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Abstract. Traffic flow prediction is a crucial issue for intelligent trans-
portation system. Because of complicated topological structures of road
networks and dynamic spatial-temporal patterns of traffic conditions,
predicting flows on the road networks is still a challenging task. Most
existing approaches focus on the local spatial-temporal correlations,
ignoring the global spatial dependences and the global dynamic spatial-
temporal correlations. In this paper, we propose a novel deep learn-
ing model for traffic flow prediction, called Global Diffusion Convolu-
tion Residual Network (GDCRN), which consists of multiple periodic
branches with the same structure. Each branch applies global graph
convolution layer to capture both local and global spatial dependen-
cies, and further apply GRes to describe global spatial-temporal correla-
tions simultaneously. Extensive experiments on two real-world datasets
demonstrate that our model can capture both the global and local
spatial-temporal dependencies dynamically. The experimental results
show the effectiveness of our method.

Keywords: Traffic prediction · Spatial-temporal network · Graph
convolution network

1 Introduction

Intelligent transportation system (ITS) plays an important role in improving
efficiency of traffic management and ensuring traffic safety. Predicting traffic
conditions is one of the most important tasks in ITS. It can guide traffic man-
agement and help drivers avoid congested roads, such that traffic jams can be
avoided or alleviated. The traffic prediction on road networks is a typical spatial-
temporal data prediction problem, which aims at predicting future traffic flows
by making use of historical traffic data and road networks. The complexity of
the traffic prediction problem is mainly affected by the following three factors:
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1. Traffic conditions are different at various times (i.e. morning peak, noon) and
also vary greatly from place to place, which shows strong dynamic character-
istics in both spatial and temporal dimensions.

2. In the spatial dimension, complicated correlations are observed among differ-
ent regions. Congestion can affect the traffic conditions of reachable neighbors
with different impact. On the other hand, the traffic conditions of places with
far distance may also affect each other. In summary, both long-range and
short-range spatial relations between places are important in traffic flow pre-
diction.

3. Temporal dependencies follow complicated periodic patterns. Due to people’s
regular daily life patterns traffic conditions may show some repeated patterns,
such as peak flow in mornings. Moreover, just past traffic conditions inevitably
have an influence on future traffic flows. Therefore, the temporal patterns of
traffic data are not purely periodic.

In recent years, thanks to the development of sensor networks, ITS systems
can obtain massive amounts of real traffic network data, which facilitates traffic
prediction. Although deep learning methods have brought breakthroughs in traf-
fic prediction, they still have some limitations. 1) The existing studies [11,14,17]
assume that spatial dependency relationships only exist among directly con-
nected or very close nodes. 2) RNN-based methods [15,17] are ineffective to
learn long-term periodic dependencies, since they have problems such as gra-
dient explosion/disappearances when capturing long sequences. And it is time
consuming to train typical chain structured RNN. 3) Current studies [4] do not
capture the global spatial-temporal dependencies in the same time. They also
reduce the bidirectional traffic network to undirected graphs, which makes these
type of methods less effective in practice.

In this paper, we propose a global diffusion convolution residual network
(GDCRN) to predict traffic flows, which addresses the three shortcomings we
have mentioned above. It contains multiple branches with the same structure
for capturing information of different time periods, such as hourly period, daily
period and weekly period. We propose global graph convolution (GGC) layer,
which integrates a novel graph diffusion convolution unit based on three auxiliary
matrices. It contains two local adjacency matrices to capture local spatial corre-
lations of the bidirectional traffic network and a global matrix to capture global
spatial dependencies. We further apply the attention mechanism to exploit the
most important spatial and temporal dependencies. A global residual (GRes)
unit is designed to capture global spatial-temporal information. In this way, our
model is able to capture more complicated spatial-temporal correlations with
better performance. Our contributions are summarized as follows:

– We propose a novel graph convolution layer which considers dynamicity, local
and global spatial dependencies simultaneously. A novel GRes module pro-
posed, which consists of a gated convolution to capture the temporal depen-
dencies and a global residual unit to capture the global spatial-temporal cor-
relations.
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– We propose an effective and efficient deep learning framework GDCRN that
contains multiple branches for capturing informative features of multiple dif-
ferent periods. Each branch is specially designed to capture spatial-temporal
information of this time period.

