Learning Materials in Biosciences

Nagwa EI-Badri Editor

Regenerative
Medicine and
Stem Cell

Biology

2 Springer



Learning Materials in Biosciences



Learning Materials in Biosciences textbooks compactly and concisely discuss a specific
biological, biomedical, biochemical, bioengineering or cell biologic topic. The textbooks in
this series are based on lectures for upper-level undergraduates, master’s and graduate
students, presented and written by authoritative figures in the field at leading universities
around the globe.

The titles are organized to guide the reader to a deeper understanding of the concepts
covered.

Each textbook provides readers with fundamental insights into the subject and prepares
them to independently pursue further thinking and research on the topic. Colored figures,
step-by-step protocols and take-home messages offer an accessible approach to learning
and understanding.

In addition to being designed to benefit students, Learning Materials textbooks represent a
valuable tool for lecturers and teachers, helping them to prepare their own respective
coursework.

More information about this series at http://www.springer.com/series/15430


http://www.springer.com/series/15430

Nagwa El-Badri
Editor

Regenerative Medicine and
Stem Cell Biology

@ Springer



Editor

Nagwa El-Badri

Center of Excellence of Stem Cells and
Regenerative Medicine

Zewail City of Science and Technology

Giza, Egypt

ISSN 2509-6125 ISSN 2509-6133  (electronic)
Learning Materials in Biosciences

ISBN 978-3-030-55358-6 ISBN 978-3-030-55359-3  (eBook)

https://doi.org/10.1007/978-3-030-55359-3

© Springer Nature Switzerland AG 2020

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter
developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a
warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that
may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG.
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland


https://doi.org/10.1007/978-3-030-55359-3

Preface

The field of stem cells and regenerative medicine has expanded to include many disciplines
in biology, medicine, physics, material science, biomedical engineering, and nanotechnol-
ogy. This multidisciplinary approach necessitates acquiring knowledge that is contextual,
practical, and focused on these new disciplines. This book provides an overview of the
basic concepts of stem cell research and the important topics in the field that are of interest
to students and also to researchers and physicians. The topics have been selected carefully
to fulfill both the theoretical and practical aspects of stem cell research, in an approach that
is beneficial to researchers who are interested to specialize in the field or to complement
their research in other fields.

The introduction provides an overview of stem cells and the facts and hype about their
usage in the clinic. Some diseases are prescribed stem cell transplantation as routine
therapy, especially those of hematopoietic origin. Other therapeutic approaches are still
experimental. At the forefront of diseases treated with stem cells are hematological
disorders, leukemia, lymphoma, hemoglobinopathies, and immune deficiencies. Research
on hematopoietic stem cells has been pioneering in delivering reliable therapy for blood
disorders, and it comes as no surprise that almost all of the FDA-approved stem cell
products are also of hematopoietic origin. The chapters on adult stem cells cover
hematopoietic stem cells, mesenchymal stromal cells, endothelial progenitor cells, and
pericytes and provide the reader with a good basis for understanding the biology and
applications of these important cells.

The chapters on the epigenetic regulation of stem cells, cancer development and its
regulation by cancer stem cells and associated stromal cells cover the molecular
mechanisms that govern stem cell development and differentiation in health and disease.
The same theme extends into the chapter on the use of stem cell therapy in the treatment of
metabolic disorders, which provides a much-needed insight on regenerative therapy in the
clinical setting, with a focus on diabetes as the most prevalent metabolic disease.

Many landmark experiments, from cloning frogs in the 1960s and mammalian cloning
in the 1990s to the current direct cellular reprogramming and gene editing provided a more
flexible and broader understanding of stem cell biology and of cell biology in general.
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Characterization of the embryonic stem cells and Yamanaka’s pioneering experiments in
reprogramming somatic cells into induced pluripotent cells made stem cell therapy more
achievable. It is now becoming more possible to manipulate mature cells on the genetic and
epigenetic levels, to reverse their development and to regenerate their differentiation
potential. This revolution in cell biology has not been matched unfortunately with a
comparable clinical revolution, where patients have directly and similarly benefited from
these unprecedented advances.

Advances in biotechnology, nanotechnology, and bioprinting have opened the doors to
unlimited possibilities in regenerative medicine. Using natural and synthetic scaffolds
fulfills the structural foundation of any organ on which cells are seeded and coaxed to
differentiate and develop into the desired tissues. Bioprinting, 3D culture techniques,
organ-on-a-chip, and other technical advances expanded the applications of stem cells
well into personalized medicine. In vitro disease modeling and testing drugs on patient-
specific tissues undoubtedly present a leap in precision medicine. Chapters 10 and 11
discuss tissue engineering with detailed examples of bioscaffold preparation in the form of
the decellularized human amniotic membrane. After its use with success in skin and corneal
grafts, its attractive anti-inflammatory and antimicrobial properties and low immunogenic-
ity support its use as a scaffold for stem cell growth and differentiation. Detailed protocol
for bioscaffold preparation and other protocols for isolation and culture of mesenchymal
stromal cells and induced pluripotent stem cells are also detailed.

The book concludes with a reminder for young scientists of following the basics of the
scientific method, of adherence to ethical practices in their research, and of frequently
questioning the methods and goals of their research. These practices tie directly with the
introduction on the benefits of stem cell research and its applications, to maximize the hope
and minimize the hype in this promising field.

Giza, Egypt Nagwa El-Badri



Acknowledgement

The authors would like to thank Ms. Shimaa E. Elshenawy for her valuable editorial
assistance.

vii



Contents

1 Introduction and Basic Concepts in Stem Cell Research and Therapy:
The Factsand the Hype . . . .. ...... ... ... ... . ... ... ... ....... 1
Mohamed Essawy, Shaimaa Shouman, Shireen Magdy,
Ahmed Abdelfattah-Hassan, and Nagwa El-Badri

2  Embryonic and Pluripotent Stem Cells. . . . .. ... ... ............. 37
Shaimaa Shouman, Alaa E. Hussein, Mohamed Essawy,
Ahmed Abdelfattah-Hassan, and Nagwa El-Badri

3  Hematopoietic Stem Cells and Control of Hematopoiesis. . . . ........ 67
Mohamed Essawy, Ahmed Abdelfattah-Hassan, Eman Radwan,
Mostafa F. Abdelhai, S. Elshaboury, and Nagwa El-Badri

4  Adult Stem Cells: Mesenchymal Stromal Cells, Endothelial Progenitor
Cells, and Pericytes. . . . ... ... 109
Azza M. El-Derby, Toka A. Ahmed, Abeer M. Abd El-Hameed,
Hoda Elkhenany, Shams M. Saad, and Nagwa El-Badri

5 Cancer Stem Cells and the Development of Cancer. .. ............. 151
Nehal I. Ghoneim, Rania Hassan Mohamed, Alaa Gamal, Shireen Magdy,
and Nagwa El-Badri

6  Stem Cell Applications in Metabolic Disorders: Diabetes Mellitus . . . . . 193
Sara M. Ahmed, Sara S. Elshaboury, and Nagwa El-Badri

7 Epigenetics in Stem Cell Biology . . . . ....... ... ... ... .... ... ... 221
Mohamed A. Nasr, Tasneem Abed, Azza M. El-Derby,
Mohamed Medhat Ali, and Nagwa El-Badri

8 Isolation of Bone Marrow and Adipose-Derived Mesenchymal Stromal
Cells. . .. 243
Nehal I. Ghoneim, Alaa E. Hussein, and Nagwa El-Badri



X Contents

9 In Vitro Methods for Generating Induced Pluripotent Stem Cells. . . . . 265
Toka A. Ahmed, Shimaa E. Elshenawy, Mohamed Essawy,
Rania Hassan Mohamed, and Nagwa El-Badri

10 Tissue Engineering Modalities and Nanotechnology . . . . ............ 289
Hoda Elkhenany, Mohamed Abd Elkodous, Steven D. Newby,
Azza M. El-Derby, Madhu Dhar, and Nagwa El-Badri

11 Scaffold Engineering Using the Amniotic Membrane . . . .. .......... 323
Radwa Ayman Salah, Hoda Elkhenany, and Nagwa El-Badri

12 Application of the Scientific Method in Stem Cell Research. ... ... ... 347
Ahmed Gamal Tehamy, Mohamed Atef AlMoslemany, Toka A. Ahmed,
and Nagwa El-Badri

IndexX . . ... 363



Check for
updates

Introduction and Basic Concepts in Stem Cell
Research and Therapy: The Facts and the Hype

Mohamed Essawy, Shaimaa Shouman, Shireen Magdy,
Ahmed Abdelfattah-Hassan, and Nagwa EI-Badri

Contents

1.1 WhatIs a Stem Cell? ..o e 3

1.2 Origin and Types of Stem Cells ..........uiiiiii s 4
1.2.1 Embryonic Stem Cells (ESCS) ....ooiiiiiii e 4
1.2.20 Adult Stem Cells . ...nneete e e 6
1.2.3 Other Stem Cells .......oiiiii 7
1.2.4 Induced Pluripotent Stem Cells (IPSCs) ... 7

1.3 Stem Cell Therapies: The Present and the Future ..o, 8
1.3.1 Routine Stem Cell Therapy for Hematopoietic Disorders ...............c..ooeveennn 10
1.3.2 Stem Cell Therapy in Clinical Trials ... 12
1.3.3 From Bench to Bedside ............uiiiiiiiiiiiiii e 15

1.4 Stem Cell Therapies: Facts, Hope and Hype ..o, 19

RETEIEICES . . ..ttt e 21

Mohamed Essawy, Shaimaa Shouman, Shireen Magdy, and Ahmed Abdelfattah-Hassan contributed
equally.

M. Essawy - S. Shouman - S. Magdy - N. El-Badri (D<)

Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Helmy Institute of
Biomedical Sciences, Zewail City of Science and Technology, Giza, Egypt

e-mail: messawy @zewailcity.edu.eg; sshouman@zewailcity.edu.eg; p-ssayed @zewailcity.edu.eg;
nelbadri @zewailcity.edu.eg

A. Abdelfattah-Hassan
Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Zagazig University,
Zagazig, Egypt

Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and
Technology, Giza, Egypt
e-mail: abdelfattah @zewailcity.edu.eg

© Springer Nature Switzerland AG 2020 1
N. El-Badri (ed.), Regenerative Medicine and Stem Cell Biology, Learning Materials in
Biosciences, https://doi.org/10.1007/978-3-030-55359-3_1


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-55359-3_1&domain=pdf
mailto:messawy@zewailcity.edu.eg
mailto:sshouman@zewailcity.edu.eg
mailto:p-&spi1;ssayed@zewailcity.edu.eg
mailto:nelbadri@zewailcity.edu.eg
mailto:abdelfattah@zewailcity.edu.eg
https://doi.org/10.1007/978-3-030-55359-3_1#DOI

2 M. Essawy et al.

List of Abbreviations

(ACI) Autologous Chondrocyte Implantation
(ADSCs) Adipose-derived stem cells

(ALL) Acute Lymphoblastic Leukemia
(AMD) Age-related Macular Degeneration
(AML) Acute Myeloid Leukemia

(BM) Bone Marrow

(BM-HSCs) Bone Marrow Hematopoietic Stem Cells
(BM-MSCs) Bone Marrow Mesenchymal Stem Cells

(CAR) Chimeric Antigen Receptor

(CBT) Cord Blood Transplantation

(CFU-F) Colony Forming-Unit Fibroblast
(CLL) Chronic Lymphoblastic Leukemia
(CLP) Common Lymphoid Progenitor

(CML) Chronic Myeloid Leukemia

(DLI) Donor Leukocyte Infusion

(DM) Diabetes Mellitus

(DMT1) Type 1 Diabetes Mellitus

(DMT2) Type 2 Diabetes Mellitus

(ECM) Extracellular Matrix

(ESCs) Embryonic stem cells

(FTSG) Full-thickness Skin Graft

(G-CSF) Granulocyte Colony-stimulating Factor
(GvHD) Graft versus Host Disease

(GVL) Graft Versus Leukemia

(HSCs) Hematopoietic Stem Cells

(HSCT) Hematopoietic Stem Cell Transplantation
(HSPCs) Hematopoietic Stem/Progenitor Cells
(iPSCs) Induced Pluripotent Stem Cells
(ISSCR) International Society for Stem Cell Research
MS) Multiple Sclerosis

(MSCs) Mesenchymal Stem Cells

(NSCs) Neural Stem Cells

(0A) Osteoarthritis

(PB) Peripheral Blood

(PD) Parkinson’s Disease

(PRP) Platelet-rich Plasma

(RIC) Reduced-intensity Conditioning

(RPE) Retinal Pigment Epithelial

(SCNT) Somatic Cell Nuclear Transfer
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(STSG) Split-thickness Skin Graft

(UCB) Umbilical Cord Blood

(UC-HSCs)  Umbilical Cord Hematopoietic Stem Cells
(UC-MSCs)  Umbilical Cord Mesenchymal Stem Cells

What You Will Learn in This Chapter

This chapter provides the introduction and overview of stem cells, their definition,
origin, and applications. It illustrates the unique properties of stem cells, such as
potency, multilineage differentiation potential, self-renewal, and resistance to senes-
cence and apoptosis. It provides a brief description of stem cell research, and its
current applications in cell therapy, bone marrow transplantation, tissue engineering
and its modern and diverse applications. These will cover approved human stem cell
products, and therapies based on cells or their derivatives. Finally, the chapter will
cover the gap between research and clinical applications, and concludes with the
facts, hope, and hype in stem cell research and development.

1.1 What Is a Stem Cell?

A stem cell is an unspecialized and undifferentiated cell that has a remarkable capacity for
self-renewal and the ability to undergo prolonged periods of cell division, both in vitro and
in vivo. Stem cells are also capable of asymmetrical division into two non-identical
daughter cells with distinctive and different fates. Among the earliest evidence of the
existence of stem cells were the breakthrough studies conducted in the early 1960s, when
the radiation physicist, James Till, joined with the hematologist, Ernest McCulloch, to
study the effects of radiotherapy on hematological cancers in the bone marrow. Among
their findings, Till and McCulloch identified a self-renewing population of hematopoietic
cells originating in the bone marrow that were capable of generating all blood cell lineages;
they named these progenitors “stem cells” [1-3].

Unlike other types of cells, stem cells have the capacity to differentiate into various
specialized cells and cell lineages under defined physiological, pathological, and/or experi-
mental conditions. The regenerative capacities are high among younger individuals; aging
is associated with lower regenerative potential [4—-6]. Moreover, in a mature organism,
some organs, such as the blood and intestinal epithelium, maintain a higher rate of
regeneration throughout life, whereas other organs, including the heart and pancreas,
have limited potential for repair [7]. Stem cells can be classified based on their differentia-
tion capacity into totipotent, pluripotent, multipotent, oligopotent, and unipotent cells, as
shown in Fig. 1.1. Totipotent stem cells exhibit the highest capacity for differentiation of
any cell in an entire organism, the notable example of this phenomenon is the zygote (i.e., a
fertilized egg) which has the capacity to give rise to all embryonic and extraembryonic
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structures [8, 9]. Pluripotent stem cells, such as embryonic stem cells (ESCs), are somewhat
less potent and are capable of generating embryonic tissues only (i.e., the three germ layers,
mesoderm, endoderm, and ectoderm [10]). Lineage specific multipotent stem cells such as
mesenchymal stem cells (MSCs) and hematopoietic stem cells (HSCs) have a more
restricted capacity for differentiation and give rise to their specific tissues and cell types
[11]. Oligopotent stem cells are even more restricted but maintain the capacity to differen-
tiate into specific cells within specific tissues. A good example of an oligopotent stem cell is
the common lymphoid progenitor (CLP), which can give rise to T lymphocytes, B
lymphocytes and natural killer cells [12, 13]. Unipotent stem cells are the most restricted,
as they are capable of generating cells of a single lineage; examples of unipotent stem cells
include epidermal stem cells of the skin [14, 15], myogenic precursors [16], and spermato-
gonial stem cells [17].

It is generally understood that the capacities for self-renewal and differentiation dimin-
ish as cells become more specialized. However, this dogma was recently challenged by the
successful reprogramming of fully differentiated somatic cells into a pluripotent-like state
in the form of somatic cell nuclear transfer (SCNT) [18] and likewise via the induction of
pluripotent stem cells (iPSCs), first described in 2006 [19].

1.2  Origin and Types of Stem Cells

Stem cells are classified as embryonic or adult stem cells based on their source of origin
(as shown in Fig. 1.1). Tissues associated with pregnancy, including the placenta, amniotic
fluid, umbilical cord, and Wharton’s jelly, among others, are all rich in stem cells.
Likewise, iPSCs are cells produced by the direct reprogramming of somatic cells into
pluripotent stem cells. A comparison of the properties of embryonic, adult, and iPSCs is
presented in Table 1.1.

1.2.1 Embryonic Stem Cells (ESCs)

ESCs can be collected from the inner cell mass of pre-implantation embryos 3-5 days
following fertilization. ESCs are pluripotent cells that have the capability to divide for
extended periods of time and to differentiate into cells of each of the three germ layers
[10, 20]. This robust differentiation potential qualifies ESCs as the best-known source of
cells that can be used to generate fully differentiated cells for cell therapy applications
[21, 22]. Ethical concerns related to the destruction of human embryos have hampered the
full application of ESCs, which are isolated from spare/discarded embryos that were
generated to support in vitro fertilization (IVF) procedures and not from healthy in utero-
implanted ones [23-25].
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Table 1.1 General comparison between embryonic stem cells, adult stem cells, and iPSCs

Cell type
Origin

Self-renewal
capacity
Potency
Differentiation

Surface
markers

Spontaneous
oncogenic
transformation
Immune
response

Ethical
concerns

Embryonic stem cells

Pluripotent cells derived
from the inner cell mass
of the blastocysts

[10, 43]

High [10, 43]

Pluripotent [10, 43]

Can differentiate into
cells of each of the three
germ layers [10, 43]

Pluripotency markers
(OCT4, SOX2,
NANOG, SSEA-3,
SSEA-4, TRA-1-60, and
TRA-1-81 [10, 43, 48]

Present [10, 43]

Strong [51, 52]

Yes [24, 51]

1.2.2 Adult Stem Cells

Adult stem cells

Multipotent cells derived
from adult tissues [37, 44—
46]

Limited [37, 44—46]

Multipotent [37, 44-46]

Restricted lineage
differentiation [37, 44-46]

Specific markers of adult
tissue-derived stem cells.
For example, MSCs
express CD90, CD73, and
CD105 along with a
negative expression for the
hematopoietic markers
CD45, CD3, CD19,
CD11, CD79a, and human
leucocyte antigen-DR
(HLA-DR) [46, 49]
Absent [37, 44-46]

Strong for allogeneic, but
not for autologous cells
[53-55]

No [57]

iPSCs

Somatic cells
reprogrammed into
embryonic-like
pluripotent stem cells
[19, 47]

High [19, 47]

Pluripotent [19, 47]
Can differentiate into
cells of each of the
three germ lineages
[19, 47]

Pluripotency markers
(OCT4, SOX2,
NANOG, SSEA-4,
and KLF4 [19, 47,
50]

Present [19, 47]

Strong, but can be
minimized for
autologous cells [56]

Minimal [58]

Somatic or adult stem cells are rare populations of undifferentiated cells that are found
among their differentiated counterparts throughout the adult body. These cells contribute to
tissue homeostasis, as they serve as a source of raw material for repair and/or replacement
of injured or dead cells [5]. Adult stem cells have only a limited range of differentiation
potential when compared with ESCs. Examples of adult stem cells include the following:

* Mesenchymal Stem Cells (MSCs)



1 Introduction and Basic Concepts in Stem Cell Research and Therapy:. . . 7

MSC:s are adherent fibroblast-like cells when cultured in vitro. They were first isolated
from the bone marrow [26, 27], where they are most abundant. They produce colony
forming-unit fibroblast (CFU-F), when cultured in vitro and are distinguished by the
capacity to differentiate into osteocytes, chondrocytes, and adipocytes. There are numerous
sources of MSCs including bone marrow [28], adipose tissue [29], dental pulp [30], and
synovial membranes [31].

* Hematopoietic Stem Cells (HSCs)

HSCs have been isolated from the bone marrow; they have the capacity for self-renewal
as well as the ability to differentiate into all blood cell lineages [3]. They are widely used
clinically in HSC transplantaion for treating various blood disorders and malignancies.

¢ Neural Stem Cells (NSCs)

NSCs are found in the central nervous system; they have the potential to differentiate
into both neuronal and non-neuronal glial cells [32]. As such, they have been used
clinically in efforts to repair injuries sustained by the nervous system [33, 34]. Currently,
the use of NSCs for treating neurodegenerative diseases is under investigation [35].

1.2.3 Other Stem Cells

The discovery of stem cells in the human umbilical cord blood (UCB) paved a new and
useful source of progenitors; notably umbilical cord blood hematopiotic stem cells (UCB-
HSCs) have become a viable source of autologous bone marrow stem cells. UCB-HSCs are
capable of differentiating into multiple hematopoietic lineages, in addition to their capacity
for long-term self-renewal [36, 37]. Clinically, UCB stem cells have been employed
successfully as HSC transplants in 1988 [38]. As such, parents in some countries now
routinely bank the UCB of newborns so as to have a source of HSCs in the advent of any
childhood hematological disorders or malignancies. Likewise, as noted earlier, MSCs have
been identified in extraembryonic tissues, including Wharton’s jelly [39], amniotic mem-
brane and placenta [39, 40], and amniotic fluid [41].

1.2.4 Induced Pluripotent Stem Cells (iPSCs)

iPSCs are generated in vitro in an effort to imitate the potential of ESCs by effectively
reversing the differentiation of somatic cells (e.g., skin fibroblasts) in order to become
pluripotent [19, 42]. The discovery of iPSCs was driven at least in part by the need to
identify ESC-like pluripotent stem cells for clinical use which could be generated without
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raising strong ethical concerns. Many ongoing efforts are aimed at improving current
reprogramming approaches so as to enhance the current clinical applicability of iPSCs.

1.3  Stem Cell Therapies: The Present and the Future

The remarkable potential of stem cells, including their capacities for self-renewal and
differentiation, has led to their use in numerous clinical applications, including cell-based
therapies [59], drug discovery [60], and tissue engineering [61]. The ultimate goal of stem
cell-based therapies is to treat, repair, or replace diseased tissues or organs with ones that
are new, healthy, and functional [62, 63]; numerous applications of this type are presented
in Fig. 1.2. Therefore, stem cells are currently featured in several thousand ongoing clinical
trials focused on disease treatment.

Most of these protocols focus on the use of stem cells for treating hematological
disorders, including myeloid leukemia; lymphoma; sickle cell anemia; immune
deficiencies; p-thalassemia [64—67]; wound healing and skin injuries [68]; neurological
disorders, such as Parkinson’s diseases and spinal cord injury [69, 70]; autoimmune
disorders, such as multiple sclerosis, rheumatoid arthritis, Crohn’s disease, and type-1
diabetes [71-74]; and cardiac diseases, including ischemic heart disease [75]. Promising
trials, which focus on the use of stem cells to treat ocular disorders, including macular
degeneration and retinitis pigmentosa [76, 77], and bone diseases, including osteosarcoma,

Bone / Cartilage

B““’d Arthritis

Brain | Hematopoietic malignancies Osteoporosis
- R -

},\ Immune deficiencies Injuries

b

Parkinson’s Disease
Alzheimer’s Disease

I o

Heart diseases
(myocardial infarction)

\/
Liver —
Cirrhosi Pancreas Muscular dystrophy
irrhosis
Kidney —

Kidney disorders

Burns
‘Wounds / Injuries

Fig. 1.2 Stem cell therapy for chronic diseases
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osteoporosis, and osteoarthritis, are also in progress [78, 79]. So far, only a handful of the
U.S. Food and Drug Administration (FDA) approved stem cell products are available for
clinical use, including allogeneic cord blood hematopoietic stem/progenitor cells for
treating hematological and immunological disorders (https:/www.fda.gov/vaccines-
blood-biologics/cellular-gene-therapy-products/approved-cellular-and-gene-therapy-
products). Currently approved stem cell-based therapies are listed in Table 1.2.

Table 1.2 Approved human stem cell-based products

Approved Approval

products Used stem cell type Indications status Approved by

ALLOCORD Allogeneic cord Used in conjunction Approved Office of

CLEVECORD blood hematopoietic with an appropriate Tissues and

DUCORD progenitor cell preparative regimen Advanced

HEMACORD for hematopmetlc and Therapies of

immunologic the FDA

HPC, Cord reconstitution of (USA)

Blood patients with inherited

HPC, Cord or acquired disorders

Blood—MD of the hematopoietic

Anderson system or as a result

Cord Blood of myeloablative

Bank treatment.

HPC, Cord

Blood—Life

South

HPC, Cord

Blood—Blood

works

HOLOCLAR Ex vivo expanded Treatment of adult Conditional ~ European
autologous human patients with Approval Medicines
corneal epithelial moderate to severe Agency (EU)
cells containing stem  unilateral or bilateral
cells limbal stem cell

deficiency due to
physical or chemical

ocular burns.
ZYNTEGLO Autologous CD34* Treatment of beta Conditional
hematopoietic stem thalassemia. Approval

cells transduced with
lentiviral vector
encoding the human
beta® ™72 globin
gene


https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/approved-cellular-and-gene-therapy-products
https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/approved-cellular-and-gene-therapy-products
https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/approved-cellular-and-gene-therapy-products
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1.3.1 Routine Stem Cell Therapy for Hematopoietic Disorders

1.3.1.1 Hematological Malignancies

Transplantation of unmodified or genetically modified HSCs derived from different
sources offers a promising approach to the reconstitution or replacement of diseased
cells. Cell therapies for hematological disorders, such as hemoglobinopathies (e.g., sickle
cell anemia) and blood malignancies (e.g., leukemia and lymphoma), have undergone
substantial development over the past few decades, as in the examples discussed
below [80].

