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Chapter 12
Climate Change and Biodiversity 
in the Atlantic Forest: Best Climatic 
Models, Predicted Changes and Impacts, 
and Adaptation Options

Mariana M. Vale, Paola A. Arias, Geusep Ortega, Manoel Cardoso, 
Beatriz F. A. Oliveira, Rafael Loyola, and Fabio R. Scarano

12.1  Current and Future Climate

The Atlantic Forest, with its large latitudinal and altitudinal range, is under different 
climatic regimes. The current spatial distribution of the Brazilian Atlantic Forest 
can be linked to several meteorological processes currently at play in the region. 
These processes have important influences on the observed temperature and rainfall, 
which in turn drive the environmental conditions needed for the occurrence of the 
Atlantic Forest vegetation (Salazar et al. 2007; Carnaval et al. 2009; Colombo and 
Joly 2010). One of these processes is the occurrence of cold fronts (Cavalcanti and 
Kousky 2009), which are characterized by relatively colder and denser air masses 
moving from the polar region interacting with moist and hot air, causing a substantial 
drop in temperature and an increase in precipitation. Cold fronts are most common 
in the central and southern portions of the Atlantic Forest (latitudes <15° S) 
(Cavalcanti and Kousky 2009), where their impacts are most relevant. Another 
process linked to the range of precipitation and temperature observed in a large 
portion of the Atlantic Forest is a large-scale atmospheric circulation pattern known 
as the South Atlantic Convergence Zone. This meteorological system is characterized 
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by an elongated northwest-southeast region, from the Amazon to southeastern 
Brazil, where convergent winds, clouds, and substantial precipitation are observed 
during the summer (Carvalho and Jones 2009). In the portions of the Atlantic Forest 
located in the northeast of Brazil, the South Atlantic portion of the Intertropical 
Convergence Zone plays an essential role on the precipitation (Melo et al. 2009). 
This system is also characterized by the convergence of surface air, clouds, and 
precipitation and happens typically during March and April.

An additional, essential feature that interacts with the atmospheric patterns dis-
cussed above is topography, which in the Atlantic Forest is particularly relevant in 
the Serra do Mar mountain range (see Carlucci et  al. 2021 Chap. 5). Mountain 
ridges may lift air masses, enhancing cloud and rain formation. Also, as the tem-
perature usually decreases with altitude in the troposphere, locations at sea level or 
mountaintops will usually present different species.

As we see, atmosphere, ocean, and topography have a great influence on climate 
and vegetation cover. Indeed, these are essential components of the general 
circulation  models (GCMs) used both for meteorological and climate change 
predictions. The GCMs used to project future changes in climate due to ongoing 
climate change incorporate both the natural and anthropogenic dynamics in the 
main components of the Earth system, usually the atmosphere and oceans, but also 
the cryosphere and land use/land cover, among others. They are developed by 
dozens of research institutions worldwide, using standard basic protocols established 
by the Coupled Model Intercomparison Project and adopted by the Intergovernmental 
Panel on Climate Change (IPCC) (Taylor et al. 2012). The projections are made 
under different scenarios of future greenhouse gas concentrations in the atmosphere, 
called representative concentration pathways (RCPs). There are four such scenarios, 
ranging from the most optimistic RCP 2.6, where emissions are reduced by about 
90% in 2100 compared with the present and a projected average global increase of 
1.5 °C by the end of the century, to the most pessimistic RCP 8.5, where greenhouse 
gas emissions continue mostly untapped, and an average global increase of 4.0 °C 
is projected by the end of the century (Van Vuuren et al. 2011; Knutti and Sedláček 
2012; IPCC 2013).

The Brazilian National Institute for Space Research (INPE) has developed a 
GCM, the Brazilian Earth System Model (BESM), with the objective of assembling 
the scientific expertise capable of developing and maintaining a state-of-the-art 
Earth system model and the aim of participating in the Coupled Model 
Intercomparison Project Phase 6 (Veiga et  al. 2019). On top of global climate 
models, which have a global extent, there are regional climate models (RCMs), 
which cover a specific region of the globe, such as a country or a continent, and 
typically have a higher spatial resolution and a better performance within the region 
of interest. RCMs need to be nested within a GCM that provides the input data for 
the external geographic boundary of the RCM. The Brazilian National Institute for 
Space Research has also developed an RCM for South America, the CPTEC Eta 
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model, with versions nested within the HadGem (UK), MIROC (Japan), and BESM 
(Brazil) (Chou et al. 2014).

