
On Lattice-Based Interactive Protocols:
An Approach with Less or No Aborts

Nabil Alkeilani Alkadri1(B), Rachid El Bansarkhani2,
and Johannes Buchmann1

1 Technische Universität Darmstadt, Darmstadt, Germany
nabil.alkadri@tu-darmstadt.de, buchmann@cdc.informatik.tu-darmstadt.de

2 QuantiCor Security GmbH, Darmstadt, Germany
rachid.elbansarkhani@quanticor-security.de

Abstract. A canonical identification (CID) scheme is a 3-move protocol
consisting of a commitment, challenge, and response. It constitutes the
core design of many cryptographic constructions such as zero-knowledge
proof systems and various types of signature schemes. Unlike number-
theoretic constructions, CID in the lattice setting usually forces provers
to abort and repeat the whole authentication process once the distribu-
tion of the computed response does not follow a target distribution inde-
pendent from the secret key. This concept has been realized by means of
rejection sampling, which makes sure that the secrets involved in a pro-
tocol are concealed after a certain number of repetitions. This however
has a negative impact on the efficiency of interactive protocols because it
leads to a number of communication rounds that is multiplicative in the
number of aborting participants (or rejection sampling procedures). In
this work we show how the CID scheme underlying many lattice-based
protocols can be designed with smaller number of aborts or even with-
out aborts. Our new technique exploits (unbalanced) binary hash trees
and thus significantly reduces the communication complexity. We show
how to apply this new method within interactive zero-knowledge proofs.
We also present BLAZE+: a further application of our technique to the
recently proposed lattice-based blind signature scheme BLAZE (FC’20).
We show that BLAZE+ has an improved performance and communica-
tion complexity compared to BLAZE while preserving the size of keys
and signatures.

Keywords: Lattice-based cryptography · Aborts · Hash trees

1 Introduction

A canonical identification (CID) scheme allows a prover P to prove to a verifier
V the possession of a secret key s in the following way: P sends a commitment
to V, who then sends a challenge c back to P. Upon receiving c, P answers with
a response z. This response allows V to verify P’s authenticity while not leaking
any information about the secret key. In number-theoretic constructions like
c© Springer Nature Switzerland AG 2020
J. K. Liu and H. Cui (Eds.): ACISP 2020, LNCS 12248, pp. 41–61, 2020.
https://doi.org/10.1007/978-3-030-55304-3_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-55304-3_3&domain=pdf
https://doi.org/10.1007/978-3-030-55304-3_3

42 N. Alkeilani Alkadri et al.

Schnorr’s CID scheme [34], the response z already hides s, since it is computed
by adding a secret masking term y to the term sc, i.e., z = y + sc. The term y is
chosen uniformly at random from a large distribution and is also used to compute
the commitment. This approach has been generalized in [22] to include aborting
provers for the lattice setting. In a lattice-based CID scheme y is required to be
chosen from a narrow distribution (typically, Gaussian or uniform) and the so
called rejection sampling procedure [29] is used to hide the distribution of sc. If
the sum z is not accepted, a new masking term is sampled. This procedure is
repeated until the sum becomes independently distributed from the secret term
sc. Lattice-based CID is a fundamental building block of many cryptographic
constructions including zero-knowledge protocols (e.g., [6,9]) as well as signature
schemes (e.g., [5,12,23]) and even those with advanced functionalities such as
ring signatures (e.g., [7,35]), blind signatures [4,33], and multisignatures [14].

While aborting does not affect the efficiency of constructions with one rejec-
tion sampling process like ordinary signatures, it has a significant negative
impact on the performance and communication complexity of lattice-based inter-
active protocols with multiple rejection sampling procedures. For instance, the
multisignature scheme proposed in [14] entails a repetition rate that grows expo-
nentially in the number of users participating in the signing protocol. Though
it is efficient for a small set of users, one would need to restart the protocol
very often when instantiated with a large set because each user has to carry out
rejection sampling. Another example is the blind signature scheme BLAZE [4]
and its predecessor introduced in [33]. In both constructions not only signers
have to carry out rejection sampling and repeat the signing process MS times
until the secret key is concealed, but for maintaining blindness even users have
to apply rejection sampling MU times and request a protocol restart in case of
failure. This imposes a multiplicative repetition rate MS ·MU and an additional
communication step due to the possibility of failures causing protocol restarts.
In this case, a proof of failure is sent to the signer, i.e., a proof that allows the
signer to verify the occurrence of a failure. Although BLAZE has been shown to
be practical [4], this additional step increases the time and communication com-
plexity required to generate valid signatures and forces the use of statistically
hiding and computationally binding commitments to retain security.

Therefore, masking secrets in lattice-based interactive protocols with multiple
rejection sampling procedures such that aborting occurs as little as possible
while maintaining efficiency and security remained a very important research
question. This would improve the running time and decrease the total amount
of communication required to successfully complete the protocol.

Contributions. In this work we show how to reduce the number of repetitions
in lattice-based protocols by means of a tool that we call trees of commitments.
A tree of commitments is an (unbalanced) binary hash tree of height h ≥ 1,
whose leaves are the hash values of � > 1 commitments computed from masking
terms sampled during an instance of a CID-based protocol. The number � is
chosen such that rejection sampling succeeds for at least one masking term at a

On Lattice-Based Interactive Protocols with Aborts 43

Table 1. Comparing BLAZE+ (this work) with BLAZE [4] at approximately 128 bits
of security. The parameter δabort denotes the aborting probability by the user, and
� denotes the related number of masking terms. Performance is given in cycles and
milliseconds (in parentheses), sizes and communication complexity in kilobytes. The
corresponding parameters can be found in Table 3. Benchmarking the parameters were
carried out on an Intel Core i7-6500U, operating at 2.3 GHz and 8GB of RAM.

Scheme δabort � Complexity BS.KGen BS.Sign BS.Verify sk pk Signature

BLAZE+ 2−128 71 177.8 222, 151
(0.11)

112, 540, 972
(56.49)

348, 724
(0.18)

0.75 3.9 6.7

BLAZE+ 2−40 32 189.1 222, 151
(0.11)

56, 193, 762
(28.21)

348, 724
(0.18)

0.75 3.9 6.7

BLAZE+ 2−10 8 189.2 222, 151
(0.11)

24, 443, 555
(12.27)

348, 724
(0.18)

0.75 3.9 6.6

BLAZE 0.38 1 351.6 204, 671
(0.10)

35, 547, 397
(17.85)

276, 210
(0.14)

0.8 3.9 6.6

given probability bound. This allows to aggregate � commitments in one tree and
send only the root of the tree as a new commitment rather than � commitments.
The new response now further includes the authentication path of the leaf with
index k (0 ≤ k < �), where at step k rejection sampling accepts for the first time
after k − 1 trials. Note that by choosing � large enough we can remove aborts
completely. Interestingly, only trees with small heights are required to reduce
aborts to very small probabilities, e.g., h = 3 for a probability of at most 2−10.

