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Abstract. Despite the growing prominence of generative adversarial
networks (GANs), improving the performance of GANs is still a chal-
lenging problem. To this end, a combination method for training GANs
is proposed by coupling spectral normalization with a zero-centered gra-
dient penalty technique (the penalty is done on the inner function of
Sigmoid function of discriminator). Particularly, the proposed method
not only overcomes the limitations of networks convergence and train-
ing instability but also alleviates the mode collapse behavior in GANs.
Experimentally, the improved method becomes more competitive com-
pared with some of recent methods on several datasets.

Keywords: Generative Adversarial Networks · Gradient penalty ·
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1 Introduction

Generative Adversarial Networks (GANs) [10] are powerful deep generative
models which can be used to learn complex probability distributions. Espe-
cially in image research, GANs have been successfully applied to a variety of
tasks, including image generation [21,30], image super-resolution [5,16], image-
to-image translation [15], image in-painting [37], domain adaptation [35] and
many more.

However, while very powerful, GANs are known to be notoriously hard to
train. To improve the performance of GANs, the general strategies for stabi-
lizing training are to carefully design the model, such as by crafting the net-
work architectures [16,30,31], by modifying the objective functions [2,21], by
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changing the gradient update modes [13,23,25] and by implementing the penalty
or regularization techniques [11,24,34]. Despite practical advances, the perfor-
mance of GANs still has plenty of place for improvement, especially in stability
and convergence.

In this study, we integrate spectral normalization with a zero-centered gradi-
ent penalty technique to improve the performance of GANs, which the coalition
can either demonstrably improve the stability and convergence of model or effec-
tively alleviate the mode collapse behavior in GANs. Due to the fact that the
update dynamic of discriminator network comes completely from the inner func-
tion of Sigmoid function, we find that the penalty is more effectively implemented
on the inner function than directly done on the discriminator. Meanwhile, the
Lipschitz constant of discriminator is leveraged to prevent the expansion of the
model gradient. In addition, a training trick is introduced, clipping the gradient
norm of network weights, which is conducive to further boosting the training
stability. On the other hand, to achieve better convergence, spectral normal-
ization (SN) [24] is added into the discriminator, along with batch normaliza-
tion (BN) [14] in the generator. This amounts to implementing the penalty on
SNGAN [24]. Unlike the original SNGAN, a modified GAN model is trained with
spectral normalization. By doing so, our model captures the optimal networks
convergence, particularly in the discriminator, it almost converges to a constant.
In the experiments, the overall trend of the gradient variation is introduced to
reflect the stability of GANs training. At the same time, the results reveal that
our method leads to GANs training stability, good networks convergence and
improving the quality of generated samples.

In summary, our contributions are as follows:

– By integrating the zero-centered gradient norm penalty on the inner function
of Sigmoid function of discriminator with spectral normalization, a method
is crafted to improve the performance of GANs.

– A modified SNGAN is introduced, which can demonstrably boost perfor-
mance. As a training trick, we find that appropriately clipping the gradient
norm of network weights assists in improving the stability of GANs training.

– We leverage the overall trend of the gradient variation to mirror the stability
of GANs training, where the gradient variations are computed by the average
gradient L2 norm with a batch size samples in each generator update.

The rest of this paper is organized as follows: Sect. 2 introduces the back-
ground and related work. Section 3 provides some theoretical underpinnings for
our method and proposes a gradient penalty method on a modified SNGAN
model. Section 4 examines the performance of the proposed method via a series
of experiments on synthetic and benchmark datasets. Finally, the conclusions
are drawn in Sect. 5.

