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Abstract. Discrete Gaussian sampling over the integers, which is to
sample from a discrete Gaussian distribution DZ,σ,μ over the integers Z

with parameter σ > 0 and center μ ∈ R, is one of fundamental operations
in lattice-based cryptography. The sampling algorithm should support a
varying center μ and even a varying parameter σ, when it is used as
one of the subroutines in an algorithm for sampling trapdoor lattices,
or sampling from Gaussian distributions over a general n-dimensional
lattice Λ. In this paper, combining the techniques in Karney’s algorithm
for exactly sampling the standard normal distribution, we present an
exact sampling algorithm for DZ,σ,μ with an integer-valued parameter
σ. This algorithm requires no pre-computation storage, uses no floating-
point arithmetic, supports centers of arbitrary precision, and does not
have any statistical discrepancy. Applying the convolution-like property
of discrete Gaussian distributions, we also present an approximated sam-
pling algorithm for DZ,σ,μ with a real-valued parameter σ. It also sup-
ports centers of arbitrary precision, and we show that the distribution it
produces has a smaller max-log distance to the ideal distribution, as com-
pared to Micciancio-Walter sampling algorithm, which was introduced by
Micciancio et al. in Crypto 2017 for discrete Gaussian distributions with
varying σ and μ over the integers.

Keywords: Lattice-based cryptography · Discrete Gaussian
distribution · Rejection sampling · Exact sampling · Max-log distance

1 Introduction

Lattice-based cryptography has been accepted as a promising candidate for pub-
lic key cryptography in the age of quantum computing. Discrete Gaussian sam-
pling, which is to sample from a discrete Gaussian distribution DΛ,σ,c with
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parameter σ > 0 and center c ∈ R
n over an n-dimensional lattice Λ, plays a

fundamental role in lattice-based cryptography. Discrete Gaussian sampling is
not only one of the fundamental operations in many lattice-based cryptosys-
tems but is also at the core of security proofs of these cryptosystems [10,18,21].
It has been considered by the cryptography research community as one of the
fundamental building blocks of lattice-based cryptography [19,20,22,24].

An important sub-problem of discrete Gaussian sampling, which is denoted
by SampleZ, is to sample from a discrete Gaussian distribution DZ,σ,μ over the
integers Z with parameter σ > 0 and center μ ∈ R. Since SampleZ is much
more efficient and simpler than sampling from discrete Gaussian sampling over
a general lattice, the operations involving discrete Gaussian sampling in some
lattice-based cryptosystems such as [6,23,27] are nothing but SampleZ. A good
sampling algorithm for a discrete Gaussian distribution (not necessarily over
the integers Z) should not only be efficient, but also have a negligible statistical
discrepancy with the target distribution. Therefore, how to design and implement
good sampling algorithms for discrete Gaussian distributions over the integers
has received a lot of attentions in recent years.

The commonly used methods (techniques) for SampleZ are the inversion sam-
pling (using a cumulative distribution table, CDT) [24], the Knuth-Yao method
(using a discrete distribution generating (DDG) tree) [7,28], the rejection sam-
pling [6,10,16], and the convolution technique [22,25] (based on the convolution-
like properties of discrete Gaussian distributions developed by Peikert in [24]).

The first SampleZ algorithm, which was given by Gentry et al. in [10],
uses rejection sampling. Although this algorithm supports varying parameters
(including μ and σ), it is not very efficient, since it requires about 10 trials
on average before outputting an integer in order to get a negligible statistical
distance to the target discrete Gaussian distribution.1

Most of improved SampleZ algorithms are designed only for the case where
center μ is fixed in advance, such as [6,11,14,15,28,29]. It is necessary to con-
sider generic SampleZ algorithms that support varying parameters. Sampling
from discrete Gaussian distributions over the integers is also usually one of the
subroutines in discrete Gaussian sampling algorithms for distributions over a
general n-dimensional lattice Λ. Examples include the SampleD algorithm [10]
for distributions over an n-dimensional lattice of a basis B ∈ R

n, Peikert’s algo-
rithm for distributions over a q-ary integer lattice Λ ⊆ Z

n [24], and Gaussian
sampling algorithms for trapdoor lattices [9,20]. A SampleZ algorithm should
support a varying center μ, and even a varying parameter σ, if it is used in these
cases.

1.1 Related Work

In 2016, Karney proposed an algorithm for sampling exactly (without statisti-
cal discrepancy) from a discrete Gaussian distribution over the integers Z [16].

1 The number of trials could be decreased by using more cryptographically efficient
measures, like Rényi divergence [2,26].
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This algorithm uses no floating-point arithmetic and does not need any precom-
putation storage. It allows the parameters (including σ and μ) to be arbitrary
rational numbers of finite precision. This may be the second generic SampleZ
algorithm since the one given by Gentry et al. in [10].

