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Abstract. Trajectory-ranked reward extrapolation (T-REX) provides
a general framework to infer users’ intentions from sub-optimal demon-
strations. However, it becomes inflexible when encountering multi-agent
scenarios, due to its high complexity caused by rational behaviors, e.g.,
cooperation and communication. In this paper, we propose a novel
Multi-Agent Trajectory-ranked Reward EXtrapolation framework (MA-
TREX), which adopts inverse reinforcement learning to infer demon-
strators’ cooperative intention in the environment with high-dimensional
state-action space. Specifically, to reduce the dependence on demonstra-
tors, the MA-TREX uses self-generated demonstrations to iteratively
extrapolate the reward function. Moreover, a knowledge transfer method
is adopted in the iteration process, by which the self-generated data
required subsequently is only one third of the initial demonstrations.
Experimental results on several multi-agent collaborative tasks demon-
strate that the MA-TREX can effectively surpass the demonstrators and
obtain the same level reward as the ground truth quickly and stably.

Keywords: Mutli-agent system · Inverse reinforcement learning ·
Reward extrapolation · Iterative extrapolation · Knowledge transfer

1 Introduction

Existing multi-agent reinforcement learning can effectively deal with multi-agent
tasks with reasonable reward design [14]. However, in many complex scenarios, it
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is difficult for experts to design reasonable rewards and goals, and agents cannot
learn the behaviors people expect [2,16]. If the agent cannot obtain the reward
signal, inverse reinforcement learning can find a reasonable reward function from
demonstrations, which are provided by the demonstrator [1]. It has been con-
firmed that in a complex multi-agent environment when the agent can obtain
the high-performance expert trajectory, the reward function highly related to
the basic facts can be restored [1]. Unfortunately, various complex tasks cannot
provide high-quality expert demonstrations [18,21], and the problem is more
serious in the multi-agent field.

If a demonstrator is sub-optimal and can inform their intentions, the agent
can use these intents to learn performance beyond the demonstrator [5,20]. But
most of the existing inverse reinforcement learning algorithms cannot do this,
and usually look for reward functions that make the demonstration look close
to the best [8,9,17,22]. Therefore, when the demonstrator is sub-optimal, IRL
will also lead to sub-optimal behavior such as behavior cloning [19]. Imitation
learning method [3] directly imitates behavior without reward inference, which
also has the same disadvantage. Brown proposed an algorithm learned from the
sub-optimal demonstrator [5], but it is only effective for single-agent problems,
and reward inference is limited to the demonstrator. Different from the single
agent, multi-agent problems usually use Nash equilibrium [11] as the optimal
solution, which makes the algorithm more demanding on the demonstrator and
more difficult for reward inference.

In view of this, inspired by the trajectory-ranked reward extrapolation (T-
REX) algorithm [5], we propose a novel multi-agent trajectory-ranked reward
extrapolation (MA-TREX) framework, and give an iterative form of reward
extrapolation using self-generated demonstrations. Specifically, through the
ranked team trajectories, the reward function learns to allocate higher team
rewards for better trajectories based on the global state, and guides the agent
to achieve performance beyond the demonstrator. In order to break through the
demonstrators’ restrictions on reward reasoning, collect new trajectories gen-
erated during the agents’ learning process, and add ranking labels as a new
training set. The new reward function uses the new ranked demonstrations to
reason about higher returns, and is then used to train agents with higher perfor-
mance. In the learning process of the new reward function, a knowledge transfer
method is adopted, which takes only a small amount of demonstrations to com-
plete the learning after inheriting the parameters of the previous round of reward
function. Our contributions can be summarized as following:

– A novel multi-agent trajectory-ranked reward extrapolation (MA-TREX)
framework is proposed. To the best of our knowledge, this is the first frame-
work for MA-IRL, which only uses a few ranked sub-optimal demonstrations
to infer the users’ intentions in multi-agent tasks.

– Learning from the trajectory generated during the agent training process
further reduces the dependence on the demonstrator, and the reward function
learning from generated trajectories can achieve the same level reward as the
ground-truth quickly and stably.
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– By combining the idea of knowledge transfer in the iterative process, the self-
generated trajectories required to learn the reward function subsequently is
only one-third of the initial trajectories, thereby reducing the cost of adding
preference labels to pairwise trajectories.