– We evaluate our model on two real datasets and compare it with six base-
line methods by three evalution metrics. Extensive experiments verify the
effectiveness of our model.

2 Related Work

Accurate prediction of traffic conditions is essential to data-driven urban man-
agement. Researchers have made tremendous efforts in traffic prediction [7,8,13].
Statistical regression methods such as ARIMA and its variants [1,13] are repre-
sentative models in the early studies on traffic prediction. However, they only
study traffic time series for each individual location and fail to consider the spa-
tial correlations. Later, some researchers feed spatial features and other external
feature information into the traditional machine learning models [7,12]. But it
is still difficult to consider the spatial-temporal correlations of high-dimensional
traffic data. The prediction performance of traditional machine learning methods
heavily depends on feature engineering.

Recently, deep learning methods have brought tremendous advances in traf-
fic prediction, which outperform many traditional methods. Many models inte-
grate convolution neural network (CNN) and recurrent neural network (RNN)
to jointly model complex non-linear spatial and temporal dependences in traffic
network, and have achieved inspiring success [8,14]. RNN and its variants [3,5]
can effectively use the self-circulation mechanism to learn temporal dependence
well. CNN treat city traffic network as images by dividing the traffic network into
small grids and use CNN to model the non-linear spatial dependencies. However,
the grid structure does not hold the real-word conditions, which makes it unsuit-
able to capture the spatial dependencies of traffic network effectively. The works
in [10,17] propose to capture the structural correlations of traffic network by
combing RNN and graph convolution network such as GCN [9] and DCNN [2].
GCN and DCNN models capture the dependence of graphs via operating con-
volution to pass message between the nodes of graphs. However, RNN-based
models are difficult to train, computationally heavy and less effective when cap-
turing long-distance contextual temporal information. To solve these challenges,
STGCN [16] apply CNN in the time dimension and GCN in spatial dimension,
which enable stable gradient and much faster training speed with fewer param-
eters. ASTGCN [4] further apply the attention mechanism to adjust spatial-
temporal dependence dynamically. Although the schemes mentioned above have
improved the accuracy of traffic prediction, they still fail to capture the global
and local spatial-temporal dependencies simultaneously in the traffic network.
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3 Preliminaries

Definition 1 (Traffic Network). In this study, the traffic topological network
can be defined as a weighted bidirectional graph G = (V,E,A), where V is a set
of nodes with limited number (|V | = N), E is a set of edges that describe the
accessible routes between nodes, and A ∈ R

N×N indicates the weighted adjacency
matrix of G. Specifically, aij ∈ A represents the weight from node vi to vj.

Definition 2 (Traffic Data). Assuming that the network G has N nodes and
traffic data X contains C features (such as flow, occupy, speed), the traffic data
of c-th (c ∈ (1, . . . , C)) feature on nodes vi (i ∈ (1, . . . , N)) at time t can be
described as xi,c

t ∈ R. Then, Xi
t = (xi,1

t , . . . , xi,C
t ) ∈ R

C denotes the traffic data
with all features on node vi at time t, and Xt = (X1

t , . . . , XN
t ) ∈ R

N×C denotes
the traffic data with all features and all nodes at time t. The whole historical
traffic data can be denoted by X = (X1, . . . , XT ) ∈ R

N×C×T .

Problem 1 (Traffic Flow Prediction). Given a traffic Network G, and its his-
torical signals over past T time slices, i.e. X = (X1, . . . , XT ) ∈ R

N×C×T .
Our problem is to predict the next Tp horizons traffic flow sequences Y on
the whole traffic network. The prediction result Y can be defined as Y =
(Y1, . . . , Yi, . . . , YTp

) = (XT+1, . . . , XT+j , . . . , XT+Tp
) ∈ R

N×C×Tp , where 0 <
j ≤ Tp, YT+j = (Y 1

T+j , . . . , Y
N
T+j) ∈ R

N×C .

