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Abstract. Sequential recommendation is a significant task that predicts
the next items given user historical transaction sequences. It is often
reduced to a multi-classification task with the historical sequence as the
input, and the next item as the output class label. Sequence representa-
tion learning in the multi-classification task is of our main concern. The
item frequency usually follows the long tail distribution in recommenda-
tion systems, which will lead to the imbalanced classification problem.
This item imbalance poses a great challenge for sequence representa-
tion learning. In this paper, we propose a Robust Sequence Embedding
method for the recommendation, RoSE for short. RoSE improves the
recommendation performance from two perspectives. We propose a bal-
anced k-plet sampling strategy to make each training batch balanced
at the data level and propose the triplet constraint for each training
sequence to make sure of balance and robust distribution in feature space
at the algorithmic level. Comprehensive experiments are conducted on
three benchmark datasets and RoSE shows promising results in the face
of item imbalance.

Keywords: Sequence embedding - Imbalance -+ Recommendation
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1 Introduction

Sequential recommendation is a fundamental problem in real world. It attempts
to predict the next items based on user historical transaction sequences. At each
time step, it treats the user sequences before this time step as input instances,
and the current items as the output class labels. In this sense, sequential recom-
mendation is reduced to a multi-class classification task at each time step.
Many sequential recommendation approaches [1,11,12] have been proposed,
among which neural sequence models [1] are becoming the main stream. They
roughly consist of the following two steps. First, recurrent hidden units or its
variants are utilized to learn the users’ sequential features from input sequence
instances. Second, users’ sequential features, or sequence representation, and
items’ features are combined to feed the final layer to determine which items will
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be bought next. In this paper, we mainly focus on the sequence representation
learning in this classification task.

In the recommendation system, most items in the tail of the distribution
are consumed only several times, which belong to the minority category. On the
contrary, a few items are consumed many times, which belong to the majority
category. Such sequential recommendation methods fail in face of the long tail
distribution data.

In traditional classification task, sampling based methods [9] and cost sensi-
tive learning methods [4] are two major kinds of techniques to deal with class
imbalance problem. Therefore, both kinds of solutions are not able to be applied
to sequence embedding in imbalanced classification tasks. How to learn robust
sequence embedding against the item imbalance becomes our main concern.

In this paper, we propose a Robust Sequence Embedding method against
the item imbalance problem in the sequential recommendation task. From the
data perspective, we propose a balanced k-plet sampling strategy to generate
a training batch for both tasks in an alternative manner. It aims to uniformly
sample sequences with balanced target class label. From the algorithmic per-
spective, we introduce a triplet constraint that intra-class sequence distance is
larger than the inter-class sequence distance as the auxiliary task to the basic
RNN, referred to as triplet constrained RNN. The stability of the triplet con-
straint contributes to balance representation between the input sequences with
the same and different target items. We train the sequential recommendation
task and its auxiliary task in a multi-task framework.

To investigate the effectiveness of sequence representations learned from
RoSE, we conduct comprehensive experiments on three benchmark recommen-
dation data sets. Experimental results that RoSE can achieve better performance
compared with other baselines. Our main contributions are summarized as fol-
lows: (1) We first investigate how the sequence representation changes when the
predicted item distribution is imbalanced. (2) To solve this problem from the
algorithmic perspective, we propose triplet constrained RNN to help separate
the minority class of sequences. (3) To solve this problem from the data per-
spective, we propose balanced k-plet sampling strategy to obtain a balanced
training batch.

2 Related Work

2.1 Sequential Recommendation

Existing sequential recommendation methods capture the sequential pattern
based on either Markov Chains or Neural Sequence Models. Markov Chain based
models [11,12] utilize the sequence as a state transform process and capture the
local feature through neighbor relationship. In light of the basic Markov Chain
model [12], FPMC [11] puts forward a novel concept that leverages a person-
alized transmission graph matrix for each user. Neural Sequence models [1,5,8]
can encode the whole item sequences while decode item representations with
maximum probability in the next step.
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(a) Pareto Distribution (b) Uniform Distribution

Fig.1l. UMAP of sequence representations learned from data with item frequency
follows (a) Pareto Distribution and (b) Uniform Distribution respectively.