In 2017, Micciancio and Walter developed a new SampleZ algorithm [22]. We
call this algorithm Micciancio-Walter sampling algorithm. It extends and gener-
alizes the techniques that were used in the sampler proposed by Pöeppelmann
et al. [25]. Micciancio-Walter algorithm is also generic, i.e., it can be used to
sample from discrete Gaussian distributions with arbitrary and varying parame-
ters of specified (finite) precision. Moreover, Aguilar-Melchor et al. also designed
a non-centered CDT algorithm with reduced size of precomputation tables [1].

More recently, it was suggested that the Bernoulli sampling, introduced by
Ducas et al. in [6] for centered discrete Gaussian distributions over the integers,
could be improved by using the polynomial approximation technique. Specifi-
cally, the rejection operation in the Bernoulli sampling can be performed very
efficiently by using an approximated polynomial [3,32]. The polynomial (its
coefficients) can be determined in advance, and it also allows us to sample
from Gaussian distributions with a varying center μ ∈ [0, 1). Combining the
convolution-like property of discrete Gaussian distributions [22,24,25], a non-
centered Bernoulli sampling could be further extended to a generic sampling
algorithm for any discrete Gaussian distribution over the integers. Howe et al.
further presented a modular framework [12] for generating discrete Gaussians
with arbitrary and varying parameters, which incorporates rejection sampling,
the polynomial approximation technique, and the sampling technique used in
Falcon signature [27].

Another alternative method of discrete Gaussian sampling over the inte-
gers is to sample from the (continuous) standard normal distribution, and then
obtain the samples of discrete Gaussian distributions by rejection sampling [31].
This method is very efficient and supports discrete Gaussian distributions with
arbitrary and varying parameters, although it relies on floating-point arithmetic
(even involving logarithmic function and trigonometric function due to sampling
from the standard normal distribution). In fact, a more simple and efficient
method is to replace discrete Gaussians with rounded Gaussians [13], which are
the nearest integers of sample values from the continuous normal distribution,
but the security analysis of rounded Gaussians is only confined to the cryptosys-
tems like Bliss signature.

Except Karney’s sampling algorithm, the existing algorithms for sampling
from DZ,σ,μ with varying parameters, either rely on floating-point arithmetic,
such as the algorithms in [10,32], or require a large amount of precomputation
storage, such as Micciancio-Walter sampling algorithm [22] and the one given by
Aguilar-Melchor et al. [1]. The sampler presented by Barthe et al. in [3] supports
a varying μ ∈ R but not a varying parameters σ. It needs to perform another
polynomial approximation procedure for the new σ.

Furthermore, except Karney’s sampling algorithm, those algorithms men-
tioned above are all the approximated algorithms, which only produce samples
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approximately from the target distribution. They usually involve complicated
and careful security analysis based on statistical measures (e.g. Rényi diver-
gence [2,26], max-log distance [22], relative error [30]), since attaining a negli-
gible statistical measure to the ideal Gaussian distribution may be crucial for
lattice-based cryptography, especially for signatures [17] and lattice trapdoors
[10], to provide zero-knowledgeness. Therefore, it is interesting to consider exact
sampling algorithms in lattice-based cryptography. The security analysis based
on statistical measures for exact algorithms can be simplified or even be omitted.

1.2 Our Contribution

On one hand, we note that Karney’s sampling algorithm [16] is exact sampling
algorithm, but it allows only the case where σ and μ are rational numbers of
specified (finite) precision. In this paper, for an integer-valued parameter σ,
we present an exact sampling algorithm for DZ,σ,μ. This algorithm requires no
pre-computation storage, uses no floating-point arithmetic and supports a vary-
ing μ of arbitrary precision. On the other hand, although Micciancio-Walter
sampling algorithm [22] supports varying parameters (including μ and σ) with
specified (finite) precision, its base sampler requires a large amount of precompu-
tation storage. Based on our proposed exact algorithm, applying the convolution-
like property of discrete Gaussian distributions we give an approximated sam-
pling algorithm for DZ,σ,μ with a real-valued parameter σ. It requires no pre-
computation storage, and supports a varying μ of arbitrary precision. We show
that the distribution it produces has a smaller max-log distance to the ideal dis-
tribution DZ,σ,μ, as compared to the distribution produced by Micciancio-Walter
sampling algorithm.

