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Abstract. Teacher-student reinforcement learning is a popular app-
roach that aims to accelerate the learning of new agents with advice
from trained agents. In these methods, budgets are introduces to limit
the amount of advice to prevent over-advising. However, existing budget-
based methods tend to use up budgets in the early training stage to help
students learn initial policies fast. As a result, initial policies are some
kind solidified, which is not beneficial for improving policy generaliza-
tion. In this paper, to overcome advising intensively in the early training
stage, we enable advising in the entire training stage in a decreasing
way. Specifically, we integrate advice into reward signals and propose an
advice-based extra reward method, and integrate advice into exploration
strategies and propose an advice-based modified epsilon method. Exper-
imental results show that the proposed methods can effectively improve
the policy performance on general tasks, without loss of learning speed.

Keywords: Reinforcement learning · Agent training · Advising
strategy · Policy generalization

1 Introduction

Multi-agent reinforcement learning (MARL) [3] has been widely used in dynamic
learning problems in multi-agent systems (MAS) and has gained considerable
success in real time strategy games, e.g. DOTA2 [10]. In the application of
MARL, new agents should be deployed to extend system capability or to replace
failed agents. In these situations, the system ability to resume is determined by
how fast newly entering agents can learn their policies. Thus, researches on how
to speed up the learning of newly entering agents are vital challenges in MAS.

Teacher-student reinforcement learning [14] was proposed to meet the above
challenges. In these methods, an experienced “teacher” agent helps accelerate
the “student” agents learning by providing advice on which action to take next.
[1]. Besides, helping students learn policies with strong generalization [11] should
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also be considered, otherwise, students can copy teacher policies immediately.
Therefore, budgets are introduced to constrain the amount of advice [12,13].
However, existing budget-based methods tend to use up budgets in the early
training stage, which means advising imposes an intensive impact to students’
exploration in the early training stage. This leads to that students learn rela-
tively solid initial policies fast, which, however, are not beneficial for learning
policies with strong generalization. Similar inspiration can be found in pedagogy:
if students follow the guidance too much in the early learning stage, they may
lack the motivation for change and innovation in the future [2].

The main idea of this paper highlights that advising should be enabled in
the entire training stage in a decreasing way, so that advice can provide students
continuous reference to learn better policies. Based on this idea, we investigate
the framework of reinforcement learning and find that reward signals and explo-
ration strategies are two functional units that take effect in the entire training
stage. Thus, we propose the advice-based extra reward (ER) method where we
extend reward signals by providing a student with an extra reward if he selects an
action that is similar to advice. And propose the advice-based modified epsilon
(ME) method where we modify exploration strategies by asking for advice with
a descending probability when a student decides to explore the environment.

We test the two proposed methods on the coordinated multi-agent object
transportation problem (CMOTP) [3] and a variation of the CMOTP, that is,
the r-CMOTP. Comparisons conducted with state-of-the-art advising strategies
show that the two proposed methods can improve policy performance on general
tasks effectively, without loss of learning speed.

The remainder of this paper is organized as follows. Section 2 presents the
necessary background and related works. Section 3 introduces the advice-based
ER and ME method. Section 4 compares the proposed methods with state-of-
the-art methods on the CMOTP and r-CMOTP. Section 5 concludes the paper.

2 Background and Related Work

2.1 Motivated Scenario

As over advising hinders student learning [13], existing advising methods are
generally designed with budgets [8,13] to limit the amount of advice. We apply
existing budget-based methods to the CMOTP [3] (detailed in Sect. 4.1). For
convenience, a CMOTP task refers to two agents allocated to certain specific
positions aiming to transport goods to a home area. Different tasks are marked
by different initial positions of the two agents.

Figure 1 shows the results when initial positions of the two agents are fixed in
the training and testing. Figure 1(a) indicates that budgets are used in the early
training stage, as students can finish a training episode quickly in the early stage
and slowly in middle and late stages, while Fig. 1(b) illustrates that students can
perform well in this specific task even when budgets have not been depleted. This
process indicates that advice in budget-based methods takes effect in the early
training stage to help students learn initial policies.
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(a) performance in training (b) performance in testing

Fig. 1. LFS means learning from scratch without advice, AdvI is the abbreviation of the
advice importance strategy [13], and AdvC is the abbreviation of the advice correct
strategy [13], both are budget-based methods. The y-axis represents the mean step
that agents take to finish the task in testing, while the x-axis represents the amount
of training episodes that have been used to train the policy. We terminate an episode
if the episode length exceeds 100 in the tests. The faster a curve drops, the faster a
student learns its policy.

In further experiments (detailed in Sect. 4.2), we find that training after bud-
gets are depleted worsens policy performance on specific tasks, but is necessary
to enhance policy performance on general tasks. However, as our experimental
results demonstrate, policy performance on specific tasks and policy performance
on general tasks obtained by budget-based methods are both worse than method
without advising when training finished. These results suggest that although it
is able to accelerate the learning of students, budget-based methods suffers from
a low policy generalization problem.