We demonstrate the effectiveness of using our method in interactive zero-
knowledge proofs and blind signature schemes. More concretely, we show how to
reduce the communication complexity of interactive zero-knowledge protocols by
using trees of commitments in a lattice-based zero-knowledge proof of knowledge.
Furthermore, we utilize trees of commitments in the blind signature scheme
BLAZE [4]. We call the new scheme BLAZE+. In the new scheme a user constructs
a tree of commitments using � masking terms such that blindness is ensured at
a given probability bound. More precisely, given a security level of λ bits we
fix an aborting probability δabort and compute � such that signatures are blind
with probability of at least 1 − δabort. For approximately 128 bits of security,
our results (summarized in Table 1) show that while preserving the size of keys
and signatures, the communication complexity is significantly decreased and the
signing speed is improved for δabort = 2−10. Note that choosing δabort = 2−128

implies blindness with overwhelming probability. In this case (i.e., when δabort =
2−λ) we can safely remove the last step of the protocol, hence proof of failures and
the use of commitment schemes. Thus, we obtain a 3-move version of the protocol
similar to the basic structure of CID. We present this version in Sect. 4 and the
4-move scheme in the full version of this paper [3], where aborts at the user
side occur with probability of choice. We leave applying trees of commitments
to multisignatures [14] as a future work.

Finally, we note that the impossibility results of 3-move blind signature
schemes due to [16] do not apply to our 3-move version of BLAZE+. These
results show that finding black-box reductions from successful forgers to some

44 N. Alkeilani Alkadri et al.

non-interactive cryptographic assumption is infeasible in the standard model
(i.e., without random oracles) for statistically blind schemes with 3 (or less)
moves such that one can verify that an honest user was able to obtain a valid
signature from the interaction with the (malicious) signer. In our 3-move proto-
col, there is no way to check that the user has obtained a valid signature, since
he does not reveal the secret information that are involved in generating the
signature and are required to check its validity. Furthermore, BLAZE+ is proven
secure in the random oracle model rather than the standard model.

Techniques. We show how to reduce the number of repetitions or even remove
aborts in CID-based protocols, completely. To this end, we give a brief descrip-
tion of the CID scheme that underlies many lattice-based constructions and
was originally introduced in [22]. Let A be a public matrix selected uni-
formly at random from Z

n×m
q . The prover P would like to prove to a veri-

fier V the possession of a secret matrix S ∈ Z
m×n with small entries such

that B = AS (mod q). We let χ denote some distribution over Z. Typi-
cally, χ is either the discrete Gaussian distribution over Z or the uniform
distribution over a small subset of Z. The challenge space is defined by C =
{c = (c1, . . . , cn) ∈ Z

n : ci ∈ {−1, 0, 1},
∑n

1 |ci| = κ}. We let RejSamp denote an
algorithm that carries out rejection sampling. The commitment is a vector
v = Ay (mod q), where y is a masking vector chosen from χm. For a chal-
lenge c ∈ C the response is given by z = y+Sc. The verifier accepts if and only
if v = Az − Bc (mod q) and ‖z‖p ≤ B, where B is a predefined bound and
p ∈ {2,∞} depending on the distribution χ. Aborting occurs if RejSamp(z) does
not accept. The protocol is always repeated by sampling a fresh y until RejSamp
accepts such that z is statistically independent from Sc.

Consider a lattice-based interactive protocol with N ≥ 1 rejection sampling
procedures, where each of them is repeated x ≥ 1 times on average. The main
motivation of this work is the observation that the total average number of
repetitions M in such a protocol is multiplicative in N , i.e., M = xN . Thus, the
main question is: Can we improve it?

One can use a large enough distribution χ such that RejSamp accepts after
a fixed number of repetitions M , e.g., M ≤ 2. This is already established in
previous works as a trade-off between performance and sizes (see, e.g., [5,12,23]),
but it does not solve the problem for all interactive protocols as explained above.

Our first attempt is the following. Rather than sampling one masking term
y and repeating this process until RejSamp accepts, P generates � > 1 masking
vectors yj at once and computes the commitment (v0, . . . ,v�−1), where vj =
Ayj (mod q) and j = 0, . . . , � − 1. The response is then zk, where k (0 ≤ k < �)
is the first index for which RejSamp accepts. This reduces aborts, but the amount
of exchanged data grows in �. In particular, any type of lattice-based signature
following this approach becomes very large. While this can be decreased by using
some cryptographic hash function F and sending F(vj) instead of vj , this is
still not satisfactory. An approach with some similarities has been taken in [30]
in a different context for zero-knowledge proofs, where all the hash values of

On Lattice-Based Interactive Protocols with Aborts 45

commitments of potential masking terms are sent. We note that no tree structure
for commitments has been applied in [30] and furthermore the challenge size
increases linearly in the number of masking terms, which is not the case in
our attempt. The protocol is then repeated multiple times to achieve negligible
soundness error. Thus, such an approach is still inefficient.

Our final solution to this issue is to use a tree of commitments: an (unbal-
anced) binary hash tree of height h = �log(�)�, whose leaves are F(vj). The
commitment is simply the root of the tree root, and the response is the pair
(zk, auth), where auth is the authentication path of the leaf with index k. Verifi-
cation is carried out by checking that ‖zk‖p ≤ B and root is equal to the root of
the tree associated to the leaf F(Azk −Bc (mod q)) and its given authentication
path auth. Using a tree of commitments obviously reduces the communication
complexity. It can also improve the performance of interactive protocols with
multiple rejection sampling procedures as we demonstrate in this work. We note
that the number of masking terms can be chosen such that the aborting proba-
bility is bounded by some given bound. In Sect. 3.3 we show how to optimize this
number. We note that our technique may be used in [30] to improve efficiency.

Finally, we briefly explain two further optimizations that can be exploited
when using trees of commitments. The first one is to generate trees with ran-
domized hashing similar to the standard of the hash-based signature scheme
XMSS [18]. This allows to save space and further reduce the communication
complexity, since randomized hashing requires the hash function F to be only
second preimage resistant rather than collision resistant. This means the output
of F is required to be ≥ λ rather than ≥ 2λ bits assuming λ bits of classical
security. The second optimization allows to reuse already generated, but not
consumed, masking terms in subsequent executions of the protocol. This further
improves the performance of the protocol, since complete subtrees of the tree
can be reused. This reduces the number of new masking terms to be sampled in
addition to the number of multiplications and hash computations.

Related Work. In the context of analyzing the hardness of computational lat-
tice problems, previous works such as [10,11,17] point to techniques called “noise
swallowing” or “super-polynomial noise flooding”, which use Gaussian masking
terms entailing a super-polynomial Gaussian parameter in order to swallow a
polynomially large secret term. However, the negative impact on the efficiency
is tremendous as the parameters become also super-polynomial. By generating
many masking terms at once and capturing them in a tree of commitments,
the secret and masking terms remain polynomially bounded while the number
of repetitions is reduced. As mentioned above, the approach of sending hashed
commitments has been used in [30] for zero-knowledge proofs of small secrets,
but without the use of tree structures for commitments and the other efficiency
improvements. However, sending commitments in a tree structure has been
suggested, e.g., in [20] to reduce the communication complexity of proof systems,
but not repetitions of lattice-based protocols. Our work exploits hash trees in
the context of lattice-based interactive protocols with aborting participants.

46 N. Alkeilani Alkadri et al.

Outline. In Sect. 2 we review the relevant background. In Sect. 3 we define
trees of commitments and show how they can be utilized in lattice-based canon-
ical identification schemes and hence, in interactive zero-knowledge protocols.
In Sect. 4 we demonstrate the practical relevance of our new technique by intro-
ducing a new blind signature scheme that we call BLAZE+.