1.3 Techniques

Let σ be a positive integer, μ ∈ [0, 1) be a real number of arbitrary precision,
and x be a non-negative integer. We give an algorithm for exactly generating a
Bernoulli random value which is true with probability

exp
(

−t
2x + t

2x + 2

)
,

where t is in the form of (y − sμ)/σ, s ∈ {−1, 1}, and y is an integer taken
uniformly from [(1 + s)/2, σ + (1 + s)/2). In our exact sampling algorithm for
discrete Gaussian distributions, which is based on the rejection sampling, we
show that the rejection operation can be performed by repeatedly using this
algorithm of generating the Bernoulli random value.

In fact, this algorithm is adapted from Karney’s algorithm for exactly gen-
erating the Bernoulli random value (see Algorithm B in [16]). Karney also used
it as the rejection operation in his algorithm for standard normal distribution
as well as discrete Gaussian distributions over the integers. However, t is only
regarded as a random deviate from [0, 1) in Karney’s algorithm. The value of t
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corresponds exactly to the fraction part of the prospective output and can be
obtained directly as a random number in case of standard normal distribution,
while the determination of the value of t in the case of discrete Gaussian dis-
tributions needs the computation with respect to the parameters σ and μ. In
order to maintain the exactness, μ is only allowed to be a rational number for
sampling from discrete Gaussian distributions, which limits the functionality of
Karney’s algorithm.

2 Preliminaries

2.1 Notation

We denote the set of real numbers by R, the set of integers by Z, and the set
of non-negative integers by Z

+. We extend any real function f(·) to a countable
set A by defining f(A) =

∑
x∈A f(x) if it exists. The Gaussian function on R

with parameter σ > 0 and μ ∈ R evaluated at x ∈ R can be defined by ρσ,μ(x) =

exp
(
− (x−μ)2

2σ2

)
. For real σ > 0 and μ ∈ R, the discrete Gaussian distribution

over Z is defined by DZ,σ,μ(x) = ρσ,μ(x)/ρσ,μ(Z) for x ∈ Z. Similarly, a discrete
Gaussian distribution over Z

+ is defined by DZ+,σ(x) = ρσ,μ(x)/ρσ,μ(Z+). By
convention, the subscript μ is omitted when it is taken to be 0.

2.2 Rejection Sampling

Rejection sampling is a basic method (technique) used to generate observations
from a distribution [5]. It generates sampling values from a target distribution X
with arbitrary probability density function f(x) by using a proposal distribution
Y with probability density function g(x). The basic idea is that one generates
a sample value from X by instead sampling from Y and accepting the sample
from Y with probability

f(x)/Mg(x),

repeating the draws from Y until a value is accepted, where M is a constant
such that f(x) ≤ Mg(x) for all values of x in the support of X. If f(x) ≤ Mg(x)
for all x then the rejection sampling procedure produces exactly, with enough
replicates, the distribution of X. In fact, f(x) is allowed to be only a relative
probability density function. Rejection sampling can be used to sample from a
distribution X whose normalizing constant is unknown as long as the support
of Y includes the support of x.

2.3 Karney’s Algorithm

Karney’s exact sampling algorithm for discrete Gaussian distributions, which is
described as Algorithm 1, uses rejection sampling, and it is a discretization of his
algorithm for sampling exactly from the normal distribution. Here, parameter σ
and μ are in the set of rational numbers Q.
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Algorithm 1. [16] Sampling DZ,σ,μ for σ, μ ∈ Q and σ > 0
Input: rational number σ and μ
Output: an integer z according to DZ,σ,μ

1: select k ∈ Z
+ with probability exp(−k/2) · (1 − exp(−1/2)).

2: accept k with probability exp
(− 1

2
k(k − 1)

)
, otherwise, goto step 1.

3: set s ← ±1 with equal probabilities.
4: set i0 ← �kσ + sμ� and set x0 ← (i0 − (kσ + sμ))/σ.
5: sample j ∈ Z uniformly in {0, 1, 2, · · · , �σ� − 1}.
6: set x ← x0 + j/σ and goto step 1 if x ≥ 1.
7: goto step 1 if k = 0 and x = 0 and s < 0.
8: accept x with probability exp

(− 1
2
x(2k + x)

)
, otherwise goto step 1.

