
Secure and Compact Elliptic Curve LR
Scalar Multiplication

Yaoan Jin1 and Atsuko Miyaji1,2(B)

1 Graduate School of Engineering, Osaka University, Suita, Japan
jin@cy2sec.comm.eng.osaka-u.ac.jp, miyaji@comm.eng.osaka-u.ac.jp

2 Japan Advanced Institute of Science and Technology, Nomi, Japan

Abstract. Elliptic curve cryptography (ECC) can ensure an equivalent
security with much smaller key sizes. Elliptic curve scalar multiplica-
tion (ECSM) is a fundamental computation used in ECC. This paper
focuses on ECSM resisting simple power attack and safe error attack of
side-channel attack specifically. Elliptic curve complete addition (CA)
formulae can achieve secure ECSM algorithms but are inefficient from
memory and computational cost perspectives. Another secure ECSM,
which uses (extended) affine, is more efficient for both memory and com-
putational costs. However, it scans input scalars from right to left. In
this paper, our developed scalar multiplication algorithms also use their
extended affine, but scan from left to right (LR). We also prove the secu-
rity of our LR ECSM algorithms and analyze them both theoretically and
experimentally. Our new LR ECSM algorithms can reduce the amount
of memory by 37.5% and reduce the computational time by more than
40% compared to Joye’s regular 2-ary LR algorithm with CA formulae.

Keywords: Elliptic curve scalar multiplication · Side-channel attack

1 Introduction

Elliptic curve cryptography (ECC) can ensure an equivalent security with much
smaller key sizes. Hence, ECC has been implemented in secure Internet-of-Things
(IoT) devices [1] and various blockchain applications. Elliptic curve scalar mul-
tiplication (ECSM) is a fundamental computation used in ECC. It is therefore
important to construct a secure and efficient ECSM. Studies on secure and effi-
cient ECSM algorithms can be divided into two categories. The first direction
is to find secure and efficient scalar multiplication algorithms [9–11,13,14]. The
second direction is to find secure and efficient coordinates with addition for-
mulae [3,6,7,15,17]. This paper concentrates on resisting simple power attack
(SPA) and safe error attack (SEA). SPA makes use of “if statements” and SEA
makes use of “dummy statements” to reveal significant bits of input scalars.
Thus, secure ECSM algorithms should exclude conditional and dummy state-
ments. Elliptic curve CA formulae [7,15,17] can achieve secure ECSM algorithms
but are inefficient in terms of memory and computational costs. Another secure
ECSM, which uses (extended) affine, is more efficient for both memory and
computational costs [8]. However, it scans input scalars from right to left (RL).
c© Springer Nature Switzerland AG 2020
J. K. Liu and H. Cui (Eds.): ACISP 2020, LNCS 12248, pp. 605–618, 2020.
https://doi.org/10.1007/978-3-030-55304-3_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-55304-3_31&domain=pdf
https://doi.org/10.1007/978-3-030-55304-3_31

606 Y. Jin and A. Miyaji

In this paper, we propose secure and compact left-to-right (LR) ECSM algo-
rithms based on affine coordinates. We improve Joye’s LR 2-ary algorithm to
exclude exceptional computations of affine formulae and extended affine formu-
lae [8]. We propose secure scalar multiplication algorithms, Algorithm 7 and
Algorithm 8 through 2-bit scanning using the affine double and quadruple algo-
rithm (DQ-algorithm) [12]. Subsequently, along with applying the idea of a
Montgomery trick [4,12], we revise three affine combination-addition formulae,
which reduce the number of inversion computations to one during all compu-
tations. We combine Algorithm 7 and Algorithm 8 with affine combination-
addition algorithms and modify Algorithm 8 to Algorithm 9 with our affine
combination-addition algorithm (Algorithm 6).

For memory, (Algorithm 7) and (Algorithm 7 with Algorithm 2) use the least
amount of memory for ten field elements, reducing that of Joye’s LR with CA for-
mulae by 37.5% and that of Joye’s RL with CA formulae by 47.37%. For compu-
tational cost, we evaluate all ECSMs by estimating the number of modulo multi-
plication (M), modulo square (S), and inversion (I). Modulo multiplication with
parameters a and b (ma and mb) and modulo addition (A) are omitted. In many
cases, such as the National Institute of Standard and Technology (NIST) ellip-
tic curves, we can only omit ma and A. Then, our ECSMs of (Algorithm 7 with
(extended) affine), (Algorithm 7 with (extended) affine and Algorithm 2), and
(Algorithm 9 with (extended) affine and Algorithm 6) can be the most efficient
during a larger interval of I

M ≤ 26.8−54/�
1+17/� (24.93 when bit length � = 256) com-

pared to Joye’s LR with CA formulae. Experiments also show that our new LR
ECSM algorithms can reduce the computational time by more than 40% compared
to Joye’s LR with CA formulae.

The remainder of this paper is organized as follows. Related studies are pro-
vided in Sect. 2. Our proposed algorithms are described in Sect. 3. In Sect. 4,
we analyze our Algorithms 7–9 with (extended) affine and affine combination-
addition algorithms (Algorithms 2, 3, 4, 5 and 6) from the theoretical and exper-
imental perspectives. Finally, we conclude our work in Sect. 5.