Leukemia
Leukemias are a group of white blood cell malignancies classified by the World Health
Organization (WHO) based on genetics, morphology, immunophenotype, and clinical
features [81, 82]. Interestingly, one of the earliest known cases of leukemia was identified
based on the findings from an Egyptian skeleton in dating back to 2160-2000 BCE
[83]. Leukemias are classified into several major subtypes, including acute myeloid
leukemia (AML), acute lymphoblastic leukemia (ALL), chronic myeloid leukemia
(CML), and chronic lymphoblastic leukemia (CLL) [84]. Chemotherapy was an initially
effective treatment for childhood ALL when first attempted in 1948; unfortunately, disease
typically relapsed ultimately leading to death [85, 86]. Currently, the standard treatment
includes combination chemotherapy to destroy the defective hematopoietic system
followed by hematopoietic stem cell transplantation (HSCT) [87, 88]. This approach is
particularly indicated for recurrent disease, and can be introduced shortly after first-line
treatment with chemotherapy [89, 90]. HSCs can be derived from the bone marrow (BM),
umbilical cord blood (UCB), or peripheral blood (PB) [91]. The first successful allogeneic
human bone marrow transplantation (BMT) performed in patients with leukemia following
optimized radiation and chemotherapy doses resulted in a Nobel Prize in Medicine for
Dr. E. Donnall in 1990 [92]. However, histocompatibility mismatching and graft rejection
resulted in high relapse rates; as such, the disease relapsed and the success rate was low
[93]. Among the efforts made to improve these outcomes, donor leukocyte infusions (DLI)
were introduced, by providing immune cells pre-collected from the anticipated HSC donor
following myeloablation in patients undergoing leukemia treatment; the goal was to
establish donor chimerism and thereby preventing graft rejection [94]. Although, DLI
was effective in managing disease relapse, it was related to the development of graft versus
host disease (GvHD) in treated patients, resulting from the activity of effector donor T-cells
[95]. Reduced-intensity conditioning (RIC) was also applied in an effort to control graft
versus host disease (GvHD), while enhancing the graft versus leukemia effect (GVL),
thereby maintaining engraftment and eradicating malignancy [96]. The use of less aggres-
sive RIC and non-myeloablative conditioning reduces the overall toxicity and mortality
associated with conditioning prior to transplantation, especially in older patients [96].
The relatively recent inclusion of UCB as a source for HSCs overcame the challenges
associated with an attempt to locate an HLA-matched allogeneic donor [97]. UCB cells
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were also less immunogenic and also easy to collect; UCB cells cryopreserved for decades
still support the efficient recovery of HSCs [98]. However, UCB maintains comparatively
fewer HSCs with respect to adult weight; as such, two bags of cord blood are typically
required in order to obtain a sufficient yield of HSCs for transplantation into a single patient
[99-101]. Nonetheless, a long-term follow-up of the Eurocord—European Group for Blood
and Marrow Transplantation study revealed encouraging results. The study evaluated the
outcome of UCB transplantation for 147 children, among whom 74% had been diagnosed
with acute leukemia. In these patients, the cumulative incidence of neutrophil recovery was
90% at 2 years post-transplantation, the incidences of acute and chronic GvHD were
reported to be 12% and 10%, respectively. At 5 years post-transplantation, the cumulative
incidences of relapse and non-relapse mortality were 47% and 9%, respectively; the
probability of disease-free survival was 44%. These results stand in strong support of
UCB banking and the use of cord blood units to facilitate HLA-identical cord blood
transplantation (CBT) [102].

PB-HSCs can be collected by noninvasive means; this provides a safe procedure for
both the donor and recipient who can then undergo more rapid engraftment [103]. Admin-
istration of recombinant granulocyte colony-stimulating factor (G-CSF) stimulates the
release of endogenous HSCs from the BM and into the blood. Currently, about 80% of
all allogeneic transplantations are performed using stem cells derived from the PB of adult
patients [104]. Similarly, recent developments in targeted therapy approaches have resulted
in improved outcomes and can eliminate the negative sequelae associated with indiscrimi-
nate cytotoxic myeloablation. Genetically modified T-cells that express antigen-specific
chimeric antigen receptor (CAR) will target leukemic cells while sparing those that are
otherwise normal [105]. The FDA has approved the use of autologous genetically modified
CD19-lymphocyte cells (CAR T-cells) for the treatment of relapsed ALL and diffuse large
B-cell lymphoma [106].

Sickle Cell Anemia

In addition to traditional HSC transplantation, it is now possible to manipulate the diseased
cells by removal, addition, or alteration of specific DNA sequences in order to correct
defective or mutated genes. High efficiency and precise genetic manipulation or gene
editing of the human genome has recently become possible with the use of the method
known as clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 [107];
this procedure is outlined in Fig. 1.3. CRISPR/Cas9 was used to restore the normal blood
cell phenotype by repairing CD34" hematopoietic stem/progenitor cells (HSPCs) from
patients diagnosed with sickle cell anemia, a disorder that typically results from a single
nucleotide substitution within a p-globin gene [108]. The gene-edited HSPCs were
transplanted back into the patient’s BM to function as a source of healthy autologous red
blood progenitors; using this method the disease undergoes genetic correction, and graft
rejection is evaded [108].
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Fig. 1.3 TIllustration of CRISPR/Cas9 gene editing

1.3.2 Stem Cell Therapy in Clinical Trials

1.3.2.1 Skin Injuries and Wound Healing

Skin is the largest organ in the body and a major part of the integumentary system that
covers and protects the human body [109]. Physical, chemical, and biological factors can
all disrupt skin integrity. Depending on the depth of injury, skin wounds can be epidermal,
or they can involve either partial or full skin thickness [110]. The natural healing
mechanisms are compromised by third- and fourth-degree burn injuries; this presents a
significant challenge for both the surgeons and patients. Over the past century, the gold
standard for treating burns has been grafting of healthy skin. Skin grafting can include split-
thickness skin graft (STSG) and full-thickness skin grafts (FTSG) [111, 112]. Skin grafting
involves the transfer of healthy skin (autograft or allograft) comprised of the epidermis and
a portion of the dermis to the site of injury; problems arise when there is not enough healthy
skin, a failure to treat deep wounds, a poor cosmetic outcome, and limited strength of
grafted skin when compared with the original skin at the affected site [113]. Skin engineer-
ing thus represents an attractive alternative. Autologous keratinocytes or fibroblasts are
cultured on a scaffold, in some cases, a scaffold alone is implanted into the wound to
improve healing [114]. This technique results in the regeneration of both the epidermal and
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dermal layers; however, this method did not facilitate the regeneration of skin appendages,
including hair, nails and skin glands. Of note, traditional skin grafting also failed to
regenerate skin appendages; however, pigmented melanocytes and neural and vascular
tissues were recovered using this method, an outcome that was not achieved using the
engineered skin [114]. Skin replacements can be generated using cellular or acellular
scaffolds; based on the composition of the skin-substitute [115]. Acellular skin-substitutes
are biodegradable scaffolds (e.g., collagen, elastin, and silicon, among others) that facilitate
wound healing by recruiting fibrocytes and vascular cells in vivo and by inhibiting
granulation and scar formation. The most common acellular skin-substitutes currently
approved by the FDA and undergoing review in clinical trials include Integra® [116],
Alloderm™ [117], and NovoSorb™ BTM (Biodegradable Temporizing Matrix) [118]. Cel-
lular skin-substitutes that contain epidermal cell sheets include Dermagraft®™ and Apligraf®;
these products were approved by the FDA for the treatment of diabetic foot ulcer
[118, 119]. ReCell® is an FDA-approved commercial cell spray device that provides
autologous keratinocytes designed to heal second-degree burns. ReCell® works by
facilitating enzymatic digestion of the patient’s healthy skin in order to harvest
keratinocytes, which are then sprayed over the wound [120, 121]. Commercially available
skin-substitutes are still far from perfect. The cells frequently fail to integrate; show poor
vascularization, weak mechanical integrity, and scar formation; and are subjected to
immune-mediated rejection [109]. Indeed, there are no completely functional skin-
substitutes available at this time; of particular note, there is a great need for a functional
skin-substitute that can undergo rapid vascularization. Recent advances in stem cell
therapy, nanotechnology, tissue engineering, and microfluidics paved the way for
improved skin tissue engineering focused on deep wound healing [122]. Bioscaffolds for
skin engineering must all be biocompatible, nontoxic, non-immunogenic, biodegradable,
and sufficiently porous so that free exchange of gases and nutrients can occur through a
neo-vascularized functional skin-substitute [123]. The cell source for the engineered skin
also has a significant impact on the outcome. For example, ESCs can be differentiated into
both keratinocytes [124] and fibroblasts [125], but direct clinical applications of these cells
are hampered by instability and concerns with respect to the functionality of the resultant
tissues. Adipose-derived stem cells (ADSCs) can also differentiate into keratinocytes,
fibroblasts, and other skin components; ADSCs also produce extracellular matrix (ECM)
which is rich in growth factors and cytokines that enhance healing [126—128]. The ADSC
secretome contains vascular endothelial growth factor (VEGF), growth differentiation
factor (GDF-11), and transforming growth factor (TGF-p); all of these act on macrophages,
fibroblasts, and endothelial cells and lead to limiting the immune responses, enhancing cell
proliferation, and promoting angiogenesis at the transplantation site [129]. Clinical
applications of autologous ADSCs are still under investigation for healing diabetic foot
ulcers (NCT02092870, see https://www.clinicaltrials.gov) [130]. Furthermore, methods
used to generate three-dimensional skin grafts using iPSC-derived keratinocytes and
fibroblasts remain promising [131].
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1.3.2.2 Osteoarthritis

Osteoarthritis (OA) is a chronic degenerative disease characterized by deterioration of joint
articular cartilages; this results in exposed subcondylar bones and leads to friction, pain,
and synovitis [132]. Globally, OA is currently estimated as the 11™ highest contributor to
adult disability; this results largely from pain, stiffness, and impaired mobility due to
disease affecting the knees, feet, hands, and spine joints [133]. Non-surgical approaches
for treating OA include intra-articular injections of corticosteroids, hyaluronic acid
“viscosupplementation,” or autologous platelet-rich plasma into the deteriorating joints
[134-136]. These approaches are designed to alleviate pain, but they do not treat the
underlying cause of mechanisms associated with OA [137]. Joint surgery for OA varies
from whole knee replacement (arthroplasty) to minimally invasive arthroscopic techniques
such as microfracture or microdrilling [138—140]. The aforementioned arthroscopic
techniques involve the generation of multiple small fractures within the affected joint,
promoting the recruitment of progenitor cells from the underlying BM which then undergo
differentiation into chondrocytes [139]. The drawbacks of these approaches include the
formation of an inferior form of cartilage that lacks mechanical durability [138].

Alternative cell-based approaches have been applied, including osteochondral trans-
plantation and soft tissue grafting [141]. Among the problems associated with these
approaches, outcomes have included poor grafting and integration, calcification of the
grafts, and limited number of available donor tissues [142, 143]. Accordingly, more effort
has been directed toward autologous/allogeneic chondrocyte implantation (ACI)
[144]. Currently, there are numerous phase III clinical trials involving ACI that include
the expansion of autologous or allogeneic chondrocytes, followed by grafting into the
deformed lesion [145]. As an example, a phase III clinical product that is now
commercialized with the brand name Chondrosphere® utilizes scaffold-free spheroids of
chondrocytes obtained from autologous articular cartilage that are introduced for use to
treat cartilage defects associated with hip injuries (NCT01222559) [146]. The challenges
currently encountered include increased susceptibility of the donor to OA after tissue
sampling in normal joints and an overall insufficient number of harvested chondrocytes.
Likewise, expanded chondrocytes may undergo dedifferentiation and lose their ability to
generate cartilage matrix [147].

MSCs have also emerged as a promising source of cells for this application owing to
their robust capacity for expansion and chondrogenic differentiation [148, 149]. In addi-
tion, MSCs secrete a variety of cytokines and growth factors with anti-inflammatory effects
[150]; these cytokines may function to counteract the inflammatory processes associated
with OA. Autologous bone marrow-derived MSCs have been used to repair full-thickness
cartilage defects in two cases [151]. In this study, BM was aspirated from the iliac crests
and cultured until adherent MSCs had undergone several expansion passages. Cultured
MSCs were then collected, embedded in a collagen-gel scaffold, and transplanted onto the
surface of the defective articular in the knee joint. Symptoms were relieved at 6 months,
and both male and female patients were satisfied with the outcomes during the 4 years
following transplantation [151]. MSCs derived from the umbilical cord, placenta,
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Wharton’s jelly or amniotic membrane all have shown promise with respect to novel
treatments for patients diagnosed with OA [152—154]. In particular, UC-MSCs exhibited
higher proliferative, clonogenic, anti-inflammatory, and chondrogenic potential compared
with MSCs from maternal-derived decidua or BM [155]. CARTISTEM® is a
commercialized product that utilizes UC-MSCs for the treatment of cartilage deterioration
in patients with OA; it is currently approved for a phase III clinical trial with the goals of
evaluating safety and expanding its indications for use (NCT01041001, NCT01626677).
Recently, phase II clinical trials have been initiated to assess the role of ADSCs for the
treatment of patients with OA (NCT02838069) [78].

1.3.3 From Bench to Bedside

1.3.3.1 Diabetes Mellitus (DM)

Diabetes mellitus (DM) is a chronic inflammatory metabolic disorder that results in
sustained hyperglycemia due to defects in insulin production (Type I), insulin utilization
(Type 1), or a combination of both [156]. Type I DM (T1DM) is an autoimmune disease,
wherein activated immune cells attack insulin-secreting f-cells in the pancreas, resulting in
insulin deficiency [157]; contrarily, type II DM (T2DM) is characterized as a chronic
inflammation state that ultimately leads to insulin resistance, reduced insulin secretion,
f-cells exhaustion, and apoptosis [158—160]. Untreated DM leads to severe complications
that can be life-threatening and have significant impact on numerous major organs includ-
ing the kidneys [161], heart [162, 163], eyes [164, 165], and nervous system [166].

Patients with diabetes attempt to regulate their blood glucose levels and to maintain
values at or near normal limits with dietary control [167], hypoglycemic drugs [168], and
lifestyle changes [169]. However, these traditional methods often fail to maintain
normoglycemia in the long run [170]. Islet transplantation (also known as Edmonton
protocol) was developed in 1999 to provide more P-cells and thus increase insulin
production for patients diagnosed with TIDM [171-173]. However, the use of this
approach was limited due to the risks associated with the surgical procedure [174], the
need for long-term immunosuppressive therapy [175], a shortage of organ donors [176],
and only limited impact with respect to achieving insulin independence [177].

Stem cell-based therapy provides a new approach for the management and treatment of
DM. First, this approach can create a virtually unlimited supply of insulin-producing cells
[178-181]; other applications focus on restoring p-cell function [182], modifying immune
dysregulations, and reversing the associated metabolic complications [183]. Pluripotent
ESCs were successfully differentiated into B-cells in vitro [184, 185]; results in vivo
revealed that insulin production and normal blood glucose level were sustained at 3 months
post-transplantation [186]. Despite these promising results, there are few clinical trials
addressing this approach, and there is currently no reliable information on its safety or
efficacy (https://www.clinicaltrials.gov/).
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Considering the different embryological origins of MSCs and pancreas, MSCs
showed variable responses to the efforts made toward differentiating them into pancreatic
p-cells. For instance, BM-MSC:s failed to adopt functional characteristics of f-cells when
cultured in vitro [187]; contrarily, ADSCs revealed some genetic and morphological
similarities to pancreatic cells [188, 189]. However, MSC-mediated immunomodulation
and inhibition of autoimmune progression may be achieved by educating autoreactive T
lymphocytes, an approach in which the autoreactive T-cells are being regulated to be less
reactive to the patient’s own islet cells, thereby reducing the extent of B-cell destruction in
patients diagnosed with TIDM [181, 190, 191]. Moreover, for T2DM patients, the
transplantation of autologous MSCs would reduce the associated inflammatory reactions
and promote pancreatic healing [181, 192, 193]. Several clinical trials (NCT03343782,
NCTO01068951 and NCT01759823) demonstrated that autologous BM-MSC transplanta-
tion was a promising approach, as it coupled long-term efficacy and safety vis a vis the
diabetic microenvironment [194—196]. Results from a limited number of trials for TIDM
patients revealed improved clinical outcomes in patients treated with UC-MSCs than in
those treated with BM-MSCs, although BM-HSCs were more effective than UCB-HSCs
[197]. Despite the fact that stem cell therapy may ultimately overcome many of the well-
known limitations of traditional DM therapy, more clinical trials are still required. At this
time, short follow-up periods, small number of patients, missing control groups, and lack of
standardization of the transplantation protocols were major setbacks for some of the clinical
trials [196, 198].

1.3.3.2 Multiple Sclerosis (MS)

Multiple sclerosis (MS) is a chronic, autoimmune, inflammatory, and neurodegenerative
disorder of the central nervous system [199]. MS is characterized by demyelination with
axonal loss and long-term progressive disability due to disease exacerbation with the
inflammatory microenvironment that enhances local oxidative stress and hypoxia
[200, 201]. Several pharmacological and non-pharmacological therapies are currently
approved for the treatment of MS; however, these treatments may only delay disease
progression and reduce the severity of its symptoms [202]. Consequently, therapies that
promote remyelination of injured axons remain among the challenges.

HSCT has been used to treat MS following high dose chemotherapy for immunosup-
pression [203]; this modality aims to reboot the immune system and eliminates autoreactive
T- and B-cells, thereby facilitating the generation of a new and tolerant immune system
[203]. HSCT has since become an alternative option for the treatment of other
autoimmune-related diseases as well [204-207]. Despite the improvements observed in
some MS patients, the high risk of chemotoxicity and immune deficiency in this patient
cohort remains an important drawback to widespread implementation [208, 209].

MSCs have unique immunomodulatory and anti-fibrotic properties [210, 211] and are
thus attractive choices for the development of targeted treatments for MS. Autologous
BM-MSC transplantation resulted in diminished production of pro-inflammatory cytokines
in association with improved vision and movement in patients diagnosed with MS
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[212, 213]. In another trial, UC-MSC transplantation resulted in improvements in physical
movement with fewer side effects [214]. However, the potential therapeutic effects and
mechanism of action of these cells require further investigation.

1.3.3.3 Parkinson’s Disease (PD)

PD is the second most prevalent neurodegenerative disease worldwide with an incidence
that increases with age [215]. Characterized by gradual death of the dopaminergic neurons
in the substantia nigra of the brain, PD leads to motor nerve impairment and reduction in
the capacity for voluntary movements [216]. The exact cause of PD remains under
investigation, however, the gene encoding a-synuclein (SNCA) was found to be involved
with the abnormal accumulation of Lewy bodies inside neurons [217, 218]. There is
currently no cure for PD; however, specific drugs are reasonably effective in restoring
dopamine concentrations, as well as improving motor neuron function and relieving
symptoms characteristic of PD. Nevertheless, these medications are often associated with
off-target adverse events in long-term use [219, 220]; this limits their overall efficacy.

Pluripotent stem cells have the capacity to differentiate into dopaminergic neurons
in vitro [221-223]. ESCs underwent efficient differentiation into midbrain dopaminergic
neurons. When grafted into the striatum, these cells promote motor improvement,
improved graft survival, and reduced levels of teratoma formation in mice [224]. A
phase I/II clinical trial is currently underway, which aimed to investigate the safety and
efficacy of neural precursor cells generated from human ESCs (NCT03119636) [225]. In
addition, iPSCs are also promising candidates, in terms of the possible generation of
dopaminergic neurons for transplantation to treat PD [226]. A personalized medicine
approach revealed that differentiated dopaminergic neurons generated from autologous
iPSCs could limit the progression of PD for 18-24 months [227]. A clinical trial designed
to evaluate the efficacy of this approach in PD patients is currently ongoing
(NCT00874783) [47].

Administration of MSCs that differentiated into dopaminergic neurons resulted in
improved movement after transplantation using PD mouse models [228, 229]. Interestingly,
MSCs were also found to exert a neuroprotective effect via their capacity to regulate both
autophagy and a-SNCA expression, thereby rectifying PD brain-microenvironment
[230]. In addition, the introduction of MSC-associated secretory factors and exosomes
was associated with outstanding results in PD animal models [231-233]. BM-MSC:s are the
most commonly used cells in clinical trials; administration of autologous and allogeneic
BM-MSC transplantation resulted in improved movement in three of seven patients;
another two patients tolerated a reduction in PD drugs following BM-MSC transplantation
[234]. No serious health concerns were reported during the 12-36-month trial; these
findings encourage further testing of the BM-MSC transplantation in a larger number of
patient cases [234]. Recently, administration of UC-MSCs resulted in promising outcomes
in experiments conducted using PD animal models [235-237]; two clinical trials exploring
both the efficacy and safety of this approach are ongoing (NCT03684122 and
NCTO03550183).
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Administration of NSCs also resulted in positive outcomes with respect to treatment of
PD; these cells released neurotrophic factors that enhance neural functions and promote
their migration to the site of the lesion, thereby facilitating repair of damaged tissue
[238]. One clinical trial NCT03815071) is currently testing the efficacy of administration
of autologous NSCs to patients diagnosed with PD; more trials are required in order to
evaluate the long-term efficacy and safety of the use of NSCs under these conditions.

1.3.3.4 Age-related Macular Degeneration (AMD)

Age-related macular degeneration (AMD) is an incurable disease resulting in the gradual
loss of vision in one or both eyes [239, 240]. The macula, which is the central part of the
retina, contains the photoreceptors (rods and cones) and is essential for central vision,
perception of details, and differentiation among colors within a field of vision
[241, 242]. Retinal pigment epithelial (RPE) cells are supportive cells that provide nutrition
to retinal photoreceptors. In macular degeneration, RPE cells degenerate and fail to support
the retina, resulting in the loss of central vision, blurred visual fields, and diminished
capacity for color discrimination [240]. Macular degeneration exists in both wet exudative
and dry non-exudative forms [239]. The dry type is associated with thinning and death of
the RPE cells and is associated with yellow deposits (drusen), whereas the wet type
involves the formation of new blood vessels and bleeding beneath the retina [240].

The current treatment for AMD focuses on delaying its progression, via the administra-
tion of antioxidants or anti-VEGF for patients diagnosed with dry or wet AMD, respec-
tively [243-246]. While these therapies result in slight improvements in retinal function,
they do not restore degenerating RPE cells. As such, preclinical studies have focused on
transplantation of retinal progenitor sheets in an effort to replenish RPE cells in the injured
area of the eye; this approach has shown promising results by improving vision in mice
[247-250].

Recently, the use of pluripotent stem cells for the repair of macular damage gained much
attention. ESCs can differentiate in vitro into photoreceptor cells [251] that can then be
transplanted into the eyes of an individual diagnosed with AMD; through this method,
human ESC-derived RPE cells were injected directly into the injured eye. The results of
preliminary studies revealed that this method is safe and that there is little immune rejection
of the transplanted cells; the ESC-derived RPE cells were genetically stable, did not
generate tumors, and maintained strong differentiation to >99% pure RPE cells
(NCTO01345006 and NCTO01344993) [77, 252]. However, concerns regarding genetic
instability and the potential for tumorigenesis when administering pluripotent stem cells
for the treatment of AMD were recently addressed [253, 254]; a recent study aimed to
validate the safety of ESC-derived RPE cells through genomic analysis [255]. Furthermore,
iPSC cell lines were recently differentiated into three-dimensional retinal organoids which
may be useful for replacing damaged photoreceptors [256]. Reprogramming of autologous
skin fibroblasts into iPSCs, then their differentiation into RPE cells, has also been
investigated (Clinical trial UMIN000011929) [257].
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Although MSCs were tested repeatedly for their capacity to differentiate into neuronal
cells or photoreceptors [258, 259], recent studies revealed that these cells should not be
used to treat AMD. Despite the absence of appropriate preclinical studies, some physicians
rushed forward and use MSCs in AMD treatment protocols; this unfortunately led to
several incidents of complete blindness. As but one example, a 2017 report described the
case of a 77-year-old woman who received autologous adipose MSC injections into both
eyes, at a clinic in Georgia; she experienced bilateral retinal detachment and complete
blindness at 3 months following the procedure [260].

1.4  Stem Cell Therapies: Facts, Hope and Hype

Stem cell therapies are among the most exciting and revolutionary medical advances of the
twenty-first century. They are frequently described in the media as a “wonder-cure” or
“cure-all.” Indeed, clinical applications of stem cells are increasing in number worldwide as
its research progresses and matures. It remains important, however, to balance patients’
needs and desires with the fact that there are currently no well-established clinical
outcomes from any stem cell-based protocol. Unfortunately, several clinicians have
undertaken a “rogue” approach by misusing stem cell therapy and providing services to
patients that go beyond currently approved applications [261]. Moreover, false marketing
and unsubstantiated advertising in almost all media outlets feature unapproved stem cell
therapies for conditions ranging from mild cosmetic enhancements to cure for intractable
organ failure.

By 2018, more than 430 established enterprises in the USA were promoting numerous
variants of stem cell therapy (all types of stem cells for so many diseases) in more than
710 clinics distributed in various states [262]; these numbers indicate a profound increase
over those reported only 2 years earlier (i.e., during 2016 [263]). Taking together, these
findings indicate an increasing trend toward embracing uncontrolled and unproven stem
cell therapies. Moreover, in a study conducted in 2017, researchers found that only 43.6%
of a total of 408 funding campaigns focused on stem cell therapy reported true and
verifiable information in terms of efficacy, and only 8.8% mentioned the risks associated
with their use [264]. Most of these businesses asserted scientific legitimacy by referring to
published articles in journals with little or no scientific peer-review, and provided false
claims regarding their involvement and relationship with preclinical research conducted at
reputable research centers [265].

Warnings are issued constantly by the FDA, the U.S. Centers for Disease Control
(CDC), Euro Stem Cell, the International Society for Stem Cell Research (ISSCR) as
well as other international stem cell consortiums regarding the premature use of stem cells
in clinical sittings. These cautions are fully justifiable, since claims of efficacy and safety of
several uncontrolled and improperly identified stem cell therapies are portrayed with
optimistic messages; that often ignore the associated risks and/or potential for adverse
reactions [266, 267]. As such, there is a compelling need to increase patients’ awareness of
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what therapies are actually clinically approved as opposed to what is currently advertised
inappropriately.

Some forms of stem cell therapy, particularly the use of HSCs for hematopoietic
disorders, have been the subject of extensive research, are clinically proven, and have
been established as routine standard of care. The skin stem cells used for treating severe
burns have shown considerable promise as well as treating immune deficiencies and solid
cancers. However, other modalities featuring stem cells are still under experimental
investigation and have not yet been approved for clinical use.