2.2 Learning from Imbalanced Data

Learning from imbalanced data is still a focus of intense research for decades [6].
Traditional studies solve this problem with data level, algorithm level and hybrid
methods. Data level methods mainly concentrate on how to adjust the train-
ing set to balance the distribution through sampling. Oversampling and under-
sampling are two major kind of data-level methods. Algorithm level methods
directly modify learning algorithms to alleviate bias towards the majority classes
or correct the data distribution. The most popular branch is cost-sensitive learn-
ing. This kind of methods set a higher cost to the minority class and we boost its
importance during the learning process. Hybrid methods combine the advan-
tages of two previous groups. Quintuplet instance sampling and the associated
triple-header hinge loss [3] are ensured to learn a robust and discriminative rep-
resentation in standard deep learning framework for vision tasks.

Most existing studies on imbalanced data are for the typical classification
task. In this paper, we put more emphasis on sequence representation learning
from imbalanced data.

3 Sequence Embedding from Imbalanced Data

According to our survey, rare studies focus on how learned representations
change in face of imbalanced data. Supervised embedding methods encode the
label information in the input representation. Assuming that the item frequency
follows nearly a uniform distribution, the label information does make the repre-
sentation learning more discriminative. A more natural phenomenon is that the
class frequency follows the long-tail distribution such as Pareto distribution in
a social or scientific scenario. How the learned representations will be changed
from the imbalanced data is attracting our attention.

To investigate this problem, we exploit the basic Recurrent Neural Net-
work [1] with one layer of 10 hidden units to do comparative experiments on
two synthetic datasets. Both datasets contain 11, 000 sequences with length 100,
including 900 for training, 100 for validation and 10,000 for test. Each item in
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Fig. 2. Architecture of RoSE.

the sequence is sampled from {i}}2,. The only difference between two datasets
lies in the item frequency distribution. One is from the Pareto distribution, the
other is from the Uniform distribution. We train the recurrent neural network
model on both sets and obtain the sequence representations on test data shown
in Fig. 1.

It is obvious that the sequence point separation is more clear in Fig. 1(b)
than in Fig.1(a). In this sense, sequence representations learned from uniform
data are better than those learned from Pareto data. Another observation is that
points labeled with item 1, 2, 3 almost dominate the whole dataset and other
points even cannot be picked out in Fig.1(a). These confused representations
will lead to cascade errors in the following classifier layer. Thus the imbalanced
data makes the sequence embedding mixed together and pose great challenge to
learn robust sequence representation in this scenario.

4 Robust Sequence Embedding

To learn a robust sequence representation against item imbalance, we propose
a Robust Sequence Embedding approach, referred to as RoSE. As shown in
Fig. 2, the network architecture is divided into two components: (1)balanced k-
plet sampling strategy; (2) Triplet Constrained RNN. First, we generate each
training batch by balanced K-plet sampling strategy. Then, the training batch
is fed to the triplet constrained RNN.

4.1 Balanced K-Plet Sampling Strategy

Balanced k-plet sampling strategy employs k-plet structure to make sure uni-
formly sample the training sequences for each item. Details are listed as follows.
It generates a balanced training batch. The batch includes b balanced k-plets.
Each balanced k-plet is consist of one pivot sequence, k/2 sequences with the
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same label as the pivot sequence and k/2 sequences with different labels from
the pivot.

To sample a balanced k-plet, we first randomly choose an item label i uni-
formly from all items. Then, the pivot sequence S*, and its k/2 sequences S7,,
are randomly chosen from all the sequences labeled with ¢ through inverted
index. Finally, we uniformly choose k/2 items from all the items except i, ran-
domly choose a sequence from all the sequences with each chosen label e through
inverted index. Thus we obtain k/2 dissimilar sequences denoted as S%,. So
far a k-plet (S%,,8%,S%,) is sampled, and a batch of such k-plets are sam-
pled through our proposed sampling strategy. Different from traditional k-plet
sampling strategies [7]. Our proposed sampling methods not only focuses on
sequences with the same label, but also sequences with different labels in order
to make training batch balanced.