2 Related Work

ECSM algorithms consist of two parts: scalar multiplication algorithms and ellip-
tic curve addition formulae. Thus, related studies on secure and efficient ECSM
algorithms can be divided into two categories: scalar multiplication algorithms
[9–11,13,14] and elliptic curve coordinates with addition formulae [3,7,15,17].
We briefly introduce related studies in this section.

affine addition formula (P �= ±Q)

x3 =
(

y2 − y1

x2 − x1

)2

− x1 − x2

y3 =
(

y2 − y1

x2 − x1

)
(x1 − x3) − y1

(1)

affine doubling formula (2P �= O)

x3 =
(

3x2
1 + a

2y1

)2

− 2x1

y3 =
(

3x2
1 + a

2y1

)
(x1 − x3) − y1

(2)

Secure and Compact Elliptic Curve LR Scalar Multiplication 607

2.1 Addition Formulae and Exceptional Computations

Let E(Fp) be a Weierstrass elliptic curve over Fp, E(Fp) : y2 = x3+ax+b, (a, b ∈
Fp). Then affine coordinates compute addition and doubling as Eqs. 1 and 2. A
point at infinity cannot be represented clearly by the affine coordinates. Thus,
O + P , P + Q = O and 2P = O, which cannot be computed correctly by the
affine addition formulae, are so-called exceptional computations of affine addition
formulae. In addition, P + P becomes an exceptional computation of the affine
addition formula. In summary, O + P , P + Q = O and P + P are exceptional
computations of the affine addition formula and 2P = O is the exceptional
computation of the affine doubling formula. Similarly, O + P and P + P are
exceptional computations of Jacobian and projective addition formula. To reduce
exceptional computations from affine coordinates, extended affine coordinates
assign (0, 0) as the point at infinity for elliptic curves without point (0, 0), such
as prime order elliptic curves [8]. Using the extended affine addition formulae,
P + Q = O and 2P = O can be computed as (0, 0), which is exactly the point
at infinity. Both O + P and P + P are still exceptional computations of the
extended affine addition formula. We use (extended) affine to indicate the mixed
use of the original affine addition and the extended affine addition.

The complete addition (CA) formulae of an elliptic curve [15] can be used to
compute the addition of any elliptic curve point pair, and thus, can be employed
to secure scalar multiplication algorithms without introducing conditional state-
ments to process exceptional computations. However, CA formulae are inefficient
in terms of memory and computational costs. In addition, note that they only
work for prime order elliptic curves.

Table 1 summarizes the computational cost of the elliptic curve addition for-
mulae, where M , S, I, and A are the computational costs for one field multi-
plication, square, inversion, and addition, respectively. Further, ma and mb are
the computational costs for one field multiplication with parameters a and b,
respectively. Assuming that S = 0.8M , and ignoring the computational costs
of ma, mb, and A, the computational cost of one elliptic curve addition (ADD)
and one elliptic curve doubling (DBL) using the CA formulae is 24M in total.
Subsequently, the computational cost of the ADD and DBL using affine addition
formulae is more efficient than those using the CA formulae, Jacobian addition
formulae, or projective addition formulae when I < 8.8M , I < 8M or I < 9.1M ,
respectively. If we employ these addition formulae on NIST elliptic curves, where
a = −3 and the computational cost mb cannot be ignored, the computational
cost of ADD and DBL using the CA formulae is 26.4M in total. The compu-
tational cost of ADD and DBL using affine addition formulae is more efficient
when I < 10M .

2.2 Scalar Multiplication Algorithms

SCA has several attack methods to reveal significant bits of input scalars: a
simple power analysis (SPA), which makes use of conditional statements applied
during an algorithm depending on the data being processed; a differential power

608 Y. Jin and A. Miyaji

Table 1. Computational cost of elliptic curve addition formulae

Addition formulae Conditions ADD (P + Q) DBL (2P) Memory

CA formulae [15] 2 � #E(Fp) 12M + 3ma + 2mb + 23A 12M + 3ma + 2mb + 23A 15

Affine – 2M + S + I 2M + 2S + I 5

Extended affine [8] (0, 0) /∈ E(Fp) 6M + S + I 4M + 4S + I 7

Projective – 12M + 2S 7M + 5S 7

Jacobian – 11M + 5S M + 8S 8

analysis (DPA), which uses the correlation between the power consumption and
specific key-dependent bits; a timing attack, which uses the relation between the
implementation time and the bits of the scalars; and a safe error attack (SEA),
which uses dummy statements [2,5]. Therefore, to resist these attacks, we need to
eliminate conditional statements in the ECSM for the SPA, the relation between
the implementation time and the input scalars for the timing attack, and dummy
statements for the SEA. In addition, the power consumption should be changed
at each new execution for the DPA. Note that countermeasure to timing attack
is taken by padding ‘0’s in front of the input scalars to make certain that almost
the same execution time can be easy employed in our algorithms [16]. In this
paper, we focus on the SPA and SEA.

Regarding secure ECSM resisting SPA and SEA, three properties, namely,
the generality of k, secure generality, and executable coordinates are defined
in [8]. In their paper, the authors evaluated secure ECSM focusing on RL scalar
multiplication algorithms. We can evaluate Joye’s regular 2-ary LR algorithm
(Algorithm 1) in the same way as shown in Theorem 1.

Algorithm 1. Joye’s regular 2-ary LR algorithm [10]

Input: P ∈ E(Fp), k =
∑�−1

i=0 ki2
i

Output: kP
Uses: A, R[1], R[2]
Initialization
1: R[1] ← P , R[2] ← 2P
2: A ← (k�−1 − 1)P
Main Loop
3: for i = � − 2 to 0 do
4: A ← 2A + R[1 + ki]
5: end for
Final Correction
6: A ← A + R[1]
7: return A

Theorem 1. Joye’s regular 2-ary LR algorithm satisfies the generality of k and
the secure generality. Coordinates with CA formulae are its executable coordi-
nates. Affine and Jacobian coordinates are not executable coordinates of this
algorithm.