2.2 Teacher-Student Reinforcement Learning

Teacher-student reinforcement learning was proposed by Clouse et al. [4]. The
two roles in these methods are teachers that have learned their policies, and
students that do not have their policies yet. The thought of these methods is
that teachers can give students some advice basing on some heuristics (e.g. ask
uncertain heuristic [4], advice importance heuristic [13] etc.) to accelerate their
learning [5–7,13], but the amount of advice should be limited [13]. Over-advising
is a major trouble in this setting, since it may hinder students’ learning and con-
sume too many communication resources [13]. When students receive advice,
they execute these advice immediately and evolve their policies based on the
reward signal from the environment. Generally, teachers and students can take
different representing types of environment states and different learning algo-
rithms, but share a common action set [13].



42 G. Xudong et al.

3 The Proposed Method

To improve the policy generalization of students, we propose two methods which
enable advising in the entire training stage in a decreasing way. The first one
uses an advice-based extra reward to integrate advising into reward signals.
The second one employs an advice-based modified epsilon method to integrate
advising into exploration strategies.

3.1 Advice-Based ER Method

In reinforcement learning framework, agents evolve their policies with direct
feedback from reward function, which plays a vital role in the entire training
stage. To distribute advice in the entire training stage in a decreasing way, we
extend the reward function by considering information from advice.

Equation 1 shows that when the action chosen either by the exploration strat-
egy or by the evolving action policy equals the advice from a teacher, the teacher
provides the student with an extra reward, which is calculated by Eq. 2,

r′
st(s,a) = rst(s,a) + ϕ(s,a, t), (1)

ϕ(s,a, t) =

{
ω + μe−νt, if ast = πtc(s),
0, else

(2)

where s is the state of the environment, a is the joint action of all the agents
in the environment, t is the iteration that the policy has been trained, rst(s,a)
is the reward function of the student, subscript st denotes the student, and
subscript tc denotes the teacher, ω ∈ R, μ ∈ [0,+∞), ν ∈ [0,+∞).

3.2 Advice-Based ME Method

In reinforcement learning framework, exploration strategies also play an impor-
tant role in the entire training stage in helping agents learn an optimal and
strong-generalization policy. To distribute advice in the entire training stage in
a decreasing way, we let students ask for advice with a decreasing probability
when he uses exploration strategy.

Equation 3 shows that when a student uses exploration strategies to inter-
act with the environment, he asks for advice from a teacher with a specified
probability,

ast =

⎧⎪⎨
⎪⎩

πst(s), if x ∈ [ε(t), 1]
πtc(s), if x ∈ [0, ε(t)) andx′ ∈ [0, g(t)],
πε(s), else

(3)

where t is the iteration that the policy has been trained, x ∼ U(0, 1), x′ ∼ U(0, 1)
are two random variables, ε(t) is the exploring probability at iteration t, and
g(t) = ω + μe−νt, where ω ∈ [0, 1], μ ∈ [0, 1 − ω], ν ∈ [0,+∞) is the asking-for-
advice probability at iteration t when the student explores.
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4 Evaluation

4.1 CMOTP Environment and Experimental Settings

We evaluate the proposed methods on the CMOTP [3], and a variation of the
CMOTP (the initial positions of the two agents are randomized, denoted as r-
CMOTP below). As the main purpose of our work is to study the advising meth-
ods, for convenience, we implement independent learners [3,9] with Q-learning
algorithm as our test algorithm. Available actions for each agent, state represen-
tation, network output, and environment restrictions are all same as [3]. First,
we train the two agents in the r-CMOTP. Next, we set one of the trained agents
as the teammate and the other as the teacher. For the proposed methods, we
set ω = 0.01, μ = 0.09, ν = 0.0001 for the ER and ω = 0.1, μ = 0.1, ν = 0.001 for
the ME. We conduct experiments with these settings.

4.2 Evaluation on the CMOTP

We train the student with a specific task, in which the initial positions of the two
agents are fixed. We use 100 random seeds in the training to obtain 100 different
policies for each method. First, we test the student agent with the same specific
task to demonstrate policy quality in this specific task. In the training, we train
policy with 10,000 episodes and conduct a test every 10 episodes and terminate
a test if the episode length exceeds 100. Figure 2(a) and Table 1 exhibit the
corresponding results. Next, we test each policy with 100 different tasks, record
the number of tests in which the policy performs optimally. Average value on the
100 different tests is shown to demonstrate the policy generalization. Figure 2(b)
and Table 2 demonstrate the corresponding results.

Table 1 exhibits that the policy quality in the specific task is high by the
time-point when budgets are depleted for AdvI, AdvC, AskI, and AdvC-AskI.
However, this finding does not mean that we can terminate training at this time-
point, because Table 2 shows that policy generalization is low for all budget-based
methods at this time-point. This result indicates that initial policies learned by
budget-based methods are poor in generalization. Consequently, further train-
ing is required to enhance policy generalization. However, when the training is
complete, the highest policy generalization obtained by the budget-based meth-
ods (13.08 by AdvC-AskU) is lower than 13.29 of the LFS method. This finding
indicates existing budget-based methods are not beneficial to learn policies with
better generalization than LFS.