2 Preliminaries

We let N,Z,R denote the set of natural numbers, integers, and real numbers,
respectively. We denote column vectors with bold lower-case letters and matrices
with bold upper-case letters. The identity matrix of dimension n is denoted by
In. For any positive integer q we write Zq to denote the set of integers in the
range [− q

2 , q
2) ∩ Z. The Euclidean norm (�2-norm) of a vector v with entries

vi is defined as ‖v‖ = (
∑

i |vi|2)1/2, and its �∞-norm as ‖v‖∞ = maxi |vi|.
We define the ring R = Z[x]/〈xn + 1〉 and its quotient Rq = R/qR, where
n is a power of 2. We assume that R is an integral domain. A ring element
a0 + a1x + . . . + an−1x

n−1 ∈ Rq is denoted by â and it corresponds to a vector
a ∈ Z

n
q via coefficient embedding, hence ‖â‖ = ‖a‖ and ‖â‖∞ = ‖a‖∞. We write

â = (â1, . . . , âk) ∈ Rk
q to denote a vector of ring elements and Â for a matrix

with entries from Rq. The norms of â are defined by ‖â‖ = (
∑k

i=1 ‖âi‖2)1/2 and
‖â‖∞ = maxi ‖âi‖∞. We let Tn

κ denote the set of all (n − 1)-degree polynomials
with coefficients from {−1, 0, 1} and Hamming weight κ. All logarithms in this
work are to base 2, i.e., log(·) = log2(·). We always denote the security parameter
by λ ∈ N. A function f : N −→ R is called negligible if there exists an n0 ∈ N

such that for all n > n0, it holds f(n) < 1
p(n) for any polynomial p. With negl(λ)

we denote a negligible function in λ. A probability is called overwhelming if it
is at least 1 − negl(λ). The statistical distance between two distributions X,Y
over a countable domain D is defined by Δ(X,Y) = 1

2

∑
n∈D |X(n) − Y (n)|.

The distributions X,Y are called statistically close if Δ(X,Y) = negl(λ). We
write x ← D to denote that x is sampled according to a distribution D. We let
x ←$ S denote choosing x uniformly random from a finite set S.

2.1 Cryptographic Primitives

A canonical identification (CID) scheme is a 3-move interactive protocol of the
following form: A prover P initiates the protocol by sending a commitment
message y to a verifier V. Upon receiving y, V sends a uniform random challenge
c to P. Afterwards, a response z is sent from P back to V, which then allows
V to make a deterministic decision about P’s authenticity. The tuple (y, c, z)
represents a protocol transcript. A formal definition follows.

Definition 1 (Canonical Identification Scheme). A canonical identifica-
tion scheme with commitment space Y, challenge space C, and response space Z
is defined as a tuple of the following polynomial-time algorithms:

On Lattice-Based Interactive Protocols with Aborts 47

– KG(1�) is a key generation algorithm that outputs a pair of keys (pk, sk) from
some key space K, where pk is a public key and sk is a secret key.

– P = (P1(sk),P2(sk, y, c, st)) is a prover algorithm consisting of two algorithms:
P1 takes as input a secret key sk and returns a commitment y ∈ Y and a state
st, whereas P2 on input sk, y, a challenge c ∈ C, and st, outputs a response
z ∈ Z ∩ {⊥}, where the symbol ⊥ �∈ Z indicates failure.

– V(pk, y, c, z) is a verification algorithm that takes as input a public key pk and
a transcript (y, c, z), and outputs 1 if it is valid and 0 otherwise.

The standard security notion of CID schemes is impersonation under the
active or passive attack model. In the active attack model, any adversary A
interacting with P must not be able to extract any useful information. Passive
attacks correspond to eavesdropping, i.e., A is in possession of transcripts gen-
erated by interactions between the real prover and verifier. According to [1],
impersonation under passive attacks is stronger than the active attack model.

Definition 2 (Blind Signature Scheme). A blind signature scheme BS is a
tuple of polynomial-time algorithmsBS = (BS.KGen,BS.Sign,BS.Verify) such that:

– BS.KGen(1λ) is a key generation algorithm that outputs a pair of keys (pk,sk),
where pk is a public key and sk is a secret key.

– BS.Sign(sk, pk, μ) is an interactive protocol between a signer S and a user U .
The input of S is a secret key sk, whereas the input of U is a public key pk
and a message μ ∈ M, where M is the message space. The output of S is a
view V (interpreted as a random variable) and the output of U is a signature
σ, i.e., (V, σ) ← 〈S(sk),U(pk, μ)〉. We write σ = ⊥ to denote failure.

– BS.Verify(pk, μ, σ) is a verification algorithm that outputs 1 if the signature σ
is valid and 0 otherwise.

Security of blind signatures is captured by two security notions: blindness and
one-more unforgeability [19,31]. The former prevents a malicious signer to learn
information about user’s messages (see [4] for a formal definition). The latter
ensures that each completed execution of BS.Sign yields at most one signature.

Definition 3 (One-More Unforgeability). Let H be a family of random ora-
cles. A blind signature scheme BS is called (t, qSign, qH, ε)-one-more unforgeable in
the random oracle model if for any adversarial user U∗ running in time at most
t and making at most qSign signing and qH hash queries, the game ForgeBS,U∗(λ)
depicted in Fig. 1 outputs 1 with probability Pr[ForgeBS,U∗(λ) = 1] ≤ ε. The

Fig. 1. The security game of one-more unforgeability of blind signatures.

48 N. Alkeilani Alkadri et al.

scheme is strongly (t, qSign, qH, ε)-one-more unforgeable if the condition μi �= μj

in the game changes to (μi, σi) �= (μj , σj) for all 1 ≤ i < j ≤ l.

2.2 Lattices and Gaussians

Let B = {b1, . . . ,bk} ∈ R
m×k be a set of linearly independent vectors for

k ≤ m. The m-dimensional lattice L of rank k generated by B is given by
L(B) = {Bx | x ∈ Z

k} ⊂ R
m. The discrete Gaussian distribution DL,σ,c over a

lattice L with standard deviation σ > 0 and center c ∈ R
n is defined as follows:

For every x ∈ L the probability of x is DL,σ,c(x) = ρσ,c(x)/ρσ,c(L), where
ρσ,c(x) = exp(−‖x−c‖2

2σ2) and ρσ,c(L) =
∑

x∈L ρσ,c(x). The subscript c is taken
to be 0 when omitted. We recall a lemma that gives a tail bound on discrete
Gaussians and a rejection sampling lemma.

Lemma 1 ([23, Lemma 4.4]). For any t, η > 0 we have

1. Prx←DZ,σ
[|x| > t · σ] ≤ 2 exp(−t2/2).

2. Prx←DZm,σ
[‖x‖ > ησ

√
m] ≤ ηm exp(m

2 (1 − η2)).

Lemma 2 ([23, Theorem 4.6, Lemma 4.7]). Let V ⊆ Z
m with elements

having norms bounded by T , σ = ω(T
√

log m), and h : V → R be a probabil-
ity distribution. Then there exists a constant M = O(1) such that ∀v ∈ V :
Pr[DZm,σ(z) ≤ M · DZm,σ,v(z); z ← DZm,σ] ≥ 1 − ε, where ε = 2−ω(log m). Fur-
thermore, the following two algorithms are within statistical distance δ = ε/M .

1. v ← h, z ← DZm,σ,v, output (z, v) with probability DZm,σ(z)
M ·DZm,σ,v(z)

.
2. v ← h, z ← DZm,σ, output (z, v) with probability 1/M .

Moreover, the probability that the first algorithm outputs something is at least
(1−ε)/M . If σ = αT for any positive α, then M = exp(12α + 1

2α2) with ε = 2−100.

We let RejSamp(x) denote an algorithm that carries out rejection sampling
on input x. The algorithm outputs 1 if it accepts and 0 otherwise. Next, we
define the lattice problems related to this work.