Validated clinical trials are required in order to provide the utmost guarantee of safety
and efficacy prior to the approval of any new drug, or therapy; stem cells are certainly no
exception. Despite the enormous number of research articles published each day regarding
the potential of stem cells and stem cell therapy, the absence of clear, verifiable information
can lead to tragedy. For example, various incidences were reported in macular degeneration
patients who developed blindness, retinal detachment and intraocular bleeding, following
adult stem cell-based therapy [260, 268]. Moreover, we do not yet have clear information
documenting the genetic stability of ESCs, nor do we have a handle on their capacity for
sustained reproducible differentiation. The use of iPSCs may overcome some of these
limitations; yet, we have a long journey of research is still required to prove its safety and
efficacy range. Indeed, in 2008, Yamanaka advised against the “hype” associated with
iPSCs and declared that it would be quite dangerous to predict the safety of this technology
with respect to clinical trials and applications [269].

Numerous factors should be considered when designing stem cell therapies. For exam-
ple, an important obstacle when considering the use of umbilical cord derived stem cells is
the cost of cord blood banking; these must meet the international standard regulations for
the collecting, storage, and use of UC blood for transplantation [270] as well as any and all
associated legal regulations [271]. At this time, the UC blood banking industry has begun
to decline due to the high costs associated with its implementation. This will certainly have
an impact on the future availability and therefore the use of UC derived stem cells [272].

In conclusion, the hope place in stem cells remain strong; this is certainly warranted
given the opportunity to use their powerful potential to develop new cures for acute and
chronic diseases. With more clinical data and improved standardization, stem cells may be
safely used for treating an ever-expanding list of diseases. However, the public needs to be
aware that this will take some time and that they need to be wary regarding the advertised
“hype” associated with this exciting cutting-edge field. Patients are encouraged to be
cautious and to look for validated and credible information before deciding to undergo
an unapproved and unproven stem cell-based therapy.
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Take Home Message

The biology of stem cells in tissue homeostasis and development has made it the
prospect for the field of regenerative medicine.

Stem cell potency is more pronounced in embryonic tissues compared to adult
cells. In the adult tissues, stem cells are widely distributed throughout the body
including, but not limited to, the bone marrow, adipose tissue, intestine, skin,
synovial membrane, and dental pulp.

Reprogramming somatic cells by induced pluripotent stem cell (iPSC) technol-
ogy, gene editing, and applying modern techniques of nanotechnology and
bioprinting have all made it possible for extensive applications of adult stem
cells in regenerative medicine.

Hematopoietic stem cells transplantation (HSCT) is already a routine practice, and
has secured FDA approval for its cellular products to treat hematological diseases.
Research is still in progress for wound healing and osteoarthritis treatment using
stem cells.

Preclinical and clinical studies showed new hope in treating incurable chronic
diseases like multiple sclerosis, macular degeneration, Parkinson’s Disease, and
diabetes mellitus with stem cells.

FDA, CDC, ISSCR and other stem cell societies and institutes are regularly
warning about the misused stem cell therapy away from their approved
applications to minimize patients’ risks.

Various types of stem cells need more clinical investigations to test their safety
and efficacy before being clinically translated.

Patients have to be cautious about the credibility of any cell-based medical appli-
cation; and especially before undergoing stem cell therapy.
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What You Will Learn in This Chapter

This chapter will focus on pluripotency as a key feature in determining the differen-
tiation potential of cells and the importance of embryonic and pluripotent stem cells
in research and their promising applications in regenerative medicine. It also includes
a brief description of the major findings on embryonic stem cells’ derivation,
characterization, and differentiation. The differences between najve and primed
pluripotency will be highlighted, and the in vitro growth conditions contribute
to these differences. The chapter will also cover major findings in nuclear
reprogramming and the developments in induced pluripotent stem cell technology.
Finally, we will conclude with the limitations of embryonic stem cells in clinical
applications and areas for future research.

2.1 Introduction
2.1.1 Pluripotency

Pluripotency is defined by two main characteristics, self-renewal and potency. Self-renewal
describes the ability of cells to divide almost infinitely, or to divide long-term in culture,
resulting in two daughter cells with distinct cellular fates, where one of the daughter cells
maintains the pool of undifferentiated cells [1]. The ability of a cell to differentiate into
different cell types that exhibit different characteristics than the mother cell is called cell
plasticity [2]. Pluripotent stem cells show a substantial degree of plasticity as they can give
rise to cells of the three embryonic germ layers: ectoderm, mesoderm, and endoderm.
However, pluripotent stem cells have limited potential to give rise to extraembryonic
tissues, particularly the placenta (Fig. 2.1) [2]. Nonetheless, a newly derived type of
pluripotent cell, known as extended potential pluripotent stem cells (EPSCs), has been
shown to recapitulate both embryonic and extraembryonic tissues [3]. Multiple types of
pluripotent stem cells can be derived from different embryonic stages and tissues, as well as
artificially from direct reprogramming of somatic cells [2, 4]. Pluripotency is also a highly
dynamic process, where interchange between naive and primed states can occur [4]. The
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unique characteristics of pluripotent cells have led to exploration of novel therapeutic
approaches. Moreover, the advances in reprogramming of somatic cells into a more naive
pluripotent state have paved the way for clinical applications with limited constraints [5].

The molecular hallmark for determining pluripotency is the expression of specific
transcription factors that halt the activation of lineage-specification genes, leaving pluripo-
tent cells in a quiescent state. The core transcription factors that control pluripotency
include the octamer-binding transcription factor 4 (Oct-4), which is also known as
POUSF1 [6], the homeodomain transcription factor (Nanog) [7], and the protein
SRY-box transcription factor 2 (Sox2), which is related to high-mobility group (HMG)
proteins [8]. Other important characteristics of pluripotency include high expression of
telomerase reverse transcriptase, which plays a major role in the regulation of cellular life
span [9]. In addition cell-surface antigens, such as stage-specific embryonic antigen-3
(SSEA-3), SSEA-4, and CD9 tetraspanin, together with positive intracellular enzyme
alkaline phosphatase activity, also play a role in regulating cellular life span [10-14]. How-
ever, the most robust methods to determine pluripotency are functional assays. The
principle of these assays depends on the ability of pluripotent cells to recapitulate the
three germ layers in vitro or in vivo. Examples include (1) in vitro differentiating cell
aggregates, termed embryoid bodies [15], (2) in vivo teratoma formation [16], and
(3) in vivo chimera formation [17]. These assays are explained in more detail in this
chapter.

2.1.2 Historical Overview of Pluripotency

Cell reprogramming is the process of induced cell transformation from one specific cell
type to another [18]. For many decades, numerous techniques have been developed in cell
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reprogramming and induced pluripotency. Cellular differentiation was thought to be
unidirectional and irreversible (i.e., from immature pluripotent to more mature
differentiated cells), like a ball rolling down from the top of a mountain to the bottom.
However, this concept was challenged, and it is now known that reprogramming to obtain
pluripotency can be achieved using a variety of approaches, including nuclear transfer, cell
fusion, and direct reprogramming. Recent work has identified that cell fate is not irrevers-
ible, and that it is a plastic or reversible (i.e., the ball can roll back upwards from the bottom
to the top of the mountain).

The early work of John B. Gurdon in 1962 demonstrated, in lower animal models, that
reprogramming can be achieved by nuclear transplantation [19]. In these experiments, a
nucleus of a somatic cell from the intestine of a frog was implanted into an enucleated
unfertilized frog egg. This egg then generated an adult tadpole. This process of somatic cell
reprogramming to the pluripotent embryonic state led to “rejuvenation” and was termed
somatic cell nuclear transfer (SCNT) [19]. These early experiments showed that the
nucleus of mature cells could be reprogrammed to generate an entirely new animal without
sexual reproduction. These experiments fundamentally changed the perception of biology
and reproduction and were the basis for the mammalian cloning experimentation that
followed (see, Table 2.1, and Fig. 2.2). For many years it seemed that it was not possible
to clone mammals. However, Ian Wilmut’s research group cloned Dolly the sheep, born on
July 5, 1996 from a mammary cell of an adult sheep [20]. Later, Gurdon and Yamanaka
shared the 2012 Nobel Prize in Physiology and Medicine for their innovative contributions
to the field of cellular reprogramming.

In 1981, Martin Evans, Matthew Kaufman [26], and Gail Martin [16] established the
first self-renewable and pluripotent embryonic stem cell (ESC) lines derived from preim-
plantation mouse embryos. When immune-deficient mice were injected with these cells,

Table 2.1 Therapeutic cloning compared to reproductive cloning

Therapeutic cloning Reproductive cloning

1. Cloning either by:

— SCNT for reprogramming [20] or

— Embryo splitting: The IVF cattle embryo at
4-cell stage is divided into 3 or 4 identical cells,
and each cell is then developed into healthy
monozygotic calves [21]

1. Cloning by SCNT for reprogramming [20]

2. Intended to isolate patient-derived ESCs from
embryos created in vitro without later transfer
into the uterus [22]

3. Offers great promise for regenerative
medicine through the production of autologous
nuclear transfer embryonic stem cells (ntESC)
[22]

4. Applicable for both animal and humans but
with some ethical constraints [24]

2. Intended to implant the embryo into a female
uterus to obtain a whole organism [21]

3. Offers a great option for cloning of livestock
especially the genetically engineered animal
(e.g., human coagulation factor IX in the milk of
transgenic sheep) [23]

4. Banned for humans but applicable to animals
[25]
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they generated teratomas or teratocarcinomas, which at that time, became one of the
hallmarks of pluripotency. In addition, these ESCs were shown to contribute to the
formation of chimeric mice after being injected into mouse blastocysts [17]. In 1998, the
research group of James Thomson and Jeffrey Jones isolated the first human ESCs from the
inner cell mass of blastocysts produced by in vitro fertilization [15]. In the same year,
Austin Smith and colleagues described the culture conditions and factors that are important
for the in vitro maintenance of ESC pluripotency [27].

In 2001, cell fusion of ESCs and somatic adult thymocytes produced hybrid cells
[28]. And as a result, ESCs could effectively reprogram thymocytes into a more embryonic
state. This gave the ability to form chimeras, in addition to the tri-lineage differentiation
potential. The pluripotency-associated Oct-4 gene, which is normally suppressed in
thymocytes, was up-regulated following fusion with ESCs, and epigenetically, the chro-
matin was less condensed into a more transcriptionally accessible state. These two factors
induced the reprogramming of the heterokaryons into a more pluripotent state [28]. How-
ever, these hybrid cells still retained some of their somatic characteristics, which
represented a challenge for their use in clinical applications. This study gave clues about
the possibility of the existence of reprogramming factors, which could lead to ESC-like
cells via direct use on somatic cells, without the need for mammalian embryos.

Davis and colleges showed possible direct reprogramming of somatic cells into
embryonic-like stem cells. Embryonic mouse fibroblasts treated with 5-azacytidine, an
inhibitor of DNA methylation, generated myoblasts as shown by ectopic expression of the
muscle-specific gene (MyoD) [29]. In 2006, Yamanaka and Takahashi reported a seminal
discovery in which they created induced pluripotent stem cells (iPSCs) from mouse
fibroblasts by combisning of four reprogramming factors. These factors included Oct
3/4, Sox2, Klf4, and c-Myc (OSKM, also known as the Yamanaka factors).These factors
were used to generate pluripotent cells from somatic fibroblasts using a viral delivery
system [30]. One year later, Thomson and colleagues generated human induced pluripotent
stem cells (hiPSCs) from human fibroblasts using another set of reprogramming factors,
Oct 3/4, Nanog, Sox2, and Lin 28 (ONSL) [31]. Different approaches for reprogramming
somatic nuclei are illustrated in (Fig. 2.3).

2.2  Pluripotent Stem Cells
2.2.1 Pluripotent Stem Cell State: Naive Compared to Primed

Pluripotent stem cells (PSCs) can be isolated from vertebrates, including mice and humans,
based on their tissue of origin and developmental stage (Fig. 2.4). PSCs are further
classified as “naive” or “primed” (Table 2.2), based on their ability to produce all somatic
and germline cells, as well as their in vitro growth conditions [33]. The in vitro growth
conditions include colony morphology, growth characteristics, culture requirement for
maintenance of the pluripotent state, gene expression, and the global state of DNA
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methylation. Furthermore, the naive or primed classification can be based on chimera

formation or X chromosome inactivation in female cells [33]. We could resemble chimeras
as “a mosaic painting during the Byzantine era” which the body of developing organisms is
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Table 2.2 Naive and primed pluripotent stem cells

Cell type mESCs mEpiSCs and hESCs

Origin ICM of an early blastocyst [26] Post-implantation epiblast of the mouse
embryo [32], ICM of the human embryo
[15]

Pluripotency Naive [33] Primed [33]

state

Teratoma Present [34] Present [34]

formation

Blastocyst Present [35] Absent [35]

chimeras

Epigenetic state

Expressed
genes

X-chromosome

Global hypomethylation [36]

High expression of Oct4
(or POUSF1), Nanog and ESRRf
(or ERR2) [36]

Both X chromosomes are active

Global hypermethylation [36]

Oct4, Sox2, Nanog, Fgf5, Brachyury,
and Otx2 [34, 37].

One X chromosome is inactive [34]

inactivation [36]

status

Clonogenicity High [33] Low [33]

Oct4 enhancer Distal [38] Proximal [38]

usage

Response to Self-renewal [34, 37] None [34, 37]
LIF/STAT3

Response to Differentiation [34, 37] Self-renewal [34, 37]
Fgf2

composed of distinct cell populations with different genetic origins, resulting from the
fusion of more than one zygote. Chimera studies have been used to assess the develop-
mental potency and fate of different embryonic cell lines based on their ability to participate
in embryonic development after injection into a blastocyst [39]. Inactivation of one X
chromosome randomly occurs at an early stage of female embryonic development to ensure
dosage compensation between both genders regarding sex-linked genes expression
[40]. However, female naive pluripotent cells reactivate both X chromosomes (XaXa), in
contrast to primed pluripotent cells which have only one active (XaXi) chromosome [41].

The naive state represents a cellular state that is similar to the preimplantation inner cell
mass. This can be described as PSCs in a “ground state” that are free of any lineage
commitment, and therefore not constrained epigenetically. In contrast, the primed state is
representative of the post-implantation epiblast cells (EpiSCs) that are more committed
toward lineage-specific developmental pathways and are epigenetically restricted [33]. To
date, the naive state has been achieved in mouse ESCs (mESCs), but not in human ESCs
(hESCs), even though both were derived from preimplantation embryos [15]. It is still
unknown whether the reconversion of PSCs from primed to a more naive state is direct, or
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involves a transitional state. Overall, more evidence suggests that human and mouse PSCs
are not identical, and that differences in gene expression and culture requirements could
affect the pluripotency states in vitro and therefore could lead to different outcomes in
terms of PSC-based therapies.

2.2.2 Switching Between Pluripotency States: Naive to Primed and Back

Different states of pluripotency of mESCs (in vitro) correspond to in vivo embryonic
development. This means that naive and primed states are not categorical states, but rather,
represent successive molecular snapshots during embryonic development [4]. Therefore,
questions have been raised about how these cells could be converted back from the primed
state to the naive one. One crucial factor that is involved in this process is the culture
conditions that the ESCs are exposed to after isolation, which has proved to be critical in
determining their fate. Since hESCs or EpiSCs are in a near primed state, several attempts
have been made to reset the pluripotency of hESCs back to a more naive state, similar to
that of mESCs [33]. These attempts included forced resetting through transgenic induction
of Oct4, KIf2 and Kif4 [42], or Nanog and KIf2 [43] in the presence of 2i/ leukemia
inhibitory factor (LIF) culturing conditions, or by simply manipulating the culture
conditions to reset “genetically unmodified” hESCs into naive ESCs [44, 45]. These
attempts have enabled successful direct derivation of naive hESCs from the inner cell
mass (ICM) by adding different growth factors and small molecules such as LIF, FGF2,
Activin A, GSK3 inhibitors, STAT3 inhibitors, ROCK inhibitors, and MEK inhibitors
[45]. In all of the forced or non-forced previous attempts, the naive hESCs that were
generated met the naive criteria of mESCs.

Epigenetic modifications also determine the pluripotency state as the mESC (naive)
genome is globally hypomethylated, whereas the EpiSCs (primed) genome is
hypermethylated [4]. The pattern of histone modification especially on the gene promoter
region is different in naive cells, which prefer to use the distal enhancer for Oct4 gene
transcription, while the proximal enhancer is primarily used in the primed cells. This
difference suggests that there are histone modifications that change chromatin structure
and accessibility in order to regulate transcription [38]. In humans, the epigenetic status of
ESCs is considered to be primed, since it is similar to mouse EpiSCs [4]. However, recent
work has identified that the primed hESC state can be reversed back to the naive state
through epigenetic resetting via transient histone deacetylase inhibition [46]. Therefore,
non-transgenic naive hESCs can be obtained via either manipulation of the culture
conditions or epigenetic resetting. However, it is still debatable whether it is acceptable
to unify the definition of naive/primed pluripotency in human ESCs (and possibly other
species) based on ESC characteristics identified in rodents. Instead, identifying species-
specific characteristics for naive/primed ESCs may be necessary.
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2.3  Types of Pluripotent Stem Cells
2.3.1 Embryonic Stem Cells (ESCs)

ESCs are isolated from the ICM of early preimplantation embryos, at E3.5 in mice [26], or
from human blastocysts [15]. When mESCs were isolated and cultured under proper
conditions, including essential growth factors, feeder cells, or feeder-free medium in
addition to proper incubation, they maintained their naive pluripotency state for a long
time. Cultured human ESCs (hESCs) were less naive (more primed) than mESCs, and
differed in their culture requirements (Fig. 2.4, Table 2.2) [36]. To date, it is not clear
whether the differences between mESCs and hESCs are only due to the culture conditions
or they are also due to other factors. The in vitro maintenance of naive mESCs requires LIF
signaling, while hESCs depend mainly on FGF2 and TGFp1/Activin2 signaling, and not
LIF [36]. Reports suggested that LIF with two inhibitory small molecules, CHIR99021 and
PD0325901 (called 21i), inhibited the mitogen-activated protein kinases (MAPK)/extracel-
lular signal-regulated kinases (ERK) pathway and the glycogen synthase kinase 3f
(GSK3p) pathway. Inhibition of both pathways stabilized the ground state of mESCs.
Naive mESCs express various pluripotency markers, including OCT-4 (Pou5f1), NANOG,
and Esrrf (Err2), in addition, they lack the X-inactivation state in female cells. On the other
hand, hESCs express high levels of some naive pluripotency markers, such as NANOG,
PRDM14, REX1 (or ZFP42), and E-cadherin, however, hESCs also show some of the
primed cell characteristics, including low expression of KLF17 and DPPA3, lack of
exclusive nuclear localization of TFE3, lack of hypomethylation and tendency of a pre-
X-inactivation in female ESC lines [36]. Therefore, using conventional direct derivation
and culture approaches, hESCs are less naive than mESCs but more naive than mouse
epiblast stem cells (a primed state of mESCs). To achieve naive hESCs, in a similar state to
naive mESCs, scientists adapted the culture conditions to reset isolated hESCs in vitro
into a more naive state. This suggests that the culture conditions do affect the state of
pluripotency, which will also affect the outcome of using ESCs in clinical practice.

2.3.2 Epiblast Stem Cells (EpiSCs)

EpiSCs are isolated from the epiblasts of post-implantation embryos in mice (between ES5.5
and E7.5) [32]. However, due to ethical considerations, no EpiSCs have been obtained
from human embryos [37]. Mouse EpiSCs (mEpiSCs) share some similarities with mESCs
but are classified as a different type of PSCs, based on several cellular and molecular
differences (see Table 2.2). Similar to mESCs, mEpiSCs are pluripotent, as they give rise to
all three germ layers and germ cells, and can form teratomas when they are injected into
immune-deficient mice. However, similar to hESCs, the pluripotency state of mEpiSCs is
primed [34]. The characteristics of mEpiSCs are also similar to those of hESCs in some
aspects, including the inability to survive as a single-cell clone after trypsinization, and
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inactivation of one X chromosome in the female genome [34]. The nucleus of mEpiSCs is
similar to that of mESCs, which is large relative to the cytoplasmic content, but the cellular
morphology is epithelial and grows as a monolayer resembling hESCs [34]. Moreover,
mEpiSCs have limited ability to produce chimeras, as compared to mESCs [35]. The
canonical pluripotency factors (i.e., Yamanaka factors, including Oct4, Nanog, and Sox2)
are expressed by both ESCs and EpiSCs. However, mEpiSCs express specific markers for
the differentiated epiblast (or post-implantation epiblast), such as Fgf5, Brachyury, and
Otx2. In vitro maintenance of mEpiSCs in the undifferentiated pluripotency state requires
supplementation of Activin A and fibroblast growth factor 2 (FGF2); but not LIF, as is the
case in hESCs [34, 37].

2.3.3 Embryonic Germ Cells (EGCs)

Embryonic germ cells (EGCs) are PSCs that are derived from unipotent primordial germ
cells (PGCs), the precursors of the germ cell lineage [47]. In early development at the time
of gastrulation, a small group of cells known as PGCs are assorted to later form oocytes
or spermatozoa, depending of the sex of the embryo (Fig. 2.4). The development of the
PGCs has been studied extensively in mouse models, but not in humans due to ethical
concerns. Around day E6.25, and shortly before gastrulation, PGCs are initially developed
in the epiblast, and later, at E10.5, they migrate to the extraembryonic mesoderm and then
through the mesentery of the hindgut to colonize the genital ridges [47—49], however, stray
PGCs can lead to teratoma formation. PGCs can be identified by tissue non-specific
alkaline phosphatase activity [12] and the expression of surface-specific embryonic
antigens (SSEA-1,-3,-4), mouse vasa homolog (Mvh or VASA), and intracellular proteins
(Stella or Dppa3, OCT-4, NANOG, Fragilis, and Blimp1 among others) [50, 51]. Based on
these findings, it was important to address how unipotent PGCs develop into pluripotent
EGCs. Although the answer is not fully understood, in vitro epigenetic reprogramming
(dedifferentiation) could provide an explanation. Culturing of PGCs derived from mice at
E8.5 to E12.5 in the presence of LIF, basic fibroblast growth factor (bFGF), and stem cell
factor on feeder cells [52, 53] gave rise to EGCs. The pluripotency of these cells was then
confirmed in vitro, by the formation of embryoid bodies that contained cells from all three
germ layers. These EGCs were positive for both alkaline phosphatase and SSEA-1 markers,
resembling pluripotent embryonic stem cell. EGCs formed teratomas in vivo when injected
into immunocompromised mice, and contributed to chimeric mouse tissue, including the
germline [53]. Interestingly, under mESCs culture conditions, the derived EGCs were
indistinguishable from mESCs, and seemed to share a similar transcriptome, but had
somewhat different epigenetic imprinting [54, 55]. On the contrary, PGCs could neither
form embryoid bodies in vitro nor contribute to mouse chimeras, and stopped proliferation
after a certain number of divisions [53].
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2.3.4 Induced Pluripotent Stem Cells (iPSCs)

Ethical concerns over using human ESCs have encouraged researchers to look for alterna-
tive, less controversial, sources of stem cells for clinical applications. Induced pluripotent
stem cells (iPSCs) were developed from mice in 2006 and humans in 2007 [30, 31]. IPSCs
derived from adult somatic cells (e.g. skin), which were genetically reprogrammed to
ESCs-like state by transgenic expression of specific transcription factors, including
OCT-3/4, SOX-2, KLF-4, c-MYC (Yamanaka factors, see Figure 2.3c). These factors,
which are highly expressed in ESCs, reactivated the developmental signaling network that
is necessary for initiating and maintaining an ESC-like pluripotency. Once this
pluripotency was activated, these iPSCs were capable of tri-lineage differentiation,
contributing to chimeras and teratoma formation, similar to ESCs [30, 31].

2.3.5 Extended Potential Pluripotent Stem Cells (EPSCs)

Extended or expanded potential stem cells (EPSCs) and extended pluripotent stem cells
(EPS) are totipotent stem cells that were established from mice and humans in 2017
(Figure 2.4b). The two involved research groups reported that these cells have
blastomere-like features, and may be even superior to ESCs in terms of their contribution
to the three germ layers and extraembryonic tissues [3, 56]. One group screened more than
100 small molecules that can convert primed hESCs into a more naive state (as mESCs),
and the resulting cells were EPS [3]. They depended on the fact that mESCs were
maintained on the ground state upon treatment with LIF, CHIR99021, and PD0325901
(2i) [36]. These cells were also supplemented with another two small molecules,
minocycline hydrochloride (MiH), and dimethindene maleate (DiM), that inhibit PARP1
and muscarinic, histamine receptors, respectively. The established culture medium was
called LCDM, which stands for (LIF, CHIR 99021, DiM, and MiH). Either hESCs or
human iPSCs (hiPSCs) were cultured in LCDM medium and attained a more naive state for
up to 50 passages. This more naive state was indicated by the expression of the distal
OCT-4 enhancer and the lack of expression of the repressive epigenetic marker
(H3K27me3) for X-chromosome inactivation. The chimera assay showed that these cells
exhibited high plasticity beyond ESCs, where these cells were not only contributing to
three embryonic lineages, but also to extraembryonic tissues. EPSCs, derived from eight-
cell stage mouse embryos (i.e., earlier than the stage used for ESC derivation), were
developed by the other research group. These EPSCs were also derived from mESCs or
somatic reprogrammed pluripotent cells (i.e., iPSCs). Similar to iPSCs, EPSCs depended
mainly on the manipulation of the in vitro culture conditions in order to block blastomere
differentiation through targeting specific signaling pathways causing trophectoderm/ICM
segregation. These conditions include culturing the cells (8 cell-stage blastomeres, ESCs,
or iPSCs) in serum-free medium that contains LIF and a cocktail of small molecules. These
culture conditions aim to block MAPK/ERK, Src, and Wnt/Hippo/Tnks1/2 signaling,
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which are implicated in the early segregation of embryonic cells into ICM or
trophectoderm. The expanded/extended potential relates to the ability of a single cell to
form both the extraembryonic and embryonic tissues in the chimera assay. The clinical
applications of these cells are still under investigation [3, 56].