2 Background and Related Work

2.1 Backgroud

GANs [10] form a broad class of generative models in which a min-max two-
player game is played between a generative network G(z) and discriminative
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network D(x) whose purpose, respectively, is to map random noise to samples
and discriminate real and generated samples. Formally, the GAN objective [10]
involves finding a Nash equilibrium to the following min-max problem:

min
G

max
D

Ex∼pdata
[log D(x)] + Ez∼pz

[log (1 − D(G(z)))], (1)

where pdata and pz denote real data distribution (target distribution) and
latent distribution (prior distribution such as N(0, I) or U [−1, 1]), respectively.
According to (1), the loss functions of GANs discriminator network and gener-
ator network are as follows:

LD = −Ex∼pdata
[log D(x)] − Ez∼pz

[log (1 − D(G(z)))], (2)
LG1 = Ez∼pz

[log (1 − D(G(z)))] (Saturating), (3)
LG2 = −Ez∼pz

[log D(G(z))] (Non − Saturating), (4)

where LG1 and LG2 denote the saturating and non-saturating loss function,
respectively. From a more pratical standpoint, LG2 makes network training more
stable than LG1 [5,8,10,16,34].

2.2 Related Work

Several recent work have focused on addressing the instability and convergence
to improve the performance of GANs, where the gradient penalty-based methods
are one of the most effective methods. WGAN-GP [11] first used the gradient
norm to penalize the criterion function of WGAN [2], which effectively allevi-
ated the limitation of Lipschitz condition in WGAN and significantly improved
the stability of WGAN. However, Mescheder et al. [22] proved that the zero-
centered gradient penalty converges more easily than the 1-centered gradient
penalty (WGAN-GP is a typical 1-centered gradient penalty). Along this line of
research, WGAN-LP [29] (WGAN based on the zero-centered gradient penalty)
and GAN-0GP [34] (GAN based on the zero-centered gradient penalty) were pro-
posed, respectively. Our proposed method falls under the same category, hope-
fully provides some context for understanding some of these methods. Specifi-
cally, our penalty is done on the inner function of Sigmoid function of discrim-
inator rather than directly penalized on the discriminator as above mentioned
methods.

From the optimization perspective, several normalization techniques com-
monly applied to deep neural networks training have been applied to GANs, such
as batch normalization (BN) [14,30], layer normalization(LN) [11] and spectral
normalization(SN) [24]. Generally, the BN and LN are simultaneously operated
on discriminator and generator, while the SN is only done on discriminator in
GANs. In the study, normalization is executed on a modified model (Table 1)
based on SNGAN [24], which its discriminator and generator are normalized
with the SN and BN, respectively. More importantly, a combination model, the
modified model in cooperation with the zero-centered gradient norm penalty (on
the inner function), can make the networks more stable and better convergence.
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3 Method

In this section, we will lay out the theoretical groundwork for our proposed
method. In addition, a training trick (clipping the gradient norm of network
weights) and a modified SNGAN will be introduced. Finally, our method will be
formally proposed.

3.1 Controlling Gradient Variation

The instability of GAN training is mainly caused by its gradient update insta-
bility, while the gradient information of the generator is transmitted by the
discriminator gradient [1]. Thus, controlling the gradient update of discrimina-
tor can effectively control the instability of GANs training. In image generation,
let X = Supp(Pdata)∪Supp(Pg), where Pdata and Pg denote the real distribution
and generative distribution, respectively. Suppose m, n denote the height and
width of input image, respectively, and M is the maximal second order deriva-
tive of the loss function LD (2) in X, and then | min(∇LD) − max(∇LD) |≤
M · L

√
12mn, where L is the Lipschitz constant of discriminator network [27].

According to this, controlling the Lipschitz constant can effectively control the
gradient variation amplitude of discriminator and make GANs training stable.
Despite controlling the Lipschitz constant of network is not easy (in fact, even for
the two-layer neural networks, the exact computation of the quantity is NP-hard
problem [36]), the following theorem [12] provides a feasible scheme.

Theorem 1. Let F : R
n −→ R be a C1−function. Then F (x) is Lipschitz

function with the Lipschitz constant L for all x ∈ R
n if and only if ‖ ‖∇F‖2

‖∞≤ L2.

