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Abstract. Uncertain data classification makes it possible to reduce the
decision risk through abstaining from classifying uncertain cases. Incor-
porating this idea into the process of computer aided diagnosis can
greatly reduce the risk of misdiagnosis. However, for deep neural net-
works, most existing models lack a strategy to handle uncertain data and
thus suffer the costs of serious classification errors. To tackle this prob-
lem, we utilize Dempster-Shafer evidence theory to measure the uncer-
tainty of the prediction output by deep neural networks and thereby pro-
pose an uncertain data classification method with evidential deep neural
networks (EviNet-UC). The proposed method can effectively improve the
recall rate of the risky class through involving the evidence adjustment
in the learning objective. Experiments on medical images show that the
proposed method is effective to identify uncertain data instances and
reduce the decision risk.

Keywords: Uncertain data classification · Evidence theory · Deep
neural networks

1 Introduction

In data classification tasks, the data instances that are uncertain to be classified
form the main cause of prediction error [2,9,23]. Certain classification meth-
ods strictly assign a class label to each instance, which may produce farfetched
classification results for uncertain instances. Uncertain classification methods
aim to measure the uncertainty of data instances and accordingly reject uncer-
tain cases [3,10,15]. The methodology of uncertain classification is helpful to
reduce the decision risk and involve domain knowledge in classification process
[21,22,24]. For instance, in decision support for cancer diagnosis, filtering out
uncertain cases for further cautious identification, may allow us to avoid serious
misdiagnosis [1].

Due to their very good performance, deep neural networks have been widely
used in the classification of complex data [14,17], such as various kinds of medical
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images. However, most existing deep neural networks lack a strategy to handle
uncertain data and may produce serious classification mistakes. For example,
classifying CT images using convolutional neural networks without considering
uncertainty may lead to overconfident decisions.

Trying to implement uncertain data classification based on deep neural net-
works, Geifman and El-Yaniv propose a selective classification method with deep
neural networks, in which a selection function is constructed to quantify the reli-
ability of predictions [8,11]. The method relies on the quality of the selection
function. If the quantification of reliability is not accurate, the identification of
uncertain data cannot be guaranteed. Dempster-Shafer (D-S) evidence theory
[5] is also used to measure the uncertainty in machine learning models [6,7,20].
Sensoy, Kaplan and Kandemir formulate the uncertainty in deep neural networks
from the view of evidence theory [18]. Moreover, evidential neural networks have
been constructed and applied for the uncertain classification of medical images
[13,19]. However, if the decision costs of different classes are imbalanced, eviden-
tial neural networks are not effective to classify the uncertain data instances of
the risky class.

To address these problems, we construct a novel evidential deep neural net-
work model and propose an uncertain data classification method. We formalize
the uncertainty of the prediction output with evidence theory. A strategy to
adjust the uncertainty in classification is also designed to improve the identifica-
tion of certain and uncertain data instances in the risky class. The contributions
of this paper are summarized as follows:

• Propose a novel evidential deep neural networks with the loss objective of
both prediction error and evidence adjustment;

• An uncertain data classification method based on evidential deep neural net-
works (EviNet-UC) is proposed and applied to medical image diagnosis.

The rest of this paper is organized as follows. Section 2 presents the uncertain
data classification method with evidential deep neural networks, which includes
the model description and the strategy for uncertain data identification. In
Sect. 3, we apply the proposed uncertain classification method to medical image
data sets and show that the proposed method is effective to reduce the decision
costs. Conclusions are given in Sect. 4.

2 Uncertain Data Classification with Evidential Deep
Neural Networks

Given a dataset D = {xi, yi}N
i=1 of N labeled data instances where yi is the

class label of the instance xi, the loss of data classification with the evidential
deep neural networks consists of the prediction error term Lp

i and the evidence
adjustment term Le

i as

L =
1
N

N∑

i=1

(Lp
i + λ ∗ Le

i ) , (1)
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where λ = min(1.0, t/10) is the annealing coefficient to balance the two terms,
t is the index of the current training epoch. At the beginning of model training,
λ < 1 makes the network focus on reducing the prediction error. When t ≥ 10
the two terms play equal roles in the loss.