24  Human Embryonic Stem Cells (hESCs)
2.4.1 Isolation of hESCs

Human ESCs are derived from the ICM of the blastocyst, which is obtained after 4-6 days
of fertilization (Fig. 2.5). The zygote (day O—1 post-fertilization) is considered totipotent, as
it gives rise to all embryonic and extraembryonic structures (fetal membranes, umbilical
cord, and placenta). Cultured hESCs exhibit self-renewal and multi-lineage differentiation
potential into the three germ layers: ectoderm, mesoderm, and endoderm. Human ESCs are
primarily isolated from IVF embryos [57]; however, this has elicited ethical concerns as it
raises the probability of premature embryonic destruction [58]. During IVF, high quality
embryos are usually transferred to mother’s womb, but the remaining “spare” embryos
(of variable quality) are either frozen or donated for research; for ESC derivation or cell line
creation [57]. The creation of human blastocysts via IVF for the sole purpose of ESC

Morula Blastocyst Embryonic germ
cell (EGC)

- -
Inner cell mass .:qy

(pluripotent stem cells) w ¥ % & %

Fig. 2.5 Embryonic pluripotent stem cells derived from the inner cell mass of an embryo
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derivation is highly controversial [58]. Various techniques have been developed in order to
isolate hESCs, either from fresh or frozen IVF products [15, 59, 60]. Immunosurgery and
mechanical dissection through microsurgery were some of the first methods used to isolate
embryonic stem cells from the ICM [15, 60-62]. More recently, laser technologies were
embloyed; where a laser beam of high thermal and cutting potential is used to cut into the
blastocyst to obtain the ICM for ESCs isolation [63, 64].

Immunosurgery is based on the vulnerability of the mouse blastocyst to complement-
dependent antibodies. Solter and Knowles were the first to perform this technique, and they
found that it was possible to digest the outer trophoblast layer of the blastocyst using
complement-dependent antibodies that bind to the trophoblastic outer membrane antigens.
The activated complement reaction leads to lysis of the outer trophoblasts and exposure of
the ICM, which is then collected from the deformed trophoblasts for further culture
[62]. This technique has been used to successfully isolate hESCs using animal serum and
complement [15, 65]. However, to avoid the use of animal-origin substances, microsurgery
was proposed in order to isolate ESCs via performing surgery under the microscope on
preimplantation blastocysts. Microsurgery has been performed either mechanically, using
specialized needles under a stereomicroscope, or by using a laser to cut the blastocyst and
separate the ICM from the trophectoderm layer [60, 64].

2.4.2 Culture of hESCs

Primitive and undifferentiated hESCs require the presence of specific factors to maintain
their growth and undifferentiated state. Therefore, hESCs are cultured either on feeder cells
or in feeder-free media, in which feeder cells are replaced by LIF [15, 59, 60, 66,
67]. Earlier cultures of hESCs used mitotically inactivated murine embryonic fibroblasts
(MEFs) feeder cells to provide the cultured cells with growth factors and cytokines that are
essential for their in vitro maintenance [15, 68, 69]. However, transfer of infectious
pathogens or animal-derived viral particles to cultured hESCs has been reported when
using MEFs, which renders cultured stem cells clinically useless [70-72]. To avoid
contamination of hESCs with animal-based products, feeder cells of human origin have
been proposed as a substitute for MEFs. Human cells from various sources, such as
umbilical cord, endometrial and placental cells [73—-76], as well as human-derived growth
factors have been shown to be more effective at maintaining the in vitro growth of hESCs
[66, 77, 78]. Use of animal serum or serum replacements that contain animal proteins, such
as bovine serum albumin [79], elicited a type of immune rejection when used clinically
[79, 80]. Xeno-free culture conditions have been critical for clinical applications. One
approach to culture hESCs under feeder-free conditions is to provide growth factors and
small molecules. Mouse ESCs were cultured feeder-free when supplemented with LIF
[81]; however, hESCs still required a feeder cell layer. In 2001, the first successful feeder-
free culture of hESCs was achieved by sub-culturing hESCs colonies (which were initially
cultured on feeders) on a matrigel or laminin matrix supplemented with MEF-conditioning
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medium, with human basic fibroblast growth factor (bFGF) [67]. Later, cultures
supplemented with bFGF, activin, and noggin maintained the growth and proliferation of
hESCs [82-85]. Another feeder-free and xeno-free hESCs culture was achieved using a
chemically defined medium, containing bFGF, LiCl, y-aminobutyric acid (GABA),
pipecolic acid, and TGFp [86]. In addition, alternative feeder-free approaches have
included encapsulation of hESCs in hydrogels [87, 88] or 3D scaffolds made of biocom-
patible natural polymers [89]. All of these feeder-free approaches have resolved some of
the limitations of hESCs use in therapy and allowed higher-scale production. However,
these approaches still do not fully recapitulate the in vivo environment for growth and
propagation of hESCs. More research is needed for proper large-scale development of
hESCs for therapeutic purposes.

2.4.3 Characterization of hESCs

Human ESCs form homogenous round-shaped colonies with defined borders that can be
propagated for a long time in culture [90, 91]. ESCs have distinguished nuclear structure
and less cytoplasm than somatic cells, and form embryoid bodies upon culturing in vitro
[92]. When grafted in severe combined immune-deficient (SCID) mice, ESCs form
teratomas [15]. Teratomas are heterogeneous tissues of highly differentiated cells from
all the three germ layers, including the ectoderm, mesoderm, and endoderm, and provide a
robust evidence of ESC’s tri-lineage differentiation potential [16]. Another functional
property of ESCs is the formation of chimeras [17]. The chimera assay is based on xeno-
transplantation of ESCs into a blastocyst. The injected cells are then tracked to study their
contribution in the subsequent developmental stages of the embryo [17], See Table 2.3.
Pluripotency is maintained in ESCs by defined pluripotency markers that prevent their
differentiation [95-97]. Phenotypic identification of ESCs using the most common markers
is shown in Table 2.4. Undifferentiated ESCs express stage-specific antigen—3 (SSEA-3),
and SSEA-4, in addition to the glycoprotein tumor recognition antigens TRA-1-60 and
TRA-1-81 [10, 15, 102, 103]. ESCs also express the pluripotency markers OCT-4 and
Nanog [31, 95, 99, 104]. Oct-4, Sox-2, and Nanog are described as the three master
regulators of pluripotency in ESCs [95]. The forced reactivation of these key pluripotency
regulators has reversed somatic cells to their pluripotent embryonic-like state. Yamanaka’s
group was able to reprogram somatic fibroblasts to iPSCs using these regulators [98]. How-
ever, it is important to note that neoplastic cells and embryonal carcinoma cells express
similar pluripotency markers [102, 105]. Therefore, for a safer clinical use, these findings
suggest the importance of continuous monitoring/characterization of in vitro
cultured hESCs, in order to distinguish normal ESCs from cells that underwent neoplastic
progression or began spontaneous transformation to undesirable cells [106, 107].
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Table 2.3 Functional assays for pluripotency assessment

Embryoid body formation and

differentiation

Embryoid bodies (EB) are
three-dimensional aggregates
of pluripotent cells generated
by culture of ESCs on ultra-
low attachment plates in the
absence of the self-renewal
cytokine LIF [26]. Another
method used is the induction
of EB formation by the
hanging drop technique. EB
formed after several days can
be transferred and cultured
under the appropriate
conditions to develop into
various cell types [93]

Teratoma formation

The pluripotent cells such as
ES can give rise to teratomas,
composed of three germ layer
tissues upon injection into
immune-deficient SCID mice.
After transplantation, the
resulting labeled teratomas
can be monitored and
analyzed using molecular
imaging approaches to
determine the derivatives of
the embryonic germ layers
[16]

Table 2.4 Embryonic stem cell markers

Chimera formation

Microinjection is one of
different techniques that have
been developed to generate
chimera in animal model like
mice. ESCs-derived from ICM
of black donor mice’s
blastocyst at day four is
microinjected into blastocyst
cavity of pre-implanted albino
recipient mice. These
manipulated blastocysts are
then implanted into surrogate
mother. The contribution of
donor cells to the recipient
mouse germline can be
determined by examining the
F1 offspring for albino and
black color distribution which
would reflect chimera [17, 94]

Marker Type Role in pluripotency Reference
Oct-4 POU family transcription ~ Maintain self-renewal and pluripotency. [31, 95,
factor (homeodomain Transcriptional patterns play a role in 98-100]
protein) specifying ESC identity. Oct-4/SOX-
Sox-2 HMG-box transcription 2 complex found to have a fundamental role  [31, 95,
factor in gene expression and regulatory control in 98, 106]
Nanog  Homeodomain proteins ESCs [31, 95]
SSEA-  Glycolipid carbohydrate Antigens are specifically expressed on ESCs, [11, 13,
3 antigens EGCs, and human teratocarcinoma cells. Any 101, 102]
SSEA-  Glycolipid carbohydrate decrease in the expression of these antigens is  [11, 101,
4 antigens associated with differentiation patterns and 102]
TRA- Keratan sulfate-related development [10, 102,
1-60 antigens 103]
TRA- Keratan sulfate-related [10, 102]

1-81 antigens
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2.4.4 Differentiation of ESCs

As discussed earlier in this chapter, pluripotency is the primarily trait of ESCs
[15]. Pluripotency is always linked to a high potential to further differentiate into different
cell types [2]. As the cell differentiates, its functional specification prevails and
pluripotency diminishes [2, 97]. Expression of pluripotency markers, including Oct-4,
SOX-2, and Nanog maintains the pluripotent state of ESCs by controlling the expression
of differentiation gene cascades. Accordingly, lack or loss of these pluripotency markers
initiates the differentiation of ESCs, which is accompanied by the expression of differenti-
ation markers [96, 97]. For example, differentiation can be driven by the activation of
polycomb repressive complexes and microRNAs that regulate or switch-off pluripotency
regulators of ESCs [97, 108, 109]. In addition, growth factors, epigenetic state, and cell-to-
cell signals cooperatively determine which lineage specification the differentiated ESCs
will go through [110-112].

In vivo, cells of the ICM, which is the origin of ESCs, divide to give rise to all cell types
in the body, leading to complete structural and functional body mass. Similarly, ESCs can
differentiate in vitro into specialized cells of any of the three germ layers, including the
ectoderm, mesoderm, and endoderm, in the presence of the proper stimuli and growth
factors [15, 113]. In the absence of self-renewal, ESCs cultured in vitro can spontaneously
differentiate as aggregates of cells or embryoid bodies [114]. Cells of the embryoid
bodies have been shown to adopt in vivo-like temporal and spatial differentiation patterns.
Ectodermal-like cells appear first, followed by endodermal cells, and further differentiation
and specification of mesodermal cells [115, 116]. Germ layer cells further differentiate
into more specialized cells, such as cardiomyocytes [117], hepatocytes [118], neurons,
astrocytes and oligodendrocytes [119, 120], and ovarian follicle-like cells [121].

Factors that affect the differentiation of hESCs in vitro include the seeding density, pH,
temperature, and most importantly the components of the culture medium and growth
factors. Hepatocyte growth factor (HGF) and nerve growth factor (NGF) can induce
differentiation into the three germ layers. While activin A and transforming growth factor
(TGF)-p are essential to induce mesodermal differentiation, other factors such as bone
morphogenic proteins (BMP)-4, retinoic acid (RA), basic fibroblast growth factor (bFGF),
and epidermal growth factor (EGF) can all promote ESC differentiation into both
mesodermal and ectodermal lineages [92].

2,5 Applications of Human Embryonic Stem Cells

The use of hESCs allows the advancement of our understanding of disease etiology and
also shows great promise for the development of novel therapeutic approaches. There are
currently over 40 clinical trials using hESCs that are registered on the NIH Clinical Trials
website (https:/clinicaltrials.gov/, as of the 16th of May 2020, using “embryonic stem
cells” as the search criteria). These studies include using hESCs to generate retinal pigment
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epithelium in order to treat ophthalmic diseases, such as age-related macular degeneration
and retinitis pigmentosa [122]. These studies also include those targeting cardiac diseases.
In particular, severe ischemic heart failure was treated using hESC-derived cardiac pro-
genitor cells that were combined with a fibrin scaffold and grafted onto the epicardium of
the infarcted area [123]. Clinical trials have also used hESCs to target neurodegenerative
diseases, such as Parkinson’s disease (PD) and spinal cord injury (SCI) [124], as well as
type 1 diabetes [125]. However, to date, there are no approved FDA products that are based
on hESCs [126]. Research is now focused on using hESCs for disease modeling and
regenerative medicine, where animal models have failed or are still inappropriate for these
purposes.

2.5.1 Disease Modeling

ESCs have been used to model disease through development of disease-specific cells that
carry relevant aberrations or mutations. Human ESCs are either modified using gene
editing or induced to acquire chromosomal aberrations via manipulatng in vitro cell culture
conditions [127, 128]. Disease-specific ESCs may also be directly isolated from defective
IVF embryos carrying genetic diseases or chromosomal aberrations. Preimplantation
genetic diagnosis and genetic screening are two methods used to identify embryos with
monogenic disorders or chromosomal abnormalities [129, 130].

In 2004, human-derived ESCs were successfully genetically engineered to model
Lesch—Nyhan disease through the induction of a mutation in the hypoxanthine
phosphoribosyltransferase 1 (HPRTI) gene using homologous recombination
[128, 131]. Development of successful hESC disease models was also performed for
Fragile X Syndrome [132] and Turner’s syndrome [127]. Examples of methods for
developing disease models include gene editing techniques, where Zinc finger nucleases
were used to mediate site-specific modifications in the ESC genome with high efficiency
[133-136]. In addition, transcription activator-like effector nucleases (TALENSs) were
made to induce genomic modifications and exploit the potentials of hESCs in disease
modeling [137]. Gene editing has also been performed in ESCs to model X-linked severe
combined immunodeficiency (X-SCID) disorder [133]. More recently, clustered regularly
interspaced short palindromic repeat-associated protein 9 (CRISPR-Cas9) technology
[134, 138], SCNT [139], and iPSCs [30] have been used as practical alternatives to
hESCs use for disease modeling.

2,5.2 Regenerative Medicine
Human ESCs can generate various types of differentiated cells for cell replacement

therapies and can be also used in clinical trials for disease treatment. Below are some
examples of their use in the clinic:
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2.5.2.1 hESCs and Spinal Cord Injury

In 2009, FDA approved the first hESC-based phase I clinical trial using hESC-derived
oligodendrocyte  progenitor cells (GRNOPCI1, ClinicalTrials.gov  Identifier:
NCTO01217008, known as Geron’s trial) for the treatment of acute spinal cord injury
(SCI) patients. The treatment protocol included the injection of two million GRNOPCI1
cells into affected SCI patients within 7-14 days post-injury, followed by the administra-
tion of immune-suppressants for 46 days. Both animal studies and preclinical data have
shown that GRNOPCI1 cells have the potential to regenerate injured cord and promote
motor recovery in SCI patients. After enrolling five patients with SCI, no adverse effects
were observed. Safety was measured through assessment of the frequency and severity of
adverse events occurring within 1 year of injection. However, no improvement was
reported in motor or sensory responses in enrolled SCI patients [124]. This trial was
terminated in 2011, and another study using hESC-derived oligodendrocyte progenitor
cells (now called AST-OPC1) to treat SCI has been initiated (ClinicalTrials.gov Identifier:
NCT02302157).

2.5.2.2 hESCs and Diabetes

In 2014, a phase 1/2 clinical trial for type 1 diabetic patients was sponsored by ViaCyte and
CIRM (ClinicalTrials.gov Identifier: NCT02239354). The study tested a new product
(called VC-01) that contains stem cell-derived pancreatic islet replacements in order to
treat type 1 diabetes mellitus. Pancreatic endoderm cells derived from hESCs (PEC-01
cells) were encapsulated in an inert biomaterial in order to protect them from attack by the
immune system. The encapsulated “islets” were expected to act as an artificial pancreas in
order to effectively control blood glucose levels. The capsule was surgically implanted
under the patient’s skin and was expected to mature over several months and start
producing insulin. The tolerability, therapeutic dose, and safety were evaluated in the
first cohort group. After 24 months, the product that was implanted showed promising
results and had minimal adverse effects (related to the surgery) and no immunological
sensitivity. The cells had prolonged survival, and their ability to differentiate into pancre-
atic islet cells was determined using immunohistochemical staining for NKX6-1, insulin,
and glucagon markers. Importantly, no off-target tumors were observed. This study
suggests that the use of ESCs may be a new effective approach to treat chronic autoimmune
diseases, such as type 1 diabetes [125].

2.6 Induction of Pluripotency: Needs and Challenges

Human ESCs have a great potential to treat many degenerative diseases [140]. However,
translating hESCs for use in the clinic has been challenging for a variety of reasons. Ethical
controversies about the derivation and use of hESCs in research, as well as in the clinic, are
still a significant obstacle to advances in this field [141]. Additionally, the use of these cells
also leads to immune challenges [142] and other issues of safety and functional efficacy
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[143]. Safe and ethically accepted alternatives to ESCs for therapies in regenerative
medicine have been developed by researchers. As such, iPSCs have been established to
model diseases and have been used for drug discovery. Newer gene editing technologies
and direct differentiation protocols are also less controversial and more effective source of
pluripotent cells for regenerative medicine purposes [144].

Take Home Message

* Pluripotent stem cells can be differentiated in vitro to all three germline lineages,
excluding the extraembryonic tissue.

* Embryonic stem cells are obtained from the inner cell mass of the blastocyst,
while induced pluripotent stem cells are obtained by reprogramming of adult
somatic cells.

* New approaches enabled scientists to create extended or expanded potential stem
cells (EPSCs), which can form both extraembryonic and intraembryonic tissues.

» Approaches to cellular reprogramming; include nuclear transfer or cloning, cell
fusion, and direct reprogramming, paved the way for discovering pluripotency.

* Pluripotency hallmarks include unregulated expression of pluripotent genes,
in vitro embryoid bodies formation, in vivo teratoma formation, and in vivo
chimera formation.

* Pluripotency exists in two different states, primed and naive. Human ESCs are
more primed than murine ESCs, however the former can be induced to naive state
under certain culture conditions and genetic manipulations.

» ESCs have been proposed for disease modeling and drug discovery, however, the
obstacles are ethical concerns and teratoma formation.
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What You Will Learn in This Chapter

This chapter presents the evolving concept of hematopoietic stem cells (HSCs) while
focusing on the primitive and definitive hematopoiesis processes. It also
demonstrates the unique properties of HSCs as well as their classification in terms
of potency and differentiation potential. Moreover, it includes a brief description of
HSCs characterization and regulation. Additionally, the hematopoietic hierarchy
tree, showing the classical hematopoiesis hierarchy and specific clonal analysis for
each cell type is highlighted. Finally, it will discuss the current therapeutic
applications and potential of HSCs and concludes with the novel outcomes from
ongoing HSC research which continue to redefine and refine our knowledge and
provide a venue for endless improvements in HSC based clinical therapeutics.

3.1 Bone Marrow (BM) and Its Microenvironment

Hematopoietic stem cells (HSCs) are multipotent cells that are the universal progenitors of
all blood cell lineages generated by hematopoiesis. Further research into the biology of
HSCs will be of great importance towards improving our understanding of physiological
hematopoietic processes as well as pathological conditions, including leukemia and
lymphomas. Hematopoiesis is initiated at an early stage of embryogenesis and remains in
progress until death; as such, it will be essential to understand both prenatal (embryo—fetus)
and adult hematopoiesis. Ethical concerns associated with invasive investigations of
hematopoiesis in human embryos have created the need for model organisms. To this
end, developmental biologists among others have introduced model systems, which
include chick embryos, mice, and zebrafish (Danio rerio). These comparative approaches
have revealed many fundamental concepts underlying hematopoiesis and have led to the
development of therapeutics that are now used to treat blood disorders and cancers. Given
the overall conservation of genetic programs controlling hematopoiesis among vertebrates,
studies carried out in the zebrafish model have provided us with dramatic new in vivo
insights into this process [1].

3.1.1 Sites of Hematopoiesis

In mammals, hematopoiesis occurs at different anatomical positions during development
from early stage embryo to adulthood. In mammalian embryos, the earliest stage, also
known as primitive hematopoiesis, occurs in the yolk sac. The hematopoietic precursors,
called hemangioblasts, have limited capacity for self-renewal and differentiate into a
limited number of cell lineages, including endothelial cells, nucleated red blood cells
(RBCs), and macrophages. This stage is followed by definitive hematopoiesis wherein
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HSCs undergo translocation to the aorta—gonad—mesonephros (AGM) region. During mid-
gestation, hematopoiesis transitions mainly to the liver and, to a lesser extent, to the spleen
and thymus. Finally, BM becomes the primary site of hematopoiesis during late gestation
and in adulthood [2]. Definitive hematopoiesis includes HSCs and hematopoietic
progenitors derived from them; this process leads to the production of enucleated RBCs
and the full set of myeloid and lymphoid lineages. HSCs are one of the several cellular
components of the BM; their developmental niche includes all hematopoietic cells derived
from HSCs and vascular cells and extracellular matrix. To achieve a larger understanding
of hematopoiesis, study of this dynamic microenvironment remains critical. Approaches
used for the study of hematopoiesis include in vivo imaging and ex-vivo analysis known as
“bone marrow (BM)-on-a-chip”; in the latter case, processes that take place within the BM
are studied using a three-dimensional (3D) scaffold on a microchip. Unique biomaterial-
based 3D scaffolds have been recently used to generate systems that mimic the interaction
of HSCs with the 3D structure of the BM microenvironment [3]. One such study featured a
scaffold comprised of macro- and micro-porous printed p-tricalcium phosphate (B-TCP), a
bioceramic used for bone tissue engineering, combined with Matrigel® (B-TCP/
Matrigel®); this matrix provided an ideal support for the study of hematopoietic cell
recruitment, proliferation, and differentiation and for remodeling of the extracellular
matrix. In addition, upon transplantation in murine models, this scaffold promoted
neovascularization and provided a functional extramedullary BM niche, which
recapitulated both osteogenesis and hematopoiesis [4].

3.1.2 Anatomy of the Bone Marrow

In long bones, BM can be found within the diaphysis and the metaphysis. BM fills the
medullary cavity of the diaphysis; the shaft of compact bone that provides physical support
for the BM and a site for mineral storage and locomotion. BM can also be found inside the
cavities of cancellous bone (also known as trabecular or spongy bone) that include primary
and connected secondary trabeculae in the metaphysis. The porous structure of the cancel-
lous bone provides strength and flexibility and is comparatively lighter in weight. The BM
coexists with a complex vascular and neural network and is tightly associated with the
dynamic bone environment at which new bone tissue is added, removed, or remodeled
from spongy to compact and vice versa [5].

3.1.3 Types and Morphology of BM

The BM is a soft and gelatinous-like tissue as it contains primarily hematopoietic cells and
adipose tissue; the nature of these components defines the type of the marrow.
Hematopoietic red marrow is the primary site of active hematopoiesis; it is comprised of
abundant progenitors and mature RBCs, white blood cells, platelets, and adipose tissue.
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Red marrow can be found inside virtually all bones of neonates but becomes less wide-
spread with increasing age. In adults, red marrow is confined to axial skeletal structures,
including the skull, vertebrae, ribs, sternum, pelvic bones, and in the proximal metaphysis
of the humerus and femur.

The second type of BM is the yellow marrow, which includes primarily adipose cells
accompanied by islands of hematopoietic tissue. There is a dynamic balance between the
two types of marrow throughout the life span of an individual. The results of several studies
suggest that the yellow marrow could, at least in part, revert to red marrow in response to
specific erythropoietic stimuli [6]. Yellow marrow has been described as a “buffering
tissue,” which facilitates the expansion or regression of hematopoietic cells within the
bone [7].

3.2 Hematopoiesis and the Hematopoietic State

As typical stem cells, HSCs have the capacity for self-renewal and the ability to differenti-
ate and give rise to all blood cell lineages. In the mouse embryo, precursors of hemogenic
endothelial cells (HECs) go through intermediate stages of development to form the first
HSCs in the AGM region [8].

3.2.1 Tracing Hematopoiesis Throughout Development

3.2.1.1 Primitive and Definitive Hematopoiesis

Large nucleated RBCs and macrophages are generated in the yolk sac as a result of a
primordial wave of blood formation, known as primitive hematopoiesis [9]. Adult-type
hematopoiesis swiftly replaces the primordial wave, which occurs in the AGM region [10].
At this point during embryogenesis, a tube developing into a single aorta is created after the
lateral plate mesoderm undergoes migration and comes into contact with the endoderm.
This process is followed by the emergence of HSCs in the ventral wall of the dorsal aorta
near the AGM region. Subsequently, the fetal liver, thymus, spleen, and, eventually, BM
are overtaken by HSCs that are capable of long-term self-renewal to establish definitive
hematopoiesis (Fig. 3.1) [11].

3.2.1.2 Extraembryonic Hematopoiesis

Extraembryonic hematopoiesis is among the earliest stages of primitive hematopoiesis. At
embryonic day (E) 7.0 in mice, the first hematopoietic progenitors can be identified in the
yolk sac [12]. Hematopoietic activity can also be detected in the umbilical arteries and in
the allantois, but not in the umbilical veins [13]. These findings support the hypothesis that
HSCs originate mainly during arterial development. It remains unclear whether placental
HSCs originate de novo or via colonization from earlier sites of hematopoiesis at the time
that circulation is initiated or both [14, 15].
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Fig. 3.1 Initiation of primitive and definitive hematopoiesis during development

3.2.1.3 Mesoderm to Hemangioblast

Hematopoietic precursor cells were first discovered nearly 100 years ago from studies of
total chick blastoderms cultured on cover slips and from explant cultures of the posterior
sections of blastoderms during the gastrulation phase; these cells were designated as
angioblasts or hemangioblasts. In both types of experiments, the hemangioblasts were
shown to be the precursors of both endothelial and hematopoietic cells [16]. Findings from
these early studies carried out in chick embryos are fundamental to our current understand-
ing of the concept of a hemangioblast; these findings remain correct through the present
time.