9: return s(i0 + j)

From the perspective of rejection sampling, in Algorithm 1, we can see that
step 1 and step 2 together form a rejection sampling procedure, which generates
k ∈ Z

+ according to
DZ+,1(k) = ρ1(k)/ρ1(Z+),

which is a discrete Gaussian distribution over the set of non-negative integers
Z
+. Then, the proposal distribution for the whole algorithm can be written as

g(z) = g(s(�kσ + sμ� + j)) = ρ1(k)/(2�σ�ρ1(Z+))

with z = s(�kσ + sμ� + j). The algorithm accepts z as the returned value with
probability e− 1

2x(2k+x), where x = (�kσ + sμ� − (kσ + sμ) + j)/σ < 1. It is not
hard to see that

ρ1(k) · exp(−1
2
x(2k + x)) = exp(− (�kσ + sμ� + j − sμ)2

2σ2
) = ρσ,μ(z),

which guarantees the correctness of Algorithm 1.
In Algorithm 1, in order to exactly sample k ∈ Z

+ with (relative) probability
density ρ1(k) = exp(−k2/2), Karney also gave an algorithm for exactly generat-
ing a Bernoulli random value which is true with probability 1/

√
e. Specifically,

one needs (k +1) Bernoulli random values from B1/
√

e to select an integer k ≥ 0
with probability exp(−k/2) · (1 − exp(−1/2)) (step 1), then continues to gener-
ate k(k − 1) Bernoulli random values from B1/

√
e to accept k with probability

exp
(− 1

2k(k − 1)
)

(step 2). Karney’s algorithm for exactly generating a Bernoulli
random value which is true with probability 1/

√
e is adapted from Von Neum-

mann’s algorithm for exactly sampling from the exponential distribution e−x for
real x > 0 (see Algorithm V and Algorihtm H in [16]).

In Algorithm 1, step 8 is implemented by using a specifically designed algo-
rithm so that it produces no any statistical discrepancy, and we will discuss this
algorithm in Sect. 3.
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3 Sampling from Arbitrary-Centered Discrete Gaussians

Algorithm 2 is our proposed algorithm for sampling from arbitrary-centered
discrete Gaussian distributions. We give the proof of its correctness.

Algorithm 2. Sampling from DZ,σ,μ with an integer-valued σ and a real-valued
μ of arbitrary precision
Input: positive integer σ and μ ∈ [0, 1)
Output: an integer z according to DZ,σ,μ

1: select x ∈ Z
+ with probability exp(−x/2) · (1 − exp(−1/2)).

2: accept x with probability exp
(− 1

2
x(x − 1)

)
, otherwise, goto step 1.

3: set s ← ±1 with equal probabilities.
4: sample y ∈ Z uniformly in {0, 1, 2, · · · , σ − 1} and set y ← y + 1 if s = 1.
5: return z = s(σ · x + y) with probability exp

(−((y − sμ)2 + 2σx(y − sμ))/(2σ2)
)
,

otherwise goto step 1.

Theorem 1. The integer z ∈ Z output by Algorithm 2 is exactly from the dis-
crete Gaussian distribution DZ,σ,μ with an integer-valued σ and a real-valued μ
of arbitrary precision, if the probability

exp
(

− (y − sμ)2 + 2σx(y − sμ)
2σ2

)

can be calculated exactly.

Proof. From the perspective of rejection sampling, following Karney’s approach
(step 1 and 2 in Algorithm 1), we generate an integer x exactly from DZ+,1(x) =
ρ1(x)/ρ1(Z+), and use DZ+,1 as the proposal distribution. For a given positive
integer σ, any z ∈ Z can be uniquely written as

z = s

(
σx + y +

1 + s

2

)
,

where s ∈ {−1, 1}, and x, y are integers such that x ≥ 0 and y ∈ [0, σ). This
guarantees that the support of the distribution produced by Algorithm 2 is the
set of all the integers. For simplicity, we set y ← y+1 if s = 1. Then, z = s(σx+y)
and the target distribution density function f(z) for z ∈ Z can be written as

f(z) = f(s(σx + y)) =
ρσ,μ(s(σx + y))

ρσ,μ(Z)
.

In Algorithm 2, for a given integer x exactly from DZ+,1, we sample s ← ±1
with equal probabilities, take z = s(σx + y), and then accept the value of z as
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the returned value with probability exp
(−((y − sμ)2 + 2σx(y − sμ))/(2σ2)

)
. It

is not hard to see that

ρ1(x) · exp
(

− (y − sμ)2 + 2σx(y − sμ)
2σ2

)
= exp

(
− (σx + y − sμ)2

2σ2

)

= exp
(

− (s(σx + y) − μ)2

2σ2

)

= ρσ,μ(s(σx + y)),

which is proportional to the desired (relative) probability density. This implies
that the probability of Algorithm 2 going back to step 1 is equal to a constant,

1 − (1 − exp(−1/2))
+∞∑

z=−∞
ρσ,μ(z) = 1 − (1 − exp(−1/2)) ρσ,μ(Z).