2.1 Prediction Error

For the binary classification of xi, we define the model output e+i , e−
i as the

evidence collected by the deep neural network for the positive and negative
classes. The sum of the total evidence is E = e+i + e−

i + 2. According to the
evidence, we define the belief values of xi belonging to positive and negative
classes as b+i = e+i /E, b−

i = e−
i /E, the uncertainty of classification is defined

as ui = 1 − b+i − b−
i . Similar to the model proposed in [13], we adopt Beta

distribution to formulate the distribution of the prediction with the evidences
e+i , e−

i . Suppose pi is the prediction of the instance xi belonging to the positive
class, the probability density function of the prediction is

f (pi;αi, βi) =
Γ (αi + βi)
Γ (αi) Γ (βi)

pαi−1
i (1 − pi)

βi−1
dpi, (2)

where the parameters of Beta distribution are αi = e+i +1, βi = e−
i +1 and Γ (·)

is the gamma function. The prediction of the positive class can be obtained by
pi = αi/E and 1 − pi = βi/E denotes the prediction of negative class.

Based on the probability density of the prediction, we construct the predic-
tion error term for each data instance xi as the following expectation of squared
error,

Lp
i =

∫
‖pi − yi‖2 f (pi;αi, βi) dpi (3)

=
∫

‖pi − yi‖2 Γ (αi + βi)
Γ (αi) Γ (βi)

pαi−1
i (1 − pi)

βi−1
dpi. (4)

Referring to the properties of the expectation and variance of Beta distribution,
the formula (4) can be derived as

Lp
i =

∫
‖pi − yi‖2 Γ (αi + βi)

Γ (αi) Γ (βi)
pαi−1

i (1 − pi)
βi−1

dpi (5)

= E
(
‖pi − yi‖2

)
(6)

= E (pi)
2 − 2yiE (pi) + y2

i + var (pi) (7)

= (E (pi) − yi)
2 + var (pi) (8)

=
(

yi − αi

αi + βi

)2

+
(

1 − yi − βi

αi + βi

)2

+
αiβi

(αi + βi)
2 (αi + βi + 1)

. (9)
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2.2 Evidence Adjustment

Besides the prediction error, the uncertain cases in the classification should also
be considered in real application scenarios. Identifying uncertain data instances
for abstaining from classification is helpful to reduce the decision risk. In [13], a
regularization term is integrated into the objective of neural network to reduce
the evidences of uncertain instances. But this strategy ignores the difference of
the risks of uncertain instances from different classes. To find out the uncertain
instances of risky class effectively, we expect to rescale the data uncertainty u
through adjusting the evidence and add an evidence adjustment term into the
loss objective. The evidence adjustment term is constructed by the Kullback-
Leibler divergence between the distributions of prediction with original and
adjusted evidences. We also adopt the Beta distribution for the prediction with
adjusted evidences and define λ > 1 as the evidence adjustment factor. The
evidence adjustment term is expressed as

Le
i = KL

(
f

(
pi; α̃i, β̃i

)
|f

(
pi; 1, λ̃

))
, (10)

where (1, λ̃) = (1, yiλ + (1 − yi)),
(
α̃i, β̃i

)
= ((1 − yi) αi + yi, yiβi + (1 − yi))

are the parameters of the Beta distributions of the prediction pi with adjusted
and original evidences.

Let ‘1’ denote the positive class and ‘0’ denote the negative class. When the
instance xi belongs to positive class, yi = 1, (1, λ̃) = (1, λ) and

(
α̃i, β̃i

)
= (1, βi).

If xi belongs to negative class, yi = 0, (1, λ̃) = (1, 1) and
(
α̃i, β̃i

)
= (αi, 1). For

a negative-class instance, the adjustment term guides the parameter αi to 1 and
thereby reduce the evidence of positive class to 0. For a positive-class instance,
the adjustment term guides the parameter βi to λ. This will force the neural
networks to promote the positive-class evidence for certain positive instances to
reduce the prediction error.

According to the definition of KL divergence, the evidence adjustment term
can be further simplified as

Le
i =

∫
f

(
pi; α̃i, β̃i

)
log

f
(
pi; α̃i, β̃i

)

f
(
pi; 1, λ̃

) dpi (11)

=
∫

f
(
pi; α̃i, β̃i

)
log f

(
pi; α̃i, β̃i

)
dpi −

∫
f

(
pi; α̃i, β̃i

)
log f

(
pi; 1, λ̃

)
dpi

(12)

= E
(
log f

(
pi; α̃i, β̃i

))
− EB(α̃iβ̃i)

(
log f

(
pi; 1, λ̃

))
. (13)
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Referring to the properties of Beta distribution, the expectations in (13) can be
further derived for computation as

E
(
log f

(
pi; α̃i, β̃i

))
(14)

=E

⎛
⎝log

Γ
(
α̃i + β̃i

)

Γ (α̃i)Γ
(
β̃i

)p
α̃i−1
i (1− pi)

β̃i−1

⎞
⎠ (15)

=E

⎛
⎝log

Γ
(
α̃i + β̃i

)