Definition 4 (Module Short Integer Solution (MSIS) Problem). Let n, q,
k1, k2 be positive integers and β a positive real. Given a uniform random matrix
Â ∈ Rk1×k2

q , the Hermite Normal Form of MSIS asks to find a non-zero vector
x̂ ∈ Rk1+k2 such that [Ik1 Â] · x̂ = 0 (mod q), where ‖x̂‖ ≤ β.

Definition 5 (Module Learning With Errors (MLWE) Problem). Let
n, q, k1, k2 be positive integers and Â be a matrix chosen uniformly at random
from Rk1×k2

q . Given (Â, b̂), the decision MLWE problem asks to distinguish (with
non-negligible advantage) whether b̂ were chosen from the uniform distribution
over Rk1

q or from the following distribution: Given ŝ ← χk2 and ê ← χk1 , output
the vector Âŝ + ê (mod q), where χ is an error distribution (typically, either
DZn,σ or the uniform distribution over a small subset of Rq).

On Lattice-Based Interactive Protocols with Aborts 49

The MLWE problem [21] generalizes LWE [32] and RLWE [24]. More precisely,
by setting k1 = 1 in the definition above we obtain the ring version RLWE, while
setting k1 > 1 and Rq = Zq yields a definition of the LWE problem. The same
applies for MSIS [21] and its special versions SIS [2] and RSIS [27].

3 How to Reduce Aborts in Lattice-Based Protocols

In this section we show how aborting in lattice-based protocols can be reduced or
even be removed at all. As stated in Sect. 1, when the number of rejection sam-
pling procedures N in an interactive CID-based protocol grows, the total number
of repetitions becomes multiplicative in N , e.g., [4,14,33], and a large amount of
communication is required to successfully complete the protocol. Consider the
CID protocol sketched in Sect. 1. If rejection sampling fails, a new masking term
is sampled, hence a new commitment has to be computed and sent in order to
receive a new challenge c. Suppose that c does not change for certain number
of masking terms and related commitments, which are sent in an aggregated
form while any successfully computed response can be verified and related to
the corresponding commitment. In this case repetition does not have to occur
often or even not at all. We realize this concept by means of tree of commit-
ments: a method by which different commitments belong to one challenge in an
aggregated form and only the valid response and its related commitment will
be revealed. Masking terms that are rejected or not consumed during rejection
sampling remain hidden and will never be revealed.

3.1 Trees of Commitments

In this section we describe trees of commitments. We first define relevant func-
tions and algorithms. For a positive integer ω ≥ 2λ, we let F : {0, 1}∗ → {0, 1}ω

be a collision resistant hash function. We define the algorithms related to binary
hash trees in a way that fits to our purposes.

HashTree: An algorithm that computes an (unbalanced) binary hash tree of height
h ≥ 1. Its input consists of � ≤ 2h commitments v0, . . . , v�−1 whose hash
values are the leaves of the tree, i.e., (root, tree) ← HashTree(v0, . . . , v�−1),
where root is the root of the tree and tree is a sequence of all other nodes.

BuildAuth: An algorithm that on input an index k, a sequence of nodes tree, and
a height h outputs the corresponding authentication path auth including the
index k, i.e., auth ← BuildAuth(k, tree, h).

RootCalc: An algorithm that computes the root of a hash tree given a commit-
ment v and its authentication path auth, i.e., root ← RootCalc(v, auth).

In the following we define trees of commitments. The leaves are the hash values
of commitments vj , i.e., v0[j] = F(vj) for 0 ≤ j < �. The inner nodes of height
i are denoted by vi[j], where 0 < i ≤ h, 0 ≤ j < 2h−i. They are typically
computed as vi[j] = F(vi−1[2j] ‖ vi−1[2j + 1]). The root is the only node of
height h, i.e., vh[0] = root. A formal definition follows.

50 N. Alkeilani Alkadri et al.

Definition 6 (Tree of Commitments). Let vj be commitments of � > 1
secrets yj, where 0 ≤ j < �. A tree of commitments is an (unbalanced) binary
hash tree of height h = �log(�)�, whose leaves are the hash values of vj, i.e., F(vj).
The root constitutes an aggregated commitment root, and auth is the authentica-
tion path of the commitment vk generated using the secret yk, where 0 ≤ k < �.

Fig. 2. A tree of commitments of height h = 3 and � = 8 commitments. Assume that
the first time RejSamp accepts at step k = 3 (0 ≤ k < �), then the gray colored nodes
represent the authentication path required to compute the root starting from v3.

Next we define trees of commitments for lattice-based canonical identification
(CID) schemes. Fig. 2 illustrates such a tree of height h = 3.

Definition 7 (Tree of Commitments for CID). Let CID be a lattice-based
canonical identification scheme. Let vj be commitments of CID generated using
� > 1 masking terms yj (0 ≤ j < �). A tree of commitments for CID is an
(unbalanced) binary hash tree of height h = �log(�)�, whose leaves are the hash
values of vj, i.e., F(vj), and its root constitutes an aggregated commitment root
to � masking terms for up to � repetitions within CID for the same challenge
c. A response is composed of (zk, auth), where zk = yk + sc and yk is the first
masking term for which rejection sampling succeeds (i.e., RejSamp(zk) = 1 for
0 ≤ k < �), and auth is the authentication path of the commitment vk generated
by use of the masking term yk.

3.2 Canonical Identification Using Trees of Commitments

Figure 3 describes a variant of the CID protocol briefly explained in Sect. 1.
The variant shown here is based on MLWE and MSIS and utilizes trees of com-
mitments. Using the Fiat-Shamir transform [15] we obtain a digital signature
scheme. In the full version of this paper [3] we give a formal description of

On Lattice-Based Interactive Protocols with Aborts 51

this signature scheme and prove its correctness and security. By the equivalence
results of [1], we deduce the soundness property of the CID protocol described in
this section as well as its security against impersonation under passive attacks.
More concretely, the main goal of providing the signature scheme and its security
proof in the full version is to show how trees of commitments can also be used
in lattice-based Fiat-Shamir signatures, and to establish the security of the CID
protocol shown in this section based on the results of [1].

Fig. 3. Canonical identification based on MLWE and MSIS using trees of commitments.

We can choose � such that at least one of the masking pairs (ŷ(k)
1 , ŷ(k)

2) (see
Fig. 3) hides Ŝĉ with probability of at least 1 − δabort for a given bound δabort,
where Ŝ = (ŝ1, ŝ2). This can be established as follows. Since the entries of the
masking pairs are chosen from DZn,σ, the probability of successfully outputting
(ẑ1, ẑ2) with only one masking pair is ≈ 1/M , where M is the expected number
of repetitions (see Lemma 2). Consequently, one of the � masking pairs conceals
the secret key with probability 1 − (1 − 1/M)�. Hence, by choosing � satisfying
(1 − 1/M)� ≤ δabort, the protocol aborts with probability at most δabort. For
instance, to obtain a probability negligible in λ we have to select � such that
(1 − 1/M)� ≤ 2−λ, which allows to completely eliminate aborts.