Fig. 1. The architecture of GDCRN.

4 Global Diffusion Convolutional Residual Network

Figure 1 shows the architecture of GDCRN. The inputs of GDCRN are historical
traffic data and traffic network, and the outputs are the predictions of the future
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traffic states. We extract local and global spatial information from topology
of traffic network. We set three branches to model the hourly-periodic, daily-
periodic and weekly-periodic dependencies. Every branch is able to learn the
dynamic spatial-temporal information in every time period by GGC and GRes
submodules. A convolution layer is designed in the end to generate prediction
results of each branch and keep output shapes consistent. Finally, the outputs
of each periodic branch are fused to obtain final prediction results. The detailed
mechanism of each module is described in the following subsections.

4.1 Global Graph Convolution Layer

For spatial dimension, the directly connected nodes inevitably affect each other,
and those roads which are geographically distant but conveniently reachable
are also correlated with each other. So, it is necessary to capture both local and
global dependencies. In this paper, we propose a global graph convolution (GGC)
unit based on diffusion convolution that simultaneously extract both the local
and global spatial dependencies on traffic network. Diffusion convolution [2] is a
compositional layers , which smoothes a node’s signal by a diffusion process, so
that it can directly describe features of bidirectional through multi-dimensional
input.

Firstly, three auxiliary matrices are developed to encode spatial information
about the topology of the traffic network . For details, we apply forward adja-
cency matrix AF and the backward adjacency matrix AB = (AF )� as local
matrices to encode the local spatial proximity. And then we construct a global
auxiliary matrix AG to encode the topological correlations of long distance by a
global transform.

Fig. 2. The substructure of GDCRN module. ST-ATT: Spatial Temporal Attention
[4]. Global Pool: Global average pooling layer. Linear & ReLU: Linear Transform and
ReLU function

Secondly, traffic conditions of different locations have influence among each
other, but not all of these correlations are equally important. Furthermore, cor-
relations between different time horizons are also varying. Therefore, we adopt
an attention mechanism (ST-ATT) [4] to generate a spatial-temporal attention
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matrix β, which can focus on more important spatial-temporal information. Take
the temporal attention as an example: α = Φt ·σ(((Xl−1)TU1)U2(U3Xl−1)+ bt),
where Xl−1 ∈ R

Cl−1×N×Tl−1 is the input of the l-th GGC module, σ represents
activation function sigmod, Φt, bt ∈ RTl−1×TL−1 , U1 ∈ R

N , U2 ∈ R
Cl−1 , U3 ∈

R
Cl−1 are learnable parameters. Each element αi,j represents the strength of the

correlation between time i and time j. We apply the normalized temporal atten-
tion matrix α

′
generate dynamic importance-oriented temporal representations

Ht = Xl−1α
′
. Then, spatial-temporal attention matrix β is generated by the

similar attention mechanism based on temporal representations Ht.
Thirdly, we feed the spatial-temporal attention matrix β into following graph

convolution layer to adjust correlations between nodes dynamically.

ÂF = (AF
⊙

β); ÂB = (AB
⊙

β); ÂG = (AG
⊙

β); (1)

where
⊙

is a Hadamard product. By combining importance-oriented diffusion
matrices, our innovative graph convolution layer can be formulated as:

Hs = σ(
K∑

k=0

(ÂF
k Xl−1Θk1 + ÂB

k Xl−1Θk2 + ÂG
k Xl−1Θk3)) (2)

Where K is the diffusion step, Θk1, Θk2, Θk2 is a diagonal matrix of learnable
parameters, ÂF

k , ÂB
k and ÂG

k are the k-th step diffusion matrices, σ is the
activation function of graph convolution layer, Xl−1 is the input of the l-th GGC
unit. By applying diffusion convolution operations with attention mechanisms
to the input Xl−1, Hs can model dynamic local and global spatial dependencies.