Theorem 1 (proof see [12] page 73, Lemma 4.3) provides an approach to
determine that F (x) is Lipschitz function with Lipschitz constant L, namely,
when the square of maximum gradient norm of F (x) is less than or equal to
the square of a constant L, and then F (x) is a Lipschitz function. In addition,
the theorem also gives the fact: the Lipschitz constant can control the expan-
sion of gradient. To this end, the loss function of discriminator network (2) is
transformed into the following penalty form:

L′
D = LD + λEx∼pdata

[max{‖∇D(x)‖2, L2}], (5)

where λ and L are the penalty coefficient and the Lipschitz constant of the
discriminator network. According to Theorem 1, this penalty form can effec-
tively control the variation amplitude of discriminator gradient and make GANs
gradient update stable.

3.2 Penalizing the Inner Function of Sigmoid

Let D(x) = Sigmoid(f(x)), where Sigmoid(·) is the last layer activation func-
tion of discriminator. Accordingly, the min-max optimization problem (1) is
transformed into the following form:
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min
G

max
f

Ex∼pdata
[log Sigmoid(f(x))]+Ez∼pz

[log (1 − Sigmoid(f(G(z)))]. (6)

The loss functions of discriminator and generator, LD and LG2 , are also replaced
correspondingly, and their gradients can be easily proven that

∇φLD = −Ex∼pdata
[(1 − D(x))∇φf(x)] + Ex∼pg

[D(x)∇φf(x)], (7)
∇θLG = −Ez∼pz

[(1 − D(G(z)))f(G(z))∇xf(G(z))JθG(z)], (8)

where φ, θ, JθG(z) denote the discriminator network parameters, the generator
network parameters and the Jacobi matrix of G(z) with respect to θ, respectively.
The gradients (7), (8) imply that the update dynamic for GANs training is
completely provided by the gradient of the function f(x), namely the gradient of
the inner function of Sigmoid function. Due to the Lipschitz constant of Sigmoid
function is always 0.25, thus controlling the Lipschitz constant of the function
f(x) is equivalent to controlling the Lipschitz constant of discriminator D(x).
In view of this, the penalty form of loss function LD and the loss function LG2

will be transformed into the following form:

L∗
D = LD + λEx∗

∼p∗ [max{‖∇f(x∗)‖2, L2}], (9)
LG2 = −Ex∼pg

[log (Sigmoid(f(x)))], (10)

where x∗ = tx + (1 − t)y, t ∼ U(0, 1),x ∈ Supp(Pdata), y ∈ Supp(Pg), p∗ is
the mixed distribution of real distribution and generated distribution. The loss
functions L∗

D (discriminator) and LG2 (generator) are adopted throughout this
paper, where L∗

D is the loss function of the zero-centered gradient norm penalty
with regard to the inner function of Sigmoid function. It is worth emphasizing
that the procedure of our algorithm is similar to the algorithm 1 of [10], except
for the loss functions of discriminator and generator.

3.3 Exploring the Optimal Model

In this part, an optimal model will be explored, including model structure, clip-
ping the gradient norm of network weights, optimization method. To do this, we
expound some comparative cases via the experimental results on CIFAR10 [18],
where the number of updates for the generator are 100k.

A Modified SNGAN. Essentially, SNGAN [24] imposes global regularization
on the network, which the discriminator was normalized with the SN, along with
the BN in generator. In contrast, SN has an advantage over BN and LN in GANs,
such as more efficient gradient flow, more stable optimization [19,24]. However,
we experimentally find that a modified SNGAN is more effective than original
SNGAN in image generation. The differences between two models can be seen
from Table 1. The two network structures have not been changed (see Appendix
B), we just modified some hyper parameter settings and optimization method
based on SNGAN. The modification is simple yet effective. The experimental
FID [13] value of SNGAN on CIFAR10 is 28.66 (the original SNGAN is 20.70
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with hinge loss [24], the BCE loss is used here), while the modified model is
24.53 (the smaller FID value is better). Also, the proposed penalty technique
(9), (10) was implemented on the two models, the former FID is 20.12 and the
latter is 12.48. The preliminary results show that the modified SNGAN is more
effective than the original SNGAN.

Table 1. The hyper parameter setting and optimization method for two models.