4.2 Triplet Constrained RNN

Each item is represented as a one-hot vector in R is fed into the recurrent layer.
For user’s historical sequence S%,, we use the Long Short Term Memory (LSTM)
block as the basic unit to obtain the dynamic sequence embedding denoted as
h(S%,; W) at time ¢t — 1. Parameters in this recurrent layer is denoted as W.
In order to predict which items will occur at time step t, the sequence embed-
ding h(S%,) at time step ¢ — 1 will be passed through the softmax layer with N
output units. The i-th unit is represented as the probability that item i appears

eXp(fl(h(SZﬁW)vi?Ws)) where W. is the

at time step ¢ shown as P(i|57,) = S e (1 (RS, ) 7))

parameter of the output layer.

Through the balanced k-plet sampling strategy, we obtain the batch B
and organize it into the training instances for sequential recommendation task
denoted as By, = {(S%;,s}")}. Each training instance is a input sequence S,
with its target item s}'. Suppose these instances are independent, sequential rec-
ommendation task is to optimize the cross entropy objective function in Eq. (1).

1 o
Li(By) == Y logP(s][5%,). (1)
1Bl %5
(8%;:5t)€Bs

To make the learned sequence embedding robust against item imbalance,
we propose a triplet constrain to the sequence embedding. Triplet constrain
says that the distance between sequence a and b of the same label should
be smaller than the distance between sequence a and c¢ of different labels as
d(h(a; W), h(b;W)) < d(h(a; W), h(c; W)). d(-,-) is the distance between two
sequences. This constrain will push the sequence embedding of a and b together,
while pulling the sequence embedding of a apart from c. In other words, the
explicit separation constrain solves the problem that sequence representations
are mixed together in face of item imbalance. In this sense, the triplet constrain
will make the sequence embedding robust.

There are various ways to define the sequence distance, such as Euclidean
distance and cosine distance so on. However, whether the sequence distance is
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suitable for this scenario remains unknown. Therefore, we learn the sequence
distance measure as the auxiliary task. First, we organize the training sequence
batch B into a triplet set By,, and By, = {(5%,,C%, ,C%, )|C%, € &8%,,C", €
S, (58%,,8.,,8.,) € B}. For each triplet (SitvcituéZta)’ there is a pivot
sequence S-jm sequence with the same label as Sit is the positive sample Cﬂtc,
and sequence with a different label is the negative sample C’Zta. Then we use a
ratio measure [2] to classify the samples into two class. In order to satisfy the
triplet constrain, mean square error is defined as the loss function in Eq. (2). The
loss aims to maximize the probability of positive samples in local neighborhood.

Lo(Bm)= > |l(ds,d- —1)|5 = const +dy
(z,2t,2=)EBm
ellr@)=r(=)]],
ellh(@)=h(zH)lly 1 ellh(@)—h(z7)Il,’
ellr@=r@E],

b = @ =hG T, 5 TR@ e,

where, d; =

Finally, we learn both sequential recommendation task and the auxiliary task
satisfying these triplet constrains in a multi-task framework simultaneously. Here
we define the whole network structure as the Triplet Constrained RNN. We share
the weight W of two tasks in the hidden layer and train two tasks by updating
the weight matrix alternately. We use the training parameter « to choose the
order.

5 Experiment

To investigate the proposed RoSE, we conduct comprehensive experiments on
three benchmark datasets.

5.1 Experimental Setting

We conduct the experiment on three benchmark dataset, MovieLens-1M, Tmall
and Amazon Movies. In our experiments, MovieLens-1M is a subset of the Movie-
lens dataset with 6.0K users, 3.7K movies and 1.0M ratings. Amazon-Movies
has 3.2K users and 24.3K items, and 451.8 K ratings. Tmall is a user-purchase
dataset obtained from IJCAI 2015 competition which has 182.8 K transactions,
0.8K user and 4.5K brands. We remove users with the number of ratings less
than 50 in all datasets.

We compare our model with the following baselines. POP: The most popular
items are recommended. UKNN: It predicts the next items based on consumed
items of the target user’s k neighbors, where user neighbors are defined based on
cosine distance or Euclidean distance. BPRMF [10]: It is a matrix factorization
method and directly optimize the ranking loss. FPMC [11]: Factorized Person-
alized Markov Chains stacks state transition matrixes into a cube which satisfies
the Markov property. RNN [1]: Recurrent Neural Network encodes transactions
as item sequences into recurrent neural network and predicts the next behavior.
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Table 1. Performance comparison on three datasets.