4.2 Global Residual Network

The future traffic conditions have a complex non-linear relationship with the
previous traffic conditions. To learn informative temporal correlations, we apply
a temporal convolution with a gated mechanism. To capture the interdependen-
cies between spatial and temporal dimensions, we propose a global residual unit
which uses global information to selectively emphasise spatial-temporal corre-
lations. As shown in the right part of Fig. 2, Global Residual Network (GRes)
combines a gated temporal convolution unit with a global residual unit.

Gated Temporal Convolution Unit. Gated mechanisms have powerful abil-
ity to control information. We apply two standard convolution operations with
different kernel sizes to learn different hidden representations in the time dimen-
sion. Then two different activation functions are applied as output gates to learn
complex time features. Given the spatial representations Hs, we can formulate
the gated temporal convolution unit as:

Hst = σ1(Conv1(Hs)) � (σ2(Conv2(Hs))) (3)

where σ1 and σ2 are the different non-linear activations, σ1 is RELU function
and σ2 is tangent hyperbolic function, � is element-wise product, Conv1 and
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Conv2 are the standard convolution functions. Hst can model both spatial and
temporal dependencies.

Global Residual Unit. To improve the sensitivity of global spatial-temporal
correlations in our model, we design a global residual unit to exploit informative
features and suppress less useful ones. Firstly, a global average pooling layer is
used to capture global contextual spatial-temporal dependencies directly among
all nodes and all time horizons. To limit the model complexity and improve the
generalization ability of the model, we use a linear transformation for decreasing
dimension and a ReLU function, which can be defined as:

f(x) = ReLU(Wx) (4)

where W ∈ R
Cr×C is learning parameters, C is the input dimension, Cr is the

output dimension and Cr < C. Different from SElayer [6], we use two same
transformations in Fig. 2 instead of different ones, which has been proved by
experiments the former performs better. Given local spatial-temporal represen-
tations Hst, the core of the global residual unit can be defined as:

Ho = f(f(GlobalPooling(Hst))) ⊗ Hst, (5)

where ⊗ is the element-wise product. Ho can further model global dynamic
spatial-temporal dependencies. Then, a residual mechanism and LayerNorm are
applied to improve generalization performance.

4.3 Fusion Mechanism

To ensure that multiple branches can be effectively merged, we apply a con-
volution layer at the end of each branch. The output prediction results of the
three branches (Ŷh, Ŷd, Ŷw) have same shape. Finally, we fuse prediction results
of multiple periods to capture global temporal correlations by learning weights
and generate the final prediction result Ŷ , which can be formulated as:

Ŷ = Wh � Ŷh + Wd � Ŷd + Ww � Ŷw, (6)

where Wh,Wd,Ww ∈ R
N×Tp are the learning parameters.

5 Experiment Evaluation

5.1 Experiment Settings

DataSet. We verify GDCRN on two large real world highway traffic datasets,
PeMSD4 and PeMSD8, released by [4]. PEMSD4 and PeMSD8 records two
months of statistics on traffic data on the highways of California. Table 1 presents
the details of the two datasets. The traffic data are aggregated every 5 min.
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Table 1. The detailed information of the dataset.

Dataset PeMSD8 PeMSD4

Locations San Francisco Bay area, California San Bernardino, California

Detectors 170 307

Time interval 12 12

Time span 01/01/2018-28/02/2018 07/01/2016-31/08/2016

Network Structure and Hyperparameter Settings. We implemented our
model in Python with MXNet 1.6.0. We set up three different periodic branches
for the model by week, day, and hour. We set the input period length of three
branches as: Tw = 2, Td = 2, Th = 1. Each branch contains two GDCRN blocks.
For graph convolution, we construct the global spatial matrix AG by a random
walk with path length q = 3 and set graph convolution layers with diffusion
step k = 3. For gated temporal convolution unit, we set one with 64 filters and
the kernel size 3 × 3, and another with 64 filters and the kernel size 1 × 1. In
the first GDCRN block of branches, we set the strides of temporal convolution
as the length of input period (i.e., 2, 2, 1). For the output convolution layer of
each branch, we use 12 (prediction horizons) filters with kernel size 1 × 64. For
training phase, the batch size is 16, learning rate is 0.001 and epochs are 50. We
split dataset in chronological order with 70% for training, and 20% for testing,
and the remaining data for validating.