– The effectiveness of our proposed MA-TREX is validated by using several
simulated particle environments in that simulated particle environments are
representative and most of the cutting-edge MA-IRL algorithms are validated
based on them.

2 Preliminaries

In this section, we introduce Markov game concepts and existing algorithms
involved in the experiment, and give definitions of commonly used symbols.

2.1 Markov Games

Markov games [13] are generalizations of Markov decision processes to the case
of N interacting agents, which can be represented as a tuple (N,S,A, P, η, r). In
a Markov game with N agents, where S represents the global state and {Ai}N

i=1

represents the set of actions taken by agents, P : S × A1 × ... × An is the state
transition probability of the environment. At time t, the agents are in the state st,
chooses the action (a1...aN ), and the probability of the state transitioning to st+1

is P
(
st+1|st, a1, ..., aN

)
. The agent can get a reward through the function ri :

S ×A1 × ...×AN → R. η represents the distribution of the initial environmental
state. We use π without subscript i to represent the agent’s joint policy, ai

represents the action of agent i, and a−i represents the set of actions of all
agents except for i. The goal of each agent i is to maximize their expected
returns Eπ

[∑T
t=1 γtri,t

]
, where γ is the discount factor and ri,t is the reward

obtained by agent i at step t in the future.

2.2 Trajectory-Ranked Reward Extrapolation

Suppose agent cannot obtain the ground-truth reward signal r, but there are
some demonstrations D provided by demonstrator. D is the set of trajectories
{τi}m

i=1, which is obtained by sampling after expert πE interacts in the environ-
ment. Unlike traditional inverse reinforcement learning, when the demonstrator
is sub-optimal, but experts can rank these trajectories without using ground-
truth rewards, the goal of trajectory-ranked reward extrapolation (TREX) is to
infer the users potential intention through the ranked demonstrations. Utilizing
this intention allows agents to learn policies beyond the demonstrator.

More specifically, given a sequence of m ranked trajectories τt for t = 1...m,
where τi ≺ τj if i < j. The goal of TREX is to predict the cumulative return
J (τ) of the trajectory, and classify the pairwise trajectories (τi, τj) in order to
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learn the potential optimization goals of experts. The objective function of the
classifier is defined in the form of cross entropy:

L (θ) = −
∑

τi≺τj

log
exp

∑
s∈τj

rθ (s)

exp
∑

s∈τi
rθ (s) + exp

∑
s∈τj

rθ (s)
(1)

where rθ is the evaluation of the state s by the reward function.

3 Methodology

In this section, we first describe our MA-TREX algorithm, which is a multi-agent
version of TREX. Then, we will introduce the iterative form MA-TREX, which
is an improved version of MA-TREX.

3.1 Multi-agent Trajectory Ranked Reward Extrapolation

Similar to the TREX assumption, we use expert knowledge to rank demonstra-
tions without ground-truth rewards [4,15]. MA-TREX infers the cooperation
intention of the demonstrator based on the ranking. As is shown in Fig. 1, given
T demonstrations, from the worst to the best (τ11, ..., τ1N ) , ..., (τT1, ..., τTN ).
MA-TREX has two main steps: (1) joint reward inference and (2) policy opti-
mization.

Given the ranked demonstrations, the MA-TREX uses a neural network to
predict the team return rθ (S) for the global state S : (s1, s2, ..., sN ), and per-
forms reward inference such that

∑
S∈(τi1,...,τiN ) rθ(S) <

∑
S∈(τj1,...,τjN ) rθ(S),

when (τi1, ..., τiN ) ≺ (τj1, ..., τjN ). The reward function rθ can be trained with
ranked demonstrations using the generalized loss function:

L (θ) = E(τi1,...,τiN ),(τj1,...,τjN )∼π[ξ (P (Jθ(τi1, ..., τiN ) < Jθ(τj1, ..., τjN ))) ,

(τi1, ..., τiN ) ≺ (τj1, ..., τjN )]
(2)

where π represents the joint distribution of the team demonstration, ≺ represents
the preference relationship between the pairwise trajectories, ξ corresponds to
the binary classification loss function, and Jθ is the cumulative return to the
team trajectory τ calculated using the reward function.

