
Efficient Forward-Secure Threshold
Public Key Encryption

Rafael Kurek(B)

Group of IT Security and Cryptography,
University of Wuppertal, Wuppertal, Germany

kurek@uni-wuppertal.de

Abstract. The purpose of forward-secure threshold public key encryp-
tion schemes is to mitigate the damage of secret key exposure. We con-
struct the first CCA forward-secure threshold public key encryption
scheme based on bilinear pairings with groups of prime order that is
secure against adaptive and malicious adversaries in the standard model.
Our scheme is very efficient since it has a non-interactive key update
and decryption procedure. Additionally, our scheme does not require a
trusted dealer and has optimal resilience as well as small ciphertexts of
constant size. It is the first scheme which achieves all of these and that
can also be implemented on standardized elliptic curves.

1 Preliminaries

In a standard public key encryption scheme (PKE), once an adversary gets access
to the secret key the adversary is able to decrypt all ciphertexts. There are differ-
ent approaches to mitigate the damage due to secret key exposure. Two of these
approaches are so-called forward-secure public key encryption schemes and thresh-
old public key encryption schemes. Forward-secure schemes allow to evolve the
secret key in regular time periods, while the public key remains fixed. Thus, every
adversary with an outdated secret key cannot decrypt ciphers for time periods
in the past. In a (n, k)-threshold PKE the secret key is split into n shares and at
least k + 1 shares are required to decrypt a ciphertext, whereas any subset of k
shares is insufficient. Due to the fact that forward security and thresholds improve
security guarantees against secret key exposure in a different manner, their com-
bination can even reinforce these guarantees. For digital signature schemes their
combination was first proposed by Abdalla et al. [1] and Tzeng and Tzeng [18]
and later revisited [8,16,20]. For PKE, the combination of forward-secure and
threshold mechanisms to a forward-secure threshold PKE (fst-PKE) was proposed
by Libert and Yung [15]: an adversary that wants to decrypt a ciphertext which
was encrypted with a fst-PKE for time period t, needs not only to gain k + 1

R. Kurek—Supported by the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme, grant agreement 802823,
and by the German Research Foundation (DFG) within the Collaborative Research
Center “On-The-Fly Computing” (SFB 901/3).

c© Springer Nature Switzerland AG 2020
J. K. Liu and H. Cui (Eds.): ACISP 2020, LNCS 12248, pp. 330–349, 2020.
https://doi.org/10.1007/978-3-030-55304-3_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-55304-3_17&domain=pdf
https://doi.org/10.1007/978-3-030-55304-3_17

Efficient Forward-Secure Threshold Public Key Encryption 331

of the stored secret key shares but it also needs to gain these key shares before
time period t expires. It follows that for an adversary with restricted capacities,
the combination of forward-security and threshold mechanism provides additional
security. To the best of our knowledge the only existing fst-PKE scheme that is
CCA forward-secure against adaptive adversaries is due to Libert and Yung.1 It
is highly efficient in terms of communication rounds: the key update procedure
as well as the decryption procedure are both non-interactive. For the key update
this means that there is no communication at all between the key storage hosts.
Besides efficiency, this is also desirable because some of these hosts might be offline
or temporarily unavailable. In the case of an interactive key update their unavail-
ability could halt the update procedure entirely or exclude these hosts from further
decryption procedures because of outdated key shares. For decryption, the non-
interactive procedure means that if a decryption is requested each host can either
deny the decryption or provide a valid decryption share without interacting with
the other hosts.

Furthermore, the scheme by Libert and Yung is robust against malicious adver-
saries, which means that invalid decryption shares can be detected and do not
manipulate the decrypted message. Their scheme requires bilinear pairings with
groups of composite order. To guarantee security, these groups must be very large
which results in very expensive computation andmuch larger keys aswell as ciphers
when compared to bilinear pairings with groups of prime order. Furthermore the
scheme requires a trusted dealer that delivers the initial secret key shares to all
participating parties. The only fst-PKE based on pairings with groups of prime
order is due to Zhang et al. [21]. It is proven CCA forward secure against adaptive
adversaries in theRandomOracleModel and requires a trusteddealer. It requiresT
elements in the public key, where T is the maximum number of time periods. More-
over, the public key needs to be stored for updating the secret key, which leads to
secret keys of size T as well. Although the prime order groups enable fast compu-
tation the big key sizes restrict the usage for many applications.

Our Contribution. We present a highly efficient forward-secure threshold public
key encryption scheme based on bilinear pairings, which can be implemented
on standardized pairing-friendly curves with groups of prime order. This scheme
provides a non-interactive key update and decryption procedure and requires no
trusted dealer. In addition, this scheme provides ciphertexts of constant size:
one bit string of length log T , where T is the maximum number of supported
time periods, and three group elements from prime order groups. The public
key is of size log T and the secret keys have size at most log2 T . The scheme
has optimal resilience, i.e., it can tolerate (n − 1)/2 maliciously compromised
parties and is proved CCA forward secure against adaptive adversaries in the
standard model. Furthermore, it is possible to add pro-active security to our
scheme. This enables security against mobile adversaries, i.e. against adversaries
which can switch between the parties they corrupt. We discuss this concept and
our techniques in Sect. 4.
1 Adaptive adversaries can corrupt parties at any time. Static adversaries need to corrupt

the parties before the protocol execution begins. For a proper overview see [1].

332 R. Kurek

2 Forward-Secure Threshold Public Key Encryption
(fst-PKE)

Definition 1. We adapt the definition of fst-PKE and its security from Lib-
ert and Yung [15]. A Forward-secure threshold public key encryption
scheme. (fst-PKE) (T, n, k)-Πfst is defined via the following components:
FST.KeyGen(n, k, T) → (pk, (pki)i∈[n], (sk0,i)i∈[n]). On input the maximum
number of time periods T , the maximum number of parties n, and a threshold k,
it outputs a common public key pk, user public keys (pki)i∈[n], and initial secret
key shares, (sk0,i)i∈[n].
FST.KeyUpdate(skt,i) → skt+1,i. On input a secret key share for a time period
t < T − 1, it outputs a secret key share for the next time period t+1 and deletes
the input from its storage. Else it outputs ⊥.
FST.Enc(t, pk,M) → C. On input a time period t, a common public key pk,
and a message M , it outputs a ciphertext C.
FST.Dec(t, C) → M . If run by at least k+1 honest and uncompromised parties
on input a time period t and a ciphertext C, it outputs a message M .

The key generation procedure can be either a protocol between all parties or
executed by a trusted dealer. The key update procedure is assumed to be non-
interactive. The decryption procedure is a protocol and contains of various steps:
ciphertext-verify, share-decrypt, share-verify, and combine. For simplicity we
defined the input only as a time period and a ciphertext and omit the key
material held by all participating parties.