We denote by Q∞ this constant and let q(z) = (1 − exp(−1/2)) · ρσ,μ(z). Then,
the probability that Algorithm 2 outputs an integer z ∈ Z can be given by

q(z) + q(z)Q∞ + . . . + q(z)Qi
∞ + . . . = q(z) ·

∞∑
i=0

Qi
∞ =

ρσ,μ(z)
ρσ,μ(Z)

,

which shows the correctness of Algorithm 2. Since all the operations, including
computing the value of probability

exp
(

− (y − sμ)2 + 2σx(y − sμ)
2σ2

)
,

can be performed without any statistical discrepancy, and thus Algorithm 2
produces exactly the discrete Gaussian distribution DZ,σ,μ. 
�

The most important problem of Algorithm 2 is to compute exaclty the value
of the exponential function for a real-valued μ of arbitrary precision, and get a
Bernoulli random value which is true with probability of this value. Addressing
this problem is based on the following observation.

exp
(

− (y − sμ)2 + 2σx(y − sμ)
2σ2

)

= exp
(

−1
2

(
y − sμ

σ

)(
2x +

y − sμ

σ

))

=
(

exp
(

−1
2

(
y − sμ

σ

)(
2x + (y − sμ)/σ

x + 1

)))x+1

=
(

exp
(

−
(

y − sμ

σ

) (
2x + (y − sμ)/σ

2x + 2

)))x+1

=
(

exp
(

−ỹ

(
2x + ỹ

2x + 2

)))x+1

,
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where ỹ = (y − sμ)/σ and 0 ≤ ỹ < 1. Therefore, we can repeatedly sample from
the Bernoulli distribution Bp a total of x+1 times to obtain a Bernoulli random
value which is true with our desired probability, where

p = exp
(

−ỹ

(
2x + ỹ

2x + 2

))
.

Sampling the Bernoulli distribution Bp can be accomplished by using
Algorithm 3, which was proposed by Karney in [16]. The function C(m) with
m = 2x + 2 in Algorithm 3 is a random selector that outputs −1, 0 and 1 with
probability 1/m, 1/m and 1 − 2/m respectively.

Algorithm 3. [16] Generating a Bernoulli random value which is true with
probability exp(−t(2x + t)/(2x + 2)) with integer x ≥ 0 and real t ∈ [0, 1)
Output: a Boolean value according to exp(−t 2x+t

2x+2
)

1: set u ← t, n ← 0.
2: sample a uniform deviate v with v ∈ [0, 1); goto step 6 unless v < u.
3: set f ← C(2x + 2); if f < 0 goto step 6.
4: sample a uniform deviate w ∈ [0, 1) if f = 0, and goto step 6 unless w < t.
5: set u ← v, n ← n + 1; goto step 2.
6: return true if n is even, otherwise return false.

The main idea is to sample two sets of uniform deviates v1, v2, . . . and
w1, w2, . . . from [0, 1), and to determine the maximum value n ≥ 0 such that

t > v1 > v2 > . . . > vn and wi < (2x + t)/(2x + 2) for i = 1, 2, . . . , n.

If n is even, it returns true, and the probability is exactly equal to

1 − t

(
2x + t

2x + 2

)
+

t2

2!

(
2x + t

2x + 2

)2

− t3

3!

(
2x + t

2x + 2

)3

+ . . . = exp
(

−t
2x + t

2x + 2

)
.

This follows from the Taylor expansion of the exponential function. Then, apply-
ing this procedure at most k +1 times, one can obtain a Bernoulli random value
which is true with probability exp

(− 1
2 t(2x + t)

)
for given x and t. Taking

t = ỹ =
y − sμ

σ

and applying Algorithm 3, we can sample from the Bernoulli distribution Bp

with p = exp (−ỹ ((2x + ỹ)/(2x + 2))).
The remaining issue is that we need to compare ỹ with a randomly generated

deviate in [0, 1), but do not use floating-point arithmetic. This can guarantee
the exactness. We observe that any real u ∈ [0, 1) of arbitrary precision can be
represented by

u =
j − sr

σ
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0                                    

Fig. 1. Comparing u = (j − r)/σ with (y − μ)/σ

with given σ and s, where j is an integer from [(1 + s)/2, σ + (1 + s)/2) and
r ∈ [0, 1) is a real number of arbitrary precision. Then, we can do the comparison
as follows.

To obtain a randomly generated deviate in the form of u = (j − sr)/σ ∈
[0, 1), we sample j uniformly in {0, 1, 2, · · · , σ − 1}, sample a uniform deviate
r ∈ [0, 1) and set j = j + 1 if s = 1. To compare a randomly generated deviate
u = (j − sr)/σ with a given (y − sμ)/σ, we compare j with y firstly and return
the result if they are not equal. Otherwise, we compare r with μ to complete
the whole procedure. Figure 1 shows the above idea in the case of s = 1. We
summarize the whole procedure of comparison in Algorithm 4.