Specifically, we use cross entropy as the classification loss function. The cumu-
lative return Jθ is used to calculate the softmax normalized probability distri-
bution P . We can derive the pairwise trajectories classification probability and
loss function:

P (Jθ(τiτ ) < Jθ(τjτ )) ≈
exp

∑
S∈τjτ

rθ(S)

exp
∑

S∈τiτ
rθ(S) + exp

∑
S∈τjτ

rθ(S)
(3)

L(θ) = −
∑

τiτ ≺τjτ

log
exp

∑
S∈τjτ

rθ(S)

exp
∑

S∈τiτ
rθ(S) + exp

∑
S∈τjτ

rθ(S)
(4)
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Fig. 1. The MA-TREX obtains some ranked demonstrations and learns a joint reward
function from these rankings. Through multi-agent reinforcement learning, the learned
joint reward function can be used to train joint strategies better than demonstrator.

where τiτ = (τi1, ..., τiN ). Through the above loss function, a classifier can be
trained, and the classifier calculates which trajectory is better based on the
cumulative return of the team. This form of loss function follows from the clas-
sic Bradley-Terry and Luce-Shephard models of preferences [4,15] and has been
shown to be effective for training neural networks from preferences [6,12]. To
increase the number of training samples, we use data augmentation to obtain
pairwise preferences from partial trajectories, which can reduce the cost of gen-
erating demonstrations. The specific scheme is to randomly select pairwise team
trajectories from demonstrations and extract partial state sets, respectively. By
predicting the return of the state, the cumulative return of the trajectory is
calculated as the logit value in the cross entropy.

Based on the above method, the MA-TREX can obtain the team’s cumulative
return rθ(S) from the demonstrations. We use multi-agent reinforcement learning
to train the joint policy π through rθ(S). The optimization goal of agent i is:

J(πi) = E[
∞∑

t=0

γtrθ(S)|πi, π−i] (5)

where the reward function in the formula is not a ground-truth reward, but the
return value predicted by the neural network for the global state S. Using the
predicted reward function, agents with better performance than experts can be
obtained.
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3.2 MA-TREX Iterative Optimization

In multi-agent tasks, our algorithm can extrapolate rewards from sub-optimal
demonstrator and train agents with better performance. As with the initial
assumption, we can collect the trajectory during the training process and add a
preference label to generate a new training set, and then use the above method
to train a new reward function.

Fig. 2. An iterative form MA-TREX. After the first round of reward function learn-
ing, the new demonstrations generated during each multi-agent reinforcement learning
process is combined with the fine tune method to train a new reward function.

The iterative training process is shown in Fig. 2. Unlike the initial iteration,
the training uses demonstrations that are not provided by human experts, but
are generated independently by the model. Humans only need to provide ranking
labels for new demonstrations. In addition, although the demonstrations used in
each iteration are different, the tasks are the same, so we combined the idea of
knowledge transfer in meta-learning. Similar to the application of fine-tune tech-
nology in image classification, the problem of pairwise trajectories classification
can be viewed as two steps: the first step is to extract the features of the global
state, and the second step is to evaluate the features. Intuitively, the second step
should be re-learned, so that in subsequent iterations, the new reward function
inherits the first half of the previous reward function network. The advantage
of using parameter inheritance is that subsequent training of the new reward
function only needs to generate one-third of the initial demonstrations, and the
reward can be extrapolated again.

For the new demonstrations, we still use cross entropy as the loss function,
and calculate the softmax normalized probability distribution p by predicting
the cumulative return of the new trajectory. We can derive the classification
probability and loss function in iterative form:

P (Jθk
(τk−1

iτ ) < Jθk
(τk−1

jτ k)) ≈
exp

∑
S∈τk−1

jτ
rθk

(S)

exp
∑

S∈τk−1
iτ

rθk
(S) + exp

∑
S∈τk−1

jτ
rθk

(S)
(6)
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L(θk) = −
∑

τk−1
iτ k≺τk−1

jτ

log
exp

∑
S∈τk−1

jτ
rθk

(S)

exp
∑

S∈τk−1
iτ

rθk
(S) + exp

∑
S∈τk−1

jτ
rθk

(S)
(7)

where the demonstration for the k-th network is generated by the training policy
at the k-1th iteration. When k = 1, the formula is the same as the MA-TREX
without iteration.

Each iteration of the MA-TREX can obtain a new reward function rθk
(S).