Secure and Compact Elliptic Curve LR Scalar Multiplication 609

New (two-bit) 2-ary RL scalar multiplication algorithms by improving Joye’s
regular 2-ary RL algorithm to make (extended) affine be executable coordinates
for it are proposed in [8]. In fact, Joye’s regular 2-ary LR algorithm uses two fewer
memories than Joye’s regular 2-ary RL algorithm. We would like to employ the
same idea to improve Joye’s regular LR algorithm to use the (extended) affine
as executable coordinates.

2.3 Inversion-Reduction Combination-Addition Formulae

We can compute any two or more inversions of the field elements using only a
single inversion by applying the Montgomery trick. The computational cost of
nI becomes 3(n − 1)M + I, which is more efficient when I > 3M . Using this
method, Eisentrager et al. proposed an affine doubling and addition algorithm
(DA-algorithm), computing 2P +Q as P +Q+P with P (x1, y1), Q(x2, y2) using
the following formulae [4]:

x3 = λ2
1 − x1 − x2, y3 = λ1(x1 − x3) − y1, λ1 =

(
y2 − y1

x2 − x1

)
(3)

x4 = (λ2 − λ1)(λ2 + λ1) + x2, y4 = λ2(x1 − x4) − y1, λ2 = −λ1 − 2y1

x3 − x1
(4)

DA-algorithm computes an inversion of (x2 −x1)3(x3 −x1) = (x2 −x1)(y2 −
y1)2 − (2x1 + x2)(x2 − x1)3 first and then computes inversions of (x2 − x1)
and (x3 − x1). The result (x4, y4) can be computed without computing (x3, y3)
completely. The computational cost is 9M + 2S + I.

Le and Nguyen proposed an affine double and quadruple algorithm (DQ-
algorithm) [12]. Their algorithm can compute both 2P and 4P simultaneously
with only one inversion computation. The computational cost is 8M + 8S + I.
Its memory use is improved to 11 field elements, as described in [8].

3 Secure and Efficient LR-ECSM Algorithms

Algorithm 1 satisfies the generality of k and the secure generality, and uses
two fewer memories than Joye’s regular 2-ary RL algorithm. The affine addi-
tion formulae save memory and are efficient depending on the ratio of inver-
sion and multiplication costs but are not the executive coordinates of Algorithm
1. In the case of Joye’s regular 2-ary RL algorithm, accelerated version with
(extended) affine is proposed in [8]. However, the authors failed to apply them to
Algorithm 1. With the advantages of Algorithm 1 and affine coordinates, in this
section, we describe the improvement of Algorithm 1 to adapt (extended) affine.

First, we revise affine combination-addition formulae using the Montgomery
trick, which are used in our new LR ECSM to enhance the efficiency. We then
propose our new LR scalar multiplication algorithms with (extended) affine and
prove their security.

610 Y. Jin and A. Miyaji

3.1 Affine Combination-Addition Formulae

In this section, using the Montgomery trick, we revise several affine combination-
addition formulae, which are used in our LR ECSM Algorithms 7, 8 and 9. Table 2
shows our affine combination-addition formulae together with the previous formu-
lae. When using the Montgomery trick to reduce the inversion cost, inverses needed
to be computed depend on each other. Thus, it is not straightforward to apply the
Montgomery trick. First, we improve DQ-algorithm [8,12] to optimize the use of
memory as ten field elements in Algorithm 3, which saves one memory from [8].

Algorithm 2. DA-algorithm
Memory: 4+3=7 field elements.
Computational cost: 9M + 2S + I.
Input: P = (x1, y1), Q = (x2, y2)
Output: 2P + Q
1: y2 = y2 − y1, t0 = y2

2 , t1 = 2x1 + x2

2: x2 = x2 − x1, t2 = x2
2, t1 = t1t2

3: t0 = t0 − t1, t1 = t0x2, t1 = t−1
1

4: t0 = t0t1y2, t1 = −2t1x2t2y1−t0, t2 =
t1 + t0

5: t0 = t1 − t0, t0 = t0t2 + x2 + x1, x2 =
x2 + x1

6: x1 = (x1 − t0)t1 − y1, y2 = y2 + y1,
y1 = x1, x1 = t0

7: return (x1, y1)

Algorithm 3. DQ-algorithm
Memory: 6+4=10 field elements.
Computational cost: 8M + 8S + I.
Input: P (x1, y1)
Output: 2P , 4P
1: t0 = x2

1, t1 = 2y2
1 , t2 = t21

2: t1 = 3((t1 + x1)
2 − t0 − t2), t0 =

3t0 + a, t3 = t20
3: t1 = (t1−t3)t0, t2 = 2t2, t1 = t1−t2
4: t3 = 2t1y1, t3 = t−1

3 , t0 = t0t1t3
5: x2 = t20−2x1, y2 = (x1−x2)t0−y1,

t3 = t2t3
6: t0 = (3x2

2 + a)t3, x3 = t20 − 2x2,
y3 = (x2 − x3)t0 − y2

7: return (x2, y2), (x3, y3)

Algorithm 4. Double-add
Memory: 4+4=8 field elements.
Computational cost: 9M + 5S + I.
Input: P = (x1, y1), Q = (x2, y2)
Output: 2P + Q
1: t0 = (2y1)

2, x2 = x2 +2x1, t1 = −t0x2

2: x2 = x2 − 2x1, t2 = 3x2
1 + a, t3 = t22

3: t1 = t1 + t3, t3 = 2t1y1, t3 = (t3)
−1

4: t2 = t2t3t1, t3 = 2t3y1t0, t1 = t22 − 2x1

5: t0 = (x1 − t1)t2 − y1, t0 = (t0 − y2)t3
6: x1 = t20 −x2 − t1, y1 = (x2 −x1)t0 −y2