Algorithm 4. Compare (y−sμ)/σ with a randomly generated deviate u ∈ [0, 1)
Input: integers σ > 0, s ∈ {−1, 1}, y ∈ [(1 + s)/2, σ + (1 + s)/2), and real μ ∈ [0, 1)
Output: true if u < (y − sμ)/σ or false if otherwise
1: sample j uniformly in {0, 1, 2, · · · , σ − 1} and set j ← j + 1 if s = 1
2: return true if j < y, or false if j > y
3: sample a uniform deviate r ∈ [0, 1)
4: return the value of Boolean expression ‘r < μ’ if s = −1
5: return the value of Boolean expression ‘r > μ’ if s = 1

Note that comparing r with μ can be realized without floating-point arith-
metic through bitwise operations. This implies that Algorithm 4 allows μ to be
a real number of arbitrary precision and there is no case where r = μ. Specifi-
cally, following the implementation of Karney’s algorithm for random numbers
of arbitrary precision, the comparison of two deviates is realized digit-by-digit,
and each digit of a deviate is generated online according to the actual needs.
To determine the relation between r and μ, we take the first digit of r and μ,
respectively, denoted by r1 and μ1. If r1 or μ1 does not exist, then we generate
it uniformly online. If r1 and μ1 are equal, then we take the second digit of r
and μ, namely r2 and μ2, and continue to compare them. In fact, one digit could
consist of only one bit or a small number of bits, such as 4 bits, 8 bits or 16 bits.
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We call the number of bits in each digit the digit size, which can be specified in
the source code in advance.

Finally, if each random deviate in [0, 1) used in Algorithm 3 is handled in
the form of u = (j − sr)/σ, then Algorithm 3 allows μ to be a real number of
arbitrary precision, and we can implement it without floating-point arithmetic.

4 Applying the Convolution-Like Property

In this section, we try to extend Algorithm 2 to the case of discrete Gaus-
sian distributions with arbitrary parameters (including σ and μ) by using the
convolution-like property of discrete Gaussian distributions.

Informally, for a Gaussian distribution with a relatively large standard devi-
ation σ, we compute two samples x1 and x2 with smaller variances σ2

1 and σ2
2 .

We hope that their combination x1 + c · x2 with a constant c is Gaussian with
variance σ2

1 + c ·σ2
2 . Although this is not generally the case for discrete Gaussian

distributions, Peikert showed that the distribution of x1 + c · x2 is statistically
close to discrete Gaussian distribution with variance σ2

1 + c · σ2
2 under certain

conditions with respect to the smoothing parameter of lattices [24]. This obser-
vation was called by Peikert the convolution-like property of discrete Gaussian
distributions.

Definition 1 (a special case of [21], Definition 3.1). Let ε > 0 be a positive
real. The smoothing parameter of lattice Z, denoted by ηε(Z), is defined to be the
smallest real s such that ρ1/s(Z \ {0}) ≤ ε.

Lemma 1 (Adapted from Lemma 3.3 [21]). For any real ε > 0, the smooth-
ing parameter of lattice Z satisfies2 ηε(Z) ≤ √

ln(2(1 + 1/ε))/2/π.

Here, we apply the conclusion described by Micciancio and Walter in [22]
about the convolution-like property, since it deals with non-centered discrete
Gaussian over the integers Z and uses a more cryptographically efficient measure
of closeness between probability distributions, named the max-log distance.

Definition 2 [22]. The max-log distance between two distributions P and Q over
the same support S is ΔML(P,Q) = maxx∈S | ln P(x) − lnQ(x)|.
Lemma 2 (Corollary 4.2 in [22]). Let σ1, σ2 > 0, σ2 = σ2

1 + σ2
2 and σ−2

3 =
σ−2
1 + σ−2

2 . Let Λ = h · Z be a copy of the integer lattice Z scaled by a constant
h. For any μ1 and μ2 ∈ R, we denote by D̃μ1+Z,σ the distribution of

x1 ← x2 + D̃μ1−x2+Z,σ1 with x2 ← D̃μ2+Λ,σ2 .

If σ1 ≥ ηε(Z), σ3 ≥ ηε(Λ) = h · ηε(Z), ΔML(Dμ2+Λ,σ2 , D̃μ2+Λ,σ2) ≤ ε2 and
ΔML(Dμ+Z,σ1 , D̃μ+Z,σ1) ≤ ε1 for any μ ∈ R, then

ΔML(Dμ1+Z,σ, D̃μ1+Z,σ) ≤ 4ε + ε1 + ε2,

where ε1 and ε2 are positive real numbers.
2 It allows to decrease the smoothing condition by a factor of

√
2π since the Gaussian

function is defined to be exp(− (x−μ)2

2σ2 ) but not exp(−π (x−μ)2

σ2 ).
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Definition 3 (Randomized rounding operator �·�λ [22]). For μ ∈ [0, 1)
and a positive integer λ, the randomized rounding operator �μ�λ is defined by

�μ�λ = �2λμ/2λ + Bα/2λ

with a Bernoulli random variable Bα of parameter α = 2λμ − �2λμ. In partic-
ular, if μ > 1 then

μ′ ← �μ + �{μ}�λ,

where �μ and {μ} is the integer part and the fractional part of μ respectively.