Definition 2. Correctness. Let (pk, (pk0,i)i∈[n], (sk0,i)i∈[n]) ←FST.KeyGen
and (skt,i) ← FST.KeyUpdate(skj−1,i) for j = 1, . . . , t and i ∈ [n]. We call
Πfst correct if for all messages M , all time periods t ∈ {0, . . . , T − 1}, and all
subsets U ⊆ {skt,1, . . . skt,n} of size at least k + 1 held by uncorrupted parties it
holds that

Pr[FST.Dec(t,FST.Enc(t, pk,M)) = M] = 1.

Note that the secret keys are an implicit input to FST.Dec.

We adapt the robustness notion of threshold signature schemes by Gennaro
et al.[10] to forward-secure threshold public key encryption schemes.

Definition 3. Robustness. A forward-secure threshold PKE Πfst is
(n, k1, k2)-robust if in a group of n parties, even in the presence of an adver-
sary who halts up to k1 and corrupts maliciously k2 parties, FST.Keygen and
FST.Dec complete successfully.

Note that malicious adversaries can either deviate from the protocol in any
way and especially halt some parties. Hence, they are stronger than halting
adversaries, see [1].

Efficient Forward-Secure Threshold Public Key Encryption 333

CCA Forward Security. Chosen ciphertext attack (CCA) forward security
against adaptive (static)1 adversaries is defined by the following game between
a challenger and an adversary A. Let B and G be the sets of indices, which
denote the corrupted and uncorrupted parties, respectively. Initially B is empty
and G = {1, . . . , n}. The challenger (on behalf of the uncorrupted parties) and
the adversary (on behalf of the corrupted parties) run FST.KeyGen(n, k, T).
The adversary receives the common public key pk, all user public keys (pki)i∈[n]

and the initial user secret key shares (ski,0)i∈B. The adversary has access to the
following oracles:

Break-In(t’,j). On input time period t′ and index j ∈ G, the challenger checks
if |B| < k. If this holds, the challenger removes j out of G and adds it to B. If
skt,j is already defined, i.e. after FST.KeyGen had finished, it is delivered to
A. If |B| = k, the challenger outputs skt,j for all j ∈ G.2

Challenge(t∗,M0,M1). The adversary submits a time period t∗ and two mes-
sages M0,M1. The challenger picks a bit b uniformly at random and responds
with a challenge ciphertext C∗ =FST.Enc(t∗, pk,mb).
Dec(t,C). On input time period t and ciphertext C, the challenger (on behalf of
the uncorrupted parties) and the adversary A (on behalf of the corrupted parties)
run the decryption protocol FST.Dec(t, C). The output of this execution is
delivered to A. If Challenge(t∗,M0,M1) has already been queried and C∗ is
the response to this query then query Dec(t∗, C∗) is disallowed.
Guess(b’). The adversary outputs its guess b′ ∈ {0, 1}. The challenger outputs
1 if b = b′, else 0. The game stops.

The adversary is allowed to make k + 1 queries Break-In(t′, j) one query
Challenge(t∗,m0,m1), and multiple queries Dec(t, C), in any order, subject
to 0 ≤ t∗ < t′k+1 < T , where t′k+1 is the time period of the k + 1-th query
to Break-In. After Break-In(t′k+1, j), Dec(t, C) cannot be queried anymore.
Guess(b′) can only be queried after Challenge(t∗,M0,M1). For all queries the
time periods must be in [0, . . . , T − 1].

Definition 4. Let A be an adaptive (static) adversary playing the CCA forward-
security game for a fst-PKE (T, n, k)-Πfst. It (tA, εA)-breaks the CCA forward
security of (T, n, k)-Πfst, if it runs in time tA and

|Pr[Guess(b′) = 1] − 1/2| ≥ εA.

The only difference between the CPA and CCA security game is that the
adversary has no access to the decryption oracle in the former game.

1 In the static security model the adversary has to submit its choice of k parties it
wants to corrupt before receiving the public key. In the adaptive model it can corrupt
the parties at any time. For a proper overview see [1].

2 Note that this case can only occur for time periods t > 0, i.e. after FST.KeyGen
had finished. Otherwise the adversary would have no possibility to win the security
game.

334 R. Kurek

Definition 5. Let G1, G2, and GT be cyclic groups of prime order q with
generators g1, g2, gT . We call e : G1 × G2 → GT a bilinear pairing if: i.
e(ga

1 , gb
2) = e(g1, g2)ab for all a, b ∈ Zq, ii. e(g1, g2) 	= 1T , and iii. e can be

efficiently computed. If there is no efficiently computable isomorphism from G2

to G1 we call it a Type-3 pairing. For more information we refer to [5,7].

The following definition of hierarchical identity-based encryption schemes
(HIBE)is reproduced from [6].

Definition 6. A hierarchical identity-based encryption scheme (HIBE) ΠHIBE

is defined via the following algorithms: HIBE.Setup(�) → (pk, sk0), HIBE.Key
Derive(id, skid′) → skid′ , where id is a prefix of id′,HIBE.Enc(id, pk,M) → C.
HIBE.Dec(id, skid, C) → M .

TheCPA (CCA) security can be defined analogously to forward-security, see [6].

Definition 7. A digital signature scheme Σ is defined via the follow-
ing algorithms: Sig.Keygen→ (vk, signk), Sig.Sign(signk,M) → σ,
Sig.Verify(vk,M , σ) → b, where b ∈ {0, 1}.

Strong Existential Unforgeability Under a One Chosen Message
Attack (sEUF-1CMA). In the sEUF-1CMA security game the adversary is
allowed to query one signature and has to forge a signature for any message. The
only restriction is that it cannot output the same pair of message and signature
as for the query. If the message is the same then the signature must differ.

3 Our CCA Forward-Secure Threshold PKE

The key generation phase our fst-PKE uses the distributed key generation pro-
tocol DKG by Gennaro et al. [10]. This protocol is instantiated with the group
G2 from the bilinear pairing we use in our fst-PKE. It outputs a common public
key pk = gx

2 ∈ G2 as well as user public keys pki = gxi
2 ∈ G2 for all parties

Pi, i ∈ [n]. The user public keys are required to check the decryption shares for
validity and hence provide robustness against malicious adversaries in our fst-
PKE. Moreover, this protocol provides to each party Pi a secret share hxi ∈ G1

of hx ∈ G1.3 We apply the secret shares to our fst-PKE by updating them to the
first time period. We want to emphasize that for forward security it is crucial
to erase the plain values xi, h

xi for all i ∈ [n] from every storage. Our fst-PKE
scheme (T, n, k)-Πfst is defined as follows.

Common Parameters. The common parameters consist of a the description
of a cryptographic Type-3 pairing group with groups of order q, the description

3 Note that in [10] the secret value is set as x instead of hx. This modification happens
only internally and has no impact on the adversary’s view or security.

Efficient Forward-Secure Threshold Public Key Encryption 335

of a cryptographic hash function H : {0, 1}∗ → Zq, a value � s.t. T = 2� is
the number of time periods, random group elements h, h0, . . . , h�+1 ← G1, and
random generators g2, h̃ ← G2.