Let us consider an illustrative example. Suppose that we set δabort = 2−10

and use masking pairs with entries sampled from DZn,σ, where σ = α‖Ŝĉ‖
and M = exp(12α + 1

2α2) (Lemma 2). Then, by setting α = 23 we need only

52 N. Alkeilani Alkadri et al.

� = 8 masking pairs in order to hide Ŝĉ with probability at least 0.999. This
means we need a tree of commitments of height h = 3, which is a very small
tree. Regarding communication complexity, both the commitment and response
consist of only 4 hash values and a pair of Gaussian vectors with σ = 23 · ‖Ŝĉ‖,
i.e., (root, ẑ1, ẑ2, auth = (a0,a1,a2)). The choice of α = 23 increases σ in this
example and hence the size of (ẑ1, ẑ2) by at most 1.1 bits per integer entry in
comparison to α = 11, which is a typical choice (see, e.g., [13]) that induces
a repetition rate of M ≈ 3 and a communication complexity consisting of 3
vectors from Rk1

q and 3 Gaussian vectors with σ = 11 · ‖Ŝĉ‖. Note that in order
to hide Ŝĉ with probability 1 − 2−10 using a single masking pair we need to set
α > 213.6, which increases the size of the response to at least 10.1 bits per integer
entry when compared with α = 11. Hence, a larger modulus q is required and
the communication complexity increases to a vector from Rk1

q and a Gaussian
vector with a very large σ, i.e., σ > 213.6 · ‖Ŝĉ‖.

Furthermore, we can improve the performance of protocols employing trees
of commitments as follows. For subsequent executions of the protocol we can
reuse the masking pairs that were sampled in previous executions but were not
consumed during rejection sampling. For instance, consider the tree in Fig. 2,
where the first time RejSamp accepts at step k = 3. For the next protocol run
we can simply reuse the whole subtree with root a2 = v2[1] such that we only
need to compute a new subtree of height h − 1 and combine both subtrees to
obtain a new tree of height h. This decreases the number of new masking terms to
be sampled and reduces the number of hash computations and multiplications
modulo q. We can also lower the security requirement of the hash function F
following the standard of the hash-based signature scheme XMSS [18] and using
randomized tree hashing. This allows to generate trees of commitments, where
F is required to be only second preimage resistant rather than collision resistant.
This reduces the size of the authentication path to one half of its original size.

3.3 Optimizing the Number of Masking Terms

The previous section shows how to reduce the overall repetition rate of lattice-
based protocols with multiple rejection sampling procedures. In this section we
show how to minimize the height of the tree of commitments when using Gaus-
sian distributed masking terms. This improves the performance of interactive
protocols significantly. A similar approach can be taken for masking terms sam-
pled from other distributions such as the uniform distribution.

Lemma 3. Let ε = 2−ω(log n) and M be the repetition rate of sampling masking
terms from DZn,σ such that rejection sampling succeeds. Let δabort be the desired
aborting probability. Then, the number of masking terms � required to conceal a
secret-related term with norm bounded by T and with probability at most 1−δabort
is minimized by solving the following optimization problem:

min(�) conditioned on (1 − 1 − ε

M
)� ≤ δabort.

On Lattice-Based Interactive Protocols with Aborts 53

Table 2. Values for the required number of Gaussian masking terms � and the bit
length of the standard deviation σ = αT = α · 500 at given aborting probabilities.

Aborting probability δabort 2−128 2−100 2−80 2−40 2−40 2−10 2−10

Number of masking terms � 64 63 62 31 16 16 8

Height of the binary hash tree h 6 6 6 5 4 4 3

Parameter α 42 30 23 23 62 12 23

Bit length of the standard
deviation σ

15 14 14 14 15 13 14

Proof. Given a fixed δabort we can write � as a function in M using the inequality
given above. In particular, if σ = αT for α > 0, then M = exp(12α + 1

2α2),
ε = 2−100, and the probability of aborting using only one masking term is given
by 1− (1−ε)/M (see Lemma 2). Hence, � can also be considered as a function in
α, i.e., �(α) = log(δabort)/ log

(
1 − 1−2−100

exp(12
α + 1

2α2)

)
. Note that increasing α directly

reduces �. Therefore, this problem translates to finding a local minimum of the
function �(α) within a given range of α, which can be solved using Lagrange
optimization. ��

The above lemma shows that reducing the number of masking terms � for a
fixed aborting probability δabort increases σ, hence the size of the responses (or
signatures). In Table 2 we exhibit examples for various values of � and σ = αT
given δabort and T = 500.

4 Applications

As mentioned in Sect. 1, there are various advanced lattice-based constructions
that are based on canonical identification (CID) and thus may benefit from using
trees of commitments as described in Sect. 3. Our approach can also be applied to
interactive zero-knowledge proof systems in a straightforward way. For instance,
the scheme depicted in Fig. 3 can be seen as a zero-knowledge proof of knowledge
of RLWE secrets with reduced communication complexity.

As a further practical application, we exploit trees of commitments within
the blind signature scheme BLAZE [4] resulting in major efficiency gains. The
signing protocol of BLAZE consists of 4 moves between a signer S and a user
U . It can be aborted due to 2 rejection sampling procedures; the first one is
carried out by S in order to hide the secret key and the second one by U to
ensure blindness. In case the latter fails, U must send S a proof of failure in
order to restart the signing protocol. This is why the last move is needed in
the protocol as opposed to the standard 3-move structure of the CID scheme
underlying BLAZE. Due to the possibility of failures the user must also use a
statistically hiding and computationally binding commitment scheme in order
to hide the message from the signer.

In the following we redesign BLAZE such that signatures can be generated
in 3 moves. We call the new scheme BLAZE+. In particular, we are able to

54 N. Alkeilani Alkadri et al.

completely remove the rejection sampling procedure carried out by U . This is
accomplished by generating enough masking terms at once such that blindness
is achieved with overwhelming probability. This allows to safely eliminate the
last move in the protocol and hence the need for proof of failures. Consequently,
statistically hiding and computationally binding commitments concealing the
message from S are not required anymore. We also describe a 4-move version of
BLAZE+ in the full version of this paper [3]. In that version aborts at the user
side occur with probability of choice. We note that a similar approach may be
applied at the signer side.

In addition to the functions defined in Sect. 3 we need some additional tools.
Let H : {0, 1}∗ → T

n
κ be a public hash function modeled as a random oracle.

Further, let E be a public function that expands given strings to any desired
length. Sampling from Dn

Z,s using randomness ρ is denoted by Dn
Z,s(ρ). We let

T̂ = {±xi : i ∈ [n]} ⊂ Rq. Let Compress and Decompress be functions for
(de)compressing Gaussian elements (see [4] for description). Next we describe the
new blind signature scheme BLAZE+. The respective algorithms are formalized
in Fig. 4.

Key Generation. As in BLAZE, the algorithm BS.KGen generates an instance
of RSIS (Fig. 4). It’s secret vector ŝ is sampled from Dm+1

Zn,σ . However, BLAZE+

employs an additional condition on ŝ, which can also be used in BLAZE. More
concretely, the �2-norm of ŝ is bounded by γσ

√
(m + 1)n. This condition repre-

sents a trade-off between the speed of generating keys and the size of signatures,
since the standard deviation s∗ of masking terms used by the signer is a multiple
of ‖ŝ‖. Therefore, a smaller γ decreases s∗, but reduces the success probability
of passing the given condition (see Lemma 1). Note that ŝ can also be sampled
from the uniform distribution over a subset of Rm+1, in which the coefficients
of each polynomial from R are in the set {−d, . . . , 0, . . . , d}, where d ∈ Z>0.