Γ (α̃i)Γ
(
β̃i

) + (α̃i − 1) log pi +
(
β̃i − 1

)
log (1− pi)

⎞
⎠ (16)

= log
Γ

(
α̃i + β̃i

)

Γ (α̃i)Γ
(
β̃i

) + (α̃i − 1)E (log pi) +
(
β̃i − 1

)
E (log (1− pi)) (17)

= log
Γ

(
α̃i + β̃i

)

Γ (α̃i)Γ
(
β̃i

) +
(
2− α̃i − β̃i

)
ψ

(
α̃i + β̃i

)
+ (α̃i − 1)ψ (α̃i) +

(
β̃i − 1

)
ψ

(
β̃i

)
, (18)

and

EB(α̃i,β̃i)
(
log f

(
pi; 1, λ̃

))
(19)

=EB(α̃i,β̃i)

(
log

Γ (1 + λ̃)
Γ (1)Γ (λ̃)

p1−1
i (1 − pi)

λ̃−1

)
(20)

=EB(α̃i,β̃i)

(
log

Γ (1 + λ̃)
Γ (1)Γ (λ̃)

+ (λ̃ − 1) log (1 − pi)

)
(21)

= log
Γ (1 + λ̃)
Γ (1)Γ (λ̃)

+ (λ̃ − 1)EB(ãi,β̃i) (log (1 − pi)) (22)

= log
Γ (1 + λ̃)
Γ (1)Γ (λ̃)

+ (λ̃ − 1)
(
ψ

(
β̃i

)
− ψ

(
α̃i + β̃i

))
, (23)

in which ψ(·) denotes the digamma function.

2.3 Classification of Uncertain Data

As explained above, based on the belief values of xi belonging to positive and
negative classes b+i = e+i /E, b−

i = e−
i /E, we can measure the classification uncer-

tainty of xi by ui = 1 − b+i − b−
i . With this uncertainty measure, applying the

evidential neural networks to classify data, we can not only assign class labels
to instances but also identify the uncertain ones. Through sorting the classified
instances according to their uncertainty in ascending order, we select the top k
uncertain instances for classification rejection to reduce the prediction risk.

Applying the proposed evidential neural network to the Breast IDC dataset
(see the Sect. 3), Fig. 1(a) shows the evidence distribution of all the instances of
positive class for multiple values of λ. We can see that the factor λ adjusts the
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Fig. 1. Evidence distribution of positive-class instances with different rejection rates.
(a) rejection rate = 0%, (b) rejection rate = 10%, (c) rejection rate = 20%, (d) rejection
rate = 30%.

evidences of instances and the evidences of certain positive instances are pro-
moted. The data instances with low-level evidences for both classes have high
uncertainty in classification. Thus the instances located in the bottom-left corner
indicate uncertain cases. Figure 1(b–d) display the evidence distribution of data
instances after filtering out 10%, 20%, 30% uncertain instances, respectively.
Based on the uncertain data identification strategy, we implement the uncer-
tain data classification method with an evidential neural network (EviNet-UC).
The effectiveness of the proposed method will be demonstrated in the following
section.

3 Experimental Results

To show that the uncertain classification method with evidential neural network
is effective to reduce decision costs, we tested the proposed method on the medi-
cal datasets Breast IDC [4] and Chest Xray [16]. The Breast IDC dataset consists
of the pathological images of patients with infiltrating ductal carcinoma of the
breast. The training set has 155314 images and the test set has 36904 images.
We set the cancer case as positive class and the normal case as negative class.
The Chest Xray dataset has 2838 chest radiographs, in which 427 images are
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chosen as the test data and the rest are set as the training data. The pneumonia
and normal cases are set as positive class and negative class, respectively. For the
algorithm implementation, we constructed the evidential deep neural networks
based on the resnet18 architecture [14] and we modified the activation function
of the output layer to the ReLU function.

To achieve the overall evaluation of the classification methods, we adopt the
measures of accuracy, F1 score, precision, recall rate and decision cost. Suppose
the number of the instances of negative class is N and the number of positive-class
instances is P, TP and FP denote the numbers of true positive and false positive
instances, TN and FN denote the true negative and false negative instances
respectively. The measures are defined as

accuracy = (TP + TN)/(P + N),
F1 score = (2 ∗ TP )/(2 ∗ TP + FN + FP ),

precision = TP/(TP + FP ),
recall = TP/(TP + FN).

Assuming correct classification to have zero cost, costNP , cos tPN denote the
costs of false-positive classification and false-negative classification, respectively.
The average decision cost of classification can be calculated as

decision cost = costNP · FP

P + N
+ cos tPN · FN

P + N
.