FST.KeyGen. The n parties run the DKG(n, k) protocol from Fig. 1. Subse-
quently, each party Pi holds the common public key pk = gx

2 ∈ G2, all user public
keys (gxj

2)j∈[n] as well as its own secret share hxi ∈ G1. Each party computes its
initial secret key share sk0,i as

(
gri
2 , hxihri

0 , hri
1 , . . . , hri

�+1

) ∈ G2 × G
�+2
1 ,

where ri ← Zq is picked uniformly at random. The value hxi is erased from the
storage. The common public key pk is published.4

FST.KeyUpdate(skt,i). We assume the T time periods 0, . . . , 2� − 1 as being
organized as leaves of a binary tree of depth � and sorted in increasing order from
left to right. This means, 00 . . . 0 is the first and 11 . . . 1 is the last time period.
The path from the root of the tree to a leaf node t equals the bit representation
t1 . . . t�, where we take the left branch for tz = 0 and the right one for tz = 1.
Prefixes of time periods correspond to internal nodes ω = ω1, . . . , ωs, where
s < �. Let r′

i ← Zq be picked uniformly at random. Then, we associate to each
party Pi, i ∈ [n] and each node ω a secret key:

(ci, di, ei,s+1, . . . , ei,�+1) =

(

g
r′
i

2 , hxi(h0

s∏

v=1

hωv
v)r′

i , h
r′
i

s+1, . . . , h
r′
i

�+1

)

. (3)

Given such a secret key, we derive a secret key for a descendant node ω′ =
ω1 . . . ωs′ , where s′ > s as

(c′
i, d

′
i, e

′
i,s′+1, . . . , e

′
i,�+1)

=

⎛

⎝ci · g
r′′
i

2 , di ·
s′
∏

v=s+1

ewv
i,v (h0

s′
∏

v=1

hwv
v)r′′

i , ei,s′+1 · h
r′′
i

s′+1, . . . , ei,�+1 · h
r′′
i

�+1

⎞

⎠ ,

where r′′
i ← Zq is picked uniformly at random.

We define Ct as the smallest subset of nodes that contains an ancestor or
leaf for each time period t, . . . , T − 1, but no nodes of ancestors or leafs for time
periods 0, . . . , t − 1. For time period t, we define the secret key ski,t of party Pi

as the set of secret keys associated to all nodes in Ct. To update the secret key

4 Note that the secret share xi is computed commonly by all parties and the random-
ness ri is computed locally by party Pi and is not a share of another random value.
This approach is more efficient than computing random values commonly, especially
to different bases.

336 R. Kurek

Protocol DKG(n, k):
Generation of shared secret x:

1. (a) Each Party Pi, i ∈ [n] picks two random polynomials ai(z) and bi(z) over Zq

of degree k:

ai(z) = ai0 + ai1z + · · · + aikzk and

bi(z) = bi0 + bi1z + · · · + bikzk.

(b) Each party Pi computes and broadcasts Cis = gais
2 h̃bis ∈ G2 for s =

0, . . . , k.
(c) Each party Pi computes sij = ai(j) and s′

ij = bi(j) mod q for j =
1, . . . , n. It sends sij , s

′
ij secretly to Pj .

(d) For i = 1, . . . , n each party Pj checks if

g
sij
2 h̃s′

ij =
k∏

s=0

(Cis)j
s

. (1)

If there is an index i ∈ [n] such that the check fails, Pj broadcasts a complaint
against Pi.

(e) If a dealer Pi receives a complaint from Pj then it broadcasts the values sij

and s′
ij satisfying Equation 1.

(f) Each party disqualifies any player that either received more than k complaints
or answered to a complaint with values that does not satisfy Equation 1.

2. Each party Pi defines the set QUAL, which indicates all non-disqualified parties.
3. The shared secret is defined as hx = h

∑
i∈QUAL ai0 ∈ G1. Each party Pi sets its

share of this secret as hxi = h
∑

j∈QUAL sij ∈ G1.
Extracting y := gx

2 ∈ G2:
4. (a) Each party Pi, i ∈ QUAL computes and broadcasts Ais = gais

2 ∈ G2 for all
s = 0, . . . , k.

(b) For each i ∈ QUAL, each party Pj checks if

g
sij
2 =

k∏

s=0

(Ais)j
s

. (2)

If there is an index i ∈ QUAL such that the check fails, Pj complaints about
Pi by broadcasting sij and s′

ij that satisfy Eq. 1 but not Eq. 2.
(c) For all parties Pi who received at least one valid complaint in the extraction

phase, the other parties run a reconstruction of ai(z) and Ais for s = 0, . . . , k
in the clear, using the values sij .

(d) Each party Pi computes the common public key as y =
∏

i∈QUAL Ai0 ∈ G2

and the user public keys pkj as g
xj

2 =
∏

i∈QUAL
∏t

k=0(Aik)j
k

for all j ∈ [n].

Fig. 1. The DKG protocol due to Gennaro et al.

Efficient Forward-Secure Threshold Public Key Encryption 337

to time period t+1, determine Ct+1 and compute the secret keys for all nodes in
Ct+1\Ct. Afterwards, delete ski,t and all used re-randomization exponents r′′

i .5

FST.Encrypt(pk, t,M). Let M ∈ G3 be the message and t1 . . . t� the bit rep-
resentation of time period t. First, run Sig.KeyGen→ (vk, signk) and com-
pute H(vk) =: V K. Then, pick a uniformly random r ← Zq and compute
(C1, C2, C3) as

(

e(h, pk)r · M, gr
2, (h0

�∏

v=1

htv
v · hV K

�+1)
r

)

∈ G3 × G2 × G1

and Sig.Sign(signk, (C1, C2, C3),) → σ. Output the ciphertext

C = (C1, C2, C3), vk, σ).

FST.Decrypt (t, (C1, C2, C3), vk, σ). Let W be the set of indices of all partici-
pating parties. W.l.o.g. we assume that W contains at least k+1 distinct indices.
The participating parties run the decryption protocol from Fig. 2.6

Remark 1. Note that the subset V ⊆ W from the decryption protocol (Fig.
2) might be of size greater than k + 1, while k + 1 partial decryption shares
are sufficient to decrypt the ciphertext. For this reason aggregating only k + 1
decryption shares avoids computational overhead.

Remark 2. The secret keys in our fst-PKE have a binary tree structure in the
sense of [6], except for the lowest level. In Theorem 4 from [6], it is shown
that encryption schemes, which have a binary tree structure on all levels, imply
forward security. Although it is possible to remove the lowest level and the strong
one-time signature scheme in our construction, doing so would result in a scheme
which is only forward secure against CPA instead of CCA.