Methods Init LR n-dis Bias Optimizer

SNGAN D-Norm G-Norm 0.1 5 T Adam

Modified SNGAN D-Orth G-Xavier 0.2 1 T-F-T OAdam

“Init” is initialization method, which the discriminator and generator
in SNGAN are both initialized by normal random number (N(0, 1)),
while the discriminator and generator in the modified SNGAN is ini-
tialized by orthogonal [32] and Xavier normal [9], respectively; “LR”
is learning rate that uses to the activation function LeakyReLU of
discriminator; “n-dis” denotes the numbers of update of the discrim-
inator per one update of the generator; “Bias = T” denotes all biases
are true, whereas “Bias = T-F-T” denotes all of the biases of layer are
false except for the first layer and last layer.

Clipping the Gradient Norm of Network Weights. In order to further
improve the performance of GANs, a training trick, clipping the gradient norms
of network weights, is introduced into model training. The norms are computed
over all gradients together, as if they were concatenated into a single vector. This
process is computationally light and easy to incorporate into existing models,
which the upper limit of the clipped norms is a controllable hyper parameter
(max-norm) and the lower limit is zero. Note that the operation is performed in
discriminator and generator, respectively. We test the different parameters max-
norm on the proposed model with the modified SNGAN. Clearly, the parameter
configuration E in Table 2 is the optimal combination. As shown in Table 2, it is
conducive to appropriately clip the gradient norms of network weights for boost-
ing the quality of the generated samples (FID). Note that the hyper parameter
max-norm of discriminator and generator are α and β, respectively. In this study,
the parameter combination E is used in all experiments.

Table 2. Comparison of the quality of the generated samples (FID, the smaller is
better) based different hyper parameter settings on CIFAR10.

Settings A B C D E

α 0.001 0.0001 0.1 1 0.01

β 0.02 0.0002 0.2 1 1

FID 14.93 16.34 15.33 13.25 10.74
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The experimental results on CIFAR10 confirmed that the performance of
GANs is significantly improved by our proposed zero-gradient norm penalty
model on the modified SNGAN. In next section, we will further verify the sta-
bility and convergence of the proposed model on several datasets. It is worth
emphasizing that we have tried different optimization algorithms (such as Looka-
head [39]+Adam [17], Lookahead+OAdam [7]) and regularization methods on
generator (such as orthogonality regularization [3], the modified orthogonality
regularization [5] and group sparse regularization [33]), but none of them go
beyond our method.

4 Experimental Results

In this section, the efficacy of our approach will be tested by investigating net-
work convergence, training stability and FID value. Note that, in contrast with
IS score [31], the FID value can more comprehensively measure the quality of
the generated samples in GANs [4,13].

In order to verify the performance of our algorithm in the abovementioned
three aspects, we conducted a set of extensive experiments of unsupervised image
generation on CIFAR10 [18], SVHN (unlabeled subset) [26], STL10 [6], CelebA
[20] and LSUN (bedroom) [38] datasets. Note that comparison of the networks
convergence and training stability are arranged in 4.2, and the FID value in
4.3. In addition, the experiments on two synthetic datasets (8 Gaussians and 25
Gaussians) were performed to investigate the mode collapse behavior in GANs
(in 4.1). We also compared our method with the representative ones. Unless
otherwise noted, all of the results were obtained by PyTorch [28], where the
numbers of update for GANs generator are 100k for all experiments. All codes
can be found in https://github.com/thwgithub/GAN-Integration-GP-SN/.

4.1 Mixture of Gaussians

The mode collapse behavior in GANs can seriously affect the performance of
GANs. To illustrate the effect of our method for alleviating the mode collapse
phenomenon in GANs, a simple model was trained on two 2D mixture of Gaus-
sians datasets (8 Gaussians arranged in a circle and 25 Gaussians in a square).
Some technical details are relegated to Appendix A, including network architec-
tures, hyper parameters and description of datasets. The experimental results
are shown in Fig. 1. Compared with the original GAN, the least mode collapse
behavior is demonstrated by our method, especially in 8 Gaussians dataset, 8
modes are almost learned in Fig. 1(b).

https://github.com/thwgithub/GAN-Integration-GP-SN/
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(a) GAN (b) Ours (c) Real data(8)

(d) GAN (e) Ours (f) Real data(25)

Fig. 1. Testing the mode collapse behavior on two Gaussians datasets ((a) GAN [10]
on 8 Guassians; (b) our method on 8 Guassians; (c) real dataset; (d) GAN on 25
Guassians; (e) our method on 25 Guassians; (f) real dataset).