In mice, migrating mesoderm is generated by means of gastrulation that takes place at E-
6.5 [17]. The mesoderm differentiates into distinct populations with different developmen-
tal fates. In chick embryos, the mesodermal cells from the posterior primitive streak were
the source of the initial blood islands [18]. All developing mesodermal cells are marked by
a transcription factor and member of the family of T-box genes known as Brachyury.
Detection of Brachyury™ cells declines once they are patterned and directed toward the
generation of blood, connective tissues, endothelium, and skeletal or cardiac muscles [16,
19]. The hematopoietic potential of individual cells in the mouse epiblast, primitive streak,
and early yolk sac was established by Padrén-Barthe et al. [19]. In vivo clonal analysis
identified specified independent epiblast populations (before gastrulation) such as early
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yolk sac blood and endothelial lineages, and the hemogenic activity was similar in both the
embryonic hemogenic endothelium (HE) and a subpopulation of the yolk sac endothelium.
Padrén-Barthe et al. [19] also characterized the appearance of the HE in the yolk sac, which
ultimately gave rise to hematopoietic precursors showing markers related to definitive
hematopoiesis.

3.2.1.4 Hemangioblast to Hemogenic Endothelium

It has been proposed that HSCs may be generated from hemangioblasts via formation of an
HE intermediate [20]. This hypothesis was based on observations that localized the HE at a
site adjacent to the hemangioblasts. Vogeli et al. [21] exploited advancements in single-cell
resolution fate mapping of the late blastula and gastrula of zebrafish and confirmed the
existence of hemangioblasts in vivo via the emergence of the bi-potential progenitors,
which were capable of generating both hematopoietic and endothelial cells adjacent to the
lining of the ventral mesoderm. The in vitro transformation of hemangioblasts/blast
colony-forming cells into hematopoietic cells was characterized as a two-step process.
Initially, the hemangioblasts generated a tightly adherent cell layer, which primarily
expressed endothelial cell markers (thus comprising a transitory HE stage) after 24 h,
later, at 36—48 h of culture, these cells became non-adherent, rounded, and initiated the
formation of hematopoietic blast colonies [20].

3.2.1.5 Transition from Hemogenic Endothelium to Definitive Hematopoietic
Progenitors or Pre-hematopoietic Stem Cells (Pre-HSCs)

Before final differentiation into HSCs, a second intermediate stage of hematopoietic
precursor cells (pre-HSCs) arises from the HE. These pre-HSCs are found at various
sites within the embryo, including the dorsal aorta, the vitelline and umbilical arteries,
the yolk sac, and the placenta [22]. Runt-related transcription factor-1 [Runx!, also known
as core-binding factor subunit alpha 2 (Cbfa2) and acute myeloid leukemia 1 protein
(AMLI)] is a critical factor that promotes differentiation of these hematopoietic progenitors
from the HE; mutations in this gene are associated with numerous blood disorders.

3.2.1.6 Development and Differentiation of HSCs

Once sites of definitive hematopoiesis have been established, HSCs will maintain them-
selves and also have the capacity to differentiate into hematopoietic progenitor cells
(HPCs); these latter cells ultimately give rise to multipotent progenitors (MPPs) and
provide the embryo/fetus with the blood cell lineages, which are essential to support
rapid growth and development. While the MPPs gradually lose their self-renewal potential,
they maintain their capacity to promote multipotential differentiation into adult
hematopoietic [23].

3.2.1.7 Cell Fate Choice
Upon undergoing cell division, HSCs can proceed along two distinct pathways; they can
undergo self-renewal to produce new HSCs or they can differentiate and produce daughter
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cells that have the capacity to mature into committed blood cells and cell lineages [24].
Once HSCs divide, they have the option of proceeding along one of several downstream
cell fate pathways; the choice is made during the process of cell division. In this regard,
symmetric division, asymmetric division, and symmetric commitment are among the
possible patterns resulting from HSC division. Asymmetric division permits HSCs to
balance their capacity for self-renewal with commitment and differentiation. A single
HSC can give rise to two daughter cells with different functions, cell cycle kinetics, and/
or multilineage capacity using a strategy called clone splitting [25]; this mechanism
generates one cell that is committed to differentiation and another that maintains the
capacity for self-renewal and HSCs pool. By contrast, symmetric division of HSCs gives
rise to two daughter cells of the same type and potential. In other words, symmetric division
can generate either two stem cells that remain capable of self-renewal or two progenitor
cells that have completed their first step toward commitment and differentiation. These
strategies are both tightly controlled to achieve a critical balance between self-renewal and
differentiation [26]. Whereas, symmetric commitment is an essential pathway of cell
division when rapid regeneration of damaged tissue is required, as both daughter cells
can generate committed hematopoietic progenitors [27].

3.3  The Evolving Concept of the Hematopoietic Stem Cell

Concepts focused on our understanding of HSCs have undergone significant evolution;
HSCs were the first stem cells to be discovered, and, due to their importance with respect to
treatment of blood and neoplastic diseases, these cells were the first to be used clinically
through BM transplantation. As such, HSCs have been the subject of substantial interest
and remain of critical importance in research programs focused on biomedical sciences and
regenerative medicine.

3.3.1 Properties of HSCs

3.3.1.1 Self-Renewal

HSCs undergo self-renewal to maintain the pool of undifferentiated cells throughout the
life of the organism while preserving their capacity to differentiate [28]. Most of HSCs
remain dormant; this serves to preserve balanced hematopoiesis and to protect the pool of
HSC from succumbing to exhaustion. Only a finite number of HSCs enter the cell cycle and
differentiate and mature into blood cells [29]. Several pathways are involved in promoting
HSC self-renewal; we consider here the pathways that are most critical and best
characterized. Among these, Notch-mediated signaling plays an important role in
supporting HSC-mediated self-renewal. Activation of the Notch pathway by the ligands
Delta and Jagged led to increasing HSC pool in vivo via enhancing the capacity for self-
renewal (as evaluated by sequential BM transplantation experiments) and prevented
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differentiation in vitro [30]. Importantly, Notch signaling is also a critical mechanism
underlying osteoblast-mediated support for HSCs; osteoblasts activated by parathyroid
hormone expressed Jagged-1 and promoted increased capacity for self-renewal among
HSCs in experiments carried out in vivo [31]. Also important is c-Myc, a transcription
factor and an oncogene that has been described as a master regulator of genes involved in
protein synthesis, cell cycle, and cancer metabolism [32]. Activation of c-Myc occurs
downstream of both Notch and homeobox family member HoxB4 signaling; this pathway
supported in vitro self-renewal of murine Lin~Sca-1"HSCs cultured with stem cell factor
(SCF), Fms-related receptor tyrosine kinase 3 (FIt3) ligand, and interleukin (IL)-6 for
28 days via upregulation of cell cycle genes (c-myc, cyclin-D2, cyclin-D3, cyclin-E, and
E2F1) and increased telomerase activity [33].

The Wnt signaling pathway is also indispensable for the regulation of HSCs; forced
expression of f-catenin, a core component of the Wnt signal transduction pathway, led to a
100-fold increase in the number of cultured HSCs and increased expression of both Notch-
1 and HoxB4 [34]. Wnt3a is an essential factor promoting self-renewal of HSCs; deficiency
of Wnt3a led to irreversibly impaired hematopoiesis due to reduced numbers of HSCs and
reductions in their capacity for long-term repopulation [35]. However, there are contradic-
tory data vis a vis Wnt and its role in promoting HSC regulation,; it is clear that the role of
Wnt pathway in hematopoiesis is complex and will require ongoing and careful explora-
tion. Indeed, Luis et al. [36] recently reported that different levels of Wnt activation led to
different outcomes with respect to HSC regulation. Specifically, self-renewal required only
limited activation of Wnt signaling, while hematopoietic differentiation resulted from
intermediate levels; once levels exceeded those associated with physiologic activation,
both self-renewal and differentiation were impaired.

Smad-mediated signaling is another important pathway, which regulates hematopoiesis.
Ligands associated with this pathway include those of the transforming growth factor-f
(TGF-p) family, which includes TGF-p and bone morphogenetic proteins (BMPs) among
other factors. TGF-p is a potent inhibitor of HSC growth and is considered to be an
important regulator of HSC quiescence in vivo [37]. TGF-B-related inhibition is probably
related to altered levels of cytokine receptor expression on HSCs together with the
upregulation of cell cycle inhibitors, including p21, p27, and p57 [38—40]. By contrast,
BMP-4 promoted self-renewal of cultured HSCs in vitro, while diminished levels of BMP-
4 levels facilitated their differentiation [41].

Fibroblast growth factor (FGF) signaling has also been implicated in the regulation of
HSC development and function. Both FGF-1 and FGF-2 support long-term culture (LTC)
and the repopulation potential of HSCs identified in unfractionated BM cells; however,
these factors were ineffective in experiments performed with Lin~Sca-1*¢-Kit"HSCs [42].
Deletion of FGF receptor 1 (Fgfrl) had no apparent impact on steady-state hematopoiesis;
however, recovery was impaired in these mice in response to BM injury with 5-fluorouracil
(5FU) [43]. This research group also reported that deletion of Fgf-2 also had no impact on
steady-state hematopoiesis, although this factor proved to be essential for HSC/HPC
proliferation and recovery via its capacity to induce the expansion of stromal cells, increase
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the production of SDF-1, and suppress the expression of CXCL12 in BM [44]. Likewise,
FGF-mediated signaling was essential to suppress BMP activity in the AGM region during
embryogenesis to establish an HSC niche; these actions were mediated via activation of
BMP antagonists noggin2 and germlinla [45]. Taken together, current findings suggest
that FGF regulates hematopoiesis and HSCs indirectly via its role in supporting BM
stromal cells.

Regulation of hematopoiesis by the insulin-like growth factor (IGF) pathway has also
been explored; however, current findings are contradictory in nature. For example, while
some studies revealed that IGF-1 functioned as a “silent killer” of pluripotent stem cells
upon prolonged exposure [46], others reported that IGF-1 supports the osteoblastic niche
and leads to improved levels of long-term HSC engraftment [47]. Moreover, IGF-binding
protein 2 (IGFBP2) was described as an important factor serving to promote HSC survival
[48].

The involvement of all these pathways provides redundancy in the process of HSCs self-
renewal, probably ensuring that if one pathway has problems, other pathways could
compensate/cover up the deficiency in order to maintain lifelong normal hematopoiesis.

3.3.1.2 Asymmetric Division

Asymmetric division results in two daughter cells that are not physically, molecularly, and/
or functionally identical. The fact that all mature blood cells originate from HSCs with a
single phenotype led to the assumption that both HSCs and HPCs were capable of
asymmetric division. This hypothesis was confirmed by the discovery of four distinct
segregating proteins, including CD53, CD62L/L-selectin, CD63/lamp-3, and CD71/trans-
ferrin receptor, and their roles during mitosis of in vitro cultured CD34*CD133* HSCs/
HPCs [49]. Furthermore, HSCs (c-kit+Sca-1+Lin7/ lo CD347) isolated from transgenic
Notch reporter mice (wherein green fluorescent protein is highly expressed in putative
HSCs and undergoes downregulation as the cells which begin to differentiate) were capable
of both symmetric and asymmetric division [50].

In this context, a first-level asymmetric division occurs when HSCs choose to undergo
division into two daughter cells; one of the daughter cells serves to maintain the pool of
undifferentiated HSCs and the other generates a progenitor cell that is no longer capable of
self-renewal and that has initiated the differentiation process (i.e., an HPC). Given that
HSCs have the capacity to generate all hematopoietic lineages, other differentiated
progenitors will result from differential activation by cytokines or growth factors (as will
be discussed later in this chapter); these observations contribute to the second level of
asymmetric division. The differentiating daughter cells will continue to grow and to
undergo additional asymmetric divisions so as to generate single-potential progenitor
cells; these progenitors then divide symmetrically to generate the appropriate blood cell
lineage.
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3.3.1.3 HSC Heterogeneity

HSCs were the first stem cells to be isolated and characterized; they were initially
considered to be a homogeneous population of cells, a perception that persisted for many
years. However, due to recent technological advances, including functional assays,
immunophenotyping, and genetics, this perception has changed. The HSC pool is now
known to be heterogeneous. Interestingly, differences reported with respect to their capac-
ity for in vivo repopulation and transplantation were largely due to the properties of distinct
HSC subfractions; among these differences, the distinct HSC subfractions can promote
differences in reconstitution kinetics, duration of repopulation, differentiation potential,
cell cycle status, and the capacity for self-renewal [51-53]. As but one example, use of a
flow-assisted cell sorting technique revealed differential expression of phenotypic markers
associated with the signaling lymphocyte activation molecule (SLAM) family, including
CD150, CD48, CD229, and CD244, in what was previously assumed to be a highly
purified, homogeneous pool of Kit"Sca®lin~ HSCs, also known as KSL cells. These
findings led to further subdivision of what was then understood to be a heterogeneous
population of KSL cells into more homogeneous HSC and HPC populations with different
capacities for self-renewal and repopulation [54]. An improved understanding of HSC
heterogeneity will promote the discovery of specific markers for appropriate
subfractionation of HSCs; this will facilitate an improved understanding of their localiza-
tion within distinct BM niches and will likewise improve the accuracy of current fate
mapping and lineage-tracing approaches.

Potential Factors Contributing to HSC Heterogeneity [55]:

* Differences with respect to embryonic origin: During early embryonic development,
both pre-HSCs and HSCs originate from distinct mesodermal and/or endothelial cells
detected within sites associated with primitive hematopoiesis.

» Different developmental signals: Different inductive signals could be generated at
unique embryonic sites, including the yolk sac, AGM, liver, or developing placenta.
Cells may respond to different signals encountered during HSC migration between the
multiple embryonic sites and/or from within the circulation.

* Intrinsic factors: In the absence of external stimuli, HSCs may have the capacity to
control their lineage commitment and heterogeneity by upregulating or downregulating
individual or groups of genes and/or receptors, thereby facilitating differential responses
to external stimuli.

* Microenvironmental and extrinsic factors: HSCs and their progenitors are detected in
distinct locations within the adult BM; each location may be capable of activating HSCs
in a different fashion, depending on the signals, factors, and stromal cell types present
within the tissues.

3.3.1.4 Plasticity
Plasticity is a critical feature that defines the nature of HSCs; this term implies that a stem
cell can transcend its lineage boundary and give rise to different cells and tissues. The past



3 Hematopoietic Stem Cells and Control of Hematopoiesis 79

four decades witnessed many reports of the capacity of HSCs to differentiate into cell types
typically associated with other tissues, including those that are not only mesodermal but
also ectodermal and endodermal in origin; these cells include the muscle, heart, brain, and
liver. As such, HSCs were perceived as a feasible, ethical, and promising source of raw
material, which might be used to develop cell-based therapies for various diseases [56—59].
However, the limits of HSC-associated plasticity have recently been challenged. For
example, many of these studies featured cells that were not pure populations of HSCs
but a mix of different cells, also, many of these studies focused only on phenotypic markers
and did not include functional analyses or in vivo tracking of these cells or their progeny
[60, 61]. Thus, controversies remain as to whether or not HSCs possess this profound
degree of flexibility.

However, clearly, HSCs maintain intra-hematopoietic and/or hematopoietic lineage
plasticity; in other words, it is clear that committed hematopoietic cells are able to be
reprogrammed to facilitate production of blood cells from another lineage. As an example
of this phenomenon, overexpression of the GATA-1 transcription factor in murine myeloid
leukemia cells led to their transformation into erythroid and megakaryocyte-like cells; this
is largely understood as proof of myeloid—erythroid plasticity [61], together with various
other similar examples [62]. Lineage plasticity may also contribute to HSC heterogeneity
as discussed in Sect. 3.3.1.3.

3.3.1.5 Migration

As discussed in an earlier section, HSCs migrate from one anatomical site to another during
embryogenesis until ultimately reaching sites of adult hematopoiesis; well-regulated and
active hematopoiesis was maintained at each site. In mammals, HSCs first appear in the
yolk sac and then migrate to the AGM region before reaching the fetal liver; as a final step,
these cells take up residence in the BM. Other species feature alternative sites of lifelong
active hematopoiesis; while adult hematopoiesis takes place in the long bones and the
spleen of mice [63], this process takes place in the liver in frogs [64], and in the kidneys of
zebrafish [65].

Even after the HSCs reach sites that maintain adult hematopoiesis, some HSCs and
HPCs undergo constant migration from this niche into peripheral circulation and back.
Interestingly, peripheral blood and lymph both contain twice as many HSCs/HPCs early in
the morning when compared to later hours at night; these results suggest that their release is
governed by a circadian thythm [66—68]. In addition, more circulating HSCs/HPCs were
identified during intense exercise [69], and secondary to acute myocardial infarction-
induced inflammation [70] and among patients with cardiovascular disease [71].

Several approaches have been used successfully to induce this migratory behavior in
vivo. For example, CXCR4 receptor blockade with the selective agent, AMD 3100, led to
deactivation of signaling mediated by CXCL12 (also known as stromal cell-derived factor-
1 or SDF-1). This blockade promoted mobilization of HSCs and HPCs from their BM
niches and ultimately their release into the circulation [72]. Granulocyte colony-stimulating
factor (G-CSF) also mobilizes HSCs and HPCs from their BM niche via various means
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[73], including activation of c-kit/kit ligand (also known as SCF) and counteracting the
impact of very late antigen-4 (VLA-4, also known as a4f1 integrin) and its ligand vascular
cell adhesion molecule-1 (VCAM-1). G-CSF also counteracts signaling via the CXCL12/
CXCR4 axis; it serves to suppress osteoblast maturation and expression of CXCL12,
leading to a state wherein HSC quiescence is maintained in the BM niche [73]. Further-
more, hypoxia was also implicated in this process; a gradient of hypoxia-inducible factor-1
(HIF-1) promoted the upregulation of CXCL12 (SDF-1) expression and the migration and
homing of HSCs/HPCs into ischemic tissues [74]. Accordingly, mobilization of HSCs/
HPCs has been targeted clinically using CXCR4 antagonists, G-CSF, or erythropoietin to
generate as much as a 100-fold increased yield of HSCs and HPCs from peripheral
circulation to improve stem cell transplantation outcomes in clinical practice [75]. It is
thus clear that “quiescent” HSCs actively migrate and return to their original niches; this
raises the question as to whether HSCs “choose” their niche and/or whether their niche
attracts and calls to them. This question calls for further investigation.

3.3.2 Other Sources of HSCs

As HSCs have extensive migratory potential, it was plausible to consider the possibility
that they might reside outside their BM niches. Indeed, HSCs and HPCs are found in both
peripheral blood (PB) and umbilical cord blood (UCB) as rare populations of cells
(typically 1:100,000 when defined as CD34" CD38  CD45RA™~ CD90* CD49f"
Rhodamine'®) that are capable of colony formation in vitro and long-term repopulation in
vivo [76, 77].

One of the earliest clues regarding the presence of HSCs and HPCs in the peripheral
circulation was revealed from an experiment carried out in 1965. In this study, mice tails
were shielded during whole body irradiation and the spleen was recolonized by
hematopoietic cells from the tail [78]. Several subsequent studies reported successful
hematopoietic recovery in response to administration of hematopoietic cells from PB in
baboons, dogs, and humans [79-83]. As discussed earlier, mobilization of HSCs into the
peripheral circulation is now an approved clinical practice and is used to increase the yield
of HSCs for subsequent transplantation.

Another important source of HSCs is UCB. The first description of the existence of
HSC:s at this site was in 1978 in a study that reported that myeloid forming colonies could
be generated in vitro from cultured UCB cells [84]. However, important differences were
reported that distinguished HSCs/HPCs isolated from UCB from those characterized in
BM. Among these differences, UCB HSCs (CD34"CD38 ") responded more effectively to
hematopoietic cytokines and generated seven times as many progeny cells as did BM HSCs
[85].
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3.3.3 Characterization of HSCs

Characterization of HSCs depends on the expression of various cell surface markers, in
addition to functional assays (in vitro and in vivo).

3.3.3.1 Cell Surface Antigen Markers

Cell surface antigens are widely used to characterize various hematopoietic cells; however
these markers are not exclusive for HSCs or HPCs, as some are normally expressed on
other cells of the body. However, a combination of certain markers is essential for the
isolation of relatively pure HSCs population, commonly used are CD117"€"Sca-1*Lin”
lowp9p'*™~ [86], Lin~ CD34"CD38 Rhodamine'" (77), or Sca-1*Lin"CD117*CD34~"*
[51]. Lineage (Lin) negative cells are hematopoietic cells that do not express any of mature
blood cells’ markers; such as, CD3, CD11b, CD45R, Gr-1 (Ly6G), or Ter119 (Ly76).
Table 3.1 shows cell surface markers known to be expressed on HSCs and various
progenitors.

3.3.3.2 In Vivo Assays for the Evaluation of Hematopoietic Stem and
Progenitor Cells

Establishing assays to identify the different populations of progenitor cells of HSCs
progressed from stem cells to their downstream functional cells is a major challenge. It
has been found that the quantitative measurement of the potential of multipotent HSCs to
proliferate could be measured by in vivo colony-forming units assay for spleen (CFU-s),
which was first established by Till and McCulloch. They used this in vivo functional assay
for further studying of the macrophages, granulocytes, erythroid cells, and megakaryocytes
found in the spleen of irradiated animals in order to know which primitive progenitor cells
in mouse BM has the ability to form them [97]. Interestingly, it has been shown that
multiple CFU-s cells can be formed from one CFU-s cell indicating that CFU-s shows a
high level of self-renewal [98]. The multilineage property of CFU-s made it to be identified
as the most primitive HSCs along many years. Furthermore, CFU-s cells have shown a
possession of different capacities of self-renewal that can form collectively a heterogeneous
cell population. This can be reflected through studying CFU-s-8, that can form the eighth
day’s colonies in the studied irradiated spleen, and CFU-s-12, that can form the twelfth
day’s colonies in the studied irradiated spleen, which in turn shows a higher primitivity of
CFU-s-12 than CFU-s-8 [98].

The competitive repopulation assay is considered the gold standard for the quantitative
measurement of HSCs activity [99] as shown in Fig. 3.2. In this assay, the number of stem
cells is expressed as competitive repopulating units (CRUs) and has been measured
through comparing the repopulation activity of HSCs from unknown source against
other HSCs with known number. The limiting dilution competitive repopulation assay
(LDCRA) allows for higher accuracy in determining the CRU frequency or HSCs fre-
quency [100] in addition to the ability of limiting dilution of HSC transplantation after the
transplantation of small numbers of HSCs into marrow-ablated recipient mice for higher
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Fig. 3.2 Functional characterization of HSCs. Xenotransplantation is used to detect repopulating
SCID cells using non-obese diabetes/severe combined immunodeficiency (NOD/SCID) or NOD with
common gamma receptor deficiency (NOG/SCID) mice subjected to sublethal radiation. The com-
petitive repopulation assay included congenic donor-derived test cells that were expected to contain
HSCs along with synergic (host-type) competitor cells that were both transplanted in mice subjected
to sublethal irradiation

sensitivity in the measurement. In this competitor assay, single-hit Poisson distribution is
used for the estimation of HSCs frequency which obtained through making dilution series
of HSCs of unknown source and comparing it against a defined number of BM cells, then
in each cell dose, the number of negative mice which cannot make HSCs repopulation is
measured [101].

3.3.3.3 In Vitro Assays for the Evaluation of Hematopoietic Stem
and Progenitor Cells

Colony-Forming Unit Assays
In this assay, the number and types of mature cells identified on the basis of morphological
and phenotypic criteria are used to classify and count the colonies derived from progenitor
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Fig. 3.3 The hematopoietic hierarchy tree, showing the classical hematopoiesis hierarchy and
specific clonal analysis for each cell type

cells. Multipotential and lineage-restricted progenitors of the erythroid, granulocytic, and
macrophage lineages are detected most frequently by colony-forming unit (CFU) assays
(Fig. 3.3); megakaryocyte and B lymphoid progenitors can be identified under selective
culture conditions. Most of CFUs detected in BM, blood, and other tissues are progenitors
with restricted capacity for self-renewal and hematopoietic repopulating potential in vivo
[102].

Long-Term Cultures

LTC assays are used to detect and enumerate HPCs and permit more accurate assessment of
HSC:s self-renewal than CFU assays. These assays were initially established for primitive
progenitors of myeloid (i.e., granulocyte, macrophage, erythroid, and megakaryocyte)
lineages [103, 104]. They were later modified to support the growth of B lymphoid and
NK cell progenitors [105, 106]. Hematopoietic cells are cultured on an adherent monolayer
of primary stromal cells or on immortalized stromal cell lines. Specialized culture media
are used to sustain functions, including survival, self-renewal, proliferation, and differenti-
ation of long-term repopulating HSCs for a period of several weeks [107, 108]. The cells
identified in LTC assays are recognized as LTC-initiating cells (LTC-ICs); these cells have
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the capacity to produce differentiated CFUs in these stroma-supported cultures for at least
5 weeks (>4 weeks for mouse cells). This design guarantees that any CFUs that existed in
the initial cell sample develop into terminally differentiated progeny [107].

3.4 Regulation of Hematopoietic Stem Cells

It is essential to maintain the HSCs pool in order to have the capacity to replenish the
circulation with mature blood cells throughout life. As such, it is critical to maintain a fine
balance between self-renewal and differentiation.

3.4.1 Regulatory Molecules and the HSC Niche

HSCs are regulated by both intrinsic and extrinsic factors; both types of factors create
specific microenvironmental niches wherein HSCs grow and develop [109]. For example,
stem cell leukemia (SCL) is a transcription factor, which plays a critical role in regulating
HSC quiescence, survival, and self-renewal [110]. SCL is involved in controlling long-
term competence of HSCs and their Go—G; transition via direct regulation of the expression
of Id1 and the cell cycle regulator or Cdknla; both of these factors contribute to HSC
quiescence [111]. Cyclins and cyclin-dependent kinases are also involved in the regulation
of HSCs; for example, cyclin-dependent kinase (CDK)6 regulates the timing of HSC exit
from the quiescent state. Self-renewing long-term HSCs (LT-HSCs) do not express CDKG6,
while non-renewing short-term HSCs (ST-HSCs) express high levels of CDK6, which
facilitates their rapid entry into the cell cycle in response to mitogenic stimulation.
Enforced expression of CDK6 in LT-HSCs forces their exit from the quiescent state
[112]. Musashi-2 (Msi2) is another regulatory protein that plays a key role in regulating
HSC quiescence and in maintaining the balance between symmetric and asymmetric
divisions and the capacity for self-renewal required to maintain normal hematopoiesis
[113]. Moreover, telomerase is expressed at low levels in HSCs isolated from adult BM;
levels of this enzyme increase once HSCs begin to differentiate and proliferate [114].