5.2 Measurement and Baseline Methods

In our experiment, we use three most-widely adopted evaluation metrics, Mean
Absolute Error (MAE), Root MeanSquare Error (RMSE), and Mean Absolute
Percentage Error (MAPE) to measure our scheme and others. We compare
GDCRN with following 6 baseline methods:

– HA: Historical Average model uses the average value of the last 12 time slices
as the next prediction value.

– ARIMA [13]: Auto-Regressive Integrated Moving Average method is a widely
used time series regression model.

– LSTM [5]: Long Short Term Memory network, which is a spacial RNN model.
– STGCN [16]: Spatio-Temporal Graph Convolutional Network applies purely

convolutional structures with a gating mechanism to extract spatial-temporal
features simultaneously.

– T-GCN [17]: Temporal Graph Convolutional Network combines with GCN
and GRU.

– ASTGCN [4]: Attention based Spatial-Temporal Graph Convolution Network
use spatial-temporal mechanism in graph convolution with Chebyshev poly-
nomials approximation.
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5.3 Experimental Results

Performance Comparison. We compare the performance of our GDCRN
and 6 baseline methods for 15-min, 30-min, 60-min predictions on PEMSD4
and PEMSD8 datasets. Table 2 shows the average results of traffic flow predic-
tion performance on the three prediction intervals. Our GDCRN model obtains
superior results on two datasets. It can be seen that GDCRN significantly out-
performs the approaches that only take temporal features into account (HA,
ARIMA, LSTM).

Table 2. The performance of our model and baselines on different predicting intervals

Dataset Models 15min 30min 60min

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

PEMSD8 HA 22.92 34.22 14.31 24.97 37.33 15.59 30.03 44.98 18.84

ARIMA 16.46 25.15 10.06 18.93 29.00 11.54 24.08 35.85 14.83

LSTM 18.09 28.48 11.86 19.76 30.9 13.85 23.37 36.03 15.5

T-GCN 17.03 25.06 13.59 17.32 25.74 13.50 18.30 27.29 14.37

STGCN 14.51 22.58 9.49 15.87 24.58 10.90 18.16 27.08 13.84

ASTGCN 15.66 23.95 10.22 16.14 24.82 10.51 17.03 26.27 11.17

GDCRN 14.03 22.03 9.31 14.59 23.11 9.74 15.39 24.59 10.40

PEMSD4 HA 28.64 42.78 19.45 31.02 46.29 21.17 26.83 55.02 25.66

ARIMA 21.53 34.34 13.78 24.54 38.50 15.82 30.89 47.66 20.41

LSTM 24.77 39.67 15.94 26.61 42.10 17.06 30.06 46.05 19.54

T-GCN 22.09 32.90 18.20 22.23 33.34 17.95 23.34 34.97 18.94

STGCN 18.85 30.00 13.09 20.49 32.19 13.90 23.07 36.92 16.75

ASTGCN 19.82 31.98 14.33 20.78 32.92 14.8 21.91 34.75 15.81

GDCRN 18.65 29.91 12.98 19.37 31.13 13.46 20.40 32.81 14.25

Compared to the spatial-temporal models, the prediction results of GDCRN
excels RNN-based scheme T-GCN and also performs better than CNN-based
schemes STGCN and ASTGCN. As for STGCN, GDCRN achieves bigger
enhancement on the 60-min horizons than 15-min horizons. Since GDCRN intro-
duces attention mechanism and GRes module to capture global spatial-temporal
correlations, so that our model can better hold the long-term traffic pattern.
ASTGCN utilizes GCN to describe spatial dependencies. However, GCN regards
the traffic network as a unidirectional graph, which is not practical for real-world
traffic network. In contrast, GDCRN adopts global diffusion convolution, which
is able to handle bidirectional network and can capture global spatial correla-
tion directly. Therefore, combining with the ability to obtain local and global
spatial-temporal correlations on the bidirectional network, GDCRN is able to
perform better regarding all the metrics for all predicting horizons.