Lemma 3 (Adapted from Lemma 5.3 in [22]). Let λ > log2 4π be a positive
integer and b = 2λ. If σ ≥ ηε(Z), then

ΔML(DZ,σ,μ, D̃Z,σ,�μ�λ
) ≤ (π/b)2 + 2ε,

where �·�λ is the randomized rounding operator as defined above.

Combining our proposed exact algorithm (Algorithm 2), and applying the
convolution-like property, namely Lemma 2, we give Algorithm 5.

Algorithm 5. Sampling DZ,σ,μ with σ > ηε(Z) and μ ∈ [0, 1)
Input: σ > 1 and μ ∈ [0, 1)
Output: an integer z
1: sample x ∈ Z from DZ,2ηε(Z)

2: set h =
√

σ2 − �σ	2/(2ηε(Z))
3: set μ′ ← �μ + hx�λ

4: sample z from DZ,�σ�,μ′ and return z

Theorem 2 gives the correctness of Algorithm 5 and estimates the (theoreti-
cal) max-log distance between the distribution D̃Z,σ,μ produced by Algorithm 5
and the ideal distribution DZ,σ,μ. The equation that

μ + D−μ+Z,σ = DZ,σ,μ

for any σ > 0 and μ ∈ R will be repeatedly used in the proof.

Theorem 2. Let λ > log2 4π be a positive integer and b = 2λ. Denote by D̃Z,σ,μ

the probability distribution of integers that are output by Algorithm 5. If �σ >
ηε(Z) and ηε(Z) is taken to be a rational number, then we have

ΔML(DZ,σ,μ, D̃Z,σ,μ) ≤ (π/b)2 + 6ε,

by using Algorithm 1 in step 1, and using Algorithm 2 in step 4.
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Proof. Let σ1 = �σ and σ2 = 2hηε(Z). Then, we have σ2 = σ2
1 + σ2

2 and

σ3 =
(
σ−2
1 + (2hηε(Z))−2

)−1/2
=

σ1

σ
·
√

σ2 − σ2
1 ≥

√
σ2 − σ2

1 · ηε(Z)
2ηε(Z)

= ηε(hZ).

This is due to the fact that σ1/σ = �σ/σ ≥ 1/2 for σ > 1. With the notation of
Lemma 2, taking μ1 = −μ, μ2 = 0, Λ = hZ, x2 = hx and x1 ← x2+D̃μ1−x2+Z,σ1 ,
we have x2 = hx ← D̃μ2+Λ,σ2 = D̃hZ,h(2ηε(Z)) = h · D̃Z,2ηε(Z) and

μ + x1 ← μ + (x2 + D̃μ1−x2+Z,σ1) = μ + hx + D̃−μ−hx+Z,�σ	 = D̃Z,�σ	,μ+hx.

Since ηε(Z) is a rational number, in Algorithm 5, D̃Z,2ηε(Z) can be exactly sampled
(without any statistical discrepancy) via Algorithm 1, which implies that

ΔML(DZ,2ηε(Z), D̃Z,2ηε(Z)) = 0.

In contrast, D̃Z,�σ	,μ+hx can be only realized by sampling from DZ,�σ	,�μ+hx�λ

with max-log distance ΔML ≤ (π/b)2 + 2ε. Applying Lemma 2, we obtain that

μ + x1 ← μ + (x2 + D̃μ1−x2+Z,σ1) = μ + (hx + D̃−μ−hx+Z,�σ	)
≈ μ + D−μ+Z,σ = DZ,σ,μ,

where ‘≈’ means that ΔML(hx + D−μ−hx+Z,�σ	,D−μ+Z,σ) is not more than

4ε + ΔML(D−μ−hx+Z,�σ	, D̃−μ−hx+Z,�σ	) + ΔML(DhZ,h(2ηε(Z)), D̃hZ,h(2ηε(Z)))

= 4ε + ΔML(DZ,2ηε(Z), D̃Z,2ηε(Z))

+ΔML(μ + hx + D−μ−hx+Z,�σ	, μ + hx + D̃−μ−hx+Z,�σ	)

≤ 4ε + ΔML(DZ,2ηε(Z), D̃Z,2ηε(Z)) + ΔML(DZ,�σ	,μ+hx, D̃Z,�σ	,μ+hx)

≤ 4ε + ((π/b)2 + 2ε).
= 6ε + (π/b)2.