7: return (x1, y1)

Algorithm 5. Two-Continuous Adds
Memory: 6+4=10 field elements.
Computational cost: 9M + 4S + I.
Input: P = (x1, y1), Q = (x2, y2), R =

(x3, y3)
Output: P + Q + R
1: y2 = y2 − y1, t0 = y2

2 , t1 = x2 − x1

2: t2 = t21, t3 = x1+x2+x3, t3 = t0−t3t2
3: t0 = t1t3, t0 = (t0)

−1, y2 = y2t0t3
4: t3 = y2

2 − x1 − x2, x2 = (x1 − t3)y2 −
y1 −y3, t0 = t0t1t2x2, x2 = t20 −x3 − t3

5: y2 = (x3 − x2)t0 − y3

6: return (x2, y2)

DA, the computation of 2P + Q, is a basic computation formulae in the main
loop of Algorithm 1. DA-algorithm is not described in detail, and it is thus unclear
how much memory is required [4]. We specify the DA-algorithm to optimize the use
of memory as seven field elements in Algorithm 2. DA-algorithm in [4] has excep-
tional inputs of P +Q = O and P = Q, where P and Q have the same x-coordinate.

Secure and Compact Elliptic Curve LR Scalar Multiplication 611

If an exceptional input P + Q = O or P = Q is computed using Algorithm 2, −P
is its output. That’s DA(P , Q)→ −P , where P +Q = O or P = Q. If we make use
of Algorithm 2 twice with exceptional input P + Q = O (for example P = (x, y)
and Q = −P = (x,−y)), then Algorithm 2 outputs P ← DA(P , Q) = −P first,
whereas 2P + Q = P . Next, input the updated P and the original Q into the algo-
rithm again, then Algorithm 2 outputs P ← DA(−P , Q) = P . Thus, Algorithm 2
outputs DA(DA(P , Q), Q), where P + Q = O, correctly. This is why we can not
directly use Algorithm 2 in our Algorithm 7. In Algorithms 2 and 3, inversions are
computed in the same way as in the extended affine formulae [8], which means an
inversion of zero is computed as zero.

Algorithm 6. Quadruple-Add
Memory: 4+6=10 field elements.
Computational cost: 18M + 14S + I.
Input: P (x1, y1), Q(x2, y2)
Output: 4P + Q
1: t0 = x2

1, t1 = 2y2
1 , t2 = t21, t3 = (t1+x1)

2−t0−t2, t0 = 3t0+a, t4 = t20, t4 = t4−2t3
2: t3 = t3 − t4, t3 = t0t3, t3 = t3 − 2t2, t1 = 2t1x2 + 2t4, t5 = t23, t1 = 4t1t5, t5 = 4t2a
3: t4 = 3t24, t4 = t4 + t5, t4 = t24, t4 = t4 − t1, t5 = 2t3t4y1, t5 = (t5)

−1, t1 = 2t2t4t5
4: t5 = t3t5, t0 = t0t4t5, t2 = t22, t5 = 32t2t5y1, t2 = t20 − 2x1, x1 = (x1 − t2)t0 − y1

5: y1 = 3t22 + a, t1 = t1y1, y1 = t21 − 2t2, t2 = (t2 − y1)t1 − x1, x1 = 4x2
1, t5 = t5x1

6: t2 = t2 − y2, t2 = t2t5, x1 = t22 − x2 − y1, y1 = (x2 − x1)t2 − y2

7: return (x1, y1)

Table 2. Comparison of affine combination-addition algorithms

Affine combination-addition algorithms Ordinary Computational cost Memory

DA-algorithm Algorithm 2 (2P + Q) [4] 4M + 3S + 2I 9M + 2S + I 7

DQ-algorithm Algorithm 3 (2P, 4P) [12] 4M + 4S + 2I 8M + 8S + I 10

Double-Add Algorithm 4 (2P + Q) 4M + 3S + 2I 9M + 5S + I 8

Two-Continuous Adds Algorithm 5 (P + Q + R) 4M + 2S + 2I 9M + 4S + I 10

Quadruple-Add Algorithm 6 (4P + Q) 6M + 5S + 3I 18M + 14S + I 10

Our double-add algorithm (Algorithm 4) computes 2P followed by 2P +
Q instead of first computing P + Q, and then (P + Q) + P in Algorithm 2.
Algorithm 4 can correctly compute 2P + Q if 2P �= O, 2P �= Q, 2P + Q �= O
and Q �= O. Note that Algorithm 4 can compute 2P + Q correctly even when
P + Q = O or P = Q, which cannot be computed correctly by Algorithm 2.
Algorithm 4 can be used in Algorithm 7 without exceptional inputs. The memory
usage is eight field elements and the computational cost is 9M + 5S + I. Next,
Algorithm 5 combines two continuous affine additions into a single unit, which
can compute P + Q + R correctly if P + Q �= O, P + Q + R �= O, P �= Q,
P + Q �= R and P,Q,R �= O, used in Algorithm 8. The memory usage is ten
field elements and the computational cost is 9M + 4S + I. Finally, our affine

612 Y. Jin and A. Miyaji

quadruple and addition algorithm (Algorithm 6) combines the computations in
the main loop of our extended new two-bit 2-ary LR algorithm (Algorithm 9),
4P + Q. In general, to obtain 4P + Q, we need to compute P ← 2P , P ← 2P ,
and P ← P + Q, which cost 3I. Algorithm 6 can compute 4P + Q correctly if
4P + Q �= O, 4P �= Q and P, 2P, 4P,Q �= O. The memory usage is ten field
elements and the computational cost is 18M + 14S + I.