Projected changes in climate can differ widely among GCMs, and different 
GCMs are known to perform better in specific regions of the globe (e.g., Cai et al. 
2009; Yin et al. 2013). Therefore, studies that aim at projecting the future impacts of 
ongoing climate change on biodiversity, such as species distribution models, should 
use GCMs that show a good performance in the region of study. This information, 
however, is not readily available for most regions, especially in the Tropics, and 
definitely not for the Atlantic Forest. To fill this gap, we provide here an evaluation 
of the performance of different GCMs over the Atlantic Forest.

We evaluated the performance of 48 GCMs from CMIP5 Phase 5 (used in the last 
IPCC Assessment Report; Taylor et al. 2012) using Taylor Diagrams (Taylor 2001). 
Simulations are available at https://esgfnode.llnl.gov/search/esgf-llnl/. The Taylor 
diagram provides a graphical framework that allows a suite of variables from a 
variety of models to be compared to reference data. We compared the modeled 
(GCM) historical data (1850–2005) with the observed historical data (1979–2005) 
derived from TRMM (Tropical Rainfall Measuring Mission) and ERA-Interim for 
precipitation and air surface temperature, respectively (Dee et al. 2011; Huffman 
et  al. 2014). Taylor diagrams quantify the spatial similarity of each GCM with 
respect to observations in terms of the spatial correlation coefficient, the root-mean- 
square error (RMSE), and the ratio of their variances (Taylor 2001).

We worked under the assumption that, if the models realistically simulate the 
present climate, they will be able to provide more confident projections of future 
states. Therefore, after identifying the set of models with the best simulation of 
seasonal patterns for precipitation and air surface temperature according to the 
Taylor diagrams, we analyzed their projections for the twenty-first century under 
the RCP 8.5 scenario. We evaluated the projected change by the end of the twenty- 
first century (2071–2100) using the 1971–2000 period as the baseline.

The results point to eight GCMs as the best models for the Atlantic Forest 
(Fig. 12.1, Table 12.1). The data for these GCMs, downscaled and calibrated (bias- 
corrected), is freely available for download in standard GIS format in the WorldClim 
Global Climate data portal (https://www.worldclim.org/CMIP5v1). The projected 
change under the RCP 8.5 scenario showed, on average, the regional increase in 
temperature between ca. 4.8 °C and 5.6 °C, while precipitation did not show a clear 
future trend (Fig. 12.2). The lack of trend for precipitation for the Atlantic Forest as 
a whole is likely because it lies in a region that shows different projections, with an 
expected decrease in precipitation in its northern portion but an increase in its 
southern and southeastern portion (Fig. 12.3). This effect is why the Atlantic Forest 
is often separated into two portions (north and south) in studies related to climate 
change (e.g., PBMC 2014).
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Fig. 12.1 Taylor diagrams for seasonal simulations of precipitation (top) and air surface tempera-
ture (bottom). GCMs are shown by full circles, while observational datasets and BESM (Brazilian 
Earth System Model) are shown with open circles. For each data point, three statistics are plotted: 
the Pearson correlation coefficient is shown in the azimuthal angle (dashed straight lines), the root-
mean error in GCM is proportional to the distance from the point on the x-axis identified as “REF” 
(bold black dashed line contours), and the ratio of variance of GCM is proportional to the radial 
distance from the origin (black solid line contours). The distance between each data point and 
“REF” is a measure of how realistically each GCM reproduces the observational datasets (see 
Taylor 2001 for further details). DJF, December, January, February; MAM, March, April, May; 
JJA, June, July, August; SON, September, October, November

Table 12.1 Subset of best global climate models for the Atlantic Forest according to Taylor 
diagrams. Model types: Atmosphere-Ocean General Circulation Models (AOGCMs) and Earth 
System Models (ESM; includes land use/land cover and the biosphere)