Epigenetic regulation constitutes another important regulatory feature. Treatment of
HSCs with different chromatin-modifying agents resulted in either maintenance (i.e., in
response to valproic acid) or expansion (i.e., in response to trichostatin A and 5-aza-2’-
deoxycytidine) [115]. Moreover, Bmi-1, a member of the polycomb protein group that
promotes transcriptional suppression via histone modifications and chromatin remodeling,
was identified as a crucial epigenetic determinant for maintaining the capacity for HSC
self-renewal [116]. Knockdown of Bmi-1 had no impact on the development of the
embryonic hematopoietic system but served to reduce the capacity for self-renewal
among HSCs and their long-term repopulation capacity, leading to postnatal pancytopenia
[117].
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The HSC niche is the environment surrounding the cells; the HSC niche provides major
contributions to their external regulation. This niche has many different cell types, includ-
ing stromal cells (e.g., mesenchymal stromal cells, osteoblasts, fibroblasts, adipocytes, and
endothelium) and supporting cells (e.g., lymphocytes, macrophages, and neurons); other
components include the extracellular matrix, cytokines, and growth factors. The niche thus
provides suitable conditions that support maintenance and differentiation of HSCs. It was
recently reported that HSCs may be located in endosteal, perivascular, and vascular niches
in the BM microenvironment [118]. Stromal cell-derived factor-1 (SDF-1 or CXCL12) is
an important example of a stromal factor produced in the adult marrow by osteoblasts,
endothelium, and other perivascular stromal cells that have proved to be essential vis a vis
HSC viability and migration [119]. It has recently become clear that CXCL12-CXCR4
signaling is a critical feature underlying migration of HSCs and HSPCs into the BM [68,
120]; disruptions in this signaling pathway lead to HSC mobilization and depletion from
the BM [72]. Other important extrinsic factors that support HSC maintenance and expan-
sion include SCF, thrombopoietin, angiopoietin-1, angiopoietin-like proteins, IGF-2, and
fibroblast growth factor-1 [121, 122]. Furthermore, in addition to inflammatory mediators,
the ambient oxygen level and signals from the central nervous system also contribute to the
regulation of HSC fate.

3.4.2 Role of Inflammation

Inflammation leads to increased numbers of blood cells in the peripheral circulation,
especially leukocytes; this is directly related to BM output. Inflammatory mediators and
cytokines act directly within the BM microenvironment to dictate the fate of HSCs and
their progeny. Therefore, it should not be surprising that inflammation plays an important
role in regulating hematopoiesis. Of the vast array of inflammatory cytokines, interferons
(IFNs), interleukins (ILs), tumor necrosis factor (TNF), and Toll-like receptor ligands
(TLR ligands) are among the most prominent of the factors that regulate HSC self-renewal,
differentiation, and repopulation potential [123]. Table 3.2 includes a list of different
cytokines and their impact on HSC self-renewal and differentiation.

HSCs (phenotypically identified as Kit*Sca*lin " CD150"CD48 ") escaped quiescence in
response to IFNa administration; these cells actively entered the cell cycle and began to
proliferate. This response was achieved via the upregulation of both signal transducer and
activator of transcription 1 (STAT]1, a transcription factor) and stem cell antigen-1 (Sca-1, a
cell surface protein). Moreover, HSCs devoid of Sca-1, STATI, or IFNa receptor were
unresponsive to IFNa stimulation [135]. Furthermore, loss of interferon regulatory factor
2 (IRF2, a transcriptional repressor of IFN) led to a larger fraction of cycling/proliferating
HSCs with reduced potential for repopulation; the latter was restored after the IFNa
receptor was disabled [136]. IFNYy is typically produced in response to chronic infection;
this pro-inflammatory mediator has also been reported to promote an increase in in vivo
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Table 3.2 TImpact of various cytokines on maintaining quiescence and/or capacity for self-renewal
of HSCs

Hematopoietic cytokine Function on HSCs References

Stem cell factor (SCF, steel factor, mast Maintains and stimulates self- [124]

growth factor or kit ligand) renewal

Thrombopoietin (TPO) Maintains and stimulates self- [125]
renewal

Chemokine receptor type 4 (CXCR4) Self-renewal inhibition and [126]
quiescence induction

Granulocyte-colony stimulating factor Quiescence induction and [127, 128]

(G-CSF) stimulation

Angipoietin-1 (Ang-1) Self-renewal induction [129, 130]

Interleukin-3 (IL-3) Self-renewal and survival [131, 132]
maintenance

Interleukin-6 (IL-6) Enhances the proliferation and [133]
differentiation

Fms-related receptor tyrosine kinase 3 ligand  Stimulates the proliferation and [134]

(F1t3 ligand) differentiation of HSCs

proliferation and also the repopulation potential of LT-HSCs (Kit"Sca’lin CD150") via
activation of IFNy receptor 1 and STAT1 [137].

Various cytokines and interleukins serve to regulate hematopoiesis [138] by acting on
HSCs and other hematopoietic progenitors. In an attempt to determine the most important
mediators that promote self-renewal of putative BM HSCs (CD34*CD387), 16 cytokines
were tested alone or in combinations, including IL-1, IL-3, IL-6, IL-7, IL-11, IL-12, TNF«,
Flt3 ligand (FL), thrombopoietin (TPO), erythropoietin, G-CSF, GM-CSF, SCF, macro-
phage inflammatory protein la (MIP-lat), nerve growth factor p (NGF-f), and leukemia
inhibitory factor (LIF) [124]. IL-3, SCF, and FL all served to increase the capacity for self-
renewal among putative HSCs when each was used alone (the most effective was FL); the
combination of three factors was even more effective. After stimulation of HSC differenti-
ation by TPO, IL-3 was the most effective in this role when used alone or in combination
with SCF, FL, and either IL-6, G-CSF, or NGF-p. TNFa had a negative impact on the
capacity of HSCs to undergo self-renewal [124].

BM HSCs (Kit*Sca*lin” FIk2 "or Kit"Sca*lin IL7Ra ") express the pattern recognition
receptors, Toll-like receptors 2 and 4. In vitro activation by their respective ligands
(Pam3CSK4 and lipopolysaccharide [LPS], respectively) led to activation of the MyD88
downstream intracellular adapter protein; this ultimately led to myeloid expansion [139].
Moreover, repeated in vivo administration of small doses of LPS resulted in TLR4
activation and defective self-renewal and repopulation potential of HSCs [140]. CD34*
HSCs/HPCs isolated from human BM expressed TLR4, TLR7, TLRS, and TLR9 [141],
and human UCB cells expressed TLR1, TLR2, TLR3, TLR4, and TLR6 [142]. The
activation of these TLRs on isolated progenitor cells promoted myeloid differentiation.
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G-CSF is essential for normal granulopoiesis and functions via stimulation of the
common myeloid progenitors. The absence of G-CSF limited the repopulation potential
of BM cells and reduced their contributions to the myeloid lineage [143]. By contrast,
enhanced G-CSF signaling promoted by a mutant G-CSF receptor was associated with
higher levels of HSC proliferation via upregulation of the transcription factor, STATS
[144]. Administration of G-CSF also led to an increased number of HSC
(Kit"Sca’lin " CD34 Flk2~CD41 or Kit*Sca'lin " CD150*CD48 CD41" cells) both in
the circulation and in the BM, although it resulted in a reduced potential for repopulation.
These effects were achieved via activating both TLR and G-CSF receptors; as noted earlier,
TLR2, TLR4, and MyD88 signal adapter contribute to HSC expansion, loss of repopula-
tion activity, and quiescence [145].

The role of TNF with respect to the regulation of HSCs is complex and not yet well-
understood. In vitro, the administration of TNFa resulted in decreased proliferation and
repopulation potential of putative HSCs (CD34*CD38 "°™); these findings resulted from
the activation of the p55 TNF receptor [146]. In contrast, in vivo findings remain somewhat
contradictory. Interestingly, deletion of two TNF receptors (Tnfrsfla and Tnfrsflb, also
known as p55 and p75, respectively) resulted in no changes in the numbers of HSCs
(Kit*Sca*lin " FIk2™) but yielded improved long-term repopulation potential [147]. In
contrast, older mice devoid of the Tnfrsflaor pS5 receptor (but not of Tnfrsf1b or p75)
showed increased numbers of erythroid and myeloid progenitors and a four-fold reduction
in the repopulation potential of HSCs [148]. As such, the complex pleiotropic functions of
TNF and its role in host immunity might be extended to the regulation of HSCs as well.

In addition to the direct effects of these inflammatory mediators, many of them have an
indirect impact on HSC regulation via actions targeting the BM environment. G-CSF acts
indirectly on HSCs by suppressing CXCL12 expression in BM niche stromal cells; this
leads to mobilization of HSCs into the circulation [149]. Likewise, TLR-mediated activa-
tion of freshly isolated BM CD34" progenitors in vitro via ligands including immune-
stimulating siRNAs or the TLR7/8 ligand R848 led to the production of many cytokines
(IL1-p, IL-6, IL8, TNFa, GM-CSF) and induced myeloid differentiation [141]. This
differentiation pathway may be promoted by indirect means, via the actions of newly
released cytokines in coordination with direct TLR immune-mediated signaling.

Finally, the duration of exposure to inflammatory mediators and the chronicity of the
associated inflammatory pathology should also be considered. Short-term inflammatory
signals may be beneficial with respect to activating hematopoiesis; however, chronic
inflammation can exhaust the BM and the HSC pool [135]. Prolonged inflammation may
thus result in BM failure [150] and potentially malignant transformation [151]. Compelling
new evidence suggests that HSCs can escape inflammatory exhaustion by re-establishing
quiescence [152]. In the case of IFNs, this response involves the transcription factor IRF2
[136] and immunity-related GTPase family M protein-1 or Irgm-1 [153]; however, the full
mechanisms underlying this response have yet to be identified.
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3.4.3 Role of Oxygen/Hypoxia

Oxygen tension has been recently proposed as a regulator of HSCs and HPCs; the BM
niche wherein HSCs and HPCs reside has been described as hypoxic [154, 155]. Recent
studies revealed that HIF-1a, a factor that undergoes upregulation in response to hypoxic
conditions, promotes the differential expression of cell proliferation and survival genes;
these include IGF, cathepsin D, matrix metalloproteinase-2, urokinase plasminogen acti-
vator receptor, fibronectin-1, cytokeratin (CK)-14, CK-18, CK-19, vimentin, transforming
growth factor a [156, 157], vascular endothelial growth factor (VEGF) [158], and erythro-
poietin [159]. Administration of G-CSF resulted in stabilization of HIF-1a and increased
production of VEGF in the BM [160]. HIF-1a resulted in increased levels of CXCL12 [74]
and elevated levels of CXCR4 receptor expression [161]; it also protects HSCs/HPCs from
damage caused by overproduction of mitochondrial reactive oxygen species [162].

3.4.4 Role of the Nervous System

The BM environment is heavily enriched with neuronal connections; as such, it has long
been proposed that the nervous system may also contribute to the regulation of the HSC
niche and likewise of hematopoiesis. Several P,-adrenergic signals were found to be
essential for G-CSF-induced mobilization of HSCs and HPCs; blockade of these signals
by 6-hydroxydopamine (i.e., via chemical sympathectomy) or by p-blockers such as
propranolol served to reduce G-CSF-induced HSC mobilization [68]. Neurotransmitters
such as norepinephrine also regulate hematopoietic cell migration via activation of Wnt
signaling in CD34" cells, by increasing Sca-1*c-Kit'Lin~ HSC mobilization [163], and by
increasing the expression of both CXCR4 and VCAM-1 [164].

3.4.5 Role of Apoptosis

Apoptosis plays an important role in promoting homeostasis. B-cell lymphoma 2 (BCL-2),
an anti-apoptotic protein, was overexpressed in an IL-3-dependent hematopoietic progeni-
tor cell line, the murine hematopoietic nonleukemic factor-dependent cell Paterson
(FDCP)-Mix. The transfected FDCP-Mix cells could be maintained in in vitro culture
without the need for additional IL-3; cells that had not undergone transfection died via
apoptosis in the absence of exogenous IL-3 [165]. Similar in vivo approach using BCL-2-
overexpressing transgenic mice revealed 2.4 times more HSCs in the BM when compared
to HSCs/HPCs from wild-type mice. Furthermore, the HSCs from BCL-2-overexpressing
transgenic mice experienced superior in vitro survival and similar in vivo engrafting
potential [131]; they were also capable of survival in response to lethal irradiation [166].
Both the in vitro and in vivo approaches suggested a role for apoptosis in regulating the
survival of HSCs/HPCs, although conclusive evidence is still needed.
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3.5 The Hematopoietic Hierarchy

The differentiation of HSCs to mature myeloid and lymphoid cells occurs in a stepwise
fashion beginning with multipotent, oligopotent, and bipotent cells and ending with fully
differentiated cells; this pathway forms the classical hierarchical tree of hematopoiesis
[167]. LT-HSCs are at the top of this hierarchy and represent a very small percent (up to
0.2%) of the entire BM cell pool [168], HSCs gradually lose their capacity for self-renewal
(ST-HSCs) and become more and more restricted with respect to their differentiation
potential. This tree eventually ends with functionally mature blood cells, as shown in
Fig. 3.3.

However, current thinking suggests that the hematopoietic system developed in associ-
ation with mammalian evolution; as such, it will be difficult to constrict our current
understanding within the classical organization or hierarchical framework. Moreover, the
fact that self-renewing HSCs along with other committed progenitors comprise a large part
of the hematopoietic cell pool defies the idea of a simple hematopoietic hierarchy.
Importantly, recent evidence suggests that several committed single-lineage progenitors
were derived directly from multipotent HSCs; these observations highlight the fact that
HSCs have the capacity to produce blood cells in a flexible yet efficient manner [169, 170].
In newer hierarchical models, HSCs do not remain at the top of the hierarchy, but play an
overall more dynamic roles toward the goal of supporting normal lifelong hematopoiesis
[171].

3.6 Epigenetic Control Over HSCs

Epigenetics does not only play an important role during early development, but is also
essential for tissue homeostasis. The self-renewal or differentiation of HSCs depends on
different gene expression patterns, which are, in part, the result of epigenetic changes that
expose or conceal different genomic regions. Consequently, different chromatin-modifying
proteins, such as Polycomb-group (PcG) and Trithorax-group (TrxG) proteins, were
recently considered critical epigenetic regulators of HSC self-renewal and differentiation.
Of the PcGgroup, Polycomb complex protein 1 (Bmi-1) [116], Enhancer of zeste homolog
1 (Ezhl) [172] and Ezh2 [173] were shown to promote self-renewal of HSCs by
suppressing cell cycle inhibitors; and thus preventing cell cycle arrest, senescence, and
apoptosis. While Chromobox protein homolog 7 (Cbx7) [174] maintained self-renewal via
suppressing the expression of lineage-specific genes. Of the TrxG proteins, Mixed Lineage
Leukemia (MLL or Histone-lysine N-methyltransferase 2A) was essential for HSC self-
renewal and repopulation potential [175], and SET domain-containing protein 1A (SET1A
or Histone-lysine N-methyltransferase SETD1A) was shown to protect HSC self-renewal
during stress conditions via activating DNA damage recognition and repair pathways
[176]. In addition, marked epigenetic differences were found in aged HSCs contributing
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to their lower differentiation and repopulation potential [177]. Epigenetic modifiers that
play an important role in HSCs self-renewal or differentiation are described in Table 3.3.

The applicability of epigenetics was achieved by altering the chromatin structure of in
vitro cultured HSCs. A mixture of 5-aza-2’-deoxycytidine (5aza, DNA methyltransferases
inhibitor) and trichostatin A (TSA, histone deacetylase inhibitor) led to increasing putative
BM-HSCs (CD34%) self-renewal and repopulation potential [191]. In addition, valproic
acid (histone deacetylase inhibitor) enhanced the expansion of in vitro cultured putative
HSCs (CD34" cells) from BM, BP, or UCB [192].

3.7 Bone Marrow Transplantation (BMT)

The first experimental evidence of the stem cell theory was demonstrated by Ernest A.
McCulloch and James E. Till when they performed BM transplantation into irradiated mice
[97, 193]. Myeloid multilineage colonies were produced in the spleen of the transplanted
mice from these cells where the number of injected cells being proportional to the number
of colonies. The multilineage potential of single bone marrow cells (the so-called CFU-S,
Colony-Forming Unit in the Spleen) was confirmed by such experiments [98]. Neverthe-
less, these cells are not identified as true stem cells with a multipotent potential and self-
renewal capability, which in that case was limited. Henceforth, the first successful stem cell
transplantation was performed by E. Donnall Thomas on identical human twins in 1957
[194]. After this transplantation, the long-term repopulation with the production of new
blood cells was confirmed to be as a result of intravenous injection of bone marrow cells.
Moreover, transplantations were performed on Yugoslavian nuclear workers (whose bone
marrows were injured by irradiation) by the oncologist Georges Mathé [195] who also
performed successful allogeneic bone marrow transplantation on a leukemic patient [196].
For more than 50 years, patients with blood-related disorders have been treated with such
transplantations. Adult HSCs can now be exceedingly enhanced with a mixture of numer-
ous surface markers. Transplantation protocols in the case of many blood-related diseases,
such as leukemia, include different sources of HSCs such as bone marrow, cord blood, or
mobilized peripheral HSCs. However, major obstacles include the low number of HSCs in
these tissues. Furthermore, reproducing the reported in vitro conditions and permitting
proficient HSC expansion without prompting cell differentiation are still very complicated
[197].

Use of cord blood as a source of HSCs [198, 199] and new regimes which allowed
haploidentical transplantation [200] further facilitated current therapeutic approaches while
limiting the undesired consequence of graft-versus-host disease. These approaches are
increasingly making the option of allogeneic transplantation available to patients who
otherwise do not have a matched-related or volunteer-unrelated donor source of stem
cells as shown in Fig. 3.4.
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Table 3.3 Epigenetic modifiers that regulate HSCs self-renewal or differentiation

Protein [other names]

DNA (cytosine-5)-
methyltransferase 1
[Dnmtl, DNA
methyltransferase Hsal or
DNA MTase Hsal]

DNA (cytosine-5)-
methyltransferase 3 (A and B)
[Dnmt3a/b, DNA
methyltransferase HsalllA/B
or DNA MTase Hsalll A/B]
Methylcytosine dioxygenase
TET1

[Ten-eleven translocation 1
gene protein]

Isocitrate dehydrogenase
[NADP] cytoplasmic (IDH 1)
or mitochondrial (IDH2)
[Cytosolic or mitochondrial
NADP-isocitrate
dehydrogenase]

Polycomb complex protein 1
(Bmi-1)

Histone-lysine N-
methyltransferase EZH (1 and
2)

[Enhancer of zeste homolog 1
and 2, Ezh1 and 2]
Chromobox protein homolog 7
[Cbx7]

Chromobox protein homolog
2,4 and 8

[Cbx2 Cbx4 and Cbx8]

Histone-lysine N-
methyltransferase SETD1A
(SET1A or SETD1A)
Histone-lysine N-
methyltransferase 2A

[Mixed Lineage Leukemia,
MLL, MLLI1 or Trithorax-like
protein]

Gene

DNMTI

DNMT3
(A and
B)

TET (1
and 2)

IDH (1
and 2)

BMII

EZH (1
and 2)

CBX7

CBX2,
CBX4
and

CBX8

SETDIA

KMT2A

Effect on HSC

Required for HSCs self-renewal,
niche retention and progression from
multipotent to myeloid progenitors.
Deletion leads to pedigree skewing
into myelopoiesis and defective self-
renewal

Essential for HSCs self-renewal,
Dnmt3a deletion increases HSCs life
span

TET1 deficiency increases HSCs self-
renewal potential

TET2 deletion results in improving
HSCs self-renewal and improving
myelopoiesis

Required for TET?2 cofactors

Important for HSCs self-renewal

Ezh1 important for HSCs self-
renewal and prevents senescene
Ezh2 preserves self-renewal and
prevents exhasution of HSCs

Imporatant for self-renewal of HSCs

Overexpression leads to
differentiation and exhaustion of
HSCs

Protects HSCs self-renewal during
stress

Essential for HSCs self-renewal and
repopulation potential

References

[178, 179]

[180, 181]

[182, 183]

[184]

[116]

(172, 173]

[174]

[174]

[176]

[175, 185]

(continued)
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Table 3.3 (continued)
Protein [other names]

Histone-lysine N-
methyltransferase, H3 lysine-
79 specific

[DOT1-like protein, Histone
H3-K79 methyltransferase]
Histone H2A deubiquitinase
MYSM1

[Mysml, 2A-DUB, MPN
domain-containing protein 1]
Histone-lysine N-
methyltransferase SETDB1
[H3-K9-HMTase 4, ESET,
SET domain bifurcated 1]
Polycomb-group protein
ASXLI1

Fig. 3.4 Human HSC
transplantation therapy. HLA-
matched adult, cord blood or
haploidentical adult donor stem
and progenitor cells (usually
CD34" enriched cells) are
transplanted intravenously
following conditioning therapy
to permit engraftment of donor
marrow into the recipient

Gene
DOTIL

MYSM1

SETDBI

ASXLI

Effect on HSC References

Important for embryonic [186, 187]
erythropoiesis and maintenance of
adult populations of HSCs and HPCs

Involved in HSCs quiescence and [188]
self-renewal

Important for HSCs function [189]
Associated with polycomb [190]

chromatin-binding protein
Loss results in reduced self-renewal
and impaired hematopoiesis

—

HLA-

Qltched

Donor Stem Cells

\ Lin"CD34*CD38*

Haplo-
identical
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3.7.1 Diseases Currently Treated by HSCs

3.7.1.1 Multiple Myeloma

According to the Center for International Blood and Marrow Transplant Research
(CIBMTR), the majority of hematopoietic stem cell transplants are autologous. Overall
survival and progression free survival were amplified in patients younger than 65 years old
on a protocol of initial consolidation therapy with melphalan followed by autologous stem
cell transplantation and lenalidomide maintenance therapy [201]. Administration of high-
dose of melphalan plus stem cell transplantation demonstrated a favorable outcome
compared with consolidation therapy with melphalan, prednisone, lenalidomide (MPR),
and it also showed a better outcome in patients who received a maintenance therapy with
lenalidomide.

3.7.1.2 Hodgkin and Non-Hodgkin Lymphoma

In cases of recurrent lymphomas (HL and NHL) that showed no response to initial
conventional chemotherapy, using a protocol in which chemotherapy was followed by
autologous SCT showed favorable outcome. Schmitz and colleagues demonstrated, in a
randomized controlled trial, that a high-dose chemotherapy with autologous SCT resulted
in better 3-year outcome compared to aggressive conventional chemotherapy in relapsed
chemo-sensitive Hodgkin lymphoma [202]. However, there was not a significant difference
between the two groups in overall survival. According to CIBMTR, the number of HSC
transplant recipients comes second after multiple myeloma.

3.7.1.3 Acute Myeloid Leukemia (AML) and Myelodysplastic Syndrome (MDS)
In patients with AML who fail primary induction therapy and do not achieve complete
response, allogeneic SCT could improve outcome and prolong overall survival [203]. The
study recommended that early HLA typing for patients with AML could help if they fail
induction therapy and are considered for BMT. Allogenic stem cell transplant is considered
being curative in cases of disease progression and is only indicated in intermediate- or high-
risk patients with MDS.

3.7.1.4 Acute Lymphocytic Leukemia (ALL)

Allogeneic SCT is indicated in refractory and resistant ALL cases when induction therapy
fails for a second time in inducing remission. Some studies suggest an increased benefit of
allogeneic HSC transplant in patients with high-risk ALL including patients with
Philadelphia chromosome and those with t(4, 11) chromosomal translocation [204].

3.7.1.5 Chronic Myeloid Leukemia/Chronic Lymphocytic Leukemia
Combining hematopoietic SCT with available treatments like tyrosine kinase inhibitors has
shown high cure rates with low adverse risk profile. SCT is reserved for patients with the
refractory disease to first-line agents in CML.
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3.7.1.6 Myelofibrosis, Essential Thrombocytosis, and Polycythemia Vera
Allogenic SCT demonstrated an improvement in outcomes in patients with myelofibrosis
and those diagnosed with myelofibrosis preceded by essential thrombocytosis and polycy-
themia vera [205].

3.7.1.7 Solid Tumors

Autologous SCT is considered the standard of care in patients with germ cell tumor
(testicular tumors) that are refractory to chemotherapy (after the third recurrence with
chemotherapy). HSCT has shown promising outcomes in cases of medulloblastoma,
metastatic breast cancer, and other solid tumors [206].

3.7.2 Complications of HSCT

Most of the grafts used for HSCT are either whole bone marrow or sorted CD34™ stem and
progenitor cells. In both cases, the contamination of HSCs with other CD34" non-
hematopoietic cells, or even tumor cells, leads to higher incidence of graft-versus-host
disease (GVHD) and less graft-versus-leukemia (GVL) effects following allogeneic trans-
plantation [207]. On the other hand, the use of very pure HSCs populations was effective
with less GVHD [208, 209], however, it is rarely used in clinical practice, as this implies
more labor and importantly costs.

3.8 The Future

Research defining the nature and regulation of HSCs has permitted the manipulation of
hematopoiesis regulators in ways that have revolutionized the current treatment options for
blood disorders and the use of stem cell transplants. A deeper understanding of HSCs self-
renewal and differentiation mechanisms, the cell-fate choices, and intrinsic/extrinsic
regulators of HSCs is still missing. Novel outcomes from ongoing HSC research continue
to redefine and refine our knowledge and provide a venue for endless improvements in
HSC based clinical therapeutics. This includes improvements in HSCs isolation, labeling
and sorting, in vivo imaging, together with recent microfluidics, organ-on-chip and omics
approaches. For example, improved approaches that use gene-editing of HSCs to facilitate
the transplantation of “corrected” allogeneic/syngeneic cells, thus achieving personalized
therapy/medicine as shown in Fig. 3.5. However, important challenges remain, which
include, developing robust methods to maintain HSCs in vitro (mimicking their in vivo
niche) both to accelerate ongoing research and to increase cell numbers for large-scale
therapeutics [210].
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Fig. 3.5 Future directions and applications of HSC research including Ex-vivo stem cell expansion
and genome editing of HSCs

Take Home Messages

* Hematopoietic stem cells (HSCs) are pluripotent cells responsible for producing
all blood cell types via the process of hematopoiesis.