Proof of Correctness. We have to prove that (c′, d′) is a valid decryption key
for ciphertext C = (C1, C2, C3, vk, σ) under t, V K and the common public key

5 Example: Let T = 23. Then t0 = 000, t1 = 100, t2 = 010,... . Given a substring xy,
we can compute xy0 and xy1. Hence, for time period t2 the set Ct2 consists of the
node keys for 01 and 1. From 01 it can compute the secret key for t2 = 010 and
t3 = 011. From 1 it can compute the secret key for all time periods greater t3: 100,
101, 110, 111. The keys for time periods t0 = 000 and t1 = 001 cannot be computed
from this set. If we update to time period t3, we need to compute 011 and erase the
node key for 01. Thus Ct3 consists of the key for 011 and the node key 1. Then, also
the key for 010 cannot be computed anymore.

6 Note that decryption happens with respect to a time period. Since time periods are
encoded in full bit length (even if they start with zero) they are low in the binary
tree. Hence, they only have left ei,�+1 as going down one level in depth erases one
value ei,x, x ∈ [�].

338 R. Kurek

pk = gx
2 . To that end we show first that set V, which indicates the correct decryp-

tion shares, can be determined. That is, we show that we can check whether the
decryption shares (c′

i, d
′
i), i ∈ W are correct. Let (c′

i, d
′
i) be an honestly generated

decryption in Step 2 of the protocol. Then d′
i is equal to

die
V K
i,�+1(h0

�∏

v=1

htv
v hV K

�+1)
vi = hxi(h0

�∏

v=1

htv
v)rieV K

i,�+1(h0

�∏

v=1

htv
v hV K

�+1)
vi

= hxi(h0

�∏

v=1

htv
v hV K

�+1)
ri+vi , (5)

Dec(t, (C1, C2, C3), vk, σ, P1, ..., Pn):

1. Ciphertext-Verify. At decryption request of ((C1, C2, C3), vk, σ) at time t =
t1 . . . t�, each party Pi, i ∈ W checks whether Sig.Verify(vk, (C1, C2, C3), σ) =
1 and whether the ciphertext is valid for time period t and for the hashed verification
key V K = H(vk). That is, it checks whether the following equation holds.

e((h0

s∏

v=1

htv
v · hV K

�+1), C2) = e(C3, g2).

If one or both checks fail it aborts.
2. Share-Decrypt. Else each party picks a uniformly random vi ← Zq and uses its

secret key ski,t = (ci, di, ei,�+1) to compute a decryption share (c′
i, d

′
i), where

d′
i := di · eV K

i,�+1(h0

�∏

v=1

htv
v · hV K

�+1)
vi and c′

i := ci · gvi
2 .

Afterwards, each party Pi, ∈ W sends (c′
i, d

′
i) secretly to all other parties.

3. Share-Verify. All parties in W use the public keys pkj , j ∈ W to check if the
contributed decryption shares are valid. That is, if

e(d′
j , g2) = e(h, pkj) · e(h0

�∏

v=1

htv
v · hV K

�+1, c
′
j).

4. Combine. Let V ⊆ W indicate a set of parties sending valid decryption shares. If V
contains at least k + 1 distinct indices then the decryption key (c′, d′) is computed
as

c′ =
∏

i∈V
c′Li

i and d′ =
∏

i∈V
d′Li

i ,

where Li =
∏

j∈V,j �=i(−i)/(j − i) are the Lagrange coefficients.
5. Finally, the plaintext is computed as

C1 · e(C3, c
′)/e(d′, C2) = M. (4)

Fig. 2. The decryption protocol of our fst PKE.

Efficient Forward-Secure Threshold Public Key Encryption 339

where we used the fact that ei,�+1 = hri

i,�+1. Furthermore, c′
i = gri+vi

2 . If a
decryption share (c′

i, d
′
i) satisfies (5) and c′

i = gri+vi
2 then the validity check in

Step 3 is correct, because

e(d′
i, g2) = e(hxi(h0

�∏

v=1

htv
v hV K

�+1)
ri+vi , g2)

= e(hxi , g2)e((h0

�∏

v=1

htv
v hV K

�+1)
ri+vi , g2) = e(h, pki)e(h0

�∏

v=1

htv
v hV K

�+1, c
′
i).

For this reason, we can indeed check whether a decryption share (c′
i, d

′
i) for

message C under t, V K and user public key gxi
2 is correct and thus include i into

set V. It remains to show that all decryption shares (c′
i, d

′
i), i ∈ V interpolate to

a valid decryption key under the common public key gx
2 . For this purpose, we

set R :=
∑

i∈V Li(ri + vi). Then, d′ is equal to

∏

i∈V
d′Li

i = h
∑

i∈V Lixi(h0

�∏

v=1

htv
v hV K

�+1)
∑

i∈V Li(ri+vi) = hx(h0

�∏

v=1

htv
v hV K

�+1)
R,

where
∑

i∈V Lixi = x. Furthermore, c′ =
∏

i∈V c′Li
i = g

∑
i∈V Li(ri+vi)

2 = gR
2 .

Overall, we have for a valid ciphertext

C1e(C3, c
′)/e(d′, C2)

= Me(h, gx
2)re((h0

�∏

v=1

htv
v · hV K

�+1)
r, gR

2)/e(hx(h0

�∏

v=1

htv
v · hV K

�+1)
R, gr

2) = M.

Proof of Security. As preparation for the security proof we describe in Fig. 3
how the reduction simulates the DKG protocol. The simulation in Fig. 3 is also
due to Gennaro et al. Additionally, Fig. 4 describes how the reduction simulates.

FST.Decrypt. According to Definition 4, the adversary is allowed to control
up to k parties during the key generation and decryption procedure. First, we
assume a static adversary as in the proof in [10]. In the proof of Theorem 3,
it is shown how to achieve security against adaptive adversaries. In Sect. 4,
it is explained why this approach gives a more efficient scheme than the use of
composite order groups as in [15]. W.l.o.g. we assume the corrupted parties to be
P1, . . . , Pk. Let B := {1, . . . , k} indicate the set of corrupted parties, controlled
by the adversary A, and let G := {k + 1, . . . , n} indicate the set of uncorrupted
parties, run by the simulator.

Note that during the simulation of the decryption procedure the simulator
already executed DKGSim (Fig. 3). Therefore, it is in possession of the secret
shares x1, . . . , xk and the polynomials ai(z), bi(z) for all i ∈ [n].

340 R. Kurek

Protocol DKGSim(y = gx
2 , n, k):

1. The simulator performs Steps 1a−1f and 2 on behalf of the uncorrupted parties
exactly as in the DKG(n, k) protocol. Additionally, it reconstructs the polynomials
ai(z), bi(z) for i ∈ B. Then:
– The set QUAL is well-defined and G ⊆ QUAL and all polynomials are random

for all i ∈ G.
– The adversary sees ai(z), bi(z) for i ∈ B, the shares (sij , s

′
ij) =

(ai(j), bi(j)) for i ∈ QUAL, j ∈ B and Cis for i ∈ QUAL, s = 0, . . . , k.
– The simulator knows all polynomials ai(z), bi(z) for i ∈ QUAL as well as all

shares sij , s
′
ij , all coefficients ais, bis and the public values Cis.