Model name Institution Type

ACCESS1.0 CSIRO and Bureau of Meteorology (BOM), Australia AOGCM
CanCM4 Canadian Centre for Climate Modelling and Analysis, Canada AOGCM
CanESM2 Canadian Centre for Climate Modelling and Analysis, Canada ESM
CMCC-CM Centro euro-Mediterraneo per I CambiamentiClimatici, Italy AOGCM
HadGEM2-CC Met Office Hadley Centre, United Kingdom ESM
HadGEM2-ES Met Office Hadley Centre, United Kingdom ESM
MIROC4h Japan Agency for Marine-Earth Science and Technology, atmosphere 

and ocean research institute, and national institute for environmental 
studies, Japan

ESM

MPI-ESM-LR Max Planck Institute for Meteorology, Germany ESM
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Fig. 12.2 Projected change of precipitation (left) and air surface temperature (right) over the 
Atlantic Forest by the end of the twenty-first century. Changes were calculated as the difference 
between the mean RCP 8.5 projection by the end of the century (2071–2100) and the mean 
historical simulation (1971–2000), using only the best global climate models for the Atlantic 
Forest according to the Taylor diagrams

Fig. 12.3 Projected 
change in mean 
temperature (left) and total 
precipitation (right) in 
Brazil. Change was 
calculated for two global 
climate models with good 
performance over the 
Atlantic Forest (MPI- 
ESM- LR and 
HadGEM2-ES) using data 
from the WorldClim 
Global Climate database 
and a South America 
regional climate model 
(ETA-HadGEM ES)
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12.2  Impacts of Climate Change on Biodiversity

No studies to date have shown observed impacts of ongoing climate on biodiversity 
in the Atlantic Forest, but there is a growing number of studies that project future 
impacts. A global-scale study that combined vulnerability associated with future 
climate change hazard, future suitability to the invasion by invasive alien species, 
and current land use changes placed the Atlantic forest among the top three most 
vulnerable biodiversity hotspots in the world (Bellard et al. 2014).

The bulk of the studies on project impacts of climate change the Atlantic First 
biodiversity rely on species distribution models under future climatic conditions, 
which are increasingly being combined with land use change. The Atlantic Forest, 
together with Cerrado, is possibly the hotspot with the highest number of such 
studies in South America (Bustamante et al. 2019). There is a clear taxonomic bias 
in studies toward terrestrial vertebrates, especially not only towards  birds and 
amphibians (e.g., Marini et al. 2010; Souza et al. 2011; Loyola et al. 2014; Lemes 
and Loyola 2013; Lemes et  al. 2014; Hoffmann et  al. 2015; Vasconcelos and 
Nascimento 2016; Vale et al. 2018; Vasconcelos et al. 2018) but also mammals (e.g., 
Meyer et al. 2014; Gouveia et al. 2016; Lima et al. 2019) and reptiles (e.g., Lourenço- 
de- Moraes et al. 2019), and also some studies on invertebrates, especially insects 
(Ferro et al. 2014; Gianinni et al. 2012, 2015; Beltramino et al. 2015; Faleiro et al. 
2018; Françoso et  al. 2019) and plants (Colombo and Joly 2010; Cupertino- 
Eisenlohr et al. 2017). The studies typically predict a reduction of the distribution or 
climatic suitability in the future for the vast majority of the species and expansion 
for few. An exception is Zwiener et al. (2017a), who predicted a general increase 
in  local richness of woody plants, but mainly for the generalist and disturbance- 
tolerant species, and a decrease in beta diversity and biotic homogenization at large 
scales. Few studies consider biological interactions under climate change (e.g., see 
Vasconcelos et al. 2017 for mutualism and Braz et al. 2019 for competition) and 
invasive species (e.g., Nori et al. 2011; Assunção et al. 2018). Many studies also 
predict a southward range shifts (e.g., Colombo and Joly 2010; Ferro et al. 2014; 
Lemes et al. 2014; Beltramino et al. 2015; Hoffmann et al. 2015; Vale et al. 2018; 
Silva et al. 2019), which might be a compensation for increased temperatures, and 
is congruent with a projected southward expansion of the Atlantic Forest vegetation 
(Salazar et al. 2007). The result is a predicted reduction in species richness and an 
increase in turnover, in general (which might be clade-specific for amphibians at 
least; Loyola et al. 2014). Based on these studies, we can assert with high confidence 
(sensu Mastrandrea et al. 2010) that there is a high risk of biodiversity loss in the 
Atlantic Forest, including species extinction, due to climate change.