3.2 Secure and Efficient LR Scalar Multiplication

We improve Algorithm 1 to a new 2-ary LR algorithm (Algorithm 7) and a new
two-bit 2-ary LR algorithm (Algorithm 8). We then combine Algorithms 7 and 8
with affine combination-addition algorithms to reduce the inversion
computations.

Algorithm 8 uses two-bit scanning, which is different from Algorithm 7.
Algorithm 8 adjusts the length of the input scalars k including the sign bit
to be even by padding ‘0’s after the sign bit of input scalars1. Therefore, two-bit
scanning can operate well for both even and odd lengths of input scalars k.

Algorithm 7. New 2-ary LR
Input: P ∈ E(Fp), k ∈ [− N

2 , N
2], k =

(−1)k�
∑�−1

i=0 ki2
i, sign bit kl ∈ {0, 1}

Output: kP
Uses: A, and R[0], R[1]
Initialization
1: A ← 2P
2: R[0] ← −2P
3: R[1] ← −P

Main loop
4: for i = � − 1 to 1 do
5: A ← 2A + R[ki]
6: end for

Final correction
7: A ← 2A + R[0]
8: A ← A + R[k0]

9: A ← (−1)k� × A
10: return A

Algorithm 8. New two-bit 2-ary LR
Input: P ∈ E(Fp), k ∈ [− N

2 , N
2], k =

(−1)k�
∑�−1

i=0 ki2
i, sign bit k� ∈ {0, 1}

Output: kP
Uses: A and R[0], R[1], R[2], R[3]
Initialization
1: R[1] ← −P , {R[0], R[2]} ← DQ(R[1])
2: R[3] ← R[0], A ← −R[0]

Main loop
3: for i = � − 1 to 1 do
4: A ← DQ(A)[1] = 4A
5: A ← A + R[ki + 2] + R[ki−1], i = i − 2
6: end for

Final correction
7: A ← 2A + R[0]
8: A ← A + R[k0]

9: A ← (−1)k� × A
10: return A

Both Algorithms 7 and 8 assume that k ∈ Z/NZ is in k ∈ [−N
2 , N

2],
which ensures that our algorithms exclude exceptional computations as shown in
Theorem 2. Then, k is represented by k = (−1)k�

∑�−1
i=0 ki2i (ki ∈ {0, 1}), where

k� ∈ {0, 1} is the sign bit and 0 ≤ |k| ≤ N
2 . Algorithms 7 and 8 consist of

three parts: initialization, a main loop, and a final correction. Compared with
Algorithm 1, we change the initialization of R[.] and A to avoid the exceptional
initialization of A ← O when k�−1 = 1 and the exceptional computations of
2O + P , 2O + 2P , and −2P + 2P in the main loop. Our initializations of R[.]
and A cause 4P , or 3P , to be added to the final result when k0 = 0, or k0 = 1,
respectively. We correct this in Steps 7 and 8 of the final correction of Algorithm
7 and Algorithm 8, and thus, avoid the exceptional computation, A ← A+R[1],
in the original final correction of Algorithm 1. Remark that the extended affine is
used only once in Step 8 of Algorithm 7 and Algorithm 8. Actually, the extended
1 The sign bit is ‘0’ at the beginning of k when k is positive, or ‘1’ at the beginning

of k when k is negative.

Secure and Compact Elliptic Curve LR Scalar Multiplication 613

affine is only necessary for k = 0. If k = 0 is excluded from the input, then only
the original affine can work well.

As for further reduction of inversion computations, Algorithms 2 or 4 can
be applied in Steps 5 and 7 of Algorithm 7, respectively. Although Algorithm 2
cannot be directly employed in Algorithm 7 when k�−1 = 0, twice use of of
Algorithm 2 to exceptional inputs A + R[ki] = O outputs a correct result A ←
2P . Thus, in Algorithm 7, using Algorithm 2, we can make sure it can compute
correctly by adjusting the number of ‘0’s from k�−1 until the first bit ‘1’ on the
left to be even, by padding ‘0’s after the sign bit of k. Algorithm 3 is applied in
Step 4 of Algorithm 8. Algorithm 5 is applied in Step 5 of Algorithm 8.

Our Algorithms 7 and 8 satisfy the generality of k as well as the secure gener-
ality, and the affine coordinates are executable coordinates for them. Algorithms 7
and 8 have no conditional or dummy statements. (Extended) affine and affine
combination-addition algorithms can be employed without introducing condi-
tional statements, which will be given in the final paper. Thus, Algorithms 7
and 8 with (extended) affine and affine combination-addition are secure ECSM
algorithms.

Algorithm 9. Extended New two-bit 2-ary LR algorithm
Input: P ∈ E(Fp)

k ∈ [−N
2

, N
2

], k = (−1)k�
∑�−1

i=0 ki2
i, sign bit k� ∈ {0, 1}

Output: kP
Uses: A and R[0], R[1], R[2], R[3]
Initialization
1: {R[2], A} ← DQ(P), R[1] ← −(R[2] + P), R[0] ← −(R[2] + A)
2: R[3] = P ← −(P + A), R[2] ← −R[2]
Main loop
3: for i = � − 1 to 1 do
4: A ← QA(A, R[2ki + ki−1]) (Algorithm 6), i = i − 2
5: end for
Final correction
6: R[1] ← R[1] − R[2], R[0] ← R[3] − R[1]
7: A ← 2A + R[0], A ← A + R[k0], A ← (−1)k� × A
8: return A

Theorem 2. Let E(Fp) be an elliptic curve without two-torsion points. Let
P ∈ E(Fp), P �= O be an elliptic curve point, whose order is N > 4. Then,
Algorithms 7 and 8 using (extended) affine and affine combination-addition for-
mulae can compute kP correctly without exceptional computations for any input
k ∈ [−N

2 , N
2].