2. The simulator performs as folllows:
– Computes Ais = gais

2 ∈ G2 for i ∈ QUAL \ {n}, s = 0, . . . , k.
– Sets A∗

n0 = y · ∏
i∈QUAL\{n}(A

−1
i0).

– Sets s∗
nj = snj = an(j) for j = 1, . . . , k.

– Computes A∗
ns = (A∗

n0)λs0 · ∏k
i=1(g

s∗
ni

2)λsi ∈ G2 for s = 1, . . . , k, where
the λiss are the Lagrange interpolation coefficients.

(a) The simulator broadcasts Ais for i ∈ G \ {n} and A∗
ns for s = 0, . . . , k.

(b) It performs for all uncorrupted parties the verification of (2) on the values
Aij for i ∈ B. In case of a fail it broadcasts a complaint (sij , s

′
ij). Since the

adversary controls at most k parties and the simulator behaves honestly, only
secret shares of corrupted parties can be reconstructed.

(c) Afterwards it performs the Steps 4c and 4d of the DKG(n, k) protocol.

Fig. 3. The simulation of the DKG protocol due to Gennaro et al.

In the DKG protocol (Fig. 1) the secret shares for all parties Pj , j ∈ [n]
are defined as xj :=

∑
i∈QUAL sij mod q. In DKGSim however, the shares

are defines as xj :=
∑

i∈QUAL\{n} sij + s∗
nj mod q, where the values s∗

nj

for j = k + 1, . . . , n, i.e. for j ∈ G, are not explicitly known. Moreover, in
DKGSim the public key of user Pj , j ∈ [n] is g

xj

2 =
∏

i∈QUAL\{n} g
sij

2 g
s∗
nj

2 =
∏

i∈QUAL\{n}
∏k

s=0(Ais)js ∏k
s=0(A

∗
ns)

js

, where the values A∗
ns include the com-

mon public key y = gx
2 . Hence, in order to compute the secret share hxj for j ∈ G

either the corresponding value hx or s∗
nj is required. Although these values are

not known to the simulator it is still able to simulate the role of the uncompro-
mised parties during the decryption of a valid ciphertext (t, C1, C2, C3, vk, σ).
In order to do so it requires a valid secret key (c, d) for time t together with
the hashed verification key V K = H(vk), i.e. for the string t, V K. If the sim-
ulator is an adversary breaking the CPA security of the HIBE scheme from [2]
this key can be requested in its own security experiment. Let t = t1 . . . t� and
(c, d) =

(
gr
2, h

x(h0

∏�
v=1 htv

v · hV K
�+1)

r
)
. Define consistently with DKGSim:

– His := hais for all i ∈ QUAL \ {n}, s = 0, . . . , k
– H∗

n0 :=
∏

i∈QUAL\{n}(H
−1
i0)hx

Efficient Forward-Secure Threshold Public Key Encryption 341

– s∗
nj := snj = an(j) for j = 1, . . . , k

– H∗
ns := (H∗

n0)
λs0

∏k
i=1(h

s∗
ni)λsi for s = 1, . . . , k

– Ĥn0 :=
∏

i∈QUAL\{n}(H
−1
i0 d).

Thus, pkj = hxj , j ∈ G are defined as
∏

i∈QUAL\{n}
∏k

s=0(His)js ∏k
s=0

(H∗
ns)

js

. To obtain a valid decryption share for Pj , j ∈ G compute an inter-
mediate d′′

j as

∏

i∈QUAL\{n}

k∏

s=0

(His)js(
Ĥn0

) k∏

s=1

(
(Ĥn0)λs0

k∏

i=1

(hs∗
ni)λsi

)js

=
∏

i∈QUAL\{n}

k∏

s=0

(His)js

(∏

i∈QUAL\{n}
(H−1

i0)hx(h0

�∏

v=1

htv
v hV K

�+1)
r

)

k∏

s=1

(
(∏

i∈QUAL\{n}
(H−1

i0)hx(h0

�∏

v=1

htv
v hV K

�+1)
r
)λs0

k∏

i=1

(hs∗
ni)λsi

)js

=
∏

i∈QUAL\{n}

k∏

s=0

(His)js

(∏

i∈QUAL\{n}
(H−1

i0)hx

)
(h0

�∏

v=1

htv
v hV K

�+1)
r

k∏

s=1

(
(∏

i∈QUAL\{n}
(H−1

i0)hx
)λs0

k∏

i=1

(hs∗
ni)λsi

)js k∏

s=1

(
(h0

�∏

v=1

htv
v hV K

�+1)
rλs0

)js

=
∏

i∈QUAL\{n}

k∏

s=0

(His)js(k∏

s=0

(
H∗

ns

)js)
(h0

�∏

v=1

htv
v hV K

�+1)
r

∑k
s=1 λs0js+r

= hxj (h0

�∏

v=1

htv
v hV K

�+1)
r

∑k
s=1 λs0js+r.

To re-randomize, pick a uniformly random wj ← Zp and compute d′
j and

c′
j as

d′′
j (h0

�∏

v=1

htv
v hV K

�+1)
wj and c

∑k
s=1 λs0js+1g

wj

2 . (6)

Lemma 1. The protocols DKG and DKGSim as well as Dec and DecSim
are indistinguishable.

Proof. For DKG and DKGSim the proof can be found in Theorem 2 of [10]. In
the same fashion it can be easily verified that the adversary has the same view
Dec and DecSim.
�
Theorem 1. The scheme (T, n, k)-Πfst from Sect. 3 is (n, k1, k2)-robust if k1+
k2 ≤ k and n ≥ 2k + 1. In particular, the scheme is (n, 0, k)-robust, i.e. robust
against malicious adversaries.

342 R. Kurek

DecSim(t, (C1, C2, C3), vk, σ), (c, d))

1. The decryption is requested. Let t = t1 . . . t�. The simulator performs the validity
checks from Step 1 of protocol Dec. If one of these checks fail it aborts.

2. Else, the simulator uses the polynomials ai(z), bi(z) for all i ∈ [n] and the de-
cryption key (c, d) for t, V K to compute valid decryption shares on behalf of all
uncorrupted parties: for j = k + 1, . . . , n it computes d′′

j as

∏

i∈QUAL\{n}

k∏

s=0

(His)j
s · Ĥn0

) ·
k∏

s=1

(Ĥn0)λs0 ·
k∏

i=1

(hs∗
ni)λsi

)js

.

Then, it picks wj ← Zq uniformly at random and computes d′
j as

d′′
j · (h0

�∏

v=1

htv
v · hV K

�+1)
wj .

Afterwards, it computes c′
j as:

c
∑k

s=1 λs0·js+1 · g
wj

2 .

Then, the simulator sends (c′
j , d

′
j) for all j = k + 1, . . . , n to the corrupted

parties P1, . . . , Pk. The simulator might receive decryption shares on behalf of the
corrupted parties.