* Hemangioblast is an embryonic stem cell that gives rise to blood vessels and
universal blood stem cells (which give myeloid and lymphoid precursors).

— Myeloid precursors form several types of differentiated cells including red
blood cells (erythrocytes), platelets (megakaryocytes), mast cells, and
myeloblasts (basophils, neutrophils, eosinophils, monocytes).

— Lymphoid precursors form natural killer cells and lymphocytes (B and T
lymphocytes).

* Once HSCs divide, they have the option of entering any downstream cell fate
pathway giving different blood cell types as needed. Symmetric division, asym-
metric division, and symmetric commitment are considered the possible patterns
of division of HSCs.

e HSCs control their self-renewal and differentiation, and the fine balance is assured
by various intrinsic and extrinsic factors.

(continued)
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* Growth factors regulate the growth, differentiation, and function of cells of the
hematopoietic cells such as:

— Erythropoietin: stimulates red cells production.

— Thrombopoietin: stimulates platelet production.

— G-CSF: stimulates granulocyte production and activates neutrophil function.

e In order to characterize HSCs, an array of phenotypic markers should be used
together with functional assays.

e HSCT is a procedure where HSCs are given to a recipient with the intention of
repopulating/replacing their partially or totally damaged hematopoietic system;
after radiation, chemotherapy, or other BM damaging conditions.

— In autologous transplantation, the patient’s own HSCs are obtained and freeze-
stored for later use. After chemotherapy or radiation is complete, the harvested
HSCs are thawed and returned to the patient.

— In allogeneic transplantation, HSCs are obtained from a donor, ideally a
brother or a sister with similar genetic makeup. If the patient does not have a
suitably matched sibling, an unrelated person with a similar genetic makeup
may be used. Under some circumstances, a parent or a child who is only half-
matched can also be used; this is termed a haploidentical transplant.
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Abbreviations

AD-MSCs  Adipose-derived MSCs

AFP Alpha-fetoprotein

ang-1 Angiopoietin 1

ANG-2 Angiopoietin-2

ASCs Adult stem cells

BDNF Brain-derived neurotrophic factor
bFGF Basic fibroblast growth factor
BM Bone marrow

BM-MSCs Bone marrow-derived MSCs
BMP4 Bone morphogenetic protein 4
BPD Developing bronchopulmonary disease
CCL-2 (C-C motif) ligand 2

CFU-F Colony-forming unites-fibroblast
CNS Nervous system

CVD Cardiovascular disease

CXCL12 C-X-C motif chemokine 12
DMEM Dulbecco’s Modified Eagle’s medium

ECM Extracellular matrix

ECs Endothelial cells

ECs Endothelial cells

eEPCs Early EPCs

EMT Epithelial to mesenchymal transition
EOC Endothelial outgrowth cells

EPCs Endothelial progenitor cells

EPO Erythropoietin

ESCs Embryonic stem cells

FGF Fibroblast growth factor

G-CSF Granulocyte-colony stimulating factor
GM-CSF Granulocyte-macrophage—colony-stimulating factor
HIF Hypoxia-inducible factor

HSCs Hematopoietic stem cells

HSCs Hepatic stellate cells

IDO) Indoleamine 2,3-dioxygenase
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PGE2
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ROCK
ROS
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SDF-1
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TSG-6
UC-MSC
VEGF
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Kinase insert domain receptor
Erythropoietin, macrophage colony-stimulating factor
Metalloproteases

Mononuclear cells

Mesenchymal stromal cells/Mesenchymal stem cells
Neural/glial antigen 2

Nitric Oxide

Outgrowth endothelial cells

Osteopontin

Cell passage number

Pulmonary arterial hypertension

Pericytes

Platelet-derived growth factor
Platelet-derived growth factor

Population doubling time

Paracrine factors such as Prostaglandin E2
Glycoprotein ligand-1

Rho Kinases

Reactive oxygen species
Senescence-associated beta-galactosidase
Stromal-derived factor-1

Therapeutic angiogenesis by cell transplantation
Transforming growth factor 1
Transforming growth factor beta

Tumor necrosis factor alpha
TNF-stimulated gene 6

Umbilical cord -derived MSCs

Vascular endothelial growth factor
a-smooth muscle actin

What You Will Learn in This Chapter
In this chapter, you will learn the origin, characteristics, and function of adult stem
cells, and the difference between adult stem cells and their embryonic counterparts.
Adult stem cells play an important role in maintaining homeostasis, tissue repair,
healing, and regeneration. They have become a favorite source for extensive
experimentations and clinical trials because of their unique biological and functional
criteria, and practical isolation and culture methods. The chapter focuses on mesen-
chymal stromal cells, endothelial progenitor cells, and pericytes in terms of their
biology and functional properties.
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4.1 Adult Stem Cells (ASCs)

Adult stem cells (ASCs) are multipotent somatic cells in an undifferentiated state,
representing a small percentage of cells within adult specialized mammalian tissues [1—
3]. ASCs have been detected in almost all tissues including the bone marrow, liver, teeth,
testes, ovaries, gut, heart, brain, and skeletal muscle. ASCs are responsible for tissue repair,
regeneration, and homeostasis. ASCs reside quiescently in niches that support them
structurally and maintain them in an undifferentiated state [3, 4]. When activated by
intrinsic or extrinsic signals, such as those elicited by cell injury or cell loss, ASCs become
activated and undergo asymmetric division [5]. The first cell of the progeny is lineage-
committed and can proliferate and differentiate into a specialized cell as their native origin.
The second daughter cell remains undifferentiated to support the long-term maintenance of
the stem cell pool [3, 6]. In many tissues, ASCs do not directly differentiate into fully
specialized cells, but differentiate into intermediate, partially differentiated progenitor
cells. Progenitor cells in turn differentiate into more lineage-committed progenitors, or
terminally differentiated, fully specialized cells [7-9]. Compared with embryonic stem
cells, ASCs can only give rise to a more limited array of differentiated cell types. Figure 4.1
summarizes the main differences between ASCs and their embryonic counterparts.

ASCs can be extracted from most tissues in the body, including bone marrow, fat, and
peripheral blood. In this chapter, we will focus on three important types of ASCs:
mesenchymal stromal cell, endothelial progenitor cells, and pericytes.

4.2  Mesenchymal Stromal Cells

Mesenchymal stromal cells (MSCs) are multipotent mesodermal cells that were first
described by Alexander Friedenstein [10], as a sub-population within the bone marrow
[11]. MSCs are characterized by their fibroblast-like spindles and adherence to plastic.
They form fibroblast-like colonies (colony-forming unites-fibroblasts, CFU-F), when
cultured at low seeding density, under standard culture conditions [12, 13]. CFU-Fs acquire
the characteristics of endothelial cells (ECs) when grown under endothelial culture
conditions [14]. MSCs characteristically reside in the perivascular niche, which enables
them to be more dynamic and easily migrate within the circulatory system toward injured
tissues for maintenance and repair. They also migrate via the lymphatic system and thus
play a role in repair during inflammation [15-18].

4.2.1 MSCs: Sources and Origin

MSCs reside in almost all organs and are considered a strategic store for the repair or
replacement of degenerated tissues [19] (Fig. 4.2). MSCs are commonly isolated for
experimental purposes from the bone marrow [20, 21] and adipose tissue [22]. The sternum
and the iliac crest are the main sources of bone marrow aspirates for stem cell collection
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[23], as both are equally enriched for mononuclear cells (MNCs) [24]. Adipose tissue
represents another rich source for MSCs. They are commonly isolated from the subcutane-
ous adipose tissue, visceral fat, and infrapatellar fat pad during surgical operations related
to laparotomy or meniscectomy, or as a byproduct of liposuction [25, 26]. ASCs show
some variations based on their origin. For example, those isolated from subcutaneous
tissues showed higher proliferation, as well as more chondrogenic and osteogenic differ-
entiation potential than those isolated from visceral fat [27, 28]. On the other hand, ASCs
derived from the infrapatellar fat displayed higher chondrogenic differentiation compared
with those derived from subcutaneous tissue [29-31].

MSCs were also successfully isolated from the synovial fluid [32] and muscles [33, 34];
these cells exhibited a capacity to regenerate musculoskeletal defects. Other sources of
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MSC:s include the placenta [35], umbilical cord [36-38], amnion [39], and amniotic fluid
[40]. MSC:s isolated from fetal tissues were reported to be of low immunogenicity and have
a higher regenerative capacity than adult MSCs [36, 41].

MSCs were also isolated from organs of endodermal origin such as the liver [42—44],
pancreas [45, 46], and intestines [47, 48]. Furthermore, they were isolated from dental pulp
[49], the nervous system [50, 51], corneas [52], and hair follicles [53]. Recently, MSCs
were isolated from breast milk [54, 55], urine [56], and menstrual blood [57, 58]. Because
of their wide distribution throughout the body, MSCs can be obtained through non-invasive
methods with relative ease, and can be harvested in sufficient numbers to identify their
properties [59] and investigate their potential clinical application [60, 61].

4.2.2 Characterization of MSCs

The minimal criteria for defining human MSCs, as determined by the International Society
for Cellular Therapy (ISCT), include adherence to plastic, and in vitro differentiation
potential into chondrogenic, osteogenic, and adipogenic lineages. MSCs express the
CD90, CD73, and CDI105 differentiation surface markers but do not express the
hematopoietic markers CD45, CD3, CD19, CD11, CD79«, and human leucocyte anti-
gen-DR (HLA-DR) [62].

The tissue from which MSCs are isolated should be taken into consideration during their
characterization. For example, bone marrow-derived MSCs (BM-MSCs) are positive for
CD105, CD73, CD106, CD90, CD44, CD10, CD13, CD146, CD140, and CD271, and
negative for the hematopoietic lineage markers (CD45, CD3, CD19, CD11, CD79«a). BM-
MSCs also show higher osteogenic and chondrogenic differentiation capacity compared to
adipose-derived MSCs (AD-MSCs). The latter display higher proliferation and adipogenic
differentiation, and have higher expression of CD49d along with lower expression of Stro-
1, compared to BMSCs [63, 64]. Table 4.1 summarizes the main differences between BM-
MSCs and AD-MSCs.

MSC source, extraction methods, culture conditions, and cell passage numbers all affect
their efficiency in clinical applications. These factors may alter their genetic profile,
morphology, plasticity, differentiation, and proliferation capacities. These alterations con-
tribute to the heterogeneity of MSC populations, resulting in inconsistent findings in both
the laboratory and the clinic [76]. The transcriptional patterns of MSCs also vary depending
on their source and surrounding conditions [62]. These large number of variables have
made it difficult to characterize MSCs based solely on their phenotype and have
necessitated the inclusion of functional criteria for their identification.



116

A. M. El-Derby et al.

Table 4.1 Differences between AD-MSCs and BM-MSCs

Colony formation

Differentiation

Proliferation and

senescence

Cytokines and
chemokines

Immunophenotype

Clonal
efficiency [65]
CFU-F [66]
Adipogenic
[65, 67]

Osteogenic
[65]
Chondrogenic
[65]
Hematopoietic
differentiation
support [68]

Senescence
[69]

Yield from the
same amount
of tissue [70]

Telomerase
activity [65]

VEGF [67]
IL-6 [67]
TGF [71]
CD106 [72]
CD34

CD146 [67]

CD49d [63,
64]

PW1 [67]

AD-MSCs

Consistent until passage
20

Lower than BM-MSCs
Retained through passages
until passage 20 and shows
modest alteration
afterwards

Retained for an extended
period in culture

Retained up to passage 10

Maintained human early
and committed
hematopoietic progenitors
in vitro and support their
complete differentiation
toward myeloid and
lymphoid lineages

Very low senescence ratio
within early passages
compared to BM-MSCs

500-fold higher

A modest decrease in
telomerase activity
between passages 1 and 10

(+)

(+++)

(++)

(+)

CD34" in freshly isolated
cells and gradually
declines with expansion
[73]

Decrease with expansion
(++)

+)

BM-MSCs
Decrease starting from
passage 10
Higher than AD-MSCs

Decreases significantly
after passage 10 and is
completely lost at passage
15

Lost after passage 10
Retained up to passage 5

Lower efficiency than AD-
MSCs

Higher senescence ratio in
early passages compared to
AD-MSCs

Lower

Significant decrease in
telomerase activity
between passages 1 and 10
compared to AD-MSCs

(+++)

(+)

(+)

(++)

CD34™ in cultured MSCs
[74, 75]

Maintained

(+)

(=)

(—) Negative expression; (+) Positive expression; (++) Higher expression; (+++) Significantly high
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4.2.3 Biological Functions of MSCs

4.2.3.1 Proliferation

MSCs undergo a limited number of mitotic divisions to self-renew and maintain their tissue
of origin before undergoing senescence. It was reported that MSCs subject to the standard
Hayflick phenomenon. Hayflick limit means that the normal cell is able to replicate for
limited number of times before undergoing sentence and programmed death [77]. The
source of MSCs is a defining factor in their proliferation rate. Lu et al. demonstrated that
BM-MSCs have significantly slower population doubling times compared with umbilical
cord-derived stem cell UC-MSCs. The mean doubling time of UC-MSCs in passage 1 (P1)
is approximately 24 h and remained almost constant until P10. In contrast, the mean
doubling time of BM-MSCs is 40 h, and increased considerably after P6 [78]. The
population doubling time was reported to be the shortest in MSCs from neonatal sources,
such as the umbilical cord, compared to those derived from adult tissue [79]. Kern et al.
have reported that BM-MSCs have the lowest population doubling number between
passage 4 and passage 6 compared with AD-MSCs and UC-MSCs [69]. They also reported
that UC-MSCs possess the highest ratio of MSCs undergoing senescence within early
passages compared with BM-MSCs and AD-MSCs [69]. On the other hand, Jin et al.
demonstrated that UC-MSCs could be cultured for significantly longer periods and exhibit
a greater expansion capacity than AD-MSCs. The latter had the shortest culture time and
lowest growth rate. The growth of both BM-MSCs and AD-MSCs was arrested at passage
11-12, whereas UC-MSCs kept proliferating until passage 14—16 [66].

The proliferation of the early passages of MSCs is controlled via the Wnt/p- catenin
signaling pathway and depends on the O, level. Hypoxic conditions modulate hypoxia-
inducible transcription factors, which control a large set of downstream genes that are
involved in cell cycle progression. Hypoxia was found to enhance MSC proliferation in
comparison with normoxic condition [80, 81]. Moreover, in vivo hypoxic conditions were
reported to maintain the viability of MSCs, and protect them from the effects of reactive
oxygen species (ROS) and mitochondrial stress [82]. As MSCs aged and approach cell
death, accumulated senescence-associated DNA damage, ROS, and shortened telomeres
are detected; the cells also display morphological changes that include larger size and
irregular shapes. Furthermore, the cessation cell division is associated with augmented
expression of senescence-associated beta-galactosidase SA-p-Gal [83, 84].

4.2.3.2 Migration and Homing

Homing refers to the capability of MSCs to migrate toward their original tissue niche and
reside there [85]. MSCs migrate to injury sites and differentiate there into local tissue cells
[86—88], and release a cytokine and growth factor-rich secretome that promotes tissue
repair and regeneration [89]. Under physiological conditions, MSC migration is an
organized process that is controlled by signals from the surrounding niche [90]. Trans-
membrane integrins, cadherins, cytokines, and growth factor receptors initiate a signaling
cascade to potentiate the Rho family of GTPases, especially RhoA. RhoA plays an
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important role in the modulation of actin cytoskeletal rearrangement. It also activates Rho
kinases (ROCKs), which in turn promote Myosin II activation, stabilizing the polymeriza-
tion of actin filaments and increasing cell contractility [91]. Contractile MSCs are capable
of migrating to blood vessels and can pass through the endothelial wall, directing them-
selves toward the target tissue [92]. In the presence of an injury, the MSC migration
patterns toward the injured tissues can be mediated by cytokines and growth factors such as
stromal cell-derived factor-1(SDF-1) [93], osteopontin [94], basic fibroblast growth factor
(bFGF) [95], vascular endothelial growth factor (VEGF) [96], insulin-like growth factor-1
[97], platelet-derived growth factor (PDGF) [98], and transforming growth factor 1 (TGF-
B1) [99]. Moreover, mechanical factors such as extracellular matrix stiffness [100],
mechanical stretch [101], and shear stress [102, 103] all modulate MSC migration. The
migratory and homing potential of MSCs is of importance in MSCs therapeutic
applications because uncontrolled migration could contribute to the dissemination of the
pathological condition, which has been documented in some cancers [104—106].

4.2.3.3 Trophic Properties of MSCs

MSCs proliferate and differentiate to provide elements of the stroma, which are essential
for the support and repair of tissues and organs [107-111]. In the bone marrow, MSCs are
essential for the growth, proliferation, and differentiation of hematopoietic stem cells
(HSCs) [112]. This trophic function of MSCs is mediated by cell—cell interactions, as
well as the secretion of growth factors and other mediators. Trophic properties of a cell
describe their potential to exert an indirect activity upon the cells in vicinity via secreted
bioactive molecules [113]. The secretome of MSCs includes cytokines, such as IL.-6 and
IL-37, and growth factors including platelet-derived growth factor (PDGFR), erythropoie-
tin, macrophage-colony-stimulating factor (M-CSF), and granulocyte-colony-stimulating
factor (G-CSF) [114, 115]. Ball et al. have reported that the released trophic factors support
better engraftment and performance of HSCs co-transplanted with MSCs [116]. Similarly,
the MSC-conditioned culture medium was found to enhance tissue repair and regeneration
[117]. For example, brain-derived neurotrophic factor released from MSCs was
demonstrated to activate neural progenitors in brain lesions and promote neurogenesis
[118, 119], while CXCL12 and ang-1 promoted angiogenesis [120-123]. The trophic
effect of MSCs may be also achieved via the release of extracellular vesicles that act as
inter-cellular shuttles, carrying various secretome cargo like exosomes [124].

4.2.3.4 MSCs and Immunosuppression

MSCs have important immune modulation functions that are primarily mediated by
released soluble paracrine factors such as prostaglandin E2 (PGE2), interleukin 6 (IL-6),
the chemokine (C-C motif) ligand 2 (CCL-2), G-CSF, bone morphogenetic protein 4
(BMP4), TGF-p, and extracellular vesicles [125, 126]. MSCs express HLA-Class I but
not HLA- Class II antigens, and lack the co-stimulatory molecules CD40, CD80, and CD86
[127]. However, pro-inflammatory cytokines such as TNF-a, INF-y, and IL-1B can
activate MSCs, increase their HLA-Class I expression, and induce the expression of
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HLA-Class II antigens [128, 129]. Moreover, the secretome of the MSCs contains myriad
anti-inflammatory factors, such as IL-10, and TGF-f [130-133]. MSCs were also reported
to affect the innate and adaptive immune system. For example, the co-culturing of MSCs
with T-lymphocytes induced T-lymphocytes apoptosis. This action is regarded as one
mechanism by which MSCs exert their immunosuppressive potential [134, 135]. The
immunosuppressive action of MSCs could be achieved also via many other mechanisms,
including the recruitment of immune suppressive cells such as IL-10-producing dendritic
cells, B cells, as well as CD4*CD25* FOXP3* T regulatory cells. Furthermore, MSCs can
suppress macrophage-released IL-6 and TNF-a via PGE2 and indoleamine 2,3-
dioxygenase (IDO) secretion [136, 137]. The multilevel immunosuppressive action of
MSCs makes them suitable for ameliorating and overcoming the immune rejection that is
experienced after solid organ transplantation [138, 139].

4.2.3.5 Multipotency and Differentiation

MSCs are multipotent cells that differentiate into lineages such as osteoblasts,
chondrocytes, adipocytes, myocytes, as well as other cell lineages. The in vitro differentia-
tion of MSCs into adipogenic, osteogenic, and chondrogenic cells is routinely used for the
identification of human multipotent MSCs. Furthermore, the ability of MSCs to differenti-
ate in vitro into ECs [140], vascular smooth muscle [141], and myocytes [142] has also
been reported. MSCs could be induced to differentiate in vitro into adipocytes when
cultured in a medium supplemented with indomethacin, dexamethasone, insulin, and 1-
methyl-3- isobutylmethylxanthine. The Wnt/B-catenin signaling pathway was found to be
highly active to induce the commitment of MSCs toward pre-adipocyte formation during
the early stages of differentiation. However, this signaling pathway is turned off later in the
differentiation process to allow for the maturation of the adipocytes [1, 143]. This differ-
entiation could be assessed by measuring the levels of the resultant adipocyte-specific
markers, including enzymes such as PPAR-y and the lipoprotein lipase enzyme [144].
Furthermore, the appearance of fat droplets is a significant indicator of the successful
adipogenic differentiation process [145, 146].

To induce chondrogenic differentiation, MSCs are cultured in a medium that includes
TGF-p I, linoleic acid, transferrin, insulin, selenium acid, ascorbic phosphate, dexameth-
asone, and pyruvate [147-149]. BMP-2 and TGF-fl were also used to enhance
chondrogenic differentiation. Chondrogenic differentiation can be assessed by measuring
the levels of released collagen type II and other proteoglycans through immunohistochemi-
cal staining [150]. Osteogenic differentiation is enhanced by treating MSCs with ascorbic
acid, B-glycerophosphate, and dexamethasone, resulting in osteoblast formation.
Osteoblasts can be detected by measuring the levels of alkaline phosphatase and
mineralized calcium deposits in the cells [151].

FGF, PDGF, and TGF-f are a set of key regulators in MSC differentiation, whose
modulation, up-regulation, or inhibition could diminish cell proliferation. For example, the
downregulation of TGF-f3 was found to be linked to increased adipogenic and osteogenic
differentiation, while blocking chondrogenic differentiation. Additionally, PDGF
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inhibition and the diminished expression of FGF receptors were found to be related to
lower osteogenic differentiation and the inhibition of osteogenic differentiation potential
[147].

The differentiation of MSCs into multiple cell types of mesodermal and endodermal
origin has been described. Inducing the differentiation of MSCs into hepatocytes could be
achieved in two stages. First, MSCs were cultured in IMDM supplemented with nicotin-
amide, basic fibroblast growth factor (bFGF), and hepatic growth factor (HGF). Then,
transferrin, oncostatin M, insulin, dexamethasone, and selenium were added [152, 153]. By
the end of the differentiation process, the resultant hepatocytes can be characterized by
measuring the release of unique liver proteins such as albumin and alpha-fetoprotein
(AFP). The differentiation of MSCs into a cholinergic nerve [154], myocytes [142],
pancreatic f-cell-like cells [155], and insulin-producing cells [156] has also been reported.

Mesenchymal Stem Cell or Mesenchymal Stromal Cell?

In 2005, a statement by the International Society for Cell and Gene Therapy (ISCT)
stipulated that the terms “mesenchymal stem cells” and “mesenchymal stromal cells”
are not equivalent, and cannot be used interchangeably, as they represent two
different cell populations [157]. According to the statement, one of the main
differences is that mesenchymal stem cells constitute a population that shows
progenitor properties in terms of differentiation and self-renewal [115, 158]. How-
ever, the stromal counterpart refers to a bulk heterogeneous population that includes
fibroblasts, myofibroblasts, and a small population of stem/progenitor cells [159,
160], but does not include hematopoietic or endothelial cells. The heterogeneity of
mesenchymal stromal cells makes them demonstrate specific homing [161], secre-
tory, and immunomodulatory criteria [162] that are more relevant to MSC-based
clinical therapies [163].

The overlap between the two terms could be attributed to the use of the “MSCs”
acronym, which can be expanded to imply mesenchymal stromal cells, mesenchymal
stem cells, multipotent stem cells, and medicinal signaling cells. However, the ISCT
recommends the use of the MSCs acronym for mesenchymal stem cells because it
has been used for decades. The ISCT defines MSCs through the following minimal
criteria: their adherence to plastic, the expression of CD73, CD90, and CD105, the
lack of expression of the hematopoietic and endothelial markers CD11b, CD14,
CD19, CD34, CD45, CD79a, and HLA-DR, and in vitro adipogenic, chondrogenic,
and osteogenic differentiation potential [164]. Later on, in 2019, the ISCT issued a
new statement that the previous minimal MSCs criteria are not definitive (164). For
example, the lack of CD34 expression was typically used as one of MSCs’ defining
criteria; however, various reports demonstrated that CD34 expression widely

(continued)
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depends upon cell source and passage, and they stated that MSCs tend to be more
CD34" under in vivo compared to in vitro conditions [165, 166].

The ISCT MSC committee recommended that the MSC acronym remains in use,
but it should be coupled with the tissue of origin like BM-MSCs for bone marrow
origin, AD-MSCs for adipose tissue origin, and UC-MSC:s for cells originating from
the umbilical cord, because MSCs from different tissues exhibit varied phenotypes,
functions, and secretomes [71, 167, 168]. The MSC committee also recommended
that the use of the MSC acronym should be annotated with functional definitions.
Furthermore, the term mesenchymal stem cell should not be used without solid
functional in vivo and in vitro evidence to prove the self-renewal and differentiation
potential. Indeed, they see that CFU-F progenitor assays and in vitro tri-lineage
differentiation assays are indications for the progenitor status but are not sufficient to
demonstrate the self-renewal capacity of mesenchymal stem cells in the absence of in
vivo data [159]. As for the mesenchymal stromal cell, the committee recommended
the evaluation of their trophic factors secretion [113, 169], their modulatory effect on
immune cells [170-172], and other relevant criteria such as angiogenesis modulation
[173-176] to reflect the multimodal properties of the mesenchymal stromal cell
heterogeneous population. They have published an article [162] that discusses the
immune assays for the assessment of mesenchymal stromal cells, and recommended
that assays should include quantitative RNA analyses of selected genes, flow
cytometry of cell surface markers, protein analysis of the MSC secretome, and the
characterization of exosomes and/or microRNA [177-180].