Combining multi-agent reinforcement learning, we fuse the reward function
learned in multiple iterations to train new joint policy πk. The iterative multi-
agent reinforcement learning objective function is:

J(πk,i) = E[
∞∑

t=0

k∑

j=1

γtwjrθj
(S)|πk,i, πk,−i] (8)

where wj represents the weight of the reward function rθj
in the fusion reward

function, k represents the k − th iteration. In the experiment, specify that the
latest round of reward function has a weight of 0.5, because the demonstrations
used in the new round of iterative training is usually better. We summarize the
MA-TREX iterative training process in Algorithm 1.

4 Experiments

In this section, we evaluate our MA-TREX algorithm on a series of simulated par-
ticle environments. Specifically, consider the following scenarios: 1) Cooperative
navigation, three agents need to reach three target points by cooperating with
each other while maintaining no collision; 2) Cooperative communication, two
agents, a speaker and a listener, navigate to the target location by cooperating
with each other; 3) Cooperative reference, similar to cooperative communication,
but each agent acts as both speaker and listener.

4.1 Experiment Demonstrations

To generate expert trajectories, we use ground-truth rewards and the standard
multi-agent deep deterministic policy gradient (MADDPG) algorithm to train
sub-optimal demonstrator models. In order to investigate the reward extrapola-
tion ability of the MA-TREX under different performance demonstrations, three
demonstrator models with different performances were trained for different tasks.
Specifically, for each task, we train 500 steps, 1000 steps, and 1500 steps, and
collect 1500 pairwise trajectories, respectively. In iterative optimization, new
policies are trained using predicted rewards, and 500 pairwise trajectories are
collected from the training process.
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Algorithm 1: MA-TREX Iterative Optimization Algorithm.
Input: Expert policy π1 = πE ;Ranked sub-optimal Expert trajectories

Dπ1 =
{
τ1

j

}
; Markov game as a black box with parameters

(N, S, A, P, η); Maximum number of iterations K; The set of joint
policies

{
πk

}K

k=1
; The set of reward functions {rθk}K

k=1

Output: The set of reward functions {rθk}K
k=2; The last joint policy πK

1 Initialize Joint policies
{
πk

}K

k=1
; Reward functions {rθk}K

k=1.
2 for k = 2, ..., K do
3 Inherit the first half network of θk−1 to θk.
4 Add preference labels to new trajectories

{
τk−1

j

}
.

5 Sample pairwise trajectories with preference labels:
6 (τk−1

i1 , τk−1
i2 , ..., τk−1

iN ) ≺ (τk−1
j1 , τk−1

j2 , ..., τk−1
jN ) ∼ Dπk−1

7 Update θk to optimization objective function in EP. 7:

8 L(θk) = − ∑
τk−1

iτ k≺τk−1
jτ

log
exp

∑

S∈τ
k−1
jτ

rθk
(S)

exp
∑

S∈τ
k−1
iτ

rθk
(S)+exp

∑

S∈τ
k−1
jτ

rθk
(S)

9 for i = 1, 2, ..., N do
10 Update πk,i with fusion reward to increase the objective in EP. 8:
11 J(πk,i) = E[

∑∞
t=0

∑k
j=1 γtwjrθj (S)|πk,i, πk,−i]

12 end

13 end

14 Return {rθk}K
k=1; πK .

4.2 Experiment Setup

We use 1500 random pairwise trajectories with preference labels based on trajec-
tory ranking instead of ground-truth rewards to train the first reward network.
In the iterative training phase of the new reward function, the fine tune tech-
nology is used to inherit the first half of the parameters of the previous reward
network, and only 500 new random trajectories are used for training.

In order to evaluate the quality of predicted rewards, the policy is trained
through the multi-agent deep deterministic policy gradient (MADDPG) algo-
rithm to maximize the reward function. For the iterative training process, with
the latest reward accounting for half of the fusion reward standard, the learning
rate is fixed at 0.01 and the batch size is fixed at 100, to ensure that the non-
reward function external factors have minimal impact on performance. After
training is completed, the ground-truth reward signal is utilized to evaluate the
performance of the joint policy.