3. The simulator does nothing.
4. The adversary can use any set V of at least k + 1 partial decryption shares to

construct the final decryption key:

(c′, d′) = (
∏

i∈V
cLi

i ,
∏

i∈V
dLi

i),

where Li =
∏

j∈V,j �=i(−i)/(j − i) are Lagrange coefficients. The simulator does
nothing.

5. The adversary can use the decryption key (c, d) to decrypt the ciphertext. The
simulator does nothing.

Fig. 4. The simulation of the decryption protocol.

Proof. We argue for the strongest case, i.e. (n, 0, k). To show that Πfst is
(n, 0, k)-robust we analyze all protocols where the adversary on behalf of the
uncompromised parties may interact with the honest ones, i.e. FST.KeyGen
and FST.Decrypt. More precisely, we show that the adversary is incapable
to prevent the honest parties from executing these protocols successfully. The
FST.KeyGen protocol is instantiated with the DKG protocol from [10], which
was shown to be robust against malicious adversaries. The reason for this is
that a party which deviates from the protocol specification is either disquali-
fied or its secret share is reconstructed by the honest parties. In the case of the

Efficient Forward-Secure Threshold Public Key Encryption 343

FST.Decrypt protocol the adversary has two options to attempt cheating. One
option is to try manipulating the ciphertext. This however, is prevented in Step
1 of the decryption protocol by checking the ciphertext for validity. The second
option is to try manipulating or denying decryption shares. This is prevented in
Step 3 by using the user public keys gxi , i ∈ [n] to check if the decryption shares
are valid. Hence only valid decryption shares are aggregated and the message
is decrypted correctly. Moreover, the adversary is allowed to control or halt at
most k parties. Thus, a valid decryption share can still be computed as long as
n ≥ 2k + 1.
�
Theorem 2. Let n ≥ 2k + 1 and let A be a static adversary that (tA, εA)-
breaks the CCA forward security of (T, n, k)-Πfst from Sect. 3. Given A, we can
build an adversary A′ that (tA′ , εA′)-breaks the CPA security of HIBE ΠHIBE

from [2], an adversary A′′ that (tA′′ , εA′′)-breaks the sEUF-1CMA security of a
signature scheme Σ, and an adversary A′′′ that (tA′′ , εA′′′)-breaks the collision
resistance of hash function H, such that

tA′′′ ≈ tA′′ ≈ tA′ ≈ tA and εA′′′ + εA′′ + εA′ � εA.

�
Proof. Conceptually, we follow the proofs from Sections. 4 and 6 in [4], which
were also reproduced in Section 4.1 in [3]. In [4], a CPA-secure HIBE with � + 1
levels and identities of length n + 1 bits is turned into a CCA-secure HIBE with
� levels and identities of length n bits. The reason for the shorter identities in
the CCA-secure scheme is that this framework uses one bit of the identity as a
padding. This padding guarantees that decryption queries do not correspond to
prefixes of the challenge identity. In our scheme however, the first � levels are
single bits and the deepest level has elements in Zq, which makes it impossible
to spend one bit of each identity for the padding. However, in our scheme the
adversary is only allowed to make decryption queries with respect to time periods
(plus a value in Zq). Since time periods are always encoded with full length they
cannot correspond to prefixes of each other. Thus a padding is not necessary.

We start with describing an adversary A′ playing the CPA security game
for HIBE ΠHIBE and simulating the CCA forward security game for a static
adversary A.

At the beginning, A sends its choice of the k parties it wants to corrupt to
A′. Let B denote the set of the indices of these parties and G := {1, . . . , n} \ B.
Adversary A′ runs Sig.KeyGen to obtain (vk∗, signk∗). Then it computes
H(vk∗) := V K∗. Moreover, it receives a master public key mpk := gx

2 ∈ G2 from
its own security experiment. In order to simulate the FST.KeyGen procedure
adversary A′(on behalf of the uncompromised parties) runs the DKGSim pro-
tocol on input (gx

2 , n, k). Both adversaries receive all information to compute the
secret key shares of all compromised parties and the user public keys pki for all
i ∈ [n] as well as the common public key pk = gx

2 . Afterwards, A has access to
the following procedures, which are simulated by A′ as follows.

344 R. Kurek

Break-In(t’,j). On input a time period t′ = t1 . . . t� adversary A′ queries Key-
Query on all nodes from the set Ct′ , which was defined in the KeyUpdate
procedure in 3. According to the definition of Ct′ these are all the nodes which
allow the computation of the secret keys for all time periods t � t′ but for no
time period t < t′. As a response it obtains tuples of the form

(c, d, es+1, . . . , e�+1) =

(

gr
2, h

x(h0

s∏

v=1

hwv
v)r, hr

s+1, . . . , h
r
�+1

)

,

which correspond to internal nodes ω = ω1 . . . ωs, where s ≤ �. In order to
compute the secret keys skt′,j for all j ∈ G it proceeds as follows. It defines
equivalently to DecSim:

– His := hais for all i ∈ QUAL \ {n}, s = 0, . . . , k
– H∗

n0 :=
∏

i∈QUAL\{n}(H
−1
i0) · hx

– s∗
nj := snj = an(j) for j = 1, . . . , k

– H∗
ns := (H∗

n0)
λs0 · ∏k

i=1(h
s∗
ni)λsi for s = 1, . . . , k

– H̄n0 :=
∏

i∈QUAL\{n}(H
−1
i0 · d) for each tuple (c, d, . . .) separately.

It computes for all tuples a corresponding value dj as:

∏

i∈QUAL\{n}

k∏

s=0

(His)js · (
H̄n0

) ·
k∏

s=1

(
(H̄n0)λs0 ·

k∏

i=1

(hs∗
ni)λsi

)js

and for all values x̃ from {c, ei+1, . . . , e�+1} it computes x̃j as x̃
∑k

s=1 λs0·js+1.
In order to guarantee a perfect simulation A′ re-randomizes the secret keys of

all parties in the same fashion as the decryption shares in (6). Finally, it outputs
skt′,j for all j ∈ G as the stack of tuples of the form (cj , dj , ej,i+1, . . . , ej,�+1).

Analogously to the decryption in DecSim it holds that

dj = hxj · (h0

s∏

v=1

hwv
v)r′·∑k

s=1 λk0·js+r′
.