4.2 Results on Benchmark Datasets

In this subsection, we will report the network convergence and training stabiliy
of the proposed method on five benchmark datasets(CIFAR10, SVHN, STL10,
CelebA and LSUN(bedroom)), which all of the input images were both cropped
to 3 × 32 × 32. Due to space limitations, we only exhibit the results on CIFAR10
here and the other results can be found in the supplementary materials (it
can be found in https://github.com/thwgithub/Sup-Materials-for-KSEM2020).
We also compare against those of other congeneric gradient norm penalty algo-
rithmss, including: WGAN-GP [11], WGAN-LP [29] and GAN-0GP [34].

For the hyper parameters setting, except for using the hyper parameters
of the modified SNGAN in Table 1, we set the penalty coefficient λ to 10, as
suggested in [11] and set the Lipschitz constant L at 0. The parameter max-norm
of clipping weight gradient norm is set to 0.01 in discriminator and 1 in generator
(the settings of Table 2). The learning rates of two networks are both 0.0002 with
batchsize 64 and latent variable z ∼ N(0, I128). As for the architecture of the
generator and discriminator, we use convolutional neural networks (CNN) that
more details is described in Appendix B.

Networks Convergence. As for the network convergence, the results of the
experiment on CIFAR10 are illustrated in Fig. 2. Clearly, our method is supe-
rior to the other three methods in either discriminator (Fig. 2(a)) or generator
(Fig. 2(b)). In fact, we do not care about the convergent value of the loss function
(GANs) or the critic function (WGANs), only focus on the amplitude of their
oscillations. For the visualization, Fig. 2 is vertically shifted. As shown in Fig. 2,
both WGAN-GP and WGAN-LP get stuck in a bad convergence, GAN-0GP is
greater improvement for convergence than the former two. While the conver-
gence of our approach (blue curve) significantly outperforms the convergence of

https://github.com/thwgithub/Sup-Materials-for-KSEM2020
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the others. It is noted that the update rate of our method is 1:1, that is, the
discriminator updates one time per one time update of the generator, whereas
the update rate of the others is 1:5.

(a) Discriminator (b) Generator

Fig. 2. Comparison of the convergence among four GANs methods ((a) the convergence
of discriminator; (b) the convergence of generator).

Training Stability. In Fig. 3, the stability of GANs training in discriminator
(Fig. 3(a)) and generator network (Fig. 3(b)) are exhibited. The overall trend
of the gradient variation was used to mirror the stability of training, where
the gradient variations were computed by the average gradient L2 norm with a
batch size samples in each generator update. To the best of our knowledge, the
method is applied to measure the stability of GANs training for the first time.
As observed, WGAN-GP and WGAN-LP both have a large gradient oscillation,
this means that the two methods suffer from training instability. Moveover, their
gradient variations are similar, it is probably because both algorithms belong to
WGANs algorithms. For the GAN-0GP, the gradient behavior is relatively sta-
ble at the beginning of the training. However, with the increasing number of
training, the method performs poorly. In contrast, our method (blue curve) is
even more stable than the other methods with respect to the overall trend gra-
dient variation. Also, we observe a phenomenon from Fig. 3 that the gradient
variation trend of the discriminator is similar to the generator. This reveals that
the gradient updates of generator and discriminator affect each other. Conse-
quently, only implementing the penalty on the discriminator enable very stable
GANs training. These results suggest that the stability of GANs training can be
significantly improved by our method.
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(a) Discriminator (b) Generator

Fig. 3. Comparison of the overall trend of gradient variation among four GANs meth-
ods ((a) the gradient variation of discriminator; (b) the gradient variation of generator).

Table 3. Comparison of the generated samples quality (FID, the smaller is better).