This completes the proof. 
�
The distribution produced by Algorithm 5 has a smaller max-log distance

to the ideal distribution, as compared to one produced by Micciancio-Walter
sampling algorithm, since both step 1 and step 4 can be implemented exactly,
and do not lead to any statistical discrepancy. In contrast, the two corresponding
steps in Micciancio-Walter algorithm are approximated ones (see Sect. 5 in [22]).
The statistical discrepancy they produce must be counted in the total statistical
discrepancy.

For instance, we take ε = 2−112 and ηε(Z) = 2, as
√

ln(2(1 + 1/ε))/2/π ≤ 2
when ε = 2−112. We take λ = 30 and b = 230, which results in (π/b)2 ≤ 2−56.
Then, we have ΔML(DZ,σ,μ, D̃Z,σ,μ) ≤ 2−56 + 6 · 2−112. The practical max-log
distance should also include the statistical discrepancy due to the floating-point
operations in step 2. One can just follow the argument at the end of Sect. 5.3
in [22].
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Moreover, the first step in Micciancio-Walter algorithm requires sampling
from a centered discrete Gaussian distribution DZ,σmax with a possible varying
parameter σmax, which should be determined before sampling according to the
desired distribution. In Algorithm 5, however, step 1 is just to sample from a
centered discrete Gaussian distribution with a fixed parameter 2ηε(Z) = 4. This
means that Algorithm 5 has a simpler form than Micciancio-Walter algorithm.

5 Experimental Results

Karney’s sampling algorithm for discrete Gaussian distributions over the integers
Z can be realized by using C++ library ‘RandomLib’3, in which the source code
of his algorithm is encapsulated as a .hpp file named “DiscreteNormal.hpp”.
“RandomLib” also supports the generation and some basic operations of random
numbers of arbitrary precision.

On a laptop computer (Intel i7-6820 hq, 8 GB RAM), using the g++ compiler
and enabling -O3 optimization option, we tested our Algorithm 2. The source
code was based on the adaptation of ‘DiscreteNormal.hpp’ as well as the runtime
environment provided by ‘RandomLib’. For discrete Gaussian distribution DZ,σ,μ

with σ from 4 to 220 and μ uniformly from [0, 1) of precision 128 bits, combining
Algorithms 3 and 4, one could get about 5.0 × 106 samples per second by using
Algorithm 2. It has almost the same performance as Karney’s algorithm.

We also tested the performance of the Micciancio-Walter algorithm with the
same parameters. Using this algorithm, one could get about 1.3 × 106 integers
per second. We implemented its base sampler with the CDT-based method,
which required an amount of extra memory, and took λ = 8 and b = 16. This
guarantees the max-log distance to the ideal distribution is not more than 2−52.

We note that Micciancio-Walter algorithm has a constant execution time for
given parameters if its base sampler is a constant-time algorithm. However, our
Algorithm 2 as well as Algorithm 5 is not a constant-time one, and it seems
to be inherently costly to turn into a constant-time one due to the fact that
Algorithm 2 is always probabilistically rejecting samples. Therefore, an open
question is how to make Algorithm 2 constant-time and be protected against
side-channel attacks [4,8].

6 Conclusion

For an integer-valued parameter σ, there exists an exact sampling algorithm for
DZ,σ,μ. It requires no precomputation storage, uses no floating-point arithmetic,
supports a varying μ of arbitrary precision, and does not have any statistical
discrepancy. Applying the convolution-like property of discrete Gaussian dis-
tributions, it can be further extended to an approximated sampling algorithm
for DZ,σ,μ with a real-valued parameter σ. The extended algorithm also sup-
ports centers of arbitrary precision and it produces a distribution with a smaller
max-log distance to the ideal distribution, as compared to Micciancio-Walter
sampling algorithm.
3 ‘RandomLib’ is available at http://randomlib.sourceforge.net/.

http://randomlib.sourceforge.net/


Arbitrary-Centered Discrete Gaussian Sampling over the Integers 405

References

1. Aguilar-Melchor, C., Albrecht, M.R., Ricosset, T.: Sampling from arbitrary cen-
tered discrete Gaussians for lattice-based cryptography. In: Gollmann, D., Miyaji,
A., Kikuchi, H. (eds.) ACNS 2017. LNCS, vol. 10355, pp. 3–19. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-61204-1 1

2. Bai, S., Lepoint, T., Roux-Langlois, A., Sakzad, A., Stehlé, D., Steinfeld, R.:
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rather than the statistical distance. J. Cryptol. 31(2), 610–640 (2018)
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