4.3 Evaluation on the R-CMOTP

We further conduct experiments on a general case, that is, the r-CMOTP, to show
differences in policy generalization. In this section, the initial agent position is
randomized in the training and testing. We train policy with 55,000 episodes and
measure the policy quality by testing each policy with 100 fixed tasks and record
the average steps the policy need to complete these tasks. Figure 3(a) and Table 3
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(a) Comparison on the steps to finish the
task

(b) Comparison on #test where the pol-
icy performs optimally out of 100 test

Fig. 2. Comparison among LFS, ER, ME, and AdvC-AskI on the CMOTP. For (a),
the y-axis represents the mean step that agents take to finish the task, while the x-axis
represents the amount of training episode that has been used to train the policy. For
(b), the y-axis represents the number of test in which the policy performs optimally
out of 100 test, while the x-axis is same as (a). For both figures, the solid line is the
result averaged on 100 different random seeds, and the shaded area is the standard
deviation.

Table 1. Comparison on the policy quality on the specific task among different
methodsa

Methods LFS AdvI [13] AdvC [13] AskI [1] AskU [4] AdvC-AskI [1] AdvC-AskU [1] ER ME

#OBb – 89 90 97 14 92 37 – –

#OTc 100 33 32 83 98 90 88 100 100

#EBd – 62.00 69.11 55.41 55.65 75.66 – – –
aThe initial position of the two agents are fixed in both the training and the testing.
b#policy that performs optimally when budgets are depleted (the AdvC-AskU method is tested at 80th

episode).
c#policy that performs optimally when training is complete.
d#episode that has been used to train the policy when budgets are depleted (the AdvC-AskU does not

use up budgets by the end of training but rarely uses them since 80 episodes).

Table 2. Comparison on the policy generalization among different methodsa

Methods LFS AdvI AdvC AskI AskU AdvC-AskI AdvC-AskU ER ME

#OBb – 4.47 5.09 7.21 8.49 6.04 9.04 – –

#OTc 13.29 8.56 8.75 11.50 11.17 12.34 13.08 15.51 11.98
aThe initial positions of agents are fixed in training and random in testing.
b#test where the policy performs optimally when budgets are depleted
c#test where the policy performs optimally when training complete.
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exhibit the corresponding results. Meanwhile, we measure policy generalization
by testing each policy with 100 different tasks and record the number of tasks in
which the policy performs optimally (the final value is averaged on 100 random
seeds). Figure 3(b) and Table 3 show the corresponding results.

Figure 3(a) shows that ER and ME achieve faster rates in improving pol-
icy quality compared with AdvC-AskU. As can be observed in the first row of
Table 3, the final average number of steps to finish a task is 9.39 for ER and
9.47 for ME, respectively, both of which are lower than those of budget-based
methods. This finding suggests that ER and ME can improve policy quality.
Figure 3(b) demonstrates that ER and ME have faster speeds in improving pol-
icy generalization compared with AdvC-AskU. In addition, the second row of
Table 3 shows that the number of optima a policy obtains in 100 different tasks
is 76.06 for ER and 75.77 for ME. Both are higher than LFS and budget-based
methods, which indicates that ER and ME can improve policy generalization.

(a) Comparison on the steps to finish the
task

(b) Comparison on #test where the pol-
icy performs optimally out of 100 test

Fig. 3. Comparison among LFS, ER, ME, and AdvC-AskI on the r-CMOTP. The
illustration of (a) is same as Fig. 2(a) while the illustration of (b) is same as Fig. 2(b).

Table 1 demonstrates that the two proposed methods perform best on the
specific task of the CMOTP. Meanwhile, Table 2 illustrates that ER achieves
the best policy generalization (i.e., 15.51, which is higher than the LFS and
budget-based methods). This finding suggests that ER can effectively improve
policy generalization on the specific task of the CMOTP. Nevertheless, ME does
not perform better than all budget-based methods, the reason may be that for
the specific task, exploration is significantly important for students to improve
policy generalization, however, asking for advice takes a certain proportion in
exploration strategies.
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Table 3. Comparison on the policy quality and generalization among different
methodsa

Methods Optimal Teacher LFS AdvI AdvC AskI AskU AdvC-AskI AdvC-AskU ER ME

#Stb 8.88 10.44 9.43 9.60 9.66 9.64 9.54 9.59 9.50 9.39 9.47

#Optc – 73.01 74.85 70.01 72.69 73.66 73.53 74.68 73.81 76.06 75.77
aThe initial position of the two agents are random in both the training and the testing.
bThe average steps for each policy on 100 specific tasks.
cThe average number of test in which the policy performs optimally when training complete.

5 Conclusions

This study investigates methods of advising agents to accelerate learning and
improve policy generalization. We propose the advice-based extra reward method
and the advice-based modified epsilon method and conduct experiments on the
coordinated multi-agent object transportation problem. Experimental results
show that the proposed methods can effectively improve policy generalization
compared with existing methods in the teacher-student reinforcement learning.
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