia are trained
on Wikipedia through GloVe.

– Hyper-Parameters in DSCNN: We set the depth of DSCNN as 16, 14
convolution layers plus 2 embedding layers. We set the window size of the
region embedding layer as 1, 3, 5 and the channel number of feature maps as
250. We train models with a mini-batch size of 64 and use Adam optimizer

1 https://github.com/3Top/word2vec-api.

https://github.com/3Top/word2vec-api
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with the learning rate of 0.001. We use a 0.5 dropout rate on the fully-
connected layer during training.

Evaluation. We use accuracy to measure these models because the dataset is
balanced. We use calculation to evaluate the computational complexity of these
model. With the same device configuration, the less computation is, the faster
the speed is. We use parameters to evaluate the spatial complexity of these
model. The fewer parameters, the less space.

4.2 Results and Discussion

Main Comparisions. First we show results for our proposed DSCNN based on
the depthwise separable convolutions compared to other popular CNN models.
The CharSCNN is a shallow network that extracts features from character-level
to sentence-level. The TextCNN is a shallow network based on the word embed-
ding. The MVCNN and MCCNN are multi-channel networks that have rich
feature maps in convolution layers. The ConvNets and VDCNN are deep net-
works based character-level representation. The DPCNN is the state-of-the-art
network for text classification. The Multi-Channel DPCNN is a network modi-
fied by us that use the diversity of different embedding to extract higher quality
features. Compared the Multi-Channel DPCNN and our proposed DSCNN, the
Multi-Channel DPCNN is based on the standard convolutions while the DSCNN
is based on the depthwise separable convolutions.

Table 3. Results of our proposed DSCNN against other models.

Model Type Accuracy Calculation Parameters

CharSCNN [4] shallow, char 64.51 – –

TextCNN [13] shallow, word 66.46 – –

MVCNN [19] shallow, word 68.17 – –

MCCNN [2] shallow, word 68.02 – –

ConvNets [20] deep, char 66.95 – –

VDCNN [3] deep, char 67.16 1503.36M 2.11M

DPCNN [11] (Baseline) deep, word 68.85 1370.25M 2.63M

Multi-Channel DPCNN deep, word 72.34 5481.00M 2.63M

DSCNN (Ours) deep, word 72.57 630.92M 0.89M

From Table 3, we have the following observations: (1) As expected, our pro-
posed DSCNN not only achieves a high accuracy but also saves a lot of time and
resources. It costs less computation than the standard convolutions. The DSCNN
uses 3×3×250×250 depthwise separable convolutions which use about 9 times
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less computation than the Multi-Channel DPCNN with the standard convolu-
tions. Additionally, the DSCNN primarily focus on optimizing for calculation
speed but also yield a small size network. (2) Deep models with multiple chan-
nels indeed give better performances. Single-channel networks do not outperform
multi-channel networks. A single-channel network – DPCNN – achieves 68.85%,
comparing to 72.34% of a multi-channel network – Multi-Channel DPCNN. It
demonstrates the effectiveness of pre-trained word embeddings. The pre-trained
word embedding vectors can introduce more useful external knowledge for short
text.

Model Shrink. Table 4 shows a comparison between our proposed DSCNNs
with different channel multipliers and the baseline DPCNN. We analyze the
results from three aspects: accuracy, calculation, and parameters. The channel
multiplier is used to set the channel number of feature maps. We observe that
decreasing the channel multiplier α hurts the accuracy, but can reduce the calcu-
lation and parameters. Our proposed DSCNN with channel multiplier α = 0.75
has 3 times less calculation and 5 times fewer parameters with the same accuracy
as the baseline DPCNN.

Table 4. Results of channel multiplier (α).

Model Accuracy Calculation Parameters

DPCNN (Baseline) 68.85 1370.25M 2.63M

1.00 DSCNN – 300 72.57 630.92M 0.89M

0.75 DSCNN - 300 69.05 359.01M 0.50M

0.50 DSCNN – 300 65.02 163.21M 0.22M

0.25 DSCNN – 300 60.17 43.54M 0.06M

Table 5. Results of space multiplier (β).

Model Accuracy Calculation Parameters

DPCNN (Baseline) 68.85 1370.25M 2.63M

1.00 DSCNN – 300 72.57 630.92M 0.89M

1.00 DSCNN – 224 71.83 471.09M 0.89M

1.00 DSCNN – 192 70.66 403.79M 0.89M

1.00 DSCNN – 160 68.81 336.49M 0.89M

1.00 DSCNN – 128 65.74 269.19M 0.89M

Table 5 shows a comparison between our proposed DSCNNs with different
space multipliers and the baseline DPCNN. We analyze the results from three
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aspects: accuracy, calculation, and parameters. The space multipliers is used to
set the space size of feature maps. The accuracy decreases as the space size
of feature maps decreases. The calculation reduces as the space size of feature
maps decreases. The parameters remains the same because it is independent
of the space size of feature maps. Our proposed DSCNN with space multiplier
β = 160 has 4 times less calculation and 3 times fewer parameters with the same
accuracy as the baseline DPCNN.

5 Conclusion

Confidential information analysis can protect organizations from the threat of
confidential information leakage by identifying text that contains confidential
information. In this paper, we proposed a lightweight model named DSCNN
based on depthwise separable convolutions for improving the performance of
confidential information analysis. The proposed method convolves in space and
channel dimensions respectively, which can reduce the computational complexity
of convolution operation. We then described the channel multiplier and space
multiplier to balance accuracy and speed to fit different low-resource devices.
We expect that separable convolution in depth will become the cornerstone of
the design of CNNs in the future since they make the convolution easier and
more efficient on multi-channel CNNs.
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