Algorithm 7 combined with Algorithm 2 (or Algorithm 4) can reduce the
inversions from two-times to one-time in the main loop. By contrast, Algorithm 8
computes two inversions in the main loop. To reduce inversions to one-time in
the main loop of Algorithm 8, we propose an extended new two-bit 2-ary LR

614 Y. Jin and A. Miyaji

algorithm (Algorithm 9), where our Quadruple-Add algorithm (Algorithm 6) is
used in the main loop of Algorithm 9.

In Algorithm 9, we initialize R[0] = −6P , R[1] = −5P , R[2] = −4P , R[3] =
−3P , A = 2P , which can be computed without exceptional computations if
N > 6. Because of initialization, the condition of N > 4 is changed to N > 6.
We compute R[0] and R[1] back to −2P and −P in Step 6 of Algorithm 9 to what
they were in Algorithm 8 to make sure the remaining part of the final correction
of Algorithm 9 can be computed correctly. Algorithm 9 has the generality of k
and the secure generality and avoids all exceptional computations of the affine
formulae when k ∈ [−N

2 , N
2], similar to Algorithm 8. The proof of Theorems 2

can be easy extended to Algorithm 9.

4 Efficiency and Memory Analysis

4.1 Theoretical Analysis

Table 3. Computational cost and memory cost analysis

Computational cost Memory

Joye’s RL + CA [10,15] (� + 1)(24M + 6ma + 4mb + 46A) 19

2-ary RL + (extended) affine [8] (6.4� + 16)M + (2� + 4)I 12

two-bit 2-ary RL + (extended) affine [8] (10� + 23.2)M + (3�+9
2)I 15

Algorithm 1 + CA [10,15] �(24M + 6ma + 4mb + 46A) 16

Algorithm 7 + (extended) affine (6.4� + 10.4)M + (2� + 2)I 10

Algorithm 7 + (extended) affine + Algorithm 2 (10.6� + 10.4)M + (� + 2)I 10

Algorithm 7 + (extended) affine + Algorithm 4 (13� + 10.4)M + (� + 2)I 11

Algorithm 8 + (extended) affine (10� + 17.6)M + (3�+5
2)I 13

Algorithm 8 + (extended) affine + Algorithm 5 (13.3� + 18.5)M + (� + 2)I 13

Algorithm 9 + (extended) affine + Algorithm 6 (14.6� + 27)M + (�+17
2)I 17

Table 4. The most efficient algorithm with the conditions of r = I
M

(ma = mb = A =
0, � is bit length of k)

Algorithm Condition Memory

Algorithm 7 + (extended) affine r < 4.2 10

Algorithm 7 + (extended) affine + Algorithm 2 4.2 ≤ r ≤ 8+33.2/�
1−13/�

10

Algorithm 9 + (extended) affine + Algorithm 6
8+33.2/�
1−13/�

≤ r ≤ 18.8−54/�
1+17/�

17

Algorithm 1 + CA [10,15] r >
18.8−54/�
1+17/�

16

We analyzed the computational and memory costs of Algorithms 7–9 with
(extended) affine and affine combination-addition algorithms in comparison with

Secure and Compact Elliptic Curve LR Scalar Multiplication 615

Table 5. NIST elliptic curves(y2 = x3 − 3x + c)

P-224 c = 18958286285566608000408668544493926415504680968679321075787234672564

P-256 c = 41058363725152142129326129780047268409114441015993725554835256314039467401291

P-384 c = 27580193559959705877849011840389048093056905856361568521428707301988689241309

860865136260764883745107765439761230575

the Algorithm 1 with CA formulae, Joye’s regular 2-ary RL algorithm with CA
formulae, and two RL algorithms [8], the results of which are shown in Table 3.

The memory cost considers the number of Fp elements, including the memory
used in the scalar multiplication algorithms. For the computational cost, we
evaluated all algorithms by estimating the number of modulo multiplications
(M), modulo squaring (S), multiplications with parameters a and b (ma and
mb), additions (A), and inversions (I). We assume that S = 0.8M , and that �
is the length of the input scalar k. Let us describe the ratio of inversion cost to
the multiplication cost by r, i.e., I = rM .

The total computational cost of Algorithm 1 with CA formulae is 24�M , and
that of Joye’s RL with CA formulae is (� + 1)24M , if we ignore the computational
costs of ma, mb, and A. Therefore, Algorithm 1 with CA formulae is more efficient
than Joye’s regular 2-ary RL algorithm with CA formulae and uses less memory.
Both thememory and computational costs ofAlgorithm7 withAlgorithm2 are less
than those of Algorithm 7 with Algorithm 4. However, as stated earlier, Algorithm
2 can be applied to Algorithm 7 only when the number of ‘0’s between the sign
bit and the first bit ‘1’ on the left is even. Packaging all computations of the main
loop as a single computation unit reduces the inversion computations, and we can
see that Algorithm 9 with (extended) affine and Algorithm 6 has a computational
cost of (14.6� + 27)M + (�+17

2)I, which is the best when 8+33.2/�
1−13/� ≤ r ≤ 18.8−54/�

1+17/� .
Therefore, if the ratio r is approximately 11, then Algorithm 9 with (extended)
affine and Algorithm 6 is the most efficient approach. Its memory usage is costly
but less than that of Joye’s RL with CA formulae. Table 4 shows the most efficient
ECSM algorithm with the ratio r = I

M . Note that the conditions do not change
according to the size of the scalar �. In numerous cases, such as the NIST elliptic
curves in Table 5, we can only assume that ma = A = 0. The interval of r where
our algorithms are more efficient is larger.