Methods CIFAR-10 SVHN STL-10 CelebA LSUN (bedroom)

LSGAN (2017) 22.20 3.84 20.17 5.10 5.23

SNGAN (2018) 20.70 4.53 18.11 5.56 12.05

WGAN-GP (2017) 21.89 4.09 18.19 5.01 14.61

WGAN-LP (2018) 21.01 3.62 17.40 5.12 15.21

GAN-0GP (2019) 18.91 6.10 14.49 4.53 7.14

Ours 10.74 3.28 11.04 4.13 6.59

Real datasets 0.46 0.24 0.84 0.34 0.55

4.3 Comparison of the Generated Samples Quality

The quality of the generated samples is one of the important indicators to reflect
the performance of GANs model. The FID value is used to measure the quality,
which the smaller FID value is better. In order to reduce the calculation error,
the evaluation of FID is done on 50000 real samples and 50000 fake samples.
To be more comprehensive, we compare our approach with five GANs models
on five datasets and the results are summarized in Table 3. Clearly, our results
(FID) are better than almost all other methods, only LSGAN (5.23) performs
slightly better than our approach (5.59) on LSUN (bedroom). Especially, to our
knowledge, the FIDs of our method on CIFAR10 and STL10 (10.74 and 11.04)
are the state of the art in unsupervised image generation. This indicates that the
quality of the generated samples in GANs can be significantly improved by our
method. Note that the FIDs of real data are shown at the bottom of Table 3.

5 Conclusions

In this study, we integrated the zero-centered gradient penalty on the inner
function of Sigmoid function of discriminator with spectral normalization (the
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modified SNGAN) to improve the performance of GANs, which is in contrast
to the popular algorithms that the integrated method has better convergence,
stability and the quality of the generated samples. Furthermore, our method can
effectively alleviate the mode collapse behavior in GANs. In the experiments, we
have illustrated evidence of improved training with several GANs algorithms on
a variety of datasets and the resulting improvements in model performance. Our
findings also show that WGAN-GP, WGAN-LP and GAN-0GP do not lead to
networks convergence and training stability. In the future work, we would like to
further dig into our ideas in more depth and come up with better performance
methods.

A Training Details on Synthetic Datasets

The 8 Gaussians dataset is sampled from a mixture of 8 Gaussians of standard
deviation 0.02, this means are equally spaced around a circle of radius 2. 25
Gaussians dataset, like the 8 Gaussians, is sample from a mixture of 25 Gaus-
sians, which is arranged in a square. Two datasets consist of 100 k samples. The
discriminator contains three SNLinear layers (bias: True, False and True) with
128 hidden units and LReLU (0.2) activation, and the generator contains three
Linear layers (bias: False, False and True) with 256 hidden units, BN and ReLU
activation.

As for the hyper parameters setting, both networks are optimized using
OAdam with a learning rate of 0.0002 and β1 = 0.5, β2 = 0.9 (training the
original GAN use Adam). The latent variable z ∼ N(0, I128) and the penalty
coefficient λ = 10 with Lipschitz constant L = 0. The batchsize is set to 100.

B Networks Architecture on Benchmark Datasets

See Tables 4 and 5.

Table 4. Discriminator (3× 32× 32).

SNconv 64 3× 3 S = 1 P = 1 LReLU

SNconv 64 4× 4 S = 2 P = 1 LReLU

SNconv 128 3× 3 S = 1 P = 1 LReLU

SNconv 128 4× 4 S = 2 P = 1 LReLU

SNconv 256 3× 3 S = 1 P = 1 LReLU

SNconv 256 4× 4 S = 2 P = 1 LReLU

SNconv 512 4× 4 S = 1 P = 0 SN

Sigmoid()

Table 5. Generator (3× 32× 32).

dense 512× 4× 4

deconv 512 4× 4 S = 2 P = 1 BN ReLU

deconv 256 4× 4 S = 2 P = 1 BN ReLU

deconv 128 4× 4 S = 2 P = 1 BN ReLU

deconv 3 3× 3 S = 1 P = 1 BN

Tanh()
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