Based on the measures above, we carried out two experiments to evaluate the
performance of the proposed uncertain classification method with evidential neu-
ral network (EviNet-UC). The first experiment aims to verify the superiority of
the classification of the proposed method. Specifically, we compared the EviNet-
UC method with other four uncertain classification methods based on deep
neural networks: EvidentialNet [13], SelectiveNet [12], Resnet-pd and Resnet-
md [19]. For fair comparison, we implemented all the methods above based on
the resnet18 architecture.

We set rejection rate = 0 (no rejection), costPN = 5, cos tNP=1 and applied
all the classification methods to the Breast IDC dataset. The comparative exper-
imental results are presented in Fig. 2 and Table 1. We can find that the proposed
EviNet-UC method achieves the highest recall rate and the lowest decision cost
among all the comparative methods. This means that the proposed method is
effective to reduce the misclassification of the risky class (cancer case). Moreover,
we changed the rejection rate from 0 to 0.5 to further compare the classification
methods. Figure 3 presents the recall rates and the decision costs of different
methods with different rejection rates. We can see that the EviNet-UC method
achieves the best performance for all rejection rates. Compared to other meth-
ods, the proposed method is more effective to reduce the classification risk.
The second experiment aims to show that the proposed method is effective to
identify uncertain data. Varying the rejection rate in [0, 1] and applying EviNet-
UC on the Chest Xray dataset, we obtained the classification results for different
numbers of rejected uncertain radiographs. Figure 4 illustrates the evaluation of
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Fig. 2. Comparative experimental results on Breast IDC dataset.

Table 1. Comparative experimental results on Breast IDC dataset.

Methods Accuracy F1-score Precision Recall Decision cost

EvidentialNet 0.8874 0.8477 0.8566 0.8389 0.3532

SelectiveNet 0.8874 0.8493 0.8488 0.8498 0.3370

ResNet-PN 0.8912 0.8512 0.8702 0.8330 0.3583

ResNet-MD 0.8911 0.8511 0.8699 0.8330 0.3584

EviNet-UC 0.8915 0.8572 0.8432 0.8716 0.3004

the classification based on EviNet-UC with varying rejection rates. It can be seen
that accuracy, precision, recall rate and F1 score increase as the rejection rate
increases. This indicates that the rejected data instances have uncertainty for
classification and the EviNet-UC method can improve the classification results
through filtering out the uncertain instances.

Fig. 3. (a) Recall rates of different classification methods with varying rejection rates,
(b) decision costs with rejection rates.
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Fig. 4. Classification evaluation of EviNet-UC with varying rejection rates.

(a) p− = 0.95 ; u = 0.09 (b) p+ = 0.95 ; u = 0.1

(c) p− = 0.74 ; u = 0.44 (d) p+ = 0.54 ; u = 0.35

Fig. 5. (a) certain negative-class instance (normal case), (b) certain positive-class
instance (pneumonia), (c) uncertain normal case, (d) uncertain pneumonia case.

When rejection rate = 10%, Fig. 5 presents the certain and uncertain
instances identified by EviNet-UC. Figure 5 (a) shows a certain negative-class
instance of normal radiograph, in which the lung area is very clear. EviNet-
UC produces high negative probability p− = 0.95 and low uncertainty u = 0.09
to indicate the confident classification. In contrast, Fig. 5 (b) shows a certain
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positive-class instance of pneumonia radiograph, in which there exist heavy shad-
ows. Correspondingly, EviNet-UC produces high positive probability p+ = 0.95
and low uncertainty u = 0.1.

Figure 5 (c) displays an uncertain normal case. In general, the lung area is
clear but there exists a dense area of nodule in the right part (marked in red
circle). EviNet-UC produces high uncertainty u = 0.44 to indicate the judgement
is not confident. Figure 5 (d) shows another uncertain case of pneumonia. In the
radiograph, there exists a shadow area in the right lung but the symptom is not
prominent, which leads to the uncertainty u = 0.35 for pneumonia identification.
The uncertain radiographs will be rejected for cautious examination to further
reduce the cost of misclassification.

4 Conclusions

Certain classification methods with deep neural networks strictly assign a class
label to each data instance, which may produce overconfident classification
results for uncertain cases. In this paper, we propose an uncertain classification
method with evidential neural networks which measures the uncertainty of the
data instances with evidence theory. Experiments on medical images validate the
effectiveness of the proposed method for uncertain data identification and deci-
sion cost reduction. Our method currently focuses on only binary classification
problem and the relationship between the decision cost and the evidence adjust-
ment factor also requires theoretical analysis. Exploring the evidence adjustment
factor in multi-class classification problems and constructing the precise uncer-
tainty measurement for reducing decision risk will be future works.
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