Overall, these stacks form valid secret keys skt′,j for all j ∈ G and their
simulation is perfect. If Challenge(t∗,M0,M1) was already queried then all
break-in queries with t′ � t∗ are invalid.
Challenge(t∗,M0,M1). Adversary A submits two messages M0,M1 and chal-
lenge time period t∗. Adversary A′ forwards (t∗.V K∗,M0,M1) to Challenge in
its own security game and receives a ciphertext (C1, C2, C3) which equals

(

e(h, pk)r · Mb, gr
2, (h0

�∏

v=1

htv
v · hV K∗

�+1)r

)

∈ G3 × G2 × G1,

where b is a uniformly random bit. Afterwards, it computes a signature σ∗ ←
Sig.Sign(signk∗, (C1, C2, C3)) and outputs the challenge ciphertext C∗ = (C1,

Efficient Forward-Secure Threshold Public Key Encryption 345

C2, C3, vk∗, σ∗). If Break-In on input t′ � t∗ was previously queried then the
challenge query is invalid.
Dec(t, C1, C2, C3, vk, σ). Whenever A asks for a decryption then A′ proceeds as
follows. First, it checks if vk = vk∗ and Sig.Verify(vk, (C1, C2, C3), σ) = 1 or if
vk 	= vk∗ and H(vk) = V K∗. If one of these conditions is true then A′ aborts and
outputs a uniformly random bit to Guess in its own security game. Else it queries
KeyQuery(t, V K) to obtain the decryption key skt,V K = (c, d). Then, it simu-
lates the decryption procedure by running DecSim(t, (C1, C2, C3), vk, σ, (c, d)).
Since t, V K is unequal to and no prefix of t∗.V K∗ the query to KeyQuery is
valid. Dec cannot be queried on input (t∗, C∗).
Guess(b’). Adversary A outputs its guess b′ ∈ {0, 1}, which A′ forwards to
Guess in its own experiment.

We denote Forge the event that A′ aborts during a decryption query because
of the first condition and Coll that it aborts because of the second condition.
Together with Lemma 1 it can be seen that adversary A′ provides a perfect
simulation to A as long as any of these two events do not happen. Thus,

|εA − εA′ | � Pr[Forge ∪ Coll] = Pr[Forge] + Pr[Coll]. (7)

In order to determine Pr[Forge] note that if Forge occurs then A has sub-
mitted a valid ciphertext (C1, C2, C3, vk∗, σ∗), which means that σ∗ is a valid
signature for message (C1, C2, C3) under verification key vk∗. We show how to
build an adversary A′′ that breaks the sEUF-1CMA security of Σ using A.

Adversary A′′ plays the sEUF-1CMA security game with respect to Σ. At
the beginning, it receives a verification key vk∗ from its challenger. After A
has submitted its choice of corrupted parties adversary A′′ picks a uniformly
random x ← Zq and executes DKGSim(gx

2 , n, k) on behalf of the uncorrupted
parties. Since A′′ is in possession of x it is able to simulate all secret keys
queried to Break-In. If A makes a valid query Dec(t, C1, C2, C3, vk∗, σ∗) then
A′′ outputs (C1, C2, C3, σ

∗) as a forgery to its own security experiment. If A
makes a query Challenge(t∗,M0,M1) then A′′ picks a bit b uniformly at random
and computes FST.Encrypt(pk, t∗,Mb) → (C1, C2, C3). Afterwards, it queries
the signing oracle in its own security experiment on input (C1, C2, C3). It receives
a signature σ and returns (t∗, C1, C2, C3, vk∗, σ) to A. If A happens to query
Dec(C1, C2, C3, vk∗, σ∗) then, A′′ submits ((C1, C2, C3), σ∗) as its forgery. Note
that if the challenge oracle was already queried we still have ((C1, C2, C3), σ) 	=
((C1, C2, C3), σ∗). It follows that

Pr[Forge] = εA′′ . (8)

It remains to determine Pr[Coll] for H by building an adversary A′′′ that
breaks the collision resistance of H. It is easy to see that adversary A′′′ can sim-
ulate the CCA forward security game for A perfectly by running FST.KeyGen
and Sig.KeyGen. Whenever a collision occurs it forwards the corresponding
inputs to H to its own challenger. It follows that

Pr[Coll] = εA′′′ . (9)

346 R. Kurek

Putting (8) and (9) in (7) gives us εA � εA′ + εA′′ + εA′′′ .
It is easy to see that all algorithms run in approximately the same time. This

completes the proof.
�
Theorem 3. Let n ≥ 2k + 1 and let A be an adaptive adversary that (tA, εA)-
breaks the CCA forward security of (T, n, k)-Πfst from Sect. 3. Given A we can
build an adversary A′ that (tA′ , εA′)-breaks the CPA security of HIBE ΠHIBE

from [2], an adversary A′′ that (tA′′ , εA′′)-breaks the sEUF-1CMA security of a
signature scheme Σ, and an adversary A′′′ that (tA′′ , εA′′′)-breaks the collision
resistance of hash function H, such that

tA′′′ ≈ tA′′ ≈ tA′ ≈ tA and εA′′′ + εA′′ +
(

n

k

)
· εA′ � εA.

Proof. Adversary A′ proceeds as in the proof of Theorem 2. The only difference
is that it guesses in advance of step 1 of DKGSim which parties the adversary
is going to corrupt. Whenever the adversary corrupts a party Pj , j ∈ B then it
takes over the role of this party and receives all values computed and stored on
behalf of this party by A′. If at the end A outputs a bit but has not corrupted
at least k parties then A′ adds some artificial corruptions to the set B uniformly
at random such that it has exactly k corrupted parties. Adversary A′ aborts the
simulation and outputs uniformly random bit if a guess was wrong (either of A
or A′). The simulation is successful with probability 1/

(
n
k

)
.

Adversary A′′ also proceeds as in the proof of Theorem 2. Since it is in
possession of the common secret x it can compute the secret values hxi for
all i ∈ [n] directly. Hence, it has no additional loss in its success probability.
Guessing the corrupted parties has also no effect on breaking collision resistance
and thus its probability remains unchanged as well.

4 Discussions

Tolerating Mobile Adversaries. A mobile adversary is able to switch between
the parties it corrupts. It holds in general that it is not possible to tolerate such
adversaries while having a non-interactive key update procedure. The reason is
that a mobile adversary could gain all secret key shares successively without ever
exceeding the threshold in any time period. Then, by updating all the shares to
the latest time period it would be able to reconstruct the secret key. However,
in our fst-PKE prevention against mobile adversaries is possible by adding a
proactive security mechanism [11,12,17]. Proactive security allows to refresh the
secret key shares in a way such that all shares which were not refreshed cannot be
used to reconstruct the secret key anymore (except for the case that the amount
of not refreshed shares is bigger than the threshold). Although the proactive
security mechanism is interactive, the secret share holders can decide how often
or when they are willing to execute it. For instance, this could happen with a
different level of granularity than the non-interactive key update mechanism or
only when necessary. In order to proactivize the key material in our scheme it

Efficient Forward-Secure Threshold Public Key Encryption 347

does not even require an additional protocol. Indeed, it suffices that the users
execute the DKG protocol where each party Pi sets the constant term of poly-
nomial ai to 0. Then, the final share held by all parties is multiplied to all terms
d′

i in their secret key shares.