Figure 3 illustrates the changes of prediction performance of our model and
other baseline models as the prediction temporal interval increases. We have
two valuable observations which further confirm the superiority of our model.
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(a) The prediction results on PeMSD8

(b) The prediction results on PeMSD4

Fig. 3. Performance changes of different methods as the predicting horizon increases

Firstly, the growth trends of prediction error of GDCRN are smaller than almost
all methods, indicating that our model is insensitive to prediction time inter-
val. Secondly, GDCRN achieves the best forecasting performance in all time
dimensions, especially for the long-term prediction. Specifically, the differences
between DGCRN and other baseline methods are more significant as the pre-
diction time interval increases, which shows that the scheme of our GDCRN
model has advantages not only in short-term predictions, but also in long-term
predictions. All the experiment results above demonstrate the advantages of our
model in capture spatial-temporal correlation of the highway traffic data.

Ablation Study. In order to verify the effectiveness of every components on
our model, we compare the following four variants of our model.

– ChebNet, which replaces diffusion convolution with ChebNet.
– No-GRU, which removes global residual unit in GRes module.
– No-AG, which removes global spatial matrix in diffusion convolution unit.
– No-Gate, which removes Gate mechanism in temporal convolution unit.
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Table 3. Performance of variants of GDCRN on different predicting intervals

Dataset Models 15min 30min 60min

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

PEMSD8 chebNet 14.83 23.01 10.14 15.65 24.37 10.70 16.83 26.27 11.60

No-GRU 14.87 23.21 10.28 15.86 25.12 10.68 17.20 27.54 11.68

No-AG 14.18 22.21 9.55 14.72 23.26 10.00 15.51 24.71 10.68

No-Gate 14.22 22.22 9.43 14.79 23.35 9.81 15.65 24.94 10.45

GDCRN 14.03 22.03 9.31 14.59 23.11 9.74 15.39 24.59 10.40

PEMSD4 chebNet 19.08 30.37 14.01 19.86 31.60 14.82 20.96 33.35 15.88

No-GRU 19.42 30.73 14.97 20.22 31.98 15.89 21.32 33.73 17.04

No-AG 18.73 30.08 13.37 19.52 31.35 14.23 20.53 33.03 15.14

No-Gate 18.91 30.08 13.82 19.62 31.30 14.27 20.55 32.94 14.82

GDCRN 18.65 29.91 12.98 19.37 31.13 13.46 20.40 32.81 14.25

Table 3 compares the average performance of every variant over different pre-
diction interval. We can find that GDCRN achieves the best prediction per-
formance. The predicting results of GDCRN excels the ChebNet model, which
verifies that capturing bidirectional spatial dependencies is very necessary and
useful for prediction tasks on real traffic networks. Compared with the No-GRU
model, GDCRN has better prediction precision and is insensitive to prediction
interval, which proves that capturing global spatial-temporal features are impor-
tant for traffic prediction. The GDCRN are superior to No-AG model, indicating
the effectiveness of capture global spatial correlations. In summary, the GDCRN
can achieve the best results regardless of the prediction horizon, and each com-
ponent of our model make sense.

6 Conclusion

In this paper, we propose a novel global diffusion convolution residual network
for traffic prediction. Based on the spatial topological structure of the traffic
network, we propose a novel graph convolution layer, which leverages global
and local information of spatial structure. To exploit informative features, we
design a global residual network GRes and combine it with GGC module to
capture both global and local spatial-temporal correlations. Experiments on two
large-scale real-world datasets verify the effectiveness of our model. Furthermore,
GDCRN is a generalized spatial-temporal network prediction framework, and
has the potential to be applied to other similar prediction problems such as taxi
demand forecasting.
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