Signing. The signing algorithm is similar to that of BLAZE [4]. The difference
is that in BLAZE+ the user U generates � > 1 masking vectors ê(0), . . . , ê(�−1)

chosen from Dm+1
Zn,s . These vectors are then used to compute t̂(k) = â · ê(k) + ŷ

(mod q), which are needed to generate a tree of commitments of height h =
�log(�)� via the algorithm HashTree. We note that generating ê(k) and â · ê(k)
(mod q), for k = 0, . . . , � − 1, can be precomputed by U before starting the
protocol with S. The sum t̂(k) containing ŷ and the construction of the tree
cannot be carried out in advance, since ŷ is computed from the commitment
sent by S (see Fig. 4). We also note that ê(k) can be reused when S restarts the
protocol, since ê(k) are not revealed and ĉ∗ is always fresh. After receiving the
vector ẑ∗, U computes ẑ and the authentication path auth associated to the first
index k < � for which the vector ê(k) ensures blindness. Note that � is chosen
such that this happens with probability at least 1 − 2−λ, i.e., U outputs a valid
signature with overwhelming probability. Also note that for each signature a new
root is generated.

Verification. Verifying a signature is straightforward as described in Fig. 4.

On Lattice-Based Interactive Protocols with Aborts 55

Fig. 4. A formal description of the new blind signature scheme BLAZE+.

In the following we give the main security statements of this section compris-
ing completeness, blindness, and strong one-more unforgeability of BLAZE+. The
proofs of both correctness and blindness directly follow from [4] and are hence
omitted. In particular, proving blindness requires to show that the exchanged
messages during protocol execution together with the user’s output does not leak
any information about the message being signed. In comparison to BLAZE, the

56 N. Alkeilani Alkadri et al.

authentication path auth, which is a part of the signature in BLAZE+ is the only
additional information exchanged between the signer and the user. Obviously,
auth does not give any information about the signed message.

Theorem 1 (Completeness). Let α∗, α, γ, η > 0, s∗ = α∗γσ
√

(m + 1)κn,
s = ηαs∗√(m + 1)κn, and B = ηs

√
(m + 1)n. Further, let (1− 1−2−100

U)� ≤ 2−λ,
where U = exp(12α + 1

2α2). After at most M repetitions, any blind signature
produced by BLAZE+ is validated with probability of at least 1 − 2−λ, where
M = exp(12

α∗ + 1
2α∗2).

Theorem 2 (Blindness). The scheme BLAZE+ is statistically blind. The
statistical distance between two executions of its signing protocol is given by
2−100/M .

Next, we prove the strong one-more unforgeability of BLAZE+. In the proof
we assume that in the unforgeability game (see Definition 3) any forgery output
by the adversary A is considered valid if and only if its associated root was
not queried to the signing oracle by A, i.e., a forgery must contain a new root
that is distinct from the roots queried to the signing oracle. We note that our
3-move protocol achieves completeness with overwhelming probability, i.e., each
completed interaction yields a valid blind signature, where users do not have to
request a protocol restart. Therefore, the one-more unforgeability proof does not
need to consider aborts at the user side as opposed to BLAZE.

Theorem 3 (Unforgeability). The scheme BLAZE+ is strongly one-more
unforgeable in the random oracle model (ROM) if F is a collision resistant hash
function and RSIS is hard. More precisely, suppose that F is collision resistant
and it is hard to find a vector x̂ �= 0 satisfying [1 â′]·x̂ = 0 (mod q) and ‖x̂‖ ≤ β
for β = 2(B + ησ

√
(m + 1)κn), then BLAZE+ is strongly one-more unforgeable

in the ROM.

Proof. We assume that there exists a forger A that wins the one-more unforge-
ability game given in Definition 3 with probability εA. We construct a reduction
algorithm D that finds collisions in the hash function F or computes a vector
x̂ �= 0 as described in the theorem statement with probability εD as given below.

Setup. The input of D is a uniformly random vector â′ ∈ Rm
q and a hash

function F. It also has access to an oracle OF for F. The reduction D samples
a vector ŝ from Dm+1

Zn,σ and randomly selects answers for random oracle queries
{ĥ1, . . . , ĥqH}. Then, it runs the forger A with public key (â, b̂), where â = [1 â′]
and b̂ = â · ŝ (mod q).

Random Oracle Query. The reduction D maintains a list LH, which includes
pairs of random oracle queries and their answers. If H was previously queried
on some input, then D looks up its entry in LH and returns its answer ĉ ∈ T

n
κ.

Otherwise, it returns the first unused ĉ and updates the list.

On Lattice-Based Interactive Protocols with Aborts 57

Hash Query. Hash queries to F sent by A are forwarded to the oracle OF. The
reduction D also maintains a list LF, which includes pairs of hash queries to F
and their answers as well as the structure of the trees.

Blind Signature Query. Upon receiving signature queries from the forger A
as a user, D interacts as a signer with A according to the signing protocol (see
Fig. 4).

Output. After k ≤ qSign successful executions of the signing protocol, A outputs
k + 1 distinct messages and their valid signatures (μ1, sig1), . . . , (μk+1, sigk+1).
Then, one of the following two cases applies.

Case 1. D finds two signatures of messages μ, μ′ ∈ {μ1, . . . , μk+1} with the same
random oracle answer ĉ. In this case BS.Verify yields H(root, μ) = H(root′, μ′).
If μ �= μ′ or root �= root′, then a second preimage of ĉ has been found by A. If
μ = μ′ and root = root′, then both signatures were generated using the same
hash tree. This does not follow the unforgeability game because the output of A
does not include a valid forgery.

Case 2. If all signatures output by A have distinct random oracle answers, then
D guesses an index i ∈ [k+1] such that ĉi = ĥj for some j ∈ [qH]. Then, it records
the pair (μi, (ẑi, ĉi, authi)) and invokes A again with the same random tape and
the random oracle queries {ĥ1, . . . , ĥj−1, ĥ′

j , . . . , ĥ
′
qH

}, where {ĥ′
j , . . . , ĥ

′
qH

} are
fresh random elements. After the second invocation, the output of A includes a
pair (μ′

i, (ẑ
′
i, ĉ

′
i, auth

′
i)). By the General Forking Lemma [8], A outputs a forgery

containing ĉ′
i with probability εfork (see below), where ĉi �= ĉ′

i and root = root′.
Let ŵ = â · ẑi − b̂ĉi (mod q) and ŵ′ = â · ẑ′

i − b̂ĉ′
i (mod q). Then, one of the

following holds:

1. ẑi �= ẑ′
i and authi = auth′

i. If ŵ = ŵ′, then â(ẑi − ẑ′
i)− b̂(ĉi − ĉ′

i) = 0 (mod q).
Therefore, by setting b̂ = â · ŝ (mod q) we obtain â · x̂ = 0 (mod q), where
x̂ = ẑi − ẑ′

i − ŝ(ĉi − ĉ′
i). Since both signatures are valid, we have ‖ẑi‖ ≤ B

and ‖ẑ′
i‖ ≤ B. Moreover we have ‖ŝ(ĉi − ĉ′

i)‖ ≤ 2ησ
√

(m + 1)κn. Hence,
‖x̂‖ ≤ 2(B + ησ

√
(m + 1)κn). This constitutes a solution to RSIS with norm

bound β. If ŵ �= ŵ′, then a collision in F has been found in the leaves of the
hash tree.