A number of studies predict a reduced effectiveness of the network of protected 
areas in the Atlantic Forest under climate change (e.g., Meyer et al. 2014; Lemes 
et al. 2014; Ferro et al. 2014; Beltramino et al. 2015; Giannini et al. 2015; Lourenço- 
de- Moraes et  al. 2019; Silva et  al. 2019). Systematic conservation planning that 
takes climate change into account, however, can minimize future loss of species in 
protected areas throughout meaningful guidance for protected areas network 
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expansion (Vale et al. 2018; Vasconcelos and Prado 2019; Lemes and Loyola 2013). 
Protection of forest remnants alone will not suffice, however, and well-planned 
forest restoration is a necessary complementary action to safeguard the Atlantic 
Forest’s biodiversity under climate change (Giannini et  al. 2015; Zwiener 
et al. 2017b).

Despite a large number of studies projecting climate change impacts on the 
Atlantic Forest’s biodiversity, there are substantial taxonomic and methodological 
bias, which generate significant knowledge gaps, particularly on altitudinal, 
freshwater, and coastal environments. Given the complex topography of the Atlantic 
Forest, the lack of observational studies and scarcity of predictive studies (see 
Hoffmann et al. 2015) on climate change impacts on high-altitude environments and 
mountain species is surprising. Mountain species and environments are well known 
for their high vulnerability to climate change both worldwide (La Sorter and Jetz 
2010; Öztürk et al. 2016) and in Brazil (Scarano et al. 2016; Fernandes et al. 2018, 
but see Esser et al. 2019). Several studies have observed range shifts and reduction 
in mountains. These studies typically replicate altitudinal gradient studies at the 
community level carried decades ago, revealing upward range shifts and contraction 
(e.g., Forero-Medina et al. 2011), and could be carried out in the Atlantic Forest. 
The lack of studies on observed or predicted climate change impacts on Atlantic 
Forest freshwater ecosystems is also worrisome, given their high diversity and 
vulnerability (Collen et  al. 2013; Roland et  al. 2012; but see Esser et  al. 2019). 
Finally, the Atlantic Forest has many associated coastal ecosystems, such as 
restingas and mangroves, which are also vulnerable to climate change, especially 
sea-level rise, but there is blatant lack of studies on the topic (Godoy and Lacerda 
2015; Oliveira et al. 2016; Copertino et al. 2010). The review of Godoy and Lacerda 
(2015), for example, reveals that, taking into consideration climate change alone, 
mangroves in most areas will display a positive response. However, mangroves in 
southeastern Brazil, which are in constrained coastlines, will most probably not 
survive (Godoy and Lacerda 2015).

12.3  Adaptation Strategies

Climate change and deforestation are the main causes of biodiversity loss in terres-
trial ecosystems in the present and the near future. In addition to contributing indi-
vidually to biological degradation, the interaction between these factors induces 
negative feedbacks on ecosystem resilience and contributes synergistically to 
biological degradation at species, genetic, and/or habitat level. However, reversing 
current and estimated trends of climate change effects on biodiversity is a socio- 
ecological problem.

We need to perceive the Atlantic forest as an inherently human-nature coupled 
system, rather than social and natural systems separately. Within the domain of the 
Atlantic Forest, we find both some of Brazil’s largest urban centers (such as Rio de 
Janeiro and São Paulo) and more than half of the land dedicated to horticulture and 

12 Climate Change and Biodiversity in the Atlantic Forest: Best Climatic Models…



260

food production (Joly et al. 2014). Forest is no longer the norm in the landscape; it 
is mostly a collection of small vegetation remnants surrounded by a matrix of urban 
and agricultural ecosystems (Rezende et al. 2018a).