From Static to Adaptive Adversaries. To protect against adaptive adversaries
we used complexity leveraging. This approach results in an additional security
loss of

(
n
k

)
, where n is the number of parties and k the threshold. Although,

this loss seems to be quite big, in practice n is relatively small. For instance for
a threshold scheme with 10, 20 or 30 parties the maximum loss is 28, 218 and
228, respectively. Libert and Yung [15] also achieve security against adaptive
adversaries but circumvent complexity leveraging by using bilinear pairings of
composite order. This approach is known as the dual system approach and prior
to their work it was only used to achieve full security for (Hierarchical-)IBE
and attribute-based encryption schemes [13,14,19]. Although the dual system
approach is a very powerful tool to obtain full security or security against adap-
tive adversaries it lacks efficiency when implemented. The reason for this is that
groups of composite order require a much bigger modulus to guarantee the same
level of security than elliptic curves on groups of prime order.7 It can be seen
that the security loss in our scheme can be compensated by a slightly bigger
modulus. This modulus remains much smaller compared to one of composite
order and thus results in a much more efficient scheme.

Finally, it should be mentioned that there exist several techniques to transfer
the dual system approach to prime order groups [9,14,19]. However, they result
in larger ciphertexts and seem also to be less efficient in terms of communication
rounds for decryption. Moreover, it is not clear whether they can be instan-
tiated without a trusted dealer. We leave it as an open problem to use these
techniques to achieve the same efficiency and advantages as our fst-PKE, i.e. a
non-interactive key update and decryption procedure, no trusted dealer, and the
possibility to implement the scheme on standardized elliptic curves.

References

1. Abdalla, M., Miner, S., Namprempre, C.: Forward-Secure threshold signature
schemes. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 441–456.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45353-9 32

2. Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with con-
stant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494,
pp. 440–456. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639 26

3. Boneh, D., Boyen, X., Halevi, S.: Chosen ciphertext secure public key thresh-
old encryption without random oracles. In: Pointcheval, D. (ed.) CT-RSA 2006.
LNCS, vol. 3860, pp. 226–243. Springer, Heidelberg (2006). https://doi.org/10.
1007/11605805 15

7 For comparison of concrete sizes see the common recommendations: https://www.
keylength.com/.

https://doi.org/10.1007/3-540-45353-9_32
https://doi.org/10.1007/11426639_26
https://doi.org/10.1007/11605805_15
https://doi.org/10.1007/11605805_15
https://www.keylength.com/
https://www.keylength.com/

348 R. Kurek

4. Boneh, D., Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from
identity-based encryption. SIAM J. Comput. 36(5), 1301–1328 (2007)

5. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the weil pairing. In: Boyd,
C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-45682-1 30

6. Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme.
In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 255–271. Springer,
Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9 16

7. Chatterjee, S., Hankerson, D., Menezes, A.: On the efficiency and security of
pairing-based protocols in the type 1 and type 4 settings. In: Hasan, M.A., Helle-
seth, T. (eds.) WAIFI 2010. LNCS, vol. 6087, pp. 114–134. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-13797-6 9

8. Chow, S.S.M., Go, H.W., Hui, L.C.K., Yiu, S.-M.: Multiplicative forward-secure
threshold signature scheme. Int. J. Netw. Secur. 7, 397–403 (2008)

9. Freeman, D.M.: Converting pairing-based cryptosystems from composite-order
groups to prime-order groups. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 44–61. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-13190-5 3

10. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Secure distributed key gen-
eration for discrete-log based cryptosystems. J. Cryptology 20(1), 51–83 (2006).
https://doi.org/10.1007/s00145-006-0347-3

11. Herzberg, A., Jakobsson, M., Jarecki, S., Krawczyk, H., Yung, M.: Proactive public
key and signature systems. In: Proceedings of the ACM Conference on Computer
and Communications Security, January 1997

12. Herzberg, A., Jarecki, S., Krawczyk, H., Yung, M.: Proactive secret sharing or: how
to cope with perpetual leakage. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS,
vol. 963, pp. 339–352. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-
44750-4 27

13. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure func-
tional encryption: attribute-based encryption and (Hierarchical) inner product
encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 62–
91. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 4

14. Lewko, A., Waters, B.: New techniques for dual system encryption and fully
secure HIBE with short ciphertexts. In: Micciancio, D. (ed.) TCC 2010. LNCS,
vol. 5978, pp. 455–479. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-11799-2 27

15. Libert, B., Yung, M.: Adaptively secure non-interactive threshold cryptosystems.
Theoret. Comput. Sci. 478, 76–100 (2013)

16. Liu, L.-S., Chu, C.-K., Tzeng, W.-G.: A threshold GQ signature scheme. In: Zhou,
J., Yung, M., Han, Y. (eds.) ACNS 2003. LNCS, vol. 2846, pp. 137–150. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-3-540-45203-4 11

17. Ostrovsky, R., Yung, M.: How to withstand mobile virus attacks (extended
abstract). In: Proceedings of the Tenth Annual ACM Symposium on Principles
of Distributed Computing, PODC 1991, pp. 51–59. ACM, New York (1991)

18. Tzeng, W.-G., Tzeng, Z.-J.: Robust forward-secure signature schemes with proac-
tive security. In: Kim, K. (ed.) PKC 2001. LNCS, vol. 1992, pp. 264–276. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-44586-2 19

19. Waters, B.: Dual system encryption: realizing fully secure IBE and HIBE under
simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–
636. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8 36

https://doi.org/10.1007/3-540-45682-1_30
https://doi.org/10.1007/3-540-39200-9_16
https://doi.org/10.1007/978-3-642-13797-6_9
https://doi.org/10.1007/978-3-642-13190-5_3
https://doi.org/10.1007/978-3-642-13190-5_3
https://doi.org/10.1007/s00145-006-0347-3
https://doi.org/10.1007/3-540-44750-4_27
https://doi.org/10.1007/3-540-44750-4_27
https://doi.org/10.1007/978-3-642-13190-5_4
https://doi.org/10.1007/978-3-642-11799-2_27
https://doi.org/10.1007/978-3-642-11799-2_27
https://doi.org/10.1007/978-3-540-45203-4_11
https://doi.org/10.1007/3-540-44586-2_19
https://doi.org/10.1007/978-3-642-03356-8_36

Efficient Forward-Secure Threshold Public Key Encryption 349

20. Yu, J., Kong, F.: Forward secure threshold signature scheme from bilinear pairings.
In: Wang, Y., Cheung, Y., Liu, H. (eds.) CIS 2006. LNCS (LNAI), vol. 4456, pp.
587–597. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74377-
4 61

21. Zhang, X., Xu, C., Zhang, W.: Efficient chosen ciphertext secure threshold public-
key encryption with forward security. In: Proceedings of the 2013 Fourth Interna-
tional Conference on Emerging Intelligent Data and Web Technologies, EIDWT
2013, USA, pp. 407–413. IEEE Computer Society (2013)

https://doi.org/10.1007/978-3-540-74377-4_61
https://doi.org/10.1007/978-3-540-74377-4_61

	Efficient Forward-Secure Threshold Public Key Encryption
	1 Preliminaries
	2 Forward-Secure Threshold Public Key Encryption (fst-PKE)
	3 Our CCA Forward-Secure Threshold PKE
	4 Discussions
	References