4.3 Result and Analysis

We compared against two multi-agent inverse reinforcement learning (MA-IRL)
algorithms that have achieved remarkable results in the task: multi-agent gener-
ative adversarial imitation learning (MA-GAIL) [21] and multi-agent adversarial
inverse reinforcement learning (MA-AIRL) [18]. MA-GAIL and MA-AIRL are
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Fig. 3. Performance comparison of the sub-optimal expert trajectory in three stages
of two collaborative tasks. Performance is obtained by calculating the average value of
ground-truth rewards for 500 tasks.

the multi-agent versions of the famous algorithms generative adversarial imita-
tion learning [10] and adversarial inverse reinforcement learning [7], which very
representative in multi-agent inverse reinforcement learning.

Fig. 4. Performance comparison of the MA-TREX performing multiple iteration train-
ing in three collaborative tasks. For all phase tasks, our MA-TREX algorithm basically
achieves very high performance within 3 iterations of learning.

Without using iterative optimization, we tested the learning ability of the
sub-optimal demonstrator in three different stages. As is shown in Fig. 3, in the
second stage of Cooperative navigation and the first and second stages of Coop-
erative navigation, the performance of the strategy learned by the MA-TREX
is significantly better than that of the demonstrator. Since the demonstrator
is close to optimal in the third stage, there is no significant improvement in
performance. In the first stage of Cooperative navigation, provided trajectories
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are so poor that all algorithms are not effective, but our algorithm still has
obvious advantages. MA-GAIL and MA-AIRL usually cannot achieve signifi-
cantly higher performance than demonstrators, because they are just imitating
demonstrations rather than inferring the intent of demonstrations. Experimental
results show that in a multi-agent environment, the MA-TREX can effectively
use preference information to surpass the performance of demonstrator.

Fig. 5. The extrapolation rewards plot of the MA-TREX under three iterations in 3
collaborative tasks. The blue, green, and yellow points correspond to the trajectories of
the first to third extrapolations, respectively. Solid line corresponds to the performance
range of the trajectory. The x axis is ground-truth returns, and the y-axis is predicted
return. (Color figure online)

To verify that the reward function has the ability to learn using self-generated
demonstrations, we compared the performance of the MA-TREX after multiple
iterations of learning. In addition, in order to prove the rationality of the reward
function combined with knowledge transfer, the new iteration only generates
one-third of the initial demonstrations. As is shown in Fig. 4, in the first stage
of Cooperative navigation and Cooperative reference, although the performance
of the MA-TREX after the first reward extrapolation has improved, it is still
far from the level of ground-truth reward. From the above experimental results,
conclusions can be drawn as follows: 1) the ability to infer rewards is limited by
the demonstrator; 2) the MA-TREX achieves high performance in all stages after
iterative training through self-generated demonstrations; 3) the MA-TREX can
effectively inherit the knowledge it has learned through iterative training and is
no longer limited to the initial demonstrator.

In order to investigate the ability of the MA-TREX to extrapolate the trajec-
tory of experts, we compared the ground-truth returns and predicted returns of
the trajectory from the demonstration generated in the iteration. Figure 5 shows
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the demonstrations generated by the MA-TREX at different iterations. It can be
seen from the figure that with the iterative learning of the reward function, the
positive correlation between the predicted reward and the ground truth reward
gradually increases, which corresponds to the previous performance comparison
experiment. For example, in Fig. 5 (b), the reward function after the second iter-
ation (green dots) has a significant improvement in the positive correlation with
the ground-truth reward compared to the first iteration (blue dots). It is consis-
tent with the phenomenon of greatly improving performance occurring in Fig. 4
(a). In summary, the experimental results show that the reward function is learn-
ing in a more reasonable direction, and the performance gradually approaches
the ground-truth reward level with iteration.

5 Conclusion

In this paper, we present a novel reward learning framework, MA-TREX, which
uses sub-optimal ranked demonstrations to extrapolate agent intentions in multi-
agent tasks. After combining the reward function with multi-agent deep rein-
forcement learning, it achieves better performance than the demonstrator, and
it is also superior to the MA-AIRL and MA-GAIL methods. Furthermore, com-
bining the knowledge transfer idea and using the model’s self-generated demon-
strations, the iterative optimization form of the MA-TREX is realized. And the
reward function can reach the same level as the ground truth within three iter-
ations by using self-generated demonstrations. In the future, one direction is to
complete subsequent iterative learning without adding new labels.
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