Regarding the memory cost, Algorithm 7 uses the least amount of memory
of ten field elements, which reduces that of Algorithm 1 with CA formulae by
37.5%.

4.2 Experimental Analysis

We implemented all algorithms listed in Table 3 on NIST P-224, P-256, and
P-384. Table 5 shows their comparison. We randomly generated 2 × 105 test
scalars during the interval of [−N

2 , N
2], where N is the order of point P used to

measure the average scalar multiplication time of the algorithms. The experi-
mental platform uses C programming language with GUN MP 6.1.2, which is a

616 Y. Jin and A. Miyaji

multiple precision arithmetic library, and Intel (R) Core (TM) i7-8650U CPU @
1.90 GHz 2.11 GHz personal computer with 16.0 GB RAM 64-bit; the operating
system is Windows 10. We turn off Intel turbo boost, which is Intel’s technique
that automatically raises certain of its processors’ operating frequency, and thus
performance, when demanding tasks are running to make sure our computer
works at 2.11 GHz.

Table 6. Average computation time for one scalar multiplication (milliseconds)

P-224 P-256 P-384 Memory

Joye’s RL + CA [10,15] 4.02373 4.593395 7.68237 19

2-ary RL + (extended) affine [8] 2.87742 3.552715 7.733155 12

Two-bit 2-ary RL [8] + (extended) affine 2.56329 3.049545 6.113945 15

Algorithm 1 + CA [10,15] 3.945075 4.591625 7.7481 16

Algorithm 7 + (extended) affine 2.8306 3.804565 7.6338 10

Algorithm 7 + (extended) affine + Algorithm 2 2.15022 2.554765 4.695785 10

Algorithm 7 + (extended) affine + Algorithm 4 2.408305 2.962435 6.042845 11

Algorithm 8 + (extended) affine 2.53023 3.259545 6.23321 13

Algorithm 8 + (extended) affine + Algorithm 5 2.40751 2.698705 5.55319 13

Algorithm 9 + (extended) affine + Algorithm 6 1.904045 2.684335 4.92462 17

Table 7. Time of fundamental computations of GUN MP (milliseconds)

M S I I
M

224 bits 0.00138518 0.00129926 0.00486555 4.08232

256 bits 0.00130389 0.00129878 0.00548586 4.56714

384 bits 0.0014351 0.00141946 0.00766026 6.22689

Table 6 shows the average scalar multiplication time. Table 6 shows that
Algorithm 7 with Algorithm 2 is the most efficient for NIST P-256 and P-384,
which reduces the computation time of Joye’s RL with CA by 46.56% for P-224,
44.38% for P-256, and 38.88% for P-384, and the computation time of Algo-
rithm 1 with CA by 45.5% for P-224, 44.36% for P-256, and 39.39% for P-384,
and the computation time of two-bit 2-ary RL [8] by 16.11% for P-224, 16.22%
for P-256, and 23.2% for P-384. Algorithm 7 with Algorithm 2 uses the least
amount of memory of ten field elements. Algorithm 9 with (extended) affine and
Algorithm 6 is the most efficient for NIST P-224.

As we previously discussed, the efficiency of our algorithms depends on the
ratio r = I

M . Algorithm 7 with (extended) affine and Algorithm 2 is the most
efficient when applied to P-256 and P-384 during our experiments. The ratio
r = I

M in the GUN MP library is 4.56714 and 6.22689, respectively, as shown in
Table 7. These implementation results reflect the theoretic analysis in Table 4.

Secure and Compact Elliptic Curve LR Scalar Multiplication 617

Algorithm 9 with (extended) affine and Algorithm 6 is the most efficient when
applied to P-224, where the ratio I

M is 4.08232. By contrast, Algorithm 7 with
(extended) affine is the most efficient, as indicated in Table 4. For the implemen-
tation time, both function calls and the number of loops in an algorithm cost
time according to the compiler. Algorithm 9 has much fewer function calls and
loops than the other algorithms, which may save time.

5 Conclusion

We improved the affine combination-addition formulae of double-add (DA),
double-quadruple (DQ), two-adds (TA), and quadruple-add (QA) in terms of
the memory or computational cost. We also proposed three new secure LR scalar
multiplication Algorithms 7, 8 and 9, and we proved that our new LR ECSM
algorithms satisfy the generality of k and the secure generality; in addition, they
can exclude exceptional computations of O + P , P + Q = O, and P + P , which
means the affine coordinates are executable coordinates for them.

We analyzed our LR scalar multiplication algorithms with (extended) affine
and affine combination-addition formulae from the theoretical perspective. In
many cases, such as with NIST elliptic curves, we can only omit the compu-
tational cost of ma and A. In this case, our algorithms of Algorithm 7 with
(extended) affine, Algorithm 7 with (extended) affine and Algorithm 2, and
Algorithm 9 with (extended) affine and Algorithm 6 are the most efficient when
I
M ≤ 26.8−54/�

1+17/� (24.93 at � = 256) compared to Algorithm 1 with CA formulae.
We also analyzed the algorithms from an experimental perspective.

Algorithm 7 with (extended) affine and Algorithm 2 achieves a high efficiency.
Algorithm 7 with (extended) affine and Algorithm 2 uses the least memory of
ten field elements, which reduces the memory requirements of Algorithm 1 with
CA formulae by 37.5%.

Acknowledgements. This work is partially supported by CREST (JPMJCR1404) at
Japan Science and Technology Agency, enPiT (Education Network for Practical Infor-
mation Technologies) at MEXT, and Innovation Platform for Society 5.0 at MEXT.