4.3 Endothelial Progenitor Stem Cells
4.3.1 History, Definition, and Origin

EPCs constitute multiple cell types that can differentiate into mature ECs. Unlike other
progenitor cells, EPCs share some common features with stem cells such as clonogenicity,
self-renewability, and differentiation potential [181, 182]. EPCs were first isolated in 1997
by Asahara et al., from human peripheral blood by a molecular isolation technique in which
surface-antigen magnetic beads were used to isolate specific peripheral blood mononuclear
cells (PBMCP*** or PBMC*!* cells) on fibronectin culture plates [181]. More recently,
several studies on harvesting EPCs from different sources used either direct isolation from
human bone marrow (HBM), human umbilical cord blood (UCB), or human peripheral
blood (PB), or indirectly by transdifferentiation form other somatic cells such as neural,
dental, cardiac, or adipose tissue [115, 183—188].
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4.3.2 EPCs Characterization

EPCs share many common cell surface markers with HSCs, in addition to numerous
common genes affecting both hematopoietic and endothelial cell development. It was
thus suggested that HSCs and EPCs originate from a common precursor, the hemangioblast
[189—-191]. Surface markers used to isolate and characterize EPCs include CD34, CD146,
CD45, CD115, CDI14, CD133, VEGFR1, VEGFR2 (or KDR) [115]. EPC’s phenotype
differs based on its source. For example, CD133" and CD34* EPCs cells isolated from
UCB were higher in number than those isolated from adult PB [192, 193]. Other studies
showed that cells expressing CD34 or VEGFR-2 markers generated the most mature ECs
[194]. Importantly, EPCs have been described as a population of circulating CD34" cells
that can differentiate ex vivo into cells with endothelial cell-like characteristics [195].
Various studies have reported that EPCs are heterogeneous populations comprising multi-
ple subpopulations. EPCs can differentiate into two different subpopulations; early EPCs
(eEPCs) similar to EPCs identified by Asahara and et al. and late EPCs known as outgrowth
ECs [196-198]. Both types have different features and biological properties that are

summarized in (Table 4.2).

Table 4.2 Differences between early and Late EPCs

Nomenclature

Lifespan [199]

Proliferation [197]

Colony formation
[198]

Immunophenotype
[197, 199]

“Early” EPCs

— Early EPCs (eEPCs)
— Pro-angiogenic circulating
hematopoietic stem/progenitor cells

Short lifespan up to 3 to 4 weeks
[181, 200, 201]
Minimal proliferative capacity

— Colonies are produced in 4-6 days
after the initial seeding of
mononuclear cells

— Colonies are characterized by
discrete cell aggregates

CD45 (+)

CD31 (+)

CD105 (+/—)

CD146 (+/—)

CD14 (+)

CD34 (+)

CD117 (+)

“Late” EPCs

— Endothelial colony-forming cells
(ECFCs)

— “Late” EPCs

— Endothelial outgrowth cells
(EOC)

Long lifespan and rapid
proliferation [14, 196, 202]

— Significantly higher proliferative
potential reaching 28 population
doublings (PDs) in 40 days with a
doubling time of approximately
34 hours.

— Colonies are produced 3—4 weeks
after seeding [197]

CD45 (—)

CD31 (+++)

CDI105 (++)

CD146 (++)

CD14 () [203]

CD34 (++)

CDI117 (++)

CRLR/RAMP-2 (AM1) [204]

(continued)
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Table 4.2 (continued)

Morphology [198,
205]

Differentiation
[199]

Gene Expression
Profile (200)

In vitro Function
[199]

In vivo Function
[199]

“Early” EPCs

— Appear within 4 to 7 days of
culture with spindle-like
morphology; have limited
proliferation potential

— Heterogeneous cells that are
differentiated from hemangioblasts
— Early EPC can differentiate into
late EPCs [206]

— von Willebrand factor (VWF) is
not expressed

— VEGFR-2 (+)

—KDR (+)

- NO (+)

— VE-cadherin (+)

— Lack tube-forming capacity [197]

— Contribute to neovasculogenesis
primarily by secreting the
angiogenic cytokines that help
recruit resident mature endothelial
cells and induce their proliferation
and survival

— No significant difference in
contribution to neovasculogenesis in
the ischemic limb

— A limited degree of engraftment
and incorporation into new vessels
from early EPCs [203]

“Late” EPCs

— Develop after 2 to 3 weeks of
culture with a cobblestone
appearance [158]

— Homogeneous and well-
differentiated cells

— Considered to be mature
endothelial cells

— Differ from mature endothelial
cells in terms of proliferation rate
and cell senescence

— OECs are committed to an
endothelial lineage [197]

— Express von Willebrand factor
(VWF)

— VEGFR-2 (++)

— KDR (++)

— NO (++)

— VE-cadherin (++)

— Higher tube formation efficiency
— Higher angiogenic properties in
vitro [207]

— Enhance neovasculogenesis by
providing a sufficient number of
endothelial cells based on their high
proliferation potency

— No significant difference in
contribution to neovasculogenesis
in the ischemic limb

— Higher capacity to form de novo
vessels in vivo [203]

(+) positive, (+/—) positive or negative, (++) higher, (+++) significantly high

4.3.3 Action Mechanism

The formation of new blood vessels by EPCs necessitates their mobilization, migration,
adhesion, and differentiation. In case of vascular occlusion, EPCs have been shown to
sense altered (low or oscillatory) shear stress, and as a result increase the expression of pro-
oxidant enzymes, which are mediated principally by the transcription factor, NF-kB [208].
Hypoxia can be sensed by ECs in several ways, most notably by the hypoxia-inducible
factor and nitric oxide (NO). They both mediate the activation of several signaling
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pathways, which powerfully orchestrates the cellular response to low oxygen levels when
activated. As a result, different growth factors, cytokines, and chemokines are released,
mediating EPC mobilization from the BM [209, 210]. These factors include (VEGF),
fibroblast growth factor (FGF-2), granulocyte-macrophage-colony-stimulating factor
(GM-CSF), and granulocyte-colony-stimulating factor (G-CSF), as well as angiopoietins
[211]. VEGF appears to induce a fast EPCs mobilization from the BM, a phenomenon
which has been described in burn patients [212]. However, EPCs were found to have the
ability to release VEGF after homing, and generate a local angiogenic response [213].
There are various isoforms of VEGF including VEGF-B, VEGF-C, VEGF-D, but it
remains unclear whether there are differences in their effect on EPC regulation. Other
factors such as erythropoietin (EPO) can also mobilize EPCs [214]. Granulocyte-macro-
phage-colony-stimulating factor (GM-CSF) and its related cytokine, granulocyte-colony-
stimulating factor (G-CSF), both display mobilizing activity, although they are less potent
than VEGF or SDF-1 [215].

The adhesion of EPCs to an injured vessel wall is crucial. This occurs through the
interaction of the glycoprotein ligand-1 (PSGL-1) expressed on EPCs with the P-selectin
expressed on platelets [213]. EPCs play an important physiological function by acting as
the main reservoir of ECs, due to their ability to move into the injury site to preserve the
integrity of the endothelium [216]. The contribution of EPCs to vascularization has been
demonstrated in animal models and humans [213]. Additionally, the reduction in the
number of circulating EPCs and/or alterations in their functions associated with various
factors might have a marked impact on endothelium function as well as cardiovascular
disease (CVD) onset, complications, and consequently in the survival of individuals with
CVD [217].

4.3.4 Clinical Applications

EPCs-based therapy is considered to be a promising endothelial regeneration for several
diseases including cardiovascular failure, chronic renal failure, pulmonary diseases, in
addition to ischemia related conditions and connective tissue disorders [215, 218]. They
also play an important role in tissue engineering by their ability to vascularize engineered
tissues, which could be useful for personalized medicine [219]. EPCs are utilized for
multiple applications because they could differentiate into both continuous and discontin-
uous capillaries in the liver and skeletal muscles [219-221]. They could also outperform a
vascular-derived endothelium in vascular network formation and possess a comparable
permeability to the endothelium vessels [222-229]. The contribution of EPCs to vasculari-
zation has been demonstrated in animal models and humans [213]. Additionally, the
number of circulating EPCs and/or alterations in their functions associated with various
factors might have a marked impact on endothelium function and CVD onset,
complications, and consequently in the survival of individuals with CVD [217].
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4.3.4.1 EPCs as a Biomarker

Studies have shown that the number and function of circulating EPCs can act as biological
markers for vascular function and cumulative cardiovascular risk [216, 230, 231]. The
number of EPCs varies depending on the disease. For example, a decrease in the number of
EPCs was found to be associated with chronic kidney disease [232], coronary artery
disease [233], pulmonary hypertension [234], theumatoid arthritis [235], and hypertension
[236], and a dramatic decrease in EPC proliferation and functional deterioration was found
in diabetes mellitus type 1 and type 2 patients [237, 238]. On the other hand, patients with
acute myocardial infarction [231] and ischemic-related conditions [239] have an increasing
number of circulating EPCs due to their mobilization from the bone marrow. This suggests
the close relationship between the status of the ECs and EPCs functionality and mobiliza-
tion. This relation gives EPCs a clinical advantage over the use of other CVD biomarkers
that only correlate with end-tissue damage or stress, such as creatine kinase-MB (CK-MB)
[240], troponin [241], or the causative agents like oxidized low-density lipoprotein
(oxLDL) [242] and CRP [243].

4.3.4.2 EPC Transplantation

BM-derived EPCs have homing signals to the site of ischemia in animal models. Kalka et
al. tested the effect of injecting ex vivo-expanded human EPCs in mice with ischemic limbs
[244]. After the infusion of the EPCs, a significant number of the infused cells were
detected in newly formed vessels in mice, and a corresponding increase in the rates of
blood flow recovery and capillary density were also observed [244]. In another experiment,
donated human CD34" cells were injected in rats with myocardial infarction. The cells
were also tracked and detected in newly formed capillaries, and significant induction of
neoangiogenesis was also reported [245]. Similarly, Schuh et al. injected human BrdU-
labeled isolated EPCs directly into the border infarct zone 4 weeks after acute myocardial
infarction was induced in a rat model. Their results showed a significant increase in the left
ventricle developed pressure, the coronary blood flow rate, and the neovascularization rate
of blood vessels [246]. EPC transplantation trials extended rapidly to human patients due to
their promising therapeutic potential in improving vascularization and endothelial integrity
[247]. Kudo et al. conducted a clinical trial on two patients with critical limb ischemia, in
which they were injected with peripheral blood-derived CD34" EPCs. An increase in the
feet oxygen pressure, improvement of symptoms, and formation of new collateral blood
vessels were observed in the injected patients [248]. Another trial was conducted on 11
patients with myocardial infarction. Here, the patients were injected with a combination of
bone marrow-derived autologous MSCs and EPCs. Most of the cases showed improved
myocardial contractility and repair in myocardial scars [249]. Based on the previous studies
and many others, it was deduced that EPC transplantation has therapeutic potential to
improve vascularization. However, further investigations should be carried out to over-
come the limitations related to their isolation, characterization, purity, culturing conditions,
and to optimize their route of injection [246, 250] .
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4.3.4.3 Pulmonary Diseases

Many studies have reported the therapeutic role of EPCs and their role as biomarkers for
endothelial tissue injury, especially in pulmonary arterial hypertension and chronic
obstructive pulmonary disease [251, 252]. Endothelial injury and dysfunction are the
major risk factors for the development and progression of both conditions [253, 254].
When endothelial tissue is damaged but ECs fail to repair the damage, inflammatory cells
migrate to the injury site and the subendothelium is exposed to the effects of growth factors
and other mediators, resulting in intimal proliferation and blood coagulation [255]. There-
fore, the availability and mobilization of EPCs in the lungs might be an effective mecha-
nism for lung tissue regeneration and protection. For example, Yamada et al. conducted a
clinical trial on 23 patients with pneumonia during both acute and convalescent phases.
Patients received autologous peripheral blood-derived EPCs. Results demonstrated that a
sufficient number of EPCs enabled patients to recover from pneumonia and improved the
associated fibrotic damage to the lungs [256]. EPCs play a role not only in lung tissue repair
but also in its early development [257]. Impaired EPC mobilization, recruitment, and
engraftment were reported in premature murine pups exposed to moderate hyperoxia,
resulting in impaired alveolar and vascular growth [258]. In humans, preterm infants
who expressed lower numbers of EPCs at birth were reported to have an increased risk
of developing bronchopulmonary disease [257].

4.4  Pericytes: Biological Characteristics and Physiological Roles
4.4.1 Pericyte Discovery and Location

Pericytes (PCs) are the third example of ASCs. PCs or perivascular cells were described
almost 150 years ago based on their anatomical location surrounding the endothelium of
microvascular capillaries [259, 260]. PCs are also known as mural cells because of their
location within the blood vessel, and as “Rouget cells” Charles Rouget, who first described
them [261]. They are distributed throughout the body in different tissues at different
densities depending on the location. For example, the ratio of PCs to ECs varies from
1:100 in striated muscles to 1:3 in the central nervous system (CNS), and1:1 in the retina,
respectively [260, 261]. PCs have acquired different names according to their tissue of
residence. For example, they are known as “Ito cells” or hepatic stellate cells, in the liver,
they are known as mesangial cells in the kidney, and in the bone marrow, they are called
adventitial reticular cells [262, 263].

The basement membrane (BM) separates the majority of the pericyte-endothelial inter-
face, although both cell types come in contact at certain points via micro-holes in the BM.
The size and number of pericyte-endothelial contacts vary between tissues, but approxi-
mately 1000 contacts have been identified for a single endothelial cell. The cells may make
contact via peg-socket junctions, in which PC cytoplasmic projections (pegs) are inserted
into endothelial invaginations (pockets). Adhesion plaques constitute another contact
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mechanism, and occur between microfilament bundles attached at the pericyte plasma
membrane and electron-dense material in the corresponding endothelial cytoplasm [264,
265]. Adhesion plaques, as the name suggests, function to facilitate pericyte adherence to
ECs, while peg-and-socket contacts allow the diffusion of molecules and ions between the
cytoplasm of the two cell types [264]. Adhesion plaque contacts include fibronectin
deposits, while peg-and-socket contacts are secured via the tight, gap, and adherence
junctions that contain N-cadherin and p-catenin [266].

4.4.2 Pericyte Ultrastructure, Characterization, and Origin

Pericytes are fibroblast-like cells with distinguishable nuclei, low cytoplasmic content, and
several long processes surrounding the endothelial wall. Mature PCs are embedded within
the BM of microvessels, which are formed by both pericytes and ECs. Pericytes located on
the outer surface of blood capillaries interact with underlying ECs and are covered in the
same BM [267]. Pericyte processes are typically connected with more than one endothelial
cell via adhesion plaques as well as with peg-and-socket contacts, which permit direct
contact between the two cell types [268, 269]. This feature, which was first identified by
transmission electron microscopy, differentiates primary and secondary pericyte processes
[267].

Based on their location in the blood vessels, PCs are characterized as pre-capillary, mid/
true-capillary, and post-capillary PCs [270]. Mid-capillary PCs are distinguished by a lack
of a-smooth muscle actin (a-SMA) within the cell and by their elongated and spindle-like
shape. Pre- and post-capillary PCs are shorter, more stellate in shape, and have varying
amounts of a-SMA [271].

Phenotypically, PCs can be characterized by the expression of a combination of antigens
including platelet-derived growth factor receptor-b (PDGFR-b), neural/glial antigen
2 (NG2), a-SMA, CD146, CD90, and CD105, and absence of CD56, CD45, and CD31
[272, 273]. Since PCs lack a specific marker, tracking their lineage is a challenging process
[266]. Studies have reported that PCs originate either from the mesoderm or ectoderm
based upon their anatomical location [274, 275]. Neural crest fate mapping models have
indicated that PCs in the CNS, retina, and thymus originated from differentiated neural
crest-derived cells [276, 277].

On the other hand, the vascular mural cells in coelomic organs such as the lungs [278],
gut [279], and liver [280] derive from the mesothelium [261]. Mesothelial cells were thus
proposed to undergo the epithelial to mesenchymal transition (EMT) before migrating to
these organs to differentiate into PCs [262]. However, PCs were also proposed to arise
directly from ECs and bone marrow [281, 282]. Furthermore, it has been suggested that
PCs residing in the same tissue are heterogeneous and have different origin [283]. For
example, Chen et al. reported that coronary PCs originated from endocardial cells after
undergoing EMT, but some retinal PCs may be derived from the bone marrow and the
neural crest [284].
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4.4.3 Pericytes Physiological Roles

4.4.3.1 Angiogenesis

Angiogenesis refers to the formation of new blood vessels from pre-existing ones and is an
important process in tissue repair and healing [285]. Stem cells that stimulate angiogenesis
process and enhance the sprouting of new vessels have great potential in the as therapeutics
for ischemic diseases. Pericytes are excellent candidates for vascular regeneration based on
their contribution to vessel growth and stabilization [286]. Extensive research has shown
the vital role that PCs play in angiogenesis [287, 288], and their interactions with the ECs to
maintain the blood vessel integrity and stability has been elucidated [289-291]. The
absence of PCs was shown to be associated with the rupture of blood capillaries [292]
and vessel damage [293]. Physiologically, most blood vessels are quiescent in adults;
however, angiogenesis can be activated during wound healing [294-297] as well as during
tumor growth [298, 299]. Consequently, PCs have been targeted for pharmacological
therapy.

4.4.3.2 Initiation of Neovascularization
During embryogenesis, angiogenesis involves the secretion of PDGF-B from ECs,which
attracts PDGF-B receptor (PDGFR-B)-expressing PCs that reside in the newly formed
vessels [300]. This process is important in maintaining the vessels’ functionality and
integrity, as a lack of PDGF-B or PDGFR-f} in mice embryos was shown to be associated
with hemorrhaging, vasodilation, and embryonic lethality [292, 301]. Neovascularization
is initiated via the activation of quiescent vessels responding to different chemokines, or
angiogenic signals including angiopoietin 2 (ANG-2) and VEGF [302].
Neovascularization comprises vessel formation, stabilization, and maturation [264,
303]. Vessel formation is initiated by the surrounding endothelial cells’ secretion (ECs)
of angiopoietin-2 (ANG-2), which inhibits Tie-2 receptors which inhibit the ANG/Tie
signaling pathway. Inhibition of the ANG/Tie signaling pathway permits the detachment
and migration of PCs to reside in the endothelial layer, enhancing new angiogenic activity
[304]. Furthermore, both PCs and ECs secrete metalloproteases (MMPs) that degrade the
BM to facilitate cell detachment [304]. The detachment of PCs is followed by phenotypic
changes to their quiescent state including process shortening, an increase in their volume,
and the initiation of proliferation [305]. In parallel, VEGF acts in combination with the ECs
that lose their junctions, to increase the endothelial layer permeability and permit the
passage of plasma proteins to the extracellular matrix (ECM) [306]. This is followed by
EC migration toward the nascent ECM responding to different angiogenic factors. EC
migration is directed by the tip cell, which is a single endothelial cell with low proliferation
and a high migration rate along the VEGF gradient [307]. VEGF signaling could be
enhanced by the expression of VEGF receptor 1 (VEGFR1) on PCs [308]. The tip cell
migration is followed by the migration of stalk cells and neighboring ECs, to form the
lumen that facilitate the growth of the sprouting vessel [306].
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The process of vessel maturation is initiated by angiopoietin-1 (ANG-1) secretion from
the PCs in the absence of ANG-2. ANG-1 expression allows TIE-2 receptors on ECs and
PCs to be activated, which consequently activates ANG/Tie signaling pathway for vascular
stabilization and maturation. Moreover, PCs are recruited to stabilize the primitive vessel
via different signals, including from the PDGF-f signaling pathway [309, 310]. The newly
enhanced PCs and ECs support the vessel maturation by paracrine factors such as ANG-
land TGF beta. These vessel maturation signals could promote the formation of the
endothelial barrier as well as the re-attachment of the PCs and the suppression of EC
migration [261].

4.4.3.3 Differentiation

Pericytes are multipotent ASCs that can differentiate into cells from different lineages
through induction by specific growth factors [311]. Pericytes have been shown to differen-
tiate into adipocytes [312], osteoblasts [313], chondroblasts [312], fibroblasts [314],
smooth muscle cells [314], and neural cells [315]. Their ability to differentiate into multiple
cell types supports their application in regenerative medicine [316]. For example, under
hypoxia or ischemic conditions, PCs differentiate into vascular cells or neural cells and
microglia following an ischemic stroke [317]. Furthermore, microvascular PCs showed
angiogenic and cardio myogenic behavior in the myocardium of patients under hypoxic
conditions [272]. Studies in mice with an infarcted heart have shown the potential of
epicardial PCs to differentiate into coronary mural cells in an autologous transplantation
setting [318]. Moreover, some PCs were shown to differentiate into macrophages and
dendritic cells, supporting their function in immunological diseases [319, 320].

4.4.3.4 Regulation of Blood Flow

Pericytes play a vital role in regulating the blood flow and the vascular capillary diameter
through their ability to stimulate vasoconstriction and vasodilation, depending on to the
physiological state [260, 263, 264, 321, 322]. This contractility is mediated by a combina-
tion of contractile proteins such as a-SMA, myosin, vimentin, and tropomyosin [323]. PCs
act via paracrine signals to regulate their contraction and relaxation and coordinate with
ECs to regulate the contractility of blood vessels [324]. The oxygen level also contributes
to this regulation, as hyperoxia was reported to enhance pericyte contraction in vitro, while
high levels of carbon dioxide induced relaxation [263] . These data support the postulation
that vessels contract when the oxygen level is sufficient and dilate responding to insuffi-
cient oxygen, accommodating the metabolic state [325]. The vasomotion of PCs serves to
regulate the hemodynamic regulation and to maintain the permeability of the blood
capillaries [326-328]. The capacity of PCs to relax or contract is determined by several
factors [329]. PCs have a rough surface with multiple processes and lamellar folds, and can
surround and squeeze the ECs [330], while the distinctive cytoskeleton acts as a contractile
apparatus [326]. Immunohistochemical analysis has also demonstrated that PCs express a
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combination of contractile proteins [331, 332]. Finally, the pericytes’ expression of the
contractile proteins depends on the tissue requirement of the vascular supplement [333,
334].

Take Home Message

e Adult stem cells are somatic stem cells in an undifferentiated state that exist in
small proportions among most adult specialized tissues.

e Adult stem cells can be extracted from most tissues in the body, including the
bone marrow, fat, peripheral blood, umbilical cords, and placental tissue.

e Adult stem cells are multipotent and can differentiate only to specific types of
cells, unlike their embryonic counterparts, which are pluripotent and can differ-
entiate into all derivatives of the three primary germ layers.

« CD90*, CD73", CD105", CD45 ,CD3 ,CD19 , CDI1 , CD79« , and human
leucocyte antigen-DR (HLA-DR) are the most common phenotype to characterize
MSCs, however, according to ISCT they are not definitive and minor changes
could be observed according to MSCs source.

* According to ISCT, without solid functional in vivo and in vitro evidence to prove
the self-renewal and differentiation potential of the cells, the term mesenchymal
stem cell should not be used.

» The therapeutic potential of MSCs is enhanced by their multipotency, immuno-
modulatory, and trophic properties.

e Unlike other progenitor cells, EPCs have some common features with stem cells
such as clonogenicity, self-renewability, and multi-differentiation potential.

* EPCs could be isolated from hematopoietic and non-hematopoietic sources such
as peripheral blood, cord blood and tissue, bone marrow, and some other adult
tissues. They are also classified into early and late EPCs.

» Alterations in the number and functions of EPCs are significantly associated with
cardiovascular, pulmonary diseases, and cancer, which makes them potential
predictive biomarkers.

* Pericytes are fibroblast-like cells with distinguishable nuclei, low cytoplasmic
content, and several long processes surrounding the endothelial wall.

* Pericytes play a vital role in neovascularization and blood flow regulation.
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What You Will Learn in This Chapter

The dynamic processes during the various cancer stages of initiation, progression,
and invasiveness are all influenced by cancer stem cells (CSCs). Increasing evidence
suggests that eradicating CSCs might effectively cure multiple types of cancers. This
chapter will discuss the different perspectives of CSC concept starting from their
history and origin to their implications in the multistep cancer development. We will
highlight the genetic and epigenetic modifications of CSCs, and their correlation with
tumor progression, metastasis, immune evasion, and resistance to anti-cancer
treatments.

5.1 Cancer Stem Cells’ Origin and Heterogeneity

Cancer is an uncontrolled division of abnormal cells in the body. It happens when genes
controlling basic cellular functions and cell division mutate, resulting in a random cellular
proliferation and tumor formation [1, 2]. Cancerous tumors are treated by surgical excision,
chemotherapy, immunotherapy, and/or radiotherapy; however, relapse is usually common
[3, 4]. Tumor invasiveness, recurrence, and metastasis all contribute to high morbidity and
mortality. Within individual tumors, there is a heterogeneous, highly self-renewing, and
pluripotent population of cells known as cancer stem cells (CSCs). This small population of
CSCs is believed to contribute to cancer virulence, spread, metastasis, recurrence, and
resistance to conventional treatment [5-9]. Several theories on the origin and the develop-
ment of CSCs have been put forth (Fig. 5.1); nevertheless, CSCs are still not fully
understood.

5.1.1 The Embryonic Origin of CSCs
The role of undifferentiated cells in cancer was first recognized in the late nineteenth

century. The theory of the embryonic origin of cancer cells, called “embryonic rests
theory,” was first described by Julius Cohnheim in 1877. Cohnheim hypothesized a
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Fig. 5.1 Historical overview of cancer origin theories

common origin of all tumor cells based on the presence of embryonic rests that have
remained unused from the time of embryonic development [10, 11]. Cohnheim postulated
that if these cells were to receive a steady blood supply, they would begin to grow
uncontrollably due to their embryonic nature. This uncontrolled growth results in the
formation of tumor masses that constitute a developmental error [11].

Experiments to validate Cohnheim’s theory met with very limited success, as
reimplanted embryonic cells mostly displayed normal behavior [10]. However, Max
Askanazy was able to obtain teratomas that resembled the tumor type hypothesized by
Cohnheim. Hence, teratomas became the favored model for differentiating abnormal from
norm