2. ẑi �= ẑ′
i and authi �= auth′

i. If ŵ = ŵ′, then we have a solution to RSIS (as
in 1.). If ŵ �= ŵ′, then we consider two cases: If ŵ, ŵ′ belong to different hash
trees, then a collision has occurred in F similar to [26], i.e., there exists an
index j ∈ {0, . . . , h − 1} such that aj �= a′

j , where aj ∈ authi, a′
j ∈ auth′

i

and RootCalc(ŵ, authi) = root = RootCalc(ŵ′, auth′
i). If ŵ, ŵ′ belong to the

same hash tree, then D keeps the pair (μi, (ẑi, ĉi, authi)) and invokes A at
most � times with the same random tape and the random oracle queries
{ĥ1, . . . , ĥj−1, ĥ

(t)
j , . . . , ĥ

(t)
qH } (where t ∈ {0, . . . , � − 1}) until we obtain two

forgeries such that the associated leaves have the same index in the tree and
the same hash value. If ŵ = ŵ′, then we have a solution to RSIS (as in 1.).
Otherwise, we have a collision in F.

58 N. Alkeilani Alkadri et al.

3. ẑi = ẑ′
i and authi = auth′

i. If ŵ = ŵ′, then â · ŝ(ĉi − ĉ′
i) = b̂(ĉi − ĉ′

i) = 0
(mod q) and ‖ŝ(ĉi − ĉ′

i)‖ ≤ β. Since ĉi �= ĉ′
i and R is an integral domain, then

ŝ(ĉi − ĉ′
i) ∈ Rm+1\{0}. This constitutes a solution to RSIS. Note that if b̂ is

invertible in Rq, then we obtain ĉi − ĉ′
i = 0 (mod q). This contradicts ĉi �= ĉ′

i.
Moreover, if (ĉi − ĉ′

i) is invertible in Rq, then b̂ = 0 (mod q), which is not the
case. If ŵ �= ŵ′, then a collision has occurred in F (in the leaves of the hash
tree).

4. ẑi = ẑ′
i and authi �= auth′

i. If ŵ = ŵ′, then we have a solution to RSIS (as
in 3.). If ŵ �= ŵ′, then one of the cases considered in 2. (for ŵ �= ŵ′) applies.

The reduction D retries at most q
(k+1)
H times with different random tape and

random oracle queries.

Analysis. First, we note that the environment of A is perfectly simulated by D
and signatures are generated with the same probability as in the real execution
of the signing protocol. Next, one of the k+1 pairs output by A is by assumption
not generated during the execution of the signing protocol. The probability of
correctly guessing the index i corresponding to this pair is 1/(k+1), where there
are qk+1

H index pairs (i, j) such that ĉi = ĥj . Therefore, one of the qk+1
H reruns

of A yields the correct index pair (i, j). The probability that ĉi was a random
oracle query made by A is at least 1−1/|Tn

κ|. Thus, the probability that ĉi = ĥj

is εA−1/|Tn
κ|. By the General Forking Lemma with at most � = O(1) rewindings

and distinct ĥ
(t)
j , . . . , ĥ

(t)
qH , we have εfork ≥ (

εA − 1
|Tn

κ |
) · ((εA−1/|Tn

κ |
qSign+qH

)� − τ
)
, where

τ = 1 − ∏�
t=1

|Tn
κ |−t

|Tn
κ | ≤ 1 −

(|Tn
κ |−�
|Tn

κ |
)�

≤ �2

|Tn
κ | . Since ŝ is not uniquely defining b̂

when (m + 1) log(2d) > log(q) (see, e.g., [28]) for a sufficiently large d that is
related to the size of the coefficients of ŝ, A does not know which ŝ is being used
to construct x̂. Hence, x̂ �= 0 with probability at least 1/2 (see, e.g., [25,33]).
This can be easily shown, e.g., when the coefficients of ŝ are uniformly distributed
over {−d, . . . , 0, . . . , d}. The success probability of D is given by εD ≥ εfork

2(k + 1)
,

which is non-negligible if εA is non-negligible. ��

Parameters. Table 3 shows our proposed parameters for BLAZE+, which are
selected for approximately 128 bits of security. The table also reviews the param-
eters of BLAZE proposed in [4] for the same security level. Table 1 gives the
related communication complexity, performance, and sizes of keys and signa-
tures. For the sake of comparison with BLAZE, we choose m = 1 and m = 3 for
a practical scheme instantiation. Note that the choice of e.g., m = 1 implies an
instantiation that is based on RLWE rather than RSIS and hence, it is not cov-
ered by the security proof as indicated in [4]. This is because the secret key has
insufficient entropy or does not satisfy the condition (m + 1) log(2d) > log(q)
(see the proof of Theorem 3). It seems that using RLWE does not reduce the
security of the scheme, but rather using RSIS appears to be more an artifact of
the proof technique.

On Lattice-Based Interactive Protocols with Aborts 59

Table 3. Parameters for BLAZE+ and BLAZE targeting approximately 128 bits of
security. The performance, sizes, and communication complexity corresponding to these
parameters are given in Table 1.

Scheme Parameters

δabort � h n m q σ γ κ α∗ α s∗ s MS MU M

BLAZE+ 2−128 71 7 1024 1 ≈ 231 0.5 1.01 16 19 33 1736.9 12450734 1.9 1 1.9

BLAZE+ 2−40 32 5 1024 1 ≈ 231 0.5 1.01 16 28 22 2559.6 12232099 1.5 1 1.5

BLAZE+ 2−10 8 3 1024 1 ≈ 231 0.5 1.01 16 28 22 2559.6 12232099 1.5 1 1.5

BLAZE 0.38 1 0 1024 1 ≈ 231 0.5 1.2 16 20 25 2172.2 11796306 1.8 1.6 2.9

BLAZE+ 2−128 71 7 1024 3 ≈ 231 9.6 1.01 16 19 33 47161.3 478102394 1.9 1 1.9

BLAZE+ 2−40 32 5 1024 3 ≈ 231 9.6 1.01 16 28 22 69500.9 469714882 1.5 1 1.5

BLAZE+ 2−10 8 3 1024 3 ≈ 231 9.6 1.01 16 28 22 69500.9 469714882 1.5 1 1.5

BLAZE 0.38 1 0 1024 3 ≈ 231 9.6 1.2 16 20 25 54067.2 380633088 1.8 1.6 2.9

Acknowledgements. We thank the anonymous reviewers of ACISP’20 for their valu-
able comments. This work has been partially supported by the Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation) – SFB 1119 – 236615297.

References

1. Abdalla, M., An, J.H., Bellare, M., Namprempre, C.: From identification to sig-
natures via the fiat-shamir transform: minimizing assumptions for security and
forward-security. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332,
pp. 418–433. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-
7 28

2. Ajtai, M.: Generating hard instances of lattice problems. In: ACM Symposium on
Theory of Computing - STOC 1996, pp. 99–108. ACM (1996)

3. Alkeilani Alkadri, N., El Bansarkhani, R., Buchmann, J.: On lattice-based inter-
active protocols: an approach with less or no aborts. Cryptology ePrint Archive,
Report 2020/007 (2020). http://eprint.iacr.org/2020/007. Full version of this paper

4. Alkeilani Alkadri, N., El Bansarkhani, R., Buchmann, J.: BLAZE: practical lattice-
based blind signatures for privacy-preserving applications. In: Financial Cryptog-
raphy and Data Security - FC 2020. Springer, Cham (2020). http://eprint.iacr.
org/2019/1167

5. Bai, S., Galbraith, S.D.: An improved compression technique for signatures based
on learning with errors. In: Benaloh, J. (ed.) CT-RSA 2014. LNCS, vol. 8366, pp.
28–47. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-04852-9 2

6. Baum, C., Damg̊ard, I., Lyubashevsky, V., Oechsner, S., Peikert, C.: More efficient
commitments from structured lattice assumptions. In: Catalano, D., De Prisco, R.
(eds.) SCN 2018. LNCS, vol. 11035, pp. 368–385. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-98113-0 20