Dataset Metric@10 |POP |UKNN BPRMF |FPMC| RNN | RoSE
MovieLens-1M | sps 0.0502 |0.1237 |0.0140 |0.0154 |0.2788 |0.2866
recall 0.0391 |0.0552 |0.0105 |0.0468 |0.0756 |0.0764

precision 0.2360 |0.2305 |0.0699 |0.2120 |0.3078 |0.3109
Fl-measure|0.0671 |0.0889 |0.0183 |0.0767 0.1214 |0.1227

NDCG 0.2450 |0.2370 |0.0790 |0.2228 |0.3229 |0.3263
Ucov 0.7077 |0.7546 |0.4230 |0.7657 |0.8766|0.8764
Tmall sps 0.0465 |0.0465 |0.0100 |0.0235 |0.0233 |0.0581
recall 0.0125 |0.0230 |0.0042 |0.0076 |0.0207 |0.0265

precision 0.0860|0.0651 |0.0349 |0.0209 |0.0605 |0.0825
Fl-measure|0.0218 |0.0339 0.0074 |0.0111 |0.0308 |0.0401

NDCG 0.0949 |0.0718 |0.0388 |0.0216 |0.0765 |0.0983
Ucov 0.5233 |0.4535 |0.2674 |0.1860 [0.4186 |0.5465
Amazon Mowvies | sps 0.0065 |0.0265 |0.0038 |0.0220 1 0.0228 |0.0531
recall 0.0078 |0.0141/0.0031 |0.0083 |0.0109 |0.0137

precision 0.0498 |0.0701 |0.0199 |0.0476 |0.0649 |0.0761
Fl-measure |0.0135 |0.0234|0.0053 |0.0141 |0.0186 |0.0232
NDCG 0.0508 |0.0713 |0.0222 |0.0504 [0.0677 |0.0835
Ucov 0.3138 |0.4431/0.1630 |0.2810 |0.3399 |0.4285

5.2 Performance on Sequential Recommendation

To obtain a whole picture of RoSE’s effectiveness, we compare the performance
of RoSE with baselines’ in terms of short term prediction, long term predic-
tion and generalization. Comparison results on three benchmark datasets are
shown in Table 1. Short Term Prediction. There are two main observations.
(1) Compared with the general recommender, the sps improvement of sequential
recommender is over one time on both MovieLens and Amazon Movies. (2) RoSE
has a significant improvement in three datasets and shows its remarkable perfor-
mance in short-term recommendation. For example, RoSE outperforms the best
baseline method UKNN by 24.9% on Tmall and 100% on Amazon Movies. Both
observations indicate that our model obtains better sequence embedding that
makes the prediction results better. Long Term Prediction. We observe that
UKNN seems to be the best baseline in terms of recall, precision, F1-measure
and ndcg. RoSE performs the best among all the baselines on three datasets.
For example, the Fl-measure and NDCG improvements on Tmall are 30.2%
and 28.5% compared with RNN. Generally, RoSE achieves an excellent perfor-
mance in long term prediction. Generalization. We conclude the following two
points. (1) We can see that the user coverage of RoSE outperforms the best
baseline on Tmall by 4.3% and similar results are obtained on MovieLens. (2)
However, things are different on Amazon Movies, and UKNN achieves better
performance than RoSE. The reason may lies in that we use the sample of Ama-
zon Movies with uniform distribution and the cosine distance used for uniform
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data has strong capacity to represent the global interests. For most datasets, the
generalization performance of RoSE achieves the best.

In general, all these observations from Table1 show RoSE achieves highly
superiority on three datasets especially for sps. Meanwhile, these results con-
form that the learned sequence representations are more discriminative to help
separate the predicted items better, which lead to the performance increase in
terms of short term and long term prediction.

6 Conclusion

In this paper, we first investigate how sequence representations change with the
item imbalance. With the advent of item imbalance, sequence embeddings from
minority classes will be mixed together. To solve this problem, we propose a
robust representation learning framework RoSE which is composed of balanced
k-plet sampling strategy and triplet constrained RNN. We generate a balanced
mini-batch through balanced k-plet sampling strategy and define a triplet con-
strain. The triplet constrains are introduced as an auxiliary task and multi-task
framework make representations with better distribution. Experimental results
on three benchmark datasets show that our model outperforms baselines against
the item imbalance problem.
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