 Given this situation, using ecosystems to promote societal adaptation to climate 
change is particularly appropriate for the Atlantic Forest (Scarano and Ceotto 2015). 
Ecosystem-based adaptation to climate change (EbA) is defined by the Convention 
on Biological Diversity (CBD 2009) as “the use of biodiversity and ecosystem 
services as part of an overall adaptation strategy to help people to adapt to the 
adverse effects of climate change.” One can then expect that a successful EbA 
program could improve livelihoods across the Atlantic Forest by implementing 
actions related to ecosystem conservation and restoration (Scarano 2017, 2019).

Although current political and economic instability are obvious hurdles (Loyola 
2014; Dobrovolski et al. 2018), recent optimism with EbA applied to the Atlantic 
Forest has to do with several factors: (1) Favorable legal background that makes 
mandatory restoration and conservation within private properties to pay for 
environmental debt; (2) Favorable legal background, in the shape of payment for 
ecosystem services (PES) legislation in many federal states covered by the Atlantic 
Forest, to fund restoration; (3) Existence of successful case studies related to PES in 
several states covered by the Atlantic Forest states; (4) the presence of influential 
civil society organizations acting in issues related to climate change, conservation, 
and restoration, such as the Atlantic Forest Pact; (5) Presence of strong academic 
institutions; and (6) Existence of thriving on-the-ground experiences in project 
implementation (Scarano and Ceotto 2015; Brancalion et al. 2016; Scarano 2017).

The favorable scenario is such that it has led to a discussion on the possibility of 
the Atlantic forest gradually change its status from “shrinking biodiversity hotspot” 
(Ribeiro et  al. 2011) to “future climate hope spot” (Scarano and Ceotto 2015; 
Rezende et al. 2018a). For instance, many municipalities with high legal vegetation 
debt also have high poverty and/or low human development index, such as those in 
the northern portion of the state of Rio de Janeiro (Rezende et al. 2018b) or those in 
the Rio Doce valley, in the state of Minas Gerais (Pires et al. 2017). In such cases, 
economic incentives must apply in order to foster local restoration-based economies. 
The injection of resources through mechanisms like PES, for example, could 
strengthen the economic chain of restoration in degraded municipalities – from the 
production and commercialization of inputs to the implementation of restoration in 
the field – stimulating job generation and boosting the local economy while restoring 
the vegetation. The state of Espírito Santo, for instance, has legislation that ensures 
the redirection of 3% of oil revenues − so-called “royalties” − to fund restoration 
(Sossai et al. 2016). If applied in the state of Rio de Janeiro, for example, a similar 
program would have an annual budget of around USD 40 million, based on 3% of 
2016 royalties collected by the state government, not considering the amounts 
collected by the municipalities (Rezende et al. 2018b). This figure covers the annual 
costs of planting 39% of the environmental debt in private rural properties of the 
state, considering 20  years (Rezende et  al. 2018b). In the case of the Rio Doce 
valley, funds from compensation and fines owing to a major spill of mining tailings 
could also cover large areas with forest restoration (Pires et al. 2017).
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Beyond restoration, forest conservation is also a critical component to safeguard 
biodiversity and the ecosystem services it provides and to foster economy. Protected 
areas contribute to climate change mitigation. By mitigating the emission of CO2 
and other greenhouse gases resulting from the degradation of natural ecosystems, 
protected areas help to prevent the increase in the concentration of these gases in the 
atmosphere. These areas also play a crucial role in protecting strategic resources for 
the development of the country. For example, Young and Medeiros (2018) estimated 
that ecosystem services delivered from protected areas generate economic 
contributions that significantly exceed the amount that has been allocated by public 
administrations to the maintenance of the Protected Areas System in Brazil. They 
also found that 80% of the country’s hydroelectricity comes from generating sources 
that have at least one tributary downstream from a protected area; 9% of the water 
for human consumption is directly captured in protected areas, 26% is taken in 
sources downstream of them, and 4% of the water used in agriculture and irrigation 
is taken from sources in or downstream of protected areas. Finally, the authors argue 
that public visitation in Brazil’s 67 national parks has the potential to generate 
between R$ 1.6 and 1.8 billion per year, considering the estimated flows of tourists 
projected for the country. Protected Areas in the Atlantic forest have enormous 
potential in all these fronts, and expanding its network in the region represents a 
crucial joint objective to provide synergy between climate change mitigation and 
adaptation (Locatelli et al. 2015, see below).