7. Baum, C., Lin, H., Oechsner, S.: Towards practical lattice-based one-time linkable
ring signatures. In: Naccache, D., Xu, S., Qing, S., Samarati, P., Blanc, G., Lu,
R., Zhang, Z., Meddahi, A. (eds.) ICICS 2018. LNCS, vol. 11149, pp. 303–322.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01950-1 18

https://doi.org/10.1007/3-540-46035-7_28
https://doi.org/10.1007/3-540-46035-7_28
http://eprint.iacr.org/2020/007
http://eprint.iacr.org/2019/1167
http://eprint.iacr.org/2019/1167
https://doi.org/10.1007/978-3-319-04852-9_2
https://doi.org/10.1007/978-3-319-98113-0_20
https://doi.org/10.1007/978-3-319-98113-0_20
https://doi.org/10.1007/978-3-030-01950-1_18

60 N. Alkeilani Alkadri et al.

8. Bellare, M., Neven, G.: Multi-signatures in the plain public-key model and a general
forking lemma. In: ACM Conference on Computer and Communications Security
- CCS 2006, pp. 390–399. ACM (2006)

9. Benhamouda, F., Camenisch, J., Krenn, S., Lyubashevsky, V., Neven, G.: Better
zero-knowledge proofs for lattice encryption and their application to group signa-
tures. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp.
551–572. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-
8 29

10. Bourse, F., Del Pino, R., Minelli, M., Wee, H.: FHE circuit privacy almost for
free. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 62–89.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-5 3

11. Brakerski, Z., Perlman, R.: Order-LWE and the hardness of Ring-LWE with
entropic secrets. Cryptology ePrint Archive, Report 2018/494 (2018). https://
eprint.iacr.org/2018/494

12. Ducas, L., et al.: CRYSTALS-Dilithium: a lattice-based digital signature scheme.
Trans. Cryptogr. Hardware Embed. Syst. TCHES 2018(1), 238–268 (2018)

13. Ducas, L., Lepoint, T., Lyubashevsky, V., Schwabe, P., Seiler, G., Stehle, D.:
CRYSTALS-Dilithium: digital signatures from module lattices. Cryptology ePrint
Archive, Report 2017/633 (2017). Version: 20170627:201152. http://eprint.iacr.
org/2017/633

14. El Bansarkhani, R., Sturm, J.: An efficient lattice-based multisignature scheme
with applications to bitcoins. In: Foresti, S., Persiano, G. (eds.) CANS 2016. LNCS,
vol. 10052, pp. 140–155. Springer, Cham (2016). https://doi.org/10.1007/978-3-
319-48965-0 9

15. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

16. Fischlin, M., Schröder, D.: On the impossibility of three-move blind signature
schemes. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 197–215.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 10

17. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: ACM Sympo-
sium on Theory of Computing - STOC 2009, pp. 169–178. ACM (2009)

18. Hülsing, A., Butin, D., Gazdag, S., Rijneveld, J., Mohaisen, A.: XMSS: eXtended
Merkle Signature Scheme. RFC 8391, May 2018

19. Juels, A., Luby, M., Ostrovsky, R.: Security of blind digital signatures. In: Kaliski,
B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 150–164. Springer, Heidelberg
(1997). https://doi.org/10.1007/BFb0052233

20. Katz, J., Kolesnikov, V., Wang, X.: Improved non-interactive zero knowledge with
applications to post-quantum signatures. In: ACM Conference on Computer and
Communications Security - CCS 2018, pp. 525–537. ACM (2018)

21. Langlois, A., Stehlé, D.: Worst-case to average-case reductions for module lat-
tices. Des. Codes Crypt. 75(3), 565–599 (2014). https://doi.org/10.1007/s10623-
014-9938-4

22. Lyubashevsky, V.: Fiat-Shamir with aborts: applications to lattice and factoring-
based signatures. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
598–616. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-
7 35

23. Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4 43

https://doi.org/10.1007/978-3-662-45611-8_29
https://doi.org/10.1007/978-3-662-45611-8_29
https://doi.org/10.1007/978-3-662-53008-5_3
https://eprint.iacr.org/2018/494
https://eprint.iacr.org/2018/494
http://eprint.iacr.org/2017/633
http://eprint.iacr.org/2017/633
https://doi.org/10.1007/978-3-319-48965-0_9
https://doi.org/10.1007/978-3-319-48965-0_9
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-642-13190-5_10
https://doi.org/10.1007/BFb0052233
https://doi.org/10.1007/s10623-014-9938-4
https://doi.org/10.1007/s10623-014-9938-4
https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/978-3-642-29011-4_43

On Lattice-Based Interactive Protocols with Aborts 61

24. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 1

25. Lyubashevsky, V., Peikert, C., Regev, O.: A toolkit for ring-LWE cryptography.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
35–54. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9 3

26. Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO 1989.
LNCS, vol. 435, pp. 218–238. Springer, New York (1990). https://doi.org/10.1007/
0-387-34805-0 21

27. Micciancio, D.: Generalized compact knapsacks, cyclic lattices, and efficient one-
way functions from worst-case complexity assumptions. In: Proceedings of the 43rd
Symposium on Foundations of Computer Science FOCS, pp. 356–365. IEEE (2002)

28. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on Gaussian
measures. SIAM J. Comput. 37(1), 267–302 (2007)

29. von Neumann, J.: Various techniques used in connection with random digits. In:
Monte Carlo Method. National Bureau of Standards Applied Mathematics Series,
vol. 12, pp. 36–38 (1951)

30. del Pino, R., Lyubashevsky, V.: Amortization with fewer equations for proving
knowledge of small secrets. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS,
vol. 10403, pp. 365–394. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-63697-9 13

31. Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind sig-
natures. J. Cryptol. 13(3), 361–396 (2000)

32. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: ACM Symposium on Theory of Computing, pp. 84–93. ACM (2005)

33. Rückert, M.: Lattice-based blind signatures. In: Abe, M. (ed.) ASIACRYPT 2010.
LNCS, vol. 6477, pp. 413–430. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-17373-8 24

34. Schnorr, C.P.: Efficient signature generation by smart cards. J. Cryptol. 4(3), 161–
174 (1991). https://doi.org/10.1007/BF00196725

35. Alberto Torres, W.A., et al.: Post-quantum one-time linkable ring signature and
application to ring confidential transactions in blockchain (lattice RingCT v1.0). In:
Susilo, W., Yang, G. (eds.) ACISP 2018. LNCS, vol. 10946, pp. 558–576. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-93638-3 32

https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-642-38348-9_3
https://doi.org/10.1007/0-387-34805-0_21
https://doi.org/10.1007/0-387-34805-0_21
https://doi.org/10.1007/978-3-319-63697-9_13
https://doi.org/10.1007/978-3-319-63697-9_13
https://doi.org/10.1007/978-3-642-17373-8_24
https://doi.org/10.1007/978-3-642-17373-8_24
https://doi.org/10.1007/BF00196725
https://doi.org/10.1007/978-3-319-93638-3_32

	On Lattice-Based Interactive Protocols: An Approach with Less or No Aborts
	1 Introduction
	2 Preliminaries
	2.1 Cryptographic Primitives
	2.2 Lattices and Gaussians

	3 How to Reduce Aborts in Lattice-Based Protocols
	3.1 Trees of Commitments
	3.2 Canonical Identification Using Trees of Commitments
	3.3 Optimizing the Number of Masking Terms

	4 Applications
	References