References

1. Afreen, R., Mehrotra, S.: A review on elliptic curve cryptography for embedded
systems. arXiv preprint arXiv:1107.3631 (2011)

2. Ciet, M., Joye, M.: (Virtually) free randomization techniques for elliptic curve
cryptography. In: Qing, S., Gollmann, D., Zhou, J. (eds.) ICICS 2003. LNCS,
vol. 2836, pp. 348–359. Springer, Heidelberg (2003). https://doi.org/10.1007/978-
3-540-39927-8 32

3. Cohen, H., Miyaji, A., Ono, T.: Efficient elliptic curve exponentiation using mixed
coordinates. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp.
51–65. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49649-1 6

http://arxiv.org/abs/1107.3631
https://doi.org/10.1007/978-3-540-39927-8_32
https://doi.org/10.1007/978-3-540-39927-8_32
https://doi.org/10.1007/3-540-49649-1_6

618 Y. Jin and A. Miyaji

4. Eisenträger, K., Lauter, K., Montgomery, P.L.: Fast elliptic curve arithmetic and
improved weil pairing evaluation. In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol.
2612, pp. 343–354. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-
36563-X 24

5. Fouque, P.-A., Guilley, S., Murdica, C., Naccache, D.: Safe-errors on SPA protected
implementations with the atomicity technique. In: Ryan, P.Y.A., Naccache, D.,
Quisquater, J.-J. (eds.) The New Codebreakers. LNCS, vol. 9100, pp. 479–493.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49301-4 30

6. Goundar, R.R., Joye, M., Miyaji, A., Rivain, M., Venelli, A.: Scalar multiplication
on weierstraß elliptic curves from Co-Z arithmetic. J. Cryptogr. Eng. 1(2), 161
(2011)

7. Izu, T., Takagi, T.: A fast parallel elliptic curve multiplication resistant against side
channel attacks. In: Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274,
pp. 280–296. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45664-
3 20

8. Jin, Y., Miyaji, A.: Secure and compact elliptic curve cryptosystems. In: Jang-
Jaccard, J., Guo, F. (eds.) ACISP 2019. LNCS, vol. 11547, pp. 639–650. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-21548-4 36

9. Joye, M.: Highly regular right-to-left algorithms for scalar multiplication. In:
Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 135–147.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74735-2 10

10. Joye, M.: Highly regular m-ary powering ladrs. In: Jacobson, M.J., Rijmen, V.,
Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol. 5867, pp. 350–363. Springer, Heidel-
berg (2009). https://doi.org/10.1007/978-3-642-05445-7 22

11. Joye, M., Yen, S.-M.: The montgomery powering ladder. In: Kaliski, B.S., Koç, K.,
Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 291–302. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-36400-5 22

12. Le, D.P., Nguyen, B.P.: Fast point quadrupling on elliptic curves. In: Proceedings
of the Third Symposium on Information and Communication Technology, pp. 218–
222. ACM (2012)

13. Mamiya, H., Miyaji, A., Morimoto, H.: Efficient countermeasures against RPA,
DPA, and SPA. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol.
3156, pp. 343–356. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-
540-28632-5 25

14. Miyaji, A., Mo, Y.: How to enhance the security on the least significant bit. In:
Pieprzyk, J., Sadeghi, A.-R., Manulis, M. (eds.) CANS 2012. LNCS, vol. 7712, pp.
263–279. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35404-
5 20

15. Renes, J., Costello, C., Batina, L.: Complete addition formulas for prime order
elliptic curves. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS,
vol. 9665, pp. 403–428. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-49890-3 16

16. Susella, R., Montrasio, S.: A compact and exception-free ladder for all short weier-
strass elliptic curves. In: Lemke-Rust, K., Tunstall, M. (eds.) CARDIS 2016. LNCS,
vol. 10146, pp. 156–173. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-54669-8 10

17. Wronski, M.: Faster point scalar multiplication on short weierstrass elliptic curves
over FP using twisted hessian curves over FP2. J. Telecommun. Inf. Technol. (2016)

https://doi.org/10.1007/3-540-36563-X_24
https://doi.org/10.1007/3-540-36563-X_24
https://doi.org/10.1007/978-3-662-49301-4_30
https://doi.org/10.1007/3-540-45664-3_20
https://doi.org/10.1007/3-540-45664-3_20
https://doi.org/10.1007/978-3-030-21548-4_36
https://doi.org/10.1007/978-3-540-74735-2_10
https://doi.org/10.1007/978-3-642-05445-7_22
https://doi.org/10.1007/3-540-36400-5_22
https://doi.org/10.1007/978-3-540-28632-5_25
https://doi.org/10.1007/978-3-540-28632-5_25
https://doi.org/10.1007/978-3-642-35404-5_20
https://doi.org/10.1007/978-3-642-35404-5_20
https://doi.org/10.1007/978-3-662-49890-3_16
https://doi.org/10.1007/978-3-662-49890-3_16
https://doi.org/10.1007/978-3-319-54669-8_10
https://doi.org/10.1007/978-3-319-54669-8_10

	Secure and Compact Elliptic Curve LR Scalar Multiplication
	1 Introduction
	2 Related Work
	2.1 Addition Formulae and Exceptional Computations
	2.2 Scalar Multiplication Algorithms
	2.3 Inversion-Reduction Combination-Addition Formulae

	3 Secure and Efficient LR-ECSM Algorithms
	3.1 Affine Combination-Addition Formulae
	3.2 Secure and Efficient LR Scalar Multiplication

	4 Efficiency and Memory Analysis
	4.1 Theoretical Analysis
	4.2 Experimental Analysis

	5 Conclusion
	References