It has been argued that climate change adaptation (Agrawal and Lemos 2015) 
and EbA in particular (Pant et al. 2015; Scarano 2017; Kasecker et al. 2018) can 
often be an essential step in the transition from a conventional to a sustainable 
development paradigm. Moreover, sustainable development can both be the cause 
and consequence of mitigation and adaptation to climate change, but only rarely, the 
links between these processes are examined in an integrated fashion (see Agrawal 
and Lemos 2015; Scarano 2017).

The conservation and restoration of natural ecosystems, and in particular forests, 
are prone to bring together mitigation, adaptation, and sustainable development 
(e.g., Locatelli et al. 2011; Thornton and Comberti 2017; Strassburg et al. 2019). 
Trade-offs have also been reported, for instance, between carbon sequestration and 
biodiversity values, local livelihoods, and tenure security (Ingalls and Dwyer 2016). 
Nevertheless, careful planning for restoration in the Atlantic forest can optimize 
costs, biodiversity conservation, and carbon mitigation, which altogether might 
result in climate change adaptation (Crouzeilles et al. 2015; Zweiner et al. 2017b; 
Strassburg et al. 2019).

Locatelli et al. (2015) described three processes whereby mitigation and adapta-
tion synergy may take place. The first process is “joint outcome,” i.e., activities that 
are undertaken without climatic objectives that deliver joint adaptation and mitiga-
tion outcomes. For instance, in the Atlantic Forest, and Brazil as a whole, indige-
nous lands are designed for human and land rights and cultural preservation. These 
areas also play an essential role in protecting threatened species (Ribeiro et  al. 
2018). However, the 1.2 million hectares of indigenous lands in the region (Pinheiro 
et al. 2014) are also important for carbon mitigation and climate change adaptation 
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(see Walker et al. 2014; Nogueira et al. 2018). The second process is called “unin-
tended side-effects,” whereby activities aimed at one climate objective, either miti-
gation or adaptation, can deliver outcomes for the other objective. For example, 
actions that target disaster risk reduction and climate change based on ecosystems 
may often have a mitigation effect of carbon stock or sequestration. This is the case 
of conservation or restoration of mangroves and sand dunes to avoid coastal erosion 
(Scarano 2002, 2009) or of hillside forests to avoid landslides (Brancalion et  al. 
2016; Renaud et al. 2016). Finally, the third process is “joint objectives” and refers 
to the association between adaptation and mitigation objectives in a climate-related 
activity. Activities such as ecosystem restoration, payment for ecosystem services, 
and climate-smart agriculture, among others, are increasingly designed to achieve 
both goals, often resulting in sustainable development (see Harvey et  al. 2014; 
Kasecker et al. 2018). The potential for synergy between mitigation and adaptation 
has been estimated based on the presence or absence of four enabling conditions for 
integration: policies and strategies, programs and projects, institutional arrange-
ments, and financial mechanisms (Duguma et al. 2014). This potential is measured 
by a score, and these authors found that Mexico (with a score of 8) has the most 
enabling conditions for synergy between mitigation and adaptation in Latin 
America, followed by Brazil (7), Ecuador (5), and Chile (4). In all these countries, 
ecosystems are a key piece in the potential for synergy, and in Brazil, owing to its 
capacity and available infrastructure, the Atlantic Forest has the highest potential. 
This is the reason why the Atlantic Forest is increasingly perceived as a biodiversity 
hotspot that can upgrade to the status of a “climate hope spot” (Scarano and Ceotto 
2015; Rezende et al. 2018a, b): a biome that becomes an example that the path of 
degradation and extinction can be transformed to one of prosperity for humans and 
nature alike.
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